
Institute of Software Technology
Reliable Software Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Master’s Thesis

Variant Management for
Technical Architecture of

Highly-Automated Driving
Systems

Jung-A Yoon

Course of Study: M.Sc. Information Technology
(Specialization: Embedded Systems)

Examiner: Prof. Dr.-Ing. Steffen Becker

Supervisor: Prof. Dr.-Ing. Steffen Becker,
Dipl.-Ing. Christian Bohne,
M.Sc. Andreas Hörtling

Commenced: June 1, 2019

Completed: November 30, 2019

CR-Classification: I.7.2

Abstract

As automotive systems become more and more complex and customized, the variability
of and within technical architectures also significantly rises. The rising adoption of
highly-automated driving features further adds complexity to the type and number of
variants to handle. In addressing this issue, effective variant handling via well-structured
feature models plays a crucial role. Although many approaches deal with the variability
related challenges in the software level, there exists no proven variant management
approach for the technical architecture level. The variant management method for
technical architecture shall adequately handle different levels of variants as well as cover
the needs and requirements of the users in the model-based system engineering (MBSE)
environment. This includes not only modelling the variability existing in the system and
visualizing architectural variants and dependencies between features but also ensuring
traceability and enabling efficient collaboration between different design levels (i.e.
system design, functional architecture design, technical architecture design, subsystem
design) throughout the V-Model via a consistent a feature modelling concept and smooth
exchange of technical information. In this thesis, we present a variant management
method for the technical architecture, which addresses the identified variability related
challenges and the needs from the user side.

iii

Contents

1. Introduction 1

2. Foundations 5
2.1. Definitions . 5
2.2. Model-Based System Engineering (MBSE) for Automotive Systems . . . 7
2.3. Variant Management in Automotive System Engineering 10

3. Related Work 15
3.1. System Modelling through Meta-models 15
3.2. Variant Management and Feature Modelling 16

4. Research Methods 23
4.1. Stakeholder Definition . 24
4.2. Stakeholder Interviews . 25
4.3. Use Case Identification and Requirement Derivation 27
4.4. Definition of Example Technical Architecture 27
4.5. Variant Management Method Development 30
4.6. Proof of Concept: Implementation and Evaluations 31
4.7. Threats to Validity . 32

5. Research Results 35
5.1. Profile of Stakeholders . 35
5.2. Context Characterization . 37
5.3. Use Cases For Technical Architecture Model 38
5.4. Requirements to Variant Management Method of Technical Architecture 45
5.5. Variant Management Method for Technical Architecture 47

6. Implementation 63
6.1. Pure::Variants Modelling Concept . 63
6.2. Implementation of Variant Management Method 64

v

7. Evaluation 79
7.1. Evaluation Questionnaire . 79
7.2. Evaluation Results . 81

8. Discussion 85
8.1. Understanding Context and Stakeholder Definition 85
8.2. Use Case Identification and Requirement Derivation 87
8.3. Variant Management Method Development 89
8.4. Implementation . 91
8.5. Evaluation . 92

9. Conclusion 93

A. Systematic Literature Review Process 101
A.1. Planning the Review . 101
A.2. Conducting the Review . 104

B. System Variants of Example Technical Architecture 105

C. Transformed Model of Example Technical Architecture 113

Bibliography 119

vi

List of Figures

2.1. Design Steps for System Engineering [Rob19a] 8
2.2. E/E System Technical Architecture Model [Rob19b] 9
2.3. Example of BDD and IBD [Rob19c] . 9
2.4. Technical Architecture Design Process and Variant Management Activities 12
2.5. Levels of Variants [Rob19a] . 13

3.1. Example of the Usage of AUTOSAR Meta-model [DSTH14] 16

4.1. Research Process for WP1 and WP2 . 24
4.2. Example Technical Architecture: Pilot Option A and Assist Option A

[Rob19e] . 29
4.3. Levels of Variants for Example Technical Architecture 30

5.1. Use Case Diagram . 46
5.2. Use Case Diagram for Variant Management Related Use Cases 46
5.3. Directions for Design Levels . 49
5.4. Structure of Feature Models - Vehicle Feature Design and Technical Solutions 49
5.5. Functional Decomposition of Vehicle [KLD02] 50
5.6. Structure of Feature Model - Technical Solutions with Building Blocks . . 51
5.7. Structuring Criteria by Context Variability [HT08] 52
5.8. Structuring Criteria by Context Variability [HT08] 52
5.9. Detailed Structure of Technical Solution Feature Model 54
5.10.Example of Detailed Structure of Technical Solution Feature Model . . . 54
5.11.Overall Structure of Technical Solution Feature Model 55
5.12.Structure of Technical Solution Feature Model - Blackbox Concept 56
5.13.Overview of the Overall Concept . 57
5.14.Example Dependencies Between Feature Models 59
5.15.Process of Using the Method . 60

6.1. Structure of Technical Architecture Model for the Example Architecture . 65

vii

6.2. BDDs of Example Architecture . 65
6.3. IBDs of Example Architecture . 66
6.4. FM2_00 Technical Solutions . 67
6.5. FM2_00 Technical Solutions in Graph . 68
6.6. FM2_01 Technical Solutions_BB_Steering 70
6.7. FM1 Vehicle Feature Design with relations 70
6.8. FM3 Context Variability . 71
6.9. System Variant Configuration of Pilot_OptionA in its Variant Model

Pilot_OptionA.vdm . 73
6.10.Configuration Result of Pilot_OptionA and Assist_OptionA 74
6.11.Pure::Variants Configuration Space Connected to Technical Architecture

Model . 75
6.12.BDD_SensorSet: Constraints attached to Blocks 75
6.13.IBD_SensorSet: Constraints attached to blocks 76
6.14.Transformed Model: BDDs of Pilot Option A 77

7.1. Industry Experience of Respondents . 81
7.2. Evaluation Results for Part 1 and Part 2 82
7.3. Evaluation Results for Standardizeability 84

B.1. Example Technical Architecture: Pilot Option A [Rob19e] 106
B.2. Legend . 106
B.3. Example Technical Architecture: Pilot Option B [Rob19e] 108
B.4. Example Technical Architecture: Pilot Option C [Rob19e] 109
B.5. Example Technical Architecture: Assist Option A [Rob19e] 110
B.6. Example Technical Architecture: Assist Option B [Rob19e] 111

C.1. Transformed Model: BDDs of Pilot Option A 114
C.2. Transformed Model: IBDs of Pilot Option A 115
C.3. Transformed Model: BDDs of Assist Option A 116
C.4. Transformed Model: IBDs of Assist Option A 117

viii

List of Tables

4.1. Overview of Stakeholders . 25
4.2. Comparison of Pilot Feature and Assist Feature of AD System 1 in the

Example Architecture . 29

5.1. Example variants for Feature Design level 44

A.1. Search Terms . 102

B.1. [Reprinted] Comparison of Pilot Feature and Assist Feature of AD System
1 in the Example Architecture . 105

B.2. Comparison of Pilot Feature Option A and Pilot Feature Option B 107
B.3. Comparison of Pilot Feature Option B and Pilot Feature Option C 107
B.4. Comparison of Assist Feature Option A and Assist Feature Option B . . . 107

ix

List of Acronyms

ACC Adaptive Cruise Control

ACU Airbag Control Unit

AD Automated Driving

AEB Automatic Emergency Braking

AUTOSAR Automotive Open System Architecture

BB Building Block

BDD Block Definition Diagram

CAN Controller Area Network

CBFM Cardinality-Based Feature Modeling

ECU Electronic Control Unit

EPS Electronic Power Steering

ESP Electronic Stability Program

FeatuRSEB Featured Reuse-Driven Software Engineering Business

FODA Feature-Oriented Domain Analysis

FOPLE Feature-Oriented Product Line Engineering

FORE Family-Oriented Requirements Engineering

FORM Feature-Oriented Reuse Method

GP Generative Programming

HUD Head-up Display

xi

HWP Highway Pilot

IBD Internal Block Diagram

RSEB Reuse-Driven Software Engineering Business

TJP Traffic Jam Pilot

WP Work Package

WSS Wheel Speed Sensor

xii

Chapter 1

Introduction

Automotive systems are highly-customized and show high variance by nature. As auto-
motive systems become more and more software-intensive, the complexity further arises
with the increase in the number of variants [OPS+17]. This trend adds a significant
rise in the complexity of the system architecture, and as a result, variant management
has been a known issue. As a solution to handle the variability, feature modelling that
models variability of the system has been proposed and applied [KCH+90].

As to the variant handling for the technical architecture, there exist no proven approaches
or methods. Most of the proposed concepts focus on the software level or functional
architecture. The technical architecture shall describe the types and number of physical
elements that comprise the system as well as the E/E architecture - the communication
network and the power supply system for the system. Hence, in the technical architecture,
numerous variances arise from different levels - vehicle feature design, subsystem design,
component design, and E/E architecture design which includes both communication
network design and power supply system design.

Also, technical architecture describes the system architecture, which consists of many
different subsystems. Each subsystem is designed and developed by various develop-
ment organizations, and this highly-distributed development environment brings many
difficulties in regards to variability. System architects and E/E architects who develop
the technical architecture of a system needs access to the technical information of the
components which affects the design of the technical architecture, such as the number
and types of ports. Plus, the architects need information on subsystem architecture
which they have no visibility on the system level. Furthermore, for transparent change
management, traceability links between design artefacts, such as from requirement
specifications, the functional architecture, and to the technical elements the technical
architecture, shall be established.

1

1. Introduction

On top of that, for the highly-automated driving systems, the complexity further increases
in the design of technical architecture. Performance requirements for such systems are
significantly higher; hence, it leads to a rise in the number of variants with different
configurations of Electronic Control Unit (ECU)s and various set of combinations of
sensors. Besides, such systems are realized with more cross-domain features which
not only broaden the scope of the architectural description but also make the system
architecture more complex. Furthermore, strict safety requirements which require
redundancy concepts and requirements for in-vehicle connectivity add complexity to
the system architecture. Thus, the complexity that arises with the adoption of highly-
automated driving systems should be taken into account when considering technical
architecture modelling and variant handling of such systems.

Therefore, an adequate variant handling method which can handle the challenges on
the technical architecture level is necessary. Approaches on the software level can be
comparably easily extended to the functional architecture on the system level since both
concentrates on the functional blocks which realize the system functionality. However, for
the technical architecture, a different approach optimized for its needs and requirements
is required.

In this thesis, we aim to develop a variant management method for the technical
architecture, that covers the variant handling challenges in the technical architecture,
especially for highly-automated driving systems, and that fits into the model-based
system engineering (MBSE) environment. The motivation of this study stems from the
variability related challenges that were faced during the technical architecture design
in Robert Bosch GmbH. The study is, therefore conducted in the organization, and the
final purpose of developing this method is to be applied in the system development
process in the organization and help to address variant management related challenges.
In this context, it is necessary to take into account the needs of the users and reflections
from them. For this, we conducted interviews with practitioners for the roles that we
defined as stakeholders for the variant management method of technical architecture.
The stakeholders include system architects and E/E architects for highly-automated
driving systems, system architects and E/E architects for subsystems, function developers
and software developers/architects. The purpose of the stakeholder interviews was to
identify use cases and to derive requirements for the variant management method of the
technical architecture. These requirements, as well as the evaluation criteria proposed
in the literature, are used to evaluate the method.

This thesis provides the following contributions to the challenges mentioned above:

C1 Characterizing the current challenges for the variant management of the technical
architecture design in the context of the model-based system development for
highly-automated driving systems

2

C2 Proposing a variant management method and a structure of feature models for
the technical architecture of highly-automated driving systems which satisfy stake-
holder requirements

C3 Implementation and evaluation of the method

Thesis Structure

The content of this thesis is structured as follows:

Chapter 2 – Foundations presents essential concepts that are necessary to understand
for the topic of this thesis,

Chapter 3 – Related Work systematically reviews the relevant literature in the related
area of this thesis,

Chapter 4 – Research Methods describes the overall process and research methods
taken for this work,

Chapter 5 – Research Results presents the results of this study including the develop-
ment of the variant management method,

Chapter 6 – Implementation shows the implementation results of the variant manage-
ment method,

Chapter 7 – Evaluation evaluates the method based on the requirements and the eval-
uation criteria,

Chapter 8 – Discussion poses discussion points for each work package,

Chapter 9 – Conclusion summarizes the results of the work and presents the starting
points for future works.

3

Chapter 2

Foundations

In this chapter, we present basic concepts which are essential for the understanding of
the topic and which in turns form the foundations for this topic. It includes Model-Based
System Engineering (MBSE) for automotive systems with a focus on system technical
architecture design and modelling of it as well as variant management for system
technical architecture.

2.1. Definitions

The list below includes the definitions of the technical terms that we continuously use in
this thesis:

Feature A prominent or distinctive part, quality, or characteristic of a system-of-interest,
which is visible to users and that stakeholders and end-users can understand [Her00;
ISO15; KCH+90].

Feature Model A feature model is used as a communication medium between users
and developers. For the user side, the feature model displays the standard features and
optional features which they can choose. For the developer side, the feature model
specifies what needs to be parameterized in the system architecture and in the model,
and how the parameterization shall be done [KCH+90].

User Functions A part of an application that provides facilities for users to perform
their tasks. User functions form the elementary units of requirements and specifications
[ISO08; ISO17; PHAB12].

5

2. Foundations

Functional Architecture Hierarchical arrangement of functions, subfunctions, func-
tional interfaces and external physical interfaces, which define the execution sequence,
conditions for control or data flow, the functional and performance requirements, and
the design constraints [ISO17].

Technical Architecture The technical architecture specifies technologies and rules that
govern the arrangement, interaction, and interdependency of the elements to ensure
that the system-of-interest fulfils a specified set of requirements [Def05; She14]. In this
thesis, we use this term to refer to the technical architecture for the vehicle-level system,
not for the subsystems which are limited to only certain domains or building blocks of a
vehicle.

Besides, there exist high complexity with the technical terms that are used in the
environment of the automotive system development. The same term could be used in a
different setting with different meanings. Therefore, to prevent confusion, we list the
technical terms that we use throughout the thesis and clarify the meaning of them we
intend as below:

• Vehicle-level System: refers to the systems which are composed of subsystems
in different domains of vehicles (i.e. powertrain, chassis, body, etc.), and the
realization of whose functionalities shall be approached from the perspective of
the whole vehicles, rather than only a subsystem. For examples, systems such as
Cruise Control, Park Assist, Autonomous Emergency Braking belong to vehicle-level
systems

• Building Block: a part of a domain of vehicles, which on its functions as an
independent system

• Subsystem: a part of a vehicle-level system, which usually realizes one building
block of vehicles

• Feature: in this thesis, a feature can be any properties or elements of the system
that creates variances of the system and can be added to the feature model

• Vehicle Feature: different lines of product for the vehicle-level system. e.g. High-
way Pilot, Highway Assist

• System Variant: a product variant of a vehicle feature, which is created as the
result of variant configuration. e.g. Highway Pilot Option A, Highway Pilot Option
B, Highway Assist Option A

• Component: the physical hardware elements that comprise the system, such as
sensors, processing units, actuators

6

2.2. Model-Based System Engineering (MBSE) for Automotive Systems

• Technical Element: in this thesis, it has the same meaning as the component

• Technical Architecture Model: the architecture model for the technical architecture,
modelled in architecture modelling tool such as Rhapsody

• Variant Architecture Model: the technical architecture model for a certain system
variant

2.2. Model-Based System Engineering (MBSE) for
Automotive Systems

In automotive systems engineering, increasing complexity became a known challenge.
New features such as automated driving caused an increase in the complexity due to
higher performance and safety requirements. More and more cross-domain functionality
come into place, and engineers now need to handle more functional interfaces from
different domains. This trend brought up needs for a consistent cross-domain vehi-
cle system architecture, and thus, MBSE approaches have been proposed and applied
as a solution. Model-based approaches allow a flexible and seamless system design
which efficiently deals with iterative innovation developments in adopting new fea-
tures [AP10]. More precisely, MBSE has significant benefits for today’s distributed
development environment and ensures high traceability and improved quality.

2.2.1. System engineering process

As shown in Figure 2.1 [Rob19a], general design steps of generic automotive system
engineering processes starts from defining System Requirements. Through the System
Design activity, the Functional Architecture is created from Use Cases and System Require-
ments. The step of defining the System Architecture follows as next, which is supported
by the E/E Architecture Design activity. Within this activity, the Functional Architecture,
which describes functional relations of all different system functions, is converted to the
Technical Architecture. The Technical Architecture includes the E/E Architecture, which
describes the communication network and the power supply system of the system of
interest, and the High-Level Hardware and Software Architecture. Until the Functional Ar-
chitecture, the system architecture is independent of technical implementation, and from
the Technical Architecture, the implementation architecture is started to take into account.
From the Technical Architecture, Subsystem Design each for software and hardware is
executed with the output of the Software Architecture and the Hardware Architecture.

7

2. Foundations

System Architecture

Software Architecture Hardware Architecture

System Requirement

Level

System
Requirements

Functional
Architecture

Technical
Architecture

Hardware
Requirements

Software
Architecture

Software
Requirements

Hardware
Architecture

Use Cases

Design Step

E/E Architecture
Design

Activity

System Design

Subsystem Design
(HW)

Subsystem Design
(SW)

Figure 2.1.: Design Steps for System Engineering [Rob19a]

The introduction of MBSE approaches ensures consistency throughout the overall design
steps from system requirements to software and hardware architecture development.

2.2.2. Technical architecture models and point of views

Figure 2.2 [Rob19b] represents the model of E/E system technical architecture for
the example system ’System’ in SysML notation. The Library Model contains common
element blocks which comprise different systems existing in the same vehicles. The
System Model represents the technical architecture model for the System. In System
Model, the Library Model is referenced as read-only, and all its containing element Blocks
are also referenced together. The System Model includes two different views - an external
and an internal view. The external view shows the structure of the system; of which
components the system consists. In SysML notation, the Block Definition Diagram (BDD)
represents the external view. The BDD contains blocks for the common components
which reference the original blocks in the Library Model. It also includes blocks for the
system-specific components which only exist in the corresponding system, but not in
other systems within the same vehicle. In the BDD, each element Block is connected
to the system Block through directed composition relations, which represents Part in
SysML notation. The internal view describes the interconnection of the components, in
terms of the communication network and the power supply network. In SysML, Internal
Block Diagram (IBD)s represent the communication network and the power supply
system of the system. In the IBD, Parts coming from directed composition in the BDD are
connected with each other through Connectors and Ports. Connectors in communication
network represent different communication connections or bus systems such as Flexray

8

2.2. Model-Based System Engineering (MBSE) for Automotive Systems

Model Structure (150% for System)
Library Model System Model

(REF) Library
Model

BDD IBD

Library
Element
(Block)

(REF) Library
Element
(Block)

Library
Element
(Block)

Library
Element
(Block)

(REF) Library
Element
(Block)

(REF) Library
Element
(Block)

(REF) Library
Element

(Block+Part)

(REF) Library
Element

(Part+Port
+Connector)

(REF) Library
Element

(Block+Part)

(REF) Library
Element

(Part+Port
+Connector)

System
Specific
Element

(Block+Part)

System
Specific
Element

(Part+Port
+Connector)

Library element existing in Variant A of System Library element NOT relevant for System

Library element in System but NOT relevant for Variant A

Model Structure (100% for Variant A of System)
Library Model System Model

(REF) Library
Model

BDD IBD

Library
Element
(Block)

(REF) Library
Element
(Block)

Library
Element
(Block)

Library
Element
(Block)

(REF) Library
Element
(Block)

(REF) Library
Element
(Block)

(REF) Library
Element

(Block+Part)

(REF) Library
Element

(Part+Port
+Connector)

System
Specific
Element

(Block+Part)

System
Specific
Element

(Part+Port
+Connector)

System specific element existing in System

Figure 2.2.: E/E System Technical Architecture Model [Rob19b]

Highway Pilot

Gateway Radar

ACU

HUD

AD ECU

Ultrasonic

Camera

Lidar

WSS

Engine Control

ESP

Gateway

ESP

ACU

AD ECU

Camera

Radar

Lidar

Figure 2.3.: Example of BDD and IBD [Rob19c]

or Controller Area Network (CAN). Figure 2.3 shows a simplified example of BDD
and IBD [Rob19c]. In this example, the BDD of the Highway Pilot system consists of
components including Automated Driving (AD) ECU, Electronic Stability Program (ESP),
Airbag Control Unit (ACU), Head-up Display (HUD), as well as Gateway and sensors
such as Camera, Radar, Lidar and Wheel Speed Sensor (WSS)s. The IBD represents the
communication connections between these components.

It is a common approach of system architects to build 150% system models which
contain all system variants that exist in the overall system. With an adequate variant
handling method, a variant transformation automatically creates a 100% system model
which is specific to one system variant.

9

2. Foundations

2.3. Variant Management in Automotive System
Engineering

In the automotive system engineering context, variability is spread out and occurs
throughout the whole design steps of V-Model, which Figure 2.1 partly shows. From
the system requirements down to the software and hardware architecture design and
implementations, different levels and kinds of variants exist. An adequate variant
management method that encompasses this variability dispersed in different design
steps, documents, models, or any other forms shall effectively handle the variability.

2.3.1. Variant Management for System Technical Architecture Design

The variant management activities considered in this thesis are intended to include the
following aspects [OPS+17; Rob19b; Rob19d]:

• to show explicit information about the system variability,

• to represent interdependencies between and the hierarchy of features,

• to derive valid configurations which comprise each variant,

• to ensure traceability for design steps of V-Model,

• to ensure accessibility of product information

This highlights the benefits of variant management which include [OPS+17; Rob19b;
Rob19d]:

• Explicit representation of product variability and resulting variants

• Handling of increased complexity in different levels of variants

• Improved traceability and change management for the evolution of product fea-
tures

• Improvement in product quality and development time

• Increased accessibility of information

• Reduction of local solutions

• Increased efficiency of work especially for a distributed development environment

• Consistency of contents along the V-Model

10

2.3. Variant Management in Automotive System Engineering

With the variant management activities listed above, proper tool support further con-
tributes to the system development process. For instance, it enables automatic creation of
a variant-specific architecture model that corresponds to a specific variant, and essential
information such as which system variants are meant for which customer projects can
be displayed.

Figure 2.4 shows the design process for technical architecture design in the model-based
system engineering. Firstly, for the Technical Architecture Design step, System architects
and E/E architects take necessary inputs, requirement specifications and component
information. They design the technical architecture based on the input information
and produce a model for it. This model is the 150% model which includes all existing
technical solutions for the system. The next design step, System Variant Configuration,
takes this model as an input and configures different system variants based on the needs
of each system variant. The 150% technical architecture model contains all variability
of the technical solutions which satisfy the requirements. The architects select specific
technical solutions for each system variant and perform a variant transformation to
produce 100% variant architecture models which correspond to each system variant.

Both these design steps of the technical architecture require different variant manage-
ment activities. In designing the technical architecture, the primary role of variant
management is to gather the necessary information of the components and make it
available for the system and E/E architects. The difficulty for system architects and E/E
architects in designing the technical architecture is that they have to perform the acquisi-
tion of the component information manually. The necessary information of components
which affect the variability of the architecture design, such as the product generation or
the number and type of available ports for the communication connections, are not read-
ily accessible for them. Therefore, they have to check with the component developers to
receive this information manually. Variant management can help on this by having this
information about variability modelled in the feature model of the component. System
architects and E/E architects then only need to import these feature models and refer
to the information about variability for the system technical architecture design. The
so-called Blackbox Concept can realize this. In the system level, the architects model the
part for the subsystem or component as ’blackbox’ which they have no visibility on the
architectural structure. They then fill these blackboxes with the feature models provided
by product owners, which they import into the configuration space of the system.

Another variant management activity for the technical architecture design step is to
ensure traceability. The technical elements existing in the technical architecture model
are the realization of the technical solutions, which are derived to satisfy the require-
ments. If we have a different set of technical solutions which meet the same requirement,
then we have variability in the technical solutions. The feature model should capture

11

2. Foundations

Input /
Output

Design
Steps

Technical
Architecture Model

(150%)

Variant Architecture
Model (100%)Variant Architecture

Model (100%)Variant Architecture
Model (100%)

Requirements
Component
information

...

Technical Architecture
Design

System Variant
Configuration

Variant
Management

Variant
Management

- Ensure accessibility of
component information

- Ensure traceability

- Show explicit information about
the system variability

- Show interdependencies
between features

- Derive valid variant
configurations

Concept
presented in the

thesis

Main focus of the
thesis

Figure 2.4.: Technical Architecture Design Process and Variant Management Activities

this variability. Through the feature model, we can establish traceability links from
requirements to the technical architecture.

For the system variant configuration, the variant management activities concern more
about the detailed structure of the feature model. The feature model shall describe
the explicit information about the system variability, and it shall show the relations,
hierarchy and interdependencies of features. With the proper modelling of the variability
information and interdependencies between features in the feature model, the architects
can use the feature models to derive the valid combinations of features, which form
each system variant.

In this thesis, we mainly focus on the variant management activities for the system
variant configuration steps, as it involves fundamental studies of the structure of feature
models. Ensuring traceability is also a crucial factor of the variant management for the
technical architecture; therefore, we also considered it in developing the method. Also,
ensuring accessibility of component information can be solved by the blackbox concept.
Hence, in this thesis, we present a concept and ideas to realize it. However, due to the
limitation of time, the actual implementation of these concepts is left as future work.

2.3.2. Levels of Variants

When it comes to the variant management for the technical architecture, the issue of
having to handle different levels of variants come into place. There exist different levels

12

2.3. Variant Management in Automotive System Engineering

Variant 1

E/E System

Variant 2

Feature
Design

ESP+Booster

Brake System

One Box Brake

SubSystem
Design

Processing

E/E System

Brake
System

Feature
Realization

Component
Design

Radar+Video

SensorSet

Radar+Video
+Lidar

SensorSet

FlexRay

Communicaton Network

FlexRay +
CAN

Channel 1 +
Channel 2

Power Supply

Channel 1

uC

Processing

uP

Figure 2.5.: Levels of Variants [Rob19a]

of variants to handle, as shown in Figure 2.5. On the top level of (Vehicle) Feature
Design, the system E/E System can either be designed with only basic mandatory features
which correspond to the Variant 2 or with more advanced functions Variant 1 which
forms another product line variant. The Feature Realization shows how the system is
composed of, with which different subsystems. The architects can design each subsystem
with different design options, which the SubSystem Design level shows. In this example,
the subsystem SensorSet for the E/E System can be designed either with only Radar and
Video sensors or with Lidar on top of these. The subsystem Brake System can be designed
with the combination of ESP and Brake Booster or as One Box Brake. Furthermore, for
the component like ECUs, different configuration can exist, and this corresponds to the
level of Component Design. All these levels of variants are dependent on each other and
shall be properly handled together.

One critical point of the variant management is that it shall only show where the
variability exists. In other words, it focuses on describing and representing variation
points in the system, rather than showing the complete architecture of the system, which
would be the job of the architecture model.

On top of that, for the highly-automated driving systems, the complexity further increases
due to the significantly high-performance requirements. This strict requirement adds
more variants, such as having an additional fail-operational ECU or adding more sensors
with higher detection capability to the sensorset. Also, such systems require more cross-
domain features, and this broadens the scope of architecture description of a system and

13

2. Foundations

makes the system architecture more complex. Lastly, strict safety requirements which
require redundancy concepts, and higher requirements for in-vehicle connectivity add
further complexity to the system architecture. Therefore, the complexity that arises with
the adoption of highly-automated driving systems should be taken into account when
considering architecture modelling and variant handling of such systems.

14

Chapter 3

Related Work

In this chapter, we systematically review the relevant literature in the related area.
Systematic literature reviews are conducted to identify a complete and comprehensive
picture of the existing evidence [WRH+12]. The contents of the literature review
consist of system modelling through meta-models, and variant management and feature
modelling. The detailed process of the review is presented in Appendix A – Systematic
Literature Review Process.

3.1. System Modelling through Meta-models

Meta-models represent abstract modelling concepts which are utilized to build an
integrated system models [RBBS02]. A system model includes all necessary details
about the functional logic, the distributed network of ECUs, sensors, actuators and also
the environment [RBBS02]. The meta-model structures these details and describes the
interrelationships [RBBS02].

In software engineering, meta-modelling is a well-known concept. In the automotive
software context, there exists the Automotive Open System Architecture (AUTOSAR)
meta-model. AUTOSAR is widely accepted as an automotive industry standard to facili-
tate the development and integration of software components from different vendors
[SBC+13]. It defines meta-model structures with several templates which can be used
for the development of automotive software in standardized format [AUT17b]. The AU-
TOSAR meta-model is the most representative example of domain-specific meta-models
used in the industry. After its introduction to the automotive industry, it became the stan-
dardized meta-model for the development of automotive software systems [DSTH14].
Figure 3.1 depicts a simple example of the usage of AUTOSAR meta-model, which was
used to map software components to different ECU instances.

15

3. Related Work

Referrable Identifiable

Ecu SoftwareComponent

SwcToEcuMapping

:Ecu

:SwcToEcuMapping

:SoftwareComponent

Meta-Model Model

Figure 3.1.: Example of the Usage of AUTOSAR Meta-model [DSTH14]

However, as specified in the goal of AUTOSAR standards, the AUTOSAR meta-model
deals with software components mapped to and realized by each ECU instance in the
software level, rather than the system architecture over different domains of a vehicle
described on the system level. For the functional architecture on the system level, the
AUTOSAR Meta-model could be extended since it shares the nature of describing the
system as a set of function blocks. However, in terms of technical architectures, there
is no proven approach or guidelines yet to design such domain-specific meta-models
for automotive systems. As the automotive industry started to adopt MBSE approaches,
developing adequate system models based on meta-models became a crucial step. Having
a standardized structure of meta-models on the system level is much helpful for the
description of complex system architectures, just as the AUTOSAR meta-model is for the
software level.

3.2. Variant Management and Feature Modelling

Variant management or handling variability has been an essential challenge in the
development of automotive systems. The adoption of new features and requirements
for providing customized products are raising the number of possible variants of a
system to handle. According to O. Oliinyk et al., a vehicle can typically have around 80
electronic features that can be selected by customers. This number sums up to the fact
that there exist 280 possible variants for the vehicle, without considering the validity of
the feature combinations [OPS+17]. Variant management provides solutions by offering
methods to handle the introduction, use, and evolution of variability to a system [SD07].
Constructing an adequate and efficient variability model is vital since variability models
are used in deriving concrete products by product line users [BSL+13].

In the last decades, numerous variability modelling techniques were proposed. These
can be grouped into four different families: feature-based, use case-based, UML classes-

16

3.2. Variant Management and Feature Modelling

based, goals and aspects-based [DS06]. Among these, the feature-based approach is
most widely accepted and applied because using features provides the most effective
mean to represent the variability [DS06]. Kang et al. explains the major advantage of
using features as "Features are essential abstractions that both customers and developers
understand [KLD02]". Therefore, the majority of proposed approaches are feature-
based. Approaches such as Feature-Oriented Domain Analysis (FODA) [KCH+90],
Feature-Oriented Reuse Method (FORM) [KKL+98], Feature-Oriented Product Line
Engineering (FOPLE) [KLD02], Generative Programming (GP) [Cza98], Family-Oriented
Requirements Engineering (FORE) [Str02], Featured Reuse-Driven Software Engineering
Business (FeatuRSEB) [GFd98], Cardinality-Based Feature Modeling (CBFM) [CHE05]
are feature-based. Czarnecki et al. defines feature modelling as "the activity of mod-
elling the common and the variable properties of concepts and their interdependencies
[Cza98]". Feature modelling has served as the key solution to tackle variant handling
issues especially.

However, the most feature modelling methods differ in terminology and process, and
this leads to the non-existence of standard feature modelling notations [DS06]. Besides,
although many approaches are tested and implemented on different tools, there exist no
standard tools. That is why the first challenge when beginning with variant handling is
to choose a suitable method [DS06].

3.2.1. Requirements to feature modelling notations

To aid this decision, Djebbi et al. proposed several requirements to feature modelling
notations as follows [DS06]:

1. Readability: The notation should visualize the common and variable parts of the
system graphically.

a) Clearness: The graphical arrangement of the elements in the diagram should
be clear to comprehend.

b) Minimality: Each concept in the diagram should be represented only one and
once without duplication.

2. Simple and Expressive: The diagram should be expressive by adequately repre-
senting the user’s needs. It should be simple by containing the minimum necessary
number of objects in the diagram.

3. Type distinction: The types of variability (i.e. mandatory, optional, etc.) should be
explicitly distinguished.

17

3. Related Work

4. Properties: The properties (i.e. binding times, justification of the variability, etc.)
of variation points should be able to be specified.

5. Dependencies: Dependencies between features should be represented.

6. Evolution: The evolution of features which causes models to evolve should be
supported.

7. Adaptable: The notation should be adaptable to the company’s specific needs.

8. Scalable: The notation should be scalable to model large-scale systems.

9. Supported: The notation should be supported by a feature modelling tool and be
integrated into existing toolchains.

10. Unified: The notation should be unified into the entire product line development
cycle.

11. Standardizeable: The notation should be standardizable, providing a precise
semantics and avoiding conflicting interpretations.

Among these, Djebbi et al. suggested the five most crucial requirements for industrial
settings: Type distinction, Dependencies, Standardizeability, Simplicity and Expressiveness
and Readability. For a company, the two most critical criteria for selecting a variability
modelling notations are modelling requirements and architectural variabilities along with
describing dependencies [DS06]. Type distinction is crucial because the types of features
(i.e. mandatory, optional, alternative) can be taken into account with cost objectives in
the value analysis for the feasibility phase of projects [DS06]. Furthermore, dependencies
between requirement variabilities and technical and architectural variability is a central
theme in the process of negotiation between a supplier and customers [DS06].

3.2.2. Feature modelling approaches

We summarize the most representative feature modelling concepts and approaches that
were identified in the literature review.

FODA FODA [KCH+90] is the most referenced feature modelling approach which was
introduced in 1990. Many of later developed techniques are based on FODA. It aimed
to capture commonalities and variability at requirements level [OPS+17]. FODA uses
features which are properties of a system that have a direct impact on the end-user
[Cza98]. The FODA features are described as mandatory or alternative or optional.
These features are structured in a tree-style feature diagram. The interdependencies
between features are also included as two types of composition rules: require and

18

3.2. Variant Management and Feature Modelling

mutually-exclusive-with rule. However, FODA lacks expressiveness in terms of modelling
relations between variants and several extensions were later included as a consequence
[OPS+17].

FORM FORM [KKL+98] is an extension of FODA developed in 1998 to incorporate
analysis and design issues from a marketing perspective [KLD02]. It extended the prod-
uct line development process into an asset development process in which product line
analysis such as marketing, product plan development, refinement, feature modelling
and requirement analysis are performed [KLD02]. Based on the result of this analysis,
product development is executed.

FOPLE FOPLE [KLD02] was later introduced in 2002 as a refinement of FODA and
FORM. In FOPLE, four different viewpoints which represent different stakeholders’ views
were introduced [DS06; KLD02]. These views specify features which are classified to
corresponding types: capability features (service, operations, nonfunctional characteris-
tics), domain technology features (domain method, standards), operating environment
features (hardware, software) and implementation techniques features (design decision,
communications) [Rie03]. However, Riebisch et al. assess that FOPLE lacks appropriate
definition concerning a clear distinction between the views and the aims and argues that
the advantages of having these views are not clear [Rie03].

Generative Programming Generative Programming [Cza98] uses feature diagrams
which are extended from FODA with OR-features describing ’one or more’ decomposition
relations between the parent feature and its sub-features [DS06]. It also advanced
FODA by providing a definition of a graphical representation of feature dependencies
[OPS+17]. On top of that, Generative Programming allows programs to be automatically
generated from precise specifications [DS06]. Czarnecki et al. define the process of
feature modelling as following steps [Cza98]:

1. Record similarities between instances to identify common features

2. Record differences between instances to identify variable features

3. Organize features in feature diagrams which classify and group features into
hierarchy and characteristics of features (i.e. mandatory, alternative, optional, OR)

4. Analyze feature combinations and interactions by studying feature composition
rules (i.e. mutual-exclusion constraints, requires constraints, etc.)

19

3. Related Work

5. Record all additional information regarding features (i.e. short semantic descrip-
tions, rationale, stakeholders, client programs related to each feature, constraints,
etc.)

These steps should be performed in a continuous and iterative way as features evolve
over time [Cza98].

FeatuRSEB FeatuRSEB [GFd98] combines the methods of FODA and Reuse-Driven
Software Engineering Business (RSEB). In FeatuRSEB, UML-like notation is used to
construct feature diagrams and explicit representations of variants, feature constraints
and dependencies [OPS+17]. Griss et al. clarify an important principle of features
that "Not everything that could be a feature should be a feature. Feature description
needs to be robust and expressive. Features are used primarily to discriminate between
choices, not to describe functionality in great detail; such details are left to the use case
or object models [GFd98]". They further elaborate on the difference between use case
models and feature models: "A use case model captures the system requirements from
the user perspective whereas the feature model organizes requirements from the reuser
perspective based on commonality, variability, and dependency analysis [GFd98]".

FORE FORE [Str02] extends feature diagrams with UML multiplicities notations which
describe the minimum and the maximum number of features to be chosen [DS06]. In
addition, in FORE, the feature diagram is represented as a directed acyclic graph whose
edges represent the relations between features and circles at the end show the directions
[DS06]. The circles display the types of the features, meaning if the circle is filled, it is a
mandatory feature, and if not, the feature is optional.

CBFM CBFM [CHE05] extends FODA methods with a mean of modelling the variability
solely by the choices in features [SD07]. In CBFM, features represent any functional
or non-functional characteristics in the product family, and each feature can have one
attribute that specifies a numeric or textual property of the feature [SD07]. CBFM uses
feature cardinalities to describe variability. The feature cardinality shows the number
of times the feature can occur in one product (e.g., a cardinality of [0..1] means the
feature may exist once or not at all in the product) [SD07]. Djebbi et al. performed
a comparative analysis of four feature modelling techniques (FOPLE, FeatuRSEB, GP,
FORE) based on the requirements to feature modelling notations which are presented in
the previous subsection [DS06]. As a result, FORE was proven to be the most suitable
notation since it supports most of the major requirements for the industrial settings as
well as the other requirements. However, Djebbi et al. discuss none of the methods is
adequate for the modelling of variability of embedded systems [DS06]. This is because

20

3.2. Variant Management and Feature Modelling

the tested methods which were mainly developed in the academia fail to support the
physical dimension in the product lines engineering [DS06].

AUTOSAR Feature Model AUTOSAR has been supporting variant handling from its
release 4.0 [AUT17b]. This was first done by introducing variation points to AUTOSAR
meta-models and defining means to describe what comprises a specific variant. Later in
2013, AUTOSAR introduced the AUTOSAR feature model to express variation points on a
higher level and to capture the dependencies between features [AUT17a]. The AUTOSAR
feature model describes a variant handling concept specifically on the software level
rather than on the system level. This is because, as previously mentioned, the focus of
AUTOSAR lies in modelling aspects of ECU software like software components, ECU
configuration and communication topology.

Apart from the automotive industry, although the variability issue in large industrial
product lines with thousands of features exist, only a few studies discuss feature mod-
elling and none for the technical architecture description level. As to some notable
studies, for the aerospace industry, Gaeta et al. present a system modelling method
and the adoption of variability modelling in the product line engineering for aerospace
systems [GC15]. The method models systems with variability using SysML to satisfy
aerospace systems requirements and software development standards [GC15]. In an
attempt for this, they divide the model into two parts, a family model which describes
the architecture common to all products in the family, and a variant model which de-
scribes the design of a single product [GC15]. Gillan et al. discuss the challenges of
applying feature modelling in the telecommunications software industry [GKS+07]. As
a result, they reported that there exists no unique way in expressing feature models for a
telecommunications system which poses challenges arising from the lack of standardized
method [GKS+07].

Although there exist numerous feature modelling methods proposed to address vari-
ability handling issues both in the academia and industry, most of them focus on the
software level - as a part of software product line engineering. On the system level,
several papers discuss feature modelling for the functional architecture description.
Grönniger et al. present variability management methods for automotive systems, by
using views to describe features and different variants, which is based on generative
programming [Cza98; GKPR08]. In this approach, feature diagrams based on the Gen-
erative Programming [Cza98] are used to model the feature variability of functional
architecture level [GKPR08]. The feature diagram contains functional features such as
comfort functions, central locking system and navigation system.

However, there exist no proven or standardized feature modelling approaches for the
technical architecture description level. The technical architecture is an integral part

21

3. Related Work

of the whole system engineering process, as it represents the physical architecture of
the system and is used for the subsystem design. In other words, from the technical
architecture level, an actual implementation which includes subsystem design and
component design with the hardware and software architecture becomes relevant. A
large number of variants which boosts up the system complexity arise from physical
elements and properties such as communication connections between components,
power supply channels, and their resulting port configurations of each component,
hardware and software components, and configuration and calibration parameters.
Also, as mentioned before, variability occurs on different levels throughout the design
steps of V-Model. Therefore, having an adequate variant management method which
covers different levels and design steps is crucial. Variant management approaches on
the software level could potentially be extended to the system functional architecture
level, since both the software architecture and the functional architecture focus on
the functional blocks which realize the system functionalities. However, as to the
development of approaches on the software level, scalability is not considered [SD07].
Therefore, the variant management method which starts from the technical architecture
level and encompasses the needs of other design steps is necessary.

Furthermore, most of the proposed approaches lack empirical evidence and reflections
from industry [OPS+17]. According to Chen L. et al. [CB11], among 91 identified
feature modelling approaches, only 26 are evaluated in the industrial setting. Moreover,
it is not clear whether these approaches are applied in practice [CB11].

22

Chapter 4

Research Methods

This thesis aims to develop a variant management method which encompasses the overall
process of system engineering for the technical system architecture of highly-automated
driving systems. The research in this thesis began with a systematic literature review.
The goal of this review was to identify state of the art in the related. The detailed process
and result of the literature review was presented in the previous chapter: Chapter 3 –
Related Work. The remainder of the work in this thesis consists of the following four
Work Package (WP)s:

• WP1 Use Case Identification and Requirement Derivation the stakeholders for
the technical architecture modelling and variant management were defined first.
To identify their needs, we conducted interviews with these stakeholders. From
the interviews, we learned about the current context within the organization about
variant management of technical architecture. Besides, the primary purpose of
the stakeholder interviews was to identify use cases from which we derived the
requirements for the variant management method of technical architecture.

– RQ1: What is the current situation regarding the variant management of
technical architecture? Who are the stakeholders?

– RQ2: What are the use cases of the stakeholders regarding variant manage-
ment? What requirements can be derived from the use cases?

• WP2 Prototype Method Development considering the requirements derived from
the user side, we developed a prototype variant management method.

– RQ3: What kind of variant management method is suitable in order to satisfy
the requirements?

23

4. Research Methods

Stakeholder
Definition

Use cases
Identification

Requirement
Development

Prototype
Method

Figure 4.1.: Research Process for WP1 and WP2

• WP3 Proof of Concept: Implementation and Evaluation we implemented the
prototype method on an example system technical architecture. The example
architecture was developed to encompass multiple kinds of variability that exist in
automotive systems as well as highly-automated driving systems. The evaluation
was conducted based on the requirements developed from the user side and the
evaluation criteria proposed from the systematic literature review.

– RQ4: Does the prototype method satisfy the requirements and evaluation
criteria?

Figure 4.1 shows the research process from the stakeholder definition to prototype
feature modelling method development, which corresponds to WP1 and WP2.

4.1. Stakeholder Definition

To select appropriate interviewees who can provide meaningful inputs to the technical
architecture modelling and variant management in a different point of views, we first
defined the levels of abstraction in the system engineering process which are relevant
to the system technical architecture design. The (Vehicle) System-Level refers to the
development of the vehicle-level system, which requires the perspective of the whole
vehicle and which consists of the subsystems spread out onto the whole domains of
the vehicle. The example of the vehicle-level system is Adaptive Cruise Control (ACC),
Automatic Emergency Braking (AEB), Highway Pilot (HWP) and Traffic Jam Pilot (TJP).
On the SubSystem and Component Level, a part of the vehicle-level system is developed.
The vehicle-level system functions stand-alone on the vehicle by performing a part of the
vehicle control. For the development of the vehicle-level system, the design of system
architecture is handed over to the subsystem design parties. The development of each
subsystem then starts from there. For example, Brake system or Sensorsets belong to the
Subsystem level. The component here means a physical element which comprises the
part of the subsystem, for instance, ESP, Electronic Power Steering (EPS), ACU, video
sensors and radar sensors. Although the development of component and subsystem
is carried out separately in many organizations, we combined Component level to the
Subsystem level, since these are similar from the technical architecture point of view.

24

4.2. Stakeholder Interviews

Depending on the type of development projects and structure of an organization, only
one of them or both levels exist. For each level, there exist different roles as shown in
Table 4.1. It also shows the number of stakeholders we interviewed for each role and
level as well as their industry experience in years (yr).

Role/Level SubSystem/Component Level (Vehicle) System Level

System Architect 2 Stakeholders (4 & 3 yr) 2 Stakeholders (3 & 3 yr)
E/E Architect 2 Stakeholders (5 & 3 yr) 3 Stakeholders (11 & 4 & 1 yr)

Function Developer - 1 Stakeholder (4 yr)
HW/SW Developer 1 Stakeholder (2 yr) 1 Stakeholder (4 yr)
Product Manager 1 Stakeholder (12 yr) -

Table 4.1.: Overview of Stakeholders

System Architects and E/E Architects were taken as the most critical stakeholders, as
they use the technical architecture model the most as a part of the model-based system
engineering. Handling of variants which arise during the engineering process is one of
their primary concerns. Therefore, we selected more than one interviewees for these
roles to increase the significance of the data. For the other roles, they would refer to
the technical architecture model. Still, the importance of the technical architecture
model itself to them is lower than for the System Architects and E/E Architects, who
both build and use the model in performing their primary tasks. Therefore, the answers
from one stakeholder for each role is deemed to be representative to the other level as
the principle of the development process for such roles do not significantly differ by the
level of abstraction in the system engineering process. Function Developer and HW/SW
Developer for the (vehicle) system-level is the same person as he or she is responsible
for both roles on this level.

4.2. Stakeholder Interviews

The interview was designed to take about 60 minutes. For a total of 12 stakeholders,
we organized an individual interview session. Two interviewers, the author and an E/E
architect who is responsible for MBSE process development for the technical architecture,
participated in the interviews. During the interview, he or she made sure that the details
of the answers are correctly captured and clarified any unclear statements. At the
beginning of the interview, we provided the interviewees with a short presentation
on the general overview and concept of technical architecture models and variant
management through feature modelling. The purpose of this presentation was to help
the interviewee properly understand the context. During the interview, we used a

25

4. Research Methods

large display in the meeting room to show the template which contains the interview
questions. The answers for each question were filled out together in the template to
prevent any misunderstanding.

The interview questions include the followings:

1. Role of the stakeholder within the organization (ex: System architect, software
developer, etc.)

2. Responsible system (e.g. Brake system, HWP/HWA)

3. Industry experience in the specified role

4. Main tasks in the specified role

5. What process/development steps they perform, for which they need technical
architecture models

6. What information should be available in the technical architecture models to
perform their roles

7. What kind of variability exist in the area of their tasks

8. If captured at all, where and how this variability is captured today

9. What kind of needs they have, for variant management of technical architecture to
perform their roles?

10. Among the typical needs for variant management below [OPS+17]. Which they
need for their roles

• Need to know which variants are meant for which customer projects

• Need to know what variants can be provided to customers (i.e. which feature
combination is valid)

• Need to have explicit information about product variability (i.e. To see the
high-level overview of features, their variants, and interdependencies)

• Need to work more efficiently

• Need to improve quality of products

• Need to increase the accessibility of information

• Need to handle the increased complexity

• Clear structuring guidelines for feature models

26

4.3. Use Case Identification and Requirement Derivation

• Change management: traceability to another feature and explicit interdepen-
dency (i.e. impact analysis can be done more transparently, without having to
go through each spec, requirements, test cases, configuration data, calibration
data and manually change them)

11. What activities they need with the feature model of technical architecture for their
roles

After the interview, the interview questionnaire, which was filled together during the
interview, was sent to the interviewee. In this way, the interviewees had a chance to
review their answers and correct them if necessary.

4.3. Use Case Identification and Requirement Derivation

To identify the use cases for the technical architecture models, we analyzed the interview
responses. Since the technical architecture includes variation points existing in the
system, the uses cases also include the potential use cases that could further arise in the
future with the help of an adequate variant handling method. The identification of the
use cases was conducted with several iterations, to spot the missing use cases and to
remove redundancy.

After fixing the use cases, we marked the use cases which have relevance to the variant
management. These use cases then became the focus of this study. As a next step, we
defined the types of variability which shall be covered by these use case. Finally, from
these variant management-related use cases, the requirements which need to be satisfied
to represent the variability were derived.

During the process of use case identification and requirement derivation, the results
were checked with two E/E architects on a weekly basis. In the weekly meeting, each of
the use cases identified from the interviews was thoroughly reviewed and confirmed by
them. Their roles were to help shape the use cases more concrete and identify redundant
use cases. In the requirement derivation phase, they reviewed the content of each
requirement and relevance to variant management. Also, prioritizing the requirements,
and thus, determining the focus of this thesis were conducted under their supervision.

4.4. Definition of Example Technical Architecture

From the requirements for the variant management of technical architecture, method
development was performed by exploring architectural decisions for the feature model,

27

4. Research Methods

which can satisfy the requirements of the variant management. For this, a clear problem
description was first of all necessary. Thus, we defined an ’example technical architecture’
which contains possible variability that exists in automotive systems, furthermore in the
highly-automated driving systems.

The purpose of developing the example technical architecture was to capture the vari-
ability related issues and to define the architecture, which we can use for the proof
of concept by implementing the method on it. In this regards, the architecture shall
include different kinds of variability which exist not only in conventional automotive E/E
systems but also in highly-automated driving systems. At the same time, the architecture
shall be as compact as possible and needs not to include the parts which are redundant
in terms of complexity to optimize the implementation time and efforts.

The example technical architecture, as shown in Figure 4.2, describes the system ar-
chitecture of an example system AD System 1. AD System 1 has two different vehicle
features, which corresponds to product line variants - the Pilot feature and the Assist
feature. The Pilot feature in the example architecture is intended to represent the L3
automated driving level defined in SAE J3016 Levels of Driving Automation [SAE18]. The
Assist Feature corresponds to the L2 level. According to SAE J3016, the L2 level is driver
support features, whereas the L3 level automated driving features. The L2 level requires
the drivers to supervise the support features constantly. From the L3 level, the driver is
’not driving’ when the automated driving features are engaged [SAE18]. However, when
the feature requests, the driver should be ready to step in and take control.

The technical architecture consists of several building blocks of different domains
of vehicle. Building blocks that exist in the example architecture are AD_Processing,
AD_SensorSet, Braking, Steering, and Localization. The majority of variability in the
technical architecture level arises in these building blocks; therefore, it is sufficient to
have these building blocks in the example. The domains and building blocks which
were not included in this example architecture (i.e. Body, Powertrain, Infotainment)
contain the types of variability which are redundant to the building blocks in the
example architecture, hence, additionally including these in the example still do not
add complexity. Each component that exists in the system (AD System 1) is visualized
as a box. The communication connections between components are represented as
lines between the boxes. The colour of the line exhibits the types of communication
connection. The red line represents FlexRay, green is for Ethernet 1 Gbps, blue for
Ethernet 100 Mbps, purple for LVDS and gray for CAN connections.

Furthermore, each vehicle feature can have different system variants, in this thesis, we
have five variants - Pilot Option A, Pilot Option B, Pilot Option C, and Assist Option A,
Assist Feature B. Figure 4.2 shows the architecture of the Pilot Option A and Assist Option
A. Each variant is realized with different design of subsystems, components and E/E

28

4.4. Definition of Example Technical Architecture

Fr
on
t

Lidar

Video

Radar

Si
de
s

Video

Radar

R
ea
r

Lidar

Video

Radar

Assistance / Automated

BB_AD(AS)_SensorSet

Chassis

BB
_B

ra
ki

ng
BB

_S
te

er
in

g
BB

_L
oc

al
iz

at
io

n

Central GatewayConnectivity

AD ECU 1

Stereo Video Camera

Long Range Radar

LidarCorner Radar

ESP_GenY

EPS

BB_AD(AS)_Processing

LidarCorner Radar

Airbag w/ IMU

Airbag w/ IMU

Fr
on
t

Lidar

Video

Radar

Si
de
s

Lidar

Video

Radar

R
ea
r

Lidar

Video

Radar

Assistance / Automated

BB_AD(AS)_SensorSet

Chassis

BB
_B

ra
ki

ng
BB

_S
te

er
in

g
BB

_L
oc

al
iz

at
io

n

Central GatewayConnectivity

AD ECU 2AD ECU 1

Lidar

Stereo Tele Camera

Long Range Radar

LidarFish Eye Camera

LidarNear Range Radar

Wide Camera

Long Range Radar

ESP_GenX

Positioning

BB_AD(AS)_Processing

iBooster

Fail-op EPS

Pilot Option A Assist Option A

Figure 4.2.: Example Technical Architecture: Pilot Option A and Assist Option A
[Rob19e]

architecture. The structure of the example technical architecture for all five system
variants are shown in Appendix B – System Variants of Example Technical Architecture.

Table 4.2 summarizes the variations between the Pilot feature and Assist feature. For
example, the front sensor set for the Pilot Feature is designed with three different types
of sensors - lidar, radar and video sensors. The Assist feature, however, is realized with
two types of sensors - radar and video sensors.

Subsystems Pilot Feature Assist Feature
Front SensorSet Lidar + Radar + Video Radar + Video

Processing AD ECU 1 + AD ECU 2 AD ECU 1
Brake System w/ redundant actuator ESP only

Steering System w/ redundant actuator EPS only
Localization IMU + Positioning IMU
Chassis bus Flexray + CAN Flexray

Table 4.2.: Comparison of Pilot Feature and Assist Feature of AD System 1 in the Exam-
ple Architecture

29

4. Research Methods

Pilot

AD System 1

Assist

Feature
Design

ESP+iBooster

Brake System

IPB + RBU
SubSystem
Design

Processing

AD System 1

Brake
System

Feature
Realization

Component
Design

Front + Side
+ Rear

SensorSet

Front + Rear

AD ECU 1 +
AD ECU 2

Processing

AD ECU 1

Steering
SystemSensorSet Localization

w/
Positioning

Localization

w/o
Positioning

Lidar +
Video +
Radar

SensorSet_Front

Video +
Radar

Camera +
Radar

SensorSet_Rear

Radar

EPS

Steering

Fail-op EPS

ESP GenX

ESP

ESP GenY Port config.
base

Ports for
AD ECU 1

Port config.
plus

FR + RR
Axle Steering

ESPLidar +
Radar

* Port config. base: 1x ETH 1Gbps, 2x ETH 100Mbps, 2x CAN
* Port config. plus: 2x ETH 1Gbps, 2x ETH 100Mbps, 1x CAN, 2x LVDS

E/E
Architecture

Design
(ComNet) Flexray

Chassis Bus

FlexRay +
CANCAN LVDS to

AD ECU 1

Comm. for Wide
Camera

ETH 1Gbps
to AD ECU 2

LVDS to
AD ECU 2

ETH 1Gbps
to AD ECU 1

Comm. for Lidar

ETH 1Gbps
to AD ECU 2

Figure 4.3.: Levels of Variants for Example Technical Architecture

Figure 4.3 shows the levels of variants for the example architecture. In terms of the
variability for the E/E architecture, i.e. communication network and power supply
system, we first focus on the communication network in this thesis. Handling of the
variability of the power supply system is left for the future work, due to the unavailability
of the standard modelling method of the power supply system and the limitation of
time.

4.5. Variant Management Method Development

In order to develop a method of variant management, we referred to the method
proposed in the literature. We identified ten criteria for structuring feature models for
software product lines. We studied each of them and selected the ones which can be
extended to the vehicle level method. Based on these criteria, we developed a high-level
concept for the method and implemented it on a tool in order to prove the concept. In

30

4.6. Proof of Concept: Implementation and Evaluations

the course of developing the method, a weekly meeting with the t subsystem-level E/E
architects was conducted, to discuss and review the interim result.

It was one of the requirements from the stakeholders to be able to use the standard
tool-suite Pure::Variants [Gmbb]. Pure::Variants is already in use in the organization as
a variant management tool due to its benefits of having mature modelling techniques
and availability of plug-ins into the current architecture modelling tools as well as the
requirement management tool used in the organization. Therefore in the development
of the method, we followed the Pure::Variants modelling techniques which are based on
CONSUL approach [BLPW04; SD07]. In the CONSUL approach, feature models play the
core role by representing the problem domain in terms of commonalities and variabilities
of the system [BLPW04]. In this sense, the central part of our method development
comprised of constructing the structures of feature models which can best address the
requirements from the stakeholders.

4.6. Proof of Concept: Implementation and Evaluations

In this work package, we implemented the method on the example technical architecture
in a variant management tool-suite Pure::Variants. The purpose of it was to prove the
concept of the method. First of all, we modelled the example technical architecture on
an architecture modelling tool, i.e. Rhapsody, in SysML notation, with BDDs and IBDs
created for each building block. Then we constructed feature models in Pure::Variants
for the example architecture. We created necessary features in the corresponding feature
models and also modelled the dependency between features by using the relation types
available in Pure::Variants. After importing the necessary external feature models to
the configuration space in Pure::Variants, we connected this configuration space to the
technical architecture model on Rhapsody by using Pure::Variants plug-in to Rhapsody.
Then we configured the system variants for each of the five variants of the example
architecture. As the last step, we performed the variant transformation on Pure::Variants,
and as a result, the 100% architecture models for each system variant were generated.
By comparing the generated models with the example architecture, we were able to
prove that the method worked correctly on the example technical architecture.

Finally, we evaluated the developed method. We organized a teaching session where we
invited stakeholders and presented the method. After that, the evaluation questionnaire
was sent to the stakeholders, along with a description document for the method. The
evaluation questionnaire contains questions which ask them to evaluate the method
based on the requirements for the variant management as well as the evaluation criteria
for feature modelling notations.

31

4. Research Methods

4.7. Threats to Validity

In the area of empirical software engineering research, four types of validity are recom-
mended to be considered - descriptive validity, theoretical validity, generalizability, and
interpretive validity [PG13].

4.7.1. Descriptive validity

Descriptive validity relates to the acquisition of the data, in terms of whether the data
is correctly collected. One practitioner whose main role concerns the design of the
technical architecture was present in all interviews. The practitioner could clarify the
interview questions and answers when necessary helping with the correct and effective
recording of the interview answers. During the interview, we used a large screen in
the meeting room to display the interview template, which contains all the interview
questions. The interviewer and the interviewee filled out the template together. In this
way, the interviewee could see how their answers are being recorded and correct it
right away if there is any misunderstanding. After the interview, we sent the recorded
interview answers to the interviewees, and they were asked to edit or add their answers
if necessary.

4.7.2. Theoretical validity

Theoretical validity concerns whether the correct data can be captured as intended.
Defining stakeholders to interview was performed by two practitioners in the organi-
zation who have been working on technical architecture design in many years. At the
beginning of each interview, we asked the interviewees to confirm their roles and the
area of work. It was to make sure that we are interviewing the correct practitioners
whose roles and experience match with our intention. Before the start of the interview,
we explained the background and aim of this thesis, and we also provided a short
orientation on the technical architecture models and variant handling activities in order
to make sure the interviewees understand the scope of the thesis. For the evaluation of
the method, we conducted a 1-hour method presentation, a method teaching session,
for the stakeholders, where we explained the concept of the method in detail. The
result of the implementation was also shown in this session. Also, after this teaching
session, we provided the stakeholders with a hand-out document, which includes a
detailed explanation of the method. Only the stakeholders who conducted the training
or at least who properly read the hand-out document were invited to participate in the
evaluation.

32

4.7. Threats to Validity

4.7.3. Generalizability

Generalizability is about to what degree we can generalize the results. A threat to
generalizability concerns that the scope of the data captured in this work is limited to
chassis domain of vehicle. Besides, the example technical architecture only includes the
building blocks in chassis domains. However, most of the variability that newly adds
complexity to the automotive system come from the adoption of automated driving
features, and this mostly belong to the Processing or Sensorset building blocks. Therefore,
variability existing in the chassis domain reaches a good level of representability, but
further domains shall be included in future work to improve the validity further. Further-
more, for better generalizability of the interview answers, at least two stakeholders for
the same role and the same design level shall be interviewed. In this way, the answers
could be cross-checked and achieve higher representability.

Another threat is that the feedback on the usage of the method was not yet considered.
Since it is still an early phase introducing a systematic variant management method in
the organization, our work focuses on developing the concepts of the method. Further
extension of the method shall follow in order to apply the method in the organization.
It includes aligning the structure of the Blackbox feature model with subsystem design
departments, agreeing on the type of data that shall be included in the feature model,
defining protocols for the exchange of feature models. Evaluating the method based on
the feedback of the usage is therefore left as future work.

4.7.4. Interpretive validity

Interpretive validity deals with whether the conclusions or inferences drawn are reason-
able, given the collected data. After the evaluation, the evaluation results are analyzed
and discussed with the practitioners in the company. These practitioners have roles
in designing technical architecture and have many years of experience in this area.
Therefore, they possess a good level of expertise to determine and confirm the direction
of the evaluation. The practitioners reviewed the content of the analysis and helped
interpret the additional comments provided by the respondents.

33

Chapter 5

Research Results

In this chapter, we present the results of the study which were obtained by applying the
research methods introduced in the previous chapter. The results of the study include
- definition of stakeholders, understanding of current context, the use cases for the
technical architecture models, the requirements for the variant management method for
the technical architecture, and development of the variant management method.

5.1. Profile of Stakeholders

The list below describes the primary roles of the stakeholders identified during the
interview:

1. (Vehicle) System-level / System Architect

• Vehicle-level system development and engineering

• Development of requirements/functional/logical/technical viewpoints for a
vehicle-level system

• Model-based system engineering (MBSE) methodology development for the
pre-development phase of vehicle-level system development projects

2. (Vehicle) System-level / E/E Architect

• Development of E/E architecture for vehicle-level

• MBSE methodology implementation for E/E architecture design on vehicle-
level

3. (Vehicle) System-level / Function and Software Developer

35

5. Research Results

• Development of software for a model-based controller for multi-actuator
usage (in order to generate new vehicle behavior and multi-actuator vehicle
control)

• Analysis of activity models and requirements for user-function development

• Realization of software for prototype vehicle

4. Subsystem-level / System Architect

• Subsystem development

• Development of modelling/variant management methodology (contents,
method, process, guideline) for subsystem level

5. Subsystem-level / E/E Architect

• Development of E/E architecture for a certain domain of a vehicle

• MBSE methodology development for E/E architecture specific to the domain

6. Subsystem-level / Software Architect

• Software architecture development according to software product line ap-
proach

• Development of software solutions (i.e. timing delay, signals, etc.) for the
interfaces between components as well as for new functionalities/concepts

7. Subsystem-level / Product Manager

• Generation of product roadmaps

• Definition of top-level requirements coming from markets

• Definition of modular sets for the product (determination of sub-component
combination, building blocks of the component)

For a system architect on the (vehicle) system-level, the product manager for the system-
level provides function description packages which include the descriptions of use cases
for the system. From this, the system architect then derives system requirements to the
technical layer based on which they design the system architecture. The E/E architect
performs requirement engineering for the design of E/E architecture and then derives
technical solutions to satisfy the requirements. The E/E architecture design is realized
by the design of the communication network and power supply system, including
determination of dimensions and property values for the elements in the architecture.
(Vehicle) system-level function and software developer analyzes activity models for
the system and requirements for user-functions. A function developer determines the
functionality of the controller to realize the requirements and user functions on the

36

5.2. Context Characterization

vehicle. With this, the activity diagram for the functionalities of vehicle controller which
was initially designed with black boxes develops to grey boxes and then finally to white
boxes. A software developer derives software solutions to realize the requirements and
user functions on the vehicle.

On the subsystem-level, a system architect takes information from the technical archi-
tecture and system-level requirements and derives requirement specifications for the
subsystem. The information from the technical architecture serves as input for the
requirement derivation for the subsystem-level. The subsystem architect then makes de-
sign decisions to satisfy the subsystem requirement specifications and derives subsystem
architecture, which is then used for the software/hardware/ECU design for the subsys-
tem components. The subsystem-level E/E Architect also develops E/E architecture for a
specific domain, such as chassis or powertrain, depending on how the organization is
structured. A software architect for a subsystem derives software requirement specifica-
tions from functional requirement specifications and requirement specification of the
subsystem. Then the software architect develops the software architecture following the
software product line approach which satisfies this software requirement specification.
The software architect is also responsible for finding software solutions for the interfaces
between the components in the subsystem. A product manager analyzes markets and
technical demands for the product of interest. Then the product manager considers
business cases for the identified trends and demands and decides whether to proceed to
development. As a next step, the product manager defines requirements for the product
to be developed and brings it into the organization for the start of development.

5.2. Context Characterization

The current status for the variant management and feature modelling within the orga-
nization could be understood through the stakeholder interviews. There exist several
approaches being developed and studied in subsystem design level for some subsystems.
The attempt to introduce feature modelling activities onto their development cycle has
already begun on the subsystem level. However, these approaches are confined to deal
with variability related problems in the subsystem development mostly for the software
design. In other words, the scalability to the higher-level of the system engineering, for
example, system design or system architecture design, is not considered. There exist no
variant handling method which could encompass the whole levels of system engineering
from system design level down to the subsystem development, which could be extended
to cover the implementation level as well.

37

5. Research Results

5.3. Use Cases For Technical Architecture Model

The use cases (UC) that were identified through the stakeholder interviews are as
followings:

UC1 Ensuring consistency: ensuring the consistency in terms of modelling notations
and concepts between domains and between levels (i.e. vehicle/sub-system levels)
including interfaces.

UC2 Model-based system architecture design: system architects and E/E architects de-
sign system architecture and E/E architecture for the system with MBSE approach.

UC3 Feature engineering: by using domain knowledge, create/determine features that
realize the functionality of different system variants

UC4 Visualize technical architecture and its variants: using the model to visualize the
technical architecture in order to see high-level system architecture including
communication and power supply network and variants of the system architecture

UC5 Show technical information of components and features: using the model to show
technical information of components and features explicitly

UC6 Show traceability requirements to technical solutions: traceability from require-
ments or user-functions to technical solutions in the technical architecture

UC7 Show dependency between features: dependency and interrelations between
features

UC8 Definition of interfaces: a consistent interface between different domains (i.e.
chassis domain and AD domain)

UC9 Feature-driven selection for each variant: derivation of a valid combination of
components/features for each system variant

Use case 1: Ensuring consistency This use case refers to deriving consistent chains of
action over defined building block elements across different domains and levels. This
use case can be characterized as a general use case which all other use cases need to
inherit. For better clarity, we categorize the remaining use cases under three categories -
use cases For system design, For using model and For further improvement of architecture
design process.

38

5.3. Use Cases For Technical Architecture Model

5.3.1. Use cases for system design

The use cases in this category refer to creating and revising the technical architecture
model as a part of the system development process. These use cases are mainly used
by the system architect and E/E architect, who are the designers of the technical
architecture.

Use case 2: Model-based system architecture design As a core part of MBSE process,
system architects and E/E architects design the system architecture from the use cases
and requirements, which in turn serves as technical solutions that satisfy the require-
ments. This use case is about designing/developing system architecture as part of the
V-model of MBSE process. For the design of system architecture, architects build and use
the models. For the design of the technical architecture, a product manager provides
function description packages, where use cases are described. Then the system architect
derives system requirements to the technical layer. Based on this, the system architect
designs the technical architecture. This use case also includes the design of E/E Architec-
ture. An E/E architect first analyzes the use cases, requirements and functionality of the
system and maps functionality to the technical architecture and the components existing
in the architecture. The design of E/E architecture includes the following activities -
designing a bus topology/communication network including designing connectors and
communication network connections, building a power supply topology and validating
it on safety requirements, dimensioning power supply components. This use case is
mainly used by the (vehicle) system-level system architect and the E/E architect both in
system and in subsystem-level.

Use case 3: Feature engineering An AD system can have different variants in the vehicle
feature design - premium, plus and base variants. Each variant differs in the functional
features such as lane change capability or velocity limits. Feature engineering refers to
designing system variants with different combinations of functional features. Deriving
technical solutions which can realize the functionality of these system variants is the
primary activity in the previous use case Model-based system architecture design. This use
case is used by the system architect and the E/E architect in both levels.

5.3.2. Use cases for using model

The use cases in this group refer to when the users use the available technical architecture
model for their needs. These use cases speak more from the user side rather than the
creator side.

39

5. Research Results

Use case 4: Visualize technical architecture and its variants This use case is about
showing the structure of the technical architecture. It shows what components comprise
the system, the communication network and power supply system for the system of
interest. Also, for the different variants of the system, variation points which occur in
different levels of variants need to be represented in the model. This use case shows
further potential usage of the technical architecture model. For instance, it could be
used for the comparison of architecture variants, and the subsystem-level users use
the model to understand the vehicle-level requirements. For example, the information
such as customer requirements, markets, vehicle types, development and production
timeline could be understood by observing the model. Similarly, in order to identify
stakeholders for a specific subsystem, it can also be used in the way of understanding
the interfaces and neighbouring system. Lastly, in some cases, depending on the users’
needs, a description of a high-level technical architecture which abstracts unnecessary
details is useful. For instance, for a high-level structure review with the management of
an organization, or for a reporting purpose, a high-level structure view without detailed
technical information is necessary.

This use case is used by the system architect in both levels, E/E architects in both levels
and product managers. However, it can be speculated that all stakeholders may need this
use case since they all are interested in understanding the overall structure of technical
architecture in order to gain a broader view of the system from the vehicle level.

Use case 5: Show technical information of components and features This use case means
referring to the technical architecture model in order to retrieve necessary technical
information of a specific part of the system. The technical information which shall be
available in the technical architecture model includes any information for the elements
of the system which stakeholders need. It includes the source and destination of signals,
power supply concepts, component properties, port information. This use case was
captured mainly to be used by the subsystem-level software developer and subsystem-
level system architect. A system architect, for instance, takes information from technical
architecture for the system integration tests, and this information is then used as the
basis of ECU design as well. Having these kinds of the necessary information in the
model also helps improve the accessibility of information.

5.3.3. Use cases for further improvement of architecture design process

This category describes the use cases which are not yet applied in practice but identified
as potential use cases. The stakeholders mentioned that they would potentially use the

40

5.3. Use Cases For Technical Architecture Model

technical architecture model as specified in these use cases with the help of a variant
management method.

Use case 6: Show traceability requirements to technical solutions This use case refers to
the definition and representation/visualization of relations between high-level require-
ments and the solution space. The requirements here include the aspects and contents
from safety and redundancy concept for AD systems, such as whether a redundant brake
system is needed or fail-operational processing is required. To fulfil these requirements,
the system architects design technical solutions, and the technical solutions are realized
by the capability of the technical elements that comprise the technical architecture. The
relation between these requirements and the technical solutions and elements shall
be captured. It can be achieved by establishing links from requirements to technical
solutions, and then to the technical elements in the technical architecture in order to
ensure the traceability. This link lies not only between requirements and technical archi-
tecture but also the design steps between them. That is, the link shall be formed from
requirements to the functional architecture, then to the logical architecture which shows
the logical elements to realize the functionality, and finally to the technical architecture.
Having traceability enables more straightforward and transparent impact analysis.

This use case was identified from the answers of the system-level function and system
developer, system architect, E/E architect and the subsystem-level system architect.
However, we expect that all the stakeholders would be interested in this use case
because it helps better understand the complete picture of the system architecture in
terms of showing requirements for each part of the technical solutions.

Use case 7: Show dependency between features This use case concerns describing de-
pendencies, interrelations and hierarchy between features existing in the system. The
subsystem-level E/E architect is the main stakeholder for this use case, but all other
stakeholders may also have an interest in it. It provides an overview of features in a
system, which is useful to understand the relations between features of a particular
subsystem and neighbouring parts.

Use case 8: Definition of interfaces This use case refers to defining a consistent interface
between vehicle domains. Subsystems are developed in different organizations; hence,
consistent interfaces between different domains are necessary, considering the increased
number of cross-domain features. This use case was identified from the answer of the
system-level function and system developer and subsystem-level system architect. We
expect that all system architects and E/E architects would be relevant to this use case
as well, because the vehicle-level system and the E/E architecture covers the whole

41

5. Research Results

vehicle domains, having to deal with many cross-domain features. In this sense, ensuring
consistent interfaces between the models from different design steps or domains are
essential.

Use case 9: Feature-driven selection for each variant The last use case deals with the
system variant configuration. A system variant is configured with a combination of
features and in order to derive a valid feature combination, the variant composition rules,
as well as the interdependencies between features, should be thoroughly considered. In
the traditional document-based system development environment, this information is
spread out over different development parties, and much of this information resides in
the head of the product owner. Thus, it was not only difficult to gather this information
but also quite probable to miss out an essential piece of information which leads to an
invalid combination of the features. However, if this information is modelled and the
users can get this information by simply taking the model, the variant configuration can
be done more effectively in a feature-driven way. This use case is the interest of the
system-level system architect and E/E architect.

5.3.4. Relevance of Use Cases to Variant Management

The use cases above include both for the technical architecture modelling and variant
management for the technical architecture. For the technical architecture model, there
exist ongoing activities within the organization to define the standardized modelling
method. However, variant management for the technical architecture level has not been
explored despite the needs to handle different system variants. Therefore, we deduce
that the needs for method development of variant management are higher and thus
more urgent, which sets the rationale for the focus of this thesis - variant management
for the technical architecture. In this sense, among the use cases listed above, it is
reasonable to select the ones that have aspects of variant management and continue for
the next step of requirement derivation on them.

Out of the nine use cases, six use cases (Use case 2, 3, 4, 6, 7 and 9) were identified as
relevant to variant management.

Use case 2: Model-based system architecture design In designing the technical archi-
tecture, the variability occurs when different technical solutions can realize the same
functionality. This variability occurs in terms of:

• Components

42

5.3. Use Cases For Technical Architecture Model

– Different type of components: for example, the subsystem Brake System can
be designed with the combination of ESP and Brake Booster or with One Box
Brake. It corresponds to the Subsystem Design level, which was shown in
Figure 2.5.

– Different number of the same components: for some systems, the number of
the same components may differ in the system variants.

– Different version of the same products: for instance, the same ECU can be
configured with different combinations of the parts within the ECU, such as
different communication interfaces or processing cores. This case also covers
different product generation of a component. It conforms to the Component
Design level.

• Communication connections

– Different communication connections for the same component: for example,
EPS can be connected to the Gateway via FlexRay or CAN. Also, concerning
this, ports usage shall be considered. It occurs when the same port is used for
different communication connections in different variants.

• Power supply connections

– Different power supply channel for the same component: for instance, some
components can be connected to dual power supply channels in one variant
and only one channel in another variant.

Furthermore, the following additional variability is captured during the interviews,
which exist outside of the technical architecture.

• Markets, regions, legislation, customer, customer projects

• Different types of vehicles (e.g. long-haul, vehicles for construction site)

• Timeline for development activities (e.g. series production start)

• Different sources/sinks for signals

Use case 3: Feature engineering The same system can be designed with different system
variants with different combinations of features. For example, the highway pilot (HWP)
system can have three different system variants, as shown in Table 5.1. It corresponds
to the Feature Design level.

43

5. Research Results

Variants Lane change functionality Velocity supports
HWP base X up to 80 kph
HWP plus O up to 80 kph

HWP premium O up to 120 kph

Table 5.1.: Example variants for Feature Design level

Use case 4: Visualize technical architecture and its variants For the visualization of
technical architecture, there exist different types of variants. First of all, different system
variants for the same system (ex: HWP Variant 1, HWP Variant 2) shall be shown with
the help of variant management. Also, stakeholders need architecture models or views
which abstract the details of the technical architecture based on their needs. For instance,
some stakeholders mentioned that they need a high-level architecture view which only
shows the name and type of the component for the management review. Furthermore,
most of the stakeholders, especially in the subsystem level, mentioned that they would
like to have an aid for comparing different architectural variants in order to understand
vehicle level requirements better. It requires the capability to identify common and
varying parts of the architecture.

Moreover, there were needs to display necessary information regarding variability. It
includes which variants are offered to which customer as well as the overall developmen-
tal timeline for each variant. Further extensions of variant handling capability which
enable the automatic display of possible topologies of technical architecture based on
the input selection of user-functions were also suggested.

Use case 6: Show traceability requirements to technical solutions In ensuring traceabil-
ity between different design artefacts, utilizing variant management approach has a
significant advantage. Variability occurs throughout the overall system design process;
therefore, a feature model can be a useful medium to build traceability between artefacts
from different steps of the design process.

As to the technical architecture, traceability exists in the following types:

• Traceability from requirements: a high-level requirement, such as a redundancy
requirement, shall have traceability links to the technical elements, which satisfy
such requirement.

• Traceability from functional architecture: there exist variability when different
technical solutions realize the same function. This aspect shall be examined
together with the variant management approach for the functional architecture,
or when considering extending the method for the technical architecture to the
functional architecture.

44

5.4. Requirements to Variant Management Method of Technical Architecture

• Traceability to subsystem architecture: traceability from a (vehicle) system-level
feature to the technical elements in the subsystem-level shall be visible in the
feature model. This factor is already covered by expressing the levels of variants
in the feature model. At the system design phase, there exist cases when system
architects do not have a clear idea of the design of the subsystem which satisfies
the requirements. For this case, the so-called blackbox-concept, which enables
importing the subsystem feature model from the subsystem owners, with pre-
defined and aligned interfaces between the two models.

Use case 7: Show dependency between features There exist dependencies between
features in the system. It includes a particular component requires the inclusion of
the other components or a particular component conflicts with another component
already existing in the system. For example, Brake Booster requires ESP or Chassis
_Bus_Flexray conflicts with Chassis_Bus_CAN. This information shall be modelled in the
feature model.

Use case 9: Feature-driven selection for each variant With the types of the features (i.e.
mandatory, optional, alternative, OR) and dependencies modelled in the feature models,
the configuration of system variants can be performed.

Figure 5.1 shows the use case diagram, which depicts the stakeholders, use cases and the
allocations of use cases from the stakeholders. The relevance to the variant management
is represented as a stereotype «VMRelated» for the corresponding use cases.

Figure 5.2 shows only the variant management-related use cases, for the better readabil-
ity. For the remaining part of the thesis, we will focus on these use cases.

5.4. Requirements to Variant Management Method of
Technical Architecture

From the variant management-related use cases, we derived the following requirements
(RQ) for the variant management of technical architecture.

RQ1 Level of variants: it shall show different levels of variants (i.e. system feature
design, subsystem, component) of the technical architecture.

RQ2 Show relations between high-level requirements and technical solutions: it shall
show relations between high-level requirements and technical solutions.

45

5. Research Results

Figure 5.1.: Use Case Diagram

Figure 5.2.: Use Case Diagram for Variant Management Related Use Cases

46

5.5. Variant Management Method for Technical Architecture

RQ3 Interdependency of features: it shall model the interdependencies between fea-
tures. Interdependency here refers to a relation between two features that requires
a feature to be revisited if the other feature changes.

RQ4 Ensure traceability via feature model: it shall have traceability links between
different design artefacts or viewpoints (e.g. from requirements to technical
solutions to the technical architecture).

RQ5 Blackbox concept for the subsystem parts: it shall be able to model a certain part of
the feature model as a blackbox and to import a feature model to fill the blackbox,
which is created by the part-owner.

RQ6 Automatic generation of variant architecture model: Shall automatically generate
100% architecture model for system variant.

RQ7 Show validity of a feature combination: it shall determine if a certain feature
combination is valid or not, based on the interdependency between features and
composition rules

RQ8 High-level abstraction view: it shall show a high-level abstraction view of technical
architecture for users’ needs (e.g. management review).

RQ9 Comparison support: it shall offer supports to compare architectures by showing
commonality and differences.

RQ10 Usability: it shall be easy to use.

RQ11 Readability: it shall be easy to read.

Due to the limitation of time and the consideration of priority, RQ8 and RQ9 are left for
future work. The usability and readability shall be ensured at the very best in exploring
solutions to satisfy the other requirements. Therefore the RQ10 and RQ11 are kept
common and general in the overall process of the method development.

5.5. Variant Management Method for Technical
Architecture

We categorized the primary requirements of focus based on the four subject matters that
need to be solved:

1. Variability in the system: from RQ1, RQ3, RQ6, RQ7

• Variability in vehicle feature design

47

5. Research Results

• Variability in subsystem design

• Variability in component design

• Variability in E/E architecture design

2. Variability outside of the system: from RQ1, RQ3, RQ6, RQ7

3. Traceability: from RQ2, RQ4

• from requirements to technical elements in the technical architecture

4. Blackbox concept: from RQ5

By exploring solutions for these subject matters, we developed the concept for the
variant management method.

5.5.1. Variability in the system

As discussed previously, there exist different levels of variants in the system. As shown
in Figure 5.3, subsystem design level represents the variability in the technical solutions
for subsystem design. The component design level is the same way for the variability in
the technical solutions for component design, and E/E architecture design level is for
the variability in the technical solutions for E/E architecture design. These technical
solutions are spread out over different domains of a vehicle and existing in the horizontal
direction. On the other hand, the feature design level represents the vehicle feature
design, in our example, either Pilot or Assist features. The design of the vehicle feature is
performed by choosing particular technical solutions from subsystem design, component
design and E/E architecture design levels. It means that the design of a vehicle feature
is performed vertically, by vertically incorporating design decisions for the three design
levels, which exist horizontally. Due to these two directions perpendicular to each other,
we need to separate feature models into two, one for the horizontal direction, the other
for the vertical direction.

Figure 5.4 shows the two feature models for each direction - one for vehicle feature
design (vertical) and the other for the design of technical solutions in subsystem,
components and E/E architecture design (horizontal).

The feature model for the vehicle feature design consists of features representing the
vehicle features of the system - in our example, Pilot and Assist feature. The technical
solutions feature model has several layers, each for subsystem design, component design
and E/E architecture design. By having separate feature models, we can independently
configure vehicle features with the technical solutions existing in the technical solutions
feature model in each layer.

48

5.5. Variant Management Method for Technical Architecture

Pilot

AD System 1

Assist

Feature
Design

ESP+iBooster

Brake System

IPB + RBU
SubSystem
Design

Processing

HWP / HWA

Brake
System

Feature
Realization

Component
Design

Front + Side
+ Rear

SensorSet

Front + Rear

AD ECU 1 +
AD ECU 2

Processing

AD ECU 1

Steering
SystemSensorSet Localization

w/
Positioning

Localization

w/o
Positioning

Lidar +
Video +
Radar

SensorSet_Front

Video +
Radar

Camera +
Radar

SensorSet_Rear

Radar

EPS

Steering

Fail-op EPS

ESP GenX

ESP

ESP GenY Port config.
base

Ports for
AD ECU 1

Port config.
plus

FR + RR
Axle Steering

ESPLidar +
Radar

* Port config. base: 1x ETH 1Gbps, 2x ETH 100Mbps, 2x CAN
* Port config. plus: 2x ETH 1Gbps, 2x ETH 100Mbps, 1x CAN, 2x LVDS

E/E
Architecture

Design
(CommNet) Flexray

Chassis Bus

FlexRay +
CANCAN LVDS to

AD ECU 1

Comm. for Wide
Camera

ETH 1Gbps
to AD ECU 2

LVDS to
AD ECU 2

ETH 1Gbps
to AD ECU 1

Comm. for Lidar

ETH 1Gbps
to AD ECU 2

Technical Solution for
Subsystem Design

: Horizontal

Technical Solution for
Component Design

: Horizontal

Technical Solution for
E/E Architecture Design

: Horizontal

Feature
Design	for
Pilot:
Vertical

Figure 5.3.: Directions for Design Levels

<Feature Model>
Vehicle Feature

Design

Pilot

Assist

<Feature Model>
Technical Solutions

Layer 1: Subsystem Design

Layer 2: Component Design

Layer 3: E/E Architecture
Design

Figure 5.4.: Structure of Feature Models - Vehicle Feature Design and Technical Solu-
tions

49

5. Research Results

Vehicle

ChassisDomain

Vehicle

Driver
Assistance

Subsystem
/System feature

Braking Steering Park Assist Cruise
Control

Highway
Pilot

Figure 5.5.: Functional Decomposition of Vehicle [KLD02]

Technical solution feature model shall include technical solutions spreading out over
the different domain of a vehicle. For this, we need to apply a categorization, and the
most common way of classifying it is to structure the feature model by the functional
architecture of the vehicle [KLD02]. Figure 5.5 shows the functional decomposition
of a vehicle, in which it decomposes the vehicle into domains, and then subsystems or
system feature.

This functional decomposition is the basis of all development process in the automotive
industry, and therefore it is easy to understand [KLD02]. Also, it is well-suited to the
automotive development settings, where the development for different subsystems and
components are distributed over different organizations and locations. However, this
shows weaknesses when having to apply variables which are global, not specific to
the system, such as brand, country, vehicle types. Also, ensuring traceability between
different levels is difficult in this decomposition [OPS+17]. Furthermore, it is not
consistent in the subsystem/system feature levels, where one is representing physical
building blocks of the vehicle, and the other is for the functional features. For our
technical solution feature model, we adopt this functional decomposition with some
modifications. Rather than having all domains and subsystems existing in the vehicle
which do not possess variability, we only include building blocks (e.g. braking, steering,
sensorset) which have variability in the technical solutions. This is because, the essence
of variant management is to model the variability in the feature model, not the whole
architecture of the system, which would be redundant to the information existing in the
technical architecture models. Figure 5.6 shows the structure of the technical solutions
feature model with functional decomposition applied. The weakness of the functional
decomposition presented above is compensated by adopting other concepts which are
presented in the next sections.

50

5.5. Variant Management Method for Technical Architecture

<Feature Model>
Technical Solutions

Layer 2: Component Design

Building Block: Processing

Building Block: SensorSet

Building Block: Braking

Building Block: Steering

Building Block: Communication

Building Block: Localization

Building Block: Power Supply

Layer 1: Subsystem Design

Layer 3: E/E Architecture
Design

Figure 5.6.: Structure of Feature Model - Technical Solutions with Building Blocks

5.5.2. Variability outside of the system

Not only the variability in the system, there exist variables which are global to the
systems. The examples of these parameters would include regions, markets, customers,
vehicle types and driving types. H. Hartmann introduced the structuring criteria by
context variability, which is shown in Figure 5.7 [HT08].

The advantage of this criteria is that it reduces redundancy and contributes to consistency,
and also it is well applicable to functional decomposition [HT08; OPS+17]. However, its
weakness is that it possibly has a high number of dependencies with the system models
[OPS+17].

In our method, we created a separate feature model for the context variability, so that it
can be flexibly combined with other feature models that describe a system, rather than
having the same context variability parts in each of the feature models for every system.
Figure 5.8 shows the structure of the context variability feature model.

51

5. Research Results

Figure 5.7.: Structuring Criteria by Context Variability [HT08]

<<Imported>>
<Feature Model>

Context Variability

Region

PKW

LKW

Customer A

Customer B

US

Europe

Asia

Customer

Vehicle type

Figure 5.8.: Structuring Criteria by Context Variability [HT08]

52

5.5. Variant Management Method for Technical Architecture

5.5.3. Traceability

As mentioned earlier, ensuring traceability from requirements to technical architecture
is an essential requirement for variant management. The most significant benefit of
having traceability is transparent change management. Through a well-established
traceability link, the changes in one part can be successfully traced to the affected
parts. It includes the changes in system requirements as well as the changes in a
subsystem or a component. Also, traceability helps users better understand the vehicle-
level requirements. In the automotive system development setting, where the whole
system development is divided into many different sub-levels of development, this is an
important point. It enables the development engineers for subsystems or component
levels to have vehicle-level system requirements and information.

In this sense, in examining the detailed structure of the feature models, we profoundly
considered securing traceability, mainly from the requirement to the technical archi-
tecture, which corresponds to the design process. System architects derive system
requirements from use cases, and then they derive technical solutions which can satisfy
the system requirements. Each technical solutions show the types and numbers of
components that shall exist in the system, which comprise the technical architecture.

The structuring guideline, presented by F. Bachmann, discusses structuring feature
models by asset types in domain [BN09]. Asset types refer to different design aspects in
the process of system development, such as requirement specifications and architecture
design. This guideline is adopted in our method to decide to structure the feature models
based on technical solutions derived from the requirement specifications. However, hav-
ing a separate feature model for the architecture design produces redundant information
to the technical architecture model.

As a result, the technical solution feature model contains the variances in the technical
solutions and the high-level requirements for these technical solutions. Technical solu-
tions contain technical elements which realize the solutions. The high-level requirements
existing in the technical solution feature model can be linked to the system requirements,
which are normally documented in a requirement engineering tool such as DOORS. In
the same way, the technical elements under the technical solutions can be connected to
the technical architecture model, which is modelled in the architecture modelling tool
like Rhapsody. Figure 5.9 shows the detailed structure of the technical solution feature
model, and Figure 5.10 is an example of it.

Figure 5.11 shows the complete structure of the technical solution feature model, from
the highest level - layers, down to building blocks, high-level requirements, technical
solutions, and technical elements.

53

5. Research Results

Feature Model

High-Level
Requirement

Technical
Solution 1

Technical
Solution 2

Technical
Element 1

Technical
Element 2

Technical
Element 3

Technical
Element 4

Architecture Model

Technical
Element 2

Technical
Element 3

Technical
Element 4

System

Requirement Specifications

Technical
Element 1

Figure 5.9.: Detailed Structure of Technical Solution Feature Model

Feature Model

Need redundant
brake system

ESP + iBooster

IPB + RBU

ESP

iBooster

IPB

RBU

Architecture Model

iBooster IPB RBU

System

ESP

Figure 5.10.: Example of Detailed Structure of Technical Solution Feature Model

54

5.5. Variant Management Method for Technical Architecture

<Feature Model>
Technical Solutions

Layer 2: Component Design

Building Block: Processing

Building Block: SensorSet

Building Block: Braking

Building Block: Steering

Building Block: Communication

Building Block: Localization

Building Block: Power Supply

Layer 1: Subsystem Design

Layer 3: E/E Architecture
Design

High-Level Requirement 1

Technical Solution 1

Technical Solution 2

Technical Element 1

Technical Element 2

Technical Element 3

High-Level Requirement 2

Technical Solution 4

Technical Element 4

Technical Element 5

High-Level Requirement 1

Technical Solution 1

Technical Solution 2

Technical Element 1

Technical Element 2

High-Level Requirement 2

Technical Solution 3

Technical Solution 4

Technical Element 4

Technical Element 5

Technical Element 6

High-Level Requirement 1

Technical Solution 1

Technical Solution 2

Technical Element 1

Technical Element 2

Technical Element 3

High-Level Requirement 2

Technical Solution 3

Technical Solution 4

Technical Element 4

Technical Element 5

Technical Element 6

Technical Solution 3

Technical Element 6
Technical Element 3

Figure 5.11.: Overall Structure of Technical Solution Feature Model

In summary, the feature model is structured based on technical solutions. The most
significant advantage of this is traceability, from the requirements to the technical
solutions and then to the technical architecture. In this way, we can also document
the technical solutions for the design decisions, which usually only reside in the brain
of system architects. Besides, this enables a more straightforward system variant
configuration, due to the dependency modelled between vehicle level features and
high-level requirements. With this, by selecting the vehicle feature (e.g. either Pilot or
Assist), the majority of high-level requirements are automatically selected. It reduces the
number of selections that the users have to make to configure a system variant and helps
to reduces the possibility of making mistakes by missing out some necessary selections.
However, a disadvantage of this method is that it is quite complicated.

55

5. Research Results

<<Imported>>
<Feature Model>

Technical Solutions_BB
Steering

High-Level Requirement 1

Technical Solution 1

Technical Solution 2

Technical Element 1

Technical Element 2

Technical Element 3

High-Level Requirement 2

Technical Solution 3

Technical Solution 4

Technical Element 4

Technical Element 5

Technical Element 6

Figure 5.12.: Structure of Technical Solution Feature Model - Blackbox Concept

5.5.4. Blackbox Concept

For the blackbox concept, the feature models for the contents of the blackbox, i.e. a
particular subsystem or component, should be able to be imported and fill the part
which was left as blackbox in the technical solution feature model of the system. The
product owner organizations or departments would create these feature models and
provide it to the system architects and E/E architects. The structure of the feature model
shall follow the technical solution feature model, as these models also represent the
technical solutions specific for particular subsystems or components. Figure 5.12 shows
the structure of these feature models for the blackbox concept.

After importing these blackbox feature models into the project space of the system, the
complete picture of the technical solutions for the system shall be available, and the
users can now configure the system variant by selecting particular technical solutions
for each variant.

It should be considered that each development parties for the subsystem or components
might already have different modelling structures or notations for their feature models.
In order to minimize the modelling efforts and preventing having to create an entirely
new feature model for this blackbox concept, an adequate alignment between these two

56

5.5. Variant Management Method for Technical Architecture

Configuration Space

<<Imported>>
<Feature Model>

[FM2_01] Technical
Solutions_BB Steering

<<Imported>>
<Feature Model>

[FM3] Context Variability
<Requirements>

Pilot / Assist

<Technical Architecture Model>
Pilot / Assist (150%)

<Technical Architecture Model>
Pilot Option A

<Technical Architecture Model>
Pilot Option B

<Technical Architecture Model>
Assist Option A

AD System 1 Project

<Feature Model>
[FM1] Vehicle Feature

Design

<Feature Model>
[FM2_00] Technical

Solutions

Figure 5.13.: Overview of the Overall Concept

levels, i.e. subsystem/component feature model and system feature model, shall follow.
For the alignment, the protocols to exchange the feature models and the compromised
structure of the feature model which can be agreed by both parties shall be determined.

5.5.5. Overview of the overall concept of the method

Figure 5.13 shows the overall concept of the variant management method. We numbered
the feature models based on the order of the usage in the system variant configuration.
The user shall follow the number of feature models, from 1 to 3, when selecting features
for a particular system variant. The steering system is used as an example for the
blackbox concept (FM2_01).

The configuration space here means where the corresponding feature models relevant for
the system are added and configured together for the system variant configuration, which
produces resulting product models for each system variant (e.g. Pilot Option A, Pilot
Option B). According to the user manual of Pure::Variants, a variant management tool
which we used for the implementation of this method, the configuration space is "used
to combine models for configuration purposes [Gmb19]". In the configuration space,
there exist the first two feature models, FM1 Vehicle Feature Design and FM2_00 Technical
Solutions, which are specific for the system (i.g. AD System 1 in our example). These two
feature models abide in the system project, in our example, AD System 1 Project. Outside
of this project, in the same configuration space, the other two external feature models are
imported - FM2_01 Technical Solutions_BB_Steering, so-called Blackbox feature model, and
Context Variability. For the traceability, certain features in the Technical Solution feature

57

5. Research Results

models are connected to requirement specifications which usually reside in requirement
management tool and to the technical architecture model in the architecture modelling
tool. To be more specific, the high-level requirements which are modelled as features in
the technical solution feature model, i.e. FM2_00 Technical Solutions and the blackbox
feature model, can be linked to requirements in requirement management tool. Also,
the technical elements which are also modelled as features in the same feature models
are connected to the corresponding model elements in the technical architecture model.
Finally, the feature models added in the configuration space can be jointly configured to
produce each different system variant (e.g. Pilot Option A, Pilot Option B).

5.5.6. Dependencies between feature models

For better usability, we also model dependencies between feature models. Figure 5.14
shows example dependencies existing between the feature models. Between FM1 Vehicle
Feature Design and FM2_00 Technical Solutions, a dependency between the vehicle
feature, i.e. Pilot or Assist, and the high-level requirements or technical solutions that
are specific to the vehicle feature shall be added. For example, Pilot feature requires to
have a redundant braking system. Then a dependency from the feature Pilot in FM1
Vehicle Feature Design to the high-level requirement feature Need Redundant Braking
System in FM2_00 Technical Solutions shall be added. The same dependency applies
between FM1 Vehicle Feature Design and FM2_01 Technical Solutions_BB_Steering.

Additionally, between FM2_00 Technical Solutions and FM2_01 Technical Solu-
tions_BB_Steering, a dependency shows that a specific building block in FM2_00 Technical
Solutions is modelled as blackbox, and this part corresponds to a separate feature model
which is imported from outside, FM2_01 Technical Solutions_BB_Steering.

For the FM3 Context Variability, no dependencies were added in this thesis, but potential
dependencies about the global variables could be added. For example, a dependency
showing that a particular feature is specific to a certain market or is intended for
a particular vehicle type can be added. However, it is crucial to make sure that the
direction of dependencies goes only from FM1 Vehicle Feature Design or FM2_00 Technical
Solutions, which are the feature models specifics to a particular system, to the imported
feature models. In other words, the system-specific dependenceis shall only be added to
the system-specific feature models, but no to the external feature models which shall be
globally used. System-specific dependencies such as "Pilot feature requires Redundant
Steering System" shall not be added to the imported feature models but only to the
system-specific feature models, such as FM1 Vehicle Feature Design or FM2_00 Technical
Solutions.

58

5.5. Variant Management Method for Technical Architecture

<Feature Model>
[FM2_00] Technical

Solutions

Layer 2: Component Design

Building Block: Processing

Building Block: SensorSet

Building Block: Braking

Building Block: Steering

Building Block: Communication

Building Block: Localization

Building Block: Power Supply

Layer 1: Subsystem Design

Layer 3: E/E Architecture
Design

High-Level Requirement 1

Technical Solution 1

Technical Solution 2

Technical Element 1

Technical Element 2

Technical Element 3

High-Level Requirement 2

Technical Solution 4

Technical Element 4

Technical Element 5

Technical Solution 3

Technical Element 6

<Feature Model>
[FM1] Vehicle Feature

Design

Pilot

Assist

<<Imported>>
<Feature Model>

[FM2_01] Technical
Solutions_BB Steering

High-Level Requirement 1

Technical Solution 1

Technical Solution 2

Technical Element 1

Technical Element 2

Technical Element 3

High-Level Requirement 2

Technical Solution 3

Technical Solution 4

Technical Element 4

Technical Element 5

Technical Element 6

<<Imported>>
<Feature Model>

[FM3] Context Variability

Region

PKW

LKW

Customer A

Customer B

US

Europe

Asia

Customer

Vehicle type

Pilot "requires"
these high-level

requirements

Building Block
Steering is modelled
as blackbox which
"corresponds to"

FM2_01 feature model

Global
variables:
configured

together with
other feature

models

Figure 5.14.: Example Dependencies Between Feature Models

5.5.7. Overall process of using the method

In this section, we present the process of using the method from constructing the feature
models and using the models for the system variant configuration, as shown in Figure
5.15 and described in steps below:

Step 1 Build FM2_00 Technical Solutions

- Create the technical solution feature model for the system of interest, add layers,
building blocks, high-level requirements, technical solutions and technical elements
as features.

Step 2 Import FM2_01 Technical Solutions_BB_Steering

- Import the blackbox feature models that is created and offered by product owners
into the Configuration Space.

Step 3 Build FM1 Vehicle Feature Design

59

5. Research Results

Configuration Space

<<Imported>>
<Feature Model>

[FM2_01] Technical
Solutions_BB Steering

<<Imported>>
<Feature Model>

[FM3] Context Variability
<Requirements>

Pilot / Assist

<Technical Architecture Model>
Pilot / Assist (150%)

<Technical Architecture Model>
Pilot Option A

<Technical Architecture Model>
Pilot Option B

<Technical Architecture Model>
Assist Option A

AD System 1 Project

<Feature Model>
[FM1] Vehicle Feature

Design

<Feature Model>
[FM2_00] Technical

Solutions

1 2

3

4

5

8

7

6

Figure 5.15.: Process of Using the Method

- Create the vehicle feature design feature model and add vehicle features. (e.g.
Pilot or Assist)

Step 4 Add relations (dependencies) to FM1 Vehicle Feature Design

- Add dependencies to FM1 Vehicle Feature Design for the high-level requirements or
technical solutions specific to the vehicle feature. (e.g. Pilot requires the high-level
requirement "Need Redundant Braking System")

Step 5 Import FM3 Context Variability

- Import the context variability feature model into the Configuration Space.

Step 6 System variant configuration (product configuration)

- Select the technical solutions to create a system variant. For example, if we would
like to configure Pilot Option A, we need to do the selections of technical solutions
for the high-level requirements that is specific to Pilot feature. For this, in this step,
we select the technical solution "Lidar + Radar + Video sensors at front" which is
for the high-level requirement "Need to detect objects in front".

Step 7 Connect the Configuration Space (feature models) to the technical architecture
model

- The Configuration Space which contains the feature models shall be connected
to the technical architecture model. After this connection, the technical elements
which exist under the technical solutions in this feature model shall be assigned
to the corresponding model elements in the technical architecture model. For

60

5.5. Variant Management Method for Technical Architecture

instance, the technical element "Lidar" which is under the technical solution 1
"Lidar + Radar + Video sensors at front" shall be linked to the component block
existing in the technical architecture model.

Step 8 Variant transformation

- Based on the configuration performed for each system variant, the 100% architec-
ture model shall be automatically created.

61

Chapter 6

Implementation

The variant management method that we presented in the previous chapter was im-
plemented on the example technical architecture in a variant management tool-suite
Pure::Variants. In this chapter, we present the result of the implementation.

6.1. Pure::Variants Modelling Concept

Pure::Variants [Gmba] is a variant management tool-suite by Pure-Systems GmbH that
is developed based on the CONSUL approach [BPS04]. It was primarily developed to
support each phase of the software product-line engineering [Gmb19] Pure::Variants is
regarded as a practical feature modelling language or method developed and proposed
by the industry side, whereas most of the feature modelling approaches, listed in Section
3.3.2, are presented by academia [BSL+13]. M. Sinnema et al. classifies Pure::Variants
as a mature variability modelling technique that differ from the modelling techniques
such as CBFM [CHE05] and FeatuRSEB [GFd98] which are based on FODA [KCH+90]
[SD07].

Pure::Variants models variability with the combined usage of four types of models:
Feature Model, Variant Model, Family Model, and Result Model. The Feature Model contains
FODA-like features, which means that it models variability as features [SD07]. In
addition to the type of features, the Feature Model also contains composition rules which
represent dependencies between features. The Variant Model describes a configuration of
features to comprise a specific variant of a system. The Family Model is necessary because
it describes the family in terms of architectural elements [SD07]. It includes components
and parts which are associated with source models [SD07]. Source models can be system
architecture models which describe the product in the system level or programming
language elements such as classes, objects, flags or variables in the software level which

63

6. Implementation

determine how the source code for the specific part is generated [SD07]. Finally, the
Result Model indicates which elements that are associated with the Family Models are
included in the product [SD07]. Based on the type of features and composition rules
specified in the Feature Model, and the elements selected in the corresponding Variant
Model, the Result Model is generated through variant transformation.

The advantage of Pure::Variants is that, firstly, it describes a modelling method that is
suitable for describing embedded system architectures in the industry. Also, it provides
adequate tool support which allows users to produce an outcome which can directly be
used for product descriptions.

6.2. Implementation of Variant Management Method

In this section, we describe the process and results of the implementation of the method.
The developed variant management method was implemented on the example technical
architecture in Pure::Variants. The implementation follows the ’Overall process of using
the method’, which we presented in Section 5.4.7. For the architecture modelling of the
example technical architecture, we used Rhapsody.

6.2.1. Preparation: Creation of Technical Architecture Model

In order to correctly implement the variant management method, the FM2_00 Technical
Solutions feature model needs to be connected to the corresponding technical architec-
ture model for the system of interest. Also, to prove the concept of the method, we need
to observe whether the correct architecture models for each different system variant
(e.g. Pilot Option A, Pilot Option B, Assist Option A) are produced as the result of system
variant configuration and variant transformation. For this, we created the technical
architecture model for the example technical architecture in Rhapsody. As explained
in Chapter 2 Foundations, the technical architecture is modelled with different views
each represented in BDD and IBD. We modelled each building blocks of the example
architecture as separate BDDs and IBDs, as shown in Figure 6.1. Figure 6.2 and Figure
6.3 shows the screenshots of BDDs and IBDs of the example technical architecture that
we modelled in Rhapsody. This is the 150% model, which include all variation points
existing in all system variants. For the architecture modelling, we followed the MBSE
modelling guideline in the organization.

64

6.2. Implementation of Variant Management Method

Figure 6.1.: Structure of Technical Architecture Model for the Example Architecture

BDD_Infrastructure BDD_Braking

BDD_SensorSet BDD_Localization

BDD_ProcessingBDD_Steering

Figure 6.2.: BDDs of Example Architecture

65

6. Implementation

IBD_Infrastructure IBD_Braking

IBD_SensorSet

IBD_Localization

IBD_Processing

IBD_Steering

Figure 6.3.: IBDs of Example Architecture

6.2.2. Step 1 Build FM2_00 Technical Solutions

The example project PROJECT1_ADSystem1 for the example system AD System 1 of the
example technical architecture was created in the Pure::Variants project space. Under
this project, we created the feature model FM2_00 Technical Solutions. Figure 6.4 shows
the screenshot of FM2_00 Technical Solutions, and Figure 6.5 shows the same feature
model in graph format.

Pure::Variants supports four different types of features - Mandatory (symbol: exclama-
tion mark), Alternative (1 out of n, symbol: bi-directional arrow), OR (i..j out of n,

66

6.2. Implementation of Variant Management Method

Figure 6.4.: FM2_00 Technical Solutions

67

6. Implementation

Figure 6.5.: FM2_00 Technical Solutions in Graph

symbol: cross mark), and Optional (0..1, symbol: question mark) [SD07]. The legend
for this notation is added in the right upper corner of Figure 6.4.

On the top level, there exist three layers - LAYER1_Subsystem, LAYER2_Component and
LAYER3_E/E Architecture. Under each layer, Building Block (BB)s are added where
necessary. For instance, LAYER1_Subsystem has building blocks of subsystems. However,
for LAYER2_Component, only a few variabilities exist for some of the technical elements
modelled in the upper layer, i.e. LAYER1_Subsystem. Therefore, for simplicity, we did
not add building blocks to this layer. For LAYER3_E/E Architecture, the building block of
BB_Communication (Communication network) exist, and BB_Power Supply System could
be added. The building block features are modelled as Optional so that the user can add
only the necessary building blocks for the system of interest.

Under this top-level structure, as explained in the previous section, in the techni-
cal solution feature model, high-level requirements, technical solutions and technical
elements are modelled as features. Also, there exist dependencies between the lay-
ers. For instance, under LAYER1_Subsystem and BB_Brake, the high-level requirement
RQMT_RedundantBrakeSystem is added. The two possible technical solutions for this

68

6.2. Implementation of Variant Management Method

high-level requirement, TS1_ESP_iBooster and TS2_IPB_RBU are modelled as features.
Each technical solution has the corresponding technical elements as child features - ESP
and iBooster for TS1_ESP_iBooster, IPB and RBU for TS2_IPB_RBU. For the technical
element ESP, there is variability in the component design, product generation - i.e. ESP
GenX, ESP GenY. This is modelled as dependency Requires which points to the high-level
requirement RQMT_ESP_Generation under the LAYER2_Component.

By having this dependency, not only the user sees the relations between the features,
but also the user gets help in the system variant configuration step by being guided
to the part where a selection of technical solutions is necessary. In this case, when
the user selects the TS1_ESP_iBooster for the redundancy requirement, he or she is
then notified, due to the dependency, that he or she needs to make a selection for
RQMT_ESP_Generation. Otherwise, the feature combination for the system variant
configuration would be invalid. Having these dependencies reduces the possibility of
making mistakes by leaving out some necessary selections.

High-level requirements and technical solutions modelled here are examples created
for this implementation. The technical plausibility or the completeness was not consid-
ered.

6.2.3. Step 2 Import FM2_01 Technical Solutions_BB_Steering

As a next step, we imported FM2_01 Technical Solutions_BB_Steering, so-called blackbox
feature model, into the project space, as shown in Figure 6.6. The screenshot on the left
shows the project space and the feature model is shown on the right, both in tree and
graph format.

In this thesis, Steering System is used as the example of blackbox concept. FM2_01 Tech-
nical Solutions_BB_Steering was created in a separate project (PROJECT2_BB_Steering)
in advance. The structure of this feature model follows the FM2_00 Technical Solutions
in this implementation, being composed of high-level requirements, technical solutions
and technical elements.

The BB_Steering in FM2_00 Technical Solutions is modelled as blackbox, meaning no con-
tent is added but only the relation EqualsAny to FM2_01 Technical Solutions_BB_Steering.
In this way, the blackbox is filled with the high-level requirements and technical solutions
offered by the product owner, solving the issue of having no visibility on the design
options of the subsystem from the technical architecture level.

69

6. Implementation

Figure 6.6.: FM2_01 Technical Solutions_BB_Steering

Figure 6.7.: FM1 Vehicle Feature Design with relations

6.2.4. Step 3 Build FM1 Vehicle Feature Design

This feature model is also created under the AD System 1 project, since it is also project-
specific. The structure of this feature model is rather simple - it only has vehicle features,
in our case Pilot and Assist.

6.2.5. Step 4 Add relations (dependencies) to FM1 Vehicle Feature Design

Now that we have feature models both for technical solutions and vehicle feature design,
we can add dependencies. The dependencies Requires and Conflicts are added to FM1
Vehicle Feature Design as shown in Figure 6.7.

These dependencies point to the high-level requirements or technical solutions, which are
modelled in the feature models for technical solutions, i.e. FM2_00 Technical Solutions
and FM2_01 Technical Solutions_BB_Steering. For instance, to design the AD System
1 with Pilot feature, for the subsystem design level, we need redundancy both in the

70

6.2. Implementation of Variant Management Method

Figure 6.8.: FM3 Context Variability

brake system and in the steering system, fail-operational processing of AD ECUs, ability
to detect objects in front as well as the detection of lanes. On the component design
level, Pilot feature requires to have Port configuration plus for the main AD ECU. Lastly,
for the E/E architecture, we need a redundant chassis bus. Therefore, the Requires All
dependency directing to the corresponding high-level requirements are added.

6.2.6. Step 5 Import FM3 Context Variability

In the same way that we imported the blackbox feature model, we added context
variability feature model to the project space. Figure 6.8 shows the project space and
the FM3 Context Variability.

6.2.7. Step 6 System variant configuration (product configuration)

Now that all necessary feature models are added into the project space, we can configure
the system variants. In the configuration space of Pure::Variants, variant models for each
system variants were created (e.g. Pilot_OptionA.vdm). Variant models would show
the feature trees of all the feature models that exist in the configuration space. The users
need to make necessary selections of the technical solutions. Here, the numbering of
the feature models comes into use. The users can follow the numbers of feature models,
from the FM1 in the increasing order to the FM3, which guide them to the next feature
model that they need to check.

For example, the users would first need to go to the FM1 Vehicle Feature Design part in
the variant model and make the selection for the vehicle feature - Pilot or Assist. Due to

71

6. Implementation

the dependency added in the FM1 Vehicle Feature Design, the high-level requirements in
the FM2_00 Technical Solutions and the FM2_01 Technical Solutions_BB_Steering which
are required by the vehicle feature are then automatically selected, and the conflicting
parts are deselected. Then the users simply need to make the selections in the required
parts based on the needs of the system variant. As explained before, this makes the
variant configuration simpler and more straightforward, as the necessary parts are
automatically activated and the user is informed whether there still exist more selections
that to do. Lastly, the global variables for the context variability available in the FM3
Context Variability can be selected.

Figure 6.9 shows the configuration steps of the variant model Pilot_OptionA.vdm from
the beginning, selecting vehicle feature in FM1 to choosing values for global variable in
FM3. As a result, the system variant Pilot_OptionA looks like the screenshot shown in
Figure 6.10.

In Pure::Variants, although the feature models are numbered in the alphabetical order
based on the order of usage for the variant configuration, they are not alphabetically
ordered in the variant models. This point can confuse the user, making the users going
up and down to find the next number of feature models for the selection. As one can
see in Figure 6.10, the result is correctly shown in the alphabetical orders of the feature
models - from FM1 on the top, and down to FM3 at the bottom. Thus, this point shall be
improved from the tool side.

6.2.8. Step 7 Connect the Configuration Space (feature models) to the
technical architecture model

One of the advantages of using Pure::Variants is that it provides plug-ins to the tools
that are used in the system engineering process. We modelled the technical architecture
model on Rhapsody, and through the Pure::Variants plug-in to Rhapsody, the architecture
model and the configuration space in Pure::Variants which contain feature models are
connected. The screenshot on the left in Figure 6.11 shows the plug-in window of
Pure::Variants on Rhapsody.

After connecting the configuration space and the architecture model, we need to assign
the technical element features from the feature models onto the model elements in
the technical architecture, such as Blocks, Connectors and Ports. In SysML notation for
technical architecture, physical components such as ECUs, sensors and actuators are
modelled as Blocks in BDDs, and communication connections are modelled as Connectors
linked between Ports of the components in IBDs. The features from Pure::Variants
feature models are assigned to Constraints and these shall be attached to model elements
through Attach.

72

6.2. Implementation of Variant Management Method

Selection of
vehicle feature

Selection of
technical solutions

for subsystem design layer

Selection of
technical solutions for component and E/E

architecture design layer and from blackbox
Selection of

context variability

...

Figure 6.9.: System Variant Configuration of Pilot_OptionA in its Variant Model
Pilot_OptionA.vdm

Depending on the types of variability, the model element to which the Constraint shall
be attached differ as follows:

• To Blocks in BDD: for component variability, i.e. whether a particular component
exists in the system or not, mostly in LAYER1 Subsystem and also in LAYER2
Component of technical solution feature models

• To Ports in IBD: for port configuration variability of ECUs in LAYER2 Component of
technical solution feature models

• To Connectors in IBD: for the communication network variability in LAYER3 E/E
Architecture of technical solution feature models

73

6. Implementation

Pilot Option A Assist Option A

Figure 6.10.: Configuration Result of Pilot_OptionA and Assist_OptionA

74

6.2. Implementation of Variant Management Method

Figure 6.11.: Pure::Variants Configuration Space Connected to Technical Architecture
Model

Figure 6.12.: BDD_SensorSet: Constraints attached to Blocks

Figure 6.12 shows the BDD_SensorSet of the example architecture where the Con-
straint referring to the technical elements in the feature models are attached to the
corresponding Blocks in the architecture model.

In Figure 6.13, the features AD_ECU_1_PortConfig_plus and AD_ECU_1_PortConfig_base
are attached to the corresponding Ports of AD_ECU_1. In addition, the features referring

75

6. Implementation

Figure 6.13.: IBD_SensorSet: Constraints attached to blocks

to the communication network variability, e.g. LidarToADECU1_ETH1Gbps, are attached
to the corresponding Connectors in the architecture model.

6.2.9. Step 8 Variant transformation

The final step is to perform the variant transformation in Pure::Variants for each system
variants. As the results of the variant transformation, the technical architecture model
(100% model) which corresponds to the system variant is automatically produced. It
means that only the model elements (Blocks, Ports, Connectors) that exist in the specific
system variant remain in the resulting transformed model and the non-relevant elements
are removed. Figure 6.14 shows a part of the transformed model for Pilot Option A and
Assist Option A. For simplicity and easier comparison, here we only show BDDs and
IBDs for the SensorSet building block. The transformed models that include the whole
building blocks are shown in Appendix C – Transformed Model of Example Technical
Architecture.

We checked the transformation models for all system variants (Pilot Option A, Pilot Option
B, Pilot Option C and Assist Option A, Assist Option B), and we could find that they were
correctly transformed. Since, in performing this implementation, we followed the exact

76

6.2. Implementation of Variant Management Method

[BDD_SensorSet]
Assist Option A

[IBD_SensorSet]
Pilot Option A

[BDD_SensorSet]
Pilot Option A

[IBD_SensorSet]
Assist Option A

Figure 6.14.: Transformed Model: BDDs of Pilot Option A

’Process of using the method’ introduced in Section 5.2.7., we could conclude that the
concept of this method was successfully proved on the example technical architecture.

77

Chapter 7

Evaluation

As the final step of this study, we evaluated the method based on the feedback from
the stakeholders. We arranged a teaching session and invited the stakeholders that we
had interviewed. The teaching session lasted about one hour, and there we explained
the concept of the method and presented the results of the implementation. In order
to obtain concrete feedback for the essential attributes of the method, we created an
evaluation questionnaire. After the teaching session, the questionnaire was sent to the
stakeholders, along with an additional document, which contains a detailed description
of the method. In this chapter, we present the results of the evaluation.

7.1. Evaluation Questionnaire

In the design of the evaluation questionnaire, we considered the two aspects - scientific
evaluation and practical evaluation. Since the method shall be applied and used in
practice and the method was developed based on the requirements derived from the
needs of the stakeholders, it is crucial to evaluate the method on the practical criteria.
Therefore, in the practical part of the questionnaire, we asked the respondents to
evaluate the method in terms of the primary concepts of the method, which we derived
from the requirements. The scientific evaluation was also added in order to assess our
method based on the proven criteria for feature modelling. The evaluation criteria
are formulated based on the recommendation for "Requirements to feature modelling
notations [DS06]"

The evaluation questionnaire consists of three parts with the following contents:

• General

0-1 Conduct of training (Yes / No)

79

7. Evaluation

0-2 Industry experience (in years)

• Part 1. Evaluating the method and the process of using it

1-1 Evaluation in terms of "modelling variability of the system"

1-2 Evaluation in terms of "ensuring traceability"

1-3 Evaluation in terms of "blackbox concept"

1-4 Evaluation in terms of "modelling variability outside of the system"

• Part 2. Evaluating the feature modelling notation and the structure of feature
models

2-1 Evaluation in terms of the criteria "Type distinctions"

2-2 Evaluation in terms of the criteria "Dependencies"

2-3 Evaluation in terms of the criteria "Simple and Expressive"

2-4 Evaluation in terms of the criteria "Readability"

2-5 Evaluation in terms of the criteria "Standardizeability"

2-6 Properties of the method that would increase the standardizeability (Multiple
choices)

* Traceability links from requirements to technical architecture

* Technical solution feature model which is structured based on technical
solutions

* Context variability feature model

* Blackbox concept

* Using the standard tool Pure::Variants

• Part 3. General Feedback

3-1 Positive aspects of the method

3-2 Negative aspects of the method

3-3 Evaluation on the applicability of the method in the stakeholders’ work areas

80

7.2. Evaluation Results

Figure 7.1.: Industry Experience of Respondents

7.2. Evaluation Results

One week after the questionnaire was given to the stakeholders, we analyzed the answers.
There was a total of 10 respondents, and 8 of them conducted the training, and the
other two were not able to participate but learned the method by reading the detailed
hand-out document. Figure 7.1 shows the respondents’ industry experience in years.

The answers for the main part of the evaluation, which we asked them to evaluate the
method based on a scale from 1 (Very Bad) to 5 (Very Good), are shown in Figure 7.2.

To most of the evaluation criteria, more than 80% of the answers were positive, either
4 (Good) or 5 (Very Good). The remaining 20% was neutral, 3 (Normal). This fact
shows the high level of general satisfaction on the method. Out of the practical criteria
in Part 1, the respondents evaluated Blackbox concept with the highest score, 90%
positive (70%, Very Good, 20% Good) and 10% Normal. One of the respondents
provided comment saying that he or she "finds the Blackbox concept very helpful because
it will improve the collaboration process between different architects and stakeholders".
The answers for Modelling variability both for inside and outside of the system were
also positive, 90% Very Good or Good. Together with 80% of positive answers to the
criteria Type distinctions and Dependencies in Part 2, we could see that the respondent
evaluated the most fundamental function of variant management positively - modelling
variability and showing dependencies between features. As to the Traceability, 60% of
the answers were positive, 30% neutral, but there was one negative answer indicating 2
(Bad). We were able to relate the non-positive parts of the answers to the comments
provided in the General section. One respondent found that "although it is important,
ensuring traceability from requirements to the architectures over different business units
in the organization may be difficult. Since each business unit is currently using different
approaches and methods, aligning these would require quite an effort". However, this is
more about the organizational issue rather than the feedback to the method itself. In

81

7. Evaluation

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%

[Part 1]
"modelling variability of the system"

"ensuring traceability"
"blackbox concept"

"modelling variability outside of the system"

[Part 2]
"Type distictions"
 "Dependencies"

"Simple and Expressive"
 "Readability"

"Standardizeability"

Applicability to work area

Evaluation of the Variant Management Method

1 (Very Bad) 2 3 4 5 (Very Good)

Figure 7.2.: Evaluation Results for Part 1 and Part 2

this method, we presented the concept on how the traceability could be ensured through
the feature models, and alignment and applying this approach to different business units
and subsystems were not a part of this thesis but left as future work.

The answers to Simple and Expressive and Readability were also mostly positive. It shows
that the structure of the feature models and feature modelling notations in this method
are simple and straightforward enough and easily understandable. Several respondents
provided comments about the structure of the feature models; they mentioned that "the
feature models are clearly structured" showing the hierarchy of features and components
in the system. They also stated that "the tree structure of the feature models gives an easier
overview of the interconnections and interdependencies of the features, which would also help
in the standardization of the way of modelling variability". Besides, there was a comment
stating that "the method improved the way of showing constraints and dependencies of the
features, which are, in today’s setting, quite implicit and hard to capture".

About the overall structure of the method and process of using it, the respondents
mentioned that "the method is clearly structured and simplified the variant configuration
steps". The respondents further indicated that "the method enables the possibility to be
extended down to the whole hardware and software design steps" which exist in the levels
below the technical architecture design step in the V-Model, by providing information

82

7.2. Evaluation Results

on the reasonable feature combinations transparently. They stated that "having this
method in the technical architecture level would benefit the organization overall since it
provides a clear overview of the valid feature combinations on a higher level. This could help
the architects and developers in other domains or subsystems/components to keep a wider
perspective from the vehicle level". It would enable them to focus on the development,
which is reasonable for the wider perspective of the system, or of the vehicle at all.

Furthermore, there were comments about the overall research of this thesis. The
respondents also noted that "the analysis of the variability related problems in the vehicle
level itself was helpful, especially dividing the technical solutions into different levels which
are existing in the horizontal direction and the vehicle feature design which is performed in
the vertical direction". They indicated that "The structured approach to get the requirements
(to the variant management) from the stakeholders and afterwards collect their feedback
was very helpful to keep us aligned". Besides, a respondent commented that he or she
"found the implementation of the method on the tools especially helpful, which took the
variant handling challenges into practice".

However, some respondents pointed out "high tool complexity". In today’s development
environment, there are already different tools used for different purposes in the whole
system engineering process, e.g. a requirement management tool, architecture modelling
tools. The way this method was implemented was introducing yet another tool for
feature modelling, requiring the users to learn to use it with the existing tools jointly.
Plus, one respondent stated that it requires "high effort in creating feature models" with
consistent notations and constraints. Further, one comment notes that "Although the
process of using the method is clearly defined, it could be complicated for the users who do
not already possess knowledge on the topic". Plus, the importance of "ensuring consistency
of the imported feature models" were also mentioned. A few respondents noted that
the feature models do not include other types of features, for example, functionality,
technology, or property that the users interact with. However, since the focus of this
method was the technical architecture, the features in our feature models should be
technical features - mainly technical elements rather than functional elements, which are
part of the functional architecture. This part can be further explored in the future work,
extending this method to neighbouring design steps - i.e. the functional architecture,
subsystem architectures.

Moreover, there was feedback pointing out that "the application of the method could be
limited to the systems which already achieved a certain level of maturity in the feature
dependency". This is because, the method requires a quite strict set of dependencies
between features. However, in the early phase of development or for an immature system,
the dependencies could not be formulated yet to the required level. One respondent also
indicated the lack of “review and validation methodology” to check whether the feature
models that were created are correct or not.

83

7. Evaluation

Figure 7.3.: Evaluation Results for Standardizeability

As to the Standardizeability, 80% of the responses was positive, 50% Good, 30% Very
Good, and the remaining 20% was Normal. Standardizeability is an especially important
factor for automotive systems. The automotive systems are developed in a highly-
distributed environment over different business units and organizations; therefore, it
is crucial to have a standardized method or a modelling concept across domains and
different design steps in V-Model. Also, more and more cross-domain features are
applied to vehicles due to the increasing number of automated driving features. Hence,
in order to obtain more in-depth feedback in terms of the standardizeability, we further
asked the respondents which exact properties of the method would help the most. The
result is shown in Figure 7.3.

More than 70% of the respondents found the structure of the feature models based on
technical solutions would increase standardizeability, and 60% said Blackbox Concept
would be helpful. Structuring the feature model based on the technical solution was
the core principle and the significant contribution of the method, which we aimed to
help improve traceability from high-level requirements, technical solutions to technical
elements in the technical architecture. Also, the purpose of Blackbox Concept was to help
on the collaboration process between different parties from different design levels or
different domains. Additionally, the answers to the Applicability to work area were also
positive, 80% positive and 20% neutral. Considering that the respondents evaluated
the method from a broader perspective in the organization, already considering the
alignment that needs to be made with other stakeholders, this positive answer for
applicability shows a good potential of this method, that can be extended over further
design steps and other domains to increase the efficiency and quality of automotive
system development.

84

Chapter 8

Discussion

In this chapter, we discuss and interpret the results and findings of the research.

8.1. Understanding Context and Stakeholder Definition

To gain understanding of the context, we asked the following research question: RQ1:
What is the current situation regarding the variant management of system architecture?
Who are the stakeholders?

Through the stakeholder interviews, we were able to gain an in-depth understanding
on the current situation, especially regarding the difficulties that the system and E/E
architects face when designing the technical architecture of the system. In designing
the technical architecture of a highly-automated driving system, the system architects
and E/E architects need to make design decisions on different levels. The system can be
designed with different vehicle feature, for example, either with L3 level pilot feature
or L2 level assist feature. The system is then realized with different subsystems in
different domains of the vehicles such as braking, steering, sensorsets and processing.
In order to determine the design decisions for each part of the system, the architects
need to decide 1) what components they would choose to realize the functionality, 2)
what communication connections they would select for these components, and 3) how
the power supply system should be structured. For this, the system architects need
technical information of the components such as product generation, power supply
levels, signal messages, the number and types of ports, message datarate, voltage
levels, energy consumption, safety level, and much more. However, the problem is that
this information is distributed over different sources, mainly available in the product
owner/developer side, so the system architects and E/E architects would need to contact

85

8. Discussion

these departments and manually get this information, in order to design the technical
architecture.

More importantly, we have numerous variants arising in different levels. Subsystems
can be designed with different design options, and we have variability in the component
design level as well. Also, we have variability in the E/E architecture design – both for
communication network and power supply system design. Here, the necessity of an
adequate variant management method, which can address these issues is high. However,
there exists no proven variant management method for the technical architecture level.
This thesis was therefore aim to develop a variant management method for technical
architecture, whose concrete activities include the followings - increasing accessibility of
information, showing explicit information about system variability, showing interdepen-
dency between features, deriving valid feature combination, and ensuring traceability
from requirements to design artifacts.

In the organization, the variant management method for the technical architecture needs
to be understood in the context of adopting model-based system engineering (MBSE)
approach. Due to the inefficiency and disadvantages of the traditional document-based
system development process, more and more business units in the organization have
been adopting the model-based approach. The high-variance nature of automotive
systems which is being further strengthened with the new automated driving features is
adding importance to having an adequate variant management method for technical ar-
chitecture. In this sense, in order to identify who the relevant stakeholders are, we asked
ourselves the question "who is working with the technical architecture model". The system
architects for the vehicle level systems such as Highway Pilot or Blind Spot Detection
and the E/E architects for these systems shall be the creators of technical architecture
models. Then these models would be taken as an input to the later design steps, such as
subsystem and hardware/software architecture design. Considering this, we first defined
the three design levels - vehicle level (vehicle-level system development), subsystem
level and component level. For each levels, we selected the roles of stakeholders that we
should take into account in identifying use cases and deriving requirements - System
Architect, E/E Architect, Function Developer, Product Manager, and Software Architect.
As mentioned, the System Architect and the E/E Architect were the main stakeholders
as they are the main parties designing the technical architecture, creating the models
and dealing with variability issues. The Function Developer was considered because
functional architecture design is usually the step taken before the technical architecture
design; hence, it is necessary to take into account the neighbouring design steps. The
Product Manager was considered in order to include inputs from the general user side.
The Software Architect for the vehicle-level system was unfortunately not available;
therefore, only the Software Architect for the subsystem level was interviewed. However,
during the interview, we found that they normally take subsystem-level requirements
which were formulated by the system architect in the subsystem level, and taken it as

86

8.2. Use Case Identification and Requirement Derivation

an input for the software architecture design. Therefore, the relevance to the technical
architecture model itself was rather low for these stakeholders.

8.2. Use Case Identification and Requirement Derivation

In order to identify the use cases and to derive the requirements for the variant manage-
ment method, the following research question was asked: RQ2: What are the use cases of
the stakeholders regarding variant management? What requirements can be derived from
the use cases?

During the interviews, we were able to gain an in-depth understanding of the needs and
the challenges that the stakeholders have. Beyond the use cases such as Model-based
system architecture design, Visualize technical architecture and its variants and Show
technical information of components which are quite expected, considering the model-
based system engineering approach, we could learn about further use cases. Especially,
the use case Show traceability from requirements to technical solutions played a major role
in structuring our feature models. It became the motivation to establish the traceability
links through the feature models.

Moreover, from the use case Feature engineering, we were able to find out that two
different directions of design activities are involved to design the technical architecture.
These refer to the design of technical solutions for subsystem, component and E/E
architecture design levels which are spread out throughout different domains of vehicle
in the horizontal direction, as well as the vehicle feature design which is performed by
selecting specific technical solutions for the required functionality of the vehicle feature -
in the vertical direction (shown in Figure 5.3). It was essential to identify this point so
that we know how we should structure our feature models.

Also, we were able to learn about stakeholders’ needs to use the models for review
purposes. Several stakeholders mentioned that they need supports in producing the
technical architecture model on the desired level of abstraction. Based on needs,
some information in the technical architecture could be irrelevant or unnecessary.
Furthermore, the stakeholders in the subsystem or component design level use the
technical architecture model to understand vehicle level requirements better. In this
case, they need supports for a useful comparison of different variants of technical
architecture, so that they could easily compare and contrast the variants. Further tool
supports could realize these, but since we are focusing on developing the concept of the
method in this thesis, it was excluded from the scope and left as future work.

Through the interviews, we could identify the stakeholders’ needs to have the variability
existing outside of the system also modelled. Having this information available in the

87

8. Discussion

model helps not only the stakeholders who design the vehicle-level system but also the
ones for the subsystem and component design, as they could gain a better understanding
on the vehicle-level requirements in the broader perspective.

In the organization, it was already clear that they need an adequate variant handling
approach; however, the unavailability of this approach could limit the stakeholders to
recognize their needs for the variant management. In order to help on this, during the
interview, we show them the typical needs for variant management which are presented
in literature and asked them whether they would also have the same needs [OPS+17].
After the analysis of their answers, we were able to identify further needs for the variant
management as follows:

• Providing high-level overview of different variants for different customer projects:
to know which are major variants, which are used more, to know which combina-
tion is valid

• Showing high-level overview of features: what feature combination is possible
for customers, type of control units that can be offered to customers, mandatory
combination of other components for a certain component, to show links to the
constraints that need to be considered for a certain component (ex: Parking Pawl
as one of the constraints that need to be considered for ESP), to get information
about the features of neighboring systems, helpful to have this overview in deriving
product strategies for subsystems, to understand how a system is shaped to fulfil a
certain functionality

• Increasing work efficiency: helpful on product configuration, automatic creation of
a variant model, gathering information about different needs for E/E architecture
design without having to check all documents by having a centralized information
base

• Increase quality of products: help not to oversee some variants in technical solu-
tions, enables early change and error detection, enables to crate product variants
with valid feature combination, can have an impact to time-to-market, by ensuring
consistency via a standard variant handling approach

• Increase accessibility of information: especially helpful for the distributed develop-
ment environment, not having to rely on the availability of experts

• Handling complexity: also helpful for the subsystem level, by knowing only certain
combinations are valid, the number of variants can already be reduced from the
vehicle level

• Traceability and impact analysis: to know which features or components would
be impacted when there is a change, in order to see whether specific function
is still in use by any customers, helpful to have links between functions and

88

8.3. Variant Management Method Development

components to analyze impacts and influences in both directions, e.g. "if we have
these components in the system, what functions can we have" and "if we need
this function, what components should we have", current approach in DOORS is
complicated because there is no graphical overview on dependencies

Out of these and analyzing the use cases relevant to the variant management, we derived
the requirements for the variant management method of the technical architecture,
which were presented earlier.

8.3. Variant Management Method Development

The following question was asked to develop the method: RQ3: What kind of variant
management method is suitable in order to satisfy the requirements?

In the software product line engineering, the product line asset development process is
explicitly distinguished from the product development process. In the phase of the product
line asset development, developing architectures based on the analysis of a product line
takes place, and the analysis is performed, which includes the requirement analysis and
the feature modelling for the product line [KLD02]. The product line assets generated
from the product line asset development process are then provided as input to the product
development process. In the product development process, product requirement analysis,
feature selection and architecture selection are performed in order to create products
[KLD02].

In our case, product line assets here would refer to the vehicle feature for the system
of interest, e.g. Pilot or Assist feature. Also, products correspond to system variant
for each of the vehicle feature, e.g. Pilot Option A, Pilot Option B, Assist Option A. In
the organization, the vehicle-level system development is still at the pre-development
research phase; therefore a concrete development process is not yet defined. Conse-
quently, in our method, we described the whole vehicle-level system development in
one chain of a process rather than already dividing it into the product line and the
product development process. In our process of using the method, the Steps from 1
to 5, where the necessary feature modelling is performed, correspond to the product
line development process, and the remaining Steps 6 to 8, where the system variant is
configured through feature selections, equate to the product development process. When
the vehicle-level system development process develops beyond the pre-development
research phase, the method can be extended and divided into two groups, based on the
needs of the organization at that time.

Another reason why we have not yet divided the process into the product line development
and the product development, at the current stage, it is hard to document requirements

89

8. Discussion

for the system variants as in the way that the requirements for the vehicle feature
are documented. This is because, the requirements to configure the system variant
depend on many different external factors, such as markets needs, legal and commercial
requirements in different regions, and also varies from customer to customer. Also, in
many cases, the system variant shall follow the requirements from the customer side, for
example, a customer can request to use a particular type of component in the system,
or a specific component that is manufactured by another organization. Therefore, at
this stage, the product configuration step in our method only requires the users to select
necessary features based on the requirements that he gathered for that specific system
variant.

As stated in Section 2.3.1, our focus was more on the variant management activities
for the system variant configuration rather than the ones for the technical architecture
design. However, the Blackbox Concept of our method conceptually covers the variant
management activity Ensure Accessibility of Component Information. With this concept,
we have a mean of exchanging necessary information modelled in a feature model. As
explained, the alignment of how the model exchange shall be done and what is the
agreed structure of the feature model is required. After this, this approach can be further
proved and extended in the practical setting.

Moreover, during the stakeholder interviews, we have learned about different kinds of
technical information that the stakeholders need to see in the models. They include
component properties such as energy consumption, voltage level, message datarate,
latency, and port information such as number and types of ports, as well as safety concept
such as ASIL rating. Furthermore, this relates to the variability issue as well. When the
technical information for the same component differs, this is also the component level
variability that needs to be handled. In this sense, the kind of information that should
be contained in the feature model and the level of detail of this information shall also be
discussed in the alignment process.

One of the most significant contributions of this work is to present the possibility of
structuring feature models in a different way. The traditional approach is to model the
physical components under the categories following the functional decomposition of the
vehicle. Our method structured the feature models based on high-level requirements
and technical solutions so that we could establish traceability from the requirement to
the technical architecture. It provides users with a clear understanding of the design of
the system by documenting the rationale for a particular design decision. Considering
how many and how often changes occur in an automotive system, both expected and
unexpected, it plays a crucial role in effective change management. Plus, another benefit
of this structure is that it corresponds to the technical architecture design process, where
the system architects analyze system requirements and derive technical solutions to

90

8.4. Implementation

satisfy them, which determine what technical elements shall exist for each different
technical solutions.

8.4. Implementation

In order to prove the concept of the method, we implemented the method in
Pure::Variants. As noted earlier, Pure::Variants has been widely used as a feature
modelling tool in the organization; thus, we implemented the method in a way that
could work on Pure::Variants. However, the development of the concepts of the method
was performed independent of the tool functionality. Therefore, the method does not
limit the selection of the tool for implementations.

In Pure::Variants, only one kind of feature exists in the feature model. Although
the feature has different name and types such as mandatory or optional, there is no
classification for the kinds of features. For example, in a case like our method, where we
model different attributes as features in the feature models - high-level requirements,
technical solutions and technical elements, further classification of the feature would
be helpful. In the current version, the factors that can distinguish the features are only
the name. Hence, when the user try to attach the constraint referring to the features
onto the model elements in the technical architecture model (as described in Step 7 of
the process of using the method), they need to find which features are referring to the
technical elements, not the high-level requirements or technical solutions. Classifying
the kinds of features with different icons would be much helpful in this process when
the constraint manually needs to be attached to the correct model elements.

Using a separate feature modelling tool provides benefits by being flexibly incorporated
into the existing toolchain and handling variability relevant challenges. On the other
hand, introducing yet another tool to the current toolchain for the system engineering
further increases tool complexity. It was also pointed out by a number of participants of
the evaluation. As a possible solution, combining architecture modelling and variability
modelling could be offered. In the coming years, the Object Management Group (OMG)
releases SysML 2.0, which also covers variant modelling [Gro]. Implementing the
concept of this method in the existing architecture modelling tool with SysML 2.0
standard could be performed as a feasibility study.

91

8. Discussion

8.5. Evaluation

The following question was asked for the evaluation phase: RQ4: Does the prototype
method satisfy the requirements and evaluation criteria?

Overall, from the answers, we could see that the respondents have answered the
evaluation questions not only for the method itself but also from a broader perspective
in the organization. This could be observed from the question regarding traceability. We
could identify the respondents who have evaluated the traceability of this method with
relatively low scale have commented that "establishing traceability over different business
units would be difficult because they are using different approach". This point is more of an
organizational matter, not feedback about the method itself, which should be discussed
and achieved during the alignment between actual developmental parties from different
business units, which shall take place in the future. Our method focuses on presenting a
concept that could establish traceability. The average score for the Applicability of the
method is 4 (Good), and this shows that the respondents found the method applicable.

As mentioned in Chapter 7, the satisfaction of the stakeholders was the highest for the
Blackbox Concept. The needs for this concept could also be clearly identified during
the interviews with the system and E/E architects from the vehicle level. From their
perspective, having no visibility about the technical solutions for a particular subsystem
was a big pain-point, and there were also difficulties regarding the low accessibility of the
component information. In addition, for the stakeholders in the subsystem or component
level, they also need a way to exchange models with the vehicle-level departments. The
Blackbox Concept shows how this can be done by enabling a part of the system to be
modelled as blackbox and filing this it by importing a feature model which is created by
the product owners themselves.

An interesting finding is that the respondents who have shorter industry experience
have given higher scores by 14% than the ones with longer industry experience. 14%
could be not a meaningfully large number, but this difference occurs throughout all the
scoring questions. The largest difference in the score was around 30%. From this, we
could speculate that the stakeholders who are relatively new to the area tend to accept
a new method relatively more willingly.

92

Chapter 9

Conclusion

In this final chapter, we conclude our work by summarizing the main topics and outcomes.
Here we answer the research questions and suggest the areas where future research
could take place concerning this work.

Conclusion

The goal of this thesis was to develop a variant management method for technical
architecture. The motivation of this research arose from the industry needs in Robert
Bosch. In the automotive system development environment, the number of variants
that needs to be managed has significantly increased with the newly introduced highly-
automated driving features. Especially in the technical architecture, there exist different
levels of variants and variability occurs in different levels - vehicle feature design,
subsystem design, component design and E/E architecture design, throughout the whole
system engineering process. These variants have dependencies on one another, but
the development for each design levels is performed in a distributed environment.
In other words, the development of the system, the subsystems that comprise the
system, and the components that consist of the subsystems are performed in different
domains and development parties. Therefore, a need for a variant management method
which effectively handles these variability and addresses variant management related
challenges in the technical architecture design level arose. In the organization (Bosch),
the adoption of model-based system engineering (MBSE) approach is widely taken
place, replacing the traditional document-based approach. In this sense, the variant
management method should also correspond to and work well with the MBSE process.

The main part of the research consisted of the use case identification, requirement
derivation, method development, and implementation and evaluation. In order to

93

9. Conclusion

understand the context and learn about needs for the variant management method
for the technical architecture, we conducted interviews with practitioners in relevant
roles in the organization. Through the interviews, we identified a total of nine use
cases for the technical architecture model, among which six of them have relevance to
variant management. From these variant management-relevant use cases, we derived
eleven requirements for the variant management method. After the prioritization and
classification, we extracted four subject matters that we need to be addressed in the
development of the method - Variability in the system, Variability outside of the system,
Traceability, and Blackbox Concept. By solving each of the subject matters, we structured
our method which utilizes the four feature models - Vehicle Feature Design, Technical
Solutions, a so-called Blackbox and Context Variability. As a next step, in order to
prove the concept, we implemented the method on an example technical architecture.
Finally, the evaluation of the method was conducted based on the feedback from the
stakeholders.

In each phase of the work, the following research questions were asked. Here we present
the answers which we were able to find during the course of our work.

RQ1: What is the current situation regarding the variant management of technical
architecture? Who are the stakeholders?

In the organization, although there exist some variant management methods under
development, these are mostly only confined to subsystem or software development
level. However, more and more variability arises in the technical architecture with
the adoption of highly-automated driving features, and we need an adequate variant
handling method to effectively address the variability related challenges on the technical
architecture level.

Considering that the variant management method shall be applied to the model-based
system development process in the organization, we selected the stakeholders to be the
creators and the users of the technical architecture model. We defined three different
levels of abstraction in the system engineering process - (vehicle) system-level, subsystem-
level, and component-level. For each level, we specified the roles of the stakeholders
who need to use the technical architecture model - system architects, E/E architects,
function developers, software architects, and product managers.

94

RQ2: What are the use cases of the stakeholders regarding variant management? What
requirements can be derived from the use cases?

Through the stakeholder interviews, we identified a total of nine use cases. The first
use case is Ensure Consistency, which shall be a general use case for all other use cases,
since ensuring consistency through a consistent modelling concept or notations should
be achieved in all cases. We classified the remaining use cases into three categories as
use cases for system design, for using the model, and for further improvement of the
architecture design process. The use cases for further improvement of the architecture
design process are the ones which are not yet applied in practice; however, the needs
were identified from the stakeholder interviews. The use cases Model-based system
architecture design, in which the model is used for the technical architecture design
process itself, and Feature Engineering, in which the vehicle feature is designed with
a different combination of vehicle functionality, belong to the first group. The second
group include two use cases - Visualize technical architecture and its variants and Show
technical information of components. The remaining four use cases belong to the last
group - Show traceability requirements to technical solutions, Show dependency between
features, Define interface, and Feature-driven selection. Among these use cases, we selected
six use cases that have relevance to the variant management and derived the requirement
for the variant management method from them.

Total eleven requirements are derived, and from these, we extracted four subject matters
that need to be addressed in the development of the method. The first two subject
matters - handling Variability of the system and Variability outside of the system are
to satisfy the requirements Levels of Variants, Interdependency of features, Automatic
generation of variant architecture model and Show validity of feature combination. The
third subject matter was ensuring Traceability, which was for the requirements Show
relations between high-level requirements and technical solutions and Ensure traceability
via feature model. The last subject matter was Blackbox Concept for the requirement
Blackbox concept for the subsystem parts. The method development is performed in the
way of finding the structure of the feature models that can address each of the subject
matters.

RQ3: What kind of variant management method is suitable in order to satisfy the
requirements?

Our method utilizes the four feature models - Vehicle Feature Design, Technical Solutions,
a so-called Blackbox and Context Variability.

The main feature model is the Technical Solutions, and here the high-level requirements,
technical solutions and technical elements are modelled as features. For the subject matter

95

9. Conclusion

Variability of the system, we defined the high-level structure of this feature model. It
first has three layers each for different levels of variant - Subsystem, Component, E/E
Architecture design layers. Under this layer, the building block structure is applied based
on the functional decomposition of the vehicle. In addition, we also added dependencies
between the features in different layers in order to model the existing interdependencies.
For the subject matter Traceability, we came up with the detailed structure of this
feature model, which is based on the high-level requirements and the technical solutions.
Under the three layers, high-level requirements are first modelled as features. Under
this, the technical solutions that satisfy the high-level requirements and then lastly the
technical elements realize the technical solutions are added as features to the feature
model. The high-level requirements in the feature models can be connected to the
requirement specifications documented in the requirement management tool like Doors,
and the technical elements are connected to the corresponding model elements in the
technical architecture model. In this way, we established traceability links from the
requirements to technical solutions and finally to the technical elements in the technical
architecture.

The Vehicle Feature Design feature model has vehicle features, which correspond to
the product lines, of a system. This model is used to design the vehicle features
with a combination of the technical solutions which are available in the Technical
Solutions feature model. In this model, the dependency onto the high-level requirements,
technical solutions, which are specific to the vehicle feature is modelled. Having these
dependencies enable simpler and more straightforward system variant configuration,
reducing the possibility of making mistakes.

The so-called Blackbox feature model was created to address the subject matter Blackbox
Concept. This feature model refers to the feature model, which contains technical
solutions for a particular subsystem or a building block. Due to the invisibility of the
technical solutions for a certain subsystem from the vehicle level, the system architects
model the corresponding part of the feature model as blackbox. This Blackbox feature
model, which was created by the product owner, is provided to the system architects.
System architects then can import this feature model to the configuration space in order
to fill the blackbox. This concept not only solves the visibility issue of the technical
solutions for a sub-part of the system but also provides an approach to increase the
accessibility of the information. This approach is helpful for the system and E/E architects
by enabling them to easily gain the necessary technical information of the components,
which they need for the design of the technical architecture.

Lastly, for the Variability outside of the system, we model the global variables which
represent the variability outside of the system, such as markets, regions, vehicle types,
and customers, in an external feature model, called Context Variability feature model.
This feature model is also imported to the configuration space, and the values of

96

the global variables for each system variant can be designated during the variant
configuration step.

RQ4: Does the prototype method satisfy the requirements and evaluation criteria?

The evaluation of the method was conducted based on the requirements for the method
and the evaluation criteria for the feature modelling notation. For the requirements part,
the respondents were asked to evaluate the method based on the subject matters of the
method - Modelling variability of the system, Ensuring traceability, Blackbox concept, and
Modelling variability outside of the system. The evaluation results were mainly positive,
showing a high level of satisfaction. 90% of the respondents evaluated the subject
matters Modelling variability of the system and Modelling variability outside of the system
as positive - 60% as ’Very Good (5)’, and 30% as ’Good (4)’ and the remaining 10% was
neutral. The Blackbox concept was evaluated mostly highly, 70% ’Very Good (5)’, and
20% as ’Good (4)’ and 10% was neutral. The result for Ensuring Traceability was 60%
positive, 30% neutral and 10% negative; however, we were able to conclude that these
non-positive answers come more from the organizational issue making the application
hard in the organization, rather than the feedback on the method itself.

As to the evaluation criteria, we have selected the five most important requirements
for the feature modelling notations [DS06]. For the criteria Type distinctions and
Dependencies, which relate to the ability of the feature model describing necessary levels
of variability, 80% of the respondents rated ’Very Good (5)’ or ’Good (4)’. For Simple
and Expressive and Readability, which are about the understandability of the feature
model, more than 70% of the answers were positive, the remaining part being neutral.
For Standardizeability, 80% of the respondents evaluated it as positive.

Finally, we also asked the respondents whether they think the method would be applica-
ble to their work area. 80% of the respondents evaluated the applicability as positive
(20% Very Good, 60% Good), and the remaining 20% was neutral. All in all, considering
the majority part of the evaluation results were positive, it could be concluded that the
method satisfies the requirements and the evaluation criteria well.

Throughout this thesis, we provided the following contributions:

C1 Characterizing the current challenges for the variant management of the technical
architecture design in the context of the model-based system development for
highly-automated driving systems

C2 Proposing a variant management method and a structure of feature models for
the technical architecture of highly-automated driving systems which satisfy stake-
holder requirements

97

9. Conclusion

C3 Implementation and evaluation of the method

One of the critical contributions of this work is to present the possibility of structuring
the feature models based on technical solutions. The primary benefit of this structure is
that we can establish traceability from the requirements to the technical solutions and
then to the technical architecture, which is crucial considering change management of
features. Moreover, in this way, the technical solutions can be documented in the feature
model, whereas before this method, they only abide in the brain of the architects. Lastly,
this structure corresponds to the design process of the technical architecture, which
presents a possibility of supporting the design process better.

Future Work

In developing the variant management method for technical architecture, it was an
essential factor to take in to account the requirements from the subsystem design level.
Due to the limitation of the availability and time, we interviewed the practitioners from
one subsystem development department - braking system. Other subsystem departments
would have different kinds of requirements, and also some of them already have their
own variant handling approach. Therefore, as future work, further requirements form
other subsystem development parties shall be gathered and applied in the extension of
this method.

In addition, applying perspectives from safety experts is also important. This is because,
automotive systems are safety-critical, and the granularity for the technical architecture
modelling shall be defined by the safety point of view. In this sense, taking the require-
ments from the safety side into consideration shall also be conducted as part of future
work.

Furthermore, for the variability in E/E architecture, we only handled the variability in
the communication network. The power supply system could not be covered in this
thesis due to the lack of a clear architecture modelling concept. Therefore, extending
this method to handle variability in power supply system shall also be covered in future
work.

Among the requirements for the variant management method, due to the limitation
of time and tool supports, we were not able to handle the requirements that require
high-levels of further tool supports. These include providing supports for comparing
architecture variants and creating views of the technical architecture model in the
different abstraction levels based on the user needs. These can also be handled as future
work.

98

Lastly, as the extension of the method, several matters can be considered. These include
considering the early phase of the system or immature system where the dependencies
between features are not yet fully determined. Also, extending this method to other
design steps in the system engineering process, such as functional architecture shall be
explored. In this case, the types of features that shall be included in the feature model
should further be examined.

99

Appendix A

Systematic Literature Review Process

The process of the systematic literature review follows the detailed steps presented by
C. Wohlin et al. in their book [WRH+12]. The review is structured into: planning and
conducting steps.

A.1. Planning the Review

This section discusses plans and structures of the review. It presents necessary concepts
which need to be clearly defined before conducting the systematic review.

A.1.1. Need for a review

Before diving into developing method, we need to identify whether there are existing
techniques and to understand the state-of-the-art in the subject area. This is fulfilled by
conducting a systematic review.

A.1.2. Research questions for the review

For this work, it is crucial to identify the state-of-the-art in the context of system
modelling through meta-model and feature modelling. Since the modelling concept
originates from in the area of software engineering, the existing techniques in the
software level needs to be studied. In addition, since our focus lies on the system level
which encircles both hardware and software levels, the proposed methods for the system
level need a rigorous review. For these areas, we set the research questions for the
review as follows:

101

A. Systematic Literature Review Process

RQ0.1 What is the state-of-the-art in meta-modelling for automotive systems?

RQ0.2 What is the state-of-the-art in feature modelling for automotive systems?

RQ0.3 Are there proposed methods for system level architectural description?

A.1.3. Review protocol

The review protocol for the systematic review defines important concepts that needed to
be clarified before moving onto conducting the review.

Search strategy for primary studies For the identification of relevant literature, we
conducted our search on the database as follows:

• IEEEXplore

• ACM Digital Library

• Google Scholar

• AUTOSAR Website

Table 3.1 shows the list of search terms that we used for the search of relevant literature.
Search terms were selected in order to identify as many possibly related papers as
possible which were filtered according to the relevance to the topic in the next step.

No. Search Terms

1 variant OR variability OR variance
2 metamodel OR meta-model OR meta-modelling OR metamodelling
3 feature model OR feature modelling
4 variant handling OR variant management OR variant modelling
5 (automotive OR autonomous OR automated) AND system

Table A.1.: Search Terms

102

A.1. Planning the Review

Study selection criteria After the search in the databases, the relevance of each paper
to the topic was evaluated. We selected papers if at least one of the answers to the
following questions is positive. We formulated the questions with bottom-up approach,
so that the most specific question which have the highest relevance to the topic is asked
first, then move upwards to the more general questions. In this way, we could broadly
research approaches applied in other industries or other levels in the system engineering
process (i.e. software architecture design level) on top of identifying the most relevant
papers.

1. Does the paper discuss variant handling methodologies or feature modelling for
the system architecture development of automotive systems?

2. Does the paper discuss variant handling methodologies or feature modelling for
other levels in the system engineering process of automotive systems?

3. Does the paper discuss variant handling methodologies or feature modelling in
other industries besides automotive?

4. Does the paper discuss variant handling methodologies or feature modelling in
general? (i.e. not developed for industrial uses, more of presenting research in the
academic arena)

5. Does the paper provide other relevant information to this topic (i.e. system mod-
elling through meta-models, requirements for highly-automated driving systems,
etc.)?

Study selection procedures For the selection of relevant studies, titles of the studies
are observed first, and then keywords followed by abstract, introduction and conclusion.
In addition, the list of references of selected papers were investigated in order to identify
further relevant resources.

Data extraction strategy From the selected works, the following data is extracted:

• Domain of application

• Method description

• Summary of main results

• Definitions of important concepts which are necessary to understand the topic

103

A. Systematic Literature Review Process

Synthesis of the extracted data After the extraction of the target data, we analyzed
the content to decide whether the approach proposed in the work can be applied to our
research.

A.2. Conducting the Review

Based on the plans, the review protocol and the criteria created in the previous section,
the systematic review was conducted.

A.2.1. Selection of primary studies

Selecting the relevant papers was performed by applying the study selection criteria
and the process which were defined in the planning stage of the review. In addition
to the primary search that was conducted on the database, additional manual search
was carried out according to the further clarification of relevant terms and concepts
that arose during the course of the review process. After the search on the databases,
based on the selection criteria, 38 papers were selected as primary studies and further
reviewed in the next steps.

A.2.2. Data extraction

From the selected primary studies, the data that was specified in the planning phase is
extracted. The extracted data can be categorized into: model-based system engineering
for automotive systems, system modelling through meta-models, variant management
and feature modelling. The content from data extraction is presented in detail in the
next section.

A.2.3. Data synthesis

For the synthesis of extracted data, we used the Thematic analysis method [CD11;
WRH+12]. Thematic analysis method is suitable when synthesizing inhomogeneous
studies with a goal of identifying and analyzing patterns or themes in the primary studies
[CD11; WRH+12]. As a result, we identified the lack of proposed and proven variant
handling method for the technical architecture design of automotive systems.

104

Appendix B

System Variants of Example Technical

Architecture

Here, we show the detailed structure of the example technical architecture. As explained
in Chapter 4, in the example technical architecture, AD System 1 is realized with five
different system variants.

Table B.1 - B.4 summarize the variances existing between system variant of the vehicle
features of AD System 1. Table B.1 is reprinted to help the users in the comparison of
the system variants.

Subsystems Pilot Feature Assist Feature
Front SensorSet Lidar + Radar + Video Radar + Video

Processing AD ECU 1 + AD ECU 2 AD ECU 1
Brake System w/ redundant actuator ESP only

Steering System w/ redundant actuator EPS only
Localization IMU + Positioning IMU
Chassis bus Flexray + CAN Flexray

Table B.1.: [Reprinted] Comparison of Pilot Feature and Assist Feature of AD System 1
in the Example Architecture

Figure B.1 - Figure B.6 shows the example technical architecture of each variant.

105

B. System Variants of Example Technical Architecture

Figure B.1.: Example Technical Architecture: Pilot Option A [Rob19e]

 CAN
 Flexray

 ETH 100Mbps
 ETH 1Gbps
 LVDS

AD Autonomous Driving
AS Assist Driving
BB Building Block
CAN Controller Area Network
ECU Electronic Control Unit

EPS Electronic Power Steering
ESP Electronic Stability Program
ETH Ethernet
Fail-op Fail-operational
iBooster Vacuum-independent Brake Booster

IMU Inertial Measurement Unit
IPB Integrated Power Brake
LVDS Low Voltage Differential Signaling
RBU Redundant Brake Unit

Figure B.2.: Legend

106

Subsystems Pilot Option A Pilot Option B
Front SensorSet Lidar + Radar + Video Lidar + Radar
Brake System ESP + iBooster IPB + RBU

Steering System Fail-op EPS Front + Rear Axle
Comm. of Lidar ETH 1Gbps to AD ECU 1 ETH 1Gbps to AD ECU 2

Comm. of Wide Camera LVDS to AD ECU 1 LVDS to AD ECU 2

Table B.2.: Comparison of Pilot Feature Option A and Pilot Feature Option B

Subsystems Pilot Option B Pilot Option C
Comm. of Wide Camera LVDS to AD ECU 2 ETH 1Gbps to AD ECU 2

Table B.3.: Comparison of Pilot Feature Option B and Pilot Feature Option C

Subsystems Assist Option A Assist Option B
Chassis Bus Flexray CAN

Table B.4.: Comparison of Assist Feature Option A and Assist Feature Option B

107

B. System Variants of Example Technical Architecture

Figure B.3.: Example Technical Architecture: Pilot Option B [Rob19e]

108

Figure B.4.: Example Technical Architecture: Pilot Option C [Rob19e]

109

B. System Variants of Example Technical Architecture

Figure B.5.: Example Technical Architecture: Assist Option A [Rob19e]

110

Figure B.6.: Example Technical Architecture: Assist Option B [Rob19e]

111

Appendix C

Transformed Model of Example Technical

Architecture

In this section, we show the transformed model for Pilot Option A variant and Assist
Option A variant. As explained before, for the implementation, we followed the ’Overall
process of using the method’ presented in Section 5.2.7. This is the result of the ’Step 8
Variant transformation’ of the implementation which was described in Section 6.2.9.

Figure C.1 and Figure C.2 show the transformed model for Pilot Option A variant -
each for BDDs and IBDs. Figure C.3 and Figure C.4 are the transformed model for
Assist Option A variant. We determined to show the models for these two variants
in this section, since the variability in the technical architecture can be best seen and
compared in these two variants. The transformed models for the other variants have
also thoroughly checked and confirmed that they are correctly generated.

113

C. Transformed Model of Example Technical Architecture

BDD_Infrastructure BDD_Braking

BDD_SensorSet BDD_Localization

BDD_ProcessingBDD_Steering

Figure C.1.: Transformed Model: BDDs of Pilot Option A

114

IBD_Infrastructure IBD_Braking

IBD_SensorSet

IBD_Localization

IBD_Processing

IBD_Steering

Figure C.2.: Transformed Model: IBDs of Pilot Option A

115

C. Transformed Model of Example Technical Architecture

BDD_Infrastructure BDD_Braking

BDD_SensorSet BDD_Localization

BDD_ProcessingBDD_Steering

Figure C.3.: Transformed Model: BDDs of Assist Option A

116

IBD_Infrastructure IBD_Braking

IBD_SensorSet

IBD_Localization

IBD_Processing

IBD_Steering

Figure C.4.: Transformed Model: IBDs of Assist Option A

117

Appendix C

Bibliography

[AP10] E. Andrianarison, J.-D. Piques. “SysML for embedded automotive Systems:
a practical approach.” In: Conference on Embedded Real Time Software and
Systems. IEEE. 2010 (cit. on p. 7).

[AUT17a] AUTOSAR. AUTOSAR Feature Model Exchange Format, 4.3.1. Tech. rep.
2017. URL: https://www.autosar.org/fileadmin/user_upload/standards/
classic/4-3/AUTOSAR_TPS_FeatureModelExchangeFormat.pdf (cit. on
p. 21).

[AUT17b] AUTOSAR. AUTOSAR Generic Structure Template, 4.3.1. Tech. rep. 2017.
URL: https://www.autosar.org/fileadmin/user_upload/standards/classic/
4-3/AUTOSAR_TPS_GenericStructureTemplate.pdf (cit. on pp. 15, 21).

[BLPW04] S. Bühne, K. Lauenroth, K. Pohl, M. Weber. “Modeling features for multi-
criteria product-lines in automotive industry.” In: Workshop on Software
Engineering for Automotive Systems (SEAS), at ICSE. Vol. 4. 2004 (cit. on
p. 31).

[BN09] F. Bachmann, L. Northrop. “Structured variation management in software
product lines.” In: 2009 42nd Hawaii International Conference on System
Sciences. IEEE. 2009, pp. 1–7 (cit. on p. 53).

[BPS04] D. Beuche, H. Papajewski, W. Schröder-Preikschat. “Variability manage-
ment with feature models.” In: Science of Computer Programming 53.3
(2004), pp. 333–352 (cit. on p. 63).

[BSL+13] T. Berger, S. She, R. Lotufo, A. Wasowski, K. Czarnecki. “A study of
variability models and languages in the systems software domain.” In:
IEEE Transactions on Software Engineering 39.12 (2013), pp. 1611–1640
(cit. on pp. 16, 63).

119

https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_TPS_FeatureModelExchangeFormat.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_TPS_FeatureModelExchangeFormat.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_TPS_GenericStructureTemplate.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_TPS_GenericStructureTemplate.pdf

Bibliography

[CB11] L. Chen, M. A. Babar. “A systematic review of evaluation of variability
management approaches in software product lines.” In: Information and
Software Technology 53.4 (2011), pp. 344–362 (cit. on p. 22).

[CD11] D. S. Cruzes, T. Dybå. “Research synthesis in software engineering: A
tertiary study.” In: Information and Software Technology 53.5 (2011),
pp. 440–455 (cit. on p. 104).

[CHE05] K. Czarnecki, S. Helsen, U. Eisenecker. “Formalizing cardinality-based
feature models and their specialization.” In: Software process: Improvement
and practice 10.1 (2005), pp. 7–29 (cit. on pp. 17, 20, 63).

[Cza98] K. Czarnecki. “Generative programming: Principles and techniques of
software engineering based on automated configuration and fragment-
based component models.” In: (1998) (cit. on pp. 17–21).

[Def05] U. D. of Defense. Dictionary of Military and Associated Terms. US Depart-
ment of Defense, 2005 (cit. on p. 6).

[DS06] O. Djebbi, C. Salinesi. “Criteria for comparing requirements variability
modeling notations for product lines.” In: Fourth International Workshop
on Comparative Evaluation in Requirements Engineering (CERE’06-RE’06
Workshop). IEEE. 2006, pp. 20–35 (cit. on pp. 17–21, 79, 97).

[DSTH14] D. Durisic, M. Staron, M. Tichy, J. Hansson. “Evolution of Long-Term
Industrial Meta-Models–An Automotive Case Study of AUTOSAR.” In:
2014 40th EUROMICRO Conference on Software Engineering and Advanced
Applications. IEEE. 2014, pp. 141–148 (cit. on pp. 15, 16).

[GC15] J. P. Gaeta, K. Czarnecki. “Modeling aerospace systems product lines in
SysML.” In: Proceedings of the 19th international conference on software
product line. ACM. 2015, pp. 293–302 (cit. on p. 21).

[GFd98] M. L. Griss, J. Favaro, M. d’Alessandro. “Integrating feature modeling with
the RSEB.” In: Proceedings. Fifth International Conference on Software Reuse
(Cat. No. 98TB100203). IEEE. 1998, pp. 76–85 (cit. on pp. 17, 20, 63).

[GKPR08] H. Grönniger, H. Krahn, C. Pinkernell, B. Rumpe. “Modeling variants of au-
tomotive systems using views.” In: Proceedings of Workshop Modellbasierte
Entwicklung von eingebetteten Fahrzeugfunktionen (MBEFF). Citeseer. 2008,
pp. 76–89 (cit. on p. 21).

[GKS+07] C. Gillan, P. Kilpatrick, I. Spence, T. J. Brown, R. Bashroush, R. Gawley.
“Challenges in the application of feature modelling in fixed line telecommu-
nications.” In: Proceedings of the First International Workshop on Variability
Modelling of Software-intensive Systems (VaMoS 2007), Lemrick, Ireland,
Jan 16-18, 2007. 2007 (cit. on p. 21).

120

Bibliography

[Gmba] P. S. GmbH. Technical White Paper Variant Management with pure::variants.
Tech. rep. URL: http://www.pure-systems.com/mediapool/pv-whitepaper-
en-04.pdf (cit. on p. 63).

[Gmbb] P.-S. GmbH. Pure-Systems Website. http://www.pure-systems.com (cit. on
p. 31).

[Gmb19] P.-S. GmbH. Pure::Variants User’s Guide. Tech. rep. 2019. URL: https :
//www.pure-systems.com/fileadmin/downloads/pure-variants/doc/pv-
user-manual.pdf (cit. on pp. 57, 63).

[Gro] O. (O. M. Group). OMG SysML Portal. http : / / www. omgwiki . org /
OMGSysML/doku.php?id=sysml- roadmap:sysml_assessment_and_
roadmap_working_group (cit. on p. 91).

[Her00] A. Heritage. The American Heritage Dictionary of the English Language.
Boston. Houghton Mifflin, 2000 (cit. on p. 5).

[HT08] H. Hartmann, T. Trew. “Using feature diagrams with context variability
to model multiple product lines for software supply chains.” In: 2008
12th International Software Product Line Conference. IEEE. 2008, pp. 12–21
(cit. on pp. 51, 52).

[ISO08] ISO/IEC. “ISO/IEC 26514:2008 Systems and software engineering —
requirements for designers and developers of user documentation, 4.21.”
In: 2008 (cit. on p. 5).

[ISO15] ISO/IEC. “ISO/IEC 26550:2015 Software and systems engineering —
Reference model for product line engineering and management.” In: 2015
(cit. on p. 5).

[ISO17] ISO/IEC. “ISO/IEC 24765:2017 Systems and software engineering – Vo-
cabulary.” In: 2017 (cit. on pp. 5, 6).

[KCH+90] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, A. S. Peterson. Feature-
oriented domain analysis (FODA) feasibility study. Tech. rep. Carnegie-
Mellon Univ Pittsburgh Pa Software Engineering Inst, 1990 (cit. on pp. 1,
5, 17, 18, 63).

[KKL+98] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, M. Huh. “FORM: A feature-;
oriented reuse method with domain-; specific reference architectures.” In:
Annals of Software Engineering 5.1 (1998), p. 143 (cit. on pp. 17, 19).

[KLD02] K. C. Kang, J. Lee, P. Donohoe. “Feature-oriented product line engineer-
ing.” In: IEEE software 19.4 (2002), pp. 58–65 (cit. on pp. 17, 19, 50,
89).

121

http://www.pure-systems.com/mediapool/pv-whitepaper-en-04.pdf
http://www.pure-systems.com/mediapool/pv-whitepaper-en-04.pdf
http://www.pure-systems.com
https://www.pure-systems.com/fileadmin/downloads/pure-variants/doc/pv-user-manual.pdf
https://www.pure-systems.com/fileadmin/downloads/pure-variants/doc/pv-user-manual.pdf
https://www.pure-systems.com/fileadmin/downloads/pure-variants/doc/pv-user-manual.pdf
http://www.omgwiki.org/OMGSysML/doku.php?id=sysml-roadmap:sysml_assessment_and_roadmap_working_group
http://www.omgwiki.org/OMGSysML/doku.php?id=sysml-roadmap:sysml_assessment_and_roadmap_working_group
http://www.omgwiki.org/OMGSysML/doku.php?id=sysml-roadmap:sysml_assessment_and_roadmap_working_group

Bibliography

[OPS+17] O. Oliinyk, K. Petersen, M. Schoelzke, M. Becker, S. Schneickert. “Struc-
turing automotive product lines and feature models: an exploratory study
at Opel.” In: Requirements Engineering 22.1 (2017), pp. 105–135 (cit. on
pp. 1, 10, 16, 18–20, 22, 26, 50, 51, 88).

[PG13] K. Petersen, C. Gencel. “Worldviews, research methods, and their rela-
tionship to validity in empirical software engineering research.” In: 2013
Joint Conference of the 23rd International Workshop on Software Measure-
ment and the 8th International Conference on Software Process and Product
Measurement. IEEE. 2013, pp. 81–89 (cit. on p. 32).

[PHAB12] K. Pohl, H. Hönninger, R. Achatz, M. Broy. Model-Based Engineering of Em-
bedded Systems: The SPES 2020 Methodology. Springer Science & Business
Media, 2012 (cit. on p. 5).

[RBBS02] M. Rappl, P. Braun, M. von der Beeck, C. Schröder. Automotive software
development: A model based approach. Tech. rep. SAE Technical Paper,
2002 (cit. on p. 15).

[Rie03] M. Riebisch. “Towards a more precise definition of feature models.” In:
Modelling Variability for Object-Oriented Product Lines (2003), pp. 64–76
(cit. on p. 19).

[Rob19a] C. S. C. Robert Bosch GmbH. Internal presentation slides from Robert
Bosch GmbH. 190326_MBSE_EEA_Approach_Guideline_OpenPoints.pptx.
Robert Bosch GmbH, 2019 (cit. on pp. 7, 8, 13).

[Rob19b] C. S. C. Robert Bosch GmbH. Internal presentation slides from Robert Bosch
GmbH. 190326_MBSE_CCEYX_VariantHandlingApproach.pptx. Robert
Bosch GmbH, 2019 (cit. on pp. 8–10).

[Rob19c] C. S. C. Robert Bosch GmbH. Internal presentation slides from Robert Bosch
GmbH. MasterThesisProposal_JungAYoon_R7_190701.pptx. Robert Bosch
GmbH, 2019 (cit. on p. 9).

[Rob19d] C. S. C. Robert Bosch GmbH. Internal presentation slides from Robert Bosch
GmbH. 20190710_Variance_Management_along_PEP_and_V_model.pdf.
Robert Bosch GmbH, 2019 (cit. on p. 10).

[Rob19e] C. S. C. Robert Bosch GmbH. Internal presentation slides from Robert Bosch
GmbH. 190701_ExportEngine_WS2.pptx. Robert Bosch GmbH, 2019 (cit.
on pp. 29, 106, 108–111).

[SAE18] O.-R. A. D. c. SAE. “SAE J3016 Taxonomy and Definitions for Terms Related
to Driving Automation Systems for On-Road Motor Vehicles.” In: 2018
(cit. on p. 28).

122

[SBC+13] G. M. Selim, F. Büttner, J. R. Cordy, J. Dingel, S. Wang. “Automated verifica-
tion of model transformations in the automotive industry.” In: International
Conference on Model Driven Engineering Languages and Systems. Springer.
2013, pp. 690–706 (cit. on p. 15).

[SD07] M. Sinnema, S. Deelstra. “Classifying variability modeling techniques.” In:
Information and Software Technology 49.7 (2007), pp. 717–739 (cit. on
pp. 16, 20, 22, 31, 63, 64, 68).

[She14] R. Sherman. Business intelligence guidebook: From data integration to
analytics. Newnes, 2014 (cit. on p. 6).

[Str02] D. Streitferdt. “Integration of current models towards family oriented re-
quirements engineering.” In: Proceedings of the 3rd international workshop
on software product lines: economics, architectures, and implications. 2002
(cit. on pp. 17, 20).

[WRH+12] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A. Wesslén. Ex-
perimentation in software engineering. Springer Science & Business Media,
2012 (cit. on pp. 15, 101, 104).

All links were last followed on July 25, 2019.

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all
direct or indirect statements from other sources con-
tained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature

	1 Introduction
	2 Foundations
	2.1 Definitions
	2.2 Model-Based System Engineering (MBSE) for Automotive Systems
	2.3 Variant Management in Automotive System Engineering

	3 Related Work
	3.1 System Modelling through Meta-models
	3.2 Variant Management and Feature Modelling

	4 Research Methods
	4.1 Stakeholder Definition
	4.2 Stakeholder Interviews
	4.3 Use Case Identification and Requirement Derivation
	4.4 Definition of Example Technical Architecture
	4.5 Variant Management Method Development
	4.6 Proof of Concept: Implementation and Evaluations
	4.7 Threats to Validity

	5 Research Results
	5.1 Profile of Stakeholders
	5.2 Context Characterization
	5.3 Use Cases For Technical Architecture Model
	5.4 Requirements to Variant Management Method of Technical Architecture
	5.5 Variant Management Method for Technical Architecture

	6 Implementation
	6.1 Pure::Variants Modelling Concept
	6.2 Implementation of Variant Management Method

	7 Evaluation
	7.1 Evaluation Questionnaire
	7.2 Evaluation Results

	8 Discussion
	8.1 Understanding Context and Stakeholder Definition
	8.2 Use Case Identification and Requirement Derivation
	8.3 Variant Management Method Development
	8.4 Implementation
	8.5 Evaluation

	9 Conclusion
	A Systematic Literature Review Process
	A.1 Planning the Review
	A.2 Conducting the Review

	B System Variants of Example Technical Architecture
	C Transformed Model of Example Technical Architecture
	Bibliography

