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Zusammenfassung

Kurz nach der erfolgreichen Verflüssigung Heliums im Jahr 1908 [86], die die Tieftemperaturphysik
revolutionieren und Zugang zu vormals unerreichbaren Temperaturen und Energieskalen ermöglichen
sollte, wurde Heike Kammerlingh Onnes eine zweite Entdeckung zuteil, die einen Meilenstein der Phy-
sik darstellte und gleichzeitig ein komplett neues Forschungsfeld eröffnete. Im Jahr 1911 entdeckte er,
dass der Gleichstromwiderstand von Quecksilber verschwindet, sobald es unter eine Temperatur von
4.2K gekühlt wird [87]: Die Supraleitung war entdeckt worden.

Supraleitung zieht zwei makroskopische Phänomene nach sich: Den verlustfreien Transport von
Gleichstrom und idealen Diamagnetismus, also das Verdrängen eines extern angelegten Magnetfel-
des aus dem Supraleiter. Die mikroskopische Erklärung der Supraleitung und, damit einhergehend,
dieser beiden der menschlichen Intuition widersprechenden Eigenschaften sollte jedoch 4 weitere Jahr-
zehnte dauern, bis sie schließlich von Bardeen, Cooper und Schrieffer entwickelt wurde [7, 23]. Die
BCS-Theorie, deren Namen sich aus denen ihrer Erfinder ableitet, stellt immer noch die Grundla-
ge unseres Verständnisses der Supraleitung dar. Die wichtigsten Aspekte der BCS-Theorie sind die
Bildung sogenannter Cooper-Paare, zwei gebundene Elektronen, die die Coulomb-Abstoßung durch
phononische Wechselwirkung mit dem Kristallgitter überwinden und eine Energielücke, die aus der
Bindungsenergie eben jener Elektronenpaare hervorgeht. Der Gesamtdrehimpuls eines Cooper-Paares,
der im konventionellen Falle 0 ist (s-Wellen-Symmetrie, nach der Nomenklatur von Atomorbitalen),
bestimmt auch die Form der Energielücke im Impulsraum. Sie ist isotrop in konventionellen s-Wellen-
Supraleitern.

Zwischenzeitlich war ein Blumenstrauß dieser BCS-Supraleiter entdeckt worden, als Frank Steglich
et al. im Jahre 1979 feststellten, dass CeCu2Si2 einen supraleitenden Phasenübergang vollführt, wenn
es unter 0.5K gekühlt wird [111]. Diese Entdeckung stellte einen Paradigmenwechsel in der Supralei-
tungsforschung dar: In konventionellen Supraleitern ist verzögerte Elektron-Photon-Wechselwirkung
für die Vermittlung von Supraleitung verantwortlich.
CeCu2Si2 jedoch ist ein Schwere-Fermionen-Material, in dem sich Elektronen verhalten als wären sie
mehrere Größenordnungen schwerer als die reine Elektronenmasse. Da schwere Elektronen langsam
sind, weicht die verzögerte einer quasi instantanen Wechselwirkung zwischen Elektronen und Phono-
nen, was diese Art der Vermittlung letztlich ausschließt. Darüber hinaus wurde ein unerwartet hoher
Wert des Sommerfeld-Koeffizienten der temperaturabhängigen spezifischen Wärme für T → 0 gemes-
sen, was darauf hindeutet, dass sich die von der BCS-Theorie vorhergesagte Energielücke nicht voll
entwickelt [11, 111], sondern eine Anisotropie nahelegt und daher den Ausdruck d-Wellen-Symmetrie
prägte. So entstand die Idee der

”
lückenlosen“, unkonventionellen Supraleitung, bei der Quasiteilchen

durch das Aufbrechen von Cooper-Paaren sogar bei verschwindenden Temperaturen entstehen können.
In der Folge wurden mehr und mehr solcher unkonventioneller Supraleiter entdeckt, als Beispiel sei-
en Kuprate [9] und Eisenpniktide [52] genannt, die beide kritische Temperaturen deutlich über dem
McMillan-Limit von 28K aufweisen. Dieses Limit begrenzt die kritische Temperatur, die durch einfa-
che Elektron-Phonon-Wechselwirkung erreicht werden kann [73].

Obwohl der Fall in den Jahren nach der Entdeckung der Supraleitung in CeCu2Si2 geklärt schi-
en, brachten neue Ergebnisse Zweifel am Verständnis des Vermittlungsprozesses und der Symmetrie
der Energielücke auf. Diese Ergebnisse deuten auf eine verschwindende spezifische Wärme bei tief-
sten Temperaturen hin [57, 134], was ein konventionelles System impliziert. Mehr Indizien hierfür
liefern außerdem Messungen der thermischen Leitfähigkeit vor und nach dem Induzieren magnetischer
Unreinheiten durch Bestrahlung mit Elektronen, die mit d-Wellen-Supraleitung normalerweise unver-
einbar sind. Dies konnte hier jedoch nicht beobachtet werden: Die Supraleitung blieb auch nach der
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Bestrahlung bestehen [134].

Das Ziel dieser Arbeit ist dementsprechend die Klärung der Frage nach der Symmetrie der Ener-
gielücke in CeCu2Si2 mit den Mitteln der Mikrowellenspektroskopie. Die Rate, mit der die Qua-
siteilchen in Schwere-Fermionen-Materialien wie CeCu2Si2 gestreut werden, beträgt für gewöhnlich
einige Gigahertz [99–102] und liegt damit mitten im Bereich der Mikrowellen, was die Mikrowellen-
spektroskopie zum handlichsten Werkzeug für die Erforschung des Ladungstransports in dieser Ma-
terialklasse macht. Dies wurde schon erfolgreich bei Hochtemperatursupraleitern wie den Kupraten
durchgeführt [15, 16], die als Paradebeispiele für d-Wellen-Supraleiter angesehen werden. Es war da-
her angezeigt, Untersuchungen mittels Mikrowellenspektroskopie auf Schwere-Fermionen-Materialien
auszuweiten, was ebenfalls zu großen Erfolgen führte [103,123,124,126].
Die Mikrowellenspektroskopie ist ein sehr mächtiges Werkzeug, um den Ladungstransport in Supralei-
tern zu erforschen, da sie nicht nur das Spektrum der Anregungen der Quasiteilchen durch Aufbrechen
von Cooper-Paaren (sei es intrinsisch oder durch Defekte im Kristallgitter) zu vermessen vermag, son-
dern gleichzeitig einen Einblick in die supraleitenden Elektronen gewährt, was wiederum Aufschluss
über die Eindringtiefe des elektromagnetischen Feldes liefert [128]. Diese wiederum ist eng mit der
Symmetrie der Energielücke verknüpft.

Diese Arbeit setzt dabei auf die Störung von Hohlraumresonatoren durch Einführen der Probe, um
die elektrische Leitfähigkeit von CeCu2Si2 zu enthüllen. Die Vorteile dieser Methode bestehen in der
hohen relativen Genauigkeit und der Tatsache, dass die Messung selbst kontaktlos erfolgt, was eine
mögliche Fehlerquelle durch schlechte Kontakte eliminiert.

Das Mikrowellenexperiment ergab eine London’sche Eindringtiefe unserer Probe von λ0 = 1486 nm.
Vom unkondensierten spektralen Gewicht, das mindestens 19% des gesamten spektralen Gewichtes
ausmacht, bestimmen wir die Eindringtiefe des reinen Materials zu λ00 = 1324 nm.
In Anbetracht des Nicht-BCS-Peaks in σ1, des kupratähnlichen Verhaltens bei Tc

2 , der großen Menge
unkondensierten spektralen Gewichts für T → 0, das in Abbildung 5.4 dargestellt wird, zusammen mit
dem quadratischen Verhalten der suprafluiden Dichte bei tiefen Temperaturen müssen wir schließen,
dass CeCu2Si2 in der Tat ein d-Wellen-Supraleiter ist.

Weitere Hinweise hierauf finden sich ebenfalls in anderen Studien, die Messungen von spezifischer
Wärme, Eindringtiefe, NMR, NQR, inelastischer Neutronenstreuung und Myonen-Spin-Rotation um-
fassen.

Andererseits gibt es auch Daten, die unsere Ansicht herausfordern, diese Widersprüchlichkeiten
können aber entweder umgangen werden, wie es der Fall für Messungen der spezifischen Wärme ist, die
völlig andere Areale der Fermi-Fläche mit stark schwankender effektiver Masse umfasst oder sie können
im Rahmen von Phänomenen wie der Elektron-Phonon-Entkopplung (thermische Leitfähigkeit) oder
der Möglichkeit der Selbst-Heizung durch hohe Leistungen beim Messvorgang (Eindringtiefe) aufgelöst
werden.
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1. Motivation

Shortly after having been the person to revolutionize low-temperature physics by liquefying helium for
the first time, in 1908 [86], granting access to heretofore unreachable temperatures and energy scales,
Heike Kammerlingh Onnes also made another discovery that should pave the way for an entirely new
research area in physics. In 1911, he discovered that the dc resistivity of mercury would decrease to
immeasurably small values if one were to cool it below a temperature of 4.2K [87]: Superconductivity
was discovered.

Superconductivity involves two macroscopic phenomena: The lossless transport of direct currents
and ideal diamagnetism, thus perfectly expelling an externally applied magnetic field. The micro-
scopic explanation of superconductivity and, hence, of these two very counterintuitive features should
take another 4 decades until it was finally given by Bardeen, Cooper, and Schrieffer [7, 23]. It was
named BCS theory after its inventors and still forms the very basis for our understanding of super-
conductivity even to this day. The most crucial aspects of BCS theory are the formation of so-called
Cooper pairs, two bound electrons that overcome the Coulomb repulsion by phononic interaction with
the crystal lattice, and an energy gap that arises from the binding energy of said pairs. The total
angular momentum of a Cooper pair is 0 in the conventional case (“s-wave symmetry”, analogously to
the angular momentum of atomic orbitals) and determines the form of the energy gap in momentum
space. It is isotropic in conventional s-wave superconductors.

Meanwhile, a plethora of these BCS superconductors had been found when, in 1979, Frank Steglich
et al. discovered CeCu2Si2 to go superconducting around 0.5K [111]. This discovery marked a change
of paradigm in the research field of superconductivity: In conventional superconductors, retarded
electron-phonon interaction is responsible for the mediation of superconductivity. CeCu2Si2, on the
other hand, is a heavy-fermion material in which electrons behave as if they were several orders of mag-
nitude heavier than the bare electron mass. Since heavy electrons are slow, the much needed retarda-
tion gives way to an immediate interaction between electrons and phonons which excludes this type of
mediation. What is more, an unexpectedly large Sommerfeld coefficient of the temperature-dependent
specific heat pointed toward the energy gap predicted by BCS theory not fully developing [11, 111],
thus implying an angular dependence of the gap function and coining the term d-wave symmetry. This
gave rise to the idea of “gapless”, unconventional superconductivity where quasiparticles stemming
from pair-breaking exist even close to vanishing temperatures. Subsequently, more unconventional
superconductors such as cuprates [9] and, more recently, iron pnictides [52] were discovered, both of
which comprise materials with critical temperatures well above the McMillan limit of 28K that puts
an upper bound on the critical temperature that can be achieved by conventional electron-phonon
interaction [73].

While the case seemed clear after the discovery of CeCu2Si2 to be a superconductor, more recent
data challenge our understanding of the mediation process and its pairing symmetry. These data hint
toward a vanishing specific heat at lowest temperatures [57, 134] which implies a conventional fully
gapped system. More evidence for this comes from thermal-conductivity measurements both with and
without the presence of impurities induced by electron irradiation, which is known to destroy uncon-
ventional superconductivity [134]. Here, this was not the case, again casting doubt on our picture of
the pairing process in CeCu2Si2.

The goal of this thesis is therefore to resolve the long-standing question of the pairing process in
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CeCu2Si2 by the means of microwave spectroscopy. Typically, the rate at which quasiparticles in
heavy-fermion materials like CeCu2Si2 are scattered lies in the range of several GHz [25, 99–102],
well in the microwave regime, making microwave spectroscopy the most convenient tool for exploring
the charge dynamics of said class of materials. Since it has also been giving insight into the pairing
symmetry of high-Tc cuprates [15,16], which are prime examples of unconventional (d-wave) supercon-
ductors, it was only reasonable to extend microwave spectroscopy to heavy-fermion superconductors
which also lead to great success [25,103,123,124,126].
Microwave spectroscopy is an extremely powerful tool to explore a superconductor’s charge dynamics
since it can directly probe its quasiparticle excitation spectrum stemming from pair-breaking (be it
intrinsic or from defects) that mainly contributes to the conductivity’s real part. Moreover, it can
access the superconducting electrons that dominate the imaginary part, in turn giving insight into the
penetration depth of the electromagnetic field [128] which is strongly connected to the superconduct-
ing gap parameter.

This work uses cavity-perturbation methods to reveal the microwave conductivity of CeCu2Si2 due
to the high relative accuracy and the fact that the measurement is entirely contactless, eliminating a
possible source of errors due to poor contact quality.

This thesis is divided into four sections: The Introduction gives an overview of light-matter in-
teraction, the definition of the complex surface impedance from which the complex conductivity can
be calculated, heavy-fermion materials and superconductors in general together with a summary of
previous work that has been carried out on CeCu2Si2. After that, the experimental setup—dilution
refrigeration, the resonators, the principles of cavity perturbation, and the sample itself—is described
followed by an explanation of the data processing procedure that was developed to obtain bulk con-
ductivity data. Lastly, the results are presented and discussed and an outlook as to what further
research on CeCu2Si2 should comprise is given.
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2. Introduction

This chapter will outline the mathematical groundwork that is necessary to understand the underly-
ing electrodynamics of superconductivity. An expression for the surface impedance is derived from
Maxwell’s equations before an explanation of superconductivity is given. Various more and more
advanced models are used to do so. These, however, fail to explain unconventional superconductivity
whose phenomenology is described thereafter. Eventually, previous research that has been performed
on the heavy-fermion material CeCu2Si2 is reviewed.

2.1. Light-matter interaction and response functions

While the behavior of light in vacuum no longer holds a lot of interesting physics to discover, light-
matter interaction provides a plethora of highly interesting phenomena thousands of physicists around
the world are working on. The most fundamental work was carried out by James Clerk Maxwell well
over a century ago. The set of equations named after him reads

∇× H⃗ = J⃗ free +
∂

∂t
D⃗, Ampère–Maxwell law (2.1)

∇ · B⃗ = 0, Gauss’s law for magnetism (2.2)

∇× E⃗ = − ∂

∂t
B⃗, Faraday’s law (2.3)

∇ · D⃗ = ρfree, Gauss’s law (2.4)

with the magnetic field H⃗, the electric field E⃗, the magnetic flux density B⃗, the current density caused
by the free charge carriers J⃗ free, their charge density ρfree, and the displacement field D⃗.

In order to derive the wave equation from these, the material equations are necessary:

J⃗ free = σ1E⃗, Ohm’s law1 (2.5)

D⃗ = ε0ε1E⃗, (2.6)

B⃗ = µ0µ1H⃗. (2.7)

Here, σ1 describes the fraction of electrical conductivity caused by free charge carriers, ε0 is the
vacuum permittivity, ε1 the dielectric constant, µ0 the vacuum permeability, and µ1 is the magnetic
permeability.

Considering the curl of the Ampère–Maxwell law (2.1) and inserting Equations (2.5) through (2.7)

1assuming local electrodynamics, meaning that l, ξ0 ≪ λ, where l is the mean free path, ξ0 is the coherence length, and
the London penetration depth λ0
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16 2.1. Light-matter interaction and response functions

yields

∇×
(︂
∇× H⃗

)︂
= ∇× J⃗ free +

∂

∂t

(︂
∇× D⃗

)︂
(2.8)

⇔ ∇
(︂
∇ · H⃗

)︂
⏞ ⏟⏟ ⏞

(2.2)
= 0

−∆H⃗ = σ1

(︂
∇× E⃗

)︂
+

∂

∂t

(︂
∇× ε0ε1E⃗

)︂
(2.9)

⇔ ∆H⃗ = σ1
∂

∂t
B⃗ + ε0ε1

∂2

∂t2
B⃗ (2.10)

⇔ ∆H⃗ = µ0µ1σ1
∂

∂t
H⃗ + µ0µ1ε0ε1

∂2

∂t2
H⃗ (2.11)

There is also a wave equation for the electric field E⃗ that can be derived analogously. As an ansatz
to solve the wave equation in one dimension, we shall choose plane waves

H⃗(x, t) = H⃗0 exp (i (kx− ωt)) (2.12)

with the wave’s amplitude H⃗0, the wavenumber k, its position x and the angular frequency ω. Inserting
this ansatz and evaluating the derivatives leads to the dispersion relation

−k2H⃗ = −ω2
(︂
i
µ0µ1σ1

ω
+ µ0µ1ε0ε1

)︂
H⃗ (2.13)

⇒ k2 = ω2µ0µ1ε0

(︃
ε1 + i

σ1
ωε0⏞⏟⏟⏞
=ε2

)︃
(2.14)

2

⇔ k = ±ω

c

√︄
µ1

(︃
ε1 + iε2

)︃
. (2.15)

We have now introduced ε2 = σ1
ωε0

, making ε = ε1 + iε2 a complex, frequency-dependent response
function. Since k is a complex number as well, we can separate it into real and imaginary part so that
k = k1 + ik2 = ω

c (κ1 + iκ2). The consequences become obvious when feeding k back into our plane
wave ansatz:

H⃗(x, t) = H⃗0 exp
(︂
i
(︂ω
c
(κ1 + iκ2)x− ωt

)︂)︂
(2.16)

= H⃗0 exp
(︂
i
(︂ω
c
κ1x− ωt

)︂)︂
exp

(︂
−ω

c
κ2x
)︂
. (2.17)

The second exponential function describes an envelope function that makes the wave’s amplitude de-
creasing exponentially upon penetrating a material. We neglect the k with negative sign in Equation
(2.15) as unphysical since this would lead to the wave’s amplitude increasing exponentially upon en-
tering a material.

Equation (2.17) enables us to define a characteristic length scale

δ0 =
c

ωκ2

σ1≫|σ2|
=

√︃
2

µ0σ1ω
(2.18)

that is called the penetration depth and marks the length at which the amplitude has dropped to 1
e of

its initial value when entering the material. Equation (2.18) indicates that the majority of the charge
transport happens close to the surface of a material and is hence called skin effect. The condition
σ1 ≫ |σ2| usually holds for normal metals when probed with low frequencies.

2with the speed of light c = 1√
µ0ε0

André Haug



2.2. Surface impedance 17

As follows from Maxwell’s equations together with the material equations, the dielectric function ε
and the conductivity σ are related by

ε = 1 + i
1

ωε0
σ. (2.19)

Measuring either is therefore sufficient to gain knowledge of the material’s entire charge dynamics.

2.2. Surface impedance

An expression for the surface impedance of a material follows from Faraday’s law (2.3) together with
our solution of the wave equation:

∇× E⃗ = − ∂

∂t
B⃗ (2.20)

⇒ i
(︂
k⃗ × E⃗

)︂
= iωµ0µ1H⃗ (2.21)

k⃗⊥E⃗⊥H⃗⇒ kE = ωµ0µ1H (2.22)

The surface impedance is defined as the ratio of the fields E⃗ and H⃗. It is therefore

ZS = RS + iXS =
E

H
=

ωµ0µ1

k
=

√︃
µ0

ε0

√︃
µ1

ε
, (2.23)

with the vacuum impedance Z0 =
√︂

µ0

ε0
= 377Ω where µ1 = ε = 1. The complex surface impedance

ZS consists of the surface resistance RS and the surface reactance XS and is a response function as well.

In a metal, where usually |ε1| ≫ 1, ZS can be written as

ZS ≈
√︃

iωµ0

σ
, (2.24)

allowing us to directly calculate the microwave conductivity from surface impedance measurements.
The experimental approach we used to measure the data that were evaluated for the results presented
in this thesis measures both the real and imaginary part of ZS. It can therefore be convenient to
separate Equation (2.24) into real and imaginary part. The surface resistance and reactance are

RS =
√
ωµ0µ1

√︄√︁
σ2
1 + σ2

2 − σ2
σ2
1 + σ2

2

and (2.25)

XS =
√
ωµ0µ1

√︄√︁
σ2
1 + σ2

2 + σ2
σ2
1 + σ2

2

, (2.26)

respectively. If the condition σ1 ≫ |σ2| holds, RS and XS will have identical absolute values. This
is the case for metals at frequencies well below the plasma frequency which will later become an
important part of the data analysis [29].

2.3. Superconductivity

After starting with a purely phenomenological description by London and London which is laid out
in the first part of this chapter, the two-fluid model covered in the second one delivered a suitable de-
scription (yet no explanation) of superconductivity. It took another two decades to find a microscopic
theory: BCS theory, named after its inventors Bardeen, Cooper and Schrieffer. A brief description
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18 2.3. Superconductivity

is found in the third part. Beyond the limits of conventional BCS theory are the unconventional
superconductors like cuprates, pnictides and heavy-fermion materials. While the former cover high-
Tc superconductors, the latter usually have to be cooled down to sub-kelvin temperatures to exhibit
superconductivity.

2.3.1. London equations

There are two properties a material has to show in order to be called a superconductor. Firstly, the
electrical resistivity has to drop abruptly to zero upon cooling through its critical temperature Tc,
enabling it to conduct dc currents without loss. Secondly, a macroscopic superconductor is at the
same time an ideal diamagnet. This means that an externally applied magnetic field is completely
expelled from inside the material and is called Meissner–Ochsenfeld effect, after its discoverers [74].

London theory tries to describe these phenomena by the means of quantum mechanics. For the
superconducting state, an effective wave function

Ψ(r⃗) =
√
ns exp (iϑ(r⃗)) (2.27)

normalized to the superconducting electron density ns is assumed. The choice of only one wave func-
tion to describe the superconducting electrons makes two crucial implications: Firstly, some kind of
electron pairing process has to occur when cooling through Tc or the Pauli exclusion principle would
otherwise not allow for a single wave function to describe several electrons. Secondly, since we are
already dealing with paired electrons, it is only reasonable to assume that the ground state is some-
what robust against external perturbations. Consequently, there has to be an energy gap that has to
be overcome in order to break an electron pair.

The quantum mechanical supercurrent density reads

J⃗ s = i
eℏ
2me

(Ψ∗∇Ψ−Ψ∇Ψ∗) . (2.28)

Applying an external electrical field E⃗ results in an effective electrical field consisting of both the
actual external one and the gradient of the chemical potential µ. The effective field is therefore

E⃗eff = E⃗ +∇µ

e
(2.29)

= −∂A⃗

∂t
+∇µ

e
(2.30)

when expressing E⃗ through the vector potential A⃗. The supercurrent density in the presence of the
electromagnetic field is

J⃗ s = i
eℏ
2m

(Ψ∗∇Ψ−Ψ∇Ψ∗)− 2e2

m
ΨΨ∗A⃗ (2.31)

and, together with Equation (2.27), results in

J⃗ s = −nse
2

m

(︃
ℏ
2e

∇ϑ+ A⃗

)︃
. (2.32)

Taking the time derivative or the curl results in the two equations

d

dt
J⃗ s =

nse
2

m
E⃗ (2.33)
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2.3. Superconductivity 19

and

∇× J⃗ s = −nse
2

m
B⃗, (2.34)

respectively.

These are called the London equations and mark the first phenomenologically accurate description
of a superconductor’s behavior. The first equation tells us that in a superconductor, its time derivative
rather than the current density itself is proportional to an externally applied electric field, meaning
that a once induced current will not fade so long as there is no field applied.
The second London equation can be turned into a screening equation when the Ampère–Maxwell law
(2.1) is used to express the current density through a magnetic flux density so that

∆B⃗ = −nse
2µ0

m
B⃗ =

B⃗

λ2
0

. (2.35)

The consequences are obvious: Upon entering a superconductor, the magnetic flux density (and the
magnetic field) drops exponentially over a length scale that is given by λ0, the so-called London
penetration depth. Note that the field does not drop to zero instantly since this would mean that the
magnetic field is no longer continuous [16,29,132].

2.3.2. The two-fluid model

The purely phenomenological London theory is surpassed by the two-fluid model. It assumes that
upon entering the superconducting phase, two fluids form inside the material, one of which contains
the normal electrons that remain in the normal state and one that contains the electrons that carry
the supercurrent. The fractions of electrons being in either state are represented by 1 = fs + fn, with
fs being the superconducting electrons and the electrons that remain in the normal state fn.

Fourier transforming the first London equation yields

J⃗ = −i
1

ω

nse
2

m
E⃗, (2.36)

and, by comparing this with Ohm’s law, it becomes apparent that

σs = −i
1

ω

nse
2

m
. (2.37)

The superfluid therefore only contributes to the imaginary part of the conductivity. The normal
conducting part is said to be described by a Drude model

σn =
nne

2

m

1
1
τ + iω

(2.38)

with the time between two scattering events τ . The total conductivity now reads

σ =
ne2

m

(︄
−i

fs
iω

+
fn

1
τ + iω

)︄
(2.39)

with the total electron density n. This marks the first time we are actually capable of connecting
superconductivity to a mathematical expression for the electrical conductivity. The two-fluid model
also connects superfluid fraction and the experimentally accessible magnetic penetration depth λ:

fs(T ) =
λ(T = 0)2

λ(T )2
. (2.40)
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20 2.3. Superconductivity

In a clean system at zero temperature, all the electrons are said to be part of the superfluid (fs(T =
0) = 1). This does not hold in the presence of a significant amount of impurities since these will
induce pair-breaking by scattering processes, causing the superfluid fraction to not become unity even
at vanishing temperatures. As temperature is increased, the superfluid fraction drops according to
Equation (2.40), eventually vanishing at Tc (fs(T = Tc) = 0) [16,132].

2.3.3. BCS theory

Some twenty years later, BCS theory was published. It is the first theory to deliver a microscopic
quantum mechanical explanation of conventional superconductivity. Early experiments showed that
there is an isotope effect that lowers Tc when replacing ions in a solid with their heavier isotopes. This
gave rise to the idea that phonons must play a leading role in the pairing process of the electron pairs
to overcome the intrinsic repulsive force caused by Coulomb interaction. The intuitive explanation for
the electron-phonon-electron interaction goes as follows: An electron moving through the solid causes
a lattice distortion that in turn causes an overscreening of the repulsive Coulomb force. Another
electron is attracted by the distorted lattice and therefore follows the first electron, effectively forming
an electron pair as found by Cooper in 1956 [23], thus these pairs were henceforth called Cooper
pairs. Just one year later, Bardeen, Cooper, and Schrieffer published BCS theory [7] which delivers
the microscopic explanation of s-wave superconductivity.

Starting from the Fermi sea in second quantization,∏︂
k<kF

(︂
c†
k⃗,↑

c†
−k⃗,↓

)︂
|0⟩ , (2.41)

with the creation operators c† and the vacuum state |0⟩, one can introduce the BCS ground state

|BCS⟩ =
∏︂
k⃗

(︂
u
k⃗
+ exp (iϑ) v

k⃗
c†
k⃗+s⃗,↑

c†
−k⃗+s⃗,↓

)︂
|0⟩ , u

k⃗
, v

k⃗
∈ R (2.42)

that creates electron pairs with momentum 2ℏs⃗. The square of the parameters u
k⃗
and v

k⃗
determine

the probability whether a momentum pair state is empty or full, respectively. Note that we have kept
the idea that there is a global phase exp (iϑ) throughout the entire superconducting phase.

A possible wave function for two bound electrons is

ϕ(|r⃗1 − r⃗2|) exp (is⃗(r⃗1 + r⃗2) + iϑ)
1√
2
(↑↓ − ↓↑), (2.43)

which, after a Fourier transformation in second quantization, can be rewritten as

exp (iϑ)
∑︂
k⃗

(︂
ϕ
k⃗
c†
k⃗+s⃗,↑

c†
−k⃗+s⃗,↓

)︂
|0⟩ . (2.44)

This is an example for a wave function of an s-wave superconductor since ϕ only depends on the
absolute value of the motion of the pair’s center of mass.

One thing to keep in mind is that we are still dealing with fermions. At first sight, this does
not allow us to treat all the electrons in the solid with the same wave function but since Equation
(2.44) describes two particles we can avoid this problem by regarding a pair of fermions as a boson to
circumvent the Pauli exclusion principle and write down a state for a Bose condensate that consists
of N electron pairs:

1√
N !

exp (iNϑ)

⎡⎣∑︂
k⃗

ϕ
k⃗
c†
k⃗+s⃗,↑

c†
−k⃗+s⃗,↓

⎤⎦N

|0⟩ . (2.45)
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Despite undermining the Pauli exclusion principle with this interpretation, its influence still becomes
apparent in nature. Due to the low energies scales on which the Cooper pairs exist—a Cooper pair’s
energy is usually well below the Fermi energy3—they occupy only very little volume in momentum
space. In return, their dimensions in real space are quite considerable and they are thus overlapping
with one another so strongly that an energy shift has to take place in order to enable the electrons to
occupy a sufficient number of states so that the exclusion principle is satisfied to a degree where the
Cooper pairs can coexist. This leads to Equation (2.45) not being the true state of the superconductor,
yet it is sufficiently close to the true one and yields surprisingly good results. Another consequence of
this energy shift is that the energy necessary to break a Cooper pair also depends on the number of
Cooper pairs that are already condensed.

BCS theory also makes an estimate of the aforementioned energy that is gained when forming a
Cooper pair. It is obviously equivalent to the energy that is necessary to break the very same pair
and is thus called the gap energy. To this end, the expectation value of the energy of |BCS⟩ has to be
calculated. The result yields the single-particle excitation spectrum

E
k⃗
=
√︂
ε2
k⃗
+∆2

k⃗
(2.46)

with the gap energy ∆
k⃗
and the normal state band energy ε

k⃗
. These single-particle excitations are

the quasiparticles that the two-fluid model describes with its Drude term.

Conventional BCS theory predicts that the gap parameter ∆ is isotropic in momentum space what
is true for simple s-wave systems. It is obtained from the self-consistent gap equation

∆
k⃗
= −

∑︂
k⃗
′

∆
k⃗
′

2E
k⃗
′
V
k⃗k⃗

′ , (2.47)

its zero-temperature value is

∆0 = 1.76kBTc, (2.48)

where kB is the Boltzmann constant. The gap parameter’s temperature dependence in the vicinity of
Tc is

∆(T ) ≈ 1.74∆0

√︃
1− T

Tc
. (2.49)

BCS theory basically knows two different types of quasiparticle excitations. One is to add a Cooper pair
to the superfluid, the other is creating an electron- or hole-like excitation as in a conventional metal. As
for the pair excitations, we can define creation (S†) and annihilation (S) operators analogously to the
well-known fermionic ones. These act on states |N⟩ with N particles and add or destroy excitations,
respectively:

S† |N⟩ = |N + 1⟩ , (2.50)

S |N⟩ = |N − 1⟩ . (2.51)

It may seem as though we can add or destroy as many particles from the superfluid as desired but it is
important to remember that not all the Cooper pairs have exactly the same energy as in a true Bose
condensate. Still, this picture holds so long as there is not an unreasonable amount of quasiparticle
excitations destroyed or created.

3in a conventional superconductor (e. g. all elemental superconductors)
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Electron- and hole-like excitations much resemble their counterparts in a conventional metal. They
are described by the Bogoliubov operators

γ
k⃗↑ = u

k⃗
c
k⃗↑ − exp (iϑ) v

k⃗
c†
−k⃗↓

, (2.52)

γ†
k⃗↑

= u
k⃗
c†
k⃗↑

− exp (−iϑ) v
k⃗
c−k⃗↓, (2.53)

γ
k⃗↓ = u

k⃗
c
k⃗↑ + exp (iϑ) v

k⃗
c†
−k⃗↓

, (2.54)

γ†
k⃗↓

= u
k⃗
c†
k⃗↑

+ exp (−iϑ) v
k⃗
c−k⃗↓, (2.55)

which add or remove the momentum k⃗, spin ℏ
2 , and excitation energy E

k⃗
.

Upon increasing the temperature, one has to take into account thermally excited electron-like quasi-
particles. The state then becomes

∏︂
occ

(︂
γ†
k⃗,σ

)︂
|BCS⟩ (2.56)

where the product is carried out over all occupied states that follow the Fermi occupation number
fk = 1

exp
(︂

Ek
kBT

+1
)︂ .

Finally, let us have a look at the experimental side of things. At zero temperature, the dc conduc-
tivity is infinitely high and vanishes for finite frequencies before it sets on again as soon the material
is probed with a frequency high enough to break a Cooper pair, that is, ℏω = 2∆. At higher tem-
peratures, thermal excitations are present that somewhat loosen the tight boundaries in which the
conductivity is non-zero, eventually resulting in the behavior depicted in Figure 2.1.

σ

ω2∆

σ(T > Tc)

T

Figure 2.1.: Schematic drawing of the optical conductivity’s real part σ1(ω) of an s-wave superconductor at
different temperatures.

The heretofore constant density of states looks accordingly. The states that are not allowed anymore
due to the emergence of the gap are pushed aside which leads to two peaks on either side of the gap
where it diverges (Figure 2.2).
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E

f

EF −∆ EF +∆EF

thermally excited
quasiparticles

at T > 0

depleted
states

at T > 0

Figure 2.2.: Schematic drawing of the density of states f(E) of an s-wave superconductor. The total number
of states is conserved as marked by the shaded areas. Hatched areas mark occupied states. For
T = 0, only states with E < EF − ∆ are occupied. At finite temperatures, thermally excited
quasiparticles start to occupy states with E > EF +∆.

The superfluid density of an s-wave system follows an activated exponential behavior as it is pro-
portional to the inverse of the penetration depth [7, 132].
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Figure 2.3.: Superfluid density of niobium-doped SrTiO3, an s-wave superconductor, as measured by Thie-
mann et al. [123]. For low temperatures, it follows an activated exponential behavior ρs ∝
ρ0 − exp

(︂
− ∆

kBT

)︂
[105, p. 194].

2.3.4. Unconventional superconductivity

CeCu2Si2 was the first unconventional superconductor to be discovered, in 1979 [111]. We will limit
ourselves to d-wave systems here for the sake of simplicity. Contrary to the (conventional) s-wave case,
the electron pairing process is assumed to be mediated magnetically rather than being of phononic
nature [21, 78]. In fact, superconductivity in an s-wave system is destroyed when doped with atoms
that have a magnetic moment. A possible explanation of the emergence of magnetically mediated
superconductivity goes as follows:
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Consider two spins s⃗ and s⃗′, one of which causes an interaction field that induces a magnetization
m⃗(r⃗, t) = gms⃗′χm(r⃗, t) with the coupling strength parameter gm and the non-local magnetic suscep-
tibility χm. The so-induced field gmm⃗ acts on the second spin s⃗ such that the total magnetically
induced interaction reads Vmag = −g2ms⃗ · s⃗′χm(r⃗, t). The charge interaction potential of the particles
can be obtain analogously, it is Vchar = −ee′g2nχn(r⃗, t) with the charges e and e′, the strength of the
charge-charge coupling gn and the charge density susceptibility χn(r⃗, t). The total induced interaction
thus reads

Vind(r⃗, t) = −ee′g2nχn(r⃗, t)− s⃗ · s⃗′g2mχm(r⃗, t). (2.57)

While the charge-charge interaction is always repulsive and dominant especially in simple metals, the
latter term allows for an attractive interaction depending on the orientation of the spins that are
involved and may reach a significant order of magnitude close to magnetic instabilities such as anti-
ferromagnetism [78]. In fact, χm is peaked at or near the antiferromagnetic wavevector (πa ,

π
a ) in the

Brillouin zone, thus opening an attractive interaction channel if connecting two parts of the Fermi
surface where the gap has different signs [128].
The different pairing process and symmetry lead to important changes for the gap parameter, the
penetration depth and the conductivity that shall be discussed below. General (s-wave) BCS theory
fails to explain them accurately, and while significant progress has been made in recent decades, we
still lack an exhaustive theory for d-wave superconductivity.

The most striking difference between an s-wave and a d-wave system aside pairing mediation is
the nature of the gap parameter. While the s-wave gap described by BCS theory is isotropic in
momentum space, a d-wave system’s gap allows for an angular dependence. The different gaps are
labeled according to their form and the angular momentum of the electron pair, similar to atomic
orbitals. The angular dependence allows the gap parameter to vanish at certain points (point nodes)
or over a certain range (line nodes) which greatly changes the superconductor’s electronic response.

s-wave d-wave

Figure 2.4.: Comparison of the gap functions of an s-wave and a d-wave superconductor. A d-wave system’s
gap parameter allows for an angular dependence. What is more, it can even vanish at some points
(point nodes) or lines (line nodes) on the Fermi surface4(inner circles) and changes its sign from
positive (dark-blue) to negative (light-blue).

While, in an s-wave superconductor, the energy gap has to be matched or surpassed by the energy
of the electromagnetic wave with which the material is probed to excite quasiparticles5, this is not the
case for a d-wave system that has nodes. Thus, the conductivity is not equally zero until an energy of
2∆ is reached but quasiparticles are created (and annihilated) constantly. Upon reaching a frequency

4This strongly depends on the form of the Fermi surface itself.
5assuming that T = 0
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that corresponds to ∆ eventually, there is another slight feature in the conductivity [64]. However,
the exact form of the conductivity is not as generic as for the s-wave case since it strongly depends on
the amount and the type of scattering in the respective material. A study of the influence of different
types of scattering in LSCO, a cuprate superconductor, is found e. g. in Ref. [64].

The density of states changes accordingly, allowing for states in between EF −∆ and EF +∆.

E

f

EF −∆ EF +∆EF

Figure 2.5.: Schematic density of states for a d-wave superconductor. The presence of states where the gap
used to be allows for quasiparticle excitations with arbitrarily small frequencies.

The penetration depth that hitherto showed exponentially activated behavior now follows a T -linear
dependence for a clean d-wave system or has a quadratic temperature dependence if the system is dirty
as shown for the first time by Achkir et al. when doping YBa2Cu3O6.95 with zinc and comparing the
penetration depth before and after [2]. This makes penetration depth measurements favorable for
determining the pairing symmetry. However, while relative changes the in penetration depth can be
measured easily, the full picture usually requires the penetration depth at zero temperature that is
less easily accessible.

0.0 0.2 0.4 0.6 0.8 1.0
T
Tc

0.0

0.2

0.4

0.6

0.8

1.0

Su
pe

rfl
ui

d 
de

ns
ity

 (a
. u

.)

Figure 2.6.: Superfluid density ρs of an s-wave superconductor (grey, dashed), a clean d-wave system (light-
blue), a dirty d-wave system in the unitarity (grey, solid) and the Born limit (dark-blue). Detailed
discussions of the effect of scattering and impurities on the superfluid density are found in Refs.
[24, 63,64]
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2.4. Heavy-fermion materials

While the low-temperature behavior of metals is explained well by Landau–Fermi liquid theory, where
interactions cause electrons to behave as if they had effective masses m∗ ranging from 1 to 10 me,
where me is the bare electron mass, a number of key experiments hinted toward undiscovered physics.
The first one were specific-heat measurements, these usually follow C = γT + βT 3. In materials like
CeCu6, the Sommerfeld coefficient γ was found to be up to 1000 times greater than expected from
a normal metal. The second experiment are measurements of the magnetic susceptibility which, at
low temperatures, deviates from the expected Curie–Weiss law to become almost independent from
temperature, therefore being enhanced by a factor between 100 and 1000 over the expected values.
These results point toward the effective mass being of the order of 1000 me and were, at first sight,
thought to be incompatible with the rather small enhancements of m∗ predicted by Landau–Fermi
liquid theory.
What is more, the electrical resistivity as a function of temperature is not monotonic anymore but
exhibits a minimum at low temperatures before reaching a residual value as observed for the first
time by de Haas et al. [26] in metallic alloys with magnetic impurities and shown in Figure 2.7 for a
heavy-fermion system. Here, the minimum occurs as well, but the resistivity still vanishes for T → 0,
resulting in a maximum at even lower temperatures. This effect was named after Jun Kondo, the first
person to deliver its accurate theoretical description [59] for the case of magnetic impurities in metals.
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Figure 2.7.: Electrical resistivity of CeCu6 as measured by Ott et al. The Kondo effect becomes apparent in
the upturn before the sharp drop upon decreasing temperature. Data taken from Ref. [90].

Kondo’s motivation were the resistance minimum and a Curie–Weiss-like term at higher tempera-
tures which supposes that local magnetic moments play a leading role, the Kondo Hamiltonian reads

HK = Hc +Hv +Hsd. (2.58)

Hc =
∑︁

a⃗,σ εk⃗nk⃗,σ
are the non-interacting electrons with the number operator n

k⃗,σ
, Hv takes the

scattering stemming from isolated impurities into account and Hsd = JS⃗ · σ describes the magnetic
interaction with the coupling constant J , the spin S⃗ and the Pauli matrix σ. Yet this Hamiltonian is
hard to understand in the context of experimental data as shown in Figure 2.7 since, to second order,
the resulting resistivity rises monotonically with temperature. Kondo, however, extended calculations

to third order in Hsd, resulting in a term ρ ∝ − ln
(︂
kBT
D

)︂
where D denotes the conduction electron
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bandwidth. This term decreases with temperature and can therefore explain the observed behavior
in resistivity. Despite being able to explain the behavior at finite temperatures, this solution gives
rise to the so-called Kondo problem: The logarithmic term diverges at T = 0. Carrying out calcula-
tions to even higher order only substantiates this by making the resistivity diverge at the finite Kondo
temperature TK and it took over another decade to finally be resolved using non-perturbative methods.

The similarities among metals with magnetic impurities and materials such as CeCu6, namely the
behavior of electrical resistivity, specific heat and spin susceptibility, Fermi-liquid behavior at low
temperatures, and the presence of magnetic ions naturally gave rise to the idea that the underlying
physics might be similar. This resulted in the development of the model that does not treat single
magnetic ions in solids, but a whole lattice consisting of them as found in heavy-fermion compounds.
This model is hence called Kondo lattice model and reads [28]

H =
∑︂
k⃗,σ

ε
k⃗
n
k⃗,σ

+ J
∑︂
i

s⃗iS⃗i. (2.59)

The Kondo lattice Hamiltonian describes a competition between two different exchange interactions:
Firstly, the Kondo exchange interaction, a direct interaction between the magnetic moments of the
magnetic ions and the conduction band electrons and, secondly, the Rudermann–Kittel–Kasuya–
Yoshida (RKKY) interaction, a form of double exchange interaction that mediates interaction between
the localized moments among each other via the conduction band electrons’ localized moments.

In three dimensions, the periodic Anderson model [4] surpasses the Kondo lattice model, since, in
a lattice, the individual treatment of the magnetic ions seems naive, resulting in a natural limit of
the similarities of the Kondo effect and the heavy-fermion problem. The periodic Anderson model
takes the Coulomb repulsion U between lattice sites into account that correlates the motion of the f
electrons in the solid and coined the term “strongly correlated electron systems”; an exact solution to
this problem is still to be found. Mean-field solutions suggest that the energy levels of the f-shells are
renormalized such that the Fermi energy εF becomes Ef = µ+kBT

∗, where µ is the chemical potential
and T ∗ > 0, giving rise to a renormalization of the density of states

N(EF) ≈ N(εF)
D

kBT ∗ , (2.60)

where D denotes the strength of the renormalization. This renormalization process also affects the
mass and the Fermi velocity, resulting in heavy but slow quasiparticles as seen in heavy-fermion com-
pounds [110, p. 182 ff].

The optical response of heavy-fermion materials changes accordingly: A simple metal’s optical
conductivity is described by the Drude model

σ =
ne2

m

1

1 + iωτ
(2.61)

with the charge carrier density n, the elementary charge e, the electron mass m and the time between
two scattering processes τ [29, 98]. In heavy-fermion compounds such as CeCu2Si2 with the strongly
localized 4f electrons of the Ce ions on which the conduction band electrons are scattered, the Drude
model fails to deliver an accurate description of the charge carrier dynamics. Still, this does not render
the Drude model completely obsolete. Just as done above, we can renormalize its mass and relaxation
rate such that

1

τ∗
=

m

m∗
1

τ
, (2.62)

enabling us to accurately describe the conductivity in terms of this renormalized Drude model [30,99,
115].
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2.5.1. Early work

CeCu2Si2 exhibits a body-centered tetragonal crystal structure as depicted in Figure 2.8 and is known
to be a heavy-fermion material with an effective mass ranging from values as low as about 4me [48]
up to several hundreds [130] of the bare electron mass. This strongly depends on the part of the Fermi
surface being probed since it consists of heavy electron and light hole pockets [33,50,134]. While Ce’s
electron configuration is [Xe] 4f15d16s2, the Ce3+ ions occurring in CeCu2Si2 lack the three outermost
electrons, thus resulting in an electron configuration with strongly localized 4f electrons. The peri-
odicity of the Ce3+ ions forms a Kondo lattice with an exchange interaction JK that stems from the
coupling of conduction band electron spins and the local 4f shell.

Before CeCu2Si2 was discovered to be a superconductor, heavy-fermion materials were thought to
not show superconductivity at all. The reason for this lies in their very nature: The large effective
masses cause comparably small Fermi velocities, which in turn make the electron-phonon interaction
immediate rather than retarded as necessary for a conventional superconductor (“the heavy charge
carriers cannot escape their own polarization cloud” [115]).
Another important point is that the Ce3+ ions have a very strong magnetic moment. While s-wave
superconductivity is very robust against non-magnetic impurities, the opposite is the case for magnetic
ones due to the strong magnetic moments acting similarly as an externally applied field, thus actively
breaking Cooper pairs and preventing the manifestation of superconductivity [72]. This is a rather
oversimplified explanation, a more microscopic one that involves spin-flip processes when the localized
spins of the magnetic impurities S⃗ interact with the spins of the conduction electrons s⃗ has been
described by Abrikosov and Gor’kov [1].

Ce

Cu

Si

Figure 2.8.: Unit cell of CeCu2Si2 with its body-centered tetragonal crystal structure.

2.5.2. Experimental work

Things took a turn when Steglich et al. [111] discovered CeCu2Si2 to become superconducting when
cooled below a critical temperature of Tc = 0.5K. These astonishing findings surprised the research
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community and led to a whole lot of research being carried out on CeCu2Si2 while also coining the
term of “unconventional” superconductivity and serving as a stepping stone for the discovery of other
unconventional superconductors such as cuprates or iron pnictides.
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Figure 2.9.: Resistivity of CeCu2Si2 as measured by Steglich et al. The superconducting transition around
0.5K is obvious. Data taken from Ref. [111].

Shortly after, the emergence of superconductivity in CeCu2Si2 was verified by Aliev et al. [3]. They
were not able to observe the superconducting transition in monocrystalline samples without applying
a pressure of at least p = 0.9 kbar, though, because higher quality samples had yet to be grown.
This is supported by the transition temperature at which the transition from the normal into the
superconducting state took place: They found their samples to go superconducting—if at all—at
around Tc ≈ 70mK whereas newer samples reportedly turn superconducting between 600mK and
700mK [106]. The phenomenon of superconductivity in CeCu2Si2 was again confirmed by several
other groups in subsequent years after its initial observation [8, 11,88,95,104].

The above-mentioned variance among samples aroused interest as well, entailing research conducted
on stoichiometry and crystal growth. Sometimes even samples from the same batch would not show
the same behavior upon varying temperature [11]. At first, this was thought to be connected to the
pressure-dependent behavior of CeCu2Si2: Due to the anisotropic thermal expansion resulting from
the crystal’s symmetry, intercrystalline forces were suspected to induce pressures high enough to make
the entire crystal go superconducting, for it was known that under pressure, superconductivity in
CeCu2Si2 was rather easy to achieve as previously shown [3, 65, 66, 125]. Another tuning parameter
for superconductivity is stoichiometry. When having a closer look at the samples, it became apparent
that samples that deviate from the perfect 1:2:2 stoichiometry would not exhibit superconductivity
due to a lack of copper occupation of up to 20% which can be circumvented by growing CeCu2Si2
with an excess of copper to later achieve the correct stoichiometry [89]. It is now known that even
better sample quality is reached when growing the single-crystals with excess Ce [106] just like the
samples used for this work.

In 1988, almost 10 years after the discovery of superconductivity in CeCu2Si2, this puzzle was
resolved. The differences in stoichiometry cause CeCu2Si2 to undergo different phase transitions
into either the superconducting (S-type), an antiferromagnetic (A-type) or a mixed (A/S-type) state
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[17, 36, 82, 112, 113, 129], pointing toward a competition of superconductivity and antiferromagnetism
[70] that is very sensitive to stoichiometry [34]. What is more, a quantum critical point (QCP) is
assumed to be correlated with the fading of the antiferromagnetic phase [6, 36, 37, 55, 129, 133]. The
according phase diagram is shown in Figure 2.10.
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Figure 2.10.: Phase diagram of CeCu2Si2 with a tuning parameter g (e. g. stoichiometry or pressure) and the
location of the quantum critical point (QCP) suspected to lie beneath the superconducting phase.
TN is the material’s Néel temperature and Tc the critical temperature at which superconductivity
sets in. At low pressures, spin fluctuations (SFs) supposedly are responsible for superconductivity
whereas valence fluctuations (VFs) act as glue at high pressures. Based on Refs. [107] and [119].

A link between spin excitations close to the QCP and superconductivity was made by several
groups [46,66,117,119,120,135] whose data indicated a correlation between the behavior close to the
QCP and superconductivity. More and more the idea emerged that in such materials, superconductiv-
ity does not manifest despite, but because of magnetism being present. Evidence for this hypothesis
comes from inelastic neutron scattering. Stockert et al. performed inelastic neutron scattering on
CeCu2Si2, yielding interesting results shown in Figure 2.11: In the superconducting state, a magnetic
excitation gap is located at ℏωgap = 3.9kBTc that vanishes when entering the normal state regardless
of doing so by exceeding Tc or applying a magnetic field H > Hc2. Comparing the magnetic exchange
energy and the superconducting condensation energy suggests that antiferromagnetic excitations are
responsible for the Cooper pairing process in CeCu2Si2 [119]. Very similar results were obtained shortly
after by the same group: The magnetic excitation spectrum shows a gap in the superconducting state
that is not present in the normal state. Furthermore, since the empirically observed spin dynamics are
in good accordance with theory that describes spin density waves, this points toward the QCP being
of spin-density-wave nature and a spin-fluctuation coupling mechanism for the Cooper pairs [6].
A second candidate for a QCP was discoverd by Yuan et al. [135] using an ingenious method: They
substituted about 10% of the Si with Ge atoms which expands the crystal lattice and unit cell volume
and introduces a considerable amount of impurity scattering. Now, to isolate the effect of impurity
scattering, external hydrostatic pressure is applied to undo the lattice expansion, leaving a crystal very
similar to CeCu2Si2 but with more scattering-induced pair-breaking. Performing pressure-dependent
dc resistivity measurements revealed two disconnected superconducting domes, probably as a conse-
quence of impurity scattering together with an anisotropic order parameter. In pure CeCu2Si2, the
two superconducting domes connect to form a wide superconducting region as can be seen in Figure
2.10. This has also been observed by Holmes et al. [46] and Lengyel at al. [65] who could connect
superconductivity at high pressures to the Coulomb repulsion of between the 4f electrons and the con-
duction band ones, leading to valence fluctuations at the Ce sites to ultimately mediate the Cooper
pairing process.
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More insight into the pairing process is given by nuclear magnetic resonance (NMR) and quadrupole
resonance (NQR). An s-wave superconductor in the conventional BCS regime exhibits a fluctuation
peak in both the conductivity and the nuclear relaxation rate 1

T1
right below its critical temperature

that stems from the density of states causing a sharp rise of the scattering rate before it falls with
decreasing temperature and the fact that the scattering matrix element only shows little changes
when going through the transition into the superconducting state [132, p. 313f]. In CeCu2Si2, the
fluctuation peak in 1

T1
has never been observed in either NMR [53, 54, 56, 104] or NQR [35, 53] mea-

surements, indicative of a pairing mechanism that is fundamentally different from that occurring in
BCS superconductors.

Figure 2.11.: Neutron scattering data showing neutron intensity S = Sela + Sqe/ine,mag with the elastic com-
ponent Sela and the quasielastic/inelastic and magnetic contribution Sela/ine,mag as obtained by
Stockert et al. Solid and dashed lines are fits to the respective contributions. a Energy scans
of CeCu2Si2 in the superconducting state at the antiferromagnetic wave vector QAF versus data
taken at an arbitrary wave vector Qarb. Clearly, the data taken at QAF show an energy gap
at ℏω = 0.25meV. b Energy scans of CeCu2Si2 in the normal state at QAF. The gap has
vanished regardless of how the normal state has been reached. Taken from Ref. [119].

Other research conducted on CeCu2Si2 mainly comprised transport and specific-heat measurements.
After the wide acceptance that with CeCu2Si2, the research community had really found the first
heavy-fermion superconductor, more and more data became available very quickly.
Light was shed on the pairing symmetry for the first time by Bredl et al. [11] who performed magnetic-
field dependent specific-heat measurements and found that the Sommerfeld coefficient γ is non-zero
for some of their samples but shows values of up to 0.05 J

K2 mol
, deviating from the expected behavior

of a conventional superconductor. For an s-wave superconductor, γ is expected to be zero because
all the heat carriers are said to have condensed into the superfluid. In the presence of nodes, the
quasiparticles at zero temperature cause the specific heat to be finite. Upon applying a magnetic field,
the specific heat deviates from its T -linear behavior and rises sharply when cooling below 100mK due
to the heat capacity of the nuclei playing the leading role when Zeeman splitting sets in. In the normal
state, the heat capacity becomes ∝ γT − βT

3
2 as expected for a heavy-fermion material exposed to a

magnetic field close to Bc2 [36, 79, 113]. When occupying parts of the Ce sites with other materials
such as yttrium or lanthanum, both the Kondo lattice and superconductivity are destroyed, again
implying a connection between the two of them [12,13].
On the whole, many groups further investigated this material with transport and specific-heat mea-
surements [11–13, 34, 36, 46, 66, 69, 111, 117], all of which got to a similar conclusion: CeCu2Si2 is a
nodal d-wave superconductor.
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Figure 2.12.: Specific heat divided by temperature of CeCu2Si2 as measured by Bredl et al. For high temper-

atures above Tc, the typical heavy-fermion behavior in the absence of a magnetic field C
T ∝ −T

can be observed. Below the jump at the critical temperature Tc, the specific heat drops linearly
with temperature. Data taken from Ref. [13].

2.5.3. Theory

While the phenomenon of gapless superconductivity—in a sense that the gap does not develop com-
pletely across the Fermi surface, but there are regions where the gap parameter vanishes—had already
been discussed by Abrikosov and Gor’kov [1] and the emergence of states inside the forbidden region
in the density of states had been shown by Phillips [93], it took until 1984 for someone to come up
with a model for the pairing process in heavy-fermion superconductors.

Miyake et al. treated the pairing process of heavy-fermion materials in the framework of a tight-
binding model for the Kondo lattice, reading

HFL = −1

2

∑︂
<i,j>,σ

t
(︂
c†i,σcj,σ + h. c.

)︂
+
∑︂
i,σ

εc†i,σci,σ +
∑︂
i

Γ̃↑↓c
†
i,↑ci,↑c

†
i,↓ci,↓ (2.63)

with the annihilation (creation) operator c
(†)
i(j),σ of a heavy fermion with spin σ at the site i (j). The

energy at the respective site is ε and t is the hopping parameter, and Γ̃↑↓ is the intra-atomic repulsion.
Note that, in a Kondo lattice, both t and Γ̃↑↓ depend on the Kondo temperature TK. Taking the
interaction between fermions and phonons into account and assuming the lattice structure to be cubic
yields the self-consistent gap equation

∆
k⃗
= − 1

N

∑︂
k⃗
′

V
k⃗,k⃗

′(Γ̃↑↓)
∆

k⃗
k⃗
′

2E
k⃗
′
tanh

(︃
E

k⃗
′

2T

)︃
(2.64)

when considering singlet-pairing (s- or d-wave) only.
Interestingly, the d-wave case is energetically preferred in the weak-coupling limit (ε

k⃗
≫ ∆

k⃗
). As for

the strong-coupling limit (ε
k⃗
≪ ∆

k⃗
), it remains unclear whether the s-wave or d-wave are preferred

over one another. However, this work shows that, in general, it is possible that the strong on-site
repulsion can be overcome by nearest-neighbor interaction through the exchange of phonons [75–77].
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After more experimental data became available, the case for s-wave pairing was made by Chang-feng
et al. [19] since they could explain both the behavior of the nuclear relaxation rate and the specific-heat
data available at the time. Their point of view was soon supported by Kulić et al. who calculated the
specific heat to be proportional to T 2, the quasiparticle conductivity to T and the penetration depth λ
to be linear in temperature by the means of mean-field theory [60]. Despite d-wave pairing still being
possible, it was omitted for the s-wave case provided a much simpler explanation. Especially the two
latter quantities are of great interest since we can probe the conductivity directly and calculate the
penetration depth using microwave spectroscopy.

On the other hand, evidence for an anisotropic gap function is not scarce, either [20,33]. Especially
given that most of the previous work assumes a rather simple crystal structure together with single-
band conductivity. Eremin et al. could reproduce the resonance peak observed in inelastic neutron
scattering data in high-Tc cuprates [96], similar to the one observed in CeCu2Si2. To explore the
nature of the pairing symmetry of CeCu2Si2, they used a local-density approximation for the weakly
coupled conduction electrons while treating the (strongly coupled) 4f electrons with resonance-type
phase shifts. The so-obtained Fermi surface shows the bands of the heavy quasiparticles connected by
the wave vector Q⃗SDW = (0.22, 0.22, 0.52) as shown in Figure 2.13.

Figure 2.13.: Fermi surface of the heavy quasiparticles (that is, the heavy fermions) as calculated by Eremin
et al. [33].

For large momenta q⃗, the spin susceptibility within the random phase approximation that describes
the spin resonance mode seen in CeCu2Si2 [118] well is

χ(q⃗, ω) =
χ0(q⃗, ω)

1− Uq⃗χ0(q⃗, ω)
. (2.65)

Here, Uq⃗ is fermionic four-point vertex and χ0 denotes the heavy-quasiparticle susceptibility. Im(χ)
can show a jump in its imaginary part [80] that requires a sign change in the order parameter with
sgn(∆

k⃗
) = −sgn(∆

k⃗+q⃗
), incompatible with the concept of s-wave pairing symmetry [33]. Together

with the crystal-group symmetry of the tetragonal lattice in CeCu2Si2, most pairing symmetries can
be excluded, leaving an order parameter of

∆
k⃗
= ∆0 (cos (kxa)− cos (kya)) (2.66)

as being the most probable one. This corresponds to a dx2−y2 pairing symmetry.

André Haug



34 2.5. Review of CeCu2Si2

As for the ground state (A-, S- and A/S-type), the situation is believed to be less opaque. Starting
from a Hamiltonian for the Kondo lattice

HKL =
∑︂
i,j

tijc
†
iσcjσ +

∑︂
ij

IijS⃗iS⃗j +
1

2

∑︂
i

JKS⃗i c
†
i σ⃗ci⏞ ⏟⏟ ⏞
=2s⃗ci

, (2.67)

with the hopping parameter for a particle hopping from site j to site i, tij , the coupling constant of
nearest-neighbor spins Iij , and the Kondo interaction JK that denotes the strength of the coupling

between the localized 4f spins S⃗ and the conduction band electrons spins s⃗.
Depending on whether the RKKY interaction that mediates spin-spin interaction through conduction
electrons, or the Kondo interaction dominates at low temperatures, a magnetically ordered or an un-
ordered/superconducting state forms, respectively [115].

After about 40 years of research, the solid state community was somewhat convinced that they
were indeed dealing with a d-wave superconductor despite the symmetry and mediation of the pairing
process still not being a hundred percent resolved [112–116,119,120].

2.5.4. Recent publications

New specific-heat data caused a resumption of the debate when in 2014 Kittaka et al. published their
work on the field-dependent specific heat of CeCu2Si2 together with calculations of the band structure
and Fermi surface using LDA+U methods, where LDA is the well-known local density approximation
with a correction U stemming from the Hubbard model used to describe systems with strongly localized
electrons (see Figure 2.14).

Figure 2.14.: Specific heat over temperature of CeCu2Si2 as measured by Kittaka et al. Numbers on the left
denote the magnetic flux density in tesla at which the data were taken. The low-temperature,
zero-field data are not only deviating from the expected T -linear behavior but would also have
a negative intersection with the abscissa, resulting in a negative (unphysical) Sommerfeld coef-
ficient γ. Taken from Ref. [57].

Having a closer look at the data reveals two fundamental contradictions to the d-wave interpreta-
tion: Firstly, the zero-field data somewhat flattens at low temperatures whereas other specific-heat
measurements yielded a purely T -linear behavior of C

T , see e. g. Refs. [11, 12, 34, 69, 111]. What is
more, the best fit to the low-temperature data (0.04K < T < 0.15K) turns out to be

C

T
=

A

T
exp

(︃
−∆0

T

)︃
+ γ. (2.68)
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This roll-off at low temperatures makes it impossible to fit the data with a simple single-gap model, thus
pointing toward CeCu2Si2 being a multi-gap system. Assuming a two-gap system with ∆1 = 1.76kBTc

and ∆2 = 0.7kBTc indeed yields decent fit results, lending strong support to the multi-gap hypothe-
sis [57]. The field-dependent data are in line with this interpretation: At 0.06 and 0.1K, the specific
heat divided by T increases linearly with µ0H up to about 0.2T with a transition to another linear
H-dependence with a greater slope above 0.7T. At 0.2K, Ce

T has a linear H-dependence all the way

up to the critical field. This is in stark contrast to the
√
H-behavior expected for nodal single-gap

superconductors based on theoretical considerations [131].

These results were further substantiated by Yamashita et al. In addition to the work of Kittaka
et al. they used electron irradiation to induce point defects, mainly targeting Ce atoms due to their
large cross-section. The now significantly reduced mean free path is expected to quickly suppress
d-wave superconductivity upon dropping below the coherence length. However, this was not observed
in CeCu2Si2, thus demonstrating a certain robustness against impurities, indicative of s-wave pairing
[134].
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Figure 2.15.: Magnetic penetration depth of CeCu2Si2 as measured by several groups. The temperature
dependence of the absolute magnetic penetration depth λ is somewhat puzzling since it does not
resemble any of the models depicted in Figure 2.6. This could be attributed to the reference
value of λ0 since this quantity is hard to access experimentally. Data taken from Refs. [41, 42,
92,121,134] and converted to ∆λ(T ). Data of Pang et al. have been scaled by a factor of 10 for
better comparison.

Further investigations comprised the magnetic penetration depth. To this end, the temperature-
dependent change of the magnetic penetration depth ∆λ is measured. This marks a powerful method
to access the superconductor’s charge dynamics since it directly probes the superfluid and allows for
straightforward calculation of the superfluid density. Absolute values for λ(T ) are obtained using a
reference value for the London penetration depth λ0 in order to obtain λ(T ) values from the measured
∆λ(T ) data.
Earlier data were in good accordance with the d-wave interpretation [41,42], reporting λ(T ) to follow
a power-law ∝ Tα with α ≈ 2. These measurements were performed using symmetric superconducting
mutual inductance bridge circuits with an RF superconducting quantum interference device (SQUID)
[5, 40] to connect the change in penetration depth ∆λ(T ) stemming from a change of the sample
temperature to the change in its inductance. However, more recent data obtained using tunnel-diode
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oscillators [97], which measure the change in inductance as well, yet with a different approach, do not
fit either an s- or d-wave model [57, 92, 134]. Pang et al. repeated the magnetic penetration depth
measurements to find similar results as Kittaka et al. and Yamashita et al.: The magnetic penetration
depth and superfluid density cannot be described using a simple s- or d-wave model with an exponent
α ranging from 3 to 4. However, they went even further and found that a two-gap model (s + s as
well as d+ d) yields decent results. They again analyzed the specific-heat data of Kittaka et al. and
noticed that these can be described with a fully gapped d+ d-wave model as well [92], meaning that
although the gaps are of d-wave type, there are no nodes present due to the complex form of the Fermi
surface.
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3. Experimental setup

The experimental setup is located at Simon Fraser University in Burnaby, Canada, and comprises three
main components: two resonators used to determine the surface impedance via cavity perturbation
and a MX40 dilution refrigerator [49] to reach temperatures as low as 60mK. Figure 3.1 gives an
overview over the entire setup, a more in-depth explanation is given in subsequent sections.

TE011
2.91 GHz

TE013
4.82 GHz

TE021
5.57 GHz

c

a

b

d

Transverse
electric

resonant
modes

3He–4He
dilution

refrigerator

Sample
loading
interlockMicrowave

network
analyzer

Dielectric resonator

Recondensing
cryocooler

Single-
crystal
sample

Removable
sample
thermal
stage

Figure 3.1.: Overview of the experimental setup. a Dielectric resonator with sample and removable sample
stage. b First three TE modes used for the experiment. The field distribution shows why the
thermal-expansion effect varies strongly from mode to mode: Shifting the sample changes the field
strength only little for the TE011 and TE021 modes but has a larger effect for the TE013 mode.
c 3He–4He dilution refrigerator. d Microwave network analyzer detecting the shift in frequency
and bandwidth [126].
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38 3.1. Dilution refrigeration

3.1. Dilution refrigeration

Dilution refrigeration takes advantage of the phase separation of 3He and 4He mixtures at low temper-
atures. If a mixture with a fraction of at least 6.6% 3He is cooled below at least 0.87K, it separates
into a 3He-rich and a 4He-rich phase eventually. Upon further cooling the 3He-rich phase successively
becomes purer and floats on top of the higher-density 4He-rich phase, while, surprisingly, in thermal
equilibrium a fraction of about 6.6% 3He remains in the 4He phase even for vanishing temperatures.
If this thermal equilibrium is perturbed by removing 3He from the 4He phase, the mixture will re-
spond with atoms crossing the phase boundary from the 3He-rich phase into the 4He-rich phase to
re-establish equilibrium. This effectively cools the mixture due to the enthalpy of mixing, similarly to
classical evaporative cooling. However, the case is somewhat different in a dilution refrigerator where
cooling arises due to quantum effects. Here, it comes down to the mixing enthalpy of the fermionic
3He and the bosonic 4He due to the two of them obeying different quantum statistics and having
different zero-point motions, making the 4He-rich phase with 6.6% 3He energetically favorable even at
lowest temperatures. A more detailed description of the physics of dilution refrigeration can be found
in Ref. [94], a schematic depiction of a dilution fridge is found in Figure 3.2.

Figure 3.2.: Legend Numbers denote fractions of
3He. Light-blue depicts the 3He-rich
phase, dark-blue the 4He-rich phase.
Components A dilution refrigerator
mainly consists of the following compo-
nents: the mixing chamber itself, a heat
exchanger for heat flow between incom-
ing and outgoing helium, and a still that
contains a dilute liquid phase, typically
containing less than 1% 3He. Cool-
ing procedure Pre-cooled 3He is intro-
duced into the 3He phase inside the mix-
ing chamber through a flow impedance.
When dilute helium leaves the mixing
chamber through a tube, it passes the
heat exchanger, effectively cooling the
incoming 3He that is resupplying the
3He-rich phase. The dilute helium mix-
ture goes on into the still where the 3He
is evaporated. The still is then pumped
on to collect the 3He vapor and reintro-
duce it into the cooling cycle so that
no 3He is wasted throughout the pro-
cess. Pumping on the still also is what
causes the dilute mixture to travel from
the mixing chamber to the still in the
first place, reducing the 3He concentra-
tion in the dilute phase inside the mix-
ing chamber, thus initializing the cooling
process by pushing 3He across the phase
boundary [94, p. 120ff].
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Heater

Heat
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From 1.5K
condenser

Still heat
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3.2. Resonator

This experiment uses two different resonators, one of which contains a self-resonant superconducting
coil with a resonance frequency of 0.202GHz, while the other one consists of a dielectric rutile (TiO2)
cylinder inside a resonator to bring the base mode down to about 2.497GHz1, a frequency low enough
to explore scattering dynamics in heavy-fermion materials. The lowest-order modes are depicted in
Figure 3.1 whereas an overview of all modes present in the dielectric resonator is given in Figure 3.4.

In total, the dielectric resonator provides 10 modes of high enough quality spanning a range from
2.497GHz to 19.15GHz, resulting in data covering two orders of magnitude when the 0.202GHz is
taken into account as well.

3.3. Cavity perturbation

The measured quantity in this experiment, namely the output power that is directly proportional to
the amplitude of the resonance, is of Lorentzian shape and reads [51, p. 372]

A(f) ∝ 1

(f − f0)2 + f2
B

, (3.1)

where f0 is the resonance frequency and fB is its bandwidth; therefore f0 and fB fully characterize
the resonance. Introducing the sample into the resonator acts as a perturbation, altering both the
resonance frequency and bandwidth by ∆f0 and ∆fB, respectively. Shift and broadening of the
resonance are depicted in Figure 3.3. These changes are connected to the surface impedance of the
sample via [16,58]

∆fB − i2∆f0 =
ZS

4πU

∫︂
S
H⃗1 · H⃗2 dS (3.2)

which results in

ZS = RS + iXS = Γ(∆fB − i2∆f0) (3.3)

when we solve for ZS. Here, Γ is a scale factor that depends on the resonant cavity’s geometry and
the energy U being stored in the magnetic field. A more detailed explanation of the principles of
cavity perturbation is given in Ref. [58], the deduction for Equation (3.3) can be found in Ref. [16].
During the experiment, the input power level is varied by a factor of up to 100 to ensure absence of
self-heating effects.

1since f0 ∝ 1√
εr

André Haug



40 3.4. Bolometry

0 25 50 75 100 125 150 175 200
Frequency (a. u.)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Am
pl

itu
de

 (a
. u

.)

foffset
0

foffset
B

f0

fB

Figure 3.3.: Introducing the sample enhances the effective volume of the resonator while simultaneously low-

ering its quality factor, resulting in decreasing f0 and increasing fB, respectively. Here, foffset
0

and foffset
B are the values of the empty resonator. To obtain the change of the bandwidth caused

by the sample, ∆fB, one has to subtracted the empty-resonator data, yielding ∆fB = fB−foffset
B .

3.4. Bolometry

While the principle of cavity perturbation excels at measuring changes in both f0 and fB, it lacks
the capability to determine accurate absolute values, resulting in additional offsets being necessary
to finally determine absolute surface impedance. The determination of ZS is usually dealt with by
performing an additional measurement of the empty resonator2 and afterwards subtracting these
background data from the sample data. This method has a significant drawback, however: At higher
frequencies, it breaks down very quickly, the reason for which is depicted in Figure 3.4. While, at
low frequencies, we can treat each mode separately, the sample introduces a significant degree of
additional perturbation to the resonator’s symmetry, ultimately leading to coupling the measured
mode to undesired modes, thus significantly distorting the measured fB values due to dissipation from
said modes. This effect shows up as the surface resistance RS|T=const.(f) not being a monotonically
increasing function of frequency anymore as would be expected in the superconducting regime where
RS ≈ 1

2µ
2
0ω

2λ3σ1 since the conductivity is almost entirely dominated by the superfluid’s contribution
and therefore σ2 ≫ σ1.

2empty meaning with the sampleholder present but not the sample itself
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Figure 3.4.: Distribution of the modes present in the dielectric resonator. Highlighted modes are the ones used
for this experiment. The higher the measured mode, the more modes can be coupled to when
breaking the resonator’s symmetry with the sample. Taken from Ref. [127].

To account for this effect, an in-situ bolometric technique has been developed by Colin Truncik [127]
that has been further improved by David M. Broun.

At the sample itself, heat is dissipated due to the sample’s surface resistance and the magnetic field
to which it is exposed, resulting in a heat flow

Q̇ ∝ RS(Ts)× |H⃗|2 (3.4)

from the sample to the base. The absolute surface resistance is proportional to fB with an unknown
offset: RS = Γ

(︁
fB(Ts) + foffset

B

)︁
, where Ts is the actual sample temperature. The square of the

amplitude of the magnetic field is |H⃗|2 = c × pout, where c is a constant and pout the output power.
We can thus rearrange Equation (3.4) to

Q̇ ∝ Γ
(︂
fB(Ts) + foffset

B

)︂
× c× pout. (3.5)

In the low-temperature regime in which our measurements are performed, the sample temperature Ts

might deviate from the temperature of the thermometer (or base temperature) Tb because the silicon
sampleholder itself acts as a thermal weak-link. We suppose the thermal conductivity that connects
sample and base to follow a power-law k(T ) ∝ k(T = 1K)

(︁
T
1K

)︁n
. We empirically determined n = 2.75

to work well to describe our measurements. We now turn to the heat flow from the sample, heated by
dissipation due to its surface resistance, to the base. It is given by Fourier’s law

Q̇ ∝ A

l

∫︂ Tb

Ts

k(T )dT (3.6)

=
A

l
× k(T = 1K)×

Tn+1
b − Tn+1

s

1K
. (3.7)

with the sampleholder’s cross-section A and its length l. We can rearrange this equation and summarize
all the constants in one parameter d, yielding

Q̇ ∝ d
(︁
Tn+1
b − Tn+1

s

)︁
. (3.8)
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42 3.5. Sample

Comparing Eqs. (3.5) and (3.8) results in

Γ
(︂
fB(Ts) + foffset

B

)︂
× c× pout = d(Tn+1

b − Tn+1
s ). (3.9)

Again, we summarize all the constants, leaving

c̃
(︂
fB(Ts) + foffset

B

)︂
= Tn+1

b − Tn+1
s . (3.10)

Solving for the actual sample temperature Ts finally yields the model with which we describe our data:

Tn+1
s = Tn+1

b + c̃× pout

(︂
fB(Ts) + foffset

B

)︂
. (3.11)

We now fit Equation (3.11) to data taken at different temperatures Tb and powers pout, leaving the
actual sample temperature Ts, the constant c̃, and the desired foffset

B as fit parameters. We can then
plot fB(Ts) to assess the fit quality that is depicted in Figure 3.5.
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Figure 3.5.: Measured ∆fB data obtained from power sweeps at different temperatures (dots) together with
∆fB(Ts) obtained using the method describe above (lines). The plot exemplifies the result using
the 13.123GHz mode.

3.5. Sample

High-quality single-crystals of CeCu2Si2 were grown by Silvia Seiro et al. using a self-flux method
with excess Ce to ensure the formation of superconducting (S-type) samples. Characterization by
wavelength dispersive x-ray measurements indicates less than 1% deviation from the stoichiometric
1:2:2 ratio [106].
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Figure 3.6.: Picture of the sample from which the data for this thesis were obtained. Numbers below the
picture indicate the slice thicknesses described in Section 4.2.

Figure 3.7 show the superconducting transitions in specific heat and resistivity of two samples of
the same batch as the one used for this thesis.
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Figure 3.7.: Left Resistivity of a CeCu2Si2 sample from the same batch as the sample used for this work.
The critical temperature is Tc = 0.635K. Data taken from Ref. [122]. Right Specific heat of a
CeCu2Si2 sample from the same batch as the sample used for this work. The critical temperature
is Tc = 0.635K. Data taken from Ref. [106].
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4. Data processing and absolute surface
impedance

During the evaluation of the measured data, it turned out that not only the expected finite-size
corrections have to be performed, but that there also occurs a thermal expansion of the sampleholder
that has to be taken into account and treated simultaneously, making the data analysis much more
complicated than anticipated. The ultimately obtained data processing procedure is laid out in this
section.

4.1. Finite-size correction

All the relations used so far assume that the sample is of infinite size which of course does not describe
reality. What is more, the penetration depth can even become comparable to the sample size itself,
making the finite-size corrections first described by Gough and Exon [39] and again derived in this
section taken from Ref. [16] crucial for obtaining the true surface impedance and bulk conductivity
data as shown by Figure 4.3. The effect of the magnetic field penetration a sample of finite size is
depicted in Figure 4.1.

Our sample is long (3mm) in the z-direction parallel to the magnetic field and 95 ➭m×340 ➭m wide
in the in-plane directions. This orientation was carefully chosen to minimize demagnetizing effects
and limit currents to be in-plane, allowing us to treat finite-size effects in only two dimensions. This
section provides a deduction of the finite-size correction of a sample with cross-section ax × ay, where
ax and ay are the dimensions of the sample in x- and y-direction, respectively, within a homogeneous1

electromagnetic field H⃗, E⃗ applied parallel to the z-axis.

H

x

H0

H0
e

δ

H

x

H0

δ d− δ d

Figure 4.1.: Penetration depth of a magnetic field for an infinitely long sample (left) versus a sample of finite
size d (right). The actual amplitude of the magnetic field inside the sample of finite size does not
drop as exp

(︁
−x

δ

)︁
since the sample is penetrated from multiple directions at once.

We start with describing the electromagnetic field in phasor notation as opposed to the plane-wave

1This assumption holds as long as the sample is significantly smaller than the resonator used for the experiment.
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notation chosen in Chapter 2 for the sake of convenience:

ˆ︁
H⃗(t, x, y) = Re

(︂
H⃗(x, y) exp (iωt)

)︂
,ˆ︁

E⃗(t, x, y) = Re
(︂
E⃗(x, y) exp (iωt)

)︂
.

(4.1)

Here, we have split the fields into the amplitudes H⃗(x, y) and E⃗(x, y) of yet unknown form and a
time-dependent oscillating term ∝ exp (iωt). Due to the currents in our experiments being in-plane
exclusively, the wave equation derived in Section 2 becomes two-dimensional. Together with our ansatz
in Equation (4.1) we obtain

H⃗(x, y) =
∂2H⃗

∂x2
δ2y +

∂2H⃗

∂y2
δ2x, (4.2)

with the complex penetration depths δx and δy along the crystal’s x- and y-axis, respectively. When
placing the origin of the coordinate system in the very center of the sample, we can expand the
magnetic field inside the sample as a spatial Fourier series

H⃗(x, y) =

∞∑︂
n=0

(︄
A⃗2n+1 cos

(︃
(2n+ 1)π

ax
x

)︃
cosh (k2n+1y)

+B⃗2n+1 cos

(︃
(2n+ 1)π

ay
y

)︃
cosh (l2n+1x)

)︄
,

(4.3)

where ax and ay are the actual dimensions of the crystal in the respective directions. Inserting this
ansatz into Equation (4.2) yields the solution for k2n+1 and l2n+1, that is,

k22n+1 =
1

δ2x

(︄
1 +

(︃
(2n+ 1)πδy

ax

)︃2
)︄

and (4.4)

l22n+1 =
1

δ2y

(︄
1 +

(︃
(2n+ 1)πδx

ay

)︃2
)︄
. (4.5)

The amplitudes A⃗2n+1 and B⃗2n+1 can be calculated using the boundary conditions at the sample
surface where the field has to be continuous and therefore match the externally applied field’s amplitude
H⃗0:

H⃗
(︂
±ax

2
, y
)︂
= H⃗

(︂
x,±ay

2

)︂
= H⃗0. (4.6)

At the respective boundaries, Equation (4.3) now reads

H⃗
(︂ax
2
, y
)︂
=

∞∑︂
n=0

(︄
A⃗2n+1 cos

(︃
(2n+ 1)π

ax

ax
2

)︃
⏞ ⏟⏟ ⏞

≡0

cosh (k2n+1y) (4.7)

+ B⃗2n+1 cos

(︃
(2n+ 1)π

ay
y

)︃
cosh

(︂
l2n+1

ax
2

)︂)︄
(4.8)

=

∞∑︂
n=0

B⃗2n+1 cos

(︃
(2n+ 1)π

ay
y

)︃
cosh

(︂
l2n+1

ax
2

)︂
= H⃗0, (4.9)

H⃗
(︂
x,

ay
2

)︂
=

∞∑︂
n=0

A⃗2n+1 cos

(︃
(2n+ 1)π

ax
x

)︃
cosh

(︂
k2n+1

ay
2

)︂
= H⃗0. (4.10)
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46 4.1. Finite-size correction

The boundary conditions for x = −ax
2 and y = −ay

2 yield the same expressions as above due to
symmetry.
Exploiting the fact that the cosines are orthogonal,∫︂ a

2

−a
2

cos

(︃
hπ

a
x

)︃
cos

(︃
jπ

a
x

)︃
dx =

a

2
δhj , (4.11)

yields expressions for A⃗2n+1 and B⃗2n+1:

A⃗2n+1 =
4H⃗0

(2n+ 1)π
(−1)n

1

cosh
(︁
k2n+1

ay
2

)︁ , (4.12)

B⃗2n+1 =
4H⃗0

(2n+ 1)π
(−1)n

1

cosh
(︁
l2n+1

ax
2

)︁ . (4.13)

As for the electric field, we will use Stokes’s theorem,∮︂
E⃗(x, y)dl = −iωµ0

∫︂
H⃗(x, y)dxdy, (4.14)

yielding ∮︂
E⃗(x, y)dl = i

8ωµ0axayH⃗0

π2

∞∑︂
n=0

1

n2

(︃(︃
2

l2n+1ax

)︃
tanh

(︃
l2n+1ax

2

)︃
+

(︃
2

k2n+1ay

)︃
tanh

(︃
k2n+1ay

2

)︃)︃
.

(4.15)

The Poynting theorem Pav = E⃗×H⃗
∗

2 gives an expression for the absorbed power per unit area Pav. The
power absorption per unit length can thus be written as

Pl =
1

2
H⃗0

∮︂
E⃗(x, y)dl (4.16)

= i
4ωµ0axayH

2
0

π2

∞∑︂
n=0

(︃
tanh(α2n+1)

α2n+1
+

tanh(β2n+1)

β2n+1

)︃
, (4.17)

where α2n+1 and β2n+1 are

α2n+1 =
ay
2δx

√︄
1 +

(︃
(2n+ 1)πδy

ax

)︃2

and (4.18)

β2n+1 =
ax
2δy

√︄
1 +

(︃
(2n+ 1)πδx

ay

)︃2

, (4.19)

respectively. The effective surface impedance Zeff
S

2 is defined as

Zeff
S =

2Pav

H2
0

(4.20)

=
1

2(ax + ay)

2Pl

H2
0

(4.21)

which, on the other hand, we can express in terms of a complex screening length

Zeff
S = iωµ0δ

eff . (4.22)

2We call the ZS data before applying finite-size corrections Zeff
S . This is the quantity that is directly calculated from

the measured output power.
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This allows us to directly calculate δeff from our surface impedance measurement. It is connected to
the bulk penetration depths δx and δy via

δeff =
axay

ax + ay

4

π2

∑︂
n=0

1

(2n+ 1)2

(︃
tanh(α2n+1)

α2n+1
+

tanh(β2n+1)

β2n+1

)︃
. (4.23)

Since we restricted the experiment to in-plane currents, we can set δx = δy, allowing us to numerically
find the correct δx with δeff determined by the measurement. The reason for not setting δx = δy
beforehand will be given in the next section.

a
c

a

ax = 95 ➭m

ay = 340 ➭m

cz ≈ 3mm

H⃗

Figure 4.2.: Sketch of the sample used for this thesis. The magnetic field H⃗ is applied along the c-axis,
generating a current that’s flowing in the a-a-plane as indicated by the arrows.

4.2. Magnetic-field and sample-geometry corrections

Just like the previous correction, the magnetic-field correction is related to the dimensions of the
sample. Since the sample is of comparable size as the resonator (∼ 3mm vs. 9mm), the magnetic
field drops significantly over the space that is taken up by the sample. Another effect that has to be
taken into account is that the sample’s ends are somewhat tapered. While ax can still be regarded as
constant over the entire length of the sample, this is not true for ay anymore, leading to a z-dependent
function for ay that has to be implemented into both the cavity perturbation approximation and the
finite-size correction.

However, these corrections are rather simple to implement. When deriving the final equation that
is used for cavity perturbation, the integral occurring in Equation (3.2) has to be modified slightly:∫︂

S
H⃗1 · H⃗2 dS −→

∫︂ 1.5mm

−1.5mm
H2(z) ax ay(z) dz. (4.24)

with H2(z) taking the magnetic field and ay(z) taking the sample geometry into account. The sample
height is constant, so ax ≡ 95 ➭m. The sample width ay(z) is modeled after taking pictures of the
sample under a microscope (Figure 3.6). However, ay(z) is not a smooth function but for the sake of
simplicity the sample is divided into slices each 50 ➭m thick with one 2207 ➭m long slice at the center
of the resonator (see Figure 3.6) where the magnetic field can still be seen as uniform and the sample
width ay(z) is constant, transferring the integral into a sum over all the slices with the magnetic field
being averaged over each slice:∫︂ 1.5mm

−1.5mm
H2(z) ax ay(z) dz −→

∑︂
i

H2
i ax ay,i. (4.25)
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The slice thickness was chosen so that the gradient of the magnetic field for each slice is negligible
while the actual data analysis still runs reasonably fast.

The magnetic-field correction is only necessary for the helical resonator; a self-resonant niobium coil
with about 40 turns in a Pb:Sn-coated enclosure [67]. The magnetic field’s shape can easily be derived
from the boundary conditions—it has to vanish at both ends of the resonator—and the length of the
resonator (9mm) and reads

Hn(z) ∝ H(0) cos

(︃
(2n− 1)π

4.5mm
z

)︃
, n ∈ N. (4.26)

For the used mode, that is, the 0.202GHz mode, n = 1.

Finite-size and magnetic-field correction can now simply be carried out by applying the finite-size
correction to each slice separately and weighing the contribution of the i-th slice by H2

i ax ay,i. The
results are then summed up and normalized by the sum of all the weights, that is, the slice thickness
and the weights from the magnetic-field correction:

δ̄
eff

=

∑︁
i δ

eff(ax, ay,i)LiH̄ i∑︁
i(LiH̄ i)

, (4.27)

with Li being the thickness of the respective sample slices and H̄ the mean value of the magnetic field
for the respective slice.
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Figure 4.3.: Left Effective surface impedance of the 202 MHz mode. Reff
S has a local maximum at T = 5.93K

instead of monotonically increasing with temperature due to finite-size effects. Right Absolute
values of Rbulk

S and Xbulk
S for the 0.202GHz mode after applying finite-size, magnetic-field and

sample-geometry corrections. Rbulk
S increases monotonically with temperature and Rbulk

S and
Xbulk

S match well at high temperatures.

The magnetic-field correction only has to be implemented for the helical resonator that was used to
measure the 0.202GHz mode. The dielectric resonator used for the higher frequencies does not have
this constraint due to its different geometry and size (see Figure 3.1).

Figure 4.3 depicts the effects of our finite-size analysis. The left panel shows the effective, actually
measured values Reff

S andXeff
S for which it is impossible to achieve matching in the normal state, hinting
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toward finite-size effects being important. The right-hand panel shows the same data, which we call
“bulk” data, after the finite-size effects have been applied: Not only does Rbulk

S show monotonicity,
but Rbulk

S and Xbulk
S match well in the normal state.

4.3. Thermal-expansion correction

When measuring at higher temperatures, another problem became apparent: The expansion of the
silicon sampleholder moves the sample inside the dielectric resonator. As a consequence, it experiences
a field gradient that causes ∆f0 to have a stronger temperature dependence than expected based on
the behavior of the ∆fB values while ∆fB itself remains unaffected. This is a direct consequence of the
fact that we are probing a low-loss sample. In the case of a completely lossless superconducting sample
that perfectly expels a magnetic field due to the Meissner–Ochsenfeld effect, moving the sample inside
the resonator would change its resonance frequency f0, but not the width of the resonance fB. This
picture still holds for our low-loss sample, we thus can regard the perturbation of f0 as an effect of
first-order while the perturbation of fB is a higher-order effect and, to a good approximation, can be
neglected in the present case.
This effect is taken care of by modeling the difference −2f0 − ∆fB above 8K3 of the 19 GHz mode
with a function that both is constant at lower temperatures so that the respective data are not altered
and simultaneously fits the high-temperature data. Allowing the function to be constant rather than
to vanish at low temperatures also takes the frequency shift systematic error foffset

0 into account. The
19 GHz mode is chosen because it exhibits the most striking influence of the thermal expansion due to
being the highest harmonic used for data collection. On the other hand, the 2.497GHz mode almost
does not show the effect of thermal expansion at all.
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Figure 4.4.: Left Raw data of the 19 GHz mode. Even with the correct offsets for fB and f0 it would

be impossible to achieve matching at high temperatures. Right Absolute values of Rbulk
S and

Xbulk
S for the 19GHz mode after applying finite-size, thermal-expansion and sample-geometry

corrections. As clearly can be seen, the low-temperature data remain unchanged while the high-
temperature data are corrected so that Rbulk

S and Xbulk
S match. The transition between the two

regions is perfectly smooth, no onset of the correction can be seen.

The function is then evaluated for the temperature at which the data were taken and subsequently

3This temperature has been chosen very carefully by assessing the fit quality of the correction above several different
temperatures.

André Haug



50 4.4. Finding ρrefdc

subtracted from the actual data, leaving the actually measured data at lower and the corrected data
at higher temperatures. The subtraction is applied to the f0 data in such a way that Rbulk

S = Γ×∆fB
and Xbulk

S = Γ × −2∆f0 match at high temperatures above 8K after the finite-size correction has
been applied.

In the present case, a function that fits the data well, CTE(T ), turns out the be the following one:

C19
TE(T ) = o+ s

(︃
Tα

a+ bT + cT 2

)︃
. (4.28)

Here, α, a, b, c, o, and s are fit parameters.

This model now has to be applied to all the remaining modes as well. To make sure that the effect
is of the same nature in all modes, another constraint is used: All the fit parameters of the initial fit
to the 19 GHz mode are being held constant while only a different scale factor si and offset oi are
allowed to change the appearance of the model at higher frequencies. The results of this procedure
are shown in Figure 4.4 for the 19GHz mode.

It should be stressed that this model is purely phenomenological and there is no particular reason
to choose a certain function. Any function that describes the data sufficiently well is suited for this
process so long as there are only another offset and a scale factor introduced when applying the model
to other modes than the one from which it was obtained.

4.4. Finding ρrefdc

In order to obtain absolute values for the surface impedance and find the correct scale factor Γ, a
reference value for the dc resistivity at a temperature deep in the normal state is needed. While this
is usually done by measuring the resistivity and choosing a value at which this scaling is done, we
managed to find a way to use the finite-size effects to our advantage and extract a reference value
directly from the 0.202GHz mode. This makes our dataset and results completely independent from
other experiments performed on CeCu2Si2.

Hagen–Rubens regime The reference value ρrefdc can be obtained directly from the normal-state
data of the 0.202GHz mode. Starting from Equation (2.24), we can find an expression that relates
RS to ρdc in the normal state:

ZS =

√︃
i
ωµ0

σ
(4.29)

⇔ σ = i
ωµ0

Z2
S

(4.30)

=
ωµ0

−iR2
S + 2RSXS + iX2

S

. (4.31)

Since the imaginary part of the normal-state conductivity vanishes in the Hagen–Rubens regime at
sufficiently high temperatures and low frequencies, we can write

σ2 = ωµ0
R2

S −X2
S

2R2
SX

2
S +X4

SR
4
S

!
= 0 (4.32)

⇔ RS = |XS|. (4.33)
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The real part of the conductivity now reads

σ1 = ωµ0
2RSXS

2R2
SX

2
S +X4

S +R4
S

(4.34)

=
ωµ0

2R2
S

. (4.35)

Solving for RS and using that σ1 ≈ 1
ρdc

in the Hagen–Rubens regime yields

RS = XS ≈
√︃

ωµ0ρdc
2

. (4.36)

Application to CeCu2Si2 This relation is now used to directly calculate the surface resistance
as a function of the dc resistivity, resulting in a function for the bulk surface resistance Rbulk

S (ρdc).
From this function, values for the effective surface resistance Reff

S (ρdc) can be calculated using the
corrections from the previous sections, the results are depicted in Figure 4.5.
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Figure 4.5.: Left Effective surface resistance of CeCu2Si2 at 0.202GHz. Right Calculated values for Reff
S (ρdc)

using Equation (4.36) together with finite-size, sample-geometry and magnetic-field corrections.

To relate the calculated Reff
S (ρdc) and the measured Reff

S (T ), it is necessary to know that in the
normal state, ρdc(T ) is a strictly monotonic function of temperature in the temperature range with
which we are dealing. With that in mind, the maximum of Reff

S (ρdc) at 119.86 ➭Ωcm and the one in
Reff

S (T ) at 5.93K can easily be related to each other, resulting in the final reference value for the dc
resistivity:

ρdc(T = 5.93K) = 119.86 ➭Ωcm ≡ ρrefdc . (4.37)

Figure 4.6 shows measured resistivity data along the a-axis of two CeCu2Si2 samples of the same batch
as the one used for this thesis. At T = 5.93K, the resistivity is 100.03 ➭Ωcm and 96.56 ➭Ωcm, re-
spectively. A comparison with our 1

σ1(0.202GHz) data shows good qualitative agreement. This supports
the assumption that the 0.202GHz mode is indeed in the static limit as will become important in the
next section.
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Figure 4.6.: a-axis resistivity of CeCu2Si2 as measured by Laliberté et al. at the University of Sherbrooke

compared to our independently obtained data ρdc(T ) ≈ 1
σ1(0.202GHz) . While our absolute values

are greater by about 20%, they can easily be scaled onto the measured ρdc data, thus being in
good qualitative agreement. Data are preliminary and are shown with permission from Francis
Laliberté.

4.5. Final model

All the corrections introduced before are now wrapped up into one model that obtains bulk surface
impedance data by applying all the corrections described above simultaneously.
To this end, we first find another reference value ρrefdc at a higher temperature where Equation (4.36)
holds for the higher modes as well. This will make it possible to directly calculate the scale factor Γ
from Reff

S calculated using finite-size effects and Equation (4.36) rather than finding it numerically.
We do so based on the assumption that the 0.202GHz mode is in the static limit4.

As shown in the previous subsection, we obtain absolute values for the 0.202GHz mode by calculat-
ing Reff

S (0.202GHz, 5.93K) = Reff
S (0.202GHz, 119.86 ➭Ωcm) using our finite-size model and Equation

(4.36). All that is now left to do is to calculate the scale factor. Since

Γ∆fB(0.202GHz, 5.93K) = Reff
S (0.202GHz, 5.93K), (4.38)

it can be calculated directly via

Γ =
Reff

S (0.202GHz, 5.93K)

∆fB(0.202GHz, 5.93K)
. (4.39)

The same scale factor applies to ∆f0 = f0(T ) + foffset
0 . foffset

0 is now found by making Rbulk
S and

Xbulk
S match in the normal state after the finite-size corrections have been applied. This yields

Zbulk
S for the 0.202GHz mode from which we can directly calculate the complex microwave conduc-

tivity σ =
√︂

iωµ0

Z2
S
. From the conductivity, the electrical resistivity ρdc(T ) ≈ 1

σ1
is obtained (see

Figure 4.6). The scaling for the higher-order modes can now be carried out analogously but with

4This is a result based on the fully self-consistent model given in the Appendix, greatly lowers computational effort and
yields the same results as the full model.
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ρrefdc = ρdc(T = 10K) = 145.52 ➭Ωcm.

We now switch to the analysis of the 19GHz mode: Analogously to the 0.202GHz mode, the cor-
rect scale factor is found beforehand by applying the finite-size model to Equation (4.36), resulting in
absolute Reff

S . What remains is a mere minimization problem: The thermal-expansion model (4.28)
is subtracted from the data, the finite-size corrections are applied and Rbulk

S and Xbulk
S are compared

and the difference between the two of them is minimized by varying the parameters of the thermal-
expansion correction that also includes the correct foffset

0 .
This process is now repeated for all the other modes to which the thermal-expansion correction has
to be applied with the same parameters as for the 19GHz mode except for another offset and a scale
factor as described in the respective section.

From the resulting absolute surface impedance, we switch back to the 0.202GHz mode for a consis-
tency check: From the lowest-temperature values of XS of the high-frequency modes, we obtain XS(f)
as shown in Figure 4.7 to which we fit XS ≈ ωµ0λ0. Extrapolation to 0.202GHz yields the correct
foffset
0 for the 0.202GHz mode with which the processing is run again: This time, the scale factor Γ,
absolute ∆fB and ∆f0 are known, eliminating all possible variables and thus fully constraining the
problem. The results are intriguing; RS and XS match almost perfectly all the way up to 25K as
shown in Section 4.2 (Figure 4.3) and the Appendix (Figure A.1).
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Figure 4.7.: XS as a function of frequency at T = 65mK for all the high-frequency modes with a linear

fit according to XS = ωµ0λ0 from which we obtain both foffset
0 for the 0.202GHz mode and

λ0 = 1486 nm.

André Haug



5. Results and discussion

5.1. Results
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Figure 5.1.: Left Surface resistance data on a logarithmic scale ranging up to 1K from 0.202GHz to 19.15GHz.
Right Surface reactance data on a logarithmic scale ranging up to 1K from 0.202GHz to
19.15GHz.

The left-hand side of Figure 5.1 shows the surface resistance of CeCu2Si2 up to 1K for frequencies
ranging from 0.202GHz to 19.15GHz, thus spanning two orders of magnitude in frequency. Albeit that
a superconductor may have a perfect (lossless) dc conductivity, the frequency-dependent conductivity
is non-zero due to the electric field at the sample surface arising from Faraday’s law causing heat
dissipation through coupling to quasiparticle excitations in the superconductor. The heat dissipated
by this process becomes perceptible in the surface resistance RS and is proportional to the squared
amplitude of the applied field, thus implying a quadratic frequency dependence, making the fact that
we can still resolve RS(0.202GHz, T ) remarkable. In this case, however, RS(f) does not follow this
behavior up to the highest mode as the crossing of the 19.15GHz mode with the two modes below
indicates. Surface reactance data are found on the right of Figure 5.1. Not only does it describe the
phase between the exciting field and the resulting current density but it is also directly connected to
the penetration depth via XS(ω) = ωµ0λ, rendering these data an excellent proxy for the penetration
depth which we estimate to λ0 = 1486 nm from the fit depicted in Figure 4.7.
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Figure 5.2.: XS as a function of frequency at various temperatures. At higher frequencies, the relation XS =
ωµ0λ0 breaks down.
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Figure 5.3.: LeftMain panel: Temperature-dependent real part of the microwave conductivity from 0.202GHz
to 19.15GHz (lines) and zero-temperatures extrapolations (dashed lines). Inset: σ1 vs T 2 to illus-
trate the crossover from linear to quadratic temperature dependence with increasing frequency.
Right Temperature-dependent imaginary part of the microwave conductivity expressed as a su-
perfluid density 1

δ2 = ωµ0σ2. The small changes between the 2.497GHz and the 0.202GHz point
toward the latter being in the static limit, thus providing a good proxy for absolute penetration
depth.

Figure 5.2 shows the frequency-dependent surface reactance, XS(f), for various temperatures.
While, at low temperatures, the penetration depth can be directly extracted via XS = ωµ0λ0, this
simple model breaks down at higher temperatures. This breakdown stems from the fact that more
and more quasiparticles are being thermally excited, resulting in XS not following the simple linear
relation ∝ ωµ0λ0 anymore that arises only from the superfluid’s contribution. Still, the fact that XS
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shows only small changes from 0.081K to 0.2K lends strong support to the assumption that our value
for λ0 is legitimate.

The left-hand side of Figure 5.3 depicts the real part of temperature-dependent microwave con-
ductivity that purely arises from quasiparticle excitations, thus being easier to understand than the
imaginary part. The most striking features of σ1 are the sharp peak at Tc, the broad peak around Tc

2
and the large residual conductivity. The peak at Tc is too sharp and symmetric to stem from BCS
coherence factors (see Fig. 5 b in Ref. [126] for an example of an s-wave coherence peak). Instead,
it likely arises spatial variation of the critical temperature Tc and strong-coupling effects as pointed
out by Olsson and Koch [85]. These can be reproduced very well using simulations with Tc spanning
a rather broad range, thus describing a situation where superconducting and normal-state regions
are mixed [38]. This results in a very similar same behavior as seen in Figure 5.3. Consequently,
their sharpness provide a useful gauge of sample homogeneity. The broad peak below is likely the
result of two competing effects: The opening of the superconducting gap while the inelastic scattering
decreases, ultimately causing the quasiparticle lifetime to increase while, at the same time, they are
condensing into the superfluid, causing the total number of quasiparticles to decrease [10, 47]. Simi-
lar peaks have been observed in materials like CeCoIn5 [126]—a sister compound of CeCu2Si2—and
YBa2Cu3Oy [43, 84], both prime examples of relatively clean d-wave superconductors. Yet CeCu2Si2
behaves more like dirtier cuprates such as Bi2Sr2CaCu2O8+δ [62] and Tl2Ba2CuO6+δ [15]. Another
similarity is the crossover from T -linear (up to 2.5GHz) to a quadratic (above 13GHz) temperature
dependence in the low-temperature regime as we go up in frequency (see inset on the left of Figure
5.3) [83]. In the low-temperature regime, we use a power-law extrapolation below 100mK (0.202GHz
mode: 150mK) to obtain the residual conductivity for each frequency for a better estimation of the
residual uncondensed spectral weight. The large value of the low-frequency residual conductivity
σ00 ≡ σ1(0.202GHz, T → 0) = 2.42 ➭Ω−1m−1 obtained directly from the 0.202GHz mode, which, as
will be seen later, is in the static limit, is impossible to understand in the picture of s-wave pairing,
but finds a natural interpretation in terms of the conductivity of a nodal superconductor.
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Figure 5.4.: Left Frequency-dependent real part of the microwave conductivity for several temperatures. The
shaded region marks the residual spectral weight obtained by zero-temperature extrapolation of
σ1(T ). Right Frequency-dependent imaginary part of the microwave conductivity for several
temperatures. Superfluid density ρs = lim

ω→0
ωµ0σ2 is obtained by linear extrapolation below

10GHz.
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The right of Figure 5.3 shows the imaginary part of the temperature-dependent microwave con-
ductivity in terms of an effective superfluid density 1

δ2
= ωµ0σ2. It mainly consists of contributions

from the superfluid σsf
2 = 1

ωµ0λ2 but also includes a small quasiparticle contribution. The strong fre-
quency dependence all the way up to Tc indicates a substantial density of uncondensed quasiparticles
regardless of temperature, and that the superconducting quasiparticle relaxation rate is comparable
to the microwave measurement frequency as expected for a heavy-fermion material. The same goes for
temperatures just above Tc: Here, we see a considerable imaginary part of the conductivity, natural
for a heavy-fermion material due to its heavy quasiparticles [25,99,101]. The crossing of the 0.202GHz
with the other modes can once more be considered an artifact stemming from the data processing,
causing the spectra of ωµ0σ2 to not be entirely monotonic as will be shown below.

Spectra are shown in Figure 5.4. The real part shows a steady decrease in spectral weight upon
cooling, eventually reaching a state where, even at lowest temperatures, there still are large amounts
of uncondensed spectral weight both for the 0.202GHz mode and the zero-temperature extrapolation
obtained from Figure 5.3 that we plot as the shaded region in Figure 5.4, allowing for a straightforward
estimation of the lower bound of the residual spectral weight

∫︁
σ1dω using linear extrapolations for

both low and high frequencies. The highest temperature shows a rather flat behavior in σ1 and a
vanishing superfluid density for ω → 0 exactly as expected for T = 0.65K > Tc, where the material is
in the heavy-fermion state [25,98–101].
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Figure 5.5.: Left Temperature-dependent superfluid density ρs(T ) obtained by taking the zero-frequency limit
lim
ω→0

ωµ0σ2 (dots) and the 0.202GHz mode (line) with a zero-temperature extrapolation (dashed

line). The remarkable agreement shows that the 0.202GHz mode is a good proxy for the static
limit. Right Temperature-dependent superfluid density at various frequencies. At higher fre-
quencies, ρs(T ) deviates from the quadratic temperature-dependence observed for the 0.202GHz
mode.

The left-hand side of Figure 5.5 shows the temperature-dependent London superfluid density ρs =
1
λ2

obtained from lim
ω→0

ωµ0σ2 via linear extrapolation below 10GHz and the 0.202GHz mode, respectively,

confirming that the assumption made below Figure 5.3 that the latter one is well in the static limit
is valid. This is extremely remarkable since absolute penetration depth is a quantity that is usually
very hard to access. At low temperatures, ρs(T ) follows an approximately quadratic temperature
dependence, with no indication of the activated exponential behavior expected from a pairing state
with finite gap minima. Instead, the T 2 behavior (see inset of Figure 5.5) together with the uncodensed
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spectral weight depicted in Figure 5.4 strongly suggests a pairing state with line nodes in the presence
of strong-scattering disorder [2,45,63,64]. From a quadratic zero-temperature extrapolation of ρs(T ),
we obtain a London penetration depth of λ0 = 1469 nm, consistent with the value from the fit to XS(f)
shown in Figure 4.7. We estimate the critical temperature to be 635mK based on the criterion of
vanishing superfluid density ρs(Tc) = 0. The uncondensed spectral weight at T = 0,

∫︁
σ1|T=0dω, can

be expressed in terms of a missing superfluid density ∆ρ, yielding the superfluid density of the clean
system ρ00 = ρ0 +∆ρ. This is the superfluid density for the case of a perfectly grown crystal without
impurities. Since, in such a system, there is no pair-breaking from disorder, virtually all quasiparticles
would condense into the superfluid at T = 0, leaving only those at EF of the density of states (see
Figure 2.5) as uncondensed. However, this would result in a linear temperature dependence of the
superfluid density (Figure 2.6) [61, 63, 64], incongruent with our data. The relation between ∆ρ and
the uncondensed spectral weight (Figure 5.4) is∫︂

σ1|T=0dω =
π

2

1

µ0
∆ρ. (5.1)

This puts a lower bound on the uncondensed spectral weight since we extrapolate σ1 linearly at higher
frequencies and therefore are not taking an eventual increase at higher frequencies into account. Solv-
ing for ∆ρ yields an amount of at least ∆ρ

∆ρ+ρ0
= ∆ρ

ρ00
= 19% uncondensed spectral weight. From ρ00,

we estimate the penetration depth of the clean system to be λ00 =
1√
ρ00

= 1324 nm.

On the right of Figure 5.5, one can see that, while the 2.497GHz mode still shows good agreement
with a T 2 behavior of the superfluid density, the assumption that we are in the static limit breaks down
shortly after, where the curves of the higher-order modes are flattening at lower temperatures. This
again emphasizes that the 0.202GHz is well in the static limit, being of an entire order of magnitude
lower in frequency than the next one.

5.2. Discussion

Several key indications of the presence of gapless nodal quasiparticles are evident in the raw microwave
conductivity of CeCu2Si2, namely: the large uncondensed spectral weight in the low-temperature
low-frequency limit; the approximately T 2 dependence of the low-temperature superfluid density; the
strong similarity of σ1(T ) to that of the cuprate superconuctors Bi2Sr2CaCu2O8+δ and Tl2Ba2CuO6+δ;
and the absence of thermally activated behavior in both σ1(T ) and ρs(T ).

While early specific-heat data support this view [11–13], more recent data show the Sommerfeld
coefficient γ to vanish for T → 0, usually indicative of a fully gapped system. This ostensible contra-
diction can be circumvented by recalling the rather complex Fermi surface of CeCu2Si2 [57, 68, 134]
with two distinct light and heavy sheets having effective masses around 4.5 me [48] and 400 me [130],
respectively. The dc conductivity of a heavy-fermion material is proportional to τ∗

m∗ . However, we are
probing the material with a frequency comparable to 1

τ∗ , as evident by the roll-off seen in Figure 5.4,
leaving the conductivity to be σ ∝ 1

m∗ . This leads to predominantly light quasiparticles showing up
in our data. Specific-heat, on the other hand, mainly arises from heavy quasiparticles due to C ∝ m∗,
resulting in a total difference ∝ m∗21. This allows for the possibility that in fact we are just probing
different parts of the Fermi surface, resulting in data that, at first sight, appear incompatible.
The situation is very different for thermal-conductivity measurements, however. Just like specific
heat, it is expected to show large residual values due to quasiparticle excitations for nodal systems
and just like the specific-heat data, thermal-conductivity data do not show those large residuals,
either [57, 92, 134]. Yet there are possible explanations for this: Like all transport probes, thermal-
conductivity measurements are susceptible to electron-phonon decoupling stemming from poor contact

1In any case, the difference would be ∝ m∗ due to the effective-mass dependence of the specific heat.
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quality, causing it to drop unexpectedly due to the heat current being bottlenecked. This has pre-
viously been observed by Hill et al. [44] and could be resolved by Smith et al. [109]; and indeed
does an electron-phonon decoupling analysis yield a possible explanation for the vanishing thermal
conductivity as shown in Figure 5.6.
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Figure 5.6.: Possible observation of electron-phonon decoupling in thermal conductivity with a fit according
to Equation (5.2) obtained by Smith et al. and the so-obtained actual thermal conductivity. Data
taken from Ref. [134].

To this end, we fitted the specific-heat data from Yamashita et al. [134] according to an electron-
phonon decoupling model [109]

κ

T
= α

1

1 + r

1+r
(︂

T
Td

)︂n−1

+ βT 2 (5.2)

with the well-known coefficients α and β, marking the electronic and phononic contributions, respec-
tively, the decoupling temperature Td, the strength r of the decoupling, and the additional parameter
n. Plotting the results of the fit and κ

T = α + βT 2 with α and β obtained from the fit to Equation
(5.2) gives realistic values for a residual thermal conductivity. The residual conductivity obtained by
applying the Wiedemann–Franz law to σ00,

κ00
T = σ00L = 0.06 W

K2 m
, where L is the Lorenz number,

lies somewhere in between. This might occur as a consequence of back-flow effects [31] or a steep
rise in σ1(ω) at low frequencies [64] that our experiment cannot access. Another possible candidate
are surface effects due to low penetration depth of heat currents, altering the material’s response as
compared to bulk values. On the other hand, our microwave experiment certainly probes bulk physics
as evident by our estimate of λ0.

Other results with which our data are in tension are penetration depth measurements. The quadratic
temperature dependence of the superfluid density naturally leads to the same behavior in the change
of the penetration depth ∆λ(T ) illustrated in Figure 5.7 and is therefore consistent with a d-wave
superconductor in the presence of disorder.
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Figure 5.7.: Penetration depth as plotted in Figure 2.15 together with our penetration depth data obtaind
from the 0.202GHz mode versus temperature (left) and temperature squared (right). Data from
Groß et al., Groß-Alltag et al., and ours clearly show quadratic temperature behavior, data from
Yamashita et al. and Takenaka et al. have higher-order temperature dependencies. Pang et al.’s
data show a temperature behavior close to quadratic. Data taken from Refs. [41, 42, 92, 121, 134]
and converted to ∆λ(T ). Data of Pang et al. have been scaled by a factor of 10 for better
comparison.

As described in the Introduction, previous experiments led to mixed results with the penetration
depth following power-laws ∆λ ∝ Tα where α ranged from 2 to about 4. While our results are con-
sistent with the data by Groß et al. [41] and Groß-Alltag et al. [42], they are incompatible with the
more recent data by Yamashita et al. [134] and Takenaka et al. [121] whose measurements indicated
higher-power temperature dependencies. However, these findings are startling since temperature de-
pendencies of powers higher than 2 have not been reported before and are inconsistent with a fully
gapped s-wave (activated exponential) or a clean d-wave state (linear). We strongly emphasize our
ability to measure absolute penetration depth, making our ∆λ(T ) data particularly reliable; especially
given the absence of any evidence showing sub-quadratic temperature dependence throughout all ex-
periments. Penetration depth is usually measured using a tunnel-diode oscillator that can only access
relative changes and therefore heavily depends on a reference value for λ0 to gauge absolute pene-
tration depth. As a consequence, problems may arise from inaccurate reference values or self-heating
due to high power levels (while we vary power by a factor of up to several hundreds, tunnel diode
measurements typically vary power by about a factor of 2 by placing the sample in a spot where the
magnetic field is weaker [18].

On the other hand, there is a plethora of data coming from a wealth of different experiments that
supports and is consistent with the d-wave picture as already pointed out in the Introduction:
The strongest evidence for d-wave pairing symmetry for CeCu2Si2 comes from low-temperature scan-
ning tunneling microscopy (STM). While methods like penetration depth, specific heat and virtually
all transport measurements can only observe an angular-averaged gap function, STM can directly
access the symmetry of the order parameter. STM results by Enayat et al. suggest there actually are
two gaps, one of which being of s-wave and the other one of d-wave symmetry, thus resulting in a total
gap function that does not fully open due to nodes in the d-wave gap [32]. While the s-wave gap lies
outside the accessible frequency range of our experiment (∆s ≈ 36GHz), we should still be probing
the d-wave one (∆d ≈ 13GHz) [32], yet there is no visible sign of an onsetting increase of conductivity
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in σ1 at this frequency which is hard to resolve in the context of dirty superconductor and would only
show up as a tiny feature at an energy of ℏω = ∆ [64] as opposed to the value of 2∆ in the case of
an s-wave superconductor. However, Enayat et al. did not take the effect of an energy-dependent
scattering rate [64] into account to fit their data. It would therefore be desirable to re-fit their data
using a dirty d-wave model to see if their results can be understood in the context of a dirty d-wave
superconductor.
In NMR measurements on s-wave superconductors, for instance, one would expect a Hebel–Slichter
peak to appear in the relaxation rate 1

T1
arising from BCS coherence factors. The fact that this is

not the case [35, 53, 54, 56, 104] combined with the absence of a coherence peak in our σ1 data, which
would show up as highly asymmetric rather than the symmetric peak we are observing, again lends
strong support to the hypothesis that CeCu2Si2 is indeed a d-wave superconductor.
In-plane measurements of the upper critical field Hc2 reveal a fourfold symmetry upon rotation that
is hard to understand in the context of a state with a fully gapped pairing symmetry but are in good
accordance with a dxy order parameter and therefore our data [130]. Another tool that was proven
to be powerful when it comes to exploring the interplay between superconductivity and magnetism in
other heavy-fermion materials [14, 71, 91] is muon spin rotation. While early experiments concluded
static magnetic order, namely antiferromagnetism, and superconductivity to coexist in CeCu2Si2 [129],
it was later found that they actually compete for the ground state [70] and that the condensation of
electrons into the superfluid might weaken the RKKY interaction, thus leading to superconductivity
being preferred over antiferromagnetism.
Another example of the proximity of superconductivity and antiferromagnetism is a spin excitation
gap ℏωgap = 3.9kBTc only present in the superconducting state as shown by inelastic neutron scat-
tering [6, 119], again see Figure 2.11, inevitably linking the two phenomena that, in an s-wave su-
perconductor, are mutually exclusive and consequently further substantiating the probability of a
d-wave pairing symmetry. These observation might also give insight into the scattering dynamics of
CeCu2Si2 when combined with our results: At high temperatures just below Tc, a large amount of
quasiparticles is present, allowing for inelastic scattering processes such as quasiparticle-quasiparticle
or spin fluctuation scattering, the latter being a promising candidate given the proximity to antiferro-
magnetism [119]. Upon gradually condensing into the superfluid, elastic impurity-scattering processes
become more important. In this strong-scattering regime, the impurities have a pair-breaking effect
that is reflected both by the large amount of uncondensed spectral weight and, hence, a large value
of λ0 and the quadratic temperature dependence of the superfluid density. These scattering dynamics
seem to be intrinsic to CeCu2Si2 in a sense that without growing a slightly off-stoichiometric crystal,
superconductivity does not emerge in the first place. While the superfluid density gives insight into
the type of scattering present in the system, the conductivity spectra reflect the quasiparticle lifetime
as shown by the downturn around 2.497GHz that varies only little with temperature.

5.3. Conclusions

Based on the results of our microwave experiment, we estimate the London penetration depth of our
sample to be λ0 = 1469 nm. From the uncondensed spectral weight that marks at least 19% of the
total spectral weight, we determine the penetration depth of the clean material to be λ00 = 1324 nm.
Given the non-BCS peak in σ1 around Tc for the 0.202GHz and the 2.497GHz mode, the cuprate-like
behavior around Tc

2 and the large amount of uncondensed residual spectral weight shown in Figure 5.4
together with the quadratic low-temperature behavior of the superfluid density ρ, we have to conclude
that CeCu2Si2 is a d-wave superconductor with line nodes.

Further evidence for this statement has been found reviewing previous studies on this material
comprising specific heat, penetration depth, NMR, NQR, inelastic neutron scattering, and muon spin
rotation measurements.
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However, there are data that challenge this interpretation, yet these contradictions can either be
circumvented, as is the case for specific-heat measurements that probe a whole different part of the
Fermi surface where the effective mass varies strongly, or can be lifted in the context of the phenomenon
of electron-phonon decoupling (thermal conductivity) or possible self-heating problems arising from
high power levels when performing measurements (penetration depth).
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6. Outlook

Understanding the very nature of especially unconventional superconductivity can serve as a stepping
stone when it comes to finding new materials exhibiting heretofore unseen types of pairing symmetry
or high critical temperatures.

While this thesis has given insight into the pairing process that takes place in CeCu2Si2, there still
remains work to be done as CeCu2Si2, despite being the first unconventional superconductor to be
discovered, is not yet fully understood.

New experiments measuring the specific heat with focusing on resolving the contradictions with
not only this experiment but also older specific-heat data are desirable. The same goes for thermal-
conductivity measurements where the emphasis should be put on having high-quality contacts to avoid
electron-phonon decoupling and proper choice and treatment of the samples themselves to ensure that
surface effects are negligible. As for penetration depth measurements, experiments that vary power
over a larger range would be preferable to see if self-heating really is a possible cause for the peculiar
behavior of λ(T ).

Figure 6.1.: Two possible gap functions for a d-wave superconductor with sign changes from positive (dark-
blue) to negative (light-blue). Left ∆ = ∆0 (sin (kxa) sin (kya)) with a dxy symmetry. Right
∆ = ∆0 (cos (kxa)− cos (kya)) with a dx2−y2 symmetry.

While, at this point, we are sure that we are dealing with a d-wave system, the angle-dependent
form of the gap function is yet to be revealed since virtually all transport, thermodynamic, and opti-
cal probes only measure the angle-averaged magnitude of the gap function that otherwise is hard to
access experimentally. Experiments like angle-resolved photoemission spectroscopy, for instance, do
provide the possibility to measure the gap symmetry directly but have trouble reaching temperatures
below 1K. The same goes for techniques like Raman scattering: While successfully applied to high-Tc

cuprates [27], even the lowest temperatures are far from the critical temperature of CeCu2Si2, leaving
other experimental techniques like STM and SQUID measurements. Especially a new analysis of the
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STM data of Enayat et al. in the context of a dirty d-wave superconductor might turn out fruitful.
A more exhaustive list of possible experiments with focusing on cuprate superconductors has been
brought together by Tsuei et al. [128].

Another goal has to be the analysis of the normal-state data which was not possible in the time frame
given for this work. A first look of the data suggests that measurements at higher frequencies would
be desirable since, at higher temperatures, determining the scattering rate of CeCu2Si2 using Drude
fits turned out to be troublesome. Albeit that there are some far-infrared data down to frequencies of
725GHz and temperatures as low as 4K available [108], closing the gap between those and our data
is obviously advisable.
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A. ZS data

A.1. Raw ZS data

This section shows all measured modes over the entire temperature range in which measurements have
been taken after the data processing has been carried out.
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Figure A.1.: ZS data of the 0.202GHz (left) and the 2.497GHz mode (right).
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Figure A.2.: ZS data of the 4.278GHz (left) and the 5.299GHz mode (right).
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0 5 10 15 20 25
Temperature (K)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
Im

pe
da

nc
e 

(Ω
)

RS
XS

0 5 10 15 20 25
Temperature (K)

0.00

0.05

0.10

0.15

0.20

0.25

Im
pe

da
nc

e 
(Ω

)

RS
XS

Figure A.3.: ZS data of the 6.698GHz (left) and the 9.596GHz mode (right).
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Figure A.4.: ZS data of the 12.155GHz (left) and the 12.972GHz mode (right).
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Figure A.5.: ZS data of the 14.205GHz (left) and the 16.639GHz mode (right).
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Figure A.6.: ZS data of the 19.150GHz mode.
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B. Thermal-expansion correction

B.1. Thermal-expansion correction

This section displays the thermal-expansion correction described in Subsection 4.3. The respective
offsets have already been applied to simplify the figures below.
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Figure B.1.: Data of Rbulk
S , the uncorrected XS data and the thermal-expansion correction function based on

Equation (4.28) for the 2.497GHz (left) and the 4.278GHz mode.
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Figure B.2.: Data of Rbulk
S , the uncorrected XS data and the thermal-expansion correction function based on

Equation (4.28) for the 5.299GHz (left) and the 6.698GHz mode.
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Figure B.3.: Data of Rbulk
S , the uncorrected XS data and the thermal-expansion correction function based on

Equation (4.28) for the 9.596GHz (left) and the 12.155GHz mode.
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Figure B.4.: Data of Rbulk
S , the uncorrected XS data and the thermal-expansion correction function based on

Equation (4.28) for the 12.972GHz (left) and the 14.205GHz mode.
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Figure B.5.: Data of Rbulk
S , the uncorrected XS data and the thermal-expansion correction function based on

Equation (4.28) for the 16.639GHz (left) and the 19.150GHz mode.

André Haug



C. Obtaining smooth conductivity

C.1. Obtaining bulk surface impedance

The following section contains a description of a self-consistent data smoothing procedure which we
initially intended to use to obtain the final dataset. During the course of the data analysis, it turned
out that things can greatly be simplified when we realized that the 0.202GHz mode is in the static
limit. Furthermore, the data smoothing procedure given in Figure C.3 severely biases the estimation
of the uncondensed spectral weight we obtain from σ1, thus we decided to rely on the raw data as
much as possible. The entire procedure shall be shown here anyway for the sake of completeness.

Firstly, we describe the analysis steps to be iterated (ASI, see Figure C.1) to obtain Zbulk
S (T ) data

from the measured f0(T ), fB(T ) and foffset
B data for either high or low frequencies. This also includes

the correct geometric scale factors Γgeo. Assuming that we do not have to apply any corrections to
the data results in a quantity labeled Zeff

S that will come into play later in the procedure (see Figure
C.2).
Secondly, we use the ASI to obtain a complete dataset of Zbulk

S for the high-frequency modes that
will then serve as a stepping stone to also obtain Zbulk

S data for the low-frequency modes. Thus, this
procedure yields a complete dataset of Zbulk

S .
Finally, a self-consistent loop refines the values of ∆foffset

B and ∆foffset
0 , delivering the final dataset

that is used to carry out the analysis of the electrodynamics of CeCu2Si2 (see Figure C.3).
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Figure C.1.: Analysis steps of the self-consistent data analysis. Data input is depicted inside light-blue boxes,
dark-blue boxes are data correction procedures described in the previous chapters. Shaded circles
refer to explanations below. Referred to as ASI in figures below.

Table C.1.: Abbreviations and variables used for Fig-
ures C.1, C.2, and C.3.

Abbreviation Explanation

HF
high frequencies (f > 2GHz),

dielectric resonator

LF
low frequencies (f < 2GHz),

helical resonator

CTE

thermal-expansion correction
(HF modes only, see

Subsection 4.3)

CFS

finite-size correction (and for
the LF modes also

magnetic-field correction, see
Subsections 4.1 and 4.2)

Variable

f0(T ) measured f0 data

fB(T ) measured fB data

foffset
0

foffset
0 data obtained from

either the fitting procedure or
λ0

foffset
B

foffset
B data obtained from

background subtraction (LF
modes) or bolometry (HF

modes)

ρrefdc

reference value obtained for
ρdc from the 0.202GHz mode

(see Subsection 4.4)

Γgeo
i

geometric scale factor Γgeo for
the i-th mode

1 ρrefdc and the fB,i input data (either LF or HF

data) are used to guess the geometric scale

factors Γgeo
i ≈ 2

fB,i(T=5.93K)

√︂
ωµ0ρrefdc

2 for each

respective frequency according to Equations
(4.36) and (4.37).

2 • For the LF modes, the finite-size cor-

rection is applied and foffset
0,i is varied

so that the Zbulk
S data are consistent

with ρrefdc and RS = XS above 8K

• For the HF modes, both thermal-
expansion and finite-size correction are
applied and foffset

0,i is varied so that

the data are consistent with ρrefdc and
RS,i = XS,i above 8K

The dark-blue arrows around the corrections
box indicate that this already is an itera-
tive procedure: Starting from the guessed
values, we vary Γgeo

i until the correct one
is found. Guessing the scale factors before-
hand is not mandatory but greatly improves
performance since the true values are usually
close to the guessed ones.

3 We now have a complete set of Zbulk
S for ei-

ther LF or HF, depending on the data we
fed in.
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Table C.2.: Abbreviations used for the first part of the self-consistent data processing procedure (Figure C.2).

Abbreviation Explanation

background subtraction
foffset
B data obtained by measurement (LF modes only, see Subsection

3.4)

bolometry
bolometry data obtained by measurement (HF modes only, see

Subsection 3.4
λ0 zero-frequency, zero-temperature penetration depth

bolometry

fB
data HF

background
subtraction

fB
data LF

ρrefdc

ASI

guess Γgeo
i

calculate λ0

foffset
B

data HF

foffset
B

data LF

Zbulk
S HF

estimate
foffset
0,i

Γgeo

λ0

f0
data LF

ASI

fB
data LF

foffset
B

data

combine Zbulk
S

of LF and HF

∆foffset
0

Zbulk
S LF

Zbulk
S HF

Zbulk
S LF + HF

4 5

6 7

8

Figure C.2.: Procedure with which the data are processed to obtain a first set of Zbulk
S data. Note that f0

data are already contained in the ASI module that is depicted in Figure C.1.

We now obtain Zbulk
S data for both the LF and the HF modes (Figure C.2):

4 We feed HF data for fB and the foffset
B data obtained from bolometry into the ASI, which then

yields Zbulk
S for the HF modes. Note that f0 data is already contained in the ASI.

5 We obtain λ0 from Xbulk
S (ω)|T=81mK ≈ µ0λ0ω.

6 The Γgeo
i for the LF mode are guessed just like inside the ASI.

7 We obtain foffset
0 of the LF mode by extrapolation of Xbulk

S (ω)|T=81mK from the HF modes,

foffset
0 ≈ Xbulk

S (0.202GHz)|T=81 mK

Γgeo
i

− f0(T = 0.81mK).

8 Finally, we can use the ASI with both the data and the offset for the LF mode, yielding Zbulk
S

for the LF mode.
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σ(T )
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Figure C.3.: Self-consistent model with which the data are at last processed. Self-consistency is reached when

foffset
B and foffset

0 of two subsequent cycles are equal. ASI again refers to Figure C.1.

C.2. Smoothing loop

The data processing in Figure C.3 works as follows:

9 From Zbulk
S , we calculate the temperature-dependent conductivity σ(T ) = iµ0ω

Z2
S

for each mode.

10 We obtain σ(ω)|T=81mK from the temperature-dependent data by interpolation at T = 81mK.

11 The σ(ω)|T=81mK data are fit with

σ = σdc

(︃
1

1 + (ωτ)y
+ iKK

(︃
1

1 + (ωτ)y

)︃)︃
+ σbgnd⏞ ⏟⏟ ⏞

=const.

+i
1

µ0λ2
0ω

. (C.1)

12 The temperature-dependent σ(T ) data are shifted vertically to match the fitted σ(ω)|T=81mK

model for each mode.

13 From the shifted σ(T ) data, Zbulk
S is calculated for each mode.

14 Undoing the finite-size and thermal-expansion corrections gets us back to Zeff
S data but with

different offsets.

15 Based on these new effective values, new offsets according to foffset
B,i =

2RS,i(T=81mK)

Γgeo
i

− fB,i(T =

81mK) and foffset
0,i =

XS,i(T=81mK)

Γgeo
i

− f0,i(T = 81mK) for both the LF and the HF modes are

calculated.
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16 The complete dataset is fed back into the ASI to obtain a new set of Zbulk
S data.

This process is carried out to self-consistency, that is, until the newly calculated offsets match the
ones from the iteration before.

The different terms in Equation (C.1) are based on the idea that we can describe the quasiparticle
contribution to the conductivity’s real part with a Drude-like term σdc

1+(ωτ)y with the dc conductivity

σdc, the quasiparticle scattering rate 1
τ and an exponent y that distinguishes it from the normal Drude

model. Since we are dealing with a physical quantity, meaning that we must demand our function
to be an appropriate response function, it has to be Kramers–Kronig (KK) consistent, so we have to
perform a KK transformation numerically every time we fit the model to the real part of the data to
obtain the quasiparticle contribution to the imaginary part of the conductivity. σbgnd takes care of the
constant background seen at each temperature and is a phenomenological term as well. The last term
marks the contribution of the superfluid. Its KK transformation is a delta peak at zero temperature
that is not taken into account in the fitting process since our data lie in the frequency range from
0.202GHz to 19GHz. Also, we neglect a gap-related term in the fitting process since, at 81mK, we
do not see any sign of the gap in our data.

The result is almost perfectly smooth conductivity data together with a fit according to Equation
(C.1). It is crucial to understand that the entire dataset is shifted to fit the model chosen to describe
it. Therefore, the data obtained in the initial processing have to be handled very carefully so that the
right model is chosen. Also, applying the model is the only time we really force the data to follow a
certain behavior apart from the RS–XS matching at high temperatures since this procedure lifts the
constraint placed on XS(ω)|T=81mK that we ended up using for the final dataset.
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ara. Coexisting static magnetic order and superconductivity in CeCu2.1Si2 found by muon spin
relaxation. Phys. Rev. B 39, 7, 4726–4729 (1989).

[130] H.A. Vieyra, N. Oeschler, S. Seiro, H. S. Jeevan, C. Geibel, D. Parker, and F. Steglich. Deter-
mination of Gap Symmetry from Angle-Dependent Hc2 Measurements on CeCu2Si2. Phys. Rev.
Lett. 106, 207001 (2011).

[131] G. E. Volovik. Superconductivity with lines of GAP nodes: density of states in the vortex. J.
Exp. Theor. Phys. 58, 6, 457–461 (1993).

André Haug
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