Modellgestützte Entwicklung von Kleinfeuerungen für feste Biobrennstoffe

Von der Fakultät Energie-, Verfahrens- und Biotechnik
der Universität Stuttgart
zur Erlangung der Würde des Doktors
der Ingenieurwissenschaften (Dr.-Ing.) genehmigte Abhandlung

Vorgelegt von
Winfried Juschka
aus Böblingen

Hauptberichter: Apl. Prof. Dr.-Ing. habil. Günter Baumbach
Mitberichter: Prof. Dr.-Ing. Konstantinos Stergiaropoulos

Tag der mündlichen Prüfung: 30. September 2019

Institut für Feuerungs- und Kraftwerkstechnik (IFK)
der Universität Stuttgart

2019
„Der intuitive Geist ist ein heiliges Geschenk und
der rationale Geist ein treuer Diener.
Wir haben eine Gesellschaft erschaffen,
die den Diener ehrt und das Geschenk vergessen hat.“

Albert Einstein
Inhalt

Kurzfassung .................................................. II
Abstract ..................................................... III
Nomenklatur ................................................ IV

1 Einleitung .................................................... 1
1.1 Motivation ................................................. 1
1.2 Zielsetzung und Vorgehensweise ................. 3

2 Kenntnisstand ........................................... 5
2.1 Grundlagen der Biomasseverbrennung .......... 5
2.2 Verbrennungsprozess von fester Biomasse .... 7
  2.2.1 Homogene Reaktionspfade ...................... 11
  2.2.2 Heterogener Reaktionspfad .................... 11
2.3 Emissionsbildung aus Biomassefeuerungen .... 12
  2.3.1 Kohlenmonoxid – CO ................................ 12
  2.3.2 Kohlenwasserstoffe – TVOC ................. 13
  2.3.3 Partikel – Gesamtstaub ....................... 14
  2.3.4 Partikel – PAK, Ruß ............................. 15
  2.3.5 Stickstoffoxide- NOx ............................. 17
  2.3.6 Weitere Emissionen ......................... 18
2.4 Verbrennungstechnische Qualitätskriterien ..... 19
2.5 Prinzipieller Aufbau von Biomassefeuerungen . 22
2.6 Beispielhafter Aufbau von Biomassefeuerungen . 24

3 Werkzeuge für die Entwicklung von Biomassefeuerungen ........................................... 28
3.1 Strömungsvisualisierung mit Aerosolen und Laser ........................................... 28
3.2 Computational Fluid Dynamics - CFD ........... 30
  3.2.1 Geometrie und Vernetzung ..................... 32
  3.2.2 Strömung und Energietransport .............. 32
  3.2.3 Reaktionspfade der Holzverbrennung in der CFD-Simulation ........ 34
  3.2.4 Verbrennungsmodelle der homogenen chemischen Reaktion .......... 41
  3.2.5 Stoffstrombilanzierung ......................... 44
3.3 Literaturübersicht über den Einsatz der CFD-Simulation bei Biomassefeuerungen .... 46
  3.3.1 Chargenweise betriebene Feuerungen ........ 46
  3.3.2 Mechanisch beschickte Feuerungen .......... 48
  3.3.3 Fazit der Literaturübersicht über den Einsatz der CFD-Simulation .... 54
4 Eigene Untersuchungen zur CFD-Simulation von Biomassefeuerungen

4.1 CFD bei einer chargenweise betriebenen Feuerung .......................................................... 55

4.1.1 Modellaufbau und Vernetzung .................................................................................. 55

4.1.2 Modellauswahl und Stoffstrombilanzierung .................................................................. 58

4.1.3 Ergebnisse der CFD-Simulation .................................................................................. 61

4.1.4 Messtechnische Überprüfung der CFD-Simulation .................................................. 62

4.2 CFD bei einer mechanisch beschickten Feuerung .......................................................... 65

4.2.1 Messtechnische Überprüfung der Feuerungsanlage .................................................. 65

4.2.2 CFD-Simulation der Verbrennungszone ...................................................................... 68

4.3 Fazit der CFD-Simulation bei Biomassefeuerungen ....................................................... 73

5 Methode zur Kalibrierung der Ergebnisse aus der CFD-Simulation

5.1 Voruntersuchungen zur Parameterstudie ......................................................................... 76

5.2 Methodenentwicklung zur Kalibrierung der CFD-Ergebnisse ........................................ 79

5.2.1 Parameterstudie zur Gewichtung der Berechnungspfade ......................................... 80

5.2.2 Methode zur Kalibrierung der Ergebnisse .................................................................. 83

5.2.3 Erstellung einer CO-$\lambda$-Charakteristik mit kalibrierten Ergebnissen .................... 86

5.3 Sensitivitätsanalyse ........................................................................................................ 88

5.3.1 Anzahl der Iterationsschritte ..................................................................................... 89

5.3.2 Änderung der Temperatur des Synthesegases ......................................................... 89

5.3.3 Änderung der Massenverhältnisse im Synthesegas .................................................. 92

5.3.4 Änderung des Reaktionspfades ................................................................................. 95

5.3.5 Änderung der Faktoren im Arrhenius-Ansatz .......................................................... 98

5.3.6 Erstellung einer CO-$\lambda$-Charakteristik mit geänderten Faktoren im Arrhenius-Ansatz ......................................................................................................................... 101

5.3.7 Änderung der Feuerungswärmeleistung .................................................................... 104

5.3.8 Zusammenfassung der Ergebnisse aus der Sensitivitätsanalyse ............................... 107

5.4 Messtechnische Überprüfung der Kalibrierungsmethode ............................................. 111

6 Anwendung der modellgestützten Entwicklung einer Biomassefeuerung

6.1 Eingangsgrößen ............................................................................................................. 115

6.2 Brennkammerdesign ...................................................................................................... 117

6.3 Auswahl der Brennkammerdesigns anhand der CO-$\lambda$-Charakteristik ....................... 119

6.4 Evaluierung der gewählten Brennkammern .................................................................. 120
Kurzfassung

Abstract

To date, solid-biomass combustion appliances for residential heating have been developed by the experience of design engineers. Established development tools such as computational fluid dynamics (CFD) are not used in design in most cases. The models implemented in the CFD simulation have proven to be suitable. However, a detailed parameterization, in connection with measured values on prototypes, was the prerequisite for the CFD simulation so far. Thus, the previous CFD simulations were effective at the end of the development process only. In order to provide the developers with the right answers during the construction of the biomass firing system, the simulation must be performed at the beginning of the development process. A method developed and applied in this thesis enables to use the CFD simulation already at the beginning of the development process, i.e. parallel to the conception phase of a biomass firing system. The method enables to reliably predict the emission behaviour and the operating range of biomass boilers. Thus, when designing new biomass firing systems, the advantages of the CFD simulation can already be used in the conception phase, without the production of prototypes. With the method for the calibration of the simulation results, developed in this thesis, the optimal concept could be selected using the example of a log wood boiler operated batchwise. The subsequent metrological verification of two different log wood boiler prototypes on the test bench showed an excellent match of the measured carbon monoxide concentrations with the calibrated results from the CFD simulation.
### Nomenklatur

**Formelzeichen lateinische Buchstaben**

<table>
<thead>
<tr>
<th>Zeichen</th>
<th>Einheit</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>Koeffizient im Eddy Dissipation Model</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>Koeffizient im Eddy Dissipation Model</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>Klasse</td>
</tr>
<tr>
<td>c</td>
<td>$mg\cdot m^{-3}$</td>
<td>Massenkonzentration</td>
</tr>
<tr>
<td>E</td>
<td>J</td>
<td>Energie</td>
</tr>
<tr>
<td>H</td>
<td>$J\cdot kg^{-1}$</td>
<td>Heizwert (Heating Value)</td>
</tr>
<tr>
<td>k</td>
<td></td>
<td>Präexponentieller Faktor des Arrhenius-Ansatzes</td>
</tr>
<tr>
<td>K</td>
<td></td>
<td>Kalibrierfaktor</td>
</tr>
<tr>
<td>M</td>
<td>$kg\cdot mol^{-1}$</td>
<td>Molare Masse</td>
</tr>
<tr>
<td>m</td>
<td>kg</td>
<td>Masse</td>
</tr>
<tr>
<td>ṁ</td>
<td>$kg\cdot s^{-1}$</td>
<td>Massenstrom</td>
</tr>
<tr>
<td>P</td>
<td>W</td>
<td>Leistung</td>
</tr>
<tr>
<td>p</td>
<td>$N\cdot m^{-2}$</td>
<td>Druck</td>
</tr>
<tr>
<td>R</td>
<td>$J\cdot (mol\cdot K)^{-1}$</td>
<td>universelle Gaskonstante</td>
</tr>
<tr>
<td>i̇</td>
<td>$kmol\cdot (m^3\cdot s)^{-1}$</td>
<td>Reaktionsgeschwindigkeit</td>
</tr>
<tr>
<td>T</td>
<td>K</td>
<td>Absolute Temperatur</td>
</tr>
<tr>
<td>V</td>
<td>$m^3$</td>
<td>Volumen</td>
</tr>
<tr>
<td>x</td>
<td>$kg\cdot kg^{-1}$</td>
<td>Massenanteil</td>
</tr>
<tr>
<td>y</td>
<td>$m^3\cdot m^{-3} = mol\cdot mol^{-1}$</td>
<td>Volumenanteil / Stoffmengenanteil</td>
</tr>
</tbody>
</table>

**Formelzeichen griechische Buchstaben**

<table>
<thead>
<tr>
<th>Zeichen</th>
<th>Einheit</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>η</td>
<td></td>
<td>Wirkungsgrad</td>
</tr>
<tr>
<td>λ</td>
<td></td>
<td>Luftzahl (Luftüberschusszahl)</td>
</tr>
<tr>
<td>ν̇</td>
<td></td>
<td>stöchiometrischer Koeffizient eines Stoffes in der Reaktion</td>
</tr>
<tr>
<td>ξ</td>
<td>$mol\cdot kW\cdot h^{-1}$</td>
<td>spezifischer Stoffmengenanteil (Bezug Heizwert)</td>
</tr>
<tr>
<td>θ</td>
<td>°C</td>
<td>Temperatur</td>
</tr>
<tr>
<td>κ</td>
<td>$m^2\cdot s^{-3}$</td>
<td>massenspezifische turbulente kinetische Energie</td>
</tr>
<tr>
<td>ε</td>
<td>$m^2\cdot s^{-3}$</td>
<td>Dissipation der turbulenten kinetischen Energie</td>
</tr>
</tbody>
</table>
## Nomenklatur

### Indizes tiefgestellt

<table>
<thead>
<tr>
<th>Zeichen</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Aktivierung</td>
</tr>
<tr>
<td>A</td>
<td>Fläche</td>
</tr>
<tr>
<td>Abg</td>
<td>Abgas</td>
</tr>
<tr>
<td>ad</td>
<td>adiabat</td>
</tr>
<tr>
<td>af</td>
<td>aschefrei</td>
</tr>
<tr>
<td>bez</td>
<td>Bezug, bezogen</td>
</tr>
<tr>
<td>Br</td>
<td>Brennstoff</td>
</tr>
<tr>
<td>BrB</td>
<td>Brennstoffbett</td>
</tr>
<tr>
<td>F</td>
<td>Feuerung</td>
</tr>
<tr>
<td>Flmr</td>
<td>Flammrohr</td>
</tr>
<tr>
<td>G</td>
<td>Gasphase, Gas</td>
</tr>
<tr>
<td>GrW</td>
<td>Grenzwert</td>
</tr>
<tr>
<td>i</td>
<td>infra, inferior (intern, geringwertig)</td>
</tr>
<tr>
<td>j</td>
<td>Zählindex für Gewichtungsfunktion</td>
</tr>
<tr>
<td>kal</td>
<td>Kalibrierung, kalibriert</td>
</tr>
<tr>
<td>Kat</td>
<td>Katalysator</td>
</tr>
<tr>
<td>L</td>
<td>Luft</td>
</tr>
<tr>
<td>Mag</td>
<td>Magnussen-Koeffizient im Eddy Dissipation Model</td>
</tr>
<tr>
<td>max</td>
<td>maximal, Maximum</td>
</tr>
<tr>
<td>mess</td>
<td>gemessen</td>
</tr>
<tr>
<td>m</td>
<td>molar</td>
</tr>
<tr>
<td>n</td>
<td>Zählindex für Stoffe</td>
</tr>
<tr>
<td>N</td>
<td>Nenn</td>
</tr>
<tr>
<td>norm</td>
<td>Normiert auf Bezugsgröße</td>
</tr>
<tr>
<td>Oxi</td>
<td>Oxidant</td>
</tr>
<tr>
<td>p</td>
<td>bei konstantem Druck</td>
</tr>
<tr>
<td>pri</td>
<td>primär</td>
</tr>
<tr>
<td>priZ</td>
<td>Primärzone</td>
</tr>
<tr>
<td>red</td>
<td>reduziert, reduzierend</td>
</tr>
<tr>
<td>ref</td>
<td>Referenz</td>
</tr>
<tr>
<td>roh</td>
<td>Rohzustand</td>
</tr>
<tr>
<td>s</td>
<td>supra, superior (oberer)</td>
</tr>
<tr>
<td>st</td>
<td>stöchiometrisch</td>
</tr>
<tr>
<td>SyG</td>
<td>Synthesegas</td>
</tr>
<tr>
<td>th</td>
<td>thermisch</td>
</tr>
<tr>
<td>TL</td>
<td>Teillast</td>
</tr>
<tr>
<td>tr</td>
<td>trocken</td>
</tr>
</tbody>
</table>

(wird fortgesetzt)
### Nomenklatur

<table>
<thead>
<tr>
<th>Zeichen</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>VL</td>
<td>Vollast</td>
</tr>
<tr>
<td>waf</td>
<td>wasser- und aschefrei</td>
</tr>
<tr>
<td>wf</td>
<td>wasserfrei</td>
</tr>
<tr>
<td>Z</td>
<td>Zone</td>
</tr>
<tr>
<td>zu</td>
<td>zugeführt</td>
</tr>
</tbody>
</table>

#### Indizes hochgestellt

<table>
<thead>
<tr>
<th>Zeichen</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Gewichtungsfaktor des Brennstoffes im Arrhenius-Ansatz</td>
</tr>
<tr>
<td>b</td>
<td>Gewichtungsfaktor des Oxidant im Arrhenius-Ansatz</td>
</tr>
<tr>
<td>c</td>
<td>Gewichtungsfaktor des Katalysators im Arrhenius-Ansatz</td>
</tr>
<tr>
<td>β</td>
<td>Temperaturexponent im Arrhenius-Ansatz</td>
</tr>
<tr>
<td>EDM</td>
<td>mischungkontrollerter kinetischer Term</td>
</tr>
<tr>
<td>kin</td>
<td>temperaturkontrollerter kinetischer Term</td>
</tr>
</tbody>
</table>

#### Dimensionslose Größen

<table>
<thead>
<tr>
<th>Zeichen</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>Gewichtung</td>
</tr>
</tbody>
</table>

#### Mathematische Operatoren

<table>
<thead>
<tr>
<th>Zeichen</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(x)</td>
<td>Funktion von x</td>
</tr>
</tbody>
</table>

#### Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>BImSchV</td>
<td>Bundesimmissionsschutzverordnung</td>
</tr>
<tr>
<td>CAD</td>
<td>computer-aided design – computerunterstützter Entwurf</td>
</tr>
<tr>
<td>CFD</td>
<td>computational fluid dynamics – numerische Strömungssimulation</td>
</tr>
</tbody>
</table>

(wird fortgesetzt)
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Kohlenmonoxid</td>
</tr>
<tr>
<td>CO₂</td>
<td>Kohlendioxid</td>
</tr>
<tr>
<td>CH₄</td>
<td>Methan</td>
</tr>
<tr>
<td>C₂H₂</td>
<td>Ethin, Acetylen</td>
</tr>
<tr>
<td>C₂H₆</td>
<td>Ethan</td>
</tr>
<tr>
<td>C₄H₈</td>
<td>Buten</td>
</tr>
<tr>
<td>C₃H₈</td>
<td>Propan</td>
</tr>
<tr>
<td>C₆H₆</td>
<td>Benzol</td>
</tr>
<tr>
<td>C₁₀H₈</td>
<td>Naphthalin</td>
</tr>
<tr>
<td>CₓHᵧ</td>
<td>Kohlenwasserstoff</td>
</tr>
<tr>
<td>DOM</td>
<td>Discrete Ordinates Model</td>
</tr>
<tr>
<td>EDC</td>
<td>Eddy Dissipation Concept</td>
</tr>
<tr>
<td>EDM</td>
<td>Eddy Dissipation Model</td>
</tr>
<tr>
<td>H₂O</td>
<td>Wasser, gasförmig als Wasserdampf</td>
</tr>
<tr>
<td>HCN</td>
<td>Cyanwasserstoff</td>
</tr>
<tr>
<td>HLRS</td>
<td>Höchstleistungsrechenzentrum, Stuttgart</td>
</tr>
<tr>
<td>HN₃</td>
<td>Ammoniak</td>
</tr>
<tr>
<td>IFK</td>
<td>Institut für Feuerungs- und Kraftwerkstechnik</td>
</tr>
<tr>
<td>NMVOC</td>
<td>volatile organic compounds non Methan</td>
</tr>
<tr>
<td>NO</td>
<td>Stickstoffmonoxid</td>
</tr>
<tr>
<td>NO₂</td>
<td>Stickstoffdioxid</td>
</tr>
<tr>
<td>NOₓ</td>
<td>Stickstoffoxid</td>
</tr>
<tr>
<td>O₂</td>
<td>Sauerstoff</td>
</tr>
<tr>
<td>OGC</td>
<td>organisch gebundener Kohlenstoff</td>
</tr>
<tr>
<td>PAK</td>
<td>Polzyklische aromatische Kohlenwasserstoffe engl: Polycyclic Aromatic Hydrocarbons (PAH)</td>
</tr>
<tr>
<td>PM</td>
<td>Particulate Matter - Gesamtstaub</td>
</tr>
<tr>
<td>THC</td>
<td>total hydrocarbon – gesamte Kohlenwasserstoffe</td>
</tr>
<tr>
<td>TOC</td>
<td>total organic carbon – Gesamter organischer Kohlenstoff</td>
</tr>
<tr>
<td>TVOC</td>
<td>total volatile organic compounds – gesamte flüchtige organische Verbindungen</td>
</tr>
<tr>
<td>VOC</td>
<td>volatile organic compounds – flüchtige organische Verbindungen</td>
</tr>
<tr>
<td>WSGGM</td>
<td>Weighted-Sum-of-Gray-Gases Model</td>
</tr>
</tbody>
</table>
### Begriffsdefinitionen

<table>
<thead>
<tr>
<th>Begriff</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>evaluieren</td>
<td>„sach- und fachgerecht beurteilen, bewerten“ (Duden). Die Ergebniswerte der Simulation werden mit den Messwerten verglichen.</td>
</tr>
<tr>
<td>validieren</td>
<td>„die Wichtigkeit, die Gültigkeit, den Wert von etwas feststellen, bestimmen“ (Duden) Die Randbedingungen der Simulation werden dahingehend geändert, um eine Übereinstimmung der Simulationsergebnisse mit den Messwerten zu erreichen.</td>
</tr>
<tr>
<td>NOx</td>
<td>Die Komponenten Stickstoffmonoxid (NO) und Stickstoffdioxid (NO2) werden zusammenfassend als Stickstoffoxide (NOx) bezeichnet und sind als Masse von NO2 berechnet. Bei der Verbrennung in Biomassefeuerungen entsteht überwiegend Stickstoffmonoxid (NO) (Keller 1994).</td>
</tr>
<tr>
<td>Teer</td>
<td>Oft wird bei der Verbrennung von Biomasse von der Bildung von Teer gesprochen. Teer kann als eine Ansammlung aus einer Vielzahl von unterschiedlichen kondensierten Kohlenwasserstoffen bezeichnet werden, die eine größere Molasse als Benzol (78,1 g/mol) aufweisen (Kübel 2007).</td>
</tr>
</tbody>
</table>

(wird fortgesetzt)
<table>
<thead>
<tr>
<th>Begriff</th>
<th>Definition</th>
</tr>
</thead>
</table>
| Gesamtstaub| Die Partikel im Abgasstrom von Biomassefeuerungen werden als Staub bezeichnet und werden im internationalen Standard ISO 9096 und ISO 12141 nachfolgend definiert:  
   "Particles, of any shape, structure or density, dispersed in the gas phase under the sampling conditions"  
   Die Definition für Staub in der europäischen Norm DIN EN 13284-1 entspricht derer in der deutschen Richtlinie VDI 2066 Blatt 1 und lautet:  
   „Partikel jeder Form, Struktur oder Dichte, die bei den lokalen Probenahmebedingungen in der Gasphase dispergiert sind und unter festgelegten Bedingungen bei repräsentativer Probenahme des zu untersuchenden Gases durch die Filtration gesammelt und nach dem Trocknen unter festgelegten Bedingungen bestimmt werden."
| Heizwert   | „Brennwert und Heizwert sind Reaktionsenergien (bei Verbrennung unter konstantem Volumen) oder Reaktionsenthalpien (bei Verbrennung unter konstantem Druck), die vom System abgegeben und deshalb mit einem negativen Vorzeichen versehen werden“ (DIN 5499 – Brennwert und Heizwert, Begriffe).  
   In der Vergangenheit wurden die Begriffe obere Heizwert $H_o$ (Brennwert) und unter Heizwert $H_u$ genutzt. In der DIN 5499 vom Januar 1972 (aktuelle Fassung: Juli 2018) wurde die Begriffe dem internationalen Standard angepasst. Für den Brennwert wird das Formelzeichen $H_s$ (supra, superior: engl. für oberen) und für den Heizwert wird das Formelzeichen $H_i$ (infra, inferior: engl. für unterer) genutzt. |
Einleitung


1.1 Motivation

Der Leitgedanke dieser Arbeit „… ist es, Menschen, Tiere und Pflanzen, den Boden, das Wasser, die Atmosphäre sowie Kultur- und sonstige Sachgüter vor schädlichen Umwelteinwirkungen zu schützen und dem Entstehen schädlicher Umwelteinwirkungen vorzubeugen“ (§1 BImSchG).


Entwicklungsprozesses wirkungsvoll. Um den Entwicklern die richtigen Antworten bei der Konstruktion der Biomassefeuerung geben zu können, muss allerdings die CFD-Simulation am Anfang des Entwicklungsprozesses eingesetzt werden.


Abbildung 1: Ablauf der Entwicklung von Biomassefeuerungen mit Hilfe der CFD-Simulation in der Konzeptionsphase.
1.2 Zielsetzung und Vorgehensweise


1 evaluieren: siehe Begriffsdefinitionen S. VIII.
Abbildung 2: Schematische Darstellung der Vorgehensweise zur Umsetzung der definierten Ziele.
2 Kenntnisstand

2.1 Grundlagen der Biomasseverbrennung


![Abbildung 3: Bilanzierungsraum einer Biomassefeuerung.](image-url)

Für einen wasser- und aschefreien stückigen Holzbrennstoff nach Tabelle A27, Seite 128:

\[ C_8H_{12}O_6 + 8 \left( O_2 + 3,77 N_2 \right) \rightarrow 8 CO_2 + 6 H_2O + 30,16 N_2 \]  

Gleichung (1)

Brennstoff waf, Bezug: mol/kWh

Diese idealierte Reaktion gibt Aufschluss über die Stoffmenge der oxidierbaren Bestandteile, die im Verbrennungsprozess von der Biomasse bereitgestellt wird und den dafür benötigten Sauerstoff in Form von Umgebungsluft. Dieses Verhältnis wird mit der Luftzahl nach Gleichung (2) beschrieben, ausgedrückt mit \( \lambda \) (Lambda):

\[ \lambda = \frac{m_{L,zu}}{m_{L,st}} \quad \text{Gleichung (2)} \]

\( \lambda \) : Luftzahl  
\( m_{L,zu} \) : zugeführter Massenstrom der Verbrennungsluft \( \text{kg} \cdot \text{s}^{-1} \)  
\( m_{L,st} \) : minimaler Massenstrom der Verbrennungsluft bei einem stöchiometrischen Gleichgewicht \( \text{kg} \cdot \text{s}^{-1} \)

Bei einem stöchiometrischen Gleichgewicht wird genau die Menge an Sauerstoff zugeführt, die der Verbrennungsprozess für eine vollständige Oxidation benötigt und die Luftzahl ist genau Eins. Ist die Luftzahl größer als Eins, sind im Abgas „überschüssige“ Sauerstoffmoleküle zu finden. Werden hingegen weniger Sauerstoffmoleküle dem System zugeführt, wird die Luftzahl kleiner Eins. Dadurch stehen nicht genügend Sauerstoffmoleküle für eine vollständige Oxidation des Kohlen- und Wasserstoffes zur Verfügung und es befinden sich unverbrannte Brennstoffbestandteile im Abgas.


2.2 Verbrennungsprozess von fester Biomasse

Das Abbrandverhalten von fester Biomasse wird in vier Verbrennungsstufen eingeteilt (Hellwig 1988):

(1) Erwärmung und Trocknung
(2) pyrolytische Zersetzung in gasförmige Produkte und festem Rückstand
(3) homogene Reaktion\(^2\) der flüchtigen Zersetzungsprodukte
(4) heterogene Reaktion\(^3\) des festen Rückstandes


---

Abbildung 5: Schematische Darstellung der Verbrennungsstufen bei der Verbrennung von Biomasse.
Die überwiegend als typische dunkel- bis hellgelb Flammbildung gekennzeichnete Oxidation der Pyrolysegase (3) findet in einer exothermen Reaktion statt. Der Energietransport in der Brennkammer erfolgt durch Konvektion, Wärmeleitung im Gas und Strahlung. Die Strahlung wird durch die Brennkammerwände absorbirt und reflektiert. Eine Temperaturerhöhung der Gase in der Brennkammer erfolgt überwiegend durch die Absorption der Infrarotstrahlung der Flamme durch die Gasmoleküle Kohlendioxid und dampfförmiges Wasser. Unter der Annahme, dass bei einer vollständigen Umsetzung des Brennstoffes alle Energie für die Erwärmung des Abgases genutzt wird, d. h. ohne die Wärmeabgabe an die Feuerraumwände, wird eine theoretische, maximale Temperaturerhöhung des Gases erreicht. Die maximale Temperaturerhöhung des Gases kann in erster Näherung aus der mittleren spezifischen Wärmekapazität des Gasgemisches und des Heizwertes berechnet werden und wird als adiabate Verbrennungstemperatur $\vartheta_{ad}$ bezeichnet (Joos 2006). Abbildung 6 zeigt die adiabate Verbrennungstemperatur $\vartheta_{ad}$ in Abhängigkeit der Luftzahl $\lambda$. Mit zunehmender Luftzahl sinkt die adiabate Verbrennungstemperatur, da mehr Verbrennungsluft dem System zugeführt wird als für die vollständige Umsetzung des Brennstoffes benötigt wird. Dieser zusätzliche Massenstrom wird unnötigerweise erwärmt und damit sinkt die Temperatur des Gases mit zunehmender Luftzahl. Unter der Annahme einer vollständigen Umsetzung des Brennstoffes liegt die maximal zu erreichende Verbrennungstemperatur bei $\lambda = 1$.

Abbildung 6: Beispielhafter Verlauf der adiabaten Verbrennungstemperatur ($\vartheta_{ad}$) in Abhängigkeit der Luftzahl ($\lambda$) für den Brennstoff Stückholz und Holzpellet, Zusammensetzung aus Tabelle A26 im Anhang auf Seite 128.


2.2.1 Homogene Reaktionspfade


Bei der Betrachtung des Anfangs- und Endzustandes bei einer vollständig ablaufenden Brutto-Reaktionsgleichung der Pyrolysegase kann eine Reaktionsgleichung für die Kohlenwasserstoffverbindungen nach Gleichung (3) aufgestellt werden. Das Kohlenmonoxid reagiert mit Sauerstoff zu Kohlendioxid nach Gleichung (4).

\[
\begin{align*}
C_xH_y + \left( x + \frac{y}{4} \right) O_2 & \rightarrow x CO_2 + \frac{y}{2} H_2O \quad \text{Gleichung (3)} \\
2 \text{CO} + O_2 & \rightarrow 2 \text{CO}_2 \quad \text{Gleichung (4)}
\end{align*}
\]

2.2.2 Heterogener Reaktionspfad

Bei der pyrolytischen Zersetzung erfährt die Biomasse einen Gewichtsverlust von ca. 83 % (vgl. Tabelle A26, Seite 128 mittlere Werte für wasser- und aschefreies Holz, bezeichnet als flüchtige Stoffe). Der als Endprodukt der pyrolytischen Zersetzung gebildete feste Kohlenstoff wird in einer heterogenen Oberflächenreaktion überwiegend nach Gleichung (5) über das Zwischenprodukt Kohlenmonoxid zu Kohlendioxid nach Gleichung (4) oxidiert:

\[
C + O_2 \rightarrow 2 \text{CO} \quad \text{Gleichung (5)}
\]
2.3 Emissionsbildung aus Biomassefeuerungen


2.3.1 Kohlenmonoxid – CO


![Abbildung 7: Beispielhafte CO-$\lambda$-Charakteristik einer Biomassefeuerung.](image-url)

### 2.3.2 Kohlenwasserstoffe – TVOC


![Abbildung 8: Qualitativer Zusammenhang von Emissionen von gesamt flüchtigen organischen Verbindungen (TVOC) in Abhängigkeit der Kohlenmonoxidkonzentration bei Biomassefeuerungen (Juschka et al. 2012 und Struschka et al. 2013.11)](image-url)
2.3.3 Partikel – Gesamtstaub


2.3.4 Partikel – PAK, Ruß


2.3.5 Stickstoffoxide- NOx


2.3.6 Weitere Emissionen

2.4 Verbrennungstechnische Qualitätskriterien


Aus feuerungstechnischer Sicht lässt sich die Qualität einer Feuerung in Hinblick auf die Produkte der unvollständigen Verbrennung anhand von Kriterien definieren. Die Kriterien von qualitativ hochwertigen Biomassefeuerungen sollen mit Hilfe der CO-\( \lambda \)-Charakteristik beschrieben werden. Abbildung 12 zeigt den Wirkungsgrad und die CO-Konzentration über der Luftzahl \( \lambda \). Mit zunehmender Luftzahl sinkt der Wirkungsgrad einer Feuerung, da mehr Verbrennungsluft dem System zugeführt wird als für die vollständige Umsetzung des Brennstoffes benötigt wird. Dieser zusätzliche Luftmassenstrom muss unnötigerweise erwärmt werden und damit steigt der Abgasverlust. In Bezug auf den Wirkungsgrad sollte die Feuerung nahe bei der Luftzahl \( \lambda = 1 \) betrieben werden.


![Abbildung 12: Verbrennungstechnische Qualitätskriterien einer Feuerung: Wirkungsgrad, CO-\( \lambda \)-Charakteristik und Betriebsbereich.](image)


Bei einer Biomassefeuerung ist nicht der optimale Betriebspunkt in Bezug auf minimale Kohlenmonoxidkonzentrationen die ausschlaggebende Kenngröße. Diese wird üblicherweise bei der Überprüfung auf dem Prüfstand unter idealisierten Bedingungen erreicht.

Die Herausforderung ist nun, eine verlässliche Vorhersage der CO-$\lambda$-Charakteristik mit Hilfe der CFD-Simulation zu erstellen, ohne eine Messung durchführen zu müssen. Danach kann aus verbrennungstechnischer Sicht eine Auswahl berechneter konstruktiver Ansätze für eine qualitativ hochwertige Feuerung nach folgenden Kriterien erfolgen:

- hoher Wirkungsgrad
  $\iff \lambda$ nahe Eins
- Emissionen minimieren
  $\iff$ CO nahe Null
- großer Betriebsbereich
Abbildung 13: NOx-λ-Caracteristik als verbrennungstechnisches Qualitätskriterium einer Reduktionszone.


- Stöchiometrie in der Reduktionszone
  \[ \lambda \text{ kleiner Eins} \]
- Temperatur in der Reduktionszone
  \[ 1.100 \, ^{\circ}\text{C} \leq \theta_0 \leq 1.200 \, ^{\circ}\text{C} \]
2.5 Prinzipieller Aufbau von Biomassefeuerungen


Abbildung 14: Aufteilung der abstrahierten Gesamtfunction „Feuerung“ in mehrere Teilfunktionen.
Um eine hohe Regelgüte der Leistung zu erreichen, hat die Primärkammer die Funktion, den Prozess der gleichmäßigen Teiloxidierung und Entgasung des Brennstoffes zu ermöglichen. Die anfallenden Verbrennungsrückstände, welche im Idealfall ausschließlich aus mineralischen Aschebestandteilen bestehen, verbleiben auf dem Feuerraumboden (8) oder werden über den Rost (8) aus der Primärkammer in den Ascheraum (9) gefördert. Dies kann durch die Schwerkraft oder durch eine mechanische Einrichtung geschehen. Für die Reduktion von Stickstoffoxide wird eine Reduktionszone (2) oberhalb der Primärkammer geschaffen. Unter sauerstoffarmen Bedingungen und bei Temperaturen von $1.100 \, ^\circ C \leq \theta_G \leq 1.200 \, ^\circ C$ wird die NOx-Bildung unterdrückt und das Gleichgewicht verschiebt sich in Richtung von molekularem Stickstoff.


Die während des Verbrennungsprozesses entstandenen Abgase werden in einen Wärmeübertrager (4) überführt und abgekühlt. Dabei erfolgt die räumliche Trennung der Wärmeabgabe vom Abgas an ein anders Medium. Dies kann im einfachsten Fall die Raumluft sein. Wird die Feuerung für die Bereitstellung von Heizenergie, zur Trinkwassererwärmung oder für Prozesswärme genutzt, wird üblicherweise Wasser als Wärmträger genutzt. Für die Service- und Reinigungsarbeiten werden entsprechende Zugänge (6) in der Feuerung bereitgestellt.

Für die Einhaltung von gesetzlichen Vorgaben (Grenzwerten) der Emissionen wie Kohlenmonoxid, TVOC, Partikel und Stickstoffoxid ist teilweise eine Abgasnachbehandlung (5) erforderlich. Diese kann ein Partikelabscheider, ein Katalysator
für Kohlenmonoxid und gesamtaftüchtige organische Verbindungen (TVOC) oder auch eine Einheit zur Stickstoffoxidreduktion beinhalten.


2.6 Beispielhafter Aufbau von Biomassefeuerungen


In dieser Arbeit wird ausschließlich auf die verbrennungstechnische Optimierung nach den Qualitätskriterien für eine gute Verbrennung nach Kapitel 2.4, Seite 19 eingegangen. Für die Minimierung der Produkte der unvollständigen Verbrennung erfolgt die Optimierung im Bereich der Sekundärzone (Teilfunktion 3), für die Reduzierung der Stickoxide erfolgt die Optimierung in der Reduktionszone (Teilfunktion 2).

Abbildung 15: Beispielhafter Aufbau und Optimierungsmöglichkeiten einer chargenweise betriebenen Einzelraumfeuerung mit Durchbrandprinzip.


Abbildung 16: Beispielhafter Aufbau und Optimierungsmöglichkeiten eines chargenweise betriebenen Heizkessels mit seitlichem Unterbrand und Wasserwärmeübertrager.
Abbildung 17: Beispielhafter Aufbau und Optimierungsmöglichkeiten für eine *mechanisch beschickte* Biomassefeuerung mit Reduktionszone, Wasserwärmeübertrager und Abgasnachbehandlung.

3 Werkzeuge für die Entwicklung von Biomassefeuerungen


3.1 Strömungsvisualisierung mit Aerosolen und Laser


Wird die Strömungsvisualisierung mit Hilfe von Aerosol und Laser für die Entwicklung von Biomassefeuerungen eingesetzt, bedarf es einer großen Erfahrung, um vor allem bei skalierten Modellen die Ähnlichkeitsbedingungen richtig zu bestimmen und die visualisierten Strömungen in der Feuerung richtig zu deuten. Des Weiteren ist der Aufwand für den Modellbau, in Bezug auf die Fertigungsgenauigkeit und der Zugänglichkeit für die Aufnahmetechnik und Lichtquelle nicht zu unterschätzen.

Da keine chemischen Reaktionen bei diesem Entwicklungswerkzeug betrachtet werden, können die Feuerungskonzepte in Folge dessen nicht nach den verbrennungstechnischen Qualitätskriterien nach Kapitel 2.4, Seite 19 bewertet werden. Daher soll das Entwicklungswerkzeug Aerosol mit Laser nicht weiter betrachtet werden.
3.2 Computational Fluid Dynamics - CFD

Für die Entwicklung und Optimierung von Biomassefeuerungen stellt die computergestützte Simulation ein weiteres Entwicklungswerkzeug zur Verfügung und umfasst folgende Arbeitsschritte (Andersson et al. 2001):

1. Vorbereitende Schritte wie z. B. die Bilanzierung der Stoffströme
2. Modellaufbau
3. Vernetzung
4. Berechnung der Strömung und Reaktion, sowie des Energietransportes
5. Visualisierung der Ergebnisse
6. Auswertung und Bewertung der Ergebnisse

Abbildung 19 zeigt schematisch die Arbeitsschritte (2), (3) und (5) bei der Erstellung einer CFD Simulation für beispielsweise eine chargenweise betriebene Einzelraumfeuerung.

Abbildung 19: Arbeitsschritte: Erzeugung einer CFD-konformen Geometrie (links oben), Vernetzung (links unten), Setzen der Randbedingungen und Lösung der Erhaltungsgleichung (solver), Visualisierung und grafische Aufarbeitung der Ergebnisse (rechts).
Für die Bearbeitung dieser Teilschritte stehen kommerzielle und nicht kommerzielle CFD-Software zur Verfügung. In Tabelle 1 sind die für diese Arbeit genutzten kommerziellen Programme zur Durchführung von CFD-Simulation aufgelistet.

Die zu untersuchenden Feuerungskonstruktionen müssen für die CFD-Simulation vereinfacht und in eine CFD-konforme Modellgeometrie überführt werden. Durch Einteilung der Geometrie in finite Volumenelemente wird die Geometrie in ein mathematisches Rechennetz überführt (Kapitel 3.2.1). Das erstellte Rechennetz wird dann mit Randbedingungen und Teilmodellen versehen (pre-processing).


Die Strömung wird über ein Turbulenzmodel beschrieben (Kapitel 3.2.2). Der Energietransport in der Brennkammer einer Biomassefeuerung findet überwiegend durch Strahlung statt und wird mit Hilfe eines Strahlungsmodell beschrieben (Kapitel 3.2.2). Ein weiteres Teilmodel ist die Beschreibung der Verbrennung. Da die Reaktion von Holz zu komplex ist, muss die Verbrennung vereinfacht und globale Reaktionspfade mathematisch formuliert werden (Kapitel 3.2.3). Die Berechnung der homogenen chemischen Reaktionen wird mit einem Reaktionsmodell durchgeführt (Kapitel 3.2.4).


Tabelle 1: Für die Anwendung der Simulation verwendete Programme in der vorliegenden Arbeit.

<table>
<thead>
<tr>
<th>Arbeitsschritt</th>
<th>Name Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Vorbereitende Schritte</td>
<td>Microsoft® Excel® (Tabellenkalkulation)</td>
</tr>
<tr>
<td>(2) Geometrie erzeugen</td>
<td>Solidworks®</td>
</tr>
<tr>
<td>(3) Vernetzung</td>
<td>Ansys® Meshing®</td>
</tr>
<tr>
<td>(4) CFD-Simulation</td>
<td>Ansys® Fluent® V14.1</td>
</tr>
<tr>
<td>(5) Visualisierung</td>
<td>Ansys® CFD-Post</td>
</tr>
<tr>
<td>(6) Auswertung der Ergebnisse</td>
<td>Microsoft® Excel® (Tabellenkalkulation)</td>
</tr>
</tbody>
</table>
3.2.1 Geometrie und Vernetzung


Oftmals ist es aufwendig, ein Rechennetz mit möglichst wenigen Zellen aber mit einer ausreichenden Qualität zu generieren. Die Besonderheit dabei liegt in den vergleichsweise kleinen Querschnitten für die Luftkanäle und den im Vergleich hierzu großen Volumina im Brennraum.

3.2.2 Strömung und Energietransport


Da sich eine spezielle Strömung überwiegend auf Grund der Geometrie einstellt, wird die Strömung durch ein iteratives Verfahren berechnet. Die Ergebnisse einer Rechennelle, wie z. B. die Geschwindigkeit und die Richtung, werden an die angrenzenden Rechenzellen weitergegeben. Die Ausgangsgröße der einen Zelle dient dabei als Eingangsgröße der angrenzenden Zelle. Die Strömung durch eine Feuerung wird somit von der Einlass- zu der Ausgangsöffnung berechnet. Anfangs ändert sich die Strömung durch das Model stark und erst bei genügend Iterationsschritte ist nur noch eine geringe Änderung der Ergebnisse festzustellen. Ein Maß ist die Kontinuität (engl: continuity), wenn sich von einem Iterationsschritt zum nächsten sich die Ergebnisse nur noch sehr gering unterscheiden. Ändern sich die Ausgangsgrößen wie z. B. die Abgastemperatur, die Konzentrationen von Sauerstoff und Kohlenmonoxid von einem Iterationsschritt zum nächsten nicht mehr
signifikant, ist die Lösung konvergent (Beispiel in Abbildung D76 bis Abbildung D79 im Anhang, Seite 138 ff). Es werden üblicherweise nur stationäre Zustände simuliert, obwohl je nach Feuerungsart, wie z.B. bei **chargenweise betriebenen** Feuerungen die Betriebsbedingungen instationär und zeitabhängig verlaufen. Bei einer zeitabhängigen Simulation der instationären Verbrennungsvorgänge müssen in jeden Zeitschritt Informationen über die veränderten Randbedingungen vorliegen. Auf Grund der Komplexität der Verbrennungsvorgänge liegen bei der Biomasseverbrennung diese Informationen nicht vor.


---

4 SST: Shear Stress Transport
3.2.3 Reaktionspfade der Holzverbrennung in der CFD-Simulation


Bei der pyrolytischen Zersetzung des Brennstoffes entstehen eine Vielzahl an unterschiedlichen festen, flüssigen und gasförmigen Komponenten. Für die Reduzierung der Komplexität wird in der CFD-Simulation ein Synthesegas als Ersatz für den Brennstoff definiert. Das Synthesegas tritt aus der Oberfläche der Holzstücke bzw. aus dem Brennstoffbett aus. Die homogene Gasphasenreaktion des Synthesegas im Gasraum oberhalb des Brennstoffes wird durch ein vereinfachtes mathematisches Modell mit globalen

---

5 Mündliche Mitteilung: Für einen Simulationsfall werden mehrere Wochen benötigt.

Abbildung 20: Reaktionspfade zur Beschreibung der Biomasseverbrennung in der CFDSimulation.
Trocknung der Holzstücke


\[
(C_xH_yO_z + x \cdot H_2O) \rightarrow C_xH_yO_z + x \cdot H_2O
\]

Gleichung (6)

Pyrolytische Zersetzung


Heterogene Kohlenstoffreaktion

Der als Endprodukt der pyrolytischen Zersetzung gebildete feste Kohlenstoff wird in einer heterogenen Oberflächenreaktion nach Gleichung (5) zu Kohlenmonoxid teiloxidiert:

\[
C + O_2 \rightleftharpoons 2 CO
\]

Gleichung (5)

Bei der Umsetzung des Kohlenstoffes stellt sich in Abhängigkeit der Temperatur ein Gleichgewicht zwischen Kohlenstoffdioxid und Kohlenmonoxid nach Gleichung (7) ein (Boudouard-Gleichgewichtsreaktion).

\[
C + CO_2 \rightleftharpoons 2 CO
\]

Gleichung (7)

Des Weiteren ist eine Gleichgewichtsreaktion von Wasserdampf zu Wasserstoff nach Gleichung (8) an der heißen Kohlenstoffoberfläche denkbar.

\[
C + H_2O \rightleftharpoons CO + H_2
\]

Gleichung (8)
Homogene Gasphasenreaktion


Ein-Schritt Kohlenwasserstoff Reaktion (CₓHᵧOz - 1step):

\[ C_xH_yO_z + \left( \frac{x}{2} + \frac{y}{4} - \frac{z}{2} \right) \cdot O_2 \to x \cdot CO + \frac{y}{2} \cdot H_2O \]  

Gleichung (9)

Das aus der Biomasse austretende Kohlenmonoxid (CO) oxidiert nach Gleichung (4) zu Kohlendioxid (CO₂).

\[ CO + 0.5 \cdot O_2 \to CO_2 \]  

Gleichung (4)

Der aus der Biomasse austretende Wasserstoff (H₂) oxidiert mit Sauerstoff nach Gleichung (10) zu Wasserdampf (H₂O).

\[ H_2 + 0.5 \cdot O_2 \to H_2O \]  

Gleichung (10)

Für die Reaktion der leicht flüchtigen Kohlenwasserstoffe (CₓHᵧ) kommen in der Literatur differenzierte Reaktionspfade zur Anwendung. Die leicht flüchtigen Kohlenwasserstoffe werden überwiegend als Methan definiert.

Die in der Literatur zu findenden Reaktionspfade für Methan sind:

- Ein-Schritt-Reaktionspfade
- Reaktionspfade, welche vorwärts und rückwärts verlaufen
- mehrere gleichzeitig ablaufende Ein-Schritt-Reaktionspfade
- Mehr-Schritt Reaktionspfade über Zwischenprodukte
- konkurrierende Reaktionspfade

Die Methan-Reaktion kann mit einem Ein-Schritt, Zwei-Schritt, Drei-Schritt oder Vier-Schritt Pfad beschrieben werden. In der Ein-Schritt Reaktion wird nach Gleichung (3) Methan (CH₄) direkt mit Sauerstoff (O₂) vollständig zu Kohlendioxid (CO₂) und Wasserdampf (H₂O) oxidiert.

Ein-Schritt-Methan Reaktion (CH₄ - 1step):

\[ CH_4 + 2 \cdot O_2 \to CO_2 + 2 \cdot H_2O \]  

Gleichung (3)
Bei der Zwei-Schritt Methanreaktion reagiert nach Gleichung (11) im ersten Schritt Methan (CH₄) mit Sauerstoff (O₂) zu Kohlenmonoxid (CO) und Wasserdampf (H₂O). Das durch die Spaltung der Methanmoleküle entstandene Kohlenmonoxid reagiert dann nach Gleichung (4) im zweiten Schritt mit Sauerstoff zu Kohlendioxid (CO₂).

Zwei-Schritt-Methan Reaktion (CH₄ - 2step):

\[
\begin{align*}
CH_4 + 1,5 \cdot O_2 &\rightarrow CO + 2 \cdot H_2O &\text{Gleichung (11)} \\
CO + 0,5 \cdot O_2 &\rightarrow CO_2 &\text{Gleichung (4)}
\end{align*}
\]

Bei der nach Brink (1998) vorgeschlagenen Drei-Schritt Methan Reaktion wird der im Methan (CH₄) enthaltende Wasserstoff (H₂) nicht vollständig zu Wasser oxidiert, sondern nach Gleichung (12) zu gleichen Teilen in Wasserstoff (H₂) und Wasserdampf (H₂O) gespalten. Der Kohlenstoff (C) im Methan reagiert nach Gleichung (12) zu Kohlenmonoxid. Im weiteren Reaktionsschritt erfolgt dann die Umsetzung des Kohlenmonoxids (CO) nach Gleichung (4) zu Kohlenstoffdioxid (CO₂). Der Wasserstoff (H₂) oxidiert nach Gleichung (10) zu Wasserdampf (H₂O).

Drei-Schritt-Methan Reaktion (CH₄ - 3step) mit Gleichung (4) und Gleichung (10)

\[
\begin{align*}
CH_4 + O_2 &\rightarrow CO + H_2 + H_2O &\text{Gleichung (12)} \\
CO + 0,5 \cdot O_2 &\rightarrow CO_2 &\text{Gleichung (4)} \\
H_2 + 0,5 \cdot O_2 &\rightleftharpoons H_2O &\text{Gleichung (10)}
\end{align*}
\]

In der nach Jones et al. (1988) entwickelten Vier-Schritt Reaktion wird nach Gleichung (13) das Methan (CH₄) mit Hilfe von Sauerstoff (O₂) in Kohlenmonoxid (CO) und Wasserstoff (H₂) gespalten. Mit Wasserdampf (H₂O) wird das Methan (CH₄) nach Gleichung (14) zu Kohlenmonoxid (CO) und Wasserstoff (H₂) reformiert. Weiter ist auch eine Wasser-Gas-Shift Gleichgewichtsreaktion nach Gleichung (15) von Wasserdampf (H₂O) mit Kohlenmonoxid (CO) zu Wasserstoff (H₂) und Kohlendioxid (CO₂) enthalten. Der durch die Spaltung der Methanmoleküle entstandene Wasserstoff, sowie der aus der Biomasse austretende Wasserstoff (H₂) oxidiert durch eine 1-Schritt-Wasserstoff Reaktion nach Gleichung (10) zu Wasserdampf (H₂O).

Vier-Schritt-Methan Reaktion (CH₄ - 4step):

\[
\begin{align*}
CH_4 + 0,5 \cdot O_2 &\rightarrow CO + 2 \cdot H_2 &\text{Gleichung (13)} \\
CH_4 + H_2O &\rightarrow CO + 3 \cdot H_2 &\text{Gleichung (14)} \\
CO + H_2O &\rightleftharpoons CO_2 + H_2 &\text{Gleichung (15)} \\
H_2 + 0,5 \cdot O_2 &\rightleftharpoons H_2O &\text{Gleichung (10)}
\end{align*}
\]
Werkzeuge für die Entwicklung von Biomassefeuerungen

Reduktion von Stickstoffmonoxid


$$NO + C \rightarrow 0,5 \cdot N_2 + CO$$  \hspace{1cm} \text{Gleichung (16)}

De Soete (1975) beschreibt einen reduzierten globalen Reaktionspfad für die homogene Reduktion von Cyanwasserstoff nach Gleichung (17) bzw. die homogene Oxidation nach Gleichung (18).

$$HCN + 1,5 \cdot O_2 \rightarrow NO + CO + 0,5 \cdot H_2O$$  \hspace{1cm} \text{Gleichung (17)}

$$HCN + 2 \cdot NO \rightarrow 1,5 \cdot N_2 + CO + 0,5 \cdot H_2O$$  \hspace{1cm} \text{Gleichung (18)}


$$NH_3 + O_2 \rightarrow NO + H_2O + 0,5 \cdot H_2$$  \hspace{1cm} \text{Gleichung (19)}

$$NH_3 + NO \rightarrow N_2 + H_2O + 0,5 \cdot H_2$$  \hspace{1cm} \text{Gleichung (20)}

Chen et al. 1996 beschreibt eine Reaktion von Stickstoffmonoxid (NO) und Methan (CH$_4$) zu Cyanwasserstoff (HCN) nach Gleichung (21). Dieser Reaktionspfad wird als Reburne bezeichnet.

$$NO + CH_4 \rightarrow HCN + H_2O + 0,5 \cdot H_2$$  \hspace{1cm} \text{Gleichung (21)}

3.2.4 Verbrennungsmodelle der homogenen chemischen Reaktion

Die mathematische Beschreibung und die programmtechnische Umsetzung der Reaktionspfade in der homogenen chemischen Reaktion und der Berechnung der Reaktionsgeschwindigkeit in einer reaktiven Strömung erfolgt bei der CFD-Simulation üblicherweise mit den Modellen Finite-Rate (kin), Eddy Dissipation Model (EDM) bzw. eine Kombination aus den beiden Modellen (kin/EDM), sowie mit dem Eddy Dissipation Concept (EDC).

Finite-Rate Model (kin)


Tabelle 2: Faktoren des Arrhenius-Ansatzes für die Kohlenmonoxidreaktion nach Gleichung (4) unterschiedlicher Autoren.

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Reaktionsgeschwindigkeit $i_{CO}^{kin}$ in $kmol \cdot (m^3 \cdot s)^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hottel et al. (1965)</td>
<td>$i_{CO}^{kin,Hottel} = 2.5 \cdot 10^8 \cdot \exp \left( \frac{6.716 \cdot 10^5}{R \cdot T_g} \right) [CO] [O_2]^{0.3} [H_2O]^{0.5}$</td>
</tr>
<tr>
<td>Howard et al. (1973)</td>
<td>$i_{CO}^{kin,Howard} = 1.3 \cdot 10^{11} \cdot \exp \left( \frac{1.256 \cdot 10^8}{R \cdot T_g} \right) [CO] [O_2]^{0.5} [H_2O]^{0.5}$</td>
</tr>
<tr>
<td>Hautman et al. (1981)</td>
<td>$i_{CO}^{kin,Hautman} = 5.42 \cdot 10^9 \cdot \exp \left( \frac{1.255 \cdot 10^8}{R \cdot T_g} \right) [CO] [O_2]^{0.5} [H_2O]^{0.5}$</td>
</tr>
<tr>
<td>Westbrook et al. (1984)</td>
<td>$i_{CO}^{kin,Westbrook} = 2.39 \cdot 10^{12} \cdot \exp \left( \frac{1.7 \cdot 10^8}{R \cdot T_g} \right) [CO] [O_2]^{0.25} [H_2O]^{0.5}$</td>
</tr>
</tbody>
</table>
Eddy Dissipation Model (EDM)


Finite-Rate / Eddy Dissipation Model (kin/EDM)

Im Finite-Rate / Eddy Dissipation Model (kin/EDM) wird in jeder Rechenzelle die Reaktionsgeschwindigkeit anhand von zwei mathematischen Formulierungen parallel gerechnet (siehe Abbildung 21). Die mathematische Formulierung für die Reaktionsgeschwindigkeit 1 ($\dot{r}^{kin}_i$) ist dabei nach einem Arrhenius-Ansatzes temperaturkontrolliert, die für die Reaktionsgeschwindigkeit 2 ($\dot{r}^{EDM}_i$) durch das EDM mischungskontrolliert. Bei jedem Iterationsschritt findet in jeder Rechenzelle eine Minimumsabfrage statt und das Ergebnis mit der geringsten Reaktionsgeschwindigkeit wird für die weitere Berechnung gewählt. Mit diesem Modell wird demnach dem Einfluss der Temperatur und Mischungsgüte auf die Reaktionsgeschwindigkeit Rechnung getragen.

Abbildung 21: Schematische Darstellung der Berechnung der Reaktionsgeschwindigkeiten im EDM.

Abbildung 22: Schematische Darstellung des Einflusses des mischungskontrollierten Magnussen-Koeffizient $A_{Mag}$ auf die Verteilung der einzelnen Berechnungspfade im EDM.
Eddy Dissipation Concept (EDC)


3.2.5 Stoffstrombilanzierung

Da die Strömung entscheidend auf die Verbrennungsbedingungen wirkt, müssen die Volumenströme der Verbrennungsluft so berechnet werden, wie sie in der realen Feuerung auftreten. Da der Verbrennungsluftstrom bei einer char gentle bi etren die nen Feuerung üblicherweise vom Unterdruck im Schornsteinsystem beeinflusst wird, wird bei der Simulation von einer idealisierten, stationären Feuerung ausgegangen. Dadurch können konstante Volumenströme an den Eingängen für die Verbrennungsluft angegeben werden. Eine Simulation des Schornsteinsystems und die daraus resultierende Verbrennungsluftmenge erfolgt üblicherweise nicht. Bei mechanisch beschickten Feuerungen wird der Differenzdruck in der Feuerung mit Hilfe eines Gebläses erzeugt. Auf die Abbildung eines Gebläses zur Erzeugung des Unterdruckes wird in der CFD-Simulation verzichtet.

Schwefel, Chlor und Stickstoff in sehr geringen Mengen vorhanden sind, werden diese nicht mit betrachtet. Des Weiteren verbleibt die Asche zum Großteil in der Feuerung. Die Kohlenwasserstoffverbindung C_{x}H_{y} wird üblicherweise als CH_{4} definiert. Ausgehend von einer Holzzusammensetzung nach Tabelle A26 bzw. Tabelle A27 auf Seite 128 im Anhang, können die Massenströme für die Verbrennungsluft, des Synthesegases als Ersatz für biogene Brennstoffe und für das Abgas berechnet werden.

Abbildung 23 zeigt schematisch die Bilanzierung der Stoffströme bei einer definierten Feuerungsleistung für das Gesamtsystem „Feuerung“. Ausgehend von einer Feuerungswärmeleistung \( (P_{F,th}) \), kann ein Brennstoffmassenstrom \( (\dot{m}_{BR}) \) anhand der physikalischen \( (H_{l,Br}) \) und chemischen \( (x_{l,Br}) \) Eigenschaften des Brennstoffes, mit Hilfe der Verbrennungsrechnung berechnet werden (vgl. Joost 2006 und Kaltschmitt et al. 2009). Für eine vollständige Umsetzung des Brennstoffmassenstroms \( (\dot{m}_{BR}) \) wird ein Verbrennungsluftstrom \( (\dot{m}_{L}) \) benötigt, der bei Biomassefeuerungen üblicherweise in einem überstöchiometrischen Verhältnis steht \( (\lambda > 1) \). Unter Annahme einer vollständigen Verbrennung, kann für den Brennstoffmassenstrom \( (\dot{m}_{BR}) \) und den Verbrennungsluftstrom \( (\dot{m}_{L}) \) ein Abgasmassenstrom \( (\dot{m}_{Abg}) \), sowie die Abgaszusammensetzung \( (x_{l,Abg}) \) bilanziert werden. Damit stimmen die berechneten Eingangs volumenströme und der Abgasvolumenstrom mit denen überein, wie sie an der realen Feuerung bei stationären Bedingungen zu erwarten sind. Ausgehend vom Abgasmassenstrom \( (\dot{m}_{Abg}) \), sowie dessen Zusammensetzung \( (x_{l,Abg}) \), kann z.B. bei einem CH_{4}-2step Reaktionspfad ein Synthesegasmassenstrom \( (\dot{m}_{SyG}) \) mit einer Zusammensetzung \( (x_{l,SyG}) \) berechnet werden. Dieses Synthesegas weist bei dem berechneten Massenstrom \( (\dot{m}_{SyG}) \) und dem daraus resultierenden Heizwert \( (H_{l,SyG}) \) auf Grund dessen Zusammensetzung \( (x_{l,SyG}) \) eine chemische Leistung auf, die der vorher festgelegten Feuerungswärmeleistung \( (P_{F,th}) \) der zu untersuchenden Feuerung entspricht. Die Formeln für die Berechnung der Massenströme sind in Gleichung (B33) bis Gleichung (B35), auf den Seiten 133 ff zu finden. Anhand von einem zu definierenden Verhältnis von Methan zu Kohlenmonoxid im Brennstoffgemisch kann die Bilanzgleichung nach dem Schema aus Abbildung 23 gelöst werden.

Abbildung 23: Schematische Darstellung der Bilanzierung der Stoffströme und der Leistung für das Gesamtsystem „Feuerung“.  

\( m_{L} \)  
\( x_{O_{2},L} \)  
\( x_{N_{2},L} \)  
\( m_{SyG} \)  
\( H_{l,SyG} \)  
\( m_{BR} \)  
\( H_{l,Br} \)  
\( x_{C,Br} \)  
\( x_{H,Br} \)  
\( x_{O,Br} \)  
\( x_{H_{2}O,Br} \)  
\( m_{Abg} \)  
\( x_{O_{2},Abg} \)  
\( x_{CO_{2},Abg} \)  
\( x_{H_{2}O,Abg} \)  
\( x_{N_{2},Abg} \)
3.3 Literaturübersicht über den Einsatz der CFD-Simulation bei Biomassefeuerungen

In diesem Kapitel soll ein Auszug der in der Literatur zu findenden Anwendungen bei kleinen und mittleren (Biomasse-) Feuerungen erfolgen, mit dem Fokus auf den Ergebnissen zu den berechneten Kohlenmonoxidkonzentrationen. Dabei findet eine Unterscheidung zwischen 

**chargenweise betriebenen** Feuerungen (Kapitel 3.3.1) und 

**mechanisch beschickten** Feuerungen (Kapitel 3.3.2) statt. Es soll ergründet werden, ob sich die Modelle als ingenieurtechnisches Werkzeug eignen und ob eine direkte Aussage über das Emissionsverhalten der Biomassefeuerung möglich ist. Ein Vergleich von unterschiedlichen Brennraumkonzepten soll Anhand des Vergleiches der berechneten CO-λ-Charakteristik bzw. NOx-λ-Charakteristik durchgeführt werden. Ein Fazit über den Einsatz der CFD-Simulation für die betrachteten Anwendungsfälle in der Literatur wird im Kapitel 3.3.3 aufgeführt.

3.3.1 Chargenweise betriebene Feuerungen


**Schütz (2012)** untersucht eine *chargenweise betriebene* Einzelraumfeuerung nach dem Sturzbrandprinzip, welche im Bearbeitungsverlauf allerdings umgebaut wird, so dass nach dem Umbau die Einzelraumfeuerung nach dem Durchbrandprinzip betrieben wird. Als Brennstoff dienen handelsübliche zylindrische Holzbriketts. Die Simulation der Feuerung erfolgt mit der Software ANSYS Fluent. Für die turbulente Strömung nutzt Schütz (2012) das k-\( \varepsilon \)-Modell. Die Gashphasenreaktion wird mit dem EDC in Kombination mit einem Zwei-Schritt-Methan Reaktionspfad nach Gleichung (11), Seite 39 und einem Ein-Schritt-Wasserstoff Reaktionspfad nach Gleichung (10), Seite 38 berechnet. Die Parametrisierung des Arrhenius-Ansatzes erfolgt nach Westbrook et al. (1984). Die Strahlung wird mit dem Discrete Ordinates Model (DOM) in Kombination mit einem WSGG-Modell modelliert. Zusätzlich wird ein Rußmodell zur Berechnung der Gesamtausbeutemissionen genutzt. Ein Vergleich zwischen Messung und CFD-Simulation findet über Mittelwerte der Hauptbrantphase statt. Dabei werden die Gastemperaturen und die Konzentrationen der Gase CO\(_2\), O\(_2\), CO und CH\(_4\) über eine grafische Korrelation in einem Diagramm verglichen. Die Korrelation der Gastemperatur erreicht ein Bestimmtheitsmaß von \( R^2 = 0,7 \). Dabei liegen die Gastemperaturen aus der CFD-Simulation ca. 300 K über der gemessenen Rauchgastemperatur. Nach Schütz (2012) könnte dies mit der Messposition zusammenhängen. Für die Gaskonzentrationen CO\(_2\), O\(_2\), CO wird ein Bestimmtheitsmaß von \( R^2 = 0,84 \) - 0,88 erreicht. Allerdings ist eine Verschiebung der Winkelhalbierenden bei den betrachteten Größen CO\(_2\), O\(_2\), CO festzustellen. Bei O\(_2\) ist eine Verschiebung von ca. \( y_{O_2} = 3 \text{ mol/mol} \cdot 10^{-2} \) zu sehen. Bei den CO-Konzentrationen wird im unteren Bereich eine Kohlenmonoxidkonzentration von ca. \( y_{CO} = 1.000 \text{ mol/mol} \cdot 10^{-6} \) gemessen. Mit der CFD-Simulation wurde ein ca. 3 fache höhere Kohlenmonoxidkonzentration von ca. \( y_{CO} = 3.000 \text{ mol/mol} \cdot 10^{-6} \) berechnet. Im oberen Konzentrationsbereich wird in der Messung eine Kohlenmonoxidkonzentration von ca. \( y_{CO} = 4.000 \text{ mol/mol} \cdot 10^{-6} \) und in der
CFD-Simulation von ca. $\gamma_{CO} = 5.000 \, \text{mol/mol} \cdot 10^{-6}$ erreicht. Anzumerken ist, dass der anzustrebende Bereich für die Kohlenmonoxidkonzentration bei Einzelraumfeuerung deutlich unterhalb von $\gamma_{CO} = 1.000 \, \text{mol/mol} \cdot 10^{-6}$ liegt. Eine Korrelation zwischen den CH₄-Konzentrationen aus den Ergebnissen der Simulation und den gemessenen TVOC-Konzentrationen kann nicht festgestellt werden. Eine Korrelation zwischen den gemessenen Gesamtstaubemissionen und der Ruß-Konzentration aus den Ergebnissen des Rußmodells kann ebenfalls nicht gefunden werden. Ein Vergleich der CO-$\lambda$-Charakteristik findet in dieser Untersuchung nicht statt. Über die Eignung der eingesetzten Modelle für die Entwicklung von Biomassefeuerungen, können keine Aussagen getroffen werden.


3.3.2 Mechanisch beschickte Feuerungen


---

Werkzeuge für die Entwicklung von Biomassefeuerungen

großtechnischen Müllverbrennungsanlage wird bei unterschiedlichen Sekundärluftkonfigurationen mit Hilfe der Simulation die $O_2$- und CO-Konzentration visualisiert. Die dargestellten Ergebnisse können dann die Ergebnisse aus der Messung bestätigen. Ein Vergleich der CO-$\lambda$-Charakteristik findet in dieser Untersuchung nicht statt, es wurde lediglich eine stationärer Betriebspunkt betrachtet. In wieweit sich die eingesetzten Simulationsmodelle für die Entwicklung von Biomassefeuerungen eignen, kann nicht bewertet werden.


eingesetzten Modelle und Methoden für die Entwicklung von Biomassefeuerungen kann nicht bewertet werden.


Werkzeuge für die Entwicklung von Biomassefeuerungen


3.3.3  Fazit der Literaturübersicht über den Einsatz der CFD-Simulation

4 Eigene Untersuchungen zur CFD-Simulation von Biomassefeuerungen

In diesem Kapitel sollen die eigenen Arbeiten zum Einsatz der CFD-Simulation detailliert an zwei Biomassefeuerungen beschrieben werden. Hierfür wird eine *chargenweise betriebene* Einzelraumfeuerung (Kapitel 4.1) und ein Prototyp einer *mechanisch beschickten* Biomassefeuerung (Kapitel 4.2) ausgewählt.


4.1 CFD bei einer chargenweise betriebenen Feuerung


4.1.1 Modellaufbau und Vernetzung


Abbildung 26: Schnittbild einer *chargenweise betriebenen* Feuerung als CFD-konformes 3D-Modell.

4.1.2 Modellauswahl und Stoffstrombilanzierung

Eigene Untersuchungen zur CFD-Simulation von Biomassefeuerungen


In den technischen Daten des Kaminofens sind keine Informationen über den mittleren Restsauerstoffgehalt in der Hauptverbrennungsphase mit den geringsten Kohlenmonioxidemissionen angegeben. Vermutlich wird die chargenweise betriebene Einzelraumfeuerung unter optimalen Bedingungen in der Hauptverbrennung bei minimalen Kohlenmonoxidkonzentrationen einen Restsauerstoffgehalt bei ca. $y_{O_2} = 8$ mol/mol $\cdot 10^{-2}$ erreicht. In der Praxis wird üblicherweise der Sauerstoffgehalt nicht gemessen und wird bei ca. $y_{O_2} = 12$ mol/mol $\cdot 10^{-2}$ oder höher liegen. Für den Referenzfall soll ein Restsauerstoffgehalt im Abgas von $y_{O_2} = 10$ mol/mol $\cdot 10^{-2}$ festgelegt werden. Dieser Restsauerstoffgehalt entspricht einer Luftzahl von $\lambda = 1,99$. Der definierte Referenzfall repräsentiert die Hauptverbrennungsphase mit den geringsten zu erwartenden Kohlenmonoxidemissionen.

Die Bilanzierung der Stoffströme erfolgt nach dem Schema aus Kapitel 3.2.5, Seite 44 ff. Das Massenverhältnis von Kohlenmonoxid im Brennstoffgemisch wird nach Klingel (2008) für ein Produktgas bei $T_G = 1.073 \, K$, ohne Restsauerstoff mit $x_{CO} = 0,43 \, g/g$ gewählt und danach iterativ das Massenverhältnis von Methan im Brennstoffgemisch gewählt, sodass die Leistung des Synthesegases einer gewünschten Feuerungswärmleistung entspricht.


<table>
<thead>
<tr>
<th>Eingangsgröße</th>
<th>Massenstrom $m_i , \text{in} , \frac{s}{M}$</th>
<th>Massenverhältnis $x_i$</th>
<th>Temperatur $T_0$ in $K$</th>
<th>Heizwert $H_{SYG} , \text{in} , \frac{kJ}{kg}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbrennungsluft bei einer Luftzahl $\lambda = 2$</td>
<td>Luft 6,20</td>
<td>0,1</td>
<td>293</td>
<td></td>
</tr>
<tr>
<td>Synthesegas mit einer Heizleistung von $P_{SYG} = 10,kW$</td>
<td>CO 0,33</td>
<td>0,43</td>
<td>973</td>
<td>13.197</td>
</tr>
<tr>
<td></td>
<td>CH4 0,13</td>
<td>0,18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H2 0,00</td>
<td>0,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO2 0,17</td>
<td>0,22</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H2O 0,13</td>
<td>0,17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.1.3 Ergebnisse der CFD-Simulation

Wird mit den vorher genannten Randbedingungen eine Simulation im Referenzpunkt bei \( y_{O_2,Ref} = 10 \text{ mol/mol} \cdot 10^{-2} \) und einem Magnussen-Koeffizienten von \( A_{Mag} = 3,5 \) durchgeführt, wird eine Kohlenmonoxidkonzentration von \( y_{CO} = 1.097 \text{ mol/mol} \cdot 10^{-6} \) erreicht. Diese Kohlenmonoxidkonzentration entspricht einer Massenkonzentration von \( c_{O_2, Bez} = 1.035 \text{ mg/m}^3 \) bei einem Bezugssauerstoffgehalt im Abgas von \( y_{O_2} = 13 \text{ mol/mol} \cdot 10^{-2} \) (siehe Berechnung nach Gleichung (B36) und Gleichung (B37), im Anhang, Seite 134). Diese Massenkonzentration stimmen mit den Angaben \( c_{CO, Bez} < 1.125 \text{ mg/m}^3 \) bei \( y_{O_2} = 13 \text{ mol/mol} \cdot 10^{-2} \) aus den technischen Daten des Kaminofens nach Tabelle A28 im Anhang, S. 129 überein. Daher soll keine Anpassung des mischungskontrollierten Magnussen-Koeffizienten \( A_{Mag} \) erfolgen.

In Abbildung 28 ist die CO-\( \lambda \)-Charakteristik der beiden Kaminofenkonzepte dargestellt. Im Bezugs punkt bei \( \lambda = 1,99 \), ist gegenüber der originalen Feuerung die Kohlenmonoxidkonzentration der Modifikation um \( y_{CO} = 460 \text{ mol/mol} \cdot 10^{-6} \) geringer. Dies entspricht einer Verbesserung der Kohlenmonoxidkonzentration im Bezugs punkt von ca. 40 %. Wird die CO-\( \lambda \)-Charakteristik der CFD-Simulation der beiden Feuerungskonzepte in Abbildung 28 genauer betrachtet, ist auffällig, dass das Minimum der Wanne bei beiden Kaminofenkonzepten zwischen \( \lambda = 1,25 \) und \( \lambda = 1,5 \) liegt und sich nicht signifikant unterscheiden. Üblicherweise wird bei chargenweise betriebenen Einzellaufbereitungen ein Minimum der Kohlenmonoxidkonzentration bei einer Luftzahl von \( \lambda \geq 1,6 \) bis \( \lambda \leq 3 \) erwartet. Eine messtechnische Überprüfung der Ergebnisse aus der Simulation und ein Vergleich der beiden Kaminofenkonzepte sollen auf dem Prüfstand erfolgen.

Abbildung 28: CO-\( \lambda \)-Charakteristik der beiden simulierten Feuerungskonzepte.
Eigene Untersuchungen zur CFD-Simulation von Biomassefeuerungen

4.1.4 Messtechnische Überprüfung der CFD-Simulation

Für die beiden Konzepte der *chargenweise betriebenen* Einzelraumfeuerung werden Messungen auf dem Prüfstand in Anlehnung an *DIN EN 13240* durchgeführt. Die verwendeten Messgeräte sind in Tabelle A30 auf Seite 130 im Anhang zu finden. Eine detaillierte Versuchsdurchführung ist in *Struschka et al. (2013)* beschrieben. Tabelle 4 zeigt aus jeweils sechs aufeinander folgenden Versuchen die Mittelwerte der Sauerstoff- und Kohlenmonoxidkonzentration für unterschiedliche Betrachtungszeiträume der beiden Feuerungskonzepte. Gegenüber der CFD-Simulation ist bei der messtechnischen Überprüfung der modifizierten Einzelraumfeuerung auf dem Prüfstand keine Verbesserung des Emissionsverhaltens festzustellen. Über dem gesamten Abbrand ist bei der Modifikation sogar eine leichte Verschlechterung in Bezug auf die Kohlenmonoxidkonzentration zu verzeichnen. In der Hauptverbrennungsphase ist bei der Modifikation eine minimale Verbesserung der Kohlenmonoxidkonzentration bei einem geringeren Restsauerstoffgehalt im Abgas festzustellen. Bei der CFD-Simulation wird ein Bezugspunkt bei einer Sauerstoffkonzentration von \( y_{O_2} = 10 \text{ mol/mol} \cdot 10^{-2} \) gewählt, der die Hauptverbrennungsphase repräsentiert. Die mittlere Sauerstoffkonzentration der originalen Konstruktion in der Hauptverbrennungsphase beträgt in der Messung \( \bar{y}_{O_2} = 12,7 \text{ mol/mol} \cdot 10^{-2} \). Die modifizierte Feuerung erreicht in der Messung eine mittlere Sauerstoffkonzentration in der Hauptverbrennungsphase von \( \bar{y}_{O_2} = 12,0 \text{ mol/mol} \cdot 10^{-2} \).

Tabelle 4: Mittelwerte der Prüfstandsmessung mit der *chargenweise betriebenen* Einzelraumfeuerung.

<table>
<thead>
<tr>
<th>Betrachtungszeitraum</th>
<th>Zeit</th>
<th>Sauerstoffkonzentration, trocken</th>
<th>Kohlenmonoxidkonzentration, trocken</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>( t_{Mess} \text{ in min} )</td>
<td>( y_{O_2} \text{ in mol/mol} \cdot 10^{-2} )</td>
<td>( y_{CO} \text{ in mol/mol} \cdot 10^{-6} )</td>
</tr>
<tr>
<td><strong>Messung Original:</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>47</td>
<td>12,9</td>
<td>1.677</td>
</tr>
<tr>
<td>Anbrandphase</td>
<td>9</td>
<td>11,0</td>
<td>4.889</td>
</tr>
<tr>
<td>Hauptphase</td>
<td>29</td>
<td>12,7</td>
<td>719</td>
</tr>
<tr>
<td>Ausbrandphase</td>
<td>9</td>
<td>15,3</td>
<td>1.463</td>
</tr>
<tr>
<td>Phase mit ( y_{O_2} = konst )</td>
<td></td>
<td>10,0</td>
<td>590</td>
</tr>
<tr>
<td><strong>Simulation Original bei ( y_{O_2} )</strong></td>
<td>12</td>
<td>2.004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.097</td>
<td></td>
</tr>
<tr>
<td><strong>Messung Modifikation:</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>48</td>
<td>12,4</td>
<td>1.925</td>
</tr>
<tr>
<td>Anbrandphase</td>
<td>12</td>
<td>11,1</td>
<td>4.887</td>
</tr>
<tr>
<td>Hauptphase</td>
<td>26</td>
<td>12,0</td>
<td>687</td>
</tr>
<tr>
<td>Ausbrandphase</td>
<td>10</td>
<td>14,7</td>
<td>1.554</td>
</tr>
<tr>
<td>Phase mit ( y_{O_2} = konst )</td>
<td></td>
<td>10,0</td>
<td>550</td>
</tr>
<tr>
<td><strong>Simulation Modifikation bei ( y_{O_2} )</strong></td>
<td>12</td>
<td>1.343</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>642</td>
<td></td>
</tr>
</tbody>
</table>
Dabei wird bei der modifizierten Feuerung nach der CFD-Simulation eine Verbesserung von ca. 40% der Kohlenmonoxidkonzentrationen bei einer Sauerstoffkonzentration von $y_{O_2} = 10 \text{ mol/mol} \cdot 10^{-2}$ vorhergesagt. Dieses Potential konnte mit der messtechnischen Überprüfung auf dem Prüfstand nicht bestätigt werden.


Wird die aus den Messwerten erstellte CO-O$_2$-Charakteristik der modifizierten Einzelraumfeuerung mit den Ergebnissen aus der CFD-Simulation verglichen, bestätigt sich

Abbildung 29: Berechneter CO-Verlauf durch die CFD-Simulation mit Konstanten $A_{Mag}$ und aus Messungen der chargenweise betriebenen Einzelraumfeuerung im originalen Zustand.

4.2 CFD bei einer mechanisch beschickten Feuerung


4.2.1 Messtechnische Überprüfung der Feuerungsanlage

Der Prototyp einer *mechanisch beschickten* Biomassefeuerung wird in Juschka et al. (2015.05a) vor der CFD-Simulation auf dem Prüfstand umfangreich messtechnisch untersucht. Die verwendeten Messgeräte sind in Tabelle A31 auf Seite 131 im Anhang zu finden. Tabelle 5 zeigt für verschiedene Messreihen bei der Verbrennung von Holzpellets die gemessenen mittleren Konzentrationen von Sauerstoff, Kohlenmonoxid und Stickstoffoxid im Abgas am Ausgang des Heizkessels. Bei diesen Messreihen 1 - 3 werden die Bedingungen in der Primärzone konstant gehalten (vgl. Tabelle E34, Seite 141 im Anhang). In der Messreihe 1 wird auf eine Sauerstoffkonzentration von $y_{O_2} = 7,0 \text{ mol/mol} \cdot 10^{-2}$, in Messreihe 2 auf $y_{O_2} = 5,0 \text{ mol/mol} \cdot 10^{-2}$ und in Messreihe 3 auf $y_{O_2} = 3,0 \text{ mol/mol} \cdot 10^{-2}$ geregelt.

Abbildung 31: Simulation der Verbrennungsbedingungen in der Ausbrandzone an einer *mechanisch beschickten* Biomassefeuerung.
Eigene Untersuchungen zur CFD-Simulation von Biomassefeuerungen

Tabelle 5: Mittlere Konzentration der Messreihen 1 – 2 mit dem Brennstoff Holzpellets in einer *mechanisch beschickten* Biomassefeuerung

<table>
<thead>
<tr>
<th>Messreihe</th>
<th>Luftzahl $\lambda$</th>
<th>$\bar{y}_{O_2}$</th>
<th>$\bar{y}_{CO}$</th>
<th>$\bar{y}_{NO_x}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messreihe 1</td>
<td>1,49</td>
<td>7,0</td>
<td>15</td>
<td>120</td>
</tr>
<tr>
<td>Messreihe 2</td>
<td>1,28</td>
<td>4,6</td>
<td>15</td>
<td>108</td>
</tr>
<tr>
<td>Messreihe 3</td>
<td>1,12</td>
<td>2,6</td>
<td>53</td>
<td>92</td>
</tr>
</tbody>
</table>

Die mit Prüfstandswerten ermittelte CO-O₂-Charakteristik und NOₓ–O₂–Charakteristik zeigt Abbildung 32. Dargestellt sind die Messreihen 1 – 3 aus Tabelle 5. Die Punkte entsprechen 10 Sekunden Mittelwerten. Die Kohlenmonoxidkonzentrationen liegen über einem weiten Bereich des Restsauerstoffgehalts bei ca. $\bar{y}_{CO} = 15 \text{ mol/mol} \cdot 10^{-6}$ konstant niedrig. Ab einer Sauerstoffkonzentration von $y_{O_2} < 3 \text{ mol/mol} \cdot 10^{-2}$ ist ein steiler Anstieg der Kohlenmonoxidkonzentrationen zu verzeichnen. Ein Anstieg der Kohlenmonoxidkonzentration bei hohen Sauerstoffkonzentrationen wird mit diesen Messreihen nicht erfasst. Bei der Verbrennung von Holzpellets zeigt der Prototyp eine deutliche Stickstoffoxidreduktion bei der Verringerung des Luftüberschusses im Abgas.

Abbildung 32: Kohlenmonoxid- und Stickstoffoxidkonzentration in Abhängigkeit des Restsauerstoffgehalts in einer *mechanisch beschickten* Biomassefeuerung bei unveränderten Bedingungen im Brennstoffbett.
Das Maximum der Stickstoffoxidkonzentration liegt bei einer Sauerstoffkonzentration von ca. $y_{O_2} = 6,0 \, \text{mol/mol} \cdot 10^{-2}$. Auf Grund der Verdünnung durch einen höheren Luftüberschuss ($y_{O_2} > 6 \, \text{mol/mol} \cdot 10^{-2}$) sinken die Stickstoffoxidkonzentrationen. In Abbildung E81, Seite 140 im Anhang sind die Konzentrationen auf einen Bezugssauerstoffgehalt von $y_{O_2,bez} = 13 \, \text{mol/mol} \cdot 10^{-2}$ nach der 1. BImSchV normiert, um den Verdünnungseffekt teilweise zu kompensieren. Bei einer Verringerung der Sauerstoffkonzentration ($y_{O_2} < 6 \, \text{mol/mol} \cdot 10^{-2}$) gehen die Stickstoffoxidkonzentrationen annähernd linear auf ein Minimum von ca. $y_{NO_x} = 70 \, \text{mol/mol} \cdot 10^{-6}$ zurück. Die Freisetzung von Vorläufersubstanzen aus dem Brennstoffbett, aus denen sich Stickstoffoxide bilden können, wie beispielsweise Cyanwasserstoff, Ammoniak und Stickstoffmonoxid, sind nur mit vergleichsweise großem Aufwand im Verbrennungsgas bestimmbar (Keller 1994). Die Bildung von Vorläufersubstanzen hängen unter anderem von den Bedingungen im Brennstoffbett ab. Abbildung 33 zeigt die auf dem Prüfstand ermittelten NOx -O2 -Charakteristiken bei veränderten Bedingungen im Brennstoffbett. Die Ergebnisse der Messreihen 1 - 10 sind in Tabelle E34 im Anhang, Seite 141 zu finden. Bei diesen Messreihen wurden ebenfalls Holzpellets als Brennstoff verwendet. Die Punkte entsprechen 10 Sekunden Mittelwerten. Die Wirkung einer Reduktionszone in Abhängigkeit des Restsauerstoffgehalts im Abgas zeigt sich auch hier, teilweise aber auf einem anderen Niveau. Die Ursache der Stickstoffoxidreduction liegt in den geänderten Verhältnissen im Bereich der Ausbrandzone im Flammrohr und soll mit Hilfe der CFD-Simulation beschrieben werden.

Abbildung 33: Stickstoffoxidkonzentration in Abhängigkeit des Restsauerstoffgehalts in einer *mechanisch beschickten* Biomassefeuerung bei veränderten Bedingungen im Brennstoffbett (Daten aus Juschka et al. 2015.05a).
4.2.2 CFD-Simulation der Verbrennungszone


Abbildung 34: Modell der Ausbrandzone mit Mischeinrichtung für Sekundärluft und Synthesegas, sowie Flammrohr und Brennraum Heizkessel für die CFD-Simulation.


In der CFD-Simulation stehen die reduzierten, globalen Reaktionspfade nach Gleichung (19) bis Gleichung (16), Seite 40, für die Berechnung der Stickstoffoxidkonzentration zur Verfügung. Die Reaktionspfade erfordern die Konzentrationsangabe der stickstoffoxidbildenden Vorläufersubstanzen wie Ammoniak (NH₃), Cyanwasserstoff (HCN) und Stickstoffmonoxid (NO), welche aus dem Brennstoffbett austreten. Die Freisetzung von Vorläufersubstanzen, wie Cyanwasserstoff, Ammoniak und Stickstoffmonoxid hängen stark von den Bedingungen im Brennstoffbett ab (vgl. Abbildung 33, Seite 67). Zum einen sind die chemischen Vorgänge im Brennstoffbett für eine Simulation zu komplex und zum anderen lassen sich die Vorläufersubstanzen mit dem derzeitigen Kenntnisstand ohne aufwendige und umfangreiche Messungen im Feuerraum nicht bestimmen.
Tabelle 6: Randbedingungen für die CFD-Simulation der Ausbrandzone im Flammrohr

<table>
<thead>
<tr>
<th>λ_{Global}</th>
<th>Massenstrom</th>
<th>Temperatur</th>
<th>CH₄</th>
<th>CO</th>
<th>O₂</th>
<th>CO₂</th>
<th>H₂O</th>
<th>N₂</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- k g / s $\cdot 10^{-2}$</td>
<td>°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synthesegas</td>
<td>9,53</td>
<td>623</td>
<td>6,7</td>
<td>26,8</td>
<td>0,0</td>
<td>11,1</td>
<td>15,1</td>
<td>40,3</td>
</tr>
<tr>
<td>Sekundärluft Fall 1</td>
<td>1,26</td>
<td>2,19</td>
<td>293</td>
<td>23,1</td>
<td>76,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sekundärluft Fall 2</td>
<td>1,05</td>
<td>1,75</td>
<td>293</td>
<td>23,1</td>
<td>76,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sekundärluft Fall 3</td>
<td>0,94</td>
<td>1,53</td>
<td>293</td>
<td>23,1</td>
<td>76,9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>


Für die Bewertung der Reduktionszone ist eine Übereinstimmung der vorherrschenden Temperatur in der Brennkammer von Bedeutung. Da die adiabate Verbrennungstemperatur bei $\lambda = 1$ von $\vartheta_{ad} = 1,697 °C$ mit der in der CFD-Simulation auftretenden maximalen Temperatur von $\vartheta_{gas,max} = 1,701 °C$ bei $\lambda = 1,05$ gut übereinstimmt, soll keine Anpassung des Magnussen-Koeffizienten im mischungskontrollierten Berechnungspfad erfolgen. Die bei den Messungen beobachtete Stickstoffoxidreduktion bei der Verringerung des Luftüberschusses im Abgas soll mit Hilfe der Ergebnisse aus der CFD-Simulation erklärt werden. Die flächenhafte Verteilung der Sauerstoffkonzentrationen und der Temperaturen in
Eigene Untersuchungen zur CFD-Simulation von Biomassefeuerungen

Tabelle 7: Mittlere gemessene Konzentrationen von Kohlenmonoxid und Stickstoffoxiden bei unterschiedlichen Luftzahlen mit dem Brennstoff Holzpellet, im Vergleich zu den Ergebnissen der Kohlenmonoxidkonzentration aus der Simulation.

<table>
<thead>
<tr>
<th>Luftzahl Messung</th>
<th>Luftzahl Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>mittlere Luftzahl(^1)</td>
<td>theor. Luftzahl(^2)</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>(\lambda_{\text{limr}})</td>
</tr>
<tr>
<td>(\frac{\text{mol}}{\text{mol}}\times10^{-2})</td>
<td>(\frac{\text{mol}}{\text{mol}}\times10^{-6})</td>
</tr>
<tr>
<td>(\frac{\text{mol}}{\text{mol}}\times10^{-2})</td>
<td>(\frac{\text{mol}}{\text{mol}}\times10^{-6})</td>
</tr>
<tr>
<td>(\text{°C})</td>
<td>(\text{°C})</td>
</tr>
<tr>
<td>Messreihe 1</td>
<td>1,49</td>
</tr>
<tr>
<td>Messreihe 2</td>
<td>1,28</td>
</tr>
<tr>
<td>Messreihe 3</td>
<td>1,12</td>
</tr>
</tbody>
</table>

\(^1\) Luftzahl mit Falschluft durch den Kesselkörper
\(^2\) Luftzahl ohne Falschluft durch den Kesselkörper

\(\delta_{\text{ad}} = 1.697 [\text{°C}]\) bei \(\lambda = 1\)

für Holzpellets nach Tabelle A26 im Anhang, Seite 128


Eine hohe NO\(_X\)-Reduktion ist nach Keller (1994) bei einer Temperatur von ca. 1.200°C und der gleichzeitigen Abwesenheit von Sauerstoff zu erwarten. Im berechneten Fall 1 ist keine Reduktionszone feststellbar, obwohl Temperaturen von \(\vartheta_G > 1.200\) °C im Flammrohr und im Brennraum des Heizkessels herrschen. Um reduzierende Bedingungen und damit einen Abbau der Stickstoffoxidemissionen zu erreichen, ist die Abwesenheit von Sauerstoff nötig. Im Fall 1 sind Sauerstoffkonzentrationen von \(y_{O_2} > 1,8\ \frac{\text{mol/mol}}{\text{mol}}\times10^{-2}\) in der Ausbrandzone vorhanden. Wird die Luftzahl durch Verringerung der Sekundärluft reduziert, ist eine Verteilung der Sauerstoffkonzentration wie im berechneten Fall 2 zu verzeichnen. Auch bei diesem Fall 2 herrschen Temperaturen von \(\vartheta_G > 1.200\) °C im Flammrohr und im Brennraum des Heizkessels. Hinzu kommt der deutlich geringere Luftüberschuss im heißen Bereich der Ausbrandzone. Dadurch ergeben sich in einigen Bereichen des Flammrohres reduzierende Bedingungen. Wird die Sekundärluft noch weiter reduziert, sodass nur noch eine vollständige Oxidation von brennbaren Verbindungen mit Einbeziehung der in den Heizkessel einströmenden Falschluft stattfinden würde, kann eine ausgeprägte Reduktionszone im Flammrohr geschaffen werden. Dies zeigen die Ergebnisse der Simulation im Fall 3 mit hohen Temperaturen und Bereichen mit Abwesenheit von Sauerstoff. In diesem Anwendungsfall können mit Hilfe der CFD-Simulation die verbrennungstechnischen Vorgänge in einer Feuerung bildlich dargestellt werden. Die Wirkung einer Reduktionszone ohne die Berücksichtigung von Vorläufersubstanzen aus dem Brennstoff, kann dadurch in der Konzeptionsphase einer Biomassefeuerung überprüft und gegebenenfalls optimiert werden.
Abbildung 35: Berechnete flächenhafte Verteilung der Sauerstoffkonzentration und der Temperatur in der Ausbrandzone bei unterschiedlichen Luftzahlen in der Simulation einer mechanisch beschickten Biomassefeuerung (Fall 1: \(\lambda = 1,26\); Fall 2: \(\lambda = 1,05\); Fall 3: \(\lambda = 0,94\)).
4.3 Fazit zur Verwendung der CFD-Simulation bei Biomassefeuerungen


5 Methode zur Kalibrierung der Ergebnisse aus der CFD-Simulation


In einer Voruntersuchung zur Parameterstudie soll die Anzahl der notwendigen Iterationsschritte und die Anzahl der Kontrollstrahlen im Strahlungsmodell (DOM) ergründet werden (Kapitel 5.1). Anschließend erfolgt die Parameterstudie und die Entwicklung einer Methode zur Kalibrierung der Ergebnisse aus der Simulation (Kapitel 5.2). Durch eine Sensitivitätsanalyse soll untersucht werden, wie sich die einzelnen Annahmen und Randbedingungen in der CFD-Simulation auf die Ergebnisse der Kohlenmonoxid-konzentration auswirken (Kapitel 5.3). Im darauf folgenden Kapitel 5.4 soll mit Hilfe der entwickelten Methode zur Kalibrierung der Ergebnisse aus der CFD-Simulation eine CO-$\lambda$-Charakteristik bzw. die CO-O$_2$-Charakteristik für die genutzte *chargenweise betriebene* Einzelraumfeuerung erstellt werden. Die Evaluierung der erstellten CO-$\lambda$-Charakteristik bzw. die CO-O$_2$-Charakteristik erfolgt ebenfalls in Kapitel 5.4 mit Messwerten an einer realen Feuerung auf dem Prüfstand.

### Tabelle 8: Randbedingungen der Referenz für die Parametervariationen der *chargenweise betriebenen* Feuerung.

<table>
<thead>
<tr>
<th>Eingangsgröße</th>
<th>Massenstrom</th>
<th>Massenverhältnis</th>
<th>Temperatur Synthesegas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Referenz</td>
<td>$m_i$</td>
<td>$m_{i,SYG}$</td>
<td>$m_{i,PR}$</td>
</tr>
<tr>
<td><em>A$_{Mag}$ = 3.5</em></td>
<td></td>
<td>$m_{i,PR}$</td>
<td>$m_{i,gas}$</td>
</tr>
<tr>
<td>CO-2step</td>
<td></td>
<td>$t_{SYG}$</td>
<td></td>
</tr>
<tr>
<td>Verbrennungsluft bei einer Luftzahl $\lambda = 2$</td>
<td>Luft</td>
<td>6,20 g/s</td>
<td>0,1</td>
</tr>
<tr>
<td>Synthesegas mit einer Heizleistung von $P_{SYG,th} = 10\ kW$</td>
<td>CO</td>
<td>0,33 g/s</td>
<td>0,43</td>
</tr>
<tr>
<td></td>
<td>CH$_4$</td>
<td>0,13 g/s</td>
<td>0,18</td>
</tr>
<tr>
<td></td>
<td>H$_2$</td>
<td>0,00 g/s</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>CO$_2$</td>
<td>0,17 g/s</td>
<td>0,15</td>
</tr>
<tr>
<td></td>
<td>H$_2$O</td>
<td>0,13 g/s</td>
<td></td>
</tr>
</tbody>
</table>
5.1 Voruntersuchungen zur Parameterstudie


Bei der Simulation der *chargenweise betriebenen* Einzelraumfeuerung in Kapitel 4.1, Seite 44 wurde die Simulation nach 2.500 Iterationsschritten beendet, da sich die relevanten Ausgangsgrößen wie z. B. die Abgastemperatur, die Konzentration von Sauerstoff und Kohlenmonoxid von einem Iterationsschritt zum nächsten nicht mehr signifikant geändert haben (vgl. Abbildung D76 bis Abbildung D79 im Anhang, Seite 138 ff). Die dafür nötige Rechenaufwand beträgt mit einem Intel-i5 mit 4 Rechenkernen ca. 120 Rechenstunden. Bei einer Iteration von 52.000 Schritten wird eine Rechenzeit von ca. 2.500 Stunden (entspricht ca. 104 Tage) benötigt. Für eine ingenieurtechnische Anwendung ist diese hohe Rechenzeit pro Betrachtungsfall nicht mehr interessant. Wird die Simulation auf einem Großrechner am Höchstleistungsrechenzentrum Stuttgart (HLRS) durchgeführt, so werden für 2.500 Iterationen bei 80 Rechenkernen eine Rechenzeit von ca. 6 Stunden und 45 Minuten benötigt. Wird die Rechenstunde mit einem Preis von 0,06 € pro Rechenkern angesetzt, sind für eine Simulation mit 2.500 Iterationsschritten ca. 32 € pro Betrachtungsfall zu veranschlagen. Bei 52.000 Iterationen ergeben sich Kosten von ca. 674 € pro Betrachtungsfall. Daher ist es abzuwägen, ob diese hohe Anzahl an Iterationen, im Hinblick auf die hohe Rechenzeit oder die daraus resultierenden Kosten, für das unter Umständen etwas genauere Ergebnis der berechneten Kohlenmonoxidkonzentration nötig sind.

Tabelle 9: Zusammenstellung der Eingangsgrößen zur Voruntersuchungen über die Anzahl der Iterationsschritte.

<table>
<thead>
<tr>
<th>Referenz</th>
<th>Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl der Iterationsschritte</td>
<td>2.500 bis 52.000</td>
</tr>
</tbody>
</table>

---

8 Mündliche Mitteilung vom HLRS: ca. Preis für Angehörige von Instituten der Universität Stuttgart, sowie für eine nicht kommerzielle Anwendung.
Für den Referenzfall ($y_{O_2} = 10 \, mol/mol \cdot 10^{-2}$) mit 2.500 Iterationsschritten wurden weitere Iterationen durchgeführt. Die Veränderung der Kohlenmonoxidkonzentration über die Anzahl der Iterationsschritte zeigt Abbildung 37. Bis zu einem Iterationsschritt von 10.500 sind keine signifikanten Änderungen der Kohlenmonoxidkonzentration zu erkennen. Zwischen dem Iterationsschritt 10.500 bis 31.000 fand keine Auswertung statt, daher kann der Zeitpunkt für den Anstieg der Kohlenmonoxidkonzentration in diesem Abschnitt nicht genannt werden. Im Iterationsschritt 31.000 ist eine Erhöhung der Kohlenmonoxidkonzentration um $y_{CO} = 292 \, mol/mol \cdot 10^{-6}$ festzustellen. Zwischen dem Iterationsschritt 2.500 bis zum Iterationsschritt 50.000 ergibt sich eine geringere Abweichung von $y_{CO} = 189 \, mol/mol \cdot 10^{-6}$. Die Veränderung der Kohlenmonoxidkonzentration zwischen dem Iterationsschritt 2.500 und 52.000 entspricht ca. $y_{CO} = 290 \, mol/mol \cdot 10^{-6}$. Da bis zum Iterationsschritt 10.500 keine signifikante Änderung in der Kohlenmonoxidkonzentration im Abgas auftreten, wurde für die weitere Parameterstudie immer mit 2.500 Iterationsschritten gerechnet. In einer nachfolgenden Sensitivitätsanalyse im Kapitel 5.3 sollen die Ergebnisse der Kohlenmonoxidkonzentration bei erhöhter Anzahl an Iterationsschritten auf die Methode zur Kalibrierung untersucht werden.
Tabelle 10: Zusammenstellung der Eingangsgrößen zur Voruntersuchungen über die Anzahl an Kontrollstrahlen.

<table>
<thead>
<tr>
<th>Anzahl Strahlen im Raumwinkel</th>
<th>Referenz</th>
<th>Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

Der Energietrom im Brennraum einer Biomassefeuerung wird durch Konvektion, Wärmeleitung im Gas und Strahlung verursacht. Daher soll in einer weiteren Voruntersuchung die Anzahl an Strahlen in dem genutzten Strahlungsmodell DOM (siehe Kapitel 3.2.2, Seite 32) auf das Ergebnis der Kohlenmonoxidkonzentration überprüft werden. Wird die Anzahl der Strahlen im Programm erhöht, so erhöht sich auch drastisch der Speicherbedarf und die Rechenzeit der Simulation. Für vier Strahlen werden ca. 16 GB Arbeitsspeicher benötigt. Mit einem Intel-i5 mit 4 Rechenkernen ist eine Rechenzeit von ca. 120 Rechenstunden für 2,500 Iterationsschritte nötig. Wird die Anzahl der Strahlen auf 24 erhöht, so wird ein Arbeitsspeicherbedarf von ca. 120 GB benötigt und ist auf einem Desktop-PC nicht mehr zu bewältigen. Die Simulationen werden daher auf einem Großrechner am HLRS mit 80 Rechenkerne und einer Rechenzeit von ca. 20 Stunden durchgeführt. Daher ist es abzuwägen, ob und wie sich diese hohe Anzahl an Strahlen und die damit verbundene hohe Rechenperformance auf die Qualität des Rechenergebnisses auswirkt. Tabelle 10 zeigt die Eingangsgrößen zur Voruntersuchung der durchgeführten Parametervariation.


Abbildung 38: Ergebnis Parametervariation Anzahl der Strahlen in Abhängigkeit der Luftzahl $\lambda$. 

\[
\begin{align*}
\dot{r}_{CO}^{\text{kin,Westbrook}} & = 4,910 \cdot 10^{-6} \\
\end{align*}
\[
\lambda_{\text{Mag}} = 3,5
\]

hohe Anzahl an Strahlen

geringe Anzahl an Strahlen
5.2 Methodenentwicklung zur Kalibrierung der CFD-Ergebnisse


<table>
<thead>
<tr>
<th>Sauerstoffklasse $C_{O_2}$</th>
<th>Sauerstoffkonzentration $mol/mol \cdot 10^{-2}$</th>
<th>Luftzahl $y_{O_2} in mol/mol \cdot 10^{-2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_{O_2} = 1$</td>
<td>$0 &lt; O_2 \leq 1,5$</td>
<td>$0 &gt; \lambda \leq 1,05$</td>
</tr>
<tr>
<td>$C_{O_2} = 1,75$</td>
<td>$1,5 &lt; O_2 \leq 1,75$</td>
<td>$1,05 &gt; \lambda \leq 1,09$</td>
</tr>
<tr>
<td>$C_{O_2} = 2$</td>
<td>$1,75 &lt; O_2 \leq 3$</td>
<td>$1,09 &gt; \lambda \leq 1,11$</td>
</tr>
<tr>
<td>$C_{O_2} = 4$</td>
<td>$3 &lt; O_2 \leq 5$</td>
<td>$1,11 &gt; \lambda \leq 1,26$</td>
</tr>
<tr>
<td>$C_{O_2} = 6$</td>
<td>$5 &lt; O_2 \leq 7$</td>
<td>$1,16 &gt; \lambda \leq 1,44$</td>
</tr>
<tr>
<td>$C_{O_2} = 8$</td>
<td>$7 &lt; O_2 \leq 9$</td>
<td>$1,44 &gt; \lambda \leq 1,67$</td>
</tr>
<tr>
<td>$C_{O_2} = 10$</td>
<td>$9 &lt; O_2 \leq 11$</td>
<td>$1,67 &gt; \lambda \leq 1,99$</td>
</tr>
<tr>
<td>$C_{O_2} = 12$</td>
<td>$11 &lt; O_2 \leq 13$</td>
<td>$1,99 &gt; \lambda \leq 2,46$</td>
</tr>
<tr>
<td>$C_{O_2} = 14$</td>
<td>$13 &lt; O_2 \leq 15$</td>
<td>$2,46 &gt; \lambda \leq 3,19$</td>
</tr>
<tr>
<td>$C_{O_2} = 16$</td>
<td>$15 &lt; O_2 \leq 17$</td>
<td>$3,19 &gt; \lambda \leq 4,52$</td>
</tr>
<tr>
<td>$C_{O_2} = 18$</td>
<td>$17 &lt; O_2 \leq 20,4$</td>
<td>$4,52 &gt; \lambda \leq 7,65$</td>
</tr>
</tbody>
</table>
5.2.1 Parameterstudie zur Gewichtung der Berechnungspfade


Die Kalibrierung der Ergebnisse aus der Simulation soll durch eine Gewichtung $w$ der temperatur- und mischungskontrollierten Berechnungspfade erfolgen.

### Tabelle 12: Zusammenstellung der durchgeführten Parametervariationen zur Sauerstoffklasse $C_{O_2}$ und zum Magnussen-Koeffizienten $A_{Mag}$

<table>
<thead>
<tr>
<th>Modellparameter zur Parameterstudie</th>
<th>Referenz</th>
<th>Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_{O_2}$ [-] Sauerstoffklasse</td>
<td>10</td>
<td>1 – 12</td>
</tr>
<tr>
<td>$A_{Mag}$ [-] Magnussen-Koeffizient im homogenen Reaktionsmodell (EDM)</td>
<td>3,5</td>
<td>0,5 – 4,0</td>
</tr>
</tbody>
</table>
Methode zur Kalibrierung der Ergebnisse aus der CFD-Simulation

Abbildung 39: Abhängigkeit der Kohlenmonoxidkonzentration vom Wert der Gewichtung $w$.

In Abbildung 39 sind auf der Y-Achse die Ergebnisse der simulierten Kohlenmonoxidkonzentration über der Gewichtung $w$ als blaue Punkte aufgetragen. In diesem Diagramm spiegelt sich die Gewichtung der Berechnungspfade wieder. Bei einem kleinen Wertebereich der Gewichtung $w$ läuft die Simulation überwiegend mischungskontrolliert ab und es sind geringe Kohlenmonoxidkonzentrationen vorhanden. Läuft die Reaktion in der Simulation überwiegend temperaturkontrolliert ab, werden hohe Kohlenmonoxidkonzentrationen berechnet. Durch fitten der Stützpunkte im CO-$w$-Diagramm erhält man eine blaue Kurve, welche den Zusammenhang zwischen der Gewichtung $w$ und der Kohlenmonoxidkonzentration beschreibt. Dieser Zusammenhang gibt Gleichung (22) wieder und ist über alle Sauerstoffklassen $C_{O_2}$ gültig.

$$\gamma_{CO} = f(w) \text{ für } C_{O_2} = [1; 12]$$  

Gleichung (22)

<table>
<thead>
<tr>
<th>Variablen</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma_{CO}$</td>
<td>Konzentration von Kohlenmonoxid im trockenen Abgas [mol/mol]</td>
</tr>
<tr>
<td>$w$</td>
<td>Gewichtung [-]</td>
</tr>
<tr>
<td>$C_{O_2}$</td>
<td>Sauerstoffklasse [-]</td>
</tr>
</tbody>
</table>

In Abbildung 40 ist der Magnussen-Koeffizient $A_{Mag}$ als Punkte in Abhängigkeit der Gewichtung $w$ eingezeichnet. Die im Diagramm dargestellten Punkte des Magnussen-Koeffizienten $A_{Mag}$ in Abhängigkeit der Gewichtung $w$ wurden aus den Ergebnissen der Simulation für unterschiedliche Sauerstoffklassen $C_{O_2}$ erstellt. Damit ergibt sich eine Abhängigkeit des Magnussen-Koeffizienten $A_{Mag}$ vom Wert der Gewichtung in der...
Methode zur Kalibrierung der Ergebnisse aus der CFD-Simulation

Abbildung 40: Kurven der Gewichtungsfunktion $w_j$ in Abhängigkeit des Magnussen-Koeffizienten $A_{Mag}$ für unterschiedliche Sauerstoffklassen $C_{O_2}$ aus den gewichteten Ergebnissen der Simulation.

jeweiligen Sauerstoffklasse $C_{O_2}$. Durch fitten der Stützpunkte erhält man jeweils eine Kurve, welche den Zusammenhang zwischen den gewichteten Ergebnissen gleicher Sauerstoffklasse $C_{O_2}$ und dem Magnussen-Koeffizienten $A_{Mag}$ beschreibt. Diesen Zusammengang gibt Gleichung (23) wieder.

\[ A_{Mag} = f(w, C_{O_2}) \]  
\[
A_{Mag} : \text{Magnussen-Koeffizient im homogenen Reaktionsmodell (EDM)} \quad [-]  
\]  
\[ w : \text{Gewichtung} \quad [-]  
\]  
\[ C_{O_2} : \text{Sauerstoffklasse} \quad [-]  
\]  

Für einen kleineren Wertebereich der Gewichtung $w$, läuft die Reaktion in der Simulation überwiegend mischungskontrolliert ab und es wird ein großer Magnussen-Koeffizienten $A_{Mag}$ berechnet. Bei einem hohen Wertebereich für die Gewichtung $w$ läuft die Reaktion überwiegend temperaturkontrolliert ab und es wird ein kleiner Magnussen-Koeffizienten $A_{Mag}$ berechnet. Wie sich die Gewichtung der beiden Berechnungspfade in der Simulation bei unterschiedlicher Luftzahl $\lambda$ bzw. unterschiedlichen Sauerstoffklassen $C_{O_2}$ ändert, wird über die gefitteten Kurven in Abbildung 40 beschrieben. Die Kurven sollen nachfolgend als Gewichtungsfunktion $w_j$ bezeichnet werden.
Die Kurve der Gewichtungsfunktion \( w_j \) (vgl. Gleichung (24)) beschreibt somit die Gewichtung des temperaturkontrollierten und des mischungskontrollierten Berechnungspfades in der Simulation in den jeweiligen Sauerstoffklassen \( C_{O_2} \).

\[
\begin{align*}
w_j &= f(w, C_{O_2}) \quad \text{Gleichung (24)} \\
w_j &\quad : \text{Gewichtungsfunktion der Sauerstoffklasse} \ C_{O_2} \\
w &\quad : \text{Gewichtung} \\
C_{O_2} &\quad : \text{Sauerstoffklasse} \\
\end{align*}
\]

Die Abhängigkeit des Magnussen-Koeffizienten \( A_{Mag} \) kann dann anhand der Gewichtungsfunktion \( w_j \) in der jeweiligen Sauerstoffklasse \( C_{O_2} \) nach Gleichung (25) aufgezeigt werden.

\[
\begin{align*}
A_{Mag} &= f(w_j) \quad \text{Gleichung (25)} \\
A_{Mag} &\quad : \text{Magnussen-Koeffizient im homogenen Reaktionsmodell (EDM)} \\
w_j &\quad : \text{Gewichtungsfunktion der Sauerstoffklasse} \ C_{O_2} \\
\end{align*}
\]

Die Gewichtung \( w \) der Berechnungspfade in der Simulation soll über die Steigung der Gewichtungsfunktion \( w_j \) in der jeweiligen Sauerstoffklasse \( C_{O_2} \) erfolgen. Durch Ableitung nach Gleichung (26) wird die Steigung der Gewichtungsfunktion \( w_j \) berechnet. In Abbildung 40 sind beispielhaft vertikal gestrichelte Linien für Punkte mit gleicher Steigung eingezeichnet. Dieses Kriterium für die gleiche Gewichtung der Berechnungspfade in der Sauerstoffklasse \( C_{O_2} \) soll nachfolgend als Kalibrierfaktor \( K \) bezeichnet werden. Der Kalibrierfaktor wird über alle Sauerstoffklassen \( C_{O_2} \) konstant gehalten.

\[
\begin{align*}
K &= \frac{\partial f(w_j)}{\partial w} = w_j' \quad \text{Gleichung (26)} \\
K &\quad : \text{Kalibrierfaktor} \\
w_j &\quad : \text{Gewichtungsfunktion der Sauerstoffklasse} \ C_{O_2} \\
w &\quad : \text{Gewichtung} \\
w_j' &\quad : \text{Ableitung der Gewichtungsfunktion der Sauerstoffklasse} \ C_{O_2} \\
\end{align*}
\]

5.2.2 Methode zur Kalibrierung der Ergebnisse

Ein Zusammenhang zwischen der Kohlenmonoxidkonzentration und der Gewichtungsfunktion \( w_j \) in der Sauerstoffklasse \( C_{O_2} \) soll mit Hilfe eines \( CO-w-A_{Mag} \)-Diagramms erfolgen. In Abbildung 41 ist die Kohlenmonoxidkonzentration als blaue Kurve und die Gewichtungsfunktion \( w_j \) in der Sauerstoffklasse \( C_{O_2} = 10 \) als graue Kurve über dem Wert der Gewichtung \( w \) aufgetragen. Wird eine Grenzwertbetrachtung für die graue Kurve der Gewichtungsfunktion \( w_j \) in der Sauerstoffklasse \( C_{O_2} = 10 \) nach Gleichung (27) durchgeführt, so verläuft die Steigung und
Methode zur Kalibrierung der Ergebnisse aus der CFD-Simulation

damit der Kalibrierfaktor $K$ gegen unendlich. Der Magnussen-Koeffizient wird dabei nach Gleichung (28) ebenfalls unendlich. Mit Gleichung (29) kann die Gewichtung $w_{GrW}$ mit dem Magnussen-Koeffizient $A_{Mag,GrW}$ bestimmt werden.

$$w_{j,GrW}' = \lim_{w_j \to 0} \frac{\partial f(w_j, C_{O_2})}{\partial w} = K_{GrW} \approx \infty$$ \hspace{1cm} \text{Gleichung (27)}

$$A_{Mag,GrW} = \lim_{K_{GrW} \to 10} f(w_j, C_{O_2}) \approx \infty$$ \hspace{1cm} \text{Gleichung (28)}

$$w_{GrW} = f(A_{Mag,GrW})$$ \hspace{1cm} \text{Gleichung (29)}

$w_{j,GrW}'$ : Grenzwert der Steigung der Gewichtungsfunktion

$w_j$ : Gewichtungsfunktion

$K_{GrW}$ : Grenzwert des Kalibrierfaktors

$A_{Mag,GrW}$ : Grenzwert des Magnussen-Koeffizient

Die für den Grenzwert der Gewichtung $w_{GrW}$ vertikal verlaufende Linie soll nachfolgend als Übertragungsfunktion $G$ bezeichnet werden und gibt Gleichung (30) wieder.

$$G = f(w_{GrW}) \text{ mit } A_{Mag}(0; \infty)$$ \hspace{1cm} \text{Gleichung (30)}

$G$ : Übertragungsfunktion

$A_{Mag}$ : Magnussen-Koeffizient im homogenen Reaktionsmodell (EDM)

Abbildung 41: Bestimmung der Kohlenmonoxidkonzentration mit Hilfe des Kalibrierfaktors $K$ im CO-$w$-$A_{Mag}$-Diagramm für die Sauerstoffklasse $C_{O_2} = 10$
In Abbildung 41 ist die Übertragungsfunktion $G$ für die Gewichtung $w_{GrW}$ in der Sauerstoffklasse $C_{O_2} = 10$ als vertikal verlaufende schwarze Linie eingezeichnet. Die Linie der Übertragungsfunktion $G$ für die Gewichtung $w_{GrW}$ schneidet die blaue Kurve der Kohlenmonoxidkonzentration. Im Schnittpunkt der beiden Kurven kann die Kohlenmonoxidkonzentration durch Einzeichnen einer horizontalen Linie im CO-AMag-Diagramm an der primären Y-Achse abgelesen werden. Mit einem Kalibrierfaktor $K_{GrW} \approx \infty$ für den Grenzwert der Gewichtungsfunktion $w_j$ kann eine Kohlenmonoxidkonzentration von $y_{CO, GrW} = 808 \text{ mol/mol} \cdot 10^{-6}$ bestimmt werden. Dies ist die kleinste zu erreichende Kohlenmonoxidkonzentration in der Sauerstoffklasse $C_{O_2} = 10$ bei einem theoretischen Magnussen-Koeffizienten $A_{Mag, GrW} \approx \infty$. Bei kleiner werdenden Kalibrierfaktor wird die Gewichtung vom mischungskontrollierten hin zum temperaturkontrollierten Berechnungspfad verschoben. Wird beispielhaft in der Sauerstoffklasse $C_{O_2} = 10$ der Kalibrierfaktor $K$ verringert, verschiebt sich die vertikal verlaufende Linie der Übertragungsfunktion $G$ in Abbildung 41 nach rechts. Dabei werden im CO-w-AMag-Diagramm höhere Kohlenmonoxidkonzentrationen bestimmt und der Magnussen-Koeffizient $A_{Mag}$ nimmt dabei kontinuierlich ab. Zur Plausibilitätsprüfung zeigt Abbildung 42 über die Luftzahl $\lambda$ die maximal auftretende Temperatur $\theta_{G, Max}$ im Berechnungsgebiet. Die maximal auftretende Temperatur $\theta_{G, Max}$ im Berechnungsgebiet steigt mit Erhöhung des Magnussen-Koeffizienten $A_{Mag}$ an. Bei veränderter Luftzahl ändert sich die maximal auftretende Temperatur bei gleichem Magnussen-Koeffizienten nur geringfügig. Die adiabate Verbrennungstemperatur hat ihr Maximum bei einer Luftzahl von $\lambda = 1$. Mit dem Brennstoff Stückholz aus Tabelle A26, Seite 128 im Anhang wird eine adiabate Verbrennungstemperatur von $\theta_{ad} = 1.629 \, ^{\circ}C$ berechnet. Die maximal auftretende Temperatur in der Simulation übersteigt die adiabate Verbrennungstemperatur nicht.
5.2.3 Erstellung einer CO-\(\lambda\)-Charakteristik mit kalibrierten Ergebnissen

Wird die Änderung des Kalibrierfaktors \(K\) für alle weiteren Sauerstoffklassen \(C_{O_2}\) durchgeführt, so erhält man eine CO-\(\lambda\)-Charakteristik wie in Abbildung 43. Ausgehend von einem Kalibrierfaktor \(K_1\) wurde dieser von einem Schritt zum nächsten halbiert. Wird gegenüber einem Kalibrierfaktor \(K_1\) ein 64x kleinerer Kalibrierfaktor \(K_{64}\) gewählt, werden in der Sauerstoffklasse \(C_{O_2} = 10\) (Luftzahl \(\lambda = 1,99\)) ca. doppelt so hohe Kohlenmonoxidkonzentrationen erreicht.

Bei chargenweise betriebenen Einzelraumfeuerungen wird im praxisüblichen Betrieb ein steiler Anstieg der Kohlenmonoxidkonzentration bei einem Restsauerstoffgehalt im Abgas von \(y_{O_2} = 6\, \text{mol/mol} \cdot 10^{-2}\) erwartet. Dieser Bereich umfasst die Anbrennphase mit instationären Verbrennungsbedingungen und geringen Temperaturen auf Grund einer geringen Feuerungswärmeleistung, einhergehend mit hohen Konzentrationen von Produkten aus der unvollständigen Verbrennung. Für die Luftzahl \(\lambda = 1,44\) (Sauerstoffklasse \(C_{O_2} = 6\)) ist bei einer Veränderung des Kalibrierfaktors \(K\) ein steiler Anstieg der Kohlenmonoxidkonzentration festzustellen. Diese instationären Verbrennungsvorgänge wird in der Sauerstoffklasse \(C_{O_2} = 6\) (Luftzahl \(\lambda = 1,44\)) durch Veränderung des Kalibrierfaktors gut wieder gegeben. Wird bei einer Luftzahl \(\lambda = 1,67\) der Kalibrierfaktor \(K\) verändert, ist zwischen \(K_{Grw}\) und \(K_2\) ein steiler Anstieg und für \(K_4\) bis \(K_{64}\) ein moderater Anstieg festzustellen. Bei der Luftzahl \(\lambda = 1,99\) und \(\lambda = 2,46\) ist hingegen bei einer Änderung des Kalibrierfaktors \(K\) ein moderater Anstieg der Kohlenmonoxidkonzentration erkennbar. Dieses Verhalten in der CO-\(\lambda\)-Charakteristik entspricht den Erwartungen bei einer chargenweise betriebenen Einzelraumfeuerung. Wie in Abbildung 7, Seite 12 weisen Biomassefeuerungen einen waffenförmigen Verlauf der Kohlenmonoxidkonzentration über die Luftzahl auf. Links vom Minimum der Wanne wird üblicherweise ein steiler Anstieg der Kohlenmonoxidkonzentration erwartet. Tritt in der realen Feuerung eine Störung auf, wie z.B. eine zu geringe Temperatur in der linken Flanke der CO-\(\lambda\)-Charakteristik, ist auch ein überproportionaler Anstieg der Kohlenmonoxidkonzentration vorhanden. Dieses Verhalten wird in der aus kalibrierten Simulationsergebnissen erstellte CO-\(\lambda\)-Charakteristik durch Veränderung des Kalibrierfaktors \(K\) sehr gut wiedergegeben. Bei höheren Luftzahlen hat die Verringerung des Kalibrierfaktors \(K\) einen moderaten Anstieg der Kohlenmonoxidkonzentration zur Folge. Auch dieses Verhalten entspricht den Erwartungen bei Biomassefeuerungen. Dieser Bereich in der CO-\(\lambda\)-Charakteristik entspricht der Hauptverbrennungsphase mit quasi stationären Bedingungen. Tritt in dieser Phase eine Störung auf oder ändert sich die Leistung geringfügig, steigt in der realen Feuerung üblicherweise die Kohlenmonoxidkonzentration auch nur geringfügig. Dieses Verhalten zeigt im Anhang Abbildung E82 die beispielhafte CO-\(\lambda\)-Charakteristik einer chargenweise betriebenen Einzelraumfeuerung für „gute“ und „schlechte“ Verbrennungsbedingungen. Die dazugehörigen mittleren Kohlenmonoxidkonzentrationen für „gute“ und „schlechte“ Verbrennungsbedingungen zeigt Tabelle E35. Abbildung 44 zeigt für unterschiedliche Magnussen-Koeffizienten \(A_{Mag}\) die CO-\(\lambda\)-Charakteristik der nicht kalibrierten Ergebnisse aus der Simulation. Soll eine Störung bzw. die instationären Verbrennungsbedingungen in der Simulation abgebildet werden, so wäre eine Möglichkeit dies über eine Änderung des Magnussen-Koeffizienten \(A_{Mag}\) zu bewerkstelligen.
Abbildung 43: Einfluss des Kalibrierfaktors $K$ auf die CO-λ-Charakteristik.


Abbildung 44: Einfluss des Magnussen-Faktors $A_{Mag}$ auf die CO-λ-Charakteristik.
5.3 Sensitivitätsanalyse

Bei der Methode zur Kalibrierung der Ergebnisse aus der CFD-Simulation sind in einer Voruntersuchung die Anzahl der minimal nötigen Iterationen festgelegt und einige Randbedingungen der Simulation im Vorfeld durch Literaturangaben bestimmt worden. In einer Sensitivitätsanalyse soll geklärt werden, wie sich die Anzahl der Iterationsschritte (Kapitel 5.3.1) und die Variation einzelner Randbedingungen auf die Kohlenmonoxidkonzentrationen auswirken.

Die Simulation muss parametrisiert werden, um richtige Kohlenmonoxidkonzentrationen zu berechnen. Diese Eingangsparameter, welche teilweise nur durch Vermessung der Feuerung bestimmt werden können, sind die Temperatur des Synthesegases (Kapitel 5.3.2), das Massenverhältnisse im Synthesegas Kapitel (5.3.3), der Reaktionspfad (Kapitel 5.3.4), die Faktoren im temperaturkontrollierten Arrhenius-Ansatz (Kapitel 5.3.5) und die Feuerungswärmeleistung (Kapitel 5.3.7). Tabelle 14 zeigt zusammenfassend die Parametervariationen in der durchgeführten Sensitivitätsanalyse.

| Tabelle 13: Zusammenstellung der Parametervariationen in der durchgeführten Sensitivitätsanalyse. |

<table>
<thead>
<tr>
<th>Modellparameter</th>
<th>Referenz</th>
<th>Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Var. 1</td>
</tr>
<tr>
<td>Anzahl der</td>
<td>2500</td>
<td>3.000</td>
</tr>
<tr>
<td>Iteration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperatur</td>
<td>973</td>
<td>773</td>
</tr>
<tr>
<td>SynGas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massenverhältnis</td>
<td>0,43</td>
<td>0,3</td>
</tr>
<tr>
<td>CO im SynGas</td>
<td>0</td>
<td>0,005</td>
</tr>
<tr>
<td>x CO in kg/kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massenverhältnis</td>
<td>0</td>
<td>CH4-2step</td>
</tr>
<tr>
<td>Hz im SynGas</td>
<td>0</td>
<td>SynGas, ref</td>
</tr>
<tr>
<td>Reaktionspfad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mit Synthesegas:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faktoren im</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arrhenius-Ansatz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feuerungswärme-</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>leistung hoch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feuerungswärme-</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>leistung gering</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.3.1 Anzahl der Iterationsschritte

In der Voruntersuchung sind für alle Simulationen die Anzahl der Iterationsschritte auf 2.500 festgelegt worden, obwohl sich bei einer höheren Anzahl an Iterationsschritte die Ergebnisse der Kohlenmonoxidkonzentrationen noch veränderten. Werden die Ergebnisse in das CO-\(w \cdot A_{Mag}\)-Diagramm in Abbildung 45 eingetragen, liegen diese auf der blauen Kurve, welche die CO-Charakteristik in Abhängigkeit der Gewichtung \(w\) darstellt. Somit ergibt sich für die Höhe der Kohlenmonoxidkonzentration nur eine Abhängigkeit zum Kalibrierfaktor \(K\).

5.3.2 Änderung der Temperatur des Synthesegases


Abbildung 45: Ergebnisse der Kohlenmonoxidkonzentration bei unterschiedlicher Anzahl an Iterationsschritten im CO-\(w \cdot A_{Mag}\)-Diagramm.
Tabelle 14: Zusammenstellung der Temperaturen des Synthesegases zur Sensitivitätsanalyse.

<table>
<thead>
<tr>
<th>Modellparameter</th>
<th>Referenz</th>
<th>Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_{SYG}$ [K]</td>
<td>Temperatur des Synthesegases</td>
<td>973, 773, 1.073, 1.173, 1.273</td>
</tr>
</tbody>
</table>


Abbildung 46: Ergebnisse der Simulation von Kohlenmonoxid für verschiedene Temperaturen des Synthesegases.
Werden die Ergebnisse aus Abbildung 46 als rote Punkte in das CO-w-AMag-Diagramm in Abbildung 47 eingetragen, liegen diese auf der blauen Kurve, welche die CO-Charakteristik in Abhängigkeit der Gewichtung $w$ darstellt. Die graue Kurve ist die Gewichtungsfunktion $w_j$ in der Sauerstoffklasse $C_{O_2} = 10$, welche aus Ergebnissen der Simulation für eine Temperatur des Synthesegases von $T_{SYG} = 973 \, K$ erstellt wurde.


Abbildung 47: Ergebnisse der Sensitivitätsanalyse von der Temperatur des Synthesegases im CO-w-AMag-Diagramm.
Methode zur Kalibrierung der Ergebnisse aus der CFD-Simulation

Abbildung 48: Plausibilitätsprüfung – Adiabate Verbrennungstemperatur und maximal auftretende Temperatur bei veränderter Temperatur des Synthesegases.

Zur Plausibilitätsprüfung zeigt Abbildung 48 die maximal auftretende Temperatur $\theta_{G,Max}$ im Berechnungsgebiet über der Temperatur des Synthesegases. Die maximal auftretende Temperatur $\theta_{G,Max}$ im Berechnungsgebiet steigt mit Erhöhung der Temperatur des Synthesegases leicht an. Die adiabate Verbrennungstemperatur von $\theta_{ad} = 1.629 \degree C$ wird nicht überschritten.

5.3.3 Änderung der Massenverhältnisse im Synthesegas

In diesem Kapitel soll der Einfluss der Massenverhältnisse im Synthesegas auf die Kohlenmonoxidkonzentration untersucht werden. Im Referenzfall besteht das Synthesegas aus den Komponenten CO, CH₄, CO₂ und H₂O. Die Zusammensetzung der Pyrolysegase unterliegt nach Klingel (2008) großen Schwankungen aufgrund der Inhomogenität des Brennstoffes, des Sauerstoffangebots und der Temperatur in der Pyrolysezone. Im Referenzfall wurde ein Massenverhältnis von Kohlenmonoxid mit $x_{CO} = 0.43$ festgelegt. Für die Sensitivitätsanalyse soll das Massenverhältnis im Synthesegas geändert werden.

Simulation der Einzelraumfeuerung um eine Ein-Schritt-Wasserstoff Reaktionspfad nach Gleichung (10) auf Seite 38 erweitert.


Abbildung 49 zeigt die Ergebnisse der Sensitivitätsanalyse bei veränderten Massenverhältnissen im Synthesegas. Für die Synthesegase SyG,$ref$ und SyG,1-3 ist keine signifikante Änderung der berechneten Kohlenmonoxidkonzentration festzustellen. Für das Synthesegas SyG,4 mit einem Massenverhältnis an Wasserstoff von $x_{H_2} = 0,02$, ergibt sich eine Änderung der Kohlenmonoxidkonzentration von ca. 15 % gegenüber der Kohlenmonoxidkonzentration mit dem Synthesegas SyG,$ref$.

Tabelle 15: Zusammenstellung der Massenströme für die Parametervariationen am Modell *chargenweise betriebene* Feuerung.

<table>
<thead>
<tr>
<th>Synthesegas</th>
<th>Massenstrom</th>
<th>Massenverhältnis im Synthesegas</th>
<th>Heizwert</th>
<th>Leistung Synthesegas</th>
<th>Temperatur Synthesegas</th>
</tr>
</thead>
<tbody>
<tr>
<td>SyG,$ref$</td>
<td>CO</td>
<td>0,33</td>
<td>0,43</td>
<td>13.197</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>CH$_4$</td>
<td>0,13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO$_2$</td>
<td>0,17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H$_2$O</td>
<td>0,13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SyG,1</td>
<td>CO</td>
<td>0,24</td>
<td>0,33</td>
<td>13.685</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>CH$_4$</td>
<td>0,15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO$_2$</td>
<td>0,25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H$_2$O</td>
<td>0,09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SyG,2</td>
<td>CO</td>
<td>0,43</td>
<td>0,55</td>
<td>12.852</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>CH$_4$</td>
<td>0,11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO$_2$</td>
<td>0,06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H$_2$O</td>
<td>0,18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SyG,3</td>
<td>CO</td>
<td>0,27</td>
<td>0,36</td>
<td>13.257</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>CH$_4$</td>
<td>0,14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H$_2$</td>
<td>0,004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO$_2$</td>
<td>0,25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H$_2$O</td>
<td>0,10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SyG,4</td>
<td>CO</td>
<td>0,17</td>
<td>0,23</td>
<td>13.428</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>CH$_4$</td>
<td>0,14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H$_2$</td>
<td>0,015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO$_2$</td>
<td>0,42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H$_2$O</td>
<td>0,01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Abbildung 49: Ergebnisse der Sensitivitätsanalyse der Massenverhältnisse im Synthesegas.

Werden die Ergebnisse als rote Punkte in das CO-\(w\)-\(A_{Mag}\)-Diagramm nach Abbildung 50 eingetragen, liegen diese auf der blauen Kurve, welche die CO-Charakteristik in Abhängigkeit der Gewichtung \(w\) darstellt. Die graue Kurve ist die Gewichtungsfunktion \(w_j\) in der Sauerstoffklasse \(C_{O_2} = 10\), welche aus Ergebnissen der Simulation mit dem Synthesegas SyG,ref erstellt wurde. Somit ergibt sich für die Höhe der berechneten Kohlenmonoxidkonzentration nur eine Abhängigkeit zum Kalibrierfaktor \(K\).

Abbildung 50: Ergebnisse der Sensitivitätsanalyse über die Massenverhältnisse im Synthesegas, dargestellt im CO-\(w\)-Diagramm.
Methode zur Kalibrierung der Ergebnisse aus der CFD-Simulation

Abbildung 51: Plausibilitätsprüfung – Adiabate Verbrennungstemperatur und maximal auftretende Temperatur bei veränderter Zusammensetzung des Synthesegases.

Zur Plausibilitätsprüfung zeigt Abbildung 51 die maximal auftretende Temperatur $\vartheta_{G,\text{Max}}$ im Berechnungsgebiet in Abhängigkeit der Zusammensetzung des Synthesegases. Die maximal auftretende Temperatur $\vartheta_{G,\text{Max}}$ im Berechnungsgebiet ändert sich bei einer Änderung der Zusammensetzung im Synthesegases nur unwesentlich. Die adiabate Verbrennungstemperatur von $\vartheta_{\text{ad}} = 1.629 \, ^\circ\text{C}$ wird nicht überschritten.

5.3.4 Änderung des Reaktionspfades


Werden die Ergebnisse als rote Punkte in das CO-\( W - A_{Mag} \)-Diagramm in Abbildung 53 eingetragen, liegen diese ebenfalls auf der blauen Kurve, welche die CO-Charakteristik in Abhängigkeit der Gewichtung \( w \) darstellt. Die graue Kurve ist die Gewichtungsfunktion \( w_j \) in der Sauerstoffklasse \( C_{O_2} = 10 \), welche aus Ergebnissen der Simulation mit einem Zwei-Schritt Methan Reaktionspfad und einem Synthesegas SyG,ref erstellt ist. Wird ein Kalibrierfaktor \( K_{Grw} \), der gegen unendlich verläuft in das Diagramm in Abbildung 53 als vertikale Linie eingetragen, kann ein Grenzwert der Kohlenmonoxidkonzentration an der primären Y-Achse von \( \gamma_{CO,Grw} = 808 \text{ mol/mol} \cdot 10^{-6} \) abgelesen werden. Bei einem Drei-Schritt-Methan Reaktionspfad mit dem Synthesegas SyG,4 wird eine Kohlenmonoxidkonzentration von \( \gamma_{CO} = 791 \text{ mol/mol} \cdot 10^{-6} \) erhalten. Dies entspricht einer Abweichung von lediglich ca. 2 % und somit ist es möglich, durch die Wahl des Kalibrierfaktors \( K \) im CO-\( W_j - A_{Mag} \)-Diagramm, die Kohlenmonoxidkonzentration für unterschiedliche Reaktionspfade in gewissen Grenzen abzubilden. Somit ergibt sich für die Höhe der Kohlenmonoxidkonzentration nur eine Abhängigkeit zum Kalibrierfaktor \( K \).
Abbildung 53: Ergebnisse der Sensitivitätsanalyse für den Reaktionspfad im CO-w-AMag-Diagramm.

Zur Plausibilitätsprüfung zeigt Abbildung 54 die maximal auftretende Temperatur $\theta_{G,Max}$ im Berechnungsgebiet in Abhängigkeit der verwendeten Reaktionspfade. Die maximal auftretende Temperatur $\theta_{G,Max}$ im Berechnungsgebiet ändert sich bei der Verwendung eines Drei-Schritt-Methan Reaktionspfades kaum. Die maximal auftretende Temperatur in der Simulation übersteigt nicht die adiabate Verbrennungstemperatur von $\theta_{ad} = 1.629 °C$.

Abbildung 54: Plausibilitätsprüfung – Adiabate Verbrennungstemperatur und maximal auftretende Temperatur für unterschiedliche Reaktionspfade.
5.3.5 Änderung der Faktoren im Arrhenius-Ansatz

In diesem Kapitel soll der Einfluss der Faktoren im Arrhenius-Ansatz auf die berechnete Kohlenmonoxidkonzentration untersucht werden. Im Referenzfall erfolgt die Methanreaktion nach Gleichung (11), Seite 39 ausschließlich mischungskontrolliert und die Reaktionskinetik wird über einen Magnussen-Faktor $A_{Mag}$ im mischungskontrollierten Berechnungspfad bestimmt. Es soll eine Berechnung durchgeführt werden, bei der die Methanreaktion nicht nur über den mischungskontrollierten Berechnungspfad abläuft. Dazu wird, wie bei der Kohlenmonoxidreaktion auch, die Methanreaktion im temperaturkontrollierten Berechnungspfad mit Hilfe eines Arrhenius-Ansatzes beschrieben. Die Faktoren im Arrhenius-Ansatzes wurde nach *Westbrook et al. (1984)* gewählt (vgl. Gleichung (C40) in Tabelle C33 im Anhang, Seite 137). Die Rechnungen werden mit 2.500 Iterationsschritten durchgeführt. Es wird ein Magnussen-Faktor von $A_{Mag} = 3,5$ im mischungskontrollierten Berechnungspfad gewählt. Abbildung 55 zeigt die Ergebnisse der Kohlenmonoxid- und Methankonzentrationen. Wird in der Simulation der Methanabbau nur über einen mischungskontrollierten Berechnungspfad angenommen, ergeben sich Konzentrationen von $y_{CO} = 1.097 \text{ mol/mol} \cdot 10^{-6}$ und $y_{CH_4} < 1 \text{ mol/mol} \cdot 10^{-6}$ in der Simulation. Wird hingegen die Methanreaktion im CH₄-2step Reaktionspfad zusätzlich neben dem mischungskontrollierten Berechnungspfad über einen temperaturkontrollierten Berechnungspfad durch einen Arrhenius-Ansatz berechnet, so ergeben sich Konzentrationen von $y_{CO} = 2.074 \text{ mol/mol} \cdot 10^{-6}$ und $y_{CH_4} = 4.800 \text{ mol/mol} \cdot 10^{-6}$. Erwartungsgemäß sind bei *chargenweise betriebene* Einzelraumfeuerungen die Konzentrationen der gesamtvollflüchtigen organischen Verbindungen (TVOC) gegenüber den Kohlenmonoxidkonzentrationen deutlich niedriger (vgl. Abbildung 8, Seite 13). Die Annahme im verwendeten Finite-Rate /Eddy Dissipation Model (kin/EDM) einer unendlich schneller Reaktion im CH₄-2step Reaktionspfad für die Oxidationsreaktion von Methan mit dem Zwischenprodukt Kohlenmonoxid ist in Folge dessen angebracht. Daher soll auch weiterhin die Methanreaktion im kin/EDM für die Simulation von Feuerungen für feste Biobrennstoffe nur über den mischungskontrollierten Berechnungspfad beschrieben werden.

Abbildung 55: Ergebnis der Sensitivitätsanalyse mit den Faktoren im Arrhenius-Ansatz für $i_{CH_4}$

$A_{Mag} = 3,5$

$y_{O_2} = 10 \text{ mol/mol} \cdot 10^{-2}$
Methode zur Kalibrierung der Ergebnisse aus der CFD-Simulation

Abbildung 56: Ergebnisse der Sensitivitätsanalyse mit den Faktoren im Arrhenius-Ansatz für \( \dot{r}_{CH_4}^{kin,Westbrook} \) im CO-\( w \)-\( AMag \)-Diagramm.

Werden die Ergebnisse dieser Berechnung als rote Punkte in das CO-\( w \)-\( AMag \)-Diagramm in Abbildung 56 eingetragen, liegen diese ebenfalls auf der blauen Kurve, welche die CO-Charakteristik in Abhängigkeit der Gewichtung \( w \) darstellt. Die graue Kurve ist die Gewichtungsfunktion \( w_j \) in der Sauerstoffklasse \( C_{O_2} = 10 \). Dabei wurde die Methanreaktion ausschließlich über den mischungskontrollierten Berechnungspfad beschränkt. Auch hier kann die Höhe der Kohlenmonoxidkonzentration durch die entsprechende Wahl des Kalibrierfaktors \( K \) dargestellt werden. Zur Plausibilitätsprüfung zeigt Abbildung 57 die maximal auftretende Temperatur \( \vartheta_{G,Max} \) im Berechnungsgebiet in Abhängigkeit der Parameter beim Arrhenius-Ansatz. Die maximal auftretende Temperatur \( \vartheta_{G,Max} \) im Berechnungsgebiet steigt bei Verwendung eines Arrhenius-Ansatzes für die Methanreaktion leicht an. Die adiabate Verbrennungstemperatur von \( \vartheta_{ad} = 1.629 ^\circ C \) wird dabei nicht überschritten.

Abbildung 57: Plausibilitätsprüfung – Adiabate Verbrennungstemperatur und maximal auftretende Temperatur bei verändertem Parameter im Arrhenius-Ansatzes.


Zur Plausibilitätsprüfung zeigt Abbildung 59 die maximal auftretende Temperatur $\vartheta_{G,\text{Max}}$ im Berechnungsgebiet über der Luftzahl $\lambda$. Die maximal auftretende Temperatur $\vartheta_{G,\text{Max}}$ steigt mit Erhöhung der Luftzahl leicht an. Ein Unterschied der Temperatur $\vartheta_{G,\text{Max}}$ zwischen den Rechnungen mit den Faktoren im Arrhenius-Ansatzes nach *Westbrook et al. (1984)* und *Howard et al. (1973)* ist nicht zu erkennen. Die adiabate Verbrennungstemperatur von $\vartheta_{\text{ad}} = 1.629 \, ^\circ\text{C}$ wird dabei nicht überschritten.

Abbildung 58: Vergleich CO-$\lambda$-Charakteristik für unterschiedliche Faktoren im Arrhenius-Ansatz nach *Westbrook et al. 1984* und *Howard et al. 1973*. 

\[ A_{\text{Mag}} = 3,5 \]
Methode zur Kalibrierung der Ergebnisse aus der CFD-Simulation

5.3.6 Erstellung einer CO-\( \lambda \)-Charakteristik mit geänderten Faktoren im Arrhenius-Ansatz

Werden die Ergebnisse der Sensitivitätsanalyse mit den Faktoren im Arrhenius-Ansatz nach Howard et al. (1973) als dunkelblaue Punkte in das CO-\( w-H_H_o-H_a_a_B_B_a_a \)-Diagramm nach Abbildung 60 eingetragen, liegen diese auf der blauen Kurve, welche die CO-Charakteristik in Abhängigkeit der Gewichtung \( w \) darstellt. Diese hellblaue Kurve wurde aus den Ergebnissen der Simulation mit den Faktoren im Arrhenius-Ansatz nach Westbrook et al. (1984) erstellt. Für die Faktoren im Arrhenius-Ansatz nach Howard et al. (1973) ist beispielhaft die Gewichtungsfunktion \( w_j \) für die Sauerstoffklasse \( C_{O_2} = 10 \) als hellgraue Kurve eingezeichnet. Die Kalibrierung der CO-Konzentration mit den Faktoren im Arrhenius-Ansatz nach Howard et al. (1973) soll, wie in Kapitel 5.2, Seite 79 ff, exemplarisch für die Sauerstoffklasse \( C_{O_2} = 10 \) erfolgen.

In Abbildung 41 ist die Übertragungsfunktion \( G_{GRW}^{Howard} \) für die Gewichtung \( w_{GRW}^{Howard} \) in der Sauerstoffklasse \( C_{O_2} = 10 \) als vertikal verlaufende schwarze Linie eingezeichnet. Die Übertragungsfunktion \( G_{GRW}^{Howard} \) kreuzt die blaue Kurve und es kann im Schnittpunkt an der primären \( Y \)-Achse die minimal zu erreichende CO-Konzentration in der Sauerstoffklasse \( C_{O_2} = 10 \) von \( y_{CO} = 97 \text{mol/mol} \cdot 10^{-6} \) abgelesen werden. Wird eine Kalibrierung mit den Kalibrierfaktoren \( K_{GRW} \) bis \( K_{64} \) aus Kapitel 5.2, Seite 79 ff für alle Sauerstoffklassen \( C_{O_2} \) durchgeführt, kann eine CO-\( \lambda \)-Charakteristik wie in Abbildung 61 dargestellt werden. Mit einem Kalibrierfaktor \( K_{GRW} \) wird eine Kurve mit den geringsten Kohlenmonoxidkonzentrationen über die Luftzahl erzeugt. Die Kurven mit den Kalibrierfaktoren \( K_1 \) bis \( K_8 \) liegen zwischen den Kurven \( K_{GRW} \) und \( K_{16} \) und sind im Diagramm nicht bezeichnet. Zwischen den Kurven \( K_{GRW} \) und \( K_{16} \) sind geringe Unterschiede feststellbar.

Methode zur Kalibrierung der Ergebnisse aus der CFD-Simulation

Abbildung 60: CO-$\lambda$-Diagramm mit den Ergebnissen der Sensitivitätsanalyse über die Faktoren im Arrhenius-Ansatz für die Sauerstoffklasse $C_{O_2} = 10$.

Bei einer Luftzahl von $\lambda \geq 2$ ist bei allen Kurven über alle Kalibrierfaktoren $K$ ein moderater Anstieg der Kohlenmonoxidkonzentration festzustellen. Dieses Verhalten in der CO-$\lambda$-Charakteristik entspricht den Erwartungen bei einer charakterisierten Einzelraumfeuerung. Wie in Abbildung 7, Seite 12 weisen Biomassefeuerungen einen wabenförmigen Verlauf der Kohlenmonoxidkonzentration über die Luftzahl auf. In der Hauptverbrennungsphase, die üblicherweise bei einer Luftzahl zwischen $\lambda \geq 1,6$ und $\lambda \leq 3$ abläuft, sind die Kohlenmonoxidkonzentrationen konstant niedrig bzw. steigen nur leicht an. Tritt in dieser Phase eine Störung auf oder ändert sich die Leistung geringfügig, steigt in der

Abbildung 61: Einfluss des Kalibrierfaktors $K'$ auf die CO-$\lambda$-Charakteristik für Luftzahlen von $\lambda \geq 2$. 

\[
\begin{align*}
&\text{Abbildung 60: CO-$\lambda$-Diagramm mit den Ergebnissen der Sensitivitäts-} \\
&\text{analyse über die Faktoren im Arrhenius-Ansatz für die} \\
&\text{Sauerstoffklasse $C_{O_2} = 10$.}
\end{align*}
\]

\[
\begin{align*}
&\text{Bei einer Luftzahl von $\lambda \geq 2$ ist bei allen Kurven über alle Kalibrierfaktoren $K$ ein moderater} \\
&\text{Anstieg der Kohlenmonoxidkonzentration festzustellen. Dieses Verhalten in der} \\
&\text{CO-$\lambda$-Charakteristik entspricht den Erwartungen bei einer charakterisierten} \\
&\text{Einzelraumfeuerung. Wie in Abbildung 7, Seite 12 weisen Biomassefeuerungen einen} \\
&\text{wabenförmigen Verlauf der Kohlenmonoxidkonzentration über die Luftzahl auf. In der} \\
&\text{Hauptverbrennungsphase, die üblicherweise bei einer Luftzahl zwischen $\lambda \geq 1,6$ und $\lambda \leq 3$} \\
&\text{abläuft, sind die Kohlenmonoxidkonzentrationen konstant niedrig bzw. steigen nur leicht an.} \\
&\text{Tritt in dieser Phase eine Störung auf oder ändert sich die Leistung geringfügig, steigt in der} \\
&\text{Abbildung 61: Einfluss des Kalibrierfaktors $K'$ auf die CO-$\lambda$-Charakteristik für} \\
&\text{Luftzahlen von $\lambda \geq 2$.}
\end{align*}
\]
realen Feuerung üblicherweise die Kohlenmonoxidkonzentration auch nur geringfügig an. Erst wenn die Flamme im Brennraum erlischt, steigt die Kohlenmonoxidkonzentration sprunghaft an. Dies erfolgt üblicherweise bei einer Luftzahl von \( \lambda \geq 4 \).

Die CO-\( \lambda \)-Charakteristik der nicht kalibrierten Ergebnisse aus der Simulation für unterschiedliche Magnussen-Koeffizienten \( A_{Mag} \) zeigt Abbildung 62. Ändern sich die Verbrennungsbedingungen nicht grundlegend in einer chargenweise betriebenen Einzelraumfeuerung, ist nur ein leichter Anstieg der Kohlenmonoxidkonzentration in der Hauptverbrennungsphase zu erwarten. Erst bei einer Luftzahl \( \lambda \geq 4 \) bzw. einer Sauerstoffkonzentration von \( y_{O_2} \geq 16 \text{ mol/mol} \cdot 10^{-2} \) ist ein deutlicher Anstieg bei einer schlechten Verbrennung bemerkbar. In Abbildung E82, Seite 142 ist beispielhaft eine CO-\( \lambda \)-Charakteristik einer chargenweise betriebenen Einzelraumfeuerung für „gute“ und „schlechte“ Verbrennungsbedingungen dargestellt. Daraus ist ersichtlich, dass sich die Kohlenmonoxidkonzentrationen in der Hauptverbrennungsphase bei einer Sauerstoffkonzentration von \( 10 \leq y_{O_2} \leq 14 \text{ mol/mol} \cdot 10^{-2} \) nur leicht unterscheiden. Dies zeigen auch die mittleren Konzentrationen in Tabelle E35, Seite 142 im Anhang. Eine Änderung der Verbrennungsbedingungen kann in der CFD-Simulation demnach nicht durch eine Änderung mit einem über den gesamten Luftzahlbereich konstanten Magnussen-Koeffizienten \( A_{Mag} \) abgebildet werden.
Methode zur Kalibrierung der Ergebnisse aus der CFD-Simulation

Damit ergibt sich eine Erweiterung der Gewichtungsfunktion \( w_j \) nach Gleichung (31) für die Faktoren im Arrhenius-Ansatz nach Westbrook et al. (1984) für die Sauerstoffkasse \( C_{O_2} \leq 10 \) und nach Howard et al. (1973) für die Sauerstoffkasse \( C_{O_2} \geq 10 \).

\[
w_j = f \left( w, C_{O_2}, \dot{r}_i^{\text{kin,Westbrook}}, \dot{r}_i^{\text{kin,Howard}} \right) \quad \text{mit} \quad \begin{cases} \dot{r}_i^{\text{kin,Westbrook}} & \text{für } C_{O_2} \leq 10 \\ \dot{r}_i^{\text{kin,Howard}} & \text{für } C_{O_2} \geq 10 \end{cases}
\]

Gleichung (31)

**w\_j**: Gewichtungsfaktor an der Stelle \( j \)

**w**: Gewichtung

**\( C_{O_2} \)**: Sauerstoffklasse

**\( \dot{r}_i^{\text{kin}} \)**: temperaturkontrollierter kinetischer Term im Arrhenius-Ansatz

5.3.7 Änderung der Feuerungswärmeleistung

In diesem Abschnitt soll der Einfluss der Feuerungsleistung auf die berechnete Kohlenmonoxidkonzentration durch eine Variation der Feuerungsleistung für unterschiedliche Sauerstoffklassen \( C_{O_2} \) untersucht werden. Für die Methodenentwicklung wurde ein Synthesegas mit einer Leistung von \( P_{\text{SyG}} = 10 \text{ kW} \) im Referenzfall genutzt. In dieser Sensitivitätsanalyse soll in der Sauerstoffklasse \( C_{O_2} = 12 \) eine 20-prozentige Erhöhung der Leistung auf \( P_{\text{SyG}} = 12 \text{ kW} \) und in der Sauerstoffklasse \( C_{O_2} = 16 \) eine 20-prozentige Verringerung der Leistung auf \( P_{\text{SyG}} = 8 \text{ kW} \) erfolgen. Tabelle 16 zeigt die Zusammenstellung der Variation für diese Sensitivitätsanalyse. Für die Sauerstoffklassen \( C_{O_2} > 10 \) werden die Faktoren im Arrhenius-Ansatz von Howard et al. (1973) genutzt.

Die Ergebnisse der Simulation bei einem Magnus-Koeffizient \( A_{Mag} = 3.5 \) zeigt Abbildung 63. Bei der Sauerstoffklasse \( C_{O_2} = 12 \) wird im Referenzfall eine Kohlenmonoxidkonzentration von \( y_{CO} = 412 \text{ mol/mol} \cdot 10^{-6} \) berechnet. Wird in dieser Sauerstoffklasse die Leistung auf \( P_{\text{SyG}} = 12 \text{ kW} \) erhöht, wird eine Kohlenmonoxidkonzentration von \( y_{CO} = 228 \text{ mol/mol} \cdot 10^{-6} \) erreicht. Bei einer **chargenweise betriebenen** Einzelraumfeuerung entspricht dieses Verhalten den Erwartungen, dass bei gleicher Luftzahl durch eine Erhöhung der Feuerungsleistung die Kohlenmonoxidkonzentrationen sinken. Bei der Sauerstoffklasse \( C_{O_2} = 16 \) hat hingegen eine Verringerung der Leistung auf \( P_{\text{SyG}} = 8 \text{ kW} \) nur einen marginalen Einfluss auf die Höhe der Kohlenmonoxidkonzentration. Auch dieses

**Tabelle 16: Zusammenstellung der Feuerungswärmeleistung zur Sensitivitätsanalyse.**

<table>
<thead>
<tr>
<th>Modellparameter</th>
<th>Referenz</th>
<th>Variation 1</th>
<th>Variation 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistung SyG ( P_{\text{SyG}} ) in kW</td>
<td>10</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>Sauerstoffklasse ( C_{O_2} )</td>
<td>( C_{O_2} = [1; 16] )</td>
<td>( C_{O_2} = 12 )</td>
<td>( C_{O_2} = 16 )</td>
</tr>
</tbody>
</table>
Methode zur Kalibrierung der Ergebnisse aus der CFD-Simulation

Abbildung 63: Kohlenmonoxidkonzentration bei veränderter Leistung in den Sauerstoffklassen \( C_{O_2} = 12 \) und \( C_{O_2} = 16 \).


Abbildung 64 zeigt die Ergebnisse der Sensitivitätsanalyse für unterschiedliche Leistungen in den Sauerstoffklassen \( C_{O_2} = 12 \) und \( C_{O_2} = 16 \). Die Ergebnisse der berechneten Kohlenmonoxidkonzentration für die hohe Leistung \( (P_{SYG} = 12\, kW) \) sind als rote Punkte, für die geringe Leistung \( (P_{SYG} = 8\, kW) \) als orangene Punkte im CO-\( w - A_{Mag} \)-Diagramm eingetragen. Diese Punkte liegen auf der blauen Kurve, welche die Kohlenmonoxidkonzentration in Abhängigkeit der Gewichtung \( w \) darstellt. Die Gewichtungsfunktionen \( w_j \) für die Sauerstoffklasse \( C_{O_2} = 12 \) bei einer Leistung von \( P_{SYG} = 12\, kW \) ist als graue Kurve und für eine Leistung von \( P_{SYG} = 10\, kW \) als anthrazite Kurve in Abbildung 64 eingezeichnet. Des Weiteren sind die Kurven der Gewichtungsfunktion \( w_j \) für die Sauerstoffklasse \( C_{O_2} = 16 \) bei einer Leistung von \( P_{SYG} = 8\, kW \) (hellgraue Kurve) und bei einer Leistung von \( P_{SYG} = 10\, kW \) (schwarze Kurve) eingezeichnet. Für die jeweilige Sauerstoffklasse \( C_{O_2} \) sind die Übertragungsfunktionen \( G_{GrW} \) der jeweiligen Gewichtungsfunktionen \( w_j \) als vertikale schwarze Linie eingzeichnet. Im Schnittpunkt der Übertragungsfunktion \( G_{GrW} \) und der blauen Kurve, kann die entsprechende Kohlenmonoxidkonzentration an der primären Y-Achse abgelesen werden. In der Sauerstoffklasse \( C_{O_2} = 12 \) beträgt bei einer Leistung von \( P_{SYG} = 10\, kW \) die minimal zu errechnende Kohlenmonoxidkonzentration \( y_{CO} = 306\, mol/mol \cdot 10^{-6} \). Bei einer Leistung von \( P_{SYG} = 12\, kW \) sinkt die minimal zu errechnende Kohlenmonoxidkonzentration auf \( y_{CO} = 195\, mol/mol \cdot 10^{-6} \) ab. Bei der Kalibrierung der Ergebnisse aus der Simulation besteht weiterhin das erwartete Verhalten, dass bei gleicher Luftzahl und einer Erhöhung der Feuerungsleistung die Kohlenmonoxidkonzentrationen sinken. Bei der Sauerstoffklasse \( C_{O_2} = 16 \) liegen die Gewichtungsfunktionen \( w_j \) für die Leistung \( P_{SYG} = 10\, kW \) und \( P_{SYG} = 8\, kW \) annähernd deckungsgleich aufeinander.
Methode zur Kalibrierung der Ergebnisse aus der CFD-Simulation

Abbildung 64: Ergebnisse der Simulation im CO-\(w\)-AMag-Diagramm bei veränderter Leistung in den Sauerstoffklasse \(C_{O_2} = 12\) und \(C_{O_2} = 16\)

Dies bedeutet, dass in der Simulation die Feuerung in der Sauerstoffklasse \(C_{O_2} = 16\) ein nahezu gleiches Emissionsverhalten bei unterschiedlichen Leistungen aufweist. In der Sauerstoffklasse \(C_{O_2} = 16\) beträgt bei einer Leistung von \(P_{SYG} = 10\) kW die minimal zu erreichende Kohlenmonoxidkonzentration von \(y_{CO} = 1.337\ \text{mol/mol} \cdot 10^{-6}\). Bei einer Leistung von \(P_{SYG} = 8\) kW sinkt die minimal zu erreichende Kohlenmonoxidkonzentration auf \(y_{CO} = 1.257\ \text{mol/mol} \cdot 10^{-6}\) ab. Dies entspricht einer Abweichung von ca. 6,4 %. Bei der Kalibrierung der Ergebnisse aus der Simulation besteht weiterhin das erwartete Verhalten, dass bei gleicher Luftzahl einer Verringerung der Feuerungsleistung die Kohlenmonoxidkonzentrationen nahezu konstant bleiben. Beide Gewichtungsfunktionen \(w_j\) für unterschiedliche Feuerungswärmeeinspeisungen in der Sauerstoffklasse \(C_{O_2} = 16\) werden mit drei Stützpunkten ermittelt. Durch die Erstellung von weiteren Stützpunkten könnte eventuell die Korrelation der beiden Kurven verbessert werden. Abbildung 64 zeigt, dass bei entsprechender Wahl des Kalibrierfaktors in der Gewichtungsfunktion \(w_j\), welche mit einer hohen Leistung erstellt wurde, die Kohlenmonoxidkonzentrationen für eine geringere Leistung genutzt werden kann. Dadurch ergibt sich bei einer Änderung der Leistung nur eine Abhängigkeit zum Kalibrierfaktor \(K\).
Methode zur Kalibrierung der Ergebnisse aus der CFD-Simulation

Abbildung 65: Plausibilitätsprüfung – Adiabate Verbrennungstemperatur und maximal auftretende Temperatur bei veränderter Feuerungswärmeleistung.

Zur Plausibilitätsprüfung zeigt Abbildung 65 die maximal auftretende Temperatur \( \vartheta_{G,\text{Max}} \) im Berechnungsgebiet in Abhängigkeit der Feuerungswärmeleistung. Die maximal auftretende Temperatur \( \vartheta_{G,\text{Max}} \) im Berechnungsgebiet steigt mit Erhöhung der Leistung des Synthesegases leicht an. Die adiabate Verbrennungstemperatur von \( \vartheta_{ad} = 1.629 \, ^\circ\text{C} \) wird dabei nicht überschritten.

5.3.8 Zusammenfassung der Ergebnisse aus der Sensitivitätsanalyse

Für die Quantifizierung des Einflusses auf die nicht kalibrierte Kohlenmonoxidkonzentration der einzelnen Modellparameter wird die Sensitivität \( S \) nach Gleichung (32) berechnet. Die Sensitivität \( S \) setzt sich aus einer gewichteten Änderung der nicht kalibrierten Kohlenmonoxidkonzentration zusammen. Die Gewichtung wird über den Betrag der Sensitivität des Modellparameters \( S_\psi \) erzeugt. Eine negative Sensitivität hat eine Verringerung und eine positive Sensitivität eine Erhöhung der Kohlenmonoxidkonzentration im Abgas zur Folge.

\[
S = |S_\psi| \cdot S_{y_{\text{CO}}} = \frac{\psi_{\text{ref}}}{\psi} \cdot \frac{y_{\text{CO} \cdot y_{\text{CO,ref}}} - y_{\text{CO,ref}}}{y_{\text{CO,ref}}} \quad \text{Gleichung (32)}
\]

\(|S| : \text{Sensitivität des Modellparameters und der Kohlenmonoxidkonzentration} \quad [-]
\nS_\psi : \text{Sensitivität des Modellparameters} \quad [-]
\nS_{y_{\text{CO}}} : \text{Sensitivität der nicht kalibrierten Kohlenmonoxidkonzentration} \quad [-]
\n\psi : \text{Modellparameter} \quad [-]
\n\psi_{\text{CO,ref}} : \text{Referenz Modellparameter} \quad [-]
\ny_{\text{CO}} : \text{nicht kalibrierte Kohlenmonoxidkonzentration} \quad \frac{\text{mol}}{\text{mol}} \cdot 10^{-6}
\ny_{\text{CO,ref}} : \text{Referenz der nicht kalibrierten Kohlenmonoxidkonzentration} \quad \frac{\text{mol}}{\text{mol}} \cdot 10^{-6}
Methode zur Kalibrierung der Ergebnisse aus der CFD-Simulation

Tabelle 17: Zusammenstellung der Sensitivitätsergebnisse des Magnussen-Koeffizienten \( A_{Mag} \).

<table>
<thead>
<tr>
<th>Variation des Modellparameters</th>
<th>( \psi )</th>
<th>( \gamma_{CO} )</th>
<th>( S )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( A_{Mag} ) mit den Faktoren im Arrhenius-Ansatz nach ( \text{Westbrook et al. (1984)} ) in der Sauerstoffklasse ( C_{O_2} = 10 )</td>
<td>4,0</td>
<td>881</td>
<td>-1,4</td>
</tr>
<tr>
<td></td>
<td>3,5</td>
<td>1.097</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3,0</td>
<td>1.388</td>
<td>1,9</td>
</tr>
<tr>
<td></td>
<td>2,0</td>
<td>2.538</td>
<td>3,1</td>
</tr>
<tr>
<td></td>
<td>1,0</td>
<td>7.889</td>
<td>8,7</td>
</tr>
<tr>
<td></td>
<td>0,5</td>
<td>21.870</td>
<td>22,1</td>
</tr>
</tbody>
</table>

| \( A_{Mag} \) mit den Faktoren im Arrhenius-Ansatz nach \( \text{Howard et al. (1973)} \) in der Sauerstoffklasse \( C_{O_2} = 10 \) | 3,5   | 111         | -   |
|                              | 1,5   | 631         | 8,2 |
|                              | 1,0   | 1.431       | 16,6|
|                              | 0,5   | 3.509       | 35,7|

In Tabelle 17 sind die Ergebnisse der Sensitivität \( S \) des Magnussen-Koeffizienten \( A_{Mag} \) für die nicht kalibrierten Kohlenmonoxidkonzentrationen in der Sauerstoffklasse \( C_{O_2} = 10 \) zusammengefasst. Sowohl für die Ergebnisse mit den Faktoren im Arrhenius-Ansatz nach \( \text{Westbrook et al. (1984)} \), als auch nach \( \text{Howard et al. (1973)} \), hat der Magnussen-Koeffizient \( A_{Mag} \) im mischungskontrollierten Berechnungspfad im EDM einen großen Einfluss auf das Ergebnis der simulierten Kohlenmonoxidkonzentration. Die Kohlenmonoxidkonzentrationen, welche mit den Faktoren im Arrhenius-Ansatz nach \( \text{Howard et al. (1973)} \) berechnet werden, unterscheiden sich gegenüber den Ergebnissen nach \( \text{Westbrook et al. (1984)} \) deutlich. Die Sensitivitäten \( S \) des Magnussen-Koeffizienten \( A_{Mag} \) unterscheiden sich zwischen den Ergebnissen nach \( \text{Howard et al. (1973)} \) und \( \text{Westbrook et al. (1984)} \) zum Teil deutlich.

In Tabelle 18 ist die Sensitivität aus den Ergebnissen der Sensitivitätsanalyse zusammengefasst. Kann kein Wert für die Sensitivität berechnet werden, z.B. bei der Änderung des Reaktionspfades, wird der Wert der Sensitivität des Modellparameters \( S_{\psi} = 1 \). Für diesen Fall wird die Sensitivität \( S \) als die Sensitivität der Kohlenmonoxidkonzentration \( S_{\gamma_{CO}} \) angegeben. Neben dem Magnussen-Koeffizienten hat die Temperatur des Synthesegases, das aus der Oberfläche der Holzstücke tritt, den größten Einfluss auf die nicht kalibrierten Kohlenmonoxidkonzentrationen. Je höher die Temperatur des Synthesegases ist, desto geringer sind die berechneten Kohlenmonoxidkonzentrationen.

Der Anteil von Kohlenmonoxid \( (\chi_{CO}) \) im Synthesegas hat keinen, bzw. nur einen sehr geringen Einfluss auf das Ergebnis. Mit steigendem Anteil von Kohlenmonoxid im Synthesegas sinken die nicht kalibrierten Kohlenmonoxidkonzentrationen im Abgas leicht an. Ein relativ geringer Anteil an Wasserstoff im Synthesegas in Kombination mit einem \( H_2 \)-1step hat keinen bzw. einen sehr geringen Einfluss auf das Ergebnis der nicht kalibrierten Kohlenmonoxidkonzentrationen. Dies zeigt die Sensitivität von \( S = 0,022 \) bei der Parametervariation mit dem \( \text{SynGas,3} \). Das \( \text{SynGas,3} \) weist einen Anteil von Kohlenmonoxid...
Methode zur Kalibrierung der Ergebnisse aus der CFD-Simulation

von $x_{CO} = 0,36 \, kg/kg$ bei einem relativ geringen Anteil an Wasserstoff von $x_{H_2} = 0,005 \, kg/kg$ im Synthesegas auf. Bei einem Anteil an Kohlenmonoxid im Synthesegas von $x_{CO} = 0,23 \, kg/kg$ müsste eigentlich die höchste Kohlenmonoxidkonzentration zu finden sein. Bei dieser Parametervariation wird das SynGas,4 mit einem relativ hohen Anteil an Wasserstoff von $x_{H_2} = 0,02 \, kg/kg$ im Synthesegas verwendet. Dadurch kommt es zu einer Überlagerung mit dem H$_2$-1step Reaktionspfad und es sind die geringsten Kohlenmonoxidkonzentrationen bei dieser Parametervariation zu finden. Die Sensitivität steigt auf $S = −0,325$ an. Erst bei einem relativ hohen Anteil an Wasserstoff im Synthesegas sinken die Kohlenmonoxidkonzentrationen.

Steigt die Menge an Wasserstoff ($x_{H_2}$) im Reaktionsgebiet, sinken die nicht kalibrierten Kohlenmonoxidkonzentrationen. Dies zeigt die Sensitivität der Kohlenmonoxidkonzentration mit dem SynGas,ref, SynGas,3 und SynGas,4. Mit einem CH$_4$-2step in Kombination mit einem H$_2$-1step Reaktionspfad wird eine Sensitivität der Kohlenmonoxidkonzentration mit dem SynGas,3 von $S_{y_{CO}} = 0,004$ bestimmt. Wird der Anteil an Wasserstoff im Reaktionsgebiet durch einen CH$_4$-3step Reaktionspfad weiter erhöht, steigt die Sensitivität auf $S_{y_{CO}} = −0,103$ sprunghaft an. Mit einem weiteren Anstieg des Anteils von Wasserstoff im Reaktionsgebiet sinken die Kohlenmonoxidkonzentrationen noch weiter und es sind die geringsten Kohlenmonoxidkonzentrationen von $y_{CO} = 791 \, mol/mol \cdot 10^{-6}$ festzustellen. Bei gleichem Anteil des Wasserstoffes im Synthesegas steigt in der Parametervariation des Reaktionspfades die Sensitivität der nicht kalibrierten Kohlenmonoxidkonzentration bei einem CH$_4$-step + H$_2$-1step mit SynGas,4 von $S_{y_{CO}} = −0,15$ auf $S_{y_{CO}} = −0,28$ bei einem CH$_4$-3step Reaktionspfad mit SynGas,4 an.

Einen weiteren Einfluss auf das Ergebnis der nicht kalibrierten Kohlenmonoxidkonzentrationen haben die Faktoren im Arrhenius-Ansatz. Findet die Reaktion des Methans neben dem mischungskontrollierten Berechnungspfad auch über den temperaturkontrollierten Berechnungspfad mit Hilfe eines Arrhenius-Ansatzes statt, steigt die Kohlenmonoxidkonzentration auf $y_{CO} = 2,074 \, mol/mol \cdot 10^{-6}$. Dabei wird eine Sensitivität der Kohlenmonoxidkonzentration von $S_{y_{CO}} = 0,89$ erreicht. Wird der Arrhenius-Ansatz für die Reaktion des Kohlenmonoxids mit den Faktoren nach Howard et al. (1973) parametrisiert, sinken die nicht kalibrierten Kohlenmonoxidkonzentrationen auf $y_{CO} = 111 \, mol/mol \cdot 10^{-6}$ ab. Die Sensitivität der Kohlenmonoxidkonzentration erreicht einen Wert von $S_{y_{CO}} = −0,90$.

Die Erhöhung der Feuerungswärmeleistung in der Sauerstoffklasse $C_{O_2} = 12$ hat eine deutliche Verringerung der nicht kalibrierten Kohlenmonoxidkonzentration zur Folge. Die Sensitivität erreicht einen Wert von $S = −2,2$. Im Gegensatz dazu hat eine Verringerung der Feuerungswärmeleistung in der Sauerstoffklasse $C_{O_2} = 16$ keinen bzw. nur einen geringen Einfluss auf die nicht kalibrierte Kohlenmonoxidkonzentration. Dies zeigt die Sensitivität von $S = 0,055$. Da keine weitere Parametervariation der Feuerungsleistung durchgeführt wurde, kann nicht unmittelbar auf das gleiche Verhalten in anderen Sauerstoffklassen geschlossen werden.
### Tabelle 18: Zusammenstellung der Ergebnisse der Sensitivitätsanalyse

<table>
<thead>
<tr>
<th>Variation der Modellparameter</th>
<th>$\psi$</th>
<th>$y_{CO}$</th>
<th>$S$</th>
<th>$S_{y_{CO}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl der Iterationen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.500 (Ref)</td>
<td>1.097</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.000</td>
<td>1.109</td>
<td>0.055</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.000</td>
<td>1.105</td>
<td>0.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.500</td>
<td>1.107</td>
<td>0.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31.000</td>
<td>1.389</td>
<td>0.023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.000</td>
<td>1.365</td>
<td>0.016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.000</td>
<td>1.286</td>
<td>0.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.000</td>
<td>1.388</td>
<td>0.013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T_{SynG}$ in K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>773</td>
<td>2.133</td>
<td>4.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>973 (Ref)</td>
<td>1.097</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.073</td>
<td>810</td>
<td>-2.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.173</td>
<td>597</td>
<td>-2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.273</td>
<td>419</td>
<td>-2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x_{co}$ in kg · kg$^{-1}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SynGas,2 / CH₄-2step</td>
<td>0.55</td>
<td>1.037</td>
<td>-0.196</td>
<td></td>
</tr>
<tr>
<td>SynGas,ref / CH₄-2step</td>
<td>0.43</td>
<td>1.097</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SynGas,3 / CH₄-2step + H₂-1step</td>
<td>0.36</td>
<td>1.101</td>
<td>0.022</td>
<td></td>
</tr>
<tr>
<td>SynGas,1 / CH₄-2step</td>
<td>0.33</td>
<td>1.142</td>
<td>0.176</td>
<td></td>
</tr>
<tr>
<td>SynGas,4 / CH₄-2step + H₂-1step</td>
<td>0.23</td>
<td>931</td>
<td>-0.325</td>
<td></td>
</tr>
<tr>
<td>$x_{H₂}$ in kg · kg$^{-1}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SynGas,ref / CH₄-2step</td>
<td>0.0</td>
<td>1.097</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SynGas,3 / CH₄-2step + H₂-1step</td>
<td>0.005</td>
<td>1.101</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>SynGas,4 / CH₄-2step + H₂-1step</td>
<td>0.02</td>
<td>931</td>
<td>-0.15</td>
<td></td>
</tr>
<tr>
<td>Reaktionspfad</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SyG,ref CH₄-2step</td>
<td>(Ref)</td>
<td>1.097</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SyG,3 CH₄-2step + H₂-1step</td>
<td>1.101</td>
<td>0.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SyG,3 CH₄-3step</td>
<td>984</td>
<td>-0.103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SyG,4 CH₄-2step + H₂-1step</td>
<td>931</td>
<td>-0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SyG,4 CH₄-3step</td>
<td>791</td>
<td>-0.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faktoren im Arrhenius-Ansatz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$C_a_1 = 10$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\dot{r}_{CH₄} \text{ „vermischt = verbrannt“}$ (Ref)</td>
<td>1.097</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\dot{r}_{CH₄}$ mit Arrhenius-Ansatz</td>
<td>2.074</td>
<td>0.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\dot{r}_{CO}$ Howard et al. (1973)</td>
<td>111</td>
<td>-0.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feuerungs- \wärmeleistung in kW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hoch, $C_a = 12$</td>
<td>10</td>
<td>412</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hoch, $C_a = 16$</td>
<td>8</td>
<td>1.817</td>
<td>-0.055</td>
<td></td>
</tr>
<tr>
<td>gering, $C_a = 12$</td>
<td>12</td>
<td>228</td>
<td>-2.2</td>
<td></td>
</tr>
<tr>
<td>gering, $C_a = 16$</td>
<td>10</td>
<td>1.837</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Die durchgeführte Sensitivitätsanalyse zeigt, dass eine detaillierte Parametrisierung der CFD-Simulation nötig ist. Folgende Parameter haben im Finite-Rate / Eddy Dissipation Model (kin/EDM) den größten Einfluss auf die nicht kalibrierten Kohlenmonoxidkonzentrationen:

1. Magnus-Koeffizient \( A_{Mag} \)
2. Temperatur des Synthesegases
3. Leistung des Synthesegases
4. Faktoren im Arrhenius-Ansatz
5. Massenanteil des Wasserstoffes im Synthesegas
6. Reaktionspfad (\( CH_4 \)-2step / \( CH_4 \)-2step + \( H_2 \)-1step / \( CH_4 \)-3step)

Bisher erfolgte die Parametrisierung der Simulationsmodelle überwiegend durch umfangreiche Messungen auf dem Prüfstand. Die Validierung der CFD-Simulation erfordert dann oftmals eine iterative Anpassung der Eingangsparameter, um eine Übereinstimmung der nicht kalibrierten Kohlenmonoxidkonzentrationen aus der CFD-Simulation mit Messergebnissen in Deckung zu bringen.

### 5.4 Messtechnische Überprüfung der Kalibrierungsmethode


\[
K = \frac{\partial w_j}{\partial A_{Mag}} = \text{const. für } c_{O_2} = [6; 16]
\]

Abbildung 66: Schema zur Kalibrierung der Ergebnisse aus der CFD-Simulation anhand der Gewichtungsfunktion \( w_j \).
Abbildung 67 zeigt die aus den kalibrierten Ergebnissen der Simulation erstellte CO-λ-Charakteristik für eine *chargenweise betriebene* Einzelraumfeuerung. Für die Kalibrierung wurde über alle Sauerstoffklassen $C_{O_2}$ ein konstanter Kalibrierfaktor $K_{GrW}$ genutzt. Für eine Luftzahl von $\lambda = 1,44$ bis $\lambda = 2,46$ wurde die Kalibrierung (hellgrau) mit den Ergebnissen aus der Simulation durchgeführt, die mit den Faktoren im Arrhenius-Ansatz nach *Westbrook et al. (1984)* berechnet wurden. Die mit den Faktoren im Arrhenius-Ansatz nach *Howard et al. (1973)* erstellten Ergebnissen wurden für eine Luftzahl von $\lambda = 1,99$ bis $\lambda = 4,52$ (dunkelgrau) kalibriert.

Die Kalibrierung berechnet bei einer Luftzahl von $\lambda = 1,44$ eine Kohlenmonoxidkonzentration von $y_{CO} = 630 \text{ mol/mol} \cdot 10^{-6}$ und ist deutlich geringer als bei einer Luftzahl von $\lambda = 1,67$. Dieses Verhalten ist bei einer *chargenweise betriebenen* Einzelraumfeuerung untypisch. Bei einer Luftzahl von $\lambda < 1,67$ wird üblicherweise ein steiler Anstieg der Kohlenmonoxidkonzentration erwartet. Allerdings können durch Änderung des Kalibrierfaktors $K$ in den Sauerstoffklassen $C_{O_2} = 6$ weitere Kohlenmonoxidkonzentrationen für die Luftzahl von $\lambda = 1,44$ berechnet werden.

In Abbildung 67 sind diese Kalibrierpunkte als hellgraue Linien für die Luftzahl von $\lambda = 1,44$ eingezeichnet und mit dem entsprechenden Kalibrierfaktor bezeichnet. Bei einer *chargenweise betriebenen* Einzelraumfeuerung würde sich erfahrungsgemäß ein Anstieg der Kohlenmonoxidkonzentration ergeben, wie durch die Kalibrierfaktoren $K_4$ bis $K_{16}$ berechnet wurde. Für die betrachtete Einzelraumfeuerung wird für die Luftzahl von $\lambda = 1,44$ der Kalibrierfaktor $K_4$ gewählt. Mit einem Kalibrierfaktor $K_4$ wird eine Kohlenmonoxidkonzentration von $y_{CO} = 2.793 \text{ mol/mol} \cdot 10^{-6}$ berechnet.

Abbildung 67: Mit einem Kalibrierfaktor $K_{GrW}$ erstellte CO-λ-Charakteristik und bei einer Luftzahl von $\lambda = 1,44$ mit den Kalibrierfaktoren $K_{GrW}$ bis $K_{32}$ berechnete Kohlenmonoxidkonzentration.
Die mit den Faktoren im Arrhenius-Ansatz nach Westbrook et al. (1994) berechneten Ergebnisse und kalibrierten Kohlenmonoxidkonzentrationen steigen bei einer Luftzahl von $\lambda = 1,67$ von $y_{CO} = 808 \text{mol/mol} \cdot 10^{-6}$ auf $y_{CO} = 1.335 \text{mol/mol} \cdot 10^{-6} (\lambda = 2,46)$ an. Bei einer chargenweise betriebenen Einzelraumfeuerung findet die Hauptverbrennungsphase mit geringen Kohlenmonoxidkonzentrationen üblicherweise bei einer Luftzahl zwischen $\lambda \geq 1,6$ und $\lambda \leq 3$ statt. Die mit den Faktoren im Arrhenius-Ansatz nach Howard et al. (1973) berechneten Ergebnisse und die kalibrierten Kohlenmonoxidkonzentrationen von $y_{CO} = 97 \text{mol/mol} \cdot 10^{-6}$ ist bei einer Luftzahl von $\lambda = 1,99$ zu niedrig. Bei einer Luftzahl von $\lambda = 2,46$ sind die kalibrierten Kohlenmonoxidkonzentrationen von $y_{CO} = 306 \text{mol/mol} \cdot 10^{-6}$ in einem realistischen Bereich für die Hauptverbrennung. Bei einer chargenweise betriebenen Einzelraumfeuerung erfolgt ein moderater Anstieg üblicherweise bei einer Luftzahl von $\lambda > 3$. Für eine Luftzahl $\lambda > 2,46$ wird der Anstieg in der CO-$\lambda$-Charakteristik durch die kalibrierten Kohlenmonoxidkonzentrationen gut wiedergegeben. Daher soll für die Luftzahl $\lambda = 1,99$ eine Mittelwertbildung aus den kalibrierten Kohlenmonoxidkonzentrationen der hellgrauen und dunkelgrauen Kurve erfolgen. Für die Luftzahl $\lambda = 1,99$ ergibt sich eine gemittelte Kohlenmonoxidkonzentration von $y_{CO} = 453 \text{mol/mol} \cdot 10^{-6}$.


Bei einer Sauerstoffkonzentration zwischen $y_{O_2} = 10 \text{mol/mol} \cdot 10^{-2}$ und $y_{O_2} = 14 \text{mol/mol} \cdot 10^{-2}$ ist ein wannenförmiger Bereich mit geringen Kohlenmonoxidkonzentrationen erkennbar. Links der Wanne erfolgt ein steeper Anstieg und rechts ein moderater Anstieg der Kohlenmonoxidkonzentrationen. Dieses Verhalten entspricht den praktischen Erfahrungen bei chargenweise betriebenen Einzelraumfeuerungen.

Tabelle 19 zeigt die Mittelwerte der Kohlenmonoxidkonzentration, die auf dem Prüfstand an der originalen Einzelraumfeuerung aus Kapitel 4.1, Seite 55 ff ermittelt wurden. Des Weiteren sind die kalibrierten Kohlenmonoxidkonzentrationen aus der Simulation für eine geringe und eine hohe Leistung eingetragen. Auch hier zeigt sich eine gute Übereinstimmung zwischen den gemessenen und den kalibrierten Kohlenmonoxidkonzentrationen. Die Werte der Kohlenmonoxidkonzentration für eine hohe und geringe Leistung geben den mittleren zu erwartenden Bereich in der jeweiligen Sauerstoffklasse wieder. Somit ist es möglich mit der entwickelten Methode zur Kalibrierung der Ergebnisse aus der Simulation eine CO-$\lambda$-Charakteristik bzw. eine CO-O$_2$-Charakteristik zu erstellen, die das Emissionsverhalten einer chargenweise betriebenen Einzelraumfeuerung zuverlässig beschreibt.
Methode zur Kalibrierung der Ergebnisse aus der CFD-Simulation

Abbildung 68: Validierung der kalibrierten Ergebnisse der Simulation bei unterschiedlichen Leistungen im Vergleich zu den Prüfstandsmessungen einer *chargenweise betriebenen* Einzelraumfeuerung.

Tabelle 19: Mittelwerte der Prüfstandsmessung im Vergleich zu den kalibrierten Ergebnissen aus der Simulation.

<table>
<thead>
<tr>
<th>Messung</th>
<th>Simulation hohe Leistung</th>
<th>Simulation geringe Leistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y_o_2$</td>
<td>$y_{Co}$</td>
<td>$C_{O_2}$</td>
</tr>
<tr>
<td>mol/mol · $10^{-2}$</td>
<td>mol/mol · $10^{-6}$</td>
<td>mol/mol · $10^{-6}$</td>
</tr>
<tr>
<td>6,0</td>
<td>4.440</td>
<td>6</td>
</tr>
<tr>
<td>8,0</td>
<td>1.580</td>
<td>8</td>
</tr>
<tr>
<td>10,0</td>
<td>590</td>
<td>10</td>
</tr>
<tr>
<td>12,0</td>
<td>370</td>
<td>12</td>
</tr>
<tr>
<td>14,0</td>
<td>600</td>
<td>14</td>
</tr>
<tr>
<td>16,0</td>
<td>1.440</td>
<td>16</td>
</tr>
</tbody>
</table>
6 Anwendung der modellgestützten Entwicklung einer Biomassefeuerung

In diesem Kapitel soll die Methode zur Kalibrierung der Simulationsergebnisse für die Entwicklung einer Brennkammer für einen *chargenweise betriebenen* Stückholzkessel angewendet werden. Dabei steht nicht die Entwicklung der Brennkammer im Vordergrund, sondern die Bewertung von unterschiedlichen Brennkammerkonzepten in Bezug auf den Betriebsbereich und das Emissionsverhalten. Die Methode zur Kalibrierung der Simulationsergebnisse wurde an einer *chargenweise betriebenen* Einzelraumfeuerung entwickelt und evaluiert. Daher soll überprüft werden, ob sich die Methode auch auf andere Feuerungsprinzipien übertragen lässt. Die Primärzone wird in der CFD-Simulation nicht betrachtet. Da keine speziellen Anforderungen an die Stickstoffoxidemissionen gestellt werden und die baulichen, sowie die systembedingten Gegebenheiten keinen Raum für eine Reduktionszone zulassen, findet keine Bewertung der Reduktionszone statt. Ebenso wird der nachfolgende Wärmeübertager nicht modelliert und untersucht. Die Systemgrenze für die in diesem Abschnitt behandelte Untersuchung zur Bewertung von Brennkammerkonzepten umfasst somit nach Abbildung 14, Seite 22 alleine die Sekundärbrennkammer (Teilfunktion 3).

6.1 Eingangsgrößen

Anwendung der modellgestützten Entwicklung einer Biomassefeuerung

Tabelle 20: Verbrennungstechnische Randbedingungen für die zu entwickelnde Brennkammer eines Stückholzkessels.

<table>
<thead>
<tr>
<th>Beschreibung</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feuerungswärmeleistung ($P_{br,th}$)</td>
<td>15 kW</td>
</tr>
<tr>
<td>Luftzahl</td>
<td>&lt;&lt; 1,9</td>
</tr>
<tr>
<td>Massenkonzentration CO bezogen auf $y_o = 13 \text{ mol/mol} \cdot 10^{-2}$</td>
<td>&lt;&lt; 1.125 mg/m³</td>
</tr>
<tr>
<td>Brennstoff feste Brennstoffe</td>
<td></td>
</tr>
<tr>
<td>Leistung des Synthesegases ($P_{syg,th} = \frac{2}{3} \cdot P_{br,th}$)</td>
<td>10 kW</td>
</tr>
<tr>
<td>Leistung in der Primärzone ($P_{priz,th} = \frac{1}{3} \cdot P_{br,th}$)</td>
<td>5 kW</td>
</tr>
<tr>
<td>Abgasmassenstrom ($\dot{m}_{abg}$) bei vollständiger Verbrennung und $\lambda = 1,9$</td>
<td>$6,0 \cdot 10^{-3} \text{ kg/s}$</td>
</tr>
<tr>
<td>Zusammensetzung des Abgases bei vollständiger Verbrennung:</td>
<td></td>
</tr>
<tr>
<td>Sauerstoff ($y_{o_2}$)</td>
<td>8,0 \text{ mol/mol} \cdot 10^{-2}</td>
</tr>
<tr>
<td>Kohlendioxid ($y_{CO_2}$)</td>
<td>16,5 \text{ mol/mol} \cdot 10^{-2}</td>
</tr>
<tr>
<td>Wasser ($y_{H_2O}$)</td>
<td>16,0 \text{ mol/mol} \cdot 10^{-2}</td>
</tr>
<tr>
<td>Stickstoff ($y_{N_2}$)</td>
<td>67,5 \text{ mol/mol} \cdot 10^{-2}</td>
</tr>
</tbody>
</table>

6.2 Brennkammerdesign


Im Gegensatz dazu wurde bei der Rotationsbrennkammer (Abbildung 70, rechts) ein Konzept mit erhöhter Turbulenz für die Mischung der Reaktionspartner Pyrolysegas und Sekundärluft realisiert. Die Pyrolysegase strömen aus der Primärzone in den Mischungsbereich ein. Im Mischungsbereich wird die Sekundärluft eingebracht und strömt gemeinsam in die Sekundärkammer, wobei durch die Rotationsbewegung der Gase eine weitere schnelle Vermischung der Reaktionspartner ermöglicht werden soll. Auf Grund der Einbaumöglichkeiten wurde die Sekundärkammer um 90° abgewinkelt, um die nötige Verweilzeit für eine im Idealfall vollständige Oxidation zu erreichen. Am Ende der stehenden Sekundärkammer für die Nachverbrennung strömen die Gase in den Wärmeübertrager.

Abbildung 70: Linearbrennkammer (links) und Rotationsbrennkammer (rechts).
6.3 Auswahl der Brennkammerdesigns anhand der CO-λ-Charakteristik


Abbildung 71: Kalibrierte CO-λ-Charakteristik für unterschiedliche Brennkammerkonzepte für einen Stückholzkessel.
1: Linearbrennkammer
2: Tangentialbrennkammer mit Sekundärluft
3: Tangentialbrennkammer mit optimierter Sekundärluft
4: Rotationsbrennkammer.
Anwendung der modellgestützten Entwicklung
einer Biomassefeuerung

Die Linearbrennkammer (1) zeichnet sich durch eine geringe Kohlenmonoxidkonzentration von \(y_{CO} = 250 \text{ mol/mol} \cdot 10^{-6}\) bei einer Luftzahl von \(\lambda = 1,2\) bis \(\lambda = 1,6\) bei einem relativ einfachen konstruktiven Aufbau aus. Die beiden Konzepte der Tangentialbrennkammern (2 & 3) weisen untereinander einen ähnlichen Verlauf der CO-\(\lambda\)-Charakteristik auf. Der Betriebsbereich kann bei einer Luftzahl von \(\lambda = 1,4\) bis \(\lambda = 2\) bei einer Kohlenmonoxidkonzentration von \(y_{CO} = 250 \text{ mol/mol} \cdot 10^{-6}\) bis \(y_{CO} = 500 \text{ mol/mol} \cdot 10^{-6}\) angegeben werden. Gegenüber der Tangentialbrennkammer mit Standard-Sekundärluft, weist die Ausführung mit optimierter Sekundärluft einen geringfügig größeren Betriebsbereich mit geringeren CO-Konzentrationen auf. Die Rotationsbrennkammer (4) zeichnet sich durch geringe CO-Konzentrations über einen großen Betriebsbereich bei einer Luftzahl von \(\lambda = 1,2\) bis \(\lambda = 3\) aus. Allerdings verursacht die Sekundärluftführung einen höheren konstruktiven Aufwand.


### 6.4 Evaluierung der gewählten Brennkammern

Abbildung 72: Ausführung der Linearbrennkammer (links) für die Validierung der Simulation (rechts).

Tabelle 22 zeigt die mittleren Konzentrationen der Linearbrennkammer über den gesamten Abbrand. Die Linearbrennkammer weist eine mittlere Kohlenmonoxidkonzentration von \( y_{CO} = 250 \, mol/mol \cdot 10^{-6} \) bei einem Restsauerstoffgehalt im Abgas von \( y_{O_2} = 5,1 \, mol/mol \cdot 10^{-2} \) auf. Die Linearbrennkammer entspricht somit den Anforderungen \( c_{CO,bez} = 1.125 \, mg/m^3 \) nach Tabelle 20 auf Seite 116 mit einer mittleren Massenkonzentration an Kohlenmonoxid in Höhe von \( c_{CO,bez} = 125 \, mg/m^3 \), bezogen auf einen Restsauerstoffgehalt von \( y_{O_2} = 13 \, mol/mol \cdot 10^{-2} \). Zwischen dem mittleren gemessenen Wert und dem Mittelwert der kalibrierten Kohlenmonoxidkonzentration aus der Simulation in der Sauerstoffklasse \( c_{O_2} = 4 \) und \( c_{O_2} = 5 \) ist eine Abweichung von ca. \( y_{CO} = 55 \, mol/mol \cdot 10^{-6} \) festzustellen.

Abbildung 73 zeigt beispielhaft den Verlauf der aus den kalibrierten Simulationsergebnissen berechneten CO-O₂-Charakteristik im Vergleich zu den Messergebnissen für die Linearbrennkammer. Die auf dem Prüfstand ermittelten Kohlenmonoxidkonzentrationen sind als Mittelwerte aus 10 Sekunden, in Form von anthrazitfarbenen Punkten, dargestellt. Der zeitliche Verlauf der Sauerstoff- und Kohlenmonoxidkonzentrationen ist in Abbildung E83, Seite 143 im Anhang zu finden. In Abbildung 73 ist eine sehr gute Übereinstimmung von berechneter und gemessener CO-O₂-Charakteristik zu erkennen. Der vorher berechnete Betriebsbereich der kalibrierten Simulationsergebnisse für einen Restsauerstoffgehalt im Abgas von \( y_{O_2} = 2 \, mol/mol \cdot 10^{-2} \) bis \( y_{O_2} = 6 \, mol/mol \cdot 10^{-2} \) deckt sich mit den Ergebnissen der Messungen. Die Höhe der Kohlenmonoxidkonzentration im Betriebsbereich

<table>
<thead>
<tr>
<th>Messung</th>
<th>Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>( y_{O_2} )</td>
<td>( y_{CO} )</td>
</tr>
<tr>
<td>mol/mol \cdot 10^{-2}</td>
<td>mol/mol \cdot 10^{-6}</td>
</tr>
<tr>
<td>5,1</td>
<td>250</td>
</tr>
</tbody>
</table>
Abbildung 73: Kalibrierte Simulationsergebnisse der CO-O₂-Charakteristik für die Linearbrennkammer und die dazugehörige Messung der CO-Konzentrationen.

wird mit den kalibrierten Simulationsergebnissen leicht überschätzt. Allerdings ist es beim Prototyp nicht möglich die Verbrennungsluft zu messen und die Dosierung der Verbrennungsluft erwies sich als äußerst schwierig. Die Abweichung wird damit begründet, dass die mittlere Feuerungswärmeleistung während des Versuches über der Zielleistung der Simulation von 15 kW liegt.

Tabelle 23 zeigt die auf dem Prüfstand bei unterschiedlichen Sauerstoffkonzentrationen im Abgas gemessenen mittleren Kohlenmonoxidkonzentrationen. Weiter sind die kalibrierten Kohlenmonoxidkonzentrationen in der jeweiligen Sauerstoffklasse \( C_{O_2} \) eingetragen. Bei der realen Feuerung ist ein Anstieg der Kohlenmonoxidkonzentration bei einer mittleren Sauerstoffkonzentration von \( y_{O_2} = 2\, mol/mol \cdot 10^{-2} \) erkennbar. Bei den kalibrierten Ergebnissen findet der Anstieg der Kohlenmonoxidkonzentration bei der Sauerstoffklasse \( C_{O_2} = 1,75 \) statt.

Tabelle 23: Gemessene mittlere Gaskonzentrationen und kalibrierte Ergebnisse aus der Simulation für die Linearbrennkammer.

<table>
<thead>
<tr>
<th>Messung</th>
<th>Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>( y_{O_2} )</td>
<td>( y_{CO} )</td>
</tr>
<tr>
<td>( mol/mol \cdot 10^{-2} )</td>
<td>( mol/mol \cdot 10^{-6} )</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2,0</td>
<td>4.842</td>
</tr>
<tr>
<td>4,0</td>
<td>64</td>
</tr>
<tr>
<td>6,0</td>
<td>113</td>
</tr>
<tr>
<td>8,0</td>
<td>2.027</td>
</tr>
</tbody>
</table>

Tabelle 24 zeigt die mittleren Gaskonzentrationen der Rotationsbrennkammer über den gesamten Abbrand. Die Rotationsbrennkammer weist in der Volllast eine mittlere Kohlenmonoxidkonzentration von \( y_{CO} = 88 \text{ mol/mol} \cdot 10^{-6} \) bei einem Restsauerstoffgehalt im Abgas von \( y_{O_2} = 7,9 \text{ mol/mol} \cdot 10^{-2} \) auf. In der Teillast steigen die mittleren

<table>
<thead>
<tr>
<th>Messung</th>
<th>Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \overline{y}_{O_2} )</td>
<td>( \overline{y}_{CO} )</td>
</tr>
<tr>
<td>mol/mol \cdot 10^{-2}</td>
<td>mol/mol \cdot 10^{-6}</td>
</tr>
<tr>
<td>Volllast</td>
<td>7,9</td>
</tr>
<tr>
<td>Teillast</td>
<td>8,3</td>
</tr>
</tbody>
</table>
Kohlenmonoxidkonzentrationen auf \( y_{CO} = 400 \text{ mol/mol} \cdot 10^{-6} \) bei einem Restsauerstoffgehalt von \( y_{O_2} = 8,3 \text{ mol/mol} \cdot 10^{-2} \) an. Die Rotationsbrennkammer entspricht somit den Anforderungen nach Tabelle 20 auf Seite 116 mit einer Massenkonzentration von Kohlenmonoxid in Höhe von \( c_{CO,bez} = 67 \text{ mg/m}^3 \) für die Volllast bzw. \( c_{CO,bez} = 314 \text{ mg/m}^3 \) für die Teillast, bezogen auf einen Restsauerstoffgehalt von \( y_{O_2} = 13 \text{ mol/mol} \cdot 10^{-2} \). Es ist eine gute Übereinstimmung mit den kalibrierten Ergebnissen aus der Simulation in der Sauerstoffklasse \( C_{O_2} = 8 \) für eine geringe und hohe Leistung mit der mittleren gemessenen Konzentration festzustellen.

Den Verlauf der aus Simulationsergebnissen berechneten CO-O_2-Charakteristik im Vergleich zu den Messergebnissen für die Rotationsbrennkammer zeigt die Abbildung 75. Bei der Rotationsbrennkammer fand eine Kalibrierung der Simulationsergebnisse für eine hohe Leistung mit einem Kalibrierfaktor \( K_{VL} \) und mit einem Kalibrierfaktor \( K_{TL} \) für eine geringe Leistung statt. Die auf dem Prüfstand ermittelten Kohlenmonoxidkonzentrationen für die Volllast sind als Mittelwerte aus 10 Sekunden, in Form von schwarzen Punkten, dargestellt. Die für die Teillast ermittelten Kohlenmonoxidkonzentrationen sind als Mittelwerte aus 10 Sekunden, in Form von grauen Punkten, dargestellt.

Auch bei der Rotationsbrennkammer kann eine sehr gute Übereinstimmung der kalibrierten Simulationsergebnisse mit den auf dem Prüfstand ermittelten Messwerten für die CO- und O_2-Konzentrationen festgestellt werden, sowohl für eine hohe Leistung als auch für eine geringe Leistung. Bei Teillast ist eine höhere Streuung der gemessenen Kohlenmonoxidkonzentrationen festzustellen. Diese Schwankungen sind durch Leistungsänderungen in der

![Abbildung 75: Kalibrierte Simulation der CO-O_2-Charakteristik für die Rotationsbrennkammer bei hohen/geringen Leistung und die dazugehörige Messung der CO-Konzentrationen.](image-url)

Tabelle 25: Gemessene mittlere Gaskonzentrationen und kalibrierte Ergebnisse aus der Simulation für die Rotationsbrennkammer.

<table>
<thead>
<tr>
<th>$\bar{y}_{O_2}$</th>
<th>$\bar{y}_{CO}$</th>
<th>$C_{O_2}$</th>
<th>$y_{CO}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>mol/mol $\cdot 10^{-2}$</td>
<td>mol/mol $\cdot 10^{-6}$</td>
<td>mol/mol $\cdot 10^{-6}$</td>
<td>mol/mol $\cdot 10^{-6}$</td>
</tr>
<tr>
<td>2,0</td>
<td>-</td>
<td>517</td>
<td>2</td>
</tr>
<tr>
<td>4,0</td>
<td>77</td>
<td>298</td>
<td>4</td>
</tr>
<tr>
<td>6,0</td>
<td>73</td>
<td>217</td>
<td>6</td>
</tr>
<tr>
<td>8,0</td>
<td>88</td>
<td>228</td>
<td>8</td>
</tr>
<tr>
<td>10,0</td>
<td>78</td>
<td>241</td>
<td>10</td>
</tr>
<tr>
<td>12,0</td>
<td>-</td>
<td>850</td>
<td>12</td>
</tr>
</tbody>
</table>
7 Zusammenfassung und Schlussfolgerungen


Um das Emissionsverhalten einer Biomassefeuerung am Anfang des Entwicklungsprozesses zuverlässig bestimmen zu können, wurde eine Methode zur Kalibrierung der Ergebnisse aus der CFD-Simulation entwickelt. Die dafür nötige Kalibrierung der Ergebnisse findet in einem nachgeschalteten Prozess statt und bedarf keiner vorherigen messtechnischen Bestimmung der Parameter an einer realen Feuerung. Für die Kalibrierung sind keine neuen Simulationsmodelle erforderlich, wodurch weiterhin die in vielen Bereichen etablierten CFD-Programme mit den implementierten Modellen für die Simulation einer Biomassefeuerung genutzt werden können. Die Entwicklung der Methode zur Kalibrierung der Ergebnisse aus der Simulation erfolgte durch eine Parameterstudie des Magnussen-Koeffizienten \(A_{Mag}\) in Abhängigkeit der Luftzahl bzw. der Sauerstoffklasse \(C_{O_2}\). Anhand der Ergebnisse der Parameterstudie wird eine Gewichtung des temperatur- und
mischungskontrollierten Berechnungspfades im Finite-Rate / Eddy Dissipation Model (kin/EDM) vorgenommen. Durch die Gewichtung $w$ der Berechnungspfade kann ein $CO-w-AMag$-Diagramm erzeugt werden, welches in Abhängigkeit der Gewichtung $w$ das Emissionsverhalten des Feuerungskonzeptes, sowie die Änderung des Emissionsverhaltens in der jeweiligen Sauerstoffklasse $C_{O_2}$ beschreibt. Die Änderung des Emissionsverhaltens in der Sauerstoffklasse $C_{O_2}$ wird in Form einer Gewichtungsfunktion $w_j$ dargestellt. Der Zusammenhang zwischen der Kohlenmonoxidkonzentration und der Gewichtungsfunktion $w_j$ in der Sauerstoffklasse $C_{O_2}$ erfolgt über eine Übertragungsfunktion $G$ in Abhängigkeit eines Kalibrierfaktors $K$. Die Kohlenmonoxidkonzentrationen können dann nachträglich mit einem konstanten Kalibrierfaktor $K$ in der jeweiligen Sauerstoffklasse $C_{O_2}$ mit Hilfe des $CO-w-AMag$-Diagramms graphisch bestimmt werden.

Anhand der vorgestellten Methode zur Kalibrierung der Ergebnisse aus der CFD-Simulation konnte für eine $chargenweise betriebene$ Einzelraumfeuerung eine $CO-\lambda$-Charakteristik erstellt werden, die eine praxisübliche Betriebsweise entspricht. Die nachträgliche messtechnische Evaluierung der Einzelraumfeuerung auf dem Prüfstand zeigte eine sehr gute Übereinstimmung der mit Messwerten erstellten und der mit kalibrierten Simulationsergebnissen berechneten CO-O$_2$-Charakteristik.


Anhang A – Stoffdaten und Messgeräteliste

Tabelle A26: Hauptelemente und Heizwert der verwendeten Brennstoffe.

<table>
<thead>
<tr>
<th></th>
<th>Stückholz</th>
<th>Holzpellet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-af-</td>
<td>-waf-</td>
</tr>
<tr>
<td>flüchtige Stoffe</td>
<td>%</td>
<td>71,7</td>
</tr>
<tr>
<td>Fixed C</td>
<td>%</td>
<td>14,3</td>
</tr>
<tr>
<td>Wasser (H2O)</td>
<td>%</td>
<td>14,0</td>
</tr>
<tr>
<td>Kohlenstoff (C)</td>
<td>%</td>
<td>42,0</td>
</tr>
<tr>
<td>organ. Wasserstoff (H)</td>
<td>%</td>
<td>5,3</td>
</tr>
<tr>
<td>Sauerstoff (O)</td>
<td>%</td>
<td>38,7</td>
</tr>
<tr>
<td>Stickstoff (N)</td>
<td>%</td>
<td>n.b. &lt; 0,3</td>
</tr>
<tr>
<td>Schwefel (S)</td>
<td>%</td>
<td>n.b. &lt; 0,1</td>
</tr>
<tr>
<td>Chlor (Cl)</td>
<td>%</td>
<td>n.b. &lt; 0,01</td>
</tr>
<tr>
<td>Heizwert (Hi)</td>
<td>MJ/kg</td>
<td>16,22</td>
</tr>
</tbody>
</table>

%: Gewichtsprozent [kg/kg*100]   af: aschefrei   waf: wasser- und aschefrei
¹ Der Gehalt an Stickstoff lag unter dem Bestimmungswert von 0,3, daher wurde ein Literaturwert aus Hartmann et al. (2007) genutzt
n.b.: nicht bestimmbar, unterhalb der Nachweisgrenze

Tabelle A27: Hauptelemente eines mittleren Holzes.

<table>
<thead>
<tr>
<th></th>
<th>Stückholz</th>
<th>Holzpellet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-af-</td>
<td>-waf-</td>
</tr>
<tr>
<td>Wasser (H2O)</td>
<td>mol · kWh⁻¹</td>
<td>2</td>
</tr>
<tr>
<td>Kohlenstoff (C)</td>
<td>mol · kWh⁻¹</td>
<td>8</td>
</tr>
<tr>
<td>organ. Wasserstoff (H)</td>
<td>mol · kWh⁻¹</td>
<td>12</td>
</tr>
<tr>
<td>Sauerstoff (O)</td>
<td>mol · kWh⁻¹</td>
<td>6</td>
</tr>
</tbody>
</table>

Gerundete Werte aus Tabelle A26
### Tabelle A28: Technische Daten des Kaminofens.

<table>
<thead>
<tr>
<th>Technische Daten Kaminofen</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feuerungswärmeleistung (FWL)</td>
<td>10,2 kW</td>
</tr>
<tr>
<td>Nennwärmeleistung (NWL)</td>
<td>8 kW</td>
</tr>
<tr>
<td>Abgasstutzentemperatur</td>
<td>350 °C</td>
</tr>
<tr>
<td>Mindestförderdruck bei NWL</td>
<td>11 Pa</td>
</tr>
<tr>
<td>CO-Gehalt bei $y_{O_2} = 13 \text{ mol/mol}\cdot 10^{-2}$</td>
<td>&lt; 1.125 mg/m³</td>
</tr>
<tr>
<td>Wirkungsgrad</td>
<td>&gt; 79 %</td>
</tr>
<tr>
<td>Gesamtstaub bei $y_{O_2} = 13 \text{ mol/mol}\cdot 10^{-2}$</td>
<td>62 mg/m³</td>
</tr>
</tbody>
</table>

### Tabelle A29: Beispiel von Randbedingungen der Wände im CDF-Modell.

<table>
<thead>
<tr>
<th>Position</th>
<th>Material</th>
<th>Randbedingung</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feuerraumwand</td>
<td>Vermiculite</td>
<td>Wärmedurchgangskoeff.</td>
<td>5,5 $W \cdot (m^2 \cdot K)^{-1}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Umgebungstemper.</td>
<td>300 K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Emissionsgrad $\varepsilon$</td>
<td>0,84</td>
</tr>
<tr>
<td>Feuerraumboden</td>
<td>Guss GGG40</td>
<td>konst. Temperatur</td>
<td>643 K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Emissionsgrad $\varepsilon$</td>
<td>0,78</td>
</tr>
<tr>
<td>Umlenkplatte</td>
<td>Vermiculite</td>
<td>Adiabat</td>
<td>0,84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Emissionsgrad $\varepsilon$</td>
<td>0,84</td>
</tr>
<tr>
<td>Scheibe</td>
<td>Borosilikatglas</td>
<td>Wärmedurchgangskoeff.</td>
<td>7,7 $W \cdot (m^2 \cdot K)^{-1}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Umgebungstemper.</td>
<td>300 K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Emissionsgrad $\varepsilon$</td>
<td>0,64</td>
</tr>
<tr>
<td>Haube</td>
<td>unleg. Stahl</td>
<td>Wärmedurchgangskoeff.</td>
<td>7,0 $W \cdot (m^2 \cdot K)^{-1}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Umgebungstemper.</td>
<td>300 K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Emissionsgrad $\varepsilon$</td>
<td>0,79</td>
</tr>
<tr>
<td>Sekundärluftkanal</td>
<td>unleg. Stahl</td>
<td>konst. Temperatur</td>
<td>503 K</td>
</tr>
<tr>
<td>Messgröße</td>
<td>Gerät</td>
<td>Messprinzip</td>
<td>Prüfgas</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>O₂</td>
<td>Emerson NGA 2000</td>
<td>Paramagnetisch</td>
<td>8,0</td>
</tr>
<tr>
<td>CO₂</td>
<td>Emerson NGA 2000</td>
<td>nicht dispersive Infrarotabsorption</td>
<td>12,1</td>
</tr>
<tr>
<td>CO</td>
<td>Emerson NGA 2000</td>
<td>nicht dispersive Infrarotabsorption</td>
<td>800</td>
</tr>
<tr>
<td>CO</td>
<td>Emerson NGA 2000</td>
<td>nicht dispersive Infrarotabsorption</td>
<td>0,703</td>
</tr>
<tr>
<td>TVOC_FID</td>
<td>Testa FID 123</td>
<td>Flammenionisation</td>
<td>800 (Propan)</td>
</tr>
<tr>
<td>Gesamtstaub</td>
<td>Paul Gothe Filterkopfgerät</td>
<td>gravimetrisch nach VDI 2066</td>
<td></td>
</tr>
<tr>
<td>Gas Temperatur</td>
<td>NiCr-Ni Thermoelement</td>
<td>Thermoelektrizität</td>
<td></td>
</tr>
<tr>
<td>Luft Geschwindigkeit</td>
<td>Schmidt SS 20.260</td>
<td>thermische Anemometrie</td>
<td></td>
</tr>
<tr>
<td>Differenzdruck</td>
<td>Airflow PTSXR-K</td>
<td>pneumatisch elektrisch</td>
<td></td>
</tr>
</tbody>
</table>
Tabelle A31: Eingesetzte Messgeräte bei der *mechanisch beschickten* Feuerung.

<table>
<thead>
<tr>
<th>Messgröße</th>
<th>Gerät</th>
<th>Messprinzip</th>
<th>Prüfgas</th>
<th>Messbereich</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₂</td>
<td>Emerson NGA 2000</td>
<td>Paramagnetisch</td>
<td>5,98</td>
<td>0 - 25</td>
<td>mol/mol · 10⁻²</td>
</tr>
<tr>
<td>CO₂</td>
<td>Emerson NGA 2000</td>
<td>NDRI nicht dispersive Infrarotabsorption</td>
<td>12,1</td>
<td>0 – 20</td>
<td>mol/mol · 10⁻²</td>
</tr>
<tr>
<td>CO</td>
<td>Emerson NGA 2000</td>
<td>NDRI nicht dispersive Infrarotabsorption</td>
<td>100</td>
<td>0 – 1.500</td>
<td>mol/mol · 10⁻⁶</td>
</tr>
<tr>
<td>CO</td>
<td>Emerson NGA 2000</td>
<td>NDRI nicht dispersive Infrarotabsorption</td>
<td>0,703</td>
<td>0 – 3</td>
<td>mol/mol · 10⁻²</td>
</tr>
<tr>
<td>NOx als NO₂</td>
<td>Emerson NGA 2000 CLD</td>
<td>Chemilumineszenz</td>
<td>201 (NO)</td>
<td>0 – 750</td>
<td>mol/mol · 10⁻⁶</td>
</tr>
<tr>
<td>Gesamtstaub</td>
<td>Wöhler SM500</td>
<td>direkt gravimetrisch</td>
<td>0 – 1.000</td>
<td>mg/m³</td>
<td></td>
</tr>
<tr>
<td>Gas Temperatur</td>
<td>NiCr-Ni Thermoelement</td>
<td>Thermoelektrizität</td>
<td>-200 – 1.100</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Wasser Temperatur</td>
<td>PT 100</td>
<td>Platin-Messwiderstand</td>
<td>-50 – 600</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Luft Geschwindigkeit</td>
<td>Schmidt SS 20.260</td>
<td>thermische Anemometrie</td>
<td>0,1 – 10</td>
<td>m/s</td>
<td></td>
</tr>
<tr>
<td>Wasser Volumenstrom</td>
<td>Grundfos Direct Sensor VFI</td>
<td>Kármánsche Wirbelstraße</td>
<td>0 – 1,5</td>
<td>m³/h</td>
<td></td>
</tr>
<tr>
<td>Differenzdruck</td>
<td>Airflow PTSXR-K</td>
<td>pneumatisch elektrisch</td>
<td>0 – 100</td>
<td>Pa</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 – 1.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Tabelle A32: Eingesetzte Messgeräte bei dem *chargenweise betriebenen* Stückholzkessel.

<table>
<thead>
<tr>
<th>Messgröße</th>
<th>Gerät</th>
<th>Messprinzip</th>
<th>Prüfgas</th>
<th>Messbereich</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₂</td>
<td>Emerson NGA 2000</td>
<td>Paramagnetisch</td>
<td>10,0</td>
<td>0 - 25</td>
<td>mol/mol · 10⁻²</td>
</tr>
<tr>
<td>CO₂</td>
<td>Emerson NGA 2000</td>
<td>nicht dispersive Infrarotabsorption</td>
<td>16,1</td>
<td>0 – 20</td>
<td>mol/mol · 10⁻²</td>
</tr>
<tr>
<td>CO</td>
<td>Emerson NGA 2000</td>
<td>nicht dispersive Infrarotabsorption</td>
<td>790</td>
<td>0 – 1.500</td>
<td>mol/mol · 10⁻⁶</td>
</tr>
<tr>
<td>CO</td>
<td>Emerson NGA 2000</td>
<td>nicht dispersive Infrarotabsorption</td>
<td>0,703</td>
<td>0 – 3</td>
<td>mol/mol · 10⁻²</td>
</tr>
<tr>
<td>TVOC&lt;sub&gt;FID&lt;/sub&gt;</td>
<td>Testa FID 123</td>
<td>Flammenionisation</td>
<td>804 (Propan)</td>
<td>0 – 10.000</td>
<td>mol/mol · 10⁻⁶</td>
</tr>
<tr>
<td>NOₓ als NO₂</td>
<td>Emerson NGA 2000 CLD</td>
<td>Chemilumineszenz</td>
<td>201 (NO)</td>
<td>0 – 750</td>
<td>mol/mol · 10⁻⁶</td>
</tr>
<tr>
<td>Gesamtstaub</td>
<td>Wöhler SM500</td>
<td>direkt gravimetrisch</td>
<td>0 – 1.000</td>
<td>mg/m³</td>
<td></td>
</tr>
<tr>
<td>Gas Temperatur</td>
<td>NiCr-Ni Thermelement</td>
<td>Thermoelektrizität</td>
<td>-200 – 1.100</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Wasser Temperatur</td>
<td>PT 100</td>
<td>Platin-Messwiderstand</td>
<td>-50 – 600</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Luft Geschwindigkeit</td>
<td>Schmidt SS 20.260</td>
<td>thermische Anemometrie</td>
<td>0,06 – 1</td>
<td>m/s</td>
<td></td>
</tr>
<tr>
<td>Wasser Volumenstrom</td>
<td>Krone Optiflux1000</td>
<td>magnetisch-induktiver Durchflussensor</td>
<td>0,3 – 6</td>
<td>m³/h</td>
<td></td>
</tr>
<tr>
<td>Differenzdruck</td>
<td>Airflow PTSXR-K</td>
<td>pneumatisch elektrisch</td>
<td>0 – 100</td>
<td>Pa</td>
<td></td>
</tr>
</tbody>
</table>
Anhang B - Berechnungen

Berechnung der Zusammensetzung des Synthesegases:

\[ \xi_{C,Br} + \xi_{H,Br} + \xi_{N,Br} + \xi_{O,Br} + \lambda \cdot \left( v_{O_2} \cdot \xi_{O_2,L} + v_{N_2} \cdot \xi_{N_2,L} \right) \]
\[ = v_{CO_2,r_{CO}} \cdot \xi_{CO_2,Abg} + v_{H_2O,r_{CH_4}} \cdot \xi_{H_2O,Abg} + (\lambda - 1) \]
\[ \cdot \left( v_{O_2} \cdot \xi_{O_2,L} + v_{N_2} \cdot \xi_{N_2,L} \right) \]
\[ = v_{CH_4,3} \cdot \xi_{CH_4,SYG} + v_{CO_A} \cdot \xi_{CO,SYG} + a_{CO_2} \cdot \xi_{CO_2,SYG} + a_{H_2O} \cdot \xi_{H_2O,SYG} \]
\[ + \lambda \cdot \left( v_{O_2} \cdot \xi_{O_2,L} + v_{N_2} \cdot \xi_{N_2,L} \right) \]

\( \xi_{n,Br} \): spez. Stoffanteil des Stoffes \( n \) im Brennstoff \( \text{mol} \cdot \text{kWh}^{-1} \)

\( \xi_{n,Abg} \): spez. Stoffanteil des Stoffes \( n \) im Abgas \( \text{mol} \cdot \text{kWh}^{-1} \)

\( \xi_{n,SYG} \): spez. Stoffanteil des Stoffes \( n \) im Synthesegas \( \text{mol} \cdot \text{kWh}^{-1} \)

\( v_{n,r} \): stöchiometrischer Koeffizient des Stoffes \( n \) der Reaktion \( r \) 

\( a_{n} \): Koeffizient des Stoffes \( n \)

\( \lambda \): Luftzahl

Berechnung der Leistung mit spez. Stoffanteil:

\[ P = \sum_{n=1}^{m} (\dot{m}_{n} \cdot \xi_{n}^{-1} \cdot M_{n}^{-1}) \]

\( P \): Leistung \( W \)

\( \dot{m}_{n} \): Massenstrom des Stoffes \( n \) \( kg \cdot s^{-1} \)

\( \xi_{n} \): spez. Stoffanteil des Stoffes \( n \) \( \text{mol} \cdot \text{kWh}^{-1} \)

\( M_{n} \): Molare Masse des Stoffes \( n \) \( g \cdot \text{mol}^{-1} \)
Berechnung der Leistung

\[ P = \dot{m}_{Br} \cdot H_{i,Br} = \dot{m}_{SYG} \cdot H_{i,SYG} = \dot{m}_{SYG} \cdot \sum \limits_{n} (x_n \cdot H_{i,n}) \]

\[ = \dot{m}_{CO} \cdot H_{i,CO} + \dot{m}_{CH_4} \cdot H_{i,CH_4} \]

Gleichung (B35)

\( P \): Leistung \( W \)

\( H_{i,Br} \): Heizwert des Brennstoffes \( \text{kJ} \cdot \text{kg}^{-1} \)

\( H_{i,SYG} \): Heizwert des Synthesegases \( \text{kJ} \cdot \text{kg}^{-1} \)

\( H_{i,n} \): Heizwert des Stoffes \( n \) \( \text{kJ} \cdot \text{kg}^{-1} \)

\( \dot{m}_n \): Massenstrom des Stoffes \( n \) \( \text{kg} \cdot \text{s}^{-1} \)

\( x_n \): Massenanteil des Stoffes \( n \) \( \text{kg} \cdot \text{kg}^{-1} \)

Berechnung der Massenkonzentration

\[ c_n = \frac{M_n}{V_m} \cdot \gamma_n \]

Gleichung (B36)

\( c_n \): Massenkonzentration des Stoffes \( n \) \( \text{mg} \cdot \text{m}^{-3} \)

\( M_n \): Molare Masse des Stoffes \( n \) \( \text{g} \cdot \text{mol}^{-1} \)

\( V_m \): Molares Volumen (\( V_m = 22,414 \) vgl. DIN 1343) \( \text{m}^3 \cdot \text{kmol}^{-1} \)

\( \gamma_n \): Volumenanteil des Stoffes \( n \) \( \text{mol} \cdot \text{mol}^{-1} \)

Bezugsrechnung nach 1. BImSchV

\[ \gamma_{n,bez} = \frac{0,21 - \gamma_{O_2,mess}}{0,21 - \gamma_{O_2,bez}} \]

Gleichung (B37)

\( \gamma_{n,bez} \): Konzentration des Stoffes \( n \), bezogen auf einen Bezugssauerstoffgehalt \( \text{mol} \cdot \text{mol}^{-1} \)

\( \gamma_{O_2,bez} \): Bezugssauerstoffgehalt, bei fester holzartiger Biomasse \( \gamma_{O_2,bez} = 0,13 \) \( \text{mol} \cdot \text{mol}^{-1} \)

\( \gamma_{O_2,mess} \): gemessene Sauerstoffkonzentration \( \text{mol} \cdot \text{mol}^{-1} \)
Anhang C – Berechnungspfade und Modellkonstanten

Arrhenius-Ansatz im temperaturkontrollierten Berechnungspfad (kin)

\[
\dot{i}_{n}^{\text{kin}} = k_{0,n} \cdot T^{\beta} \cdot e^{\left(-\frac{E_a}{R \cdot T}\right)} \cdot [x_{BR}]^{a} \cdot [x_{Oxl}]^{b} \cdot [x_{Kat}]^{c}
\]

Gleichung (C38)

mit:

- \( \dot{i}_{n}^{\text{kin}} \): Reaktionsgeschwindigkeit der Spezies \( n \) im Arrhenius-Ansatz \( \text{kmol/(m}^3 \cdot \text{s)} \)
- \( k_{0,n} \): Präexponentieller Faktor des Arrhenius-Ansatzes der Spezies \( n \)
- \( \beta \): Temperaturexponent \( \beta \) des Arrhenius-Ansatzes der Spezies \( n \)
- \( E_a \): Aktivierungsenergie \( \text{J/kmol} \)
- \( T \): Absolute Temperatur \( \text{K} \)
- \( R \): Gaskonstante \( \text{J/(kg} \cdot \text{K)} \)
- \( x_{BR} \): Massenanteil Brennstoff \( \text{kg/kg} \)
- \( x_{Oxl} \): Massenanteil Oxidant \( \text{kg/kg} \)
- \( x_{Kat} \): Massenanteil Katalysator \( \text{kg/kg} \)
- \( a \): Gewichtungsfaktor des Brennstoffes im Arrhenius-Ansatz
- \( b \): Gewichtungsfaktor des Oxidant im Arrhenius-Ansatz
- \( c \): Gewichtungsfaktor des Katalysators im Arrhenius-Ansatz
Mischungskontrollierter Berechnungspfad im Eddy Dissipation Model (EDM)

\[ r_{n}^{EDM} = A_{Mag} \cdot \frac{\epsilon}{\kappa} \cdot \tilde{\rho}_{g} \cdot \text{MIN}\left(\frac{x_{Br}}{v_{Br}}, \frac{x_{O_{2}}}{v_{O_{2}}}, \frac{x_{Prod}}{v_{Prod}}\right) \cdot V \]

Gleichung (C39)

mit:

\( r_{n}^{EDM} \): Reaktionsrate im EDM des Stoffes \( n \)
\( V \): Volumen \( m^3 \)
\( \epsilon \): Dissipation der turbulenten kinetischen Energie \( m^2/s^3 \)
\( \kappa \): massenspezifische turbulente kinetische Energie \( m^2/s^3 \)
\( \tilde{\rho}_{g} \): effektive Dichte der Gasphase \( kg/m^3 \)
\( x_{Br} \): Massenanteil des Brennstoffes \( kg/kg \)
\( x_{O_{2}} \): Massenanteil des Sauerstoffes \( kg/kg \)
\( x_{Prod} \): Massenanteil des Produktes \( kg/kg \)
\( v_{Br} \): stöchiometrischer Koeffizient des Brennstoffes
\( v_{O_{2}} \): stöchiometrischer Koeffizient des Sauerstoffes
\( v_{Prod} \): stöchiometrischer Koeffizient des Produktes
\( A_{Mag} \): Magnussen-Konstante im EDM-Modell \( A_{Mag} = [0,4;4] \)
\( B_{Mag} \): Magnussen-Konstante im EDM-Modell \( B_{Mag} = 0,5 \)
### Tabelle C33: Modelkonstanten der homogenen Gasphasenreaktion

<table>
<thead>
<tr>
<th>Reaktionspfad nach:</th>
<th>Modelkonstanten im Arrhenius-Ansatz nach Westbrook et al. 1984 und Howard et al 1973</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gleichung (11)</td>
<td>[ \dot{r}_{CH_4}^{kin,Westbrook} = 5.012 \cdot 10^{11} \cdot \exp\left(\frac{-2.1 \times 10^8}{R_g T}\right) [CH_4]^{0.7} [O_2]^{0.8} ] Gleichung (C40)</td>
</tr>
<tr>
<td>Gleichung (4)</td>
<td>[ \dot{r}_{CO}^{kin,Westbrook} = 2.239 \cdot 10^{12} \cdot \exp\left(\frac{-1.7 \times 10^8}{R_g T}\right) [CO] [O_2]^{0.25} [H_2O]^{0.5} ] Gleichung (C41)</td>
</tr>
<tr>
<td>Gleichung (4)</td>
<td>[ \dot{r}_{CO}^{kin,Howard} = 1.3 \cdot 10^{11} \cdot \exp\left(\frac{-1.25 \times 10^8}{R_g T}\right) [CO] [O_2]^{0.5} [H_2O]^{0.5} ] Gleichung (C42)</td>
</tr>
<tr>
<td>Gleichung (10)</td>
<td>[ \dot{r}_{H_2}^{kin,Westbrook} = 9.87 \cdot 10^8 \cdot \exp\left(\frac{-3.1 \times 10^7}{R_g T}\right) [H_2] [O_2] ] Gleichung (C43)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reaktionspfad nach:</th>
<th>Reaktionsgeschwindigkeit nach Jones et al. 1988</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gleichung (13)</td>
<td>[ \dot{r}_{CH_4,1}^{kin,Jones} = 7.82 \cdot 10^{13} \cdot \exp\left(\frac{-1.5095 \times 10^4}{R_g T}\right) [CH_4]^{0.5} [O_2]^{1.25} ] Gleichung (C44)</td>
</tr>
<tr>
<td>Gleichung (14)</td>
<td>[ \dot{r}_{CH_4,2}^{kin,Jones} = 0.3 \cdot 10^{12} \cdot \exp\left(\frac{-1.5095 \times 10^4}{R_g T}\right) [CH_4] [H_2O] ] Gleichung (C45)</td>
</tr>
<tr>
<td>Gleichung (15)</td>
<td>[ \dot{r}_{CO}^{kin,Jones} = 0.275 \cdot 10^{13} \cdot \exp\left(\frac{-1.256 \times 10^8}{R_g T}\right) [CO] [H_2O]^{0.5} [O_2]^{0.5} ] Gleichung (C46)</td>
</tr>
<tr>
<td>Gleichung (10)</td>
<td>[ \dot{r}_{H_2}^{kin,Jones} = 1.209 \cdot 10^{18} \cdot T^{-1} \cdot \exp\left(\frac{-3.1 \times 10^7}{R_g T}\right) [H_2] [O_2] ] Gleichung (C47)</td>
</tr>
</tbody>
</table>
Abbildung D76: Änderung der Residuen über die Anzahl der Iterationsschritte.

Abbildung D77: Änderung der Abgastemperatur über die Anzahl der Iterationsschritte.
Abbildung D78: Änderung der Sauerstoffkonzentration im feuchten Abgas über die Anzahl der Iterationsschritte.

Abbildung D79: Änderung der Kohlenmonoxidkonzentration im feuchten Abgas über die Anzahl der Iterationsschritte.

Abbildung E81: CO- und NOₓ-Emissionen (als NO₂) in Abhängigkeit der Luftzahl $\lambda$ bei der Verbrennung von Holzpellets im Prototyp aus Juschka et al. 2015.05a.
Tabelle E34: Ergebnisse der Messreihen 1 bis 10 in einer *mechanisch beschickten* Biomassefeuerungen (Daten aus *Juschka et al. 2015.05a*).

<table>
<thead>
<tr>
<th>Messreihe</th>
<th>Luftzahl Global $\lambda_{Glob}$</th>
<th>Luftzahl Primär $\lambda_{Pri}$</th>
<th>Umsetzung Kohlenstoff $X_C$</th>
<th>$\bar{y}_{O_2}$</th>
<th>$\bar{y}_{CO}$</th>
<th>$\bar{y}_{NO_x}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messreihe 1</td>
<td>1,49</td>
<td>0,18</td>
<td>0,75</td>
<td>7,0</td>
<td>15</td>
<td>120</td>
</tr>
<tr>
<td>Messreihe 2</td>
<td>1,28</td>
<td>0,81</td>
<td>0,76</td>
<td>4,6</td>
<td>15</td>
<td>108</td>
</tr>
<tr>
<td>Messreihe 3</td>
<td>1,12</td>
<td>0,81</td>
<td>0,76</td>
<td>2,6</td>
<td>53</td>
<td>92</td>
</tr>
<tr>
<td>Messreihe 4</td>
<td>1,24</td>
<td>0,34</td>
<td>0,91</td>
<td>4,0</td>
<td>18</td>
<td>108</td>
</tr>
<tr>
<td>Messreihe 5</td>
<td>1,26</td>
<td>0,25</td>
<td>0,58</td>
<td>4,4</td>
<td>30</td>
<td>112</td>
</tr>
<tr>
<td>Messreihe 6</td>
<td>1,37</td>
<td>0,22</td>
<td>0,83</td>
<td>5,7</td>
<td>18</td>
<td>131</td>
</tr>
<tr>
<td>Messreihe 7</td>
<td>1,41</td>
<td>0,17</td>
<td>0,75</td>
<td>6,2</td>
<td>22</td>
<td>96</td>
</tr>
<tr>
<td>Messreihe 8</td>
<td>1,37</td>
<td>0,28</td>
<td>0,93</td>
<td>5,7</td>
<td>45</td>
<td>99</td>
</tr>
<tr>
<td>Messreihe 9</td>
<td>1,35</td>
<td>0,11</td>
<td>0,60</td>
<td>5,5</td>
<td>14</td>
<td>75</td>
</tr>
<tr>
<td>Messreihe 10</td>
<td>1,23</td>
<td>0,17</td>
<td>0,70</td>
<td>3,9</td>
<td>11</td>
<td>89</td>
</tr>
</tbody>
</table>
Anhang E – Ergebnisse der Prüfstandsmessungen


<table>
<thead>
<tr>
<th>Betrachtungszeitraum</th>
<th>Zeit</th>
<th>Sauerstoffkonzentration, trocken</th>
<th>Kohlenmonoxidkonzentration, trocken</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>( \Delta t_{\text{mess}} ) in min</td>
<td>( \bar{y}_{o_2} ) in ( \text{mol/mol} ) ( \cdot 10^{-2} )</td>
<td>( \bar{y}_{\text{CO}} ) in ( \text{mol/mol} ) ( \cdot 10^{-6} )</td>
</tr>
<tr>
<td><strong>Messung „gute“ Verbrennungsbedingungen:</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>35</td>
<td>13,1</td>
<td>1.330</td>
</tr>
<tr>
<td>Anbrandphase</td>
<td>11</td>
<td>11,4</td>
<td>2.221</td>
</tr>
<tr>
<td>Hauptphase</td>
<td>14</td>
<td>11,7</td>
<td>488</td>
</tr>
<tr>
<td>Ausbrandphase</td>
<td>10</td>
<td>16,7</td>
<td>1.507</td>
</tr>
<tr>
<td><strong>Messung „schlechte“ Verbrennungsbedingungen:</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>39</td>
<td>11,8</td>
<td>2.925</td>
</tr>
<tr>
<td>Anbrandphase</td>
<td>13</td>
<td>7,4</td>
<td>4.508</td>
</tr>
<tr>
<td>Hauptphase</td>
<td>12</td>
<td>11,0</td>
<td>533</td>
</tr>
<tr>
<td>Ausbrandphase</td>
<td>14</td>
<td>16,7</td>
<td>3.459</td>
</tr>
</tbody>
</table>


Abbildung E84: Zeitlicher gemessener Verlauf der Konzentration von Sauerstoff und Kohlenmonoxid im Abgas der Rotationsbrennkammer auf dem Prüfstand.
1. BImSchV, Erste Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (Verordnung über kleine und mittlere Feuerungsanlagen - 1. BImSchV) vom 26.01.2010. Internetfassung abgerufen am 17.07.2015 um 06:38 unter: http://www.gesetze-im-internet.de/bimschv_1_2010/


LEO GmbH, Mühlweg 2b, 82054 Sauerlach. Zuletzt aufgerufen 2016 unter:  
http://dict.leo.org


DIN EN 1343: Brennwert und Heizwert – Allgemeine Grundlagen. Deutsches Institut für Normung e.V., BEUTH VERLAG, Berlin Juli 2018


Duden, Bibliographisches Institut GmbH, Dudenverlag, Mecklenburgische Straße 53, 14197 Berlin. Zuletzt aufgerufen 2018 unter:  
http://www.duden.de

http://dx.doi.org/10.1007/978-3-7091-1182-6


FACHAGENTUR NACHWACHSENDE ROHSTOFFE E.V. (FNR):
(FNR 2015): Handbuch Bioenergie Kleinanlagen. 3. überarbeitete Auflage 2013, ISBN: 3-00-011041-0
Zuletzt aufgerufen am 19. Juni 2015 um 12:00 Uhr unter:
https://mediathek.fnr.de/broschuren/bioenergie/feste-biobrennstoffe/handbuch-bioenergie-kleinanlagen.html

Zuletzt aufgerufen am 19. Juni 2015 um 12:00 Uhr unter:
https://mediathek.fnr.de/leitfaden-bioenergie/

(FNR 2015): Bioenergie – Daten und Fakten – Grafiken. Zuletzt aufgerufen am 03. Juni 2015 um 6:00 Uhr unter:
https://mediathek.fnr.de/grafiken/daten-und-fakten/bioenergie.html


https://doi.org/10.1016/j.combustflame.2004.08.014

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.09.061

http://dx.doi.org/10.1016/j.fuel.2013.08.078

http://doi.org/10.1016/j.fuel.2015.11.082

http://dx.doi.org/10.1016/j.enconman.2015.07.059

http://dx.doi.org/10.1007/978-3-642-84488-1

HARTMANN, Hans; Roßmann, Paul; Turowski, Peter; Ellner Schubert, Frank; Hopf, Nobert; Bimüller, Armin (2007): Getreidekörner als Brennstoff für Kleinfeuerungen - Technische Möglichkeiten und Umwelteffekte; TECHNOLOGIE- UND FÖRDERZENTRUM (TFZ); Straubing Oktober 2007.

https://doi.org/10.1080/00102208108547504


http://dx.doi.org/10.1016/0010-2180(88)90021-1

http://dx.doi.org/10.1007/3-540-34334-2

Zuletzt aufgerufen am 22. Januar 2014 um 11:10 Uhr unter:  


Zuletzt aufgerufen am 18. Juni 2012 um 15:20 Uhr unter:  

http://dx.doi.org/10.15150/lt.2015.2674

http://dx.doi.org/10.1007/978-3-540-85095-3

http://dx.doi.org/10.1080/10406638.2014.892886


Zuletzt aufgerufen am 27. Januar 2017 um 17:40 Uhr unter: 
http://www.holzenergie-symposium.ch/Dokumente/Tgband12HES.pdf


https://doi.org/10.1016/S0016-2361(02)00176-X

Zuletzt aufgerufen am 24. April 2018 um 10:30 Uhr unter: 
https://www.uni-due.de/imperia/md/content/luat/publikationen/1999-07_sheffield.pdf


http://dx.doi.org/10.1016/S0894-1777(99)00059-X


NUSSBAUMER, Thomas; KIENER, Martin (2013): Fluiddynamische Optimierung mit CFD und PIV. In: BWK, Band 65, Nr. 5, Seiten 29 – 33, 2013  
Zuletzt aufgerufen am 27. Januar 2017 um 17:30 Uhr unter:  
http://www.verenum.ch/Publikationen/TN_MK_FluidOPT_BWK65.pdf

https://doi.org/10.1016/j.biombioe.2015.02.033


https://doi.org/10.1016/S0010-2180(02)00393-0


http://dx.doi.org/10.1021/ef8008458


Zuletzt aufgerufen am 27. Januar 2017 um 17:30 Uhr unter:  
http://dx.doi.org/10.1007/978-3-658-09082-1


https://www.researchgate.net/publication/228814917_CFD_modelling_of_NOx_formatio n_in_biomass_grate_furnaces_with_detailed_chemistry


http://dx.doi.org/10.1016/j.apenergy.2015.01.293

http://dx.doi.org/10.1016/j.proeng.2015.01.293


Zuletzt aufgerufen am 19. Mai 2011 um 18:45 Uhr unter:  

Zuletzt aufgerufen am 2. Okt. 2013 um 7:50 Uhr unter:  

Zuletzt aufgerufen am 28. Sept. 2017 um 12:00 Uhr unter:  

STUBENBERGER, Gerhard; SCHARLER, Robert; ZAHIROVIĆ, Selma; OBERNBERGER, Ingwald (2008): Experimental investigation of nitrogen species release from different solid biomass fuels as a basis for release models. In: Fuel, No. 87, 2008, Page 793 – 806  
https://doi.org/10.1016/j.fuel.2007.05.034
STUBENBERGER, Gerhard; SCHARLER, Robert; ZAHIROVIĆ, Selma; OBERNBERGER, Ingwald (2008): Experimental investigation of nitrogen species release from different solid biomass fuels as a basis for release models. In: Fuel, No. 87, 2008, Page 793 – 806  
https://doi.org/10.16/j.furel.2007.05.034

http://dx.doi.org/10.1007/978-3-8351-9094-8


http://dx.doi.org/10.1007/BF02619207

http://dx.doi.org/10.1007/BF02617468

UMWELTBUNDESAMT

Zuletzt aufgerufen am 08. Dezember 2016 um 11:00 Uhr unter:  
https://www.umweltbundesamt.de/presse/presseinformationen/luftqualitaet-2014-stickstoffdioxid-wird-schadstoff

(UBA 2015.06): Kleine und mittlere Feuerungsanlagen.  
Zuletzt aufgerufen am 03. Juni 2015 um 5:00 Uhr unter:  
http://www.umweltbundesamt.de/themen/wirtschaft-konsum/industriebranchen/feuerungsanlagen/kleine-mittlere-feuerungsanlagen

Zuletzt aufgerufen am 20. Mai 2017 um 13:10 Uhr unter:  
https://www.umweltbundesamt.de/publikationen/daten-zur-umwelt-2015


https://doi.org/10.1016/j.fuel.2006.06.023

https://doi.org/10.1021/ef700689r

Zuletzt aufgerufen am 11. Mai 2018 um 11:35 Uhr unter:

Zahirović, Selma; Scharler, Robert; Kilpinen, Pia; Oernberger, Ingwald (2011.01): A kinetic study on the potential of a hybrid reaction mechanism for prediction of NO\textsubscript{x} formation in biomass grate furnaces. In: Combustion theory and modelling, Volume 15, No. 5, Januar 2011, Page 645 – 670
https://doi.org/10.1080/13647830.2011.557441

Zahirović, Selma; Scharler, Robert; Kilpinen, Pia; Oernberger, Ingwald (2011.06): Validation of flow simulation and gas combustion sub-models for the CFD-based prediction of NO\textsubscript{x} formation in biomass grate furnaces. In: Combustion theory and modelling, Volume 15, No. 1, Juni 2011, Page 61 – 87
https://doi.org/10.1080/13647830.2010.524312