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Zusammenfassung

Automatisierte Softwaretests sind eine wichtige Qualitätssicherungsmaß-
nahme in Softwareprojekten und helfen Fehler in einer Anwendung früh-
zeitig aufzudecken. Zur Bewertung von Testsuiten wurden in der Vergan-
genheit verschiedene Metriken und Verfahren vorgeschlagen. Dabei sind
Code-Coverage-Metriken am weitesten verbreitet und werden vor allem in
der kommerziellen Softwareentwicklung eingesetzt. Jedoch sind diese nur
bedingt geeignet, die Effektivität von Testsuiten hinsichtlich ihrer Fehlerauf-
deckungsrate zu bewerten. Ein anderes wirkungsvolles und aussagekräftiges
Verfahren ist Mutation Testing, bei dem Fehler in den Anwendungscode einer
Software eingefügt werden und geprüft wird, ob die vorhandenen Testfälle
diese aufdecken können. In Bezug auf die Bestimmung der Testeffektivität
ist Mutation Testing anderen Verfahren deutlich überlegen, jedoch ist es sehr
rechenintensiv und sogenannte äquivalente Mutanten können die Ergebnisse
verfälschen. Wegen dieser Probleme wird Mutation Testing in der Praxis
derzeit kaum eingesetzt.

Das Ziel dieser Dissertation ist es, aussagekräftigere Metriken und Verfah-
ren zur Bewertung von Testsuiten zu entwickeln, welche mit vertretbarem
Berechnungsaufwand anwendbar sind. Diese sollen Code-Coverage-Metriken
in Bezug auf die Aussagekraft übertreffen und gleichzeitig weniger rechen-
intensiv als derzeit verwendete Mutation-Testing-Verfahren sein.
Dazu wurde ein leichtgewichtiges Verfahren zur Erkennung von schein-
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getesteten Methoden konzipiert, umgesetzt und evaluiert. Scheingetestete
Methoden sind von mindestens einem Testfall überdeckt, jedoch erkennt
keiner der überdeckenden Testfälle, wenn die gesamte Logik aus der Me-
thode entfernt wird. Außerdem wurde ein Machine-Learning-Modell zur
Vorhersage von scheingetesteten Methoden entwickelt, welches ein neu
eingeführtes Maß für die Aufrufdistanz zwischen Methoden und Testfällen
sowie weitere kostengünstig berechenbare Metriken verwendet. Im Rahmen
der Arbeit wurde ein weiteres Machine-Learning-Modell zur Identifizierung
von Methoden mit einem niedrigem Fehlerrisiko vorgeschlagen. Solche Me-
thoden können bei Qualitätssicherungsmaßnahmen nachrangig behandelt
oder ausgeschlossen werden, sodass beispielsweise der Aufwand für die
Erkennung scheingetesteter Methoden weiter reduziert wird.

Die Ergebnisse zeigen, dass scheingetestete Methoden in allen untersuch-
ten Studienobjekten auftreten und relevante Testunzulänglichkeiten darstel-
len. Machine-Learning-Modelle können scheingetestete Methoden effizient
vorhersagen, sodass diese Modelle als eine kostengünstige Annäherung
vor einer Mutationsanalyse eingesetzt oder in Situationen verwendet wer-
den können, in denen Mutationsanalysen nicht anwendbar sind. Mit einem
weiteren Machine-Learning-Modell können basierend auf Code-Metriken
Methoden identifiziert werden, die ein niedriges Fehlerrisiko aufweisen. Dies
trifft auf etwa ein Drittel der Methoden zu, die folglich im Test mit einer
niedrigeren Priorität behandelt werden können.
Die entworfenen Verfahren ermöglichen sowohl eine verhältnismäßig

leichtgewichtige, anwendbare Berechnung von scheingetesteten Methoden
als auch eine Vorhersage derselben basierend auf Methoden- und Testfall-
metriken. Durch scheingetestete Methoden aufgedeckte Probleme in Test-
suiten sind für Entwickler einfach verständlich und adressierbar, sodass
Entwickler die Effektivität ihrer Testsuite verbessern können. Außerdem hilft
die Identifikation von Methoden mit einem niedrigen Fehlerrisiko, Testauf-
wände auf relevante Methoden zu fokussieren. Effektivere Testsuiten können
mehr Fehler bereits während des Softwareentwicklungsprozesses aufdecken
und helfen damit, die Qualität eines Softwareprodukts zu verbessern sowie
Fehlerfolgekosten zu reduzieren.
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Abstract

Automated software tests are an important means of quality assurance in
software projects and for helping to detect faults in software products early.
While various measures and techniques have been proposed to evaluate test
suites, code coverage metrics are the most common and are widely used
in industry. However, it is questionable whether code coverage metrics are
suitable to determine the fault detection capabilities of a test suite. Another
powerful and valid technique for assessing test suites is mutation testing,
which introduces faults into an application’s code and checks whether the
existing test cases can detect them. When determining fault detection
capabilities, mutation testing is clearly superior to other measures, but it is
computationally very complex and suffers from the problem of equivalent
mutants, which distort the results. Due to these problems, mutation testing
has rarely been adopted as a test adequacy criterion in practice.
The aim of this dissertation was to develop measures and techniques to

better determine the effectiveness of a test suite with reasonable computa-
tional efforts. We wanted to come up with an approach that outperforms
code coverage metrics in terms of validity and is, at the same time, less
resource-intensive than currently used mutation testing approaches.
To do this, we proposed, implemented and evaluated a light-weight mu-

tation approach to identify pseudo-tested methods; that is, methods that
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are covered by at least one test case, but none of the test cases can detect
the removal of the whole logic from the method. We further developed
a machine-learning model to predict pseudo-tested methods based on a
newly introduced measure for characterizing the proximity between meth-
ods and test cases and further easily computable measures. We also built
machine-learning models to identify low-fault-risk methods, which can be
excluded from quality-assurance activities to focus on the relevant methods
and further speed up pseudo-testedness analyses.
The results show that pseudo-tested methods exist in all analyzed study

objects and constitute relevant test inadequacies. Prediction models can
efficiently identify pseudo-tested methods, which means that such models
can be applied as a preceding, less costly step to mutation testing or be used
in scenarios where mutation testing is not applicable. Depending on what
level of risk is acceptable, approximately one-third of the methods can be
classified as having a low fault risk, and these methods can be predicted
with a machine-learning model based on code metrics.

The devised approachesmake it possible to identify pseudo-testedmethods
by using an applicable, light-weight computation or a prediction based on
method and test case metrics. Flaws in test suites uncovered by pseudo-tested
methods are easy for developers to interpret and take action on, enabling the
developers to improve the effectiveness of their test suite. The identification
of methods with a low fault risk helps allocate test suite improvement efforts
to the relevant methods. More effective test suites can reveal more faults
during the software development phase, which can help improve the overall
quality of a software product and reduce failure follow-up costs.
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Introduction

This chapter describes the motivation, problem statement, research goal, and
contributions of this dissertation. It also presents the list of publications and
outlines the structure of this dissertation.
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1.1 Motivation

Automated software tests are an important means of quality assurance in
software projects. These tests execute parts of an application, compare the
computed result or observed behavior with the expected one, and determine
whether an application is acting as expected. Thus, they help reveal faults
at an early stage and prevent regressions in software applications.
A significant proportion of software development efforts are spent on

testing (Brooks Jr., 1995; Dustin et al., 2009). Therefore, efforts should be
made to use testing resources efficiently to maximize their benefit. In order
to be able to decide which parts of an application benefit most from further
testing and which ones can be considered as having been tested thoroughly
enough, it is important to have a good understanding of an application’s
testing state. Therefore, a valid and expressive evaluation of a test suite’s
effectiveness is needed.
Various measures and techniques to evaluate test suites have been pro-

posed. Code coverage metrics are the most common measures (Huang, 1975;
Zhu et al., 1997) and are widely used in industry (Yang et al., 2009). Code
coverage expresses which proportion of the application code is executed
by test cases and can be computed at different levels. For example, line
coverage expresses which proportion of an application’s executable lines out
of all lines are executed by tests. Common coverage metrics at other levels
are branch coverage and decision coverage (Chilenski and Miller, 1994);
they are relatively easy to compute and their performance overhead is negli-
gible in the test suites of most applications. However, code coverage metrics
measure test completeness and do not assess oracle quality. Therefore, they
are not necessarily suitable for evaluating a test suite’s effectiveness in terms
of detecting faults (Antinyan et al., 2018; Inozemtseva and Holmes, 2014).

More advanced approaches to evaluate test suites take data-flow criteria
into account and check the relations between variable definitions and their
uses (Rapps and Weyuker, 1982). For example, the all-defs criterion requires
that every variable definition is executed and used at least once by a test
case. Similarly, the concept of checked coverage proposed by Schuler and
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Zeller (2011) measures the proportion of executable lines that is checked
by test assertions. Those authors used dynamic slicing for computing the
metric and found that it comes with a substantial run-time overhead and
input/output (I/O) overhead for writing trace files. Besenreuther (2014)
introduced assertion coverage, which is similar to checked coverage, but
based on executed lines instead of executable ones. His approach traces
the variables at run-time during the test execution. It comes with no I/O
overhead for writing trace files, but has higher requirements regarding main
memory than dynamic slicing. These approaches provide a more meaningful
test evaluation regarding fault detection capabilities than code coverage, but
are substantially more expensive to compute.

Another powerful technique with which to evaluate test suites is mutation
testing (Jia and Harman, 2011), which involves generating mutants by
seeding faults into the application code and checking whether the tests can
kill (detect) these faults. This technique takes oracle quality into account
and measures fault detection capabilities. While it provides more meaningful
results than code coverage metrics, the increase in validity brings downsides
in terms of execution time and applicability. Commonly used mutation
operators create many mutants for a single method; in the worst case, all
test cases need to be executed for each mutant to determine whether it can
be killed or not. Hence, despite several optimization techniques, mutation
testing is computationally complex due to the effort needed to generate and
test a large number of mutants. Furthermore, equivalent mutants distort
the results and are considered a major problem. Consequently, there are no
indications that mutation testing has been widely adopted as a test efficacy
criterion in practice (Ivanković et al., 2018; Jia and Harman, 2011; Madeyski
et al., 2014).

1.2 Problem Statement

It is important to know how thoroughly a software application has been
tested in order to decide whether a new version of an application is ready
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for release or whether further testing is necessary to ensure that it behaves
as expected. In the latter case, it is relevant to know which parts of the
application have been insufficiently tested and would benefit most from
further testing.

To answer these questions, code coverage metrics are the de facto standard
in industry. However, a test case that triggers the execution of a large portion
of an application contributes a lot of coverage, even if it does not contain any
assertions. That is, these metrics do not take into account whether covered
methods are tested with appropriate assertions, or whether they are executed
without any assertions or only incomplete ones. According to Fowler (2004),
test cases that do not contain any assertions are useless, unless their purpose
is to check the absence of thrown exceptions. Consequently, the execution of
code does not make it possible to conclude that the covered code has been
tested effectively.
Therefore, more profound techniques are needed to determine the effec-

tiveness of a test suite in terms of fault detection capabilities. Such techniques
exist (for example, mutation testing, or checked coverage) and provide more
meaningful insights into test effectiveness. However, their applicability in
practice is limited, for various reasons. Therefore, there is a need to strike a
balance between easily computable but less valid techniques and more valid
but overly complex techniques.

1.3 Research Goal

The aim of this dissertation was to develop measures and techniques to better
determine the effectiveness of a test suite with reasonable computational
efforts. We wanted to come up with an approach that outperforms code
coverage metrics in terms of validity and is, at the same time, less resource-
intensive than currently used mutation testing approaches.

We also sought to study what characteristics point to methods that exhibit
a low fault risk and can therefore be deferred or excluded in quality assurance
(QA) activities. Furthermore, we wanted to investigate how test case selection
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and prioritization approaches can be extended to further reduce the time to
the first failure in a test suite execution, which would enable developers to
investigate failures earlier.
Our research focused on automated software tests in test suites that

were manually implemented by developers. Automated tests are critical for
continuous integration (Hilton et al., 2017) and are becoming ever more
important. We studied test suites of libraries and systems implemented in
Java and investigated them in respect to their capabilities to detect faults.
We focused on Java, because it is among the most popular programming
languages (Chan, 2019; Diakopoulos and Cass, 2016; StackOverflow, 2019).
Java belongs to the object-oriented languages and is strongly typed (Gosling
et al., 2013). We assumed that our findings may also apply to other languages
that exhibit these characteristics such as, for example, C#.

1.4 Contributions to Knowledge

This dissertation makes the following contributions to knowledge.

Conceptual

• We present and define a novel mutation operator at the method level.1

The purpose is to identify pseudo-tested methods, which are methods
that are covered by at least one test case, none of which can detect
when the whole logic is removed from the method.

• We define the minimal stack distance as a measure in the context of
tests to quantify the proximity between methods and test cases.

• We define a set of metrics and create a machine-learning model to
predict pseudo-tested methods without the need to execute a costly
mutation analysis.

• We create a machine-learning model based on source-code metrics to
identify methods whose code can be considered to be too trivial to
test because they contain hardly any faults.

1 I presented a preliminary version of this mutation operator in Niedermayr (2013).
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• We devise a hybrid test case selection and prioritization approach that
additionally incorporates test effectiveness information to reduce the
time to the potentially existing first test failure in a test suite execution.

Evaluations

• We conducted a mutation analysis with the presented mutation opera-
tor on 19 study objects and showed that they all exhibit pseudo-tested
methods.

• We studied the characteristics of pseudo-tested methods and showed
that they are relevant and should be tested more thoroughly. We also
identified measures that exhibit a moderate correlation with pseudo-
testedness in some study objects.

• We conducted an empirical study with 21 study objects and showed that
our machine-learning model can successfully predict pseudo-tested
methods.

• We conducted an empirical study with six study objects and showed
that methods exist that are too trivial to test. We also presented the
performance of machine-learning classifiers to predict these methods.

Implementations

• We developed a new mutation analysis tool, which implements the
presented mutation operator to identify pseudo-tested methods.

• We extended the existing mutation testing tool Pitest (PIT) by a new
feature to compute a full mutation matrix and submitted it as a pull
request, which was merged into the main branch.

• We implemented a dynamic analysis to compute the minimal stack
distance measure between the methods and the test cases.

• We extended the hybrid test case selection and prioritization approach
in the software-quality analysis suite Teamscale such that it additionally
considers test effectiveness information.
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1.5 Previously Published Material

Parts of the contributions presented in this thesis have been published in:

• Rainer Niedermayr, Elmar Juergens, and Stefan Wagner. Will My
Tests Tell Me If I Break This Code? Published in: Proceedings of the
1st International Workshop on Continuous Software Evolution and
Delivery (CSED’16). ACM, 2016.

• Jakob Rott, Rainer Niedermayr,1 Elmar Juergens, and Dennis Pagano.
Ticket Coverage: Putting Test Coverage into Context. Published in: Pro-
ceedings of the 8th Workshop on Emerging Trends in Software Metrics
(WETSoM’17). IEEE, 2017.

• Rainer Niedermayr, Tobias Röhm, and Stefan Wagner. Poster: Identifi-
cation of Methods with Low Fault Risk. Published in: Proceedings of the
40th International Conference on Software Engineering Companion
(ICSE’18 Companion). ACM, 2018.

• Rainer Niedermayr and Stefan Wagner. Is the Stack Distance Between
Test Case and Method Correlated With Test Effectiveness? Published in:
Proceedings of the 23rd International Conference on Evaluation and
Assessment in Software Engineering (EASE’19). ACM, 2019.

• Rainer Niedermayr, Tobias Röhm, and Stefan Wagner. Too Trivial To
Test? An Inverse View on Defect Prediction to Identify Methods with Low
Fault Risk. Published in: PeerJ Computer Science (5). PeerJ, 2019.

• Roman Haas, Rainer Niedermayr,2 and Elmar Juergens. Teamscale:
Tackle Technical Debt and Control the Quality of Your Software. Pub-
lished in: Proceedings of the 2nd International Conference on Technical
Debt (TechDebt’19 Tools Track). IEEE, 2019.

1 I authored and reviewed drafts of the paper and approved the final draft.
2 I reviewed drafts of the paper and approved the final draft.
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1.6 Structure of Dissertation

The remainder of this dissertation is organized as follows:

• Chapter 2 provides the background on the main topics of this disserta-
tion. It presents an overview of the testing terminology, describes ex-
isting techniques for evaluating test suites, and explains used machine-
learning techniques.

• Chapter 3 presents the state of the art in this research area. It discusses
related work regarding test effectiveness, defect prediction, and test
case selection and prioritization.

• Chapter 4 introduces the concept of pseudo-testedness, describing the
idea and its advantages, and drafting its realization.

• Chapter 5 describes pseudo-tested methods and their characteristics,
explains that they are present in many projects, and shows their rele-
vance.

• Chapter 6 introduces a measure to describe the proximity between test
cases and methods. It presents a machine-learning classifier, which
uses this proximity measure along with further easily computable
measures, and shows that pseudo-tested methods can successfully be
predicted without mutation analysis.

• Chapter 7 describes how methods can be identified that do not neces-
sarily need to be tested due to a low fault risk. These methods can be
skipped from a mutation analysis to make it even faster and its results
more relevant.

• Chapter 8 shows how test case selection and prioritization approaches
can be enhanced by including information about test effectiveness.

• Chapter 9 summarizes and discusses this dissertation and its limita-
tions. It also discusses which future work could be undertaken on the
basis of the completed work.
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Background

This chapter provides an overview of the background to this dissertation. It
introduces definitions for tests and their types, defines faults and related terms,
describes code coverage metrics and mutation testing, and explains machine-
learning techniques used in this dissertation.
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2.1 Testing Terminology

This section defines the testing terminology used in this dissertation. Fig-
ure 2.1 presents an overview of the most important terms and their relations.

2.1.1 Test Cases and Test Suites

A test case (also referred to as test) executes functions of a system (or a
library) and compares the computed result or the observed behavior with
the expected one. A test case will pass if the system behaves as expected;
otherwise, it will fail (Zelkowitz, 2003). Thereby, a test case aims to detect
faults and ensure the correctness of the implementation. A test case implicitly
also checks the absence of thrown exceptions for a given program flow
(Fowler, 2004).

A test case usually consists of actions and preconditions to prepare the
system under test, actions and input data to trigger the execution of the
intended computations, an oracle to determine the test verdict by validating
computed results and observed behavior, and actions for the tear-down (Zhi
and Garousi, 2013).

A test case can be either automated or manual. An automated test case is
defined in the source code as a sequence of method calls and assertions, or
specified as steps and conditions in other formats that can be interpreted by
a test runner. Such a test case can be executed without human interaction
(Taipale et al., 2011). Automated test cases can either be implemented by
developers or generated automatically from the source code using corre-
sponding tools (Fraser and Arcuri, 2011). A manual test case, by contrast, is
performed by a human (Taipale et al., 2011) and may be based on a semi-
formal test case description. This dissertation focuses solely on automated
software tests that were created by developers.

A test suite is “a set of several test cases for a component or a system under
test” (Homès, 2013). In object-oriented programming languages, test cases
defined in the code are enclosed by a test class, which groups semantically
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Figure 2.1: Overview of the testing terminology of automated tests.

related test cases and allows set-up procedures to be shared.
A parameterized test is a special variant of an automated test case that is

specified once in the code and executed multiple times with different input
parameters (Tillmann and Schulte, 2005).

2.1.2 Test Oracle

A test oracle determines whether a test passes or not (Barr et al., 2015; Naik
and Tripathy, 2008). An automated test’s oracle usually consists of assertions
(Li and Offutt, 2017). A test assertion (also referred to as assertion) is a means
of comparing an expected value with a computed value or observed behavior
(Green and Kostovarov, 2013). Assertions in the form of method invoca-
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tions are most common (e.g., assertEquals or assertNotNull). Deviation
between an expected and an actual value results in a test failure.

2.1.3 Test Verdict

The test verdict is the outcome of the execution of a test case. A test case’s
verdict is successful if the test case passes without violating any assertions,
without causing any (unexpected) exceptions or errors, and without exceed-
ing a possibly specified time limit. Otherwise, the verdict of an executed test
case is failed. Some test frameworks, for example, JUnit and TestNG, further
differentiate between a test failure, which is caused by a violated assertion,
and a test error, which is caused by an exception or an error thrown in the
code under test (Langr et al., 2015). We make no distinction between test
failure and test error in the following. Depending on the test framework,
further possible test verdicts may exist. For example, a test case that is
known to be failing or flickering may be temporarily disabled by a developer
so that it is not executed. It would still appear in the execution report of
the test suite and its verdict would be ignored. Ignored test cases are not
relevant within the context of this dissertation and are considered as if they
were not present.

2.1.4 Test Levels

Test cases may be categorized based on their intended scope and the thereof
derived goal. A unit test examines a small unit of code in isolation (Runeson,
2006); that is, it usually focuses on a single method or a class and its execu-
tion does not involve databases or other systems. The goal of a unit test is to
ensure that the code under test behaves correctly in isolation (Elbaum et al.,
2006). Since a unit test executes only a small amount of code, its execution
is fast and the effort to examine a failure and localize the underlying fault is
low (Osherove, 2009). A component test deals with the next-largest scope
and examines a component (module) of a system in isolation (Jin and Offutt,
1998). Next, an integration test tests the interplay among different compo-
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nents or systems and aims to identify problems at their boundaries (Beizer,
1990); that is, it ensures that the modules communicate correctly based on
the same assumptions. A system test examines a whole, integrated software
system (Jin and Offutt, 1998), which may consist of several components.
Such tests often trigger the execution of a large functionality and compare
the end result (which can be, for example, aggregated data, a report, or a
log file) with the expected one (Elbaum et al., 2006). Unlike a unit test, a
system test usually covers many methods of a system, and thus, it executes a
lot of code. Consequently, a system test’s execution time is relatively long. In
addition, changes to any of the covered code may require adaptions in the
test case, resulting in considerable maintenance efforts. Higher-level tests
are also more prone to non-determinism problems (Fowler, 2012b). Fur-
thermore, the effort involved in debugging a system test and localizing the
cause of a test failure may also be significant due to the amount of covered
code and the involvement of different components. This also applies to tests
that are performed through the user interface (Vocke, 2018). They require
especially high maintenance efforts because “graphical user interfaces tend
to change frequently and test scripts have to be adapted to these changes”
(Berner et al., 2005).

In practice, “the distinction among integration testing, system testing, and
user acceptance testing often blurs” (Li and Offutt, 2017). It is common,
especially in open-source projects, that developers do not categorize auto-
mated tests at all and implicitly consider all tests as unit tests or distinguish
only between unit tests and higher-level tests. The well-known build tool
Maven1 provides only two execution phases for tests by default: one for unit
tests and one for integration tests (ASF, 2019).

Figure 2.2 presents the concept of the test pyramid, which was originally
proposed by Cohn (2010). The test pyramid sketches the desired extent of
test levels in terms of the number of tests and required execution time. It
expresses that the number of tests at lower levels, such as, unit tests, should
be proportionally high because these tests are small, fast, and relatively easy
1 https://maven.apache.org
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Figure 2.2: The test pyramid (following Cohn (2010)).

to analyze in case of failures. By contrast, higher levels of the pyramid, such
as, integration or system tests, should contain proportionally fewer tests
(Fowler, 2012b; Wacker, 2015). Tests at higher levels are useful because
they can detect integration problems that cannot be identified by unit tests,
but they are much more expensive in terms of execution time, required
maintenance, and debugging efforts.

2.1.5 Test Tools

A test framework is a software tool to support the writing and running of
automated test cases (Hamill, 2004). It comprises functionality to execute
tests and report the results. Well-known test frameworks for Java are JUnit1

and TestNG.2 They are primarily intended for unit tests, but they can be and
are commonly used to execute tests of other levels as well. Examples of Java

1 https://junit.org
2 https://testng.org/doc/index.html
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test frameworks targeting higher levels of the test pyramid are JBehave,1

FitNesse,2 Citrus,3 and Selenium.4 Further libraries support and facilitate the
development of automated tests by providing additional assertion methods
(e.g., Hamcrest,5 assertJ,6 and others), or by providing mechanisms to create
test doubles in the form of mock objects (e.g., Mockito,7 JMockit,8 and
others).

2.1.6 Test and Application Code

We define test code as the part of the code of a system (or a library) that is
used solely for testing and is not included in releases deployed to production
environments. Test code comprises preparation methods executed before
the tests (to initialize test data and set up environments), test cases (to
perform the tests), tear-down methods executed after the tests (to reset
the state), and further utilities to support testing (e.g., custom assertion
methods). By contrast, we define application code as the code of a system
(or a library) that is running in production. The application code does not
comprise experimental or sample code, does not overlap with the test code,
and is the subject that is tested by the test cases. Code coverage is measured
based on the application code.

2.1.7 Regression Testing

Regression testing is a testing activity to “provide confidence that newly
introduced changes do not obstruct the behaviors of the existing, unchanged
part of the software” (Yoo and Harman, 2012). Hence, it aims to detect
regression faults that are introduced during the evolution of a system.

1 https://jbehave.org
2 http://docs.fitnesse.org
3 https://citrusframework.org
4 https://www.seleniumhq.org
5 http://hamcrest.org/JavaHamcrest
6 https://joel-costigliola.github.io/assertj
7 https://site.mockito.org
8 https://jmockit.github.io
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Figure 2.3: Relation between fault, defect, and failure.

2.2 Error, Fault, Defect & Failure

An error is a “human action that produces an incorrect result” (IEEE, 2010)
and a fault is a “manifestation of an error in software” (IEEE, 2010). Hence,
a fault is an incorrect step or data definition in the code of a software. A
regression fault (or software regression) corresponds to a fault in functionality
from a previous version of a software and is caused by bugfixes and new
functionality in a newer software version (Agrawal et al., 1993a). A defect is
a fault that is detected during the use of a released software product (IEEE,
2010); that is, it is detected after the implementation and testing phase. A
fault may cause failures. A failure is an “event in which a system or system
component does not perform a required function within specified limits”
(IEEE, 2010); hence, a failure is a deviation from the specified behavior.
Figure 2.3 illustrates the relation among fault, defect, and failure.
The RIPR model by Li and Offutt (2017) defines four criteria that are

necessary for a failure to be observed. It is an extension of the RIP model,
which was independently developed by Morell (1984) and Offutt (1988) in
the 1980s. To be able to detect a fault, the fault needs to be reached; that is,
be executed by a test case (reachability). Next, the execution of the faulty
location must cause an incorrect program state (infection). Furthermore, the
infected state must propagate to an incorrect final state or output (propaga-
tion). Finally, a tester or a test oracle (e.g., an assertion) must observe the
incorrect part of the final state or output (revealability).
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2.3 Code Coverage

Code coverage is a metric that expresses which proportion of application
code of a software project is executed when running all test cases (Zhu et al.,
1997). It can be computed at different levels. Method coverage (or function
coverage) corresponds to the proportion of methods that are (partially or
completely) executed by test cases out of all methods of the application code.
Statement coverage measures which proportion of the executable statements
are invoked at least once during testing (Hayhurst et al., 2001). It is the
most used coverage criterion in practice (Mathur, 2013). Similarly, line
coverage measures the proportion of executed lines out of all coverable lines
(Tikir and Hollingsworth, 2002). Branch coverage measures the proportion
of branches that are executed by the test cases (Homès, 2013). Decision
coverage measures the proportion of decisions that are executed by the test
cases (Homès, 2013), in which a decision is compound of one or more con-
ditions. One hundred percent decision coverage requires that each decision
is evaluated to both true and false (Hayhurst et al., 2001). The difference to
branch coverage results from the fact that a branch may not necessarily exist
for both outcomes of a decision (i.e., an else-branch may not be present).
Condition coverage is more fine-grained and measures whether each condi-
tion in a decision is evaluated to both possible outcomes (Hayhurst et al.,
2001). Modified condition/decision coverage (MC/DC) measures “if every
condition within a decision has taken on all possible outcomes at least once,
and every condition has been shown to independently affect the decision’s
outcome” (Rajan et al., 2008). For highly critical software in the avionics
industry, a test suite that satisfies full MC/DC coverage of the source code
is required (RTCA, 1992). Finally, path coverage measures the proportion
of the execution paths from an entry point to an exit point (e.g., all paths
within a method) that are executed during testing (Zhu et al., 1997).

Coverage can also be applied at other levels outside the source code. For
example, ticket coverage expresses which proportion of the methods added
or modified during the implementation of a ticket (issue) have been tested
(Rott et al., 2017).
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When we refer to the term code coverage in this dissertation, we mean
coverage at the method level (unless specified otherwise). We use the
following definitions.

Let M be the set of the methods of the application code and let T be the
corresponding test suite.

We define a method m ∈ M as covered if the test suite T contains at least
one test case t that executes at least one of the statements in the body of m.

We define the test-case specific coverage of a test case t ∈ T as the set of
the methods that are covered by t.

We define the overall coverage of an application as the union of the test-case
specific coverage of all test cases t ∈ T .

2.4 Mutation Testing

Mutation testing is an established technique to assess test suites (Offutt
and Untch, 2001). It was first proposed by Lipton (1971) in the 1970s and
formalized by DeMillo et al. (1978) and it has been studied extensively since
then (Jia and Harman, 2011; Papadakis et al., 2017; Usaola and Mateo,
2010). The general idea behind mutation testing is to generate mutants by
introducing faults into a program and checking if the tests can detect (kill)
the faults.

Mutation testing is based on two assumptions: the competent programmer
hypothesis and the coupling effect hypothesis (Zhu et al., 1997). According to
the competent programmer hypothesis of DeMillo et al. (1978), programmers
are competent and tend to “create programs that are close to being correct.”
In practice, this hypothesis may not be valid for large programs, but it
suffices for mutation testing that the hypothesis holds with respect to an
individual fault (Gopinath et al., 2014b). The consequence of the competent
programmer hypothesis is that most faults are small and can be corrected by a
few syntactical changes (Jia and Harman, 2011). The coupling effect claims
that complex faults are coupled to simple faults in such a way that a test suite
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capable of detecting small faults is sensitive enough to detect more complex
faults (DeMillo et al., 1978). The coupling effect has been investigated
theoretically by Wah (2000) and Wah (2003) as well as empirically by Offutt
(1992) and found to be valid.

2.4.1 Terminology

A mutation operator is a deterministic transformation rule that generates a
mutant by applying syntactical changes to the original program (King and
Offutt, 1991). For example, a mutation operator may replace an addition
with a subtraction, negate a condition, or remove a statement (as long as
the code remains syntactically valid; that is, compilable).
Mutations can be performed on the source code or on the byte code.

Modern mutation testing tools operate on the byte code to avoid the need
for a compilation, which is slow and requires access to libraries that are
declared as dependencies.
After a mutant is created, test cases are executed to check whether they

can detect the fault, which was introduced by the mutation. State-of-the-art
mutation testing tools run all test cases once before the actual mutation
analysis and record which test case covers which method. This enables a
tool to select the relevant test cases to examine a mutant so that the test
execution can be limited to test cases that cover the altered code.
A mutant is said to be killed if at least one test case of the test suite

fails due to the changes; otherwise it is said to have survived or be alive
(Zhu et al., 1997). A mutation may be killed by a test case by a failing
assertion in the test or by a failing implicit check in the source code (e.g.,
a NullPointerException, or an ArithmeticException caused by a division
through zero, or a thrown IllegalArgumentException).

An equivalent mutant is—despite syntactical changes—semantically equiv-
alent to the original program such that no possible change in behavior can
be observed (Jia and Harman, 2011). Consequently, such a mutant does not
represent an injected fault and cannot be killed by any test case; Listing 2.1
presents an example. Equivalent mutants cannot be detected automatically

2.4 | Mutation Testing 31



because the equivalence of two functions is generally not decidable (Budd
and Angluin, 1982).

1 public int computeFactorial(int n) {

2 int result = 1;

3 for (int i = n; i > 1 i >= 1; i--) {

4 result = result * i;

5 }

6 return result;

7 }

Listing 2.1: Example of an equivalent mutant. A mutation operator like PIT’s
“Conditionals Boundary Mutator,” which replaces > with ≥, will
create an equivalent mutant in this method. Although the body
of the loop will be executed once more often after the mutation,
the outcome will not be influenced by multiplying result with
one in the last pass.

The outcome of a mutation analysis is a list of the mutations with their
test verdict. A further aggregated measure is the mutation score (or mutation
adequacy score), which corresponds to the proportion of killed mutants out
of all created mutants (Jia and Harman, 2011). A test suite is considered
mutation adequate if its mutation score achieves 100% (Offutt et al., 1996a).

2.4.2 Benefits and Downsides

By inserting faults into a program and checking whether test cases can detect
them, mutation testing assesses the fault detection capabilities of a test suite.
Andrews et al. (2005), Frankl et al. (1997), and Just et al. (2014a) provided
empirical evidence for that and showed that mutation testing outperforms
coverage-based metrics as an indicator of test effectiveness.
However, mutation testing suffers from two major drawbacks, which is

why it is not widely used in practice (Ivanković et al., 2018; Jia and Harman,
2011; Zhu et al., 2018). First, mutation testing is computationally complex.
Many mutants may be created for each method and, in the worst case, all test
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cases need to be executed for each mutant to determine whether a mutant
can be killed or not.

Second, equivalent mutants are a problem because they cannot be detected
automatically (Offutt and Pan, 1997) and distort the results. Grün et al.
(2009) identified equivalent mutants as an important problem because they
are surprisingly common. Equivalent mutants lower the mutation score and
force developers to needlessly analyze mutants in order to figure out which
part of the code needs to be tested more thoroughly and how this can be
achieved. According to Schuler and Zeller (2013b), a developer requires an
average of 15 minutes to determine whether a mutant is equivalent or not.
Similarly, Ivanković et al. (2018) reported a duration of 11.7 minutes per
mutant. Thereby, equivalent mutants threaten the developer’s acceptance of
mutation analysis results.

A further obstacle to a wider use in industry is the mutation testing tools’
lack of integration with software development infrastructures and processes
(Madeyski et al., 2014). In particular, there is no clear methodology for using
the results of a mutation analysis. Most developers will ignore the results
if they are not presented in an appealing way in tools that the developers
already use in their daily work. Furthermore, the mutation score as such
is not actionable and the sheer number of mutants overwhelms developers.
In order to be beneficial for developers, mutation testing tools need to be
executed within continuous integration, focus on recently changed code,
present findings in an understandable way in an established tool, and ideally
give hints on how to fix the problems.

Petrović and Ivanković (2018) reported about the integration of mutation
testing into Google’s development workflow. At Google, an incremental
mutation analysis is triggered when a pull request is created. A limited
number of mutants focusing on changed code are presented to the developers
in the code review tool (see Section 3.3.3).
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2.4.3 Tools

Many mutation testing tools have been developed for various programming
languages. Commonly known tools for the programming language Java are
Pitest (PIT),1 Javalanche,2 Major,3 Judy,4 and MuJava.5

The focus in this section is on PIT because it is the best-known and most
mature mutation testing tool for Java applications (Delahaye and Du Bous-
quet, 2013; Gopinath et al., 2017). Its code is open-source and maintained
by an active community (Coles et al., 2016). Furthermore, it integrates with
build tools, such as, Maven and Gradle. PIT has been used in several empir-
ical software engineering studies (e.g., in Ahmed et al. (2016), Gopinath
et al. (2015), and Gopinath et al. (2016)).

The mutation analysis in PIT works as follows. First, PIT scans all classes
in the system under test to identify possible mutation points and stores their
location along with the intended mutation operator. Next, PIT runs all tests
once to perform a line coverage analysis so that it knows the test-case specific
coverage of each test at the line level. It also records the duration of each
test case. PIT then analyzes all mutants that are covered by at least one test
case. To do so, based on the previously identified mutation points, the tool
applies the intended mutation operator to the byte code in order to generate
a mutant one after another (Coles et al., 2016). The resulting mutant is
kept in memory instead of writing it to the disk. Afterwards, a new Java
Virtual Machine (JVM) is started for the test execution, and covering test
cases are executed against the mutant. The test cases are prioritized by a
heuristic, which takes a test’s execution speed, its line coverage, and naming
conventions into account (Coles, 2019a). The analysis of a mutant aborts as
soon as the first test case kills the mutant. A mutant may also be killed by a
time-out or a memory error during testing; for example, when a mutation
introduces an endless loop. Overall, PIT applies several optimizations to

1 http://pitest.org
2 https://github.com/david-schuler/javalanche
3 http://mutation-testing.org
4 http://madeyski.e-informatyka.pl/tools/judy
5 https://cs.gmu.edu/~offutt/mujava
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reduce the analysis duration; for example, it operates at the byte code, selects
the tests to run against the mutants, and minimizes the number of mutant
executions (Coles et al., 2016).

The mutation operators used in PIT are designed to generate hard-to-kill
mutants, which comprise a minimal number of equivalent mutants (Coles,
2019c). The seven operators that are enabled by default are:

• Conditionals Boundary Mutator: replaces < with ≤, > with ≥, and
vice versa

• Increments Mutator: replaces increments with decrements, and vice
versa

• Invert Negatives Mutator: replaces the sign of numeric variables

• Math Mutator: replaces binary arithmetic operations (e.g., * with /)

• Negate Conditionals Mutator: replaces conditional operators (e.g.,
== with !=)

• Return Values Mutator: changes return values (e.g., dynamically re-
turns 1 if the original return value is 0, or 0 otherwise)

• Void Method Calls Mutator: removes calls to void methods

Finally, PIT provides an incremental mutation analysis as an experimental
feature (Coles, 2019b). PIT tracks changes to code and tests and keeps
results from previous mutation analyses. This information is used in future
analyses to infer the mutation testing verdict of mutants that are located
in unchanged code so that it is not necessary to conduct any tests for them.
The incremental analysis makes a few assumptions and optimizations, which
“introduce a degree of potential error into the analysis” (Coles, 2019b). For
example, to decide whether the behavior of a class has changed, PIT only
considers changes to the byte code of this class, its super classes, and outer
classes; it does not consider dependencies to other classes that interact with
this class. In addition, changes to logic or data defined outside the Java code,
such as, test data or code in other programming languages, are not tracked
at all.

2.4 | Mutation Testing 35



2.5 Machine Learning

Machine-learning algorithms analyze existing data with the goal of deriving
mathematical models to make predictions or decisions (Kobayashi et al.,
2011). Below, we explain how predictive machine-learning classifiers can be
evaluated and present two algorithms.

2.5.1 Performance Evaluation

Machine-learning models with a binary outcome are usually evaluated by
computing their precision and recall. Precision expresses the proportion
of correctly predicted items of a given label out of all items that were pre-
dicted with this label. Hence, precision addresses the purity in retrieval
performance; in other words, it is “a measure of effectiveness in excluding
nonrelevant items from the retrieved set” (Buckland and Gey, 1994). It is
computed as true positives

true positives + false positives . Recall expresses the proportion of cor-
rectly predicted items of a given label out of all items that actually have this
label. Recall “can be viewed as a measure of effectiveness in including rele-
vant items in the retrieved set” (Buckland and Gey, 1994) and is computed
as true positives

true positives + false negatives . The F-score (also known as F1-score or F-measure)
combines precision and recall and is computed as 2 · precision · recall

precision + recall .
To evaluate the performance of a machine-learning model, the underlying

data set needs to be separated into training data, which is used to create
the model during the learning phase, and test data, which is used to assess
the model. The most common technique for that is 10-fold cross-validation
in which the data set is split into 10 disjunct partitions of (nearly) equal
size (Arlot and Celisse, 2010). 9 partitions are used for training and the
10th partition is used for the performance evaluation (e.g., by computing
precision and recall). This is repeated for each partition so that each one is
used exactly once for testing. The performance results are then averaged
over the 10 partitions. Figure 2.4 illustrates this technique.

Cross-project validation is another technique that is commonly used in soft-
ware engineering studies to separate training and test data for evaluations.
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Figure 2.4: 10-fold cross-validation. The data of one project is split into 10
partitions. The classifier is trained on 9 partitions and tested on
data of the 10th partition. This is repeated for all partitions.
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Figure 2.5: Cross-project validation. The machine-learning model is trained
on all but one project, and evaluated against the remaining
project. This is repeated for all projects.

A prediction model is trained on one or more projects (study objects) and
tested on another unseen project. The aim of cross-project validation is to
measure how generalizable a trained prediction model is; that is, how well it
can be applied to other projects. This is relevant when no (precise) training
data is available to create a project-specific model, as it is often the case in
defect prediction. Generalizable models from other projects or companies
can be an alternative in this scenario (Zimmermann et al., 2009). Figure 2.5
illustrates the cross-project validation technique.
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2.5.2 Algorithms

In this dissertation, we mainly use Random Forest and Association Rule Mining
when we employ machine-learning techniques.

2.5.2.1 Random Forest

Random forest is a supervised machine-learning algorithm for classification
and regression, and was proposed by Breiman (2001). Random forest
belongs to the ensemble learning methods based on decision trees; that is,
the algorithm generates many independent decision trees as predictors and
aggregates their results (Liaw and Wiener, 2002). Dietterich (2000) found
that ensemble classifiers are often more accurate than any of the individual
classifiers that form an ensemble.

A random forest classifier creates a large number of independent trees and
adds different layers of randomness to each tree. For each tree, a random
sample of the training data is selected. Then, at each node of the tree, a
subset of the variables (features) is randomly selected. The tree node is
split using the best among the considered variables, unlike in standard trees
where the best variable out of all variables is used for the split (Liaw and
Wiener, 2002). To determine the best split, the Gini Index is commonly
used, which measures variable impurity with respect to misclassifications
(Tat, 2017). Each tree grows to the maximum depth using a combination
of variables and is not pruned (Pal, 2005). The number of generated trees
and the number of variables considered at each tree node is parameterized.
When performing classification of new data, the prediction results of the
different trees are aggregated by applying unweighted majority voting (Liaw
and Wiener, 2002). The random forest classifier also supports regression; in
this case, prediction results are aggregated by computing the average (Liaw
and Wiener, 2002).

Random forest classifiers do not overfit with an increasing number of trees
(Liaw and Wiener, 2002) because of the law of large numbers (Feller, 1968).
They can handle unbalanced data as well as incomplete data with missing
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values (Pal, 2005), and support categorical data (Pal, 2005). Furthermore,
random forest classifiers provide an estimation of a variable’s relative im-
portance by permuting data for a variable and observing the increase in
prediction error (Liaw and Wiener, 2002). The computation of a random
forest model can easily be parallelized (Breiman, 2001) because the model’s
individual trees are independent.

2.5.2.2 Association Rule Mining

Association rule mining is a machine-learning technique for identifying rela-
tions between variables in a large dataset. It was introduced by Agrawal et al.
(1993b). A dataset contains transactions consisting of a set of items that are
binary attributes. An association rule represents a logical implication of the
form { antecedent } → { consequent } and expresses that the consequent is
likely to apply if the antecedent applies. Antecedent and consequent both
consist of a set of items and are disjoint. The support of a rule expresses the
proportion of the transactions that contain both antecedent and consequent
out of all transactions. The support of an item X with respect to all trans-
actions T is defined as supp(X ) = |t∈T : X⊆t|

|T | . It is related to the significance
of the itemset (Simon et al., 2011). The confidence of a rule expresses the
proportion of the transactions that contain both antecedent and consequent
out of all transactions that contain the antecedent. The confidence of a rule
X → Y is defined as conf(X → Y ) = supp(X∪Y )

supp(X ) . It can be considered as the
precision (Simon et al., 2011). A rule is redundant if a more general rule
with the same or a higher confidence value exists (Bayardo et al., 1999).

Amajor advantage of association rule mining is the natural comprehensibil-
ity of the rules (Simon et al., 2011). Other commonly used machine-learning
algorithms, such as support vector machines (SVM) or Naive Bayes classifiers,
generate black-box models, which lack interpretability. Even decision trees
can be difficult to interpret due to the subtree-replication problem (Simon
et al., 2011). Another advantage of association rule mining is that the gained
rules implicitly extract high-order interactions among the predictors.

Association Rule Mining is primarily used for the market basket analyses
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(Brin et al., 1997). It has also been successfully applied in defect prediction
studies (Czibula et al., 2014; Ma et al., 2010; Song et al., 2006; Zafar et al.,
2012).
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This chapter presents an overview of related work to this dissertation. It discusses
related work in the areas test effectiveness, defect prediction, and test case
selection and prioritization, and identifies research gaps.
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3.1 Code Coverage

Code coverage metrics measure the proportion of code that is executed by test
cases. Although code coverage does not assess whether a test suite adequately
checks the observed behavior, it has been proposed as an indicator of test
effectiveness. Several studies have been conducted to investigate whether it
is valid to use code coverage for that, by investigating whether coverage at
different levels correlates with a test suite’s fault detection capabilities. The
studies provide conflicting evidence on this issue. Schwartz et al. (2018)
suggested that the fault types used in the studies are one reason for the
contradictory results because some types of faults are more difficult to detect
than others.
Below, we briefly summarize studies that confirm or disprove that code

coverage is a valid indicator of test effectiveness.

3.1.1 Studies Confirming Coverage as Effectiveness Indicator

An early study on the validity of coverage was conducted by Wong et al.
(1994). They showed that the correlation between fault detection effective-
ness and block coverage is higher than between effectiveness and size of the
test set. They concluded that test cases that do not add additional coverage
are likely ineffective in detecting faults. Similarly, Hutchins et al. (1994)
showed that suites achieving high coverage levels are better at detecting
faults than other randomly composed test suites of the same size. However,
they remarked also that “100% code coverage alone is not a reliable indi-
cator of the effectiveness.” To similar conclusions came Chen et al. (1995),
Del Frate et al. (1995), Frankl and Iakounenko (1998), Frankl et al. (1997),
and Horgan et al. (1994).
Andrews et al. (2006) conducted an empirical study on an industrial

program with known faults. Their results showed that more demanding
coverage criteria lead to larger test suites that detect more faults. Similarly,
Mockus et al. (2009) revealed that an increase in coverage exponentially
increases test efforts and linearly reduces field problems. They suggested
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that “code coverage is a sensible and practical measure of test effectiveness.”
Namin and Andrews (2009) studied the relationship between size, cov-

erage, and fault-finding effectiveness of test suites. They found that size
and coverage are important for effectiveness and suggested a nonlinear
relationship between them.
Gligoric et al. (2013) and Gligoric et al. (2015) conducted a study with

Java and C programs. According to their results, branch coverage is the
best predictor of mutation score and should be used to compare different
test suites. By contrast, Gopinath et al. (2014a) determined that statement
coverage is the best predictor of mutation kills, outperforming block, branch,
and path coverage.
Kochhar et al. (2015) analyzed two large software systems with real

bugs and found that statement and branch coverage correlate with the
effectiveness in detecting bugs. The correlation was moderate in one project
and strong in the other one.

More recently, Bach et al. (2017) studied on a large industrial SAP system
whether covered code exhibits fewer future bugs than uncovered code. They
analyzed 16,000 real bugs, found that the studied relationship is statistically
significant, and regarded coverage “as a meaningful metric to estimate the
adequacy of testing.”

3.1.2 Studies Disproving Coverage as Effectiveness Indicator

Several studies came to different conclusions. For example, Briand and Pfahl
(1999) found no causal dependency between any coverage criterion and
defect coverage.
Some years later, Rajan et al. (2008) investigated systems from the civil

avionics domain. They showed that the “MC/DC metric is highly sensitive to
the structure of the implementation and can therefore be misleading as a
test adequacy criterion.” They also stated that “these criteria can easily be
‘cheated’ by restructuring a program to make it easier to achieve the desired
coverage.”
Wei et al. (2010) conducted an empirical study in which they found that
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“branch coverage is not a good indicator for the effectiveness of a test suite.”
To similar conclusions came Staats et al. (2012) who investigated branch
and MC/DC coverage criteria. They stated that both coverage criteria are
only weak effectiveness indicators and therefore unsuitable for determining
test suite adequacy.

A well-known study by Inozemtseva and Holmes (2014) on Java programs
found that “high levels of coverage do not indicate that a test suite is effective.”
Furthermore, Inozemtseva and Holmes discovered that the type of coverage
had little effect on the correlation. Similarly, Hemmati (2015) suggested that
statement coverage is a weak criterion, and Ahmed et al. (2016), Kochhar
et al. (2017), and Tengeri et al. (2016) found that coverage is not a good
predictor of the expected number of defects.

More recently, Antinyan et al. (2018) evaluated the adequacy of unit test
coverage at Ericson. According to their results, the correlation of statement,
decision, and function coverage with defects is weak. They concluded that
“current unit test coverage measures do not seem to be any tangible help in
producing defect-free software.”
Finally, several practitioners (Benoit, 2014; Burns, 2019; Bytes, 2016;

Fowler, 2012a; Lee, 2016; Mansoor, 2016; Marick, 1997; Mols, 2017;
Seemann, 2015; Skinner, 2010; Xls, 2017; Zimmermann, 2017) critically
discussed code coverage in blog posts. While they accepted that coverage
can generally be useful for finding untested code, they all considered its
widespread use as a quality target as highly questionable. They argued that
code coverage is a misleading metric giving a false sense of confidence, and
presented examples of that. They all suggested not to use it as a stipulated
quality target.

3.2 Checked Coverage & Assertion Coverage

Checked coverage and assertion coverage are further coverage measures,
which take test oracles into account and aim to measure a test suite’s fault
detection capabilities.
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3.2.1 Checked Coverage

Checked coverage was proposed by Schuler and Zeller (2011) and expresses
which proportion of executable lines are checked by test assertions. That
is, “statements that are executed, but whose outcomes are never checked,
would be considered uncovered” (Schuler and Zeller, 2013a).

Their proposed implementation uses dynamic backward slicing. In the
first step, the execution of each test case is traced and stored to a trace file.
In the second step, a dynamic slice is created for each test assertion and
statements are identified that influence the value checked in the assertion.
The proportion of lines that are in at least one dynamic slice out of all
executable lines constitutes the outcome.

3.2.2 Assertion Coverage

Assertion coverage is a similar measure proposed by Besenreuther (2014)
and “indicates which executed lines contribute to values checked by test
assertions.” His approach to compute this measure performs run-time tracing
of test cases. It “builds the dependency graph during test execution, and
the line executions done inside assertion functions or methods are used as a
starting point for traversing the graph. All lines that occur in nodes that are
reached during the traversal are considered assertion covered” (Besenreuther,
2014).

One challenge of this approach is the memory consumption, which can be
excessive depending on the covered scope of a test case. It will be especially
high when many values have a long life-time or are far apart from test
assertions. In the study by Besenreuther, up to 1.7% of the tests could not be
analyzed due to the memory consumption. He states that “the share might
be higher on more complex test suites.”

Another challenge regarding the implementation of such an approach are
test cases invoking multi-threaded code. Each thread needs to be assigned
to an individual tracer and tracers need to share the dependency graph and
intermediate results among each other.
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Furthermore, the outcome may become slightly inaccurate if certain parts
of the analyzed code cannot be instrumented such that dependencies are
missed. For example, native methods in Java code are not compiled to the
byte code and cannot be instrumented.

3.2.3 Comparison

Both approaches aim to be more valid than traditional code coverage metrics
and therefore take test oracles into account. Both are dynamic analyses and
need to execute the whole test suite once.
They differ in their analyzed scope: checked coverage is based on exe-

cutable lines, while assertion coverage is based on executed lines.
Furthermore, while checked coverage in the proposed form considers

only assertions as oracles, assertion coverage additionally takes expected
exceptions into account (Besenreuther, 2014). However, both approaches do
not consider checks within the application code (e.g., parameter validations).
This can be considered as problematic because Schuler and Zeller (2013a)
showed that test cases from which all assertions are removed still kill over
50% of the mutants killed by the original tests.
The approaches also differentiate themselves regarding the design of

the computation. While checked coverage uses dynamic backward slicing,
assertion coverage applies run-time test tracing. “Dynamic slicing has a
substantial run-time overhead compared to regular test execution” (Besen-
reuther, 2014) because writing the trace file is expensive due to the I/O and
compression overhead. Therefore, different as expected, checked coverage
does not outperform modern mutation testing tools in terms of performance
(Schuler and Zeller, 2011). Assertion coverage, which “monitors the origin
of all values and establishes all inter-dependencies in the code during test
execution” (Besenreuther, 2014), is more efficient than checked coverage,
however, it requires more main memory.
Finally, a drawback of both approaches compared to mutation testing is

that a statement considered as “checked covered” respectively “assertion
covered” may still contain faults. This is because assertions do not necessarily
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uncover all faults. Zhang and Mesbah (2015) investigated assertion methods
and found that there is a substantial difference between the effectiveness
of different types. According to their results, assertTrue/assertFalse are
more effective than assertions of type assert(Not)Equals, which are more
effective than ones of type assert(Not)Null.
Listing 3.1 presents a code example in which a test case covers all state-

ments of the method createRectangle(. . .) and performs an assertion on
the returned result. Although all statements of the method have an influence
on the object to be asserted, the test case will not detect (subtle) faults in
the code because it only asserts that the object is not null.

1 public static Rectangle createRectangle(double area ,

,→ double aspectRatio) {

2 if (area < 0 || aspectRatio <= 0) {

3 throw new IllegalArgumentException ();

4 }

5 double width = determineWidth(area , aspectRatio);

6 double height = determineHeight(area , aspectRatio);

7 return new Rectangle(width , height);

8 }

9

10 @Test

11 public void testCreateRectangle () {

12 assertNotNull(createRectangle (20.0, 1.5));

13 }

Listing 3.1: Test case with a not very effective assertion.

Another example of a test case with weak assertions is one that invokes
a method returning a list and only checks whether the list as such is not
empty or matches a specified length, without performing checks on the list
elements. Even assertEquals assertions may not always validate an object
in a perfect way. This is because such an assertion uses the equalsmethod of
the particular object’s class to determine whether two objects are considered
equal. An equals method does not necessarily compare the whole state of
an object but may consider only some of the fields in the comparison. Hence,
deviations in fields that are not checked remain undetected.
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The validity of mutation testing does not rely on the effectiveness of
assertion statements.

3.3 Mutation Testing

Mutation testing takes fault detection capabilities into account. Therefore, it
is not surprising that many studies demonstrated that mutation testing is a
good indicator of test effectiveness. This has, for example, been shown in
the empirical studies of Andrews et al. (2005), Chekam et al. (2017), Daran
and Thévenod-Fosse (1996), Frankl et al. (1997), Gopinath et al. (2014a),
Hutchins et al. (1994), Just et al. (2014a), Li et al. (2009), Mathur and
Wong (1994), Offutt et al. (1996b), Papadakis et al. (2018), and Ramler
et al. (2017).

Just et al. (2014a) also confirmed the validity of mutation testing because
they found that mutants are valid substitutes for real faults. Consistent with
this observation is the empirical evidence provided by Andrews et al. (2006)
and Daran and Thévenod-Fosse (1996) showing that the mutation score
correlates with actual failure rates.

In the following, we briefly summarize related work addressing mutation
testing’s computational complexity and the problem of equivalent mutants,
describe the use of mutation testing in practice, and present related work
on pseudo-testedness.

3.3.1 Addressing the Computational Complexity

Below, we summarize work on effort reductions, incremental mutation test-
ing, and models to predict mutation testing verdicts.

3.3.1.1 Effort Reductions

Researchers have suggested several approaches to reduce the computational
complexity of a mutation analysis. Offutt and Untch (2001) classified these
approaches as do fewer, do smarter, and do faster. Do fewer approaches
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comprise the use of a smaller, representative set of mutation operators
(Namin et al., 2008; Offutt et al., 1993; Offutt et al., 1996a), sampling of
mutants (Acree Jr., 1980), mutants clustering (Ji et al., 2009), and higher
order mutation, in which multiple mutation operators are applied at once
(Jia and Harman, 2008). The most prominent do smarter approach is weak
mutation, in which a mutant is immediately evaluated after its execution
point instead of checking it at the end of a test execution (Howden, 1982;
Jia and Harman, 2011). Do faster approaches comprise further run-time
optimization techniques to speed up the generation and execution of mutants
(e.g., byte-code mutants (Ma et al., 2005; Schuler et al., 2009), aspect-
oriented mutation (Bogacki and Walter, 2006), or parallel mutation testing
(Fleyshgakker and Weiss, 1994)).

Jia and Harman (2011) later grouped these approaches into the reduction
of the generated mutants (“do fewer”) and the reduction of the execution costs
(combining “do faster” and “do smarter”).

3.3.1.2 Incremental Mutation Testing

Zhang et al. (2012) proposed “regression mutation testing” to reduce efforts
by incrementally updating mutation testing verdicts. Their approach com-
pares control-flow graphs of two program versions to identify edges that
may lead to different test behavior, and decides based on the outcome which
mutants need to be re-assessed. They evaluated their approach on six study
objects with five revisions each, and the revisions contained up to eight
changed files. The reported reduction rate is between 0.08% and 100%. A
similar concept was presented by Cachia et al. (2013). Their approach works
by isolating test cases that invoke changed methods from the remaining
test cases. However, when identifying these test cases, the approach does
not consider interactions between methods. Their preliminary evaluation
on the project Apache Commons CLI Library with 5 k lines of code (LOC)
showed that speed improvements between 88% and 91% can be achieved.
Bajada et al. (2015) extended this approach by considering the control flow
to more precisely identify the effects of changes between two versions of a
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software. Their study on two small study objects revealed that numerous
relevant mutants were generated that were skipped by the basic approach.
They found that the costs for the extended approach are considerably higher
than for the basic approach, but concluded that it remains advantageous
compared to full mutation testing when the increment is small. They did
not assess how many mutants that are affected by changes were erroneously
skipped.

The mutation testing tool PIT provides an experimental feature to perform
incremental mutation testing on Java applications (see Chapter 2.4.3). Its
performance has not been empirically validated yet.

3.3.1.3 Predicting Mutation Testing Results

Prediction models have been employed in a few mutation testing studies.
Namin et al. (2008) used linear models and Jalbert and Bradbury (2012)
applied machine-learning models to predict the overall mutation score with-
out executing a mutation analysis. Both did not perform predictions on
individual mutants.

Strug and Strug (2012) and Strug and Strug (2018) used machine learn-
ing to reduce the number of mutants to be executed. They calculated the
structural similarity of mutants and predicted based on results of similar
mutants whether a given test would detect a mutant or not. However, their
approach still requires a mutation analysis of a subset of mutants.
The most related work to our machine-learning model for pseudo-tested

methods is from Zhang et al. (2018) who predicted the mutation testing
verdict of individual mutants with promising precision and recall values.
However, it is difficult to judge their results because they also included
mutants that are not covered by any test case. These mutants cannot be
killed and are therefore trivial to predict based on line coverage. In Chapter 6,
in contrast to their work, we predict the mutation testing verdict of a method
and not of a single mutant, exclude methods that cannot be killed since they
are not covered, and include the proposed minimal stack distance measure
in the prediction model.
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3.3.2 Addressing Equivalent Mutants

Budd and Angluin (1982) proved that the equivalence of two programs is
generally undecidable. Consequently, it is not possible to fully automatically
detect equivalent mutants. Since equivalent mutants distort the results and
the manual analysis of mutants is labor-intensive, researchers have suggested
a number of heuristics to uncover them.

Baldwin and Sayward (1979) proposed an approach, which uses compiler
optimization techniques to identify equivalent mutants. The idea behind
that is that some equivalent mutants exhibit the same code after applying
optimization or de-optimization rules to them. Offutt and Pan (1996) and
Offutt and Pan (1997) devised a constraint-solving approach, which analyzes
a mutant’s path conditions. Other researchers used program slicing to
assist the detection of equivalent mutants (Harman et al., 2001; Hierons
et al., 1999; Voas and McGraw, 1997). Grün et al. (2009) measured the
impact of mutants on program execution and suggested that mutants with
higher impact exhibit a greater “killability” and are less likely equivalent.
More recently, Papadakis et al. (2015) incorporated their “Trivial Compiler
Equivalence (TCE)” approach into the MiLu mutation testing tool. They
claimed that it is the first tool that supports a fully automated detection of
(some of the) equivalent mutants. Kintis et al. (2017) conducted an empirical
study on TCE and reported that this technique can uncover approximately
half of all equivalent mutants in Java.

3.3.3 Use In Practice

Below, we briefly summarize research that focuses on the practical applica-
bility of mutation testing.
Nica et al. (2011) analyzed the performance of three mutation testing

tools (MuJava, Jumble, and Javalanche) and concluded that mutation testing
is too slow to be used in real-world software projects. Another comparison
of five mutation testing tools, including PIT, was conducted by Delahaye
and Du Bousquet (2013). They showed that all but one tool were able to
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complete the analysis for every study object. However, they pointed out
that the tools need a lot of improvements to be ready for the use in real-
world projects. The mutation testing tool PIT was also assessed by Klischies
and Fögen (2016). They stated that the analysis is “fast enough for small
to medium sized projects such as utility libraries,” but expressed strong
concerns with regard to applicability to larger projects due to the required
run-time.
The maturity of mutation testing and different strategies to reduce the

run-time overhead were investigated by Možucha and Rossi (2016). They
suggested that selective mutation operators, second order mutation, and
multi-threading can help increase the applicability. According to them, the
obtained results are influenced by the use of these strategies such that a trade-
off between speed and result quality needs to be found. They concluded
that “mutation testing is mature enough to be more widely adopted.”
Ramler et al. (2017) reported the results of a case study on mutation

testing conducted with an engineering company developing safety-critical
systems. The investigated system was implemented in C and comprised
60,000 LOC. The mutation analysis generated 75,043 mutants out of which
63.8% were killed by unit tests. The engineers investigated a sample of 200
live mutants and found at least 24 of them to be equivalent and at least
12 to be duplicated. According to the study, the analysis provided valuable
hints on how to improve the test suite, and the engineers identified two
new faults in the code when improving the tests. However, the mutation
analysis took 4,000 hours computing time. Another case study on a complex
real-world project was conducted by Ahmed et al. (2017). They applied
mutation testing to a module of the Linux kernel and found mutation testing
to be a useful tool because it helped them uncover two faults, although
the module is “well tested and heavily used.” The mutation analysis took
3,499 hours, whereof 30 minutes each were needed to compile a mutated
version. They discarded mutants that did not compile or were considered as
not interesting and thereby reduced the number of mutants to be analyzed
from 3,169 to 380. 10% of the mutants were found to be equivalent and
20% to be duplicated.
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More recently, Petrović and Ivanković (2018) presented how mutation
testing is employed at Google. The development process at Google specifies
that code changes go through a review process before they are merged into
the main branch of the repository. When a code diff is sent for review, an
incremental coverage analysis is conducted to identify the set of covered
lines that concern changes. Then, the mutation analysis is triggered. It
first filters out lines with statements that are considered as not interesting
(e.g., logging statements). It then generates at most one mutant for each
remaining line, in which the mutation operator is randomly selected from
the set of applicable operators for the given line. Finally, unit tests are
executed against the mutants, and surviving mutants are presented to the
developers in the code review tool. Developers can give feedback on the
mutants to improve the exclusion of uninteresting mutants. Ivanković et al.
(2018) revisited this case study by Petrović and Ivanković and identified
challenges for a widespread adoption of mutation testing. First, they found
that “unproductive mutants” exist, which are either not relevant, equivalent,
or redundant. Developers do not want to spend time on them. Second,
they pointed out that a developer’s workflow is commit-centered such that
mutation testing needs to be integrated into that workflow. Third, more
mutants are generated than developers can analyze in a reasonable amount
of time. The challenge is to present the most relevant mutants to developers.

3.3.4 Pseudo-Testedness

Vera-Pérez et al. (2017) also investigated pseudo-testedness and replicated
our study published in Niedermayr et al. (2016). Pseudo-tested methods
equally exist in all their study objects, even in ones with high coverage.
Thereby, they confirmed our observation that pseudo-tested methods are
common.

They further studied the mutation score of pseudo-tested methods that is
achieved when conducting an analysis with traditional mutation operators.
They found that the mutation score of these methods is not always 0%, but
it is substantially lower than the one of the remaining covered methods.
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Nonetheless, pseudo-tested methods exist that reach high mutation scores
due to “trivial exception-raising mutants.” Their study objects contain 63
pseudo-tested methods with 100% mutation score; approximately 54% of
these have only one or two mutants, but one method has 69 mutants, which
are all killed by thrown exceptions.
They manually analyzed pseudo-tested methods with void and boolean

return type, and identified misplaced or missing oracles, too weak oracles,
and missing test input as issues causing these methods to be pseudo-tested.
Finally, Vera-Pérez et al. conducted developer interviews to get more

insights into the practitioner’s view on pseudo-tested methods. According to
the interviews, developers considered flaws identified by these methods as
easy to understand and confirmed their relevance. The developers accepted
pull requests that were provided during this study to improve the testing state
of pseudo-tested methods. However, when they only received information
about the problem without pull request, they did not always improve the
test suite due to limited resources and other pending tasks. According to
the developers, pseudo-tested methods are especially relevant and deserve
additional testing efforts when methods concern the core functionality of
a project or are widely used within a project. By contrast, methods that
are automatically generated or concern debugging or logging functionalities
belong to the ones considered as less relevant.

Delplanque et al. (2019) coined the term “rotten green tests,” which are
passing test cases that contain assertions, but at least one assertion is never
executed. Such tests give developers a false sense of confidence because they
contribute coverage without performing all intended checks. Delplanque
et al. believe that rotten green tests are a possible cause for pseudo-tested
methods.

3.4 Defect Prediction

The idea behind defect prediction is to predict code areas that are especially
fault-prone (Catal and Diri, 2009; Hall et al., 2012). Defect prediction allows
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software engineers and testers to focus quality-assurance efforts on these
areas and thereby supports a more efficient resource allocation (Menzies et
al., 2007; Weyuker and Ostrand, 2008). The prediction models can be built
using code metrics (D’Ambros et al., 2012; Menzies et al., 2007; Nagappan
et al., 2006; Zimmermann et al., 2007), change metrics (Hassan, 2009;
Kim et al., 2007; Nagappan and Ball, 2005), or a variety of further metrics
(such as code ownership (Bird et al., 2011; Rahman and Devanbu, 2011),
developer interactions (Lee et al., 2011; Meneely et al., 2008), dependencies
to binaries (Zimmermann and Nagappan, 2008), mutants (Bowes et al.,
2016), code smells (Palomba et al., 2016), and others).

Defect prediction is usually performed at the component, package or file
level (Bacchelli et al., 2010; Nagappan and Ball, 2005; Nagappan et al., 2006;
Scanniello et al., 2013). More fine-grained prediction models have been
proposed to narrow down the scope for quality-assurance activities. Kim
et al. (2008) presented a model to classify code changes. Hata et al. (2012)
applied defect prediction at the method level and showed that fine-grained
prediction outperforms coarse-grained prediction at the file or package level
if efforts to find the faults are considered. Giger et al. (2012) also investigated
predictions at the method level and concluded that a random forest model
operating on change metrics can achieve good performance. More recently,
Pascarella et al. (2018) replicated this study and confirmed the results.
However, they reported that a more realistic inter-release evaluation of the
models shows a dramatic drop in performance with results close to that
of a random classifier, and concluded that method-level bug prediction is
still an open challenge. It is considered difficult to achieve sufficiently good
data quality at the method level (Hata et al., 2012; Shippey et al., 2016);
publicly available datasets have been provided in Giger et al. (2012), Just
et al. (2014b), and Shippey et al. (2016).
Cross-project defect prediction predicts faults in projects for which no

historical data exists by using models trained on data of other projects (Xia
et al., 2016; Zimmermann et al., 2009). He et al. (2012) investigated the
usability of cross-project defect prediction. They reported that this type of
prediction works only in few cases and requires careful selection of train-
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ing data. Zimmermann et al. (2009) also provided empirical evidence that
cross-project prediction is a serious problem. They stated that projects in the
same domain cannot be used to build accurate prediction models without
quantifying, understanding, and evaluating process, data and domain. Sim-
ilar findings were obtained by Turhan et al. (2009), who investigated the
use of cross-company data for building prediction models. They found that
models using cross-company data can only be “useful in extreme cases such
as mission-critical projects, where the cost of false alarms can be afforded,”
and suggested using within-company data if available. While some recent
studies reported advances in cross-project defect prediction (Xia et al., 2016;
Xu et al., 2018; Zhang et al., 2016), it is still considered as a challenging
task.

In Chapter 7, we identify methods that we consider as “too trivial to test”.
While a lot of research has been conducted to predict fault-prone artifacts,
our work is the first that explicitly focuses on methods with a low fault risk.

3.5 Test Case Selection and Prioritization

Regression testing is an activity to ensure that conducted changes do not
harm the existing behavior of a software (Yoo andHarman, 2012). A common
procedure for regression testing is to execute all existing test cases of a test
suite (retest-all). However, as software evolves, the number of automated test
cases increases over time such that the execution time of the whole test suite
rises. Consequently, it is often not feasible or too costly to execute the whole
test suite after each change. It is sometimes even not possible to execute
the all tests before an upcoming release. Therefore, various approaches
have been developed and studied to reduce the efforts for regression testing
(Graves et al., 2001). The main approaches are test suite minimization, test
case selection, and test case prioritization. Latter two are related to our work
in Chapter 8.
Test case selection techniques aim to reduce regression testing efforts by

deriving an appropriate subset of existing test cases (Rothermel and Harrold,
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1996); that is, these techniques determine which minimal set of test cases
needs to be re-executed to check the behavior of the software after changes
(Engström et al., 2010). Unlike test suite minimization, test case selection
techniques do not permanently remove tests from a test suite (Rothermel
et al., 1998). Test case prioritization techniques schedule test cases in such an
order that test cases considered more important (in respect to a given goal)
are executed earlier in the test suite execution (Rothermel et al., 2001). The
prioritization goals can be to detect faults faster in the testing phase (Catal
and Mishra, 2013; Rothermel et al., 1999), to increase overall code coverage
as soon as possible (Elbaum et al., 2002), or to cover important features
earlier (Rothermel et al., 2001).
The vast majority of existing research literature deals with either the

selection or the prioritization of test cases, but does not combine both (Silva
et al., 2016). To the best of our knowledge, the first approach that com-
bines selection and prioritization was presented by Wong et al. (1997). It
performs a test selection based on modified code followed by a prioritization
of the remaining test cases, which considers a test case’s increasing cost
per additional coverage. In contrast to our work, they did not include test
effectiveness information.
Singh et al. (2010), Suri and Singhal (2011), and Walcott et al. (2006)

presented test prioritization approaches that additionally incorporate a time
constraint for the test execution. Thereby, their approaches implicitly also
conduct a test selection by excluding lower-priority test cases that do not
fit into the time frame. However, the selection does not take code changes
(since the previous test execution) into account.

Silva et al. (2016) combined selection and prioritization in a hybrid ap-
proach, which is conducted in five stages. Their approach first maps features
to software classes to determine their relevance. Next, it calculates the criti-
cality of classes based on coupling, complexity, and relevance. Afterwards,
it computes the criticality of tests by taking into account what classes they
cover. It then identifies test cases that cover at least one changed class and
applies an Ant Colony Optimization algorithm to select the set of the most
critical tests that can be executed within available time. Finally, tests are
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ordered based on their criticality. In contrast to their work, we do not take
the relevance of features into account, operate on method coverage instead
of class coverage, use a different prioritization criterion, and additionally
consider test effectiveness information.
More recently, Spieker et al. (2017) developed a history-based test case

selection and prioritization approach integrated into continuous integration.
It prioritizes test cases based on their meta-data, last execution time, and
previous results. Then, it selects the most important test cases. The approach
uses reinforcement learning to learn from experiences of previous test exe-
cutions; that is, it “can progressively improve its efficiency from observations
of the effects its actions have.” Their work does not use coverage and change
information for test case selection.

Several approaches that perform test case prioritization by considering a
test’s fault exposing potential have been proposed in Elbaum et al. (2002),
Farooq and Nadeem (2017), Gonzalez-Hernandez et al. (2018), Lou et al.
(2015), Rothermel et al. (1999), Rothermel et al. (2001), and Shin et al.
(2019). In contrast to their work, we conduct a change-based test case
selection before the prioritization, and use test effectiveness information
at another level. While they apply mutation testing to compute the overall
effectiveness score of a test case, we compute pseudo-testedness information
of a test-case method pair.

3.6 Research Gap

Mutation testing has rarely been adopted as a test adequacy criterion in
practice. Reasons for this include its run-time complexity, the problem of
equivalent mutants, and the lack of integration into development workflows
(Madeyski et al., 2014).

In this dissertation, we aimed to make mutation testing better applicable
and more actionable. To achieve this, we introduced the concept of pseudo-
testedness and devised a mutation operator to detect pseudo-tested methods.
The mutation operator works at the method level, controls the computational

58 3 | State of the Art



complexity by limiting the number of mutants, and prevents equivalent
mutants. Unlike mutants generated by more fine-grained mutation operators,
pseudo-tested methods are easy for developers to understand. Consequently,
these methods come as analysis result to the fore. They are, unlike the
mutation score, actionable such that developers can address them to improve
the test suite. This is what DeMillo et al. (1978) initially had in mind in
the early days of mutation testing, when stating that mutants (and not the
score) matter because they advise designing better test cases.
To make analysis results even more relevant and further speed up the

computation, we also studied in this dissertation which methods are not
prone to faults, and therefore too trivial to test, such that they can be
excluded from a mutation analysis.
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4.1 Motivation

Mutation testing is a technique for measuring the fault detection capabilities
of a test suite by introducing faults into the application code and evaluating
whether test cases can uncover them. While mutation testing is well suited to
providing insights into the testing state, it suffers from two major problems.
First, mutation testing is computationally complex. In the worst case, all

test cases need to be executed for eachmutant to determinewhether amutant
can be killed or not. Consequently, the asymptotic complexity of mutation
testing for a project is O(|M | · |T |), with |M | being the number of methods
(or, in non-object-oriented languages, functions) and |T | the number of
test cases. Accordingly, the analysis effort increases polynomially with an
increasing number of methods and test cases. Moreover, a significant number
of mutants may be created for each method, depending on a method’s length
and the used constructs in its body. Acree et al. (1979) suggested that the
number of mutants is in the order of the square of the number of lines
in the program. For example, Mothra, an early mutation testing tool for
the FORTRAN language, “generates 970 mutants for a particular 27-line
program” (King and Offutt, 1991). Regarding the asymptotic complexity, the
(maximum) number of mutants per methods can be assumed to be constant
because it is independent from the size of a project.
In practice, not all test cases cover all methods. Therefore, the actual

effort required to examine a mutant of a method is usually lower than that
required to execute the entire test suite. Optimizations allow an early abort
of the analysis of a mutant after the first test case that kills the mutant
is found. Nonetheless, mutation testing is an order of magnitudes more
expensive than a regular execution of a test suite or a computation of the
code coverage. Efforts are especially high in large projects that contain
long-running integration or system tests.

In large industry projects with comprehensive automated test suites, even
the regular execution of the whole test suite may take a couple of weeks
so that the test suite’s duration may already constitute a problem (see Sec-
tion 8.1). In such projects, mutation testing is generally not applicable due
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Table 4.1: Duration of a mutation analysis using PIT (in hours) compared to
a regular test suite execution.

Project LOC Test suite
execution

Mutation
analysis

Slow-down
factor

biojava 240.6 k 00:27:45 34:57:00 75.6
bitcoinj 59.1 k 00:01:26 02:44:00 114.4
JFreeChart 222.8 k 00:00:13 00:25:37 118.2
pdfbox 227.6 k 00:01:25 04:30:00 190.6

to the amount of effort required.
A lot of research effort has been invested in addressing the computational

complexity of mutation testing (see Section 3.3.1). PIT is one of the most
advanced mutation testing tools for Java (Delahaye and Du Bousquet, 2013;
Gopinath et al., 2017) and is equipped with several optimization techniques
(Coles et al., 2016). For many projects, however, mutation testing is not fast
enough to be applicable. Table 4.1 demonstrates the cost of mutation testing
for four Java projects by presenting the duration of the test suite execution,
the duration of the mutation analysis using PIT with traditional mutation
operators, and the resulting slow-down factor. In these projects, mutation
testing takes 75.6–190.6 times as long as the regular test suite execution.
A second drawback of mutation testing is that the analysis may gener-

ate and evaluate equivalent mutants. Equivalent mutants are semantically
equal to the original code, which means that they cannot be killed (see Sec-
tion 2.4.1). It is not possible to automatically detect and filter such mutants
because the equivalence of two functions is generally not decidable (Budd
and Angluin, 1982). The execution of tests for equivalent mutants causes
needless efforts during the mutation analysis. Even more importantly, they
distort the results and threaten the developer’s acceptance of mutation anal-
ysis results. Developers need to manually inspect the mutants that were not
killed to determine whether they are equivalent (and therefore irrelevant) or
whether tests need to be improved. Schuler and Zeller (2013b) conducted
an experiment and found that the manual classification of a mutant by a
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developer takes 15 minutes on average. Grün et al. (2009) found equiva-
lent mutants to be surprisingly common. Hence, equivalent mutants are an
obstacle to the use of mutation testing in industry.
In sum, despite several optimization techniques, mutation testing is still

computationally complex and carries the problem of equivalent mutants.
In industry, mutation testing lacks adoption (Ivanković et al., 2018; Jia
and Harman, 2011; Madeyski et al., 2014). Instead, code coverage is used
broadly as a measure for test suites (Hemmati, 2015; Smith and Williams,
2008; Yang et al., 2009), although, it is known and considered as a problem
that code coverage does not measure test effectiveness.

Parts of the content of this chapter have been published in Niedermayr et al.
(2016). A preliminary version of the mutation operator has been presented
in Niedermayr (2013).

4.2 Idea

We propose a light-weight mutation testing approach that operates at the
method level to address both downsides of mutation testing. This approach is
designed to identify methods that are covered by test cases, but where none
of the test cases can detect whether the method’s whole logic is removed.
That is, although these methods are invoked by test cases, they are actually
not tested at all. We call such methods pseudo-tested methods. The idea
behind pseudo-testedness is that if no single test case can detect such an
invasive transformation, no test case will generally be able to detect subtler
faults.
More precisely, we define a method as covered if it is partially or fully

executed by at least one test case. We define a method as pseudo-tested if
it is covered, not empty, and no test case fails on any mutant in which all
original statements were removed. By contrast, we consider a method as
tested (with respect to this mutation operator) if at least one test case fails
when the whole logic of the method is removed.

For methods that declare a return type other than void, it is necessary
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to add a return statement with a value of an appropriate type to keep
the method’s code compliant with the signature. To avoid a method from
turning into an equivalent mutant when its original logic solely returns a
value, two mutants with different return values may be generated. In this
case, a method is pseudo-tested if no test case fails on any of both mutants.
Consequently, the number of mutants per method is limited and does not
exceed two.

A mutation analysis with a mutation operator for pseudo-tested methods
has the following advantages over an analysis with traditional, more fine-
grained mutation operators.

(1) An analysis using this mutation operator is faster. It generates at most
two mutants per covered method, which keeps the overall number of
mutants minimal. Furthermore, due to the invasive transformation, a
mutant is easier to kill with the consequence that more test cases will
detect the mutation. Since the analysis of a mutant can be stopped as
soon as the first test case kills the mutant, fewer tests will need to be
executed per mutant.

(2) This mutation operator produces hardly any equivalent mutants. A
more invasive transformation is generally less likely to generate an
equivalent mutant than a small, subtle change. Schuler and Zeller
(2013b) provided empirical evidence that mutation operators that
manipulate the control flow have a high impact on the behavior of a
program and produce fewer equivalent mutants than operators that
change data. Our approach also undertakes further actions to reduce
the risk of equivalent mutants. First, certain methods (e.g., hashCode
methods or empty methods, which may be present to satisfy an imple-
mented interface) are excluded from the analysis. Second, for methods
that return a primitive value, two mutants that differ in the return
value are generated. A method is only considered pseudo-tested if both
mutants cannot be killed. Since both mutants return a different value,
and therefore differ semantically from each other, it is impossible for
both to be equivalent to the original method.
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While these actions do not guarantee that absolutely no equivalent
mutants are generated,1 they strongly reduce their probability. This
is a significant advantage because Schuler and Zeller (2013b) found
in their study using the mutation testing tool Javalanche (Schuler
and Zeller, 2009) that approximately 45% of the undetected mutants
in seven Java projects were equivalent. In a more recent study by
Carvalho et al. (2018) on configurable industrial systems written in C,
nearly 40% of the mutants were found to be equivalent.

Besides equivalent mutants, duplicated mutants, which are equivalent
between them but not with the original version (Papadakis et al., 2015),
cannot occur with our mutation operator.

(3) The mutation operator is easy for developers to comprehend and the
generated mutants are easy to interpret. It is simple for a human to
imagine what the consequences of the mutation are. One does not
need to understand the control flow of a method since the mutation
transforms the whole method body. This is not the case for a fine-
grained mutation operator, which, for example, negates the expression
of a conditional statement in a long, nested method. Vera-Pérez et al.
(2017) confirmed that problems identified by pseudo-tested methods
are easy for developers to understand.

(4) The mutation operator is actionable. Hilton et al. (2018) stated that
“developers should consider using more detailed metrics than just the
ratio of statements covered to measure their code’s testedness.” An
analysis with our operator does not just produce a score, but it does
provide a list of methods that are pseudo-tested. Consequently, it allows
developers to improve their test suite by addressing these methods. To
do so, developers can design new test cases to address pseudo-tested
methods or enhance existing test cases by adding further assertions.

1 An example of a method that will still turn into an equivalent mutant would be one that
returns no value and solely invokes empty methods; that is, it only delegates to methods
without logic. Heuristics could be used to detect and exclude such methods. However, it is
not possible to detect all cases using static code analysis because Java employs dynamic
method dispatch (Miglani, 2017).
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The concept of pseudo-testedness is a light-weight way to identify methods
that are insufficiently tested such that tests cannot uncover semantic faults
in them. However, tests may still be able to detect faults in pseudo-tested
methods that result in run-time errors. Even the execution of a method
without any assertions may uncover, for example, null-pointer de-reference
exceptions or arithmetical exceptions caused by divisions by zero. In other
words, while tests cannot detect incorrect computations in pseudo-tested
methods, they may still be able to ensure the absence of thrown exceptions.
The fact that a method is not pseudo-tested does not imply that it is

effectively tested. Traditional mutation operators are more fine-grained,
operate at the statement level, and may reveal living mutants in statements
of methods that are not pseudo-tested. Therefore, we intuitively consider
the proportion of methods that is not pseudo-tested as the upper bound of
the proportion of methods that is effectively tested.
In sum, the presented light-weight mutation operator identifies covered

methods that are actually not tested at all (except in terms of thrown excep-
tions). Hence, its outcome is more valid in terms of fault detection capabilities
than code coverage. At the same time, the approach is more efficient than a
mutation analysis with traditional, more fine-grained mutation operators,
and addresses the problem of equivalent mutants.

4.3 Definition of the Mutation Operator

The mutation operator to uncover pseudo-tested methods works at the
method level and removes the whole content from a method’s body. An
appropriate return statement is added to the mutated method if it returns a
value; therefore, the mutation operator design depends on the return type
of the method.

Methods with void as return type: All statements of the method body are
removed so that the original method logic is no longer executed. No further
actions are necessary for methods of this type. To avoid equivalent mutants,
methods that are already empty are not mutated.
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Table 4.2: Return values for primitive types and string.

Return type Mutant 1 Mutant 2

boolean false true
byte, short, int, long 0 1
float, double 0.0 1.0
char ‘ ’ ‘A’
string "" "A"

Methods with a primitive return type1 or string return: Aswith voidmethods,
the mutation operator removes the original code from the method. A return
statement is then added to the method, which returns a constant value
that satisfies the specified return type. The values per type are specified in
Table 4.2. Two values are provided per type because two different mutants
are generated for methods of this type. A method is only considered pseudo-
tested if neither of the mutants can be killed by any test case. The use of
two mutants prevents equivalent mutants because it is not possible that both
mutants are equivalent to the original method.

Methods with complex return types: The mutation operator removes the
code from the method body and adds a return statement, which invokes a
factory to create a suitable instance (object) as return value. The factory is
already invoked once for a method during the mutation process to determine
whether it is able to provide an instance for a given type. If the factory
cannot create an instance that satisfies the method’s return type, the method
will not be mutated. Listing 4.1 presents an example of a mutated method.

A factory takes the qualified name of a method’s declared return type as
input. It then creates an instance that satisfies the given type or throws an
exception to signalize that it does not support the type.

1 For Java, we also count methods that return a class of a primitive wrapper type to this
category.
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1 public static FileTreeWalker fromJarFile(String pathToJarFile)

,→ throws IOException {

2 JarFileContent jarFileContent = new JarFileContent(new JarFile(

,→ pathToJarFile));

3 jarFileContent.initEntries();

4 return jarFileContent.getVisitor();

5 return TestAnalyzerEnvironment.getCurrentFactory().createInstance(

,→ "java.nio.file.FileTreeWalker");

6 }

Listing 4.1: Example of a mutant that returns a non-primitive value.

A factory should satisfy two requirements. First, for every invocation with
the same type, a factory should create a semantically equal instance. This
is necessary for the mutation operator and the mutant to behave determin-
istically. For example, each instance of the Date class needs to be created
with the same time stamp and each instance of a random value generator
needs to be created with the same seed value. Second, a factory should
create a new instance at every invocation instead of reusing instances. This
avoids side-effects and satisfies the first requirement when the instance’s
state is changed during the test execution. However, it may not be possible to
create a new instance for each type (e.g., for types that follow the singleton
pattern).

A factory may use different techniques to create instances and can delegate
to other factories. This may work as follows. First, the factory checks
whether the requested type is a common Java class or interface for which
the factory provides dedicated logic to create instances. Thus, instances
can be generated, for example, for the types Runnable, Optional, Iterable,
Date, and others. Next, if a factory does not explicitly support a type,1 it can
use reflection to create instances of classes that exhibit a public constructor
without parameters. With the same technique, it can further create instances
of classes that exhibit a public constructor that only takes primitive values,
1 Certain types should be handled manually or be excluded because they may cause undesired
effects when used in mutants during the test execution. An example is the File class, which
could lead to a file system erasure in the worst case.
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string values, arrays, or collections as input; the factory will use the values
of mutant 1 from Table 4.2, or zero-length arrays, or empty collections as
arguments for the parameters. Furthermore, the factory can instantiate
single- and multi-dimensional arrays of arbitrary types using reflection; the
created arrays will be of length 0. Instances of enum values can be provided
by picking the first declared enum constant. If it has not been possible to
create an instance so far, further code tailored to the system under test can
be developed in order to provide instances of project-specific types for which
the previous steps have not been successful.

Since only one mutant is created per method with a complex return type,
equivalent mutants may occur in seldom cases when a method solely creates
and returns an instance of the return type.

Excluded Methods

For Java code, the following methods should always be excluded from a
mutation analysis with this mutation operator.

• Empty methods contain no statements and are of no interest because
they contain no logic that could be tested. More importantly, they
would result in an equivalent mutant.

• Implementations of Java’s hashCode method1 cannot be tested with mu-
tation testing in a meaningful way. This is because a hashCode method
still fulfills its specification if another computation formula is used,
even if it includes fewer fields in its computations. This implies that
a method that always returns the same constant value is in line with
the specification. The specification will only be violated if additional
fields of the enclosing class are included in the computations. The
presented mutation operator does not introduce any additional field
accesses (nor is that common for traditional mutation operators). To
validate hashCode methods, other techniques should be used, such as,
the EqualsVerifier2.

1 https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#hashCode
2 https://jqno.nl/equalsverifier
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• Special methods introduced by the compiler should not be tested. They
are not present in the source code such that developers are not aware of
these methods. They are automatically inserted into the byte code dur-
ing compilation. Examples of such methods are implicit constructors,
an enum’s valueOf and values methods, and synthetic methods that
the JVM needs for handling nested classes and type erasure (Gosling
et al., 2015).

• It is necessary to exclude methods with return types for which no
appropriate value can be generated. This case is only relevant for
methods that return a non-primitive value. The used factory may be
unable to provide an instance of a type (e.g., due to restrictive access
modifiers or when no class implementing a certain interface is available
on the classpath), may not address a certain return type for another
reason, or may fail to create an instance at run-time without causing
an exception. If no appropriate value can be generated, it will not be
possible to conduct the mutation because no compilable method can
be generated (unless null will be used as an alternative return value).

4.4 Implementation

In this section, we describe how a mutation analysis with the presented
mutation operator can be performed for Java programs. We implemented
this approach in our TestAnalyzer1 tool.

The mutation approach consists of four steps and is depicted in Figure 4.1.
The first two steps are executed once and are necessary to collect information
about the test cases. The latter two steps comprise the actual mutation pro-
cess. They are executed for each covered method and can run concurrently.

(1) Instrumentation: In the first step, we need to instrument the code. We
instrument methods of the application code by inserting a statement

1 https://github.com/cqse/test-analyzer
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Find relations between methods and test cases
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Execute relevant test cases
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Figure 4.1: Overview of the mutation process. The first two steps of the
mutation analysis are executed once, the latter ones are executed
for each considered method.

at the beginning of each method, which invokes a recorder class with
the method identifier. The method identifier is unique and composed
of the qualified name of the enclosing class, the method name, and
the parameter types.

Furthermore, we instrument the test code. We insert a statement at
the beginning and at each exit point of each test case. This allows us
to determine when the actual test execution takes place so that we can
differentiate between the actual test execution and set-up as well as
tear-down procedures happening before or after the test (e.g., methods
annotated with JUnit’s @Before or @After annotation).

(2) Computation of test-case method relationships: In the next step, we
determine the relationships between test cases and methods. To do
so, we execute each test case once on the instrumented code to find
out which methods it covers during the actual execution. We do not
consider methods that are invoked only during a test’s set-up or tear-
down procedures because they are not in the intended scope of a test.

72 4 | Concept of Pseudo-Tested Methods



After having executed all test cases, we know for each test case which
methods it covers and can compute for each method by which test
cases it is covered. Test cases that fail at this point are excluded from
further analysis.

(3) Creation of mutants: In the next step, non-empty methods that are
covered by at least one test case are mutated one after another. To
do so, the mutation operator described in Section 4.3 is applied to
the byte code. The operator removes the whole logic from a method’s
body and adds an appropriate return statement if needed. Methods
for which no suitable return value can be generated will be skipped.

(4) Test executions against mutants: For each mutant, a new JVM process
is created and all test cases that cover the method are executed against
the mutated code. A mutant may be killed by a test failure or a
time-out caused by an endless loop resulting from the mutation. The
determination of the time-out for a mutant takes the number and
duration of the mutant’s covering test cases into account.

The outcome of this step shows which test cases fail and which ones
still succeed after the mutation of a method. The analysis of a mutant is
not aborted after it is killed by the first test case so that a full mutation
matrix can be computed. Such a matrix allows determining whether a
method is pseudo-tested by a particular test case.

4.4.1 Configuration Options

The execution of the mutation analysis is fully automatic. The analysis takes
a configuration file as input, which specifies:

• the code paths pointing to the application code to be mutated. The
paths can either be jar files or directories containing the compiled class
files.

• the code paths pointing to the test code containing the test cases. The
paths can either be jar files or directories containing the compiled class
files.
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• the class path, which references additional libraries that are needed to
execute the system under test.

• the test runner that shall be used. This can be the JUnit or TestNG
runner provided by the TestAnalyzer or another externally provided
test runner tailored to a certain project. The test runner is in charge
of identifying test classes, identifying test cases in test classes, and
triggering the execution of a single, atomic test case. For example, the
test runner for JUnit identifies test classes by searching for classes that
inherit from TestCase (JUnit 3) or contain methods annotated with
@Test (JUnit 4).

• the return value generators to be used, which deal with non-void
methods. TestAnalyzer provides built-in return value generators for
primitive types and objects. Further project-specific generators can be
provided, which may support further special complex types.

• the method filters for excluding undesired methods (e.g., ToString-
MethodFilter, or SetterGetterFilter)

• the number of threads that are concurrently analyzing different mu-
tants. This allows reducing the analysis duration, but one needs to be
sure that the test cases are thread-safe; that is, concurrently running
test cases must not influence each other, as it may be the case when
they write to the same temporary folder.

• a combination of constant and variable timeout values to restrict the
analysis duration of a mutant.

• further extensions, for example, analyzers to collect metrics about
methods and test cases.

4.4.2 Alternative Implementation in Descartes

Based on the approach presented in Niedermayr et al. (2016), Vera-Pérez
et al. (2018) implemented the proposed mutation operator in Descartes,1

1 https://github.com/STAMP-project/pitest-descartes
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which is a plug-in for the mutation testing tool PIT. The implementation as
a plug-in allows it to benefit from the mature infrastructure provided by PIT.
Thus, the plug-in can focus on the mutation operator and does not need to
bother with the dependencies, build process, and used test framework of
the system under test.

Commonalities in both implementations:

• Both implementations of the proposed mutation operator are imple-
mented for Java and perform mutations on the byte code.

• Both tools support the test frameworks JUnit and TestNG.

• Both tools conduct a coverage analysis before the actual analysis to
reduce the analysis effort by only considering methods that are covered
by at least one test case and only executing for a mutated method
those test cases that cover the method.

• Both tools examine mutants in a separate JVM process and apply
time-outs to keep endless loops under control.

• The mutation operator of Descartes follows the concept presented in
Section 4.3. However, methods that return an object are handled
differently.

Differences between both implementations:

• Unlike PIT, the TestAnalyzer does not integrate with the build system.
Therefore, it is necessary to provide the compiled artifacts of the
application and test code along with the dependencies of the system
under test.

• The TestAnalyzer does not stop the analysis of a mutant after it is killed
by the first test case; thus, it enables a full mutation matrix to be
computed. PIT was extended to enable that as well.

• The TestAnalyzer differentiates between methods that are covered by
the actual test case and methods that are invoked during a test’s set-up
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or tear-down procedures. The mutation analysis is only conducted on
methods that are invoked during the actual test execution. PIT does
not draw this distinction.

• The TestAnalyzer and Descartes handle methods that return an object
differently. The Descartes plug-in uses null as value for methods that
return an object and an empty array for methods that return an array.
The TestAnalyzer employs a factory to create an instance of a type; the
factory combines a reflection approach with further dedicated logic to
instantiate common types, and can be extended to support additional
project-specific types.

The TestAnalyzer tool is used in the study in Chapter 5; PIT with Descartes
is used in the empirical studies in Chapters 6 and 8.

4.5 Summary

Despite several optimizations, mutation testing using traditional mutation
operators is computationally expensive and suffers from the problem of
equivalent mutants. Unlike fine-grained mutation operators, the presented
operator works at the method level and mutates methods by removing their
whole logic. Thereby, this light-weight approach makes it possible to identify
pseudo-tested methods; that is, methods that are covered solely by test
cases that cannot detect faults in them. This mutation approach reduces the
computational complexity by keeping the number of mutants low, addresses
and avoids most equivalent mutants, and provides results that are easily
comprehensible and actionable for developers.
We provide an implementation of the mutation operator in the tool Test-

Analyzer. Vera-Pérez et al. (2018) developed a second, independent im-
plementation, which allows researchers to mitigate the threat to validity
regarding the mutation testing tool.
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5.1 Introduction

In this chapter, we want to shed light on pseudo-tested methods. To do so,
we conduct a mutation analysis with the presented mutation operator on 19
study objects. We want to find out whether pseudo-tested methods exist in
real projects and how common they are. We classify them by their functional
purpose to estimate their relevance. Furthermore, we study whether pseudo-
tested methods exhibit distinct characteristics, which make it possible to
identify these methods using a static code analysis.

The main contributions of this chapter are: We conduct the first study on
pseudo-tested methods and show that they are present in all study objects.
We further show that pseudo-tested methods are relevant and should be
tested more thoroughly. Finally, we identify measures that exhibit a moderate
correlation with pseudo-testedness in some study objects.

An earlier version of the study presented in this chapter has been published
in Niedermayr et al. (2016).

5.2 Study Objects

For this study, we selected and analyzed 19 open-source projects from
GitHub1 (GH), Google Code2 (GC), and CQSE GmbH3 (CQ). The projects
satisfy the following criteria: They must use Java as programming language
because the developed mutation testing tool is designed for Java and oper-
ates on Java byte code. Furthermore, they must contain a test suite, which
uses either the JUnit or TestNG framework.

Table 5.1 lists the selected projects and their characteristics. The smallest
project consists of 4,312 LOC, and the largest one has 443,092 LOC. The
projects can be classified into libraries with unit tests and systems with

1 https://github.com
2 https://code.google.com/archive
3 https://www.cqse.eu/en
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Table 5.1: Study objects.

Project LOC #Tests Line cov. Origin

Libraries with unit tests

Apache Commons Collections 109.4 k 4,372 81.6% GH
Apache Commons Lang 100.4 k 1,996 93.0% GH
Apache Commons Math 275.6 k 3,427 84.8% GH
Apache Commons Net 53.6 k 163 29.0% GH
Asterisk 76.1 k 217 10.8% GH
ConQAT Engine Core 26.4 k 143 46.5% CQ
ConQAT Lib Commons 39.7 k 611 59.4% CQ
JabRef 124.1 k 1,561 34.4% GH
JFreeChart 234.0 k 2,219 59.5% GH
JSONDoc 4.3 k 26 81.2% GH
Twitter GraphJet 15.6 k 81 83.3% GH
Urban-Airship 27.8 k 575 86.8% GH

Systems with integration tests

ConQAT dotnet 8.0 k 20 15.6% CQ
DaisyDiff 11.3 k 1a 49.8% GC
Histone 244.0 k 89 79.6% GH
LittleProxy 7.3 k 18 45.4% GC
Predictor 7.7 k 21 77.2% GC
Symja 443.1 k 445 19.3% GC
Tspmccabe 45.0 k 10 40.6% GC
a The test is parameterized and executed with 247 different input files.

integration tests. For systems, we identified integration tests based on the
project’s package structure and test class names.
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5.3 Execution of the Mutation Analysis

To conduct the mutation analysis, we used the TestAnalyzer1 tool.
We developed for each study object a tailored factory for creating instances

of non-primitive types so that we can mutate most of the covered methods.
The factories are based on the generic factory presented in Section 4.3 and
support project-specific types that cannot be handled generically. For 7 study
objects, the factories can create instances for more than 90% of the non-
primitive return types used in methods. For the remaining 12 study objects,
the factories support at least 80% of the used non-primitive return types.
In addition to methods that are generally not supposed to be mutated

(see Section 4.3), we excluded in this study very simple setter and getter
methods that consist of exactly one statement. We considered them as too
trivial to be tested such that their mutation testing result is not of interest.

5.4 Existence of Pseudo-Tested Methods

Table 5.2 presents the number and proportion of pseudo-tested methods per
project. Pseudo-tested methods are present in all projects. The proportion
of pseudo-tested methods out of all mutated methods (i.e., covered and not
excluded methods) ranges between 1.1% and 42.3%. The mean proportion
of pseudo-tested methods over all projects is 13.7% (median: 10.1%).

Pseudo-tested methods are present in all study objects.

It is striking that the proportion of pseudo-tested methods is clearly the
highest in three systems with integration tests: in Predictor with 42.3%, in
LittleProxy with 40.6%, and in Symja with 25.6%. If we differentiate be-
tween projects with unit tests and projects with integration tests, we observe
that the mean proportion of pseudo-tested methods is 9.9% for unit tests
and 20.2% for integration tests. The standard deviation is 5.3% and 15.9%,

1 https://github.com/cqse/test-analyzer
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Table 5.2: Pseudo-tested methods in the study objects.

Project Pseudo-tested out of all mutated methods
# %

Apache Commons Coll. 125 5.6%
Apache Commons Lang 19 1.1%
Apache Commons Math 126 3.8%
Apache Commons Net 31 14.5%
Asterisk 27 13.3%
ConQAT Engine Core 58 18.5%
ConQAT Lib Commons 54 6.5%
JabRef 135 11.4%
JFreeChart 506 15.1%
JSONDoc 5 6.5%
Twitter Graphjet 31 8.9%
Urban-Airship 171 13.3%

ConQAT dotnet 11 10.1%
Daisydiff 7 5.2%
Histone 30 8.5%
LittleProxy 28 40.6%
Predictor 91 42.3%
Symja 605 25.6%
Tspmccabe 16 8.9%

respectively. However, there is no clear difference in the median (10.2%
respectively 10.1%). This can also be seen in the boxplots in Figure 5.1. We
conclude that the proportion of pseudo-tested methods can reach higher val-
ues in projects with integration tests and heavily varies among these projects.
Consequently, code coverage from integration tests might not necessarily be
a good approximation for test effectiveness and should be interpreted with
caution.

Finally, Figures 5.2 and 5.3 visualize the number and extent of pseudo-
tested methods in two study objects. In these treemaps (Shneiderman,
1992; Zörner, 2012), each rectangle represents a method and the size of a
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Figure 5.1: Boxplots comparing the proportion of pseudo-tested methods
between projects with unit tests and projects with integration
tests.

Figure 5.2: Distribution of pseudo-tested methods in Twitter GraphJet.

rectangle corresponds to a method’s size in LOC. The rectangles are arranged
according to the enclosing class and the package structure so that rectangles
for methods in the same class are drawn next to each other. All rectangles
colored in red represent pseudo-tested methods. The treemaps illustrate
that pseudo-tested methods are spread across the whole code base; that is,
these methods are not clustered in single parts of a project.
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Figure 5.3: Distribution of pseudo-tested methods in JabRef.

5.5 Examples of Pseudo-Tested Methods

We discuss three examples of pseudo-tested methods that are present in the
study objects. Many pseudo-tested methods are indirectly invoked through
other methods and covered by more than a single test case. For better
presentation, we only discuss methods that are directly and exclusively
invoked by one test case.

Listing 5.1 presents a pseudo-tested method from the project JFreeChart.
The method setCategoryKeys(Comparable[] categoryKeys)1 takes an ar-
ray of keys as input. It checks whether the array as such is not null and
matches the required length, checks whether no entry in the array is null,
stores the array, and notifies listeners about this operation.

This method is covered only by the similarly named test case in Listing 5.2
(testSetCategoryKeys()2), which directly invokes it.

1 https:
//github.com/jfree/jfreechart/blob/820773a5a2e84339f46bc79b77cc44092fb0d3be/
src/main/java/org/jfree/data/category/DefaultIntervalCategoryDataset.java

2 https:
//github.com/jfree/jfreechart/blob/820773a5a2e84339f46bc79b77cc44092fb0d3be/
src/test/java/org/jfree/data/category/DefaultIntervalCategoryDatasetTest.java
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1 public void setCategoryKeys(Comparable[] categoryKeys) {

2 ParamChecks.nullNotPermitted(categoryKeys , "categoryKeys");

3 if (categoryKeys.length != getCategoryCount ()) {

4 throw new IllegalArgumentException("The number of

,→ categories does not match the data.");

5 }

6 for (int i = 0; i < categoryKeys.length; i++) {

7 if (categoryKeys[i] == null) {

8 throw new IllegalArgumentException(

,→ "DefaultIntervalCategoryDataset." +

,→ "setCategoryKeys (): " + "null category not

,→ permitted.");

9 }

10 }

11 this.categoryKeys = categoryKeys;

12 fireDatasetChanged ();

13 }

Listing 5.1: Example of a pseudo-tested method in JFreeChart.

1 @Test

2 public void testSetCategoryKeys () {

3 DefaultIntervalCategoryDataset empty = new

,→ DefaultIntervalCategoryDataset(new double[0][0],

,→ new double[0][0]);

4 boolean pass = true;

5 try {

6 empty.setCategoryKeys(new String[0]);

7 }

8 catch (RuntimeException e) {

9 pass = false;

10 }

11 assertTrue(pass);

12 }

Listing 5.2: Test case covering the pseudo-tested method from Listing 5.1.

The test case creates a new instance of the class under test and invokes
the setCategoryKeys(. . .) method on it. It will pass as long as this method
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does not throw an exception of type RuntimeException. This test case is
presumably designed to ensure that the method allows an invocation with
an empty array. To be precise, it will also ensure that the invocation of
fireDatasetChanged() does not result in an exception. Besides that, the
test case does not check anything else and cannot detect if the whole logic is
missing. Because of that and since no other test case covers the method, this
method is pseudo-tested and its code coverage result is misleading. Since
the test does not detect our invasive mutation, it will also not be able to
detect subtler faults in the method (e.g., incomplete array validations, a
missing or inappropriate assignment of the array to the instance variable, or
a missing listener notification).

Another pseudo-tested method is presented in Listing 5.3. The method
createMD5Digest(Collection<String> bases)1 from the project ConQAT
Lib Commons takes a collection as input, sorts the collection items, joins
them to a single value, and returns the thereof computed MD5 digest.

1 public static String createMD5Digest(Collection<String> bases) {

2 List <String > sortedBases = CollectionUtils.sort(bases);

3 return createMD5Digest(StringUtils.concat(sortedBases,

,→ StringUtils.EMPTY_STRING));

4 }

Listing 5.3: Example of a pseudo-tested method in ConQAT Lib Commons.

The test case in Listing 5.42 invokes this method twice with a collection
holding the same elements in a different order. The test then compares
whether both invocations result in the same MD5 value; that is, it intends to
ensure that the computation of the MD5 digest is not sensitive to the order
of the collection’s elements. The way this test is implemented, it uses the
results of the method invocations as source for both the expected value (test
oracle) and the observed value (method output).
1 https://www.cqse.eu/download/conqat/conqat-source-2015.2.zip
org/conqat/lib/commons/digest/Digester.java

2 https://www.cqse.eu/download/conqat/conqat-source-2015.2.zip
org/conqat/lib/commons/digest/DigesterTest.java
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Despite code coverage indicating that this method is fully tested, the test
will not detect any other faults besides the mentioned one. For a method like
this one that returns a string value, the applied mutation operator removes
the whole logic from the method and creates two mutants. The first mutant
will return an empty string. When testing this mutant, the test case will
compare the two empty strings and pass because of their equality. The
second mutant will return a string consisting of the letter “A” and the test
case comparing “A” with “A” will also pass. Consequently, the mutation will
not be detected such that the method is to be considered as pseudo-tested.

1 @Test

2 public void testCreateFingerprintFromCollection () {

3 String digest1 = Digester.createMD5Digest(

,→ Arrays.asList(new String[] { "a", "b", "c" }));

4 String digest2 = Digester.createMD5Digest(

,→ Arrays.asList(new String[] { "c", "b", "a" }));

5 assertEquals(digest1 , digest2);

6 }

Listing 5.4: Test case covering the pseudo-tested method from Listing 5.3.

A third example of a pseudo-tested methods is presented in Listing 5.5.
The method getSortedValues()1 from the Apache Commons Math project
is designed to retrieve previously set values and to sort them.

1 public double [] getSortedValues() {

2 double [] sort = getValues ();

3 Arrays.sort(sort);

4 return sort;

5 }

Listing 5.5: Example of a pseudo-tested method in Apache Commons Math.

1 https://github.com/apache/commons-math/blob/
724795b5513651e1e34fae3904d1b58229ce9c17/src/main/java/org/apache/commons/
math3/stat/descriptive/DescriptiveStatistics.java
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This method is covered only by the test case testGetValues()1 in List-
ing 5.6, which directly invokes it. Besides other statements and assertions
in this test case targeting at other methods, this test case retrieves an array
by invoking the getSortedValues() method. It then iterates over the array
and checks each entry using the assertEquals method.

1 @Test

2 public void testGetValues () {

3 DescriptiveStatistics stats = createDescriptiveStatistics ();

4 for (int i = 100; i > 0; --i) {

5 stats.addValue(i);

6 }

7 int refSum = (100 * 101) / 2;

8 Assert.assertEquals(refSum / 100.0, stats.getMean (), 1E-10);

9 double [] v = stats.getValues ();

10 for (int i = 0; i < v.length; ++i) {

11 Assert.assertEquals (100.0 - i, v[i], 1.0e-10);

12 }

13 double [] s = stats.getSortedValues();

14 for (int i = 0; i < s.length; ++i) {

15 Assert.assertEquals(i + 1.0, s[i], 1.0e-10);

16 }

17 Assert.assertEquals (12.0, stats.getElement (88), 1.0e-10);

18 }

Listing 5.6: Test case covering the pseudo-tested method from Listing 5.5.

The mutated method will return an empty array. Although the test case
checks the array entries, the assertion statement will not be reachable for
an array of length 0 because the body of the loop will never be executed.
Consequently, this test case will not kill the mutant such that the method is
pseudo-tested.

1 https://github.com/apache/commons-math/blob/
724795b5513651e1e34fae3904d1b58229ce9c17/src/test/java/org/apache/commons/
math3/stat/descriptive/DescriptiveStatisticsTest.java
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5.6 Characteristics of Pseudo-Tested Methods

In this section, we study pseudo-tested methods to learn more about their
characteristics.

RQ 1: What functional category do the pseudo-tested methods be-
long to? This research question sheds light on the functional purpose of
pseudo-tested methods. We want to know what kinds of methods are pseudo-
tested to estimate how severe their lack of test effectiveness is for a project.
Some methods may not warrant being tested because they only concern
logging or performance optimizations, but others may be relevant and need
more thorough testing to avoid (regression) faults.

To approach this research question, we first inspected a couple of pseudo-
tested methods and defined functional categories, which characterize the
purpose of a method. Then, we manually assigned exactly one category to
each of the 2,076 pseudo-tested methods. We conducted the classification
based on a method’s name; when we were unsure about a method, we addi-
tionally consulted the method’s code. Finally, we asked another developer,
which was not involved in this study, to classify 100 randomly sampled
pseudo-tested methods based on the category descriptions, and computed
the inter-rater agreement.

The functional categories are as follows. Table 5.3 presents an example of
each category.

• non-deterministic computations: This category comprises methods that
are considered to behave differently at different invocations with the
same input and state. An example is a method that generates a random
number. It is difficult to properly test such methods; therefore, we
assume that they are likely pseudo-tested when covered.

• monitoring: This category comprises methods for logging information
about the program execution or producing other debugging output.

• optimization: Methods in this category intend to reduce computational
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Table 5.3: Functional method categories.

Functional category Examples

non-deterministic nextRandomInt()

monitoring logInfo(String),
dumpMemoryUsage()

optimization addToCache(Object)

validation checkIndex(int),
validateParam(int)

finalization finalize(),
closeStream()

toString toString()

event handling notifyListeners(),
fireValueChange()

object creation createAlgorithm(String),
newNode(Object)

transformation formatDate(Date),
emptyIfNull(String)

preparation initWorkflow(),
setUpBlock()

setter & getter isValid(),
getX(int)

object identity equals(Object),
compareTo(T)

application logic computeLSB(),
solvePhase1()
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efforts by avoiding redundant computations (for example, by caching
results).

• validation: Methods that check the validity of variable values belong
to this category. For example, a method in this category may check
whether a numeric variable’s value is within a certain range.

• finalization: This category contains methods that perform tear-down
operations after a completed action. For example, they may flush a
stream or terminate a connection.

• toString: Java’s toString methods, which provide a string representa-
tion of an object, form this category. Their result is often only used for
debugging purposes, but it can also be used to represent data (e.g., in
the class StringBuilder), which is further processed or displayed to
the user.

• event handling: This category comprises methods that notify listeners
about events when they occur.

• object creation: Methods that create and initialize an instance of a type
belong to this category. Such methods usually determine the class
that should be used for instantiation based on an input value and the
execution context.

• transformation: Methods that format, adjust, or convert a value are in
this category.

• preparation: This category contains methods that perform set-up op-
erations; that is, methods conducting initializations to prepare an
environment, a computation, or another action.

• setter & getter: This category contains non-trivial setters and getters,
which assign and retrieve a value, respectively. Note that very simple
setters and getters consisting of a single statement were omitted from
the mutation analysis (see Section 5.3). Therefore, these methods
contain further logic. For example, a non-trivial setter may validate a
value before assigning it to a field.
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Figure 5.4: Classification of pseudo-tested methods by their functional cate-
gory.

• object identity: This category includes equals methods, which check
whether an object is semantically equal to another one, and compareTo

methods, which determine the natural order of two objects. Note that
hashCode methods, which also concern an object’s identity, were not
in the analysis scope.

• application logic: This category contains methods that concern core
aspects of an application, such as, computation logic or data handling.

The listed categories were ordered by our perceived severity so that meth-
ods in the first categories are assumed to be generally less likely to affect
the correctness of the program execution than the latter ones. For example,
methods that close a stream or dump the current memory consumption
should ideally not be pseudo-tested; however, if they are pseudo-tested and
contain undiscovered faults, their consequences are likely less severe than
of other methods with a higher influence on the program execution.

Figure 5.4 presents the distribution of pseudo-tested methods per func-
tional category aggregated over all study objects. We can see that the major-
ity of pseudo-tested methods (49.5%) belongs to the category “application
logic.” Further, 25.0% belong to non-trivial “setters and getters.” Thereby,
these two categories already account for 74.5% of all pseudo-tested methods.
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We conclude that pseudo-tested methods concern relevant methods such
that their lack of test effectiveness is a relevant problem. The inter-rater
agreement measured with Cohen’s kappa was 0.76. According to Landis and
Koch (1977), this indicates a substantial agreement between the raters.

Vera-Pérez et al. (2017) also confirmed in their study that developers con-
sider flaws in the test suite uncovered by pseudo-tested methods as relevant.
However, according to them, developers do not always give improving tests
the highest priority because this activity requires time and effort, and is in a
resource conflict with bugfixing and development tasks.

In these study objects, the majority of pseudo-testedmethods can be considered
as relevant and should be tested more thoroughly.

RQ 2: How do properties of pseudo-tested methods differ from other
methods? With this research question, we want to find differences between
pseudo-tested methods and the remaining covered methods. If we identify
distinctive properties of pseudo-tested methods, we could exploit them to
reveal pseudo-tested methods with a static code analysis.

To answer this research question, we computed measures about covered
methods and their relationships to test cases. We then applied statistical
tests to analyze whether a method’s mutation testing verdict (pseudo-tested
or not) is correlated with these measures. In particular, we studied whether
the mutation testing verdict is correlated with:

• a method’s return type. We differentiated between “void,” “primitive
and string,” and “object.”

• a method’s length in number of statements.

• a method’s line or branch coverage. We used JaCoCo1 to compute the
coverage. For covered methods without branches, we used 100% as
branch coverage value.

1 https://www.eclemma.org/jacoco
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• a method’s number of covering test cases.

• the minimal scope of a method’s covering test cases. The scope of a test
case corresponds to the number of methods that it covers. We want to
know whether methods that are covered solely by test cases that cover
many methods are more likely pseudo-tested than methods that are
covered by more “target-oriented” test cases.

The mutation testing verdict is on the nominal scale. The method return
type is also on the nominal scale, and all other measures are numeric. We
applied the Chi-squared test to analyze the correlation with the return type
(hypothesis H0: mutation testing verdict and return type are independent).
For all other measures, we applied Spearman’s rank correlation coefficient
because the numeric values are not normally distributed (hypothesis H0: mu-
tation testing verdict and measure are independent). We used a significance
level of 5%.

For the statistical tests, we excluded three projects containing fewer than
15 pseudo-tested methods (DaisyDiff, JSONDoc, and ConQAT dotnet).
We excluded three further projects from the Chi-squared test due to the
test’s requirement that the expected count is at least five for each cell in the
contingency table (Apache Commons Lang, Histone, and Tspmccabe).

The results of the statistical tests are:

• return type: The return type of a method has a statistically significant
influence on the mutation testing verdict in 9 out of 13 projects. Void
methods are more likely pseudo-tested. We believe that test cases
can more easily verify a return value than a changed state such that
faults influencing a return value might be simpler to reveal. Figure 5.5
presents the proportion of pseudo-tested methods out of the mutated
methods by return type.

• method length: This correlation is significant in 9 of 16 projects. The
rho-value is +0.38 for Symja and +0.27 for ConQAT Engine Core,
indicating that longer methods are more likely to be effectively tested
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Figure 5.5: Proportion of methods that are pseudo-tested out of the mutated
methods per return type.

in respect to this mutation operator (i.e., less likely pseudo-tested).
However, the rho-value is below +0.20 for all other projects. It is
surprising that this correlation is not stronger because we consider
our mutation operator to be more severe for longer methods since it
removes “more logic” in those methods.

• line or branch coverage: No statistically significant correlation can be
determined. The correlation of the mutation testing verdict with a
method’s line coverage is in only 5 of 16 projects significant (branch
coverage: 6 of 16). Furthermore, the rho-values do not point towards
a distinct direction. An investigation of the coverage values showed
that 79.7% of the pseudo-tested methods exhibit full line coverage,
and 74.4% have full branch coverage.

• number of covering test cases: The results suggest that methods are
less likely pseudo-tested if they are covered by many test cases. This
correlation is statistically significant in 14 of 16 projects. The rho-
value of the correlation exceeds +0.20 in 5 projects; it reaches +0.42
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in Symja. Nevertheless, a lot of methods exist that are not pseudo-
tested, although they are covered only by a few test cases.

• minimal scope of covering test cases: Methods covered solely by test
cases that invoke many methods are more likely pseudo-tested; that
is, the risk of pseudo-testedness for a method decreases with a lower
minimal scope of its covering test cases. This negative correlation holds
in 13 out of 16 projects. Rho-values reach −0.53 and go below −0.20

in 4 further projects. Therefore, this measure might be useful in some
projects to predict pseudo-tested methods.

Table 5.4 contains the results of the Spearman’s correlation tests separately
for each projects. It also contains the results aggregated over all projects
with unit tests and all projects with integration tests.

The results indicate in some projects that methods are less likely pseudo-tested
if they are covered by many test cases or by test cases that cover only few
other methods.

5.7 Threats to Validity

We separated the threats into internal and external validity. Threats to
internal validity comprise reasons why the results could be invalid for the
study objects. Threats to external validity concern the generalization of the
study results.

Threats to internal validity: To conduct the mutation analysis, we used
the TestAnalyzer tool. Its source code is publicly available on GitHub.1

We developed this tool with great care, implemented automated unit and
integration tests, and manually verified the results of many code samples.
Nevertheless, the implementation could still contain faults that affect analysis
results. Vera-Pérez et al. (2018) developed Descartes, which is a plug-in
1 https://github.com/cqse/test-analyzer
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for PIT and also implements the mutation operator to determine pseudo-
testedness. Using their implementation, Vera-Pérez et al. replicated our first
study presented in Niedermayr et al. (2016). They confirmed our results by
showing that pseudo-tested methods also exist in all their study objects.

Another threat to internal validity is that somemethods considered pseudo-
tested might actually be equivalent mutants. The design of the mutation
operator reduces the likelihood of equivalent mutants due to the invasive
transformation and the use of two mutants for methods returning a primitive
value (see Section 4.2). Furthermore, empty methods were excluded from
the analysis. Therefore, we consider this threat to be negligible.
Vera-Pérez et al. (2017) pointed out that the return values used by the

mutation operator might influence whether a mutant is killed or not. How-
ever, in most cases this should not influence the results when two different
mutants are created.
Non-deterministic tests, especially flickering ones, are a threat to valid-

ity. When such test cases had failed during the initial analysis, they were
excluded, which caused the test suite to shrink. When they had passed
during the initial analysis and (sometimes) failed during the mutant analysis,
they might have killed mutants of methods that are actually pseudo-tested.
Flickering tests are often a problem in tests at higher levels (e.g., in UI tests),
but less common in unit tests. A mitigation strategy could be to execute tests
more than once in the initial analysis.
A threat with similar consequences as with non-deterministic tests is

caused by tests that initially pass but begin to repeatedly fail when the
environment is not properly reset after a test execution. This may occur, for
example, when the execution of mutated code results in modifications of
existing files or when failing tests leave temporary files behind. Even if this
problem applies only to a few tests, it can influence mutation results because
a single failing test is enough for a method to be not pseudo-tested. As with
the previous threat, this threat concerns the mutation analysis and is not
specific to our mutation operator. Future work is necessary to determine the
relevance of this threat.
Study objects that contain test cases that fail on the original code are a
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further threat to internal validity. Failing test cases can occur because of
the test environment or faulty code in the study objects. Some test cases
may rely on further data stored in files, databases with certain data models
and contents, other connected systems, or the network connection. Despite
attempts to supply all needed files in the test execution folder and set up
required databases according to the project documentation, some test cases
still failed. This was the case in Apache Commons Net, which presumably
required certain firewall settings for some of its test cases. Failing test cases
were excluded from the analysis. If the excluded test cases had worked,
they could have killed some mutants that were not killed by the other test
cases and therefore categorized as pseudo-tested. For this reason, we only
selected projects as study objects when nearly all test cases passed on the
original code.
The selection of integration tests in systems is another threat to internal

validity. The corresponding test classes were identified based on accordingly
named source folders, packages, and classes. However, different projects
may have different perceptions of integration tests.
Regarding RQ1, we assigned a functional category to a pseudo-tested

method mostly by considering a method’s name. Even though a method’s
code was inspected in case of uncertainties, it was not feasible to inspect
all pseudo-tested methods due to their number. Therefore, some methods
might actually belong to a functional category other than the assigned one.
To avoid bias, we compared our classification on a random sample of 100
pseudo-tested methods with a second classification conducted by a developer
not involved in the study. The inter-rater agreement yielded a Cohen’s kappa
value of 0.76.

Threats to external validity: A threat to external validity is that the results
of the selected open-source projects might not be applicable to other projects
(e.g., closed-source systems). We tried to mitigate this threat by considering
several projects with different characteristics and application domains as
study objects. This threat is further mitigated by Vera-Pérez et al. (2017),
who replicated our study with 17 additional open-source projects. Further
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studies are still necessary to determine whether the results apply to closed-
source projects. According to Petrović and Ivanković (2018), mutation
testing results are affected by the programming language; therefore, the
same applies to projects in other languages than Java.

5.8 Summary

We conducted a mutation analysis to identify pseudo-tested methods and
analyzed the resulting methods. Pseudo-tested methods are present in all
19 open-source projects. The proportion of pseudo-tested methods out of
the mutated covered methods varies among projects and is between 1.1%
and 42.3%. Higher proportions are achieved in projects with integration
tests. Pseudo-tested methods are reported to be covered by test cases, but
this is misleading and gives a false sense of effectiveness, since tests cannot
find faults in them.

Nearly 75% of the pseudo-tested methods concern the application logic or
are non-trivial setters and getters; therefore, we consider their lack of test
effectiveness to be a relevant problem.
Finally, we identified correlations in some projects, which indicates that

methods are less likely to be pseudo-tested if they are covered by many
test cases or by test cases that cover only few other methods. The next
chapter looks at whether a machine-learning model, which combines several
measures, can predict pseudo-tested methods without executing a mutation
analysis.
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Predicting
Pseudo-Tested Methods

This chapter introduces the minimal stack distance as a measure to describe
the proximity between test cases and methods. It presents a machine-learning
classifier that uses this measure, along with further easily computable measures,
and shows that pseudo-tested methods can successfully be predicted using this
classifier.
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6.1 Motivation

Even when it focuses on pseudo-tested methods, mutation testing may be
too expensive or not applicable due to technical reasons in large, complex
software systems (Jia and Harman, 2011). At the same time, code coverage
is not necessarily meaningful enough to assess test suites (Inozemtseva and
Holmes, 2014). Therefore, this chapter examines whether pseudo-tested
methods can be predicted using a machine-learning model based on metrics,
which characterize methods, test cases, and their relationships. The aim is
to reduce the effort involved in identifying pseudo-tested code.
The underlying assumption for predicting pseudo-tested methods is that

a test case that directly invokes a method is more likely to detect faults
in it than another test case that accesses this method indirectly through
many other methods. In other words, we assume that a method that is solely
invoked by distant test cases is more likely to be pseudo-tested. The rationale
behind this assumption is that a faulty state needs to be propagated through
many methods until it reaches the test case, which contains the assertions.
For methods invoked solely by distant test cases, the attainment of the RIPR
model’s reachability criterion (see Section 2.2) is impeded.
To operationalize this assumption, we propose a new measure called

minimal stack distance, which expresses how close a test case comes to a
given method. The present chapter defines this measure and describes its
computation. It also studies whether a correlation exists between a method’s
minimal stack distance to all test cases and its mutation testing verdict, which
expresses whether the method is pseudo-tested or not. Finally, we train
a machine-learning model using stack distance values along with further
measures, which can be collected in a single execution of a test suite, and
evaluate the model’s performance. The results suggest that such prediction
models can be an alternative to mutation testing in scenarios where mutation
testing takes too long or is not applicable due to other (technical) reasons. For
example, prediction models could be employed in a continuous-integration
pipeline.
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The main contributions of this chapter are: First, we propose and study
the minimal stack distance measure, which characterizes the proximity of
a method to any of its test cases. Second, we evaluate a machine-learning
classifier based on test-case method characteristics and show that classifiers
to predict a method’s mutation testing verdict can come into question as an
alternative to mutation testing or as a preceding, less costly step.

Parts of the content of this chapter have been published in Niedermayr
and Wagner (2019).

6.2 Definitions

We define the minimal stack distance between a method m and a test case t
as the length of the shortest path from t to m on the dynamic call graph.1

The value is 1 for a method that is directly invoked by a given test case and,
for example, 2 for a method that is indirectly invoked by a given test case
through one other method.

We define theminimal stack distance of a method m as the shortest distance
on the dynamic call graph between m and any of its covering test cases
t ∈ T : covt(m). It corresponds to the minimal distance on the call stack
between the method m and all test cases. Figure 6.1 illustrates an example.

M8

T2

T1

M2

M7

M6

M4
M3

M5M1

Figure 6.1: The minimal stack distance of method M8 is 3. No test case can
access M8 through fewer method invocations.

1 We define and apply minimal stack distance based on methods. However, the definitions are
also applicable to functions in non-object-oriented programming languages.
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A method is considered covered if it is executed by at least one test case.
The mutation testing verdict of a covered method can either take the value
pseudo-tested or tested. We also use commonmutation testing terms explained
in Section 2.4.1.

6.3 Approach

The following describes the computation of the minimal stack distance for
Java applications, although this measure is also applicable to other program-
ming languages. The steps to compute the minimal stack distance comprise
the instrumentation of the code, the replacement of Java’s Thread class, and
the recording of method invocations during the test execution. Figure 6.2
presents an overview of the computation.

(1) Instrumentation: Each method of the application code needs to be
instrumented so that the stack-recorder class is notified when a method
is entered and exited. To instrument a method, we inserted a statement
at the beginning of the method, which calls the recorder class with the
signature of the considered method. A further statement is needed,
which informs the recorder that the method invocation needs to be
removed from the current stack when the method is left. To ensure
that this statement is executed for each execution path, we introduced

Figure 6.2: Overview of the stack distance computation.
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a try-finally block, moved the original code into the try block, and
inserted the statement into the new finally block. The finally block is
always invoked when the method is left (even if an exception is raised
or propagated).

To conduct the code instrumentation, we developed a Maven plug-in,
which operates at the byte-code level and uses the ASM1 library. The
decompiled source code of an instrumented method might look as
follows:

1 public int getSize () {

2 StackRecorder.push("org.SampleClass.getSize ()");

3 try {

4 /* BEGIN ORIGINAL CODE */

5 return this.size;

6 /* END ORIGINAL CODE */

7 } finally {

8 StackRecorder.pop("org.SampleClass.getSize ()");

9 }

10 }

Listing 6.1: Example of an instrumented method.

(2) Thread class replacement: Tests may cover code that is concurrently
executed. To avoid that the stack recorder puts method invocations
from concurrent threads onto the same stack, the computation of the
minimal stack distance needs to be thread-aware. This means that
the current stack height needs to be recorded separately for each
thread. To achieve that, it is necessary to be notified when a new
thread is started and know the dependencies between the threads.
Since Java’s Thread class does not provide the possibility to register
listeners, we took the original code from the Java Development Kit
(JDK) and adjusted it so that the stack-recorder class is informed about
the start of a new thread. We compiled the modified thread class and
put it into the JDK’s “endorsed” folder, which allows replacing existing

1 http://asm.ow2.io
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Java classes. The replacement of the thread class does not influence
test results.

(3) Recording: The final step is to execute the test suite and record the
distances between test cases and methods. We used Maven’s Surefire
plug-in for the execution of unit tests and Failsafe plug-in for integration
tests, and registered the stack-recorder class as a test listener in these
plug-ins. Hence, the recorder will be notified when a new test case
execution begins and can assign all subsequent method invocations to
that test case. When a test case execution starts and an instrumented
method is entered, the method’s signature is pushed onto the recorder’s
stack of the current thread. The stack’s height is then counted and, if
appropriate, the distance from the executed test case to the start of
the current thread is added. If the resulting distance constitutes a new
minimum for a given test-case method pair, the pair’s minimal stack
distance value is updated. When an instrumented method is left, its
signature is removed from the stack of the appropriate thread.

If a method is invoked recursively, the height of the stack increases
with each invocation; however, we are only interested in the minimal
stack distance of each test-case method pair.

In short, the recorder class holds the so-far minimal stack distance of
each executed test-case method pair, the method invocations on the
stack of each thread, and the relations between the threads. At the
end of each test case execution, the minimal stack distance values are
retained.

Another imaginable approach to compute the stack height by requesting
the current thread to dump its stack trace (as done when creating exceptions)
is not fast enough to viably do the computation in test executions.

The presented approach has the following limitations. We applied the
instrumentation to all methods except constructors, which we excluded
because they are difficult to instrument in such a way that their beginning is
correctly intercepted. This is due to the fact that a constructor’s very first
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statement unavoidably delegates to another constructor or a super construc-
tor such that the code there gets executed first. Consequently, constructor
invocations will not be counted when computing the stack distance. Never-
theless, methods invoked by constructors are still considered. Furthermore,
external libraries are not instrumented, which means that the method in-
vocations in external libraries are not counted. The consequence of both
limitations is that the computed stack distance will, in some cases, be slightly
lower than the actual distance. Hence, the computed minimal stack distances
should be considered as a lower bound.

6.4 Study

This section reports on the design and results of the empirical study that
investigated the minimal stack distance and examined how well the mutation
testing verdict of a method can be predicted.

6.4.1 Research Questions

The following research questions were investigated:

RQ 1: Are methods with a higher minimal stack distance to the test
cases more likely to be pseudo-tested? The purpose of this research ques-
tion is to find out whether the minimal stack distance of a method is cor-
related with the mutation testing verdict expressing whether the method
is pseudo-tested or not. We hypothesized that a test case that never comes
close to a given method is not effective in detecting faults in that method.
Consequently, we expected that a method tested only by distant test cases
would be less effectively tested; in other words, that methods with a high
minimal stack distance are more likely to be pseudo-tested. The answer
to this question helps determine whether stack distance can be a useful
predictor of pseudo-tested methods.

RQ 2: How well can the mutation testing verdict be predicted using

6.4 | Study 107



test-relationship measures? Since mutation testing is costly, we wanted to
find out whether a light-weight approach could approximate results gained
from a mutation analysis. We were interested in predicting a method’s
mutation testing verdict based on measures characterizing relationships
between methods and test cases. If such a prediction approach works well,
it could be used as an alternative to mutation testing or as a preceding, less
costly step.

6.4.2 Study Objects

We selected study objects from GitHub1 based on the following criteria.
The projects need to be written in Java, contain test cases designed for
the JUnit test framework, and use Maven as build system. We manually
selected five Apache projects (Commons Geometry, Commons Imaging,
Commons Lang, Commons Math, Commons Statistics), and JFreeChart,
which are popular open-source projects used in several empirical test studies
(e.g., in Hemmati (2015), Inozemtseva and Holmes (2014), and Just et al.
(2014b)). We selected additional study objects that satisfy the previously
mentioned criteria by searching GitHub for recently updated projects with at
least five forks (to require a certain popularity). We excluded a project if it
was not possible to build it (e.g., due to compilation problems or unresolvable
dependencies), if more than 5% of the test cases failed in a local execution
of the original test suite, or if the mutation analysis was not successful (e.g.,
due to special test runners or class-loading mechanisms).

The selected study objects are from different domains and contain single-
and multi-module Maven projects. Their characteristics are presented in
Table 6.1. LOC (lines of code) refers to the application code (i.e., code
without test and sample code) and was measured with Teamscale (Haas
et al., 2019c). #Tests refers to the number of test cases as reported by
Maven. Line and branch coverage were computed with JaCoCo.2 The largest
project, biojava, consists of 240.6 k LOC. Commons Math contains with

1 https://github.com
2 https://www.eclemma.org/jacoco
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5,254 the most test cases. The line coverage of the projects ranges between
28.0% and 95.0%.

6.4.3 Study Design

The research questions were approached as explained below.

RQ 1: We hypothesized that the higher the minimal stack distance of a
method is to any test case, the more likely the method is to be pseudo-tested.
To test this hypothesis, we analyzed whether a correlation exists between a
method’s minimal stack distance to any test case and its mutation testing
verdict (i.e., whether a method is pseudo-tested by all test cases or not).
For each project, we computed the Spearman’s rank correlation coefficient,
which expresses the strength of this relationship (between −1 and +1),
and the p-value, using a significance level of 5%. Moreover, we present
plots illustrating the proportion of pseudo-tested methods per minimal stack
distance value.

RQ 2: To answer this research question, further measures, besides min-
imal stack distance, were collected of each covered method. The selected
measures can all be computed either using a static analysis or alongside a
single execution of a test suite. The measures are:

• Line count: number of coverable lines of code in a method

• Branch count: number of branches

• Line coverage: proportion of covered lines out of coverable lines

• Branch coverage: proportion of covered branches out of coverable
branches (100% for covered methods without branches)

• Number of covering test cases: number of test cases that execute a
method

• Scope of covering test cases: minimum number of covered methods of
any of a method’s covering test cases (i.e., how many other methods
besides the considered method the test cases cover at a minimum)
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• Maximum invocation count: maximum number of invocations of a
method during the execution of any covering test case

• Return type of a method: void, boolean, numeric, string, array, refer-
ence to object

For each project, one machine-learning classifier was trained to predict a
method’s mutation testing verdict with respect to all covering test cases, and
one was trained to predict the mutation testing verdict of a test-case method
pair.

We evaluated the performance of the models with respect to within-project
and cross-project predictions. Within-project evaluations show how well
predictions work when models are trained on a data-subset of the same
project, while cross-project evaluations indicate how well models can be
generalized to conduct predictions in other projects. For within-project
predictions, repeated 10-fold cross-validation was applied (Kohavi, 1995).
For cross-project predictions, each project was tested with a model that is
trained on the respective remaining projects.
We measured model performance by computing precision, recall, and

F-score. Following Zhang et al. (2018), we predicted both outcomes (pseudo-
tested and tested) and used the weighted average of the performance metrics
(i.e., “each metric is weighted according to the number of instances with the
particular class label”). We also reported the performance of the outcome
pseudo-tested because methods with this outcome represent the minority
class, which makes this outcome more difficult to predict.

Furthermore, we show the prediction model’s variable importances of one
project, as an example.

6.4.4 Data Collection and Processing

To collect data for the study, we first executed the test suite of each study
object and recorded the minimal stack distance of each test-case method pair.
The recording of the stack distance was carried out as defined in Section 6.2
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Table 6.2: Example of a full mutation matrix.

Method Test case Mutation testing verdict

m1 t1 pseudo-tested
m1 t2 tested
m2 t2 pseudo-tested

and described in Section 6.3. Note that we were working on the existing
test suites of the projects; that is, we did not generate test cases.

Second, we conducted a mutation analysis for each study object. For that,
we used PIT (Coles et al., 2016) in version 1.4.0 with the pit-mp extension
to support multi-module projects. PIT is a well-known mutation testing tool
for Java applications and has been used in several studies (e.g., Ahmed et al.
(2016), Gopinath et al. (2015), and Gopinath et al. (2016)). As performance
optimization, PIT aborts the analysis of a mutant after the mutant is first
killed by a test case. For the present study, however, a full mutation matrix
was required, which contains the verdict (killed or survived) of each mutant
for each covering test case. Therefore, we adjusted PIT to compute a full
mutation matrix, as proposed by Ahmed et al. (2016). Table 6.2 presents an
example of such a matrix.1

PIT was used with the Descartes plug-in (Vera-Pérez et al., 2018) in version
1.2.4. This plug-in extends PIT with the mutation operator to uncover pseudo-
tested methods (see Section 4.4.2) and uses the return values presented
in Table 6.3. We aggregated the analysis results for each method; when
two mutants are created, a method is only considered pseudo-tested if both
mutants cannot be killed by any test case.

We excluded empty methods and methods solely returning null from the
analysis because their mutation would result in an equivalent mutant. We
also excluded hashCode methods because mutation testing is not suitable for
assessing their testing state. We further excluded constructors because, as
described in the limitations of the stack distance computation in Section 6.3,
1 Although PIT also reports mutants for uncovered methods, we are only interested in mutants
that are covered by at least one test case.
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Table 6.3: Return values of the Descartes implementation of the operator.

Return type Mutant 1 Mutant 2

void (void) (not created)
boolean false true
byte, short, int, long 0 1
float, double 0.0 0.1
char ’ ’ ’A’
string "" "A"
T[] new T[]{} (not created)
reference type null (not created)

we could not compute reliable stack distance values of these special methods.
Moreover, we excluded generated code, which was present for example in
bitcoinj, because the code is automatically re-generated during the build
process and not designed to be tested.
We collected further measures to enhance the prediction model applied

in RQ2. For that, we used JaCoCo to compute a method’s number of lines
and branches, as well as line and branch coverage values. The number of
covering test cases per method and their scope was computed based on the
full mutation matrix. The method’s invocation count during a test execution
was collected alongside the stack distance recording. Finally, the return type
of a method was deduced from the mutation testing output.

We processed data with the statistical software R.1 We trained and evalu-
ated prediction models with R’s caret package (Kuhn et al., 2017). Random
Forest was selected as the machine-learning algorithm because preliminary
experiments on our datasets revealed that it achieved the best performance.
adaboost achieved an almost equal performance, but was approximately
11 times slower. Zhang et al. (2018) also used random forest for their
predictions.

1 https://cran.r-project.org
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Table 6.4: Overview of the mutation analysis results.

Project Pseudo-tested methods out of all mutated methods
# % ↓

scifio 154 32.0%
pdfbox 829 26.3%
biojava 1,147 24.4%
traccar 193 22.4%
Commons Imag 244 21.4%
openwayback 166 18.6%
JFreeChart 754 17.7%
Google HTTP 145 16.5%
javaparser 293 14.0%
graphhopper 252 11.5%
geometry API 224 9.9%
vectorz 339 8.0%
jackson-db 307 7.8%
bitcoinj 77 4.7%
jsoup 37 4.4%
urban-airship 78 3.5%
Commons Geom 20 2.8%
gson 15 2.8%
Commons Math 129 2.7%
Commons Stat 7 2.6%
Commons Lang 43 1.7%

median 166 9.9%

6.4.5 Results

Before addressing the research questions, Table 6.4 presents the absolute
and relative number of pseudo-tested methods of each project, as computed
in the mutation analysis. Depending on the project, between 1.7% and
32.0% of the mutated methods are pseudo-tested. The proportion is low
in gson and four of the Apache projects, indicating that methods in these
projects are tested more effectively than in the other projects. By contrast,
the proportion of pseudo-tested methods in scifio, pdfbox, and biojava is
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Table 6.5: RQ1: Spearman’s correlation coefficient between a method’s
minimal stack distance and its mutation testing verdict. Absolute
coefficient values ≥ 0.2 and p-values < 0.05 are highlighted.

Project Coefficient ↓ p-value

JFreeChart +0.58 <0.001
scifio +0.48 <0.001
javaparser +0.41 <0.001
Commons Stat +0.35 <0.001
traccar +0.33 <0.001
pdfbox +0.31 <0.001
biojava +0.29 <0.001
graphhopper +0.24 <0.001
Commons Lang +0.21 <0.001
bitcoinj +0.20 <0.001
jackson-db +0.18 <0.001
jsoup +0.18 <0.001
Commons Geom +0.17 <0.001
Commons Imag +0.16 <0.001
geometry API +0.15 <0.001
openwayback +0.14 <0.001
gson +0.13 0.003
urban-airship +0.11 <0.001
Commons Math +0.08 <0.001
vectorz +0.07 <0.001
Google HTTP −0.17 <0.001

above average.

RQ 1: Are methods with a higher minimal stack distance to the test
cases more likely to be pseudo-tested? Table 6.5 shows the results of the
Spearman’s correlation test between a method’s minimal stack distance and
mutation testing verdict.
We observed that a statistically significant correlation exists in all 21

projects (p-value < 0.05). The positive correlation coefficients indicate that
the proportion of pseudo-tested methods increases with increasing stack dis-
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tance values. The strongest correlation is achieved in the project JFreeChart
with a correlation coefficient of 0.58. When looking at this project’s test
code, it was striking that the test cases contain many assertions. A moderate
correlation with a coefficient between 0.3 and 0.5 is present in five further
projects. A weak correlation is present in the remaining projects. In the
project Google HTTP a weak negative correlation is observed; however, in
this project, the minimal stack distance does not exceed the value 2 in 81%
of the methods. The overall correlation based on data from all projects is
statistically significant and exhibits +0.26 as coefficient.

The red line in Figure 6.3 presents the proportion of pseudo-tested meth-
ods per minimal stack distance value. In the project JFreeChart, more
than 50% of the methods with a minimal stack distance higher than 3 are
pseudo-tested.
The illustration in Figure 6.4 indicates that the correlation between a

method’s minimal stack distance and its mutation testing verdict is generally
stronger in larger projects with a high proportion of pseudo-tested methods.
(The correlation between the project’s correlation coefficient and these two
project characteristics is 0.4 in each case.)

Methods with a higher minimal stack distance to covering test cases are more
likely to be pseudo-tested.

RQ 2: How well can the mutation testing verdict be predicted using
test-relationship measures? Table 6.6 presents the classifier’s precision,
recall, and F-score of the within-project prediction of a method’s mutation
testing verdict. As described in Section 6.4.3, the performance measures
constitute the weighted average of the outcomes pseudo-tested and tested.
Median precision is 92.9%, and median recall is 93.4%. When conduct-
ing cross-project prediction at the same level, median precision and recall
deteriorate to 85.6% and 88.1%, respectively.
Pseudo-tested methods represent the minority class and are therefore

more difficult to predict. Table 6.7 shows the within-project prediction
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Figure 6.4: The projects’ proportion of pseudo-tested methods (x-axis),
project size in k LOC (y-axis), and the strength of the correlation
between a method’s minimal stack distance and its mutation
testing verdict from Table 6.5 (color).

performance for identifying pseudo-tested methods. Median precision of
this outcome is 70.7% and median recall is 34.3%. In the best case, 96.6%
precision and 100% recall are still achieved (Commons Stat).
Figure 6.5 presents the variable importance of JFreechart’s within-

project prediction model. The figure shows that the minimal stack distance
and the minimal scope value of a method’s covering test cases (the scope of
a test case expresses how many methods it covers) are the most important
variables for the prediction model.

Cross-project prediction for identifying pseudo-tested methods achieves
poor performance. Even when additionally pre-processing training sets with
synthetic minority over-sampling technique (SMOTE) (Chawla et al., 2002),
median precision is only 19.2% and median recall is 43.2%. Hence, cross-
project prediction is not well suited to uncovering pseudo-tested methods.
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Table 6.6: RQ2: Performance when predicting a method’s mutation testing
verdict.

Project Precision Recall F-score ↓

Commons Stat 99.9% 99.9% 99.9%
Commons Lang 98.8% 98.9% 98.7%
gson 97.5% 97.7% 97.1%
Commons Math 96.7% 97.5% 96.7%
Commons Geom 96.2% 97.2% 96.4%
urban-airship 96.3% 96.9% 96.3%
Google HTTP 95.1% 95.1% 94.9%
jsoup 94.1% 95.6% 94.3%
bitcoinj 93.7% 95.3% 94.0%
JFreeChart 93.1% 93.4% 93.1%
javaparser 92.9% 93.2% 92.8%
vectorz 92.5% 93.5% 92.4%
jackson-db 91.5% 93.0% 91.7%
graphhopper 89.5% 90.8% 89.3%
geometry API 86.6% 90.0% 87.1%
traccar 86.8% 87.1% 86.9%
Commons Imag 87.2% 87.7% 86.8%
biojava 85.1% 85.7% 85.1%
pdfbox 84.1% 84.7% 83.8%
openwayback 81.3% 83.5% 81.4%
scifio 78.7% 79.0% 78.8%

median 92.9% 93.4% 92.8%

The mutation testing verdict of a method can on average be predicted with
92.9% precision and 93.4% recall. Cross-project prediction is more challeng-
ing and achieves weaker performance.

The above results concern the prediction of a method’s mutation testing
verdict with respect to all test cases. For other use cases, such as enhancing
test case prioritization with test effectiveness information, it can also be
useful to predict the mutation testing verdict of a test-case method pair.
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Table 6.7: RQ2: Performance when predicting pseudo-tested methods.

Project Precision Recall F-score ↓

Commons Stat 96.6% 100.0% 98.2%
Google HTTP 94.6% 74.8% 83.5%
JFreeChart 87.0% 73.4% 79.6%
javaparser 84.1% 63.4% 72.3%
traccar 72.6% 68.0% 70.2%
biojava 76.4% 59.9% 67.1%
pdfbox 78.4% 57.6% 66.4%
scifio 68.5% 63.8% 66.1%
Commons Imag 81.1% 55.5% 65.9%
Commons Lang 85.5% 41.3% 55.7%
graphhopper 70.6% 34.3% 46.2%
vectorz 70.7% 32.5% 44.5%
openwayback 60.7% 32.5% 42.4%
urban-airship 64.2% 27.6% 38.6%
jackson-db 61.4% 26.6% 37.1%
gson 87.5% 23.3% 36.8%
Commons Math 60.3% 15.9% 25.2%
Commons Geom 50.0% 15.0% 23.1%
bitcoinj 50.0% 13.0% 20.6%
jsoup 51.5% 11.5% 18.8%
geometry API 46.9% 11.0% 17.9%

median 70.7% 34.3% 46.2%

Table 6.8 presents the within-project performance when predicting the muta-
tion testing verdict of a test-case method pair. At this level, median precision
and recall are 84.8% and 85.3%, respectively. When focusing on the outcome
pseudo-tested, median precision and recall still achieve 82.4% and 71.7%,
respectively.
Hence, the prediction achieves promising results when working on test-

case method pairs. One reason for this is that, unlike when predicting the
mutation testing verdict of a method with respect to all test cases, test case
metrics are not aggregated.
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Figure 6.5: RQ2: Variable importance of JFreeChart’s prediction model
(scaled to one).

Pseudo-tested test-case method pairs can be predicted with 82.4% precision
and 71.7% recall, on average.

Zhang et al. (2018) achieved precision and recall values of around 90%
(depending on project and scenario). They only presented performance mea-
sures aggregated of both outcomes. Although an in-depth comparison with
their results does not seem sensible—because they predicted for different
mutation operators, used other metrics, and included methods not covered
by any test case—we can still say that the prediction performance is roughly
comparable.

6.4.6 Threats to Validity

We separated the threats to validity into internal and external threats.

Threats to internal validity: The computation of the stack distance is a
threat to internal validity. Although great care was taken when developing
the computation logic, the implementation could contain faults that affect
the outcome. To mitigate this threat, we verified computed values of different
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Table 6.8: RQ2: Performance when predicting the mutation testing verdict
of a test-case method pair.

Project Precision Recall F-score ↓

scifio 92.8% 92.8% 92.8%
Commons Stat 92.1% 92.4% 91.7%
Commons Geom 90.8% 91.2% 90.4%
javaparser 90.1% 90.2% 90.1%
urban-airship 89.1% 90.2% 88.7%
Google HTTP 88.4% 88.6% 88.2%
gson 87.9% 88.0% 87.9%
Commons Lang 87.5% 87.8% 86.8%
JFreeChart 86.5% 86.5% 86.4%
bitcoinj 86.1% 86.1% 86.1%
Commons Math 85.2% 85.7% 85.1%
traccar 85.1% 85.0% 85.1%
vectorz 85.4% 86.6% 84.9%
jsoup 84.4% 84.9% 84.1%
pdfbox 83.8% 83.8% 83.8%
Commons Imag 82.5% 82.7% 82.2%
biojava 81.7% 81.7% 81.5%
openwayback 80.9% 80.8% 80.8%
graphhopper 80.6% 80.7% 80.5%
geometry API 77.6% 78.1% 77.4%
jackson-db 72.4% 72.4% 72.4%

median 85.4% 86.1% 85.1%

code samples and developed automated tests to check the implementation.
In addition, the source code of our tool1 can be inspected on GitHub.
The same applies to the conducted extension of the PIT mutation testing

tool to enable computing a full mutation matrix. To mitigate this threat, we
created a pull request (Niedermayr, 2018), which was carefully reviewed
and merged by the head developer of PIT.

Some of the generated mutants may be equivalent mutants, which differ

1 https://github.com/cqse/test-analyzer
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syntactically but not semantically from the original source code, and, there-
fore cannot be killed (Grün et al., 2009). Consequently, some of the methods
that were identified to be pseudo-tested could be equivalent mutants and
affect the results. Due to the design of the mutation operator (see Sec-
tion 4.3) and the exclusion of empty methods and methods returning null,
the number of equivalent mutants is expected to be negligible (Niedermayr
et al., 2016). A manual review on a sample of 30 pseudo-tested methods
confirmed this observation.

Threats to external validity: Although we selected 21 study objects with
different characteristics, the selection of the projects poses a threat to external
validity. Since we chose only open-source projects that use Maven as build
system and in which nearly all tests succeed, the sample may contain an
over-representation of well-engineered projects with mature test suites.
Therefore, future work is necessary in order to determine whether the
results are generalizable for Java projects and projects in other programming
languages.

6.5 Discussion

The study’s results show that the correlation between a method’s minimal
stack distance and its mutation testing verdict is moderate to strong in six
projects, and also present in further projects to lower degrees. The correla-
tion is generally stronger in larger projects (JFreeChart, biojava, pdfbox),
which also exhibit higher minimal stack distance values. In large, multi-
module projects, some methods are only tested by integration tests, which
usually have a higher distance to many of the covered methods than a unit
test has. In such projects, the minimal stack distance can provide valuable
insights into the testing state of methods, thereby providing additional value
to coverage information.

The evaluation of the prediction models shows that machine-learning mod-
els can successfully predict the mutation testing verdict of a method. Hence,
such models can be considered as a light-weight alternative to a mutation
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Figure 6.6: Duration of analyses in hours and slowdown factor based on the
normal test suite execution.

analysis. To point out possible time savings, Figure 6.6 shows the duration
of different analyses exemplarily of four projects. The current—not yet
performance-optimized—implementation for recording the minimal stack
distance slows the test execution down by a single-digit factor. Nonethe-
less, a prediction model using this metric can achieve significant savings
compared to the execution of a mutation analysis. The analysis with the
state-of-the-art mutation testing tool PIT takes approximately 50–200 times
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as long as a single execution of the corresponding test suite. In the project
biojava, an analysis with the pseudo-testedness mutation operator that stops
assessing a mutant after encountering the first killing test case took 23 hours
(approx. 50 times the duration of the test suite execution), and an analysis
to compute a full mutation matrix took more than 46 hours (101 times the
duration of the test execution). Consequently, prediction models can be an
alternative for projects in which a mutation analysis is not applicable due to
a long duration.

6.6 Summary

We proposed and studied the minimal stack distance measure, which de-
scribes the proximity of a method to any of its test cases. The results indicate
that a correlation exists between this measure and a method’s mutation
testing verdict. Hence, we suggest that the minimal stack distance measure
can be a useful indicator for determining whether a method is pseudo-tested.
Classifiers that predict a method’s mutation testing verdict achieve a median
precision of 92.9% and recall of 93.4%. The measures needed for such
a classifier can be computed in a single test suite execution. By contrast,
mutation testing takes by orders of magnitude longer, often resulting in an
analysis duration of several hours, days, or weeks, depending on the size
of an application. Therefore, we suggest considering such classifiers as a
light-weight alternative to mutation testing or as a preceding, less costly step.
In particular, the classifiers can be a reasonable alternative in continuous
integration. Furthermore, they can be useful for projects in which a mutation
analysis is not applicable, which can be due to the analysis duration or other
issues (e.g., the use of special class loaders or special dependency-injection
mechanisms).
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This chapter describes how methods can be identified that do not necessarily
need to be tested due to a low fault risk. These methods can be omitted from a
mutation analysis to make it even faster and its results more relevant.
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7.1 Motivation

In a perfect world, it would be possible to completely test every new version
of a software application before it was deployed into production. In practice,
however, software development teams often face a problem of scarce test
resources. Developers are busy implementing features and bugfixes, and may
lack time to develop enough automated tests to comprehensively test new
code (Menzies and Di Stefano, 2004; Ostrand et al., 2005). Furthermore,
testing is costly and, depending on the criticality of a system, it may not be
cost-effective to expend equal test effort to all components (Zhang et al.,
2007). Hence, to cope with the problem of scarce test resources, development
teams need to prioritize and limit their testing scope by restricting the
code regions to be tested (Bertolino, 2007; Menzies et al., 2003); that is,
development teams aim to focus testing on code regions that have the best
cost-benefit ratio regarding fault detection. To support development teams
in this activity, defect prediction has been developed and studied extensively
in the last decades (Catal, 2011; D’Ambros et al., 2012; Hall et al., 2012).
Defect prediction identifies code regions that are likely to contain a fault
and should therefore be tested (Menzies et al., 2007; Weyuker and Ostrand,
2008).

For example, methods vary in the complexity of their code. Some methods
contain a lot of code with a complex control flow and deep nesting. Other
methods are short and just do a simple task, such as, delegating a method
call or returning a stored value. Hence, it is evident that not all methods
share the same fault risk and not all methods justify the same testing efforts.
Although recent research in defect prediction shows progress in cross-

project predictions (Xia et al., 2016; Xu et al., 2018; Zhang et al., 2016),
defect-prediction models often face the problem that they are only applicable
to the project on which the model was trained; that is, they are not general-
izable to other projects (He et al., 2012; Turhan et al., 2009; Zimmermann
et al., 2009). This is a problem because precise data to train such models is
difficult to obtain (Shippey et al., 2016).
In this chapter, we suggest, implement, and evaluate another view on
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defect prediction: inverse defect prediction (IDP). The idea behind IDP is
to identify code artifacts (e.g., methods) that are very unlikely to exhibit
any faults due to their source code’s characteristics so that they can be
deferred or ignored in testing. Hence, instead of identifying methods that
are likely to contain a fault, we focus on methods with trivial code, which
may be less project-specific than complex methods, allowing the models to
be generalizable. We investigate whether such low-fault-risk methods exist
and study whether IDP can reliably identify these methods. Our goal is not
to predict all methods that do not contain any faults in the training set; we
want to optimize for precision and classify a method as “low fault risk” only
if we are very certain. To implement IDP, we calculated code metrics for
each method of a code base and trained a classifier for methods with low
fault risk using association rule mining. To evaluate IDP, we performed an
empirical study with the Defects4J dataset (Just et al., 2014b) consisting of
real faults from six open-source projects. We applied static code analysis
and classifier learning on these code bases and evaluated the performance in
with-in project and cross-project prediction scenarios. Our results show that
IDP can be used to identify low-fault-risk methods and is also well applicable
in cross-project predictions. We suggest that low-fault-risk methods would be
too trivial to test and conclude that they constitute only a very low risk when
they are pseudo-tested. Hence, the identified methods can be excluded from
a mutation analysis to allow focusing on the more relevant methods and to
further reduce the analysis duration. Besides that, the identification of such
low-fault-risk method can support a better allocation of quality-assurance
resources, for example, when prioritizing testing efforts for changed code
that is not covered by any test cases yet.

The main contributions of this chapter are:

• We present the idea of an inverse view on defect prediction. While
defect prediction has been studied extensively in the last decades, it
has always been employed to identify code regions with high fault risk.
To the best of our knowledge, this is the first study explicitly targeting
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the identification of code regions with low fault risk.

• We present an empirical study to evaluate the performance of IDP on
open-source projects with real faults.

• We provide an extension to the Defects4J dataset (Just et al., 2014b).
To improve data quality and enable further research—reproduction in
particular—we provide code metrics for all methods in the code bases
and an indication whether they were changed in a bugfix patch, a list
of methods that changed in bugfixes only to preserve API compatibility,
and association rules to identify low-fault-risk methods.

Parts of the content of this chapter have been published in Niedermayr
et al. (2018b) and Niedermayr et al. (2019).

7.2 Approach

This section describes the inverse defect prediction approach, which identifies
low-fault-risk methods. The approach comprises the computation of source-
code metrics for each method, the data pre-processing before the mining,
and the association rule mining. Figure 7.1 illustrates the steps.

7.2.1 Metric Computation

Like defect prediction models, IDP uses metrics to train a classifier for identi-
fying low-fault-risk methods. For each method, we compute the source-code
metrics listed in Table 7.1 that we considered relevant to judge whether a
method is trivial. They comprise established length and complexity metrics
used in defect prediction, metrics regarding occurrences of programming-
language constructs, and categories describing the purpose of a method.
Source lines of code (SLOC) is a metric to measure the number of source

lines of code; that is, LOC without empty lines and comments. Cyclomatic
Complexity corresponds to the metric proposed by McCabe (1976). Despite
this metric being controversial (Hummel, 2014; Shepperd, 1988)—due
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Table 7.1: Computed metrics for each method.
Metric name Type

M1 Source Lines of Code (SLOC) length
M2 Cyclomatic Complexity complexity
M3 Max. Nesting Depth max. value
M4 Max. Method Chaining max. value
M5 Unique Variable Identifiers unique count

M6 Anonymous Class Declarations count
M7 Arithmetic In- or Decrementations count
M8 Arithmetic Infix Operations count
M9 Array Accesses count

M10 Array Creations count
M11 Assignments count
M12 Boolean Operators count
M13 Cast Expressions count
M14 Catch Clauses count
M15 Comparison Operators count
M16 If Conditions count
M17 Inner Method Declarations count
M18 Instance-of Checks count
M19 Instantiations count
M20 Loops count
M21 Method Invocations count
M22 Null Checks count
M23 Null Literals count
M24 Return Statements count
M25 String Literals count
M26 Super-Method Invocations count
M27 Switch-Case Blocks count
M28 Synchronized Blocks count
M29 Ternary Operations count
M30 Throw Statements count
M31 Try Blocks count

M32 All Conditions count
M33 All Arithmetic Operations count

M34 Is Constructor boolean
M35 Is Setter boolean
M36 Is Getter boolean
M37 Is Empty Method boolean
M38 Is Delegation Method boolean
M39 Is ToString Method boolean
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Figure 7.1: Overview of the approach to identify low-fault-risk methods.
Metrics of faulty methods are computed at the faulty state; met-
rics of non-faulty methods are computed at the state of the last
bugfix commit.

to the fact that it is not actionable, difficult to interpret, and high values
do not necessarily translate to low readability—it is commonly used as a
variable in defect prediction (Menzies et al., 2002; Menzies et al., 2004;
Zimmermann et al., 2007). Furthermore, a low number of paths through
a method could be relevant for identifying low-fault-risk methods. Maxi-
mum Nesting Depth corresponds to the “maximum number of encapsulated
scopes inside the body of the method” (ndepend, 2017). Deeply nested
code is more difficult to understand, therefore, it could be more fault-prone.
Maximum Method Chaining expresses the maximum number of chain ele-
ments of a method invocation. We consider a method call to be chained
if it is directly invoked on the result from the previous method invocation.
The value for a method is zero if it does not contain any method invoca-
tions, one if no method invocation is chained, or otherwise the maximum
number of chain elements (e.g., two for getId().toString(), three for
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getId().toString().subString(1)). Unique Variable Identifiers counts the
distinct names of variables that are used within a method. The following
metrics, M6 to M31, count the occurrences of the respective Java language
construct (Gosling et al., 2013).

Next, we derive further metrics from the existing ones. They are redundant,
but correlated metrics do not have any negative effects on association rule
mining (except on the computation time) and may improve the results for
the following reason: if an item generated from a metric is not frequent, rules
with this item will be discarded because they cannot achieve the minimum
support; however, an item for a more general metric may be more frequent
and survive. The derived metrics are:

• All Conditions, which sums up If Conditions, Switch-Case Blocks, and
Ternary Operations (M16 + M27 + M29)

• All Arithmetic Operations, which sums up Incrementations, Decrementa-
tions, and Arithmetic Infix Operations (M7 + M8)

Furthermore, we compute to which of the following categories a method
belongs (a method can belong to zero, one, or more categories):

• Constructors: Special methods that create and initialize an instance
of a class. They might be less fault-prone because they often only set
class variables or delegate to another constructor.

• Getters: Methods that return a class or an instance variable. They
usually consist of a single statement and can be generated by the IDE.

• Setters: Methods that set the value of a class or an instance variable.
They usually consist of a single statement and can be generated by the
IDE.

• Empty Methods: Non-abstract methods without any statements. They
often exist to meet an implemented interface, or because the default
logic is to do nothing and is supposed to be overridden in certain
sub-classes.
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• Delegation Methods: Methods that delegate the call to another method
with the same name and further parameters. They often do not contain
any logic besides the delegation.

• ToString Methods: Implementations of Java’s toString method. They
are often used only for debugging purposes and can be generated by
the IDE.

Note that we only use source-code metrics and do not consider process
metrics. This is because we want to identify methods that exhibit a low fault
risk due to their code.
Association rule mining computes frequent itemsets from categorical at-

tributes; therefore, our next step is to discretize the numerical metrics. In
defect prediction, discretization is also sometimes applied to the metrics:
Shivaji et al. (2013) and McCallum and Nigam (1998) reported that binary
values can yield better results than counters when the number of features is
low. We discretize as follows:

• For each of the metrics M1 to M5, we inspect their distribution and
create three classes. The first class is for metric values until the first
tertile, the second class for values until the second tertile, and the third
class for the remaining values.

• For all count metrics (including the derived ones), we create a bi-
nary “has-no”-metric, which is true if the numerical value is zero, for
example, CountLoops = 0 ⇒ NoLoops = true.

• For the method categories (setter, getter, . . . ), no transformation is
necessary because they are already binary.

7.2.2 Data Pre-Processing

At this point, we assume that we have a list of faulty methods with their
metrics at the faulty state (the list may contain a method multiple times if it
was fixed multiple times) and a list of all methods. Faulty methods can be
obtained by identifying methods that were changed in bugfix commits (Giger
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et al., 2012; Shippey et al., 2016; Zimmermann et al., 2007). A method is
considered as faulty when it was faulty at least once in its history; otherwise
it is considered as not faulty. We describe in Section 7.3.3 how we extracted
faulty methods from the Defects4J dataset.
Prior to applying the mining algorithm, we have (1) to address faulty

methods with multiple occurrences, (2) to create a unified list of faulty and
non-faulty methods, and (3) to tackle dataset imbalance.
Steps (1) and (2) require that a method can be uniquely identified. To

satisfy this requirement, we identified a method by its name, its parameter
types, and the qualified name of its surrounding class. We integrated the
computation of the metrics into the software-quality analysis suite tool
Teamscale (Haas et al., 2019c), which is aware of the code history and
tracks method genealogies. Thereby, Teamscale detects method renames or
parameter changes so that we could update the method identifier when it
changed.

(1) A method may be fixed multiple times; in this case, a method appears
multiple times in the list of the faulty methods. However, each method
should have the same weight and should therefore be considered only
once. Consequently, we consolidate multiple occurrences of the same
method: we replace all occurrences by a new instance and apply
majority voting to aggregate the binary metric values. It is common
practice in defect prediction to have a single instance of every method
with a flag, which indicates whether a method was faulty at least once
(Giger et al., 2012; Mende and Koschke, 2009; Menzies et al., 2010;
Shippey et al., 2016).

(2) To create a unified dataset, we take the list of all methods, remove
methods that exist in the set of the faulty methods, and add the set
of the faulty methods with the metrics computed at the faulty state.
After doing that, we end up with a list containing each method exactly
once and a flag indicating whether a method was faulty or not.

(3) Defect datasets are often highly imbalanced (Khoshgoftaar et al., 2010),
with faulty methods being underrepresented. Therefore, we apply
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SMOTE, a well-known algorithm for over- and under-sampling, to
address imbalance in the dataset used for training (Chawla et al.,
2002; Longadge et al., 2013). It artificially generates new entries
of the minority class using the nearest neighbors of these cases and
reduces entries from the majority class (Torgo, 2010). If we do not
apply SMOTE to highly imbalanced datasets, many non-expressive rules
will be generated when most methods are not faulty. For example, if
95% of the methods are not faulty and 90% of them contain a method
invocation, rules with high support will be generated that use this
association to identify non-faulty methods. Balancing avoids those
nonsense rules.

7.2.3 IDP Classifier

To identify low-fault-risk methods, we compute association rules of the type
{ Metric1, Metric2, Metric3, . . . }→ { NotFaulty }. Examples of the metrics
are SlocLowestThird, NoNullChecks, IsSetter. Amethod that satisfies all metric
predicates of a rule is not faulty to the certainty expressed by the confidence
of the rule. The support of a rule expresses how many methods with these
characteristics exist, and thus, it shows how generalizable the rule is.
After computing the rules on a training set, we remove redundant ones

(see the background on association rule mining in Section 2.5.2.2) and order
the remaining rules first descending by their confidence and then by their
support. To build a low-fault-risk classifier, we combine the top n association
rules with the highest confidence values using the logical-or operator. Hence,
we consider a method as having a low fault risk if at least one of the top
n rules matches. To determine n, we compute the maximum number of
rules until the faulty methods in the low-fault-risk methods exceed a certain
threshold in the training set.
Of course, IDP can also be used with other machine-learning algorithms.

We decided to use association rule mining because of the natural compre-
hensibility of the rules (see Section 2.5.2.2) and because we achieved better
performance compared to models we trained using random forest.
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7.3 Study

In this study, we researched how well methods that contain hardly any faults
can be identified and whether IDP is applicable in cross-project scenarios. We
further compared the performance of IDP with a traditional defect prediction
approach.

7.3.1 Research Questions

We investigated the following research questions.

RQ 1: What is the precision of the classifier for low-fault-risk meth-
ods? To evaluate the precision of the IDP classifier, we investigated how
many methods that are classified as “low fault risk” (due to the triviality of
their code) are faulty. If we wanted to use the low-fault-risk classifier for
determining methods that require less focus during QA activities (such as
testing and code reviews), we would need to be sure that these methods
contain hardly any faults.

RQ 2: How large is the fraction of the code base consisting of methods
classified as “low fault risk”? We studied how common low-fault-risk
methods are in code bases to find out how much code is of lower importance
for QA activities. We wanted to determine which savings potential can arise
when these methods are excluded from QA.

RQ 3: Is a trained classifier for methods with low fault risk general-
izable to other projects? Cross-project defect prediction is used to predict
faults in (new) projects, for which no historical fault data exists, by using
models trained on other projects. It is considered a challenging task in
defect prediction (He et al., 2012; Turhan et al., 2009; Zimmermann et al.,
2009). As we expected that the characteristics of low-fault-risk methods
might be project-independent, IDP could be well applicable in a cross-project
scenario. Therefore, we investigated how generalizable our IDP classifier is
for cross-project use.
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RQ 4: How does the classifier perform compared to a traditional de-
fect prediction approach? The main purpose of defect prediction is to
detect fault-prone code. Most traditional defect prediction approaches are
binary classifications, which classify a method either as (likely) faulty or
not faulty. Hence, they implicitly also detect methods with a low fault risk.
Therefore, we wanted to compare the performance of our classifier with the
performance of a traditional defect prediction approach.

7.3.2 Study Objects

For our analysis, we used data from Defects4J (Just et al., 2014b), which
is a database and analysis framework that provides real faults from six
real-world open-source projects written in Java. For each fault, the original
commit before the bugfix (faulty version), the original commit after the
bugfix (fixed version), and a minimal patch of the bugfix are provided. The
patch is minimal such that it contains only code changes that (1) fix the
fault and (2) are necessary to keep the code compilable (e.g., when a bugfix
involves method-signature changes). It does not contain changes that do
not influence the semantics (e.g., changes in comments, local renamings),
and changes that were included in the bugfix commit, but are not related to
the actual fault (e.g., refactorings). Due to the manual analysis, this dataset
at the method level is much more precise than other datasets at the same
level, such as Shippey et al. (2016) and Giger et al. (2012), which were
generated from version control systems and issue trackers without further
manual filtering. The authors of Just et al. (2014b) confirmed that they
considered every bugfix within a given time span.

Table 7.2 presents the study objects and their characteristics. We computed
themetrics SLOC and#Methods for the code revision at the last bugfix commit
of each project; the numbers do not comprise sample and test code. #Faulty
methods corresponds to the number of faulty methods derived from the
dataset.
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Table 7.2: Study objects from the Defects4J data set.

Name SLOC #Methods #Faulty methods

JFreeChart (Chart) 81.6 k 6.8 k 39
Google Closure Compiler 166.7 k 13.0 k 148
Apache Commons Lang 16.6 k 2.0 k 73
Apache Commons Math 9.5 k 1.2 k 132
Mockito 28.3 k 2.5 k 64
Joda Time 89.0 k 10.1 k 45

7.3.3 Fault Data Extraction

Defects4J provides for each project a set of reverse patches,1 which represent
bugfixes. To obtain the list of methods that were at least once faulty, we
conducted the following steps for each patch. First, we checked out the
source code from the project repository at the original bugfix commit and
stored it as fixed version. Second, we applied the reverse patch to the fixed
version to get to the code before the bugfix and stored the resulting faulty
version.

Next, we analyzed the two versions created for every patch. For each file
that was changed between the faulty and the fixed version, we parsed the
source code to identify the methods. We then mapped the code changes to
the methods to determine which methods were touched in the bugfix. After
that, we had the list of faulty methods. Figure 7.2 summarizes these steps.

We inspected all 395 bugfix patches and found that 10 method changes in
the patches do not represent bugfixes. While the patches are minimal such
that they contain only bug-related changes (see Section 7.3.2), these 10
method changes are semantic-preserving, only necessary because of changed
signatures of other methods in the patch, and therefore included in Defects4J
to keep the code compilable. Figure 7.3 presents an example. Although
these methods are part of the bugfix, they were not changed semantically
and do not represent faulty methods. Therefore, we decided to remove them

1 A reverse patch reverts previous changes.
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Figure 7.2: Derivation of faulty methods. The original bugfix commit c1e8ed
to fix the faulty version f81f3f may contain unrelated changes.
Defect4J provides a reverse patch, which contains only the actual
fix. We applied it to the fixed version c1e8ed to get to fa30f1.
We then identified methods that were touched by the patch and
computed their metrics at state fa30f1.

from the faulty methods in our analysis. The names of these 10 methods
are provided in Niedermayr et al. (2018a).

7.3.4 Study Design

This section describes the execution of IDP and how we approached the
research questions.
After extracting the faulty methods from the dataset, we computed the

metrics listed in Section 7.2.1. We computed them for all faulty methods at
their faulty version and for all methods of the application code1 at the state
of the fixed version of the last patch. We used Eclipse JDT AST2 to create an
AST visitor for computing the metrics. For all further processing, we used
the statistical software R.3

To discretize the metrics M1 to M5, we first computed their value distribu-
tion. Figure 7.4 shows that their values are not normally distributed (most

1 code without sample and test code
2 http://www.eclipse.org/jdt
3 https://cran.r-project.org
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Figure 7.3: Example of a method change without behavior modification
to address API changes. escapeJavaScript(String) in-
vokes escapeJavaStyleString(String, boolean, boolean).
A further parameter was added to the invoked method;
therefore, it was necessary to adjust the invocation in
escapeJavaScript(String). For invocations with the param-
eter value true, the behavior does not change [Lang, patch 46,
simplified].

(1) SLOC (2) Cyclom. Complexity (3) Max. Nesting Depth

(4) Max. Method Chaining (5) Uniq. Var. Identifiers

Figure 7.4: Metrics M1 toM5 are not normally distributed. (1) SLOC, (2) Cy-
clomatic Complexity, (3)MaximumNesting Depth, (4)Maximum
Method Chaining, and (5) Unique Variable Identifiers.
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Table 7.3: Generated classes and their value ranges.

Metric Class 1 Class 2 Class 3

SLOC [0; 3] [4;8] [9;∞)
Cyclomatic Complexity [1; 1] [2;2] [3;∞)
Maximum Nesting Depth [0; 0] [1;1] [2;∞)
Maximum Method Chaining [0; 1] [2;2] [3;∞)
Unique Variable Identifiers [0; 1] [2;3] [4;∞)

values are very small). To create three classes for each of these metrics, we
sorted the metric values, and computed the values at the end of the first
and at the end of the second third.1 We then put all methods until the last
occurrence of the highest value of the first third into class 1, all methods
until the last occurrence of the highest value of the second third into class 2,
and all other methods into class 3. Table 7.3 presents the value ranges of
the resulting classes. The classes are the same for all six study objects.

We then aggregated multiple faulty occurrences of the same method (this
occurs if a method is changed in more than one bugfix patch) and created a
unified dataset of faulty and non-faulty methods (see Section 7.2.2).
Next, we split the dataset into a training and a test set. For RQ1 and

RQ2, we used 10-fold cross-validation (Witten et al., 2016). Using the
caret package (Kuhn et al., 2017), we randomly sampled the dataset of
each project into 10 stratified partitions of equal sizes. Each partition is
used once for testing the classifier, which is trained on the remaining nine
partitions. To compute the association rules for RQ3—in which we study
how generalizable the classifier is—for each project, we used the methods
of the other five projects as training set for the classifier.
Before computing association rules, we applied the SMOTE algorithm

from the DMwR package (Torgo, 2010) with a 100% over-sampling and a
200% under-sampling rate to each training set. After that, each training set
1 We did not use R’s ntile function to create classes because it always generates classes of the
same size such that instances with the same value may end up in different classes (e.g., if
50% of the methods have the complexity value 1, the first 33.3% will end up in class 1, and
the remaining 16.7% with the same value will end up in class 2).
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was equally balanced (50% faulty methods, 50% non-faulty methods).1

We then used the implementation of the Apriori algorithm (Agrawal and
Srikant, 1994) in the arules package (Hahsler et al., 2005; Hahsler et al.,
2018) to compute association rules with NotFaulty as target item (rule
consequent). We set the threshold for the minimum support to 10% and the
threshold for the minimum confidence to 90% (support and confidence are
explained in Section 2.5.2.2). We experimented with different thresholds
and these values produced good results (results for other configurations
are in the dataset provided in Niedermayr et al. (2018a)). The minimum
support avoids overly infrequent (i.e., non-generalizable) rules from being
created, and the minimum confidence prevents the creation of imprecise
rules. Note that no rule (with NotFaulty as rule consequent) can reach a
higher support than 50% after the SMOTE pre-processing. After computing
the rules, we removed redundant ones using the corresponding function
from the apriori package. We then sorted the remaining rules descending by
their confidence.
Using these rules, we created two classifiers to identify low-fault-risk

methods. They differ in the number of comprised rules. The strict classifier
uses the top n rules until the share of faulty methods in all methods (of the
training set) exceeds 2.5% in the LFR methods (of the training set). The
more lenient classifier uses the top n rules until the share exceeds 5.0% in
the LFR methods. (Example: We applied the top one rule to the training set,
then applied the next rule, . . . , until the matched methods in the training set
contained 2.5% out of all faults.) Figure 7.5 presents how an increase in the
number of selected rules affects the proportion of LFR methods and the share
of faulty methods that they contain. For RQ1 and RQ2, we computed the
classifiers for each fold of each project. For RQ3, we computed the classifiers
once for each project.

To answer RQ 1, we used 10-fold cross-validation to evaluate the classifiers

1 We computed the results for the empirical study once with and once without addressing the
data imbalance in the training set. The prediction performance was better when applying
SMOTE, therefore, we decided to use it.
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Figure 7.5: Influence of the number of selected rules (Lang project). The
number of rules influences the proportion of low-fault-risk
methods and the share of faulty methods in LFR out of all
faulty methods.

separately for each project. We computed the number and proportion of
methods that were classified as “low fault risk” but contained a fault (≈ false
positives). Furthermore, we computed the precision metric. Our main goal
is to identify those methods that we can say, with high certainty, contain
hardly any faults. Therefore, we consider it to be more important to achieve
a high precision than to predict all methods that do not contain any faults
in the dataset.
As the dataset is imbalanced with faulty methods in the minority, the

proportion of faults in low-fault-risk methods might not be sufficient to assess
the classifiers (SMOTE was applied only to the training set). Therefore, we
further computed the fault-density reduction, which describes how much less
likely the LFR methods contain a fault. For example, if 40% of all methods
are classified as “low fault risk” and contain 10% of all faults, the factor is
4. It can also be read as: 40% of all methods contain only one fourth of the
expected faults. We mathematically define the fault-density reduction factor
based on methods as

proportion of LFR methods out of all methods
proportion of faulty LFR methods out of all faulty methods

and based on SLOC as

proportion of SLOC in LFR methods out of all SLOC
proportion of faulty LFR methods out of all faulty methods .
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For both classifiers (strict variant with 2.5%, lenient variant with 5.0%), we
present the metrics for each project and the resulting median.

To answer RQ 2, we assessed how common methods classified as “low
fault risk” are. For each project, we computed the absolute number of low-
fault-risk methods, their proportion out of all methods, and their extent by
considering their SLOC. LFR SLOC corresponds to the sum of SLOC of all
low-fault-risk methods. The proportion of LFR SLOC is computed out of all
SLOC of the project.

To answer RQ 3, we computed the association rules for each project using
the methods of the other five projects as training data. We determined the
number of used top n rules with the thresholds 2.5% and 5.0%. To allow
a comparison with the within-project classifiers, we computed the same
metrics as in RQ1 and RQ2.

To answer RQ 4, we computed for each method the 9 code and 15 change
metrics that were used in Giger et al. (2012). The metrics and their descrip-
tions are listed in Table 7.4. We applied Random Forest as machine-learning
algorithm and configured it as in Giger et al. (2012). We computed the
results for within-project predictions using 10-fold cross-validation and we
further computed the results for cross-project predictions as in RQ3. We
present the same evaluation metrics as in the previous research questions.

7.3.5 Results

This section presents the results to the research questions. Data to reproduce
the results is available at Niedermayr et al. (2018a).

RQ 1: What is the precision of the classifier for low-fault-risk meth-
ods? Table 7.5 presents the results. The methods classified to have low fault
risk (LFR) by the stricter classifier, which allows a maximum fault share of
2.5% in the LFR methods in the (balanced) training data, contain between
2 and 8 faulty methods per project. The more lenient classifier, which allows
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Table 7.4: RQ4: Code and change metrics used in Giger et al. (2012).
Metric name Description

Code metrics

fanIN Number of methods that reference a given method
fanOUT Number of methods referenced by a given method
localVar Number of local variables in the body of a method
parameters Number of parameters in the declaration
commentToCodeRatio Ratio of comments to source code (line-based)
countPath Number of possible paths in the body of a method
complexity McCabe cyclomatic complexity of a method
execStmt Number of executable statements
maxNesting Maximum nested depth of all control structures

Change metrics

methodHistories Number of times a method was changed
authors Number of distinct authors that changed a method
stmtAdded Sum of all statements added to a method
maxStmtAdded Maximum number of statements added to a method
avgStmtAdded Average number of statements added to a method
stmtDeleted Sum of all statements deleted from a method
maxStmtDeleted Maximum number of statements deleted from a method
avgStmtDeleted Average number of statements deleted from a method
churn Sum of churn (stmtAdded – stmtDeleted)
maxChurn Maximum churn
avgChurn Average churn
decl Number of method declaration changes
cond Number of condition expression changes in a method
elseAdded Number of added else-parts in a method
elseDeleted Number of deleted else-parts from a method

a maximum fault share of 5.0%, classified between 4 and 15 faulty methods
as LFR. The median proportion of faulty methods in LFR methods is 0.3%
and 0.4%, respectively.

The fault-density reduction factor for the stricter classifier ranges between
4.3 and 10.9 (median: 5.7) when considering methods and between 1.5 and
4.4 (median: 3.2) when considering SLOC. In the project Lang, 28.6% of all
methods with 13.8% of the SLOC are classified as LFR and contain 4.1% of
all faults; hence, the factor is 7.0 (SLOC-based: 3.4). The median factor for
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Table 7.6: Top five association rules for Lang (within-project, fold 1).

# Rule Support Confidence ↓

1 { NoMethodInvocations,
UniqueVariableIdentifiersLessThan2 }
⇒ { NotFaulty }

10.98% 100.00%

2 { NoMethodInvocations, SlocLessThan4,
NoArithmeticOperations }
⇒ { NotFaulty }

10.98% 100.00%

3 { NoMethodInvocations, SlocLessThan4,
NoCastExpressions }
⇒ { NotFaulty }

10.60% 100.00%

4 { NoMethodInvocations,
NoArithmeticOperations, NoAssignments,
NoNesting }
⇒ { NotFaulty }

10.23% 100.00%

5 { NoMethodInvocations,
NoArithmeticOperations, NoAssignments,
NoIfConditions }
⇒ { NotFaulty }

10.23% 96.43%

the more lenient classifier is 4.3 when considering methods and 2.2 when
considering SLOC. The factor never falls below 1 for both classifiers.

IDP can identify methods with low fault risk. On average, only 0.3% of the
methods classified as “low fault risk” by the strict classifier are faulty. The
identified LFR methods are, on average, 5.7 times less likely to contain a
fault than an arbitrary method in the dataset.

Table 7.6 exemplarily presents the top five rules for the project Lang.
Low-fault-risk methods include, amongst others, methods that work with
fewer than two variables and contain no method invocations as well as
short methods without arithmetic operations, cast expressions, and method
invocations.
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RQ 2: How large is the fraction of the code base consisting of meth-
ods classified as “low fault risk”? Table 7.5 presents the results. The
stricter classifier classified between 16.5% and 80.2% of the methods as
LFR (median: 31.7%, mean: 38.8%), the more lenient classifier matched
between 22.1% and 82.5% of the methods (median: 44.1%, mean: 46.9%).
The median of the comprised SLOC in LFR methods is 14.8% (mean: 24.7%)
respectively 20.0% (mean: 29.5%).

Using within-project IDP, on average, 32–44% of the methods, comprising
approximately 15–20% of the SLOC, can be assigned a lower importance
during testing. In the best case, when ignoring 16.5% of the methods, it is
still possible to catch 98.5% of the faults (Math).

RQ 3: Is a trained classifier for methods with low fault risk general-
izable to other projects? Table 7.7 presents the results for cross-project
prediction with training data from the respective other projects. Compared
to the results of the within-project prediction, except for Math, the number
of faults in LFR methods decreased or stayed the same in all projects for
both classifier variants. While the median proportion of faults in LFR meth-
ods slightly decreased, the proportion of LFR methods also decreased in all
projects except Math. The median proportion of LFR methods is 23.3%
(SLOC: 8.1%) for the stricter classifier and 26.3% (SLOC: 12.6%) for the
more lenient classifier.
The fault-density reduction improved compared to the within-project

prediction for the method and SLOC level in both classifier variants: For the
stricter classifier, the median of the method-based factor is 10.9 (+5.2), and
the median of the SLOC-based factor is 3.9 (+0.7). Figures 7.6 illustrates the
fault-density reduction for both within-project (RQ1, RQ2) and cross-project
(RQ3) prediction.

If the rules were computed on data of all six projects, the strict classifier
would work with 10 rules and the lenient one with 46 rules. Table 7.8
presents the top five rules thereof. In this set, rule 2 constitutes a more
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Figure 7.6: Comparison of IDP within-project ( 2.5%, 5.0%) with IDP
cross-project ( 2.5%, 5.0%) classifiers (method-based). The
fault-density reduction expresses how much less likely a LFR
method contains a fault (definition in 7.3.4). Higher values are
better. (Example: If 40% of the methods are LFR and contain
5% of all faults, the factor is 8.) The dashed line is at one; no
value falls below.

Table 7.8: Top five association rules computed on all projects.

# Rule Support Confidence ↓

1 { NoMethodInvocations, SlocLessThan4,
NoArithmeticOperations,
NoNullLiterals }
⇒ { NotFaulty }

10.43% 96.76%

2 { NoMethodInvocations, SlocLessThan4,
NoArithmeticOperations }
⇒ { NotFaulty }

11.03% 96.09%

3 { NoMethodInvocations, SlocLessThan4,
NoCastExpressions, NoNullLiterals }
⇒ { NotFaulty }

10.43% 95.43%

4 { NoMethodInvocations, SlocLessThan4,
NoCastExpressions, NoInstantiations }
⇒ { NotFaulty }

10.13% 95.31%

5 { NoMethodInvocations, SlocLessThan4,
NoCastExpressions }
⇒ { NotFaulty }

11.03% 94.85%
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general form of rule 1, thereby being more frequent and less precise. The
same applies to rules 4 and 5. The rules are similar to the ones presented in
Table 7.6, confirming their generalizability.

Using cross-project IDP, on average, 23–26% of the methods, comprising
approximately 8–13% of the SLOC, can be classified as “low fault risk.” The
methods classified by the stricter classifier contain, on average, fewer than
one 11th of the expected faults.

RQ 4: How does the classifier perform compared to a traditional de-
fect prediction approach? Table 7.9 presents the results of the within- and
cross-project prediction according to the approach by Giger et al. (2012).
In the within-project prediction scenario, the classifier predicts on average
99.4% of the methods to be non-faulty. Consequently, the average recall for
non-faulty methods reaches 99.9%. However, the number of methods that
are classified as non-faulty but actually contain a fault increases by orders of
magnitude compared to the IDP approach (i.e., precision deteriorates). For
example, 77% of Closure’s faulty methods are wrongly classified as non-
faulty. The median fault-density reduction is 1.6 at the method level (strict
IDP: 5.7) and 1.4 when considering SLOC (strict IDP: 3.2). Consequently,
methods classified by the traditional approach as having a low fault risk are
still less likely to contain a fault than other methods, but the performance
falls behind the one achieved by the IDP classifiers.
The results in the cross-project prediction scenario are similar. In four of

the six projects, the number of faults in LFR methods increased compared
with the within-project prediction scenario. The fault-density reduction
deteriorated to 1.2 both at the method and SLOC level (for comparison, strict
IDP achieves 10.9 and 3.9, respectively). In all projects, IDP outperformed
the traditional approach.
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7.3.6 Threats to Validity

Next, we discuss the threats to internal and external validity.

Threats to internal validity: The learning and evaluation was performed
on information extracted from Defects4J (Just et al., 2014b). Therefore,
the quality of our data depends on the quality of Defects4J. The following
problems are common for defect datasets created by analyzing changes
in commits that reference a bug ticket in an issue-tracking system. First,
commits that fix a fault but do not reference a ticket in the commit mes-
sage cannot be detected (Bachmann et al., 2010). Consequently, the set
of commits that reference a bugfix may not be a fair representation of all
faults (Bird et al., 2009; D’Ambros et al., 2012; Giger et al., 2012). Second,
bug tickets in the issue tracker may not always represent faults and vice
versa. Antoniol et al. (2008) and Herzig et al. (2013) pointed out that a
significant number of tickets in the issue trackers of open-source projects
is misclassified. Therefore, it is possible that not all bugfix commits were
spotted. Third, methods may contain faults that have not been detected or
fixed yet. It is generally not possible to prove that a method does not contain
any faults. Fourth, a commit may contain changes (such as refactorings) that
are not related to the bugfix, but this problem does not affect the Defects4J
dataset due to the authors’ manual inspection. These threats are present
in nearly all defect prediction studies, especially in those operating at the
method level. Defect prediction models were found to be resistant to such
kind of noise to a certain extent (Kim et al., 2011).

Threats to external validity: The empirical study was performed with six
mature open-source projects written in Java. The projects are libraries and
their results may not be applicable to other application types, for example,
large industrial systems with user interfaces. The results may also not be
transferable to projects of other languages, for the following reasons: First,
Java is a strongly typed language that provides type safety. It is unclear
whether the IDP approach works for languages without type safety because it
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could be that even simple methods in such languages exhibit a considerable
number of faults. Second, in case the approach as such is applicable to other
languages, the collected metrics and the low-fault-risk classifier need to be
validated and adjusted. Other languages may use language constructs in
a different way or use constructs that do not exist in Java. For example, a
classifier for the C language should take constructs such as GOTOs and the
use of pointer arithmetic into consideration. Furthermore, the projects in
the dataset, which was published in 2014, did not contain code with lambda
expressions introduced in Java 8 (Neward, 2013). Therefore, in newer
projects that make use of lambda expressions, the presence of lambdas should
be taken into consideration when classifying methods. Consequently, further
studies are necessary to determine whether the results are generalizable.
As in many defect prediction studies (Madeyski and Jureczko, 2015;

Ostrand et al., 2004), we did not take the severity of a fault into account and
made the assumption that each fault has the same relevance. Reasons for
this assumption are that the severity of a bug ticket is often highly subjective
(Ostrand et al., 2004) and that it is not possible with reasonable effort to
objectively determine failure follow-up costs caused by a fault. The latter
in particular applies to open-source libraries, which can be integrated as
dependencies into other systems; a fault can trigger further failures in the
surrounding system. In practice, not all faults have the same importance
because some cause higher failure follow-up costs than others.

7.4 Discussion

The results of our empirical study show that only very few low-fault-risk
methods actually contain a fault. Hence, we can conclude that IDP can
successfully identify methods that are not fault-prone. On average, 31.7%
of the methods (14.8% of the SLOC) matched by the strict classifier contain
only 6.0% of all faults, resulting in a considerable fault-density reduction
for the matched methods. In any case, low-fault-risk methods are less fault-
prone than other methods (fault-density reduction is higher than one in all
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projects); based on methods, LFR methods are at least twice less likely to
contain a fault. For the stricter classifier, the extent of the matched methods,
which could be deferred in testing, is between 5% and 78% of the SLOC of
the respective project. The more lenient classifier matches more methods and
SLOC at the cost of a higher fault proportion, but still achieves satisfactory
fault-density reduction values. This shows that the balance between fault
risk and matched extent can be influenced by the number of considered
rules to reflect the priorities of a software project.
Interestingly, the cross-project IDP classifiers, which are trained on data

from the respective other five projects, exhibit higher precision than the
within-project IDP classifiers. Except for the Math project, the LFR methods
contain fewer faulty methods in the cross-project prediction scenario. This
is in line with the method-based fault-density reduction factor of the strict
classifier, which in four of six cases is better in the cross-project scenario
(SLOC-based: three of six cases). However, the proportion of matched meth-
ods decreased compared to the within-project prediction in most projects.
Accordingly, the cross-project results suggest that a larger, more diversified
training set identifies LFR methods more conservatively, resulting in a higher
precision and a lower extent of matched methods.
Math is the only project in which IDP within-project prediction outper-

formed IDP cross-project prediction. This project contains many methods
with mathematical computations expressed by arithmetic operations, which
are often wrapped in loops or conditions; most of the faults are located
in these methods. Therefore, the within-project classifiers used a few very
precise rules for identifying LFR methods.
In sum, the results show that the IDP approach can be used to identify

methods that are, due to the “triviality” of their code, less likely to contain
any faults. Hence, these methods require less focus during QA activities.
Depending on the criticality of the system and the risk one is willing to take,
the development of tests for these methods can be deferred or even omitted
in case of insufficient available test resources. Furthermore, these methods
do not pose a threat when they are pseudo-tested.
The results also suggest that IDP is applicable in cross-project prediction
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scenarios, indicating that characteristics of low-fault-risk methods differ
less among projects than characteristics of faulty methods do. Therefore,
IDP is applicable in (new) projects with no (precise) historical fault data to
prioritize the code to be tested.

7.4.1 Limitations

While low-fault-risk methods are less fault-prone, it is not guaranteed that
they never contain any fault. An inspection of faulty methods incorrectly
classified as having low fault risk showed that some faults were fixed by only
adding further statements (e.g., to handle special cases). This means that
even if the (existing) code of a method is not faulty, a method can still be
faulty due to missing code. Further imaginable examples of faulty low-fault-
risk methods are simple getters that return the wrong variable or completely
empty methods that have been unintentionally left empty. Therefore, while
these methods are much less fault-prone, it cannot be assumed that they
never contain any fault. Consequently, excluding low-fault-risk methods
from testing and other QA activities carries a risk.

7.4.2 Applications

The IDP classifier can identify low-fault-risk methods, which—depending
on the criticality of an application—may be considered as too trivial to test;
that is, they may not warrant being tested. Such methods constitute only a
very low risk when they are pseudo-tested and therefore, it is not rewarding
to determine how effectively a low-fault-risk method is tested when it is
covered by tests. Consequently, the IDP classifier can be used to exclude
trivial methods from a mutation analysis, which makes it possible to focus
on the more relevant methods and helps reduce analysis scope and duration.
Another scenario for an automated exclusion of trivial methods could

be the Test Gap Analysis (TGA) (Juergens and Pagano, 2016; Rott et al.,
2017). This analysis shows testers and test managers which methods were
added or changed during the implementation of a new feature or a bugfix,
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Figure 7.7: Defect prediction and IDP have different classification classes.
Ideally, low-fault-risk methods are not contained in the set of
faulty methods. As a second priority, they should form a possi-
bly large subset of non-faulty methods to increase the savings
potential in QA activities.

but not covered by any automated or manual test after the modification.
Such recently modified but untested methods are much more fault-prone,
according to Eder et al. (2013). However, not all methods that constitute
test gaps have the same complexity and fault-proneness. Therefore, filtering
out trivial ones makes it possible to focus on the more relevant test gaps.

7.4.3 Relation to Defect Prediction

IDP presents another view on defect prediction. Like traditional defect
prediction, IDP also uses a set of metrics to characterize artifacts, applies
transformations to pre-process metrics, and uses a machine-learning classifier
to build a prediction model. As can be seen in Figure 7.7, the difference
rather lies in the predicted classes and the underlying target. While defect
prediction classifies an artifact either as buggy or non-buggy, IDP identifies
only those methods that exhibit a low fault risk with high certainty and does
not make an assumption about the remaining methods, for which the fault
risk is at least medium or cannot be reliably determined. Consequently, the
objective of the prediction also differs. Defect prediction aims to achieve
a high recall to detect as many faults as possible, and a high precision to
minimize the number of false positives. IDP strives to achieve high precision
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to ensure that low-fault-risk methods contain indeed hardly any faults (i.e.,
IDP should classify hardly any faulty methods erroneously as “low fault risk”).
To enable focusing on precision, IDP does not necessarily seek to identify all
non-faulty methods; that is, recall is only second priority. When predicting
faulty methods in traditional defect prediction, low recall of faulty methods
would be a major issue because it could lead to omitted methods that are
erroneously not classified as faulty. In IDP, lower recall of low-fault-risk
methods reduces possible savings, but does not lead to faulty methods being
omitted. Still, it is desirable for IDP to achieve a sufficiently high recall so
that reasonable savings potential arises when treating low-fault-risk methods
with a lower priority in QA activities.

7.5 Summary

Developer teams and testers often face the problem of scarce test resources,
and therefore need to prioritize their testing efforts (e.g., when writing
new automated unit tests or when addressing identified test gaps). Defect
prediction can support developers in this activity. We propose an inverse
view on defect prediction to identify methods that are so “trivial” that they
contain hardly any faults. We studied how unerringly such low-fault-risk
methods can be identified, how common they are, and whether the proposed
approach is applicable for cross-project predictions.
We show that IDP using association rule mining on code metrics can

successfully identify low-fault-risk methods. The identified methods contain
considerably fewer faults than the average code and can provide a savings
potential for QA activities. Depending on the parameters, a lower priority
for QA can be assigned on average to 31.7% (strict classifier) respectively
44.1% (lenient classifier) of the methods, amounting to 14.8% respectively
20.0% of the SLOC. While cross-project defect prediction is a challenging
task (He et al., 2012; Zimmermann et al., 2009), our results suggest that
the IDP approach can be applied in a cross-project prediction scenario at the
method level. In other words, an IDP classifier trained on one or more (Java
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open-source) projects can successfully identify low-fault-risk methods in
other Java projects for which no fault data (or no precise fault data) exists.
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This chapter devises a hybrid test case selection and prioritization approach
that is enhanced with information about test effectiveness.
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8.1 Motivation

Automated software tests help identify faults early and should ideally be
executed after each integration of code changes into the main repository.
With the introduction of agile development methodologies, the number of
automated test cases rises in many software projects and a growing number
of projects exhibits a large test suite (Madeyski, 2009).

The increase in the number of test cases in a test suite is linked to a longer
execution duration. In large industrial systems, the execution of the whole
test suite often takes days or even weeks (Rothermel et al., 1999; Zhang,
2018), particularly if tests involve interactions with hardware components or
complex user interfaces. At one large German car manufacturer, for example,
the execution of all hardware-in-the-loop (HIL) tests of a certain automotive
component takes 20 days.
Consequently, continuous integration is impeded. Even with the use of

parallelization, it is not feasible to execute the whole test suite after each
committed code change. This leads to situations in which large test suites
are executed only nightly, at weekends, or even less often, so that the time
span between the inadvertent introduction of a fault and its detection rises.
This leads to negative consequences. First, developers usually start new
development activities on the latest code version, which will probably not
have been examined by tests. It may be a “broken” version containing faults
that would have been revealed by a test suite execution. Duvall et al. (2007)
stated that “problems causing failing tests need to be fixed before they
propagate and cause other failures.” Second, efforts to fix a test failure
increase at a later detection. This is because it is more difficult at a later
point to narrow down the changes that caused a test failure. Furthermore,
developers who debug a test failure that is caused by changes they conducted
some time ago need to familiarize themselves with their changes again
(Muşlu et al., 2015).

One possible solution to enable continuous integration for long-running
test suites is the use of test case selection techniques. Test case selection
identifies which test cases of a test suite are relevant for testing a given set of
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code changes (Yoo and Harman, 2012). Moreover, quick feedback from the
test execution in case of failing tests is desirable. Duvall et al. (2007) stated
that “one wants fast builds and builds to fail fast.” Similarly, Vocke (2018)
wrote that “a good build pipeline tells you that you messed up as quick as
possible.” Test case prioritization techniques facilitate that: they order test
cases in such a way that a certain goal is achieved as quickly as possible; for
example, identifying the first failure early (Rothermel et al., 2001).

Hybrid approaches combine selection and prioritization, thus reducing the
number of test cases to be executed and ordering the selected tests (Wong
et al., 1997). Most existing test case selection and prioritization approaches
rely on code coverage. Given that several studies have shown that code
coverage is a questionable predictor of test effectiveness, approaches based
solely on coverage may not work in an ideal way. Therefore, an interesting
question is whether test case selection and prioritization can be improved by
further integrating information about test effectiveness. This chapter looks
at whether such an approach, which is aware of pseudo-tested test-case
method pairs, achieves a shorter time to the detection of the first test failure.

The main contributions of this chapter are: We devise, implement, and
evaluate a hybrid test case selection and prioritization approach that addi-
tionally incorporates test effectiveness information to reduce the time to the
first test failure in a test suite execution.

8.2 Existing Approach

Teamscale is a software intelligence platform (Haas et al., 2019c) that in-
crementally analyzes data from version control systems and combines it
with further data that accrue during the software development process
(e.g., code coverage from test executions, issues from the issue tracker, and
more). Teamscale aims to create transparency on a system’s code quality,
architecture, and development process towards developers, testers, and
managers.
Besides various static code analyses, Teamscale provides a feature called
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Test Impact Analysis (TIA), which selects and prioritizes test cases in respect
to given code changes, with the goal of minimizing the time to the first
failure in a test suite execution. We implemented the prioritization logic
inspired by a prototype from Dreier (2017).

Below, we describe how the existing test case selection and prioritization
logic works. An overview of the computation steps is presented in Figure 8.1.

8.2.1 Required Input Data

The existing approach requires the following input data.
Source code and changes: Teamscale is connected to the repositories of a

software project and periodically fetches new commits representing code
changes. A shallow parser parses the source code, making it possible to work
on structural entities (e.g., methods or statements). Changes can be mapped
to these entities.
Test-case specific coverage: Within his master’s thesis, Dreier (2017) de-

veloped the teamscale-jacoco-agent,1 which extends the coverage recorder
JaCoCo and allows coverage to be collected separately per test case. The
agent can be employed as Maven or Gradle plug-in and thereby integrated
into the build process. It listens to test-start and test-end events and sepa-
rates recorded coverage accordingly. The agent generates coverage reports
in the form of an XML file as output. Besides coverage information, it also
contains the duration of each test case as measured by the test runner. The
report can be uploaded to Teamscale, which processes the data and stores
for each method its covering test cases.

8.2.2 Test Case Selection

The test case selection step identifies all test cases that cover code that
has been changed in a certain time span. The time span may include, for
example, changes conducted since the last release or the last test execution

1 https://github.com/cqse/teamscale-jacoco-agent
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Figure 8.1: Overview of the steps of the Test Impact Analysis (TIA).

8.2 | Existing Approach 165



until now. All commits conducted in the time span are selected, and methods
that were added or changed in these commits are collected.1 Based on the
uploaded test-case specific code coverage, all test cases covering at least one
of the changed methods are selected.

Changed test cases that are represented as methods in the code will also
appear in the set of added or changed methods. Consequently, changed test
cases, for which code coverage information may be outdated due to changes
to the test, are also selected.

8.2.3 Test Case Prioritization

The prioritization step takes the selected test cases as input2 and orders
them so that changed methods are covered as quickly as possible. The
prioritization algorithm is round-based and similar to the concept used at
Microsoft, which was presented by Srivastava and Thiagarajan (2002).
The idea behind this concept is to iteratively choose the test case that

provides the best ratio of additional coverage per test duration to coverage
achieved by already picked tests. This ratio is assigned as a score to each as
yet un-prioritized test case. The test case with the highest score is chosen
and the scores of all remaining test cases are updated. To facilitate the
computation of the additional coverage of a test case, changed methods that
are covered by already picked tests are marked. Once all changed methods
that can be covered are marked, a new prioritization round begins, in which
these markers are reset. The second prioritization round is special; in this
round, all added and changed test cases are scheduled.

This approach aims to cover changed methods as quickly as possible and is
an application of the set cover problem (Dreier, 2017). The implementation
uses a greedy algorithm to solve this problem known to be NP-complete.

1 In the following, when we refer to changed methods, we mean both added and changed
methods.

2 It is also possible to skip the selection and apply only the prioritization step. In this case, all
available test cases are considered.
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8.2.4 Provision of Results

Teamscale provides a web service that allows the selection and prioritization
results to be retrieved in the form of an ordered list of test cases. Test runners
can fetch this list and execute test cases accordingly.

8.3 Enhanced Approach with Test Effectiveness Information

Our enhanced approach extends the existing TIA approach, with the goal
of further reducing the time to the first test failure. For that, the approach
additionally considers a test’s fault detection capabilities.
The existing and enhanced approaches both order test cases by a score.

The existing approach determines the score of a test by computing the num-
ber of additionally covered methods (to methods covered by other already
prioritized test cases) in respect to the test’s duration. Each additionally
covered method contributes equally to the score.
By contrast, the enhanced approach assigns a weight to each test-case

method relation, which reflects whether the given method is (predicted to
be) pseudo-tested by the given test case. Therefore, the enhanced approach
needs pseudo-testedness information at the level of test-case method rela-
tions. It can work with computed pseudo-testedness information stemming
from a mutation analysis, or alternatively use predicted information from
a machine-learning model based on the minimal stack distance. The en-
hanced approach needs to take into account that provided information about
pseudo-testedness might contain inaccuracies. This is because mutation
testing verdicts will have been computed on an earlier commit, results may
contain equivalent mutants, metric values used in prediction models may be
outdated, and prediction models generally do not achieve perfect accuracy.
The approach accounts for that by assigning pseudo-tested test-case method
pairs a lower weight instead of excluding them completely. Consequently,
an incomplete or partially outdated mutation matrix may reduce its positive
influence on selection and prioritization, but does not necessarily cause
harm.
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Figure 8.2: Class diagram illustrating how pseudo-testedness information in-
fluences the score that a test case achieves by covering a method.

The weights for test-case method pairs were determined in a preliminary
study. They are for pseudo-testedness information from a mutation analysis:

• Method known to be not pseudo-tested by a given test case: 1.0

• Method known to be not pseudo-tested, but killing test cases are
unknown (this occurs when a mutant is killed due to a timeout or
memory error): 0.15

• Method known to be pseudo-tested by a given test case: 0.05

• Method with no available pseudo-testedness information (this occurs
when a method was not mutated due to exclusions or when a method
did not exist in the analyzed revision): 0.15

For pseudo-testedness information from a prediction model, the weights
account for higher inaccuracies. The used weights are:

• Method predicted to be not pseudo-tested by a given test case: 1.0

• Method predicted to be pseudo-tested by a given test case: 0.2

• Method with no available information (this occurs when a method’s
measures needed for a prediction are not available): 0.7
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Figure 8.2 summarizes the relations between the relevant entities and
visualizes where pseudo-testedness information is used.

8.4 Evaluation

We evaluated the performance of the enhanced test case selection and pri-
oritization approach and compared it with the performance of the existing
approach and of a regular test execution. The goal was to find out whether
the enhanced approach can reduce the time until the first test failure in
a test suite execution when a project contains a substantial proportion of
pseudo-tested methods.

Procedure: The evaluation was done on the project pdfbox. We selected
this study object because it is a well-known multi-module project that con-
tains 1,587 test cases achieving a line coverage of 49.7%, but 26.3% of the
covered methods are pseudo-tested (see Table 6.4 in Section 6.4.5). The
project is open-source and hosted on GitHub.1

Starting with revision d9930344, we computed a full mutation matrix with
the Descartes operator, minimal stack distance values, further measures
needed to predict pseudo-tested methods, and test-case specific code cover-
age. The mutation matrix contained 2,867 mutated methods and 622 test
cases. A single test case covered 81.4 methods, on average, and detected
mutations in approximately 67% of its covered methods.
Over 90 following commits containing at least one code change were

iterated. In each commit, we randomly marked one of the changed methods
as faulty and derived the thereby failing test cases from the mutation matrix.
Teamscale was used to compute the test case selection and prioritization
for the code changes in the analyzed commit using the existing approach,
the enhanced approach with computed mutation data, and the enhanced
approach with a prediction model for pseudo-testedness. In pdfbox, the pre-
diction model at the level of test-case method pairs achieved 83.8% precision

1 https://github.com/apache/pdfbox

8.4 | Evaluation 169

https://github.com/apache/pdfbox


Table 8.1: Comparison of different approaches in respect to the number of
test cases and their duration until the first test failure.

Approach Test index Duration (ms)
mean median mean median

Regular Maven execution 284.35 218 72,263 62,300
Existing TIA 6.28 1 1,775 51
Enhanced TIA (mutation data) 2.95 1 1,118 15
Enhanced TIA (predictions) 5.98 1 1,511 23

and 83.8% recall (see Table 6.8 in Section 6.4.5). We also determined the
test case ordering used in a regular Maven execution. Next, we identified
in the ordered test case list the first test case that is known to fail for the
method marked as faulty. We computed the index of that test case and the
sum of the duration of the test cases until and including that first failing one.
We refer to the duration as the “time to first failure (TFF).”

Results: Table 8.1 presents the mean duration and TFF of each approach.
According to the results, the existing TIA approach without test effectiveness
information already put one of the failing test cases first in 55 of 90 analyzed
commits. The enhanced approach using test effectiveness information from a
mutation analysis outperformed the existing approach in 25 of the remaining
35 commits, in which it achieved a lower TFF and a prior position for the
first failing test case. For example, in commit 18f22894, the first failing
test case was on index 70 using the existing TIA approach, while it was on
index 13 using the enhanced approach with mutation data. The enhanced
approach using test effectiveness prediction also achieved better results than
the existing approach (in 8 commits). In the analyzed commits, neither
enhanced approach ever performed worse than the existing approach.
As expected, all selection and prioritization approaches clearly outper-

formed a regular test suite execution. The regular test suite execution (as
conducted by Maven) took 284 test cases on average, with a duration of
72,263 ms until the first test failure, which corresponds to 32.9% of the
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execution time of the whole test suite. On average, test cases selected and
ordered by the existing TIA approach reached the first test failure after
0.81% of the duration of all test cases. Test case orderings by the enhanced
approach exhibited a mean duration of 0.51% when using mutation data and
0.69% when using prediction data. Consequently, the enhanced approach
could reduce the TFF by further 37% compared to the existing approach.

Threats to validity: We determined the time to the first failure of the
approaches by summing up the duration of the test cases. However, test
cases may not be executable in the provided order. This may be due to tacit
dependencies between test cases, given that a set of test cases might need to
be executed in a certain order to succeed. It may also be due to limitations
in the test framework, which may not allow a single test case in a class to be
executed, or test cases from different modules to be executed arbitrarily.

In this evaluation, we examined only one study object and used a mutation
matrix both as input for the approach and as an evaluation means. Therefore,
the external validity is limited. The outcome may apply to other Java projects
exhibiting similar characteristics (in particular, a substantial proportion of
pseudo-tested methods), but further studies are necessary to determine the
generalizability of the results.

8.5 Limitations

This approach identifies changes conducted to code artifacts, and proposes
test cases based on code coverage enriched with test effectiveness informa-
tion. However, test cases may also fail for reasons other than code changes.
Non-code files such as configuration or test data files are not tracked and
changes to these files may cause failures in tests that are not selected by the
approach because no coverage relation exists between the tests and non-code
files. Moreover, test cases may also fail because of the test environment; for
example, when a web-service accessed by an integration test is not available
due to network problems. Similarly, non-determinism in test cases results in
flickering tests, which sporadically fail independent of code changes. Non-
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deterministic test executions also lead to unstable code coverage information,
hampering test case selection and prioritization. These limitations apply to
most coverage-based test case selection and prioritization approaches; they
are not specific to our enhanced approach.

Test effectiveness information may change over time, especially when test
cases are improved or major changes are conducted to the covered code.
Therefore, pseudo-testedness information or collected measures to build
a prediction model need to be updated occasionally. The more often this
information is updated, the more accurate it will be, resulting in a better
performance of the approach. However, collecting or incrementally updating
this information involves considerable costs, which conflict with the goal of
reducing efforts for test suite executions.

8.6 Summary

We extended an existing test case selection and prioritization approach,
which considers change information and test-case specific code coverage.
This enhanced approach also incorporates pseudo-testedness information
and assigns a weight to test-case method relations, which reflects whether a
test case can fail because of faults in that method.

The evaluation shows that the enhanced approach, using either computed
mutation data or a prediction model, can further reduce the time to the first
test failure in a test suite execution.
A limitation that applies to both the existing and enhanced approach is

that they propose test cases based on code changes, but test failures may also
be caused by changes to non-code artifacts, problems in the test environment,
and non-determinism.
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Conclusion
and Future Work

This chapter summarizes and discusses this dissertation and its limitations, and
explores what future work could be undertaken on the basis of the completed
work.
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9.1 Discussion

We have presented a mutation approach to identify pseudo-tested methods,
which are covered by test cases but untested in their entirety. One advantage
of this approach is that it is substantially faster than mutation testing with
traditional mutation operators because it strongly reduces the number of
generated mutants. Furthermore, this approach does not suffer from the
problem of equivalent mutants due to the design of the mutation operator.
The outcome of the analysis—a list of methods lacking effective testing—is
easy for developers to interpret and action.

The uncovered pseudo-tested methods exist in all analyzed study objects
and an analysis of them has shown that their lack of test effectiveness is
relevant. This was confirmed by Vera-Pérez et al. (2017).

Although no single measure strongly correlates with the mutation testing
verdict of a method, we have presented that a combination of different
measures in a random forest model can successfully identify pseudo-tested
methods as well as pseudo-tested test-case method pairs. The computation of
the required measures for the model is cheaper than a mutation analysis, by
orders of magnitude. We suggest that such prediction models can be applied
as a preceding, less costly step to mutation testing or be used in scenarios
where mutation testing is not applicable due to technical limitations.

Our analysis of the fault risk of methods confirms that not all methods
exhibit the same fault risk. Consequently, we feel it is sensible to treat
methods differently depending on how fault-prone they are. In particular,
we propose excluding low-fault-risk methods from a mutation analysis to
reduce analysis efforts and increase the relevance of the gained results. In
addition, low-fault-risk methods can be filtered out from test gaps, which
are added or changed methods that have not been tested after the last
modification, to reduce efforts for implementing automated or conducting
manual tests.
Finally, we have presented an approach that integrates test effectiveness

information into an existing hybrid test case selection and prioritization
approach. Such an enhanced approach can lead to a better prioritized test
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list in respect to given changes, resulting in a lower time to the first failure
in test suite executions.

9.2 Limitations

One limitation of the mutation operator to identify pseudo-tested methods is
that it is not as precise as other mutation operators. It operates at the method
level and can detect when a method in its entirety is not tested. Traditional
mutation operators operate at the statement level and generate subtler faults,
which are more difficult to detect than the invasive transformation of our
mutation operator. Consequently, the fact that a method is not pseudo-tested
does not imply that all of its statements are effectively tested. This is by
design and acknowledged to achieve benefits, such as, the reduced run-time
complexity or the avoidance of equivalent mutants.

Another limitation concerns the execution of the analysis. Although our ap-
proach is substantially faster than mutation testing with traditional mutation
operators, it is still conducted as a mutation analysis. Hence, a test suite’s
test cases will be executed multiple times during the analysis. Furthermore,
our approach will not be applicable in scenarios in which traditional muta-
tion testing is not applicable due to technical incompatibilities. This means
that it will also be affected when, for example, an application uses special
class-loading mechanisms that interfere with the byte-code replacement
to put in place a mutation. However, this limitation can be circumvented
by using the proposed machine-learning model to predict pseudo-tested
methods. It operates on measures, which can be collected statically or in a
single execution of a test suite. Future work is needed to determine whether
the minimal stack distance measure is also computable in static analysis.
The machine-learning models for pseudo-tested methods, like those for

low-fault-risk methods, are prediction models, which are inherently imper-
fect. Consequently, results contain false positives and miss false negatives.
This limitation needs to be kept in mind when working with predicted
outcomes of such models.
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Limitations regarding the enhanced test case selection and prioritization
approach include the fact that test cases may not be executable in the pro-
posed order due to implicit dependencies between test cases or restrictions
of the test framework. Furthermore, test cases may also fail due to changes
to non-code artifacts (e.g., configuration files), which are not tracked in the
current approach. In addition, it is necessary to ensure that test effectiveness
information is collected efficiently and updated as seldom as reasonable, to
avoid jeopardizing the gained benefits in reducing test efforts.

9.3 Future Work

Future work that could be undertaken based on presented techniques and
gained insights in this dissertation is discussed below.

Pseudo-testedness prediction in continuous integration pipeline: An impor-
tant topic for future work is the integration of the minimal stack distance
computation and the prediction of pseudo-tested methods using the devised
machine-learning models into a continuous integration pipeline. The execu-
tion of predictions within a continuous build would help provide developers
with timely feedback on the testing state of recently changed methods. It
will further enable researchers to better assess developers’ acceptance and
handling of pseudo-tested methods in real projects.

Static computation of the minimal stack distance: It is an open question
whether the minimal stack distance measure to characterize the distance
between a method and a test case can be approximated using a static code
analysis. It would be interesting to evaluate the potential accuracy of such
an approximation and whether the outcome is precise enough for use in
machine-learning models to predict pseudo-tested methods. A static compu-
tation would offer speed advantages over the proposed dynamic analysis.

Further improvement of prediction models for pseudo-tested methods: We
devised machine-learning models to predict pseudo-tested methods based
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on method and test-case measures. A possible direction for future work is to
improve the performance of these models by considering additional measures.
It could be beneficial to include, for example, measures that quantify and
characterize the use of assertions in test cases, as well as information about
validations and checks within methods of the application code. In addition,
cross-project prediction models could be enhanced by incorporating project
characteristics into the models.

Evaluation of incremental mutation analysis: PIT provides an experimental
feature to conduct an incremental mutation analysis (Coles, 2019b). It keeps
results from a mutation analysis and uses them in future analyses on newer
versions of a software to infer the mutation testing verdict of mutants that
belong to unchanged code. According to Coles (2019b), the implementation
makes assumptions and optimizations that cause results to become imprecise,
to a certain degree. This feature has not been empirically evaluated yet.
Future work is required in order to quantify and better understand the impact
of the undertaken simplifications on the results, shed light on the achievable
speed improvements compared to a full analysis, and give orientations to
further improvements. Depending on the outcome, an incremental analysis
could be used to determine pseudo-testedness in a continuous integration
pipeline (instead of applying a prediction model).

Multi-stage mutation testing process: While pseudo-tested methods con-
stitute ineffectively tested code, it cannot be inferred that the remaining
methods are effectively tested. Therefore, another interesting path for future
work is to set-up and evaluate a multi-stage mutation testing process. In
a first step, the developed machine-learning model should be employed to
identify methods that are pseudo-tested with high certainty. This implies
that the model should be optimized towards precision. In a second step,
mutation testing with the pseudo-testedness operator should be applied on
methods for which the model cannot reliably predict the mutation testing
verdict; this would identify further pseudo-tested methods. Then, in a third
step, a mutation analysis using traditional operators could be employed
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on non-pseudo-tested methods to determine their testing state at a more
fine-grained level. Such a multi-stage process would enable an efficient
detection of pseudo-tested methods and a deeper analysis of methods that
have already been tested to a minimum degree. Any of the steps could be
executed in an incremental analysis.

Exclusion of unnecessary code in addition to low-fault-risk methods: In
Haas et al. (2019a) and Haas et al. (2019b), we proposed and evaluated a
static analysis approach to identify unnecessary code at the file level. This
approach is based on the hypothesis that the most stable and, at the same
time, least central code in the dependency structure of a system tends to be
unnecessary. The results of that study showed that recommendations of such
an approach can give relevant pointers to unnecessary code. We suggest
combining such an analysis with the identification of low-fault-risk methods
to further restrict the relevant code to be tested. It would be interesting to
empirically study on long-grown systems whether this can help developers
and testers devote their testing efforts towards the relevant, actively used
parts a software system.
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