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Abstract

The increasing amount of digitally available information in the manufacturing
domain is accompanied by a demand to use these data to increase the efficiency
of a product’s overall design, production, and maintenance steps. This idea, often
understood as a part of Industry 4.0, requires the integration of information
technologies into traditional manufacturing craftsmanship. Despite an increasing
amount of automation in the production domain, human creativity is still
essential when designing new products. Further, the cognitive ability of skilled
workers to comprehend complex situations and solve issues by adapting solutions
of similar problems makes them indispensable. Nowadays, customers demand
highly customizable products. Therefore, modern factories need to be highly
flexible regarding the lot size and adaptable regarding the produced goods,
resulting in increasingly complex processes.

One of the major challenges in the manufacturing domain is to optimize
the interplay of human expert knowledge and experience with data analysis
algorithms. Human experts can quickly comprehend previously unknown patterns
and transfer their knowledge and gained experience to solve new issues. Contrarily,
data analysis algorithms can process tasks very efficiently at the cost of limited
adaptability to handle new situations. Further, they usually lack a sense of
semantics, which leads to a need to combine them with human world knowledge
to assess the meaningfulness of such algorithms’ results. The concept of Visual
Analytics combines the advantages of the human’s cognitive abilities and the
processing power of computers. The data are visualized, allowing the users to
understand and manipulate them interactively, while algorithms process the
data according to the users’ interaction.

In the manufacturing domain, a common way to describe the different states
of a product from the idea throughout the realization until the product is
disposed is the product lifecycle. This thesis presents approaches along the first
three phases of the lifecycle: design, planning, and production. A challenge that
all of the phases face is that it is necessary to be able to find, understand, and
assess relations, for example between concepts, production line layouts, or events
reported in a production line.

As all phases of the product lifecycle cover broad topics, this thesis focuses on
supporting experts in understanding and comparing relations between important
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Abstract

aspects of the respective phases, such as concept relationships in the patent
domain, as well as production line layouts, or relations of events reported in
a production line. During the design phase, it is important to understand the
relations of concepts, such as key concepts in patents. Hence, this thesis presents
approaches that help domain experts to explore the relationship of such concepts
visually. It first focuses on the support of analyzing patent relationships and then
extends the presented approach to convey relations about arbitrary concepts, such
as authors in scientific literature or keywords on websites. During the planning
phase, it is important to discover and compare different possibilities to arrange
production line components and additional stashes. In this field, the digitally
available data is often insufficient to propose optimal layouts. Therefore, this
thesis proposes approaches that help planning experts to design new layouts and
optimize positions of machine tools and other components in existing production
lines. In the production phase, supporting domain experts in understanding
recurring issues and their relation is important to improve the overall efficiency
of a production line. This thesis presents visual analytics approaches to help
domain experts to understand the relation between events reported by machine
tools and comprehend recurring error patterns that may indicate systematic
issues during production.

Then, this thesis combines the insights and lessons learned from the previous
approaches to propose a system that combines augmented reality with visual
analysis to allow the monitoring and a situated analysis of machine events
directly at the production line. The presented approach primarily focuses on
the support of operators on the shop floor. At last, this thesis discusses a
possible combination of the product lifecycle with knowledge generating models
to communicate insights between the phases, e.g., to prevent issues that are
caused from problematic design decisions in earlier phases. In summary, this thesis
makes several fundamental contributions to advancing visual analytics techniques
in the manufacturing domain by devising new interactive analysis techniques
for concept and event relations and by combining them with augmented reality
approaches enabling an immersive analysis to improve event handling during
production.
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Zusammenfassung

Die zunehmende Menge an digital verfügbaren Informationen im Fertigungsbe-
reich geht einher mit dem Bedarf, diese Daten zur Steigerung der Effizienz der
gesamten Design-, Produktions- und Wartungsschritte eines Produkts zu nutzen.
Diese Idee, die häufig als Teil von Industrie 4.0 verstanden wird, erfordert die In-
tegration von Informationstechnologien in das traditionelle Fertigungshandwerk.
Trotz der zunehmenden Automatisierung in der Produktion ist die Kreativität
des Menschen bei der Entwicklung neuer Produkte immer noch von entscheiden-
der Bedeutung. Die kognitive Fähigkeit von Fachkräften, komplexe Situationen
zu verstehen und Probleme durch Anpassung der Lösungen ähnlicher Probleme
zu überwinden, macht sie zudem unverzichtbar. Heutzutage verlangen Kunden
nach hochgradig anpassbaren Produkten, die in modernen Fabriken zu immer
komplexeren Prozessen führen, da sie eine hohe Flexibilität in Bezug auf die
Losgröße und Anpassungsfähigkeit an die produzierten Waren benötigen.

Eine der größten Herausforderungen im Fertigungsbereich ist die Optimierung
des Zusammenspiels von Expertenwissen und Erfahrung mit Datenanalysealgo-
rithmen. Experten können zuvor unbekannte Muster schnell nachvollziehen und
ihr Wissen und ihre Erfahrungen nutzen, um Lösungen für neue Probleme zu
erarbeiten. Im Gegensatz dazu können Datenanalysealgorithmen Aufgaben auf
Kosten einer begrenzten Anpassungsfähigkeit an neue Situationen sehr effizient
verarbeiten. Darüber hinaus fehlt ihnen in der Regel ein Sinn für Semantik, was
dazu führt, dass sie mit menschlichem Weltwissen kombiniert werden müssen, um
den Sinngehalt der Ergebnisse zu bemessen. Das Konzept der visuellen Analytik
kombiniert die Vorteile der kognitiven Fähigkeiten des Menschen und der Re-
chenleistung von Computern. Dabei werden die Daten visualisiert und somit dem
Benutzer ermöglicht, die Daten verstehen und damit zu interagieren, während
Algorithmen die Daten entsprechend der Benutzerinteraktion verarbeiten.

Im Fertigungsbereich ist der Produktlebenszyklus eine gängige Methode, um
die unterschiedlichen Zustände eines Produkts von der Idee über die Realisierung
bis zur Entsorgung des Produkts zu beschreiben. Diese Arbeit stellt Ansätze
entlang der ersten drei Phasen des Lebenszyklus vor: Design, Planung und
Produktion. Eine Herausforderung, der alle Phasen gegenüberstehen, besteht
darin, dass Zusammenhänge, z. B. zwischen Konzepten, Fertigungslinienlayouts
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Zusammenfassung

oder in einer Fertigungslinie gemeldeten Ereignissen, gefunden, verstanden und
bewertet werden müssen.

Da alle Phasen des Produktlebenszyklus breite Themenbereiche abdecken,
konzentriert sich diese Arbeit auf die Unterstützung von Experten beim Verständ-
nis und Vergleich von Beziehungen zwischen wichtigen Aspekten der jeweiligen
Phasen, wie z. B. Konzeptbeziehungen im Patentbereich, sowie Produktionslinien-
layouts oder Beziehungen von Ereignissen, die in einer Produktionslinie gemeldet
werden. Während der Entwurfsphase ist es wichtig, die Zusammenhänge von
Konzepten zu verstehen, wie z. B. Schlüsselkonzepte in Patenten. Daher stellt
diese Arbeit Ansätze vor, mit denen Domänenexperten die Beziehung solcher
Konzepte visuell untersuchen können. Zunächst wird die Unterstützung bei der
Analyse von Patentbeziehungen fokussiert. Anschließend wird der vorgestellte
Ansatz erweitert, um Beziehungen über beliebige Konzepte zu vermitteln, wie
z. B. Autoren in der wissenschaftlichen Literatur oder Schlüsselwörtern auf
Webseiten. In der Planungsphase ist es wichtig, verschiedene Möglichkeiten zur
Anordnung von Komponenten der Produktionslinie und zusätzlichen Lagern zu
entdecken und zu vergleichen. In diesem Bereich reichen die digital verfügbaren
Daten oft nicht aus, um optimale Layouts vorzuschlagen. Daher schlägt diese
Arbeit Ansätze vor, die Planungsexperten helfen, neue Layouts zu entwerfen
und die Positionen von Werkzeugmaschinen und anderen Komponenten in beste-
henden Produktionslinien zu optimieren. In der Produktionsphase ist es wichtig,
Domänenexperten dabei zu unterstützen, wiederkehrende Probleme und deren
Beziehungen zu verstehen, um die Effizienz einer Produktionslinie zu verbessern.
Diese Arbeit stellt visuelle Analytikansätze vor, die Domänenexperten helfen, die
Zusammenhänge zwischen der von Werkzeugmaschinen gemeldeten Ereignisse
zu verstehen und wiederkehrende Fehlermuster nachzuvollziehen, da diese auf
systematische Probleme während der Produktion hinweisen können.

Schließlich kombiniert diese Arbeit die Erkenntnisse und Erfahrungen aus den
bisherigen Ansätzen, um ein System vorzuschlagen, das Augmented Reality mit
visueller Analytik kombiniert, um die Überwachung und eine situierte Analyse
von Maschinenereignissen direkt an der Produktionslinie zu ermöglichen. Der
vorgestellte Ansatz konzentriert sich in erster Linie auf die Unterstützung von
Operatoren in der Fertigungshalle. Zuletzt wird in dieser Arbeit eine mögliche
Kombination des Produktlebenszyklus mit wissenserzeugenden Modellen disku-
tiert, um Erkenntnisse zwischen den Phasen zu vermitteln, z. B. um Probleme zu
vermeiden, die durch problematische Designentscheidungen in früheren Phasen
verursacht werden. Zusammenfassend liefert diese Arbeit mehrere grundlegende
Beiträge zur Weiterentwicklung visueller Analysetechniken im Fertigungsbereich,
indem neue interaktive Analysetechniken für Konzept- und Ereignisbeziehun-
gen entwickelt und mit Augmented-Reality-Ansätzen kombiniert werden, die
eine immersive Analyse ermöglichen, um die Ereignisbehandlung während der
Produktion zu verbessern.
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Introduction

The increasing amount of digitization in the manufacturing domain regarding the
quality and quantity of available data produces more information about everyday
processes than ever before. Storing these data and making it accessible allows
non-IT personnel to get information that helps with their tasks, e.g., getting
real-time updates about the current issues of a production line or the quality of
the produced goods. Despite the large amounts of data, most of the specialized
knowledge and detailed insights of workers are still based on observations and
experience gained during everyday tasks. Backing these personal insights with
data and making knowledge available to colleagues and superiors is a challenge
still persisting up to this day. This hampers the overall efficiency of the workers,
as the knowledge has to be made by every employee separately.

Visualizing and allowing domain experts to analyze the available data enables
them to support their observations with data and communicate their insights
to colleagues or superiors. The combination of data analytics approaches to
efficiently process the available data and visualization to present and interact
with these data allows data analysis that would otherwise not be possible. The
concept of combining data analytics and interactive visualization is called visual
analytics (VA).

Every product first needs to be designed and produced before it can be
consumed and disposed of. This product lifecycle (see Figure 1.1a) is commonly
used in the production domain and splits the lifetime of a product into several
phases. Westkämper et al. [194] separate the phases into two groups: first, the
product is designed and its production is planned before it is produced. Second,
the finished product is shipped to consumers, where it is used and then disposed
or recycled. This thesis focuses on the first part of the product lifecycle and
proposes visual analytics approaches to support domain experts in understanding
and comparing relations between important aspects during the design, planning,
and production phase (see Figure 1.1b).

1



1 Introduction

Distribution Consumption RecyclingDesign Planning

Consumption & RecyclingDesign & Production

Production

(a) General Product Lifecycle including categorization proposed by Westkämper et al. [194].

Design Planning Production Dist.

Design & Production

(b) First part of the Product Lifecycle, which this thesis focuses on.

Figure 1.1: This thesis presents approaches to support processes along the product
lifecycle (a), specifically focusing on the first part (design and production) (b).

The remainder of this chapter first presents the research questions that this
thesis aims to answer (Section 1.1). Then, the structure of this thesis is detailed
and my contributions to the presented works are explicated (Section 1.2).

1.1 Research Questions
The overarching goal of this thesis is to improve the overall efficiency of processes
along the product lifecycle. Thus, the central research question of this thesis is:

Overarching Research Question: How can visual analytics be applied to
support domain experts during the first part of the product lifecycle?
Many optimizations in the production domain are conducted within the
boundaries of the individual phases of the product lifecycle. The primary
question is, how visual analytics can help with the tasks of these phases.

Answering this general question is a wide and challenging task. Therefore,
this thesis breaks the overarching research question down to research questions
that are focusing on the specific phases of the product lifecycle:

2



1.2 Structure and Contribution

Research Question 1: How can visualization help to understand the rela-
tion of relevant topics when designing a new product?
Novel designs of products are often complex and may necessitate further
inventions, such as new production processes. Having knowledge about sim-
ilar topics or technologies in other fields may help to solve challenges and
prevent legal issues due to patent infringements at a later point in time.

Research Question 2: How can visual analytics support layout planning of
factories and production lines?
Planning and adapting factory or production line layouts is a challenging task
that heavily relies on planning software and human experience. Therefore,
integrating software and human knowledge through visual analytics has the
potential to improve current processes.

Research Question 3: How to support domain experts during the analysis
of event data to understand issues in a production line?
Keeping a production line operable is already a challenging task by itself.
However, the exploratory visual analysis of event data reported by machinery
to understand correlations and temporal patterns may help to understand
production issues.

1.2 Structure and Contribution
This section outlines the remainder of this thesis and gives an overview of each
chapter’s content. I was first author of the majority of the publications that
are presented in these chapters. The chapter overview also details with whom I
collaborated during each contribution and which parts I contributed.

Chapter 2 - Foundations This chapter introduces the concepts and techniques
that are relevant during the remainder of the thesis. The first part presents
the general concept of visual analytics (VA) and the necessary fundamentals
of visualization, data preprocessing, and analysis algorithms. The first part
concludes with an application example for visual analytics through an approach
that was developed in the context of the VAST challenge 2014. I contributed
the data preprocessing views and helped with the analysis of the provided data

3



1 Introduction

in this approach. In the second part, this chapter gives a brief summary of
the development from traditional to advanced manufacturing and introduces
important concepts from the production domain, of which the product lifecycle
is of great importance, as the thesis structure follows along its different phases.

Chapter 3 - Exploration of Concept Relationships This chapter introduces
approaches that help experts to understand topic relationships that may be of
relevance during the design phase. It first focuses on the support of the analysis of
patents based on their classification relationships. Then, this concept is extended
to allow the analysis of the relations of concepts of documents in general, such as
keywords on websites or in scientific literature. I was the first author of all papers
in this chapter and collaborated with my colleagues Qi Han and Steffen Lohmann
during the design and implementation process of the presented approaches. They
provided parts of the data preprocessing and their experience in the fields of
natural language processing and word cloud visualization.

Chapter 4 - Visual Analytics for Production Line Layout Planning This
chapter presents approaches that support domain experts during the layout
planning phase. Specifically, it first presents an extension of the desktop-based
visual analysis approach to simulate modular production lines by my colleague
Michael Wörner to be usable on an augmented reality device. This way, it is
possible to compare different layout alternatives with each other on-site. The
publications of this approach are based on the results of the master theses of Jan
Reinhardt, who investigated how to transfer the aforementioned simulator to an
augmented reality application, and Rafael Villanueva Ferrari, who complemented
the simulator with a visualization to support the analysis of critical paths in
the simulated production line. In addition to defining the research question, I
extended the combined theses with a visual encoding to present the differences
between two simulated layouts. My colleagues Guido Reina and Robert Krüger
contributed their experience of simulation and geographic visualization to make
the papers possible. The second half of the chapter focuses on the optimization
of worker paths by rearranging movable components in a production line. The
presented approach supports planners in choosing, which layout elements to
optimize and where to move these parts to. This work is based on a prototype
that was developed in the course of the bachelor thesis of Sebastian Grund, who
also contributed the implementation of the pathfinding algorithm and parts of
the graphical user interface of the final approach.

Chapter 5 - Visual Event Analysis in Production Lines The approaches
presented in this chapter focus on supporting technical management staff to
analyze the relation of events reported by machinery in a production line. Both

4



1.2 Structure and Contribution

approaches were developed in cooperation with an industry partner, who ex-
plained the industrial relevance of such approaches and provided the used data.
Further, the approaches were evaluated by domain experts of the industry part-
ner. The first approach focuses on the analysis of event correlations and was
developed together with my colleague Kuno Kurzhals who helped in designing
the concept of the approach. The second approach helps experts to extract and
analyze temporal patterns of the events’ occurrence and was collaborative work
with Fabian Beck, who helped to design the concept and provided his expertise
in temporal data series visualization.

Chapter 6 - Augmented Reality Monitoring and Visual Event Analysis This
chapter first combines the idea of the previously presented approach of using
augmented reality to complement the visual analysis with the analysis of event
data during production. Specifically, the event data from Chapter 5 is used
as a basis for a system that allows operators to monitor and analyze data at
the shop floor of a production line. This work was a collaboration with my
co-authors Michael Becher, Kuno Kurzhals, Christoph Müller, Guido Reina, and
Daniel Weiskopf. I contributed the overall approach of combining augmented
reality and a tablet-based visual analysis, the analysis components, and the data
preprocessing in this project. Further, this project was co-authored by Lena
Wagner from Robert Bosch GmbH, who contributed her domain knowledge and
the industry related questions.

Chapter 7 - Conclusion&Outlook The last chapter of this thesis first summar-
izes the contributions presented in this thesis. Then, the results of the approaches
are discussed with regard to the stated research questions. At last, the thesis
concludes with an outlook of open challenges, such as the visual analysis of
the quality of the available data, collaborative analysis, and the combination of
visual analysis and prediction to allow for predictive maintenance.
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2

Foundations

This thesis presents visual analytics approaches specifically designed for the
advanced manufacturing domain. This chapter provides the necessary founda-
tions by introducing the general concept of visual analytics (Section 2.1.1), an
introduction to visualization (Section 2.1.2), and data processing and analysis
algorithms that are used in the course of this thesis (Section 2.1.3). The intro-
duction to visual analytics ends with a brief application example that shows
how visual analytics can be applied to analyze previously unknown datasets
in an artificial scenario (Section 2.1.4). In the second part of this chapter, the
advanced manufacturing domain and concepts that this thesis makes use of, such
as the product lifecycle, are introduced (Section 2.2).

• R. Krüger, D. Herr, F. Haag and T. Ertl. “Inspector-Gadget: Integrating Data Preprocessing
and Orchestration in the Visual Analysis Loop”. In: Proceedings of the EuroVis Workshop
on Visual Analytics. EuroVA. The Eurographics Association, 2015 [9]

This chapter is partly based on the following publication:

2.1 Visual Analytics
Historically, the field of visual analytics grew in importance when James J.
Thomas and Kristin A. Cook published the book “Illuminating the Path -
The Research and Development Agenda for Visual Analytics” as a response to
the terrorist attacks on September 11, 2001, in the USA. They defined visual
analytics (VA) as “the science of analytical reasoning facilitated by interactive
visual interfaces” [181, p. 4]. Generally, VA combines visualization with data
processing and analysis algorithms to make use of domain experts’ knowledge
and experience and the computer’s ability to quickly process a large amount of
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data. The following section first introduces visual analytics on a conceptual level.
Afterwards, the core components of visualization and concrete data processing
and analysis algorithms, which are used in this thesis, are presented. Finally, an
application example for visual analytics shows how VA can be applied to help
forensic analysts in getting insights about initially unknown datasets.

2.1.1 Concept
Visual analytics concepts can generally be viewed from two angles: On the one
hand, VA intends to present workflow concepts that enable data processing that
intertwines automatic data processing with human-readable visualizations, much
like the definition by Thomas and Cook [181]. On the other hand, VA concepts
intend to enable humans to extract insights from the data to aid them in their
decision-making. Pirolli and Card [154] presented a prominent attempt for such
a sensemaking process. They use the analogy of the shoebox system used by law
enforcement and intelligence agencies to organize the available evidence during
their investigations as a workflow to gain insights from the available data.

Sacha et al. [162] combine these two concepts to a knowledge generation
model that merges both of the presented points of view in one model (see
Figure 2.1). A computer processes the available data and generates data models
and visualizations that can be inspected by human experts who want to analyze
the data. The analysis can result in different stages of knowledge about the data.
While the analysis is performed, experts can extract findings from the data. If
the findings are already known or are of no relevance, the analysis continues. In

Visualization

Model

Data Knowledge

Insight

Hypothesis

Finding

Action

Figure 2.1: Example for a model to extract knowledge from data through the com-
bination of visualizations and data analysis (cmp. Sacha et al. [162]). The analysis
can result in different stages of understandings of the data: findings that are relevant
become insights. If the hypotheses derived from the gained insights can be verified,
they are seen as knowledge, otherwise the analysis continues.
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case the findings were relevant, they become insights that need to be verified.
This can be done by formulating a hypothesis about the insight and continuing
the analysis with regard to the hypothesis. If the hypothesis is supported by
the data, the insight becomes knowledge, that may also be transferable by the
human analyst to other data sets or scenarios.

2.1.2 Visualization

Raw data are usually structured so that computers can efficiently process them,
making them difficult to read and understand for humans. Card defined visualiz-
ation as “the use of computer-supported, interactive, visual representations of
data to amplify cognition” [42, p. 6]. It aims to transform data into a visual rep-
resentation that is understandable for humans, which helps them to make sense
of the data. As an extension to general visualization, information visualization
is defined as the visualization of abstract data. In this context, abstract data
describes data that does not contain spatial information that can be visualized
directly. Card et al. defined an information visualization reference model [42,
p. 17] that explains how raw data needs to be manipulated to transform it into
human-readable views (see Figure 2.2). The model first transforms raw data to
extract relevant data aspects that shall be presented to human users. Then, the
prepared data are mapped to visual structures, which are arranged through view
transformations to obtain the final views that are displayed. This workflow can
be manipulated by the users through interaction at any stage where the data
are manipulated.

Data 
Transformation

Prepared
Data

Raw
Data

Visual 
Mappings

Visual 
Structures

View 
Transformations

Views

Human Interaction

Figure 2.2: The visualization reference model as proposed by Card et al. [42, p. 17].
The raw data is first transformed to create the data that shall be presented to the
users. Then, the data is mapped to visual structures, which are then arranged through
view transformations to be displayed in views.
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2.1.3 Data Processing and Analysis
Nowadays, the amount of available data is often too large to process and analyze
manually. Therefore, data processing and analysis algorithms are necessary to
process, filter, and combine the data so that they can be presented adequately.
The following presents algorithms and metrics used in the course of this thesis.

Similarity Metrics for High-Dimensional Data

Data is often complex and has a multitude of dimensions. An important step to
get an understanding of the relation between the data points is to have a notion
of which points are similar or different, and for what reason. There are multiple
ways to measure similarity or dissimilarity of high-dimensional data points. The
ones that are of relevance in this thesis are presented in the following.

Euclidean distance The arguably most intuitive way of measuring similarity is
to calculate the Euclidean distance between points. For data with n dimensions,
the distance of two points ~x and ~y is calculated as

d(~x,~y) =

√√√√n−1∑
i=0

(yi−xi)2,

where xi and yi indicate the value of the point’s i-th dimension. Although this
measure is easy to understand, it has drawbacks. One is that the influence of
each dimension on the results depends on the scale of its values. For example,
assume a data point has two dimensions. The first dimension’s values range
from 0 and 100, whereas the second dimension’s range from 0 to 10,000. When
measuring the distance between two such data points, even large differences in
the first dimension are outweighed by small changes in the second dimension.

Cosine similarity Unlike the Euclidean distance, the cosine distance is invariant
to the ranges of a data point’s dimensions. It considers every data point as a
vector in a high-dimensional space and then calculates the angle between two
points ~x and ~y using the cosine function:

sim(~x,~y) = ~x ·~y
|~x| · |~y|

= cos(~x,~y)

As the cosine similarity implicitly discards the ranges of the individual dimen-
sions, it solves the dimension range issue. However, both the cosine similarity
and the Euclidean distance only work if the difference between the compared
dimensions can be calculated. This is the case only for ratio scales. For all other
data types, such as categorical data, these measures are not applicable.
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Figure 2.3: Originally, the
Jaccard index calculates
the ratio of overlapping
elements in two sets and
their total number of dis-
tinct elements.

Set overlap / Jaccard index The Jaccard index takes a different approach
compared to the previous measures. Originally, it was designed to measure the
similarity of two given sets based on their overlap (see Figure 2.3). However,
this approach can be adapted to compare high-dimensional data points with
each other, by interpreting each dimension of the data point as an element in a
set. To calculate the similarity of two data points, the overlap of both sets is
calculated and then the value is divided by the total number of distinct elements
in both data points [132, pg. 61]. The Jaccard index of two data points A and B
can be defined as

J(A,B) = |A∩B|
|A∪B|

,

where A= {xi|i ∈ [0..n−1];n= # of dimensions}; B is defined analogous to A.
Although this measure only returns exact matches, it can cope with any data.

String Comparison

When coping with text data, one piece of information that may be of interest is the
(dis-)similarity of two given strings. An often used measure is the cost to transfer
one string into another. The Levenshtein distance is an often used algorithm for
this task. It transfers the strings’ characters with the three operations insert
(ci), delete (cd), and replace (cr). The cost is calculated using a table with
(N +1)× (M +1) cells, where N and M correspond to the size of the strings (see
Figure 2.4, left). Both strings are extended with a leading empty character. The
columns of the table correspond to the first string’s characters, the rows to the
second string’s. Each cell ci,j encodes the cost to transfer the first i characters of
the first string to the first j characters of the second string. The cell (0,0), which
corresponds to the transformation of an empty string into an empty string, is
initialized with no cost. The cost of all other cells is the smallest value of the
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Ø M M R M

Ø 0 2 4 6 8

M 2 0 2 4 6

R 4 2 1 2 4

R 6 4 3 1 3

1 (other character)

0 (same character)

ci=2

cd=2

cr{

insert

delete replace

+2

+2+0

Figure 2.4: Example of the table that encodes the cost to transfer the string MRR to
the string MMRM. The numbers beside the arrows indicate the transfer cost and the
green cell represents the total transfer cost.

neighboring cell (top, left, top-left) plus their corresponding operation cost (see
Figure 2.4, right):

C(i, j) =min


C(i−1, j)+ ci

C(i, j−1)+ cd

C(i−1, j−1)+ cr

If the replace operation would replace a character with itself, the cost of the
operation is reduced to zero. The costs for the operations are arbitrary, but
common costs are either ci = cd = 2 and cr = 1 or ci = cd = cr = 1. The cost of
the total string transformation is the value at the bottom right of the table.

After all values are calculated, it is possible to reconstruct the order of the
necessary operations to transform the strings.

Clustering

Representing similar data points as distinct groups is helpful to get a better
understanding and overview of the data. In case the data is not labeled, such
groups, also called clusters, can still be approximated in case a similarity metric
between the data points can be defined. Two kinds of clustering algorithms
can be distinguished: flat and structured. Flat clustering algorithms usually
assign data points to one specific cluster and no relation between the clusters is
assumed. Structured clustering algorithms introduce a tree-like structure, which
enables clustering at varying levels of detail and therefore implicitly describe a
relationship between the clusters.

The hierarchical agglomerative clustering algorithm (HAC) belongs to the
structured clustering algorithms. Initially, every data point is assigned to a
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Figure 2.5: The hierarchical agglomerative clustering algorithm first assigns every
element to a separate cluster and then merges the clusters pairwise based on a
previously specified linkage criterion.

separate cluster. Afterwards, the two most similar clusters are merged repeatedly
until all data points are part of one cluster (see Figure 2.5). This procedure
results in a binary tree of clusters where the leaves represent the individual
data points and the nodes represent clusters. One advantage of this procedure
is that the clustering granularity can be defined on an arbitrary level of detail.
Aside from a pairwise similarity metric between the individual data points, it is
necessary to define how the similarity between the clusters is calculated. There
are various methods for defining the similarity of clusters:

Single-linkage defines the distance of two clusters as the least distance between
any elements of the clusters. This linkage criterion is easy to understand,
but its greedy approach makes its semantic meaning hard to understand [88,
p. 525], as the elements are not compared to the elements that represent
the core of the cluster, but to its outliers and elements at the border.

Average-linkage calculates the average similarity of each element in one cluster to
all elements in the other cluster. The clusters’ similarity is the average of the
individual elements’ average similarity. This linkage does not overemphasize
outliers like single-linkage, but it can still be impacted by outliers and it is
not possible to pick a cluster representative based on the metric.

Medoid-linkage first calculates the element with the least total distance to all
other elements within the cluster (called medoid) as its representative
and then defines the similarity between cluster as the similarity between
the clusters’ medoids. A medoid is the high-dimensional counterpart of
the median in the one-dimensional space. This metric is a better way to
describe a cluster’s content compared to the elements used by single-linkage
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for multiple reasons. For example, it implicitly compensates for a high
variance and is more robust to outliers within the cluster [132, p. 392, 398].
One drawback of using medoid-linkage is the lack of monotonicity regarding
the similarity of the merged clusters. Further, if two clusters are merged,
the new cluster’s medoid usually differs from the medoids of the merged
clusters, requiring it to be recomputed as soon as the cluster changes.

Raschke et al. [10] use HAC to cluster study participants of an eye tracking
study based on their scan paths. The cluster of each participant depends on the
order in which they look at areas of interest and then represent each cluster by
the participant that is in total the most similar to all other cluster members,
which equals a medoid. These cluster representatives are then visualized and
provide insights about common eye movement patterns during tasks, such as
comparing bars in a bar chart and reading the highest value.

Dimension Reduction / Projection

Projection techniques map data from a high- to a low-dimensional space. As this
process usually includes information loss, most techniques focus on preserving
structures that exist in the high-dimensional space also in the low-dimensional
space. However, depending on the technique used to determine the mapping
from the high- to the low-dimensional space, different characteristics of the
data are preserved. For example, Principal Component Analysis (PCA) [152]
uses the principal components of the high-dimensional data points to determine
which dimensions vary the most between the data points and are therefore most
promising to represent structure in the low-dimensional space. However, this way
of separating data points does not represent the similarity of groups of data points
in the low-dimensional space. Other techniques, such as Multidimensional Scaling
(MDS) [114], interpret the high-dimensional distance between the data points as
forces and the entire high-dimensional space as a mass-spring system. Depending
on the function that maps the distance to force, such a system can build clusters
of similar data points and push dissimilar points apart. However, like most
approaches that are based on spatial differences in the high-dimensional space,
it suffers from an ambiguousness that arises in sparse, high-dimensional spaces.
This is one of the aspects of a phenomenon called the curse of dimensionality,
which describes that in a sparse, high-dimensional space “the distance to the
nearest data point approaches the distance to the farthest data point”, which
makes the distance less meaningful [29].

Instead of using spatial distances between the data points, van der Maaten and
Hinton’s t-Distributed Stochastic Neighborhood Embedding (t-SNE) [187] uses
pairwise probabilities that two data points are related in the high-dimensional
space. If the data does not provide this information already, they define the
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probability pi|j , which describes the probability that a point xi relates to a
point xj based on a Gaussian distribution. The probability that a point relates
to itself is set to zero. One issue of the Gaussian model is that the needed
variance depends on the sparsity of the analyzed data point’s neighborhood. If
the variance is low and the data density is sparse, then no neighbors will be
included. On the contrary, a high variance with a dense data space will lead to
a large neighborhood. To compensate for this, t-SNE uses a perplexity, which
semantically corresponds to a point’s neighborhood in the high-dimensional
space that is invariant to the spatial distance of the points. However, because the
neighborhood of the points xi and xj is different and due to the Gaussian model,
pj|i 6= pi|j . This has several drawbacks during the dimension reduction, such as a
high influence of outliers (see van der Maaten and Hinton [187] for details). To
alleviate these drawbacks, the n×n probability matrix is made symmetric:

pij =
pj|i +pi|j

2n ,

Once the matrix is set up, t-SNE iteratively minimizes the projection cost C
of the cost function

δC

δyi
= 4 ·

∑
j

(pij− qij)(yi−yj)
1+ ||yi−yj ||2

,

where yi describes the low-dimensional representation of the data point that is
currently mapped and yj describes the other points. The cost function minimizes
the Kullback-Leibler divergence [117] that uses a t-distribution to describe the
pairwise distance between the high-dimensional relation pij and the corresponding
low-dimensional relation qij of two data points.

Pattern Detection and Extraction for Spatio-Temporal Data

When analyzing temporal data series, multiple aspects that could be of interest,
for example, any long-term trends, seasonal behaviors, or outliers. Seasonal
Trend Decomposition using Local Polynomial Regression (STL) [48] aims to
explain time series by decomposing them into a trend, seasonal, and remainder
component. A time series Yv is defined as

Yv = Tv +Sv +Rv,

where Tv is the trend series, Sv is the seasonal series, and Rv is the remainder
that represents the difference between the trend and seasonal series to the actual
data series. To extract these components, STL uses a nested loop approach.
The inner loop extracts the seasonal and trend series, whereas multiple passes
iteratively refine the results. The outer loop makes the resulting series more
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robust towards outliers by downweighting their impact during the extraction of
the seasonal and trend series in future iterations of the inner loop. The following
gives a brief overview of how the seasonal and trend components are extracted
in the inner loop. The original work by Cleveland [48] provides more details for
the inner loop and the mechanics of the outer loop. The inner loop comprises
six steps to extract the trend and seasonal series:

1 Detrending: The trend series is subtracted from the original series. This step
can be skipped during the first pass, as there is not yet a trend series
available. Alternatively, a predefined trend series can be provided.

2 Cycle-subseries smoothing: The remaining data series is first split into np

cycle-subseries, where np defines the length of the season that should be
extracted. For example, if a series has a data point for each day and
weekly patterns are of interest, np would be seven. After the cycle-subseries
are extracted, each of the subseries is smoothed using a local polynomial
regression (LOESS) smoother within a neighborhood of ns elements. Low
values for ns result in seasons that may also include noise, whereas high
values result in homogeneous seasons that may not represent changes over
time. After the cycle-subseries smoothing, the subseries are recombined to
a preliminary seasonal series Cv.

3 Low-pass filtering of smoothed cycle-subseries: A low-pass filter is applied
to Cv to extract trend data that may unintentionally be included in the
cycle-subseries.

4 Detrending of smoothed cycle-subseries: The previously extracted trend data
is subtracted from the preliminary seasonal series, resulting in the seasonal
series Sv.

5 Deseasonalizing: The extracted seasonal series is removed from the original
time series.

6 Trend smoothing: The remaining deseasonalized series is smoothed using
another low-pass filter. The resulting series is used as the trend series Tv.

Figure 2.6 shows an example in which an artificial time series is decomposed
into an almost linear trend component, a cyclic seasonal component, and a
uniformly distributed remainder (noise) component.

Evolutionary Algorithms

Evolutionary algorithms (EA) are a class of optimization algorithms used to
minimize a black-box objective function. Figure 2.7 illustrates the process EAs
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Figure 2.6: Example that decomposes an artificial time series into a trend, seasonal,
and remainder component.

follow to imitate the natural evolution. First, a set of function input configurations
is generated. The whole set is called a population and its configurations are called
members. Every population belongs to a generation, which corresponds to the
current iteration of the process. Upon their creation, the members’ performance
is evaluated using the black-box function. Based on the results some of the
members are used to create a new generation of configuration by recombining the
members’ configuration values and mutating some of the results. This process
repeats until a satisfactory result is achieved.

Algorithms that derive from evolutionary algorithms mostly differ in the
way they pick the members and how they are recombined. Natural evolution
recombines the genetic code of the parents’ genomes to build a child’s genome.
The subclass closest to this behavior are called genetic algorithms and are the
most widely known subclass of evolutionary algorithms. The following presents
other subclasses that are used in the remainder of this thesis.

Differential Evolution Algorithms Differential evolution algorithms (DEA)
behave mostly like genetic algorithms. However, differential algorithms do not
take binary decisions when recombining the parents’ attributes but interpolate
between them. For example, assume two population members A and B comprising
one scalar attribute. A has the attribute value 0.0 and B has the attribute value
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(Initialization)
Create random configurations

Evaluate the fitness of all population members of the current generation

Remove the weakest configurations

Recombine the remaining population members to create a new generation

Mutate some of the members of the new generation

Figure 2.7: Generic step-by-step procedure of an evolutionary algorithm.

1.0. In case of a genetic algorithm, the offspring’s attribute could either be 0.0
or 1.0. In a differential evolution algorithm, the offspring’s attribute could be
any value between 0.0 and 1.0.

DEAs implicitly assume that the interpolated value between two well-
performing values will also perform well. Unlike other optimization algorithms,
like hill climbing, they do not require the function to be differentiable, which
means DEAs can optimize a wider range of black-box functions.

Estimation of Distribution Algorithms Estimation of distribution algorithms
(EDA) [89] differ from other evolutionary algorithms as they do not directly take
a given generation’s population members and recombine them. Instead, they
evaluate a generation’s members and build a high-dimensional probability space
that describes for every dimension the likelihood that certain values should be
picked again in future generations. There are multiple possibilities for designing
this probability space, which all require a definition of how the dimensions of
the high-dimensional space relate to each other. Typically, one of three different
scenarios is assumed:

Univariate dependency: The parameters are assumed to be independent of each
other. This means that every parameter in the high-dimensional space can
be optimized separately, which is easy to model but often not truthful to
realistic data.
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Bivariate dependency: It is also possible to assume that the parameters have a
pairwise correlation. This often results in models that have a graph-like
structure to describe the dependencies between the parameters.

Multivariate dependency: Although it is the most difficult to model, the assump-
tion that all parameters are possibly related provides the most possibilities
to describe the dimension’s relation. One prominent way to model such
high-dimensional dependencies are Bayesian Networks [151].

2.1.4 Visual Analytics Application Example

The following section shows how visual analytics can be used to derive insights
from a previously unknown dataset through an iterative exploratory approach.
The application example was designed in the context of the VAST Challenge
2014 [190]. The scenario was set in the city Abila on the fictitious island Kronos,
where a number of employees of the company GASTech were kidnapped. The task
was to gather information about the whereabouts of these employees and who
kidnapped them. The VAST Challenge 2014 comprises of three mini-challenges
that address different aspects of the kidnappings, such as e-mail traffic, movement
and transaction logs, and social media data streams. The data provided in the
second mini challenge, which this approach focuses on, comprises a tourist map,
a road map, and historical data of the past two weeks about the inhabitants of
Abila, such as credit and loyalty card logs and GPS data about the rental cars
of GASTech’s employees (see Figure 2.8).

At the beginning, very little is known about the data. Aside from the useful-
ness and quality of the individual datasets, the synergies of the different data
sources are unclear. To analyze the data, a visual analytics system called Inspect-
orGadget was developed that helps to analyze the data iteratively. Analyzing
the data comprises multiple steps, as shown in Figure 2.9.

VAST Challenge Datasets 

Tourist map Road network GPS tracks Credit & loyalty card 
logs 

Personal and 
job information 

shape & structure position 

place 

time name 

name 

Figure 2.8: Overview of the heterogeneous datasets provided in the VAST Challenge
2014 – Mini Challenge 2 that had to be aligned. © 2015 The Eurographics Association
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Stepwise Analysis Process

1. Inspection 
& Cleaning

2. Orchestration 3. Exploration 4. Hypothesis 
Creation & Validation

Figure 2.9: 1 Inspect domain unspecific data characteristics/data cleaning & pre-
filtering; 2 Map the data sources in domain-specific views; 3 Explore details with
various visualization; 4 Externalize findings, refine, validate. © 2015 The Eurographics
Association

Initially, the data needs to be inspected and cleaned. The inspection usually
needs to be performed manually, as a computer does not know what to do with
the data at this point. During the inspection, analysts can already perform
manual cleaning of the data or define automated processes for this task. Once
the data is prepared, different data sources need to be orchestrated to make use
of possible connections between the data, which may later provide additional
insights. Afterwards, the data can be explored, findings can be extracted, and
hypotheses can be created and validated.

In the context of the VAST challenge, the tourist map and the road map
need to be aligned to a city map. Additionally, the GPS data of the rental cars
must be converted to movement trajectories that describe the movement of the
employees who rented the car. The trajectories must then be aligned with the
registered city map. In InspectorGadget, the alignment between the map and the
data is performed manually, whereas the trajectories are extracted automatically.

Further, the credit and loyalty card data need to be combined to gain further
insights about the places where the cardholder was at specific points in time.
InspectorGadget provides table views to analyze the logs (see Figure 2.10). The
upper tabular view (see Figure 2.10 A ) presents the combined loyalty and credit
card data, as well as an additional metric that shows the deviation of the
transaction from average payments made at the location of the transaction. The
table rows have a color coding ranging from yellow to red that indicates the
strength of the deviation, where red indicates a strong deviation from average
transactions. This enables analysts to quickly see which transactions may be of
interest, based on the transaction value. The second table view (see Figure 2.10 B )
lists all locations, the median of the transactions, and the standard deviation.
Analysts can expand any location to get further details about the distribution of
the transaction amounts. The third table view (see Figure 2.10 C ) presents the
transactions by person. The detailed information shows the transaction amounts

20



2.1 Visual Analytics

A

B C

Figure 2.10: Inspection and Cleaning: A table A shows initially available data (here
transactions). Further, detailed information about locations B and persons C can
be inspected. Color indicates deviation from the average expense at a location (more
intense red ⇔ higher deviation). © 2015 The Eurographics Association

of the selected person over time. All views are linked so that the selection of
an entry, for example in the overview table A , opens the detailed views of the
other tables for the according entry and highlights the transaction.

The table views can be used to extract first findings of unusual transactions.
Suspicious transactions lead to hypotheses that either the corresponding person or
location may be of interest for further investigations. These can be investigated
in detail in the second component of InspectorGadget, which focuses on the
analysis of the spatio-temporal aspects of the data (see Figure 2.11).

Before the analysis of the spatio-temporal data can begin, the data needs to
be enriched with areas of interest (AOIs) that can be used to create movement
profiles of the employees at GASTech. To create movement profiles, analysts
can iteratively define AOIs, which are then synchronized with the GPS and
transaction data to provide information about the whereabouts of the persons.
An area of interest comprises its area, a textual description, and a category,
for example, office or home. These categories are used in the sequence view to
highlight daily patterns. Figure 2.12 shows the process of the definition of an
AOI and how it affects the sequence view.

Once the movements have been enriched with AOI information, analysts
can start the exploration process. The general inspection of the car movements
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A B C

D

F

G

E

Figure 2.11: The analysis system A Map Overlays on/off; B Geographic Map View
- animated movements (green) and trajectories (red); C Annotations - define and
extract areas of interests; D Lenses - filter trajectories by origin/destination/way;
E Sequence View - AOI movement sequences per employee; F N-Gram Sequence
Filter - detects frequent and outlier patterns on a per user basis; G Pattern Filter -
externalize knowledge, refine hypotheses and query the data. © 2015 The Eurographics
Association

1 2 3 

4 

Figure 2.12: Annotation Process - 1 With a polygon tool an AOI can be created;
2 The AOI can be annotated with name and category, e.g., GAStech; 3 Movements
are enriched and colored based on their destination (here GAStech); 4 All AOIs are
annotated / all movements enriched. © 2015 The Eurographics Association
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reveals that during night time nearly all cars are parked in the north-east city
area—the employees’ homes. This behavior can be included in a pattern filter
(see Figure 2.11 G ). The results of the pattern are shown in the Sequence View
(see Figure 2.11 E ). Afterwards, a magic lens tool [112] can be used to further
query the movements based on their origins and destinations while obtaining
immediate feedback on the map (see Figure 2.11 D ). For example, by inspecting
trips from the city airport, one can see the arrival of the GAStech CEO a few
days prior to the kidnapping. Further, the analysis of the movement behaviors
during lunchtime reveals that two of the employees regularly drive to a hotel
at the other end of Abila. This behavior is suspicious as it is unlikely that
there are no other restaurants closer to GASTech. In addition, during the night,
some of the cars are neither parked at GASTech, nor at any of the employees’
homes, which makes the cars’ owners suspicious. Also, the transaction shown in
Figure 2.10 A , which was conducted by Lucas Alcazar at Frydo’s Autosupply, is
unusually high for an IT helpdesk employee. This could be a coincidence, but
the fact that the shop (Frydos Autosupply n’ More) also never had such a high
transaction makes this event suspicious.

The analysis of the data provides starting points for forensic analysts for
further analyses, which of the suspicious behaviors may be connected to the
kidnappings. These need to be combined with findings from the other mini-
challenges to reveal the whereabouts of the missing employees and the culprit’s
identity and motive.

2.2 Advanced Manufacturing
This section provides foundations regarding (advanced) manufacturing and
principles and techniques used in this thesis. First, the historical background that
lead to modern manufacturing principles, such as lean production and advanced
manufacturing, is given (Section 2.2.1). Afterwards, the product lifecycle is
introduced, which the remainder of this thesis is aligned to (Section 2.2.2). In
addition, the overall equipment measure (Section 2.2.3) and basics of process
planning (Section 2.2.4) are introduced.

2.2.1 From Traditional to Advanced Manufacturing

Manufacturing is generally understood as the transformation of physical goods
into goods or services of higher value. The term production, although it is often
used as a synonym to manufacturing, describes a more holistic concept that also
comprises the design and sale of the produced goods. Originally, most goods
were produced through manual labor (manufacturing originates from the Latin
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term manu factum, which means by hand) or with the help of simple tools (e.g.,
hammer, saw).

Before the 18th century, the largest parts of the population worked in the
agricultural sector to produce food for themselves or their landlord. The invention
of the Roberts Loom, which was the first steam-driven power loom, in 1830 and
the invention of various other machine tools allowed the automation of many
repetitive tasks, such as spinning. This first industrial revolution allowed large
improvements of the productivity in various industrial sectors, such as the textile,
chemical, and metal casting industry and inventions such as the seed drill solved
the constant food supply issues that were present up to that point.

The second industrial revolution started when electricity became usable in
1880 and electric devices were invented, such as the telephone in 1885. With
the parallel extension of railroad networks, communication and travel speeds
increased considerably. About the same time, Frederick Taylor introduced his
so-called scientific management, which fundamentally changed how factories
operated: Until 1880, most workers acquired their skills through practice and
rules-of-thumb based on prior experience were commonly accepted standards.
Taylor proclaimed that workflows should comprise methods that are based on
scientifically studied processes and workers should be specifically selected and
trained for the tasks that they need to perform. Together with the invention
of assembly lines by Henry Ford in 1908, the efficiency and effectiveness of the
overall production of factories rose and many goods also became affordable by
persons with average earnings. In his autobiography, Ford wrote:

Therefore, in 1909 I announced one morning, without any previous
warning, that in the future we were going to build only one model,
[. . . ] and that the chassis would be exactly the same for all cars, and
I remarked: ‘Any customer can have a car painted any colour that he
wants so long as it is black.’ [. . . ] We were, almost overnight it seems,
in great production. How did this come about? Simply through the
application of an inevitable principle. By the application of intelligent
directed power and machinery.

Ford [72, p. 72–74]

Ford’s statement already indicates that the mass production of goods comes
at the price of the product range that production lines were able to produce.
In 1908, this was not a problem, as most people were not able to afford most
goods produced through mass production before. However, in the years after
the second world war, most economies grew and as a result the welfare of the
population of many countries rose along with it. As many people were now able
to afford former luxury goods, a need to distinguish oneself from the others
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through customized products arose. As a result, factories needed to increase
their flexibility regarding the products and product variants they were able to
build. One of the most important principles that helped with this transition
was the introduction of lean production. Lean production is derived from the
Japanese manufacturing industry, specifically from Toyota’s production and
work principles. Generally, it endorses a production that minimizes storage of
goods, be it intermediate or final products, while optimizing the workload of
a production line. To minimize the storage of goods, supplemental products
need to be supplied and processed just when they are needed. This increases
the complexity of the overall production process, as this means that not only
a company’s own production needs to be optimized, but the supply chain also
needs to be taken into account.

In parallel to the introduction of lean production, the invention of the first
bipolar transistors in 1947 and its application in integrated circuits resulted in
the invention of computers, mobile phones, and the internet. The transition of
analog to digital technologies lasts until today and almost every aspect of the
economy is affected. Examples for applications in the manufacturing domain are
order acceptance, work scheduling, planning and designing of new products, and
the introduction of computer numeric control (CNC) machine tools.

Nowadays, most IT infrastructures in the manufacturing domain follow a
centralized approach, wherein all information is collected and distributed through
a central system. For example, manufacturing execution systems (MES) collect
data, such as the scheduling of production processes, the execution of production
orders, or performance analyses of machines. These data can then be used
to alert technicians of problems in a production line or they can be used to
optimize the production. To represent the increasing integration of information
technology in manufacturing the term advanced manufacturing was introduced.
The Organisation for Economic Co-operation and Development (OECD) defines
advanced manufacturing technology as “computer-controlled or micro-electronics-
based equipment used in the design, manufacture or handling of a product” [146].

Recently, concepts like Industrie 4.0 in Germany or the Advanced Manu-
facturing Partnership in the USA focus a tighter integration of information
technologies with production systems. An important technology in this field is
the concept of cyber-physical systems, which “comprise interacting digital, analog,
physical, and human components engineered for function through integrated
physics and logic” [143]. This technology supports the manufacturing domain
in several aspects, such as autonomous purchasing or the deployment of smart
machine tools, allowing a decentralized communication within a factory. The
latter could lead to self-organizing machine tools that can easen production
downtimes. For example, in case a machine breaks down unexpectedly, the pro-
duction order could be rearranged to a limited degree to rebalance the workload
of still functional machines without requiring human intervention.
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Distribution Consumption RecyclingDesign Planning

Consumption & RecyclingDesign & Production

Production

Figure 2.13: The lifecycle of a product is often separated into five phases: initial design,
planning & production, distribution, consumption, and recycling. These phases can
be grouped into two parts: first, the product is being designed&produced and in the
second part it is being consumed& recycled (cmp. Westkämper et al. [194, p. 153]).

2.2.2 Product Lifecycle
The product lifecycle is a concept commonly used in the production domain
to describe the different stages of a product from its initial design until it is
disposed of or recycled [173]. Usually, the lifecycle is divided into five phases:

1. Design & planning: Initially, a new product is designed, either by improving
other products in certain aspects or by designing an entirely new product.
Afterwards, the way to produce the product is planned. Among other
things, this includes defining the different process steps needed to create,
manipulate, or assemble different components and, if necessary, to plan
the layout of the production line that later produces the product.

2. Planning & production: The production line is prepared and the production
of the necessary components and the final products is performed.

3. Transportation: The product is distributed to a consumer.

4. Consumption: The product is being used, either as a component for another
product or as a final product.

5. Recycling: After the product either breaks or is not being used anymore, it
is disposed or recycled.

According to Westkämper et al. [194, p. 153ff.], the cycle can be split into two
parts: The design and production part and the consumption and disposal part.
Further, They model design and planning as separate phases (see Figure 2.13).
This thesis focuses exclusively on the first part.

2.2.3 Overall Equipment Effectiveness
To successfully run a factory, it is necessary to be aware, how good the performance
currently is. One often used measure to define good is the overall equipment
effectiveness (OEE) [141]. It takes into account how long a production line was
operational, as well as its efficiency and effectiveness.
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The OEE is defined as

OEE = Availability ·Efficiency ·Quality, with

Availability = run time− (planned and unplanned) downtime
run time

Efficiency = produced parts
max. producable parts

Quality = produced parts - defective parts
produced parts

It is important to note that this measure only accounts for the time when a
production line is (or should be) running. It does not consider that a production
line could be idle, e.g., if the day’s workload is finished prematurely or if there is
currently no need for the goods produced at a given production line.

2.2.4 Process Planning
In manufacturing, the output of products per hour is an important measure
for the effectiveness of a production line (see Section 2.2.3). This throughput is
defined by the time it takes a production line to complete all necessary processing
steps. Usually, the production comprises of multiple steps with a given process
duration pd, which usually require one or more prior steps to be completed first.
The following denotes the transport time between the steps with pt. During the
process planning, these dependencies are interpreted as a graph. The longest
path in this graph from the start to the end point is called the critical path [71],
which defines the theoretically possible throughput. Figure 2.14 presents an
example of processes and their critical path along with other metrics that are
presented in the following.

𝑃1

1

1

10

10

𝑃21

11

41

30

60
𝑃22

31

61

35

65

𝑃31

11

11

40

40
𝑃32

41

41

55

55
𝑃33

56

56

65

65
𝑃4

66

66

75

75

𝑝𝑑 = 30𝑝𝑑 = 10 𝑝𝑑 = 15 𝑝𝑑 = 10 𝑝𝑑 = 10

𝑝𝑑 = 5𝑝𝑑 = 20

𝑑𝑟𝑎𝑔 = 30𝑑𝑟𝑎𝑔 = 10 𝑑𝑟𝑎𝑔 = 15 𝑑𝑟𝑎𝑔 = 30 𝑑𝑟𝑎𝑔 = 10

𝑡𝑓 = 30𝑡𝑓 = 30

Early start / finish

Late start / finish

Critical path

Figure 2.14: Example of a critical path analysis including drag and total float.
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In addition to the critical path, other metrics are calculated for the individual
process steps:

Early start (pes) is the earliest point in time at which a process can be
started (considering possible dependencies on prior process steps).

Early finish (pef ) is the earliest time a process can finish. pef = pes +pd +pt

Late start (pls) is the latest point in time this process can start to realize
the planned throughput time. pls = plf − (pd +pt)

Late finish (pls) is the latest point in time at which a process can finish to
meet the planned throughput time (considering prior process steps).

Using these metrics, three more important measures can be defined:

Total float (tf) is the time a process step can be delayed before it impacts the
final deadline. On a critical path, the total float is zero. tf = plf −pef

Free float (ff) is the time a process step can be delayed before it impacts
the early start of its successor activities. This is different from the total
float, as other required process steps for the successor activities may
finish later.

Drag describes the time difference from the critical path to the next shortest
path. In other words: if the processes on the critical path can be reduced
by more time than the drag value, then they will not be on the critical
path anymore.
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Exploration of Concept Relationships

At the beginning of the creation of any product is the design phase. Therein, the
functionality and the look of the product are planned. Companies often have
characteristic details that distinguish them from their competitors. There are
easily perceivable characteristics, such as the chassis of a car. Other characteristics
that may be too technical for end-users are typically communicated through
key indicators that combine multiple processes to an attribute affecting the
consumer. For example, the processes affecting the efficiency of a car motor
are usually communicated through indicators such as the car’s acceleration,
its fuel consumption, or its engine power. Nowadays, having a technological
advantage over competitors in any of these properties is often the key to a
superior positioning on the market. Patents are a popular mechanism to protect
the intellectual property of this advantageous knowledge. This applies to the
design of the product itself, as well as the processes, machinery, and technologies
needed to produce the product. Aside from protecting one’s knowledge, it is
important to be aware of possibly conflicting patents issued by competitors, as
these may potentially halt the entire production of a product.

Ideally, a specialist is tasked with handling all matters regarding intellectual
properties is aware of every patent that may apply to the currently planned
and produced goods. However, the number of patents is continuously growing.
According to the world intellectual property organization (WIPO), more than
three million patents were issued in 2017 [195]. It is unfeasible to read all of
these patents to assess if they may be applicable to one’s own product range.
Therefore, it is important to get a quick overview of the patent landscape and
provide experts with means to filter the number of patents so that they can
assess them individually. In addition, it is important to know, which persons are
knowledgeable in a specific field or how technologies relate to each other, to be
able to find patents that are possibly designed for another purpose but may be
applicable nevertheless.
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After the introduction of the general structure of patents and the international
patent classification system (IPC) [99] (Section 3.1), this chapter presents related
work regarding the visualization of patents and scientific literature, and visual
analysis of documents, focusing on approaches that use dimension reduction
(Section 3.2). Afterwards, two approaches are presented. The first, named IPC
Clouds, uses the IPC taxonomy to provide an overview on how topics relate to
each other (Section 3.3). The second approach extends the idea of IPC Clouds by
replacing the IPC taxonomy with concepts, which are projected onto a concept
map using a hierarchical clustering approach (Section 3.4). These concepts can
be extracted from patents, but they may also be important persons from a
domain or tags from websites.

• D. Herr, Q. Han, S. Lohmann, S. Brügmann and T. Ertl. “Visual Exploration of Patent
Collections with IPC Clouds”. In: Proceedings of the 1st International Workshop Patent
Mining and Its Applications. Vol. 1292. CEUR-WS. CEUR-WS.org, 2014 [3]

• D. Herr, Q. Han, S. Lohmann and T. Ertl. “Visual Clutter Reduction through Hierarchy-
based Projection of High-dimensional Labeled Data”. In: Proceedings of Graphics Interface.
CIPS / ACM, 2016, pp. 109–116 [4]

• D. Herr, Q. Han, S. Lohmann and T. Ertl. “Hierarchy-based projection of high-dimensional
Labeled Data to Reduce Visual Clutter”. In: Computers & Graphics 62 (2017), pp. 28–40 [5]

This chapter is partly based on the following publications:

3.1 Patents and their Classification System
The following section first gives a brief overview of the structure of a patent and
the metadata it comprises (Section 3.1.1). One important information is the
classes a patent belongs to. These classes are standardized by the international
patent classification system (IPC). This classification system is presented in
more detail, as parts of the approaches to analyze the patent landscape rely on
the IPC taxonomy (Section 3.1.2).

3.1.1 Patent Structure
Patents are structured legal documents that comprise multiple metadata fields
that can be used for analysis, partly independent of the patents’ actual content.
Depending on the country, different patent offices may be able to publish a patent
(e.g., the European Patent Office (EPO) or the German Patent and Trade Mark
Office (DPMA)), but they all share large parts of the available metadata. Fig-
ure 3.1 shows an exemplary patent published by the EPO. Important properties
of a patent are its date of publication (Fig. 3.1 A ), the title (Fig. 3.1 B ), and the
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Figure 3.1: Example of a patent published by the European Patent Office [95]. A
patent comprises various metadata information, such as its publication date A , title B ,
applicable countries C , IPC classification D , the inventor E , and other related pat-
ents F .

countries the patent applies to (Fig. 3.1 C ). In addition to these data, all patents
are assigned to one or more classes that describe the overall topic(s) of the patent
(Fig. 3.1 D ). This standardized classification system is called international patent
classification system (IPC). Further, the inventor (Fig. 3.1 E ), and other patents
related to the patent itself (Fig. 3.1 F ) are provided, which implicitly contains
information about related topics and other important patent authors, much like
in scientific literature. Due to their legal relevance, these metadata are checked
and cleaned before a patent is published.
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3.1.2 International Patent Classification System

The International Patent Classification (IPC) [. . . ] provides for a
hierarchical system of language independent symbols for the classific-
ation of patents and utility models according to the different areas
of technology to which they pertain.
The IPC divides technology into eight sections with approximately
70,000 subdivisions. Each subdivision has a symbol consisting of
Arabic numerals and letters of the Latin alphabet.

World Intellectual Property Organization [200]

As stated above, the IPC describes the topics to which a patent belongs to based
on a multi-level hierarchy. It is updated every year to reflect shifts in technology.
If a new technology field emerges or a subfield grows noticeably, this change will
be reflected in the next IPC, either by splitting an already existing (sub-)class
or by introducing a new class. A recent example is the introduction of the IPC
class G16 (information and communication technology [ICT] specially adapted
for specific application fields) in the IPC edition of 2018 to reflect the increasing
importance for this technology field.

Figure 3.2 shows an example, what information is provided for the IPC
class F02N 11/08. The first level of an IPC class is its section, denoted with
a capital letter followed by a class described by two digits. Every class is split
into subclasses, which are indicated by a capital letter after the class. To provide
further details, a subclass is divided into groups, which are indicated by two
numbers separated by an oblique stroke. The IPC differentiates between main
groups and subgroups. The second number block of a main group is always 00,
whereas the number of subgroups can be any number greater than 00. More
details about the international patent classification is given in the IPC guide
provided by the WIPO [201].

F

02

MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS

COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS

Section

Class

Subclass

Main group

Subgroup

N

11/00

11/08

STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR

Starting of engines by means of electric motors

Circuits specially aedapted for starting engines

Figure 3.2: Exemplary breakdown for the IPC code F02N 11/08.
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3.2 Related Work
Enabling experts to explore, which patents relate to each other or which docu-
ments share common topics is an important step while a new product is being
designed. Showing these relations on a two-dimensional plane, wherein close
elements indicate a stronger relationship, is a common approach for this task.
To present this information, the topic relations first need to be placed on a
two-dimensional plane, which is often done using data projection algorithms.
The following section focuses on the visual exploration of concept relationships
through their projection as labels on a two-dimensional plane. These concepts
can be either metadata from documents, such as patents, scientific literature,
or websites. Therefore, the following presents related work from the fields of
dimension reduction and data projection, word cloud visualizations, the visu-
alization of hierarchically structured data, and patent and scientific literature
visualization in general.

3.2.1 Dimension Reduction and Data Projection
One common approach for visualizing the content of datasets, for example,
document collections, is to take extracted features, such as keywords or concepts,
and compare the data based on those features. The natural language processing
community developed many ways to extract keywords from documents [86]. The
relatedness of such features is usually computed pairwise. To visualize these
high-dimensional relationships, the relations need to be transformed so that they
can be visualized. Methods to solve this problem can be projection-based, for
instance, by using Principal Component Analysis (PCA) [197], Multidimensional
Scaling (MDS) [115], Least Squares Projection [149], or t-SNE (see Section 2.1.3).
Van der Maaten et al. [188] survey a number of techniques to project high-
dimensional data onto a low-dimensional space. In such approaches, data is
usually visualized as data points that take up almost no space. This representation
suffers from visual clutter when the data is not clearly separable and is usually
not designed for a data representation with labels. Sacha et al. [163] reviewed
how dimension reduction techniques are used and integrated into interactive
visualization techniques.

Due to the high complexity of projection techniques, other potentially faster
and more intuitive approaches, such as force-based layouts [74, 76] are often
used when interactive visualizations are needed. However, García-Fernández et
al. [77] conclude in their study that projection-based approaches are superior to
force-based layouts when a complete and large dataset needs to be visualized.

Other approaches are based on neural networks, such as hierarchical self-
organizing maps (SOM) [110]. If such approaches are applied to subdivided
areas, as proposed by Suganthan [178] or Endo et al. [59], then they create a

33



3 Exploration of Concept Relationships

visual structure seemingly based on a hierarchy. However, by generating a visual
hierarchy this way, only elements contained in the same area are mapped relative
to each other. The approach presented later in this chapter uses a hierarchy
not only to visualize the relation between parents and their children but also
between the siblings across the clusters.

3.2.2 Word Cloud Visualization
As the approaches presented in this chapter visualize concepts as labels, they
are related to word cloud visualizations that show the most frequent words of a
text as a weighted list in some specific spatial arrangement, such as a sequential,
circular, or clustered layout [127]. Several variations and advancements of word
clouds have been proposed in the past years. One line of research concerns
the improvement of the layout of word clouds. For instance, Seifert et al. [167]
developed algorithms for space-filling word clouds based on a set of heuristics,
while related layout algorithms have also been presented in a number of other
works, such as ManiWordle [109] and Rolled-out Wordles [177].

Some layout strategies consider word relationships and implement spatial
arrangements where strongly related words are placed in close proximity, similar
to the presented approaches. The layout strategies range from simple line-by-line
approaches [87] to treemap-like layouts [103] and force-directed placements in
combination with Venn diagrams [46]. Some works even apply projection tech-
niques, such as the aforementioned MDS, to reflect the relatedness of words [150,
203], while others use topographical word landscapes [75].

There are also attempts to explicitly depict the relationships in word clouds,
either by adding links between related words [174] or via interactive highlight-
ing [93]. DocuBurst [50] uses a sunburst visualization related to word clouds
to show a hierarchy of concepts extracted from text documents. Prefix Tag
Clouds [39] make use of prefix trees to group different word forms, whereas the
Word Cloud Explorer uses advanced NLP processing to link word forms and to
support the visual analysis of text documents via interactive word clouds [93].

3.2.3 Hierarchical Aggregation and Visualization
The approach presented in Section 3.4 introduces a hierarchical structure to the
data before projecting it on a plane. Various approaches exist to provide detailed
information about hierarchy-based data, which are discussed in the following.

Dou et al. [54] generate topic models in which the users can interactively
modify the created hierarchical structure. Afterwards, users can inspect the de-
velopment of individual or groups of topics over time. In contrast to the approach
presented in Section 3.4, this attempt uses the hierarchies to aggregate topics
to analyze changes over time. Like most hierarchical visualization approaches,
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Dou et al. assume the availability of a hierarchical structure and use predefined
hierarchy levels to show information. The approach presented in Section 3.4 goes
beyond that by enabling users to set the shown hierarchy levels by themselves.

Liu et al. [125] developed an system to build hierarchies based on topic
graphs. They visualize the relations of extracted topics by using stacked trees in
combination with force-based graph layouts. Unlike the later presented approach,
they use hierarchies to distinguish between topics. The presented approach aims
not only to provide relational information across clusters but also of their content
when more information is shown.

Fried and Kobourov [73] presented a system, that maps the titles of papers
in the DBLP database onto a two-dimensional landscape based on a hierarchy.
Users can create a search profile that is used to highlight topics using a heat
map visualization, focusing on temporal aspects of the data.

Wise et al. [196] proposed to show large document collections through a
galaxy metaphor, in which every document is represented by a star. By doing so,
the user gets a more intuitive understanding of the relations between documents.
Similarly, SPIRE [182] and INSPIRE [198] use the same metaphor, but they
combine it with a visual analytics approach to enable users to further analyze the
data. The STREAMIT system [13] uses force-based layouts, clustering discovery
techniques, and topic modeling to visualize document streams in real-time. The
clustering is based on the graph layout and does not create a hierarchy to examine
the document streams on a semantical level. An early version of the Overview
system [35] projects documents onto a two-dimensional scatterplot while showing
a hierarchical tree structure of the documents in another view. The system uses
brushing and linking to connect those two visualizations. However, the selected
elements of the hierarchy view are not represented in the number of data points
shown in the scatterplot.

Stahnke et al. [172] propose an interaction technique to interpret arrangements
and errors in dimensionality reduction. They do this by enabling the user to
probe the projected data and show more detailed information about the data
and the relevant projection information.

Only a few of these landscape-based approaches support hierarchical data and
most that do assume the hierarchy to be given. Thom et al. [180] use hierarchical
topic clustering combined with a treemap-based visualization to show Twitter
data on different levels of detail. This level of detail can be interactively steered
by the user during an analysis run, which enables the user to see more details
about a specific topic.

The goal of most hierarchical visualization techniques is to show the structure
of the hierarchy. As such, the elements contained in the various presented clusters
need to be adequately visualized. Elmqvist and Fekete [58] propose guidelines
how hierarchical data can be used to limit the amount of shown information,
such as taking the most important element of a cluster as cluster representative.
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3.2.4 Patent and Scientific Literature Visualization
The first approach presented in this chapter focuses on the visualization of the
relations between IPC classes. The IPC space is rarely visualized in related
work. As it is a hierarchy, it is often presented in some kind of tree view that
the user can navigate to find IPC symbols of interest. Kutz uses a sequence of
treemaps to visualize the evolution of the IPC system over time [118]. However,
the treemaps are structured according to the manually designed IPC hierarchy
without considering other IPC relations in the patent data, which may not
represent their actual relations based on patents.

Another popular visualization technique in the patent domain are node-link
diagrams. Other approaches use node-link diagrams to show relations between
patents and priority documents [79, 108] or to graphically depict networks of
applicants or inventors [176]. Node-link diagrams can be very useful to explore
the patent space and to identify important clusters in the patent data.

Due to their similar structure, approaches that are designed for scientific
literature can also be applied to patents. Federico et al. [69] reviewed visual
analytics approaches to analyze scientific literature and patents. Heimerl et
al. [90] present an approach to analyze important topics in scientific literature
over time. This approach was extended by Han et al. [83] for a detailed analysis
of important authors over time and they applied this approach to patents.

Heimerl et al. [91] project documents to a two-dimensional plane and use
magic lenses to show important keywords in documents. When covering multiple
documents, the most important keywords are ordered around the lens and the
selection of keywords highlights their occurrences in other documents.

3.3 Visual Exploration of Patent Relations using IPC Classes
The IPC taxonomy introduced in Section 3.1.2 can be used as a reliable and
easy way to access the data source to provide patent experts with an overview,
which topics a patent covers. However, it is also possible to use IPC classes to
find related patents that may not directly refer to each other. To do this, the
similarity between IPC classes needs to be computed based on patents, not on the
IPC hierarchy. Then, the similarity of the IPC classes needs to be communicated
to experts so that they can extend their search from the relevant IPC classes
they are aware of ones that they did not look into before. One approach to
provide such insights is to show IPC classes on a map, where closer distance
encodes the similarity between the IPC classes. To support this exploration, a
visualization approach, named IPC Clouds, is introduced. The following details
the exploration of the IPC landscape using IPC Clouds. First, the retrieval and
storage (Section 3.3.1 and the preprocessing (Section 3.3.2 of the used patents is
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presented). Then, two IPC Cloud views are introduced (Section 3.3.3). Finally, an
example shows how the approach can be used (Section 3.3.4) and the scalability
of the approach is discussed (Section 3.3.5).

3.3.1 Patent Data Retrieval and Storage

Although patents are publicly accessible, they still need to be retrieved and
stored so that they can be used for an efficient analysis. As patents contain
structured information, such as the previously introduced metadata (see Sec-
tion 3.1.1), and unstructured data, e.g., their description and included figures,
the usage of relational databases is problematic. Therefore, the patents used in
the following approaches are stored in the document-oriented NoSQL database
Elasticsearch [57]. Elasticsearch is based on the information retrieval software
Apache Lucene, and stores the data in the JavaScript Object Notation (JSON)
format, which does not require a specific structure for its entries. One advantage
of the unstructured data storage is that new information can easily be added to a
subset of records without the need to update other records in the database or to
use empty fields. Another useful characteristic of document-oriented databases is
that they use indexers with a specific focus on an efficient retrieval of documents
based on their text content.

Elasticsearch provides an interface to efficiently retrieve data through HTTP
requests and exchanges them in JSON format. Moreover, the Lucene reposit-
ory can be used to directly preprocess the data and perform computationally
expensive tasks, such as the computation of the pairwise similarity of the IPC
classes or the extraction of specific content from the patents.

For demonstration purposes, the used database comprises two repositories.
The first contains a large number of patents of which only bibliographic inform-
ation is available. The bibliographic information was taken from the PatStat
database [62] of the European Patent Office. It includes the patent ID, title,
abstract, applicant, inventor, filing and application dates, all IPC classifica-
tions, as well as citations for more than 70 million patents. In the following
approaches, the classifications were limited to the IPC subclass level. They have
an exponential distribution of their occurrence across all patents (see Figure 3.3).
The second, smaller repository also contains the abstracts and description of
the patent documents. These patents were retrieved from Espacenet [64], the
European Patent Register [65], and the European Publication Server [61], using
RESTful web services of the Open Patent Services [66].

The patent texts comprise the descriptions and claims for 88,000 arbitrarily
chosen patents. All texts are indexed by Lucene and linked to the bibliographic
information via their unique patent IDs. The PatStat data was transformed into
the JSON structure of the Elasticsearch database using MongoDB [138].
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Figure 3.3: The distribution of the IPC usage frequencies roughly follows a power law,
as illustrated for the 25 most often used IPC symbols in the 88.000 patent records
that were analyzed (in thousands).

3.3.2 Data Preprocessing
Before the IPC Cloud views can be generated, the patent data needs to be pre-
processed. The preprocessing comprises two steps: First, the pairwise similarities
between the IPC symbols are computed. Then, the IPC classes are projected
onto a two-dimensional space based on the calculated similarities.

Computation of IPC Similarities

Similarities can be computed on different levels of the IPC hierarchy, i.e., on the
class, subclass, group, or subgroup level. Discussions with patent experts showed
that the IPC subclass level provides a good balance between the information
that is contained in the IPC classes and the generality that provides an overview
of other potentially relevant IPC classes. Consequently, IPC Clouds provides all
information on the IPC subclass level. As explained in Section 3.1.2, the IPC
subclass symbols comprise of four characters: a letter for the section, followed
by a two-digit number for the class, and a letter for the subclass (e.g., A01B).
In the IPC version IPC-2014.01, which is used in the processed patents, the IPC
subclass level comprised 638 entries.

The patent data is converted into a vector space to compute the similarities
between the IPC subclass symbols. Here, the 88,000 patents from the second
repository of the database introduced in Section 3.3.1 were used. Each of the 615
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subclass symbols contained in the dataset1 is represented by one vector, with
the patents as dimensions of the vector space. If the considered IPC subclass
symbol is used to classify a patent, the corresponding dimension has a positive
value; otherwise, it is zero. Then, the cosine similarity (see Section 2.1.3) of each
pair of subclass symbols is computed to determine their relatedness in the patent
data.

The cosine similarity is an efficient measure for sparse vectors, which is useful
in this case, as each subclass symbol is associated with only a small fraction of
the patents. This results in a small number of non-zero dimensions per vector
compared to the total number of dimensions in the vector space, and hence in
sparse vectors.

Dimensionality Reduction of IPC Space

In the second step, the IPC subclass symbols are mapped onto a 2D plane that
is used for the visualization of the classes. The objective of the two-dimensional
representation is to place similar IPC classes close together, while dissimilar
classes should be placed far apart. IPC Clouds uses t-SNE (see Section 2.1.3) to
project the IPC subclass vectors to a two-dimensional space, with the previously
calculated similarity matrix as the input data.

3.3.3 IPC Cloud Visualizations
After the IPC subclasses are projected onto a two-dimensional space, the IPC
Cloud views can be generated. The approach comprises two views that can
be used for analysis, called map view and darts view, which is detailed in the
following. While the map view provides a global overview on the IPC space, the
darts view centers previously selected IPC symbols to support an easier visual
identification of subclass symbols that are related to the selected ones. Both
views follow the “visual information seeking mantra” [171] by first providing an
overview, then allowing to zoom and filter the data, and finally showing details
on demand.

Map View

The map view depicts the two-dimensional representation of the IPC space.
As t-SNE maps the data to an arbitrary Cartesian coordinate system, the
coordinates need to be normalized and rescaled first. By doing so, the mapping
is transformed into a coordinate system appropriate for visualization, while
the spatial distribution is retained. Scatterplots are a common way to visualize
projected data because they are highly scalable regarding the number of data
1 23 of the 638 available subclass symbols were not used in the dataset.
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A B
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Figure 3.4: The IPC subclass symbols are shown in the overview A . Users can filter
the shown subclasses through the filter component B . The shown IPC symbols are
limited to the subclasses added to the filter and IPC symbols that are used together
with them. The minimap C indicates, which part of the IPC space is currently shown.
The two highlighted IPC symbols have been selected by the user. The bottom part lists
all patents that are associated with the selected IPC symbols D . Further information
about the patent, including all associated IPC symbols, can be displayed on demand E .

points that can be visualized at once. Although clusters of points can be easily
perceived this way, users need to interact with the visualization to understand
the meaning of these clusters. Both IPC Cloud views show the IPC subclass
symbols as labels so that users can quickly understand the meaning of the data
points. The usage frequency of the IPC symbols is encoded in the font size of the
labels. The font size uses a logarithmic scaling to counterbalance the exponential
distribution of the IPC symbols. Using a non-linear scaling prevents often used
IPC symbols from being overemphasized. When the coordinate system is being
rescaled, it is important to consider the width and height of the labels, as the map
view would otherwise be cluttered due to a possibly high number of overlapping
labels. In case of the used dataset, a scaling factor of 25,000 resulted in a good
overview and only few overlaps of the text labels.

After the layout has been computed, the IPC subclass symbols are placed at
the determined positions on the screen, as shown in Figure 3.4 A . In addition,
users can remove the remaining overlaps. Keeping the relative distances of the
labels roughly stable is important, as they reflect the relatedness of the IPC
symbols. This disqualifies many algorithms for overlap removal that preserve
the orthogonal ordering of the labels but not their relative distances [56]. The
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map view uses the push variant of the Force-Scan Algorithm (FSA) [136] for
this purpose, which preserves the general layout and, in particular, the relative
distances of the nodes. The algorithm compares the label areas with each other
and, if an overlap is detected, fixates the label that is further to the upper left
and moves all other labels in the direction where the overlap is resolved the
fastest. A common drawback of the push variant of FSA is the increased space
needed by the labels. To compensate for this, the map view supports zooming
and panning to navigate in the IPC space.

Panning and zooming are basic but important interaction techniques that
enable the users to explore different parts of the map view in more detail.
Furthermore, a minimap shows the whole IPC space and indicates which part of
it is focused in the main view (Figure 3.4 C ). The minimap can also be used to
change the focused area and to reset the zoom level.

Since experts are typically interested in specific IPC symbols, they can filter
the map view to show only the filtered IPC subclasses and subclasses that are
used together with them. This can be done by selecting any number of IPC
symbols on the map, which adds them to a whitelist displayed on the right of the
visualization (Figure 3.4 B ). As it can be hard to spot specific IPC symbols on
the map, the IPC symbols can alternatively be entered in a search field (which
has an autocomplete feature).

If users select an IPC symbol in the visualization, the titles of patents
associated with that symbol are listed beneath the main view (Figure 3.4 D ). If
several IPC symbols are selected, only titles of patents associated with all of the
symbols are listed (i.e., they are connected by a logical conjunction operator).
More details about a patent, such as the whole list of associated IPC symbols
and its titles in German and French, are shown in a tooltip when hovering over
the patent’s title in the list.

Darts View

The darts view provides another perspective on selected IPC symbols using
the metaphor of a dartboard. In contrast to the map view, it does not provide
a global overview on the IPC space but focuses on specific IPC symbols and
their local context. IPC symbols selected in the map view or selected in the
search field are placed in the center of the darts view (the bullseye) to represent
what users are interested in. Related IPC symbols are concentrically arranged
around the bullseye. The proximity of an subclass symbol to the center represents
their relatedness to the selected symbols. IPC symbols close to the bullseye are
strongly related, whereas symbols near the border have a weaker relation. This
provides a more truthful visualization of the relation between a limited number
of focused IPC labels and their neighborhood, which may be unclear on the
map view due to the information loss introduced in the process of the dimension
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α β 

Figure 3.5: Darts view showing one selected IPC symbol in the bullseye and related
IPC symbols concentrically arranged around it indicating their relatedness.

reduction. Figure 3.5 shows an example where the IPC symbol F02N (starting
of combustion engines) has been selected and is therefore placed on top of the
bullseye. Labels, such as B60K, B60W, or F02D are most similar to this label,
whereas H02P has only little relation to F02N. Overall, it appears that classes
starting with B60 (vehicles in general) are most related to the selected class.

The darts view requires the definition of two key parameters: 1) a maximum
number of related IPC symbols (n) shown in the visualization, and 2) a threshold
(α) defining the minimum similarity value a related IPC symbol must have to
be shown in the visualization. This ensures that only relevant subclass symbols
are shown. Both parameters are interrelated and suitable values are dependent
on the application context, such as the available screen space or the average
font size of the labels. In most cases, showing between ten and 20 related labels
led to a visualization that can be well perceived. An appropriate value for α is
more difficult to choose, as the similarity values are dependent on the considered
patent data and IPC symbols. For the used patent data, a value between 0.5
and 0.7 led to good results in most cases. Figure 3.5 shows a darts view that
was generated with an α value of 0.6.
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3.3 Visual Exploration of Patent Relations using IPC Classes

The darts view uses a static α value instead of returning a static the number
of related IPC symbols without considering the similarity, because the users
may not recognize that the similarities of the classes may differ when analyzing
different darts views. This could lead to misinterpretations of the data.

After the related IPC symbols have been determined based on the parameter
values for n and α, their positions on the dartboard are computed. Like the map
view, the darts view makes use of the previously calculated 2D representation
(see Subsection 3.3.2). When placing the related subclass labels, the darts view
considers the direction vector towards the labels in the center of the darts view
when determining the order of the IPC classes in the view. If multiple IPC
symbols are selected, their labels are placed on top of each other in the bulls eye.
The surrounding labels’ angle is the average of the angles towards the individual
labels. To minimize overlapping labels, the darts view does not preserve the
actual direction of the IPC label but places the labels in an equiangular way so
that they form a circle around the selected IPC symbol(s).

The distances of the IPC symbols in relation to the bullseye is also computed
based on the pairwise similarity of the subclasses. The distance towards the
center is modified using a logarithmic scale. This optimizes the space used by
the view as it compensates for the distribution of the IPC subclasses. Finally,
the IPC symbols are placed at the determined positions on the dartboard, while
their font sizes indicate how often they are used in the patent data, analogous
to the map view.

The darts view also supports the introduction of additional thresholds to
indicate different levels of interest. For example, a threshold β = 0.75 may indicate
that subclasses with a similarity value ≥ 0.75 may be considered important,
whereas subclasses with lower similarity may be notable (see Figure 3.5).

3.3.4 Example of Use
Let us assume the role of a company’s patent expert who is tasked to file a patent
for a new technique to start combustion engines. The IPC symbol F02N is ideally
suited to classify our invention since it refers to the “starting of combustion
engines” [195]. In the map view, we have already spotted said IPC symbol and
noticed that the IPC symbol H02P is very close to it (as in Figure 3.4). It
classifies patents that describe the “control or regulation of electric motors,
generators, or dynamo-electric converters” [195]. Although this IPC subclass
does not even share the section with our original IPC class it is clear that these
two classes are related to each other, as electric and combustion engines share
many technologies. Further, modern cars often have hybrid power trains that in
fact comprise an electric and a combustion engine. For technologies relating to
such composite engines, it is plausible to classify related patents with classes
for combustion and electric engines. It seems to be a good idea to analyze the
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patents related to electrical engine starters, because there may already be a
patent that is in conflict with the invention we want to protect.

After switching to the darts view, we realize that there seem to be several
other IPC symbols that are also strongly related to the IPC symbol we are
interested in. In this case, these subclasses mostly relate to the IPC class B60
(vehicles in general), which were not shown nearby our starting class in the map
view. This insight leads us to further technologies and patents that might be of
relevance and should be considered before filing our patent.

3.3.5 Discussion of Scalability
Due to the massive number of patents that are digitally available nowadays,
scalability is one of the main issues in any patent visualization approach. For the
presented approach, the scalability of the data storage, the data preprocessing,
and the data visualization regarding the number of patents and used IPC classes
is most important. Table 3.1 summarizes the scalability of the components that
are part of the presented approach. It indicates, how well the data storage, data
preprocessing, and the views scale with an increasing number of patents and
IPC symbols.

The scalability of the data storage is unproblematic, as ElasticSearch and
Apache Lucene were designed to handle large amounts of text data. If new IPC
symbols are added to the database, only the patent records classified by these
symbols need to be updated, without updating any other patent records.

The data preprocessing also scales well with the number of patents regarding
the retrieval of actual patents based on specific IPC subclass symbols. However,
the introduction of new patents implicitly changes the similarity matrix, which
leads to a changed result of the projected IPC space. Due to the large number
of patents used for the calculation of the initial similarity matrix, the similarity
of the IPC classes will not change considerably by the introduction of individual
patents. Therefore, it is not necessary to run the projection each time. As the
similarity matrix will become increasingly incorrect regarding its projection,
the dimension reduction must eventually be repeated, which will likely change
the resulting IPC space. If the IPC taxonomy changes, the projection must be
performed again, regardless how many patents were added to the dataset, as the
new classes are not part of the visualization and some of the already existing
patents’ classes may be updated with the newly introduced classes.

Both IPC Cloud views scale well with the number of patents, as these are not
directly presented in the views, but in a separate detail view that necessitates
a previous limitation of the interesting IPC classes. If the number of labels
shown in the views increases, they are more likely to cause visual clutter due to
overlapping labels. Further, it will become increasingly difficult to get a quick
overview of the whole IPC landscape if more labels are shown. At last, although
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Table 3.1: Scalability of the data storage, data preprocessing, and IPC Cloud
views in relation to the number of patents and the number of IPC symbols.

# of patents # of IPC symbols
Data storage + +

Data preprocessing Search: + -
Sim. accuracy:

IPC Cloud views + -

patent experts usually know the meaning of the IPC subclasses that they often
cope with, it may occur that they do not recognize some of the IPC classes.

3.4 Understanding Topic Relations Through Hierarchized
Projection
The approach presented in Section 3.3 allows patent experts to get a first
overview of the patent landscape based on the subclass symbols defined by the
IPC. However, the shortcomings of the approach regarding the scalability of the
presented views causes high cognitive load for the users in case the labels need
to be projected anew. Further, the analysis of a specific topic during the design
phase of a product is not necessarily limited to patents. It is also important to
be aware, which other persons or organizations are influential regarding specific
topics and what other topics may also be of interest.

To alleviate these challenges, a new approach was developed based on the
lessons learned in IPC Clouds (see Section 3.3). The following section presents
this reworked approach that

i) supports arbitrary document-based datasets that provide a similarity
matrix comparable to the one presented in Section 3.3.2 (instead of
focusing explicitly on the patent domain),

ii) constructs a hierarchy that is based on the given similarity matrix, and

iii) visualizes the created hierarchy, while preserving the labels’ positions
as much as possible.

To prove the general applicability of the approach, it was evaluated with
datasets from a question-and-answer website and with a dataset about the
relations of researchers in the visualization community. Figure 3.6 presents, how
users can explore authors from the visualization domain relate to each other
based on co-authored papers.
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Increasing level of detail

Figure 3.6: The approach reduces visual clutter of projected labels by showing the
user the relatedness of the labels on increasing levels of detail. Here, the cluster Ertl,
T., highlighted with a green background and an orange box, and its related clusters,
marked in with a slightly lighter green, are shown in increasing levels of detail. © 2017
Elsevier

3.4.1 Approach
The main goal of this approach is to reduce visual clutter caused by the projection
of labels onto a two-dimensional plane. This is done by introducing a hierarchy in
the projection, which provides a smooth transition between overview and detail.
At the same time, the approach aims to preserve and indicate the relationships
between labels on different levels of the hierarchy. Those levels of detail are based
on the hierarchy generated in a preprocessing step. Like before, the distribution
of the labels on each level supports the users’ intuition that related labels tend to
be placed in close proximity. The approach consists of three steps (see Figure 3.7),
which will be detailed in the following.

Create co-
occurrence-

based hierarchy

Define levels of
detail for clutter

reduction

Visualize levels of
detail for further

analysis

Figure 3.7: Workflow of the approach.

3.4.2 Data Preprocessing
Depending on the measure used to create a hierarchy, this process may be
expensive regarding computation time. As there is no need to recompute the
hierarchy of a dataset unless the presentable labels (e.g., IPC subclass labels
in IPC Clouds) change, the hierarchy is computed in a preprocessing step and
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then stored for later use. This ensures a quick and smooth entry point into the
analysis, as the information about the hierarchy is directly available.

Step 1: Hierarchy creation. Hierarchical Agglomerative Clustering (HAC)
(see Section 2.1.3) is used to create the hierarchy. Often, HAC-based clustering
approaches use single-linkage. However, it is unclear what merging clusters this
way means on a semantic level [88, p. 525]. Therefore, medoid-linkage was used
as the linkage criterion, wherein the similarity of two clusters is defined by the
similarity of the clusters’ medoids.

3.4.3 Recurring Steps of Analysis
The following steps are executed every time an analysis is performed. As users
may be interested in defining different levels of detail for each run of an analysis,
the visualized information may change and is therefore computed on demand.

F

A B C D

G

E

F

A B C D

G

E

Figure 3.8: The labels shown on a given level of detail are similar to a cut in the
dendrogram of the hierarchy. The first nodes after the cut represent relevant clusters
for that level of detail (they are highlighted by a border in the figure). The labels of
these clusters are then used in the subsequent visualization step. © 2017 Elsevier

Step 2: Setting the Levels of Detail. The hierarchy construction through
hierarchical agglomerative clustering results in a binary branching of the hierarchy.
Therefore, a given level of depth of the hierarchy describes the number of shown
clusters at the same time. An analysis of the hierarchy by stepping through it
one level of depth at a time can be tedious as only one cluster splits apart and
is therefore unfeasible. To reach the before mentioned goal, the user can step
through multiple levels of depth at once. In this approach, the chosen levels of
depth are referenced to as levels of detail. A level of detail corresponds to a cut
at the level of depth within the hierarchy. Only the clusters directly below the
cut are being shown to the user. An example illustrating this idea is shown in
Figure 3.8.
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A

B

Figure 3.9: Two plots are initially presented. The fusion similarity A indicates the
similarity of the clusters that have been merged over the course of the hierarchization.
The cluster error B shows the clusters’ correctness using the Davies-Bouldin index
(a lower value indicates better clusters). Also, initial cuts for the levels of detail are
proposed to the user. For demonstration purposes, a reduced number of levels of detail
are used and small depictions of the visualizations on three different levels were added.
The same visualizations are shown in larger size in Figure 3.6. © 2017 Elsevier

Therein, the first cut is after cluster G, which means that the clusters E
and F are the next clusters directly below the cut. In the second step, the cut
is below F. Cluster E remains, but cluster F, which is now above the cut, is
replaced by the clusters C and D.

Initially, an increase of 20 levels of depth per level of detail is set. This ensures
that each level of detail shows a comprehensible amount of new information.
Afterwards, the user may add, change or remove any number of levels of detail.
To support the users in this task, two plots that contain information about the
hierarchy are shown (see Figure 3.9).

Figure 3.9 A shows the similarity of the merged clusters. Every point of the
plot represents one merge step of the clustering algorithm (or going down one
level of depth in the hierarchy). The similarity is expressed in the y-value of the
points, whereas the clustering step is equal to the x-value of the points. A higher
similarity value indicates that the clusters are much alike, whereas a low value
indicates little overlap regarding the co-occurrence of clusters’ medoids.

Figure 3.9 B indicates the quality of the clustering at a given step. As an
indication measure, a variation of the Davies-Bouldin index [52] is used. The
Davies-Bouldin index is designed to have a low value when the distance between
clusters is high and the distance within the clusters is low. This step assumes
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that the similarity value s is normalized and calculates the distance d of two
clusters Ci and Cj as di,j = 1− si,j . The index was slightly adapted, since the
approach uses medoid-linkage, whereas the Davies-Bouldin index uses centroid
distances. The modified Davies-Bouldin index DBImod is calculated as

DBImod = 1
n
·
n−1∑
i=0
·max

i6=j
( σi +σj

dm(Ci,Cj)
),

with i and j being the cluster indexes, σx representing the average distance
between the elements within cluster x and dm(Ci,Cj) being the distance between
the medoids of the clusters Ci and Cj .

This way, the users get a visual insight into the clustering and can decide
whether an adjustment of the levels of detail is necessary and useful. For instance,
a sudden change of the similarity or of the Davies-Bouldin index could be a
reason for an adjustment.

Step 3: Visualizing the Clusters. In the third step, the users can visually
explore the hierarchy and the relationships of the shown clusters on increasing
levels of detail. At first, the labels from the topmost level of detail are taken and
projected onto a two-dimensional space, which is henceforth called projection
view. Analogously to Section 3.3, the data is projected using the t-SNE projection
technique. T-SNE is used as it is possible to apply it with or without an initial
spatial mapping of the data.

For every level of detail, a separate distance matrix that is used by t-SNE
is created. The cost to traverse the hierarchy tree between all shown clusters is
calculated and the results are used as the distances between the clusters. Once
the positions of the clusters have been determined, representative labels can be
shown in the projection view. Details about the projection and positioning of
the labels are presented in Section 3.4.4. Several key aspects of the data and its
structure are encoded into the projection view:

Representative of the cluster. Every cluster is represented by a label
with three text boxes in two rows. Following the recommendation of Elmqvist
and Fekete [58], the elements of the cluster with the highest overall occurrence
frequency are used as the cluster’s labels. The upper row shows the element
with the highest overall occurrence frequency with its according font size (see
below). As showing only one label to describe a term may be ambiguous or even
misleading, the second and third most important elements are shown in the
second row. Their font size is half of the font size of the most important element.

Font size for importance. As the font size is a prominent visual aspect,
it is used to indicate the importance of a cluster, similar to word clouds. Since
clusters usually consist of several elements, the accumulated occurrence frequency
of the elements is mapped to the font size. The importance of the clusters on the
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currently shown level of detail is represented by normalizing the accumulated
frequencies of all shown clusters.

Numbers of elements within a cluster. To further indicate the distribu-
tion of the elements across the clusters, a colored radial background is added to
every label. The size of the radius corresponds to the number of elements that
are contained within the cluster. The color scale is a linear gradient that starts
with a light blue in the center and fades out towards the outside. In case the
cluster is selected or marked to be relevant, the light blue is replaced by a dark
or light green (see Section 3.4.5).

Cluster density. If two or more clusters overlap, their colors add up,
resulting in a heat map-like visualization. This helps users to get a better
visual impression of the clusters’ distribution. The radius of the clusters remains
constant when the users zoom in or out of the projection view. Thus, smaller
clusters are aggregated into bigger ones in a zoomed-out view.

Position of the labels. As in IPC Clouds, the position of the labels
follows the Gestalt principle that visual closeness correlates with similarity. More
precisely, in t-SNE, the closeness of two elements indicates the likelihood that
two elements are related to each other. This aspect is incorporated implicitly by
using the similarity as the projection measure in the second step of the approach.
To keep the cognitive load low, it is important to keep the positions of the
already visualized labels as stable as possible when changing the level of detail.
The positioning of the labels is being detailed in the following section.

3.4.4 Switch Between Levels of Detail

To view the data on different levels of detail, the users need to be able to switch
between the chosen levels. In this approach, the new clusters and the changes of
the map are presented through an animation. Whenever a visualization changes
over time, it is important to minimize the cognitive load of a user. However,
projection algorithms are not designed to support the iterative projection of a
dataset with subsets of increasing levels of detail and do not make use of previously
positioned clusters. Nevertheless, users should be supported in understanding
the changes between levels of detail. It is necessary to visually inform the user
about the relation of the newly available subclusters in the context of the already
visualized clusters. The construction of the map when switching levels of detail
should therefore minimize the movement of unchanged data. In this approach,
new data points are first drawn at their respective parent cluster’s position and
then moved with an animation to their final destination.

At the first level of detail, there is no previous projection result that needs
to be considered. Therefore, the projection is performed using the standard
implementation of t-SNE. For subsequent projections, several parameters used
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Figure 3.10: Screenshot of the prototype showing data from the question-and-answer
website StackOverflow. The projection view A shows the projected level of detail’s
clusters. Some clusters are selected and highlighted with a dark green background.
All selected and related clusters are indicated by a green background color and halos.
Some clusters are not visible in the focused viewport, but the halos indicate their
position B . A tooltip C shows the content of the focused cluster jquery, including its
name, description and a word cloud with the most frequent elements contained in that
cluster. The selected labels are also shown and highlighted in the search component on
the right D . On the bottom E , questions are listed that contain at least one element
from every selected cluster. © 2017 Elsevier

by t-SNE can be adapted to stabilize the subsequent projections, which are
explained in detail in the following:

1. Initial map. Initially, t-SNE distributes all points that need to be
projected with a Gaussian distribution and optimizes this state. However, it is
also possible to initialize the map manually, for example, with the results of a
previous projection step. To do this, all clusters that split into smaller clusters in
the next level of detail are retrieved. Unchanged clusters keep their position and
all newly generated clusters inherit the position from the cluster they originate
from. The resulting map is used as the initial map of t-SNE, replacing the
Gaussian distribution of the clusters, which reduces unnecessary changes in the
positions of the clusters.

2. Perplexity. Further, the perplexity parameter used by t-SNE can
be adapted to the visible clusters, as the perplexity can be interpreted as a factor
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that controls the size of the neighborhood used during the mapping of each point
(see Section 2.1.3). Typically, this is a constant value that must only be adapted,
if the results are not satisfying. Van der Maaten and Hinton [187] recommend
a value between five and 50 for this parameter. Usually, this value is robust
and small differences do not heavily impact the algorithm’s results. However, in
the case of a modified initial mapping, a too high or too low perplexity value
can lead to visual artifacts. In case the perplexity is too high, the visualization
will look like all clusters center around one point because every cluster tries
to optimize with regard to all other clusters. If the perplexity is too low, the
clusters will not move at all because they only consider themselves as relevant
and therefore all newly added clusters overlap at their parent’s position. To
keep the user from following a trial and error approach to find a proper value,
the perplexity value is dynamically approximated depending on the number of
shown clusters. The used perplexity function p(x) = 6.929 ·x0.252710 was designed
to initially increase fast in order to ensure that clusters in the first few levels
of detail already consider some of their neighboring clusters. The more clusters
are shown, the lower the increase of the perplexity is (compared to the previous
level of detail). The values are based on the results that were achieved with the
datasets described in Section 3.4.6.

The function was compared to static perplexities on different levels of detail.
The Kullback-Leibler divergence was used as a performance measure, as it is
also the function minimized during the projection and the authors of the t-
SNE algorithm propose to use it as the statistical quality measure. The results
based on the dataset of use case 2 are shown in Figure 3.11. It becomes clear
that the function-based perplexity performs slightly better than most static
perplexities. Although the static perplexity of p= 15 performs better regarding
the projection’s divergence, a lot more overdraw of the labels can be seen. This
issue likely amplifies in case the perplexity is lowered further.
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Figure 3.11: Comparison of the used dynamic against static perplexities. © 2017
Elsevier

3. Scaling of target projection space. Once the clusters are projected,
their positions are min-max normalized. To prevent a shift of all clusters due
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to outliers, the clusters’ geometric center is calculated. Afterwards, all clusters
are normalized and the 10% of the clusters that are the farthest away from the
center are discarded. Then, the target projection space is rescaled based on the
number of visible clusters using a root function.

3.4.5 Explore Cluster Relationships
In case the users want to explore a given level of detail, there are two scenarios:
either they already have an initial idea what they are looking for, or they want
to get an overview of the chosen level of detail without any premises. In both
cases, the first step is to decide on interesting clusters to inspect.

Search for Specific Clusters and Elements

The users can use a search box that provides an autocomplete feature, suggesting
every partly matching label contained within the dataset. Once an element has
been found, it can be added to the list of topics of interest below the search box
(Figure 3.10 D ). The selections made in the topic list are linked to the projection
view (Figure 3.10 A ).

Sometimes the searched element is not visible in the projection view because
it is hidden within a cluster. In this case, the cluster that contains the element
is selected. It is also possible to focus on the element or cluster that contains
the element in the center of the view with the focus button on the left of the
label and to remove them from the list with the button on the right.

Freely Explore the Projection View

The projection view supports basic navigation interactions through zooming and
panning to let the users freely explore the visualized level of detail. As described
in Section 3.4.3, the size of the background color of the clusters is independent
of the visual zoom. This way, the clusters are visually aggregated when the user
zooms out, as the size of the cluster backgrounds increases compared to the
labels of the clusters. This helps users to distinguish between areas with a higher
cluster density and regions that are sparser.

The chance of an overlap of the shown labels increases with the number
of shown clusters. In case the users want to inspect or select the content of
overlapping clusters, they can use a lens that spatially distorts the labels below
the lens. The lens consists of an inner and an outer segment. Only labels within
the inner segment are moved, but they also be relocated to the outer segment
of the lens. The two segments make it easier to see, which part of the lens is
distorted and allows users to select clusters more easily. The spatial distortion
effect of the lens is similar to the optical distortion effect of a fisheye lens.
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However, instead of enlarging elements closer to the center, they are pushed
away from it stronger than elements that are farther away. The push force of
the lens is based on an Epanechnikov-Kernel [60], which is used in statistics for
density estimation. The kernel was modified to limit the maximum from 3

4 to 1
2 .

This kernel increases the lens’ push force with a behavior similar to a Gaussian
kernel, but the kernel’s size is limited. The proportional distortion plens between
the center of the lens and center of the cluster is calculated as

plens(u) = (1− 1
2(1−u2)1|u|≤1︸ ︷︷ ︸

Epanechnikov−Kernel

) · rinner lens + router lens

rinner lens︸ ︷︷ ︸
scaling factor

wherein u is the original, unmodified proportion between the center of the
lens and the center of the cluster compared to the inner radius of the lens. This
way, the center of the lens is free of labels and the labels themselves are located
around the center. The push effect with one dimension is shown in Figure 3.12.
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Figure 3.12: Schematic depiction of the distortion behavior of the lens. © 2017 Elsevier

Once the users decide on one or more interesting clusters, the clusters can
be selected in the projection view. The selected elements will then be added to
the aforementioned topic list (Figure 3.10 D ).

Navigation Aids in the Projection View

Once a set of clusters and/or elements is selected, the users may be interested
in other clusters related to the selected ones. However, due to the information
loss during the dimension reduction, this information may not be available
directly. The approach distinguishes between two kinds of relatedness: global
and local. The global relatedness is depicted by the spatial arrangement of the
clusters, wherein closer clusters are more likely to be related than clusters that
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are farther apart. The local relatedness is available for selected clusters and
shows, which clusters are similar to the selected based on the high-dimensional
data. To measure the local relatedness, the average similarity savg between the
set of selected clusters and the cluster they are compared with is calculated:

savg(Cother) = 1
n

n−1∑
i=0

(
1
m ·

m−1∑
j=0

1
o ·
(

o−1∑
k=0

sim(Ci,j ,Cother,k)
))

,

where i is the index of the cluster within the cluster set, j is the index of the
compared element within the cluster and k is the index of the element within
the cluster that is compared with the set of selected clusters.

As the locally related clusters may lie spatially apart from the selected
clusters, several visual cues help to indicate their positions.

Halos. Users are provided with halos, introduced by Baudisch and Rosen-
holtz [22], to find clusters that are related to the selected clusters. Halos indicate
the position of the selected and other related clusters by drawing a circle around
these clusters. In case the cluster is outside of the visible area, the radius of
the halo is expanded, so it stays within the view. The curvature of the Halo
fragment indicates the direction and distance of the corresponding clusters. An
example of the visual indication provided by halos is shown in Figure 3.10 B .

Color coding. To make selected, related, and other clusters distinguishable,
the backgrounds and halos of selected clusters are colored with a noticeable dark
shade of green. Analogously, the backgrounds and halos of related clusters are
shaded with light green. The background of the other clusters is drawn in a light
blue. Color coding was used instead of approaches such as isolines or glyphs
because the color map indicates the uncertainty of the positions of the clusters
and retains the different states of the clusters.

Darts View. Furthermore, users can quickly spot related clusters using the
Darts View presented in Section 3.3.3.

Figure 3.5 and Figure 3.10 A depict how these aspects look like in the
implemented prototype.

Analyzing a Cluster’s Content

Once the users found a relevant cluster, they may be interested in further
information about it. They have several options to inspect its content. First,
the users may request additional information about the cluster by looking at its
tooltip. In case only the name of the elements is available, the tooltip shows the
name of the representative label as well as a word cloud. The labels shown in
the cloud belong to the elements contained in the cluster. They are ordered by
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Figure 3.13: For each selected cluster (here indicated with a green circle), the leaf
nodes are retrieved. Then, data is requested from the dataset, which contains at least
one of the leaf nodes from every selected cluster. © 2017 Elsevier

their weight (=̂ occurrence frequency), which is also encoded into the font size
of the words. If it is available, the textual description of the representative label
is shown at the top. The word cloud contains the terms that occur most often in
the descriptions of all elements. An exemplary depiction of the tooltip is shown
in Figure 3.10 C .

Second, the user can select one or more clusters. When doing so, the individual
documents that contain at least one term from each selected cluster are retrieved.
A schematic demonstration of such a request is depicted in Figure 3.13. Here, the
two highlighted clusters were selected. As the elements A and B are contained
within the first cluster, only one of them has to be part of the resulting document.
By selecting an individual document, further details can be retrieved.

3.4.6 Use Cases
The following illustrates the applicability and usefulness of the approach with
two scenarios using real-world data.

Use Case 1: Analysis of StackOverflow

In the first use case, we assume the role of the head of a newly founded department
of a software company that used to develop server-sided software solutions. Our
new department has to supplement a client-sided component to the software
suite. The company already supplied us with some of its software developers, but
we still need to recruit a programmer that is well versed with web technologies.
As we only possess basic knowledge of this field, we need to take an explorative
approach in order to understand, which aspects are important. To create a list of
key skills for the profile of our recruit, we use the presented approach to explore
the tags and relations of the question-and-answer website StackOverflow. Since
StackOverflow contains data that comprises more than ten million questions, we
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limit our inspection to tags that have been assigned to at least 5000 questions. The
similarity between the tags is based on the Jaccard coefficient (see Section 2.1.3).

We decide to remove the first four proposed levels of detail because we want
to see some detailed information at the top level already. We know that our com-
pany’s server-sided software returns JSON formatted answers and JavaScript is a
common solution for web clients, so we select the clusters containing JSON and
JavaScript. To see if our interview candidates have some background knowledge,
we note some of the most often viewed questions in StackOverflow that contain
elements from the JSON and JavaScript clusters. After selecting the clusters, the
tool marks the cluster jQuery to be relevant. Once reading the description of the
tag in the tooltip and looking at its contents, we decide to add it to our profile
by selecting it (Figure 3.10 C ). We write down questions such as ‘How to iterate
over a JSON structure?’ for the interview of candidates for our team. At last, we
freely explore the space around our selected clusters and notice the cluster d3.js.
After looking at the description of the cluster description, we decide to add d3.js
to our profile, as a developer with knowledge in web-based visualization may be
useful in later software development stages. By now, we have a profile that we
can use to search for a software developer that has knowledge in key technologies
used in web development, which fits our companies existing technologies.

Use Case 2: Patent Analysis

In the second use case, we take the point of view of an intellectual property
analyst at a large company that produces and sells medical apparatuses. The
company plans to develop a new product to apply an adhesive to open tissue
during a surgery and wants to avoid conflicts with existing patents.

Our task is to limit the number of patents that have to be inspected indi-
vidually to a reasonable number. First, we reduce the number of patents by
searching for an IPC class, which specifies medical surgery or diagnosis. Also,
the patents need to contain the keyword glue or adhesive in their description.
This results in a patent set of about 300 patents, which are too many to analyze
manually. Therefore, the patents are automatically processed and concepts are
extracted using the workbench presented by Brügmann et al. [37]. The similarity
between concepts is calculated by measuring the co-occurrence of the concepts
within sentences and comparing them using a cosine similarity (analogous to
Section 3.3). Then, the concepts are loaded into the presented prototype to
reduce the number of patents even further.

We could change the initially proposed levels of detail, but in this case, we
leave the levels as proposed. Once the first level is projected, we search for the
clusters that contain the concepts adhesive (which is hidden inside the cluster
housing) and tissue. By doing so, we notice that the concept catheter is marked
to be relevant to the selection. This becomes even clearer as we switch to the
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Figure 3.14: Depiction of the concepts related to the clusters adhesive (contained in
housing) and tissue. There are five concepts that are strongly related to those clusters.
One is catheter, which makes sense, as a catheter may be used to apply the adhesive.
© 2017 Elsevier

darts view, which is shown in Figure 3.14. As it makes sense to apply an adhesive
with a catheter, we add it to the set of selected clusters.

When looking at the resulting patents, we notice that the results are not
precise enough yet. Therefore, we add the cluster containing the concept apparatus
to the selected concept list and increases the level of detail several times. By
doing so, the selected clusters get more specific as dissimilar elements split apart,
which results in a more specific patent request. By iteratively increasing the level
of detail and inspecting the results, we are eventually left with 27 potentially
relevant patents, which is a reasonable number for a manual analysis.

3.4.7 Evaluation

A qualitative user study was conducted to evaluate the effectiveness and com-
prehensibility of the presented approach. The approach was compared with
the unmodified projection results of t-SNE, i.e., without any introduction of a
hierarchy of the data. The studied hypothesis was that the introduction of a
hierarchy helps the users to get a faster overview and a better understanding of
how the mapped clusters and individual labels are related.
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Participants

The study was conducted with ten expert users between 31 and 42 years of age
(mean age: 34.9 years). All of them had a university degree in either computer
science or mathematics, which reflects the user group of academic professionals
who may be required to use a visualization approach like the one presented.
The participants were asked to specify their expertise in visualization and
programming as well as their familiarity with dimensionality reduction techniques.
They had on average 15.4 years (SD: 6.2) of programming experience and 7.3
years (SD: 3.5) of experience with visualization techniques. All but one of the
participants had some knowledge about dimensionality reduction. The familiarity
with this topic was given with 3.6 years (SD: 1.3) on average on a scale ranging
from “no knowledge” (1) to “expert knowledge” (6).

Materials and Procedure

The study was conducted in a closed room, with one participant at a time. The
prototype ran on a Lenovo W540 Laptop with an Intel Core i7 processor, 32 GB
RAM, and an SSD hard drive. It was shown on a 24” monitor in full screen with
a resolution of 1920x1080 pixels.

First, participants were asked to provide some demographic data in a ques-
tionnaire. They were asked for their gender, age, educational degree, current
job position, and their research area of expertise. Additionally, they were asked
about any previous programming and visualization experience in years and
their self-assessed experience with dimension reduction. Subsequently, they were
familiarized with the basic ideas of the approach. It included the motivation of
dimensional reduction, the challenge of showing labels in a projected space (in
contrast to points), and the introduction of a hierarchy to create an overview to
detail the approach. Then, the implementation was briefly explained to them
using the patent dataset presented in Section 3.4.6. After the explanations, the
participants were invited to use the prototype themselves to get familiar with it.

Each participant was shown both the prototype implementing the hierarchical
projection approach and a reference implementation that skipped the hierarchy
and directly projected all of the labels at once with a static perplexity. For
the remainder of this section, the latter will be referred to as flat projection.
That way, the participants were able to compare between the two approaches.
Participants were assigned to one of two groups in order to balance carry-over
effects that may result from remembering tasks and/or answers. In addition,
the order in which the participants used the two projection approaches was
counterbalanced.

Two datasets were prepared that the participants were asked to analyze: the
StackOverflow dataset presented in Section 3.4.6, and a dataset about IEEE
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Table 3.2: A 2×2 mixed study design with visualization type (flat vs. hierarchical)
tested as independent variable within subjects and two conditions resulting from
counterbalancing the order of the visualization types tested between subjects
were used. © 2017 Elsevier

group vis1 dataset1 vis2 dataset2
G1 flat StackOverflow hier. VisWeek papers
G2 hier. StackOverflow flat VisWeek papers

Visualization publications since 1990 [100]. In the latter case, the similarity of the
authors of the publications was visualized based on co-authorship information
derived from the dataset. In particular, the similarity was calculated as

sim(Aa,Ab) =max(#pub(Aa∩Ab)
#pub(Aa) ,

#pub(Aa∩Ab)
#pub(Ab)

).

The maximum of the similarities of any pair of authors (Aa and Ab) was taken
to compensate for the effect that authors who wrote papers with many different
authors automatically get a low similarity to all of them, even if they were from
the same research group. This alleviates the similarity issue, but it does not
solve it as two seasoned authors will still have a low similarity when they are
directly compared to each other. Table 3.2 shows in what order the two groups
saw the compared visualizations and what dataset was used.

In sum, a 2× 2 mixed design was used with visualization type (flat vs.
hierarchical) tested as independent variable within subjects, and two conditions
resulting from counterbalancing the order of the visualization types tested
between subjects. Participants were randomly assigned to one of the two groups.
The participants were asked to verbalize their thoughts as they were solving the
tasks, and their statements were noted (think aloud protocol).

Finally, the participants had to complete a questionnaire to gather information
on which parts of the visualization caused confusion and which elements were
helpful for understanding the dataset. The participants were asked to rate a
number of prepared statements about the approach and its implementation:

1. The introduction of the hierarchy levels was...

2. The animated transitions between the hierarchy levels were...

3. The navigation support through the halos was...

4. The color coding of the clusters and halos was...

5. The interactive lens to reduce overlappings was...

6. The implementation with the hierarchy-based projection was...

60



3.4 Understanding Topic Relations Through Hierarchized Projection

7. The implementation with the flat projection was...

A Likert scale ranging from “not helpful” (1) to “very helpful” (6) was used to
rate the statements. In addition to the scale, the participants were also allowed to
give the answer “I do not know” in case they had no opinion on the statement for
any reason. Furthermore, the participants were asked to explain their reasoning
for the picked answer orally.

Tasks

The participants were asked to answer five questions using the provided visualiz-
ations. The questions were slightly altered depending on the given dataset.

1. Which authors/tags are important, and where are they located in the
currently shown hierarchy level?

2. Which groups of authors/tags are important and what characterizes them?

3. Which subgroups of authors/tags are contained within the previously named
groups?

4. Where is the group with the author “Ertl, T.” / the tag “Java” located?

5. Which groups are similar to this group?

3.4.8 Task-based Results
In both groups, the participants stated that the hierarchical view is better suited
to solve the first task (important authors/tags) compared to the flat projection
because the clusters reduce the amount of information initially shown to the
user. Every participant was able to resolve the task with the hierarchical view
by searching for the label with the biggest font size at the highest level of the
hierarchy (which was 20 labels by default). In the flat projection, none of the
participants were able to solve the question, as there were too many labels to
find labels that are considerably bigger than others. Most of the participants
stated that they would have to search through all of the clusters and compare
their size, which they considered too much effort.

For the second task (important clusters), most of the participants stated
that the results in the hierarchical view are the same as for the first task.
Most participants explained that it looks like the cluster size and the most
important authors/tags in a cluster often correlate. To characterize the content,
the participants mostly used the tag cloud provided in the tooltip.

The flat view does not contain any easily distinguishable visual encoding for
the cluster size (as all “clusters” contain one element). Thus, the participants
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either tried to zoom out and searched for the areas where most of the background
circles overlap or they estimated which area contained most elements by looking
at the amount of shown text. Both of those actions took the participants longer
than reading the encoding of the circle size in the hierarchical view.

Many participants implicitly answered the third task (subgroups of previously
inspected groups) when they characterized the content of a cluster in the second
task. When they actually read the task, most of them increased the level of detail
in order to confirm their statements from before. In case of the flat projection
view, most participants distinguished between groups and subgroups by looking
at the visualization and visually cluster the labels depending on their distance.

The approach of the participants to solve task 4 (find the cluster of a certain
tag or author) was the same for both datasets and visualizations: In case they
saw the tag or author before, they tried to find it again through zooming and
panning. If they did not see the group before, some still tried to find it in the
projection view for about ten to 30 seconds before using the search field and the
focus button.

The last task asked the participants to find clusters similar to the cluster they
had to locate in task 4. Instead of selecting the cluster to get similar clusters
highlighted, most participants assumed that the clusters close to the viewed one
are likely to be the most similar clusters. Only four participants selected the
cluster to search for similar clusters. Two of those additionally used the halos to
find the relevant clusters more quickly.

Overall, the hierarchical view outperformed the flat view in tasks that required
to summarize the characteristics of the clusters and the relations of the clusters.
One of the main reasons for this observation is that the participants had to find
clusters visually in the flat view, as it does not contain any clusters on a logical
level. This did not only take time, but it also decreased the accuracy of the
answers, as the visualization may not be entirely correct due to the information
loss in the process of the dimension reduction. Noticeably, some of the participants
still assumed that the proximities of the clusters directly reflect their similarity.
However, due to the information loss during the dimension reduction, this is
not the case. Therefore, it can be concluded that the visualization needs to
be extended with a visual cue to indicate the location of the relevant clusters
compared to the individual clusters.

Further Results

In addition to the oral feedback during the analyses of the datasets with the pro-
totype and the reference implementation, some information about the usefulness
of the features was collected through a questionnaire. Figure 3.15 summarizes
the rating of the evaluated features. The participants were first asked about
their opinion of the introduction of a hierarchy and the configurable step choice
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Figure 3.15: Results about the usefulness of the prototype’s features that were evaluated
in the questionnaire. The used Likert scale ranged from one for “strongly disagree” to
six for “strongly agree”. The results suggest, that most features were well received,
especially the introduction of a hierarchy. However, there is some disagreement about
the usefulness of the color mapping. © 2017 Elsevier

(statement 1). Nine of the ten participants rated the usefulness between four
and six points on the Likert scale. Some further stated that the usefulness of the
introduction of a hierarchy likely depends on the dataset. This aligns with obser-
vations during the study, where the participants had an easier time to make sense
of the clusters in the VisWeek dataset compared to the StackOverflow dataset
(which had a long tail distribution with regard to the clustering similarity).

The ratings about the usefulness of the animations when switching the level
of detail (statement 2) were almost evenly distributed between the scores of two
and six points. Most of the participants that gave a mediocre score stated that it
is possible to track the changes of a specific cluster, but it is very hard to follow
the changes of many clusters at once. Some proposed to give the users some kind
of visual cue on where the clusters were located in the previous level of detail.

Three participants had no opinion on the usefulness of the halo feature as
they did not use it. The others gave a score of either four or five points. Some of
the participants stated that the halo function may be helpful in general, but it
takes time to get used to its availability.

The ratings about the usefulness of the color coding were mixed. Four
participants gave a score of two or three points and the others gave it between
four and six. Some of the participants argued that the colors for selected and
related clusters are too similar and therefore not as useful. Others said that the
created heatmap effect is very helpful to distinguish areas with few from areas
with many clusters and that it gave a good overview of the overall structure.

Eight of the ten participants gave the usefulness of the lens (statement 5) a
score between four and six. However, independent of the rating of the lens, most
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Figure 3.16: Overview of the overall ratings given by the study participants for the
presented approach and the reference implementation with the flat projection. The
ratings are on a Likert scale ranging from one (“not helpful”) to six (“very helpful”).
Nine of the ten participants rated the implementation with the hierarchy between four
and six. On the contrary, nine of the ten participants rate the implementation without
a hierarchy between one and three. © 2017 Elsevier

participants proposed to change the behavior of the scaling effect to something
that a) keeps the local structure intact and b) guarantees an overlap-free view
at the same time, for example by showing the result of the distortion of the lens
in a separate view.

At last, the participants were asked to rate the presented implementations
with an overall score. The results are shown in Figure 3.16. The ratings suggest
that the approach was generally well received, although there is still space for
improvement. The reference implementation was not as well received, which
is likely caused by the high amount of overdraw that was caused by the high
number of shown labels.

The participants were also asked, if and where they could imagine to apply
such an approach. Most of them saw an application scenario in their own field of
expertise. For example, one participant who works in the field of eye tracking said
that the approach can be used to identify groups of participants during studies
which have a similar behavior. Another participant said, that the approach would
be suitable to get an initial overview of text corpora.
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Overall, the participants found the approach useful, especially for exploring
datasets where the user is only familiar with the general topic that the dataset
is about. Aside from the choice of colors, the heatmap-like visualization was well
received and mentioned to be helpful in getting an overview of the projected
structure of the datasets.

Discussion

When analyzing a new dataset, the users are confronted with a chicken and
egg problem: on the one hand, the zoom levels are supposed to help users
in understanding the possible relations within the dataset by only showing
information on a very coarse level. On the other hand, without knowledge about
what levels of detail may be interesting, it is difficult to decide how many levels of
detail should be shown and what information granularity they should have. This
approach addresses this dilemma by proposing the users a preset number of levels
of detail that can be used as a starting point for the exploration. Further, the
presentation of the error index of the clustering to support an easier manipulation
of the levels. However, the shown information is of little help if the users are
interested in which clusters are actually merged at a specific step. Even in case
the users had that knowledge, it is still impossible to infer any further knowledge
about the previous or the next cluster fusion step. Moreover, the users only get
an abstract measure of the quality of the clustering, which is hard to comprehend.
This problem may worsen when the binary tree of the clustering algorithm is
simplified, for example, by using Bayesian Rose Trees [31]. In that case, it is
hard for users to comprehend how many clusters will be shown in the next level
of depth of the tree, as every step may imply multiple aggregation steps.
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4

Visual Analytics for Production Line
Layout Planning

The next step after a product is designed is its production. However, in most
cases, it is not possible to produce a new product with the exact layout setup
and machinery that is currently available in a factory. Therefore, a production
line needs to be modified to support the new product or a new production
line needs to be designed. Generally, there are two scenarios when designing a
factory’s layout plan or individual production lines. In a greenfield scenario, the
entire factory can be designed from the ground up. In a brownfield scenario, the
production needs to be incorporated into already existing structures, ranging
from already existing buildings down to already running production lines.

In addition to these planning constraints, it is important to consider what
type of production is suitable for the goods that will be produced. For custom-
made products, the most suitable setup often consists of individual manual
work stations wherein workers process the product and then move it to the next
station. It is typical for such setups that many process steps are performed by
workers. In case some of the process steps can be automated, a u-shaped layout
can be deployed to keep the walking distance between the stations short so that
workers can operate multiple stations without bringing the overall production to
a halt. For products with a limited variety that need to be produced in large
numbers, linear production lines are an established option. An important factor
for choosing the production setup is how adaptable the production needs to
be. On the one hand, manual working stations are usually very adaptable, for
example regarding their product range and the positioning of the individual
stations. On the other hand, production lines can produce more effectively, but
they support only a limited product range that needs to be known before the line
is deployed and most of the parts in a production line cannot be repositioned.

The following approaches assume a brownfield scenario. These often face
additional challenges, e.g., missing or partly incorrect information about the
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measures of existing rooms, building supports, or the positioning of power or
water outlets. Further, there are factors that are usually not considered by fully
automatic algorithms, for example, if planners prefer to emphasize space around
manual labor stations to make the workers feel more comfortable. The first
of the following approaches (Section 4.2) focuses on a u-shaped layout setup
wherein the positions of movable objects should be optimized regarding the paths
workers have to travel between the stations they have to work on. The second
approach (Section 4.3) assumes a completely modular production line setup and
extends the simulation for advanced manufacturing (SAM) by Wörner [202] with
an augmented reality component to allow an on-site optimization of existing
production lines.
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This chapter is partly based on the following publications:

4.1 Related Work
This chapter focuses on supporting planning experts for production lines to
create or improve the positions of machinery and movable objects to improve the
overall production workflow. Therefore, the following section covers related work
in the fields of layout planning and visual support for optimization algorithms
for layout planning. Further, previous work in the field of augmented and virtual
reality in manufacturing is presented.

4.1.1 Layout Planning
Planning an optimal and adaptable facility layout is an ongoing challenge that
already exists for a long time [20]. The parameters to optimize are manifold
and range from value stream analysis over incorporating external suppliers to
optimizing worker paths. There are also approaches that take the assembly
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4.1 Related Work

process [82] into account and combine it with the layout planning process into a
holistic approach [51].

Most visualization and visual analytics approaches that target the manu-
facturing domain focus on the optimization of simulations and production
schedules. Rohrer [160] argues that visualization helps domain experts to get
a better understanding of manufacturing simulations, for example, by visually
representing the paths operators take between machines. Also, visualization
enables an interactive communication of results between a simulation software and
its users. For example, Wörner [202] presents a production simulation framework
with an integrated visual analytics approach that visualizes bottlenecks in
production lines with modular components. This system is introduced in more
detail in Section 4.3.1, as this thesis complements the system with an augmented
reality approach. Other examples help to find anomalies [130] in production line
processes, as well as to gain general process insights [206].

In order to optimize production schedules, Klöpper et al. [106] presented a
system generating a set of possible production schedules that can be iteratively
reduced based on aspects experts deem to be most important. LiveGantt [102]
helps experts to explore Gantt charts of large concurrent schedules. Users interact
with the schedule and get visual feedback about the effects of their changes.

Further, there is an increasing number of approaches that make use of genetic
algorithms to optimize layouts based on Key Performance Indicators (KPIs)
resulting from layout simulations [96, 49]. They optimize layouts without human
intervention. However, automatic methods neglect that experts may be able to
further improve a layout using their experience and that possibly unmodeled (or
hard and costly to model) constraints cannot be considered.

Many approaches exist that apply optimization rules and algorithms to find
a satisfying layout [55]. Often, layout optimizations and layout simulations
are used together to improve the outcome of the layout planning phase [11].
Modern layout planning systems also make use of computer-aided design models
combined with visualization to make use of human experts’ domain knowledge
in the planning process [147] or rely on automatic approaches [122].

4.1.2 Visual Support for Optimization Algorithms for Layout Planning
Recently, deep neural networks become increasingly popular for classification or
recommendation systems, although their internal mechanisms are often difficult
or impossible to understand [124, 157]. Further, such approaches need a lot of
training data (that may not be available) and they are unresponsive during the
training, as their intermediate results often cannot be used.

Other optimization approaches, such as simulated annealing [105], use physical
models to control the search space used to find a global optimum for a black-
box function. They are easy to understand and provide intermediate results.
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However, they are heavily reliant on their starting configuration and they are
unable to represent multiple local optima with similar function values as the
global optimum.

The first approach presented in this chapter uses an estimation of distribution
algorithm (EDA) to provide recommendations. Unlike evolutionary algorithms,
EDAs create a high-dimensional probability space (dependent on the number of
parameters) to pick new population members. This high-dimensional probability
space can be used to visualize intermediate results, which makes the picking
strategy easier to understand compared to the recombination effects used by
evolutionary algorithms. There are various alternatives to visualize such high-
dimensional data, for example, scatterplot matrices [85], parallel coordinate
plots [98], glyphs [28], or projection techniques [187], which can be presented
using scatter plots or heat maps.

4.1.3 Virtual & Augmented Reality in Manufacturing

In the past years, several approaches that make use of virtual or augmented reality
were proposed. Planning entirely virtual production layouts before setting them
up in reality [142, 120] reduces costs and collaborative scenarios as presented by
Menck et al. [134] enable the planning of factory layouts with other planners
independent of their real-world location.

By incorporating digital data into the real world, augmented reality ap-
proaches are able to provide a wide range of information to users. This can
be currently available machine data [165] or insights and practicability assess-
ments of assembly processes [145, 144]. Further, it is possible to understand
the consequences of changed production layouts or production processes [153,
53]. The improving quality and prices of VR/AR devices make these approaches
increasingly relevant.

The idea of using AR headsets to support workers in a factory is not new [44].
Many of the early AR applications like the Studierstube [164] relied on custom
and oftentimes inflexible video see-through hardware for augmenting the real
world. Today, many ready-to-use devices are available, which prompted Palmarini
et al. [148] to present a structured workflow for choosing the right AR technology
for industrial maintenance tasks. The upcoming of untethered devices offering a
reasonably stable out-of-the-box registration, most prominently the Microsoft
HoloLens, led to an increase of AR research in various areas. These include
surgery [116, 135], molecular graphics [80], and a variety of industrial applications.
For instance, in factory planning scenarios, augmented and virtual reality support
can help to deal with the complexity of modern production processes and reduce
the planning costs [120, 53, 142, 153]. Training of new workers is also an area in
which AR was used [123].
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Wang et al. [192] surveyed augmented reality systems for product assemblies.
Typically, such systems focus on guiding technicians through predefined steps, for
example, a step-by-step explanation of how to service or repair a machine [70, 107,
12, 185]. Likewise, Henderson et al. [94] explore the applicability of augmented
reality to repairing military vehicles. Making digital information available in the
real world is another application field for AR. A study of Erkoyuncu et al. [63]
showed that users of their AR system, which overlays workpieces with adaptive
AR content, completed tasks nearly twice as fast as the control group that had
to use instructions on paper. However, in a real production process with multiple
machines working in parallel, e.g., an assembly line, these approaches address
only the lowest-level step of the manufacturing process.

4.2 Visual Analysis and Optimization of Worker Paths in
U-Shaped Factory Layouts
One important aspect for the efficiency of a factory is the productivity of the
workers that operate and maintain machine tools. There are many possibilities
for improving their productivity, such as enhancing the ergonomics at a work-
station [68] and optimizing the work schedule [102]. The layout of a factory is
tightly coupled to the work schedule, as their combination influence the paths
that workers have to travel to their next work station. This becomes even more
important in setups like u-shaped layouts, as they may require workers to operate
multiple machines or to share special equipment with other workers [168].

Often, pathing problems for workers are hard to account for during the
initial layout planning phase. Exemplary reasons are changes in a production
line over time (e.g., machinery replacement), the addition of new production
lines, or changing work schedules. There are numerous approaches to support
the pathing of workers during production (e.g., visual cues on the floor or on the
nearest machine terminal). It is also possible to optimize the positions of movable
parts, such as shared tool caches. However, this optimization is challenging [140].
On the one hand, an automatic optimization is expensive to calculate due to
the large number of possible solutions. Further, its results are prone to errors
due to unmodeled constraints (e.g., availability of adequate power supply) or
constraints only known to experts, such as understanding that workers avoid
being close to loud machinery. On the other hand, manual optimization by experts
is challenging, as many paths need to be considered during the optimization.

The following visual analysis approach uses an estimation of distribution
algorithm (EDA) (see Section 2.1.3) to support layout planners in optimizing
the locations of movable machinery and containers, such as tool caches. Planners
are first provided with an overview of a layout’s performance regarding the
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pathing of workers. Afterwards, they are provided with visual cues that indicate,
which components have high optimization potential. Upon the selection of a
component, a heat map visualization visually highlights where the component
could be repositioned to.

To evaluate the approach, a prototypical system called BlueCollar was
implemented. An application scenario based on an experimental production
line layout provided by a production optimization company is presented to
demonstrate the applicability of the approach.

4.2.1 Approach
Targeting layout planning experts, BlueCollar supports planners to improve the
efficiency of factory layouts by optimizing the paths workers have to take to
complete a work schedule. The following first presents the requirements and the
resulting workflow of the approach. Afterwards, the different components used
in the approach and the underlying estimation of distribution algorithm (EDA),
which provides the optimization recommendations, are detailed. Three system
requirements for interactively optimizing factory layouts regarding the pathing
of the workers were identified in previous informal expert interviews:

Requirement 1: Current Performance R1

Provide information about the current layout’s performance regarding the
taken paths of workers.

Requirement 2: Overview Guidance R2

Present visual feedback regarding the optimization potential of the layout
elements.

Requirement 3: Optimization Guidance R3

Visualize suitable relocation areas for specific layout elements and provide
information about the impact of the relocation on the layout’s performance.

Based on these requirements, a visual analytics approach was developed
that comprises two stages (see Figure 4.1). Both stages support experts to
decide, how to continue the optimization through EDA-based recommendations.
Initially, planning experts can inspect the layout and get a first overview of the
positions of the layout elements (e.g., machine tools or tool caches). At this point,
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Estimation of 
Distribution 

Algorithm (EDA)

Provide current layout

Suggest elements for 
optimization

Provide layout & 
selected element 

Suggest potential 
relocation areas

Layout 
Inspection

Layout 
Optimization

Select any moveable layout element for optimization investigation

Unselect layout element and restart layout inspection

Figure 4.1: BlueCollar comprises two stages that use an estimation of distribution al-
gorithm (EDA) to provide visual optimization recommendations. The layout inspection
provides an overview of the layout and recommends layout elements that have high
potential to improve the layout performance. The layout optimization recommends
suitable areas to relocate specific elements to. Source: [2] under CC BY-NC-ND 4.0

BlueCollar provides information about the most likely taken paths of workers,
the performance of the current layout regarding the pathing of the workers, and
which elements have the highest optimization potential. Once experts decide,
which element’s position to optimize, BlueCollar visualizes suitable areas for
the relocation of the selected layout element through a progressively updating
heat map visualization. Based on these recommendations, experts can manually
modify the layout and continue the optimization.

4.2.2 Layout Inspection
To optimize a layout, experts first need to get an overview of the status quo.
BlueCollar provides the current layout and enables users to inspect the per-
formance either for the entire workforce or by selecting individuals or groups
of workers. The analysis starts with an already existing factory layout and a
planned work schedule (see Figure 4.2 A ). A work schedule describes all of the
steps needed to complete the production of certain goods. As the approach
targets the optimization of the paths of the workers, the work schedule was
restricted to tasks that require workers to walk to other machinery.

Layout Performance Overview. To get an overview of the performance of
the current layout, BlueCollar presents the current layout as a 2D plan view (see
Figure 4.2 C ). Every layout element is represented by its rectangular bounding
box and an additional icon to represent its function. A legend provides detailed
information about the meanings of each icon (see Figure 4.2 E ). Further, the
most likely taken paths of the workers (based on the shortest walking distance,
which are calculated using the A* pathfinding algorithm [84]) are indicated
through semi-transparent polylines. It is possible that some paths are taken
multiple times, by either a single worker or multiple workers. Therefore, the line
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A

B

C D

E

Figure 4.2: BlueCollar requires layout planning experts to load a layout and work
schedule A and choose which workers’ schedule data to include in the optimization B .
The layout of the factory C provides a first overview of the positions of the components
and the taken worker paths. Further, it recommends suitable components for optim-
ization through a color coding of their border’s color and presents fitting relocation
areas as a heat map. A line chart D shows the progress of the optimization algorithm.
The elements in the layout view are annotated with icons, which are explained in a
legend on the right E . Source: [2] under CC BY-NC-ND 4.0

segments that were used multiple times are less transparent than segments only
used once. This provides layout planners with an overview of the current layout’s
performance, which meets requirement R1 .

Data Filter. Layout planners can also view the performance of individual
workers or specific groups of workers, e.g., the group of assemblers or machine
operators. The ideally taken paths are shown as lines in the layout. They can be
filtered by selecting them individually or based on their task in the side panel
(see Figure 4.2 B ).

To get a better overview of high traffic zones, BlueCollar emphasizes the
paths with a semi-transparent blue color glow to encode the worker density in
the layout view. This information can be used to get first insights about possible
current or future bottlenecks, where workers may collide or have to take detours.
In contrast to the path lines, which emphasize the taken paths, the heat map
emphasizes areas with highly frequented crossings.
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4.2.3 Visual Optimization Guidance

BlueCollar guides experts during the optimization process in two stages: it
recommends elements that have high optimization potential and it suggests
better positions for these elements. In the following, the visual guidance is
presented in more detail.

Layout element recommendation. BlueCollar indicates the optimization
potential of movable layout elements, such as machines or tool caches by color
coding their borders. A light green border indicates very small changes and the
more saturated the border becomes, the higher the layout element relocation
potential is. The possibility of a worse performance can be discarded, as leaving
the layout element at its current position is always a possibility and therefore
marks the worst case for the optimization. To compensate for the non-uniform
distribution of the improvement potential values of the individual component,
the non-linear color saturation mapping introduced by Liu et al. [126] was used.
The optimization potential is iteratively refined in the background. Figure 4.3
shows an example, where BlueCollar provides information of the optimization
potential of the layout elements. Section 4.2.4 details how the optimization
algorithm handles the evaluation of multiple layout elements. The layout element
recommendation meets requirement R2 .

Relocation recommendation. Once planners select a specific layout element
for optimization, the element is highlighted with a light blue background and
the EDA will only optimize the position of the selected element. To give the
experts an overview of the optimization progress, a line chart (see Figure 4.2 D )
shows the best layout scores after each iteration. The x-axis shows the iteration
and the y-axis the cost. A decreasing value indicates that a better relocation
position was found.

Additionally, BlueCollar visualizes the optimization progress by mapping
already available results onto a heat map visualization overlay on top of the
currently viewed layout. This results in a progressively updating heat map,
which gives planners an early impression of possible relocation areas. The color
scheme of the heat map ranges from white (worst performance) to dark blue (best
performance) and uses a min-max normalization of the available data. Due to the
way EDA works, the surroundings of well-performing relocation areas are more
likely to be sampled, which additionally emphasizes these regions. Figure 4.4
shows the suggested relocation areas for the selected casting station D based
on a simplified work plan. The legend on the bottom right side of Figure 4.4
shows the heat map’s color coding. The results show that the station should be
relocated between the conveyor belt A and the robot station C . As the heat map
includes information about the relocation areas and their optimization potential,
they meet analysis requirement R3 .
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Figure 4.3: BlueCollar provides a visual indication of the optimization potential for
movable components through the border of the elements. The color ranges from light
green (low potential) to dark green (high potential). Source: [2] under CC BY-NC-ND
4.0

Planners can also relocate layout elements manually by dragging them within
the layout view. If the dragged element is currently selected, the heat map keeps
updating. Otherwise, the selection is switched to the dragged element, the heat
map is cleared, and the EDA is restarted.

4.2.4 Optimization with an Estimation of Distribution Algorithm

The suggestions for suitable layout elements for relocation and the recommenda-
tions for suitable relocation areas (see Section 4.2.3) are based on an estimation
of distribution algorithm. EDAs are a class of optimization algorithms that aim
to minimize the output of a given black-box function (see Section 2.1.3).

Figure 4.5 shows the general steps of an EDA. It initializes with a uniform
probability distribution and then iteratively picks parameter sets for the black-
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D
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A
B High cost / 
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low cost / 
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Figure 4.4: The worker has to walk in a circle ( A→ B→ C→ D→ A ). The legend on
the right shows the heat map’s color coding. The heat map indicates that the selected
casting station D should be relocated between the conveyor belt A and the robot
station C . Source: [2] under CC BY-NC-ND 4.0

box function based on the probability space. The picked sets are evaluated and
the probability space updates depending on the evaluation results.

Generally, there are two options for the probability space update: i) rebuild
the probability space depending on all previously evaluated input parameter
sets (requires more memory); ii) use only the evaluated input parameter sets
of the last iteration (requires more computing power, as more parameter sets
need to be picked). Although the probability space may converge faster with the
latter option, the probability space may change considerably in each iteration
step, resulting in quickly changing heat maps, which increases the cognitive load
on the users. Additionally, the evaluated input parameter sets can be used for
the heat map visualization. Therefore, BlueCollar uses the first option.
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2) Pick p parameter sets. The likeliness for picking a parameter 
set is based on the high-dimensional probability space.

3) Evaluate the fitness (or cost) for each parameter set.

4) Take the best x% of the parameter sets and update the 
probability space according to the sets‘ fitness values.

5) Is the termination criterion (e.g., a number of iterations) met?

yes

no

1) (Initialization) Create a uniform n-dimensional probability 
space, where n is the number of input parameters.

Figure 4.5: Generally, an EDA comprises five steps [89]. After initializing its probability
space with a uniform picking chance for all configurations, it iteratively picks parameter
sets based on the probability space. Then, the probability space is iteratively updated
by evaluating the picked parameter sets. This process repeats until a predefined
termination criterion is met. Source: [2] under CC BY-NC-ND 4.0

BlueCollar uses the combined length of all paths that the workers have
to take to complete a work plan as the cost function to measure a layout’s
performance. To efficiently calculate the workers’ paths, it first maps the layout
to a graph representation. The approach assumes that each layout element
has a rectangular bounding box, each comprising four corner vertices. In an
initialization step, all vertices are connected to each other (which results in a
complete graph). After that, edges that intersect any layout element are removed.
To calculate a worker’s path, the corresponding work plan is split into individual
tasks. Then, the optimal path is calculated to solve each task that requires
the worker to change the location using the A* pathfinding algorithm [84].
Afterward, BlueCollar reconstructs the total path of the worker’s total path by
concatenating all task-based paths. At last, the path lengths of each worker are
summed up.

As generating the layout graph is the most expensive operation, the relocation
operation was optimized to reuse the original graph and perform as few graph
changes as possible. This is possible, as the EDA implementation of BlueCollar
only optimizes the position of one layout element at a time. It is assumed that
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4 22 11

Figure 4.6: Exemplary one-dimensional weighting stamp that influences all neighbors
with distance ≤ 2. Source: [2] under CC BY-NC-ND 4.0

this layout element is known at the start of the optimization and the complete
graph of all connections between the elements is built without this element. Then,
the element can be added at an arbitrary position. A quadtree is used to check
if the newly added layout element collides with other layout elements or edges.
In case the layout element collides with another element, the layout is assumed
to be invalid and the layout’s cost value is increased accordingly. Setting the
cost close to infinity would disproportionally decrease the picking probability of
surrounding configurations (see updating the probability model below). Therefore,
the cost value of an invalid layout position is set to a plausible value that would
indicate a very inefficient layout: costmax = s · llayout, where s is the total number
of path segments and llayout is the width of the layout.

If the layout element collides with connections, these are temporarily removed
from the graph. Every affected connection is implicitly replaced by two edges:
one from the starting vertex to the inserted element and one from the inserted
element to the ending vertex. For further relocations of the element, the only
needed adaption is to remove the previously inserted layout element and its
edges and inserting the deleted edges again before adding the layout element
elsewhere. This skips the initialization step, which is the most expensive part of
the procedure.

To improve the pathfinding’s scalability regarding the number of workers,
BlueCollar uses a lookup table that stores all previously calculated movement
tasks. This reduces the calculation time, as each path needs to be calculated
only once.

After all parameter sets are evaluated, the probability model that decides,
which parameter sets are likely to be picked in the next generation, needs to be
updated. In addition to the assumption that the two position parameters have a
dependency, it is assumed that the neighboring cells of the evaluated parameter
sets have similar cost values. Consequentially, the cost of the neighboring cells
is approximated based on the already evaluated parameter configurations. The
influence of neighboring cells is modeled as a two-dimensional triangular function,
where the center has the highest influence and the values are halved for every
step towards the outer corner of the neighborhood (see Figure 4.6 for a 1D
example). The size of the stamp depends on the dataset. In the dataset used in
Section 4.2.5, a 100x100 cell grid is used for the heat map and the stamp size
covers five cells in every direction.
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Without further modifications, the algorithm is likely to get stuck in local
minima, as the initially picked parameter sets strongly influence the development
of the probability space. To prevent this, a base probability of 10% for all
elements to be picked is reserved (e.g., if there are four elements, each of the
elements has a base probability of 10%

4 = 2.5%).
The runtime of each iteration depends on the cost to pick and evaluate the

population members and the cost to update the probability space. In the EDA
implementation of BlueCollar, the runtime cost is

runtime cost= p ·
pick & evaluate︷ ︸︸ ︷

(O(2 ·d+ runtimeeval) +
prob. space update︷ ︸︸ ︷
O(k2)),

= p · (O(d+ runtimeeval) + O(k2)),

where p is the number of picked parameter sets, d is the size of the grid’s
dimensions and k is the size of the kernel. The cost of picking new elements mainly
depends on the runtime complexity of the evaluation function, which depends
on the number of necessary node expansions in A*. In the implementation of
BlueCollar, the cost of updating the probability space depends on the number of
nodes that need to be updated. In the worst case, none of the picked population
members were evaluated before and therefore, every element’s neighborhood
(which is k2) must be updated, leading to the runtime complexity given above.

Until this point, only the position optimization of a previously known layout
element was considered. To assist users in deciding, which element to optimize,
BlueCollar initially provides the optimization potential for various layout ele-
ments at the same time. To provide this information, all movable layout elements
are added to a queue. The element at the front of the queue is evaluated with
one pass of the estimation of distribution algorithm. The best layout result is
used as the respective optimization potential value. Afterwards, the calculated
layout and the corresponding performance value is stored for that layout element,
which is then added at the end of the queue again. If the layout element that is
taken from the queue already contains calculated positions, these are used to
initialize the probability space. The main challenge in this step is to balance the
calculation time assigned to each layout element to calculate its optimization
potential against the evaluation of as many layout elements in as little time
as possible. This means that more time per layout element results in a better
indication quality of individual layout elements, while less time means that
more layout elements can provide an indication, but with a lower indication
quality. Based on observations made while testing the approach, running one
EDA iteration that generates

√
n parameter configurations, with n being the

number of grid cells, seems to be a good trade-off between the reliability of the
potential and its calculation speed.
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A B

C

Figure 4.7: The layout can be subdivided into three areas: The green area A comprises
assembly stations and multiple shelves that are connected to a lift. The orange area B
contains mainly robot stations. The purple area C contains a conveyor belt, which is
connected to multiple assembly stations and a high rack storage. Source: [2] under CC
BY-NC-ND 4.0

4.2.5 Application Scenario
A software engineering company that offers planning and production simulation
software provided the layout used in the following application scenario. The
production layout was planned for a prototypical production line and focuses on
manually operated assembly stations between which the workers have to move.
The layout is 35.23 meters wide and 31.5 meters long. It can be subdivided into
three areas (see Figure 4.7). The green area A comprises several shelves that are
refilled and assembly stations that produce parts for a robot station. Further,
one station gets supplies from a separate shelf. Area B , highlighted in orange,
contains three robot stations. The bottom-most station’s goods are continuously
delivered to two lifts. The purple area C is composed of two conveyor belts
that transport goods from an (unmodeled) external supplier. The workers at

81



4 Visual Analytics for Production Line Layout Planning

Figure 4.8: At the beginning, only optimization potentials for the shelves are available.
Soon after, the potentials of the assembly stations become available, but the shelf near
the lift still remains the station with the highest optimization potential. Source: [2]
under CC BY-NC-ND 4.0

the assembly stations along the conveyor belts take the goods, process them,
and put them back on the belt. At last, the parts are taken off the belt and get
stored in a high rack storage area. Plausible work schedules that incorporate
different tasks in several areas of the factory were added beforehand.

Exploration of the optimization potential. We assume the role of a layout
planner and start the analysis with the layout view as presented in Figure 4.7.
It seems obvious that the planned layout can be optimized, as there are many
long paths to a limited number of stations. One of the areas that seems viable
for optimization is area A . The positions of the lift and the robot are fixed,
but the shelves at the top, the assembly stations, and the shelf below the
lift can be relocated. However, it is unclear, which layout element has the
highest optimization potential. Therefore, we use the optimization suggestion
that BlueCollar continuously extends and improves (see Figure 4.8). The system
recommends optimizing the shelf near the lift. With this insight, we manually
relocate the shelf towards the block of assembly stations (see Figure 4.9 A ).

Optimization of the layout. To further optimize the shelf’s position, we decide
to select it and optimize its position with the support of BlueCollar’s relocation
heat map. As the analysis progresses, it becomes apparent that the most suitable
position for relocation is in the gap between the two groups of assembly stations
(see Figure 4.9 B – D ). Although the best position is plausible, we decide to leave
it below the assembly station. Based on total walking distance, this position may
be worse (650m vs. 640m), but this placement prevents crowding of workers.

After the shelf’s relocation, we return to the element recommendation mode
to validate the optimization potential of the shelf at the top right. Then, we
select the shelf to get detailed relocation recommendations (see Figure 4.2).
BlueCollar recommends to place the shelf directly above the lift (reducing the
distance to 623m), but we opt to place it to the left of the top shelves to keep
obstructions at a minimum, still reducing the path length to 632m.
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A B

DC

Figure 4.9: As the optimization continues, it becomes apparent that the most ideal
relocation area for the shelf is between the two groups of assembly stations. Source: [2]
under CC BY-NC-ND 4.0

4.2.6 Further Results
BlueCollar’s EDA implementation converges quickly towards good results but
has difficulties to find the best result (due to its probabilistic nature). To support
this hypothesis, it was measured, how many iterations BlueCollar needs to find
one of the ten best results for the relocation of a specific layout element. The
ground truth for the grid cells was built in a separate pass. For this evaluation,
the simple layout (see Section 4.2.3) and the complete plan (see Section 4.2.5)
were used. The used population size per iteration was 100 and the measurements
were repeated 100 times per layout. The results are shown in Figure 4.10 and
will be annotated as ∅(average) σ(standard deviation) in the following.

For the simple plan, the EDA needed 5.18 3.04 iterations to find a top 10
value. For the complex plan, it needed 6.12 6.48 iterations for a top 10 value.
The values were benchmarked against a random sampling, which resulted in
12.07 10.40 iterations for a top 10 pick. Overall, BlueCollar does not only find
suitable values in fewer iterations than random sampling, but it also guides
planners quicker towards areas of interest, as areas that perform better have a
higher chance of being evaluated and therefore being highlighted.

Figure 4.10: EDA finds the
best results in fewer itera-
tions and with less variance
than random sampling. An
outlier of 61 iterations in
during random sampling is
not shown.
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4.3 Immersive Analysis of Production Line Simulations
Nowadays, factories have to be flexible and adaptable to address the consumers’
rapidly changing demands of highly customizable products. One way to achieve
this is to deploy quickly re-arrangeable production line components.

Production line layout planning tools are usually designed as desktop applic-
ations. They require high cognitive effort to reconcile the final physical setup
with a complex real-world environment starting from an abstract model (see
Fig. 4.11). It is challenging to imagine how efficiently a production line layout can
be used by workers after being built. Augmented Reality (AR) [30] can help to
reduce the cognitive gap between a virtual scene and its mapping to the physical
environment. Corresponding hardware, e. g., head-mounted displays, such as
Microsoft HoloLens and Sony SmartEyeglass, superimpose a real-world scene
with virtual items. The provided immersion, stereoscopy, and direct interaction
enable planners to gain information directly at the location where it is needed.

To address the gap between planning and implementation, the following
contributes a methodical approach to extend the currently desktop-based layout
planning process by an augmented reality component. The following approach is
based on the work by Wörner [202, p. 27ff.] and employs the same application
example. After its introduction, an approach to extend such desktop-based
simulators through augmented reality is presented (Section 4.3.1). Afterwards,
the approach is evaluated through an application example and a think aloud
expert interview (Section 4.3.2).

4.3.1 Approach
This section first introduces the Simulator for Advanced Manufacturing (SAM)
presented by Wörner [202, p. 34 ff.]. Then, the system is extended by an approach
that allows to provide intermediate and final simulation data in an augmented
reality environment. The (running) simulation is further enriched with additional
information and highlights the differences between a loaded and automatically
suggested layouts.

SAM – Simulator for Advanced Manufacturing

SAM runs on desktop computers and uses the iTRAME system [158], which
demonstrates the applicability of modular production lines. iTRAME uses stand-
ardized connection modules such that its components can easily be rearranged
in an arbitrary order to produce different products more easily. The simulator is
able to simulate iTRAME production line layouts, which are composed of linear
and corner conveyor belts, as well as lifts, robot stations, manual labor stations,
automatic storage, vision stations, and switches. As it focuses on providing
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Figure 4.11: A production line simulation run with SAM. It shows the layout’s
components, the workpieces, the actor load (background color), and the workpiece
density (conveyor belt color). The right side shows the current status of workpieces
and their processing progress. © 2018 Elsevier

information about the overall production line performance, it does not simulate
the individual processes within the stations, e.g., the exact process of assem-
bling two components. In SAM, users can manually design new and manipulate
existing production line layouts. Further, it can automatically generate and pro-
pose new layouts using an evolutionary algorithm. The evolutionary algorithm
(see Section 2.1.3) iteratively creates new layouts based on already stored or
previously generated layouts by splitting the layouts at an arbitrary position
and recombining those layout fragments. Then, the members are assessed based
on their validity and Key Performance Indicators (KPIs), such as the number
of used components, the required area of the layout, the running costs of the
machines, the completion time of the current order, and the average load of the
components. Based on their performance, the worst-performing members are
discarded and some layouts are arbitrarily changed.

Experts can assess the performance of any layout by running a real-time
simulation that provides information about the load of each station, the average
workpiece density on the conveyor belt, and the status history of the workpieces.
Figure 4.11 demonstrates a simulation run with SAM in which the left side
creates the product with manual labor stations, whereas the right side uses a
robot station to perform this task. The color coding of the stations indicates
that the right line has a better average load and lower workpiece backlog.

The process of the automatic layout generation is presented in a separate
view. It shows the current simulation progress for the generated layouts and their
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KPIs. It also shows the layouts’ overall score, which is a weighted sum of KPIs
that can be adjusted to the user’s goals to simplify comparison. Furthermore,
regardless of its overall score, information about the best-suited layout with
respect to the KPIs are given. SAM visually indicates whenever it finds a better
layout, which the users can then inspect in detail and edit manually, for example,
to change the layout footprint. Each of the layouts is shown in a separate tab,
so it is possible to open and quickly compare multiple layouts by hand. The
manipulated results are also used by the evolutionary algorithm to find additional
layouts with improved KPI.

Overall, SAM enables users to plan, simulate, and assess manually or auto-
matically processed layouts. Most of the process works reasonably well as desktop
input mechanisms, such as mouse and keyboard, are well-suited for the tasks and
efficient. However, it is difficult to assess aspects related to real-world distances,
spatial arrangement, paths that can be walked through, or work safety aspects
based on a result presented in a 2D or 3D scene on a desktop client. Often,
this issue is emphasized by out-of-date plans, such as for piping or electrics, or
the general lack of accurate digital representation of the factory’s status quo in
brownfield scenarios. Hence, the following approach uses augmented reality for
simulated advanced manufacturing (ARSAM ) and was designed to complement
the desktop-based layout planning and simulation approach, not to replace them.

Augmented Reality Extension

ARSAM ’s goal is to make use of augmented reality technology, allowing for an
immersive layout planning and analysis process. It assumes that one or more
layouts were already created on a desktop client that can be transferred to
an augmented reality application. After creating the layouts, the users start
with the initial setup phase in which they define the global coordinate system
and load an initial layout (Figure 4.12 A ). Subsequently, they choose whether
to manipulate the loaded layout (Figure 4.12 B ), simulate the current layout
(Figure 4.12 C ), or compare the layout to layout variants that are automatically
created (Figure 4.12 D ).

In the following, the individual workflow steps are detailed and the imple-
mentation is showcased. ARSAM’s prototype is implemented as a HoloLens
application. As recommended by Microsoft, the prototype was implemented
using Microsoft’s Mixed Reality Toolkit framework and Unity1 as a development
environment. HoloLens automatically handles gesture recognition, as well as the
automatic registration of the real-world environment with the virtual scene. If
necessary, users can manually adjust the alignment of the virtual layout with
the real-world environment.
1 https://unity3d.com/partners/microsoft/mixed-reality
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Setup
Layout 
Mode

Simulation 
Mode

Discovery
ModeA B

C

D

Figure 4.12: The layout planning workflow starts by setting the plane for the global
coordinate system A . Thereafter, the planners load and may alter a layout B . The
layout can then be used as a basis for simulations (simulation mode) C . To explore
other layout suggestions and optimizations, the planners can switch to discovery
mode D . They can switch arbitrarily between modes after setting the coordinate
system. © 2018 Elsevier

Initial Setup Before the users can start the planning process, they need to
set the plane for the global coordinate system. In ARSAM, this can be done
semi-automatically, where the plane is aligned to the detected floor. Alternatively,
the plane can be set entirely manually. If a plane was set before, its position can
be reused. The position of the plane affects the positioning of the layouts when
they are loaded. Then, the users can load the layouts that were either created
using SAM or saved in previous sessions.

Layout Mode Users can view the current layout either in an adjustable model
size that can fit on a desk and provides a good overview or in its real-world size
that shows the virtual layout in a real-world context. The layout mode enables
users to rearrange parts if they see potential to improve overall performance or
satisfy yet-unmodeled constraints in the context of a real environment. Especially
in the second mode, experts are able to perceive paths that are too narrow to walk
through, the obstruction of safety-relevant inventory, or unmodeled workshop
objects, such as supports and piping. However, the AR interaction is still more
cumbersome than the desktop user interface when modeling complex layouts
from scratch. Hence, if users want to compare an already deployed physical
layout with alternatives, the physical layout is best modeled with the desktop
application first and then transferred to its AR extension.

In ARSAM’s prototype, users need to align the loaded layout manually to the
physical counterpart, either by selecting and moving/rotating layout elements or
by manipulating the global floor plane. Parts can be selected either individually or
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Figure 4.13: Screenshot of the detailed information of a specific workpiece. It contains
the workpiece’s ID, its current state, its total moved distance from the start of the
production line, and its status history. © 2018 Elsevier

as an entire group of connected components. During the manipulation, ARSAM
presents a wireframe “ghost” model as a preview of the result alongside the
original positioning. Users can thus perform minor layout changes in ARSAM to
get a direct impression of their effects in a real environment.

Simulation Mode To analyze the current layout’s performance, users can
switch to the simulation mode to run a simulation that shows how the layout
performs during a production run. The provided information depends on the
capabilities of the simulator. Analogous to SAM, ARSAM provides real-time
information about the status of the work stations (working/idle), the location of
the workpieces, and state of the workpieces (e.g., transport between stations,
being processed, finished, see Figure 4.13). It also provides information about the
load of individual work stations by color coding their bounding volume between
red (for no load) to green (used permanently, see Figure 4.14). Similarly, the
workpiece density of the conveyor belt segments is encoded in the segments’
color hue. ARSAM uses the same semantics as with the stations’ workload color
coding, where red represents an undesired effect. The longer the backlog at
a station, the more segments are colored red. Users can inspect any station’s
status history for the simulation run through a tooltip, which is shown when the
users directly look at them. It provides the current state, average load, and a
continuously updating status bar that concisely indicates the load distribution
of the station over time, analogous to the workpiece tooltip.

In addition to the visual encoding of the layout, the planning experts can
optionally inspect bottlenecks that are calculated using a modified critical path
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Figure 4.14: Screenshot of a simulation run taken from the users’ view. It shows the
layout components, their load (bounding volume color), the workpiece density (e.g.,
on the leftmost manual labor station), and the critical path view to find bottlenecks,
where red denotes the critical station which should be optimized first. Image used
with permission by Gaugler & Lutz oHG. © 2018 Elsevier

method (see Section 2.2.4). Its results, e.g., the critical path and the drag values,
are visualized in the critical path view (see Figure 4.14). Therein, every row
represents one station and the individual blocks represent the workpieces during
the simulation. A red background marks the station on the critical path with the
largest process time and a blue background represents the buffer (i. e., downtime)
that a station has before it becomes critical itself. At this point, users are able to
get an overview and detailed information about a specific layout’s performance,
find possible performance bottlenecks and use their expertise to assess possibly
unmodeled layout issues, such as the spacing between the work stations.

Discovery Mode Analogous to SAM, the discovery mode uses an evolutionary
algorithm, which automatically searches for new layouts that are better than the
currently viewed layout regarding the KPIs explained in Section 4.3.1. The users
are first presented a view that contains the currently discovered layouts sorted
by their overall score. Any of the layouts can be selected for further analysis
and comparison with the currently loaded layout. In contrast to SAM, where
the layouts were inspected in separate tabs and compared in a summary view,
ARSAM makes use of the augmented space to allow users to inspect both layouts
at the same time for a situated analysis in relation to a reference layout. This
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Figure 4.15: ARSAM enables users to inspect and edit modular factory layouts
(top left). In addition, an evolutionary algorithm proposes new layouts and provides
information about the needed changes to transform a given layout (solid layout) to
the proposed layout (as wireframe preview). The door described in the scenario is just
to the right of the visible field of view. © 2018 Elsevier

enables users to directly compare the differences of the layouts, see the needed
changes to transform the loaded into the proposed layout, and inspect and edit
the proposed layout in the layout mode. The comparison is especially useful if
the originally loaded layout is also physically available, but it can also be used
to compare two potential layout solutions in the real-world context.

ARSAM highlights the differences between the original and the proposed
layout to further assist the users in comprehending the necessary effort (and
incurred cost) to transform the original into the new layout. It encodes the
needed changes visually into the components of the original and new layout’s
bounding volume. In case elements remain at their current position or if they
need to be moved, their bounding volume is filled with a light blue. Components
that are not used anymore are filled with red and components that need to be
bought have a red ’+’ on top of their geometry (see Figure 4.15). All colors
are semi-transparent to make sure that the users are still able to perceive the
underlying components, regardless of whether they are physically present or
virtually added. This additional visualization enables the users to assess if
the possible performance increase outweighs the costs of buying new layout
components or taking existing components offline.

To provide this information, ARSAM converts both layouts into a string
representation where each character represents one component. It then compares
the strings using a modified Levenshtein distance. Originally, the Levenshtein
distance [121] transforms a string into another using three operations: insert or
delete a character, and replace a character with another. However, in this context,
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Figure 4.16: Depiction of the string encod-
ing of two production lines.

replacing a component is only reasonable if the original layout already contained
the component, resulting in the move operation. To ensure this, a component
cache is first built based on the original string. A move is only possible if the
needed component is still available in the cache (from which it is removed during
the process). After calculating the distance, the used operations are reconstructed
based on the table built by the algorithm. The modified Levenshtein distance
can be used as a KPI in the evolutionary algorithm, as well as providing a
reconstruction of the performed transformation operations, which is used for the
visual encoding described above. Figure 4.16 shows the encoding of a line that
is transformed from one manual labor station and two robot stations to a line
with two manual labor stations, followed by a robot station and another manual
labor station. Figure 4.17 A shows the cost calculation using the traditional
Levenshtein distance, Figure 4.17 B shows the modified Levenshtein distance.

4.3.2 Evaluation
The following evaluation was conducted with the ARSAM’s prototypical imple-
mentation. First, a synthetic application scenario is showcased to demonstrate
how ARSAM can help assess whether a simple production line can be deployed
in a room with spatial constraints. Then, feedback about the applicability of the
approach collected during an expert interview is presented.

Synthetic Application Scenario

In a synthetic application scenario, we assume the role of a layout planning
expert that got the task to place a production line in a new hall. The new facility
has some spatial restrictions, as the production line should be placed nearby the
stairway, while it must not obstruct the door on the right wall. After setting
the coordinate plane, we load the layout that was used in the old facility. It is
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(a) Cost table built using the traditional
Levenshtein distance.
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(b) Cost table built using the modified Leven-
shtein distance. The replace operation is not
possible in the annotated transition as the
cache contains no more manual labor stations.

Figure 4.17: Comparison of a traditional with the modified Levenshtein distance.

comprised of lifts at both ends and a manual labor station, a corner element and
a robot station in between (see Figure 4.15, top-left).

As we inspect the real-world sized layout on-site, we notice that a major issue
of the former layout in the new facility is its cornered structure, as the second
half obstructs the door on the right. We solve this issue by first removing the
angled conveyor belt and then add the rotated robot station and lift back to the
layout. After an analysis of our new layout, we notice that the robot station’s
load is not ideal.

Rebalancing the load of the layout’s components is not a trivial task, so we
start the layout discovery mode to find a more suitable layout. After inspecting
some generated layouts, we end up with a layout that replaces the robot station
with two additional manual labor stations (see wireframe model in Figure 4.15,
bottom right). By inspecting the layout preview, we notice a remaining issue of
this layout: its manual labor stations are facing towards the glass front of the
hall, so they may be difficult to reach. Therefore, we edit the proposed layout
one more time and turn the manual labor stations by 180 degrees, which results
in a well-performing layout that meets the spatial restrictions of our current
location. We further notice that the ceiling of the robot station barely fits under
the stairway without colliding with it. In this case, there is no need to further
change the layout. However, without an on-site inspection this problem may have
stayed unnoticed, as the height and geometry of the staircase are not modeled
by the simulator.
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Think Aloud Expert Interview

An expert interview was conducted with the procurator of a medium-sized wood
processing company to evaluate the applicability of the approach. Among others,
the expert needs to decide when and how to rearrange the company’s production
layout to better meet the current product order situation, which by experience
is at least done once per year. The evaluation lasted approximately two hours
and was conducted at the interviewee’s production facility. At the beginning, the
prototype was demonstrated and the workflow was explained for approximately
ten minutes. A model-sized scaling was used to present a small layout on a table.
To give the expert a first impression of what he will see, the presenter’s view
was streamed onto a screen. Then, the expert was given the opportunity to test
the prototype. Afterwards, the evaluation continued in one of the company’s
production buildings, where the expert tested the prototype with the real-world
scaling on the shop floor. He was asked to speak out his thoughts, no matter if
they are questions, remarks, or general thoughts.

After getting familiar with the prototype, he explained that, independent
of the prototype, the HoloLens has too many limitations to be really usable in
its current state. Aside from generally known drawbacks of the HoloLens, such
as its weight and the limited display size (and thus the field of view), he also
mentioned that it may be challenging to remember the most important voice
commands used by the system. Also, the interaction is currently not robust
enough with regard to imprecise selections, for example, to be usable by a wider
audience without specific training. Afterwards, he explained that the prototype’s
simulation mode is not directly applicable to his specific application case, as
the work stations of the company are not always connected through conveyor
belts. However, he still explicated that the planning mode would help during
the planning phase. In a brownfield scenario, he deemed it much easier to make
plausibility checks, for example, if more space is needed around a work station
than it may seem in the planning software. In a greenfield scenario, he even
mentioned that the approach should go further and start literally on a field of
grass to make it possible to plan the building size as well as infrastructure like
wiring and piping accordingly. One of the most important advantages is that
the prototype helps to bridge the cognitive gap between a 2D planning software
and the perception of how the planned layout will look like in reality. This is
of special importance, as building plans often do not match the actual building
neither completely regarding information such as piping nor accurately, e.g.,
regarding measurements. Also, the possibility of pretending actual interaction at
a work station shown in its real size would significantly reduce planning mistakes
regarding freedom of movement and manual workpiece transport. Finally, the
expert also mentioned that the difference view in the discovery mode is very
useful when presenting changes to a manager who has to decide if the proposed
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changes should be implemented. He also advised reducing user interaction further
for that scenario, for example, such that only the viable layouts can be chosen
and no alterations are possible.
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Visual Event Analysis in Production Lines

Once a production line is set up and operational, the main goal of a manufacturer
is to optimize the line’s productivity. The workflow and individual process
optimization are out of scope of this thesis, as it primarily requires the expertise
of production engineers. However, the overall equipment effectiveness (OEE) (see
Section 2.2.3), an often used key performance indicator, also includes machine
downtime and the ratio of okay vs. not okay parts to describe the productivity
of a production line.

These factors can be measured with increasing precision through the availab-
ility of a multitude of sensors that provide a constant feed of multivariate data.
These data are often stored in large databases for a later analysis that can be
used to further improve the factory’s efficiency and effectiveness.

One way to improve the OEE is to increase the availability of a production
line, for example, by reducing its unplanned downtime. Sending an operator
to every broken machine is a self-suggesting action to return a production line
into an operating state. However, this does not necessarily prevent issues from
reoccurring at a later point in time. Visual analytics approaches can help domain
experts to get a better understanding of causes and patterns of events to reduce
occurrences in the future.

This chapter first gives a brief overview of relevant domain aspects and
the data used in the later presented approaches (Section 5.1). After discussing
related work (Section 5.2), two visual analytics approaches in the domain of
event analysis are presented. They were designed to support machine operators
and technical managers in improving the availability and quality measures by
assisting in the analysis of error events reported in a production line. The first
approach helps experts to understand how these events correlate (Section 5.3).
The second approach focuses on supporting domain experts in finding recurring
events over an extended time period to identify and prevent the causes of such
error events (Section 5.4).
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• D. Herr, F. Beck and T. Ertl. “Visual Analytics for Decomposing Temporal Event Series
of Production Lines”. In: Proceedings of the 22nd International Conference Information
Visualisation. IV’18. 2018, pp. 251–259 [1]

• D. Herr, K. Kurzhals and T. Ertl. “Visual Analysis for Spatio-temporal Event Correlation
in Manufacturing”. In: Proceedings of the 53rd Hawaii International Conference on System
Sciences. (To appear, accepted on 2019-08-19) [6]

This chapter is partly based on the following publication:

5.1 Production Domain Introduction
The following visual analytics approaches were developed in close collaboration
with an industry partner. First, this chapter presents the general hierarchical
structure of the studied production lines and the resulting specific characteristics
of the data structure of the events reported by the machinery of the production
lines (Section 5.1.1). Then, current measures to respond to events and to exchange
observations and solutions among the staff on the factory’s shop floor and the
production line that was studied in this chapter are introduced (Section 5.1.2).

5.1.1 Factory Hierarchy and Event Data Structure
Factories often produce a wide range of products. Typically, different types of
goods are produced on different production lines. To optimize the workload of
the machinery, similar products are often processed on the same line, where the
machines may need to be adapted when switching between products. Any given
production line comprises multiple process steps that manipulate products until
they arrives at their final state, e.g., by combining two components by welding
their connection points together. These steps may require multiple actions that
are performed at separate stations. Typically, a station comprises one or more
machine tools or human operators. In some cases, multiple stations perform
long-lasting actions in parallel. Figure 5.1 shows an excerpt of a production line

Production Line a

Process Step A

Station 1 Station 2

Process Step B

Station 1 Station 2

Process Step C

Station 1 Station 2

Arrange input
components

Weld components
together

Figure 5.1: A typical production line structure that comprises several process steps,
each composed of several stations that perform the production tasks.
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Figure 5.2: Data model of events used in the remainder of this chapter. Each event
comprises a timestamp, the location of the reporting machine, the product type that
was processed, and an event type.

that produces multiple components in parallel and then combines them into one
product. In the given example, the last process step would comprise two stations:
one for the component placement and another for welding parts together.

In case an error occurs, the affected station files a structured event report (see
Figure 5.2). Each event instance has four components: a timestamp, the location
of the event, the product type that was processed at the time of the event,
and the type of the reported event. To distinguish events from their specific
time-dependent instances, the term event class will be used in the following to
describe general, time-independent events.

The date and time when the event occurred are provided in the timestamp.
Details about the location of each event are structured according to the factory
hierarchy presented before. The event type is detailed by an ID, a human-readable
description, and a severity level (information, error, etc.). In the following, only
event reports that have the severity level error are considered, as these have
the highest impact on productivity. Event type information could be arbitrarily
complex and range from a simple ID that may only identify an event’s severity
(e.g., a low or high-risk factor) to complex information such as a precise event
description (e.g., human-readable text that describes the event).

5.1.2 Specific Scenario of the Industry Partner
The collaborating industry partner produces small to mid-sized electric motors.
Among others, the production lines record data of its stations’ process times,
what product type is being produced, and events reported by the deployed
machine tools. Currently, the data is used to monitor the processing times and,
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if they deviate from their expected values, the cause is investigated at the shop
floor. Further, currently persisting error events and information about material
shortage are visualized on a display above the production line, a so-called Andon
board [67]. In combination with indicator lights above the machines, the display
helps operators on the shop floor to respond to malfunctioning machinery.

The data analysis is done on two levels: during a daily meeting, all technicians
discuss recently occurring problems. The analysis of specific problems is usually
conducted by looking at the process times and occasionally at the reported
events during a specific time period, which is usually one day. Further, the head
of the production line occasionally analyzes the process times of various stations.
Such an analysis may include the data of the past hours up to a few weeks. If
the head of the production line finds any anomalies, he consults the operators at
the shop floor to get further details about the identified problem and assesses
solution strategies.

The studied production line produces six types of motors with 84 variants
overall. It comprises 19 process steps with 96 stations in total. The primary goal
of the following visual analytics approaches is supporting domain experts tasked
with the analysis of the production line, but also to support operators working
on the shop floor of the factory.

5.2 Related Work
The approaches presented in this chapter focus on the visual analysis of spatio-
temporal event data regarding their correlations and temporal occurrence pat-
terns. Therefore, the following related work first summarizes approaches to
visually analyze event relationships. Afterwards, previous work in the field of
event series analysis is shown. Finally, an overview of approaches to support
experts in the manufacturing domain through visual analysis is given.

5.2.1 Visual Analysis for Event Relationships
The need to analyze event relationships is not exclusive to the manufacturing
domain. In the past, several visualization techniques and their combination
were proposed that show the correlation of dimensions in high-dimensional or
multivariate datasets. Zhang et al. [208] make use of scatterplots and parallel
coordinate plots (PCPs) to visualize the relations between key features when
using biomarkers to analyze their effect with different kinds of cancer. Wang and
Mueller [191] first build multiple causal models, which they merge to find each
correlation’s credibility based on the number of causal models that contained
the correlation. They show the result in a correlation map, as well as with a
scatterplot and a parallel coordinate plot. Zhang et al. [209] also use PCPs and

98



5.2 Related Work

a graph structure to visualize the relation of numerical, as well as categorical
dimensions. They encode the correlation information in the graph’s edge length
as well as their color. Behrisch et al. [25] present an approach that allows to
compare sets of matrices of varying size. Their technique can be used to get
a better understanding of similarities across different data sets. To make the
relations within a dataset comprehensible, Alsallakh et al. [14] use a star plot-like
approach. Their contingency wheel provides information about the individual
dimensions towards the outside of the plot, while they use the space at the center
to provide information about the relation of the dimensions.

The prediction and handling of error events and attacks in networks are similar
to the correlation of events in a production line, as it can also be interpreted as
directed graphs in which packages (products) are transported. Qin and Lee [155,
p. 95ff] assume a network monitoring scenario in which security administrators
are hampered by the abundance of alerts reported within a system. To reduce the
amount of shown information, they build a correlation graph that clusters alert
patterns based on the starting node of the pattern. In another approach, Qin and
Lee [156] take isolated attack alarms and correlate them to extract attack plans,
which can be used for attack prediction. They correlate extracted scenarios to
build causal networks that can be used to identify attack patterns. Xie et al. [204]
use Bayesian networks to detect attacks with a focus on real-time detection
and the analysis of the attacks’ scope, severity level, possible consequences, and
potential countermeasures.

Sedlmair et al. [166] analyze in-car communication network data to identify
error and warning messages by first defining state machines for the messages
and then visualizing the states’ transitions over time. Further, the user can
visually compare multiple state machines to find possible dependencies. Shi et
al. [169] show network sensor data on a radial tree view that represents the
network’s routing logic to detect outliers that need to be investigated. They use
a correlation graph to show the similarity of the sensor nodes, which can be used
to find outliers in event series. Steiger et al. [175] use time-series data of sensors
with known geo-positions and visualize the relationship of the sensors regarding
their geographic position and the similarity of their time-series.

Alternatively, relations can be implicitly used to separate the data into
groups, which can then be presented to users. Behrisch et al. [26] show samples
of scatterplot views that visualize only two dimensions of the dataset at the
same time. Users can label good and bad samples, which is used to build a
decision tree that classifies the data and refines the proposed samples. Similarly,
Heimerl et al. [92] train a support vector machine to classify documents by
asking the users to select badly classified documents on a scatterplot. Xu et
al. [205] propose a co-clustering approach for bi-partite graphs to find common
attributes that allows users to derive insights. They present the results as a hybrid
visualization that connects entity clusters, represented as treemaps or matrices,
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through edges. The former approaches may have used temporal information
during their data processing, but they did not expose it, although it may contain
important further information. Beck et al. [24] give an overview of dynamic graph
approaches, which often express the temporal information. Jäckle et al. [101]
extend multidimensional scaling (MDS) to include temporal information, which
provides insights about the correlation of dimensions over time.

If the events contain spatial information, spatio-temporal analysis approaches
often include a map that shows the events’ occurrence over time. As an example,
Voila [40] enriches a city map with a heat map to provide information about
abnormal patterns. Often, such approaches use additional views that provide
additional information or enable users to analyze the events’ trends or periodic
patterns, e.g., as shown by Malik et al. [131].

Many of the presented approaches use graphs or similar structures to model
their correlations without showing any temporal information. However, one goal
of the approaches in this chapter is to preserve and visualize the temporal aspect
of the correlating events. As dynamic graphs quickly get complicated to interpret,
the presented approaches use other visualizations to represent the data.

5.2.2 Event Series Analysis
Analyzing temporal patterns of event series is also relevant outside the manu-
facturing domain. For instance, there exist event visualization tools focusing on
security issues [97, 119], meteorological and oceanographic events [23], or historic
events manifested in documents and media [15, 128, 111]. To perform analyses
with time-series data, an approach to preprocess the data can help to clean the
data beforehand. For example, Bernard et al. [27] present an approach to allow
domain experts to interactively design preprocessing pipelines of time-series
data. Like the second approach of this chapter, they visualize events over time.
However, they do not allow for decomposing the time series interactively into
trends and seasonal components.

There exist only a few other visual analytics approaches that build on such a
decomposition of time series. Bögl et al. [34] provide interactive visual guidance
for selecting appropriate parameters of autoregressive integrated moving average
(ARIMA) and seasonal ARIMA models, which decompose a time series similarly
to STL (see Section 2.1.3). They extended their work [32, 33] adding predictive
analysis features to their approach, allowing for more insights. Chae et al. [45]
apply STL on Twitter data to filter out any seasonal and trend effects to visualize
unusual events. They assume that the outliers contained in the data without trend
or seasonal series indicate special events that could be of interest. Maciejewski
et al. [129] use STL to forecast hotspots of geo-located events. These works
are rather interested in prediction and outlier detection than explaining the
time series to the analyst by applying a decomposition. The presented approach
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in Section 5.4 uses multiple decompositions to reflect different types of events
through a single steerable model to decompose the event series.

Some information visualization techniques of time series particularly highlight
seasonal patterns, for instance, spiral plots of the time axis [43, 193]. Alternatively,
the time series can be split by season and plotted overlaid in 2D, juxtaposed
in 3D, or encoded in color in a calendar grid (or any other 2D grid) [189].
This procedure scales even to large time series when color coding the values of
the series in a pixel grid [104]. Showing the series in different resolutions with
different seasonal lengths can reveal different patterns, which themselves can
be juxtaposed [170]; it becomes difficult, however, to see trends and seasonal
patterns because the time series is not explicitly decomposed. Cycle plots [159]
use a form of dimensional stacking to compare data points from different seasons
on a linear axis; this is limited to a single decomposition with a single season
length at a time. However, this chapter’s second approach (Section 5.4) allows
to support the analysis of multiple decompositions with different season lengths.

To efficiently identify causal dependencies of events, the identification of
event sequences is very important. Several approaches exist that extract and
visualize sequential patterns (e.g., Guo et al. [81]), present the distribution of
common sequences (such as Wongsuphasawat and Gotz [199]), or even allow
to search for fuzzy sequences (for example Chen et al. [47]). As datasets may
contain a large number of such sequences, Cappers and van Wijk [41] present
an event querying system that allows for fuzzy searches that provide feedback,
which event sequences match the searched pattern. Likewise, Krüger et al. [113]
use a visual query language to highlight semantically annotated events to extract
or confirm complex movement sequences. Instead of filtering the data on the
model level, Monroe et al. [139] reduce the visual complexity to assist users in
getting an overview of relevant data.

5.2.3 Visual Analytics in Manufacturing
Most visualization and visual analytics approaches that target the manufacturing
domain focus on the optimization of simulations and production schedules.
However, recently there is also an increasing number of approaches focusing
on helping domain experts to monitor and analyze their production lines as
well. Works regarding the simulation of production lines were already covered in
Section 4.1. Therefore, the following primarily focuses on works regarding the
production of goods and their scheduling.

Before the actual production of goods can begin, it is necessary to schedule
at what point in time different products should be produced. To optimize these
production schedules, Klöpper et al. [106] introduce a system that generates a
set of possible production schedules that can be iteratively reduced based on
aspects that experts deemed to be currently most important. LiveGantt [102]
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helps experts to explore Gantt charts of large concurrent schedules. Users can
interact with the schedule and get visual feedback about their changes’ effects.

ViDX [206] analyzes a production line’s performance based on product
tracking data with the goal to better understand the effects of machine problems.
It extends a Marey’s graph [183, p. 31] to visualize products moving through a
production line. Outliers are visually emphasized by aggregating products with
similar process times. Further, the approach provides real-time tracking of a
production line’s performance. The visualization of individual products and their
processing times improves the understanding of a line’s performance and helps
to analyze the effects of problems in a production line.

In contrast to ViDX, the first approach presented in this thesis (Section 5.3)
focuses on the detection of systematic issues in a production line based on event
reports filed by machine tools with the goal of finding recurring issues over an
extended period of time.

5.3 Visual Analysis for Spatio-Temporal Event Correlation in
Production Lines
Monitoring systems with live prediction of possible issues in the machinery are
often a desirable goal. The development of systems that support predictive main-
tenance requires expert knowledge to help understand the complex relationship
between different events. However, the knowledge of possibly existing correla-
tions is based on the experience of domain experts and sometimes limited (e.g.,
regarding events that occur with some delay). Further, it requires specialized
knowledge to decide if statistical correlations are also semantically plausible.
Once this information is accessible, event sequences can be labeled to improve
machine learning methods to detect correlations automatically. Visual analytics
can support the reasoning for common event analysis tasks and communicates
complex changes in events during the development and deployment of such
monitoring systems. In addition, experts can also directly use gained insights to
improve the productivity of a production line.

The following approach focuses on providing insights to domain experts
about the correlation of errors with the goal to derive possible event causalities
using the experts’ experience and knowledge. Its requirements were analyzed in
an iterative design process and design decisions for multiple coordinated views
were derived based on the domain experts’ analysis tasks. A prototype of the
developed visual analytics approach was implemented (see Figure 5.3) to derive
insights that can potentially increase the productivity of the analyzed assembly
line. It fosters the interplay of event timelines, correlation plots, projections,
and a spatial layout view, which supports hypothesis building and validation.
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Figure 5.3: Experts can inspect the individual error event occurrences in the Timeline
View A . The Location View B provides information about the spatial distance between
the selected stations. Stations that are similar regarding the patterns of reported events
can be identified in the Location Projection View C . To verify these correlations, the
locations’ correlation over time can be inspected in the Correlation View D .

The combination of different data views is presented in a case study, which
demonstrates how answers for typical domain-specific questions can be found.
Afterwards, domain expert feedback of the approach is presented.

5.3.1 Approach
During the initial meetings with experts from the industry partner, it became
clear that the domain experts, who are mostly technical engineers, prefer visual-
ization approaches that are close to their current visualization expertise, which
is mainly the interpretation of heatmaps, line plots, and raw tabular data. To
provide an easier entry point for engineering experts and to address the dif-
ferent levels of complexity of the requirements, this approach combines views
that provide views known by the experts, such as the layout of the production
line, and scatterplots that show the correlation of the error classes, which are
connected through brushing& linking.

Data Model and Processing The approach assumes a data structure as presen-
ted in Section 5.1. An example of such an event is:

Timestamp︷ ︸︸ ︷
04.12.2017 06:11:38;

Location︷ ︸︸ ︷
Line=1; PID=4553; Station=2;

Description: Fehler bei Bewegung X125D X-ACHSE LINKS︸ ︷︷ ︸
Event Type
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To gain insights about interdependencies between event classes, an additional
event correlation metric to describe the event classes’ dependencies is required.

Pairwise Event Correlation Based on the experience of the industry collab-
oration partner who provided the data, two scenarios can result in an event
relation:

• a process step has a problem and therefore all stations that are part of
the process step report the same event, and

• stations that are part of different process steps report events. If the
latter event(s) are caused by the former, they are most likely caused
by a product that is being processed by both stations.

The first case is trivial, as checking if the events are part of the same process
step is sufficient. The second case is more complicated, as it is necessary to know
how long it takes for a product to be transported from station A (which causes
the relation) and station B (which is affected).

To reflect these scenarios, the correlation metric presented in the following
assumes that correlating events are caused by the products that are transported
between the stations. To derive a pairwise correlation between event classes,
there needs to be an understanding of when two events are similar. This can be
formalized as a function that takes the temporal and spatial difference of two
given events into account.

As the products are transported on a conveyor belt that runs at a constant
speed, the distance can also be defined through a temporal distance that describes
how long it takes a product to travel between two given stations. Such a measure
requires data specific to each production line, such as the transport time on a
conveyor belt between stations and the process times of all stations the part or
product passes through. In this thesis, the correlation of two event classes is
defined as the quotient of the number of plausible co-occurring events by the
sum of the individual event occurrences.

Formally, the pairwise correlation C(EA,EB) of two event classes EA and
EB is defined through the correlation plausibility of the event classes’ instances:

C(EA,EB) =

plausible co-occurrences of EA and EB︷ ︸︸ ︷∑
ei∈EA

∑
ej∈EB

IsP lausible(ei, ej)

|EA|+ |EB|︸ ︷︷ ︸
occurrences of EA and EB

, (5.1)

where IsP lausible(ei, ej) defines if the event ei possibly caused ej based on their
spatial and temporal distance:
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Figure 5.4: Schematic description of the used fuzzy matching regarding the first
reported event. The time frame is calculated based on the transport time between the
stations and the processing time of the stations themselves and allows an offset of
10%. Events within an allowed time frame are colored in orange.

IsP lausible(ei, ej) =


0 ej ’s station is located before ei’s,
1 the start time of ej is within a reasonable

timeframe after ei was reported (see below)
,

0 else.

(5.2)

The transport times ttransport between the stations and the passed stations’
processing times tprocess are summed up to decide, how long the transport of
a product between two stations should take. In addition, an uncertainty factor
allows to compensate for dynamic changes in the actual production process (e.g.,
unexpected delays). For the investigated dataset, a temporal deviation of up to
10% is allowed for the estimated time for transport and processing. Figure 5.4

demonstrates the described event matching, where colored events are considered
as a match, whereas grayed out events are mismatches.

Requirements and Design Decisions

In many application scenarios, the overarching goal for event analysis is the
development of a reliable predictor that is capable of foreseeing issues before they
happen, allowing for a faster response by personnel at the shop floor. A general
understanding of the underlying data and the occurring chains of events that
lead to critical issues is important to design and train such predictors. Hence, this
visual analytics approach aims to provide insights about the relations between
events and their spatial and temporal coherence.

The following requirement analysis is based on typical research questions for
spatio-temporal data as proposed by Andrienko et al. [16]. As such, the require-
ments can be categorized according to the four categories when, where, what,
and relational coherences. As the approach focuses on the extraction of possible
event relationships and not their comparison, the category compare/relate is not
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considered. To provide concrete examples, the following includes questions from
the manufacturing domain that fit in this categorization and can be solved with
the presented approach:

Category 1: When
The temporal data dimension provides important information to answer
multiple questions:

Q1 When did an event (re-)occur?

Q2 In which order did different events occur?

To answer these questions, a timeline representing the discrete occurrence of
single events is one of the most common and therefore familiar visualizations to
many people. As a single timeline with pictograms representing different event
types is limited in terms of scalability, the events are distributed based on their
location along the vertical axis. The industry partner’s domain experts explained
that it is important to investigate the temporal order of issues in the log files
with respect to the questions Q1 & Q2 .

Category 2: Where
The spatial context becomes important to identify specific locations that
might be involved in a chain of events:

Q3 Where did an event occur?

Q4 What is the spatial relationship between events that occur together?

All questions related to the spatial context can be intuitively represented
on a map or plan. In the given production line example, the shop floor’s layout
is provided containing the machines and the conveyor belts that the products
are transported on. Such a visual representation makes it easier to understand
the spatial distance between the locations that reported events, the stations’
connectivity, and the hierarchical structure of the production line, as described
in the Sections 5.1.1 and 5.3.1.
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Category 3: What
Finding the details about a specific event that incorporates the information
when and where it was reported:

Q5 What happened when an event occurred at a specific time?
The meaning of an event is not always included in the data. Usually,
domain experts are required to answer this question.

Combining the information provided by the timeline and the map helps to
reconstruct what caused an event. In the given scenario, the event types are
already annotated by the industry partner to include human-readable text (e.g.,
which component of a machine is not operational).

Category 4: Relational
Understanding how different events relate to each other is important to
identify possible chains of events that lead to failures:

Q6 Which pattern does an event belong to?

Q7 Which events usually occur together?

Q8 Which co-occurrences are persistent and which are outliers?

Q9 Which locations are similar regarding reported events?

The most common approaches to visualize relations between data are matrix
and graph visualizations. However, these approaches have limited capabilities
when it comes to visualizing temporal changes. Time-to-space approaches often
result in visualizations that require much space and time-to-time approaches are
unsuitable for interaction due to their changing content. Other approaches, such
as hybrid visualizations (e.g., combining graphs and matrices), were discarded
due to the aforementioned requirement that the proposed visualizations should
be similar to visualizations that the experts are familiar with. Such approaches
are often intransparent regarding the way they aggregate the presented data.
To take the temporal changes in the dataset into consideration, two views
present temporal statistical measures and the overall relatedness of the data:
(1) a projection view that indicates high correlations between event types or
locations based on their events by spatial proximity and (2) a line plot that
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Figure 5.5: Visual analysis approach with four linked views for spatio-temporal event
analysis: A In the Timeline View, individual events can be investigated in full detail.
B The Location View provides the spatial context to specific events. C The Projection
View helps identify multiple co-occurrences. D The Correlation View displays pairwise
event co-occurrences over time.

shows pairwise correlations between event types over time that has analogies
to a parallel coordinates plot where the discrete time steps are the dimensions.
In combination, the relational questions can be investigated with the proposed
analytical approach. The case study (Section 5.3.4) exemplifies how different
issues related to each other can be found.

Visual Analytics Approach

The approach consists of four linked views (see Figure 5.5) that provide an
overview and detailed temporal ( A ), spatial ( B ), and relational ( C & D ) in-
formation about a dataset. In addition, experts can search and filter for specific
event messages through a text search component that is only shown on demand,
as it does not convey any additional information, unlike the other views. The
general design concept aims for a combination of abstracted overviews for correl-
ation analysis and detailed views for the temporal and spatial components of
the data that represent the underlying data domain as close as possible.

A Timeline View This view provides a detailed plot of individual
events over time. Each row corresponds to a station in the production line. The
rows are ordered first by the process step and then by the station number. An
alternating background color helps to distinguish, which rows belong to the
same process step. The horizontal axis provides temporal information. A tooltip

108



5.3 Visual Analysis for Spatio-Temporal Event Correlation in Production Lines

provides additional information about the individual events, e.g., their detailed
description. By selecting an area on the timeline, the contained events’ locations
and event classes are highlighted in the other views.

B Location View Spatial context is important to relate events with
the location of the process steps and stations where they occurred. Hence, a map
with all stations that report events is available in the Location View. Stations
that do not contain any events for the analyzed range of time are grayed out.
Selected stations are highlighted in orange in the Location View as well as in
the others. In case experts select events in other views, the stations where the
selected events were reported from are highlighted. Figure 5.6 shows an enlarged
excerpt of the Location View where multiple stations in the first process step were
selected. This view helps to interpret correlations from the views C (temporal
correlation) and D (projection of event/location similarity) and provides detailed
information about the spatial domain of the data.

Production Line

Process Step Highlighted Available Unavailable

Station

Figure 5.6: Hierarchical structure of a production line. Each line has several process
steps that can be seen as tasks (e.g., drilling). The process steps contain stations that
perform the same task in parallel to increase the processing speed. The stations have
a visual indication if data at a station is highlighted (orange), available (white), or if
no events were reported (gray).

C Projection View Since event classes can correlate although they are
located at process steps that are far apart, a general overview of their overall
correlation is necessary. This approach includes a view that projects the correla-
tion matrix of the event classes or locations based on t-distributed stochastic
neighborhood embedding (t-SNE) [186, 187] onto a two-dimensional plane. This
way, the potential correlations are displayed through spatial proximity.
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Figure 5.7: The quality of the points in the Event Projection View is encoded in each
point’s color saturation. A light orange indicates a bad result, whereas darker orange
indicates a good result.

Due to the data loss during the dimension reduction process, not all of the
event classes can be placed correctly. To prevent users from assuming event
type relations due to falsely placed event types, the placement quality of each
event class is indicated in its corresponding point’s color (see Figure 5.7). The
placement quality uses the quality measure proposed by Mokbel et al. [137].
Users can set a minimum projection quality threshold through a slider control
to hide badly placed event classes.

D Correlation View This view provides an abstracted overview of the
pairwise event class correlations over time as a line chart. Each line corresponds
to a specific pair of event classes. On the horizontal axis, the temporal dimension
of the data is discretized by modifiable time intervals. The default interval is one
week due to the production line’s production schedule. Within each interval, the
correlation measure defined in Equation 5.1 is used. To prevent data loss, only
the “source” event must start within the time interval, whereas the “affected”
event can also be part of the following. As this view is prone to visual clutter,
experts can use a slider to set a threshold to filter the shown event class pairs
either based on their average or their maximum correlation. Selecting lines in
the correlation view highlights those lines in orange, whereas other lines are
grayed out. The affected event classes and their corresponding events are also
highlighted in the other views.

Combination of Views Table 5.1 gives an overview of the task categories and
which tasks can be answered through a combination of the presented views.
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Table 5.1: Comparison matrix for the provided views and their capability to
answer for the four question categories when, where, what, relation.

when
where
what
relation

when
where
what
relation

when
where
what
relation

when
where
what
relation

when
where
what
relation

when
where
what
relation

when
where
what
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where
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when
where
what
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when
where
what
relation

when
where
what
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when
where
what
relation

when
where
what
relation

when
where
what
relation

when
where
what
relation

when
where
what
relation

Examples on how to derive insights of the corresponding categories are provided
in Section 5.3.4.

System Architecture The prototype (see Figure 5.3) is implemented with C#
and .NET Framework 4.6. The data is stored in a Microsoft SQL Server database
that contains the reported event data. Dapper1 was used to map the data from
the database to the prototype’s data model. The front-end is implemented as a
Windows Presentation Foundation (WPF) desktop client. During an analysis
run, data from a specified timespan is retrieved from the server and processed on
the client. Some of the views, such as the Correlation, Timeline and Projection
Views use the SciChart WPF Framework2 to present the data.

1 https://github.com/StackExchange/Dapper
2 https://www.scichart.com/
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5.3.2 Evaluation
The approach was evaluated with three domain experts from the industry partner
in two stages:

1. First, the findings were gathered with the introduced approach, accord-
ing to the questions Q1 – Q9 from the catalog shown in Section 5.3.1.
Section 5.3.3 presents these findings and Section 5.3.4 shows, how these
they can be extracted.

2. Then, the three domain experts were interviewed in a feedback session.
Along with the findings, they got a demonstration, how the presented
findings can be derived with the approach. Following the demonstration,
questionnaires were handed out for rating the findings, the importance
of the individual questions, and the visualization views. Afterwards,
individual findings and improvement suggestions were discussed with
the experts.

The experts were asked to rate the insights, importance of the research
questions, and the system’s views in a qualitative user study. A Likert scale that
ranged from 1 (not expected/not useful/impossible) to 7 (very expected/very
useful/very easy) was used for the ratings. Further, the experts had the option
to give no answer.

The first expert was only involved in the evaluation and did not know the
system before, whereas the latter two experts were also involved during the
development of the prototype. The same experts participated in all parts of
the study. One expert is responsible for the production line where the analyzed
events originated from. The second expert is a project leader tasked with the
advancement of industry 4.0 concepts, for example, to make collected data
available to workers in an understandable way. The third expert is a team leader
and responsible for the implementation of the accessibility of data on the shop
floor level in the factory.

5.3.3 Findings
Initially, nine findings were derived with the presented prototype. Table 5.2
presents these findings along with ratings from two of the three domain experts
(see Section 5.3.2 for details). The second expert opted out of the insight rating,
as she is not involved in the daily routine of the production line and cannot
assess the plausibility of specific findings. Section 5.3.4 demonstrates, how these
findings can be acquired.
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Table 5.2: Nine findings presented to the domain experts. All findings were
derived with respect to the related analysis questions. The experts rated the
findings according to how useful they are to improve the manufacturing process
(1 = not useful – 7 = very useful). Some of the findings were anonymized to
protect the industry collaboration partner’s intellectual property.

Finding Description Related
Question

Expert
Ratings

F1
The error Fehler bei Bewegung AAA at process
step 4553 occurs frequently (varies between 15
minutes and two hours).

Q1 , Q2 5 / 4

F2

The error Stoerung gesamt Taktachse / Roboter
at process step 4543 occurs regularly (often er-
rors are reported within minutes up to an hour,
sometimes there are gaps of several hours).

Q1 , Q2 6 / 6

F3

Station 1 in process step 4552 rarely reports
any errors, but if it does, then it reports Fehler
Kinematik 1 ( siehe Intramotion ) several times
in a short timespan (less than an hour)

Q1 , Q2 5 / 5

F4
Process step 4546 and process step 4553 are
spatially almost half of the production line’s
length apart.

Q3 5 / 4

F5

If the error Fehler Kinematik 1 (siehe Intramo-
tion) is reported, a technician can quickly look
up what process step this error belongs to and
where it is located.

Q3 7 / 6

F6

At process step 4552, the error Fehler Kinematik
X* (siehe Intramotion) often occurs at most
stations (1-5) at the same time. (X* depends
on the station that reports the error.)

Q3 , Q4 ,
Q6

5 / 6

F7

Process step 4546, Station 2, and process step
4553, Station 1, have a cause-effect relationship
regarding their reported errors (→ if something
breaks at 4546, then there is a chance that
something will break later at process step 4553).

Q7 5 / 6

F8
At process step 4549, Station 8, the errors
Fehler Stellglied BBB and Fehler Stellglied CCC
occur often and usually occur together.

Q8 4 / 6

F9
The reasons vary, but if there are problems at
process step 4543, then there is also a chance
that there are problems at process step 4547.

Q9 5 / 6
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Figure 5.8: The Timeline View provides a quick overview of which event types occur
rarely (highlighted events at the top) and frequently (highlighted events at the bottom).
The highlighted events within process step 4553; Station 4 contain the error type
Fehler bei Bewegung AAA.

5.3.4 Case Study
Following the general analysis questions introduced in Section 5.3.1, the following
case study demonstrates, how the approach can be used to derive the findings
presented in Section 5.3.3. The dataset analyzed for the evaluation comprised
20,872 error events reported over a timespan of four months. All events occurred
in the same production line, which contains 19 process steps and 96 stations in
total. As different parts of the event data are relevant to answer a question (e.g.,
temporal or spatial information), users may choose different views to enter the
analysis.

When did errors occur? (F1–F3)

Some of the most relevant questions regarding the temporal aspect of the data
are if there are events that occur very frequently or if they set in at a certain
point in time and then stop again. Especially the first question can be efficiently
solved with the Timeline View. For example, experts may search for a period of
time where a station reports many events. When selecting this range, they have
access to all events during the selected time at the selected station. This gives a
quick overview if the reported events are all of the same class or if multiple event
classes contribute to the high number of error reports. To inspect a specific event
class, users can filter for all events of the type of interest (e.g., by using the text
search) to inspect its occurrences in the Timeline View. In Figure 5.8, process
step 4553; Station 4 reports a high number of events. After selecting the events
during the second week of January, the selection output shows that 139 of the 143
events are the event type Fehler bei Bewegung AAA. By highlighting all errors
of this event class, it becomes clear that this error is the most often occurring
event type throughout the entire analyzed range of time (880 of 1069 events).
This was reported as Finding F1 to the interviewed experts (see Table 5.2).
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(a) Timeline View with a highlighted recurring pattern.

(b) Location View in which the stations of the selected pattern are highlighted.

Figure 5.9: The Location View provides experts with a spatial context to selected
events. The annotated pattern in the Timeline View 5.9a indicates that various events
occur at the same time. Further, this pattern repeats at several points in time. The
Location View 5.9b shows, that the stations, where the errors occurred, are all part of
the same process step and where this process is located in the production line.

Where are the stations that reported errors? (F4&F5)

( / → )
The most intuitive way to solve questions related to space is to use the Location
View. When combining it with other views, experts can either quickly locate the
station that reported a specific error or find event types related to the location
selected it in the Location View. In more complex scenarios, the view can be
used to provide a link between an abstract pattern of events. For example, the
pattern highlighted in Figure 5.9a seems to recur over time. Through a selection
of one pattern occurrence it becomes apparent that all events occur at the same
process step, but at different stations (see Figure 5.9b). This insight is part of
the Findings F5&F6 (see Table 5.2).

Which errors or locations relate to each other? (F6–F9)

/ → / /

Due to its complexity, finding relations between event classes is not as straight-
forward as the other questions. Usually, an interesting pattern or unexpected
outlier leads to the need to inspect the relation between event classes or locations.
Therefore, this approach is not designed with a fixed workflow, but it allows to
start at any view to conduct the analysis.

One possibility is to start with the Event Type Projection View and select
two or more event classes that are close to each other. To verify the event type’s
relation, experts can check the Location View to quickly assess if the relationship
is plausible or use the Timeline View to see the distribution of the highlighted
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Figure 5.10: Through the selection of a clearly separated group of events types , it
becomes apparent that there are error dependencies between the process steps 4547 ,
4768 and 4549 . An expert can verify this hypothesis through the Correlation View
and the Timeline View.

errors. Alternatively, the Correlation View allows to check if the correlation
persisted during the analyzed period of time or if the correlation is temporally
restricted. In Figure 5.10, a group of event classes that is clearly separated from
the other classes (see ocher rectangle) was highlighted. The selected events were
all parts of the process steps 4547, 4768, and 4549, which are highlighted in the
Location View. The process steps are emphasized with blue, green, and purple
borders respectively. In addition, the experts can use the Correlation View to
verify, which specific error types have a high correlation and use the Timeline
View to see, at what times the individual events occurred. Finding F8 (see
Table 5.2) was derived analogously to the presented example.

Another possibility to find relationships is to use the Location Projection
View to analyze event correlations on an overview level. In Figure 5.3, a group of
three stations was selected in the Location Projection View. The Location View
shows that the stations are part of different process steps and the Correlation
View indicates that the relationship is not caused by a single pair of event types,
but that it is composed of multiple relations. Findings F7 &F9 (see Table 5.2)
were both derived similarly to this example.

If the experts are interested in a specific group of error messages (e.g., errors
that mention a specific sensor), they can use the text search component to
highlight only errors or locations that contain the entered text. This is especially
useful in combination with the Correlation View, as errors can be part of many
correlation pairs and the filter helps to find these correlation pairs faster. Further,
it enables users to broaden their exploration, for example, if they start with
a very specific error, but then they want to find all errors that are similar
to the error they found. The pattern shown in Figure 5.9a was discovered by
starting with the insight from the example in the previous scenario (Where are
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(a) Expert rating of the requirement questions presented in Section 5.3.1.

(b) Expert rating of the individual views and the overall system regarding their understandab-
ility (left) and usefulness (right).

Figure 5.11: Results of the qualitative evaluation with experts from the industry
collaboration partner.

the stations that reported errors?), in which events were observed that occurred
at the same time. Through the selection of these events, it becomes apparent
that all descriptions are similar (Fehler in Kinematik...). Possible further steps
are to use the text search to find similar events or to verify the similarity of the
event classes in the Event Projection View.

5.3.5 Feedback Session

For each finding (see Table 5.2), the experts were asked to state if the finding is
plausible. In case it is, they were further asked to rate how expected the finding
is, how useful it is to improve the manufacturing process, and how much effort
is required to derive the insight with their current methods. As explained before,
the second expert opted out of the insight rating. All of the findings were deemed
plausible by the experts. None of the questions were rated with less than four
points (borderline) and most questions scored at least five points on average.
This means that all of the derived findings were deemed to be useful insights.

Before the system was introduced, the experts were asked to rate the re-
quirement questions (see Figure 5.11a). All of the presented research questions
got ratings higher than five, which indicates that the system meets the analysis
requirements of the domain experts.
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At last, the domain experts were asked to evaluate the system. They were
asked to rate, how easy it is to understand the individual views, how much the
views help to derive insight from the data, if the overall system would help them
to gain insights, and if they can think of other areas in the company where
such a system could be useful. The results of the questionnaire are shown in
Figure 5.11b.

The Timeline View and the Location View with average scores of 5.3 and
6.3 respectively were better understood than the Correlation View and the
Projection View, which scored 4 on average each. The score difference can be
expected, as the Timeline View and the Map View are common visualizations
that are easy to read, understand, and interpret. Further, they do not transform
or aggregate the data. Generally, the scores for the first two views are similar, but
expert 1 (head of the production line) gave much better scores for the Correlation
View and the Projection View than the other experts (7 and 6 compared to
2/3 and 3/3). Compared to the understandability score, the experts rated the
helpfulness of the views mostly equal or slightly higher than the respective views’
understandability score.

When the experts were asked for oral feedback all of them gave similar
explanations for their scoring: The Timeline View and the Location View are
simple enough to be used by anyone who has a general understanding of the
production line, including operators on the shop floor during their daily routine.
This led them to give a high understandability and helpfulness score.

The other two views are more suitable for experts that are specialized in the
analysis of the overall production line performance. The head of the production
line is such a specialized user and gave the views very high scores (six or seven
points). The other two experts explained that the more complex views may be
powerful, but it requires training and time to get accustomed to these views. As
the introduction to the views was very brief, they stated that they rated how well
they currently understand the views. However, the experts explained that this
score may improve, but this could not be answered without the before mentioned
training and familiarization phase. As a consequence, they gave the views low
helpfulness scores, as it was hard for them to estimate, how well insights can be
derived from the views.

The remainder of this section presents additional feedback received during
the presentation of the system and after the experts filled out the questionnaire.
Generally, the approach was well received. In addition to its current functionality,
the experts suggested to add more detailed data to the system, especially which
products were processed by a station when it reports an error. This information
is important for multiple reasons, for example, because different products may
cause different error relations between stations.

During the presentation, the experts noticed a relation between two stations
that are both part of processes that add components to the production line. The
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Figure 5.12: The facet views A - C on the left provide a first overview of the event
distributions. The temporal distribution of the filtered events and its outliers are
presented as a stacked bar chart D . Through brushing, analysts can get more inform-
ation about the reported events during the selected timespan E . The decomposition
parameters for STL are set in the Data Decomposition Control F and results are
shown as three line charts G . The Calendar Plot H provides information about the
distribution of outliers or event data. © 2018 IEEE

expert responsible for the production line explained that, although it cannot be
shown with the currently available data, this may be a plausible finding if the
supplier of the added components switches at this point in time. This finding led
to the general consent of the domain experts that the incorporation of data from
other departments would help especially during the reasoning step after building
hypotheses using the presented approach. In addition, the experts suggested
incorporating data about products that were taken out of the production line
due to issues and link this information to the machine error reports.

5.4 Visual Analysis of Temporal Event Patterns through Event
Series Decomposition
As presented in Section 5.3.1, one possibility to reduce the downtime of production
lines is to understand, which events are caused by other previously reported
events. This knowledge can be used to reduce the occurrence of the original
cause of errors.

Another possibility to prevent errors is to know, whether they are recurring
over an extended period of time. It is important to understand if any events
have an underlying trend or if their time of reports follows a pattern.

119



5 Visual Event Analysis in Production Lines

The goal of the following approach is to support production experts in finding
and comprehending long-term issues of production lines. To find recurring event
patterns, the reported event logs are iteratively decomposed using Seasonal Trend
decomposition using locally weighted regression (loess) (STL) (see Section 2.1.3).
The system presents original and decomposed event series as time series plots
and in a calendar view (see Figure 5.12).

The following first presents design requirements for such an approach, which
were obtained in interviews with domain experts (Section 5.4.1). Then, the
approach and its interaction support using a evolutionary algorithm is presented
(Section 5.4.2 & Section 5.4.3). At last, the approach was evaluated through use
cases and expert feedback 5.4.4.

5.4.1 Requirements

Several meetings with domain experts of the industry partner revealed what
insights they hope to find in their data regarding recurring events. The following
approach aims to extend the currently used short-term analysis by supporting
the extraction of problems that occur regularly over an extended time period to
find previously unnoticed event patterns. Such an approach needs to meet the
following requirements:

Requirement 1: Overview & Faceted Information R1

Present an overview of the available events with respect to the process step,
event type, and product type. Further, provide interactive data filters and
visualize the temporal distribution of events.

Requirement 2: Pattern&Outlier Identification R2

Help analysts to semi-automatically find seasonal patterns, trends, and
outliers of the reported events.

Requirement 3: Extract & Compare R3

Facilitate analysts to extract analysis results, visually compare them, and
interactively extend them.
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Figure 5.13: At first, the users need to select, which timespan to analyze and what event
type should be used. The data used in each analysis is set through facet views, which
also provide an overview of the various data aspects through sparkline visualizations.
After filtering the data, the users can inspect the aggregated event series in a line plot,
which can be decomposed into a trend, seasonal and remainder component. In this
view, analysts can iteratively extract outliers, trends, and seasonal patterns. © 2018
IEEE

5.4.2 Approach
Analogous to the requirements, the concept comprises three parts: first, analysts
get an overview of the data and filter it according to their needs with facet
views. Second, they analyze the filtered data regarding temporal aspects. Third,
analysts can extract and compare findings (see Figure 5.13).

Data Subset Configuration through Faceted Search

Initially, the analysts choose a time period. The following analysis is conducted
in the Detailed Analysis View (Figure 5.12). The Facet Filter Panel A - C on
the left uses faceted browsing [207] to filter the events based on their process
step, product type, and event type. All facets have a common color scheme for
event counts, which ranges from a light yellow via orange and red to black. In
most cases, the facets also provide an overview of the distribution of the events
along the production line’s process steps. The distribution is visualized as a
sparkline visualization [184] that presents the production line’s process steps as
bars, with details available via tooltips. The height of a bar encodes the number
of events of the step normalized per row.

Process steps. The Process Step Facet (see Figure 5.12 A ) lists all available
steps in their order of occurrence in the production line. Each item provides
the ID of the step, its description, and its event count. In addition, it shows a
visualization that represents the relative share of events compared to the total
number of events, similar to a Pareto chart [179], which is commonly used in
the quality management domain. The event share is visualized as a bar, where
the width of the bar represents the step’s share relative to the total event count.
Further, a line indicates the cumulative event share of the current and all previous
process steps. The experts of the industry partner explained that such a piece of
information is an important aspect for prioritizing analysis tasks.
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Event types across process steps. The data can also be filtered based on
specific event types (see Figure 5.12 B ). Each row corresponds to one type and
comprises its ID, description, occurrence count (which is also the sorting criterion
of the list), and the event distribution sparkline. This provides analysts with a
quick overview of the event distribution along the production line.

Product types across process steps. Analysts can filter the data with re-
spect to the products that were being produced when events occurred (see
Figure 5.12 C ). The product type filter facet is similar to the facet explained
above, but instead of using event descriptions, the facet provides information
about the distribution of the events depending on the produced good. Each
product is represented through a unique product number. The experts from the
industry partner explained that this number is readable by analysts who are
familiar with the production line. This way, it is possible to quickly find similar
event distributions of different products.

In case entries from multiple facets are selected, the data needs to meet at
least one selection from each facet. Except for the temporal aspect, the faceted
views meet requirement R1 (Overview& faceted information).

Temporal Analysis using Event Series Decomposition

The analysis to find temporal event patterns is conducted in the Event Series
Decomposition Panel (see Figure 5.12 D ). For the temporal analysis, the filtered
data are aggregated by the hour in which they occurred. Initially, this panel
consists of four plots.

All series in the Event Series Decomposition Panel have a common x-axis
that represents the loaded time frame. The y-axes represent the number of events
at a point in time. They adapt to the data shown in the plot and not to the
global maximum to use as much space of the plot as possible.

The event series plot, shown at the top of the panel, is always available and
shows the filtered data, as well as (optionally) outliers, in a stacked bar chart. At
last, the panel provides three (initially empty) line plots that, once the analysts
choose to decompose the series, provide the trend (green), seasonal (purple),
and remainder (brown) components of the series. To improve the comparability
between the seasonal and trend series, their y-axes have a shared min-max range.
The trend, seasonal, and remainder series are described in more detail later in
this section. The event series plot meets the temporal aspect of requirement R1
(Overview& faceted information).

Outlier configuration and extraction. Analysts can optionally inspect and
extract outliers from the event series plot. Outliers may indicate unexpected
events that should be further investigated. In addition, the extraction of outliers
before the event series’ decomposition improves the results, as STL may miss
some outliers and include them in the seasonal component.
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In case the outlier detection is enabled, parts of the event series plot are
replaced with red bars proportional to the outlier part of the series. To decide,
if and to what extent a point is an outlier, the standard score of the data point
is used, which describes how many standard deviations a data point deviates
from the mean value. A data point is identified as an outlier if its standard score
is higher than x, which is four by default. However, the outlier threshold can
be changed through a slider control, because it depends on the dataset and the
analysts’ notion of what an outlier is.

Removing the entire outlier would likely cause another outlier because no
events during one hour are unlikely (except nothing is produced). Therefore,
a compensated value for every outlier is calculated. First, the value between
the previous and next data point is interpolated linearly and then x standard
deviations are added to or subtracted from the interpolated value to move it
towards the data point’s actual value.

Iterative Analysis of Trends and Recurring Behaviors. After filtering the
data and optionally extracting outliers, analysts can decompose the event series
plot using STL, which decomposes an event series into a trend, seasonal, and
remainder component (see Section 2.1.3). The trend represents long-time effects
in a time series. The seasonal component represents the recurring effects during
the series. These are of the most interest, because recurring events may indicate
systematic problems in the production line. The visualization of the trend
and seasonal component contribute towards requirement R2 (Pattern& outlier
identification). The remainder component represents the difference between the
initial event series and the extracted trend and seasonal components. Thus, it
consists of noise that is present in the data and non-extracted outliers. Further,
it may contain non-extracted seasons that have a shorter length than the current
season (longer seasons are extracted partly into the trend component).

Section 2.1.3 provides a brief introduction to STL, whereas the work by
Cleveland et al. [48] provides further technical details. When STL is applied to
the error series, the resulting trend, seasonal, and remainder components are
shown in their respective plots in the Event Series Decomposition Panel (see
Figure 5.12 D & G ). Analysts need to provide three arguments to run STL: the
time series represents the dataset used for the decomposition. In most cases, this
is the entire series shown in the event series plot, but the users may manually
select parts of the series (see Inspection and Filtering of User-Selected Data
below). The seasonal period length defines the number of data points per season
(e.g., 24 to analyze daily seasons). The strength of the seasonal smoother defines
how strongly the seasonal component should be smoothened. A high value will
lead to seasons with very low variations over time, while a low value allows
high variation, which may also include noise. The strength of the smoothener
cannot be predetermined, as the analysts need to decide how much variation
is allowed in the seasonal component. As the analysts are usually neither data
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Figure 5.14: Exemplary depiction of a choice between various seasonal parameters
used by STL. The first two options (with values of 7 and 51) still contain much noise,
while the remaining three choices (with values of 151, 251, and 351) do not differ
noticeably. © 2018 IEEE

scientists nor statistics experts, the other parameters, such as the window sizes
used during the trend and seasonal series extraction, are not exposed. Instead,
they are approximated automatically (see Cleveland et al. [48]).

A predefined set of seasonal period lengths is provided to detect daily,
weekly, or monthly patterns, but the period length can also be set manually
(see Section 5.4.3 for details). Once the analysts decided on the event series and
the period length, they are provided with a preview of the seasonal and trend
component for different values of the smoothing parameter. Figure 5.14 depicts
an exemplary choice for several seasonal parameters. The first and partially
the second choice still contain much noise, and the remaining options show
similar results, so experts may choose the third parameter. The proposed values
were determined empirically and deemed appropriate for the decomposition of
event series in a production line. In case the decomposition yields a season or
trend that the analysts deem interesting and plausible, the current analysis
state can be stored in the Event Series Comparison View (see Section 5.4.2–
Event Series Comparison). This contributes to requirement R2 (Pattern& outlier
identification).

Calendar Plot. A calendar below the event series plots (see Figure 5.12 H )
provides more temporal context, as the production schedule usually repeats every
week. The analysts can switch the data source through a combo box. If the data
source is the event series, the analysts can further choose to show the regular
data or the outliers. The same color scheme as in the Facet Panel is used (which
ranges from a light yellow via orange and red to black). Initially, the calendar
is grouped monthly and every entry represents one day, much like the calendar
plot used by van Wijk and van Selow [189]. The analysts can change the time
granularity of the calendar so that the calendar’s cells can represent hours, days,
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A

B

Figure 5.15: The users can define their custom event series by first selecting a start
and end point of the first season occurrence A . Then, they define a gap (which can
be zero) between the seasons’ occurrences. To get a feedback of the selected pattern,
all seasons that fit in the event series are also highlighted B . © 2018 IEEE

months, etc. If the calendar cells have a coarser granularity than the plot views
(days, months, years, etc.), the average number of outliers or events per hour
are calculated for the color mapping.

Inspection and Filtering of User-Selected Data

In addition to the explicit filter facet, the analysts can retrieve information
about event types by directly interacting with the event series plot. They can
either inspect reported events at a certain time (e.g., one specific hour) or
during a time interval (from 8 am to 8 pm). A specific point in time can be
selected by right-clicking. An extended time frame is selected by brushing over
the interesting part of the event series plot. The selection is highlighted with a
light blue background (see Figure 5.15 A ). Then, the selected event reports can
be retrieved by right-clicking the highlighted area.

The retrieved event types are listed to the right of the event series (see
Figure 5.12 E ). The listed selection of the event types is coupled with the event
type filter facet, so selecting an event type in one filter will also select it in the
other. The context-dependent event type list provides a secondary filter option
and therefore supports requirement R1 (Overview& faceted information).

Event Series Comparison

Analysts can store insights gained during the analysis process by storing the
current filter settings and decomposition results in the Event Series Comparison
View (see Figure 5.16). The series are visualized as a superimposed representation.
To perceive the original data as well as its decomposed series, the stacked bar
chart containing the event series and outliers is overlaid by the line charts of
the decomposed event series. The analysis configuration can also be restored
to the Detailed Analysis View to continue the analysis. Figure 5.16 presents an
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Figure 5.16: The event series comparison view visualizes event series and (if extracted)
their outliers as a stacked bar chart, which is overdrawn by line charts of the decomposed
event series with a color coding analogous to the Event Series Decomposition Panel.
This example shows the original event series as well as two subseries of different event
types. © 2018 IEEE

exemplary comparison that contains the original data series, as well as two series
filtered by two different event types. The outlier events occur at similar points
in time, which may indicate that the events are related.

5.4.3 Selection and Optimization of Parameters
If the predefined STL seasonal periods are insufficient, analysts can define a
custom pattern. First, they need to select the pattern’s first occurrence analogous
to Section 5.4.2–Inspection and Filtering of User-Selected Data. Further, analysts
can indicate a timespan to skip during the decomposition by dragging a replica
from the highlighted pattern to the next occurrence. The user-defined event
series are highlighted across the event series plot to make the resulting series
more comprehensible (see Figure 5.15 B ).

If the event series comprises a high number of data points, analysts may have
problems to set the exact values they desire. Therefore, an optimization approach
based on a differential evolution algorithm (see Section 2.1.3) automatically
improves the users’ input parameters. It comprises the following six steps, where
step (0) is executed just once and steps (1)–(5) repeat n times:
0. Initialization. An initial set of 30 parameter configurations is created.

The parameter values are randomly initialized with a uniform distribution
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around the users’ input values. The starting point can vary by up to
24 hours, while the period and gap length can vary by up to 48 hours.

1. Cost Evaluation. To evaluate each parameter configuration, the event
series is first decomposed based on the configuration’s parameters and
then its seasonal component (cs) is extracted. To do so, cs is split into
its seasonal subseries csi. Then, an average subseries csavg is built from
the selected and the following two subseries, assuming that the searched
pattern will be most visible close to the first pattern occurrence. Afterwards,
the average variance (csvar) between the first three subseries csi and csavg

is calculated. The cost value C was defined as:

C(cs) = csvar

( max(cs)−min(cs)︸ ︷︷ ︸
Range of the series’ values

)2

It should be noted that a lower cost value is better.
2. Keep Best Configurations (Elitism). To save the best results, the top

10% of the configurations are transferred to the next generation.
3. Discard Unfit Configurations. The lowest scoring 50% of the configura-

tions are removed.
4. Recombination. New parameter configurations are created by combining

two still existing “parent” parameter configurations A and B. The new
configurations’ values v are based on a weighted average between the
parents’ values vA and vB. The parameter α is randomly picked based on
a uniform distribution:

v = α ·vA +(1−α) ·vB, where α ∈ [0,1]
5. Mutation. At last, the new configurations’ parameter values have a slight

change (p= 0.1) to be randomly changed within the variation explained
in the initialization step. Values that are out of bounds (e.g., a start date
earlier than the first data point) are assigned the outmost allowed value.

The user-defined selection is updated whenever a better result was found.
Due to step (5), which broadens the pool of available parameter configurations,
an evolutionary algorithm is more robust regarding local optima than simpler
optimization approaches (such as hill climbing).

Results

The optimization approach was not part of the pair analytics sessions presented
in Section 5.4.4, as the domain experts had no experience with the presented
approach and the evaluation of the general approach was prioritized during the
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feedback session with the domain experts. In the following, an exemplary result
achieved with the input optimization approach is presented and discussed.

As a proof of concept, it was tested, if the evolutionary algorithm is able to
recommend a simple pattern if the input parameters are similar to a presumably
good result. The unfiltered event series provides only one trivial insight, but
it is clearly visible that the seasonal component reflects the weekends during
which usually no events were reported. Figure 5.12 D & G show what the decom-
position should look like. It was hypothesized, that the evolutionary algorithm
recommends that the season and the season gap should add up to seven days
and that the period length should be between five and seven days.

Multiple test runs were conducted and manually set the period length to
be six days and the gap between the seasons to one day. This setup covers the
assumed results, but also leaves space for other results outside of the assumed
optimum (e.g., four days without a gap). The results show that a seven days
period without a gap achieves the best result (C(cs) = 6.66 ·10−5), whereas a
period length of five or eight days without a gap resulted in the worst results
(C(cs) = [1.71 · 10−4,1.74 · 10−4]). Further, a seasonal length of six days with
one day gap resulted in suboptimal results (C(cs) = 1.18 · 10−4). A possible
explanation could be that the variation on Sundays is still a better trade-off
than ignoring Sundays and only considering the variation of the remaining six
days.

Overall, the optimization approach showed promising results, but there is
room for improvement regarding the handling of the data during the gaps
between the seasonal patterns.

5.4.4 Evaluation
The approach was evaluated in two pair analytics sessions [17] with experts
from the industry partner. In pair analytics, one or more domain experts work
together with a visual analytics expert. The domain experts contribute their
expertise and experience to focus the analysis on interesting data, while the
visual analytics expert is operating the visual analysis tool.

The pair analytics sessions were prepared by searching for potentially inter-
esting patterns, which were used as a starting point during the sessions. In the
following, three use cases that were derived during the pair analytics sessions
are showcased to demonstrate how the presented approach contributes to the
analysis of event patterns in a production line. All of the use cases are based
on approximately six months of event data. The evaluation was conducted with
two domain experts in each session: the first expert was responsible for the data
acquisition and to make the data available to workers on the shop floor of the
factory. He was also involved in the development process of the approach. The
second expert was the head of the studied production line and was consulted
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Figure 5.17: The distribution of the events per product type exhibit several distribution
patterns (highlighted in different colors). The domain experts already assumed such
profiles. Further, they noticed that these profiles do not always correlate to the
different groups of produced goods (e.g., electric motors with and without a power
train extension). © 2018 IEEE

only for the evaluation of the approach. Each of the pair analytics sessions lasted
approximately 60 minutes. Furthermore, general feedback is presented that was
collected from the domain experts after the pair analytics sessions.

Use Case 1: Event distribution along a production line
Before the first detailed analysis was started, one expert mentioned that the
event distribution shown in the event type facet differs from what he expected.
There are, generally speaking, four different types of electric motors produced in
the production line. He expected that the four types would have different event
distributions when compared to each other and that variations of the motor
types would have similar events and distributions. However, the data only partly
supports these assumptions. There are similarities in the event distributions,
but the motor type is not always the same. Figure 5.17 shows an excerpt from
the product type facet, wherein the different event distributions are highlighted.
The similar distributions are partly explainable because even if the motor types
are different, they still share parts of their production plan. However, some
of the similarities were not explainable this way and further investigations in
cooperation with workers on the shop floor level are required to assess other
reasons.

Use Case 2: Analysis of Recurring Event Patterns
Next, the second domain expert was interested in the most frequently occurring
event code. This event was at the label checker station that has to take the part
off the workpiece carrier to process it. The series was decomposed with a period
length of one week to check for event patterns, as the line’s production schedule
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(a) The data shown in the event series plot (top) is decomposed to search for weekly seasonal
patterns. There are no events on Sundays (flat line before the arrow pairs) and the number of
events is increasing at the beginning and end of the week. The arrows indicate at what times
the overall number of events increases.

A B

C

(b) The inspection of one of the event series’ outliers reveals that the same component
caused issues on various stations along the production line within an hour. When filtering for
individual events (highlighted entry in the tooltip), it becomes apparent that the events repeat
approximately every month (highlighted through circles).

Figure 5.18: Results of use case 2 (a) and use case 3 (b). © 2018 IEEE

usually repeats every week. Figure 5.18a shows the event series and the resulting
seasonal plot. The seasonal pattern shows two characteristics: first, the pattern
starts with a short period of time, where no events occurred. This is expectable,
as the line usually does not produce anything during Sundays and therefore
there cannot be any events during that time. However, the pattern disappears
towards the end of the series, as the production line runs more often on Sundays.
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Second, the number of reported events is remarkably higher towards the
beginning and the end of the week compared to other days. The head of the
production line hypothesized that this finding may be caused by the quality of
the parts used during the production. He explained that the line usually uses
parts from the main supplier, but towards the end of the week, these parts often
run out. In that case, they switch to parts from another supplier, whose parts
have a higher quality variance than the main supplier’s. Although the parts’
quality is mostly within the allowed margin of error, the stations that process
these parts have a higher likelihood to encounter problems when processing
these parts. This hypothesis was supported when the expert accessed the logistic
department’s inbound delivery list, which the presented tool cannot access. He
further mentioned that they were aware of this issue before. However, they could
not prove that this is a regularly recurring issue because their previous analysis
methods did not allow them to transform the data as needed to support this
hypothesis. Therefore, this finding is helpful because it can be used to argue for
an improvement of the robustness of stations that need to process the mentioned
supplied parts.

Use Case 3: Analysis of Outliers for Pattern Analysis

The event series of the Event Series Decomposition Panel shows a remarkable
outlier in the second half of the data (see Figure 5.18b A ). The events at that
point in time were extracted by selecting the peak. Almost all events were related
to the ID-40 module, which is a sensor that reads the ID of the workpiece holders
to provide tracking within the production line (Figure 5.18b B ).

Usually this event indicates a broken sensor, but in this case, the event was
reported from various stations at the same time. One expert explained that such
an event distribution may indicate a problem with the bus system that connects
the sensors to the IT infrastructure. Afterwards, some of the events were filtered
one after another and the experts noted that the events repeat approximately
every month (see Figure 5.18b C ).

The head of the production line stated that this is an interesting and un-
expected finding that they were not aware of before. Due to the found result,
two measures were taken: First, the operators will be informed to watch such
sensor events more closely. Second, the finding is forwarded to the responsible
department, as it is not possible to fix it by improving the production line, but
other lines in the factory may be affected by this problem as well. Some time
after the analysis, the industry partner found out that parts of the identified
issues were caused by an error in one of the machine tool’s programs.
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General Expert Feedback
After the pair analytics sessions, the participating experts were invited to give
feedback regarding the general approach and the different components in a
semi-structured interview. They were asked about advantages and drawbacks of
the currently available views and if they could imagine any enhancements that
would help them with their work. They first remarked that the approach results
in a powerful tool that should be used by an engineer in a supervising position,
as shop floor operators have neither time nor necessary expertise to analyze such
event patterns. They also mentioned that this is not a problem, as experts such
as production line heads can use the approach and forward the gained insights
to the operators at the show floor level.

The experts summarized that the Event Series Comparison View is especially
useful to see what data was already analyzed in the past. They further explained
that the iterative analysis approach on the overview and detailed analysis level
is helpful. It enables experts to either pursue a specific event until its occurrence
is completely understood (varying STL configurations) or to analyze the most
important events separately (varying filter configurations). The overview of the
analyses provided in both views is important because the analysis runs are often
interrupted, e.g., because talking to specialists is required to solve an issue.
The experts further inquired that the Event Series Comparison View should be
extended to contain information on how the shown series were extracted, for
example by showing the used filters.

The experts also found the Facet Panel useful. They mentioned that the
product type facet is helpful to gain more insight about the events’ distributions.
The process step and event type facets are useful, but unlike the product part
facet, they cannot be used for a free exploration of the data. Instead, the analysts
must already have a specific analysis goal that requires a selective investigation.

The experts stated that the extraction of outliers and seasonal trends are
both of importance. An outlier can indicate special events that may require
special attention. The seasonal series extraction allows to form hypotheses about
systematic errors that are backed by the available data. Furthermore, the experts
emphasized that engineers are usually not experts in statistical analysis and thus
require an easy to use approach to decompose the temporal event series. They
understood that the approach exposes only the required parameters towards
the user. However, the results are still sometimes difficult to interpret, making
more indications that help them to configure the analysis necessary. One of the
experts proposed that the system could suggest decomposition configurations
automatically. An expert would still have to evaluate, which suggestions are
useful, without the need of any additional knowledge. At last, the experts rated
the Calendar Plot to be useful, because it gives a different view on the time
series and also provides information about other time granularities.
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6

Integration of Augmented Reality
Monitoring and Visual Event Analysis

The augmented reality extension for the simulator for advanced manufacturing
(ARSAM) presented in Section 4.3 and the corresponding related work (see
Section 4.1) show that using AR to support on-site analyses has high potential
to support domain experts. The following chapter uses the lessons learned in the
previous chapters and proposes a holistic system that combines the advantages
of situated analysis [133, p. 185 ff.] using augmented reality devices with the
capabilities of classical desktop applications.

6.1 Motivation
In the past years, the tasks of operators on the shop floor shifted away from
manual tasks, such as welding, towards monitoring of individual, automated
process steps as well as the overall manufacturing process, only taking action in
case of malfunctions or unexpected events. Through discussions with the experts
of the industry partner, two important aspects for making use of the data
provided by an automated production line were identified. First, live monitoring
of sensor data is necessary in order to timely react to malfunctions of machinery
and to remedy critical issues, which in turn is crucial to keep a production
line as effective as possible. Real-time analysis is a demanding task that often
requires efficient data filtering and meaningful abstraction, the latter of which
can often be best provided to a human user by a visual representation. Second,
a retrospective analysis of previously collected data and logged events helps
to understand and improve current processes. Currently, the analysis of events
and the propagation of recent observations is often limited to daily briefings,
which are partly based on data, such as deviations from planned processing
times or unusually high numbers of errors at specific machines. It is desirable
to be able to update this analysis with the latest data continuously and, more
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Figure 6.1: Illustration of the approach for the monitoring and analysis of event reports
in production lines. Operators are notified of current issues via an augmented reality
headset and can get details and an overview of the situation on a tablet.

importantly, to provide the results from such an analysis in real-time and on-site
during production. This enables operators not only to react to emerging problems
immediately but also to apply the accumulated knowledge of past events.

The following introduces an immersive analytics system that covers both a
real-time situated approach for presenting data to an operator and the in-depth
analysis of historical event data on a tablet device (see Figure 6.4). Immersive
analytics [133] recently gained attention due to the availability of advanced and
more affordable portable and wearable devices, such as head-mounted displays
for virtual and augmented reality. These are crucial tools for developing effective
and more compelling systems for immersively exploring large and complex
data. The presented system contributes an immersive analytics approach for
monitoring and analyzing automated manufacturing processes and combines the
unique benefits of an AR headset with the larger screen and well-known input
modalities of a tablet. It is designed as a linked-view system consisting of an
analytic component (running on the tablet device) for advanced data analysis
and a monitoring component (running on the augmented reality headset) for a
situated inspection of identified issues. The approach was evaluated by deploying
a prototype implementation on-site at a production line of the collaboration
partner introduced before (see Section 5.1) and by gathering feedback from their
production line operators.

6.2 Domain Problem Characterization
For this project, a production line for small electrical motors for cars was chosen.
Such a motor consists of several parts, fabricated in different parts of the line. As
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the production line itself contains more than sixty single machines, the interplay
of all machines together is quite complex. Operators on the shop floor must
manage to keep the production line running. They get information directly
from display above the production line, a so-called Andon board [67]. On this
display, the current Overall Equipment Effectiveness (OEE), which represents
the current performance of the production line (see Section 2.2.3), and error
events (see Section 5.1.1) are shown. Further, indicator lights above the machines
indicate their status (e.g., missing parts or a problem with the machine). The
daily challenge for the operators is to identify the importance of the error event
and to know (mostly from their experience) where the machine is located on the
shop floor. These disturbances cause downtime and have a direct impact on the
OEE. Therefore, the main question for the operators is: Which machine should
I fix first to maintain the OEE and keep the line running?

Currently, the Andon boards above the lines only show error codes but not
the locations of the erroneous machine. Further, due to the layout of a complex
production line, operators usually cannot see all machinery or their indicator
lights from where they are. When they notice an issue, operators prioritize and
complete tasks based on their experience or subjective judgment of urgency
of specific failure events. The lack of objective guidance for prioritization of
failure events is an important issue in current production lines. Thus, a solution
supporting operators with their decisions and helping them to prioritize and
locate machines is a valuable addition to existing indicators.

To better understand the domain problem, to establish relevant task classific-
ations, and to identify requirements for the system’s application, several meetings
with the collaboration partners were held. During these meetings, the overall
system design was discussed, iteratively improving upon the initial concept by
gathering qualitative feedback. Meetings also frequently included preliminary
test runs of the prototype implementation at the studied production line. Sub-
sequently, four main categories for classifying the tasks were identified that
have to be covered by a system to provide immersive monitoring and analytical
capabilities for a manufacturing environment. Based on discussions with domain
experts and relevant related work, these four categories are monitoring, analysis,
prediction, and maintenance.

Monitoring The operators have to react to error events as soon as possible.
These events cause the production line to halt and must be addressed immediately.
As explained before, events (e.g., error messages from machines) are shown on
a central display above the assembly line. Presenting such information on a
wearable device, such as a head-mounted AR display, has several advantages: (1)
The operators are notified within their field of view, independent from an external
display. (2) Additional information can be displayed that would otherwise only be
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visible at the respective machine. (3) Responsibilities for events can be centrally
distributed by providing specific operators with customized information based
on event priorities.

Analysis The retrospective analysis of the previous events plays an important
role. Currently, the collaboration partner’s experts discuss such events daily. An
analytical approach should support (1) a situated analysis of previous events
with longer time spans on demand, (2) visual analysis to identify correlations
between events and whether a causality between them exists. A detailed analysis
is less suited to interact with in AR due to the amount of presented data and
necessary interaction with the data. Therefore, the analysis is externalized onto
an additional application running on a mobile device that links selected data
with the augmented view.

Prediction Anticipating events is tightly coupled with analysis. In the long
run, the prediction of events should be automatic, but this goal requires prior
knowledge about causalities to model an appropriate predictor. Hence, analysis
and prediction should be conducted with a visual analysis approach and event-
related predictions should be presented in AR in order to prevent possible
issues.

Maintenance In case of an error event, the operator has to react appropriately.
For example, in case of a machine failure, a repair procedure has to be initiated.
An often suggested method is providing information supporting the repair process
in an AR view. In most cases, operators need both hands for repair, so a full-size
computer or tablet is impractical for information display and interaction.

The following approach focuses on the first two categories and how predictions
could be integrated in future iterations. Maintenance is not extensively addressed,
as this was the focus of numerous previous works and became (to some degree)
a reference utilization of AR systems (see Section 4.1.3).

Furthermore, the domain experts stated some requirements particularly
important for monitoring and analysis procedures for production lines:

Effortless access and hands-free usage The most important information
needs to be provided concisely and in a way that does not require the operator
to interact with the system to access the information. Specific tasks, mainly
concerning the maintenance of defect machinery, require that the operator can
use both hands. Hence, the system has to support interruptions of ongoing tasks
and provide information hands-free.

136



6.3 Approach

immediate iden�fica�on
of events

Monitoring1

iden�fy correla�ons
and causali�es

Analysis2

an�cipate and prevent

Predic�on3

take appropriate
counter-measures

Maintenance4

Data

MonitAR

Companion App

Figure 6.2: Immersive analytics scenario for manufacturing. Four main application
categories for this approach were identified: (1) monitoring for immediate reactions,
(2) analysis of recent events for correlation analysis, (3) prediction based on knowledge
from the analysis, and (4) maintenance support. Augmented reality is mainly applied
for monitoring and maintenance and a companion app on a mobile device is suitable for
advanced analysis and prediction. Linking between the AR device and the companion
app supports all scenarios.

Analysis limitation to most relevant tasks As their time is limited, the data
provided to the operators must be limited to aspects relevant to their daily tasks.
In the given scenario, the analysis needs to focus on how to support the decision,
which malfunction to fix next, where this error is located, and to retrieve further
details about the error.

6.3 Approach
The related work in Section 4.1.3 indicates that a situated analysis of issues in a
production line may help to get a better understanding of events and improve the
response time when they arise. Hence, supporting real-time visual monitoring is
essential for an immersive analytics system. Furthermore, in scenarios exceeding
the scope of simple reaction to events, an analytical component is required for
providing the necessary context of recent and historical events to the on-site
operators. This and the wide range of tasks and constraints listed in Section 6.2
suggest that no single device can appropriately cover all aspects of the desired
system. On the one hand, a traditional device with a sufficiently large screen
for presenting and browsing detailed information, such as a tablet computer,
does not meet the requirements of hands-free usage. On the other hand, smaller,
wearable devices like smartwatches or head-mounted displays can only provide
a limited amount of information at a time and have a limited range of input
interactions.

Thus, the purely informative and the analytical component of the presented
system are separated and distributed among two physical devices combining
their respective benefits. The prototype of the presented approach uses an
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Figure 6.3: Left: The compass showing indicators for two active events and an additional
third one for the currently selected process step. Right: Information about individual
stations is always visible, even with real-world occlusions on the machinery.

AR headset, specifically the Microsoft HoloLens, as the hands-free wearable
device. It presents the user with only the most important information that
should be immediately available while making use of the spatial context to show
information at fitting real-world locations. For more detailed information and
in-depth analysis of the situation, the HoloLens application is complemented by
a companion application (henceforth companion app) running on a tablet. When
needed, this device offers additional information and provides sufficient space
for complex visualizations and sophisticated interactions that are cumbersome
or impossible on the HoloLens. If not needed, the companion device can simply
be stowed away to free the users’ hands. Both devices are tightly coupled and
exchange information to provide the user with a comprehensive system that is
adaptable to usage circumstances.

Figure 6.2 depicts the proposed design concept for immersive analytics of
production lines. It covers all four task categories presented in Section 6.2:
monitoring, analysis, prediction, and maintenance. Effortless and hands-free
requirements are met by the augmented reality device, which is mainly used
for monitoring and maintenance. The companion app handles incoming data
and covers the requirements for analysis and prediction. By design, both devices
share events through linked views that synchronize information according to
the current task. The presented system focuses on the design of appropriate
visualizations that cover monitoring and analysis tasks. Possibilities on how to
include prediction and maintenance tasks are discussed in Section 7.3.

Visual Monitoring

The main goal of visual monitoring is to provide users with specific information
about important events. Therefore, event notifications comprise a prioritization
and visual guidance to where these events occurred in the spatial context. These
tasks are handled by the AR application for the HoloLens, named Line MonitAR
(subsequently MonitAR). A number of design and hardware considerations
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have to be made for a HoloLens application (or AR in general), primarily
including the limited field of view and computing power, but also aspects such
as display brightness. MonitAR only uses simple graphical elements, which keeps
the necessary computational power low and improves the battery life of the
HoloLens.

More importantly, the limited field of view demands to only display the most
critical information within MonitAR to avoid a visual overload of the operators.
For well-lit environments, e.g., the shop floor, display brightness and contrast
between the virtual elements on the AR-screen and the real world becomes
an issue. Overall, the visualization overlay provided by MonitAR prioritizes
being functional and helpful. However, engaging the user with a visually appeal-
ing interface and graphical scene elements might be helpful for improving the
acceptance of a new modality, as the application has to remain unobtrusive.

MonitAR comprises two components. First, each process step in the pro-
duction line is presented as a 3D frame around its real-world counterpart (see
Figure 6.3, left), which indicate the current status of the individual process
steps. MonitAR intentionally does not perform any occlusion checks to also show
process steps that may be hidden behind other machinery. This way, the status
of all machines is visible when the operators look into their direction. Second,
a continuously visible compass floats at hip height in front of the operators to
provide directions towards currently erroneous machines (see Figure 6.3, right).
The decision for a compass as primary navigational support element is the
result of discussions with domain experts and has benefits compared to more
sophisticated navigation aids: A compass is a well-known, intuitive concept that
usually does not require any explanation or training. Furthermore, it can be
assumed that operators who use such an AR system have basic knowledge of the
production line layout. They primarily need to know where to go to deal with a
specific event, rather than how to get there. More elaborate navigation overlays,
such as plotting a route on the shop floor, seems therefore unnecessary at best
and distracting at worst. The workflow proposed for MonitAR is split into four
major phases: Alert, Steer, Survey, Instruct.

Alert During the alert phase, the virtual overlay is reduced to a minimum
while waiting for events. This way, the operators are not distracted from normal
activities. Furthermore, it is more likely that changes in the virtual scene caused
by incoming events attract each operator’s attention. Relevant events are shown
as rotating 3D icons representing specific error classes in the frame of the
respective step (see Figure 6.4). The approach distinguishes between events that
are related to moving parts of the machine, time-related issues, such as process
timeouts, and events that do not fit the other categories. The selection, which is
synchronized with the companion app (see Section 6.3), is indicated by a visual
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Figure 6.4: Augmented reality view of the production line. A 3D event icon indicates
an error left to the selected process step (orange frame). All active error events and
the selection are also indicated in the compass at the bottom. The inset on the right
shows the corresponding view on the companion device. Note that the AR view has a
finer resolution of process steps for this part of the production line than the server
provides for the companion app.

highlight. Using similar icons, the compass indicates the direction of an event as
discussed for the next phase.

Steer The second phase (steer) acts as a transition between the monitoring
and maintenance tasks. Once the operators noticed an error, the system assists
navigating to the location of the faulting machine. Selecting the problematic
process step highlights it in the AR view, making it a natural navigation waypoint.
The highlight is easily distinguishable from the other process steps, even if this
step is occluded by other machines in the real world. Nevertheless, the operators
might not directly face the affected process step. In that case, the aforementioned
compass, which is always located in front of the users, indicates the direction of
the selection and error events (see Figure 6.3). For each active event, an indicator
element is shown on the compass, comprising an arrow pointing towards the event,
an icon identifying the event category, and a textual description. Descriptions
always face the users such that the text remains readable even for events behind
the operators. If several events occur in a similar direction, the arrows intelligently
stack up to avoid overlaps while taking up as little additional space as possible.
Once the operators arrive at the indicated location, they can retrieve further
details about the currently faulting machine through the companion app.
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Instruct Once the problem has been identified, the instruct phase begins.
Depending on how well-known the current issue is, operators can either explicitly
retrieve instructions on how to deal with the issue on the tablet or get direct
instructions overlayed on the affected machine parts in AR.

Survey Between the completion of maintenance tasks, operators can retrieve
and analyze details about the issues they recently fixed on the companion app.
This allows them to gain further insights, for example, about simultaneously
occurring errors. The visual analysis capabilities of the companion app are
detailed below.

The survey and in particular the instruct phase are both primarily associated
with the maintenance task. Since machine maintenance in AR has already been
studied in many publications (see Section 4.1.3), the last two phases were not
explored in greater detail in the prototype application.

Due to their high importance, the currently relevant events are also shown in
the companion app used for the visual analysis (see Section 6.3). This redundancy
is necessary, as the operators have to be made aware of critical events regardless
of which device they are currently focusing on. In contrast to the AR view,
wherein the focus is to provide only the most critical information in the spatial
context of the real world, the companion app provides a visual overview of the
events across the entire production line. An example of the complete system in
use is shown in Figure 6.4.

Visual Analysis

Detailed analyses are performed on a mobile companion device offering enough
space for the data and efficient interactions to explore them. Once an error has
been identified, operators can retrieve contextual information about it, such
as where the event occurred and which other errors exist at the process step.
Understanding how often issues arose at the inspected process step in the past
and which other events occurred under similar conditions may reveal further
insights into dependencies between errors.

To support this process, the companion app comprises a spatial layout view
of the production line, a detail view that provides information about the selected
process step and events, and a timeline view. All components are linked within
the companion app, and with the AR visualization on the HoloLens.

Layout View In addition to the information provided in AR, the companion
app features an abstract map of the production line in the Layout View. The
view is similar to the layout view presented in Section 5.3.1. It helps to provide
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Figure 6.5: The Layout View presents an abstract portrayal of the production line.
The operator’s position and view direction are indicated with a small orange icon.
Erroneous process steps are filled with orange. In case no data is available, they are
grayed out. The selected step has a red border.

information about the spatial arrangement of the production line’s process steps,
to identify the location of current error events (see Figure 6.5), and to show the
operator’s position. As the interaction precision on a mobile device is limited
compared to interactions with mouse and keyboard, the granularity of the layout
was restricted to the process steps (compared to the stations level in the desktop
analysis presented in Section 5.3). Users can select any process step to obtain
its status in the Detail View (see below). Due to the similarity of the displayed
information, the Layout View can be seen as a mediator between the views on
the companion device and the AR application.

Detail View The Detail View presents further information about the currently
selected process step. Besides basic location information, such as the line, a
process step identifier, a description, and the current status, it details current
and historical error events for the process step. Each event comprises information
about the time at which it was reported, the exact station in the process step
that reported the issue, the product being produced, and a description of the
event. Furthermore, analogous to MonitAR, an icon indicates the category the
event is related to.

Currently active events listed in the Current Events tab help to get a quick
overview of all issues that caused a failure at a specific process step. Aside from
knowing where errors exist, the description of active events is one of the most
important pieces of information needed before beginning the actual maintenance
of the machinery. Recent issues with a machine are also valuable information,
which can be looked up for the past hour in the Recent Events tab. Finally, the
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Figure 6.6: The Detail View presents detailed information about any selected process
step. The top part shows information about the process step itself, whereas the bottom
part can show current, recent, and filtered events.

Timeline Events tab provides detailed information about all the events for the
selected process step that are also visible in the Timeline View (see below).

For any event in these lists, the operators can change each event’s importance
between ignore, neutral, and important. This prioritization is applied to all events
of the same event class, independently of the time when it occurred. Ignored
events are hidden in the Detail View as well as the Timeline View, whereas
important events are highlighted in the Detail View to be easily recognized.

Timeline View The Timeline View (see Figure 6.7) presents the events reported
by the machines in the past seven days as a scatter plot. Except for an additional
slider, the plot is entirely analogous to the timeline view in Section 5.3.1, except
that it does not allow for any interactions. The x-axis represents time and the
y-axis encodes the order in which machines process a workpiece in the production
line. The top of the view represents the start of the production line, the bottom
the end. Events of a selected process step (from AR or from the Layout View)
are emphasized (see Figure 6.7). The overall structure of this view is similar to
the Marey’s graph used by Xu et al. [206], but this view only encodes special
events, not regular processes. This way, experts can quickly recognize repeating
patterns and verify assumptions of their understanding of the relations between
events. For example, the Timeline View in Figure 6.7 reveals that some errors
frequently occur simultaneously (emphasized with a blue border), which may
indicate a relation between them. The additional slider that can be used to filter
the timespan shown in the scatterplot. For easier navigation, the slider uses the
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Figure 6.7: Similar to the approach in Section 5.3.1, the Timeline View presents the
events of the past seven days as a scatterplot. The x-axis encodes time and the y-axis
encodes the individual machines along the production line (from the start at the top
to the end at the bottom). The selected process step’s machine errors are highlighted
in orange. The scrollbar enables operators to filter the data shown at the top, while
still providing an overview of the available data. This view provides insights into which
events often occur at similar times (emphasized in this figure with blue borders).

MS-SQL-DB

Data Analysis
Application

HoloLens
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App

Figure 6.8: Machines report events to an MS-SQL server. This data is processed by
a data analysis application that also provides the companion app with data. The
companion app forwards live data to the HoloLens application and exchanges selection
and position data via Bluetooth.

entire timeline in miniature as its background such that users always retain an
overview of the available data.

Implementation Details

The machines in a production line report the beginning and end of events to a
Microsoft SQL database. The presented system combines three components to
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process the data and present it to the operators. First, a data analysis application
regularly checks if there are any new events. In case there are, it tries to match
any still ongoing event with events that flag the end of an error. The matched
events are stored in the database so that they can be retrieved as historical
events to the companion app. For ongoing events, the application checks how
long the event already persists. The industry partner proposed that operators
should be notified about error events that last for more than five seconds. Any
events that match this criterion are sent to the companion app, which forwards
the information to the HoloLens via Bluetooth.

MonitAR is implemented on the HoloLens using C++ and Direct3D. It es-
tablishes a connection from the companion app to the HoloLens using Bluetooth
RFCOMM. Compared to a connection via WiFi, the connection can be estab-
lished automatically once the two devices are paired, thus providing a much
better user experience for users without IT expertise. An additional advantage of
Bluetooth is that it does not rely on a factory-wide coverage of WiFi access points.
Although there will be no more live-event updates in case WiFi is temporarily
lost, MonitAR and the companion app can still exchange position information
and operators can inspect the available historical event information.

The virtual 3D model of the production line shown by MonitAR is aligned
with its real-world counterpart using ArUco markers [78, 161] when the applica-
tion is first started. While the HoloLens builds up its own spatial mapping of
the surroundings, the operator will have to actively seek out markers placed at
previously defined locations in the production line. Once MonitAR recognized at
least three markers, the transformation between the predefined marker locations
in the virtual scene and their real-world locations given in the HoloLens’ coordin-
ate system is estimated by a least squares fitting [18]. This transformation is
then applied to the complete 3D model to align it with the real world. Once the
real-world position and orientation of the virtual model have been successfully
established, spatial anchors1 are created at the locations where MonitAR spotted
the ArUco markers. These spatial anchors allow the HoloLens to find a location
based on visual features it has found in the environment. Once set up, MonitAR
can restore the transform of the virtual model using the anchors without requiring
the user to look at the markers again. Marker detection is explicitly activated and
deactivated on demand in order to improve battery life by switching off the front
camera and detection algorithm and also to avoid updating marker locations
by mistake. The system makes use of voice commands to control such more
complex actions, as relying solely on the air tap gesture input of the HoloLens
might tire out and frustrate the operators quickly, especially if repeated input is
required for an action. Furthermore, in situations that require hands-free use of
the system, gesture input would not be feasible.

1 https://docs.microsoft.com/en-us/windows/mixed-reality/spatial-anchors
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The companion app is developed in C# and uses the Windows Presentation
Foundation (WPF). Besides presenting the user with detailed event information,
which would be difficult on the HoloLens, the companion app relays information
from the data analysis application to the HoloLens. The companion itself obtains
its information from the data analysis application by means of a Windows
Communication Foundation (WCF) web service. The data transferred to the
HoloLens via Bluetooth is formatted in JSON, which is easy to produce and
consume both in C# (companion app) and C++ (MonitAR).

6.4 Evaluation
The final prototype of the presented approach was presented to four experts
from the industry partner. The following presents the results of their feedback
and additional observations made during the presentation of the prototype.

Expert User Feedback

To test the presented technique with domain experts, the prototype was deployed
in the aforementioned production line of the industry partner. The group of
domain experts consists of operators who are directly responsible for the handling
the machines, and employees who are responsible for implementing Industry 4.0
concepts at the production line and keep track of the whole production process.
In total, four experts participated in this first feedback round. Each expert
tested the combination of both devices for approximately 10 to 15 minutes,
observing the production process with live events. The System Usability Scale
(SUS) [36] was applied for usability feedback, combined with free-text questions
to identify potential issues. SUS was specifically designed to get feedback from
domain experts in an industrial context who only have limited time between
their usual tasks to rate a system and have little or no prior experience with
usability studies.

The SUS is a questionnaire comprising ten questions that, in summary,
provide a normalized score between 0–100 for the usability of a system. The
experts rated the approach with a score of 87.5, 77.5, 82.5 and 87.5, respectively.
Based on the rating categories used by Bangor et al. [21], all of these ratings
correspond to good to excellent scores and are above a value of 68, which they
found to be the average across 3,500 SUS results.

Overall, the experts stated in the free-text fields that they found the system
was helpful to them. They appreciated the visual presentation, general ease of
use, and the fast responsiveness to live error events. Navigational support by the
compass was specifically identified as a helpful feature. Also, two participants
commented that having no occlusion in the AR view is advantageous because it
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can visually provide information about machines that are physically occluded by
other machines in the real world. Furthermore, a more detailed 3D representation
of individual machines, which should include the parts in the machine, was noted
as a useful feature for the future. The operators from the production line agreed
that the tablet companion device used in the current design was still too large
to conveniently carry it with them at all times. An additional comment stated
that the HoloLens is still too bulky for all-day usage.

Further Results & Discussion

Feedback from domain experts and observations made during live testing of the
system confirm that the design presents a feasible solution for monitoring and
analyzing a production line. The feedback also provided valuable insights into
the limitations of the approach and possible future extensions.

Operators at the production line immediately adopted the idea of using
an immersive AR system after wearing the device and experiencing the AR
view for the first time. They appreciated the real-time responsiveness of the
prototype that displays error events within a few seconds, slightly faster than
the Andon board that is already installed and used at the factory. While the
limited comfort of wearing the HoloLens was commented upon, operators still
successfully repaired a malfunction that required both operating the physical
control board outside of the machine and manually readjusting parts inside the
machine with limited available space, without being hindered by the headset.

With regard to user interaction and experience, all participants confirmed
that the system design is easy to understand and use. One of the domain experts
stated that it might be helpful to automatically select process steps of new events
that were previously flagged as being important. On the one hand, this may
emphasize the visual feedback of the event and therefore increase the reaction
time. On the other hand, it may interrupt any current tasks, independent of
their current progress, which means that the highlighted location may change
multiple times or a currently maintained station may lose focus unexpectedly. It
is currently unclear if one of the arguments outweighs the others and further
investigations are needed to make a statement about the potential of such a
process. Another question that was raised during the live test was how the
issues of depth occlusions of event icons and overlapping text sprites could be
solved. Currently, event icons that are located along a user’s line of sight occlude
one another, limiting the overview in some cases. Parts of this effect could be
eased by moving the shown text to increase its overlap or by showing only event
descriptions or prioritized events in case of an overlap.

The tablet companion device was less well-received, as the used 10" tablet
was too large to easily carry around at all times without an obvious solution for
quickly stowing it away. Nevertheless, the tablet is still essential as the current
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level of input interactions available to most AR headsets is still limited and
therefore an approach such as the presented one benefits from an additional
physical input device.

While the presented system is specifically tailored to the production line
scenario, the general concept of this immersive analytics system, built from an
AR device for situated visualizations and a more traditional device for detailed
on-site information and interaction, is applicable to other domains of similar
composition. This broadly includes scenarios where critical information that
benefits from being displayed in a spatial context needs to be presented while
at the same time having quick access to a large amount of historical or related
data is advantageous. For example, emergency and rescue services is a possible
scenario for introducing immersive monitoring and analysis [38].
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Conclusion and Outlook

This thesis presented visual analytics approaches to support domain experts
during the first phases of the product lifecycle, specifically the design, planning,
and production phase of a product. The following first recapitulates the con-
tributions of the different chapters of this thesis (Section 7.1). Afterwards, the
results are discussed regarding the research questions stated in Section 1.1 of the
thesis (Section 7.2). At last, an outlook of still open challenges and how visual
analytics may help to solve them is presented (Section 7.3).

7.1 Summary of Contributions
The beginning of the thesis (Chapter 1) presented the overall research question
“How can visual analytics support the overall production quality along the first
part of the product lifecycle?”. As this research question is very broad, it was
divided into three aspects that are part of the product lifecycle.

Chapter 3 introduced approaches to help to understand the relationships
of patents and other documents with keywords. The first approach focused
on the analysis of the relations between patents by projecting classes of the
international patent classification based on their co-usage in patents. Afterwards,
this approach was extended to allow the visual analysis of general concepts that
are used across documents (patents, websites, scientific literature).

Chapter 4 presented visual analytics approaches that support planning ex-
perts to create or improve production line layouts. The first part supports domain
experts in optimizing factory layouts regarding the paths workers have to take by
suggesting which movable components in a factory should be relocated and where
to locate these components to. In the second part, the desktop-based simulator
for advanced manufacturing (SAM), which allows experts to simulate, compare,
and discover new layouts in a modular production line setup, is extended with
an augmented reality approach. It allows experts to simulate and discover new
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layouts analogous to SAM and allows experts to compare the differences between
two layouts.

Chapter 5 focused on aiding technical management staff in understanding and
analyzing the relation of errors reported by machinery in a production line. The
first part focused on the spatio-temporal analysis of correlations between error
classes. It combined the spatial information of a production line’s layout with the
temporal information when errors were reported and information about the event
classes’ correlations. The second part presented a visual analysis approach, in
which the error event temporal distribution was decomposed into trend, seasonal,
and remainder series to find recurring event patterns and outliers.

Chapter 6 combined the approaches from the previous chapters by combining
the analysis of events with an augmented reality application to allow operators on
the shop floor to monitor and analyze events on-site. Four major tasks (monitor,
analyze, predict, maintain) were identified that need to be considered during
everyday production activities. This chapter first focused on the first two tasks
and then proposes how to include the third task in the approach.

This chapter concludes this thesis with a discussion on how the research
questions introduced in Chapter 1 were addressed in the other chapters. Finally,
an outlook of still open challenges, such as the visual analysis of the quality of
the available data, collaborative analysis, and the combination of visual analysis
and prediction to allow for predictive maintenance, are presented.

7.2 Discussion
At the beginning of the thesis, the overarching research question “How can visual
analytics support the overall production quality along the first part of the product
lifecycle?” was stated as a motivation to show possible application fields of visual
analytics in the production domain. The following first discusses the results
of the presented approaches with regard to the research questions presented
in Section 1.1. Then, the overall applicability of visual analytics for advanced
manufacturing is discussed, as stated in the overarching research question, and
a possible integration of the product lifecycle with the knowledge generation
model presented in Section 2.1 is presented.

Research Question 1
How can visualization help to understand the relation of topics relevant to the
product to be designed?

There are several ways how the relationship of topics that are relevant when
designing new products can be analyzed. The approaches presented in Chapter 3
focus on visualizing these relationships by analyzing the co-occurrences of the
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topics across a large number of documents, such as patents, question-and-answer
websites, or scientific literature. The results of the presented approaches indicate
that the projection of topics based on their pairwise similarity can help experts
to understand, which groups of topics exist. Further, it is important to allow
experts to access further details about the documents and to separately present
the most similar topics of a set of selected topics to avoid the intuition that
projections always show the correct topics nearby on a map.

Research Question 2
How can visual analytics support layout planning of factories and production
lines?

Planning or optimizing existing factory or production line layouts is an import-
ant step towards running a production line efficiently. The evaluation of the
approaches in Chapter 4 showed that visual analytics concepts can help domain
experts in solving this task more efficiently. Using evolutionary algorithms to
guide layout planners when optimizing layouts proved to be a promising approach.
Further, domain experts confirmed that extending desktop-based visual analysis
systems with an augmented reality application helps them in coping with their
everyday tasks.

Research Question 3
How to support domain experts during the exploratory analysis of event data to
understand issues in a production line?

During production, it is important to assert that a production line runs without
unplanned interruptions. To prevent errors from occurring, it is important to
understand, if there are any temporal patterns in their occurrence and which
errors have a cause-effect relationship. Such knowledge can help experts to
understand what caused errors so that they can be prevented in the future.
The evaluations of the approaches presented in Chapter 5 show that using the
explorative nature of visual analytics can help to uncover such systematic issues
and improve the processes that caused them. Further, Chapter 6 shows that
the addition of situated analytics through wearable augmented reality devices
further improves the responsiveness of operators on the shop floor.
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Figure 7.1: By combining the knowledge generation model (see Section 2.1) with the
first part of the product lifecycle, a holistic approach to transport knowledge between
across the creation phases of a product can prevent issues when creating new products
in the future.

Overarching Research Question
How can visual analytics support the overall production quality along the first
part of the product lifecycle?

Most related work and the approaches presented in this thesis handle challenges
that arise during everyday tasks of any phase of the product lifecycle as isolated
problems. The presented approaches show that visual analytics can successfully
be applied in the production domain to assist experts with their tasks. However,
the insights gained during any phase can also be used in prior process steps.
This can prevent or easen problems that are caused by design, e.g., because of a
problematic layout of the production line or because the design of the product
makes some process steps more difficult than they have to be.

The combination of the knowledge generation model (see Section 2.1) and the
product lifecycle (see Section 2.2.2) results in a holistic workflow that may be able
to improve the production quality in the long run. The resulting workflow (see
Figure 7.1) is similar to the idea of the Building Information Model (BIM) [19]
from the architecture domain. Therein, all available information should be
accessible during any stage of the creation of a building from its sketch until
the finished construction. This way, later trades, such as piping, have access to
the data at early stages of the design process and may be able to inform earlier
trades about problematic designs that they may not be aware of. In the context
of the production domain, the design phase should forward needed components
or early drafts of the product that is currently designed so that the production
planning experts can give feedback about the production complexity of the
product. This way, issues, such as a possibly limited flexibility of the production
line regarding the number of producible product variants, can be communicated
early on. Further, the production experts can give feedback about expectable
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issues during the production that may be caused by some design aspect of the
product. In addition, the planning and production experts can exchange their
experiences, for example, to provide precise assembly instructions or issues with
the planned production line layout, e.g., regarding the response time in case of
an issue with the machinery.

7.3 Outlook
The approaches that are presented in this thesis show that visual analytics can
help experts in the production domain in solving their tasks along the different
phases of the product lifecycle. However, the development and evaluation of
the approaches also showed that there are still open challenges in which visual
analytics can help.

Visual Data Quality Analysis
Understanding the quality of the available data is one of the major challenges in
the production domain. Many producing companies are aware that collecting
and analyzing data can potentially help them in some way. However, it is often
unclear what kind of data may help during the analysis. As a result, an often
followed practice is to collect and store all the data that is available. The quality
of the data and what kind of insights they hope to find are often unclear in this
process. The explorative nature of visual analytics can help to understand the
quality and the analysis potential of the available data and possibly indicate,
which data may still be missing for an effective analysis. Allowing experts to
explore the general connection between data collected from different sources, as
well as providing information about inconsistencies and incomplete or missing
data helps to get an understanding of the available data. Further, the improved
data quality helps during the analysis later on.

Collaborative Immersive Data Analysis
The approaches in Section 4.3 and Chapter 6 show the potential of an on-site
analysis of the data. Although the isolated approaches already help the domain
experts, there is potential to improve the overall productivity by integrating
multiple domain expert groups in the main application categories (see Figure 6.2).
These groups, for example, technical managers and workers, could exchange
their insights more efficiently. Figure 7.2 extends the categories with the tasks
of the respective roles in a production line (bottom) and how they can improve
the overall productivity by sharing their specialized knowledge (top). On the
one hand, technical managers, such as the head of a production line, could
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Figure 7.2: Complementing the approach from Section Chapter 6 with the lessons
learned previously allows for a more efficient transfer of information and allows to
provide and improve predictions about upcoming issues.

provide insights during their data analysis directly to the affected personnel.
Those workers can verify findings and work together with their superiors to
find and solve possible problems indicated by the findings. On the other hand,
operators at the shop floor could report observations of unusual behavior directly
to their superiors to prevent the loss of insights and also allows for a more timely
response to such events. This would allow for a quicker response in case multiple
machines or even multiple production lines are affected (which an operator might
not be aware of).

Aside from becoming useful for technical management staff, the extension
towards the analysis of correlations would also contribute towards the prediction
component of the design concept of the system (see Figure 6.2). By including the
analysis conducted by the technical management staff, the analysis of correlations
could be used to build and provide models for the prediction of future errors.
Incorporating the event correlation analysis into an overall analysis concept
would have multiple advantages. At the same time, operators could provide
feedback about the prediction quality, e.g., by rating the semantic plausibility of
the provided correlations. Overall, this could lead to an improved response time
to maintain broken machinery.

To prevent the operators from having to cope with analysis options that
they have no time to use, the analysis component would need to have predefined
role profiles, e.g., operators and technical management staff. Views such as
the Correlation View presented in Section 5.3.1 could be further supported
with extensions during the data projection, such as the approach presented in
Section 3.4.

Predictive Maintenance
As discussed in Section 7.3, the visual analysis and rating of event correlations
can help to provide predictions of which errors may occur in the near future.
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Visually conveying this information to workers can be seen as a first step towards
predictive maintenance, as the correlation information can be used to indicate,
which stations may break in the near future, how likely the breakdown is, and how
much time is left before the error occurs. One drawback of using a correlation
measure to predict events is its inability to check for the semantic plausibility
of the prediction. Therefore, rating the semantic meaning of the predicted
correlations helps to show only correlations that make sense. Visualizing the
influence of the ratings given by the individual workers may further increase their
motivation to contribute prediction ratings further and increase the acceptance
of such a prediction system.

In summary, many open research questions provide room for further invest-
igation on how to support the manufacturing domain through visual analytics.
Although production is a long-established trade, an increasing amount of digitiz-
ation and the introduction of concepts such as Industry 4.0 force companies to
find suitable approaches to deal with these data and benefit from them as much
as possible. Visualization and Visual Analytics allow experts to investigate their
data on different levels of detail, while still providing an easy entry point for
specialists that did not have to deal with data analytics before.
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