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Abstract

This thesis is an extension and improvement of the theory and applications of Converted
Total Least Squares method(CTLS). Converted Total Least Squares (CTLS) dealing with
the errors-in-variables (EIV) model take the stochastic design matrix elements as virtual
observations, and the TLS problem can be transformed into a LS problem. In the coordinate
transformation, the transformation model is always used after centering like it is published in
most papers. This thesis directly use the transformation model to generate a new design matrix
with CTLS method. The result will present the consistency of the transformation model with
and without centering in coordinates transformation. Then the 3D Helmert-transformation
in Gauss-Helmert and Gauss-Markoff model is introduced(Koch 2002). The study is to find
that, the connections between CTLS and the Gauss-Helmert model. To prove their similarity
is a strong support for the theory of the CTLS method. After that, this thesis gives a brief in-
troduction to the International Terrestrial Reference System(ITRF). The CTLS has been proved
itself with coordinate transformation in Baden-Württemberg with equa weight and large
scale. The new application with more parameters and smaller scale together with the weight
information in ITRF is presented. The comparison and accuracy assessment of the published
parameters and the parameters estimated by CTLS are discussed in detail with the applications.

Key words: Converted Total Least Squares, Helmert-transformation, Gauss-Helmert model,
International Terrestrial Reference System, accuracy assessment.
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Chapter 1

Introduction

1.1 Background and Motivation

Before the detailed introducion of this thesis, a brief review of the development of Total Least
Squares is necessary. Total Least Squares (TLS) is a method of fitting that is appropriate when
there are errors in both the observation vector and in the design matrix in computational
mathematics and engineering, which is also referred as Errors-In-Variables (EIV) modelling or
orthogonal regression in the statistical community. The TLS/EIV principle studied by Adcock
(1878) already more than one century ago. Kendall and Stuart (1969) described this problem
as structural relationship model models. In geodetic application this method was discussed
by Koch (2002) and studied recently by Schaffrin (2005). How to obtain the best parameter
estimation values and give the statistical information of parameters in the EIV model is not
’perfectly’ solved. Nevertheless, the EIV model is still becming increasingly widespread in
remote sensing (Felus and Schaffrin 2005) and geodetic datum transformation (Schaffrin and
Felus 2006, 2008; Akyilmaz 2007; Cai and Grafarend 2009).

In 1980, the mathematical structure of TLS was completed by Golub and Van Loan(1980), who
gave the first numerically stable algorithm based on matrix singular value decomposition.
With the rapid development of numerical method over the last decade, various approach for
TLS emerged. These include singular value decomposition (SVD), the completely orthogonal
approach, the Cholesky decomposition approach, the iterative approach, and so on (Van
Huffel et al., 1993,1997,2002; Schaffrin et al.,2003), the most representative of which are the
SVD and iterative solution. However, there are some problems in the both methods. In
the SVD method, some elements of design matrix may be non-stochastic, or some elements
containing errors could appear more than once. To perform the minimum norm constraint
without this consideration is inappropriate and may result in large deviations. By the Iteration
method, since the iteration solutions can be a problem if there is a high degree of nonlinearity.
In addition, this method has also the problem by the repetition of parameters in design matrix.

According to the research results by Yao Y., Kong,J., Cai, J., and Sneeuw N. (2010), one method
called Converted Total Least Squares (CTLS) was developed since 2010. This method can
perform the processs without iteration and at the same time solve the problem by the repetition
of elements and the non-stochastic elements containin errors in design matrix. In the bachelor
thesis by Dong, D.(2017), the CTLS method was systematically introduced and applicated with
coordinates transformation in Baden-Württemberg together with other three estimators. The
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comparison among these estimators proved the advantages of CTLS.

Further study is required to complete the theory and extension the application cases. In the
bachelor thesis by Dong, D.(2017), the transformation models (6-parameter affine transforma-
tion model and 7-parameter Helmert transformation model) were used after centering, which
was pointed out by the host professor during the author’s participation in InterGeo Berlin 2017.
It is important to find out if CTLS can directly used in transformation model. Further more, the
application by coordinates transformation in Badens-Württemberg is under the same weight
condition, which is not persuasive for CTLS to deal with weight information in study cases.
Moreover, to test the CTLS in new applications with more complex parameters and different
scals is very significant.

1.2 Outline

This thesis contents five chapters. Chapter 1 gives a brief review and introduction for the
development and history of Total Least Squares problem, as well as the motivation and outline
of this work. Chapter 2 presents the CTLS dealing directly with transformation models and
the comparison between the consequences with and without centering. Chapter 3 introduces
the 3D Helmert-transformation in Gauss-Helmert and Gauss-Markoff model. The detailed
derivations are given to compare the theory and methodology with CTLS. It also presents
the accuracy assessment for both methods. Chapter 4 intruduces the information and history
of International Terrestrial Reference System (ITRF). The knowlage and the resource of data
preparation are explaned. The relationship between each ITRF frame and its transformation
parameters are detailed explaned and derivated in equations. Chapter 5 summarizes the
conclusions of the whole thesis.
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Appendix: The CTLS’s mainly derivation equation, which will not be introduced in detail in
this thesis.

Firstly take classic Gauss-Markoff model of LS as basis equation.

y = Aξ + ey (1.1)

Augmenting the observation equations that take design matrix elements as virtual observation
on the basis of the original error equation.

ya = ξa + ea (1.2)

Where ya is comprised of the design matrix elements that contain errors, and ξa is comprised
of the new parameters. If (4.1)is combine with (4.2), a mathematical model under the new
algorithm can be obtained.

y = Aξ + ey

ya = ξa + ea
(1.3)

It should be clear that ya contains only the observations of design matrix. To distinguish the
design matrix in the original model, the symbol Aξ is used to denote the design matrix in (4.1),
which is formed by the initial value of parameters ξa and some elements without errors.
Based on the above model, we can get the following error equations

ey = (A0
ξ + EA)(ξ0 + ∆ξ)− y

= A0
ξ∆ξ + EAξ0 + A0

ξξ0− y + ∆A∆ξ → EA∆ξ ≈ 0

= A0
ξ∆ξ + B∆a + A0

ξξ0− y

ea = a− ya

(1.4)

Where EA is composed of ∆a, the corrections to the new parameters, and B∆a is the rewritten
form of EAξ0. In converting EAξ0 to B∆a , which is the key step for the approach. A0

ξ is
composed of non-stochastic elements in the design matrix and the initial value a.

Define z =

[
y− A0

ξξ0

a− ya

]
, Az =

[
A0

ξ B
0 E

]
, ∆η =

[
∆ξ
∆a

]
, ez =

[
ey
ea

]
, (4.5) can be reduced to:

z = Aη∆η+ ez (1.5)

Where ez is the residual vector of all observations, Aη is formed by the initial values of the
parameters, and ∆η is comprised of the corrections to all parameters. The estimation criterion
is still eT

z Pzez → min, which is the same as eT
y Pyey + eT

a Paea → min. Since the TLS problem is
transformed into the classical LS problem, the adjustment can be completed by following the

classical LS principle. The new weight matrix is Pz =

[
Py 0
0 Pa

]
. And the TLS problem can be

solved considering the weight of observations and stochastic design matrix by:

∆η̂ = (AT
η Pz Aη)

−1AT
η Pzz (1.6)
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Chapter 2

Transformation models with and without
centering

2.1 6-parameter affine transformation model(2D)

With the 2D affine transformation, where six parameters are to be determined, both coordinate
directions are rotated with two different angles α and β. So that not only the distances and
the angles are distorted, but usually also the original orthogonality of the axes of coordinates
is lost. An affine transformation preserves collinearity and ratios of distances. While an
affine transformation preserves proportions on lines, it does not necessarily preserve angles or
lengths(Cai, J. and Grafarend, E. 2009).

The 6-parameter affine transformation model between any two plane coordinates systems, e.g.
from Grauss-Krüger coordinate(H,R) in DHDN (G) directly to the UTM-Coordinate (N,E) in
ETRS89 can be written as [

N
E

]
=

[
λHcosα −λRsinβ
λHsinα λRcosβ

] [
H
R

]
+

[
tN
tE

]
(2.1)

Where tN and tE are translation parameters; α and β are rotation parameters; λH and λR are
scale corrections.

2.1.1 Transformation with centering

When the coordinates are transformed, the 6-parameter affine transformation model is central-
ized in order to vanish the translation parameters.[

N
E

]
=

[
λHcosα −λRsinβ
λHsinα λRcosβ

] [
H
R

]
+

[
tN
tE

]

=:
[

ξ11 ξ21
ξ12 ξ22

] [
H
R

]
+

[
ξ31
ξ32

]
=

[
H R 0 0 1 0
0 0 H R 0 1

]


ξ11
ξ21
ξ12
ξ22
ξ31
ξ32


(2.2)



Chapter 2 Transformation models with and without centering 5

Because the element ’1’ and ’0’ have no error, the translation parameters shall disappear
by centering this equation. Thus, after the centering the coordinates in the mid point, the
translation parameters tN and tE will be automatically vanished. Then the observation and old
coordinates are centered on their average values in the form:[

N
E

]
=:
[

ξ11 ξ21
ξ12 ξ22

] [
H
R

]
(2.3)

with
N = N −mean(N), E = E−mean(E)

H = H −mean(H), R = R−mean(R)

In Converted Total Least Squares for the n couple of coordinates with the same transformation
model, which is suited for the application of TLS solution.

E





N1
...

Nn
E1
...

En




= E





H1 R1 0 0
...

...
...

...
Hn Rn 0 0
0 0 H1 R1
...

...
...

...
0 0 Hn Rn






ξ11
ξ21
ξ12
ξ22



Reform the EIV observation model from

y− ey = (A− EA)ξ

to

z = Aη∆η+ ez (2.4)

Where z =

[
y− A0

ξξ0

a− ya

]
, Az =

[
A0

ξ B
0 E

]
, ∆η =

[
∆ξ
∆a

]
, ez =

[
ey
ea

]

ey = (A0
ξ + EA)(ξ0 + ∆ξ)− y

= A0
ξ∆ξ + EAξ0 + A0

ξξ0− y + ∆A∆ξ → EA∆ξ ≈ 0

= A0
ξ∆ξ + B∆a + A0

ξξ0− y

ea = a− ya

The key step here is converting EAξ0 to B∆a.
Create the correspond matrixs

EA
(2n×4)

=



∆H1 ∆R1 0 0
...

...
...

...
∆Hn ∆Rn 0 0

0 0 ∆H1 ∆R1
...

...
...

...
0 0 ∆Hn ∆Rn


, ξ0

(4×1)
=


ξ0

11
ξ0

21
ξ0

12
ξ0

22

 , ∆a
(2n×1)

=



∆H1
...

∆Hn
∆R1

...
∆Rn
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EAξ0 = B∆a = (

[
ξ0

11 ξ0
21

ξ0
12 ξ0

22

]
⊗ In)∆a

B
(2n×2n)

=

[
ξ0

11 ξ0
21

ξ0
12 ξ0

22

]
⊗ In =



ξ0
11 0 0

0
. . . 0

0 0 ξ0
11

ξ0
21 0 0

0
. . . 0

0 0 ξ0
21

ξ0
12 0 0

0
. . . 0

0 0 ξ0
12

ξ0
22 0 0

0
. . . 0

0 0 ξ0
22


The solution of CTLS is

∆η̂ = (AT
η Pz Aη)

−1AT
η Pzz

The solution ∆η̂ is a (2n + 4)× 1 vector. The first 4 elements of ∆η are the corrections of ξ and
the following 2n elements are the corrections of ya, which are the corrections for the initial
design matrix A. The final transformation parameters are ξ̂ = ∆ξ + ξ0, with ξ0 calculated
from the LS solution.

2.1.2 Transformation without centering

The original tansformation model can be written as follow:[
N
E

]
=

[
λHcosα −λRsinβ
λHsinα λRcosβ

] [
H
R

]
+

[
tN
tE

]

=:
[

ξ11 ξ21
ξ12 ξ22

] [
H
R

]
+

[
ξ31
ξ32

]
=

[
H R 0 0 1 0
0 0 H R 0 1

]


ξ11
ξ21
ξ12
ξ22
ξ31
ξ32


(2.5)

In Converted Total Least Squares for the n couple of coordinates with the same transformation
model, the observation equationas are witten as:

E





N1
...

Nn
E1
...

En




= E





H1 R1 0 0 1 0
...

...
...

...
...

...
Hn Rn 0 0 1 0
0 0 H1 R1 0 1
...

...
...

...
...

...
0 0 Hn Rn 0 1







ξ11
ξ21
ξ12
ξ22
ξ31
ξ32


Reform the EIV observation model from

y− ey = (A− EA)ξ
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to

z = Aη∆η+ ez (2.6)

Convert EAξ0 to B∆a.
Create the correspond matrixs

EA
(2n×6)

=



∆H1 ∆R1 0 0 1 0
...

...
...

...
...

...
∆Hn ∆Rn 0 0 1 0

0 0 ∆H1 ∆R1 0 1
...

...
...

...
...

...
0 0 ∆Hn ∆Rn 0 1


, ξ0

(6×1)
=



ξ0
11

ξ0
21

ξ0
12

ξ0
22

ξ0
31

ξ0
32

 , ∆a
(3n×1)

=



∆H1
...

∆Hn
∆R1

...
∆Rn

1
...
1



EAξ0 = B∆a = (

[
ξ0

11 ξ0
21 ξ0

31
ξ0

12 ξ0
22 ξ0

32

]
⊗ In)∆a

B
(2n×3n)

=

[
ξ0

11 ξ0
21 ξ0

31
ξ0

12 ξ0
22 ξ0

32

]
⊗ In =



ξ0
11 0 0

0
. . . 0

0 0 ξ0
11

ξ0
21 0 0

0
. . . 0

0 0 ξ0
21

ξ0
31 0 0

0
. . . 0

0 0 ξ0
31

ξ0
12 0 0

0
. . . 0

0 0 ξ0
12

ξ0
22 0 0

0
. . . 0

0 0 ξ0
22

ξ0
32 0 0

0
. . . 0

0 0 ξ0
32


The solution of CTLS is

∆η̂ = (AT
η Pz Aη)

−1AT
η Pzz

We can see from the equation element ∆a, it contains the corrections for the variables in design
matrix and also contains the elements ’1’ due to the structure of transformation model. These
’1’ are necessary to bring the 2 translation parameters into estimation progress, which violats
the original idea of CTLS. It’s meaningless to discuss the solution of CTLS hier. Hence the
solutions will be presented with LS methode.

2.1.3 Presentation and comparison of the results

Table 2.1: Comparison of 6-parameter affine transformation parameters with LS

Transformation 6-parameter affine transformation GK(DHDN)-UTM(ETRS89)
Deformation tN(m) tE(m) α(′′) β(′′) dλH(×10−4) dλR(×10−4)

With 437.194567 119.756709 0.165368 -0.196455 -3.996797 -3.988430
Without 437.194567 119.756709 0.165368 -0.196455 -3.996797 -3.988430
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Table 2.2: Numerical deviation of 6-parameter affine transformation with LS

Transformation
Deformation

Collocated
sites

Absolute mean of
Residuals (m)

Max.absolute mean
of Residuals(m)

RMS
(m)

Standard deviation
of unit weight (m)

[VN ] [VE] [VN ] [VE]

With B-W 131 0.1049 0.0804 0.3288 0.3226 0.1187 0.1199
Without B-W 131 0.1049 0.0804 0.3288 0.3226 0.1187 0.1199

As we can see from the statistical results above, the transfromation model with or without de-
formation has no affect for the transformation parameters in 6-parameter affine transformation
model. And the CTLS is not adaptive for the no-centering model in coordinate transforma-
tion.

2.2 7-parameter Helmert transformation models(3D)

The 7-parameter Helmert transformation performs a conformal transformation, where the ra-
tios of distances and the angles preserve invariantly. A ’local’ non-geocentric XL,YL,ZL-system
can be transformed into a ’global’ geocentric XG,YG,ZG-system with the help of a 7-parameter
Helmert transformation model.XG

YG
ZG

 =

TX
TY
TZ

+ (1 + dλ)

 1 γ −β
−γ 1 α
β −α 1

XL
YL
ZL


∼=

TX
TY
TZ

+

 dλ γ −β
−γ dλ α
β −α dλ

XL
YL
ZL

+

XL
YL
ZL

 (2.7)

Where TX,TY,TZ are translate parameters; α , β and γ are differential rotation parameters; dλ is
scale correction.

2.2.1 Transformation with centering

The following formula has been used for the estimation of the parameters in seven-parameter
Helmert transformation.XG

YG
ZG

 = (1 + dλ)

 1 γ −β
−γ 1 α
β −α 1

XL
YL
ZL

+

TX
TY
TZ


XG = λ

 1 γ −β
−γ 1 α
β −α 1

XL + TL

(2.8)

Where λ is scale factor, α, β, γ are rotation angles. The translation terms TX, TY, TZ are the
coordinates of the origin of the 3-D network.
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After the linearization, the formula is rewritten:

XG
YG
ZG

 =

1 0 0 0 −ZL YL XL
0 1 0 ZL 0 −XL YL
0 0 1 −YL XL 0 ZL




TX
TY
TZ
δα
δβ
δγ
λ


(2.9)

After centering the coordinates in the midpoints, the translation parameter TX, TY, TZ will
disappear, and then the observations and old coordinates are centered on their average values.
This will be assumed in the following:

xg
yg
zg

 =

 0 −zl yl xl
zl 0 −xl yl
−yl xl 0 zl




δα
δβ
δγ
λ

 (2.10)

with xg
yg
zg

 =

XG
YG
ZG

−mean

XG
YG
ZG

 ,

xl
yl
zl

 =

XL
YL
ZL

−mean

XL
YL
ZL

 (2.11)

In Converted Total Least Squares for the n couple of coordinates with the same transformation
model, which is suited for the application of TLS solution.

E





xg1
...

xgn
yg1

...
ygn
zg1

...
zgn





=: E





0 −zl1 yl1 xl1
...

...
...

...
0 −zln yln xln

zl1 0 −xl1 yl1
...

...
...

...
zln 0 −xln yln
−yl1 xl1 0 zl1

...
...

...
...

−yln xln 0 zln






δα
δβ
δγ
λ



Reform the EIV observation model from

y− ey = (A− EA)ξ

to

z = Aη∆η+ ez (2.12)

Where z =

[
y− A0

ξξ0

a− ya

]
, Az =

[
A0

ξ B
0 E

]
, ∆η =

[
∆ξ
∆a

]
, ez =

[
ey
ea

]
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ey = (A0
ξ + EA)(ξ0 + ∆ξ)− y

= A0
ξ∆ξ + EAξ0 + A0

ξξ0− y + ∆A∆ξ → EA∆ξ ≈ 0

= A0
ξ∆ξ + B∆a + A0

ξξ0− y

ea = a− ya

The key step here is converting EAξ0 to B∆a.
Create the correspond matrixs

EA
(3n×4)

=



0 −∆zl1 ∆yl1 ∆xl1
...

...
...

...
0 −∆zln ∆yln ∆xln

∆zl1 0 −∆xl1 ∆yl1
...

...
...

...
∆zln 0 −∆xln ∆yln
−∆yl1 ∆xl1 0 ∆zl1

...
...

...
...

−∆yln ∆xln 0 ∆zln


, ξ0

(4×1)
=


ξ0

11
ξ0

21
ξ0

12
ξ0

22

 , ∆a
(3n×1)

=



∆xl1
...

∆xln
∆yl1

...
∆yln
∆zl1

...
∆zln



EAξ0 = B∆a = (

 ξ0
22 ξ0

12 −ξ0
21

−ξ0
12 ξ0

22 ξ0
11

ξ0
21 −ξ0

11 ξ0
22

⊗ In)∆a

B
(3n×3n)

=

 ξ0
22 ξ0

12 −ξ0
21

−ξ0
12 ξ0

22 ξ0
11

ξ0
21 −ξ0

11 ξ0
22

⊗ In

=



ξ0
22 0 0

0
. . . 0

0 0 ξ0
22

ξ0
12 0 0

0
. . . 0

0 0 ξ0
12

−ξ0
21 0 0

0
. . . 0

0 0 −ξ0
21

−ξ0
12 0 0

0
. . . 0

0 0 −ξ0
12

ξ0
22 0 0

0
. . . 0

0 0 ξ0
22

ξ0
11 0 0

0
. . . 0

0 0 ξ0
11

ξ0
21 0 0

0
. . . 0

0 0 ξ0
21

−ξ0
11 0 0

0
. . . 0

0 0 −ξ0
11

ξ0
22 0 0

0
. . . 0

0 0 ξ0
22


The solution of CTLS is

∆η̂ = (AT
η Pz Aη)

−1AT
η Pzz (2.13)

The solution ∆η̂ is a (3n + 4)× 1 vector. The first 4 elements of ∆η are the corrections of ξ and
the following 3n elements are the corrections of ya, which are the corrections for the initial
design matrix A. The final transformation parameters are ξ̂ = ∆ξ + ξ0, with ξ0 calculated
from the LS solution.
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2.2.2 Transformation without centering

The original transformation model can be wriiten as follow:XG
YG
ZG

 = (1 + dλ)

 1 γ −β
−γ 1 α
β −α 1

XL
YL
ZL

+

TX
TY
TZ


XG = λ

 1 γ −β
−γ 1 α
β −α 1

XL + TL

(2.14)

Where λ is scale factor, α, β, γ are rotation angles. The translation terms TX, TY, TZ are the
coordinates of the origin of the 3-D network.

In Converted Total Least Squares for the n couple of coordinates with the same transformation
model, the observation equations are written as:

E





XG1
...

XGn
YG1

...
YGn
ZG1

...
ZGn





=: E





1 0 0 0 −ZL1 YL1 XL1
...

...
...

...
...

...
...

1 0 0 0 −ZLn YLn XLn
0 1 0 ZL1 0 −XL1 YL1
...

...
...

...
...

...
...

0 1 0 ZLn 0 −XLn YLn
0 0 1 −YL1 XL1 0 ZL1
...

...
...

...
...

...
...

0 0 1 −YLn XLn 0 ZLn







TX
TY
TZ
δα
δβ
δγ
λ



Reform the EIV observation model from

y− ey = (A− EA)ξ

to

z = Aη∆η+ ez (2.15)

Convert EAξ0 to B∆a.
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Create the correspond matrixs

EA
(3n×7)

=



1 0 0 0 −∆zl1 ∆yl1 ∆xl1
...

...
...

...
...

...
...

1 0 0 0 −∆zln ∆yln ∆xln
0 1 0 ∆zl1 0 −∆xl1 ∆yl1
...

...
...

...
...

...
...

0 1 0 ∆zln 0 −∆xln ∆yln
0 0 1 −∆yl1 ∆xl1 0 ∆zl1
...

...
...

...
...

...
...

0 0 1 −∆yln ∆xln 0 ∆zln


, ξ0

(7×1)
=



TX
TY
TZ
ξ0

11
ξ0

21
ξ0

12
ξ0

22


, ∆a

(4n×1)
=



1
...
1

∆xl1
...

∆xln
∆yl1

...
∆yln
∆zl1

...
∆zln



EAξ0 = B∆a = (

TX ξ0
22 ξ0

12 −ξ0
21

TY −ξ0
12 ξ0

22 ξ0
11

TZ ξ0
21 −ξ0

11 ξ0
22

⊗ In)∆a

B
(3n×4n)

=

TX ξ0
22 ξ0

12 −ξ0
21

TY −ξ0
12 ξ0

22 ξ0
11

TZ ξ0
21 −ξ0

11 ξ0
22

⊗ In

=



T0
X 0 0

0
. . . 0

0 0 T0
X

ξ0
22 0 0

0
. . . 0

0 0 ξ0
22

ξ0
12 0 0

0
. . . 0

0 0 ξ0
12

−ξ0
21 0 0

0
. . . 0

0 0 −ξ0
21

T0
Y 0 0

0
. . . 0

0 0 T0
Y

−ξ0
12 0 0

0
. . . 0

0 0 −ξ0
12

ξ0
22 0 0

0
. . . 0

0 0 ξ0
22

ξ0
11 0 0

0
. . . 0

0 0 ξ0
11

T0
Z 0 0

0
. . . 0

0 0 T0
Z

ξ0
21 0 0

0
. . . 0

0 0 ξ0
21

−ξ0
11 0 0

0
. . . 0

0 0 −ξ0
11

ξ0
22 0 0

0
. . . 0

0 0 ξ0
22


The solution of CTLS is

∆η̂ = (AT
η Pz Aη)

−1AT
η Pzz (2.16)

The same as affine transformation,equation element ∆a contains the corrections for the vari-
ables in design matrix and also contains the elements ’1’ due to the structure of transformation
model. These ’1’ are necessary to bring the 3 translation parameters into estimation progress,
which violats the original idea of CTLS. Although the solutions can also be estimated but there
exist corrections for the elements ’1’. Hence we do not discuss with CTLS hier. The results are
presented with LS methode.
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2.2.3 Presentation and comparison of the results

Table 2.3: Comparison of 7-parameter Helmert transformation parameters LS

Transformation 7-parameter Helmert transformation GK(DHDN)-UTM(ETRS89)
Deformation TX(m) TY(m) TZ(m) α(′′) β(′′) γ(′′) dλ(×10−6)

With 582.901711 112.168080 405.603061 -2.255032 -0.335003 2.068369 9.117208
Without 582.901711 112.168080 405.603061 -2.255032 -0.335003 2.068369 9.117208

Table 2.4: Numerical deviation of 7-parameter Helmert transformation with LS
Transformation
Deformation

Collocated
sites

Absolute mean of
Residuals (m)

Max.absolute mean
of Residuals(m)

RMS
(m)

Standard deviation
of unit weight (m)

[VN ] [VE] [VN ] [VE]

With B-W 131 0.1051 0.0843 0.4212 0.3112 0.1240 0.1026
Without B-W 131 0.1051 0.0843 0.4212 0.3112 0.1240 0.1026

The statistical results above, the transfromation model with or without deformation has no
affect for the transformation parameters in 7-parameter Helmert transformation model. And
the CTLS is not adaptive for the no-centering model in coordinate transformation.
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Chapter 3

3D Helmert-transformation in Gauss-Helmert
model and Gauss-Markoff model

3.1 Introduction and Background

The 3D Helmert transformation have been calculated, where both the coordinates of the start
system and the coordinates of the target system are installed as random variables with iden-
tical covariance matrices, and where the unknown transformation parameters are determined
by the Least Squares method, it is known that this transformation is independent of the choice
of transformation direction. Independent of the choice of the start or target system for the
coordinate transformation, we obtain consistent results, that is, definitely transformation pa-
rameters. This also be theoretically exponded by Koch (2001), since Lenzmann and Lenzmann
(2001b) had claimed that the dependence on the direction of transformation. In the case that
coordinates of the start and target systems are installed as a random variable, Reinking (2001)
pointed out that the Least Squares method can be used in the definitely coordinate transfor-
mations. Using identical results, he demonstrates his statement with the example of the line
equalization chosen by Lenzmann and Lenzmann (2001b).

Nevertheless, Lenzmann and Lenzmann (2001a) insist on their statement of the dependence of
the coordinate transformation on the transformation direction with the scale parameters pro-
vided, which in the case is the Helmert-transformation. Dependence on the direction of trans-
formation is also claimed by Lenzmann (2001). The authors rely on his proof in Lenzmann and
Lenzmann (2001b), which is not correct. He wanted to show that the simple transformation

y = mx (3.1)

depends on the transformation direction. The vector x contains the variable coordinates of
arbitrary dimensions of points in the start system and y the variable coordinates in the target
system, m is the unknown scale. They determine the estimated value of m in the Gauss-Helmert
model (Wolf, 1978), the general case of the equalization calculation, since in (3.1) there is a coor-
dinate of the starting system, one of the target system and the unknown scale in each equation.
For linearization it is assumed, as one can easily calculate, that the approximate value for m
equals one and the approximations for the x coordinates of the starting system are identical to
the coordinates themselves. Lenzmann and Lenzmann (2001b) prove the dependence on the
transformation direction for this approximate solution. However, this approximate solution
is not identical to the solution that results from iteration, assuming convergence. In this re-
spect, the proof is wrong, since the dependence of the approximate solution on the direction



Chapter 3 3D Helmert-transformation in Gauss-Helmert model and Gauss-Markoff model 15

of transformation is proved. The solution itself is independent of the transformation direction,
because due to the property of the least squares method, the points determined by x and y
have the shortest distances to the allowable set of points satisfying transformation (3.1). This
will be discussed in more detail in the 4th section. Any examples chosen demonstrate that the
transformation (3.1) is independent of the transformation direction, if m 6= 0, x and y are ran-
dom vectors having identical covariance matrices, and the approximate values are chosen such
that the iterations converge. The explicit calculation of the lot roots is not required. However,
it may be useful for the calculation of the shortest distances, also called orthogonal distance
regression, the changes in the lotus points are iteratively calculated as a function of the changes
of the unknown parameters of the estimation problem in order to obtain efficient calculation
methods (Helfrich and Zwick 1993, 1995, 1996).

For the straight line adjustment, Reinking (2001) transfers the Gauss-Helmert model to the
Gauss-Markoff model by additional unknown parameters. This change of the model is also
described by Koch (2001) and generally discussed by Koch (2000b). It is convenient because
computational programs developed for the frequently used Gauss-Markoff model can also be
applied to parameter estimates that require the Gauss-Helmert model. From this transfer into
the Gauss-Markoff model, Lenzmann and Lenzmann (2001a) claimed that the original Gauss-
Helmert model is abandoned, meaning that different results could be expected in the two mod-
els because, as they put it, "Identity restrictions" are introduced. This claim is incorrect. The
additional unknown parameters that may be introduced into the Gauss-Helmert model merely
bring the Gauss-Helmert model into the shape of the Gauss-Markoff model. By way of proof,
the following example of the spatial Helmert transformation is used to show that identical
transformation results are obtained in the Gauss-Helmert model and after conversion into the
Gauss-Markoff model. In addition, due to the property of the Least Squares method, the inde-
pendence of the Helmert transform from the transformation direction is shown. An analytical
proof of independence can be found in the presented analytical solution of the seven-parameter
transformation of Awange and Grafarend (2002). Correspondingly, one can also proceed with
other transformations and with the line equalization, so that Reinking (2001) has obtained the
results of Lenzmann and Lenzmann (2001b) in a completely correct way with the method of
least squares.

3.2 3D Helmert-transformation

The spatial Helmert transformation, which represents an orthogonal transformation and in-
cludes as special cases the seven-parameter transformation and the planar Helmert transfor-
mation, is defined as follows: Does the vector xsi contain the three-dimensional coordinates of
the start system of a point i and the vector xti the Coordinates of the target system of the same
point i, we obtain the spatial Helmert transformation of the coordinates of the point i, see, for
example, Schmid and Heggli (1978) or Koch (1999).

t + RMxsi = xti f or i ∈ {1, · · · , p} (3.2)

with
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t =

∣∣∣∣∣∣
tx
ty
tz

∣∣∣∣∣∣ , M =

∣∣∣∣∣∣
mx 0 0
0 my 0
0 0 mz

∣∣∣∣∣∣ , xsi =

∣∣∣∣∣∣
xsi
ysi
zsi

∣∣∣∣∣∣ , xti =

∣∣∣∣∣∣
xti
yti
zti

∣∣∣∣∣∣ , R = R3(γ)R2(β)R1(α) (3.3)

Here p denotes the number of points to be transformed, t the vector of the unknown translation
parameters tx, ty, tz, M the matrix of the unknown dimensional parameters mx, my, mz and
R the rotation matrix resulting from the rotation R3(γ) in the x1, x2 plane by the unknown
angle γ, from the rotation R2(β) in the x1, x3 plane by the unknown angle β, and from the
rotation R1(α) in the x2, x3 plane around the Unknown angle α results. The three-dimensional
transformation (3.2) thus contains nine unknown parameters. Substituting mx = my = mz =
m results in the seven-parameter transformation. Both the coordinates of the starting system
and the coordinates of the target system are random variables, ie results of measurements or
estimates. Their covariance matrices are given by the weight matrix Ps of the coordinates of the
starting system and by the weight matrix Pt of the coordinates of the target system as well as
by the variance factor σ2.

D(

∣∣∣∣∣∣∣∣
xs1
xs2
· · ·
xsp

∣∣∣∣∣∣∣∣) = σ2P−1
s , D(

∣∣∣∣∣∣∣∣
xt1
xt2
· · ·
xzp

∣∣∣∣∣∣∣∣) = σ2P−1
t (3.4)

The coordinates of the starting system are independent of those of the target system. If xsi and
xzi exist which satisfy the Helmert transformation (3.2) given the transformation parameters,
the transformation is independent of the transformation direction

xsi = M−1R′xti −M−1R′t f or i ∈ {1, · · · , p} (3.5)

because M and R are regular matrix, then R−1 = R′.

3.3 Parameter estimation with Gauss-Helmert model

As mentioned in the introduction, the new unknown parameters of the spatial Helmert trans-
form (3.2) are first estimated in the Gauss-Helmert model. For a better overview, the parameter
estimation is presented again in this model. It is characterized by that general nonlinear re-
lations between the observations and the exist unknown parameters, see for example Wolf
(1968),

hi (y1 + e1, · · · , yn + en, β1, · · · , βn) = 0 i ∈ {1, · · · , r} (3.6)

in which hi denote general, differentiable functions, yj with j ∈ {1, · · · , n} the observations, ej
their errors and βk with k ∈ {1, · · · , u} the unknown parameters. For the linearization of (3.6)
the perfect or "true" observations ȳj are defined by
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ȳj = yi + ei, j ∈ {1, · · · , n} with ȳj = E (yi) E
(
ej = 0

)
(3.7)

Approximate values ȳj0 for ȳj are given, so that with the corrections ēj of the approximate
values applies

ȳj = ȳi0 + ēi, j ∈ {1, · · · , n} (3.8)

For the unknown parameters βk, the approximate values βk0 are known, so that with their
corrections ∆βk is obtained,

β j = βk0 + ∆βk, k ∈ {1, · · · , u} (3.9)

The Taylor expansion for (3.6) on the approximation value is linearized. After the linearization
gets

hi (ȳ1, · · · , ȳn, β1, · · · , βu) = hi (ȳ10, · · · , ȳn0, β10, · · · , βu0)

+ ∂hi
∂ȳ1

∣∣∣
0

ē1 + · · ·+ ∂hi
∂ȳn

∣∣∣
0

ēn +
∂hi
∂β̄1

∣∣∣
0

∆β1 + · · ·+ ∂hi
∂β̄u

∣∣∣
0

∆βu
(3.10)

The partial derivatives in (3.10) are denoted as follows

∂hi
∂ȳj

∣∣∣
0
= zij and ∂hi

∂β̄k

∣∣∣
0
= xik (3.11)

and summarized in the matrices X and Z.

X = (xik) and Z = (zij) (3.12)

with the vector

β =

∣∣∣∣∣∣
∆β1
· · ·

∆βu

∣∣∣∣∣∣ , ē =

∣∣∣∣∣∣
ē1
· · ·
ēn

∣∣∣∣∣∣ ,

ω̄ =

∣∣∣∣∣∣
h1 (ȳ10, · · · , ȳn0, β10, · · · , βu0)

· · ·
hr (ȳ10, · · · , ȳn0, β10, · · · , βu0)

∣∣∣∣∣∣
(3.13)

the linearized model results instead of (3.6)

Xβ + Zē + ω̄ = 0 (3.14)

The covariance matrix of the observation vector y with y = (yj) and j ∈ {1, · · · , n} given by

D (y) = σ2Σ (3.15)
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where σ2 denotes the variance factor and Σ is a positive definite matrix. The method of the
Least Squares demands that with ȳ = (ȳj), e = (ej) and with ȳ = E(y) from (3.7) the weighted
sum of squares of the errors

1
σ2 e′Σ−1e (3.16)

becomes minimal, see for example Koch (1999), where the condition is that the model (3.14) is
fulfilled. In (3.14), therefore, the error vector ē must be replaced by the error vector e in (3.16).
With ȳ0 = (ȳj0) get we from (3.13)

ē = ȳ− ȳ0 = ȳ− y + y− ȳ0 (3.17)

and with the equation (3.7)

ē = e + y− ȳ0 (3.18)

and finally instead of (3.14)

Xβ + Ze + ω = 0 (3.19)

with

ω = Z(y− ȳ0) + ω̄ (3.20)

Through a Taylor development we get hier more ωi = h1(y1, · · · , yn, β10, · · · , βu0). The square
shape (3.16) is to be minimized under the restriction (3.19). It is therefore the Lagrange func-
tion

ω (β, e) =
1
σ2 e′Σ−1e− 2

σ2 k′ (Xβ + Ze + ω) (3.21)

introduced, in the −2k/σ2 the Lagrange vector called multipliers. The derivatives of Lagrange
function is set to zero after β and e

∂ω(β, e)
∂β

= − 2
σ2 X ′k = 0 (3.22)

∂ω(β, e)
∂e

=
2
σ2 Σ′e− 2

σ2 Z′k = 0 (3.23)

result from (3.23) the estimate ê of e, that is, the residuals for

ê = ΣZ′k (3.24)
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This result, used in (3.19), merges with (3.22) to the normal equation system for the estimation
β̂ of unknown parameter β and for estimation from k

∣∣∣∣ZΣZ′ X
X ′ 0

∣∣∣∣ ∣∣∣∣kβ̂
∣∣∣∣ = ∣∣∣∣−ω

0

∣∣∣∣ (3.25)

The matrix Z has full row rank, so that ZΣZ′ is positive definite. In addition, X has full column
rank. The elimination of k from (3.25) then gives the known Estimation β̂ of the parameter β in
the Gauss-Markoff modell.

β̂ = −(X ′
(
ZΣZ′

)−1 X)−1X ′
(
ZΣZ′

)−1
ω (3.26)

For the vector k we obtain from (3.25)

k =
(
ZΣZ′

)−1
(−ω− X β̂) (3.27)

so that the vector e of the residuals is known from (3.24)to

ê = ΣZ′
(
ZΣZ′

)−1
(−ω− X β̂) (3.28)

The relationships between the Gauss-Markoff-Model and the mixed model are given in (Koch
2000a).
To the new unknown parameters of spatial Helmert transformation (3.2) in the Gauss-Markoff
model (3.6), (3.2) is presented according to (3.6) by

hi = t + RM(xsi + esi)− (xti + eti) f or i ∈ {1, · · · , p} (3.29)

where esi are the errors of the spatial coordinates of the point i in the starting system and eti the
errors in the target system. According to (3.7) and (3.8) we can get

x̄si = xsi + esi = x̄si0 + ēsi (3.30)

x̄ti = xti + eti = x̄ti0 + ēti (3.31)

where x̄si0 and x̄ti0 denote the approximations of the ’true’ coordinates x̄si and x̄ti of the start
and target system and ēsi and ēti their corrections. According to (3.9), approximate values are
given for the unknown transformation parameters, therefore

t = t0 + ∆t, α = α0 + ∆α, m = m0 + ∆m (3.32)

with

α = |α, β, γ|′ and m =
∣∣mx, my, mz

∣∣′ (3.33)
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For the linearization of (3.29) corresponding to (3.10), the differential quotients are formed,

∂hi
∂t

∣∣∣
0
= I, ∂hi

∂α

∣∣∣
0
= Bi, ∂hi

∂m

∣∣∣
0
= Ci,

∂hi
∂x̄si

∣∣∣
0
= R0M0, ∂hi

∂x̄ti

∣∣∣
0
= −I0

(3.34)

where R0 and M0 denote the matrices R and M calculated with the approximation values of
the transformation parameters. Summarize

Xi = |I, Bi, Ci|

X =

∣∣∣∣∣∣
X1
· · ·
Xp

∣∣∣∣∣∣ , β =

∣∣∣∣∣∣
∆t
∆α
∆m

∣∣∣∣∣∣
Z =

∣∣∣∣∣∣∣∣
R0M0 0 · · · 0 −I 0 · · · 0

0 R0M0 · · · 0 0 −I · · · 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 · · · R0M0 0 0 · · · −I

∣∣∣∣∣∣∣∣

e =

∣∣∣∣∣∣∣∣∣∣∣∣

es1
· · ·
esp
et1
· · ·
etp

∣∣∣∣∣∣∣∣∣∣∣∣
, ω =

∣∣∣∣∣∣∣∣
ω1
ω2
· · ·
ωp

∣∣∣∣∣∣∣∣
ωi = R0M0 (xsi − x̄si0)− (xti − x̄ti0) + t0 + R0M0 x̄si0 − x̄ti0

= t0 + R0M0xsi − xti = −yti

(3.35)

we obtain the linearized Gauss-Helmert model (3.19) for the Helmert transformation of the p
points with yt = (yti) to

Xβ + Ze− yz = 0 (3.36)

The covariance matrix σ2Σ in (3.15) of the observations xsi and xti is obtained because of (3.4),
with

Σ =

∣∣∣∣P−1
s 0
0 P−1

t

∣∣∣∣ (3.37)

used in (3.36)

Z =
∣∣W −I

∣∣ (3.38)

ZΣZ′ results from (3.20) to

ZΣZ′ = WP−1
s W ′ + P−1

t (3.39)
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With this result and with (3.36) the unknown transformation parameter β follows the estimate
β̂ from (3.26) to

β̂ = (X ′(WP−1
s W ′ + P−1

t )−1X)−1 × X ′(WP−1
s W ′ + P−1

t )−1yt (3.40)

For comparison with the estimation result of the Gauss-Markoff-Model, which is to be deduced
in the next but one section, the inverse of WP−1

s W ′ + P−1
t is transformed by an identity (Koch

2000b), and we get

β̂ = (X ′PtX − X ′PtW(W ′PtW + Ps)
−1W ′PtX)−1

× (X ′Ptyt − X ′PtW(W ′PtW + Ps)
−1W ′Ptyt)

(3.41)

With the residuals ês = êsi and êt = êti, the estimates of the errors esi and eti in (3.30) and (3.31),
the vector e follows the residuals from (3.28) up (3.36) until (3.40) to

ê =

∣∣∣∣ês
êt

∣∣∣∣ = ∣∣∣∣P−1
s 0
0 P−1

t

∣∣∣∣× ∣∣∣∣W ′

−I

∣∣∣∣ (WP−1
s W ′ + P−1

t )−1(yt − X β̂) (3.42)

or

ês = P−1
s W ′(WP−1

s W ′ + P−1
t )−1(yt − X β̂) (3.43)

êt = −P−1
t (WP−1

s W ′ + P−1
t )−1(yt − X β̂) (3.44)

With another template identity, (3.43) is transformed (Koch 2000a) and (3.44) with the identity
that leads to (3.41), so that it is finally obtained

ês = (W ′PtW + Ps)
−1W ′Pt(yt − X β̂) (3.45)

êt = (−I + W(W ′PtW + Ps)
−1W ′Pt)× (yt − X β̂) (3.46)

The estimated values β̂ of the unknown nine transformation parameters β thus follow from
(3.40) or (3.41) and the residuals ês of the coordinates of the starting system from (3.43) or (3.45)
and the residuals êt of the coordinates of the target system (3.44) or (3.46)
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3.4 Parameter estimation with Gauss-Markoff model

The coordinates x̄si in (3.25) of the point i in the start system are interpreted according to (3.7) as
’true’ observations. We can see them in the Gauss-Helmert model (3.29) but also as unknown
parameters, then must but introduce their definition (3.35) as an additional observation equa-
tion. Now replace the Gauss -Helmert model (3.29) to the Gauss-Markoff model (Koch et al.,
2000)

t + RMx̄si = xti + eti

x̄si = xsi + esi f or i ∈ {1, · · · , p}
(3.47)

The Gauss-Helmert model (3.29) and the Gauss-Markoff model (3.47) are equivalent. In both
models result identical parameter estimates and residuals. Around to show that is initially
linearized. (3.32) introduces the approximate values for the new unknown transformation pa-
rameters and (3.30) with

x̄si = x̄si0 + ∆xsi (3.48)

the approximate values x̄si0 of x̄si and the unknown ones Corrections ∆xsi. With the partial
derivatives corresponding to (3.34)

∂xti
∂t

∣∣∣
0
= I, ∂xti

∂α

∣∣∣
0
= Bi, ∂xti

∂m

∣∣∣
0
= Ci,

∂xti
∂x̄si

∣∣∣
0
= R0M0, ∂xsi

∂t

∣∣∣
0
= 0, ∂xsi

∂α

∣∣∣
0
= 0,

∂xsi
∂m

∣∣∣
0
= 0, ∂xsi

∂x̄si

∣∣∣
0
= I,

(3.49)

the linearized model is given by (3.35)

R0M0∆xsi + Xiβ = yti + eti

I∆xsi = ysi + esi
(3.50)

with the observations

yti = xti − t0 − R0M0 x̄si0

ysi = xsi − x̄si0
(3.51)

With∆xs = (∆xsi), yt = (yti), ys = (ysi), et = (eti), es = (esi), the matrix W from (3.38) and
the covariance matrix of the observations from (3.3) follow the observation equations for all p
points to be transformed with

∣∣∣∣W X
I 0

∣∣∣∣ ∣∣∣∣∆xs
β

∣∣∣∣ = ∣∣∣∣yt + et
ys + es

∣∣∣∣
and D(

∣∣∣∣yt
ys

∣∣∣∣) = σ2
∣∣∣∣P−1

t 0
0 P−1

s

∣∣∣∣ (3.52)
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The estimated values ∆x̂s and β̂ of the unknown parameters ∆xs and β are known to be ob-
tained with

∣∣∣∣∆x̂s

β̂

∣∣∣∣ = ∣∣∣∣W ′PtW + Ps W ′PtW
X ′PtW X ′PtX

∣∣∣∣−1

×
∣∣∣∣W ′Ptyt + Psys

X ′Ptyt

∣∣∣∣ (3.53)

The estimates are dependent on the approximations, so it must be iterated. The vector x̄si
occurs linearly in the Helmert transform (3.47) if the transformation parameters are given. It is
therefore possible to choose any approximate value x̄si0 in (3.48), although the matrix Xi are to
be calculated with the respective estimates for x̄si. It is through

x̄si0 = xsi (3.54)

setted, so that from (3.50) and (3.51) follows

ys = 0 and ∆x̂s = ês (3.55)

With this substitution and the inverse of a block-matrix, see for example Koch (1999) the esti-
mated values β̂ of the transformation parameters

β̂ = (X ′PtX − X ′PtW(W ′PtW + Ps)
−1W ′PtX)−1

× (X ′Ptyt − X ′PtW(W ′PtW + Ps)
−1W ′Ptyt)

(3.56)

Residuals ês follow it the coordinates of the starting system with (3.55) by substitution of β̂ in
the (3.53) corresponding normal equation system from

ês = (W ′PtW + Ps)
−1W ′Pt(yt − X β̂) (3.57)

The residuals ês give the coordinates of the target system finally from (3.52) with (3.55) and
(3.57) to

êt = (−I + W(W ′PtW + Ps)
−1W ′Pt)× (yt − X β̂) (3.58)

The estimates β̂ from (3.56) obtained here in the Gauss-Markoff model and the residuals es and
ez from (3.57) and (3.58) are in agreement with those in the Gauss-Markoff model obtained
Results (3.41), (3.45) and (3.46).

3.5 Applications in coordinates transformation and comparison with
CTLS

In this application the coordinates transformation will also be implamented in Baden-
Württemberg. The Helmert-transformation in Gauss-Helmert model read
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3.5.1 Transformation with Gauss-Helmert model

E





xt1
...

xtn
yt1
...

ytn
zt1
...

ztn





=: E





1 0 0 0 −zs1 ys1 xs1
...

...
...

...
...

...
...

1 0 0 0 −zsn ysn xsn
0 1 0 zs1 0 −xs1 ys1
...

...
...

...
...

...
...

0 1 0 zln 0 −xsn ysn
0 0 1 −ys1 xs1 0 zs1
...

...
...

...
...

...
...

0 0 1 −ysn xsn 0 zsn







Tx
Ty
Tz
δα
δβ
δγ
λ



Step 1: Replace the Gauss-Helmert model to Gauss-Markoff model and creat the observation
equations and estimate the approximate value x̄si0 of x̄si with LS.

t + RMx̄si = xti + eti

x̄si = xsi + esi f or i ∈ {1, · · · , n}

Step 2: creat the linear model and complete the elements togethere with the inside structure in
observation equations.
with

X
(3n×7)

=



1 0 0 0 −zs1 ys1 xs1
...

...
...

...
...

...
...

1 0 0 0 −zsn ysn xsn
0 1 0 zs1 0 −xs1 ys1
...

...
...

...
...

...
...

0 1 0 zln 0 −xsn ysn
0 0 1 −ys1 xs1 0 zs1
...

...
...

...
...

...
...

0 0 1 −ysn xsn 0 zsn


,

W0
(3n×3n)

=

 λ δγ −δβ
−δγ λ δα
δβ −δα λ

⊗ In

=



λ 0 0

0
. . . 0

0 0 λ

δγ 0 0

0
. . . 0

0 0 δγ

−δβ 0 0

0
. . . 0

0 0 −δβ
−δγ 0 0

0
. . . 0

0 0 −δγ

λ 0 0

0
. . . 0

0 0 λ

δα 0 0

0
. . . 0

0 0 δα
δβ 0 0

0
. . . 0

0 0 δβ

−δα 0 0

0
. . . 0

0 0 −δα

λ 0 0

0
. . . 0

0 0 λ
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yt = yti − t−W0 ∗ ysi

Step 3: Estimate the solution β̂ for the corrections by transformation parameters and the
corresponding coordinates.

β̂ = (X ′PtX − X ′PtW(W ′PtW + Ps)
−1W ′PtX)−1

× (X ′Ptyt − X ′PtW(W ′PtW + Ps)
−1W ′Ptyt)

Step 4: calculate the estimated transformation parameters and the statistical residuals and
make accuracy assessment.

Residuals ês, the coordinates of the start system with

ês = (W ′PtW + Ps)
−1W ′Pt(yt − X β̂)

The residuals êt, the coordinates of the target system with

êt = (−I + W(W ′PtW + Ps)
−1W ′Pt)× (yt − X β̂)

3.5.2 Presentation and Comparison of the results

Statistical data by the quadratics sums of the residuals for 3 estimators. The ê is the residual of
observation and Ê is the residual of design matrix.
LS:

êT
LS êLS = 4.063234 (m2)

Gauss-Helmert:

êT
t êt = 1.015790 (m2)

ÊT
s Ês = 1.015808 (m2)

êT
t êt + ÊT

s Ês = 2.031598 (m2)

CTLS:

êT
CTLS êCTLS = 1.015790 (m2)

ÊT
CTLSÊCTLS = 1.015808 (m2)

êT
CTLS êCTLS + ÊT

CTLSÊCTLS = 2.031598 (m2)
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Table 3.1: Comparison of 7-parameter Helmert transformation parameters with 3 estimators

Transformation 7-parameter Helmert transformation GK(DHDN)-UTM(ETRS89)
models TX(m) TY(m) TZ(m) α(′′) β(′′) γ(′′) dλ(×10−6)

LS 582.901711 112.168080 405.603061 -2.255032 -0.335003 2.068369 9.117208
Gauss-Helmert 582.901711 112.168080 405.603061 -2.255032 -0.335003 2.068369 9.117208

CTLS 582.901711 112.168080 405.603061 -2.255032 -0.335003 2.068369 9.117208

Table 3.2: Numerical deviation of 7-parameter Helmert transformation with 3 estimators
Transformation

model
Collocated

sites
Absolute mean of

Residuals (m)
Max.absolute mean

of Residuals(m)
RMS
(m)

Standard deviation
of unit weight (m)

[VN ] [VE] [VN ] [VE]

LS B-W 131 0.1051 0.0843 0.4212 0.3112 0.1240 0.1026
Gauss-Helmert B-W 131 0.0526 0.0421 0.2106 0.1556 0.0620 0.0513

CTLS B-W 131 0.0526 0.0421 0.2106 0.1556 0.0620 0.0513

Figure 3.1: Horizontal residuals after 7-parameter Helmert transformation in Baden-Württemberg network
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Figure 3.2: Horizontal residuals after 7-parameter Helmert transformation in Baden-Württemberg network

Conclusions: From the statistical data we can conclude that, if the least squares method es-
timates the unknown parameters of coordinate transformations, for example, the 3D-Helmert
transformation, the results are independent of the transformation direction, as long as the coor-
dinates of the start and target systems are treated as random variables with identical covariance
matrix. The process can be done in the Gauss-Helmert model or after adding unknown param-
eters in the Gauss-Markoff model, the results are identical.
Compare with the LS method, the Gauss-Helmert model has a better accuracy with smaller
residuals. It considers the random elements in design matrix and solves the theoretical weak-
ness in LS method. Meanwhile, the Gauss-Helmert model has a identical consequence with
CTLS. Study on the theory algorithm, we can find that, the original motivation of the develop-
ment for both estimators were not identical. But these two estimators share a same processing
method, which is to extract the unknow parameters and create a new observation equation.
Although the later process for both estimators are not the same, they have the identical results
in the case of coordiante transformation.
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Chapter 4

Applications to the realizations of ITRF

4.1 Introduction

Earth observation is fundamental to addressing scientific challenges pertaining to the quantifi-
cation of changes that are affecting the Earth system. Global geodesy is one of the key Earth
science disciplines that not only measures changes of the Earth system in space and time but
also is the only science that provides the indispensable standard against which the changes
and their variability are quantified and properly referenced. In order to fundamental under-
standing the Earth dynamics, and also to precisely determine the orbits of the Earth-observing
artificial satellites, it is critically important to ensure the continuous availability and updates of
an accurate, long-term stable and truly global Terrestrial Reference Frame. The development of
space geodetic techniques in the 1950s made it possible to establish an Earth reference frame.
With the adoption of satellite navigation and positioning technology, the Earth reference frame
is also becoming more continuous availability, more accuracy and reliable. The establishment
and maintenance of a long-term stable high-precision earth reference frame can not only
provide high-precision positioning and orientation benchmarks for the economy and national
defense, but also be one of the foundations for conducting earth science research and many
practical applications. For exsample the the International Terrestrial Reference Frame (ITRF).
The recent resolution adopted on 26 February 2015 by the General Assem-bly of the United
Nations on the Global Geodetic Reference Frame (GGRF) for Sustainable Development,
recognizing the adoption of the ITRF by the scientific community, is a testimony of the critical
importance of the reference frame for science and society.

The origin of ITRS (International Terrestrial Reference System) is defined as CM (Center of
Mass of the Earth System), while that of ITRF approximates to CF (Center of surface Figure).
Surface mass redistribution would induce relative motion of CF to CM, which is defined
as geocenter motion here. With the improving accuracy of geodetic observations, geocenter
motion has become one major error in realizing and maintaining ITRF and also monitoring sea
level rising. Therefore it is important for us to deeply study geocenter motion, narrowing the
inconsistency between the definition and realization of ITRF orgin.

The ITRS Center of the IERS, hosted by IGN France, is responsible for the maintenance of the
ITRS/ITRF and official ITRF solutions. Two other ITRS combination centers are also gener-
ating combined solutions using ITRF input data: Deutsches Geodätisches Forschungsinstitut
(DGFI) an der Technischen Universität München (TUM) [Seitz et al., 2012] and Jet Propulsion
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Laboratory (JPL) [Wu et al., 2015].

4.2 Space Geodesy Solutions

4.2.1 The space geodetic techniques

The space geodetic techniques that contribute to the ITRF construction are Doppler orbitogra-
phy and radiopositioning integrated by satellite (DORIS), Global Navigation Satellite Systems
(GNSS), satellite laser ranging (SLR), and very long baseline interferometry (VLBI). These
techniques are organized as scientific services within the International Association of Geodesy
(IAG) and known by the International Earth Rotation and Reference Systems Service (IERS)
as Technique Centers (TCs): the International DORIS Service (IDS) [Willis et al., 2010], the
International GNSS Service, formerly the International GPS Service (IGS) [Dow et al., 2009],
the International Laser Ranging Service (ILRS) [Pearlman et al., 2002], and the International
VLBI Service (IVS) [Schuh and Behrend, 2012]. As none of the four space geodetic techniques
is able to provide the full reference frame-defining parameters, the ITRF is demonstrated to
be the most accurate reference frame available today, gathering the strengths of the four space
geodesy techniques contributing to its construction and compensating for their weaknesses
and systematic errors.

The IVS, ILRS, IGS, IDS provide the data for VLBI, SLR, GNSS, DORIS in SINEX file. Until
2015, the VLBI has 159 stations and started to provide data from 1980. The SLR has 142 stations
and comprises 244 fortnightly solutions, started to provide data from 1983. The GNSS has 1810
stations and comprise 7714 dayly solutions, started to provide data from 1994. DORIS has 160
stations and comprises 1140 weekly solutions, started to provide data from 1993.

The effects that each technique contribute to the system can be summarized as:

DORIS:

• Improve SRP modelling to reduce draconitics

• Minimize the SAA effect

GNSS:

• Rearch near-field signal multipath and develop methods to calibrate in-situ position bi-
ases at all reference frame stations

• Investigate methods to mitigate pervasive draconitic signals

• Improve radiation force modeling, especally associated with attitude changes during
eclipse

• Try harder to minimize equipment- and local-induced position offsets

SLR:

• Add estimation/handling of station Range Biases(RB)
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• Use updated CoM offsets

• Add estimation/handling of Time Biases (TB)

• Include applied RB and TB in SINEX file for next contribution to ITRF with their con-
straint information

VLBI:

• Validate Nothnagel model for VLBI thermal effects

• Structural gravitational deformation: Update software to apply models to as many an-
tennas as possible

• Relativity: Evaluate extra term (<1 ps) in trial basis in calc/solve, and check with formu-
lation of Soffel et al., 2016

• Source Structure: Better/improved strategy

Table 4.1: Summary of Submitted Solutions to ITRF (2015)
Techniques Data Span Sampling Solution Type Constraints EOPs

IVS 1980.0-2015.0 Daily Normal equation None PM,PMr,LOD,UT1-UTC
ILRS 1983.0-1993.0 Fortnightly Variance-covariance Loose PM,LOD

1993.0-2015.0 Weekly Variance-covariance Loose PM,LOD
IGS 1994.0-2015.1 Daily Variance-covariance Minimun PM,PMr,LOD
IDS 1993.0-2015.0 Weekly Variance-covariance Minimun PM

aPM: polar motion, PMr: polar motion rate, LOD: length of day.

During the ITRF2000 combination processing, 20 years of LLR, VBLI, SLR data and 10 years of
GPS, DORIS data were submitted. The ITRF2005 data used GPS, SLR, DORIS weekly solution
and VLBI session-wise solution (24 hours) as input data. ITRF2008 used VLBI, SLR, GPS and
DORIS solution files for approximately 29 years, 26 years, 12, 5 years and 16 years, of which
VLBI is a session-wise solution and the other three are weekly solutions. The four technique
combined time series submitted to the ITRF2014 summarizes the data span, the sampling
integration for station positions (daily for GNSS, session-wise for VLBI, weekly for DORIS,
and fortnightly and weekly for SLR). For each ITRFn, the solution type (normal equations or
variance-covariance), the constraints applied for the reference frame definition (free, loose, or
minimum constraints), and the Earth Orientation Parameters (EOPs) provided in addition to
station positions. Each per-technique time series is already a combination of the individual
analysis center (AC) solutions of that technique.
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Figure 4.1: ITRF2014 network highlighting VLBI,SLR,DORIS sites colocated with GNSS [Altamimi, 2016]

4.2.2 Combination Model

Different geodetic techniques have different sensitivety to the Earth reference frame bench-
marks and are not able to provide the unified data to establish the Earth Reference Framework.
IGN is the official organization of IERS, it is responsible for ITRF’s calculation and release.
IGN uses the software CATREF to calculate the parameters.
Combination model is the core calculation method in CATREF. This model takes the position
and velocity of each station into consideration. For each point i ,Xi

s (at epoch ti
s) and Ẋi

s are
position and velocity of technique solution s and Xi

c (at epoch t0) and Ẋi
c are those of the

combined solution c. For each individual frame k, as implicitly defined by solution s, Dk is the
scale factor, Tk is the translation vector, and Rk is the rotation matrix. The dotted parameteres
designate their derivatives with respect to time. The translation vector Tk is composed of
three origin components, namely, Tx, Ty, Tz, and the rotation matrix of three small rotation
parameters, Rx, Ry, Rz, following the three axes, respectively, X, Y and Z. tk is a conventionally
selected epoch of the seven transformation parameters.

X i
s = X i

c +
(

ti
s − t0

)
Ẋ i

c

+ Tk + DkX i
c + RkX i

c

+
(

ti
s − t0

) [
Ṫk + ḊkX i

c + ṘkX i
c

]
Ẋ i

s = Ẋ i
c + Ṫk + ḊkX i

c + ṘkX i
c

(4.1)

To be simplify, X stands for the position X i
s and the velocity Ẋ i

s, the 7 transformation parameters
and corresponding rate is Tk. The above equation can be written as:
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(
AT

1s
AT

2s

)
Ps (A1s A2s)

(
X
Tk

)
=

(
AT

1sPsBs
AT

2sPsBs

)
(4.2)

Where A1s and A2s are the design matrixs for each station.

Ai
1s =

[
I dti

s I
0 I

]
, A2i

s =

[
I dti

k Ai
s

0 Ai
s

]
(4.3)

Here dti
s = ti

s − t0, dti
k = ti

s − tk, Ps is the weight matrix, Bs is the constant, means the differ-
ence between observed and calculated values, inside Ai

s are the approximate coordinates of the
station. When it only take the coordiantes into consideration, the Ai

s reads

Ai
s =


· · · · · · ·
1 0 0 xi

0 0 zi
0 −yi

0
0 1 0 yi

0 −zi
0 0 xi

0
0 0 1 zi

0 yi
0 −xi

0 0
· · · · · · ·

 (4.4)

When it considers the coordinates and velocity together, the Ai
s reads

Ai
s =



· · · · · · · · · · · · · ·
1 0 0 xi

0 0 zi
0 −yi

0
0 1 0 yi

0 −zi
0 0 xi

0 ≈
0 0 1 zi

0 yi
0 −xi

0 0
1 0 0 xi

0 0 zi
0 −yi

0
≈ 0 1 0 yi

0 −zi
0 0 xi

0
0 0 1 zi

0 yi
0 −xi

0 0
· · · · · · · · · · · · · ·


(4.5)

When the calculation considers the EOPs parameters, it also need to add the following equa-
tion.

xp
s = xp

c + R2k

yp
s = yp

c + R1k

UTs = UTc −
1
f

R3k

ẋp
s = ẋp

c + Ṙ2k

ẏp
s = ẋp

c + Ṙ1k

LODs = LODc

(4.6)

Here for each solution s the pole coordinates xp
s and yp

s , universal time UTs as well as their
daily rates ẋp

s , ẏp
s and LODs are used in the equation. Where f = 1.002737909350795 is the

conversion factor from UT into sidereal time. The link between the combined frame and the
EOPs is ensured via the three rotation parameters appearing in the first three lines of (4.6).
In the first step of the ITRF construction, the first two lines of (4.1) and the entire equation
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(4.6) are used to estimate long-term solutions for each technique, by accumulating (rigorously
stacking) the indivdual technique time series of stations and EOPs. In the second step, the
entire two equations are used to combine the long-term solution obtained in step 1, together
with local ties in colocation sites.

This model (IGN) is used in Intra-technique combination. The main deviation steps are
1) With the speed of the coordiantes by colocated sites, transform the coodinates in the combi-
nated reference frame under epoch t0 to epoch tk.

X i
c (tk) = X i

c (t0) + (tk − t0) Ẋ i
c (4.7)

2) Transform the coordinates X i
c in combinated reference frame to the corresponding coordi-

nates in reference frame TRFk with Helmert-transformation.

X i
s (tk) = X i

c (tk) + Tk + DkX i
c (tk) + RkX i

c (tk) (4.8)

3) With the speed of the coordiantes by colocated sites, transform the coodinates in the TRFk
reference frame under epoch tk to epoch ts.

X i
s

(
ti
s

)
= X i

s (tk) +
(

ti
s − tk

)
Ẋ i

s (4.9)

Combinate (4.7), (4.8) and (4.9)

X i
s

(
ti
s

)
=
[

X i
c (tk) +

(
ti
k − t0

)
Ẋ i

c

]
+ Tk + DkX i

c (tk) + RkX i
c (tk) +

(
ti
s − tk

)
Ẋ i

s (4.10)

Make ∆X = Tk + DkX i
c (tk) + RkX i

c (tk)

X i
s

(
ti
s

)
=
[

X i
c (tk) +

(
ti
k − t0

)
Ẋ i

c

]
+ ∆X +

(
ti
s − tk

)
Ẋ i

s (4.11)

with

∆X = Tk + Dk

[
X i

c (tk) +
(

ti
k − t0

)
Ẋ i

c

]
+ Rk

[
X i

c (tk) +
(

ti
k − t0

)
Ẋ i

c

]
∼= Tk + DkX i

c (t0) + RkX i
c (t0)

(4.12)

Here ∆X is the difference, that frame under epoch t0 with Helmert-transformation, the
DkX i

c (tk) and RkX i
c (tk) can be ignored. Because D, R are with the magnitude 10−5.

∆Ẋ = Ṫk + ḊkX i
c (t0) + ṘkX i

c (t0) = Ẋ i
s − Ẋ i

c (4.13)

We can get

Ẋ i
s = Ẋ i

c + Ṫk + ḊkX i
c (t0) + ṘkX i

c (t0) (4.14)
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The equation (4.11) can be writen as

X i
s

(
ti
s

)
= X i

c (tk) +
(

ti
k − t0

)
Ẋ i

c + Tk + DkX i
c (t0) + RkX i

c (t0)

+
(

ti
s − tk

) [
Ẋ i

c + Ṫk + ḊkX i
c (t0) + ṘkX i

c (t0)
]

= X i
c (tk) +

(
ti
k − t0

)
Ẋ i

c (t0)

+ Tk + DkX i
c (t0) + RkX i

c (t0)

+
(

ti
s − tk

) [
Ṫk + ḊkX i

c (t0) + ṘkX i
c (t0)

]
(4.15)

4.2.3 Intra-technique Combination

The procedure adopted for the ITRF formation involves two steps [Altamimi et al., 2002a, 2007,
2011]: 1)stacking the individual time series to estimate a long-term solution per technique com-
prising station positions at a reference epoch, station velocities, and daily EOPs. 2) combining
the resulting long-term solutions of the four techniques together with the local ties and colo-
cated sites.
The establishment of the reference frame is based on the Intra-technique combination and Inter-
technique combination within the space geodetic techniques. Each technique data service cen-
ter uses Intra-technique combination to calculate the unified frame solutions and provide to the
next service center, which will use Inter-technique combination with all the 4 techniques and
calculate the ITRF solutions. The illustrate below show the processing for ITRF solutions.

Individual TRFs GNSS(daily)

GNSS Combined TRF

IGS IVS ILRS IDS

VLBI Combined TRF SLR Combined TRF DORIS Combined TRF

VLBI(session-wise) SLR(weekly) DORTS(weekly)

Intra- technique

Combination

Inter- technique

Combination

Local-tie Local-tie Local-tie

ITRF Solution

Figure 4.2: Illustrate of the main calculation steps for ITRF
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From the illustrate we can see that, the Intra-technique combination is the basis for Inter-
technique combination. In Intra-technique combination, the mathematical model is Helmert
transformation. Transformation between different coordiante systems are made by three
translations, three rotations and one scale. If the velocity is considered, the nummber of
transformation parameter will be 14. The function model is

X2 = X1 + Asθ (4.16)

With θ = (T1, T2, T3, R1, R2, R3, D, Ṫ1, Ṫ2, Ṫ3, Ṙ1, Ṙ2, Ṙ3, Ḋ)T ,As is the design matrix see (4.5).

The normal equation is

θ =
(

AT
s Px As

)−1
AT

s Px (X2 − X1) (4.17)

During the estimation for the transformation parameters, it’s important to select the weight
matrix Px. There are three main solutions. One is to select unit weight matrix, that is Px = I.
Another is the inverse matrix of the matrix consisting of the values on the diagonal of the
variance covariance matrix associated with X1 and X2. The third is the inverse matrix of
fully covariance matrix. Normally, these three weight matrix can have different values for the
transformation parameters. Which means the 7 transformation parameters (no velocity) have
a certain correlation with each other.

In the Intra-technique combination, the solutions are usually in a short time, which normally
are daily solution or weekly solution. The velocity for the sites with the same epoch can be
ignored. Hence the mathematical model is

xi
s

yi
s

zi
s

 =

xi

yi

zi

+ Tk + Dk

xi

yi

zi

+ Rk

xi

yi

zi

 (4.18)

In matrix form is

xi
s

yi
s

zi
s

 = A1

xi

yi

zi

+ A2θ (4.19)

With A1 is the unit matrix and A2 =


· · · · · · ·
1 0 0 xi

0 0 zi
0 −yi

0
0 1 0 yi

0 −zi
0 0 xi

0
0 0 1 zi

0 yi
0 −xi

0 0
· · · · · · ·
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For each subsolution i, the above equation can be written as

Li = A1iX + A2iθi (4.20)

The relationship between the k single subsolutions and the combination solutions is


X1
X2
...

Xk

 =


A11 A21 0 0 0
A12 0 A22 0 0

...
...

...
. . .

...
A1k 0 0 · · · A2k




X
θ1
θ2
...

θk

 (4.21)

The observation is

L = A
[

X
θ

]
(4.22)

Covariance matrix is

D =


σ2

1 $1 0 · · · 0
0 σ2

2 $2 0
...

...
. . .

...
0 0 · · · σ2

k $k

 (4.23)

The normal equation for the combination solution is

Nx = b

with

N =



∑
s∈S

AT
1sPs A1s ∑

s∈S1
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1sPs A1s · · · · · · ∑
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1sPs A1s ∑

s∈S1

AT
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... 0
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...
...
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∑
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1sPs A1s


, b =



∑
s∈S

AT
1sPsBs

∑
s∈S1

AT
1sPsBs

...

...
∑

s∈Sk

AT
1sPsBs


(4.24)
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Here S = (S1, S2, · · · , Sk).

The calculation and process of Intra-technique combination for GNSS, SLR, DORIS and VLBI
are almost identical. Nur the SINEX file by VLBI provides directly no-constraint normal
equation. There is no need to do the inverse calculation. The main process is
1) Read the SINEX file by 4 techniques and eliminate the outlier.

2) Calculate the inverse matrix of covariance matrix, remove a priori constraint and reform the
normal matrix

3) Input Helmert parameters

4) Creat the combinated normal matrix

5) Estimation and get the solutions

By the step of estimation, there are many kinds of methods with constraint. Details will not be
explained in this article.

GNSS(SINEX)

Deform the unconstraired equation 

-find the gross error and eliminate a priori constraint

-Input Helmert parameters and reform new normal equation

-Input System errors

GNSS Solution VLBI Solution SLR Solution DORTS Solution

VLBI(SINEX) SLR(SINEX) DORTS(SINEX)

Figure 4.3: Illustrate of the main steps for Intra-technique Combination
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4.2.4 Local Ties in Colocation Sites

Before we talk about Inter-technique combination, we need to understand the concept about
the colocation sites in ITRF and the local ties between them.

When we need to combinate more than two techniques to esimate the parameters. It is
nessesary to have sufficient quantity and even distribution colocation sites together with the
Local-tie among them in oder to contribute to the ITRF solutions. Clocation sites are the
observation stations that have two or more geodetic techniques. Otherwise, the observation
stations are close to each other. The distance between those stations can be mesured by local
survey or by GPS technique. These distances are named local ties. [Altamimi, 2002] The local
survey usually provides the direction angles, distances and spirit leveling at the measure place
towards the station. The national agencies operating ITRF colocated site provides the differ-
ence of coordiantes of each technique instruments at the reference points, which is the local ties.

The distance between two observation stations at one colocation site is normally on a hundred
meters level. The biggest distance between the stations can be setted under requirment.
Considerd the current colocation sites, the distance between two observation stations can
upto 30km. Since the local measurement is so important to the ITFR solution, the local ties is
required to be long-term stable. Hence, the establishment of the tracking nets and repeatment
of the local measurments is very important.

As far as the development of local ties, the accuracy is on 1-3mm level. Higher accuray
requierment is the goal for the development by geodetic techniques. The quality of the local
ties is the main factor that affects the accuracy of ITRF solution. Hence, its nessesary to test
and analyse the colocation sites and local ties, if they are accuracy enough as the constraint
condition to the Inter-technique combination. Before the calculation for the ITRF solution, we
need to select the colocation sites.

Take ITRF2014 as an exsample. The table 4.2 shows the residuals between the 139 local ties’s
values by real measurement and the values by calculation with ITRF2014 solution. As we can
see that, 59% of the local ties are under 5mm, which is identical to geodetic solution. 41% of
the local ties are bigger than 5mm, and 21% of which are more than 10mm. These residuals are
caused by many reasons: the system errors in the geodetic technique, measurement errors, the
movement of the measure equipments at colocation sites and so on.

Table 4.2: Residuals of local ties on the Colocation sites with ITRF2014
Residuals GPS-SLR GPS-VLBI GPS-DORIS VLBI-SLR VLBI-DORIS SLR-DORIS

under 5mm 34 52 59 11 16 10
5mm-10mm 4 10 30 1 5 10
over 10mm 16 4 29 3 8 5
Total sites 54 66 118 15 29 25
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From the ITRF88, the ITRF solution had already make use of the colocated sites and local ties.
At that time only VLBI and SLR were used. Since ITRF92, the GPS technique was brought into
calculation. After that in ITRF94, DORIS was also included. The colocated sites are from 22
in ITRF94 to 139 in ITRF2014. In ITRF2014, in addition to the local ties udes in the ITRF2008
computation, a certain number of local ties used are new, resulting either from new colocated
sites or from new survey. 36 new surveys were conducted since the release of ITRF2008.

4.2.5 Inter-technique Combination

Different geodetic techniques have their advantages. Combined processing can make full
use of the advantages of various technologies to make up for some of the shortcomings. For
exsample, the SLR is recognized as a technology that accurately estimates geocentric motion,
but it also has serious shortcomings, like the SLR will be huge influenced by the weather. Ihe
tracking stations of SLR are unevenly distributed on the earth, especially on the southern earth.
When we combinate the SLR and GNSS data together, the accuracy of the time resolution and
the geometry distribution of the colocated sites can be improved.

The Inter-technique combination is to combine the normal matrix of GNSS, SLR, DORIS, VLBI.
The combined normal matrix is similar to the normal matrix in Intra-technique combination.
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(4.25)

Here S = (S1, S2, · · · , Sc), S1 is GNSS, S2 is SLR, S3 is DORIS, S4 is VLBI.

Different geodetic techniques have different effects for the calculation with the benchmark.
The realization and maintain of the earth reference frame require planty numbers of points
with precise coodinates. These coordinates contain the information about the benchmark of
earth reference frame, including the origin geocenter, scale, orientation and the change rate
with time series.

The ideal origin Geocenter Motion for the reference frame is the CM, which is the mass center
of solid earth together with atmospheric, ocean. Due to the dynamic principle, the center
of satellit mission should be CM. GNSS, SLR and DORIS are satellit dynamic techniques,
their motions are sensitive to CM. In fact, the system errors by GNSS and DORIS make
the center not match the CM. Hence, the SLR technique can have a good accuracy for the
determine of CM. When in the estimation processing, the translations by SLR will not be
contrainted and the accuracy for origin can be improved. For GNSS, VLBI,DORIS under the
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same epoch, the translations between the combined solution and ITRFn are 0. By the scale,
VLBI has a advantage over other three techniques. When in the estimation processing, the
scale by VLBI will not be contrainted. Under the same epoch, the scale of the other three
techniques between combined solution and ITRFn are 0. These whole four techniques are not
sensitive to orientations. Under the same epoch, the orientation of all techniques between the
combined solution and ITRFn are 0. These are all constaint conditions during Inter-technique
combination processing.

In order to improve the reliability of the combination of these four techniques, it’s important to
define the weight for each technique. One solution is, combine the Helmert method variance
component estimation with the empirical weighting method.
This step consists of combining the derived four long-term solutions with local ties at colo-
cated sites, which including station positions, velocities and EOPs. A certain number of test
combinations were performed, by varying the weighting of the four technique solutions as
well as the local ties. It is very difficult to adequately use a mathematically or statistically
prescribed method of variance component estimation as the degree of freedom or Helmert
method. The main reason is that we have observations and constraints at colocation sites of
different types: global space geodesy solutions, local ties, and velocity equality. In addition,
there are significant tie and velocity discrepancies between technique solutions at a number of
colocation sites that necessitate an iterative combination and empirical weighting process.

For the normal matrix of GNSS, SLR, DORIS and VLBI, take the prior weight factor inside

4

∑
i=1

1
σ2

0i

Nixi =
4

∑
i=1

1
σ2

0i

bi (4.26)

Here i represents DNSS, SLR, DORIS and VLBI. 1
σ2

0i

is the prior weight factor. The variance

factor is

σ2
i =

V T
i PiVi

fi
(4.27)

Take the variance factor into (4.27). Do the iteration until the ratio of unit weight variance
factors between techniques is close to 1. [Yao., 2018]

The Inter-technique combination is based on the local tie at the colocated sites. The input data
is the normal matrix after the processing by Intra-technique combination. The main steps are

1) Read the SINEX file by each technique and restore the normal matix.

2) Input the Helmert parameters.



Chapter 4 Applications to the realizations of ITRF 41

3) Add the information of colocated sites and local tie as constraint condition.

4) Establish the nenchmark of the reference frame.

5) estimate the combinated normal matrix and calculate the unknow parameters

GNSS Solution

Combinated normal equation

ERFs with epoch

-Variance component estimation

-Local-tie constraint

-Unified in the same reference frame and epoch

VLBI Solution SLR Solution DORTS Solution

Figure 4.4: Illustrate of the main steps for Inter-technique Combination

4.3 Postseismic Deformation

After the release of ITRF2008 in 2010, it became more and more obvious that stations impacted
by major earthquakes, and in particular the devastating ones in Sumatra (2004), Chile (2010),
and Japan (2011), have nonlinear trajectories after these tragic events. Modeling the postseis-
mic deformation (PSD) by piecewise lin-ear functions as in the past ITRF versions is no longer
an appropriate approach, at least because the estimated linear velocities of the segmented
station time series are imprecise and do not adequately describe the real station postseismic
trajectories. [Altamimi ., 2016]

Modeling the PSD for ITRF2014 sites could of course be done using possible available models
con-structed for each major earthquake individually [Freed et al., 2006; Pollitz, 1997, 2014;
Trubienko et al., 2013]. However, not all earthquakes impacting the ITRF2014 sites have
corresponding published models nor would it be manageable for us to evaluate and test the
performance of available models against ITRF2014 input data.[Altamimi ., 2016]
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For the ITRF2014 and in order to account for the PSDs of stations subject to major earthquakes,
we adopted a more pragmatic approach by fitting parametric models to the ITRF2014 input
time series of station positions. The four retained parametric models are (1) (Log)arithmic,
(2) (Exp)onential, (3) Log+Exp, and (4) Exp+Exp. It is known that the PSDs have different
structures, such as ’transient after slip creep’ behavior [Marone et al., 1991; Perfettini and
Avouac, 2004; Savage et al., 2005] tending to follow a logarithmic function or of ’viscoelastic
relaxation’ type [Savage and Prescott, 1978; Pollitz, 1997] that is better described by an
exponential decay. Logarithmic models were used by Bevis and Brown [2014] to describe
the trajectory of earthquake sites using GPS time series, while Freed et al. [2010] used a
combination of a logarithmic variation and an exponential decay.[Altamimi ., 2016]

We used the IGS GNSS contributed daily time series to fit parametric models for stations where
PSD was judged visually significant, including a few stations impacted by major earthquakes
that occurred prior to the start of their observations. The PSD models were fitted separately
in each east, north, and up component, simul-taneously with piecewise linear functions,
annual, and semiannual signals. In case of a series with a unique earthquake causing PSD,
10 different models were first tried: None (0), Log (1), Exp (2), Log+Exp (3), and Exp+Exp
(4), each combined with either a position-only or a position+velocity coseismic discontinuity.
Among the tested models, those for which the relaxation time of at least one logarithmic or
exponential function did not converge were discarded, as well as those leading to at least one
insignificant estimated parameter (i.e., smaller than its formal error). Among the remaining
models, we finally selected the model with the low-est Bayes Information Criterion [Schwarz,
1978], [Kass and Raftery, 1995]. For series with n > 1 earthquakes causing PSD, all possible 10n
model combinations were similarly tried and the best model combination was selected based
on the same criteria.[Altamimi ., 2016]

Figure 4.5: Distribution of earthquake epicenters (red) and ITRF2014 sites (green) impacted by postseismic defor-
mation [Altamimi, 2016]
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Figure 4.5 illustrates in red the location of 59 earthquake epicenters that caused significant PSD
at ITRF2014 sites and in green the impacted 123 stations located at 117 sites. We then applied
the corrections predicted by the GNSS fitted models to the nearby stations of the three other
techniques at earthquake colocation sites, before stacking their respective time series. In order
to illustrate the performance of the PSD parametric models, Figure 5 displays the position time
series of GNSS/GPS and the colocated VLBI stations at Tsukuba (Japan): in blue the raw data,
in green the piecewise linear trajectories given by the ITRF2014 coordinates, and in red the
trajectories obtained when adding the parametric PSD model. In that figure, one can see the re-
markable fit of the PSD model, not only to the GNSS but also to the VLBI data.[Altamimi ., 2016]

While the ITRF2014 solution provides the usual/classical estimates: station positions at
epoch 2010.0, station velocities, and EOPs, the PSD models are also part of the ITRF2014
products.[Altamimi ., 2016]

4.4 Tranformation Parameters between ITRFs with LS and CTLS

4.4.1 Transformation model

In order to ensure the link between ITRFs solutions, for many geodetic applications, it is
essential to provide the 14 transformation parameters with respect to the past ITRFs.

This section will provide 2 applications with transformtions between ITRF2005-ITRF2008 and
ITRF2000-ITRF2005, with their cooresponding epochs. The published data are estimated with
LS method. This section will also use CTLS method to estimate the 14 parameters transforma-
tion.

The transformation formula for ITRF2014-ITRF2008 is
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ẏ
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(4.28)

where i05 designates ITRF2005 and i08 is ITRF2008, T is the translation vector, T = [Tx, Ty, Tz]T,
D is the scale factor, and R is the matrix containing the rotation angles, given by

R =

 0 −Rz Ry
Rz 0 −Rx
−Ry Rx 0

 (4.29)
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The dotted parameters designate their time derivatives. Note that the inverse transformation
from ITRF2005 to ITRF2008 follows by interchanging (i08) with (i05) and changing the sign of
the transformation parameters.

4.4.2 Main steps

1) Input data file by ITRF2005 and ITRF2008 including coordinates, velocities and their
corresponding formal errors.

2) Select the reference points.

ITRF2005 and ITRF2008 collocated sites

 180° W  135° W   90° W   45° W    0°   45° E   90° E  135° E  180° E

 90° S  

 45° S  

  0°  

 45° N  

 90° N  

Figure 4.6: Location of the reference frame sites used in the estimation of the 14 transformation parameters between
ITRF2005 and ITRF2008

3) Unified the two frame in the same epoch with the fomula.

X(t)ITRFzz = X(t0)ITRFzz + (t− t0)vx(t0)ITRFzz (4.30)

4) CTLS model for the case of n independent observations yi and u independent observations
ya with different weights.

y = Aξ + ey

ya = ξa + ea
(4.31)
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Define z =
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]
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]
, ∆η =

[
∆ξ
∆a

]
, ez =

[
ey
ea

]
, reduced to:

z = Aη∆η+ ez (4.32)

With the new weight matrix on the variance-covariance matrix

Pz =

[
Py 0
0 Pa

]
Σz = σ2

z0

[
P−1

y 0
0 P−1

a

]
(4.33)

With detail
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(4.34)

with

Σz = σ2
z0

P−1, Pi =
σ2

z0

σ2
yi

(4.35)

The estimation criterion is to get the minimum of the residual sum of the squares:

eT
z Pzez = eT

y Pyey + eT
a Paea → min (4.36)

The estimated ∆η̂ is

∆η̂ = (AT
η Σ−1

z Aη)
−1AT

η Σ−1
z z = (AT

η Pz Aη)
−1AT

η Pzz (4.37)

together with the variance-covariance matrix

Σ∆η̂ = σ2
z0
(AT

η Pz Aη)
−1 (4.38)

with the estimation (4.37), the corrections of observations can be derived:

êz = A∆η̂− η (4.39)

And the unit weight variance for CTLS can be estimated
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σ̂2
z0
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êT
z Pz êz

(n + u)− (m + u)
=

êT
z Pz êz

(n−m)
(4.40)

Here n is the number of the original observations, u is the number of the independent random
elements in the design matrix A, m is the number of unknown parameters.

The estimation of the variance-covariance matrix can be derived by (different with equa-
tion(4.48))

Σ̂∆ẑ = σ̂2
z0
(AT

η Pz Aη)
−1 (4.41)

Creat the design matrix of the 14 transformation model.
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0 0 1 −yl1 xl1 0 zl1
...

...
...

...
...

...
...

0 0 1 −yln xln 0 zln
1 0 0 0 −zl1 yl1 xl1
...

...
...

...
...

...
...

1 0 0 0 −zln yln xln
0 1 0 zl1 0 −xl1 yl1

0
...

...
...

...
...

...
...

0 1 0 zln 0 −xln yln
0 0 1 −yl1 xl1 0 zl1
...

...
...

...
...

...
...

0 0 1 −yln xln 0 zln



(4.42)

By the CTLS method, we also need the new design matrix B.



Chapter 4 Applications to the realizations of ITRF 47

B
(6n×4n)

=



TX ξ0
22 ξ0

12 −ξ0
21

TY −ξ0
12 ξ0

22 ξ0
11

TZ ξ0
21 −ξ0

11 ξ0
22

ṪX ξ̇0
22 ξ̇0

12 −ξ̇0
21

ṪY −ξ̇0
12 ξ̇0

22 ξ̇0
11

ṪZ ξ̇0
21 −ξ̇0

11 ξ̇0
22

⊗ In

=



T0
X 0 0

0
. . . 0

0 0 T0
X

ξ0
22 0 0

0
. . . 0

0 0 ξ0
22

ξ0
12 0 0

0
. . . 0

0 0 ξ0
12

−ξ0
21 0 0

0
. . . 0

0 0 −ξ0
21

T0
Y 0 0

0
. . . 0

0 0 T0
Y

−ξ0
12 0 0

0
. . . 0

0 0 −ξ0
12

ξ0
22 0 0

0
. . . 0

0 0 ξ0
22

ξ0
11 0 0

0
. . . 0

0 0 ξ0
11

T0
Z 0 0

0
. . . 0

0 0 T0
Z

ξ0
21 0 0

0
. . . 0

0 0 ξ0
21

−ξ0
11 0 0

0
. . . 0

0 0 −ξ0
11

ξ0
22 0 0

0
. . . 0

0 0 ξ0
22

Ṫ0
X 0 0

0
. . . 0

0 0 Ṫ0
X

ξ̇0
22 0 0

0
. . . 0

0 0 ξ̇0
22

ξ̇0
12 0 0

0
. . . 0

0 0 ξ̇0
12

−ξ̇0
21 0 0

0
. . . 0

0 0 −ξ̇0
21

Ṫ0
Y 0 0

0
. . . 0

0 0 Ṫ0
Y

−ξ̇0
12 0 0

0
. . . 0

0 0 −ξ̇0
12

ξ̇0
22 0 0

0
. . . 0

0 0 ξ̇0
22

ξ̇0
11 0 0

0
. . . 0

0 0 ξ̇0
11

Ṫ0
Z 0 0

0
. . . 0

0 0 Ṫ0
Z

ξ̇0
21 0 0

0
. . . 0

0 0 ξ̇0
21

−ξ̇0
11 0 0

0
. . . 0

0 0 −ξ̇0
11

ξ̇0
22 0 0

0
. . . 0

0 0 ξ̇0
22


Here shows more detail information and exsample with weight matrix used in the application.

Set the constant σ2
z0
= (0.001m)2 = (0.001)2m2. Which mean σz0 is 1mm, and pi = σ2

z0
/σ2

i .

Exsample for collocated sites.

La Rochelle (10023M001): pa1 = 0.0012

0.00062 = 2.7778
Onsala (10402S002): pa1 = 0.0012

0.00072 = 2.0408
Kitab (12334S006): pa1 = 0.0012

0.00182 = 0.3086
The exsample shows that larger sigma(formal error) brings smaller weight.

4.4.3 Presentation and comparison of the results

Statistical data by the quadratics sums of the residuals for 2 estimators. The ê is the residual of
observation and Ê is the residual of design matrix.
The first case will shows the transformation between ITRF2008-ITRF2005.
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LS:

êT
LSPy êLS = 12223.8 (mm2)

CTLS:

êT
CTLSPy êCTLS = 8435.8 (mm2)

ÊT
CTLSPaÊCTLS = 1272.2 (mm2)

êT
CTLSPy êCTLS + ÊT

CTLSPaÊCTLS = 9708.0 (mm2)

Table 4.3: Transformation parameters with errors between ITRF2008-ITRF2005 in epoch 2005 with LS

Least Squares TX(mm) TY(mm) TZ(mm) D(10−9) R1(mas) R2(mas) R3(mas)
method ṪX(mm/a) ṪY(mm/a) ṪZ(mm/a) Ḋ(10−9/a) Ṙ1(mas/a) Ṙ2(mas/a) Ṙ3(mas/a)

-0.7 -0.9 -4.2 0.9 0.00 0.00 0.00
± 0.33 0.33 0.32 0.005 0.001 0.001 0.001

0.4 0.4 0.04 0.00 0.00 0.00 0.00
± 0.33 0.33 0.32 0.005 0.001 0.001 0.001

Table 4.4: Transformation parameters with errors between ITRF2008-ITRF2005 in epoch 2005 with CTLS

CTLS TX(mm) TY(mm) TZ(mm) D(10−9) R1(mas) R2(mas) R3(mas)
method ṪX(mm/a) ṪY(mm/a) ṪZ(mm/a) Ḋ(10−9/a) Ṙ1(mas/a) Ṙ2(mas/a) Ṙ3(mas/a)

-0.8 -0.8 -4.5 0.9 0.00 0.00 0.00
± 0.26 0.25 0.26 0.004 0.001 0.001 0.001

0.05 0.0 0.0 0.00 0.00 0.00 0.00
± 0.26 0.25 0.26 0.004 0.001 0.001 0.001

Table 4.5: Numerical deviation of 14-parameter transformation with 2 estimators
Transformation

model
Collocated

sites
Absolute mean of
Residuals (mm)

Max.absolute mean of
Residuals(mm)

RMS
(mm)

Standard deviation
of unit weight (mm)

[VX ] [VY ] [VZ] [VX ] [VY ] [VZ]

LS 169 2.83 2.92 2.95 9.23 34.53 17.91 3.1566 3.4963
CTLS 169 1.65 1.54 1.66 7.29 17.92 14.54 3.0957 3.1158
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Horizontal residuals ITRF2005 to ITRF2008 with LS

 180° W  135° W   90° W   45° W    0°   45° E   90° E  135° E  180° E

 90° S  
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  0°  

 45° N  

 90° N  

5mm

Figure 4.7: Sites and horizontal residuals after LS transformation between ITRF2005 and ITRF2008

Horizontal residuals ITRF2005 to ITRF2008 with CTLS
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Figure 4.8: Sites and horizontal residuals after CTLS transformation between ITRF2005 and ITRF2008
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Figure 4.9: Sites and vertical residuals after LS transformation between ITRF2005 and ITRF2008
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Figure 4.10: Sites and vertical residuals after CTLS transformation between ITRF2005 and ITRF2008
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Figure 4.11: Comparison of the deviations in X direction between LS and CTLS

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

169 Stations used in the estimation of the 14 transformation parameters

-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9

10

D
ev

ia
tio

n 
in

 Y
 (

m
m

)

LS
CTLS

Figure 4.12: Comparison of the deviations in Y direction between LS and CTLS
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Figure 4.13: Comparison of the deviations in Z direction between LS and CTLS
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The second case will show the transformation between ITRF2005-ITRF2000. The selected
reference points used as collocated sites are presented on the map below.

ITRF2000 and ITRF2005 collocated sites

 180° W  135° W   90° W   45° W    0°   45° E   90° E  135° E  180° E

 90° S  

 45° S  

  0°  

 45° N  

 90° N  

Figure 4.14: Location of the reference frame sites used in the estimation of the 14 transformation parameters be-
tween ITRF2000 and ITRF2005

LS:

êT
LSPy êLS = 1497.2 (mm2)

CTLS:

êT
CTLSPy êCTLS = 1174.5 (mm2)

ÊT
CTLSPaÊCTLS = 123.5 (mm2)

êT
CTLSPy êCTLS + ÊT

CTLSPaÊCTLS = 1298.0 (mm2)

Table 4.6: Transformation parameters with errors between ITRF2005-ITRF2000 in epoch 1997 with LS

Least Squares TX(mm) TY(mm) TZ(mm) D(10−9) R1(mas) R2(mas) R3(mas)
method ṪX(mm/a) ṪY(mm/a) ṪZ(mm/a) Ḋ(10−9/a) Ṙ1(mas/a) Ṙ2(mas/a) Ṙ3(mas/a)

0.16 -1.05 -5.73 0.40 0.00 0.00 0.00
± 0.38 0.36 0.50 0.007 0.016 0.016 0.013

-0.11 0.06 -1.77 0.02 0.00 0.00 0.00
± 0.38 0.36 0.50 0.007 0.016 0.016 0.013
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Table 4.7: Transformation parameters with errors between ITRF2005-ITRF2000 in epoch 1997 with CTLS

CTLS TX(mm) TY(mm) TZ(mm) D(10−9) R1(mas) R2(mas) R3(mas)
method ṪX(mm/a) ṪY(mm/a) ṪZ(mm/a) Ḋ(10−9/a) Ṙ1(mas/a) Ṙ2(mas/a) Ṙ3(mas/a)

0.02 -0.93 -5.82 0.40 0.00 0.00 0.00
± 0.30 0.30 0.43 0.007 0.015 0.015 0.012

-0.14 0.06 -1.74 0.002 0.00 0.00 0.00
± 0.30 0.30 0.43 0.007 0.015 0.015 0.012

Table 4.8: Numerical deviation of 14-parameter transformation with 2 estimators
Transformation

model
Collocated

sites
Absolute mean of
Residuals (mm)

Max.absolute mean of
Residuals(mm)

RMS
(mm)

Standard deviation
of unit weight (mm)

[VX ] [VY ] [VZ] [VX ] [VY ] [VZ]

LS 69 2.46 2.18 2.62 10.25 6.49 8.11 1.9040 1.9347
CTLS 69 1.79 1.60 2.11 8.01 5.9 8.20 1.7728 1.8014
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Horizontal residuals ITRF2000 to ITRF2005 with LS
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Figure 4.15: Sites and horizontal residuals after LS transformation between ITRF2000 and ITRF2005

Height residuals ITRF2000 to ITRF2005 with CTLS
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Figure 4.16: Sites and horizontal residuals after CTLS transformation between ITRF2000 and ITRF2005
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Figure 4.17: Sites and vertical residuals after LS transformation between ITRF2000 and ITRF2005
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Figure 4.18: Sites and vertical residuals after CTLS transformation between ITRF2000 and ITRF2005
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Figure 4.19: Comparison of the deviations in X direction between LS and CTLS
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Figure 4.20: Comparison of the deviations in Y direction between LS and CTLS
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Figure 4.21: Comparison of the deviations in Z direction between LS and CTLS
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Conclusions: After the application of coordiante transformation among ITRF realization, it is
found that, the whole process of the data collection and data preparation in ITRF is very com-
plicated and every step is so important that it can affect the final production. This thesis has
a brief introduction for the way that how to collecte data together with their technology. The
method that used to estimate the parameters in every step and their mathematic theory. The
main part in this thesis is to compare the LS and CTLS in 14-parameter transformation. In oder
to make precise accuracy assessment, this thesis introduced how to use the weight information
as the weight matrix in real case estimation. And the errors for every transformation parame-
ters are also estimated.

From the results above, we can have some conclusions.

• The weight information is quite important for ITRF realization. Any error and changes
of the weights for collocated sites might result in different solutions.

• The accuracy for collocated sites on the north earth are better than the accuracy on the
south earth, because the number of observation sites on north earth are more than that in
south earth.

• The accuracy for collocated sites in Europe and North America are better than other sites,
because the density of the collocated sites and the observation technology are higher and
more stable than other place on earth.

• Different collocated sites with different observation technology have different sensitivi-
ties to the transformation parameters. Which result in that the residuals for different sites
have quite different directions.

• The horizontal residuals and the height residuals estimated by CTLS are smaller than
estimated by LS. CTLS has proved itself to have obvious improvement for the accuracy
in ITRF realizations.



58

Chapter 5

Conclusion

The further study on Converted Total Least Squares method has been made with 3 main parts.
The first part compares the 2D and 3D transformation model with and without centering,
and their difference between LS and CTLS in application with coordinates transformation in
Baden-Württemberg. After that this thesis gives a complete introduction to Gauss-Helmert
model and finds out the connections with CTLS. The comparison is also made through the
application with coordinates transformation in Baden-Württemberg. The third part introduces
the International Terrestrial Reference Frame, with the main calculation and estimation steps
together with the data processing techniques and methods for each step. The transformation
among ITRF realizations with the weight information are estimated with LS and CTLS.

The results have been tested and discussed here. Based on these analyses and comparisons
with the 3 main parts of this thesis, the following points can be concluded:

• The transformation model has no difference with and without centering. However, for
the application by CTLS, when the observation equation contains the parameters that in-
dependent to observed values, it is not suitable to be applied. The Gauss-Helmert model
is still useful in the case.

• This notable development of the CTLS reveals that CTLS estimator is identical to Gauss-
Helmert model estimator in dealing with EIV models, especially in the case of coordinate
transformation.

• Successful application to the estimation of the transformation parameters and related
transformed residuals among ITRF realization with obvious improvement of their accu-
racies.

As the study goes on, there are still some further considerations for the thesis:

• ITRF is a quite systematic and complex solution for the earth reference frame. Due to the
luck of the original data and the related software, the results in this article is based on the
general data provided by Dr. Altamimi. Further study has better to apply the original
data from collocated sites and to improve the solutions of ITRF.

• CTLS has proved itself in many kinds of cases in coordinate transformation. Further
study can be performed for the other applications.
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