
Tobias Willerding

Baustatik��und��Baudynamik

Multiscale simulation
of phase transformation

in metals





Multiscale simulation
of phase transformation

in metals

von

Tobias Emanuel Willerding

Bericht Nr. 70
Institut für Baustatik und Baudynamik der Universität Stuttgart

Professor Dr.-Ing. habil. M. Bischo�
2019



c Tobias Emanuel Willerding

Berichte können bezogen werden über:
Institut für Baustatik und Baudynamik
Universität Stuttgart
Pfa�enwaldring 7
70550 Stuttgart

Tel.: 0711 - 685 66123
Fax: 0711 - 685 66130
E-Mail: sekretariat@ibb.uni-stuttgart.de
http://www.ibb.uni-stuttgart.de/

Alle Rechte, insbesondere das der Übersetzung in andere Sprachen, vorbehalten. Ohne Genehmi-
gung des Autors ist es nicht gestattet, diesen Bericht ganz oder teilweise aufphotomechanis-
chem, elektronischem oder sonstigem Wege zu kommerziellen Zwecken zu vervielfältigen.

D 93 - Dissertation an der Universität Stuttgart
ISBN 978-3-00-063671-4



Multiscale simulation
of phase transformation

in metals

Von der Fakultät Bau- und Umweltingenieurwissenschaften
der Universität Stuttgart zur Erlangung der Würde eines

Doktor-Ingenieurs (Dr.-Ing.) genehmigte Abhandlung

vorgelegt von

Tobias Emanuel Willerding

aus Bonn

Hauptberichter: Prof. Dr.-Ing. habil. Manfred Bischo�, Stuttgart

Mitberichter: Prof. Dr. rer. nat. Dr. h. c. Siegfried Schmauder, Stuttgart

Mitberichter: Prof. Dr.-Ing. Dennis Kochmann, Zürich

Tag der mündlichen Prüfung: 10. Juli 2019

Institut für Baustatik und Baudynamik der Universität Stuttgart

2019





Kurzfassung

Kurzfassung

Diese Arbeit beschäftigt sich mit der Mehrskalensimulation von Phasentransformation
in Metallen. Mehrskalensimulation ist die gleichzeitige Verwendung von zwei oder mehr
Methoden in einer Simulation, um E�ekte verschiedener Gröÿenskalen in Zeit oder Raum
in einer Rechnung zu berücksichtigen.

Die Phasentransformation zwischen verschiedenen Gitterstrukturen spielt einegroÿe
Rolle in der Herstellung von Metallen, z.B. Eisen. In dieser Arbeit wird eine Mehrskalen-
methode entwickelt, um Phasentransformation in Metallen zu simulieren. Kontinu-
umsmechanik, diskretisiert durch die Finite Elemente (FE)-Methode wird gekoppelt
mit Atomistik, repräsentiert durch die Molekulardynamik (MD).

Die Zielsetzung der Arbeit ist es, Phasentransformation zwischen kubisch-raumzentrierter
sowie kubisch-�ächenzentrierter Struktur und hexagonal dichtester Packung zu simulieren.
Da Phasentransformation eine Änderung der internen Gitterstruktur erfordert,sind tra-
ditionelle Mehrskalensimulationsmethoden nicht geeignet. Diese setzen meistens eine
feste Kopplung am Interface zwischen Fein- und Grobskala voraus. Auÿerdem wirdhäu-
�g die Cauchy-Regel benutzt, die keine interne Umstrukturierung/Topologieänderung
zulässt.

Um diese Probleme zu lösen, wird eine neue kombinierte hierarchic-partitioned-domain
Methode vorgeschlagen, die aus zwei Teilen besteht. Auf der Ebene der �niten Elemente
wird eine Methode basierend auf der FE2-Methode von Feyel (2003) vorgeschlagen,
die Molekulardynamiksimulationen als Unterprobleme benutzt, je ein Unterproblem pro
Gauÿintegrationspunkt. Die Methode ist ähnlich der Methode vonUlz (2015), aller-
dings gibt es ein paar Unterschiede: im Gegensatz zu Ulz wird kein Kernel für die
Mittelung der Spannungen auf der Feinskala verwendet. Des Weiteren wird nichtlineare
Dynamik verwendet, um zu einer quasistatischen Lösung zu konvergieren, Ulz benutzt
nichtlineare Statik. In der expliziten Dynamik reichen die internen Knotenkräfte der
�niten Elemente für die Beschreibung der Verformung aus. Diese können deutlich ein-
facher berechnet werden als die Stei�gkeitsmatrix, die in der Statik erforderlich ist. Da
die Molekulardynamikunterprobleme das Materialgesetz der �niten Elemente liefern, ist
das Materialverhalten der �niten Elemente identisch zu dem der Molekulardynamik und
damit können die �nite Elemente die Phasentransformation abbilden. Diese hierarchis-
che Kopplung wird in dieser Arbeit auch vertikale Kopplung genannt.

Für den partitioned-domain Teil der Methode wird das Rechengebiet in zwei Teile
aufgeteilt, einen Teil mit Molekulardynamik und einen Teil mit �niten Elementen. Diese
Aufteilung wird auch horizontale Kopplung in dieser Arbeit genannt. Die Kopplung am
Interface zwischen den beiden Gebieten wird auf zwei unterschiedliche Weisen erreicht.
Eine Methode ist ähnlich zu der AtC-Methode vonFish et al. (2007), wo die Cauchy-
Regel benutzt wird, um die Kopplungsatome an die Bewegung der FE-Knoten zu binden.
Die zweite Methode ist neu und beinhaltet, dass die Kopplungsatome sich in einer Box
mit periodischen Randbedingungen frei bewegen können. Diese Box hat die Form eines
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Parallelepipeds und deformiert sich wie das �nite Element. Da die Deformation des
�niten Elements beliebig ist, kann nur ein Parallelepiped berechnet werden, welches der
Form des �niten Elementes möglichst nahe kommt. Die Kraft, die auf die gebundenen
Atome wirkt, wird in beiden Methoden mit modi�zierten Formfunktionen auf die FE-
Knoten umverteilt. Dabei soll sichergestellt werden, dass die Kraft nur auf diejenigen
Knoten wirkt, die auch am Interface zwischen FE & MD liegen.

Im Rahmen dieser Arbeit wird ein Molekulardynamikcode programmiert, der in den
bestehenden FE-Löser NumPro, der am Institut für Baustatik und Baudynamik (IBB)
der Universität Stuttgart entwickelt wird, eingebettet ist.

Zur Validierung der Methode werden vier Testfälle präsentiert, um die Mehrskalenme-
thode zu validieren. Ein Zugversuch und ein Biegeversuch werden simuliert, um die
prinzipielle Funktionalität der Methode zu veri�zieren. Dazu wird zuerst eine Referen-
zlösung mit Molekulardynamik ausgerechnet. Das Potential vonMendelev et al.
(2003) wird für die Berechnung ausgewählt. Unglücklicherweise war es nicht möglich
die gewünschten Randbedingungen in einem externen Programm für Molekulardynamik-
simulationen (IMD) aufzubringen und zu einer quasi-statischen Lösung zu konvergieren.
Daher wird die horizontale Kopplung benutzt, um die Randbedingungen mittels �niten
Elementen aufzubringen. Der Zugversuch zeigt gute Resultate und ist in guter Überein-
stimmung mit der Molekulardynamiklösung. Der Biegeversuch ist komplexer und liefert
durchwachsene Ergebnisse. Die Molekulardynamikverschiebung am Balkenende ist am
gröÿten und die FE-Lösung mit der vertikalen Kopplung die steifste. Die horizontalen
Kopplungsmethoden liegen dazwischen. Die Resultate weichen von der MD-Lösung um
bis zu 35% ab.

Um die Fähigkeit der Methode, Phasentransformation zu simulieren, zu validieren, wer-
den zwei unterschiedliche Testfälle durchgeführt. Der erste Testfall ist für die vertikale
Kopplung und der zweite Testfall für sowohl vertikale als auch horizontale Kopplung.
Für die Phasentransformation werden zwei Potentiale, basierend auf der Embedded-
Atom-Methode (EAM) benutzt. Für die Simulation von Phasentransformation zwis-
chen kubisch-raumzentriertem (BCC) und kubisch-�ächenzentriertem (FCC) Eisenwird
das Potential vonMeyer and Entel (1998) benutzt, da es eines der wenigen EAM-
Potentiale ist, das den Phasenübergang in Eisen abbilden kann. Darüber hinaus wird
das Potential vonMendelev et al. (2016) benutzt, um den Phasenwechsel in Titan
zwischen der hexagonal dichtesten Packung (HCP) und der kubisch-raumzentriertem
Packung (BCC) zu simulieren. Für jede Kopplungsmethode werden alle vier Phasenän-
derungen (BCC$ FCC und HCP$ BCC) simuliert. Der erste Testfall, der nur ver-
tikales Koppeln beinhaltet, zeigt bei allen Phasentransformationen sehr gute Ergebnisse.
Die Atome in den MD-Unterproblemen an den Integrationspunkten verformen sich wie
erwartet und die Deformation der �niten Elemente ist ebenfalls gut, was durch das Län-
genverhältnis der Kantenlängen des Simulationsquaders vor und nach der Simulation
validiert wird.

Im Falle der kombinierten horizontalen und vertikalen Kopplung werden ebenfalls alle
vier Phasentransformationen simuliert. Im Fall des Wechsels von BCC$ FCC zeigt die
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Kopplung mit der Cauchy-Regel ebenfalls sehr gute Resultate, da diese Phasentransfor-
mation nur eine Skalierung der Achsen beinhaltet. Die vorgeschlagene Methode mit der
Box mit periodischen Randbedingungen liefert ebenbürtige Ergebnisse zu der Cauchy-
Regel. Im Falle des Phasenübergangs HCP$ BCC sieht die Sache jedoch anders aus.
Die neue Methode liefert deutlich bessere Ergebnisse als die Cauchy-Regel, da bei der
Cauchy-Regel die Atome ihre Position relativ zueinander nicht ändern können.
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Abstract

Abstract

This thesis is about multiscale simulation of phase transformation in metals. Multiscale
simulation is the simultaneous use of two or more models in order to have phenomena
of di�erent length or time scale in one simulation.

Phase transformation between di�erent lattice structures plays an important role in
the formation of metals, e.g. iron or titanium. It is, therefore, of interest to simulate
phase transformation in a multiscale context. In this thesis, a multiscale method for
the simulation of phase transformation in metals is developed. Continuum mechanics,
represented by the �nite element method, is coupled with atomistics, representedby
molecular dynamics.

The goal is to simulate phase transformation in metals between di�erent latticestruc-
tures such as body-centered cubic, face-centered cubic and hexagonal close-packed struc-
ture. As phase transformation requires an internal restructuring of the molecularstruc-
ture, traditional multiscale methods cannot be used as these require �xed coupling at
the interface between coarse scale and �ne scale and very often also in thecoarse scale
by using the Cauchy rule.

In order to overcome these problems, a combined hierarchic-partitioned-domain method
is proposed that consists of two parts. On the �nite element level, a hierarchic method
based on the FE2-method byFeyel (2003) is used with molecular dynamics simulations
as subproblems, one subproblem at each Gauss integration point. It is similar to the
method by Ulz (2015), but with a few di�erences. In contrast to Ulz, no kernel is used
for averaging the stress values at the �ne scale and a quasi-static solution is calculated
by using non-linear dynamics instead of statics. In explicit dynamics, only the internal
nodal forces are necessary for the simulation, which can be calculated much easier than
the sti�ness matrices of �nite elements. With molecular dynamics as material law for
the �nite elements, the �nite elements behave in the same way as atoms for coarse
scale deformations. Using this method phase transformation can already be simulated
in the coarse scale as small molecular dynamics subproblems are su�cient for phase
transformation simulation. This is the hierarchic part of the method and it is denoted
as vertical coupling.

The partitioned-domain part of the method consists of dividing the domain into two
parts: a molecular dynamics part and a �nite element part. This is also denoted as
horizontal coupling in this work. The coupling of �nite elements and molecular dynamics
at the interface is done in two ways. First with a method similar to the AtC-method by
Fish et al. (2007) using the Cauchy rule, where a part of the atoms is moving according
to the deformation of the nodes. Second with a new method, where the coupling atoms
are put into a box with periodic boundary conditions. The box has the shape of an
parallelepiped and is deformed according to the �nite element movement. As the �nite
element deformation is arbitrary a close-�t parallelepiped is calculated from the nodal
positions. The force on the bound atoms are redirected to the �nite element nodes
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using shape functions of the �nite elements in a slightly modi�ed way to ensure that the
forces are only enacting on the �nite element faces that are on the interface side to the
�nite elements. The coupling with the periodic boundary condition box provides more
freedom to atoms and enables them to change phase.

For basic functionality tests of the method, for time being unrelated to phase transfor-
mation an iron potential by Mendelev et al. (2003) is selected. Concerning phase
transformation, two potentials based on the Embedded Atom Method (EAM) are se-
lected. The �rst potential has been developed byMeyer and Entel (1998) and
is used to simulate the phase transformation between a body-centered cubic (BCC)
and a face-centered cubic (FCC) lattice structure in iron. In addition, the potential
by Mendelev et al. (2016) is used to simulate the phase transformation between
hexagonal close-packed (HCP) and body-centered cubic lattice structure in titanium.
The potentials are implemented into a self-developed molecular dynamics code as part
of this thesis. This molecular dynamics code is integrated into the existing �nite ele-
ment solver NumPro, developed at the Institute for Structural Mechanics (IBB) at the
University of Stuttgart.

Finally, four test cases are presented to validate the multiscale method. A tensile test
and a bending test are simulated to verify the method's basic functionality. First,
a reference solution is calculated with mostly molecular dynamics for both test cases.
Unfortunately, it was not possible to apply boundary conditions in an external molecular
dynamics program and converge to a quasi-static solution. Therefore, the horizontal
coupling is used to calculate the reference solution with only the boundary conditions
being simulated by �nite elements. The tensile test shows good results for all tested
methods in agreement with the molecular dynamics solution. The bending test is more
complex and gives mixed results. The molecular dynamics displacement of the beam
is the highest and the �nite element solution with the vertical coupling the sti�est.
The horizontal coupling methods are between the molecular dynamics solution and
the vertical coupling solution. The bending results di�er up to 35% compared to the
molecular dynamics solution.

There are two phase transformation test cases performed, the �rst test case with vertical
coupling only and the second test case with both vertical and horizontal coupling. For
each of the coupling methods, all four phase transitions (BCC$ FCC and HCP$ BCC)
are simulated. The test case using only vertical coupling shows very good results for
all four phase transitions. The atoms in the MD subproblems at the integration points
move as expected and the coarse-scale deformation is also very good, whichhas been
veri�ed by looking at the length ratios of the simulation cube's axes at the beginning
and the end of the simulation.

In the test case for the combined method, all four previous transformations areinves-
tigated with a Cauchy coupling and the new proposed subboxes coupling introduced
before. In the case of BCC$ FCC phase transformation, the Cauchy type coupling
shows good results for the transition because the transition only involves a rescaling of
the axes. The newly proposed coupling performs just as well as the Cauchy coupling.
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However, it needs more time steps to converge. In the case of the HCP$ BCC transi-
tion, the newly proposed method performs better than the Cauchy coupling. This is due
to the fact that in the case of the Cauchy coupling the coupling atoms are bound by the
deformation of the �nite element nodes and cannot change their internal structure.
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1
Introduction

1.1 Motivation

Many materials, such as metals, show e�ects that can be modeled only with limited
success on the coarse scale or cannot be modeled at all. These e�ects � such as crack
propagation, plasticity, phase transformation and many others � require microscale mod-
eling, because they are happening on a very �ne scale and also in a very short time.
This requires di�erent computational methods compared to the methods traditionally
used on the coarse scale. Although these e�ects happen very localized on a very small
scale, they can still have a very big impact on the coarse scale. An easy to understand
example is the crack. A small crack opening can increase the stress in a small region of
a component. This higher stress will cause the crack to grow and may ultimately lead
to failure of the component.

In order to have both the coarse scale and the �ne scale modeled in one simulation, the
concept of multiscale simulation was developed. The Multiscale simulation combines at
least two di�erent models in one simulation. Typical examples include the coupling of
discrete elements and �nite elements or molecular dynamics and �nite elements.

An interesting future context, in which multiscale simulation could play an important
rule, is the design of new materials without referring to purely phenomenological mate-
rial laws, but instead creating the material modeling ab initio, starting with molecular
dynamics or even quantum physics, working the way up over the length scales to the
coarse scale.

In the formation of materials, especially metals, phase transformation plays animportant
role. Many materials have more than one possible lattice structure. Two interesting
materials in this context are iron and titanium, which are shown in Figure 1.1.
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1 Introduction

Figure 1.1: Left: pure iron in di�erent forms. Right: titanium crystal,
source left author: Alchemist-hp (talk) (www.pse-mendelejew.de),
https://commons.wikimedia.org/wiki/File:Iron_electrolytic_
and_1cm3_cube.jpg, CC BY-NC-ND 3.0
source right author: Alchemist-hp (talk) (www.pse-mendelejew.de),
https://commons.wikimedia.org/wiki/File:Titan-crystal_bar.JPG ,
CC BY-NC-ND 3.0

Iron is alloyed with carbon to create steel, which is one of the most important alloys
in use today. It is cheap and o�ers a wide range of possibilities from the construction
industry to high-performance applications. Titanium is an expensive but lightweight
material that is used e.g. in the aerospace industry or in orthodontics.

Iron has two possible lattice structures, a body-centered cubic structure at room tem-
perature (� -iron) and a face-centered cubic structure above 1184 Kelvin ( -iron). By
using a suitable process, the high-temperature structure of steel can be stabilized at
room temperature and is called austenite steel. Austenite steel has di�erent properties
compared to steel with a body-centered cubic structure. In the case of titanium, there
are also two possible lattice structures: a hexagonal close-packed structure at room tem-
perature and a body-centered cubic structure at high-temperature called beta-titanium.
While hexagonal titanium is used in aerospace industry, beta-titanium is used e.g. in or-
thodontics. As phase transformation plays an important role in the formation of metals,
it is of interest to include it in a multiscale simulation with the perspective of material
design.
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1.2 Goal

1.2 Goal

The goal of this thesis is to develop a multiscale method, consisting of �nite elements
and molecular dynamics, that can model phase transition in the �nite elements, in
the molecular dynamics part and also at the interface, enabling phase transformations
throughout the multiscale simulation. The problem is visualized in Figure 1.2.

1. phase change in
molecular dynamics

3. phase change at
the interface

2. phase change in �nite
elements

yet to be de�ned
interface

Figure 1.2: The problem to be solved: atoms (left side) are coupled with �nite elements
(right side) with a yet to be de�ned interface that can do phase transforma-
tion

This requires four steps:

1. Phase transformation in molecular dynamics: identi�cation of molecular dynamics
potentials for iron and titanium that are suitable for phase transformation.

2. Phase transformation in �nite elements: development of a hierarchic concept for
coupling �nite elements and molecular dynamics similar to the FE2-concept.

3. Phase transformation at the interface: development of a partitioned-domain con-
cept for coupling �nite elements and molecular dynamics that enables phase trans-
formation at the interface

4. Validation of the concept in a number of test cases.
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1 Introduction

1.3 Structure of the thesis

The thesis is structured in eight chapters. It starts with Chapter 2, which gives a basic
overview of atomic physics with a focus on the current atom model and electron density.
In addition, the three di�erent lattice structures � body-centered cubic, face-centered
cubic and hexagonal close-packed � are presented and phase transformation between
them is explained. In Chapter 3 an overview of molecular dynamics and the Embedded-
Atom-Method (EAM) is given. Furthermore, the molecular dynamics potentials for iron
and titanium used in this thesis are introduced and their correct implementation is ver-
i�ed. Quantities derived from molecular dynamics are explained and implementation
of the molecular dynamics into program code is presented. The thesis continues with
Chapter 4, which deals with the introduction to continuum mechanics and the nonlinear
dynamic �nite element method. From the kinematics, stress measures, balance law and
material law a variational formulation is derived and discretized with �nite elements. In
Chapter 5 an overview of existing multiscale methods is given and advantages and disad-
vantages of those methods are presented with regard to phase transformation. Chapter
6 presents a hierarchic-partitioned-domain method to simulate phase transformationin
a multiscale environment. The hierarchic part � called vertical coupling � and the parti-
tioned domain part � called horizontal coupling � are explained in more detail. After the
explanation of the method in Chapter 7 four di�erent test cases are presentedto validate
the concept. These are a tensile test, a bending test, phase transformation using the
hierarchical part only (vertical coupling) and a phase transformation simulation using
the combined method. The results are summarized. In the last Chapter 8, conclusions
and an outlook for further work are given.
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2
Atomic physics

2.1 Atom model

On a fundamental level, every material consists of many atoms. An atom consists of
the atomic nucleus and the electrons that surround it. The atomic nucleus is positively
charged and is made of protons with a positive charge and neutrons with a neutral
charge. Electrons have a negative charge. The number of electrons surrounding the
nucleus is equal to the number of protons in the nucleus making the outside atomic
charge neutral.

Figure 2.1: Atomic nucleus (red) and electron cloud (grey)
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2 Atomic physics

Of the two materials used in this thesis, iron has 26 protons and the most common
isotope has 30 neutrons bringing the atomic mass to 56. Titanium has 22 protons and
the most common isotope has 26 neutrons bringing the atomic mass to 48.

The electrons surrounding the nucleus are today interpreted as quantum objects with
wave-like characteristics. Due to its wave-like nature, it is only possible to determine
probabilities of �nding an electron at a speci�c point around the nucleus. Zones with
the same probability are called atom orbitals and are important for de�ning the electron
density that is essential for the simulation of metals. Figure 2.1 shows the red nucleus in
the center with grey symbolizing the electron cloud. The grey factor shows the integral
of the probability function of the 1s-orbital schematically.

2.1.1 Wave function

The electron density used later in the molecular dynamics simulation (see Chapter 3) is
based on the wave function. The wave function of an atom is given by the Schrödinger
equation bySchrödinger (1926). The general time-independent Schrödinger equation
is

"
� ~2

2�
r 2 + V (r )

#

	( r ) = E	( r ): (2.1)

Herer is the distance from the atomic nucleus, 	(r ;t ) is the wave function,~ the reduced
Planck constant,� the reduced mass,V (r ) the potential �eld and E the constant energy.
r is the nabla-di�erential operator. The solutions to the Schrödinger equation are the
wave functions. Analytical solutions of the Schrödinger equation do only exist for simple
cases like a single hydrogen atom.

We now look at a simple hydrogen atom. The potentialV (r ) simpli�es to the Coulomb
force, with both the hydrogen nucleus and the electron having a singlee-charge, just
with opposing signs.

V (r ) = �
e2

4�� 0

1
jr j

(2.2)

e = 1:6021766208(98)� 10� 19C is the elementary charge and� 0 = 8:854187817� 10� 12 F
m

is the vacuum permittivity. The Schrödinger equation in this case is
"

� ~2

2me
r 2 �

e2

4�� 0

1
jr j

#

	( r ) = E	( r ): (2.3)
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2.1 Atom model

The solution to the Schrödinger equation represented by the funtion' nlm (r ;�;� ) in the
spherical coordinate system is

	( r ) _=' nlm (r ;�;� ) =
� r

nr0

� l

exp(im� ) exp
�

�
r

nr0

�

L2l+1
n� l � 1

� 2r
nr0

�

Plm (cos� ): (2.4)

with r0 = 4�� ~2

mee2 being the Bohr atom radius. The functionsL j
i (x) are the associated

Laguerre polynomials andPlm (x) are the associated Legendre polynomials. The three
integersn, l and m are introduced to characterize the wave function and called quantum
numbers. The principal quantum numbern identi�es the permissible energy levels

E = �
mee4

32� 2� 2
0~2n2

(2.5)

with me being the mass of a single electron.l is the azimuthal quantum number and
m the magnetic quantum number. They describe the orientation and shape of the
solution. The wave function can be used to estimate the probability density of the
hydrogen electron being in a speci�c space also called the electron density. Theelectron
density of a speci�c orbital is de�ned as the product of the wave funtion and with its
complex conjugate:

� el,nlm (r ;�;� ) = ' �
nlm (r ;�;� )' nlm (r ;�;� ) (2.6)

Two examples of� el = 0:05 can be seen in Figure 2.2 with' 310(r ;�;� ) (left)) and
' 320(r ;�;� ) (right).

Figure 2.2: Orbitals of a single hydrogen atom,' 310 (left) and ' 320 (right)
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2 Atomic physics

2.1.2 Electron density

The electron density for more complex atoms can be modeled with some approximations
using the Hartree-Fock method (seeHartree (1928),Fock (1930)). This method can
then describe the electron density as

� el(r ) =
NorbitalX

k=1

nk j' k(r )j2; (2.7)

where Norbital is the number of orbitals,nk is the number of atoms in the orbital and
' k(r ) is the wave function of the orbital. This method is used for the electron density
in the embedded atom method see e.g. the Meyer-Entel potential in Section 3.1.2. For
a more detailed explanation of the electron density, see the book byTadmor and
Miller (2011).

2.2 Atomic lattice structures

Metals in a solid state have a periodic atomic lattice structure. An example of a perfect
atomic lattice can be seen in Figure 2.3. Materials, in which the lattice is without
defects as in Figure 2.3 are called single crystals. However, these ideal structures do
only happen in rare cases. In reality, most metals consist of multiple crystals (or grains)
in di�erent orientations. The transition area between two crystal structures is called
a grain boundary. Each crystal can have its own defects like single point defects, e.g.
missing atoms, or line defects like dislocations.

Figure 2.3: Atomic lattice of iron (body-centered cubic)

This thesis is limited to perfect single crystal only because phase transformationhappens
also in single crystals and the problem is much easier compared to polycrystals.
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2.2 Atomic lattice structures

The three lattice structures investigated in this work are body-centeredcubic, face-
centered cubic and hexagonal close-packed.

2.2.1 Body-centered cubic

The body-centered cubic (BCC) lattice structure is seen in Figure 2.4. The atomsare
sitting at the corners and in the center of the cube. The size of the lattice is de�ned
by the lattice constant a. On average there are two full atoms in the unit cell of the
BCC lattice. One full atom is in the center and eight 1/8 atoms are at the corners. The
density of the system can then be easily computed by

� m, BCC =
2matom

a3
BCC

: (2.8)

aBCC

aBCC

aBCC

Figure 2.4: Body-centered cubic lattice

2.2.2 Face-centered cubic

Very similar to the body-centered cubic lattice structure is the face-centered cubic (FCC)
lattice structure, as seen in Figure 2.5. In this case the atoms are sitting in the center
of the surrounding surfaces and in the center of the cube.

The size of the lattice is also de�ned by the lattice constanta. On average there are
four full atoms in the unit cell of the FCC lattice. One full atom is in the center and 6
1/2 atoms are at the center of the surfaces of the cube. The density of the system can
then be easily computed by

� m, FCC =
4matom

a3
FCC

: (2.9)
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2 Atomic physics

aFCC

aFCC

aFCC

Figure 2.5: Face-centered cubic lattice

2.2.3 Hexagonal close-packed

The hexagonal close-packed structure is seen in Figure 2.6. The atoms are sittingat the
corners of a hexagonal prism plus three atoms in the middle of the prism. The size of
the lattice is de�ned by the lattice constantsaHCP and cHCP . On average there are six
full atoms in the unit cell of the HCP lattice. The density of the unit cell can then be
easily computed by

� m, HCP =
4
3

p
3

matom

a2
HCP cHCP

: (2.10)

aHCP

cHCP

Figure 2.6: Hexagonal close-packed lattice

The FCC and HCP lattice are very similar to each other. As can be seen in Figure 2.6
the hcp has a ABABAB layer pattern. The FCC structure is almost identical, it only
has a di�erent arrangement of the layers in an ABCABC pattern. This is illustrated in
Figure 2.7 .
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2.2 Atomic lattice structures

A B

BA
C

A

Figure 2.7: HCP lattice (left) and FCC lattice (right) comparison. HCP has ABAB
structure, while FCC has ABCABC
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2 Atomic physics

2.3 Phase transformation

Phase transformation is a term to describe the transition from one material state to
another. Often it is associated with the change of liquid water to water ice (freezing) or
to water vapor (evaporation). However it can also be used to describe phase transition
in solids from one solid phase to another solid phase. One famous transition is the
change of graphite to diamond under high pressure and temperature. In this work the
focus is on the transition between the body-centered cubic (BCC) and the face-centered
cubic (FCC) lattice structure in iron and between hexagonal close-packed (HCP) and
body-centered cubic lattice structure in titanium. Figure 2.8 shows the possible lattice
structures of iron and titanium.

0 K 500 K 1000 K 1500 K 2000 K

Iron

Titanium

bcc fcc bcc

hcp bcc

liquid

liquid

Figure 2.8: Solid phases of iron and titanium

Iron is often alloyed with carbon to create steel. If the carbon portion is close to zero,
three typical structures can be observed in iron: ferrite (� -iron) between 0 K and 1184
K, austenite ( -iron) between 1184 K and 1667 K and ferrite again, also called� -iron,
bewteen 1667 K and 1811 K. Above 1811 iron is in the liquid phase.� -iron and � -iron
have a body-centered cubic (BCC) lattice while -iron has a face-centered cubic phase
(FCC).

Titanium is a metal that was discovered in 1791 by William Gregor. It also can appear
in two stable lattice structures, hcp below 1155 K and bcc above 1155 K. Itmelts at
1941 Kelvin.

In the following, the transition from BCC to FCC and from FCC to FCC shall be looked
at from a theoretical point of view.
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2.3 Phase transformation

2.3.1 Transition between BCC and FCC

The transition from BCC to FCC is quite simple from a theoretical point of view as it
can be done by a simple scaling of the axis. In Figure 2.9 the transition is visible. On
the left side, a BCC lattice is visible. The middle picture shows the lattice scaled by
a factor of

p
2. On the right side, the lattice has been expanded to 2x2. The red lines

show that a FCC structure can be discovered in the lattice. Therefore, BCCcan be
transformed into FCC simply by changing the ratio of the axes by a factor of

p
2. This

transformation is known as the Bain transformation (Edgar (1924)).

Figure 2.9: Transition from BCC to FCC

An experimental transformation can be seen in Figure 2.10, published byLu (2016). The
�gure shows the transition from BCC to FCC structure in the metal molybdenum. The
shots are taken with a high-resolution transmission microscope (HRTEM). The lattice
constant in the BCC phase is 0:31 nm = 3:1 Å. In the FCC phase the dimensions are
0:2 nm = 2 Å and 0:29 nm = 2:9 Å. Taking the ratio of the lengths

0:29 nm
2 � 0:2 nm

p
2 = 1:025� 1; (2.11)

it can be observed that it is very close to the factor of
p

2.
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2 Atomic physics

Figure 2.10: Original caption:�(a) HRTEM (High resolution transmission electron
microscope) image of a Mo nanowire that was captured along the [100]
direction; it shows a typical bcc lattice. (b) HRTEM image of Mo nanowi re
that was taken along the [100] direction; it shows typical fcc lattice features.
(c) Atomic model of bcc Mo that project along the [100] direction. (d)
Atomic model of the fcc Mo that project along the [110] direction. (e,f)
3D atomic structure show the transformation path from bcc Mo to fcc
Mo.� IMAGE SOURCE: Super-plastic Elongation of Body-centred Cubic
Single Crystalline Molybdenum - Scienti�c Figure on ResearchGate from
Lu (2016). Available from: https://www.researchgate.net/figure/
Bcc-structure-to-fcc-structure-transformation-a-HRTEM-image-
of-a-Mo-nanowire-that-was_fig6_297727984 , accessed 5 Feb, 2019,
CC BY-4.0
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2.3 Phase transformation

2.3.2 Transition between FCC and HCP

The transition from FCC to HCP is more complex compared to the transition between
BCC and FCC and is shown in Figure 2.11. First, it is important to discover the
hexagonal structure in the FCC lattice. The lattice can also be interpreted as a number
of hexagonal layers above each other. The layers are arranged in an ABCABC pattern,
meaning the layers in A arrangement are always exactly on top of each other.The same
is true for the B and C layers. If the layers are moved to change the arrangement to
ABABAB, an HCP lattice is created. See also Figure 2.7.

Figure 2.11: Transition from FCC to HCP, change of structure from ABCABC to
ABABAB

15





3
Molecular dynamics

3.1 Embedded-Atom-Method

Molecular dynamics is a computer simulation method to study atomistics. Molecules,
which are two or more atoms that are chemically bound together, are assumed to be
point masses, which interact with other molecules due to a potential. A lot of di�erent
types of potentials have been developed in the past to adjust simulations to a speci�c
problem. The basic equation of motion of an individual moleculea is straightforward.
The total potential energy of the system is derived with respect to the position of the
atom r a.

fa = m•r a = �
@Epot

@r a
(3.1)

In this thesis, the considered materials shall be limited to pure metals, so that each
molecule consists of exactly one atom. However, by the de�nition above a molecule con-
sists of at least two atoms so that the name �molecular dynamics� is a bit misleading.

The embedded atom method (EAM), presented byDaw and Baskes (1984), is one
method of molecular dynamics and it is used in this work. The EAM o�ers a good
representation of the characteristics of metals. It consists of a pair potential term V (r )
and an embedding functionF (� i ) that depends on the electron density� i . The pair po-
tential term represents the repelling forces while the embedding function represents the
attractive forces. The functionsF (� i ) and V (r ) are semi-empirical, while the electron
density is a simpli�ed solution of the Schrödinger equation using the Hartree-Fock-
simpli�cation.
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3 Molecular dynamics

The potential energy for the EAM has the following form:

Epot =
X

i

F(� i ) +
1
2

X

i 6= j

V (r ij ): (3.2)

The electron density is described with a pair term di�erent from the pair potential.

� i =
X

j ;j 6= i

� (r ij ) (3.3)

Both F (� ) and � (r ) consist of one function each, because only pure single crystal metals
are considered in this work.

From the EAM potential, the force fa on atom a can be derived and it is computed as
follows:

fa = m•r a = �
@Epot

@r a
= �

X

i ;i 6= a

" 
@F(� a)

@�a
+

@F(� i )
@�i

!
@�(rai )

@r a
+

@V (rai )
@r a

#

(3.4)

However, as the potential data is implemented as a tabulated format (see also section
about Implementation), it makes more sense to formulate the potential as a function of
r 2 instead ofr . This avoids the time-consuming calculation of the length of vectorr .

In the following three EAM potentials are presented that are used in this work.The
iron potential by Mendelev et al. (2003) is used for basic functionality tests of
the multiscale method that are unrelated to phase transformation. The iron potential
by Meyer and Entel (1998) is used for simulating phase transformation in iron.
Finally, the potential by Mendelev et al. (2016) is used for the phase transformation
simulation in titanium.

3.1.1 Iron potential by Mendelev et al

The potential by Mendelev et al. (2003) is a recently developed potential for iron. It
shows good elastic mechanical stress. The functions� el(r ), F (� ) and V (r ) can be seen
in Figures 3.1 and 3.2. The potential �les were provided by the Institute for Materials
Testing, Materials Science and Strength of Materials (IMWF).

As can be seen from good agreement of the elastic constants in Table 3.1, the potential
has been implemented in the molecular dynamics code in an accurate way.
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Figure 3.1: Electron density and pair potential function of the iron potential by Me ndelev

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

0 1 2 3 4 5

en
er

gy
in

eV

electron density

embedding function

Figure 3.2: Embedding function F (� ) of the iron potential by Mendelev
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3 Molecular dynamics

Constant Results ReferenceMendelev et al. (2003)
C11= GPa 243.7 242.4
C12= GPa 143.5 145.0
C44= GPa 115.9 116.0

Table 3.1: Comparison of calculated potential values compared to reference at zero Kelvin

20



3.1 Embedded-Atom-Method

3.1.2 Iron potential by Meyer-Entel

The EAM potential by Meyer and Entel (1998) is one of the few potentials that can
be used to simulate phase transformationWang and Urbassek (2013). This potential
uses double� -wave functions fromClementi and Roetti (1974) for the calculation
of the electron density. The potential was constructed from the paper byMeyer and
Entel (1998) and was not acquired in tabulated format.

Pair potential function

The function V (r ) in the EAM is composed as follows

V (r ) =
1

4�� 0

Z2(r )
r

; (3.5)

with � 0 = 5:3396� 10� 3 e
VÅ

. The function Z(r ) is the coulomb force and represented by
a cubic spline interpolation with parameters as in Table 3.2.

r =a 0 0.7 0.87 0.94 1.0 1.2
Z in eV 26 1.4403 0.25452 0.1491 0.0734 0
Z0 in eV/Å 0 0

Table 3.2: Coe�cients for pair potential with a = 2 :8665Å

The pair potential can be seen in Figure 3.3.

Electron density

Meyer and Entel (1998) use the following ansatz for the electron density.

� el(r ) = N4sj' 4s(r )j2 + ( Nv � N4s)j' 3d(r )j2 � � c: (3.6)

Nv is the number of valence electrons, iron has 8. AndN4s is the number ofs symmetry
atoms, iron has 0.57. The functions' 4s(r ) and ' 3d(r ) are double-� functions and can
be gained fromClementi and Roetti (1974). They are a linear combination of
slater-type functions.

' 4s(r ) =
8X

i =1

ci ;4s� i ;4s(r ) (3.7)
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3 Molecular dynamics

' 3d(r ) =
2X

i =1

ci ;3d � i ;3d(r ) (3.8)

In Table 3.3 the coe�cients for ' 4s(r ) and ' 3d(r ) are given.

index 1 2 3 4 5 6 7 8
ci ;4s -0.00392 -0.03027 -0.02829 0.15090 -0.21377 -0.05096 0.50156 0.60709
ci ;3d 0.40379 0.71984
ni ;4s 1 1 2 2 3 3 4 4
ni ;3d 3 3
� i ;4s 27.0335 19.0104 13.51700 10.1305 5.2166 3.47616 1.92517 1.07742
� i ;3d 6.06828 2.61836

Table 3.3: Coe�cients for electron density of Meyer-Entel potential

The functions � i are slater type functions of the form

� i = (2 � i )ni

s
2� i

(2ni )!
r ni � 1 exp(� � i r )Y lm (�;� ) (3.9)

with Y lm (�;� ) being spherical harmonics de�ned as

Y lm (�;� ) = ( � 1)m

vu
u
t (2` + 1)

4�
(` � m)!
(` + m)!

Plm (cos� ) eim � : (3.10)

The functions Plm (x) are the associated Legendre polynomials. However, the EAM
potential does only depend on interatomic distances and not on angles. It is unclearhow
the Y lm (�;� ) was dealt with in the paper byMeyer and Entel (1998). It could have
been simply left out or averaged over the domain. In this workY lm (�;� ) = Y00(�;� ) =

1p
4�

. The same assumption has been used byDaw and Baskes (1984).

The electron density function can be seen in Figure 3.3.

Embedding function

The embedding function is a function described by cubic spline interpolation. The
interpolation points are given in Table 3.4.

The embedding function can be seen in Figure 3.4.
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Figure 3.3: Electron density and pair potential function of the iron potential by Me yer-
Entel

�=� 0 0 0.5 1.0 2.0 2.3
F in Ry 0 -0.2823 -0.4276 -0.3030 0
F in eV 0 -3.841 -5.818 -4.123 0
F 00in eV=Å2 0 0

Table 3.4: Coe�cients for embedding function with � 0 = 2 :776� 10� 3

Validation

As can be seen in Table 3.5, the computed values for the potential show in generala
good agreement compared to the reference. However, there are some di�erences inC44

that may be related to the choice ofY lm (�;� ).

Constant Results ReferenceMeyer and Entel (1998)

C11= GPa 256.8 251.0

C12= GPa 134.8 130.4

C44= GPa 106.9 118.7

lattice constant BCC / Å 2.888 2.866

lattice constant FCC / Å 3.708 3.751

Table 3.5: Comparison of calculated potential values compared to reference at zero Kelvin
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Figure 3.4: Embedding function of the iron potential by Meyer-Entel

3.1.3 Titanium potential by Mendelev et al

The paper by Mendelev et al. (2016) provides three di�erent titanium potentials.
According to the authors, the �rst potential is most suited for phase transformation
simulation. Therefore, this potential is used in this thesis for simulation of the transition
between HCP and BCC. The potential �les were provided with the paper. The electron
density and pair potential function can be seen in Figure 3.5 and the embedding function
in Figure 3.6.

Constant Results ReferenceMendelev et al. (2016)

lattice constant HCP a / Å 2.96 2.947

c/a (HCP) 1.596 1.597

lattice constant BCC / Å 3.29 3.251

Table 3.6: Elastic constants for the Titanium potential from Mendelev et al. (2016)

The lattice constants do �t with the reference as seen in Table 3.6.
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Figure 3.5: Electron density and pair potential function of the titanium potential
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3.2 Canonical ensemble

A canonical ensemble is a system consisting of a number of particlesN and a volume
V at temperature T . The kinetic energy of the atoms is equivalent to the temperature.
The system is in contact with a heat bath, that can add or remove energy fromthe
system to maintain a constant temperatureT . The particles � or atoms in the case of
molecular dynamics � move according to the following equation

m•r i = �
@Epot

@r i
: (3.11)

The potential energy is represented by the EAM potential, see equation (3.2). The
particles have a kinetic energy

Ekin =
NX

i =1

1
2

mi v2
i : (3.12)

The heat bath can add or remove energy to keep the kinetic energy constant. The total
energyEtot = Epot + Ekin is, therefore, not constant in this ensemble.

3.2.1 Time integration

Time integration of the molecular dynamics code is done with the Verlet time integration
method Verlet (1967). The second derivative with central di�erences is:

•r t =
r t +1 � 2r t + r t � 1

� t 2
: (3.13)

This can be rearranged to

r t +1 = 2r t � r t � 1 + � t 2•r t : (3.14)

The velocities can be calculated only for the current and not for the next time step

_r t =
r t +1 � r t � 1

2� t
: (3.15)

3.2.2 Velocity distribution

The velocities of the atoms are distributed according to the Maxwell-Boltzmann distri-
bution. An atom has three degrees of freedom, the positionsx,y and z with the according
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3.2 Canonical ensemble

velocitiesvx , vy and vz. Each velocity component follows a normal distribution around
the average velocity� = 0 m/s.

f (v j � = 0; p) =
1

p
2� p2

e� ( v� � ) 2

2p2 (3.16)

=
1

p
2� p2

e� v2

2p2 (3.17)

with the scaling factor p =
q

kT
m with k = 8:6173303� 10� 5 eV

K being the Boltzmann-
constant, T the temperature andm the mass of the atom.

The absolute velocity

jv j =
q

v2
x + v2

y + v2
z (3.18)

follows the Maxwell-Boltzmann distribution

f (v) =

s
2
�

v2e� v2=(2p2)

p3
: (3.19)

The kinetic energy of the atoms can be calculated according to

Ekin =
1
2

NX

i =1

mi jv i j2: (3.20)

Assuming the massmi to be the same for all atoms and using the average squared speed
of the Maxwell-Boltzmann distribution hv2i = 3p2, the kinetic energy becomes

Ekin =
3
2

Nmp2 (3.21)

=
3
2

NkT : (3.22)

The Boltzmann distribution for iron at 300 K can be seen in Figure 3.7.
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3.3 Constraints

3.3 Constraints

3.3.1 Starting con�guration

In order to de�ne the starting con�guration of a molecular dynamics simulation, the
positions r 0 and the velocities_r 0 of all atoms must be de�ned.

The initial positions are de�ned by the initial crystal structure and are loaded froma
data �le. For possible con�gurations see Section 2.3.

According to Boltzmann the initial velocity distribution of the atoms represents a speci�c
temperature. The three velocity components are initialized with a random generator
following a normal distribution as in equation (3.17).

3.3.2 Periodic boundary conditions

It is often the case that the behavior of atoms can be reduced to a representative volume
element consisting of a small number of atoms representing a �eld of an in�nite numberof
atoms. This can be done with periodic boundary conditions (PBC). This representative
volume element has the shape of a parallelepiped.

PBC means that atoms close to the boundary of the box can see atoms at the otherside
of the box. Furthermore, if the atoms leave the box, they just move in from the other
side of the box, keeping the number of atoms inside the box constant.

A molecular dynamics problem with periodic boundary conditions (PBC) can be seen
in Figure 3.8. The box has the form of a parallelepiped, it is de�ned by the span of the
three vectorsa, b and c.

a
b

c

Figure 3.8: Parallelepiped de�ned by the vectors a, b and c
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It is then possible to describe the deformation of the parallelepiped with the matrix
H .

H =
h
a b c

i
(3.23)

The current state H can be described with a deformation gradientF, with H 0 being
the reference state. For a de�nition of the deformation gradient, see equation (4.6) in
Chapter 4.

H = FH 0 (3.24)

From the position r of an atom, the position can be recalculated into the PBC-box
coordinate system by de�ning

r = Hs + r 0 (3.25)

It is then possible to calculate the relative coordinates by evaluating

s = H � 1(r � r 0): (3.26)

For the atom to be in the PBC-box all threes valuess1, s2 and s3 must be between

0 � si � 1: (3.27)

If the value of si is below 0, the minimum necessary integer will be added to raise the
value back to the range between 0 and 1. If the value is above 1, the minimum necessary
integer will be subtracted accordingly. After correction, the newx-coordinate can be
calculated according to equation (3.25).

3.3.3 Thermostat

The Nosé-Hoover thermostat (seeEvans and Holian (1985)) will be used for temper-
ature control. This thermostat can keep a canonical ensemble at constant temperature.
It modi�es the acceleration of the particles in the following way

m•r i = �
@Epot

@r i
�  m_r i : (3.28)

 is a friction term that initializes at  0 = 0 and evolves according to the equation

_ = c (Ekin, target � Ekin, current ) (3.29)
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whereEkin, target = 3
2NkT andEkin, current = 1

2

P N
i =1 mi jv i j2. c is a constant that describes

the convergence behavior to the target temperature.

3.3.4 Barostat

Parrinello and Rahman (1981) proposed a method to keep a molecular dynamics
simulation with periodic boundary conditions at a desired stress state. For example,
it could be desirable to analyze a phenomenon at constant zero stress. In order to
achieve this, the periodic boundary condition box is deformed in such a way that the
calculated virial stress (see Section 3.4.1) is converging to the desired value. A detailed
discussion of barostat (in combination with thermostat) can be found inRay and
Rahman (1985).

In this work a slightly di�erent formulation from Parrinello-Rahman is used. The de-
formation gradient of the periodic boundary condition box is de�ned asH = FH 0

(equation 3.24). The evolution ofF can be described by

M •F = 


 
FSF T

J
� � �  damping

_F

!

F (3.30)

as described inTadmor and Miller (2011), equations (9.70) and (9.71). It is called
the �nite strain N � E ensemble by the authors.

3.4 Derived Quantities

3.4.1 Stress

The stress-tensor of atoms can be calculated by using the virial stress, which is based
on the virial theorem by Clausius (1870). The virial stress is de�ned as

� =
1



0

B
B
B
B
B
@

�
X

i

mi v i 
 v i

| {z }
kinetic part

+
X

i ;j < i

r ij 
 f ij

| {z }
force part

1

C
C
C
C
C
A

: (3.31)

The stress is composed of a kinetic part and a force part. The kinetic part depends
on the velocitiesv i and massesmi of the atoms and reduces the stress with increasing
velocity. As the velocity is related to temperature, this can be interpretedas pressure
due to inhibited thermal strain. The force part relates to the interatomic distances
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3 Molecular dynamics

r ij and forcesf ij . 
 is the volume of the space containing the atoms. If the space is
small enough, even the stress of a single atom can be calculated. However, often the
averaged stress of a parallelepiped with periodic boundary conditions is of interest. The
virial stress is equivalent to the Cauchy stress, as shown bySubramaniyan and Sun
(2008).

-0.1

-0.05

0

0.05

0.1

1 10 100 1000 10000

st
re

ss
de

vi
at

io
n

in
G

P
a

simulation time in femto seconds

sigma xx
sigma yy

sigma zz
sigma yz

sigma xz
sigma xy

Figure 3.9: Convergence behavior stresses in molecular dynamics subproblem with peri-
odic boundary conditions

The stress in a molecular dynamics simulation is �uctuating around the mean value.
In order to demonstrate this, a simple molecular dynamics problem with �xed periodic
boundary conditions and constant temperature atT = 300 K is simulated. The Meyer-
Entel potential is used. As can be seen in Figure 3.9, all six stress converge to a value.
The normal stresses have a better convergence than the shear stresses.
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3.4 Derived Quantities

3.4.2 Elastic constants

In a perfect crystal the material matrix of a cubic lattice consists of threeindependent
valuesC11, C12 and C44.

C =

2

6
6
6
6
6
6
6
6
6
6
4

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

3

7
7
7
7
7
7
7
7
7
7
5

(3.32)

According to Daw and Baskes (1984) the elastic constants can be calculated with the
following expresson:

Cijkl = hCBorn
ijkl i �

V
kB T

(h� ij � kl i � h � ij ih� kl i ) +
2NkB T

V
(� ik � jl + � il � jk ) : (3.33)

The expression consists of the Born term (Born and Huang (1954)) and temperature
related corrections. HereV is the volume,T the temperature,k the Boltzmann constant,
� the stress tensor,N the number of atoms and� ij the Kronecker-delta. The brackets
hi symbolize averaging over time. If the temperature is zero, then the temperature term
is omitted and an average over time is not necessary. The born term is a sum ofthree
terms:

CBorn
ijkl = B1ijkl + B2ijkl + B3ijkl : (3.34)

The three terms are given by the following three equations. The termrabi is the i -entry
of the vector r ab = r b � r a.

B1ijkl =
1
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a6= b
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(3.35)

B2ijkl =
1
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(3.36)

B3ijkl =
1



NX

a=1

@2Fa

@�2
gaij gakl (3.37)
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The term gaij is equal to

gaij =
X

b=1 ;b6= a

rabi rabj

rab

@�
@rab

= 2
X

b=1 ;b6= a

rabi rabj
@�

@(r 2
ab)

: (3.38)

Equation (3.38) can be simpli�ed by changing� (r ) to � (r 2). The change in the derivative
and the length r cancel.

@
@r

=
@

@(r 2)
2r (3.39)

This avoids the time-consuming calculation of the length of a vector. The expressions
for B1ijkl and B2ijkl are also changed to

B1ijkl =
4



X

a;b=1 a< b

@2V
@(r 2

ab)2
rabi rabj rabkrabl (3.40)

and

B2ijkl =
4



X

a;b=1

@Fa

@�
@2�

@(r 2
ab)2

rabi rabj rabkrabl: (3.41)
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3.5 Implementation

3.5 Implementation

As part of this thesis a molecular dynamics code has been programmed from scratch. It
is using the C++ programming language.

3.5.1 Tabulated data format in r 2

The molecular dynamics code runs much faster, when the radius-dependent functions
are changed from a function ofr to a function r 2. The reason is as follows. The functions
V (r ) and � (r ) require the calculation of the lengthr =

p
x2 + y2 + z2 of the vector r ,

this requires more computation time than the squared lengthr 2 = x2 + y2 + z2.

The force on atoma

fa = m•r a = �
@Etot

@r a
= �

X

i ;i 6= a

" 
@F(� a)

@�a
+

@F(� i )
@�i

!
@�(rai )

@r a
+

@V (rai )
@r a

#

(3.42)

then simpli�es to

m•r a = 2
X

i ;i 6= a

("
@F(� a)

@�a
+

@F(� i )
@�i

#
@�(r 2

ai )
@(r 2

ai )
+

@V (r 2
ai )

@(r 2
ai )

)

r ai : (3.43)

The potential �les for � (r 2), F (� ) and V (r 2) are used in a tabulated format, the square
root calculation can, therefore, be moved into the pre-processed tabulatedpotential data
�le.

3.5.2 Atom force calculation

In order to speed up the calculation of the force on atoma, only the atoms in the close
neighborhood of atoma are considered for force calculation. Each atom has a list of its
atom neighbors that is updated everyn-th time step. Only atoms that are closer than
the cuto�-distance rcut of the potential plus a reserver res are added to the list. The
more often the neighbor list is updated the smallerr res can be.

rab < rcut + r res (3.44)

In order to accelerate the recalculation of the neighbor lists, the domain of each processor
is subdivided into subdomain boxes with a length of a fewrcut . Each atom registers with
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3 Molecular dynamics

one of the subdomains. This enables a faster recalculation of the neighbor list, as only
the atoms in the boxes around the box where the atom is positioned must be checked.
For example, in a 2D case, 9 subdomains must be checked, as seen in Figure 3.10. In
the case of a 3D problem 27 subdomains boxes must be searched for neighbors.

rcut

r res

Figure 3.10: Strategy to �nd atom neighbors

3.5.3 Parallel programming

In order to speed up the molecular dynamics code, OpenMPI was used to enable parallel
execution of the code. OpenMPI is an open library implementing the Message Passing
Interface (MPI) standard for parallel computing.

The problem space is partitioned into di�erent domains as seen in Figure 3.11. The
center domain 
 9 in the �gure is surounded by the domains 
1 to 
 8. The atoms
at the domain boundary of 
 9 (light gray in the �gure) are also interacting with the
atoms in the boundary of the neighboring domain (dark grey). In order to achieve this,
all eight surrounding domains need to pass information about the atoms to the center
domain. For the EAM potential this is a two-step synchronization process. First,the
atom positions need to be exchanged. The atom positions enable the calculation of
the electron density. In a second step, the electron densities are exchanged between
the domains. Only with the electron density information, the forces can be calculated.
Plimpton (1995) outlines an approach with only 4 data exchanges in 2D (6 exchanges
in 3D), however, in this work spatial decomposition is implemented with 8 exchangesin
2D (26 in 3D). The reason is simpler programming.
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 1 
 2 
 3


 8 
 4


 7 
 6 
 5


 9

Figure 3.11: MPI data exchange in molecular dynamics

In Figure 3.12 the strong scaling of the code on two di�erent clusters can be seen. The
�rst is an Intel 12 core processor called DaVinci at Caltech and the second isthe high
performing cluster (HPC) bwUniCluster used by universities in Baden-Württemberg.
On both clusters the scaling is very good. With 256 processors on the bwUniCluster
the speedup is still around 200.
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Figure 3.12: Performance of MD code with 2,000,000 atoms on Da Vinci Cluster (Cal-
tech) using up to 12 cores and bwUniCluster (Germany) using up to 256
cores. Strong scaling, 200 time steps. Performance excludes setup time.
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4
Continuum mechanics

4.1 From �ne scale to coarse scale

As outlined in the previous chapter, matter consists of molecules with empty space
between them. However, when simulating a su�cient number of molecules, matter can
be treated as a continuum.

Continuum mechanics assumes that material completely �lls the space the material
occupies. An in�nitesimal small space is, therefore, representative of the material at
this point. Mechanical problems with a problem size greater than a micrometer can,
therefore, be modeled with continuum mechanics. Continuum mechanics is mainly used
to �uids and solids. Only solid mechanics will be considered in the following.

The �nite element method (FEM) is one method that can be used to discretize the con-
tinuum equations. Other methods are for example the �nite volume method or the �nite
di�erence method. The �nite element method was pioneered byM. J. Turner and
Topp (1956) andArgyris (1960). A non-linear dynamic �nite element formulation is
used. For a detailed explanation of the non-linear �nite element method, see the book
by Belytschko et al. (2000).

4.2 Kinematics

In this work, the total Lagrangian formulation is used, meaning that all calculationsare
done in a non-moving reference con�guration.
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4 Continuum mechanics

A material point P at position X of the reference con�guration is transformed by a
function � (X ;t ) to the current con�guration

x = � (X ;t ): (4.1)

The mapping� (X ;t ) is assumed to be bijective and piecewise continuously di�erentiable
in space at least once and two times di�erentiable in time. The di�erencex � X is de�ned
as u as seen in equation 4.2 and visualized in Figure 4.1.

x = X + u (4.2)

x

y

z

P
P

u

x
X

reference
con�guration

current
con�guration

x = X + u

Figure 4.1: De�nition of reference and current con�guration

The velocity can, therefore, be de�ned as

v = _x =
@x(X ;t ))

@t
=

@(X + u)
@t

=
@u
@t

= _u: (4.3)

The de�nition of the acceleration is analogous.

a = •u: (4.4)

An in�nitesimal line element dX transforms to dx:

dx =
dx
dX| {z }

F

dX (4.5)
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4.3 Stress measures

with F being the deformation gradient:

F =
dx
dX

=
d(X + u)

dX
= I +

du
dX

: (4.6)

With the de�nition of in�nitesimal lengths d X , it is possible to de�ne an in�nitesimal
area dA as the cross product of two vectors. The area dA transforms to da according
to Nanson's formula

da = det( F)F � T dA : (4.7)

The Green Lagrange strain used in this work is de�ned as

E =
1
2

(FT F � I ): (4.8)

4.3 Stress measures

The Cauchy stress or true stress is the relation between the stress vector t and the
normal vector nc, both of the current con�guration.

t = � nc: (4.9)

Using Nanson's formula, it is possible to de�ne the �rst Piola-Kircho� stress tensorP.
It relates the true stress vector with the normal vector of the reference con�guration
n r :

t = Pn r (4.10)

with P = det( F)� F � T .

The second Piola-Kirchho� stress is de�ned as

S = det( F)F � 1� F � T (4.11)

relating the stress vector of the reference con�guration with the normal vector of the
reference con�guration.

T = Snr (4.12)
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4 Continuum mechanics

4.4 Material law

The second Piola-Kirchho� stressS is given by a material law that can depend on the
Green-Lagrange strainE and other variables, like the strain-history, temperature or
other factors. However, the stress will be limited to a function of strain.

S = S(E) (4.13)

The material law is non-linear in general. However, often it can be simpli�ed to a linear
equation with the material constantC as linear factor

S = C � E: (4.14)

In this thesis, the material law at �nite element level will be non-linear and the sti�ness
matrix will not be calculated as it is not necessary for an explicit dynamic simulation.
The derivative

C =
@S
@E

(4.15)

at u = 0 will be used later on in this thesis.

In Section 3.4.2, the elasticity tensor is introduced. This elasticity matrixC, being
de�ned by three independent constantsC11, C12 and C44, is called a cubic material law
(CML). Other material laws (e.g. an isotropic material with two independent constants)
are not used in this work.

4.5 Balance laws

The continuum momentum balance equation is

� m •u � Div( P) � b = 0: (4.16)

Here � m is the volumetric mass density,b is a volumetric force andP the �rst Piola-
Kirchho� stress as de�ned above. This equation is formulated in the reference system.
Using the calculus of variations, it is possible to transfer the strong form of this di�eren-
tial equation to its weak form by multiplying it with a test function � uT and integration
over the domain. The variation of the energy of a dynamic system can then be described
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4.6 Discretization in space

according to the following equation

� � =
Z


 0

� uT (� m •u � Div( P) � b) d
 = 0 : (4.17)

After partial integration � � can be transformed to

� � =
Z


 0

�
� uT � m •u + Div( � uT ) � � uT b

�
d
 �

Z

@
 0

� uT Pn r d@
 : (4.18)

4.6 Discretization in space

The displacement �eld is approximated by a di�erent �eld u � uh. It is now possible
to express the displacement �elduh as a product of the matrix of shape functionsN
and the nodal displacement vectord. For more Details about the matrixN see Section
4.6.1.

u � uh = Nd (4.19)

The same is true for the velocity �eld and the acceleration �eld

_u � _uh = N _d (4.20)

•u � •uh = N •d: (4.21)

As the nodal displacement valuesd are discrete values, they do not depend onx.
Div( � uT ) then is simpli�ed to � dT B T

0 with B 0 = Div( N ). Because in linear FEM the
strain is a derivative of the displacements, thisB 0 is also called the strain-displacement
matrix. However, with the Green-Lagrange strain in nonlinear �nite elements, this is
not true.

� � =
Z


 0

�
� dT N T � mN •d + � dT B T

0 P
�

d
 =
Z


 0

� dT N T bd
 +
Z

@
 0

� dT N T Pn r d@


(4.22)

Because� dT is arbitrary, the equation can be simpli�ed to
Z


 0

�
N T � mN •d + B T

0 P
�

d
 =
Z


 0

N T bd
 +
Z

@
 0

N T Pn r d@
 (4.23)
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The integrals can then be named as
Z


 0

N T � mN d


| {z }
M

•d +
Z


 0

B T
0 Pd


| {z }
f int

=
Z


 0

N T bd
 +
Z

@
 0

N T Pn rd@


| {z }
fext

: (4.24)

f int and fext are the internal and external nodal forces, respectively. In addition to these
terms, a damping matrix D is introduced. The damping is a linear combination of the
sti�ness matrix and the mass matrix

D = c0M + c1K : (4.25)

This is also known as Rayleigh damping. Then the equation of motion becomes

M •d = fext � f int � D _d: (4.26)

The mass matrixM is a lumped mass matrix, so that the inverseM � 1 is just inverting
every main diagonal entry.

•d = M � 1
�
fext � f int � D _d

�
(4.27)

4.6.1 Hexahedron element

In the following, we limit ourselves to the hexahedron element with trilinear shape
functions as this is the only �nite element used in this work. The element has eight
nodes and is shown in Figure 4.2. The displacement vectoru is interpolated from the
nodal displacementsd with the help of shape functions in the matrixN .

uh = Nd (4.28)

The matrix N has the dimensions 3x24 and consists of the shape functions

N =

2

6
6
4

N1 0 0 N2 0 0 � � � N8 0 0
0 N1 0 0 N2 0 � � � 0 N8 0
0 0 N1 0 0 N2 � � � 0 0 N8

3

7
7
5 (4.29)

The shape functions for a trilinear hexahedron element are

Ni (�;�;� ) =
1
8

(1 � � )(1 � � )(1 � � ) (4.30)
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4.6 Discretization in space

The shape functions are not de�ned in the real coordinate system but in the element
coordinate system in the (� ,� ,� )-space. Each shape functions is equal to one in one of
the eight corners (� 1,� 1,� 1) and zero in all the other corners. The nodal numbering
and the nodal coordinates can be seen in Figure 4.2.

1 2

34

5 6

78

� = 0� = � 1 � = +1

� = � 1

� = 0

� = +1

� = � 1
� = 0

� = +1

�

��

Figure 4.2: Node numbering of a hexahedron element

The Jacobian is

J =

2
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@z
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@z
@�

@z
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3

7
7
5 : (4.31)

The matrix B 0 is the matrix product of the di�erential operator L X and the matrix of
shape functionsN .

B 0 = L X N (4.32)
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The matrix B 0 contains the derivatives of the shape function with respect to the reference
coordinate systemX as seen in equation (4.33).

B 0 =

2

6
6
6
6
6
6
6
6
6
6
4

N1;X 0 0 N2;X 0 0 : : : N8;X 0 0
0 N1;Y 0 0 N2;Y 0 : : : 0 N8;Y 0
0 0 N1;Z 0 0 N2;Z : : : 0 0 N8;Z

0 N1;Z N1;Y 0 N2;Z N2;Y : : : 0 N8;Z N8;Y

N1;Z 0 N1;X N2;Z 0 N2;X : : : N8;Z 0 N8;X

N1;Y N1;X 0 N2;Y N2;X 0 : : : N8;Y N8;X 0

3

7
7
7
7
7
7
7
7
7
7
5

(4.33)

However, the shape functions are functions of (� , � , � ), so the derivatives need to be
expanded

N1;X =
@N1

@�
@�
@X

+
@N1

@�
@�
@X

+
@N1

@�
@�
@X

(4.34)

The inverse derivate at a speci�c point can be obtained by inverting the JacobianJ at
this point.

J � 1 =
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The integral to calculate the internal nodal forces can then be transformedto

f int =
1Z

� 1

1Z

� 1

1Z

� 1

B T
0 PjJjd� d� d� = 
 0

8X

i =1

! i B T
0 PjJj: (4.36)

4.6.2 Selective reduced integration of internal nodal forces

In order to reduce shear locking the internal nodal forces are separated intofour di�erent
integrals. Reduced integration has been pioneered byZienkiewicz et al. (1971).
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(4.37)
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With the B-Operator
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(4.38)

The normal part f int ;1 is integrated with 2x2x2 Gauss points at (� = �
q

1
3 ;� = �

q
1
3 ;� =

�
q

1
3), the shear parts with two Gauss points each.f int ;2 is integrated at (� = �

q
1
3 ; � =

0; � = 0), f int ;3 is integrated at (� = 0; � = �
q

1
3 ; � = 0) and f int ;4 is integrated at

(� = 0; � = 0; � = �
q

1
3). The Gauss points are illustrated in Figure 4.3 for better

understanding.

(� �� )

�

��

(� �� )

(� �� )

Figure 4.3: Gauss points for the integration of shear forces
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4.7 Discretization in time

A typical second-order di�erential equation of a dynamic system is given in equation.

M •d + D _d + f int � fext = 0: (4.39)

M •d = fext � D _d � f int = f tot : (4.40)

In explicit dynamic computation the calculation of the sti�ness matrix is not necessary
as the internal nodal forcesf int (d) are su�cient, which depend on the displacementd of
the nodes. In this work, the sti�ness matrix is only necessary for the estimation of the
critical �nite element time step and not for the simulation itself. The calculation of the
maximum possible time step is left to the literature, see e.g. the book byBelytschko
et al. (2000).

Time integration is done with the central di�erence method, which is a well-known
method for time integration. The �ow chart can be seen in Figure 4.4 and is taken from
Belytschko et al. (2000).

1. d = d0, _d = _d0, t = t0

2. Calculatef tot ;n

3. Compute acceleration•dn = M � 1f tot ;n

4. time update tn+1 = tn + � t

5. update velocity _dn+1 =2 = _dn + � t
2

•dn

6. update displacement vectordn+1 = dn + � t _dn+1 =2

7. Calculatef tot ;n+1

8. Compute acceleration•dn+1 = M � 1f tot ;n+1

9. update velocity _dn+1 = _dn+1 =2 + � t
2

•dn+1

10. Update time step counter ton + 1

11. Output

12. if tn+1 < tend goto step 4

Figure 4.4: Flowchart for time integration with the central di�erence method
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5
Multiscale simulation

5.1 General overview

The term �multiscale� implies that a physical phenomenon is in�uenced by di�erent
scales in space and/or time. The phenomenon cannot be described accurately by just
using one scale in time and space. The number of di�erent scales is in general not
limited, but often only two scales are of interest, which in general are referred to as �ne
scale and coarse scale. The advantage of the coarse scale is that problems with big time
scales or large sizes can be simulated with less e�ort than on the �ne scale. However,
on the �ne scale a speci�c physical behavior may be more correctly modeled with a �rst
principles approach instead of using �tted parameters.

There are two ways to look at multiscale methods. The sequential approach and the
concurrent approach. The sequential approach means, that the di�erent methods are
done in sequence, so the �ne scale simulation results are used as input for the coarse
scale simulation. There is no feedback to the �ne scale. A very simple example is 1D-
elasticity. The Young's modulus of a metal can be derived from molecular dynamics or
another simulation method. The derived material law

� = E" (5.1)

can then be applied to �nite element simulation of large steel bridges or other parts
of di�erent length scale. From this example it is easy to see that sequential multiscale
simulation has been done for decades.

Concurrent multiscale modelling means that �ne and coarse scale are simulated at the
same time. Information is passed from one scale to another. These methods are almost
exclusively to be used on a computer because the computational power and memory
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requirements are high. In many cases, even parallel computing on supercomputers is
required to achieve a reasonable run time.

Within the concurrent multiscale modeling, there is a further subdivision into two cat-
egories, referring to the spatial breakdown of the scales. The �ne scale and thecoarse
scale can be simulated on the same domain in a hierarchical way or the domain is split
into two domains, where one part is the �ne scale, while the other is the coarse scale,
see also Figure 5.1.

Multiscale modeling

Concurrent Sequential

Partitioned-Domain Hierarchical

Figure 5.1: General overview multiscale modeling, as seen byTadmor and Miller
(2011), page 540

Sequential multiscale modeling is not a topic of this thesis, for further information see
the book by Schmauder and Schäfer (2016) or byPhillips (2001).

5.2 Hierarchical methods

Hierarchical methods typically make use of a �ne scale model and a coarse scale model.
The �ne scale model typically uses a representative volume element (RVE) with periodic
boundary conditions. In addition, the �ne scale and coarse scale are also not in the same
time scale. It is assumed that the �ne scale converges to changes in the coarse scale
almost instantaneously. The �ne scale solution does not depend for example on the rate
of deformation on the coarse scale. It is, therefore, possible to run the �ne scale model
for a limited amount of steps to average state parameters at �ne scale level. During this
averaging process the coarse scale time is frozen. The derived quantities (e.g. stress,
elastic constants) are then transferred to the coarse scale. In most cases, this procedure,
which is also called homogenization, is used in a continuum-to-continuum coupling, see
e.g. Geers et al. (2010), Feyel (2003). The hierarchical coupling of continuum
mechanics and atomistics is rare in literature although a few examples exist.

A very old hierarchical method � that is coupling atomistics and continuum theory �
is the Cauchy-Born method. It is based on ideas from Cauchy (seeCauchy (1828b),
Cauchy (1828a)) and was later modi�ed by Born (seeBorn (1923) andBorn and
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Huang (1954)). It was developed before the word �multiscale� was adopted. It assumes
that the movement of atoms in a solid can be derived from a macroscale materialpoint:
the deformation of the atoms is the same as the macroscopic deformation. The material
properties can then be calculated at the �ne scale and used for the macroscale simulation.
Born included sublattice shifts and temperature e�ects into the model by Cauchy. The
position of an atoma is described by

r a = FR a + s + w(t ): (5.2)

ra is the current position of the atom,F is the coarse scale deformation gradient,Ra

is the initial atom position, s is the sublattice shift and w(t ) are the time-dependent
thermal �uctiations. The Cauchy rule is only the �rst part, namely r a = FR a.

The �rst multiscale methods, that called themselves multiscale, were used in the context
of simulation of the atmospheres of stars and later the Earth, see e.g.Grabowski and
Smolarkiewicz (2002). The coarse scale in this method is the atmospheric �ow, while
the �ne scale are individual clouds.

Another recent hierarchical multiscale methods deals with electron transport in molec-
ular dynamics. Because electrons are not modeled explicitly, rapid heat transfer in e.g.
laser ablation cannot be modeled accurately.Wagner et al. (2008) have developed
a method, that superimposes a �nite element mesh over the molecular dynamics region
that takes care of heat transfer.

A well known hierarchical method is the heterogeneous multiscale method (HMM), see
E and Engquist (2003) or the FE2-method (Feyel (2003)). Both methods are similar
to each other. The FE2-method obviously refers to �nite element squared, meaning that
there are �nite elements below the �nite elements. A coarse scale �nite element mesh
is extended by several submeshes with periodic boundary conditions. These submeshes
are evaluated at several points in the coarse scale mesh to deliver additionalconstitutive
information. The evaluation points can for example be Gauss points as these points are
needed anyways for integration of the sti�ness matrix.

Another hierarchical method has been presented byTadmor et al. (2000) to develop
a model of plasticity using atomic-scale simulation, dislocation dynamics and crystal
plasticity theory.

Ulz (2015) presented a way to couple �nite elements and molecular dynamic using the
heterogeneous multiscale method, which is similar to the FE2-concept. He used a kernel
by Cancès et al. (2004) of the form

K (t ) = � kt k� 1(1 � t )k (5.3)
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for the averaging of the microscale data. The kernel weights in the middle of the interval
higher than at the boundaries. On the macroscale, the problem was solved with the
non-linear static �nite element method. It is not speci�ed in the paper whether any
locking-free formulations in the �nite element method have been used.

In this work, a method similar to the method used by Ulz will be used � motivated by
the FE2 concept. This concept is then used to integrate phase transformation into the
�nite element method.

Disadvantages of the hierarchical approach are the high computational cost due tothe
many subproblems and/or the statistical error at the �ne scale. As the parameters at
the �ne scale need to be averaged over a time frame, the signal-to-noise ratio needs to
be high for fast computation of the essential parameters.

5.3 Partitioned-domain methods

Partitioned domain methods are more widely in use than hierarchic methods. The do-
main/space is divided into di�erent areas where di�erent theories are used. For example
one region could be using molecular dynamics while another region could use continuum
mechanics. The big question with partitioned-domain multiscale simulation is how to
manage the transition from one domain to another.

The �rst partitioned-domain method was the FEAt model by Kohlhoff et al. (1991).
In the last decades many methods have been developed. They can be separated into
energy-based methods and force-based methods.

5.3.1 Energy-based methods

Energy-based multiscale methods are derived from a single potential energy function
that is composed of the sum of the three individual energies

� tot = � coarse + � �ne + � handshake: (5.4)

The three sums are the energy of the coarse scale region �coarse, the energy of the �ne
scale region ��ne and the energy of the handshake region �handshake (if present).

In the following four methods shall be explained in more detail.
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Quasicontinuum method

The quasicontinuum method byTadmor et al. (1996) divides the domain into two
parts. One part is the �ne scale with atoms called �local� repatoms (representative
atoms). The other part is the coarse scale with atoms called �nonlocal� repatomsand
atoms that move according to the nonlocal repatoms. The expression �local� repatoms is
used for atoms that are treated in a molecular way and �nonlocal� repatoms are selected
atoms in the coarse scale area, which de�ne the motion of the remaining atoms in the
coarse�eld according to the Cauchy rule. In the next step triangles are constructed
from the repatoms. These triangles control the motion of the atoms within. For avisual
description see Figure 5.2.

Figure 5.2: General overview of the quasicontinuum method. Repatoms in black, other
atoms in white. The shaded region is the atomistic part and the unshaded
region is the continuum region

The internal energy of the quasicontinuum is

� int (u) =
X

a2 all atoms

� a(u) =
X

a2 atom region

� a(u) +
X

a2 coarse scale

� a(u): (5.5)

The second sum can be replaced by a sum over all �nite elements

X

a2 coarse scale

� a(u) =
X

e2 coarse scale

� e
 0W (F(u)) (5.6)
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where � e is the number of atoms in the �nite element, 
0 is the Wigner-Seitz volume
(the volume associated with an atom) in the reference con�guration andW is the strain
energy function.

The QC method is often used in literature and has been used with an adaptive mesh
re�ning technique (K. Datta et al. (2004), Arndt and Luskin (2008)).

Cluster-based quasicontinuum method

The cluster-based quasicontinuum method (CQC-E) (see e.g.Eidel and Stukowski
(2009)) is a method that builds on the quasicontinuum method. The idea is to only use
the atoms surrounding the repatoms to calculate the energy of the triangle as seen in
Figure 5.3. The energy of the atoms that are not close to the repatoms is approximated
with information from those atoms close to the repatoms. These cluster surrounding
the repatoms can di�er in size, with bigger clusters resulting in a higher accuracy but
also higher computational e�ort.

Figure 5.3: Overview cluster-based quasicontinuum method method

Bridging domain method

The bridging domain method (Xiao and Belytschko (2004)) introduces a handshake
region BH that smoothes the transition from the �ne scale to the coarse scale. This is
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achieved by a blended energy potential, where in the handshake region the potential � H

is blended from one potential to another by the following equation

� H =
X

a2 BH

(1 � �( x))� a(u) +
X

e2 BH

� e
 0W (F(u))�( x): (5.7)

It is based on the Arlequin method (Bauman et al. (2008)).

Bridging scale method

The bridging scale method (seeWagner and Liu (2003), Qian et al. (2004)) is
di�erent from the previous methods and separates the displacement �eldu in two con-
tributions

u = u0+ u00: (5.8)

u0 is the coarse �eld displacement andu00 the �ne scale displacement. The two dis-
placement �elds exist in the whole domain. However, the �ne scale displacements are
assumed to be zero everywhere except for the atomistic region. The reasonis that the
zero Kelvin atom position is assumed to be homogeneous and de�ned by the coarse
scale. Figure 5.4 shows the domain of the method.

Figure 5.4: Overview bridging scale method

5.3.2 Ghost forces

A problem with energy-based methods is that most energy-based methods � or maybe
even all as claimed byTadmor and Miller (2011) pp. 621 � su�er from ghost
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forces. Ghost forces arise from the con�ict between the nonlocal molecular dynamics
and the local continuum mechanics. An atom does interact with all other atoms, while
a premise of continuum mechanics is that the state of a material point is fully de�ned
by the deformation at that point. Therefore, in the �nite element method, the �nite
elements only interact with their surrounding neighbor elements.

A simple example can be seen in Figure 5.5. On the left there are four black atoms,
with the center atom being a �nite element node at the same time. The energy of the
system can be written as the sum of the atomic energy and the continuum energy.

� int (u) =
X

a2 all atoms

� a(u) =
X

a2 atom region

� a(u) +
X

a2 coarse scale

� a(u): (5.9)

From the energy, the forces on the individual atoms can be derived. The force derived
from the total energy on the atom to the left of the center is non-zero, even in equilibrium
position. In order to deal with this problem, a number of ghost force correction methods
have been developed. This is explained in more detail inTadmor and Miller (2011).
Another way to deal with ghost forces is discussed inAmelang et al. (2015).

atoms �nite element nodes

interface

Figure 5.5: Explanation of ghost forces. The black sphere in the center is both a �nite
element node and an atom. To the left it interacts with three atoms, while
on the right it interacts only with the nearest �nite element node

If forces are not derived from an energy potential, the forces can be designed to be
zero in equilibrium position. These are called force-based methods and are outlined in
section 5.3.3.
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5.3.3 Force-based methods

Force-based methods directly use the force equilibrium to construct a way to calculate
the forces on atoms and �nite element nodes. The forces are not derived from a single
energy potential. However, this method is not without disadvantage. As the forces are
not derived from an energy potential, it is not known whether the solution is actually
physically correct and it is unknown which energy function is actually minimized.

Force-based methods eliminate ghost forces by enforcing that the forces are all zero in
the equilibrium state. In order to achieve this, two independent potentials �1 and � 2

are used. The force on the atoms is then de�ned as

fa = �
@� 1

@r a
(5.10)

and the force on �nite element nodeI is

f I = �
@� 2

@u I
: (5.11)

This is not the same as minimizing the combined potential �1 + � 2. However, when not
in equilibrium, there are still spurious forces present in force-based methods similar to
ghost forces in energy-based methods.

Atomistic-to-continuum method

One method is the Atomistic-to-continuum method (AtC, see e.g.Fish et al. (2007)
or Badia et al. (2007)). It is a force-based version of the bridging domain method.
This method starts with the assumption that atoms and nodes are completely uncoupled
and the forces on the atoms and �nite elements are as in the standard formulation of
each theory

fa = �
@� atoms

@r a
(5.12)

and the force on �nite element nodeI

f I = �
neleX

e=1

Z


 0

B T
0 Pd
 : (5.13)

It is then assumed that the atoms in the �nite elements are constrained to follow the
displacements of the �nite element nodes. Their position is interpolated with the �nite
element shape functions. In addition, the forces on the atoms inside the handshake

57



5 Multiscale simulation

region are projected to the �nite element nodes. The AtC method is in a variation later
used in the horizontal coupling (see Chapter 6.3).

Further reading

There are other methods that are only mentioned by name here. The reader is referred
to additional literature for more information. One method is the Coupled Atom Discrete
Dislocation Dynamics (CADD) method used byShilkrot et al. (2002) andShilkrot
et al. (2004) to simulate plasticity in a multiscale environment. It is based on the
FEAt-method (Kohlhoff et al. (1991)). Other method include the hybrid simulation
method (Luan et al. (2006)) or the cluster based-quasicontinuum, which was originally
force-based (Knap and Ortiz (2001)).

Tadmor and Miller (2011) did a comparison of multiple multiscale methods and
found that the quasicontinuum method (with ghost force correction) and the hybrid
simulation method o�ered the highest accuracy at the lowest computational cost.

In general the benchmarking, validation and reproducibility of concurrent multiscale
methods is still lacking as stated byTadmor and Miller (2017). The results depend
a lot on the implementation in actual program code.

5.3.4 Finite temperature

An important challenge is the modelling of materials at non-zero / �nite temperature.
Vibration of the atoms around the equilibrium position represents a speci�c temper-
ature. The dynamics of an atomistic system is, therefore, composed of the dynamic
nature of the atomic vibration and the movement and vibration at lower frequencies.
The continuum region, however, does not know temperature related vibration; temper-
ature is simply a material state parameter. This fundamental di�erence results in a
number of challenges related to �nite temperature multiscale simulation. The tempera-
ture vibrations are supposed to stay in the atomic region, but in reality will excite the
continuum region. Another challenge are wave re�ections at the atomistic-continuum
interface.

Multiscale simulation at �nite temperature can be separated into two problem groups

1. Problem to �nd the equilibrium of a system at �nite temperature

2. Study of dynamic phenomena at �nite temperature
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The �rst problem is easier than the second problem. For the �rst problem the Hot-
Quasicontinuum method (Dupuy et al. (2005), Knap and Ortiz (2001)) has been
developed. However, the Hot-QC does not resolve atomic vibrations but instead uses
statistical methods to estimate temperature related e�ects like thermal strain.

5.4 Investigation of existing methods regarding phase
transformation

What are the requirements of a method that can simulate phase transformation? If we
look back at Section 2.3, we can summarize it as follows

1. Phase transformation is a temperature related phenomenon. The method must be
able to deal with temperature.

2. Phase transformation is a change in the lattice structure. Molecular dynamics will
be able to simulate this, if the potential supports it.

3. The rearrangement of the lattice structure should not be constrained in the inter-
face area.

4. Phase transformation should also be supported by the coarse scale with thesame
deformation behavior as in the �ne scale. Otherwise, all areas that are supposed
to change phase have to be adaptively modi�ed to be atoms.

5. Phase transformation is a dynamic phenomenon.

We now take another look at the existing methods regarding phase transformation. In
the case of the hierarchical concept, the phase transformation can be easily implemented
in a molecular dynamics subproblem as it can be modeled with only a small number
of atoms. It is, therefore, suitable for phase transformation. The quasicontinuum and
cluster-based methods constrain the movement of the atoms to the movement of the
repatoms with the Cauchy rule. However, the Cauchy method assumes that the coarse
scale deformation is equal to the �ne scale deformation. There is no additional degree of
freedom that allows for the possibility of a topology change regarding the atoms bound
by the Cauchy rule. Therefore, the state parameters derived from the atomicstructure
cannot take phase transformation into account. The same is true for the bridging domain
and the bridging scale method. The atomistic-to-continuum method is a force-based
method and, therefore, the separation of atomistic and �nite element modeling with
di�erent potentials enables the method to include the hierarchical concept in the coarse
scale part (that can do phase transformation). In the interface region a new concept
must be developed. Moreover, most multiscale methods for �nite temperature ignore
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the dynamic nature of temperature related vibrations and use a statistical approach to
treat it � if at all. This is another problem with many existing methods.

In this thesis a hierarchical method (called �vertical coupling�) and a domain parti-
tioning method similar to the AtC-method (called �horizontal coupling�) will be used
to create a hierarchic-partitioned-domain method. This is described in the next chap-
ter.
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6
A combined
hierarchic-partitioned-domain method

6.1 Overview

As a starting point we recap the last chapter. A multiscale method for phase transfor-
mation has a number of requirements, namely phase transformation in the continuum
region and in the atomistic region and at the interface. For the coarse scale(in this case
the �nite element method) this means, that the material law must be able to change
phase, which is not an easy requirement. While there have been material laws devel-
oped that can do phase transformation (see e.g.Govindjee and Miehe (2001)), the
material law must also show the same behavior as the atomistic part of the domain
(molecular dynamics). It is, therefore, prudent to use molecular dynamics not only in
the atomistic domain but also in a hierarchical way � similar to the FE2-method or
HMM � as a material law for the �nite elements. Small subproblems consisting of a few
hundred atoms � enough to simulate phase transformation � are used as �nite element
material law. This method is called vertical coupling in this thesis. The transition area
is modeled with the AtC method without handshake for reference and with a new idea,
where the coupling atoms are not strongly bound to the �nite element nodal movement
but have additional freedom as outlined in Section 6.3. This is called horizontal coupling
in this thesis.

The overall concept can be seen in Figure 6.1, for simplicity reasons the illustrationis
limited to 2D. The �gure shows two quadrilateral �nite elements (red) with four Gauss
integration points in each element. In addition, on the right side a number of atoms
(blue) can be seen. Some atoms are overlapping with the �nite elements, these atoms
are somehow bound to the �nite element movement as explained later in Section 6.3.
The other atoms are moving freely and interact with all other atoms. Not visible in the
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MD subproblems with PBC

Gauss points

FEM with MD
material law

molecular
dynamics

interface region

Figure 6.1: Overview multiscale concept

�gure are boundary conditions that can be applied to the �nite element level or to the
molecular dynamics level.

Below the left �nite element, subproblems can be seen. These molecular dynamics
subproblems have periodic boundary conditions and can be interpreted as a material
law. The time scale of the subproblem is decoupled from the time scale of the �nite
elements and the other atoms. As the subproblems represent a material law, they must
only converge to a quasistatic solution.

In the next two sections, the vertical coupling and the horizontal coupling are explained
in more detail. The interatomic potential to simulate phase transformation is the po-
tential by Meyer and Entel (1998) for iron and the potential byMendelev et al.
(2016) for titanium.

6.2 Vertical coupling

6.2.1 Global problem

The vertical coupling performs multiscale simulation in a hierarchical way. Finite ele-
ments use a molecular dynamics subproblem as material law, similar to the FE2 method
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by Feyel (2003) or the heterogeneous multiscale method byE and Engquist (2003).
In this work, this method shall be called vertical coupling. This method, coupling �-
nite elements and molecular dynamics, has already been presented in literature, seee.g.
Ulz (2015). However, in this work, there are some di�erences compared toUlz (2015).
The main di�erence is that in this work explicit non-linear dynamics are used to con-
verge to a quasistatic solution instead of a non-linear static approach. This approach
avoids the computation of the sti�ness matrix and issues with convergence due to stress
oscillations.

�nite element mesh one quad element, 4 Gauss
integration points

small representative
subproblem

Figure 6.2: Overview vertical coupling

Figure 6.2 shows the basic concept of the vertical coupling. On the left side, a �nite
element mesh is shown. In the middle, one �nite element is shown together with four
Gauss integration points. At each Gauss point, there is a molecular dynamics (MD)
subproblem. The MD subproblem can be seen as a part of the �nite element, symbolizing
the hierarchic nature of the method.
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According to equation (4.24), the internal nodal forces of a �nite element can be calcu-
lated as

f int =
Z


 0

B T
0 Pd
 : (6.1)

Using the rules for the Gauss quadrature the integral can be transformed into a sum of
evaluations of the integrand at speci�c points.

f int =
Z


 0

B T
0 Pd
 = 
 0

X

i

! i B T
0 P (6.2)

For a trilinear hexahedron element, eight Gauss points are commonly used.

A typical material law expresses the second Piola-Kirchho� stressS and/or the material
matrix C as a function of the strainE or the deformation gradientF as expressed in
the following equation

C = C(F) (6.3)

S = S(F): (6.4)

As the deformation gradientF is di�erent for each Gauss point, the stress is also di�erent
for each Gauss point. Therefore, there must be a representative molecular dynamics
problem at each Gauss point that evaluates the stressS as a function of the deformation
gradient F. The �rst Piola-Kirchho� stress P can be calculated from the stressS by
using the deformation gradientF.

The stress at molecular dynamics level is calculated as the virial stress

� =
1



0

@�
X

i

mi v i 
 v i +
X

i ;j < i

r ij 
 f ij

1

A (6.5)

which is equivalent to the Cauchy stress (Subramaniyan and Sun (2008)). A number
of time steps are performed at the molecular dynamics level to reduce �uctuations.
Alternatively, a kernel can be used to enforce faster convergence to a �not necessarily
correct � value as presented byUlz (2015). The higher the number of time steps, the
higher the accuracy. The Cauchy stress is then transformed to the second Piola-Kirchho�
stressS.

The hexahedron element is integrated with 8 Gauss points for the normal part and2
Gauss points for each shear part as described in Section 4.6.2. This is called selective
reduced integration and is used to avoid shear locking. Each of the three shearstresses
is integrated with two Gauss points. The integration points for the shearpart are at
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di�erent locations compared to the integration points of the normal part. However, the
stress values at the shear integration points can be calculated from the stress at the 8
standard Gauss integration points. This can be seen in Figure 6.3. The value of the
stress at Gauss pointA can be calculated by taking the average of the Gauss points

G1 , G2 , G3 and G4 . The rest of the points can be calculated accordingly.

G1 G2

G3G4

G6

G7G8

G5

A

Figure 6.3: Stress calculation, reduced integration
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6.2.2 Damping of temperature vibrations

The second order di�erential equation from Chapter 4, de�ning the �nite element nodal
movement is again shown in equation (6.6).

M •d + D _d + f int (d) � fext (d) = 0 (6.6)

The stress calculated from molecular dynamics is �uctuating as already shown in Section
3.4.1. The time steps of the �nite elements and molecular dynamics are completely
independent of each other, meaning that there is also multiscale in time and not only in
space. However, as the frequencies are transferred in a discrete way, thefrequency of the
stress changes from the �ne scale to coarse scale. If the time step of the �niteelements is
� t , the highest possible frequency stimulation by the MD material law isfmax, FE = 1

2� t .
Therefore, a damping matrix is necessary to avoid the transfer of vibration energy to
the �nite elements.

The damping matrix D is a linear combination of the sti�ness matrix and the mass
matrix, which is also called Rayleigh-damping (Rayleigh, L. (1877)).

D = cM M + cK K (6.7)

Mass proportional damping (constantcM ) damps low-frequency modes, while sti�ness
proportional damping (constantcK ) damps high-frequency modes. As the atomic vibra-
tion has a very high frequency, sti�ness proportional damping is the important factor
for the damping of thermal vibrations on the �nite element level. However, the damping
must not be too strong as in this case the quasistatic solution is not reached. Therefore,
it is important to identify dominant frequencies (in most cases the lowest frequencies)
of the simulation that must remain underdamped. In the case of Rayleigh-damping, the
damping ratio is de�ned as

� i =
1

2! i
cM +

! i

2
cK : (6.8)

This speci�c mode will be underdamped, if� i < 1.

Another way to get rid of high-frequency modes in the stress is to perform more MD time
steps per FE time step. This is not without disadvantage, as each subproblem consists
of at least 128 atoms. The material behavior of one hexahedron element with 8 Gauss
points is, therefore, simulated with at least 1024 atoms. If there are 100 hexahedron
elements in the simulation, more than 100,000 atoms need to be simulated in each FE
time step. Therefore, it makes sense to reduce the number of time steps on the molecular
dynamics level per �nite element time step to a minimum. The time used to calculate
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the �nite element movement is much smaller than the computational time for the MD
subproblems (tcomput, FE � tcomput, MD ). Consequently, the total computation time is
proportional to the number of time steps selected at MD level.

As a result, the test cases in Chapter 7 use only one MD time step per FE time step.
This can be justi�ed for a number of reasons. First, the high damping assures that the
rate of deformation is very small, so that the MD subproblem can follow the deformation
gradient at the coarse scale. Second, in the case of phase transformation simulation,
it is foremost of interest, whether the transformation happens at all in the proposed
method. Other questions, like whether the transformation happens on the right time
scale, in the right order or how it is in�uenced by boundary conditions, are beyond the
scope of this work and will be left to future work. Only the quasistatic solution after
the transition is of interest in this work.

6.2.3 Implementation

In Figure 6.4 a �owchart of the method is shown. There is a �nite element level for the
coarse scale and a molecular dynamics level for the �ne scale.

The starting con�guration of the molecular dynamics subproblems is not necessarily
at zero stress at the desired temperature. Therefore, before starting the simulation,
it might be desirable to do a stress-controlled run of the MD subproblems with the
barostat and the thermostat to reset the periodic boundary condition box to a zero
stress state. However, this is not without disadvantage. If the velocity distribution of
the subproblems has been initiated with a random generator, the velocity distribution in
all MD subproblems will be slightly di�erent. This results in the zero stress state inall
MD subproblems to be slightly di�erent and creates internal stress in the �nite element.
Moreover, it will create incompatibility with the horizontal coupling (see Section 6.3),
if the lattices do not have the same lattice constants at simulation start.

The simulation is initiated at F = I . Next, the stress is calculated at the Gauss points.
In order to calculate the stress, the MD simulation at Gauss point level is calculated
for a few time steps. During this MD run, the PBC box is kept constant. It is ensured
that the periodic boundary conditions are enforced and that the temperature is kept
at the desired value. The stress is then transferred to the �nite element level, where
the internal nodal forces are calculated. The internal nodal forces are used to calculate
the acceleration of the nodes. Next, the nodal positions and velocities are updated as
shown in Figure 4.4. Using the updated nodal positions new deformation gradients at
the Gauss points can be calculated and be used for new MD simulations.
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6.3 Horizontal coupling

6.3 Horizontal coupling

Horizontal coupling means that the atoms and the �nite elements are spatially separated
into di�erent domains with some kind of interface between the domains. At the interface,
an interaction is necessary to couple both methods. In this thesis, a coupling method
similar to the AtC method shall be selected.

A part of the atoms is coupled with the �nite element movement. Here, two methods
are used: the Cauchy rule, as described in Section 6.3.2, and atoms in a PBC box as
described in Section 6.3.3. The �rst method is very similar to the AtC-method, described
in Section 5.3.3. The proposed method is, therefore, a force-based method.

As mentioned in Section 5.3.3, force-based methods make use of two independent po-
tentials � atoms and � FE . The force on the atoms is then de�ned as

fa = �
@� atoms

@r a
(6.9)

and the force on �nite element nodeI

f I = �
@� FE

@u I
: (6.10)

The coupling is achieved by applying a force boundary condition onto the �nite element
mesh, which is derived from molecular dynamics, and a Dirichlet boundary condition
onto the atoms, which is derived from the �nite element movement.

6.3.1 Energy of the atoms

In order to understand the coupling, we �rst divide the atoms into two groups, the free
atoms (FA) and the bound atoms (BA). This can be seen in Figure 6.5.

The energy of the atoms can, therefore, be split into three terms.

� atoms = � FA-FA + � FA-BA + � BA-BA (6.11)

The three terms can be replaced by sums of the potential function. It is assumed here
that the potential energy V only depends on the radial distance between two atoms
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free atomsbound atoms bound atoms

�nite elements �nite elements

Figure 6.5: Overview horizontal coupling

(like a pair potential) and the electron density is ignored for simplicity reasons.

� atoms =
1
2

X

i � FA
j � FA
i 6= j

V (r ij )

| {z }
term I

+
X

i � FA
a� BA

V (r ia )

| {z }
term II

+
1
2

X

a� BA
b� BA
a6= b

V (rab)

| {z }
term III

(6.12)

r ij is de�ned as the length of the vectorr ij . Furthermore, the vectorr ij is the di�erence
between the positions of atomsi and j .

r ij = r j � r i : (6.13)

Next, we take a closer look at term II. The �rst variation of the term looks like this:

X

i � FA
a� BA

� V (r ia ) =
X

i � FA
a� BA

 

� r T
i

@V (r ia )
@r i

+ � r T
a

@V (r ia )
@r a

!

(6.14)

Expanding the variation with derivatives, we arrive at:

X

i � FA
a� BA

� V (r ia ) =
X

i � FA
a� BA

 

� r T
i

@V (r ia )
@r ia

@r ia

@r ia

@r ia

@r i
+ � r T

a
@V (r ia )

@r ia

@r ia

@r ia

@r ia

@r a

!

(6.15)

Simplifying the system, we obtain

X

i � FA
a� BA

� V (r ia ) =
X

i � FA
a� BA

 

� r T
i

@V (r ia )
@r ia

r ia

r ia
(� 1) + � r T

a
@V (r ia )

@r ia

r ia

r ia
(+1)

!

(6.16)
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With the de�nition

f ia =
@V (r ia )

@r ia

r ia

r ia
(6.17)

the equation system can be simpli�ed to

X

i � FA
a� BA

� V (r ia ) =
X

i � FA
a� BA

�
� � r T

i f ia + � r T
a f ia

�
: (6.18)

The force between two atoms is acting on the two atoms with opposite signs, respectively.
Now two question arise: �rst, how to distribute the forces acting on the bound atoms
to the �nite element nodes and second, how are the bound atoms moved. In Sections
6.3.2 and 6.3.3 the question of the movement of bound atoms shall be discussed. The
forces on the bound atoms are projected to the �nite element nodes. These forces are
just a force boundary condition to the �nite elements. This is discussed in more detail
in Section 6.3.5.
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6 A combined hierarchic-partitioned-domain method

6.3.2 Cauchy rule

The Cauchy rule assumes that the displacement of the atoms follows the deformation
of continuum mechanics or more speci�cally � in this case � the �nite element nodal
movement. Therefore, it is possible to de�ne the position of atoma as an interpolation
of the �nite element nodal position vectord with an atom-speci�c matrix N a

r a = N ad: (6.19)

The matrix N a has the dimensions 3� nDOF �nite element . The coe�cients of the matrix
can be set to be the shape functions evaluated at the initial coordinates of the atoms.

N T
a =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

N1(� a;� a;� a) 0 0
0 N1(� i ;� i ;� a) 0
0 0 N1(� a;� a;� a)

N2(� a;� a;� a) 0 0
0 N2(� a;� a;� a) 0
0 0 N2(� a;� a;� a)

N3(� a;� a;� a) 0 0
0 N3(� a;� a;� a) 0
0 0 N3(� a;� a;� a)
...

...
...

Nnnodes (� a;� a;� a) 0 0
0 Nnnodes (� a;� a;� a) 0
0 0 Nnnodes (� a;� a;� a)

3

7
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7
7
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7
7
7
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(6.20)

The coordinates� a,� a and � a are the initial coordinates of the atoms at the start of the
simulation in the local coordinate system of the corresponding �nite element.

The variation of V (r ia ) then becomes

X

i � FA
a� BA

� V (r ia ) =
X

i � FA
a� BA

�
� � r T

i f ia + � dT N T
a f ia

�
: (6.21)

6.3.3 Subboxes as interface

The subbox idea is inspired by the vertical coupling of the molecular dynamic subboxes
and transfers it to the horizontal coupling. The idea is that the bound atoms do not
move according to the deformation gradient, but that they are in a box with periodic
boundary conditions. This coupling is less constraining for the bound atoms and allows
for more degrees of freedoms, which makes internal restructuring of the atomspossible
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6.3 Horizontal coupling

(like e.g. phase transformation). It also comes along with a few challenges as a box
with periodic boundary conditions can only assume a constant stress state, which might
make the coupling less accurate in e.g. bending problems.

The periodic boundary conditions box is moving according to the �nite element move-
ment. However, the box must be a parallelepiped/parallelogram, while the deformed
�nite element is not. It follows that the subproblem can only make a ��t� to the de-
formed �nite element as can be seen in Figure 6.6. The illustration is shown in 2D for
simplicity, but is analogous in 3D. On the left side �nite elements, atoms and PBC box
are shown in an undeformed con�guration. In the middle, the �nite element has been
deformed. The PBC box cannot match a deformation, where two opposing sides are not
parallel to each other. Therefore, on the right side a �t was made to the �nite element
deformation.

�nite
elements

MD box with
PBC

undeformed
con�guration

deformed
con�guration with
impossible PBC

deformed
con�guration with

corrected PBC

molecular
dynamics

Figure 6.6: Concept of coupling with subboxes

6.3.4 Equivalent parallelepiped

A method to determinate a good �t of a parallelepiped to a deformed �nite element
will be investigated in this subsection. For reasons of simplicity, only a 2D-example is
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6 A combined hierarchic-partitioned-domain method

presented. However, in 3D the approach is the same. Figure 6.7 shows an arbitrary
quadrilateral in red with a parallelogram in black. The derivation of the parallelepiped
shall be discussed in the following.

a

b

u

p4

p2

p1

p3

d3

d1

d2

d4

x

y

Figure 6.7: Fitting a parallelepiped to an arbitrary quadrilateral

In order to make a good �t, we want to minimize the sum of the squares of the nodal
distances between the �nite element (red) and the parallelepiped (black) as in equation
(6.22). The quadrilateral is de�ned by the four corner pointsp1, p2, p3 and p4. The
parallelogram is de�ned by the displacement vectoru and the vectorsa and b that
form the parallelogram. Taking the di�erence between the corner points, the following
equations can be derived:

	 = d2
1 + d2

2 + d2
3 + d2

4 (6.22)

	 = jp1 � uj2 + jp2 � u � aj2 + jp3 � u � a � bj2 + jp4 � u � bj2 (6.23)

Next, we take the derivative of the equation with respect to the six unknowns tobe
zero. This results in six equations for six unknows.

@	
@ux

=
@	
@uy

=
@	
@ax

=
@	
@ay

=
@	
@bx

=
@	
@by

= 0 (6.24)
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The result is

a =
1
2

(p3 + p2 � p1 � p4) (6.25)

b =
1
2

(p3 + p4 � p1 � p2) (6.26)

u =
1
4

(3p1 � p3 + p2 + p4) (6.27)

The calculation is similar for a 8-node hexahedron. In this case, the parallelepiped is
de�ned by three vectorsa, b and c.

a =
1
4

(p2 + p3 + p6 + p7 � p1 � p4 � p5 � p8) (6.28)

b =
1
4

(x3 + p4 + p7 + p8 � p1 � p2 � p5 � p6) (6.29)

c =
1
4

(x5 + p6 + p7 + p8 � p1 � p2 � p3 � p4) (6.30)

u =
1
4

(2p1 + p2 + p4 + p5 � p7): (6.31)

The position of the nodesp1 : : : p8 are as seen in Figure 4.2.

As the subproblem in the �nite element is constantly moving, further constraints are
necessary in order to stabilize the coupling. As the atoms in the subbox are also �uctu-
ating the atoms can jump between opposing sides within the PBC box. This results in
force jumps with previously unseen free atoms and kicks free atoms out of the atomic
lattice. Additional constraints are:

� The average position of the atoms in the box must remain in the center of the
PBC box

� Atoms can move freely within the PBC box, but can not move outside of the box
or jump to the other side. If they touch the boundary, they can move no further
and the speed is set to zero.

� The force interaction between two bound atoms inside the same box also works
over the periodic boundary condition.

Even taking these limitations into account, free atoms at the boundary may still be
kicked out of the lattice due to thermal stimulation (see also Chapter 7). This mightbe
mitigated by letting the free atoms interact with time-averaged positions ofthe bound
atoms but due to time constraints, this is not implemented in this work.

Another challenge arises when the shape of the �nite element cells is deviating from
a rectangular shape. In this case, two neighboring parallelepipeds may overlap with
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6 A combined hierarchic-partitioned-domain method

each other or create a cavity between them. This e�ect can be reduced byappropriate
meshing and small angle changes in deformation. The problem is visualized in Figure
6.8.

overlapping atoms

no atoms

Figure 6.8: Two �nite elements (black) and their best �t subboxes. On one side an empty
space is created, while on the other side, the two boxes overlap.

As an atom in the subproblem only sees other atoms in its own subproblem, this is not
a problem for the subproblems themselves. However, outside atoms may be pressed into
the cavity or pressed out of position, because of more than one subproblem occupying
the same space.

6.3.5 Distribution of atom forces to �nite element nodes

The forces on the bound atoms must be distributed to the �nite element nodes of the
element they are bound to. This can be done with the shape functions of the �nite
element. However, just using all standard shape functions will result in forces being
added to nodes that are not at the interface between FE and MD. These forceswill lead
to wrong stress results in the element. In Figure 6.9 it can be seen that in a 1D case
the forcesF1 and F2 lead to a force on both �nite element nodes.

In other words, it is desirable to limit the forces to the �nite elements at the interface.
These nodes are marked inred in Figure 6.5. In order to distribute the forces to a
limited set of nodes, modi�ed shape functions can be used. This is possible by simply
rearranging the equations. Consider a simple 2D element with four shape functions. We
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Fnode,1 Fnode,2

FE nodes

atoms
F1 F2

Figure 6.9: Atom forces on �nite element nodes

want to eliminate the fourth shape function

N1 + N2 + N3 + N4 = 1 (6.32)

N1 + N2 + N3 + N4 (N1 + N2 + N3 + N4)
| {z }

=1

= 1 (6.33)

N1 + N1N4 + N2 + N2N4 + N3 + N3N4 + N 2
4 = 1 (6.34)

N1 + N1N4 + N2 + N2N4 + N3 + N3N4 + N 2
4 (N1 + N2 + N3 + N4) = 1 (6.35)

N1 + N1N4 + N1N 2
4 + N2 + N2N4 + N2N 2

4 + N3 + N3N4 + N3N 2
4 + N 3

4 = 1 (6.36)

N1(1 + N4 + N 2
4 ) + N2(1 + N4 + N 2

4 ) + N3(1 + N4 + N 2
4 ) + N 3

4 = 1 (6.37)

If we repeat the procedure an in�nite number of times, one arrives at

N1

 1X

i =0

N i
4

!

+ N2

 1X

i =0

N i
4

!

+ N3

 1X

i =0

N i
4

!

= 1: (6.38)

Apart from node 4, N4 < 1, therefore, the sum can be simpli�ed to

1X

i =0

N i
4 =

1
1 � N4

: (6.39)
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Now equation 6.38 can be simpli�ed to

N1
1

1 � N4
+ N2

1
1 � N4

+ N3
1

1 � N4
= 1 (6.40)

N1

1 � N4
+

N2

1 � N4
+

N3

1 � N4
= 1 (6.41)

N 0
1 + N 0

2 + N 0
3 = 1 (6.42)

As can be seen from equation (6.40) the starting equation (6.32) can be simpli�ed
in a much more simple way by movingN4 to the right side and dividing by 1 � N4.
However, the more complex derivation shows that the value of the fourth shape function
is distributed to the other nodes in a weighted and understandable manner.

How do these modi�ed shape functions look like? In the 1D example of the �gure above,
the shape functionsN 0

1 and N 0
2 become

N 0
2 =

N1

1 � N2
=

(1 � � )=2
1 � (1 + � )=2

=
(1 � � )=2
(1 � � )=2

= 1 (6.43)

N 0
1 = 1 � N 0

2 = 0: (6.44)

In the case of a hexahedron, the resulting shape functions are more complex.

6.3.6 Implementation

The horizontal coupling is implemented into the NumPro software developed at the IBB.
The �ow chart can be seen in Figure 6.10. A typical loop starts by getting the �nite
element atom positions. If the Cauchy type coupling used, the bound atoms will be
deformed according to the FE displacement. If the subboxes type coupling is selected,
this step is ignored.

Next, the MPI data exchange is performed, if the molecular dynamics domain has been
split into multiple domains. If this is not the case, this step can be omitted.

If the subboxes coupling has been chosen, the next step is the calculation of the atoms
in the subboxes. The parallelepipeds are updated using the atom deformation and the
forces on the atoms are calculated from the EAM potential. The thermostat isapplied
individually to each subbox. Finally, time integration is done and the periodic boundary
conditions are enforced.

The next step is to update the free atoms. The free atoms are also interactingwith
the bound atoms in the �nite elements. Once the electron density has been calculated,
the density can be exchanged with neighboring domains if more than one MD domain
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is present. This is followed by the calculation of the atom forces on free atoms and
bound atoms. The forces on the bound atoms are recalculated to the FE nodes as
described in Chapter 6.3.5 and sent to the �nite element part of the code. Finally, atom
velocities are adjusted with the thermostat and atom positions are updated with the
verlet algorithm.

The molecular dynamics part is integrated into the code as a di�erent branch that
does not run on the same process as the �nite element part as seen in Figure 6.11.
The molecular dynamics part � consisting of one or more processes � is a separate
part of the code that interacts with the �nite element part via MPI messaging. Both
FE and MD process run in parallel and exchange information in each iteration. The
FE process sends information about the nodal displacement to the molecular dynamics
process, which is used to update the position of the bound atoms. On the other side,
the molecular dynamics part calculates the nodal forces for the �nite elements and sends
this information to the �nite element process, where the nodal forces are added as an
external force to the simulation.

Two boxes with a grey background are visible in the �gure. On the left the �nite element
movement and on the right the movement of the atoms. The part about �nite element
movement, including the vertical coupling, was already shown in Figure 6.4. The MD
subproblems of the vertical coupling are calculated in this thesis on the FE process,
which is not very e�cient from a speed perspective, but could not be improved due to
time constraints. The atomic movement of the vertical coupling is shown in more detail
in Figure 6.10.
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receive FE Atom positions

update positions of bound atoms (Cauchy rule only)

MPI data exchange (atom positions, atom migration)

thermostat, free atoms

calculate electron density, free atoms

If MD subproblems as coupling

update parallelepiped

calculate EAM forces, subboxes

thermostat, subboxes

time integration, enforce PBC, subboxes

time integration, free atoms

MPI data exchange (electron density, free atoms)

calculate EAM forces, free atoms

calculate nodal forces and sent them to FE process

Figure 6.10: Flow chart of horizontal coupling
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initiate molecular dynamics

send domain coords to FE

check which atoms are within FE cells

link those atoms to FE

loop start

loop end

calculate MD forces

classical
NumPro
branch

initiate �nite
elements

MD
branch 1

MD
branch 2

MD
branch 3

check, which
FE overlapp
with domains

send FE info
to MD

send FE disp.
to MD

create new BCs

calc FE forces

time integration

calc nodal forces due to atomforces

send nodal forces to FE

time integration

process 2 process 3 process 4process 1

program start

program end

Figure 6.11: Flow chart of combined simulation
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7
Multiscale test cases

7.1 Overview

The test cases are separated into three main categories. First, a tensile test and a
bending test are performed to ensure the basic functionality of the method. Next, the
vertical coupling is used to verify that phase transformation is possible for a single
hexahedron. The phase transformations between BCC and FCC and between HCP and
BCC are investigated in both directions. Finally the same phase transformations are
investigated using both horizontal and vertical coupling simultaneously.

7.2 Tensile test

The �rst test case is a simple tensile test. This test is used to verify the basic func-
tionality of the vertical and horizontal coupling methods. The problem description is
shown in Figure 7.1. The problem is divided into two possible discretizations: Case A
for vertical coupling only and Case B for both vertical and horizontal coupling.

A rod with quadratic cross section is pulled by a force on the right side. The rodhas a
length of 7l0, and a width of l0 and a height of l0. The values for the variables can be
seen in Table 7.1. The material is modeled after the potential fromMendelev et al.
(2003). The elastic constants of the Mendelev potential at 300 K can be seen in Table
3.1.

The simulation is carried out for a total time of 0:2 nano seconds, divided into 50,000 time
steps. Damping is used on the �nite elements to converge to a quasi-static solution.The
hexahedral elements use a �nite element formulation with 8 nodes and trilinear shape
functions as described in Chapter 4.
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l0

l0

l0 l1 l0 l0
F2

F1

l0

l0

l0 l0 l0
F2

F1

l0 l0 l0

Case A:

Case B:

Figure 7.1: Top (Case A): A rod with quadratic cross section is meshed with seven hex-
ahedron elements. The rod has a thickness ofl0.
Bottom (Case B): A rod partially meshed with �nite elements. In the cen-
ter, atoms are used as representation of the metal. The partially overlapping
atoms are used for coupling

Quantity value
C11 233 GPa
C12 136 GPa
C44 118 GPa

Quantity value
l0 28:665 Å
l1 3l0
temperature 300 K

Table 7.1: General parameters of the test case

On the left side of the rod, all degrees of freedom of the �nite elements are �xed. On
the right side a force is pulling to the right. The forceF equalsFtot = 3 eV=Å. This
yields a total force ofF = F1 = F2 = 12 eV=Å or a pressure of

p =
4F
l2
0

= 0:0146
eV
Å3

= 2:34 GPa: (7.1)

7.2.1 Damping factor

In the dynamic simulation of a simple tensile test, the most important deformation
mode is the �rst longitudinal vibration mode. This problem can be simpli�ed by using
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one �nite bar element that has a force on the right and is �xed on the left. The critical
damping ratio should be close to 1 from below in order to ensure fast convergence.
The critical damping ratio should not be above 1 as in this case the solution is never
reached.

A simple 1D rod with density � m and sti�ness k has the following di�erential equation.

� mAl
2

"
1 0
0 1

#
•d +

EA
l

"
1 � 1

� 1 1

#

d = F: (7.2)

If the left side is �xed, the equation simpli�es to

� mAl
2

•d2 +
EA
l

d2 = F : (7.3)

This can be rearranged to

•d2 +
2E

� m l2
d2 =

2F
� mAl

: (7.4)

With this, the critical frequency is found as

! =
1
l

s
2E
� m

: (7.5)

From the matrix of elastic constants, the Young's modulusE can be derived as

E =
C2

11 + C11C12 � 2C2
12

C11 + C22
= 133 GPa: (7.6)

The eigenfrequency! is then equal to ! = 0:00296� (10:18 fs)� 1. With cK = 500
being the critical damping ratio of this mode, using sti�ness proportional damping, is
� = !

2 cK = 0:74 < 1.
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7.2.2 Molecular dynamics solution

As a reference solution, a pure molecular dynamics solution is calculated. However,
boundary e�ects are a problem and cannot be removed from the simulation. In other
words, there might be a discrepancy in the molecular dynamics solution to be expected,
compared to the multiscale solutions seen later. In addition to the boundary e�ects,
another problem is that it was not possible to enter complex boundary conditions into
an existing molecular dynamics program called IMD from another institute at the Uni-
versity of Stuttgart ( Roth et al. (2000)), that was planned to be used as a reference in
this thesis. Therefore, the horizontal coupling from this thesis was used for the molecular
dynamics solution. The problem setup is shown in Figure 7.2.

l0

l0

l3

l2

F2

F1

Figure 7.2: Tensile test case with (mostly) pure molecular dynamics. The boundary
conditions have been applied with horizontal coupling.

On the left side, a �nite element is �lled with atoms that are coupled to the �nite element
via the Cauchy rule. As all �nite element nodes are �xed, the bound atoms do not move.
On the right side, there is also a �nite element in order to apply the force boundary
condition to the atoms. The lengthsl2 and l3 are de�ned as l2 = l0=2 and l3 = 7l0.
The simulation is run for a total of 2,000,000 time steps with �t = 2 fs. The damping
coe�cients are cM = 0:001 andcK = 1000. Due to the strong vibrations of the atoms and
the small/light �nite element at the end of the beam, the damping was selected higher
than the 500, assumed in the previous section for the sti�ness proportional damping.
The convergence is still undercritical, see Figure 7.7.

Figure 7.3 shows the atoms at the end of the simulation. The resulting displacement
with molecular dynamics at the right side is 3:4 Å.

7.2.3 Case A

In Case A, two material laws are investigated. First, a constant material tensorC is
assumed with the elastic constants of the iron potential byMendelev et al. (2003).
The second material law is the vertical coupling with the same potential.

86



7.2 Tensile test

Figure 7.3: Results for the tensile test using (mostly) molecular dynamics

Cubic material law

All element edges align with the reference coordinate system. Therefore, no transforma-
tion of the elastic tensor is necessary for the cubic material law. The elasticitytensor is
given as

C =

2

6
6
6
6
6
6
6
6
6
6
4

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44
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(7.7)

with C11 = 224 GPa, C11 = 126 GPa and C11 = 94 GPa. The damping matrix is using
the Rayleigh-damping de�nition D = cM M + cK K with cM = 0 and cK = 500: The
simulation is performed with NumPro. The time step is 4 fs and 50,000 time steps are
calculated.

Figure 7.4 shows the results for deformation and stress. The deformation inx-direction
is 3:45 Å and stress is 0:0143eV

Å 3 . The stress �eld is almost homogeneous and the small
deviations arise from numerical imperfections. In addition, the displacement �eld is
linear as expected.

Vertical coupling

Next, the vertical coupling is investigated. Instead of using the material tensor with the
three constantsC11, C12 and C44, at each Gauss point, a molecular dynamics subproblem
is used that returns the stress as a function of the strainS = S(E). At each Gauss
point, the molecular dynamics subproblem has a total of 128 atoms with a temperature
of 300 K. The simulation is performed with NumPro. The runtime is 8800 seconds. The
damping matrix is using the Rayleigh-damping de�nitionD = cM M + cK K with cM = 0
and cK = 500: The time step is 2 fs and 50,000 time steps are calculated.
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0 Å

3:45 Å

0:014243eV
Å 3

0:014388eV
Å 3

Figure 7.4: Results for the tensile test using only �nite elements and the cubic material
law. On the top, the horizontal deformation is seen and on the bottom, the
second Piola-Kirchho� stress Sxx

0 Å

3:38 Å

0:0089 eV
Å 3

0:0181 eV
Å 3

Figure 7.5: Results for the tensile test using only �nite elements and the molecular dy-
namic subproblems at the Gauss points. On the top, the vertical deformation
is seen and on the bottom, the second Piola-Kirchho� stressSxx

In Figure 7.5 the results are shown. They show good displacement results. However,
the stress in the elements �uctuates by a factor of 1.5, which results from thestress �uc-
tuations and the small problem size at each Gauss point. The displacement is 3:38 Å.
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7.2 Tensile test

7.2.4 Case B

The second case consists of testing the horizontal coupling using either the Cauchy
rule or the subboxes coupling. In addition, on the �nite element level either the cubic
material law is used or the vertical coupling.The damping matrix is using the Rayleigh-
damping de�nition D = cM M + cK K with cM = 0 and cK = 500: The simulation is
performed with NumPro. The time step is 4 fs and 100,000 time steps are calculatedin
case of the CML and 50,000 in case of the vertical coupling. The results of thesefour
combinations are shown in Figure 7.6.

Figure 7.6: Deformation. Blue: atoms, red: �nite element nodes, light blue: coupling
subboxes corners. 1. row: Cauchy and cubic material law, 2. row: Cauchy
and vertical coupling, 3. row: subboxes coupling and cubic material law, 4.
row: subboxes coupling and vertical coupling

Clearly visible is that in the case of the subboxes coupling a few boundary atoms have
changed position or lost contact with the surrounding atoms. The reason for that is
that due to the subboxes, the free atoms are in�uenced by the vibration of the bound
atoms but the reverse is not true, because the forces are redirected to the �nite element
nodes. Therefore, the free atoms are pumped with energy from the atoms fromthe
subproblems. The thermostat cannot fully compensate for single atoms disturbing the
temperature balance. This results in some atoms being kicked out of the system.
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7 Multiscale test cases

There are only small di�erences between 3.1 and 3.4 Å in displacement as seen in Figure
7.2. Thex-displacement solution is 3:15 Å for the Cauchy rule with CML, 3:13 Å for the
Cauchy rule with VC, 3:46 Å for the subboxes with CML and 3:40 Å for the subboxes
with vertical coupling.

7.2.5 Discussion of results

In Figure 7.7 the convergence behavior of all previous 7 simulations is shown. The
displacement is plotted as a function of the output steps. 100 samples where saved
from each simulation and written to an output �le. All methods converge. Case A and
the subboxes coupling of Case B converge to the same value of approximately 3.4 Å,
whereas the Cauchy type coupling converges to a displacement of 3.2 Å. The molecular
dynamics is converging to approx 3.5 Å.
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Figure 7.7: Convergence behavior tensile test, VC = vertical coupling, FE = �ni te ele-
ments, CML = cubic material law

The averaged values of the last 50 output steps can be seen in Table 7.2. The �xed
Cauchy type coupling of molecular dynamics results in a higher sti�ness than the cou-
pling with subboxes which has the same displacement as the �nite element solution with
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7.2 Tensile test

the vertical coupling/cubic material law and is also very close to the molecular dynamics
solution.

simulation displacement value / Å strain / percent
molecular dynamics 3.50 1.75
only FE & cubic material law 3.44 1.71
only FE & Vertical Coupling 3.38 1.68
Cauchy - cubic material law 3.15 1.57
Cauchy - Vertical Coupling 3.13 1.56
subboxes - cubic material law 3.46 1.72
subboxes - Vertical Coupling 3.40 1.70

Table 7.2: Tensile test case, displacement results

In the next chapter the pulling force will be replaced with a bending moment to simulate
a bending problem with constant bending moment.
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7 Multiscale test cases

7.3 Bending test

The bending test has the same geometry as the tensile test described in the previous
chapter. The forces areF1 = � F2 = F = 0:6 eV

Å
, which is equivalent to a bending

moment being applied to the right side of the beam. According to beam theory, this
external bending moment should result in a constant bending moment throughout the
beam. The hexahedron elements are using selective reduced integration of the nodal
forces as described in Chapter 4.6.2 to avoid shear locking in the beam. The iron
potential by Mendelev et al. (2003) is used. The analytical solution of the vertical
displacement at the end of the beam using a standard Euler-Bernoulli-beam formulation
is

dz =
Ml 2

2EI
= 14:7 Å: (7.8)

The Euler-Bernoulli solution is taken as a reference point.

7.3.1 Damping factor

In the dynamic simulation of a simple bending test, the question again arises to choose
an appropriate damping factor. The relevant deformation frequencies can be estimated
from an Euler-Bernoulli-Beam equation. This problem can be simpli�ed by using one
Euler-Bernoulli beam �nite element that is �xed on the left. A simple 1D-Euler-Bernoulli
beam with a density � m , cross sectionA, length l and a sti�ness EI has the following
di�erential equation.
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d = F: (7.9)

If the left side of the beam is �xed, the equation simpli�es to

� mAl
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12 6l
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#

d = F: (7.10)

From this it can be derived that the eigenfrequencies are the square root of theeigen-
values of the expression

EI
� mAl 5

"
� 252l 192l2

� 2016 1476l

#

: (7.11)
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With this, the lower eigenfrequency is found as

! =

s

12(51� 8
p

39)
EI

� mAl 4
: (7.12)

From the elastic constants matrix, Young's modulusE can be derived asE = 133 GPa.
The eigenfrequency! is then equal to ! = 0:000305� (10:18 fs)� 1. With cK = 1000
the critical damping ratio of this mode using sti�ness proportional damping only is
� = !

2 cK = 0:15 < 1.

7.3.2 Molecular dynamics solution

It was not possible to simulate a bending test with the molecular dynamics program
IMD, because the solution did not converge to a static solution after a reasonable simula-
tion time. Therefore, the horizontal coupling was used to simulate the bending problem
with molecular dynamics. The dimensions of the problem are the same as in the tensile
test. The damping coe�cients are cM = 0:001 andcK = 1000. The simulation is per-
formed with NumPro. The time step is 2 fs and 100,000 time steps are calculated. The
problem is visualized in Figure 7.8.

l0

l0

l3

l2

F2

F1

Figure 7.8: Bending test case with (mostly) pure molecular dynamics. The boundary
conditions have been applied with horizontal coupling.

Figure 7.9: Results for the bending test using (mostly) molecular dynamics

The displacement on the lower right node with molecular dynamics is 16:1Å, the defor-
mation is visible in Figure 7.9.
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7 Multiscale test cases

7.3.3 Case A

In Case A, two material laws as in the tensile test case are investigated. First a con-
stant material tensor C is assumed with the elastic constants of the iron potential by
Mendelev et al. (2003). The second material law is the vertical coupling with the
same potential.

Cubic material law

First case A is calculated. The material law is set to be the elastic tensor of the cubic
material law of iron. All element edges align with the reference coordinate system.
Therefore, no transformation of the elastic tensor is necessary. The elastic tensor is
given as

C =

2
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(7.13)

with C11 = 224 GPa, C11 = 126 GPa and C11 = 94 GPa. The simulation is performed
with NumPro. The damping coe�cients are cM = 0 and cK = 1000. The time step is 2
fs and 200,000 time steps are calculated.

The deformation and stress are shown in Figure 7.10. The biggest deformation is 12.4
Å. The stress distribution is constant in horizontal direction and follows a linear pro�le
in vertical direction with a maximum stress ofSxx = 0:0088eV

Å 3 .

Vertical coupling

Next, the vertical coupling is investigated. Instead of using the material tensor with the
three constantsC11, C12 and C44, at each Gauss point, a molecular dynamics subproblem
is placed that returns the stress as a function of the strainS = S(E). At each Gauss
point, the molecular dynamics subproblem has a total of 128 atoms with a temperature
of 300 K. The simulation is performed with NumPro. The damping coe�cients are
cM = 0 and cK = 1000. The simulation is performed with the NumPro code. The time
step is 4 fs and 50,000 time steps are calculated.
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� 12:4 Å

0:14 Å

� 0:00869eV
Å 3

0:00886eV
Å 3

Figure 7.10: Results for the bending test using only �nite elements and the cubic material
law. On the top, the vertical deformation is seen and on the bottom, the
second Piola-Kirchho� stress Sxx

� 12:2 Å

0:165 Å

� 0:00964eV
Å 3

0:00986eV
Å 3

Figure 7.11: Results for the bending test using only �nite elements and vertical coupling.
On the top, the vertical deformation is seen and on the bottom, the second
Piola-Kirchho� stress Sxx

In Figure 7.11 the results are shown. In both cases, the deformation at the right end
of the beam is nearly identical (-12.2 Å vs -12.4 Å). The simulation with the constant
material matrix C shows a perfect stress distribution for the given load. In the case
of the vertical coupling, small deviations are visible, but overall the stress is still very
good. The stress values are 10 % higher in the case of the vertical coupling but this is
believed to be caused by the �uctuating behavior of the stress in the subproblem. In
fact, by taking into account the identical displacement, it can be deduced that thestress
�uctuation is around 0:001 eV

Å 3 or 10% of the maximum stress value.
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7 Multiscale test cases

7.3.4 Case B

The second case consists of testing the horizontal coupling, using either the Cauchy
rule or the subboxes coupling. In addition, on the �nite element level either the cubic
material law is used or the vertical coupling. The damping coe�cients arecM = 0 and
cK = 1000. The simulation is performed with NumPro. The time step is 4 fs and
100,000 time steps are calculated. Only in the last test case for subboxes and vertical
coupling, a total of 400,000 time steps was computed to get to a quasi-static result.

Figure 7.12: Bending deformation. Blue: atoms, red: �nite element nodes, light blue:
coupling subboxes corners. 1. row: Cauchy and cubic material law , 2.
row: Cauchy and vertical coupling, 3. row: subboxes coupling and cubic
material law, 4. row: subboxes coupling and vertical coupling
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7.3 Bending test

The results of these four combinations are shown in Figure 7.12. The two images at
the top show a deformation behavior as expected. Noteworthy in the lower images are
the atoms at the boundary that should not be there. These atoms are original fromthe
interface between �nite elements and molecular dynamics and are kicked out of position
due to the thermal vibrations of the bound atoms in the subboxes coupling. Thez-
displacement solution at the end of the beam is� 14:0 Å for the Cauchy rule with CML,
� 13:6 Å for the Cauchy rule with VC, � 15:8 Å for the subboxes with CML and� 10:4 Å
for the subboxes with VC. The results are discussed in more detail in the next section.

7.3.5 Discussion of results

In Table 7.13 the convergence behavior is given. The displacement is plotted as a
function of the output steps. 100 samples where saved from each simulation and written
to an output �le. All methods converge to a value, but not to the same value in all
cases.
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Figure 7.13: Convergence behavior bending test, VC = vertical coupling, FE = �ni te
elements, CML = cubic material law

97



7 Multiscale test cases

In Table 7.3 the results for all simulation runs are shown. In general it can be said
that the vertical coupling has a higher sti�ness than the constant material matrix. The
solutions with �nite elements only (Case A) show lower displacements and, therefore, a
higher sti�ness than the partitioned domain methods (Case B). The molecular dynamics
solution has the highest displacement, which can be explained with the surface e�ects
that reduce the sti�ness of the beam. The subboxes with the cubic material law (CML)
has a similar displacement to the molecular dynamics solution. However, this is believed
to be a coincidence. It is more likely that a number of e�ects compensate each other.
The �nite elements have a higher sti�ness compared to the pure MD solution as seen
by Case A. This higher sti�ness is probably compensated by the more �exible subboxes
coupling type. In fact, it can be seen in �gure 7.12 that some atoms are kicked out of
position at the interface, resulting in a less sti� coupling. Whether this explains the
complete sti�ness loss must be further investigated. The Cauchy coupling does not lose
atoms at the interface, resulting in a higher sti�ness. In the case of the subboxes type
coupling, used together with vertical coupling in the �nite elements, the solution is very
sti� and deviates signi�cantly from the other solutions, especially the solution of the
subboxes coupling with the cubic material law. The reason for this is unclear. As a
great number of e�ects play an important role and the problem is calculated non-linear,
this might be an e�ect of entering a di�erent stability branch.

simulation displacement value / Å
molecular dynamics -16.1
only FE & cubic material law -12.7
only FE & vertical coupling -12.1
Cauchy - cubic material law -14.0
Cauchy - vertical coupling -13.6
subboxes - cubic material law -15.8
subboxes - vertical coupling -10.4

Table 7.3: Bending test case, displacement results
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7.4 Phase transformation, single hexahedron

7.4 Phase transformation, single hexahedron

This example demonstrates phase transformation in a simple hexahedron as seen in
Figure 7.14. The hexahedron is constrained at the bottom and has eight nodes. Vertical
coupling is used to demonstrate phase transformation. There are eight integrationpoints
with eight subproblems. The simulation cube has dimensions of 10 x 10 x 10 mm. For
each time step at the coarse scale there is a time step at the �ne scale. The hexahedron
uses full integration and not selective reduced integration. The forceF1 is applied to
each of the four nodes on the top. In addition a second forceF2 is applied orthogonal
to the the forceF1 on two sides of the cube, stretching the cube.

The simulation runs for a total of 6000 time steps. The time step is 0.00025 ms. The
critical damping ratio is calculated as in the tensile test case and has a value of around
� = 0:6 for the deformation mode with the lowest frequency.

F1

F2

F2
F1

Figure 7.14: Stress free hexahedron

Phase transformation in both directions will be simulated with the potential for iron
by Meyer and Entel (1998) and the potential for titanium by Mendelev et al.
(2016).

7.4.1 Phase transformation from BCC to FCC

First, the transition from BCC to FCC is simulated. Figure 7.15 shows the atoms in
BCC con�guration. For the BCC con�guration, the lattice constant at the start o f the
simulation is aBCC = 2:85502 Å. It is important to note that the molecular dynamics
lattice constants do not necessarily result in a stress free state at starting temperature.
In this test case the starting temperature is 1600 Kelvin. The starting con�gurations for
the molecular dynamics problems have 128 atoms each with a BCC lattice. The forces
F1 and F2 are set toF1 = � 12000 N andF2 = 0 N. The coe�cients for the damping
matrix are cM = 1:5 and cK = 0:001.
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Figure 7.15: BCC lattice in starting con�guration

Figure 7.16 shows the simulation results at the end of the simulation. The �gure features
eight rendered images of one MD subproblem each from the post-processing software
Ovito. The color speci�es the phase. Blue symbolizes BCC con�guration, green FCC
con�guration and red HCP con�guration. White atoms could not be associated with
one of the previous lattice structures. The analysis is done using common neighbour
analysis to identify atomic lattice structures, seeFaken and Jónsson (1994) for more
details. The output atom positions are time averaged to increase the phase detection
rate by the algorithm.

It can be seen that all subproblems changed to mainly green color, showing an excellent
transformation result. A few atoms are still white, but this is due to the fact that the
post processing software has problems analyzing atomic structure that has a non-perfect
lattice because of thermal vibrations.

In Figure 7.17 the undeformed con�guration (grey) and the deformed con�guration
(black) of the problem can be seen. The original lengthl0 of the cube changed to the
three side lengthsl1, l2 and l3.

The lengths are given in Table 7.4. The transition from BCC to FCC is a simple
rescaling of axes. If the ratio of one length to the other two lengths changes from 1 : 1
to

p
2 : 1, the structure changes from BCC to FCC, as explained in Section 2.3. This

can be observed from the values:l1=l2 = l1=l3 = 1:43 �
p

2. The di�erence to
p

2
might be explained by the fact that the problem is not unloaded after transition, so
that a small elastic deformation is also present after transition. The volume increases
by 13%, however, � as mentioned before � the volume at the initial con�guration does
not necessarily represent a stress free state, so the volume change is in�uencedby the
starting con�guration.
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7.4 Phase transformation, single hexahedron

Figure 7.16: Stress free hexahedron, BCC to FCC, subproblems after transition

l2

l3

l1

Figure 7.17: Simulation cube, results de�nition. l1, l2 and l3 are always de�ned from the
center of one side to the center of the opposite side.

length result in mm
l0 10
l1 13:18
l2 9:20
l3 9:20

Table 7.4: Stress free hexahedron, BCC to FCC, deformation results
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7.4.2 Phase transformation from FCC to BCC

Next, the transition from FCC to BCC is simulated. In this test case the starting
temperature is 100 Kelvin. Figure 7.18 shows the atoms in FCC con�guration. The
FFC lattice constant is aFCC = 3:725 Å. The molecular dynamics subproblems have 256
atoms each with a FCC lattice. Figure 7.18 shows the atoms of the subproblems in FCC
starting con�guration. A force F1 is necessary in this case and is set toF = 40;000 N,
which translates to a pressure of 1600 MPa.F2 is not necessary and is set toF2 = 0.
The coe�cients for the damping matrix are cM = 1:5 and cK = 0:001.

Figure 7.18: FCC lattice in starting con�guration

Again, the results at the �nal time step are shown in �gure 7.19. The color coding is
th same as in the previous pictures with blue indicating BCC. As is clearly visible, all
subproblems change to the BCC phase.

The length l0 and three new lengthsl1, l2 and l3 are given in Table 7.5. The lengths are
de�ned as in Figure 7.17. The transition from BCC to FCC is a simple scaling of axes.
If the ratio of the axis changes from 1 : 1 to

p
2 : 1 the structure changes from BCC to

FCC. This can be observed from the values.l1=l2 � l3=l2 = 1:42 �
p

2.

length result in mm
l0 10
l1 11:04
l2 7:80
l3 11:05

Table 7.5: Stress free hexahedron, FCC to BCC, deformation results
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Figure 7.19: Stress free hexahedron, FCC to BCC, subproblems after transition
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7.4.3 Phase transformation from HCP to BCC

Next the transition from HCP to BCC is simulated with the titanium potential. In
this test case the starting temperature is 1500 Kelvin. As starting con�gurationfor the
molecular dynamics subproblems a HCP lattice as seen in Figure 7.20 is selected. It
consists of 216 atoms. The lattice constants for the HCP con�guration of the potential
are a = 2:947Å and c=a = 1:597. The forces areF1 = 0 N and F2 = 70 kN. The
forces are unloaded after 600 time steps. The transition is initiated with pulling force in
x-direction, otherwise the atoms do not change phase. Once in the BCC con�guration,
the lattice structure is stable again without boundary forces. The coe�cients for the
damping matrix are cM = 1000 and cK = 1:0.

Figure 7.20: HCP in starting con�guration

As can be seen in Figure 7.21, all subproblems change to a bcc structure. The sub-
problems have the same volume after transition with a lattice constant ofa = 3:29 Å in
bcc-phase.

length result in mm
l0 10
l1 11:17
l2 9:12
l3 9:67

Table 7.6: Stress free hexahedron, HCP to BCC, deformation results

Table 7.6 shows the three new lengthsl1, l2 and l3. The lengths are de�ned just as in
Figure 7.17. However, in this test case the ratio of initial lengths is di�erent for the
MD subproblems and for the �nite element. Therefore, it is necessary to look at the
deformation gradient F. It can be seen that the deformation gradient of the problem
after transformation is

F =

2

6
6
4

1:117 0 0
0 0:9012 0
0 0 0:967

3

7
7
5 (7.14)
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Figure 7.21: Stress free hexahedron, HCP to BCC, subproblems after transition

The initial lengths of the PBC box of MD subproblem areL = [35:364 Å 30:6261 Å
28:8746 Å]T . The deformed length is, therefore,

l = FL =

2

6
6
4

39:49Å
27:93Å
27:92Å

3

7
7
5 : (7.15)

Taking the ratio of the lengths, we arrive at 39:49 Å=27:93 Å = 1:414�
p

2, showing an
excellent deformation result.
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7.4.4 Phase transformation from BCC to HCP

Finally the transition from HCP to BCC shall be simulated. In this test case the start-
ing temperature is 1000 Kelvin. As starting con�guration for the molecular dynamics
problems a BCC lattice, as seen in Figure 7.22, is selected. It consists of 432 atoms and
a lattice constant a = 3:29 Å. The forces are unloaded after 600 time steps.

Figure 7.22: BCC in starting con�guration

The transition is initiated with a compressive force inz-direction, F1 = � 100 kN and
F2 = 0 N. The coe�cients for the damping matrix are cM = 1000 and cK = 1:0.

As can be seen in Figure 7.23, all subproblems change to a HCP structure. A few
atoms are detected by the post processing software to be in the BCC phase butthis is
negligible.

vector x-part y-part z-part
l1 12.16 0 0
l2 -1.15 12.11 0
l3 0 0 10.25

Table 7.7: Stress free hexahedron, BCC to HCP, deformation results

Table 7.7 shows the three new lengthsl1, l2 and l3. The lengths are de�ned as in Figure
7.17. However, in this case they are interpreted as vectors in order to re�ect the shear
deformation. The box shows a small shear angle in thex-y-plane after the deformation.
This has not been the case in previous phase transitions and is a result of the transition
to HCP. The length lz is proportional to the lattice constantaHCP after transition, while
the shorter diagonal in thex-y-plane is proportional to the layer distancecHCP . This is
due to the orientation of the lattice structure in the subproblem after transition. This
can be seen in Figure 7.24. Therefore, it is possible to derive the ratioc=a from the
coarse scale parameters.

c
a

=

q
(l1x + l2x)2 + l2

2y

l3
= 1:596: (7.16)
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Figure 7.23: Stress free hexahedron, BCC to HCP, subproblems after transition

x
y

z

a

c

Figure 7.24: HCP subproblem orientation

This value is close to the theoretical value of 1:597 fromMendelev et al. (2016).
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7.4.5 Discussion of results

The phase transformation with the vertical coupling works well for a simple hexahedron.
In all cases phase transformation takes place and the results show that all subproblems
deform in the same manner. The post-processing software ovito recognizes nearly all
atoms to be in the desired phase. The coarse scale deformation behavior of the hex-
ahedron is in agreement with the subproblems. In addition the deformation is also in
agreement with theoretical considerations, like the ratio of lengths discussedin Section
2.3.
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Figure 7.25: Convergence behavior, single hexahedron. In all transformations a fast
convergence to the new lattice structure is visible.

Figure 7.25 shows the convergence behavior of the previous four simulations. In all
cases a fast convergence behavior is visible. In the case of the BCC to FCC, FCC to
BCC and HCP to BCC simulations, the ratio of the axis lengths of the box quickly
converges to a value of approximately

p
2. The BCC to FCC value is a bit higher,

because the simulation was not unloaded after initial transition. The BCC to HCP
simulation converges to a value of 1.598, which is the ratio of the two lattice constants
c=a of a HCP lattice.
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7.4 Phase transformation, single hexahedron

A challenge remains due to the fact that the phase transformation could only be initiated
by an initial force in some cases. However, this is believed to be an artefact of the EAM
potentials and not caused by the proposed method.

In the following chapter all the phase transformation test cases are calculatedagain, this
time however, in a combined simulation using both horizontal and vertical coupling.
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7 Multiscale test cases

7.5 Combined test case for phase transformation

In this test case both horizontal and vertical coupling are used to simulate phase trans-
formation in a combined simulation. The problem setup can be seen in Figure 7.26. A
box is discretized by 3x3x3 �nite elements. The central �nite element is removedand
replaced by atoms as shown in the �gure. On the left side of the �gure an isometric
3D representation of the problem is seen, while on the right side a cut in the middle of
the cube showing thex-y-plane is seen. In addition to the atoms in the center there are
coupling atoms in the surrounding elements that are only shown in the right image for
clarity.

lz

lx

ly

q2

q2

q1

ly2
3 ly

2
3 lx

lx

Figure 7.26: Combined test with 26 �nite elements, center �lled with atoms

The point of this problem setup is to exclude surface e�ects that play a signi�cant role
in molecular dynamics, but are unknown in continuum mechanics. By surrounding the
atoms with �nite elements the surface e�ects are eliminated.

The �nite element mesh is constrained on the left side and is loaded on the right side
with a distributed load q1 and an additional loadq2 in x-direction. The loads are there
to initialize or stabilize the phase transformation. In contrast to the previous test case,
much higher loads are necessary to initiate the phase transformation in some simulations.
The damping ratio � is calculated as in the tensile test case and� < 1 for all simulations
except for the HCP to BCC transformation, where it is above 1. However the damping
does not prevent the phase transition.
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7.5 Combined test case for phase transformation

The problems are run for a total of 10;000 time steps, if not speci�ed di�erently. The
time step is � t = 2fs. The damping matrix has the coe�cients cM and cK . The �nite
element used is the 8-node hexahedron. The density is 4:7 u

Å 3 for iron and 2:8 u
Å 3 for

titanium. The cube has dimensionslx x ly x lz. The corresponding values are di�erent
for each simulation.

The phase transformations that are simulated are the same ones as in the single hex-
ahedron test case in Section 7.4 that used the vertical coupling only. However, this
simulation is much more complex than in the previous cases. In addition, the calcula-
tion time is much higher due to the fact that in this simulation 26 �nite elements with
8 subproblems per integration point must be simulated. These 208 subproblems require
the majority of the calculation time. For this reason, the subproblems are chosen to be
as small as possible. The MD subproblems are the same as in the previous test case
with one hexahedron element only.

7.5.1 Phase transformation from BCC to FCC

The �rst transition to be simulated is the transition from BCC to FCC. The problem
dimensions are as followslx = 85:995 Å, ly = 85:995 Å and lz = 85:995 Å. The loads
are q1 = 0:03125eV

Å 3 and q2 = 0 eV
Å 3 . The damping coe�cients are cM = 0:0001 and

cK = 0:01.

Figure 7.27: Finite element nodes (red) and atoms (blue and white). Atoms at the
boundary are recognized by ovito to be in the BCC phase
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7 Multiscale test cases

The starting con�guration can be seen in Figure 7.27. The simulation is run for a total
of 20,000 time steps in the case of the Cauchy coupling and 50,000 time steps for the
subboxes coupling. In the center there are 16,000 atoms with 2,000 being free atoms and
the rest being the interface to the �nite elements. Each �nite element has a subproblem
at each Gauss point with 256 atoms. The BCC lattice at the start has the samelattice
constant both in the coupled atoms and in the subproblems. Therefore, the behavior of
the material law in the �nite elements is identical to the molecular dynamics.

The phase transformation from BCC to FCC shows excellent results in both methods.
Figure 7.28 show the �nal con�guration for the Cauchy rule and the subboxes respec-
tively. In Table 7.8 the deformation results can be seen. The ratio of 106:2=74:9 = 1:42

length Cauchy subboxes

l0 85:995Å 85:995Å

l1 74:6Å 74:9Å

l2 74:6Å 74:9Å

l3 105:4Å 106:2Å

Table 7.8: Combined test case, BCC to FCC, deformation results

and 105:4=74:6 = 1:41 show good agreement with the expected length ratio of
p

2 for
the FCC phase.

In Figure 7.28 the phases after transition are shown. All atoms (that are correctly
recognized by ovito) are in the FCC phase. Due to the fact that the post-processing
software does not recognize atoms at the boundary correctly, some atoms remain white.
The numbers are shown in Table 7.9.

variable initial Cauchy Subboxes
not recognized 27.1% 23.1% 23.4%

FCC 0% 77.0% 76.5%
HCP 0% 0% 0%
BCC 72.9% 0% 0%

Table 7.9: Combined test case, BCC to FCC, lattice structure distribution
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7.5 Combined test case for phase transformation

Figure 7.28: Results of the BCC to FCC transformation with the Cauchy rule on the left
and the subboxes on the right. Visible are: FCC (green), not recognized
(white), �nite element nodes (yellow) and the subboxes nodesfor horizontal
coupling (light blue). Top row: all atoms, bottom row: FCC phase only.
The MD subproblems from the vertical coupling are not visible in this
picture.
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7 Multiscale test cases

7.5.2 Phase transformation from FCC to BCC

The second transition to be simulated is the transition from FCC to BCC. The problem
dimensions are as follows:lx = 88:992Å, ly = 88:992Å and lz = 88:992Å. The loads
are q1 = � 0:003125eV

Å 3 and q2 = 0 eV
Å 3 . The damping coe�cients are cM = 0:0001 and

cK = 0:01.

The starting con�guration can be seen in Figure 7.29. The simulation is run for a total of
10,000 time steps. In the center there are 16.384 atoms with 2.048 being free atoms and
the rest being the interface to the �nite elements. Each �nite element has a subproblem
at each Gauss point with 256 atoms. The FCC lattice at the start has the samelattice
constant both in the coupled atoms and in the subproblems. Therefore, the material
law in the �nite elements is identical to the molecular dynamics.

Figure 7.29: Finite element nodes (orange) and atoms (green and white). Atoms at the
boundary are not recognized by ovito to be in the FCC phase

In Figure 7.30 the �nal con�guration and the di�erent phases can be seen. It is clearly
visible that both simulations deliver a very good result. In the case of the Cauchy
rule 76.9% of the atoms are recognized to be in the BCC phase and in the case of the
subboxes as interface the deformation is nearly as good with 74.3% of the atoms. The
numbers are shown in Table 7.11.

In Table 7.10 the �nal deformation results are shown. The length ratio after transition is
99:6 Å=69:2 Å = 1:44 for the Cauchy coupling and 99:6 Å=69:6 Å = 1:42 for the subboxes
coupling. This �ts with the visual interpretation of the lattice structure analysis in
Figure 7.30. In both cases an excellent result is achieved for the transition. The small
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7.5 Combined test case for phase transformation

length Cauchy Subboxes

l0 88:992 Å 88:992 Å

l1 99:6 Å 98:9 Å

l2 99:6 Å 98:9 Å

l3 69:2 Å 69:6 Å

Table 7.10: Combined test case, FCC to BCC, deformation results

di�erence to the exact value of
p

2 may be explained by the fact that the problem is not
unloaded after transition.

variable initial Cauchy Subboxes
not recognized 17.6% 23.1% 24.7%

FCC 82.4% 0% 0.7%
HCP 0% 0% 0.4%
BCC 0% 76.9% 74.3%

Table 7.11: Combined test case, FCC to BCC, lattice structure distribution
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7 Multiscale test cases

Figure 7.30: Results of the FCC to BCC transformation with the Cauchy rule on the left
and the subboxes on the right. Visible are: BCC (dark blue), HCP (red),
FCC (green), not recognized (white), �nite element nodes (yellow) and the
subboxes nodes for horizontal coupling (light blue). Top row: all atoms,
second row: FCC only, third row: HCP only, fourth row: BCC only. The
MD subproblems from the vertical coupling are not visible in this picture.
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7.5 Combined test case for phase transformation

7.5.3 Phase transformation from HCP to BCC

The third transition to be simulated is the transition from FCC to BCC. The problem
dimensions are as follows:lx = 106:092 Å, ly = 91:87848 Å andlz = 86:62392 Å. The
loads areq1 = 0 eV

Å 3 and q2 = 0:03125eV
Å 3 . A total of 50,000 time steps are simulated and

the damping coe�cients are cM = 0:05 andcK = 0:5. The titanium potential is used.

The starting con�guration can be seen in Figure 7.31. In the center there are 13.824
atoms with 1.728 being free atoms and the rest being the interface to the �nite elements.
Each �nite element has a subproblem at each Gauss point with 216 atoms. The FCC
lattice at the start has the same lattice constant both in the coupled atoms and in
the subproblems. Therefore, the material law in the �nite elements is identical to the
molecular dynamics.

Figure 7.31: Finite element nodes (orange) and atoms (red and white). Atoms at the
boundary are not recognized by ovito to be in the HCP phase

In Table 7.12 the deformation result is shown. In contrast to the transition witha single
hexahedron only (see Section 7.4.3), in this case the ratio of lengths directly represents
a BCC lattice that is rotated by 45along one of the main axes. Therefore, theratio of
the lengths directly correlates to

p
2. For the Cauchy rule 117:4 Å=84:2 Å = 1:39 �

p
2

and for the subboxes 117:8 Å=83:9 Å = 1:40 �
p

2. The lengthsly and lz should be the
same, so a 3% error is visible in the simulation.

Table 7.13 shows the lattice structure results. The subboxes coupling enables also the
coupling atoms to change phase as is clearly visible in Figure 7.32. The subboxes cou-
pling has a slightly superior deformation result, but clearly the deformation is mostly
dominated by the vertical coupling of the �nite elements and the correct phase trans-
formation of the coupling atoms plays only a small role in this case.
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7 Multiscale test cases

Figure 7.32: Results of the hcp to bcc transformation with the Cauchy rule on the left
and the subboxes on the right. Visible are: BCC (dark blue), HCP (red),
FCC (green), not recognized (white), �nite element nodes (yellow) and the
subboxes nodes for horizontal coupling (light blue). Top row: all atoms,
second row: FCC only, third row: HCP only, fourth row: BCC only. The
MD subproblems from the vertical coupling are not visible in this picture.
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7.5 Combined test case for phase transformation

length Cauchy Subboxes

l1 117:4 Å 117:8 Å

l2 84:2 Å 83:9 Å

l3 86:1 Å 86:0 Å

Table 7.12: Combined test case, HCP to BCC, deformation results

variable initial Cauchy Subboxes
not recognized 23% 23.6% 26.3%

FCC 0% 0.0% 0.1%
HCP 0% 65.6% 0.0%
BCC 77% 10.8% 73.6%

Table 7.13: Combined test case, HCP to BCC, lattice structure distribution
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7 Multiscale test cases

7.5.4 Phase transformation from BCC to HCP

The last transition to be simulated is the transition from BCC to HCP. The problem
dimensions are as follows:lx = 78 Å, ly = 78 Å and lz = 78 Å. The loads are q1 =
� 0:025 eV

Å 3 and q2 = 0 eV
Å 3 . The damping coe�cients are cM = 0:0001 andcK = 0:01.

The titanium potential is again used.

The starting con�guration can be seen in Figure 7.33. The simulation is run for a total
of 10,000 time steps. In the center there are 8.192 atoms with 1.024 being free atoms and
the rest being the interface to the �nite elements. Each �nite element has a subproblem
at each Gauss point with 256 atoms. The BCC lattice at the start has the samelattice
constant both in the coupled atoms and in the subproblems. Therefore, the material
law in the �nite elements is identical to the molecular dynamics.

Figure 7.33: Finite element nodes (red) and atoms (blue and white). Atoms at the
boundary are not recognized by ovito to be in the BCC phase

The results can be seen in Figure 7.34. The two cases clearly show a di�erent deformation
behavior. Only the subboxes coupling shows clear deformation to HCP. In the case of
the Cauchy coupling, even the atoms in the center stay in the BCC phase and the
deformation does not show a homogeneous result.

In the case of the Cauchy coupling only 0.1% of the atoms are detected to change phase
to HCP, but 40.9% transform to the HCP phase for the subboxes coupling as in Table
7.14. A small percentage of FCC is also present. For the subboxes coupling only 0.9%
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7.5 Combined test case for phase transformation

Figure 7.34: Results of the HCP to BCC transformation with the Cauchy rule on the left
and the subboxes on the right. Visible are: BCC (dark blue), HCP (red),
FCC (green), not recognized (white), �nite element nodes (yellow) and the
subboxes nodes for horizontal coupling (light blue). Top row: all atoms,
second row: FCC only, third row: HCP only, fourth row: BCC only. The
MD subproblems from the vertical coupling are not visible in this picture.
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7 Multiscale test cases

of the atoms remain in the BCC phase. As far as phase transformation is concerned,
the subboxes coupling is by far superior.

variable initial Cauchy Subboxes
not recognized 33% 69.4% 56.9%

FCC 0% 1.7% 1.2%
HCP 0% 0.1% 40.9%
BCC 67% 28.8% 0.9%

Table 7.14: Combined test case, BCC to HCP, lattice structure distribution

When looking at the deformation results, equation (7.16) from the single hexahedron
test case should still hold true. However, in this case a slight shear deformationis not
visible. The equation then becomes

c
a

=

q
l2
x + l2

y

lz
: (7.17)

Entering the values of the table we arrive at 2.13 for the Cauchy coupling and 1.75 for
the subboxes coupling. The expected value is 1.597. In both cases this value is not
reached, however, the subboxes coupling is only 10% o�, while the Cauchy coupling is
33% o� and is still not a converged solution, as can be seen in Figure 7.35 in the next
section.

length Cauchy Subboxes

l0 78 Å 78 Å

lx 90:8 Å 84:6 Å

ly 89:9 Å 84:3 Å

lz 60:1 Å 68:23 Å

Table 7.15: Combined test case, BCC to HCP, deformation results
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7.5 Combined test case for phase transformation

7.5.5 Discussion of results

Figure 7.35 shows the convergence of the length ratio as a function of output stepsof
all eight simulation runs.
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Figure 7.35: Convergence behavior combined test case

In the case of the BCC to FCC transition both Cauchy and subboxes coupling methods
yield satisfactory results. All atoms change to FCC structure. The convergence of the
length ratio to �

p
2 is clearly seen in the Figure 7.35.

In the case of the FCC to BCC transition, both coupling methods show very good
results, converging to�

p
2. However, the convergence of the subboxes is a bit slower

and more time steps are necessary to converge to the correct result.

In the case of the HCP to BCC transformation, both methods showed approximately
the same deformation. However, in the case of the subboxes coupling the coupling atoms
were also able to change phase, in the Cauchy case they stayed in the HCP phase. The
length ratios of both simulations converge to a value close to

p
2. If the volume of the

free atoms in the center is increased, there might be a bigger di�erence between the
deformation of the two methods.
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7 Multiscale test cases

In the case of the BCC to HCP coupling, the subboxes coupling shows a far superior
result. The Cauchy coupling does not show a homogeneous transformation and also only
minimal HCP lattice structure is detected by the post-processing software. Although
both length ratios do not converge to the expected result of 1.597, the subboxes coupling
is much closer to the expected value with only a 10% di�erence. The Cauchy coupling
does not converge.
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7.6 Summary

7.6 Summary

In this chapter a total of four test cases were performed. The methods investigated were
�nite elements with a cubic material law, �nite elements with the vertical coupling,
the two horizontal coupling methods (Cauchy rule and subboxes) combined with either
the cubic material law or the vertical coupling in the �nite elements and of course a
molecular dynamics solution. In the �rst case a simple tensile test was performed,
where all methods show satisfactorily results. Apart from the Cauchy coupling, which
shows a sti�er response, all other solutions are close to each other and in agreement
with the cubic material solution, which is calculated with �nite elements only and the
material derived from the elastic constants. The Cauchy solution is o� by about 9%.
Still this is overall a good result.

In the case of the bending test case the same methods were compared as in the tensile
test. However, results deviate much more from each other. First, it is important to note
that a bending problem is much more di�cult, even from an analytical point of view.
Depending on the theory (e.g. Euler-Bernoulli or Timoshenko), the results can vary
greatly. In addition, using �nite elements, the solution can be di�cult to compute due
to locking e�ects. In this test case an additional challenge is the molecular nature ofthe
problem, introducing boundary e�ects in the molecular dynamics solution, resulting in
a larger displacement. Furthermore, the molecular dynamics solution is not computed
with an external molecular dynamics code (like IMD) due to challenges with the bound-
ary conditions and with the convergence to a quasi-static solution. Taking the molecular
dynamics solution of� 16:1 Å as the correct solution, the multiscale solutions deviate up
to 35% compared to the molecular dynamics solution. Except for the subboxes coupling
method, the di�erence between using the cubic material law and the vertical coupling
in the �nite elements is small. The subboxes combined with the vertical coupling shows
the sti�est result and one might question, whether it is actually correct. A possibleex-
planation might be, that the atomic vibrations from the vertical coupling in�uences the
result, but this has to be further investigated. Using only �nite elements the solutions
is very sti� with the result deviating by 21-25% from the molecular dynamics solution.
The Cauchy solution is less sti�, deviating only 13-16% from the molecular dynamics
solution. The best solution is the subboxes type coupling with the cubic material law,
resulting in only a 2% deviation from the molecular dynamics solution. However, this
may also be a coincidence and more analysis is required.

Finally, phase transformation between BCC and FCC, FCC and BCC, HCP and BCC
and BCC and HCP was simulated. The simulation was �rst done using only one hexa-
hedron element and vertical coupling. Following this simulation, the phase transforma-
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7 Multiscale test cases

tions were simulated again using both vertical and horizontal coupling. In Figure 7.36
all transformation results are summarized.
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Figure 7.36: Comparison of the convergence of di�erent methods sorted by transforma-
tion

In the case of the BCC to FCC transition, all simulations converge to the theoretically
expected value of�

p
2, showing in general a very good transformation result. As the

transition only involves a rescaling of the axis, the Cauchy coupling has no problems
with this transition. The next transition is the transition from FCC to BCC. In this
case, the single hexahedron with the vertical coupling transforms as expected, the length
ratio converges to a value close to

p
2, as seen in the �gure. The Cauchy and subboxes

solution also transform as expected with nearly all atoms changing to BCC phaseas seen
in Figure 7.30. The last two transitions to be investigated were the transitions between
HCP and BCC in titanium. In the case of HCP to BCC, the length ratio converges for
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7.6 Summary

all simulation to a value close to
p

2. However, as seen in Figure 7.32, it is impossible for
the bound atoms in the Cauchy coupling to change phase from HCP to BCC, because it
requires a restructuring of the lattice structure. Nonetheless, the resulting displacement
is only marginally in�uenced by this fact. In the subboxes simulation, nearly all atoms
change phase to BCC. In the Cauchy simulation, it is only the free center atoms that
are able to change phase. Finally, the last transition is the transition from BCC to
HCP. In the single hexahedron test case a small shear transformation is identi�ed,
that is not present in this degree in the horizontal coupling test cases. The single
hexahedron again deforms perfectly and the length ratio is very close to theoretical
predictions. The Cauchy coupling struggles with this transition. The transformation
does not happen at all and the deformation is very non-homogeneous. Convergence is
not archieved. In contrast, the subboxes coupling performs much better in this case.
The BCC structure changes to HCP and the length ratio converges. Nonetheless,due
to the di�erent orientations of the HCP lattices in the subboxes, a few incompatibilities
are created that result in a partly non-homogeneous lattice structure throughout the
problem. The resulting length ratio converges to a value of� 1:75 instead of 1.597.
While this is still an error of 10%, it is a big improvement compared to the Cauchy
solution.
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8
Conclusions and outlook

8.1 Conclusions

The goal of this thesis was to develop a multiscale method that works in a phase trans-
formation context in metals. As is explained in Chapter 5, existing methods are mostly
not suitable to simulate phase transformation, because the topology is very constrained
in the coarse scale domain and in the interface area (if present). In order toovercome
these challenges, a new method has been developed. In Section 1.2 four steps were
identi�ed that are necessary to complete this task. These are:

1. Phase transformation in molecular dynamics: identi�cation of molecular dynamics
potentials for iron and titanium that are suitable for phase transformation.

2. Phase transformation in �nite elements: development of a hierarchic concept for
coupling �nite elements and molecular dynamics similar to the FE2-concept.

3. Phase transformation at the interface: development of a partitioned-domain con-
cept for coupling �nite elements and molecular dynamics that enables phase trans-
formation at the interface.

4. Validation of the concept in a number of test cases.

Concerning step 1, two potentials were identi�ed that enable phase transformation in
the molecular dynamics simulation. Using the theories mentioned in Chapter 2, the
potential by Meyer and Entel (1998) for iron was reconstructed from references.
Its implementation is in good agreement with literature values (see Table 3.5) andit
was demonstrated to be able to model phase transformation between BCC and FCC.
In addition, another potential by Mendelev et al. (2016) for titanium was used for
the simulation of phase change between HCP and BCC. The lattice constants are in
agreement with the reference (see Table 3.6) and the plots of the potential functions
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8 Conclusions and outlook

also agree with the publication by Mendelev et al. Phase change is demonstrated in
Chapter 7.

Concerning step 2, a hierarchical method using �nite elements and molecular dynamics
was derived from the FE2-concept byFeyel (2003) and described in Section 6.2. Using
the theoretical explanations of �nite element theory in Chapter 4, the internal nodal
forces were modi�ed to include a small molecular dynamics subproblem as material
law. The implementation is similar to the work done byUlz (2015), but also di�erent
regarding the solving of the balance equations. Ulz uses a nonlinear static approach,
while in this work a non-linear dynamic approach is used. A damping matrix was intro-
duced using sti�ness proportional damping in order to minimize the thermal vibrations
of the stress derived from molecular dynamics on the �nite elements. In Chapter 7
it is shown, that the vertical coupling shows very good results with regard to phase
transformation.

Concerning step 3, a partitioned-domain method � called horizontal coupling in this
work � was introduced in Section 6.3 that is partially based on the AtC-method from
Fish et al. (2007) with some modi�cations. A part of the atoms is �xed to the �nite
element movement. In contrast to the Cauchy coupling, where the atoms are moving
according to the deformation gradient of the atoms, it is proposed to put the atoms
into a box with periodic boundary conditions and link this box to the movement of the
�nite element. This box is limited in shape to a parallelepiped, so from the �nite element
nodal positions a good-�t parallelepiped is calculated as explained in Section 6.3.4. This
has a number of advantages compared to the Cauchy coupling. The coupling atoms have
internal degrees of freedom, enabling them to change phase. The results of this method
are presented in Chapter 7 and most simulations deliver promising results.

Concerning step 4, in total 4 multiscale test cases were simulated in Chapter 7. These
are a tensile test case, a bending test case, a test case with phase transformation in
a single hexahedron using vertical coupling only and a test case using the combined
hierarchic-partitioned-domain method described in Section 6. The tensile test case in
Section 7.2 shows good results, with only the Cauchy coupling showing a slightly o� error
compared to the molecular dynamics solution. In the bending test case in Section 7.3, the
results are more mixed. In general, all methods converge to a solution, showing thatthe
coupling is stable and contact between atoms and �nite elements is not lost. However,
the displacement results di�er by around 35% compared to the molecular dynamics
solution with the highest beam tip displacement. Using vertical coupling with �nite
elements only, the coupling is, in general, sti�er than the partitioned-domain method.
However, a number of e�ects play an important role and even in beam theorythe results
di�er with di�erent �nite element formulations and anti-locking formulations. For mor e
details, see Section 7.3 and the summary in Section 7.6. The phase transformations are
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investigated for a single hexahedron element using the vertical coupling only in Section
7.4 and a combined test case in Section 7.5. For all transitions, BCC to FCC, FCC to
BCC, HCP to BCC and BCC to HCP, the vertical coupling delivers a very good result,
as is seen in Figure 7.36. In the combined simulation test case, the results are also
promising. For the �rst phase transformation from BCC to FCC, both Cauchy coupling
and the newly proposed subboxes coupling deliver good results. The Cauchy coupling
is able to manage the BCC to FCC transition because only a scaling of the axes is
involved. For this reason, the Cauchy coupling also performs very well in the FCC to
BCC transition. The simulations using the subboxes coupling are also converging, but
require a longer simulation time, because convergence is slower. In the HCP to BCC
transition, the Cauchy coupling manages the deformation due to the vertical coupling
in the �nite elements, but the bound atoms do not change phase, which has only a small
in�uence on the overall deformation behavior. The subboxes solution is marginally
better. In the BCC to HCP transition however, the transition completely failswith
the Cauchy type coupling and the subboxes coupling does not show a perfect, but
much better result. It can, therefore, be concluded that the subboxes coupling, in
general, delivers a better result than using a Cauchy type coupling in multiscale phase
transformation simulation.

8.2 Outlook

Based on the work in this thesis, many future projects can be imagined. First of all,it
might be desirable to �nd a molecular dynamics potential that can better describe phase
transformation, for example without resorting to a force boundary condition in order
to initiate the phase transformation. In order to achieve this, it might be necessary
to change from the embedded atom method (EAM) to the modi�ed embedded atom
method (MEAM). This method does also include angular relationships between atoms
and does provide a better representation of the material. As far as the vertical coupling
is concerned, it is found in this thesis, that the computation of the MD subproblems is
very time consuming and could be improved if a more simple �nite element material law
is derived from the (M)EAM potential, which also has the phase transformation charac-
teristics, but does not require a full MD simulation. In that way, the vertical coupling
would be no longer required or could be limited to areas, where it is undispensable.

When using the subboxes for the horizontal coupling, the free atoms at the interfaceto
the �nite elements receive kinetic energy from the atoms of the subboxes and are pushed
out of position. A possible solution to this problem could be that the free atoms only
interact with the time-averaged position of the bound atoms. In this way, thee�ect
of the vibrations could be reduced. The number of steps used to average the positions
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8 Conclusions and outlook

could be an interesting research topic. It might also be possible to include adaptivity
into the method. Work on adaptivity as already performed at IBB in the past (Sorg
(2014)).

Looking further ahead, it might be interesting to look at polycrystals and lattice defects
in the atomistic domain, so that a true simulation of the formation of e.g. austenite
might be realized. If combined with an adaptivity algorithm, it might be possible to
simulate more challenging problems.
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This thesis is about multiscale simulation of phase transformation in metals. Multiscale
simulation is the simultaneous use of two or more models in order to have phenomena of
different length or time scale in one simulation. Phase transformation between different
lattice structures plays an important role in the formation of metals, e.g. iron or titanium. It
is, therefore, of interest to simulate phase transformation in a multiscale context. In this
thesis, a multiscale method for the simulation of phase transformation in metals is
developed. Continuum mechanics, represented by the finite element method, is coupled
with atomistics, represented by molecular dynamics.

The goal is to simulate phase transformation in metals between different lattice structures
such as body-centered cubic, face-centered cubic and hexagonal close-packed structure.
As phase transformation requires an internal restructuring of the molecular structure,
traditional multiscale methods cannot be used as these require fixed coupling at the
interface between coarse scale and fine scale and very often also in the coarse scale by
using the Cauchy(-Born) rule.

In order to overcome these problems, a combined hierarchic-partitioned-domain method is
proposed that consists of two parts. On the finite element level, a hierarchic method based
on the FE2-method is used with molecular dynamics simulations as subproblems, one
subproblem at each Gauss integration point. The partitioned-domain part of the method
consists of dividing the domain into two parts: a molecular dynamics part and a finite
element part. A part of the atoms are put into a box with the shape of a parallelepiped and
with periodic boundary conditions. This box is linked to the movement of the finite element
nodes.
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