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Abstract

We study the spectral asymptotics for Laplacians with Dirichlet boundary condi-
tions on random Cantor-like sets and on their complement.

In the first part, we determine the leading order in the Weyl expansion of the
eigenvalue counting function for measure theoretical Laplacians ∆µ = d

dµ
d
dx

with
respect to statistically self-similar and random V -variable Cantor measures µ.

In the second part, we investigate the classical one dimensional Laplacian d2

dx2

on the complement of statistically self-similar Cantor sets, called statistically self-
similar Cantor strings. We establish a Strong Law of Large Numbers for the error
of the first term in the Weyl asymptotics of the eigenvalue counting function for the
classical Laplacian d2

dx2
on these statistically self-similar Cantor strings. Afterwards,

we discuss the random fluctuation of the normalized error of the first term in the
Weyl asymptotics of the eigenvalue counting function around its limit by giving a
Central Limit Theorem. Since the Central Limit Theorem only makes a statement
about convergence in distribution, we also establish an almost sure error estimate
of the random fluctuation using a Law of the Iterated Logarithm.
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Zusammenfassung

Wir untersuchen die Spektralasymptotik von Laplace-Operatoren mit Dirichlet
Randbedingungen auf zufälligen Cantor-ähnlichen Mengen und auf deren Kom-
plement.

Im ersten Teil der Arbeit bestimmen wir die führende Ordnung in der Weyl-
asymptotik von maßtheoretischen Laplace-Operatoren ∆µ = d

dµ
d
dx

bezüglich statis-
tisch selbst-ähnlicher und zufälliger V -variabler Cantormaße µ.

Im zweiten Teil betrachten wir den klassischen eindimensionalen Laplace-Opera-
tor d2

dx2
auf dem Komplement von statistisch selbst-ähnlichen Cantormengen. Zu-

nächst etablieren wir ein Starkes Gesetz der Großen Zahlen für den Fehler des er-
sten Ordnungsterms in der Weylasymptotik der Eigenwertzählfunktion des klassis-
chen Laplace-Operators d2

dx2
auf dem Komplement von statistisch selbst-ähnlichen

Cantormengen. Darauffolgend beweisen wir einen Zentralen Grenzwertsatz für die
zufällige Fluktuation des normalisierten Fehlers des ersten Ordnungsterms der
Eigenwertzählfunktion um dessen Grenzwert. Da der Zentrale Grenzwertsatz nur
eine Konvergenzaussage in Verteilung trifft, geben wir eine fast sichere Fehler-
schranke der zufälligen Fluktuation unter Anwendung eines Gesetzes des Iterierten
Logarithmus.
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Chapter 1

Introduction

1.1. Weyl’s law and Berry’s conjecture

In the course of time, many seemingly separated areas arose in mathematics. Ques-
tioning connections between spectral and geometric properties of sets were empha-
sized with Kac’ paper [54] entitled “Can one hear the shape of a drum?” in which
he investigated the equation

1

2
∆|XU + ω2U = 0 (1.1)

on a membrane X ⊆ Rd with ∆|X denoting the Dirichlet Laplacian on X. Consid-
ering this equation was motivated by the wave equation

∂2u

∂t2
=

1

2

∂2u

∂x2
(1.2)

with Dirichlet boundary conditions u|∂X ( · , t) = 0 for all t. Solutions

u(x, t) = U(x)eiωt, x ∈ X, t ∈ [0,∞) (1.3)

of the wave equation represent pure tones the membrane is capable of producing,
cf. [54, page 2]. Substituting (1.3) into the wave equation yields (1.1).

The main question of Kac in [54] is if the spectrum Υ(X) of −∆|X determines X
up to isometry. As shown in [39, 72] the answer is “no” in general. However, some
geometric properties of X are saved in Υ(X). Weyl showed that the eigenvalue
counting function N(X; · ) of −∆|X satisfies

N(X; λ) = (2π)−dBd vold(X)λd/2 + o
(
λd/2

)
, (1.4)

as λ → ∞, where Bd denotes the volume of the unit ball in Rd. The reader is
referred to [16,75,82–84]. This formula is nowadays known as Weyl’s law.
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Furthermore, in [84] Weyl conjectured that (1.4) can be expanded to

N(X; λ) = (2π)−dBd vold(X)λd/2 − c2(d) vold−1(∂X)λ(d−1)/2 + o
(
λ(d−1)/2

)
, (1.5)

as λ → ∞. Under a regularity condition and if the boundary of X is smooth,
his conjecture was proven by Duistermaat and Guillemin [25] and Ivrii [50]. For a
historical overview see Ivrii [51].

Berry conjectured in [10,11] that if the boundary of X is not smooth, the second
term in (1.5) should be driven by the Hausdorff dimension of ∂X. More precisely,
he conjectured

N(X; λ) = (2π)−dBd vold(X)λd/2 − c2 (d, dH) HdH(∂X)λdH/2 + o
(
λdH/2

)
, (1.6)

as λ → ∞, where dH denotes the Hausdorff dimension of ∂X, HdH the dH-
dimensional Hausdorff measure and c2 (d, dH) > 0 is a constant only depending
on d and dH.
His conjecture was proven wrong by Brossard and Carmona [14]. Moreover, they

indicated that the second term should be driven by the Minkowski dimension of
∂X. Lapidus [60, Theorem 1.1] showed that if the Minkowski dimension dM of
∂X is in (d − 1, d] and if the upper Minkwoski content of ∂X is finite, then the
error of the first term in (1.4) is of the order O(λdM/2). Furthermore, Lapidus
and Pomerance [61] investigated the case when d = 1 and the boundary of X is
Minkowski measurable. They showed that in this case the Minkowski content is
the right measurement to capture the fractal length of the boundary of X in the
Weyl asymptotics. More precisely, [61, Corollary 2.3] yields

Theorem 1.1.1 (c.f. [61, Corollary 2.3]): Let X ⊆ R be bounded and open such
that ∂X is Minkowski measurable with Minkowski dimension dM ∈ (0, 1). Then, it
holds

N(X; λ) = π−1vol1(X)λ1/2 − c2 (dM) MdM (∂X)λdM/2 + o
(
λdM/2

)
,

as λ→∞, where MdM denotes the dM -dimensional Minkowski content and

c2 (dM) = 2−(1−dM )π−dM (1− dM)(−ζ(dM)),

with ζ being the Riemann zeta function.
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For higher dimensional sets it is in general hard to discover the growth of the
second order term. Fleckinger-Pellé and Vassiliev [30] constructed sets for which
the second order term in the Weyl asymptotics is proportional to a periodic func-
tion of log λ.

Besides investigation on (1.6) when ∂X is fractal, the leading order term in the
Weyl expansion got in focus for generalized Laplacians acting on fractals. Authors
such as Fukushima and Shima [37] and Kigami and Lapidus [57] considered (1.4) for
Laplacians on p.c.f. fractals, Hambly [41,42] and Freiberg, Hambly and Hutchinson
[35] on random fractals, Alonso-Ruiz and Freiberg [1,2], Alonso-Ruiz, Kelleher and
Teplyaev [3] and Hauser [45,46] investigated Laplacians on the Hanoi attractor and
Hauser [47] on streched fractals. Fujita [36], Freiberg [33, 34] and Arzt [4] worked
on (1.4) for measure theoretical Laplacians acting on and off Cantor-like sets.

1.2. Statement of the problem for measure

theoretical Laplacians
We consider a finite non-atomic Borel measure on some interval [a, b]. Typically,
µ is a singular measure, i.e. µ has no Radon-Nikodym density with respect to
the Lebesgue measure. Common examples are measures supported on the Cantor
set but also fully supported measures with asymmetric mass distribution. Mea-
sure theoretical Laplacians ∆µ we investigate are the composition of two measure
theoretical first order derivatives.

For a mathematical motivation, consider a function f ∈ C0([a, b],R). f is weakly
differentiable in L2 with L2-weak derivative g if and only if g ∈ L2(λ1) and

f(x) = f(a) +

∫ x

a

g(y) dy, x ∈ [a, b],

see e.g. [13, Theorem 8.2]. Replacing the one dimensional Lebesgue measure λ1

with µ leads to a measure theoretical first order derivative. As in Freiberg [31,32],
we say f : [a, b] −→ R possesses a µ-derivative fµ ∈ L2(µ) if and only if

f(x) = f(a) +

∫ x

a

fµ(y)µ(dy), x ∈ [a, b],

see also Arzt [4, Section 2.1]. Beside other analytic properties, in Freiberg [31] it
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is shown that the µ-derivative operator

d

dµ
: Dµ

1 −→ L2(µ)

f 7→ fµ

is well-defined, where Dµ
1 is defined in (2.1). Composing the µ-derivative with

the classical first derivative d
dx

leads to the measure theoretical Laplacian we are
interested in

∆µ : Dµ
2 −→ L2(µ),

f 7→ d

dµ
f ′,

where Dµ
2 is defined in (2.2).

For this operator we study Weyl’s law (1.4), meaning we study the equation

∆µf = −λf (1.7)

with Dirichlet boundary conditions

f(a) = f(b) = 0.

By Bird, Ngai and Teplyaev [12, Theorem 5] the spectrum of −∆µ with Dirichlet
boundary conditions is pure point with eigenvalues having finite multiplicities,
accumulating only at infinity. For more general measure theoretical Laplacians
defined as the composition of d

dµ
and d

dν
with some suitable measure ν, these

properties are preserved as shown in Freiberg [31, Lemma 5.1 and Corollary 6.9]. In
addition to the mentioned, ∆µ were considered in numerous papers. For properties
of the associated stochastic process see for example Küchler [58,59] and Löbus [68].

1.3. Physical motivation for measure theoretical

Laplacians
The following physical motivation is taken from Arzt [4, Section 1.2]. In that work,
further physical motivations for this operator with Dirichlet and also with Neu-
mann boundary conditions are given.
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We consider a flexible string, clamped between two points a and b. If we deflect
the string, a tension force drives the string back towards its state of equilibrium,
cf. [4, page 9]. A solution u of the wave equation (1.2) with Dirichlet boundary
conditions and X = [a, b] models the deviation of the string under the assumption
that the mass distribution of the string is homogeneous. Replacing the constant in
(1.2) by a mass density % : [a, b] −→ R leads to

%(x)
∂2u(x, t)

∂t2
=
∂2u(x, t)

∂x2
. (1.8)

A solution u of this generalized wave equation with Dirichlet boundary condition
u(a, t) = u(b, t) = 0 for all t models the same phenomenon as before with the
difference that the string has a possibly inhomogeneous mass distribution µ(dx) =

%(x) dx (we set the other involved constants to 1).
The ansatz u(x, t) = φ(x)ψ(t) leads to

ψ′′(t)

ψ(t)
=

φ′′(x)

φ(x)%(x)
.

The left hand side no longer depends on x, the right hand side no longer on t, and
thus there exists a λ ∈ R such that

ψ′′(t)

ψ(t)
=

φ′′(x)

φ(x)%(x)
= −λ

for all t and x. We consider the equation for φ and write it as

φ′′(x) = −λφ(x)%(x).

Integrating both sides with respect to the Lebesgue measure leads to

φ′(x)− φ′(a) = −λ
∫ x

a

φ(y) %(y) dy

and thus

φ′(x) = φ′(a)− λ
∫ x

a

φ(y) %(y) dy.

Hence,

φ′(x) = φ′(a)− λ
∫ x

a

φ(y)µ(dy).

13



By definition of the µ-derivative this means

d

dµ
φ′ = −λφ, (1.9)

and consequently

∆µφ = −λφ

with Dirichlet boundary conditions

φ(a) = φ(b) = 0.

The eigenvalue problem (1.9) no longer involves the density of the mass distribu-
tion of the string. Therefore, we can reformulate the problem for singular mass
distributions µ.

Up to a multiplicative constant, the square root of the eigenvalues are given as
the natural frequencies of the sting.

1.4. The Cantor set, Cantor-like sets and Cantor

strings
“Als ein Beispiel einer perfecten Punctmenge, die in keinem noch so

kleinen Intervall überall dicht ist, führe ich den Inbegriff aller reellen
Zahlen an, die in der Formel:

z =
c1

3
+
c2

32
+ · · ·+ cν

3ν
+ · · ·

enthalten sind, wo die Coefficienten cν nach Belieben die beiden Werthe
0 und 2 anzunehmen haben und die Reihe sowohl ans einer endlichen,
wie aus einer unendlichen Anzahl von Gliedern bestehen kann.” ( [15],
page 590, footnote 11)

In 1883, Cantor introduced in the cited excerpt the set nowadays known as the
Cantor set. His investigation was based on giving an example for a perfect set
which is nowhere dense. Thereby, he defined the considered set as all real numbers
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expressible as

∞∑
i=1

ci
3i
, ci ∈ {0, 2}.

A fixed-point argument based definition would be the following: By Hutchinson
[48] there exists to every iterated function system S = {S1, . . . , SN} on a complete
metric space (X , d) a unique non-empty compact set K such that

K =
N⋃
i=1

Si(K). (1.10)

With

(X , d) = ([0, 1], | · |), S =

{
1

3
x,

1

3
x+

2

3

}
, (1.11)

the unique non-empty compact set K satisfying (1.10) is the set introduced by
Cantor.

The Cantor set can also be defined as the limit of the iterative procedure in
which the open second third interval of every remaining interval is removed, start-
ing with the unit interval.

Figure 1.1: Iterative construction of the Cantor set

With (1.11) one can give an analytic definition of this iterative construction. There-
fore, define for x = (x1, . . . , xn), xi ∈ {1, 2}, n ∈ N

Sx := Sx1 ◦ · · · ◦ Sxn .

15



Then, the Cantor set K is given as

K :=
∞⋂
n=1

⋃
|x|=n

Sx[0, 1].

Furthermore, we call
⋃
|x|=n Sx[0, 1] the n-th approximation step of the Cantor set.

Hausdorff introduced in [44] a new dimension concept, today known as the
Hausdorff dimension. To give an example of a set whose Hausdorff dimension
can take any value in (0, 1), he generalized the Cantor set by removing an interval
with arbitrary fixed length ratio from the middle of each remaining interval.

Beardon [9] investigated the Hausdorff dimension of a more general construction
which was introduced by Tsuji [80,81]. Hereby, the considered set is defined by

K :=
∞⋂
n=1

N⋃
x1,...,xn=1

Cx1,...,xn ,

where N ∈ N, N ≥ 2 and Cx1,...,xn are connected compact sets (not necessarily
one-dimensional) satisfying

• Cx1,...,xn ⊇ Cx1,...,xn,xn+1 ,

• C1, . . . , CN are pairwise disjoint ,

• there exists A ∈ (0, 1) such that

∥∥Cx1,...,xn,xn+1

∥∥ ≥ A ‖Cx1,...,xn‖ ,

• there exists B ∈ (0, 1) such that for xn+1 6= yn+1

ρ(Cx1,...,xn,xn+1 , Cx1,...,xn,yn+1) ≥ B ‖Cx1,...,xn‖ ,

where ‖ · ‖ denotes the diameter and

ρ(X, Y ) := inf {|x− y| : x ∈ X, y ∈ Y } .

On page 61 ff., Falconer [27] considered sets

K :=
∞⋂
n=1

En, (1.12)
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with En being the union of a finite number of disjoint closed intervals, [0, 1] ⊃
E1 ⊃ E2 ⊃ · · · such that each interval in En contains at least two intervals of
En+1 and the maximum length of intervals in En tends to 0 as n tends to infinity.
En can be regarded as the n-th approximation step of K in (1.12).

We call the above introduced generalized Cantor sets Cantor-like. Zähle [85],
Falconer [28], Mauldin and Williams [70] and Graf [40] investigated the Hausdorff
dimension of random Cantor-like sets. Arzt [4] investigated spectral asymptotics
for measure theoretical Laplacians acting on random Cantor-like sets. In Mandel-
brot [69] a random generalization of the Cantor set on the whole real line is treated.

The complement of such a one-dimensional Cantor-like set is a disjoint union of
countably many open intervals those descending assorted lengths {ln}n∈N satisfy
limn→∞ ln = 0. Such a set is called Cantor string. Cantor strings and their ran-
domizations are e.g. considered in Lapidus and Pomerance [61, 62], Hambly and
Lapidus [43], Lapidus and van Frankenhuysen [64] and Charmoy, Croydon and
Hambly [18].

1.5. Outline of the thesis

In the presented thesis we consider Weyl’s law (1.4) and Berry’s conjecture (1.6)
on random Cantor sets and strings, respectively.

Firstly, we calculate the leading order in the asymptotics of the eigenvalue count-
ing function for measure theoretical Laplacians ∆µ with respect to statistically
self-similar and random V -variable Cantor measures.
Berry’s conjecture is treated on the complement of statstically self-similar Can-

tor sets. For the classical Laplacian on these strings we make some statements
about the error of the second term in the Weyl asymptotics.

We summarize in Chapter 2 the preliminary work onWeyl’s law (1.4) for measure
theoretical Laplacians ∆µ and Berry’s conjecture (1.6) on statistically self-similar
Cantor strings for the classical Laplacian.

In Section 3.1, C-M-J branching processes related to statistically self-similar
Cantor sets are introduced. The Weak and Strong Law of Large Numbers and the
Central Limit Theorem for these processes are given in Section 3.3. After these
preliminary convergence results, we establish in Section 3.4 a Law of the Iterated
Logarithm which is the first main result of the present thesis.
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Figure 1.2: First two approximation steps of a recursive Cantor set

We need to control some moments of the almost sure limit of the normalized
C-M-J branching process to apply the Central Limit Theorem and Law of the
Iterated Logarithm. An investigation on the almost sure limit of the normalized
C-M-J branching process terminates Chapter 3.

We shortly introduce recursive Cantor sets and corresponding Cantor measures,
the precise definition follows in Section 4.2.1. Corresponding random recursive
Cantor sets are also called statistically self-similar, e.g. in [18]. As explained, the
Cantor set can be constructed by taking repeatedly the image of the remaining
intervals under the IFS S = {1

3
x, 1

3
x + 2

3
}, starting with the unit interval. We

generalize this procedure by considering a family of iterated function systems S on
[0, 1] (later more general on [a, b]) such that the image of the unit interval contains
the boundary points. In the first approximation step we subdivide the unit interval
according to an IFS S∅ = {S1, . . . , SN∅} ∈ S. Afterwards, we take the image of
S1[0, 1], . . . , SN∅ [0, 1] under arbitrary iterated function systems S∅,1, . . . ,S∅,N∅ ∈
S. Subsequently, we continue analogously. By given family of iterated function
systemsS, this procedure can be encoded by a tree I. The limiting setK(I) is called
recursive Cantor set. Such recursive structures for p.c.f. fractals are considered in
Hambly [42].
In Figure 1.2, we see an example of a recursive Cantor set with S = {S(1),S(2)},
S(1) being the generator of the Cantor set and S(2) splitting the unit interval
into five subintervals where the open second and fourth fifth interval is removed.
To each IFS we assign a vector of weights m(j) = (m

(j)
1 , . . . ,m

(j)
Nj

), Nj =
∣∣S(j)

∣∣,
m

(j)
i ∈ (0, 1) for all i,

Nj∑
i=1

m
(j)
i = 1, j = 1, 2,

18



Figure 1.3: First two approximation steps of a recursive Cantor measure

with which we construct a Borel probability measure µ(I) on [0, 1] with suppµ(I) =

K(I). µ(I) weights an interval in an approximation step of K(I) by a product of
entries of vectors of weights. This product is encoded in the same way as the
composition of similarities of the used iterated function systems generating that
particular interval. Figure 1.3 shows the mass distribution of µ(I) for the intervals
in Figure 1.2.

Afterwards, we construct a probability space in which every atomic event indi-
cates a random tree. Such a random tree defines a statistically self-similar Cantor
set K(I) and a corresponding random probability measure µ(I). By using a scaling
property of the eigenvalue counting function, similar to that of Arzt [4] who es-
tablished his scaling property by following Kigami and Lapidus [57, Lemma 2.3],
we are able to use the theory of C-M-J branching processes to determine in Sec-
tion 4.2.3 the leading order in the Weyl asymptotics for the Dirichlet eigenvalue
counting function Nµ(I) of −∆µ(I) . This leading order is characterized by an ex-
pectation equation, similar to the equation characterizing the leading order in the
Weyl asymptotics of the Dirichlet eigenvalue counting function Nµ of −∆µ for
self-similar measures µ.

An interpolation between random homogeneous and statistically self-similar
structures can be done by trimming the tree I in the manner that in every gener-
ation it is allowed to have at most a fixed number of different subtrees. We denote
this fixed number by V . Corresponding sets under consideration in Section 4.3 are
called V -variable Cantor sets. The case V = 1 leads to homogeneous Cantor sets
and V =∞ can be regarded as the recursive structure. This construction was in-
troduced in [7,8]. Spectral asymptotics for the Laplacian on V -variable Sierpinski
Gaskets are considered by Freiberg, Hambly and Hutchinson [35].

As an example for a V -variable construction, we consider four iterated function
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systems S =
{
S(1), S(2), S(3), S(4)

}
and set V = 3. We let S(1) and S(2) be the

same IFSs as before, S(3) splitting the unit interval into three parts, where the
open second quarter interval is removed and S(4) also splitting the unit interval
into three parts, where the open third quarter interval is removed. The variable
V ∈ N determines the number of types. We denote the types in our example
by O, �, ♦. In every approximation step, every type indicates an index of our
index set {1, 2, 3, 4}. This indicated index can vary in different approximation
steps. Figure 1.4 shows an example on how we construct a 3-Variable Cantor set
in this setting. A V -variable Cantor set depends on a sequence of environments
which determines in every step the indicated indices of each type and also the
types of the intervals in the next step.

Figure 1.4: First approximation steps of one possible 3-variable Cantor set

After applying the environment in approximation step 2 of Figure 1.4 all as-
signed types are equal. In our random setting such levels occur infinitely often
almost surely and are crucial for our consideration. We call such levels neck levels
and discuss some properties in Section 4.3.2. Afterwards, we give in Section 4.3
the spectral asymptotics for random V -variable Cantor measures.
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The main results of Chapter 4 are given in Theorem 4.2.9 and Theorem 4.3.18.
These theorems are main results of the present thesis.

Taking the complement of a statistically self-similar Cantor set K(I) in [0, 1]

leads to a set U , called statistically self-similar Cantor string. U consists of a
countable union of disjoint open intervals with descending lengths. We investigate
the asymptotic behaviour of

N̄(U ; λ) :=
1

π
λ1/2 −N(U ; λ)

in Chapter 5. Therein, a crucial property of N̄(U ; · ) is the decomposition

N̄(U ; λ) =

N∅−1∑
i=1

N̄([0, 1]; L2
iλ) +

N∅∑
i=1

N̄(Ui; R
2
iλ)

with N∅ being the number of subintervals in the first approximation step, Li the
length of the gap interval between Si[0, 1] and Si+1[0, 1], Ri the scale factor of Si
and {Ui}N∅i=1 i.i.d. copies of U . With this decomposition we can write N̄(U ; e2λ)

as a C-M-J branching process. In Section 5.2, we investigate the conditions for
the Central Limit Theorem and the Law of the Iterated Logarithm. As shown in
Section 5.3, controlling the error of the linear approximation of the underlying re-
newal function ensures the Central Limit Theorem and, if the normalized variance
process does not converge to 0, the Law of the Iterated Logarithm to hold. We
terminate Chapter 5 with an application, taken from [18], in which the normalized
variance process does not converge to 0.

The main result of Chapter 5 is given in Theorem 5.3.2 which is a main result
of the present thesis.

Finally, in Chapter 6, we give an outlook. For ∆µ this outlook concerns relations
between the leading order term in Weyl’s law for random V -variable and statis-
tically self-similar Cantor measures. Also, we discuss the assumptions needed for
the spectral asymptotics in Chapter 2.2 and Section 4.

A further investigation on the Central Limit Theorem and Law of the Iterated
Logarithm for N̄(U ; · ) is also mentioned.
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Notation. For the length of a statement or proof ci, di, i ∈ N are some non-
negative numbers.

The present thesis is based on the following articles, for references of the first two
articles, see [73] and [74]:

- L. A. Minorics, Spectral Asymptotics for Krein-Feller-Operators with respect
to Random Recursive Cantor Measures. Preprint, 2017.

- L. A. Minorics, Spectral Asymptotics for Krein-Feller-Operators with respect
to V -variable Cantor Measures. Preprint, 2018.

- B. M. Hambly and L. A. Minorics, Some Limit Theorems for the Laplacian
on Statistically Self-Similar Cantor Strings. In preparation.
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Chapter 2

Preliminaries
In this chapter we give preliminary results on Weyl’s law for Laplacians under
consideration concerning the first order term in the Weyl asymptotics for the
eigenvalue counting function for measure theoretical Laplacians ∆µ with respect
to certain measures µ and the second order term in the Weyl asymptotics for the
eigenvalue counting function for the classical Laplacian on statistically self-similar
Cantor strings.

2.1. Definition and basic properties of measure

theoretical Laplacians
As Freiberg [31,32] we define a measure theoretical derivative. Therefore, let µ be
a finite non-atomic Borel measure on [a, b], −∞ < a < b <∞ and

Dµ
1 :=

{
f : [a, b] −→ R : ∃ fµ ∈ L2(µ) :

f(x) = f(a) +

∫ x

a

fµ(y) µ(dy), x ∈ [a, b]

}
.

By Freiberg [31, Corollary 6.4], the µ-derivative

d

dµ
: Dµ

1 := Dµ
1/ ∼µ −→ L2(µ), (2.1)

f 7→ fµ

is well-defined, whereby ∼µ denotes the equivalence relation in L2(µ). Let

Dµ
2 := Dµ,λ1

2 :=

{
f ∈ C1([a, b],R) : ∃ (f ′)µ ∈ L2 (µ) :

f ′(x) = f ′(a) +

∫ x

a

(f ′)µ(y) µ(dy), x ∈ [a, b]

}
.
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The measure theoretical Laplacian ∆µ is given as

∆µ : Dµ
2 := Dµ

2/ ∼µ −→ L2(µ) (2.2)

f 7→ (f ′)µ,

see also Arzt [4, Section 2.1]. Further, denote by (λµi )i∈N the ascending ordered
sequence of Dirichlet eigenvalues of −∆µ and, as in Chapter 1,

Nµ(λ) := # {i ∈ N : λµi ≤ λ} .

We establish the following lemma to control the eigenvalue counting function of
∆µ in Section 4.

Lemma 2.1.1: Let µ be a finite non-atomic Borel measure on [a, b] with a, b ∈ suppµ.
Then, there exists c > 0 such that

Nµ(s) ≤ µ([a, b]) c s

for all s ≥ 0. Moreover, c is independent of µ.

Proof. Let

g(x, y) :=
min(x− a, y − a) min(b− y, b− x)

b− a
, x, y ∈ [a, b].

Then, with

Tg : L2(µ) −→ L2(µ)

f 7→
∫ b

a

g(·, y)f(y)µ(dy),

we get 
− d
dµ

d
dx
f = λf

f(a) = f(b) = 0
if and only if Tgf =

1

λ
f, (2.3)

cf. [31, Theorem 4.1]. In the following we want to use Mercer’s Theorem, origi-
nally given in [71]. The version we use is taken from the book of Christmann and
Steinwart [19].

By [19, Definition 4.1, Lemma 4.3, Lemma 4.6], g is a continuous kernel and
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thus we can use Mercer’s Theorem [19, Theorem 4.49] and therefore

g(x, y) =
∞∑
i=1

1

λµi
fi(x) fi(y),

where (fi)i are orthonormal eigenfunctions. Furthermore, the convergence is uni-
form. With

c := sup
x∈[a,b]

g(x, x) =
b− a

4

it follows

c ≥
∞∑
i=1

1

λµi
fi(x) fi(x).

Integrating both sides with respect to µ yields for any s ≥ 0

µ([a, b]) c ≥
∞∑
i=1

1

λµi
=

∫ ∞
0

1

u
Nµ(du) ≥

∫ s

0

1

u
Nµ(du) ≥ 1

s
Nµ(s)

and thus the claim follows.

In Chapter 4 we furthermore need relations between the Dirichlet and Neumann
eigenvalue counting function of −∆µ. Therefore, we write Nµ

D and Nµ
N for the

Dirichlet and Neumann eigenvalue counting function of −∆µ respectively, where
we call λ a Neumann eigenvalue of −∆µ if λ is an eigenvalue of −∆µ with Neumann
boundary conditions

f ′(a) = f ′(b) = 0.

For references of the following Lemma, see Freiberg [32, Proposition 5.5].

Lemma 2.1.2 (c.f. [32, Proposition 5.5]): Let µ be a finite non-atomic Borel
measure on [a, b] with a, b ∈ suppµ. Then, for all s ≥ 0 holds

Nµ
D(s) ≤ Nµ

N(s) ≤ Nµ
D(s) + 2.
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2.2. Spectral asymptotics for measure theoretical

Laplacians on Cantor-like sets

2.2.1. Spectral asymptotics for self-similar Cantor measures

In this section we consider spectral asymptotics of ∆µ with respect to self-similar
measures treated in Fujita [36]. Therefore, let S = {S1, ..., SN}, N ≥ 2 be an
iterated function system given by

Si(x) = ri x+ ci, x ∈ [a, b],

whereby ri ∈ (0, 1) and ci ∈ R are constants such that the open set condition
is satisfied. As explained in Section 1.4, by Hutchinson [48] there exists a unique
non-empty compact set K = K(S) ⊆ [a, b] such that

K =
N⋃
i=1

Si(K).

Furthermore, let m = {m1, . . . ,mN} be a vector of weights. Also shown in [48],
there exists a unique Borel probability measure µ = µ(S,m) such that

µ =
N∑
i=1

mi µ ◦ S−1
i

with suppµ = K. We call K self-similar with respect to S and µ self-similar with
respect to S and m or simply self-similar Cantor measure. This measure µ is the
weak limit of the sequence of Borel probability measures (µn)n∈N0 defined as

µn :=
∑

x∈{1,...,N}n
mx1 · · ·mxn µ0 ◦ (Sx1 ◦ Sx2 ◦ · · · ◦ Sxn)−1, µ0 :=

1

b− a
λ1
|[a,b] .

Hutchinson [48] furthermore showed that the Hausdorff and Minkowsi dimension
of K is given by the unique solution d ∈ [0, 1] of

N∑
i=1

rdi = 1 (2.4)
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and it holds Hd(K) ∈ (0,∞). Moreover, if mi = rdi for all i, it follows

µ = Hd(K)−1Hd( · ∩K),

since for a Borel set A ⊆ [a, b] follows

Hd(A ∩K) = Hd

(
N⋃
i=1

Si
(
S−1
i (A)

)
∩ Si(K)

)

=
N∑
i=1

Hd
(
Si
(
S−1
i (A)

)
∩ Si(K)

)
=

N∑
i=1

Hd
(
ri (S

−1
i (A) ∩K)

)
=

N∑
i=1

rdi Hd
(
S−1
i (A) ∩K

)
.

In this setting, the following theorem was established by Fujita [36, Theorem 3.6]
and Freiberg [34, Theorem 3.2].

Theorem 2.2.1 (c.f. [36, Theorem 3.6 and 34, Theorem 3.2]): Let γs > 0

be the unique solution of

N∑
i=1

(rimi)
γs = 1.

Then, it holds

1. If the additive group
∑N

i=1 Z log(rimi) is a dense subset of R, then there exists
C > 0 such that

lim
λ→∞

Nµ(λ)λ−γs = C.

2. If the additive group
∑N

i=1 Z log(rimi) is a discrete subgroup of R with period
T , then there exists a T -periodic function G such that

Nµ(λ) = (G(log λ) + o(1))λγs ,

as λ→∞.
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2.2.2. Spectral asymptotics for random homogeneous

Cantor measures

The spectral asymptotics for ∆µ with respect to a generalization of self-similar
Cantor measures is discussed in this section. We only consider a random version
treated by Arzt [4, Section 3.5]. Therefore, let J be a non-empty countable index
set. To each j ∈ J let S(j) =

{
S

(j)
1 , ..., S

(j)
Nj

}
, Nj ∈ N be an IFS such that

S
(j)
i (x) = r

(j)
i x+ c

(j)
i , x ∈ [a, b], i = 1, ..., Nj,

where the constants r(j)
i ∈ (0, 1), c(j)

i ∈ R are chosen such that

a = S
(j)
1 (a) < S

(j)
1 (b) ≤ S

(j)
2 (a) < · · · < S

(j)
Nj

(b) = b. (2.5)

Further, ξ = (ξ1, ξ2, ...), ξi ∈ J is called an environment sequence and define

Wn := {1, ..., Nξ1} × {1, ..., Nξ2} × · · · × {1, ..., Nξn} , n ∈ N.

A generalization of self-similar, called homogeneous Cantor set is defined by

K(ξ) :=
∞⋂
n=1

⋃
w∈Wn

(
S(ξ1)
w1
◦ S(ξ2)

w2
◦ · · · ◦ S(ξn)

wn

)
([a, b]).

To this set, Arzt [4, Chapter 3] defined measures which are natural extensions
of self-similar Cantor measures. Therefore, let m(j) = (m

(j)
1 , ...,m

(j)
Nj

), j ∈ J be a
vector of weights. The Borel probability measure µ(ξ) under consideration is defined
as the weak limit of the sequence of Borel probability measures

(
µ

(ξ)
n

)
n∈N

,

µ(ξ)
n :=

∑
w∈Wn

m(ξ1)
w1
· · ·m(ξn)

wn µ0 ◦
(
S(ξ1)
w1
◦ · · · ◦ S(ξn)

wn

)−1
, µ0 :=

1

b− a
λ1
|[a,b] . (2.6)

µ(ξ) is called homogeneous Cantor measure, corresponding to K(ξ). If |J | = 1, then
the definition of self-similar Cantor sets and measures coincide with K(ξ) and µ(ξ),
respectively.

For the random set up, let (Ω,A,P) be a probability space and ξ = (ξ1, ξ2, ..) a
sequence of i.i.d. J-valued random variables with pj := P(ξi = j). In [4, Chapter
3] the following assumptions are discussed:
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sup
j∈J

Nj <∞, (A1)

inf
j∈J

min
i=1,...,Nj

r
(j)
i m

(j)
i > 0, (A2)

sup
j∈J

max
i=1,...,Nj

r
(j)
i m

(j)
i < 1, (A3)

∏
j∈J,∑Nj

i=1
r
(j)
i

m
(j)
i
<1

Nj∑
i=1

r
(j)
i m

(j)
i > 0, (A4)

∏
j∈J,∑Nj

i=1
r
(j)
i

m
(j)
i
>1

Nj∑
i=1

r
(j)
i m

(j)
i <∞. (A5)

With these assumptions, Arzt [4, Corollary 3.5.1] established the following theo-
rem.

Theorem 2.2.2 (c.f. [4, Corollary 3.5.1]): Let (A1)-(A5) be satisfied. Then,
for the unique solution γh > 0 of

∏
j∈J

 Nj∑
i=1

(
r

(j)
i m

(j)
i

)γhpj

= 1

it holds that there exist C1, C2 > 0, λ0 > 0 and c1(ω), c2(ω) > 0 for almost all
ω ∈ Ω such that

C1 λ
γh e−c1(ω)

√
log λ log log log λ ≤ Nµ(ξ(ω))

D (λ) ≤ Nµ(ξ(ω))

N (λ) ≤ C2 λ
γh e−c2(ω)

√
log λ log log log λ

for all λ ≥ λ0.

See also Barlow and Hambly [6].
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2.3. Spectral asymptotics for Laplacians on

statistically self-similar Cantor strings
In this section we recap the results of Charmoy, Croydon and Hambly [18] about
the Central Limit Theorem for statistically self-similar Cantor strings. Therefore,
choose a deterministic number γ ∈ (0, 1) and a random vector (T1, . . . , Tn), where
n ≥ 2 is a deterministic natural number. Assume that (T1, . . . , Tn) satisfies

n∑
i=1

Ti = 1, Ti ∈ (0, 1) a.s.

The construction of the random Cantor-like set under consideration is as follows.
Replace the unit interval [0, 1] by n equally spaced intervals with lengths R1 :=

T
1/γ
1 , . . . , Rn := T

1/γ
n . Afterwards, repeat this procedure for the remaining intervals

independently, indefinitely. The limiting set K is a statistically self-similar Cantor
set. By construction, the measure F defined by

F (dt) := E
n∑
i=1

e−γtδ− logRi(dt)

is a probability distribution on [0,∞), where δ denotes the Dirac delta function.
By H denote the corresponding renewal function

H := 1 +
∞∑
m=1

F ∗m,

where F ∗m denotes the m-fold convolution of F with itself. Further, denote by G
the error of the linear approximation of the renewal function, i.e.

G(t) := H(t)− t
(∫ ∞

0

uF (du)

)−1

.

Under the following assumption of the speed of convergence of G, Charmoy, Croy-
don and Hambly [18, Theorem 4.3] established a Central Limit Theorem for N̄U .
Therefore, it is assumed that G converges to a finite constant (see Appendix A1).
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Assumption 2.3.1 (c.f. [18, Assumption 4.2]): There exist β1 ∈ (γ/2,∞) and
c, t0 ∈ (0,∞) such that ∣∣∣G(t)− lim

u→∞
G(u)

∣∣∣ ≤ c e−β1t,

for all t ≥ t0.

Theorem 2.3.2 (Central Limit Theorem, c.f. [18, Theorem 4.3]): Let
N([0, 1]\K; · ) be the Dirichlet eigenvalue counting function of the negative Lapla-
cian on [0, 1]\K,

N̄([0, 1]\K;λ) :=
1

π
λ1/2 −N(λ)

and F be non-lattice. Then, there exists a deterministic C > 0 such that

N̄([0, 1]\K;λ)λ−γ/2
λ→∞−→ C a.s.

Further, if Assumption 2.3.1 holds, then there exists σ2 > 0 such that

λγ/4
(
N̄([0, 1]\K;λ)λ−γ/2 − C

) λ→∞−→ N(0, σ2),

where N(0, σ2) denotes the normal distribution with expectation 0 and variance σ2.
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Chapter 3

C-M-J Branching Processes
Statistically self-similar Cantor sets can be encoded by random labelled trees I.
Counting the individuals of I according to some characteristic φ leads to C-M-J
(Crump-Mode-Jagers) branching processes. With a suitable choice of φ it is pos-
sible to write the eigenvalue counting function as a C-M-J branching process.

The definition of these processes is given in Jagers [52], see also Crump and
Mode [21, 22]. In Section 3.1, Section 3.2 and Section 3.3 we follow closely the
structure of Charmoy, Croydon and Hambly [18, Chapter 2] and Hambly [42,
Chapter 2 and 3].

3.1. Definition of C-M-J branching processes

For our investigation, define the address space as

T :=
∞⋃
k=0

Nk, N0 := ∅. (3.1)

Every x ∈ T is a candidate for the random labelled tree (or population) I. x ∈ T
identifies a tuple (ξx, Lx, φx), defined on (Ωx,Bx,Px), where (Ωx,Bx,Px) are copies
of some probability space

(
Ω̃, B̃, P̃

)
, consisting of the reproduction function ξx

which is a point process on [0,∞), the life length Lx and a function φx on R,
where it is assumed that ξx, x ∈ T are i.i.d. and that φx is càdlàg. We do not
distinguish between the function ξx and the indicated measure. Further, write
ξx(∞) for ξx([0,∞)). (ξx, Lx, φx)x is defined on the product space (Ω,B,P) and is
called general branching process. As explained in [76, Chapter 7], it is allowed that
φx depends on the whole daughter process. In this case, φx is only defined on the
product space. The random labelled tree I is defined as follows.
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Definition 3.1.1 (Random Labelled Trees, c.f. [42, Chapter 2]): A random
labelled tree I is a subset of T satisfying the following properties:

• It holds ∅ ∈ I.

• If (x1, . . . , xn) ∈ I then (x1, . . . , xn−1) ∈ I.

• For (x1, . . . , xn) ∈ I it holds

(x1, . . . , xn+1) ∈ I if and only if 1 ≤ xn+1 ≤ ξ(x1,...,xn)(∞).

Therefore, I has a unique ancestor denoted by ∅. By σx, x ∈ I denote the birth
time of x given by

σ(x1,...,xn) = σ(x1,...,xn−1) + inf
{
t ∈ [0,∞) : ξ(x1,...,xn−1)(t) ≥ xn

}
and assume that σ∅ = 0. Therefore it holds

ξx =

ξx(∞)∑
i=1

δσx,i−σx ,

whereby x, i denotes the i-th progeny of x.
We need some notation for individuals of I. For this notation, see also [35,

Notation 2.2]. Define ∂I as the boundary of I that is the set of infinite paths
through I beginning at ∅. For x = (x1, . . . xk) ∈ I we define the truncation of
x onto the first n ancestors for n ≤ k as x|n := (x1, . . . , xn) and extend this
definition onto ∂I in the natural way. We use the relation x ≤ y for y ∈ I or
y ∈ ∂I if and only if (|x| ≤ |y| and y||x| = x). Hereby, |y| = ∞ for y ∈ ∂I. The
composition of two individuals x = (x1, . . . , xk) and y = (y1, . . . , yn) is denoted by
xy := (x1, . . . , xk, y1, . . . , yn). Furthermore,

Definition 3.1.2 (Cut-Set, c.f. [35, Notation 2.2]): A subset C ⊆ I is called
a cut set if and only if there exists for all y ∈ ∂I exactly one z ∈ C such that
z||y| = y.

For α ∈ (0,∞) define

ν(dt) := Eξ(dt), ξα(dt) := e−αtξ(dt), να(dt) := Eξα(dt), (3.2)

where we suppress the x dependence if it does not cause confusion. We assume
that the general branching process (ξx, Lx, φx)x has a Malthusian parameter, i.e.
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there exists a γ ∈ (0,∞) such that

νγ(∞) =

∫ ∞
0

e−γt ν(dt) = 1.

By µk we denote the k-th moment

µk :=

∫ ∞
0

tk νγ(dt) (3.3)

of νγ.

The C-M-J branching process to given general branching process (ξx, Lx, φx)x is
defined as

Zφ(t) :=
∑
x∈I

φx(t− σx).

Hereby, we assume that φ vanishes for negative times. In (3.10) it is explained
how to obtain the asymptotics of Zφ if this is not the case. The interpretation of
Zφ depends on the characteristic φ. For φ(t) := 1{t≥0} the corresponding C-M-J
branching process

Tt := Zφ(t) =
∑
x∈I

1{t≥σx} (3.4)

denotes the number of individuals born up to and including time t, c.f. Nerman [76].

3.2. Connection to statistically self-similar Cantor

sets
Relations between C-M-J branching processes and statistically self-similar fractals
were used e.g. in Hambly [42] and Charmoy, Croydon and Hambly [18]. For our in-
vestigation, we define to each x ∈ T an iterated function system (Nx,Φx,1, . . . ,Φx,Nx)

on some interval [a, b] with Φx,i being a contraction similitude with random ratio
Rx,i and Nx is a random natural number. We assume that (Nx,Φx,1, . . . ,Φx,Nx),
x ∈ T are i.i.d.
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A random labelled tree I ⊆ T is generated as in Definition 3.1.1 by the three
properties

• It holds ∅ ∈ I.

• If (x1, . . . , xn) ∈ I then (x1, . . . , xn−1) ∈ I.

• For (x1, . . . , xn) ∈ I it holds

(x1, . . . , xn+1) ∈ I if and only if 1 ≤ xn+1 ≤ N(x1,...,xn).

The statistically self-similar Cantor set K is given by

K :=
∞⋂
n=1

⋃
|x|=n,
x∈I

Kx, Kx := Φ∅,x1 ◦ Φ(x1),x2 ◦ · · · ◦ Φ(x1,...,xn−1),xn([a, b]).

This set satisfies

K =

N∅⋃
i=1

Φi(Ki),

with (Ki)i=1,...,N∅ being i.i.d. and distributed like K. This property can be thought
as a random version of self-similarity.

To obtain the Hausdorff dimension of K, the following condition is discussed in
Falconer [28, Chapter 7].

Condition 3.2.1 (c.f. [28, Chapter 7]): 1. The collection (int Kx, x ∈ I)

forms a net, i.e.

• For x ≤ y it holds

int Kx ⊆ int Ky.

• If neither x ≤ y nor y ≤ x, then

int Kx ∩ int Ky = ∅.

This condition is a random analogue to the open set condition in the deter-
ministic self-similar setting.
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2. K is proper, i.e. for every cut set C ⊆ I it holds that if x ∈ C, there exists a
point y ∈ Kx such that for all z ∈ C, z 6= x it holds y /∈ Kz.

The Hausdorff dimension of K were calculated by Falconer [28] and Mauldin
and Williams [70].

Theorem 3.2.2 (c.f. [28, Theorem 8.5 and 70, Theorem 3.6]): Let Condi-
tion 3.2.1 be satisfied. Then, on the event that K is not empty, it holds that

dimHK = inf

{
s ≥ 0 : E

(
N∅∑
i=1

Rs
i

)
≤ 1

}
a.s.

As explained in [18, Section 2.2], the reproduction function ξ and life length L
of the general branching process which are related to K are

ξx =
Nx∑
i=1

δ− logRx,i , Lx = sup
i
σx,i − σx. (3.5)

Hence, Kx corresponds to an individual born at time σx and vol1(Kx) = e−σx .
Further, by the definition of the Malthusian parameter γ, we infer

E

(
N∅∑
i=1

Rγ
i

)
=

∫ ∞
0

e−γt ν(dt) = 1. (3.6)

Thus, the Hausdorff dimension of K coincides with the Malthusian parameter of
(ξx, Lx)x.

3.3. Strong Law of Large Numbers and Central

Limit Theorem
By Jagers [52], the C-M-J branching process satisfies

Zφ(t) = φ(t) +

ξ∅(∞)∑
i=1

Zφ
i (t− σi), (3.7)

whereby {Zφ
i }i are i.i.d. copies of Zφ. Multiplying this by e−γt, a random version

of the renewal equation is obtained, since by taking the expectation

zφ(t) := Ee−γtZφ(t), uφ(t) := Ee−γtφ(t)
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it follows

zφ(t) = uφ(t) +

∫ ∞
0

zφ(t− u) νγ(du), (3.8)

see [18], [42] and [76], whereby νγ is by definition a probability distribution, see
Feller [29] for the renewal equation. Therefore, it is possible to obtain under cer-
tain regularity conditions the asymptotic behaviour of zφ. With the asymptotic
behaviour of zφ and the fundamental martingale (Wt)t corresponding to the gen-
eral branching process, the asymptotics of Zφ can be described. Thereby, the fun-
damental martingale is defined as

Wt :=
∑
x∈At

e−γσx , At :=
{
x ∈ I : σx||x|−1

≤ t < σx

}
,

see [18], [76]. The corresponding filtration (Ft)t at time t is given as the biogra-
phy of the individuals born up to and including time t. To define this filtration
formally, denote by in the n-th individual of the population, i.e. the individual of
the population such that there are exactly n− 1 individuals x ∈ I such that their
birth times satisfy

σx < σin .

If there are several birth times simultaneously, sort the individuals by an arbitrary
rule. Then, for x ∈ T let Px be the projection map of the product space (Ω,B) onto
the x component. As Nermann [76], define the σ-algebra (En)n∈N as the smallest
σ-algebra such that

{ω ∈ Ω : i1(ω) = z1, ..., in(ω) = zn} ∈ En for all z1, ..., zn ∈ T

and

A ∩ {ω ∈ Ω : x ∈ {i1(ω), ..., in(ω)}} ∈ En for all A ∈ P−1
x (Bx), for all x ∈ T.

According to [76, Proposition 2.4], (Wt)t is a non-negative càdlàg (Ft)t-martingale,
where

Ft := ETt , (3.9)
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with Tt defined by (3.4) and further EWt = 1 for all t. Furthermore, for x ∈ I, we
write Fx := ETσx .

By Doob’s martingale convergence theorem, (Wt)t converges almost surely to a
random variable W . Moreover, as explained in [18, Theorem 2.1], Doney [23, 24]
established the following theorem.

Theorem 3.3.1 (c.f. [23, 24]): The following properties are equivalent:

1. E (ξγ(∞)(log ξγ(∞))+) <∞

2. EW > 0

3. EW = 1

4. W > 0 a.s. on the set where there is no extinction

5. (Wt)t is uniformly integrable

Otherwise, W = 0 a.s.

Therefore, if the x log x property (typical in branching theory) of Theorem 3.3.1
holds, then the convergence of (Wt)t also takes place in L1.

For the convergence theorems for Zφ it is convenient to assume that φ vanishes
for negative times. As explained in [18, Section 2.1], if this is not the case, we
consider the C-M-J branching process Zχφ with

χφx(t) := φx(t)1t≥0 +

ξx(∞)∑
i=1

Zφ
x,i(t− σx,i)10≤t<σi (3.10)

to get the asymptotic behaviour of Zφ(t), as t→∞, since Zφ
1[0,∞) = Zχφ .

The Laws of Large Numbers for C-M-J branching processes are originally from
Nerman [76]. The versions we use are taken from Charmoy [17].

Theorem 3.3.2 (Weak Law of Large Numbers, c.f. [17,76]): Let (ξx, Lx, φx)x

be a general branching process with Malthusian parameter γ. Assume that νγ is non-
lattice, φ ≥ 0 and vanishes for negative times, uφ is directly Riemann integrable
and for all t

E
(

sup
u≤t

φ(u)

)
<∞.
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Then, it holds

zφ(t)
t→∞−→ zφ(∞) := µ−1

1

∫ ∞
0

uφ(s) ds,

where µ1 is defined in (3.3), and

e−γtZφ(t)
t→∞−→ zφ(∞)W in probability.

The Strong Law of Large Numbers is given by [76] under the following condition
on the general branching process.

Condition 3.3.3 (c.f. [76, Condition 5.1 and Condition 5.2]): There exist
non-increasing bounded positive integrable càdlàg functions g and h on [0,∞) such
that

E
(

sup
t≥0

ξγ(∞)− ξγ(t)
g(t)

)
<∞, E

(
sup
t≥0

e−γtφ(t)

h(t)

)
<∞.

As explained in [18, page 7], by choosing g(t) := t−2 ∧ 1 we thus obtain

ξγ(∞)− ξγ(t)
g(t)

≤
∫ ∞
t

1

g(s)
ξγ(ds) ≤

∫ ∞
0

1

g(s)
ξγ(ds)

and assuming that the expected number of offsprings is finite, it thus follows

E
(

sup
t≥0

ξγ(∞)− ξγ(t)
g(t)

)
≤ sup

t≥0

{
(1 ∨ t2)e−γt

}
Eξ(∞) <∞.

The lattice case of the following Strong Law of Large numbers were treated in
Gatzouras [38].

Theorem 3.3.4 (Strong Law of Large Numbers, c.f. [17, 38, 76]): Let
(ξx, Lx, φx)x be a general branching process with Malthusian parameter γ. Assume
that φ ≥ 0 and vanishes for negative times and that Condition 3.3.3 is satisfied.
Then, it holds

1. If νγ is non-lattice then it holds

zφ(t)
t→∞−→ zφ(∞) = µ−1

1

∫ ∞
0

uφ(s) ds,
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where µ1 is defined in (3.3), and

e−γtZφ(t)
t→∞−→ zφ(∞)W a.s.

2. If νγ is lattice with period L then there exists a L-periodic deterministic
function Gφ

γ such that, as t→∞,

Zφ(t) = (Gφ
γ(t) + o(1))W e−γt a.s.

and Gφ
γ is defined as

Gφ
γ(t) := L ·

∑∞
j=−∞ e

−γ(t+jL) E(uφ(t+ jL))∫∞
0
s e−γs ν(ds)

.

Furthermore, if (Wt)t is uniformly integrable, the convergence is also in L1.

To justify the name of the last theorem, we consider an i.i.d. sequence {Xi}i∈N.
Under certain regularity conditions, the classical Strong Law of Large Numbers
reads

1

n

n∑
i=1

Xi
n→∞−→ EX1 a.s.

With

Zφ(t) =
∑
x∈I

φx(t− σx) =
∞∑
n=1

∑
x∈I,
|x|=n

φx(t− σx)

we obtain an interpretation of Zφ as a sum
∑

n Yn(t) to which the right normal-
ization factor is e−γt.

The following Central Limit Theorem is taken from [18]. Therefore, we consider
a general branching process (ξx, Lx, ζ̄x)x, where ζ̄ is a characteristic such that the
C-M-J branching process

Z̄(t) := Z ζ̄(t)

is centered, i.e. EZ̄(t) = 0 for all t. The variance process Z̄2 has an important role
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in the Central Limit Theorem. By defining

q∅(t) := ζ̄∅(t)
2 + 2 ζ̄∅(t)

ξ∅(∞)∑
i=1

Z̄i(t− σi) + 2

ξ∅(∞)∑
i=1

∑
j<i

Z̄i(t− σi)Z̄j(t− σj),

it holds

Z̄(t)2 = Zq(t). (3.11)

Hence, Z̄2 can also be represented as a C-M-J branching process. Therefore, it also
satisfies an equation of the form (3.7) and thus the renewal equation (3.8), i.e. by
defining

vζ̄(t) := v(t) := e−γtEZ̄(t)2, rζ̄(t) := r(t) := e−γtEq(t), (3.12)

it holds

v(t) = r(t) +

∫ ∞
0

v(t− s) νγ(ds). (3.13)

Charmoy, Croydon and Hambly [18] assume for the Central Limit Theorem that
v converges to some finite constant.

Under the following two conditions, Charmoy, Croydon and Hambly [18] estab-
lished a Central Limit Theorem for the C-M-J branching processes.

Condition 3.3.5 (c.f. [18, Condition 2.6]): There exists ε ∈ (0, 1/2) such that

e−γt/2
∑
σx≤εt

ζ̄x(t− σx)
t→∞−→ 0, in probability.

As explained in [18, Condition 2.6], this condition can often be checked by using
Nerman’s Weak Law of Large Numbers Theorem 3.3.2.

Condition 3.3.6 (c.f. [18, Condition 2.7]): There exists κ ∈ (0,∞) such that

sup
t∈R

E
(∣∣e−γt/2Z̄(t)

∣∣2+κ
)
<∞.

As explained in [18, Condition 2.7], it is convenient to show this condition for
κ = 1 which can be done by writing Z̄3 as a C-M-J branching process.
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Theorem 3.3.7 (Central Limit Theorem, c.f. [18, Theorem 2.8]): Let
(ξx, Lx, ζ̄x)x be a general branching process with Malthusian parameter γ such that
EZ̄(t) = 0 for all t and that νγ defined in (3.2) is non-lattice. Assume that Con-
dition 3.3.5 and Condition 3.3.6 are satisfied and further that v is bounded and

v(t)
t→∞−→ v(∞),

where v(∞) is some finite constant. Then, it holds

e−γt/2Z̄(t)
t→∞−→ Z∞, in distribution,

where the distribution of Z∞ is characterised by

E
(
eiθZ∞

)
= E

(
e−

1
2
θ2v(∞)W

)
. (3.14)

Again, to justify the name of this theorem, we consider an i.i.d. sequence {Xi}i∈N
with EX1 = 0. Under certain regularity conditions, the classical Central Limit
Theorem reads

1√
n

n∑
i=1

Xi −→ N(0,VarX1).

If W = 1 a.s., equation (3.14) characterizes the normal distribution with mean 0

and variance v(∞). Therefore, the distribution of Z∞ can be thought as a general-
ized normal distribution with random variance v(∞)W . Further, e−γt/2 is given as
the square root of the normalization factor of Z̄ as 1√

n
is of

∑n
i=1 Xi in the classical

Central Limit Theorem.

3.4. Law of the Iterated Logarithm

In this section, we proof the first main result (Theorem 3.4.3) of this thesis.

The Central Limit Theorem describes the random fluctuation of the normalized
C-M-J branching process around its limit in distribution. However, we also want
to have some almost sure properties. Therefore, we establish a Law of the Iterated
Logarithm. For the Biggins martingale of supercritical branching random walks the
Law of the Iterated Logarithm is treated by Iksanov and Kabluchko [49]. For our
Law of the Iterated Logarithm, we need two technical assumptions on the general
branching process which are related to Condition 3.3.5 and Condition 3.3.6.
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Condition 3.4.1: There exists ε ∈ (0, 1/2) and C(ω) > 0 such that

e−γt/2
∑
σx≤εt

ζ̄x(t− σx) ≤ C(ω) a.s.

Condition 3.4.2: It holds that

sup
t∈R

E
(∣∣e−γt/2Z̄(t)

∣∣3) <∞.
The Idea of the proof of the following theorem is taken from the proof of [18,

Theorem 2.8] and [49, Theorem 1.6].

Theorem 3.4.3 (Law of the Iterated Logarithm): Let (ξx, Lx, ζ̄x)x be a gen-
eral branching process with Malthusian parameter γ > 0 such that ζ̄ satisfies
EZ̄(t) = 0 for all t and νγ be non-lattice. Assume that

v(t)
t→∞−→ v(∞),

where v(∞) > 0 and further, assume that Condition 3.4.1 and Condition 3.4.2
hold and that

Eξ(∞) log ξ(∞) <∞.

Then, for fixed h > 0,

lim sup
n→∞

e−γhn/2Z̄(hn)√
2 v(∞)W log hn

≤ 1 a.s.

Proof. We want to apply Theorem A.2.1 by using the Berry-Esseen estimate The-
orem A.2.2. Therefore, define Z̃(t) := e−γt/2Z̄(t) and ζ̃(t) := e−γt/2 ζ̄(t). By (3.7) it
follows

Z̃(t) =
∑
σx≤εt

e−σxγ/2 ζ̃(t− σx) +
∑
x∈Aεt

e−σxγ/2 Z̃x(t− σx).

Let ε ∈ (0, 1/2) such that Condition 3.4.1 is satisfied. Using boundedness of the
first term, it only remains to show that

lim sup
n→∞

∑
x∈Aεhn e

−σxγ/2 Z̃x(hn− σx)√
2 v(∞)W log hn

≤ 1 a.s.

Therefore, let h = 1. With analogous arguments the claim follows for arbitrary
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fixed h > 0.

Tn :=

∑
x∈Aεn e

−σxγ/2 Z̃x(n− σx)√
E
(∑

x∈Aεn e
−σxγ Z̃x(n− σx)2

∣∣Gn) , Gn := Fεn,

where Fεn is defined in (3.9). Theorem A.2.2 leads to

sup
y∈R
|P(Tn ≤ y|Gn)− Φ(y)| ≤ c1

∑
x∈Aεn E

(∣∣∣e−σxγ/2 Z̃x(n− σx)
∣∣∣3 ∣∣∣∣Gn)(

E
(∑

x∈Aεn e
−σxγ Z̃x(n− σx)2

∣∣Gn))3/2
.

We now verify

∞∑
n=0

∑
x∈Aεn E

(∣∣∣e−σxγ/2 Z̃x(n− σx)
∣∣∣3 ∣∣∣∣Gn)(

E
(∑

x∈Aεn e
−σxγ Z̃x(n− σx)2

∣∣Gn))3/2
<∞

by using the following Lemma. Remark that by the x log x property of Theorem
3.3.1 it holds W > 0 a.s.

Lemma 3.4.4: It holds that

E

(∑
x∈Aεt

e−σxγ Z̃x(t− σx)2

∣∣∣∣∣Gt
)

t→∞−→ v(∞)W a.s.

Thus, it is enough to show that

∞∑
n=0

∑
x∈Aεn

E
(∣∣∣e−σxγ/2 Z̃x(n− σx)

∣∣∣3 ∣∣∣∣Gn) <∞ a.s.

Since by Condition 3.4.2 supt∈R E| Z̃(t)|3 <∞, it holds

∑
x∈Aεn

E
(∣∣∣e−σxγ/2 Z̃x(n− σx)

∣∣∣3 ∣∣∣∣Gn) ≤ c2

∑
x∈Aεn

e−
3
2
γσx ≤ c2Wεne

− 1
2
εnγ.

SinceWn
n→∞−→ W , (Wn)n is bounded and thus there exists a constant d1 (depending

on ω) such that

∞∑
n=0

∑
x∈Aεn

E
(∣∣∣e−σxγ/2 Z̃x(n− σx)

∣∣∣3 ∣∣∣∣Gn) ≤ d1(ω)
∞∑
n=0

e−
1
2
εn <∞ a.s.
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Hence, the claim follows. It remains to show Lemma 3.4.4.

Proof of Lemma 3.4.4. Let t0 > 0 be such that

|v(t/2)− v(∞)| ≤ δ, for all t ≥ t0.

Then, it follows ∣∣∣∣∣E
(∑
x∈Aεt

e−σxγ Z̃x(t− σx)2 − v(∞)e−γσx
∣∣∣∣Gt
)∣∣∣∣∣

≤ δ
∑

x∈Aεt\At/2

e−γσx + 2‖v‖∞
∑

x∈Aεt∩At/2

e−γσx

By [76, Corollary 5.9], there exists K > 0 for all c > 0 such that

lim sup
t→∞

∑
x∈Aεt∩Aεt+c

e−γσx ≤ K

∫ ∞
c−K

g(t) dtW,

where g(t) = t−2 ∧ 1 and we can choose c arbitrarily large. This ensures that∑
x∈Aεt∩At/2 e

−γσx converges to zero almost surely and by adjusting δ, the claim
follows since

∑
x∈Aεt\At/2 e

−γσx is bounded by Wεt which converges almost surely
and is therefore bounded.

This proofs Lemma 3.4.4 and hence Theorem 3.4.3 follows.

Since (ξx, Lx,− ζ̄x)x also satisfies the conditions of Theorem 3.4.3 if (ξx, Lx, ζ̄x)x

does, we obtain

Corollary 3.4.5: Let (ξx, Lx, ζ̄x)x be a general branching process with Malthusian
parameter γ > 0 such that ζ̄ satisfies EZ̄(t) = 0 for all t and that νγ is non-lattice.
Assume that

v(t)
t→∞−→ v(∞),

where v(∞) > 0 and further, assume that Condition 3.4.1 and Condition 3.4.2
hold and that

Eξ(∞) log ξ(∞) <∞.
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Then, for fixed h > 0, it holds

−1 ≤ lim inf
n→∞

e−γhn/2Z̄(hn)√
2 v(∞)W log hn

≤ lim sup
n→∞

e−γhn/2Z̄(hn)√
2 v(∞)W log hn

≤ 1 a.s. (3.15)

As for the Strong Law of Large Numbers and the Central Limit Theorem, we
justify the name of this theorem by considering an i.i.d. sequence {Xi}i∈N. Under
some regularity conditions and if the Xi are centred, the classical Law of the
Iterated Logarithm reads

−1 = lim inf
n→∞

√
1
n

∑n
i=1Xi

√
2VarX1 log log n

≤ lim sup
n→∞

√
1
n

∑n
i=1Xi

√
2VarX1 log log n

= 1.

In equation (3.15) VarX1 is replaced by v(∞)W which is the generalized variance
of Z∞ in the Central Limit Theorem 2.3.2. Further, e−γt/2 is the square root of the
normalization factor of Z̄ and

lim inf
n→∞

\ lim sup
n→∞

e−γn/2Z̄(n)√
2 v(∞)W log n

= lim inf
n→∞

\ lim sup
n→∞

e−γn/2Z̄(n)√
2 v(∞)W log log eγn

.

3.5. Some properties of W

For our applications of the Central Limit Theorem and the Law of the Iterated
Logarithm, we need to control the moments of the almost sure limit of Zφ(t)e−γt.
In this section we outline these properties.

Firstly, we investigate the equation (3.7). Multiplying with e−γt and taking the
limit t→∞, it follows by the Strong Law of Large Numbers Theorem 3.3.4 with
φ(t) = 1{t≥0}

W =

ξ∅(∞)∑
i=1

Wie
−σiγ a.s., (3.16)

where we assume that Eξ(∞) < ∞ and Wi is the limit of the fundamental mar-
tingale corresponding to the general branching process (ξx, Lx, φx)x∈θiI , c.f. Ham-
bly [42]. Furthermore, {Wi}i are i.i.d. distributed like W and independent of ξ∅.
For the moment bounds, we need the following lemma. The case W = 1 a.s. of
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Lemma 3.5.1 were treated in [18, Lemma 3.5]. Therefore, let

ψ(θ) := E
ξ∅(∞)∑
i=1

e−θγσi .

Lemma 3.5.1 (c.f. [18, Lemma 3.5]): Let (ξx, Lx, φx)x be a general branching
process. Then, it holds

E
∑
x∈I

e−θγσx =
∞∑
k=0

ψ(θ)k

and the sum is finite for θ ∈ (1,∞).

Proof. Monotone convergence yields

E
∑
x∈I

e−θγσx =
∞∑
k=0

E
∑
x∈I,
|x|=k

e−θγσx

and therefore

E
∑
x∈I,
|x|=k

e−θγσx = E
∑
x∈I,
|x|=k−1

ξx(∞)∑
i=1

e−θγσxe−θγ(σx,i−σx)

= E
∑
x∈I,
|x|=k−1

e−θγσxE

(
ξx(∞)∑
i=1

e−θγ(σx,i−σx)

∣∣∣∣∣Fx||x|−1

)

= E
∑
x∈I,
|x|=k−1

e−θγσxE
ξx(∞)∑
i=1

e−θγ inf{t>0: ξx(t)≥i}

= ψ(θ)E
∑
x∈I,
|x|=k−1

e−θγσx .

Iterating over k, we get the desired equality and because ψ(1) = 1 and ψ is strictly
decreasing in θ, the claim follows.

To control the moments of C-M-J branching processes and the limit of the
fundamental martingale (Wt)t, we proof the following lemma. Similar results were
also established by Mauldin and Williams [70].
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Lemma 3.5.2: Let (ξx, Lx, φx)x be a general branching process. Assume that φ ≥ 0

and vanishes for negative times and

φ(t) ≤ c1ξ(∞).

Furthermore, assume that

Eξ(∞)6 <∞

and that Condition 3.3.3 is satisfied and νγ is non-lattice. Then, it holds

EZφ(t)6 ≤ d1e
6γt and EW 6 <∞.

Proof. By Fatou’s lemma follows

EW 6 ≤ d2 lim inf
t→∞

E(Zφ(t)e−γt)6.

Therefore, it is sufficient to show that E(Zφ(t)e−γt)6 is bounded. We start by
showing that E(Zφ(t)e−γt)2 < ∞ and proceed iteratively. Using the idea of [18,
Lemma 3.6], we show that the expectation of

e−2γt

(∑
x∈I

φx(t− σx)2 (3.17)

+ 2
∑
x∈I

φx(t− σx)
ξx(∞)∑
i=1

Zφ
x,i(t− σx,i) (3.18)

+ 2
∑
x∈I

ξx(∞)∑
i=1

∑
j<i

Zφ
x,i(t− σx,i)Z

φ
x,j(t− σx,j)

)
(3.19)

is bounded, where we use (3.11). To deal with (3.17), we use φ(t) ≤ c1ξ(∞)eγt to
get

e−2γtE
∑
x∈I

φx(t− σx)2 ≤ c2
1 E
∑
x∈I

ξ(∞)2e−2σxγ = c2
1 Eξ(∞)2

∞∑
k=0

ψ(2)k <∞.

For (3.18) and (3.19) we use the same strategy and remark that

EZφ(t) ≤ c2e
γt.
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Thus, in (3.18) we get

e−2γtE
∑
x∈I

φ(t− σx)
ξx(∞)∑
i=1

Zφ
x,i(t− σx,i)

≤ e−2γtc1E
∑
x∈I

ξx(∞)eγ(t−σx)

ξx(∞)∑
i=1

E
(
Zφ
x,i(t− σx,i)

∣∣∣Fx)

≤ e−2γtc1c2 E
∑
x∈I

ξx(∞)eγ(t−σx)

ξx(∞)∑
i=1

eγ(t−σx,i)

≤ c1c2 E
∑
x∈I

e−2γσxξx(∞)2

= c1c2 E
∑
x∈I

e−2γσxEξx(∞)2

= c1c2 Eξ(∞)2 E
∑
x∈I

e−2γσx

<∞,

where we used Lemma 3.5.1 and that σx,i ≥ σx. For (3.19), remark that

E
(
Zφ
x,i(t− σx,i)Z

φ
x,j(t− σx,j)

∣∣∣Fx) = E
(
Zφ
x,i(t− σx,i)

∣∣∣Fx)E(Zφ
x,j(t− σx,j)

∣∣∣Fx)
and thus

e−2γtE
∑
x∈I

ξx(∞)∑
i=1

∑
j<i

Zφ
x,i(t− σx,i)Z

φ
x,j(t− σx,j)

≤ c2
2 e
−2γt E

∑
x∈I

ξx(∞)∑
i=1

∑
j<i

eγ(t−σx,i)eγ(t−σx,j)

≤ c2
2 E
∑
x∈I

e−2σxγξx(∞)3

<∞.

For the third moment, we define

Q∅(t) :=φ∅(t)
3 + 3φ∅(t)

2

ξ∅(∞)∑
i=1

Zφ
i (t− σi) + 3φ∅(t)

ξ∅(∞)∑
i,j=1

Zφ
i (t− σi)Zφ

j (t− σj)

+

ξ∅(∞)∑
i,j,k=1,

not all equal

Zφ
i (t− σi)Zφ

j (t− σj)Zφ
k (t− σk).
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Therefore,

Zφ(t)3 = ZQ(t)

and we can proceed as for the second moment. Therefore, we only show how to esti-
mate the third and fourth sum. By the estimates before it follows Ee−2γtZφ(t)2 ≤ c3

and thus

e−3γtE
∑
x∈I

φx(t− σx)
ξx(∞)∑
i,j=1

Zφ
x,i(t− σx,i)Z

φ
x,j(t− σx,j)

≤ c1e
−3γtE

(∑
x∈I

ξx(∞)eγ(t−σx)

ξx(∞)∑
i,j=1

E
(
Zφ
x,i(t− σx,i)2

∣∣∣Fx)1/2

E
(
Zφ
x,j(t− σx,j)

∣∣∣Fx)1/2
)

≤ c1 c3 E
∑
x∈I

e−3γσxξx(∞)3

<∞.

For the last sum, assume without loss of generality that i is different. Then,

E
(
Zφ
x,i(t− σx,i)Z

φ
x,j(t− σx,j)Z

φ
x,k(t− σx,k)

∣∣∣Fx)
= E

(
Zφ
x,i(t− σx,i)

∣∣∣Fx)E(Zφ
x,j(t− σx,j)Z

φ
x,k(t− σx,k)

∣∣∣Fx)
Applying the Cauchy-Schwarz inequality, we get

E
(
Zφ
x,j(t− σx,j)Z

φ
x,k(t− σx,k)

∣∣∣Fx)
≤ E

(
Zφ
x,j(t− σx,j)2

∣∣∣Fx)1/2

E
(
Zφ
x,k(t− σx,k)

2
∣∣∣Fx)1/2

.

(3.20)

Afterwards, we can proceed iteratively to obtain the claim.
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Chapter 4

Spectral Asymptotics for Measure
Theoretical Laplacians

In this chapter we study Weyl’s law (1.4) for measure theoretical Laplacians ∆µ

with respect to statistically self-similar and random V -variable Cantor measures.
It may occur that the normalized eigenvalue counting function oscillates or is peri-
odic rather than convergent. Therefore, we first give a generalization of the leading
order in the Weyl asymptotics for ∆µ. Afterwards, we investigate this generaliza-
tion for ∆µ for the different Cantor measures.

The main results of this chapter are provided in Theorem 4.2.9 and Theorem
4.3.18. These theorems are results of the present thesis.

4.1. Spectral exponent

Equation (1.4) motivates the definition of the spectral dimension

ds(X)

2
:= lim

λ→∞

logN(λ)

log λ
(4.1)

which leads to

ds(X) = n

in (1.4). Many authors before studied the expression (4.1) for generalized Lapla-
cians on fractals, e.g. [35, 42]. In this section, we investigate this expression for
measure theoretical Laplacians ∆µ with respect to certain measures µ. Therefore,
we call the limit

γ := γ(µ) := lim
λ→∞

logNµ(λ)

log λ

the spectral exponent of the corresponding measure theoretical Laplacian, c.f.
Freiberg [34].
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Hence, by Theorem 2.2.1, the spectral exponent of ∆µ with respect to self-similar
Cantor measures µ is given as the unique solution γs > 0 of

N∑
i=1

(rimi)
γs = 1,

where we use the same notation as in Section 2.2.1.

By Theorem 2.2.2, the spectral exponent for random homogeneous Cantor mea-
sures is almost surely given by the unique solution γh > 0 of

∏
j∈J

 Nj∑
i=1

(
r

(j)
i m

(j)
i

)γhpj

= 1.

Hereby, we use the same notation as in Section 2.2.2.

4.2. Spectral exponent for statistically self-similar

Cantor measures

4.2.1. Construction

The idea of the proofs, constructions and structure of Section 4.2 are taken from
Arzt [4, Chapter 3] and Hambly [42]. Let J be an index set. We define to each
j ∈ J an IFS S(j). Therefore, let Nj ∈ N, Nj ≥ 2. Then S(j) =

(
S

(j)
1 , ..., S

(j)
Nj

)
,

where we define S(j)
i : [a, b] −→ [a, b] by

S
(j)
i (x) := r

(j)
i x+ c

(j)
i ,

for some r(j)
i ∈ (0, 1), c(j)

i ∈ R, i = 1, ..., Nj such that

a = S
(j)
1 (a) < S

(j)
1 (b) ≤ S

(j)
2 (a) < S

(j)
2 (b) ≤ · · · ≤ S

(j)
Nj

(a) < S
(j)
Nj

(b) = b.

Furthermore, let m(j) =
(
m

(j)
1 , ...,m

(j)
Nj

)
be a vector of weights. Therefore, as in

Section 2.2.2 an element of the index set J identifies a tuple
(
S(j),m(j)

)
.

As in Chapter 3, we construct a (for now deterministic) tree I with unique
ancestor ∅. Every individual x ∈ I indicates a index j ∈ J which we also denote
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by x for convenience. The number of children of x is Nx and by In we denote the
n-th generation of I, where I0 = {∅}. For x ∈ In, x = (x1, ..., xn), we define

mx := m(∅)
x1
· · ·m((x1,...,xn−1))

xn ,

Sx := S(∅)
x1
◦ ... ◦ S((x1,...,xn−1))

xn

and analogously S−1
x as the composition of the preimages of the contraction simil-

itudes. For n ∈ N let

K(I)
n :=

⋃
x∈In

Sx([a, b]) =
⋃
x∈I,
|x|=n

Kx, Kx := Sx([a, b]).

The limiting set

K(I) :=
∞⋂
n=1

K(I)
n

is called recursive Cantor set.

Proposition 4.2.1: The set K(I) is compact and contains at least countably in-
finitely many elements, namely S(x1,...,xn)(a) and S(x1,...,xn)(b), x1 = 1, ..., N∅, ..., xn =

1, ..., N(x1,...,xn−1), n ∈ N.

Proof. Let x = (x1, ..., xn) ∈ In. For m ∈ N let x′ and x′′ be two individuals of
the population such that x′ = x1m, 1m := (1, ..., 1) ∈ Rm, m ∈ N and x′′1, ..., x′′n =

x1, ..., xn, x′′k = N(
x1,...,xk−1,N(x1,...,xk−1)

) for k = n+ 1, .., n+m. By definition

Sx′(a) = Sx(a),

Sx′′(b) = Sx(b).

Thus Sx(a), Sx(b) ∈ K(I)
n+m for all m ∈ N, which proofs the statement.

By construction, it holds that

K(I) =

N∅⋃
i=1

S
(∅)
i

(
K(θiI)

)
, (4.2)

where θiI denotes the subtree of I, rooted at (i).
We define the recursive Cantor measures analogously to the homogeneous Cantor

measures (2.6). Let
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µ(I)
n (A) :=

∑
x∈In

mx µ0

(
S−1
x (A)

)
, µ0(A) :=

1

b− a
λ1
|[a,b](A)

for all A ∈ B([a, b]), where B denotes the Borel-σ-algebra. The recursive Cantor
measure µ(I) for a Cantor set coded by I is defined as the weak limit of

(
µ

(I)
n

)
n∈N0

.

Lemma 4.2.2: For all x ∈ I holds

µ(I)(Sx([a, b])) = mx.

Proof. Let x ∈ In, y ∈ In+m, n,m ∈ N. Because of

Kx ∩Ky =

Ky, if y|n = x

∅, otherwise,

we get

µ
(I)
n+m(Kx)

=
∑

y∈In+m

my µ0

(
S−1
y (Kx)

)
=

∑
y∈In+m,
y|n=x

my µ0

(
S−1
y (Kx)

)
.

Since

(
S(x1,...,xn,yn+1,...,yn+m))

−1(Kx

)
=
(
S((x1,...,xn))
yn+1

◦ · · · ◦ S((x1,...,xn,yn+1,...,yn+m−1))
yn+m

)−1 ◦ S−1
x (Kx)

=
(
S((x1,...,xn))
yn+1

◦ · · · ◦ S((x1,...,xn,yn+1,...,yn+m−1))
yn+m

)−1
([a, b])

=[a, b],

we finally obtain

µ
(I)
n+m(Kx) =

∑
y∈In+m,
y|n=x

my = mx.
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Lemma 4.2.3: It holds

µ(I) =

N∅∑
i=1

m
(∅)
i µ(θiI) ◦ S(∅)−1

i (4.3)

and therefore for i ∈ {1, ..., N∅} and A ∈ B([a, b]) with A ⊆ S
(∅)
i ([a, b]),

µ(I)(A) = m
(∅)
i

(
µ(θiI) ◦ S(∅)−1

i

)
(A).

Proof. Let A ∈ B([a, b]). Then, we get

N∅∑
i=1

m
(∅)
i µ(θiI)

n

((
S

(∅)
i

)−1

(A)

)

=

N∅∑
i=1

Ni∑
x1=1

· · ·
N(i,x1,...,xn−1)∑

xn=1

m
(∅)
i m(i)

x1
· · ·m((i,x1,...,xn−1))

xn µ0

(
(Si,x1,...,xn)−1 (A)

)
=

N∅∑
x1=1

· · ·
N(x1,...,xn)∑
xn+1=1

m(∅)
x1
m(x1)
x2
· · ·m((x1,...,xn))

xn+1
µ0

((
Sx1,...,xn+1

)−1
(A)
)

=µ
(I)
n+1(A).

Taking the limit n→∞, we obtain the assertion.

4.2.2. Dirichlet-Neumann bracketing

We establish a Dirichlet-Neumann bracketing with which we obtain the character-
istic φ for the C-M-J branching process under consideration. To this end, we first
give a scaling property for the L2-Norm.

Lemma 4.2.4: Let f, g ∈ L2

(
µ(I)
)
. Then,

〈f, g〉L2(µ(I)) =

N∅∑
i=1

m
(∅)
i

〈
f ◦ S(∅)

i , g ◦ S(∅)
i

〉
L2

(
µ(θiI)

) .

Proof. With suppµ(I) = K(I) and Lemma 4.2.3 we get
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〈f, g〉L2(µ(I)) =

∫
[a,b]

f g dµ(I)

=

N∅∑
i=1

∫
S
(∅)
i ([a,b])

f g dµ(I)

=

N∅∑
i=1

∫
[a,b]

f ◦ S(∅)
i g ◦ S(∅)

i d
(
µ(I) ◦ S(∅)

i

)
=

N∅∑
i=1

m
(∅)
i

∫
[a,b]

f ◦ S(∅)
i g ◦ S(∅)

i dµ(θiI)

=

N∅∑
i=1

m
(∅)
i 〈f ◦ S

(∅)
i , g ◦ S(∅)

i 〉L2(µ(θiI)).

Let (E (I),F) be the Dirichlet form on L2(µ(I)) whose eigenvalues coincide with
the Neumann eigenvalues of −∆µ(I) . Namely,

E(f, g) =

∫ b

a

f ′(x) g′(x) dx,

F = H1 ([a, b]) ,

see [32, Proposition 5.1], whereH1([a, b]) denotes the Sobolev space on L2 (λ1, [a, b])

of order 1. We write N (I)
N for Nµ(I)

N and N
(I)
D for Nµ(I)

D . To obtain the Dirichlet-
Neumann bracketing, we follow Arzt [4, Section 3.2.2] and define a Dirichlet form
(Ẽ (I), F̃ (I)). Let F̃ (I) be the set of all functions f : [a, b] −→ R with f ◦ S(∅)

i ∈ F
for all i = 1, ..., N∅ and

f|
(S(∅)i

(b),S
(∅)
i+1

(a))
∈ H1

((
S

(∅)
i (b), S

(∅)
i+1(a)

))
for all i = 1, ..., N∅−1. With [4, Proposition 3.2.1] follows F ⊆ F̃ (I), but F̃ (I) * F ,
because f ∈ F̃ (I) has not to be continuous on the boundary points of S(∅)

i ([a, b]).
For all f, g ∈ F̃ (I), define

Ẽ (I)(f, g) :=

N∅∑
i=1

1

r
(∅)
i

E
(
f ◦ S(∅)

i , g ◦ S(∅)
i

)
+

N∅−1∑
i=1

∫ S
(∅)
i+1(a)

S
(∅)
i (b)

f ′(u) g′(u) du.

By [4, Proposition 3.2.1] the following relation between Ẽ and E holds.
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Lemma 4.2.5 (c.f. [4, Proposition 3.2.1]): For all f, g ∈ F it holds, f ◦ S(∅)
i ,

g ◦ S(∅)
i ∈ F and

Ẽ (I)(f, g) = E(f, g).

Further, [4, Proposition 2.2.2] implies that the embedding F̃ (I) ↪→ L2(µ(I)) is
a compact operator and thus we can refer to the eigenvalue counting function of
the Dirichlet form (Ẽ (I), F̃ (I)) on L2

(
µ(I)
)
. Let N(F̃(I),Ẽ(I),µ(I)) be the eigenvalue

counting function of (Ẽ (I), F̃ (I), µ(I)).

Proposition 4.2.6: For all t ≥ 0 holds

N(F̃(I),Ẽ(I),µ(I))(t) =

N∅∑
i=1

N
(θiI)
N

(
r

(∅)
i m

(∅)
i t
)
.

Proof. Let f be an eigenfunction of
(
Ẽ (I), F̃ (I), µ(I)

)
with eigenvalue λ, i.e.

Ẽ (I)(f, g) = λ 〈f, g〉L2(µ(I)) for all g ∈ F̃ (I).

Because f, g ∈ L2

(
µ(I)
)
it follows by Lemma 4.2.4

N∅∑
i=1

1

r
(∅)
i

E
(
f ◦ S(∅)

i , g ◦ S(∅)
i

)
+

N∅−1∑
i=1

∫ S
(∅)
i+1(a)

S
(∅)
i (b)

f ′(u) g′(u) du

= λ

N∅∑
i=1

m
(∅)
i

〈
f ◦ S(∅)

i , g ◦ S(∅)
i

〉
L2(µ(θiI))

.

(4.4)

We show that each summand on the left side equals each summand on the right
side, respectively. Therefore, let h ∈ F and define for each j ∈ {1, ..., N∅}

h̃j(t) :=

h ◦ S
(∅)−1

j (t), if t ∈ S(∅)
j ([a, b]),

0, otherwise.

Then h̃j ∈ F , h̃j ◦ S(∅)
j = h, for all j ∈ {1, ..., N∅} and h̃j ◦ S(∅)

i = 0 for i 6= j.
Moreover, h̃′j

∣∣(
S
(∅)
i (b),S

(∅)
i+1(a)

) = 0, j = 1, ..., N∅, i = 1, .., N∅ − 1. With g = h̃j, we

then get in (4.4)

1

r
(∅)
j

E
(
f ◦ S(∅)

j , h
)

= λm
(∅)
j

〈
f ◦ S(∅)

j , h
〉
L2

(
µ(θjI)

) .
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Because this equation holds for all h ∈ F , f ◦S(∅)
j is an eigenfunction of the Dirich-

letform
(
E ,F , µ(θjI)

)
with eigenvalue r(∅)

j m
(∅)
j λ for all j = 1, ..., N∅.

Now, let λ > 0, such that for i = 1, ..., N∅, r
(∅)
i m

(∅)
i λ is an eigenvalue of

(
E ,F , µ(θiI)

)
with eigenfunction fi. This means,

E(fi, g) = r
(∅)
i m

(∅)
i λ 〈fi, g〉L2

(
µ(θiI)

) ,
for all g ∈ F . Let

f(t) :=

fi ◦ S
(∅)−1

i (t), if t ∈ S(∅)
i ([a, b]) for some i ∈ {1, ..., N∅}

0, otherwise.

Then, f ∈ F and f ◦ S(∅)
i = fi, i = 1, ..., N∅ and therefore

N∅∑
i=1

1

r
(∅)
i

E
(
f ◦ S(∅)

i , g
)

= λ

N∅∑
i=1

m
(∅)
i

〈
f ◦ S(∅)

i , g
〉
L2(µ(θiI))

,

for all g ∈ F . Since for g̃ ∈ F̃ (I) it holds by definition of F̃ (I), g̃ ◦ S(∅)
i ∈ F ,

i = 1, ..., N∅ and thus

N∅∑
i=1

1

r
(∅)
i

E(f ◦ S(∅)
i , g̃ ◦ S(∅)

i ) = λ

N∅∑
i=1

m
(∅)
i

〈
f ◦ S(∅)

i , g̃ ◦ S(∅)
i

〉
L2(µ(θiI))

.

But the left side of this equation is equal to Ẽ (I)(f, g̃), because f ′
∣∣(
S
(∅)
i (b),S

(∅)
i+1(a))

) =

0, for all i = 1, ..., N∅ − 1. With Lemma 4.2.4 we then obtain

Ẽ (I)(f, g̃) = λ 〈f, g̃〉L2(µ(I)), (4.5)

for all g̃ ∈ F̃ (I). Therefore, λ is an eigenvalue of (Ẽ (I), F̃ (I), µ(I)) with corresponding
eigenfunction f . Using this, we can easily conclude the claim.

Let (F0, E) be the Dirichlet form on L2

(
µ(I)
)
whose eigenvalues coincide with

the Dirichlet eigenvalues of −∆µ(I) , i.e. E is defined as before and

F0 := {f ∈ F : f(a) = f(b) = 0},

see [32, Proposition 5.3]. As for the Neumann eigenvalue counting function we
follow Arzt [4, Section 3.2.3] and define a Dirichlet form (F̃ (I)

0 , Ẽ (I)
0 ) on L2

(
µ(I)
)
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by

F̃ (I)
0 :=

{
f ∈ F0 : f(x) = 0 for x ∈

[
S

(∅)
i (b), S

(∅)
i+1(a)

]
, i = 1, ..., N∅ − 1

}
.

and

Ẽ (I)
0 := E

∣∣
F̃(I)

0 ×F̃
(I)
0
.

Proposition 4.2.7: For all x ≥ 0 it holds

N(Ẽ(I)0 ,F̃(I)
0 ,µ(I)

)(x) =

N∅∑
i=1

N
(θiI)
D

(
r

(∅)
i m

(∅)
i x
)
.

Proof. Let f be an eigenfunction of (Ẽ (I)
0 , F̃ (I)

0 , µ(I)) with eigenvalue λ. Then

Ẽ (I)
0 (f, g) = λ 〈f, g〉L2(µ(I)),

for all g ∈ F0. Therefore, by [4, Proposition 3.2.1] and Lemma 4.2.4,

N∅∑
i=1

1

r
(∅)
i

E
(
f ◦ S(∅)

i , g ◦ S(∅)
i

)
+

N∅−1∑
i=1

∫ S
(∅)
i+1(a)

S
(∅)
i (b)

f ′(u) g′(u) du

= λ

N∅∑
i=1

m
(∅)
i 〈f, g〉L2(µ(θiI)).

For h ∈ F0 define

h̃j(t) :=

h ◦ S
(∅)−1

j (t), if t ∈ S(∅)
j ([a, b]),

0, otherwise.

Because h ∈ F0, it follows h̃j ∈ F̃ (I)
0 and h̃j ◦ S(∅)

j = h for j = 1, ..., N∅ and
h̃j ◦ S(∅)

i = 0, if i 6= j. Hence,

1

r
(∅)
j

E
(
f ◦ S(∅)

j , h
)

= λm
(∅)
j

〈
f ◦ S(∅)

j , h
〉
L2

(
µ(θjI)

) ,

for all j = 1, ..., N∅. Therefore, r
(∅)
i m

(∅)
i λ is an eigenvalue of

(
E ,F0, µ

(θiI)
)
with

eigenfunction f ◦ S(∅)
i , i = 1, ..., N∅.

Now, let r(∅)
i m

(∅)
i λ be an eigenvalue of

(
E ,F0, µ

(θiI)
)
for some λ > 0 with corre-
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sponding eigenfunction fi, i = 1, ..., N∅. Therefore,

E(fi, g) = r
(∅)
i m

(∅)
i λ 〈fi, g〉L2(µ(θiI)),

for all g ∈ F0. Let

f(t) :=

fi ◦ S
(∅)−1

i (t), if t ∈ S(∅)
i ([a, b]), for some i ∈ {1, ..., N∅}

0, otherwise.

Since fi ∈ F0, it follows f ∈ F̃ (I)
0 and because of f ◦ S(∅)

i = fi, i = 1, ..., N∅,

N∅∑
i=1

1

r
(∅)
i

E
(
f ◦ S(∅)

i , g
)

= λ

N∅∑
i=1

m
(∅)
i

〈
f ◦ S(∅)

i , g
〉
L2(µ(θiI))

,

for all g ∈ F0. For g̃ ∈ F̃ (I)
0 it holds g̃ ◦ S(∅)

i ∈ F0, i = 1, ..., N∅. Analogously to
(4.5) then follows

Ẽ (I)
0 (f, g̃) = λ 〈f, g̃〉L2(µ(I)).

Hence, λ is an eigenvalue of (Ẽ (I)
0 , F̃0, µ

(I)) with eigenfunction f and, as before, we
can now easily conclude the claim.

Since (Ẽ (I), F̃ (I), µ(I)) is an extension of
(
E ,F , µ(I)

)
and

(
E ,F0, µ

(I)
)
is an ex-

tension of (Ẽ (I)
0 , F̃ (I)

0 , µ(I)), we infer from the Max-Min principle, see e.g. Lapidus
and Kigami [57, Theorem 4.5], the Dirichlet-Neumann bracketing:

Corollary 4.2.8 (Dirichlet-Neumann bracketing): For all t ≥ 0 holds

N∅∑
i=1

N
(θiI)
D

(
r

(∅)
i m

(∅)
i t
)
≤ N

(I)
D (t) ≤ N

(I)
N (t) ≤

N∅∑
i=1

N
(θiI)
N

(
r

(∅)
i m

(∅)
i t
)
.

4.2.3. Spectral asymptotics

We define a probability space (Ω,B,P) in which every atomic event indicates a
random tree I. Let (Ω̃, B̃, P̃) be a probability space and Ũx, x ∈ T be i.i.d. J-
valued random variables. The probability space we are interested in is defined as
in Section 3.1, i.e. as the product space
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(Ω,B,P) =
∏
x∈T

(Ωx,Bx,Px),

whereby (Ωx,Bx,Px) are copies of (Ω̃, B̃, P̃) and T defined in (3.1). We set Ux =

Ũx ◦ Px, x ∈ T , where Px is the projection map onto the x-th component. ω ∈ Ω

indicates a random tree I = I(ω). This random tree is defined as in Section 3.2.
The corresponding sets and measures K(I) and µ(I) respectively are called statis-
tically self-similar.

As explained in Section 3.2, there is a connection between statistically self-
similar Cantor sets and branching processes. We use this connection to determine
the spectral exponent in this section. The general branching process we use here
not only depends on the scale factors as in (3.5), but also on the weights m(j). The
considered reproduction function and life length are defined as

ξx :=
Nx∑
i=1

δ− log r
(x)
i m

(x)
i
, Lx := sup

i
σx,i − σx. (4.6)

With Corollary 4.2.8 for each x ≥ 0 holds

NU∅∑
i=1

N
(θiI)
D

(
r

(U∅)
i m

(U∅)
i t

)
≤ N

(I)
D (t) ≤ N

(I)
N (t) ≤

NU∅∑
i=1

N
(θiI)
N

(
r

(U∅)
i m

(U∅)
i t

)
.

For simplicity, we write in the following N∅, r
(∅)
i and m(∅)

i for NU∅ , r
(U∅)
i and m(U∅)

i

and consider the scaling property

ξ∅(∞)∑
i=1

N
(θiI)
D

(
r

(∅)
i m

(∅)
i t
)
≤ N

(I)
D (t).

Let

Z(t) := N
(I)
D

(
et
)
, Zi(t) := N

(θiI)
D (et)

and (ξx, Lx, ηx)x be the general branching process with ξ, L defined in (4.6) and

η∅(t) := Z(t)−
ξ∅(∞)∑
i=1

Zi(t− σi).

63



It then follows that the C-M-J branching process Zη coincides with Z. As explained
in (3.10) if η does not vanish for negative times, we use

χη∅(t) := η∅(t)1{t≥0} +

ξ∅(∞)∑
i=1

Zη
i (t− σi)1{0≤t<σi}.

Thus, Zη(t) and Zχη(t) have the same asymptotic behaviour, as t→∞.

In the following, we denote as in Section 3.2 byW the limit of the underlying fun-
damental martingale corresponding to the general branching process (ξx, Lx, ηx)x.

The following theorem is the main result of this section. The idea of the proof
is taken from [42, Theorem 5.5].

Theorem 4.2.9: Assume that

EN2
∅ <∞. (4.7)

Then, the spectral exponent for statistically self-similar Cantor measures µ(I) is
given by the unique solution γr > 0 of

E

(
N∅∑
i=1

(
r

(∅)
i m

(∅)
i

)γr)
= 1.

Moreover,

1. If νγr defined in (3.2) is non-lattice, then

lim
λ→∞

N
(I)
D (λ)λ−γr = zχ

η

(∞)W a.s.,

where

zχ
η

(∞) :=

∫∞
0
e−γt E(χη(t)) dt∫∞
0
t e−γt ν(dt)

.

2. If νγr is lattice with period L, then, as λ→∞,

N
(I)
D (λ) =

(
Gχη(log(λ)) + o(1)

)
λγr W a.s.,
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where G is a periodic function with period L, given by

G(λ) := L ·
∑∞

j=−∞ e
−γ(λ+jL) E(χη(λ+ jL))∫∞
0
t e−γt ν(dt)

.

Proof. The proof relies on the following lemma.

Lemma 4.2.10: Assume that

EN2
U∅
<∞.

Then, W > 0 a.s. and the Malthusian parameter of the general branching process
(ξx, Lx, ηx)x is the unique solution γr > 0 of

E

(
N∅∑
i=1

(
r

(∅)
i m

(∅)
i

)γr)
= 1.

Furthermore, it holds:

1. If νγr defined in (3.2) is non-lattice then

lim
t→∞

Z(t) e−γrt = zχ
η

(∞)W a.s.,

where

zχ
η

(∞) :=

∫∞
0
e−γrt E(χη(t)) dt∫∞
0
t e−γrt ν(dt)

.

2. If νγr is lattice with period L, then, as t→∞,

Z(t) =
(
Gχη(t) + o(1)

)
eγrtW a.s.,

where Gχη is a periodic function with period L given by

Gχη(t) = L ·
∑∞

j=−∞ e
−γr(t+jL) E(χη(t+ jL))∫∞
0
s e−γrs ν(ds)

.

We rescale Lemma 4.2.10 by λ = log(t) and therefore it remains to show
Lemma 4.2.10.
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Proof of Lemma 4.2.10. By Theorem 3.3.1 it follows W > 0 a.s. since

EN∅ logN∅ ≤ EN2
∅ <∞.

Let

f(s) := E

(
N∅∑
i=1

(
r

(∅)
i m

(∅)
i

)s)
.

By dominated convergence, f : [0,∞) −→ R is continuous and because r(j)
i m

(j)
i < 1

for all j ∈ J , i = 1, ..., Nj, f is strictly decreasing. Since Nj ≥ 2, j ∈ J it holds

f(0) ≥ 2

and

lim
s→∞

f(s) = 0.

By continuity, there exists γr > 0 such that f(γr) = 1. Furthermore, γr is the
unique solution strictly bigger than zero and also the Malthusian parameter of
the considered general branching process. The first moment of νγr is finite since
EN∅ < ∞. With g(t) = t−2 ∧ 1 the first part of Condition 3.3.3 is satisfied as
explained in Section 3.3. By Lemma 2.1.1, there exists a deterministic constant
c̃ > 0 such that

Z(t) ≤ c̃ et. (4.8)

Further, from the Dirichlet-Neumann bracketing follows that

0 ≤ η(t) ≤
N∅∑
i=1

(
N

(θiI)
N

(
r

(∅)
i m

(∅)
i et

)
−N (θiI)

D

(
r

(∅)
i m

(∅)
i et

))
.

With Lemma 2.1.2 we thus obtain

η(t) ≤ 2N∅. (4.9)

Taking together (4.8) and (4.9) we obtain

χη(t) ≤ cN∅,
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for some deterministic c > 0. Therefore, the second part of Condition 3.3.3 follows
with h(t) = e−γt. The Lemma then follows from Theorem 3.3.4.

This proofs Lemma 4.2.10 and hence Theorem 4.2.9 follows.

Remark 4.2.11: By Lemma 2.1.2 the asymptotic behaviour of N (I)
D (λ)λ−γr and

N
(I)
N (λ)λ−γr coincide.

4.2.4. Comparison between statistically self-similar and

random homogeneous Cantor measures

We saw the construction of recursive Cantor sets and corresponding recursive Can-
tor measures. Then, we showed under a moment condition that the spectral ex-
ponent of ∆µ with respect to statistically self-similar Cantor measures is almost
surely given by the unique solution γr > 0 of

E

(
N∅∑
i=1

(
r

(∅)
i m

(∅)
i

)γr)
= 1.

In Theorem 2.2.2 we recalled the results of [4] about the spectral asymptotics
of ∆µ with respect to random homogeneous Cantor measures µ. In particular, as
explained in Section 4.1, the spectral exponent for random homogeneous Cantor
measures is almost surely given by the unique solution γh > 0 of

∏
j∈J

 Nj∑
i=1

(
r

(j)
i m

(j)
i

)γhpj

= 1.

The next proposition relates γr to γh, where we assume that (A1)-(A5) are satisfied.

Proposition 4.2.12: With the notation above and in Theorem 2.2.2, it holds
γh ≤ γr and equality if and only if there exists α > 0 such that

Nj∑
i=1

(
r

(j)
i m

(j)
i

)α
= 1, for all j ∈ J. (4.10)
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Proof. Let tj(α) :=
∑Nj

i=1

(
r

(j)
i m

(j)
i

)α
, j ∈ J . With Jensen’s inequality, we obtain

∑
j∈J

pj log (tj(α)) ≤ log

(∑
j∈J

pj tj(α)

)
.

Since log is strictly increasing, equality holds if and only if tj(α) = 1 for all j ∈ J .
Now, let (4.10) not be satisfied. Then,

0 =
∑
j∈J

pj log (tj(γh)) < log

(∑
j∈J

pj tj(γh)

)
.

As log
(∑

j∈J pj tj(α)
)
decreases as α increases, the assertion follows.

Remark 4.2.13: If Ux = Uy for all x, y ∈ I such that |x| = |y|, then the cor-
responding recursive Cantor measure is homogeneous. However, Theorem 4.2.9
makes no statement about the spectral exponent for random homogeneous Cantor
measures, since the probability that µ(I) is homogeneous is 0 in non-trivial cases.

Example 4.2.14 (c.f. [4, Section 4.5]): Let J be countable and pj := P (U∅ = j) ∈ (0, 1),
j ∈ J . Further, assume that r(j)

1 = ... = r
(j)
Nj
, m(j)

1 = ... = m
(j)
Nj

for all j ∈ J . There-
fore, m(j)

i = 1
Nj

i = 1, ..., Nj for all j ∈ J . Let r := r∅i and N := N∅. If conditions
(A1)-(A5) are satisfied then the spectral exponent for random homogeneous Cantor
measure is given by

γh :=
E logN

E log(N/r)
,

see [4, Page 64]. The spectral exponent for statistically self-similar Cantor measure
is given by the unique solution γr > 0 of

E (N (r/N)γr) = 1.

If not (r/N)α = 1/N for some α > 0, for almost all ω ∈ Ω, we thus have

0 = log

(∑
j∈J

pj Nj

(
r

(j)
1 /Nj

)γr)
<
∑
j∈J

pj log
(
Nj

(
r

(j)
1 /Nj

)γr)
= E log (N (r/N)γr) .

Therefore,

γh =
E logN

E log(N/r)
< γr.
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4.3. Spectral exponent for random V -variable

Cantor measures

4.3.1. Construction

The idea of the proofs, constructions and structure of Section 4.3 are taken from
Arzt [4, Chapter 3] and Freiberg, Hambly and Hutchinson [35]. As in Section 2.2.2
and Section 4.2 we let J be an index set and define to each j ∈ J an IFS
S(j) =

(
S

(j)
1 , ..., S

(j)
Nj

)
on [a, b] with Nj ∈ N, Nj ≥ 2 by

S
(j)
i (x) := r

(j)
i x+ c

(j)
i

for some r(j)
i ∈ (0, 1), c(j)

i ∈ R, i = 1, ..., Nj such that

a = S
(j)
1 (a) < S

(j)
1 (b) ≤ S

(j)
2 (a) < S

(j)
2 (b) ≤ · · · ≤ S

(j)
Nj

(a) < S
(j)
Nj

(b) = b

and further, a vector of weights m(j) =
(
m

(j)
1 , ...,m

(j)
Nj

)
.

For the construction of V -variable labelled trees we follow Freiberg, Hambly and
Hutchinson [35, Section 2.4]. Therefore, we first need to define environments.

Definition 4.3.1 (Environment, c.f. [35, Definition 2.7]): An environment
E is a matrix E = (E(1), ..., E(V )) which assigns to each v ∈ {1, ..., V } both an
index jEv ∈ J and a sequence of types

(
τEv,i
)N

jEv
i=1 , i.e.

E(v) =
(
jEv , τ

E
v,1 . . . , τ

E
v,N

jEv

)
∈ J × {1, . . . , V }NjEv , v ∈ {1, . . . , V }.

A V -variable labelled tree depends on a sequence of environments (Ek)k≥1,
whereby the n-th generation (or level) of the tree is defined as follows (c.f. [35, Con-
struction 2.8]):

Generation 0: Every V -variable tree has a unique ancestor, denoted by ∅. To this
ancestor we assign a type τ ∅ ∈ {1, . . . , V }.

Generation 1: Set v := τ ∅ and Sv := S

(
jE

1
v

)
. This determines the first IFS to be

used. The number of children of the ancestor ∅ is the number of
contractions of Sv. Assign to the i-th child of ∅ the type τE1

v,i .

Generation 2: Repeat the procedure used in generation 1 for every individual of
the first generation, whereby E1 is replaced by E2.

...
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We denote a V -variable tree by IV and its n-th generation by IV,n. By construction,
we assigned to each node x ∈ IV,n an index jEnτx and therefore a tuple consisting
of an IFS S(jE

n

τx ) and a vector of weights m(jE
n

τx ) . For convenience, we denote this
index also by x. As before, we define

mx := m(∅)
x1
· · ·m((x1,...,xn−1))

xn ,

Sx := S(∅)
x1
◦ ... ◦ S((x1,...,xn−1))

xn

and S−1
x as the composition of the preimages.

The V -variable Cantor set K(IV ) is then defined analogously to the recursive
Cantor set K(I), namely

K(IV ) :=
∞⋂
n=1

⋃
x∈IV,n

Sx([a, b]), Kx := Sx([a, b]).

The difference between K(IV ) and K(I) is that the number of different indices as-
signed to nodes in IV,n is uniformly bounded by V , whereas in Section 4.2 the
number of different indices assigned to nodes in In is in general not uniformly
bounded.

The following result is transferred from Proposition 4.2.1.

Proposition 4.3.2: The set K(IV ) is compact and contains at least countably in-
finitely many elements, namely S(x1,...,xn)(a) and S(x1,...,xn)(b), x1 = 1, ..., N∅, ..., xn =

1, ..., N(x1,...,xn−1).

As for the recursive Cantor sets it follows

K(IV ) =

N∅⋃
i=1

S
(∅)
i

(
K(θiIV )

)
. (4.11)

The V -variable Cantor measure µ(IV ) is also defined analogously to the recursive
Cantor measure µ(I), i.e. µ(IV ) is the weak limit of

(
µ

(IV )
n

)
n∈N0

defined by

µ(I)
n (A) :=

∑
x∈IV,n

mx µ0

(
S−1
x (A)

)
, µ0(A) :=

1

b− a
λ1
|[a,b](A)

for all A ∈ B([a, b]).
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Lemma 4.3.3 and Lemma 4.3.4 are transferred from Section 4.2 to the V -variable
setting.

Lemma 4.3.3: For all x ∈ IV holds

µ(IV )(Sx([a, b])) = mx

and

µ(IV ) =

N∅∑
i=1

m
(∅)
i µ(θiIV ) ◦ S(∅)−1

i . (4.12)

Lemma 4.3.4: Let f, g ∈ L2

(
µ(IV )

)
. Then,

〈f, g〉
L2

(
µ(IV )

) =

N∅∑
i=1

m
(∅)
i

〈
f ◦ S(∅)

i , g ◦ S(∅)
i

〉
L2

(
µ(θiIV )

) .

By definition of cut sets Λ ⊂ IV (see Definition 3.1.2), we obtain iteratively the
following lemma.

Lemma 4.3.5: Let Λ ⊂ IV be a cut set of IV . Then it holds

〈f, g〉L2(µ(IV )) =
∑
x∈Λ

mx 〈f ◦ Sx, g ◦ Sx〉L2

(
µ(θxIV )

)

For the random set up, we also follow the construction of [35, Section 2.5]. There-
fore, let P be a probability distribution on the index set J . From this probability
distribution we obtain a probability distribution PV on the set of environments
by choosing jEv , v ∈ {1, ..., V } independently according to P and choosing the
types τv,i 1 ≤ i ≤ NjEv

i.i.d. according to the uniform distribution on {1, ..., V }
independently of the chosen indices.
Let ΩV be the set of all V -variable trees to given index set J and tuple (S(j),m(j)),

j ∈ J . We choose τ ∅ ∈ {1, ..., V } according to the uniform distribution and in-
dependently the environments at each stage i.i.d. according to PV . This induces
a probability distribution on ΩV and on the set of V -variable fractals KV . For
convenience, we denote these probability distributions also by PV .
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Throughout Section 4.3 we assume the following technical assumptions to hold:

sup
j∈J

Nj <∞ (C1)

0 < minf := inf
j∈J

min
i=1,...,Nj

m
(j)
i ≤ sup

j∈J
max

i=1,...,Nj
m

(j)
i =: msup < 1 (C2)

0 < rinf := inf
j∈J

min
i=1,...,Nj

r
(j)
i ≤ sup

j∈J
max

i=1,...,Nj
r

(j)
i =: rsup < 1 (C3)

4.3.2. Neck levels

As mentioned in the introduction, an important tool to analyse the spectral asymp-
totics for ∆µ(IV ) are neck levels which we define in this section. Further, we intro-
duce a sequence of cut sets (Λk)k, related to neck levels. In Section 4.3.3 we use this
sequence to get a Dirichlet-Neumann bracketing. This Dirichlet-Neumann brack-
eting and Lemma 4.3.8 are then applied to obtain the spectral exponent. The idea
to use this specific sequence of neck levels to determine the spectral exponent is
taken from Freiberg, Hambly and Hutchinson [35].

Definition 4.3.6 (c.f. [35, Definition 2.14]): Let E be an environment. We call
E a neck if all τEv,i are equal. Further, we call n ∈ N a neck level of a V -variable
tree if the environment assigned to the n-th generation of the tree En is a neck.

These neck levels occur with probability one infinitely often and

EV n(1) <∞,

where we denote by n(k) the k-th neck level of the corresponding random V -
variable tree. Remark that the sequence of times between neck levels is a sequence
of geometric random variables, c.f. [35, Section 2.6]. We need the following property
of sums of scale factors, included from [35, Lemma 2.16] to determine the spectral
exponent.
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Lemma 4.3.7 (c.f. [35, Lemma 2.16]): Let s(j)
i ∈ R i = 1, ..., Nj, j ∈ J such

that

sinf := inf
j∈J

min
i=1,...,Nj

s
(j)
i > 0,

ssup := sup
j∈J

max
i=1,...,Nj

s
(j)
i <∞.

Then, with sx := s
(∅)
x1 · · · s

((x1,...,xn−1))
xn , x = (x1, ..., xn) ∈ IV it follows

lim
k→∞

1

k
log

∑
x∈IV ,
|x|=n(k)

sx = EV log
∑
x∈IV ,
|x|=n(1)

sx a.s. (4.13)

The sequence of cut sets we are interested in is defined as

Λ0 := ∅,

Λk :=
{
x ∈ IV : ∃l ∈ N : |x| = n(l) and mx rx ≤ e−k < mx|n(l−1)

rx|n(l−1)

}
.

Next, we compare the asymptotical growth of objects, related to these cut sets.
Therefore, we use the following notation. Let f, g be real valued functions. We say
f is asymptotically dominated by g and write

f � g if and only if lim sup
k→∞

f(k)

g(k)
≤ 1.

Let

Mk := |Λk|, Tk :=
Mk∑

x∈Λk

rxmx

,

yk := max
x∈Λk

yk(x), yk(x) := n(l)− n(l − 1), x ∈ Λk, |x| = n(l).

The following lemma is a slight modification of [35, Lemma 3.8.(c)].

Lemma 4.3.8 (c.f. [35, Lemma 3.8.(c)] ): There exists α′ > 0 such that

k−α
′
e−k � (rinf minf)

yk e−k ≤ rxmx ≤ e−k, a.s. for x ∈ Λk.
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4.3.3. Dirichlet-Neumann bracketing

As in Section 4.2 we use a Dirichlet-Neumann bracketing to proof the spectral
asymptotics for ∆µ(IV ) . Firstly, we give a scaling property for the Neumann eigen-
value counting function, which relies on the scaling property established by Arzt [4,
Section 3.2.2]. Therefore, let (E ,F) be the Dirichlet form on L2(µ(IV )) whose eigen-
values coincide with the Neumann eigenvalues of −∆µ(IV ) which, as in Section 4.2,
is given by

F = H1 ([a, b]) ,

E(f, g) =

∫ b

a

f ′(x) g′(x) dx.

We write N (IV )
N for the corresponding eigenvalue counting function. Our scaling

property depends on the sequence Λk defined in Section 4.3.2. Since Λk is for all
k ∈ N a cut set, there exists an n ∈ N such that Nk :=

(
N∅, N(N∅), N(N∅,N(N∅))

, ...
)
,

|Nk| = n and Nk ∈ Λk. To each x ∈ Λk\{Nk} there exists a x′ ∈ Λ such that
the right neighbour point in K(IV ) of Sx(b) is Sx′(a). We let Ix be the gap interval
between Sx[a, b] and Sx′ [a, b] i.e. Ix := (Sx(b), Sx′(a)).
For the bracketing, we define a sequence of Dirichlet forms

(
(Ek,Fk)

)
k∈N. There-

fore, let

Fk :=
{
f : [a, b] −→ R : f ◦ Sx ∈ H1 ([a, b])

for all x ∈ Λk and f|Ix ∈ H
1 (Ix)

}
.

Using Lemma 4.2.5 iteratively, we obtain:

Lemma 4.3.9: Let f, g ∈ F and k ∈ N. Then for all x ∈ Λk, f ◦ Sx, g ◦ Sx ∈ F
and

E(f, g) =
∑
x∈Λk

1

rx
E (f ◦ Sx, g ◦ Sx) +

∑
x∈Λk\{Nk}

∫
Ix

f ′(u) g′(u) du.

Thus for

Ek(f, g) :=
∑
x∈Λk

1

rx
E (f ◦ Sx, g ◦ Sx) +

∑
x∈Λk\{Nk}

∫
Ix

f ′(u) g′(u) du, f, g ∈ Fk

it holds (E ,F) ⊆ (Ek,Fk). Analogously to [4, Section 3.2.2], we obtain that
(Ek,Fk) is a Dirichlet form on L2(µ(IV )) and that the embedding Fk ↪→ L2(µ(IV ))
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is a compact operator. Hence, we can refer to the eigenvalue counting function Nk
N

of (Ek,Fk, µ(IV )).

Proposition 4.3.10: For all t ≥ 0, k ∈ N holds

Nk
N(t) =

∑
x∈Λk

N
(θxIV )
N (rxmx t) .

Proof. Let f be an eigenfunction of
(
Ek,Fk, µ(IV )

)
with eigenvalue λ, i.e.

Ek(f, g) = λ 〈f, g〉L2(µ(IV )) for all g ∈ Fk.

Because f, g ∈ L2

(
µ(IV )

)
it holds by Lemma 4.3.5

∑
x∈Λk

1

rx
E (f ◦ Sx, g ◦ Sx) +

∑
x∈Λk\{Nk}

∫
Ix

f ′(u) g′(u) du

= λ
∑
x∈Λk

mx 〈f ◦ Sx, g ◦ Sx〉L2

(
µ(θxIV )

) . (4.14)

Now, we show that each summand on the left hand side equals each summand on
the right hand side, respectively. Therefore, let h ∈ F and define for each y ∈ Λk

hky(t) :=

h ◦ S−1
y (t), if t ∈ Sy([a, b]),

0, otherwise.

Then hky ∈ Fk, hky ◦Sy = h for all y ∈ Λk and hky ◦Sx = 0 for y 6= x ∈ Λk. Moreover,
h′y
∣∣
Ix

= 0, for all y ∈ Λk, x ∈ Λk\{Nk}. With g = hy, we then get in (4.14)

1

ry
E (f ◦ Sy, h) = λmy 〈f ◦ Sy, h〉L2(µ(θyIV )) .

Because this equation holds for all h ∈ F , f ◦Sy is an eigenfunction of the Dirichlet
form

(
E ,F , µ(θyIV )

)
with eigenvalue rymy λ for all y ∈ Λk.

Now, let λ > 0 such that for x ∈ Λk rxmx λ is an eigenvalue of
(
E ,F , µ(θxIV )

)
with eigenfunction fx, i.e.

E(fx, g) = rxmx λ 〈fx, g〉L2(µ(θxIV ))
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for all g ∈ F . Let

f(t) :=

fx ◦ S−1
x (t), if t ∈ Sx([a, b]) for some x ∈ Λk,

0, otherwise.

Then f ∈ Fk and f ◦ Sx = fx, x ∈ Λk and therefore

∑
x∈Λk

1

rx
E (f ◦ Sx, g) = λ

∑
x∈Λk

mx 〈f ◦ Sx, g〉L2(µ(θxI))

for all g ∈ F . Since for gk ∈ Fk it holds by definition of Fk, gk ◦ Sx ∈ F , x ∈ Λk

and thus∑
x∈Λk

1

rx
E (f ◦ Sx, gk ◦ Sx) = λ

∑
x∈Λk

mx 〈f ◦ Sx, gk ◦ Sx〉L2(µ(θxIV )) . (4.15)

But the left hand side of this equation is equal to Ek(f, gk), because f ′
∣∣
Ix

= 0 for
all x ∈ Λk\{Nk}. With Proposition 4.3.5 we then obtain

Ek(f, gk) = λ 〈f, gk〉L2(µ(IV ))

for all gk ∈ Fk. Therefore, λ is an eigenvalue of
(
Ek,Fk, µ(IV )

)
with corresponding

eigenfunction f . Using this, we conclude the claim.

Next, we give the scaling property for the Dirichlet eigenvalue counting function,
which relies on the scaling property established by Arzt [4, Seciton 3.2.3]. There-
fore, let (E ,F0) be the Dirichletform on L2

(
µ(IV )

)
whose eigenvalues coincide with

the Dirichlet eigenvalues of −∆µ(IV ) , i.e. E is defined as before and

F0 := {f ∈ F : f(a) = f(b) = 0}.

As for the Neumann eigenvalue counting function, we define a sequence of Dirichlet
forms

(
Ek,Fk0

)
on L2

(
µ(IV )

)
, where

Fk0 := {f ∈ F0 : f(t) = 0 for t ∈ Ix, x ∈ Λk\{Nk}}, k ∈ N.

and

Ek := E|Fk0×Fk0
.

We denote the correspond eigenvalue counting function by Nk
D.
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Proposition 4.3.11: For all t ≥ 0 holds

Nk
D(t) =

∑
x∈Λk

N
(θxIV )
D (rxmx t) .

Proof. Let f be an eigenfunction of
(
Ek,Fk0 , µ(IV )

)
with eigenvalue λ. Then,

Ek(f, g) = λ 〈f, g〉L2(µ(IV )),

for all g ∈ Fk0 . Therefore, we get with Lemma 4.3.9 and Lemma 4.3.5,

∑
x∈Λk

1

rx
E (f ◦ Sx, g ◦ Sx) +

∑
x∈Λk\{Nk}

∫
Ix

f ′(u) g′(u) du

= λ
∑
x∈Λk

mx 〈f ◦ Sx, g ◦ Sx〉L2

(
µ(θxIV )

) .

For h ∈ F0, we define

hky(t) :=

h ◦ S−1
y (t), if t ∈ Sy([a, b]),

0, otherwise.

Because h ∈ F0, it follows hky ∈ Fk0 , hky ◦ Sy = h for y ∈ Λk and hy ◦ Sx = 0 for
y 6= x ∈ Λk. Hence,

1

ry
E (f ◦ Sy, h) = λmy 〈f ◦ Sy, h〉L2

(
µ(θyIV )

) ,

for all y ∈ Λk. Therefore, rymy λ is an eigenvalue of
(
E ,F0, µ

(θyIV )
)
with eigen-

function f ◦ Sy, y ∈ Λk.

Now, let rxmx λ be an eigenvalue of
(
E ,F0, µ

(θxIV )
)
for some λ > 0 with cor-

responding eigenfunction fx, x ∈ Λk, i.e.

E(fx, g) = rxmx λ 〈fx, g〉L2

(
µ(θxIV )

)

for all g ∈ F0. Let

f(t) :=

fx ◦ S−1
x (t), if t ∈ Sx([a, b]) for some x ∈ Λk,

0, otherwise.

77



Since fx ∈ F0 it follows f ∈ Fk0 and because of f ◦ Sx = fx, x ∈ Λk, we obtain

∑
x∈Λk

1

rx
E (f ◦ Sx, g) = λ

∑
x∈Λk

mx 〈f ◦ Sx, g〉L2

(
µ(θxIV )

)

for all g ∈ F0. For gk ∈ Fk0 holds gk ◦ Sx ∈ F0, x ∈ Λk and therefore as in (4.15)
follows

Ek(f, gk) = λ 〈f, gk〉L2(µ(IV ))

for all gk ∈ Fk. Hence, λ is an eigenvalue of
(
Ek,Fk0 , µ(IV )

)
with eigenfunction f

and we conclude the claim.

Since
(
Ek,Fk, µ(IV )

)
is an extension of

(
E ,F , µ(IV )

)
and

(
E ,F0, µ

(IV )
)
is an ex-

tension of (Ek,Fk0 , µ(IV )) for all k ∈ N, we infer from the Max-Min principle, see
e.g. Lapidus and Kigami [57, Theorem 4.5], the Dirichlet-Neumann bracketing:

Corollary 4.3.12 (Dirichlet-Neumann bracketing): For all t ≥ 0 and k ∈ N
holds ∑

x∈Λk

N
(θxIV )
D (rxmx t) ≤ N

(IV )
D (t) ≤ N

(IV )
N (t) ≤

∑
x∈Λk

N
(θxIV )
N (rxmx t) .

4.3.4. Spectral asymptotics

In this section we investigate the spectral exponent for V -variable Cantor measures.
Therefore, we first give some estimates for the first Dirichlet eigenvalue. Remark
that we assume (C1)-(C3) to hold.

Lemma 4.3.13: It holds

1

(b− a)
≤ λµ

(IV )

1 ≤ 1− r2
inf

(rinf minf(1− rsup))2 (b− a)rsup

.

Proof. For the first estimate, let f be an eigenfunction of
(
E ,F0, µ

(IV )
)
such that
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‖f‖L2(µ) = 1. By the Cauchy-Schwarz inequality, we obtain

f 2(x) = (f(x)− f(a))2

=

(∫ x

a

f ′(y)dy

)2

≤ ‖f ′‖2
L2(λ1,[a,x]) (x− a)

≤ ‖f ′‖2
L2(λ1,[a,b]) (b− a).

Integration with respect to µ yields

1 ≤ ‖f ′‖2
L2(λ1,[a,b]) (b− a).

Since f is an eigenfunction of
(
E ,F0, µ

(IV )
)
, we get

‖f ′‖2
L2(λ1,[a,b]) = 〈f ′, f ′〉L2(λ1,[a,b]) = E(f, f) = λµ

(IV )

1 .

Hence, the first estimate follows. For the second estimate, define x1 := S
(∅)
1

(
S

(1)
N(1)

(a)
)

=

a+ r
(∅)
1

(
1− rN(1)

)
(b− a), x2 := S

(∅)
1 (b) = a+ r

(∅)
1 (b− a) and

f̂(x) :=


x−a
x1−a , if x ∈ [a, x1]

1, if x ∈ (x1, x2]

b−x
b−x2 , if x ∈ (x2, b].

Therefore, f̂ is constant 1 on the very right second-level cell which remains from
the very left first-level cell and linear interpolated from a to x1 and b to x2 such
that f̂ ∈ F0. Hence,

E(f̂ , f̂) =

∫ b

a

(
f̂ ′
)2

dx

=
1

x1 − a
+

1

b− x2

=
1− r(∅)

1 + r
(∅)
1

(
1− r(1)

N(1)

)
r

(∅)
1

(
1− r(1)

N(1)

)(
1− r(∅)

1

)
(b− a)

.

Further, ∫ b

a

(
f̂
)2

dµ ≥ m
(∅)
1 m

(1)
N(1)

.
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As explained in [4, Section 3.3.2], it holds

λµ
(IV )

1 = inf
f∈F0

E(f, f)

‖f‖2
L2(µ)

.

For this result, see e.g. [26, Theorem 1.3]. Therefore,

λµ
(IV )

1 = inf
f∈F0

E(f, f)

‖f‖2
L2(µ)

≤ E(f̂ , f̂)∥∥∥f̂∥∥∥2

L2(µ)

≤
1− r(∅)

1 + r
(∅)
1

(
1− r(1)

N(1)

)
r

(∅)
1

(
1− r(1)

N(1)

)(
1− r(∅)

1

)
(b− a)m

(∅)
1 m

(1)
N(1)

≤ 1− r2
inf

(rinf minf(1− rsup))2 (b− a)
.

Together with the Dirichlet-Neumann bracketing, we can estimate Nµ(IV )

D byMk.
Therefore, let

η := rinf minf .

Lemma 4.3.14: There exist c1, c2 > 0 such that for almost all ω ∈ Ω

N
(IV )
D (Tk) ≤ c1Mk, Mk ≤ N

(IV )
D (c2Tkη

−yk)

for all k ≥ 0

Proof. With Corollary 4.3.12 and Lemma 2.1.1, we get

N
(IV )
D (Tk) ≤

∑
x∈Λk

N
(θxIV )
N (mxrxTk)

≤ 2Mk +
∑
x∈Λk

N
(θxIV )
D (mxrxTk)

≤ 2Mk + c Tk
∑
x∈Λk

mxrx

≤ c1Mk,

where the third estimate follows from Lemma 2.1.1. Together with

(rxmx)
−1 ≤ η−yke+k ≤ η−ykTk, x ∈ Λk for all k
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which follows from Lemma 4.3.8, and Lemma 4.3.12, Lemma 4.3.13, we get

Mk =
∑
x∈Λk

N
(θxIV )
D

(
λµ

(θxIV )

1

)
≤
∑
x∈Λk

N
(θxIV )
D

(
c2rxmx (rxmx)

−1
)

≤ N
(IV )
D (c2Tkη

−yk),

thereby we also used that λµ
(IV )

1 < λµ
(IV )

2 , see [53, Theorem 4].

Lemma 4.3.15: For almost all ω ∈ Ω there exists k0(ω) ∈ N and α, c1 > 0 such
that

N
(IV )
D (Tk) ≤ c1Mk, Mk ≤ N

(IV )
D (kαTk), for k > k0(ω).

Proof. The lemma follows from Lemma 4.3.14 and η−yk � kα
′ by Lemma 4.3.8.

The spectral exponent is given as the unique zero strictly bigger than zero of
the function defined in the next lemma. This lemma shows that this zero is indeed
unique and exists. It is a slight modification of [35, Lemma 4.12].

Lemma 4.3.16 (c.f. [35, Lemma 4.12]): Let

f(t) := EV log
∑
x∈IV ,
|x|=n(1)

(mxrx)
t , t ≥ 0.

Then, there exists a unique γV > 0 such that f(γV ) = 0.

Proof. f is strictly decreasing and continuous. Since f(0) > 0 and
lim
t→∞

f(t) = −∞, the claim follows.

The following corollary is a slight modification of [35, Proposition 4.13].

Corollary 4.3.17 (c.f. [35, Proposition 4.13] ): It holds almost surely

lim
k→∞

1

k
log

∑
x∈IV ,
|x|=n(k)

(mxrx)
t = f(t), t ≥ 0.

Proof. This corollary follows from (4.13).

The following theorem is the main result of this section. It is a slight modification
of [35, Theorem 4.14].
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Theorem 4.3.18 (c.f. [35, Theorem 4.14]): The spectral exponent is almost
surely given by the unique solution γV > 0 of

f(γV ) = 0,

where f is defined in Lemma 4.3.16.

Proof. By Corollary 4.3.16, the solution exists and is unique. Therefore we have
to show that

lim
s→∞

logN
(IV )
D (s)

log s
= γV a.s.

To this end, we define for |x| = n(k)

τx(t) :=
(rxmx)

t∑
y∈IV ,
|y|=n(k)

(rymy)
t .

By Proposition 4.3.17 we get for t > γV (i.e. f(x) < 0) for ε = ε(ω) > 0 small
enough that for all c > 0 there exists k0 = k0(ω) ∈ N such that

τx(t) ≥ (rxmx)
t e−k(f(t)+ε) ≥ c (rxmx)

t , for all k ≥ k0. (4.16)

Since for |x| = n(k) it holds

τx(t) =

∑
l∈θxI,

|l|=n(k+1)−n(k)

(rxlmxl)
t

∑
y∈IV ,
|y|=n(k)

(rymy)
t ∑

l∈θxI,
|l|=n(k+1)−n(k)

(rlml)
t

=

∑
l∈θxI,

|l|=n(k+1)−n(k)

(rxlmxl)
t

∑
y∈IV ,

|y|=n(k+1)

(rymy)
t ,

where the second equality holds because θx1IV = θx2IV for all |x1| = |x2| = n(k),
we get for every k ∈ N ∑

x∈Λk

τx(t) = 1
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and thus we obtain from Lemma 4.3.8 for some t′ > 0 and all k ≥ k0,

1 =
∑
x∈Λk

τx(t) ≥
∑
x∈Λk

c (rxmx)
t � cMkk

−tt′e−kt.

Therefore,

Mk � cktt
′
ekt a.s. (4.17)

For s > 1 large enough let k be such that s ∈ (ek−1, ek]. By Lemma 4.3.8 we then
have s ≤ Tk. Together with (4.17) and Lemma 4.3.15,

logN
(IV )
D (s)

log s
≤ logN

(IV )
D (Tk)

log s
≤ log(cMk)

k − 1
� t a.s.

Since this holds for all t > γV , it follows

logN
(IV )
D (s)

log s
� γV a.s.

Now, let t < γV (i.e. f(t) > 0). For ε > 0 small enough we get for some k0 ∈ N,
analogously to the estimates in (4.16),

1 =
∑
x∈Λk

τx(t) ≤
∑
x∈Λk

c (rxmx)
t ≤ cMke

−kt, for all k ≥ k0

and thus

Mk ≥ cekt, for all k ≥ k0.

From Lemma 4.3.15 it follows

logN
(IV )
D (kαTk)

k
≥ logMk

k
� t a.s. (4.18)

for some α > 0. For s > 1 large enough and k such that s ∈ (ek−1, ek], we get again
from Lemma 4.3.8 for some α′ > 0

kαTk � kα
′
ek ≤ e(1 + log s)α

′
s a.s.
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and thus

lim inf
k→∞

logN
(IV )
D (kαTk)

k
≤ lim inf

t→∞

logN
(IV )
D (e(1 + log s)α

′
s)

log s
a.s.

Since

lim
s→∞

log e(1 + log s)α
′
s

log s
= 1, lim

s→∞
e(1 + log s)α

′
s =∞

it follows

lim inf
k→∞

logN
(IV )
D (kαTk)

k
≤ lim inf

s→∞

logN
(IV )
D (s)

log s
a.s.

Since (4.18) holds for all t < γV we then obtain

logN
(IV )
D (s)

log s
� γ a.s. (4.19)

Combining (4.18) and (4.19), the claim follows.

Remark 4.3.19: With Lemma 2.1.2 we also obtain

lim
t→∞

logN
(IV )
N (t)

log t
= γ a.s.
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Chapter 5

Spectral Asymptotics for the
Laplacian on Statistically

Self-Similar Cantor Strings

As in [18, Chapter 3], we investigate applications of the Central Limit Theo-
rem 3.3.7 in this chapter. Also, we consider the Law of the Iterated Logarithm 3.4.3
for the same applications, which is not treated in [18]. The reproduction function
and life length of the considered general branching process are defined by (3.5).

Charmoy, Croydon and Hambly [18, Chapter 3] assumed (for the CLT) that
ξ(∞) = n for all individuals for some n ∈ N and that the birth times σ1, . . . , σn

are distributed such that for some fixed γ ∈ (0,∞) it holds

n∑
i=1

e−γσi = 1 a.s.

With the latter assumption the limit W of the fundamental martingale of the un-
derlying general branching process is almost surely constant 1. We would like to
give a Central Limit Theorem without these conditions.
For simplicity, we assume that νγ, defined in (3.2), is non-lattice. By the discussion
of the Central Limit Theorem in the lattice case (see [18, Section 2.5]), we expect
similar results to hold if νγ is lattice.

The idea of the proofs, constructions and structure we use in this chapter are
taken from [18], where the case W = 1 a.s. is treated.

In our setting, the general branching process (ξx, Lx, φx)x with Malthusian pa-
rameter γ satisfies Nerman’s Strong Law of Large Numbers Theorem 3.3.4 which
yields

e−γtZφ(t)
t→∞−→ zφ(∞)W a.s.
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in the non-lattice case. The focus of our investigation is the random fluctuation
of e−γtZφ(t) around its limit. Therefore, as in [18, Chapter 3], we decompose
eγt/2(e−γtZφ(t)− zφ(∞)W ) into two parts

eγt/2
(
e−γtZφ(t)− zφ(∞)W

)
=

e−γt/2
(
Zφ(t)− eγtzφ(t)W

)
+ eγt/2

(
zφ(t)− zφ(∞)

)
W.

(5.1)

Firstly, the aim is to apply the Central Limit Theorem on the first summand.
The second will converge to 0. Together with Slutsky’s lemma we then obtain a
result on the random fluctuation. Secondly, to describe the random fluctuation of
e−γtZφ(t) around its limit almost surely, we want to apply the Law of the Iterated
Logarithm Theorem 3.4.3 which can be done with the same decomposition.

The main result of this chapter is provided in Theorem 5.3.2 which is a result
of the present thesis.

5.1. Centering the process

We start by defining a characteristic ζ̄ such that

Zφ(t)− eγtzφ(t)W = Z ζ̄(t).

Then, as required for the Central Limit Theorem 3.3.7 and the Law of the Iterated
Logarithm Theorem 3.4.3, ζ̄ is a centred characteristic. Therefore, let

ζ̄
φ
∅(t) := ζ̄∅(t) := φ∅(t) +

ξ∅(∞)∑
i=1

eγ(t−σi)zφ(t− σi)Wi − eγtzφ(t)W. (5.2)

Thanks to (3.16), we get

ζ̄∅(t) = φ∅(t) +

ξ∅(∞)∑
i=1

eγ(t−σi)zφ(t− σi)Wi − eγtzφ(t)W

= φ∅(t) +

ξ∅(∞)∑
i=1

eγ(t−σi)Wi

(
zφ(t− σi)− zφ(t)

)
.

With the last equality we can control the second term by controlling |zφ(t− σi)−
zφ(t)| as the following lemma shows.
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Lemma 5.1.1: Let (ξx, Lx, φx)x be a general branching process. Assume that

|zφ(t)− zφ(∞)| ≤ c1e
−β1t ∧ c2,

for some β1 ∈ [0,∞). Then,

| ζ̄∅(t)| ≤ |φ∅(t)|+ 2

ξ∅(∞)∑
i=1

Wie
−γσi

(
c1e

(γ−β1)teβ1σi ∧ c2e
γt
)
.

Proof. Remark that W,Wi > 0 a.s. and thus

| ζ̄∅(t)| ≤ |φ∅(t)|+
ξ∅(∞)∑
i=1

eγ(t−σi)Wi

(
|zφ(t− σi)− zφ(∞)|+ |zφ(t)− zφ(∞)

)

≤ |φ∅(t)|+
ξ∅(∞)∑
i=1

eγ(t−σi)Wi

((
c1e
−β1(t−σi) ∧ c2

)
+
(
c1e
−β1t ∧ c2

))

≤ |φ∅(t)|+ 2

ξ∅(∞)∑
i=1

Wie
−γσi

(
c1e

(γ−β1)teβ1σi ∧ c2e
γt
)

Remark 5.1.2: If β1 ≤ γ in Lemma 5.1.1, we infer

| ζ̄∅(t)| ≤ |φ∅(t)|+ 2c1e
(γ−β1)t

ξ∅(∞)∑
i=1

Wi

5.2. Investigation on the conditions of the Central

Limit Theorem and the Law of the Iterated

Logarithm

With Lemma 5.1.1, we are able to bound ζ̄ by a constant (depending on ω) if
β1 = γ and if we are able to bound φ. In our investigation, |φ∅(t)| ≤ ξ∅(∞) c1 and
hence for β1 = γ,

| ζ̄∅(t)| ≤ c1

ξ∅(∞) +

ξ∅(∞)∑
i=1

Wi

 .
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We assume that φ and therefore also ζ̄ vanishes for negative times. As explained
in (3.10), we can use other characteristics if φ does not vanish for negative times.
We start our investigation by considering Condition 3.3.5.

Lemma 5.2.1: Let (ξx, Lx, φx)x be a general branching process with Malthusian
parameter γ ∈ [0, 1], Eξ(∞) <∞ and ζ̄ be defined as in (5.2). Assume that φ ≥ 0

and vanishes for negative times, νγ defined in (3.2) is non-lattice and that

| ζ̄∅(t)| ≤ c1

ξ∅(∞) +

ξ∅(∞)∑
i=1

Wi

 .

Then Condition 3.3.5 and Condition 3.4.1 are satisfied.

Proof. Let ε < γ/2. Then,

∣∣∣∣∣e−γt/2 ∑
σx≤εt

ζ̄x(t− σx)

∣∣∣∣∣ ≤ e(ε−γ/2)te−εtc1

∑
σx≤εt

ξx(∞) +

ξx(∞)∑
i=1

Wx,i

 .

From Theorem 3.3.4 follows

e−γεt
∑
σx≤εt

ξx(∞) +

ξx(∞)∑
i=1

Wx,i

 t→∞−→ c2, a.s.

Since ε < γ/2, the claim follows.

Next, we show that for β1 = γ in Lemma 5.1.1, Condition 3.3.6 is satisfied with
κ = 1 and therefore Condition 3.4.2 is also satisfied. We firstly recall the definition
of ψ in Lemma 3.5.1, i.e.

ψ(θ) := E
ξ∅(∞)∑
i=1

e−θγσi .

To check Condition 3.3.6 and Condition 3.4.2 we have to assume that the sixth
moment of ξ(∞) is finite, i.e.

Eξ(∞)6 <∞.

One would expect that we need Eξ(∞)κ+2 <∞ to get Condition 3.3.6 and there-
fore if we take κ = 1 it should be enough to have finiteness of the third moment.
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However, since we use the Cauchy-Schwarz inequality to get Condition 3.3.6, we
need boundedness of the (3 · 2 = 6)-th moment of ξ(∞).

Lemma 5.2.2: Let (ξx, Lx, φx)x be a general branching process with Malthusian
parameter γ ∈ [0, 1] and ζ̄ defined as in (5.2). Assume that φ ≥ 0 and vanishes
for negative t, νγ defined in (3.2) is non-lattice, the conditions of Lemma 3.5.2 are
satisfied, i.e.

φ(t) ≤ c1 ξ(∞), Eξ(∞)6 <∞

and for all t

| ζ̄∅(t)| ≤ c1

ξ∅(∞) +

ξ∅(∞)∑
i=1

Wx,i

 .

Furthermore, assume that v defined in (3.12) is bounded. Then it holds

sup
t≥0

E|e−γt/2Z̄(t)|3 <∞.

Proof. We define Q̄ analogously to Q in the proof of Lemma 3.5.2, that is

Q̄∅(t) := ζ̄∅(t)
3 + 3 ζ̄∅(t)

2

ξ∅(∞)∑
i=1

Z̄i(t− σi) + 3 ζ̄∅(t)

ξ∅(∞)∑
i,j=1

Z̄i(t− σi)Z̄j(t− σj)

+

ξ∅(∞)∑
i,j,k=1,

not all equal

Z̄i(t− σi)Z̄j(t− σj)Z̄k(t− σk).

Therefore

Z̄(t)3 = ZQ̄(t)
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and thus |Z̄(t)|3 is bounded by∑
x∈I

| ζ̄x(t− σx)|3 (5.3)

+ 3
∑
x∈I

| ζ̄x(t− σx)|2
ξx(∞)∑
i=1

|Z̄x,i(t− σx,i)| (5.4)

+ 3
∑
x∈I

| ζ̄x(t− σx)|
ξx(∞)∑
i,j=1

|Z̄x,i(t− σx,i)||Z̄x,j(t− σx,j)| (5.5)

+
∑
x∈I

ξx(∞)∑
i,j,k=1,

not all equal

|Z̄x,i(t− σx,i)||Z̄x,j(t− σx,j)||Z̄x,k(t− σx,k)|. (5.6)

Multiplying (5.3) with e−3γt/2 and using the estimate of ζ̄, we get

e−3γt/2E
∑
x∈I

| ζ̄x(t− σx)|3 ≤ c3
1E
∑
x∈I

e−
3
2
γσx

ξx(∞) +

ξx(∞)∑
i=1

Wx,i

3

= c3
1E
∑
x∈I

e−
3
2
γσxE

((
ξx(∞) +

ξx(∞)∑
i=1

Wx,i

)3∣∣∣∣∣Fx
)
.

Since Wx,i is independent of Fx and Wx,j for j 6= i, distributed like W , σx is F||x|−1

measurable, ξx is independent of F||x|−1
and the third moment is finite, there exists

a c2 such that

c3
1E
∑
x∈I

e−
3
2
γσxE

((
ξx(∞) +

ξx(∞)∑
i=1

Wx,i

)3∣∣∣∣∣Fx
)
≤ c3

1c2E
∑
x∈I

e−
3
2
γσx

and thus

e−3γt/2
∑
x∈I

| ζ̄x(t− σx)|3 ≤ c3
1c2E

∑
x∈I

e−
3
2
γσx = c3

1c2

∞∑
k=0

ψ(3/2)k <∞.

To estimate (5.4) we use the same arguments as for (5.3) and the boundedness of
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v to obtain

3 e−3γt/2E
∑
x∈I

| ζ̄x(t− σx)|2
ξx(∞)∑
i=1

|Z̄x,i(t− σx,i)|

≤ 3 c2
1 e
−3γt/2E

∑
x∈I

eγ(t−σx)

ξx(∞) +

ξx(∞)∑
i=1

Wx

2
ξx(∞)∑
i=1

|Z̄x,i(t− σx,i)|

≤ 3 c2
1 e
−3γt/2E

∑
x∈I

eγ(t−σx)E

((
ξx(∞) +

ξx(∞)∑
i=1

Wx,i

)4∣∣∣∣∣Fx
)1/2

·

ξx(∞)∑
i=1

E(|Z̄x,i(t− σx,i)|2|Fx)1/2

≤ 3 c2
1 c

1/2
3 e−3γt/2E

∑
x∈I

e3γ(t−σx)/2E

((
ξx(∞) +

ξx(∞)∑
i=1

Wx,i

)4∣∣∣∣∣Fx
)1/2

ξx(∞)

<∞,

where we get EZ̄(t)2 ≤ c3e
γt since v is bounded and get the boundedness of

E
(
(ξx(∞) +Wx)

4
∣∣Fx) since the fourth moment of ξ(∞) is bounded.

To estimate (5.5), we need the following Lemma.

Lemma 5.2.3: It holds for all t

EZ̄(t)4 ≤ d1e
3γt.
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Therefore, we get

e−3γt/2E
∑
x∈I

| ζ̄x(t− σx)|
ξx(∞)∑
i,j=1

|Z̄x,i(t− σx,i)||Z̄x,j(t− σx,j)|

≤ c1 e
−3γt/2E

∑
x∈I

ξx(∞) +

ξx(∞)∑
i=1

Wx,i

 ξx(∞)∑
i,j=1

|Z̄x,i(t− σx,i)||Z̄x,j(t− σx,j)|

≤ c1 e
−3γt/2E

∑
x∈I

E

((
ξx(∞) +

ξx(∞)∑
i=1

Wx,i

)2∣∣∣∣∣Fx
)1/2

·

ξx(∞)∑
i,j=1

E
(
(|Z̄x,i(t− σx,i)||Z̄x,j(t− σx,j)|)2

∣∣Fx)1/2

≤ d
1/2
1 c1e

−3γt/2E
∑
x∈I

E

((
ξx(∞) +

ξx(∞)∑
i=1

Wx,i

)2∣∣∣∣∣Fx
)1/2

e
3
2
γ(t−σx)ξx(∞)2

<∞.

For the last term, we argue as in (3.20) and use again the boundedness of v to
get

e−3γt/2E
∑
x∈I

ξ∅(∞)∑
i,j,k=1,

not all equal

|Z̄x,i(t− σx,i)||Z̄x,j(t− σx,j)||Z̄x,k(t− σx,k)|

≤ c
3/2
3 Eξ(∞)3 E

∑
x∈I

e−
3
2
γσx

<∞.

It remains to show Lemma 5.2.3.

Proof of Lemma 5.2.3. We decompose Z̄4 as we did for Z̄3 to get a characteristic
f̄ such that

Z̄4 = Z f̄ .
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Thus

f̄∅(t) = ζ̄∅(t)
4 + d2 ζ̄∅(t)

3

ξ∅(∞)∑
i=1

Z̄i(t− σi)

+ d3 ζ̄∅(t)
2

ξ∅(∞)∑
i,j=1

Z̄i(t− σi)Z̄j(t− σj)

+ d4 ζ̄∅(t)

ξ∅(∞)∑
i,j,k=1

Z̄i(t− σi)Z̄j(t− σj)Z̄k(t− σk)

+
∑

i,j,k,l=1,
not all equal

Z̄i(t− σi)Z̄j(t− σj)Z̄k(t− σk)Z̄l(t− σl).

Therefore, we can bound Z̄4 by using the same arguments as for Z̄3. We start with
the first term and get

e−3γtE
∑
x∈I

ζ̄x(t− σx)4 ≤ c4
1e
−3γtE

∑
x∈I

e2γ(t−σx)

(
ξx(∞) +

ξx(∞)∑
i=1

Wx,i

)4

<∞.

For the second, we get

e−3γtE
∑
x∈I

ζ̄x(t− σx)3

ξx(∞)∑
i=1

|Z̄x,i(t− σx,i)|

≤ c3
1e
−3γtE

∑
x∈I

e3γ(t−σx)/2E
(
(ξx(∞) +Wx)

6
∣∣Fx)1/2

ξx(∞)∑
i=1

E(Z̄x,i(t− σx,i)2|Fx)1/2

<∞,

where we use that the sixth moment of ξ(∞) is bounded.

For the third term, we use that

EZφ(t)4 ≤ d5e
4γt
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by the proof of Lemma 3.5.2. Therefore

e−3γtE
∑
x∈I

ζ̄x(t− σx)2

ξx(∞)∑
i,j=1

|Z̄x,i(t− σx,i)||Z̄x,j(t− σx,j)|

≤ c2
1 e
−3γtE

∑
x∈I

E

((
ξ(∞) +

ξx(∞)∑
i=1

Wx,i

)4∣∣∣∣∣Fx
)
·

ξx(∞)∑
i,j=1

E((|Z̄x,i(t− σx,i)||Z̄x,j(t− σx,j)|)2|Fx)1/2

≤ c2
1 d

1/2
5 e−3γtE

∑
x∈I

E

((
ξx(∞) +

ξx(∞)∑
i=1

Wx,i

)4∣∣∣∣∣Fx
)1/2

ξx(∞)3e2γ(t−σx)

<∞.

For the fourth term, we use

EZφ(t)6 ≤ d6e
6γt

and proceed as before. We estimate the last term as in (3.20) and hence the claim
follows.

This proofs Lemma 5.2.3 and hence Lemma 5.2.2 follows.

5.3. Spectral asymptotics for statistically

self-similar Cantor strings
The main result of our investigation in this chapter are included in this section.
We first define the domain on which we consider the Laplacian and move on to the
behaviour of its spectrum. The set we investigate is a subset of [0, 1] whose bound-
ary is a statistically self-similar Cantor set. Many authors investigated spectral
properties on the complement of Cantor-like sets. For references see [18,43,63].

We consider a random vector (N,R1, . . . , RN) with Ri ∈ (0, 1),
∑N

i=1Ri < 1,
N ∈ N, N ≥ 2 a.s. Then, we construct an iterated function system (Φ1, . . . ,ΦN) on
[0, 1] which splits the unit interval in N equally spaced intervals with length ratios
(R1, . . . , RN). The set under consideration is the statistically self-similar Cantor
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set

K :=
∞⋂
n=1

⋃
x∈I,
|x|=n

Φx([0, 1]).

We assume that K forms a net and is proper and therefore by Theorem 3.2.2 on
the event that K is not empty, the Hausdorff dimension of K is almost surely given
by the unique solution γ ∈ [0, 1] of

E
N∑
i=1

Rγ
i = 1.

As in [18, Theorem 4.1], it follows that Hausdorff and Minkowski dimension coin-
cide a.s. and

γ = dH = dM a.s.

The set we investigate is U := [0, 1]\K. It is a countable union of open intervals
and by construction, ∂U = K. We call U a statistically self-similar Cantor string.
For references, see [18, 63].
In the following, we assume that the sixth moment of N is bounded, i.e. we assume

EN6 = Eξ(∞)6 <∞.

Let X ⊆ R be a countable union of domains. The Dirichlet eigenvalue counting
function of the Laplacian ∆|X on X is given by

N(X; λ) := #
{
Dirichlet eigenvalues of −∆|X ≤ λ

}
.

We follow [18,66] and define

N̄(X; λ) :=
1

π
vol1(X)λ1/2 −N(X; λ).

If X1 and X2 are disjoint countable unions of domains it holds

N̄(X1 ∪X2; λ) = N̄(X1; λ) + N̄(X2; λ). (5.7)
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Moreover, for r ∈ (0,∞) holds

N̄(rX; λ) = N̄
(
X; r2λ

)
. (5.8)

We use an assumption on the convergence rate of the error of the linear approx-
imation G of the renewal function, see Appendix A.1. The assumption is related
to Assumption 2.3.1.

Assumption 5.3.1: There exist β1 ∈ (γ,∞) and c, t0 ∈ (0,∞) such that the
error of the linear approximation G of the renewal function of νγ defined in (3.2)
satisfies ∣∣∣G(t)− lim

u→∞
G(u)

∣∣∣ ≤ c1e
−β1t

for all t ≥ t0.

In Section 2.3, the assumption is that β1 ∈ (γ/2,∞). However, since we do not
assume W = 1 a.s., we use a faster rate of convergence in the renewal theorem to
obtain the strong law of large number for the square of the centred C-M-J branch-
ing process.

The following theorem is the main result of this chapter. The idea of the proof
is taken from the proof of [18, Theorem 4.4].

Theorem 5.3.2: Let K be a statistically self-similar Cantor set with dimension
γ, νγ defined in (3.2) be non-lattice, EN6 <∞ and U := [0, 1]\K. Then, it holds

λ−γ/2N̄(U ; λ)
λ→∞−→ CW a.s. and in L1,

where W is the almost sure and L1 limit of the underlying fundamental martingale
(Wt)t and C is some strictly positive constant. Furthermore, W > 0 a.s.

If Assumption 5.3.1 holds, then

λγ/4
(
λ−γ/2N̄(U ; λ)− CW

) t→∞−→ Z∞ in distribution,

where the distribution of Z∞ is characterized by

EeiθZ∞ = Ee−
1
2
θ2v(∞)W ,
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whereby v(∞) := limt→∞ v(t) with v defined in (3.12) and, if v(∞) > 0 it holds

−1 ≤ lim inf
n→∞

e−γn/4
(
e−γn/2N̄(U ; en)− CW

)√
2 v(∞)W log n

≤ lim sup
n→∞

e−γn/4
(
e−γn/2N̄(U ; en)− CW

)√
2 v(∞)W log n

≤ 1

almost surely.

Proof. We follow the proof of [18, Theorem 4.3]. Therefore, let Pi be the scale
factor of the open gap interval between the i-th and (i+ 1)-th interval in the first
approximation step of K. By the construction of K and the properties (5.7) and
(5.8) of N̄ it follows

N̄(U ; λ) =

ξ∅(∞)−1∑
i=1

N̄(Pi[0, 1]; λ) +

ξ∅(∞)∑
i=1

N̄(RiUi; λ)

=

ξ∅(∞)−1∑
i=1

N̄
(
[0, 1]; P 2

i λ
)

+

ξ∅(∞)∑
i=1

N̄
(
Ui; R

2
iλ
)
,

where Ui are i.i.d. copies of U .

It is well known that the eigenvalues of −∆|[0,1] are (nπ)2. Therefore

N̄([0, 1]; λ) = π−1λ1/2 −
⌊
π−1λ1/2

⌋
.

Thus, N̄([0, 1]; λ) is bounded by 1 ∧
(
π−1λ1/2

)
.

Next, we define the characteristic which we use to write N̄ as a C-M-J branching
process. Therefore,

φ∅(t) :=

ξ∅(∞)−1∑
i=1

N̄
(
[0, 1]; P 2

i e
2t
)
.

Since

N̄
(
U ; e2t

)
= φ∅(t) +

ξ∅(∞)∑
i=1

N̄
(
Ui; e

2(t−σi)
)
,

97



it holds

Zφ(t) = N̄
(
U ; e2t

)
.

Furthermore,

0 ≤ φ(t) ≤ (ξ(∞)− 1)(et1t<0 + 1t≥0), Zφ(t)1t<0 ≤ et1t<0. (5.9)

To establish Nerman’s Strong Law of Large Numbers to obtain the first part of
the theorem, we use (3.10) and set

χ∅(t) := φ∅(t)1t≥0 +

ξ∅(∞)∑
i=1

Zφ
i (t− σi)10≤t<σi ,

which is bounded by a constant times ξ∅(∞) because of (5.9). Therefore, we can
use Theorem 3.3.4 and obtain

e−γtZχ(t)
t→∞−→ µ−1

1

∫ ∞
0

e−γsEχ(s) dsW a.s. and in L1.

This means,

λ−γ/2N̄(U ; λ)
λ→∞−→ µ−1

∫ ∞
0

e−γsEχ(s) dsW a.s. and in L1,

which yields the first part of the theorem by defining C := µ−1
∫∞

0
e−γsEχ(s) ds.

For the second part, we define ζ̄φ and ζ̄χ as in (5.2) and let

Z̄φ := Z ζ̄
φ

, Z̄χ := Z ζ̄
χ

.

By definition of χ, these two C-M-J branching processes are equal for t ≥ 0 and
therefore, the variance functions vφ(t) := vζ̄

φ

(t) and vχ(t) := vζ̄
χ

(t) defined in
(3.12) are equal for t ≥ 0. Since (Z̄i)i are independent, we get

rχ(t) = e−γt

E ζ̄χ∅ (t)2 + 2E ζ̄χ∅ (t)
ξ∅(∞)∑
i=1

Z̄χ
i (t− σi)

 ,

where rχ := rζ̄
χ

is defined as in (3.12). Since χ is bounded by a constant times
ξ(∞) and

|zχ(t)− zχ(∞)| ≤ c3e
−γt (5.10)
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by Assumption 5.3.1 and Lemma A.1.2, we get by Lemma 5.1.1

ζ̄
χ
∅ (t)

2 ≤ c1

ξ∅(∞) +

ξ∅(∞)∑
i=1

Wi

2

(5.11)

and

Lemma 5.3.3: It holds for all ε > 0

EZ̄χ(t)2 ≤ c2(ε)eεt+γt t ≥ 0.

Therefore,

E ζ̄χ∅ (t)
ξ∅(∞)∑
i=1

Z̄χ
i (t− σi)

≤ E

E
(
ζ̄
χ
∅ (t)

2
∣∣F∅)1/2

ξ∅(∞)∑
i=1

E

(
Z̄χ
i (t− σi)2

∣∣∣∣∣F∅
)1/2

 (5.12)

≤ c3(ε) eγt/2+εt/2.

Fix ε > 0 sucht that γ/2 + ε < γ and thus there exist c, τ > 0 such that

rφ(t) ≤ ce−τ |t|.

and we can use renewal theorem of [66] to obtain

lim
t→∞

vχ(t) = µ−1
1

∫ ∞
0

e−γsE ζ̄χ(s)2 + 2e−γsE ζ̄χ∅ (s)
ξ∅(∞)∑
i=1

Z̄χ
i (s− σi) ds.

Therefore, the conditions of the Central Limit Theorem 3.3.7 are satisfied and thus
we get by using the decomposition of Zχ as in (5.1), the rate of convergence (5.17)
and Slutsky’s lemma

eγt/2
(
e−γtZχ(t)− CW

) t→∞−→ Z∞ in distribution.

With analogous arguments we show that the conditions of the Law of the Iter-
ated Logarithm 3.4.3 are satisfied and thus the claim follows. It remains to show
Lemma 5.3.3.
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Proof of Lemma 5.3.3. Since

Z̄χ(t)2 = Z̄qχ(t),

we get

Z̄χ(t)2 =
∑
x∈I

(
ζ̄
χ
x(t− σx)2 + 2 ζ̄

χ
x(t− σx)

ξx(∞)∑
i=1

Z̄χ
x,i(t− σx,i)

+

ξx(∞)∑
i=1

∑
j<i

Z̄χ
x,i(t− σx,i)Z̄

χ
x,j(t− σx,j)

)

Since (Z̄χ
x,i)i are i.i.d. and centred, it follows

EZ̄χ(t)2 = E
∑
x∈I

ζ̄χx(t− σx)2 + 2 ζ̄
χ
x(t− σx)

ξx(∞)∑
i=1

Z̄χ
x,i(t− σx,i)

 .

By Lemma 3.5.1 and Lemma 5.1.1 we control the first summand by d1e
γt+εt and

since

EZ̄χ(t)2 = E(Zχ(t)− eγtEe−γtZχ(t))2 ≤ d2e
2γt,

by using Cauchy-Schwarz as in (5.12), it follows

e−γt−εt EZ̄χ(t)2 ≤ d4 E
∑
x∈I

e−σx(γ+ε) <∞,

where the last estimate follows also by Lemma 3.5.1.

Example 5.3.4: Let the distribution of (N,R1, . . . , RN) be defined by

P
(

(N,R1, . . . , RN) = (3, 1/5, 1/5, 1/5)
)

=
1

2
,

P
(

(N,R1, . . . , RN) = (2, 1/3, 1/3)
)

=
1

2
.

(5.13)
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Figure 5.1: First three approximation steps of a statistically self-similar Cantor set
corresponding to (5.13)

To check Assumption 5.3.1 we use Stone’s Theorem A.1.1 where

f(ω) =

∫ ∞
0

eωy F (dy)

= E
N∑
i=1

Rγ−ω
i

=
1

2
· 3 ·

(
1

5

)γ−ω
+

1

2
· 2 ·

(
1

3

)γ−ω
.

Therefore, f is analytic and it holds

f(ω) = 1 if and only if ω = 0.

Hence, Assumption 5.3.1 is satisfied and thus it holds

λγ/4
(
λ−γ/2N̄(U ; λ)− CW

) t→∞−→ Z∞ in distribution

with the notation of Theorem 5.3.2.

In this example we verified the conditions of the Central Limit Theorem in the
case W 6= 1. To give an application of the Law of the Iterated Logarithm where
we can verify v(∞) > 0, we investigate the case W = 1 a.s. which is considered
in [18] for the Central Limit Theorem.
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5.4. Law of the Iterated Logarithm in the case

W = 1

In this section we consider the same statistically self-similar Cantor strings as [18],
those results on statistically self-similar Cantor strings we recapped in Section 2.3,
i.e. we choose a deterministic number γ ∈ (0, 1) and a random vector (T1, . . . , Tn)

with a deterministic natural number n ≥ 2. We further assume that

n∑
i=1

Ti = 1, Ti ∈ (0, 1) a.s.

We replace the unit interval by n equally spaced intervals with lengths
R1 := T

1/γ
1 , . . . , Rn := T

1/γ
n and repeat this procedure for the remaining intervals

independently and indefinitely. The limiting set K is a statistically self-similar
Cantor set those complement U in [0, 1] is the statistically self-similar Cantor
string under consideration in this section.

As explained in Section 5.3, on the event that K is not empty Hausdorff and
Minkowski dimension are almost surely given by γ.

Reproduction rate and life length under consideration are defined by (3.5). As
in [18], we call a general branching process which satisfies ξ(∞) = n and

n∑
i=1

e−γσi = 1 a.s.

a ∆n-general branching process and the corresponding statistically self-similar
Cantor string ∆n-random Cantor string. We will see that in this setting Assump-
tion 2.3.1 is enough to ensure the Law of the Iterated Logarithm for N̄(U ; · ) to
hold.

For the Law of the Iterated Logarithm we again split the considered C-M-J
branching process as in (5.1) which leads to

eγt/2
(
e−γtZφ(t)− zφ(∞)

)
=

e−γt/2
(
Zφ(t)− eγtzφ(t)

)
+ eγt/2

(
zφ(t)− zφ(∞)

)
.

(5.14)

Moreover, because W = 1 and ξ(∞) = n a.s., the centred characteristic ζ̄ defined
by (5.2) will satisfy

ζ̄(t) ≤ c1e
βt
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for some β < γ/2. As in Lemma 5.2.1, we get the following lemma which is a slight
modification of [18, Lemma 3.4].

Lemma 5.4.1 (c.f. [18, Lemma 3.4]): Let (ξx, Lx, φx)x be a ∆n-general branch-
ing process with Malthusian parameter γ ∈ [0, 1] and ζ̄ being the corresponding
centred characteristic defined by (5.2). Assume that φ ≥ 0 and vanishes for nega-
tive times, νγ defined in (3.2) is non-lattice and that

| ζ̄(t)| ≤ c1e
βt,

for some β < γ/2. Then, Condition 3.4.1 is satisfied

Proof. Let 0 < ε < γ/2− β. Then,∣∣∣∣∣e−γt/2 ∑
σx≤εt

ζ̄x(t− σx)

∣∣∣∣∣ ≤ e(ε−(γ/2−β))te−εtc1

∑
σx≤εt

1.

From Theorem 3.3.4 follows

e−γεt
∑
σx≤εt

1
t→∞−→ c2, a.s.

Since ε < γ/2− β, the claim follows.

The following lemma is taken from [18, Lemma 3.6].

Lemma 5.4.2 (c.f. [18, Lemma 3.6]): Let (ξx, Lx, φx)x be a ∆n-general branch-
ing process with Malthusian parameter γ and ζ̄ being the corresponding centred
characteristic defined by (5.2). Assume that φ ≥ 0 and vanishes for negative times
and that

| ζ̄(t)| ≤ c1e
γt/2.

Then, Condition 3.4.2 is satisfied.

With these two lemmas we are able to proof the Law of the Iterated Logarithm
of this section. Before we give the theorem, we recall the assumption on the speed
of convergence in Section 2.3.
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Assumption 5.4.3 (c.f. [18, Assumption 4.2]): There exist β1 ∈ (γ/2,∞)

and c, t0 ∈ (0,∞) such that the error of the linear approximation G of the renewal
function of νγ defined in (3.2) satisfies∣∣∣G(t)− lim

u→∞
G(u)

∣∣∣ ≤ c e−β1t,

for all t ≥ t0.

The proof of the following theorem is a slight modification of the proof of [18,
Theorem 4.3].

Theorem 5.4.4 (c.f. [18, Theorem 4.3]): Let U be a ∆n-random Cantor string
with dimension γ and νγ defined in (3.2) be non-lattice. Then, it holds

λ−γ/2N̄(U ; λ)
λ→∞−→ C > 0 a.s. and in L1,

Furthermore, if Assumption 5.4.3 holds, then

−1 ≤ lim inf
n→∞

e−γn/4
(
e−γn/2N̄(U ; en)− C

)√
2 v(∞) log n

≤ lim sup
n→∞

e−γn/4
(
e−γn/2N̄(U ; en)− C

)√
2 v(∞) log n

≤ 1

almost surely, whereby v(∞) := limt→∞ v(t) ∈ (0,∞) with v defined in (3.12).

Proof. The first part follows from [18, Theorem 4.3]. For the second part we follow
the proof of Theorem 5.3.2. Define

P := (1−R1 − · · · −Rn)/(n− 1).

By the construction of K and the properties (5.7) and (5.8) of N̄ it follows

N̄(U ; λ) = (n− 1)N̄
(
[0, 1]; P 2λ

)
+

n∑
i=1

N̄
(
Ui; R

2
iλ
)
,

where Ui are i.i.d. copies of U .

With the characteristic

φ∅(t) := (n− 1)N̄
(
[0, 1]; P 2e2t

)
,
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we get

N̄
(
U ; e2t

)
= φ∅(t) +

n∑
i=1

N̄
(
Ui; e

2(t−σi)
)
,

and hence

Zφ(t) = N̄
(
U ; e2t

)
with

0 ≤ φ(t) ≤ (n− 1)(et1t<0 + 1t≥0), Zφ(t)1t<0 ≤ et1t<0. (5.15)

We define ζ̄φ and ζ̄χ as in (5.2) and let

Z̄φ := Z ζ̄
φ

, Z̄χ := Z ζ̄
χ

.

By definition of χ, these two C-M-J branching processes are equal for t ≥ 0 and
therefore, the variance functions vφ(t) := vζ̄

φ

(t) and vχ(t) := vζ̄
χ

(t) defined in
(3.12) are equal for t ≥ 0. Since (Z̄i)i are independent and (ζ̄x)x are i.i.d., we get

rφ(t) = e−γtE ζ̄φ∅(t)2,

where rφ := rζ̄
φ

is defined as in (3.12). By Assumption 5.4.3 and Lemma A.1.2 it
holds

|zφ(t)− zφ(∞)| ≤ c1e
−βt, for some β > γ/2.

Lemma 5.1.1 and (5.15) imply

| ζ̄φ(t)| ≤ c2e
(γ−β)t

and thus there exist c, τ > 0 such that

rφ(t) ≤ ce−τ |t|.

and we can use renewal theorem of [66] to obtain

lim
t→∞

vχ(t) = lim
t→∞

vφ(t) = µ−1
1

∫ ∞
0

e−γsE ζ̄φ(s)2ds ∈ (0,∞) (5.16)
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Since χ is bounded and also

|zχ(t)− zχ(∞)| ≤ c3e
−βt (5.17)

by Assumption 5.3.1 and Lemma A.1.2, we see that by Lemma 5.4.1 and Lemma 5.4.2
together with (5.16) the conditions of the Law of the Iterated Logarithm 3.4.3 are
satisfied and hence by Corollary 3.15 it follows

−1 ≤ lim inf
n→∞

e−γn/4Z̄χ(n/2)√
2 v(∞) log n

≤ lim sup
n→∞

e−γn/4Z̄χ(n/2)√
2 v(∞) log n

≤ 1 a.s.

Together with the decomposition (5.14) the claim follows.

The following example of ∆n-random Cantor strings is taken from [18, Chapter
5].

Example 5.4.5 (c.f. [18, Chapter 5]): Consider a vector α = (α1, . . . , αn) ∈
(0,∞)n. Let γ ∈ (0, 1) and the distribution of (e−σ1γ, . . . , e−σnγ) given by

(e−σ1γ, . . . , e−σnγ) ∼ Dir(α),

where Dir(α) denotes the Dirichlet distribution with weights α1, . . . , αn > 0.

Figure 5.2: First four approximation steps of ∆n-random Cantor sets with
(e−σ1γ, . . . , e−σnγ) ∼ Dir((α, α)) for α = 1, 30, 80 and γ = 0.6, [18, Fig-
ure 5].

By [18, Lemma 5.2] it holds
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Lemma 5.4.6 (c.f. [18, Lemma 5.2]): Assume that

α1 = α2 = · · · = αn =
k

n− 1
, k ∈ {1, 2, 3, 4}, n ≥ 2. (5.18)

Then the Fourier transformation f(ω) of νγ defined in (3.2) is analytic and 6= 1

for all ω ∈ C with Reω ∈ (0, γ] and therefore by Stone’s Theorem A.1.1

G(t)− µ1

2µ2
2

= O(e−γt).

Hence, if α satisfies (5.18) then the Law of the Iterated Logarithm 5.4.4 holds.

In [18, Remark 4.4] it is explained that if

∣∣zφ(∞)− zφ(t)
∣∣ ≤ c1e

−βt/2 for some β1 > γ/2 (5.19)

is not satisfied, we should not expect the Central Limit Theorem to hold because
then v(∞) is not finite and thus we should also not expect the Law of the Iterated
Logarithm to hold if (5.19) is not satisfied.
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Chapter 6

Outlook
This chapter outlines some open questions and conjectures regarding the present
work.

6.1. Law of the Iterated Logarithm for C-M-J

branching processes

In Corollary 3.4.5, we saw that if the general branching process (ξx, Lx, ζ̄x)x with
centred characteristic ζ̄ satisfies some regularity conditions and if νγ is non-lattice,
then the corresponding C-M-J branching process Z̄ satisfies for fixed h > 0,

−1 ≤ lim inf
n→∞

e−γhn/2Z̄(hn)√
2 v(∞)W log hn

≤ lim sup
n→∞

e−γhn/2Z̄(hn)√
2 v(∞)W log hn

≤ 1 a.s.

with v(∞) being the limit of the normalized variance process Ee−γtZ̄(t)2 and W
the limit of the underlying fundamental martingale. It seems natural to extend this
Law of the Iterated Logarithm to all t and further ask if the upper and lower bound
for the lim inf and lim sup respectively also holds. In [49] a decomposition, with
which the reverse inequality chain in the Law of the Iterated Logarithm for the
biggins martingale was proven, is provided. It should be possible to get a similar
decomposition for Z̄. Therefore, we make the following conjecture.

Conjecture 6.1.1: Let (ξx, Lx, ζ̄x)x be a general branching process with Malthu-
sian parameter γ > 0 such that ζ̄ satisfies EZ̄(t) = 0 for all t. Assume that

v(t)
t→∞−→ v(∞),

where v(∞) > 0 and further, assume that Condition 3.4.1 and Condition 3.4.2,

Eξ(∞) log ξ(∞) <∞
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hold and νγ is non-lattice. Then,

−1 = lim inf
t→∞

e−γt/2Z̄(t)√
2 v(∞)W log t

< lim sup
t→∞

e−γt/2Z̄(t)√
2 v(∞)W log t

= 1 a.s.

6.2. The spectral exponents γh, γV and γr

In Section 1.4 we explained the connection between homogeneous, V -variable and
recursive structures and showed in Section 4.2.4 that if the conditions of Theo-
rem 2.2.2 are satisfied, it holds

γh ≤ γr. (6.1)

The first related question is if it is possible to relax the conditions of Theorem 2.2.2
to get the spectral exponent for random homogeneous Cantor measures. Assump-
tions (A1) and (A2) in particular seem to be very strong conditions in a random
setting. However, it seems natural to ask if assumptions (A1)-(A5) can be replaced
by (4.7) with which we would have the spectral exponent for random homogeneous
and statistically self-similar Cantor measures under the same assumption. Related
to that are similar questions for the V -variable setting.

By increasing V , it is allowed to use more different iterated function systems in
the approximation steps of the corresponding V -variable Cantor set. Therefore, by
increasing V , we get more thicker and thinner parts in the fractal and since we ex-
pect that the thicker parts dominate the thinner parts in the spectral asymptotics,
we assume (γV )V ∈N to be an increasing sequence. Thus, we conjecture that

γh = γ1 ≤ γ2 ≤ γ3 ≤ · · · ≤ γr

holds. Furthermore, one could ask if

γV
V→∞−→ γh

holds, cf. [35].
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6.3. Applications of the CLT and LIL for C-M-J

branching processes
Firstly, we consider the main theorem of Chapter 5. By Conjecture 6.1.1 immedi-
ately follows

Conjecture 6.3.1: Let K be a statistically self-similar Cantor set with dimension
γ, νγ be non-lattice and U := [0, 1]\K. Assume that Assumption 5.3.1 is satisfied
and v(∞) > 0. Then it holds almost surely

−1 = lim inf
λ→∞

λγ/4
(
λ−γ/2N̄(U ; λ)− CW

)√
2Wv(∞) log log λ

< lim sup
λ→∞

λγ/4
(
λ−γ/2N̄(U ; λ)− CW

)√
2Wv(∞) log log λ

= 1,

where we use the same notation as in Theorem 5.3.2.

In Theorem 5.3.2 an explicit expression for v(∞) is given by

v(∞) = µ−1
1

∫ ∞
0

e−γsE ζ̄φ(s)2 + 2e−γsE ζ̄φ∅(s)
ξ∅(∞)∑
i=1

Z̄φ
i (s− σi) ds.

Therefore, v(∞) = 0 if and only if

µ−1
1

∫ ∞
0

e−γsE ζ̄φ(s)2 ds = −
∫ ∞

0

2e−γsE ζ̄φ∅(s)
ξ∅(∞)∑
i=1

Z̄φ
i (s− σi) ds,

which seems to be very unlikely. However, Graf [40] showed that Hγ(K) ∈ (0,∞)

if and only if
∑M

i=1R
γ
i = 1 a.s., where we use the same notation as in Chapter 5.

Therefore, it could be possible that v(∞) > 0 if and only if
∑M

i=1 R
γ
i = 1 a.s. Even

if this is the case λγ/4 could be the right factor to capture the random fluctuation
of N̄(U ; λ)λ−γ/2 around its limit, i.e. one could ask if

λ(γ+ε)/4
(
λ−γ/2N̄(U ; λ)− CW

) λ→∞−→ ∞ a.s.

for all ε > 0.
Moreover, it should be possible to relax the assumption EN6 <∞.
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In Section 5.4 we saw that in the case W = 1 a.s. it holds v(∞) > 0 and, in
particular, the Law of the Iterated Logarithm 5.4.4 holds if Assumption 5.4.3 is
satisfied which is

G(t)− lim
u→∞

G(u) = O
(
e−βγt

)
, β > 1/2, (6.2)

whereas in the case W 6= 1 a.s. we assume that G converges faster, namely

G(t)− lim
u→∞

G(u) = O
(
e−β̃γt

)
, β̃ > 1.

The reason is that we use Cauchy-Schwarz to separate EWZ̄(t − σx)2 in Lemma
5.2.2. If

EWZ̄(t− σx)2 ≤ c1e
γt

it should be enough to require β̃ > 1/2 for the Central Limit Theorem and Law of
the Iterated Logarithm in the case where W is not almost surely equal to 1.

As a second application, we consider the measure theoretical Laplacian ∆µ(I)

with respect to statistically self-similar Cantor measures µ(I). Therefore define

N̄
(I)
D (λ) := zχ

η

(∞)W −N (I)
D (λ)λ−γr ,

where we use the same notation as in Theorem 4.2.9. It could be possible to get the
normalization factor of N̄ (I)

D and also a CLT and LIL for the random fluctuation.

6.4. Further convergence theorems for branching

processes
Another tool to analyse the growth of sums of random variables is the Large De-
viation Theory. We can also investigate this theory for C-M-J branching processes
and ask if Zφ satisfies

P(Zφ(t)e−γt > s) ≈ e−A(t)B(s)

for some increasing functions A and B.
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Besides growth properties of C-M-J branching processes, we can consider the
random fluctuation of the fundamental martingale (Wt)t around its limit. As
pointed out in Section 3.4, Iksanov and Kabluchko [49] gave a Central Limit Theo-
rem and Law of the Iterated Logarithm for the biggins martingale. Following this,
one could investigate also a CLT and LIL for (Wt)t, i.e. consider the asymptotics
of

eγt/2(W −Wt),

where we conjecture that eγt/2 is the right normalization factor.
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Appendix

A.1 Speed of Convergence in the
Renewal Theorem

The assumptions in Chapter 5.2.2 are strongly related to the convergence rate
of the renewal function which we introduce in this section. This assumption can
be checked by using a Theorem of Stone [79], also included in this section. This
theorem were used in [18] for the Central Limit Theorem in the case W = 1 a.s.
The following investigation is taken from [18, Section 3.2]. We consider the renewal
equation

z(t) = u(t) +

∫ ∞
0

z(t− s)F (ds), (A.1.1)

where F is a non-lattice probability distribution function on [0,∞). Typically, z
is given as

z(t) =

∫ ∞
0

u(t− y)H(dy),

where H is given as the renewal measure

H =
∞∑
n=0

F ∗n.

Hereby, F ∗n denotes the n-fold convolution of F with itself, see [29, 55]. If F has
finite mean µ1, then the renewal theorem of [29] shows that

H(t)

µ−1
1 t

t→∞−→ 1.

Further, if u is smooth enough, e.g. directly Riemann integrable, then by [29] it
holds that

z(t)
t→∞−→ z(∞) := µ−1

1

∫ ∞
−∞

u(s) ds.
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The error of the linear approximation of the renewal function is given by

G(t) := H(t)− µ−1
1 t,

in whose convergence rate we are interested. When F has a finite second moment
µ2, then

G(t)
t→∞−→ µ2

2µ2
1

,

see [18] and references therein. The rate of convergence here can be studied by
considering the Fourier transform f of F defined by

f(ω) :=

∫ ∞
0

eωs F (ds), ω ∈ C.

For references see e.g. [29,65,78,79] and for the lattice case see also the Appendix
B of [56]. The Theorem of Stone, pointed out in the introduction of this section is
as follows.

Theorem A.1.1 (c.f. [79 and 18, Theorem 3.2]): Suppose that there exists
r1 ∈ (0,∞) such that f(ω) is analytic and 6= 1 when Re ω ∈ (0, r1). Then, for
every r ∈ (0, r1) it holds

G(t)− µ2

2µ2
1

= O(e−rt).

We are rather interested in the rate of convergence of z than of G. The following
lemma relates the rate of convergence of zφ to the rate of convergence of G. It is
included from [18]. There, it is adapted from [20].

Lemma A.1.2 (c.f. [18, Lemma 3.3]): Let z, u and F satisfy the renewal
equation (A.1.1) and suppose that

z(t) =

∫ ∞
0

u(t− y)H(dy)
t→∞−→ µ−1

1

∫ ∞
−∞

u(y) dy.

Then,

z(∞)− z(t) = µ−1
1

∫ ∞
0

u(t+ y) dy −
∫ ∞

0

u(t− y)G(dy).
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A.2 Berry-Esseen Theorem

To proof our Law of the Iterated Logarithm we use the following theorem adapted
from Asmussen and Hering [5, Proposition 7.2, page 436] which relies on the con-
ditional Borel-Cantelli lemma. The idea to use [5, Proposition 7.2, page 436] to
proof our Law of the Iterated Logarithm is taken from the proof of [49, Theorem
1.6].

Theorem A.2.1 (c.f. [5, Proposition 7.2, page 436]): Let (Gn)n∈N0 be a fil-
tration and (Xn)n∈N0 be a sequence of random variables such that

∞∑
n=0

sup
y∈R
|P (Xn ≤ y|Gn)− Φ(y)| <∞ a.s.,

where Φ(y) := 1√
2π

∫ y
−∞ e

−x2/2 dx. Then,

lim sup
n→∞

Xn√
2 log n

≤ 1 a.s.

Furthermore, if there exists m ∈ N such that Xn is Gn+m measurable for all n,
then it holds

lim sup
n→∞

Xn√
2 log n

= 1 a.s.

We study the expression

∞∑
n=0

sup
y∈R
|P (Xn ≤ y|Gn)− Φ(y)|

by using the well known Berry-Esseen estimate. The version we give here is taken
from [49, Lemma 4.2].

Theorem A.2.2 (Berry-Esseen, c.f. [49, Lemma 4.2]): Let (Yn)n∈N be inde-
pendent random variables with EYi = 0, σ2

i := EY 2
i < ∞, ρi := E|Yi|3 < ∞ and∑∞

i=1 σ
2
i <∞. Then,

sup
y∈R

∣∣∣∣∣P
( ∑∞

i=1 Yi√∑∞
i=1 σ

2
i

≤ y

)
− Φ(y)

∣∣∣∣∣ ≤ c1

∑∞
i=1 ρi

(
∑∞

i=1 σ
2
i )

3/2
,

with Φ(y) := 1√
2π

∫ y
−∞ e

−x2/2 dx.
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