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Abstract

We prove that two-layer (Leaky)ReLU networks with one-dimensional input
and output trained using gradient descent on a least-squares loss and He et
al. [20] initialization are not universally consistent. Specifically, we define a
submanifold of all data distributions on which gradient descent fails to spread the
nonlinearities across the data with high probability, i.e. it only finds a bad local
minimum or valley of the optimization landscape. In these cases, the network
found by gradient descent essentially only performs linear regression. We provide
numerical evidence that this happens in practical situations and that stochastic
gradient descent exhibits similar behavior. We relate the speed of convergence to
such a local optimum to a stable linear system whose eigenvalues have different
asymptotics. We also provide an upper bound on the learning rate based on
this observation. While we mainly operate in the underparameterized regime
like most consistency results for classical algorithms, our proof also applies to
certain overparameterized cases that are not covered by recent results showing
convergence of overparameterized neural nets to a global optimum.
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Zusammenfassung

Diese Masterarbeit beweist, dass zweischichtige neuronale Netze mit ReLU-
oder LeakyReLU-Aktivierungsfunktionen und einem Input- und Output-Neuron,
die mit Gradientenabstieg auf einem Least-Squares-Loss optimiert werden, nicht
universell konsistent sind, solange das weit verbreitete Initialisierungsverfahren
von He et al. [20] verwendet wird. Speziell beruht der Beweis auf der Beobachtung,
dass ein solches neuronales Netz bei der Initialisierung nur in 𝑥 = 0 nichtlinear ist
und es sich unter gewissen Voraussetzungen wie ein lineares Regressionsverfahren
verhält, anstatt auf den Daten hinreichend nichtlinear zu werden. Die Existenz
entsprechender lokaler Minima wurde bereits von Yun et al. [39] gezeigt. Die
Neuerung dieser Arbeit besteht darin, die Dynamik des Gradientenabstiegs zu
untersuchen, um unter gewissen Voraussetzungen zu zeigen, dass diese lokalen
Minima mit hoher Wahrscheinlichkeit erreicht werden.

Die Beweisidee besteht darin, dass sich die Änderung der Netzgewichte, also
die Größe der Komponenten des Gradienten, in etwa proportional zur Abweichung
der Netzfunktion von den optimalen linearen Regressionsgeraden verhält. Eine
schnelle Konvergenz gegen die optimalen linearen Regressionsgeraden bedeutet,
dass sich die Netzgewichte während des Trainings nur wenig ändern und sich
daher die Nichtlinearitäten nicht weit vom Ursprung 𝑥 = 0 entfernen können.
Falls die optimalen linearen Regressionsgeraden annähernd durch den Ursprung
(0, 0) verlaufen, dann zeigt diese Arbeit, dass die Netzfunktion mit hoher Wahr-
scheinlichkeit schnell gegen ein solches Optimum konvergiert und daher nur ein
suboptimales lokales Minimum findet. Tatsächlich wird bewiesen, dass sich diese
Wahrscheinlichkeit wie 1 − 𝑂(𝑛−𝛾) für alle 𝛾 < 1/2 verhält, wobei 𝑛 die An-
zahl der Neuronen in der verborgenen Schicht ist. Es wird gezeigt, dass sich
die Konvergenz des Netzes wie ein vierdimensionales diskretes lineares System
verhält. Die Annahme an die optimalen linearen Regressionsgeraden stellt sicher,
dass die Initialisierung nahe an den stark negativen Eigenwerten liegt, sodass die
Konvergenz schnell genug ist. Die in Abschnitt 5 eingeführte Theorie mündet
in Abschnitt 5.5 in mehrere Inkonsistenzresultate. Die Eigenwertanalyse liefert
eine effizient berechenbare obere Schranke an die Optimierungsschrittweite ℎ,
unterhalb derer das inkonsistente Verhalten auftritt.

Mithilfe der vorgestellten Theorie wird in Abschnitt 6 durch Monte-Carlo-
Experimente die Wahrscheinlichkeit abgeschätzt, dass sich im obigen Szenario
die Nichtlinearitäten über die Datenpunkte hinweg verteilen. Die Experimente
bestätigen die theoretische Rate 𝑂(𝑛−𝛾) für alle 𝛾 < 1/2 und zeigen, dass diese
Asymptotik bereits für realistische Netzgrößen eintritt. Sie zeigen auch ein analoges
Verhalten von stochastischem Gradientenabstieg. Darüber hinaus wird diskutiert,
inwieweit dieses Ergebnis auf ähnliche Initialisierungsverfahren zutrifft.

Das vorgestellte Inkonsistenzresultat steht im Kontrast zu anderen Arbeiten,
die universelle Konsistenz unter der unrealistischen Annahme einer perfekten
Optimierung [36, 13] oder Konvergenz gegen ein globales Optimum für gewisse
überparametrisierte Netze [22, 11, 8, 1] zeigen.
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1 Introduction
A learning method is called universally consistent if, regardless of which probability
distribution the training data is sampled from, the learning method converges to some
desired quantity of the distribution as the number of samples goes to infinity. For
classical (nonparametric) learning methods such as histogram rules, kernel regression
and 𝑘-nearest neighbor rules, universal consistency has already been shown in the late
20th century, as outlined in [7, 19]. In Deep Learning, the situation is more difficult.
For certain classes of neural networks, universal consistency has also been shown for
regression by White [36] and for classification by Faragó and Lugosi [13], for an overview
we refer to [19]. However, these results depend on finding a global optimum of the
neural network, which has been shown to be NP-hard for certain neural networks by
Blum and Rivest [4]. While this does not imply that practical optimization algorithms
for neural networks are inconsistent, it poses the question whether such consistency
can be achieved using optimization algorithms such as (stochastic) gradient descent.
Mücke and Steinwart [25] show that consistency for neural networks can be achieved in
a computationally feasible way by imitating histograms with neural networks. However,
this does not correspond to practical uses of neural networks with gradient-based
optimization methods [17].
In general, gradient-based methods can get stuck in local minima. It has been shown
for many neural network scenarios that non-global minima exist [32, 18, 38, 28], but
usually the probability of reaching bad local minima with specific optimizers is not
investigated. For overparameterized networks, i.e. networks with more parameters
than data points, there are results showing that, under some assumptions on the
data distribution, (stochastic) gradient descent reaches a global optimum with high
probability and there exist some generalization guarantees [22, 11, 8, 1, 2].
The (leaky) rectified linear unit activation function, which is often abbreviated by
(Leaky)ReLU, is a very popular activation function in Deep Learning [17]. Yun et
al. [39] showed that (Leaky)ReLU networks with least-squares loss have non-strict
spurious local minima where the neural network function corresponds to the linear
regression optimum on the data points. Here, we show that under certain conditions,
the probability of gradient descent getting stuck in such a minimum converges to one
as the number of hidden neurons goes to infinity.

1.1 Contribution

In this thesis, we prove that optimizing two-layer ReLU or LeakyReLU networks with
one-dimensional input and output using gradient descent on a least-squares loss does
not yield an universally consistent estimator if the common initialization method by
He et al. [20] is used. To this end, we show that under certain assumptions on the
dataset, the nonlinearities (kinks) of the neural network properly spread across the
dataset with probability 𝑂(𝑛−𝛾) for all 𝛾 < 1/2, where 𝑛 is the number of hidden
neurons. We present bounds on the speed of convergence and prove that the weights of
the neural network only change little over training, similar to what has been proven for
certain overparameterized networks [22, 11, 8, 1]. However, in our case, the net does
not converge to a global optimum but to a “linear regression optimum” which is only a

5



non-strict local (non-global) minimum of the loss function (cf. [39]). We also provide an
explicit bound on the step size for gradient descent (i.e. the learning rate) such that our
result holds. This bound can be computed for a given dataset and initialization and
behaves asymptotically like Θ(1/𝑛) with high probability. Like Du et al. [11], we find
that the evolution of the network function behaves similarly to a linear time-invariant
system. However, a central finding here is that the eigenvalues of this system have
different asymptotic behavior, which relates to the choice of the step size and also to
conditions on the dataset and the initialization.
Monte Carlo experiments show that the proven phenomenon is present for practical
numbers 𝑛 ∈ {16, 32, . . . , 2048} of hidden neurons and that stochastic gradient descent
exhibits similar behavior. Moreover, we argue using Monte Carlo experiments and
heuristic calculations that the initialization variances can be scaled differently such
that the presented problem is unlikely to occur. The code for these experiments can be
found at https://github.com/dholzmueller/nn_inconsistency.

1.2 Outline

The main theorem, intuition and proof ideas of this thesis are outlined in Section 2. In
Section 3, we discuss related work and mention some similarities and differences to the
present work. Section 4 introduces some notational conventions and known facts about
matrices that will be relevant for parts of the thesis.
Section 5 contains the main theory: In Section 5.1, gradient descent equations are
derived and reformulated in a fashion that is relevant for later stages of the proof.
The gained insights are discussed in Section 5.2. Concentration inequalities proven in
Appendix A then enter in Section 5.3 to obtain characteristics of data sampling and of
the specific class of considered initialization methods. In Section 5.4, the reformulated
gradient descent equations are analyzed asymptotically for large network and sample
sizes using the concentration inequality results of the previous section and some more
general results from Appendix B. Finally, the obtained bounds on gradient descent
trajectories are leveraged in Section 5.5 to formulate different inconsistency results.
In Section 6, several Monte Carlo experiments on (stochastic) gradient descent are
shown and the influence of the initialization method is discussed theoretically and
experimentally. We conclude with remarks on interesting followup research questions in
Section 7.
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2 Overview
In this section, we will provide an overview over the main goal of the thesis, which is to
prove an inconsistency result for a certain class of neural networks.

Definition 2.1. We consider a neural net with one input, one output, one hidden layer
with 𝑛 hidden neurons, and a LeakyReLU activation function

𝜙(𝑥) :=

⎧⎨⎩𝑥 , 𝑥 ≥ 0
𝛼𝑥 , 𝑥 ≤ 0

with fixed parameter 𝛼 ∈ R. In the important special case 𝛼 = 0, we obtain the ReLU
activation function. Such a net parameterizes a function 𝑓𝑊 : R → R with parameters
𝑊 = (𝑎, 𝑏, 𝑐, 𝑤) ∈ R3𝑛+1, where 𝑎, 𝑏, 𝑤 ∈ R𝑛 and 𝑐 ∈ R, via

𝑓𝑊 (𝑥) = 𝑐 +
𝑛∑︁

𝑖=1
𝑤𝑖𝜙(𝑎𝑖𝑥 + 𝑏𝑖) .

The parameters 𝑏, 𝑐 are also called biases of the network.
Let 𝑓 : R → R be a (measurable) function, let 𝑃 be a probability distribution on R×R
and let 𝐷 = ((𝑥1, 𝑦1), . . . , (𝑥𝑁 , 𝑦𝑁 )) ∈ (R×R)𝑁 be a dataset (with 𝑁 data points). We
define the (least-squares) risk of 𝑓 with respect to 𝑃 or 𝐷 as

𝑅𝑃 (𝑓) := 1
2E(𝑥,𝑦)∼𝑃 (𝑦 − 𝑓(𝑥))2

𝑅𝐷(𝑓) := 1
2𝑁

𝑁∑︁
𝑗=1

(𝑦𝑗 − 𝑓(𝑥𝑗))2 .

We define the loss of a parameter vector 𝑊 ∈ R3𝑛+1 with respect to 𝑃 or 𝐷 as

𝐿𝑃 (𝑊 ) := 𝑅𝑃 (𝑓𝑊 )
𝐿𝐷(𝑊 ) := 𝑅𝐷(𝑓𝑊 ) . J

We can then optimize the neural net using gradient descent with step size ℎ > 0 on 𝑊 :

𝑊𝑘+1 := 𝑊𝑘 − ℎ∇𝐿𝐷(𝑊𝑘) . (2.1)

For 𝛼 ̸= 1, 𝐿𝐷 is not differentiable everywhere since 𝜙 is not differentiable in 0. In
practice, this can be handled by defining 𝜙′(0) := 𝛼 or 𝜙′(0) := 1 (cf. Goodfellow et
al. [17], section 6.3). In the upcoming theory, the value of 𝜙′(0) will be irrelevant since
we will show that with high probability, the inputs 𝑎𝑖𝑥 + 𝑏𝑖 to 𝜙 will not change their
sign during training under certain conditions and hence will not be zero.
We will consider a generalized version of the initialization method by He et al. [20].
Applying the initialization method by He et al. [20], also called Kaiming initialization,
to the network in Definition 2.1 means initializing the weights independently as

𝑎𝑖,0 ∼ 𝒩 (0, 2)
𝑤𝑖,0 ∼ 𝒩 (0, 2/𝑛)
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𝑏𝑖,0 = 0
𝑐0 = 0 .

The constant 2 in the variances was specifically computed for ReLU activations by He
et al. [20]. In order to account for differently chosen constants for LeakyReLU, we allow
Var(𝑎𝑖,0) = 𝑐𝑎 and Var(𝑤𝑖,0) = 𝑐𝑤/𝑛 for fixed 𝑐𝑎, 𝑐𝑤 > 0 in our proofs.
Since 𝜙 is a continuous piecewise linear function, the functions 𝑓𝑊 that can be rep-
resented by neural networks in Definition 2.1 are piecewise affine and continuous. A
single hidden neuron 𝑖 represents a function

𝑥 ↦→ 𝜙(𝑎𝑖𝑥 + 𝑏𝑖) ,

which is affine if 𝑎𝑖 = 0. If 𝑎𝑖 ̸= 0, it has a non-differentiable point for 𝑎𝑖𝑥 + 𝑏𝑖 = 0,
i.e. at the point 𝑥 = −𝑏𝑖/𝑎𝑖. The non-differentiable points of the overall function 𝑓𝑊

are thus a subset of the points {−𝑏𝑖/𝑎𝑖 | 𝑎𝑖 ≠ 0}, which we also call kinks or knots of
the neural network [34]. Since we assume that 𝑏𝑖 = 0 after the initialization of the
network, all kinks are initially located at zero. This is displayed in Figure 1a. During
gradient descent, these kinks may move around. To the right of the rightmost kink, the
function 𝑓𝑊 is affine. Under some assumptions, the affine continuation of this rightmost
affine part of 𝑓𝑊 is exactly the function 𝑓𝑊,𝜏,1 that we will define later. Similarly, the
affine continuation of the leftmost affine part of 𝑓𝑊 will (under some assumptions)
correspond to the function 𝑓𝑊,𝜏,−1 defined later. A possible neural network and the
affine continuations of both parts are shown in Figure 1b.

−6 −4 −2 2 4 6

−3

−2

−1

1

2

(a) Typical initial network.

−6 −4 −2 2 4 6

−3

−2

−1

1

2

𝑓𝑊,𝜏,1(𝑥) = 𝑝1𝑥 + 𝑞1

𝑓𝑊,𝜏,−1(𝑥) = 𝑝−1𝑥 + 𝑞−1

𝑓𝑊

(b) Typical trained network with (at least)
four kinks.

Figure 1: Examples of untrained and trained network functions 𝑓𝑊 .

Empirically, it can be observed that in some cases, the kinks only move a little so that
they never reach the data points 𝑥𝑗. This means that on the set {(𝑥𝑗, 𝑦𝑗) | 𝑥𝑗 > 0} of
positive data points, the function 𝑓𝑊 is affine and thus may not fit the data points well.
The same holds true for the set {(𝑥𝑗, 𝑦𝑗) | 𝑥𝑗 < 0} of negative data points. The goal of
this thesis is to prove that for certain probability distributions 𝑃 , the probability of
sampling a dataset 𝐷 and an initialization 𝑊0 such that a kink crosses the data points
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during gradient descent converges to zero as the number 𝑛 of hidden neurons converges
to infinity. This means that this setup for training of neural networks is inconsistent,
i.e. the loss does not converge to the optimum achievable loss as 𝑛, 𝑁 → ∞. In our
case, consistency means the following:

Definition 2.2 (Consistency, cf. Definition 6.4 in [35]). Let 𝑃 be a probability distri-
bution on R × R and let (ℒ𝑁)𝑁∈N with (measurable) ℒ𝑁 : (R × R)𝑁 → (R → R) be a
sequence of estimators, i.e. given a dataset 𝐷 ∈ (R × R)𝑁 , 𝑓𝐷 := ℒ𝑁(𝐷) : R → R is a
regression function. We call (ℒ𝑁 )𝑁∈N consistent for 𝑃 (with respect to the least-squares
loss), if for all 𝜀 > 0,

lim
𝑁→∞

𝑃 𝑁
(︂

𝐷 ∈ (R × R)𝑁 : 𝑅𝑃 (𝑓𝐷) ≥ inf
𝑓 :R→R

𝑅𝑃 (𝑓) + 𝜀
)︂

= 0 .

Here, 𝑃 𝑁 means that the components (𝑥𝑗, 𝑦𝑗) of 𝐷 are sampled independently from 𝑃 .
We call (ℒ𝑁)𝑁∈N universally consistent (with respect to the least-squares loss) if this
holds for all probability distributions 𝑃 on R × R. We define consistency and universal
consistency analogously if the estimators ℒ𝑁 are random instead of deterministic. J

We will prove several inconsistency results in Section 5.5 which imply the following
result:

Theorem 2.3. Let (ℒ𝑁)𝑁∈N be a sequence of estimators such that ℒ𝑁 takes a dataset
𝐷 ∈ (R × R)𝑁 sampled randomly according to a probability distribution 𝑃 on R × R
and outputs a trained neural network with:

∙ one input neuron, one hidden layer with 𝑛𝑁 neurons, and one output neuron such
that 𝑛𝑁 = 𝑂(

√
𝑁) and lim𝑁→∞ 𝑛𝑁 = ∞,

∙ ReLU or LeakyReLU activation function with |𝛼| ≠ 1 applied to the hidden layer,

∙ gradient descent on the least-squares loss function with step size 0 < ℎ𝑁 = 𝑜
(︁
𝑛−1

𝑁

)︁
,

∙ an initialization method matching Definition 5.21, e.g. the one by He et al. [20],

∙ any stopping criterion.

Then, for all probability distributions 𝑃 that satisfy Assumption 5.16, (ℒ𝑁)𝑁∈N is not
consistent. In particular, (ℒ𝑁)𝑁∈N is not universally consistent.

Proof. Let 𝑃 satisfy Assumption 5.16. By Corollary 5.43, there exists 𝐶 > 0 such that

𝑅𝑃 (ℒ𝑁(𝐷)) ≥ inf
𝑓 :R→R

𝑅𝑃 (𝑓) + 𝐶

with probability 1 − 𝑂(𝑛−𝛾
𝑁 ) for all 𝛾 < 1/2. Since 𝑛𝑁 → ∞ by assumption, this means

that (ℒ𝑁)𝑁∈N is not consistent for 𝑃 . Example 5.18 shows that such a probability
distribution 𝑃 exists.
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Remark 2.4. Assumption 5.16 essentially restricts 𝑃 to a submanifold of the set of all
probability distributions which still contains continuous distributions with observation
noise. For most of these 𝑃 , the condition 𝑛𝑁 → ∞ is necessary for consistency since the
nets need to converge to the “optimal regression function”, which is in general highly
nonlinear. We show in Remark 5.38 that the condition ℎ = 𝑜

(︁
𝑛−1

𝑁

)︁
can be weakened to

ℎ ∈ (0, 𝐶𝑛−1
𝑁 ) for sufficiently small 𝐶 > 0.

In Corollary 5.39, we prove a different version of Theorem 2.3, which shows that we
can choose 𝑃 as a symmetric uniform distribution on six data points such that

∙ 𝑅𝑃 (ℒ𝑁(𝐷)) ≥ 1 with probability 1 − 𝑂(𝑛−𝛾) for all 𝛾 < 1/2,

∙ for 𝑛 ≥ 5, there exists 𝑊 ∈ R3𝑛+1 with 𝑅𝑃 (𝑓𝑊 ) = 0.

The computations in our proofs could be simplified by instead investigating probability
distributions 𝑃 such that all 𝑥𝑗 are positive. This would however exclude symmetric
and normalized distributions. These simplifications are discussed in Remark 5.14 and
Remark 5.44. J

The main idea behind the proof is to show that the affine functions 𝑓𝑊,𝜏,1 and 𝑓𝑊,𝜏,−1
converge so quickly towards the optimal linear regression lines on the positive and
negative parts of the dataset that the kinks do not have enough “time” to reach the data
points. An example is shown in Figure 2. In this example, the dataset is chosen such
that the optimal linear regression lines for both parts of the dataset are 𝑦 = 0. We can
see in Figure 2a that the neural network function 𝑓𝑊 converges to this linear regression
optimum. Figure 2b shows that the difference of the loss to the linear regression
optimum converges to zero and has fast and slow dynamics: It first decays very quickly
and then more slowly. As we will see, the reason is that the convergence of 𝑓𝑊 to the
linear regression optimum is driven by a linear system whose initialization is close to
the eigenspace spanned by eigenvectors to strongly negative eigenvalues. This property
of the initialization is true under the assumption that the optimal linear regression lines
corresponding to both parts of the dataset have intercept zero, i.e. contain the point
(0, 0). In Figure 2a, this is true since both optimal linear regression lines are given by
the equation 𝑦 = 0. In Figure 2c, we can see that with decreasing loss, the kinks move
more slowly (which is due to a smaller gradient). If the loss decreases quickly enough,
the kinks do not reach the dataset.
The proof will proceed roughly as follows:

∙ Since the function 𝜙 is linear on (0, ∞) and (−∞, 0), we can replace each occur-
rence of 𝜙 by a linearized version in the loss function 𝐿𝐷, yielding a modified loss
function 𝐿𝐷,𝜏 . We will see that as long as no kink crosses a datapoint, we have
∇𝐿𝐷(𝑊𝑘) = ∇𝐿𝐷,𝜏 (𝑊𝑘) and gradient descent behaves identically on both loss
functions. The following steps outline the proof that this indeed happens with
probability 1 − 𝑜(1).

∙ We can use concentration inequalities to show that the initialization behaves in a
certain fashion with high probability. For now, we only consider the case where
the initialization behaves according to these concentration inequalities. We also

10
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(a) Neural network function 𝑓𝑊𝑘
after 𝑘 = 0, 1000 and 20000 epochs. The small blue points

represent the kinks after 20000 epochs. The large black points constitute the training set.
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(b) Evolution of the loss difference 𝐿𝐷(𝑊𝑘) −
inf𝑘′ 𝐿𝐷(𝑊𝑘′) during training.
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(c) Evolution of the kinks −𝑏𝑖,𝑘/𝑎𝑖,𝑘 during
training.

Figure 2: Real data from training a neural network as in Definition 2.1 with 𝛼 = 0,
𝑛 = 16, ℎ = 0.001 and dataset 𝐷 = ((−3, −1), (−2, 2), (−1, −1), (1, 1), (2, −2), (3, 1)).

ignore subpolynomial factors in our asymptotic notation. In Section 5, we will
use a precise asymptotic notation that does not ignore these aspects.

∙ The linearized version of gradient descent remains accurate whenever none of
the terms 𝑎𝑖𝑥𝑗 + 𝑏𝑖 crosses zero, since this is where the nonlinearity of 𝜙 occurs.
We assume that the points 𝑥𝑗 satisfy |𝑥𝑗| ≥ 𝑚𝑃 for some constant 𝑚𝑃 > 0, i.e.
there should be no data points near zero. For the initial condition, we will see
that min𝑖,𝑗 |𝑎𝑖(0)𝑥𝑗 + 𝑏𝑖(0)| = Θ(1/𝑛). We want to show that 𝑎𝑖 and 𝑏𝑖 change
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by 𝑜(1/𝑛), which will then yield that 𝑎𝑖𝑥𝑗 + 𝑏𝑖 does not cross zero with high
probability for large enough 𝑛. This in turn means that the kink −𝑏𝑖/𝑎𝑖 never
reaches 𝑥𝑗.

∙ We analyze how the slopes 𝑝1, 𝑝−1 and intercepts 𝑞1, 𝑞−1 of 𝑓𝑊,𝜏,1 and 𝑓𝑊,𝜏,−1
shown in Figure 1b behave. A constant modification 𝑣𝑘 = 𝑣𝑘 − 𝑣opt of the vector
𝑣𝑘 = (𝑝1,𝑘, 𝑝−1,𝑘, 𝑞1,𝑘, 𝑞−1,𝑘) satisfies a linear iteration equation 𝑣𝑘+1 = 𝑣𝑘−ℎ𝐴𝑘𝑀𝑣𝑘.
The matrix 𝐴𝑘 depends on the parameters 𝑊𝑘 while 𝑀 depends on the data
points. Since 𝑀 does not depend on the initialization of the system, it can
be regarded as constant. Moreover, under certain assumptions, 𝐴𝑘 and 𝑀 are
symmetric and positive definite. Typical values might look like this:

𝐴0 =

⎛⎜⎜⎜⎝
𝑛/2

𝑛/2
3/2 1
1 3/2

⎞⎟⎟⎟⎠ , 𝑀 =

⎛⎜⎜⎜⎝
7/3 1

7/3 −1
1 1/2

−1 1/2

⎞⎟⎟⎟⎠ .

It turns out that the matrix 𝐴0𝑀 has two eigenvalues of order Θ(𝑛) and two
eigenvalues of order Θ(1). If 𝑣0 = (*, *, 0, 0)⊤ (which translates to the assumption
that both optimal linear regression lines should have intercept zero), we will prove
that 𝑣0 is close to the subspace spanned by the first two eigenvectors and we
should have ℎ

∑︀∞
𝑘=0 ‖𝑣𝑘‖ = 𝑂(1/𝑛). Establishing this behavior is the purpose of

Appendix B.

∙ Back to our goal of proving that 𝑎𝑖 and 𝑏𝑖 change by 𝑜(1/𝑛): For 𝑎𝑖, we can
show that 𝑎𝑖,𝑘+1 − 𝑎𝑖,𝑘 = ℎ𝑟𝜎,𝑘𝑤𝑖,𝑘, where 𝑟𝜎,𝑘 is a linear function of 𝑣𝑘. Hence, 𝑎𝑖

changes at most by
∞∑︁

𝑘=0
|𝑎𝑖,𝑘+1 − 𝑎𝑖,𝑘| ≤

(︃
sup
𝑘≥0

|𝑤𝑖,𝑘|
)︃

· ℎ
∞∑︁

𝑘=0
|𝑟𝜎,𝑘| = 𝑂(𝑛−1/2) · 𝑂(1/𝑛) = 𝑜(1/𝑛) .

We can use a similar argument for 𝑏𝑖. While concentration inequalities yield that
max𝑖 |𝑤𝑖,0| = 𝑂(𝑛−1/2) up to a subpolynomial factor, we also need to show that
|𝑤𝑖,𝑘| remains close to |𝑤𝑖,0|. Similarly, we have to ensure that the matrix 𝐴𝑘,
which depends on the parameters 𝑊𝑘, remains close to 𝐴0 such that our assertion
ℎ
∑︀∞

𝑘=0 ‖𝑣𝑘‖ = 𝑂(1/𝑛) is true. To this end, we argue that as long as ℎ
∑︀𝑘

𝑙=0 ‖𝑣𝑙‖
is small, 𝑊𝑘 is close to 𝑊0 and vice versa. Since each of these conditions implies
the other, we can argue by induction that both must hold for all 𝑘 ∈ N0. The two
directions of the argument are handled in Proposition 5.31 and Proposition 5.33,
respectively.

The proof is structured as follows: In Section 5.1, we simplify the gradient descent
equations and introduce quantities like 𝑓𝑊,𝜏,𝜎, 𝑣 and 𝑝𝜎, 𝑞𝜎 for 𝜎 ∈ {−1, 1}. We also
derive update equations like 𝑣𝑘+1 = 𝑣𝑘−ℎ𝐴𝑘𝑀𝑣𝑘 for these new quantities. In Section 5.2,
we give several remarks about the newly derived quantities and their interaction.
Section 5.3 then investigates stochastic properties of initialization and dataset sampling.
It also formally introduces asymptotic notation adapted to our proofs. We especially
rely on this notation in Section 5.4, where we analyze how much the weight vector 𝑊𝑘

changes with 𝑘 and how large the sum ℎ
∑︀∞

𝑘=0 ‖𝑣𝑘‖ is. The inconsistency results are
then presented and proved in Section 5.5. Some proofs are deferred to the appendix.
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3 Related Work
Several different branches of research are related to the presented theory: Universal
consistency of globally optimized neural networks [36, 13] and NP-hardness of neural
network optimization [4] has already been investigated in the 1980s and 1990s. Around
this time, researchers also began a closer investigation of the loss landscape of neural
networks [32, 18]. In the meantime, researchers have found more characterizations
regarding which types of networks contain (bad) non-global minima or (bad) saddle
points [33, 38, 14, 28].
For example, Soudry and Carmon [33] show that in overparameterized deep neural net-
works with ReLU-type activation functions, least-squares loss, fixed Gaussian dropout,
without bias terms and for almost every dataset, each differentiable local minimum is
also a global one. Their strategy is to show that if the gradient of the loss function
is zero, then 𝐺𝑒 = 0, where 𝑒 is a vector containing the errors on the data points
and 𝐺 is a matrix depending on the data points and the network’s activations. They
show that 𝐺 almost surely has full rank for sufficient overparameterization. However,
Gaussian dropout is typically not used. Safran and Shamir [28] find non-global minima
in non-overparameterized ReLU networks and observe empirically that as the number
of hidden units and data points increases, the probability of reaching a global minimum
can become very small. Yun et al. [39] construct examples where a ReLU network
has differentiable local minima that are not global minima. In this thesis, we show
conditions for convergence to non-global minima of this type.
Another line of work studies the dynamics of specific gradient-based optimization
algorithms on various (mostly overparameterized) network types. Saxe et al. [29]
analyze exact solutions of training deep linear networks with negative gradient flow
under certain conditions. For example, they assume that the input data (𝑥1, . . . , 𝑥𝑛) is
whitened (normalized) and the initialization satisfies an orthogonality condition. Many
works try to characterize the behavior of gradient descent on certain classes of neural
networks when the labels stem from a neural network of the same class and/or when
the inputs 𝑥𝑗 follow a Gaussian distribution, e.g. [9, 10, 23, 5, 30]. Li and Liang [22]
investigate training overparameterized two-layer ReLU networks without biases using
SGD on a cross-entropy classification loss with softmax output activation. Under certain
assumptions on the training data, they prove that the parameters found by SGD have
a low generalization error with high probability. However, they only optimize over the
first layer. Similar to this thesis, they fix the activation pattern of the ReLU activation
functions to the pattern at initialization inside the proof. They also find that in the
overparameterized setting, the network weights do not change much.
Perhaps the most related work to ours is a paper by Du et al. [11]. In this paper, the
authors consider two-layer overparameterized ReLU networks without biases and apply
gradient descent to optimize a least-squares loss. Similar to the present work, they
directly try to analyze the dynamics of gradient descent in function space and not only
in weight space. Another similarity is that they analyze the dynamics of the loss. Using
a Gramian-based approach, they show that the training loss converges to zero at a
certain rate. Like Li and Liang [22], they observe that most activation patterns do
not change and the network weights remain close to their initialization. Their gram
matrix 𝐻 exhibits some similarity to our matrices 𝐴 and 𝑀 . However, 𝐻 ∈ R𝑁×𝑁 ,
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whereas 𝐴, 𝑀 ∈ R4×4. They achieve 𝐻 ≻ 0 (i.e. 𝐻 symmetric and positive definite) via
overparameterization and requiring that no two points 𝑥𝑗 are parallel, while we achieve
𝐴, 𝑀 ≻ 0 by placing multiple points {𝑥𝑗 | 𝑗 ∈ 𝐽𝜎} into the same columns/rows of the
matrices. They use an induction to show that 𝐻 and 𝑊 do not change much and the
loss decays at a certain rate. This is similar to our induction showing that 𝐴 and 𝑊 do
not change much and 𝑣 decays at a certain rate. However, in their case, the induction
can continue when an activation pattern changes. Meanwhile, in our case, the matrix 𝐴
is initialized in a more special fashion and we depend on a two-phase loss decay with fast
and slow dynamics. In their setting, our matrix 𝐴 would be considerably simpler since
they initialize the second-layer weights as 𝑤𝑖 ∼ 𝒰{−1, 1} and they do not use biases.
The intuition behind their paper is also different than ours: In higher-dimensional
input spaces, the kinks are not points but hyperplanes of codimension one. Since Du
et al. [11] do not use biases, all of their hyperplanes pass through the origin. In the
overparameterized regime with their assumption of non-parallel points 𝑥𝑗, it is still
likely that these hyperplanes separate all data points so that they do not have to move
before the network can fit the data. In contrast, we use a one-dimensional input space,
where their assumption of no training points being parallel can only be satisfied if there
is at most one training point.
In another paper, Du et al. [8] consider overparameterized feedforward and residual
networks using certain smooth activation functions trained with least-squares loss. For
wide enough layers, they can use the condition on the activation functions to show that
a Gramian matrix 𝐻 is positive definite and its minimal eigenvalue yields a bound on
the speed of convergence.
Jacot et al. [21] investigate the behavior of negative gradient flow on neural networks
in the infinite-width limit. They observe that it relates to a kernel which they call
Neural Tangent Kernel. Allen-Zhu et al. [1] build on the work by Jacot et al. [21] and
show convergence of overparameterized deep networks trained with gradient descent or
stochastic gradient descent to a global optimum with high probability. They use an
initialization similar to He et al. [20] but they do not use biases. Since they append
a fixed component to their input vector, the associated weights can be interpreted as
biases, but these biases are initialized using a Gaussian distribution, while we initialize
biases to zero as suggested by He et al. [20]. Their result even holds if the last layer is
fixed, which addresses another phenomenon: In the overparameterized regime, learning
can also happen by just updating the last layer, which for the least-squares loss is
equivalent to a (convex) linear regression problem [27, 37]. In our scenario, we find that
mainly the last layer is updated since the other layer has higher initialization variance,
cf. Corollary 5.35 and Remark 5.36.
Arora et al. [2] consider overparameterized two-layer ReLU networks without biases
optimized using gradient descent on a least-squares loss. Building on the theory by Du
et al. [11], they find that the convergence speed of gradient descent is data-dependent
and provides a bound on the generalization error. We also find such a data-dependence
but with different interpretation and implications. A further similarity is explained in
Remark 5.46.
Some very recent works try to reduce the amount of overparameterization that is assumed
in proofs of convergence to a global optimum [12, 26, 40]. While our main results such
as Theorem 2.3 are stated for networks with 𝑛 = 𝑂(

√
𝑁), i.e. in the underparameterized
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regime, this assumption is only required because the intercept of the optimal linear
regression lines of the sampled dataset must be sufficiently close to zero. If one chooses
a fixed dataset where the optimal linear regression lines pass exactly through zero,
our negative result holds for an arbitrarily large amount of overparameterization as
discussed in Remark 5.41. This is consistent with other results on overparameterized
networks since, as discussed above, their assumptions are not satisfied in our scenario.
Moreover, since the neural networks basically only perform linear regression in our case
with high probability, they can also be seen as overparameterized for this task. This
“overparameterization” is important to the proof because it allows to apply concentration
inequalities that characterize likely properties of the initialization.
We also want to mention some other research which is related to this thesis. ReLU
kink movement appears to be rarely discussed in the literature, but some examples can
be found in papers by Maennel et al. [24] and Steinwart [34]. Steinwart [34] notices
experimentally that there are examples where kinks of ReLU networks fail to distribute
across training data points. He proposes to choose a data-dependent initialization of the
network such that the kinks are well-distributed among the data. Mücke and Steinwart
[25] prove that there exists a consistent and an inconsistent training method for ReLU
networks such that both are empirical risk minimizers (ERMs), i.e. find global minima
of the training loss. However, they use overparameterized neural networks and do not
investigate gradient descent methods. Finally, this work is related to initialization
methods for neural networks, which are discussed for example in Section 8.4 in [17]. A
popular initialization method called Xavier initialization was introduced by Glorot and
Bengio [15] and is constructed for tanh and similar activation functions. In another
celebrated work, He et al. [20] calculated different initialization variances for ReLU
activations. We use a generalized version of their initialization method in this thesis.
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4 Notation and Matrix Algebra Basics
In this section, we will introduce some notation that is used throughout the thesis. We
will also list some results about matrices, especially involving matrix norms, eigenvalues
and singular values, cf. e.g. [3, 16].
Definition 4.1. Let 𝐴, 𝐵 ∈ R𝑚×𝑚 and 𝐶 ∈ R𝑛×𝑚.

(1) We denote the sign of a real number 𝑥 ∈ R by

sgn(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
1 , if 𝑥 > 0
0 , if 𝑥 = 0
−1 , if 𝑥 < 0 .

(2) For a set 𝑆, we denote its indicator function by 1𝑆, i.e.

1𝑆(𝑥) =

⎧⎨⎩1 , if 𝑥 ∈ 𝑆

0 , otherwise.

(3) We write 𝐴 ≻ 𝐵 iff 𝐴, 𝐵 are symmetric and 𝐴−𝐵 is positive definite. Similarly, we
write 𝐴 ⪰ 𝐵 iff 𝐴, 𝐵 are symmetric and 𝐴 − 𝐵 is positive semidefinite. Especially,
𝐴 ≻ 0 iff 𝐴 is symmetric and positive definite, while 𝐴 ⪰ 0 iff 𝐴 is symmetric and
positive semidefinite. We define ⪯ and ≺ analogously.

(4) Let eig(𝐴) denote the set of eigenvalues of 𝐴. If eig(𝐴) ⊆ R, we define

𝜆max(𝐴) := max eig(𝐴)
𝜆min(𝐴) := min eig(𝐴) .

Especially, 𝜆max and 𝜆min are defined for symmetric matrices.

(5) It is well-known that each real rectangular matrix 𝐶 ∈ R𝑛×𝑚 has a singular value
decomposition 𝐶 = 𝑈𝐷𝑉 ⊤, where 𝑈 ∈ R𝑛×𝑛 and 𝑉 ∈ R𝑚×𝑚 are orthogonal
matrices and 𝐷 ∈ R𝑛×𝑚 is diagonal with nonnegative entries. The set of singular
values of 𝐶 is unique and defined as

{𝐷𝑖𝑖 | 1 ≤ 𝑖 ≤ min{𝑛, 𝑚}} , if 𝑛 = 𝑚

{𝐷𝑖𝑖 | 1 ≤ 𝑖 ≤ min{𝑛, 𝑚}} ∪ {0} , if 𝑛 ̸= 𝑚.

We use 𝜎max(𝐶) and 𝜎min(𝐶) to denote the maximum singular value and the
minimum singular value, respectively.

(6) A square matrix 𝐴 is invertible iff 𝜎min(𝐴) > 0. In this case, if 𝐴 = 𝑈𝐷𝑉 ⊤ is a
singular value decomposition of 𝐴, then 𝐴−1 = 𝑉 𝐷−1𝑈⊤. This shows 𝜎max(𝐴−1) =
𝜎min(𝐴)−1 and 𝜎min(𝐴−1) = 𝜎max(𝐴)−1. Similarly, if 𝐴 has real eigenvalues, then
𝜆max(𝐴−1) = 𝜆min(𝐴)−1 and 𝜆min(𝐴−1) = 𝜆max(𝐴)−1. If 𝐴 is symmetric, the singular
values are the absolute values of the eigenvalues. If 𝐴 ⪰ 0, then 𝐴 has a singular value
decomposition 𝐴 = 𝑈𝐷𝑈⊤ which is also an orthogonal diagonalization of 𝐴. We
can then define the (symmetric) square root of 𝐴 as 𝐴1/2 := 𝑈𝐷1/2𝑈⊤, where 𝐷1/2

contains the square roots of the entries of 𝐷. Note that 𝜆max(𝐴1/2) = 𝜆max(𝐴)1/2

and 𝜆min(𝐴1/2) = 𝜆min(𝐴)1/2.
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(7) As matrix norms, we use the Frobenius norm as well as the induced 2- and ∞-norms:

‖𝐶‖𝐹 =
⎛⎝∑︁

𝑖,𝑗

𝐶2
𝑖,𝑗

⎞⎠1/2

‖𝐶‖2 = sup
𝑥 ̸=0

‖𝐶𝑥‖2

‖𝑥‖2
= 𝜎max(𝐶)

‖𝐶‖∞ = sup
𝑥 ̸=0

‖𝐶𝑥‖∞

‖𝑥‖∞
= max

𝑖

∑︁
𝑗

|𝐶𝑖𝑗| .

These satisfy the following inequalities (cf. e.g. Section 2.3 in [16]):

‖𝐶‖2 ≤ ‖𝐶‖𝐹 ≤
√

𝑚‖𝐶‖2
1√
𝑚

‖𝐶‖∞ ≤ ‖𝐶‖2 ≤
√

𝑛‖𝐶‖∞ .

(8) We define the condition number of an invertible matrix 𝐴 ∈ R𝑚×𝑚 by

cond(𝐴) := ‖𝐴‖2 · ‖𝐴−1‖2 = 𝜎max(𝐴)𝜎max(𝐴−1) = 𝜎max(𝐴)
𝜎min(𝐴) .

If 𝐴 ≻ 0, then

cond(𝐴) = 𝜆max(𝐴)
𝜆min(𝐴) .

(9) We occasionally use element-wise operations on matrices. For example, |𝐴| is the
matrix containing as entries the absolute values of the entries of 𝐴 and sup𝑠 𝐴(𝑠)
consists of the element-wise suprema. Also, 𝐴 ≤ 𝐵 means that 𝐴𝑖𝑗 ≤ 𝐵𝑖𝑗 for all
𝑖, 𝑗. J

There are some more facts about matrices that we will use during some proofs. We
show some typical arguments here:

∙ We will use the fact that for symmetric 𝐴,

𝜆max(𝐴) = sup
‖𝑣‖2=1

𝑣⊤𝐴𝑣 = ‖𝐴‖2, 𝜆min(𝐴) = inf
‖𝑣‖2=1

𝑣⊤𝐴𝑣 ,

which is a special case of the Courant-Fischer-Weyl min-max principle (e.g.
Corollary III.1.2 in [3]). This shows 𝐴 ⪰ 0 ⇔ 𝜆min(𝐴) ≥ 0. Moreover, for
symmetric 𝐴, 𝐵 ∈ R𝑚×𝑚, we have

𝐴 ⪰ 𝐵 ⇔ ∀𝑣 ∈ R𝑚 : 𝑣⊤𝐴𝑣 ≥ 𝑣⊤𝐵𝑣 .

For example, for 𝐴, 𝑀 ⪰ 0 and 𝑣 ∈ R𝑚,

𝑣⊤𝑀1/2𝐴𝑀1/2𝑣 = (𝑀1/2𝑣)⊤𝐴(𝑀1/2𝑣)
≤ 𝜆max(𝐴)(𝑀1/2𝑣)⊤(𝑀1/2𝑣)
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= 𝜆max(𝐴)𝑣⊤𝑀𝑣

≤ 𝜆max(𝐴)𝜆max(𝑀)𝑣⊤𝑣 .

We can thus conclude that 𝜆max(𝑀1/2𝐴𝑀1/2) ≤ 𝜆max(𝐴)𝜆max(𝑀). Moreover,
𝑀1/2𝐴𝑀1/2 ⪯ 𝜆max(𝐴)𝑀 ⪯ 𝜆max(𝐴)𝜆max(𝑀)𝐼, where 𝐼 is the identity matrix.
For 𝐴, 𝐵 ⪰ 0, we can also use such an argument to show that

𝜆max(𝐴 + 𝐵) ≤ 𝜆max(𝐴) + 𝜆max(𝐵)
𝜆min(𝐴 + 𝐵) ≥ 𝜆min(𝐴) + 𝜆min(𝐵) .

∙ If

𝑀 =
(︃

𝑀11 𝑀12
𝑀⊤

12 𝑀22

)︃
⪰ 0 ,

we know that

𝑥⊤𝑀11𝑥 =
(︃

𝑥
0

)︃⊤

𝑀

(︃
𝑥
0

)︃
≥ 𝜆min(𝑀)‖𝑥‖2

2 ,

hence 𝑀11 ⪰ 0 with 𝜆min(𝑀11) ≥ 𝜆min(𝑀). Similarly, 𝜆max(𝑀11) ≤ 𝜆max(𝑀) and
analogous identities hold for 𝑀22. A similar argument also shows that(︃

𝑀1
𝑀2

)︃
≻ 0 iff 𝑀1, 𝑀2 ≻ 0 .

If 𝑀1 = 𝑈1𝐷1𝑉
⊤

1 and 𝑀2 = 𝑈2𝐷2𝑉
⊤

2 are singular value decompositions, then

𝑀 :=
(︃

𝑀1
𝑀2

)︃
=
(︃

𝑈1
𝑈2

)︃(︃
𝐷1

𝐷2

)︃(︃
𝑉1

𝑉2

)︃⊤

is a singular value decomposition. Hence 𝜎max(𝑀) = max{𝜎max(𝑀1), 𝜎max(𝑀2)}.

∙ We have

𝜎min(𝐶) = inf
‖𝑣‖2=1

‖𝐶𝑣‖2

and hence for 𝐴 ⪰ 0,

𝜆max(𝐶⊤𝐴𝐶) = sup
‖𝑣‖2=1

𝑣⊤𝐶⊤𝐴𝐶𝑣 ≤ 𝜎max(𝐶)2 sup
‖𝑤‖2=1

𝑤⊤𝐴𝑤 = 𝜎max(𝐶)2𝜆max(𝐴)

𝜆min(𝐶⊤𝐴𝐶) = inf
‖𝑣‖2=1

𝑣⊤𝐶⊤𝐴𝐶𝑣 ≥ 𝜎min(𝐶)2 inf
‖𝑤‖2=1

𝑤⊤𝐴𝑤 = 𝜎min(𝐶)2𝜆min(𝐴) .

∙ If 𝐶 is a submatrix of 𝐶 (with some columns and/or rows removed), then there exist
orthogonal projections 𝑃, 𝑄 with 𝐶 = 𝑃𝐶𝑄⊤ and hence ‖𝐶‖2 ≤ ‖𝑃‖2‖𝐶‖2‖𝑄‖2 ≤
‖𝐶‖2.
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5 Theory
In this section, the main inconsistency results are derived, although some proofs are
deferred to the appendix.

5.1 System Decomposition

First, we are concerned with analyzing the quantities from Definition 2.1 to obtain new
insights. To this end, we want to “linearize” 𝑓𝑊 . If 𝑎𝑖𝑥 + 𝑏𝑖 ̸= 0, our choice of 𝜙 satisfies

𝜙(𝑎𝑖𝑥 + 𝑏𝑖) = 𝜙′(sgn(𝑎𝑖𝑥 + 𝑏𝑖)) · (𝑎𝑖𝑥 + 𝑏𝑖) ,

where 𝜙′(sgn(𝑎𝑖𝑥+ 𝑏𝑖)) remains constant for small changes of 𝑊 and 𝑥. Moreover, if the
weight vector 𝑊 and the dataset 𝐷 satisfy 𝑎𝑖, 𝑥𝑗 ̸= 0 and 𝑏𝑖 = 0 for all 𝑖, 𝑗, which is a
typical case for the initial weight vector 𝑊 = 𝑊0, then sgn(𝑎𝑖𝑥𝑗 + 𝑏𝑖) = sgn(𝑎𝑖) sgn(𝑥𝑗).
This motivates the following definition:

Definition 5.1 (Sign patterns). Let 𝐼 := {1, . . . , 𝑛} and 𝐽 := {1, . . . , 𝑁}. A given
weight vector 𝑊 and a dataset 𝐷 with 𝑎𝑖, 𝑥𝑗 ̸= 0 for all 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 induce partitions
𝐼 = 𝐼1(𝑊 ) ∪ 𝐼−1(𝑊 ), 𝐽 = 𝐽1(𝑊 ) ∪ 𝐽−1(𝑊 ) and a sign vector 𝜏(𝑊 ) ∈ R𝑛 via

𝜏𝑖(𝑊 ) := sgn(𝑎𝑖)
𝐼𝜎(𝑊 ) := {𝑖 ∈ 𝐼 | sgn(𝑎𝑖) = 𝜎}
𝐽𝜎(𝐷) := {𝑗 ∈ 𝐽 | sgn(𝑥𝑗) = 𝜎}

for 𝜎 ∈ {−1, 1}. J

Now, we are able to consider “linearized” versions of 𝑓𝑊 and 𝐿𝐷:

Definition 5.2 (Linearization of the problem). For a given (fixed) sign vector 𝜏 ∈
{−1, 1}𝑛, corresponding partitions 𝐼𝜎 = {𝑖 ∈ 𝐼 | 𝜏𝑖 = 𝜎} and a sign 𝜎 ∈ {−1, 1}, we
define the modified neural net function

𝑓𝑊,𝜏,𝜎(𝑥) := 𝑐 +
∑︁
𝑖∈𝐼

𝑤𝑖𝜙
′(𝜏𝑖 · 𝜎)(𝑎𝑖𝑥 + 𝑏𝑖) = 𝑐 +

∑︁
𝑖∈𝐼𝜎

𝑤𝑖(𝑎𝑖𝑥 + 𝑏𝑖) + 𝛼
∑︁

𝑖∈𝐼−𝜎

𝑤𝑖(𝑎𝑖𝑥 + 𝑏𝑖)

and the modified loss

𝐿𝐷,𝜏 (𝑊 ) := 1
2𝑁

∑︁
𝑗∈𝐽

(𝑦𝑗 − 𝑓𝑊,𝜏,sgn(𝑥𝑗)(𝑥𝑗))2 . J

Note that while 𝑓𝑊,𝜏,𝜎(𝑥) is linear in 𝑥, it is not linear in 𝑊 . Instead, 𝑓𝑊,𝜏,𝜎(𝑥) is
polynomial in 𝑊 , containing up to second-order terms. Hence, 𝐿𝐷,𝜏 (𝑊 ) contains up to
fourth-order terms in 𝑊 . Unlike 𝐿𝐷, 𝐿𝐷,𝜏 is differentiable everywhere. We obtain the
derivatives

𝜕𝐿𝐷,𝜏

𝜕𝑎𝑖

(𝑊 ) = 1
𝑁

∑︁
𝑗∈𝐽

(𝑓𝑊,𝜏,sgn(𝑥𝑗)(𝑥𝑗) − 𝑦𝑗)𝜙′(𝜏𝑖 sgn(𝑥𝑗))𝑤𝑖𝑥𝑗 (5.1)

𝜕𝐿𝐷,𝜏

𝜕𝑏𝑖

(𝑊 ) = 1
𝑁

∑︁
𝑗∈𝐽

(𝑓𝑊,𝜏,sgn(𝑥𝑗)(𝑥𝑗) − 𝑦𝑗)𝜙′(𝜏𝑖 sgn(𝑥𝑗))𝑤𝑖
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𝜕𝐿𝐷,𝜏

𝜕𝑤𝑖

(𝑊 ) = 1
𝑁

∑︁
𝑗∈𝐽

(𝑓𝑊,𝜏,sgn(𝑥𝑗)(𝑥𝑗) − 𝑦𝑗)𝜙′(𝜏𝑖 sgn(𝑥𝑗))(𝑎𝑖𝑥𝑗 + 𝑏𝑖)

𝜕𝐿𝐷,𝜏

𝜕𝑐
(𝑊 ) = 1

𝑁

∑︁
𝑗∈𝐽

(𝑓𝑊,𝜏,sgn(𝑥𝑗)(𝑥𝑗) − 𝑦𝑗) .

Now, we consider gradient descent for a fixed sign vector 𝜏 . We will later choose
𝜏 := 𝜏(𝑊0).

Definition 5.3 (Gradient descent). For a given initial vector 𝑊0 and step size ℎ > 0,
we recursively define

𝑊𝑘+1 := 𝑊𝑘 − ℎ∇𝐿𝐷,𝜏 (𝑊𝑘) .

Moreover, we write 𝑊𝑘 = (𝑎·,𝑘, 𝑏·,𝑘, 𝑐𝑘, 𝑤·,𝑘) and we may implicitly omit the index 𝑘
when deriving identities that hold for each 𝑘 ∈ N0. For any derived quantity 𝜉 := 𝑔(𝑊 ),
define

𝛿𝜉 := 𝛿𝑔(𝑊 ) := 𝑔(𝑊 − ℎ∇𝐿𝐷,𝜏 (𝑊 )) − 𝑔(𝑊 )

such that

𝜉𝑘+1 = 𝑔(𝑊𝑘+1) = 𝑔(𝑊𝑘) + (𝑔(𝑊𝑘+1) − 𝑔(𝑊𝑘)) = 𝜉𝑘 + 𝛿𝜉𝑘

and hence

𝛿𝑔(𝑊 ) = 𝑔(𝑊 + 𝛿𝑊 ) − 𝑔(𝑊 ) . J

We can now write iteration rules differently: Instead of

𝑊𝑘+1 = 𝑊𝑘 − ℎ∇𝐿𝐷,𝜏 (𝑊𝑘) ,

we will use the more convenient notation

𝛿𝑊 = −ℎ∇𝐿𝐷,𝜏 (𝑊 )

which suppresses the iteration index 𝑘 and reads more like the negative gradient flow
ODE

𝑊̇ = −ℎ∇𝐿𝐷,𝜏 (𝑊 ) .

Lemma 5.4 (Differential calculus for 𝛿). Let 𝑔 : R3𝑛+1 → R𝑚 for some 𝑛, 𝑚 ≥ 1.

(a) If 𝑔 is linear, then 𝛿𝑔(𝑊 ) = 𝑔(𝛿𝑊 ) = −ℎ𝑔(∇𝐿𝐷,𝜏 (𝑊 )).

(b) If 𝑔 is constant, then 𝛿𝑔 = 0.

(c) If 𝑔1, 𝑔2 : R3𝑛+1 → R are linear, then

𝛿(𝑔1 · 𝑔2) = (𝛿𝑔1) · 𝑔2 + 𝑔1 · (𝛿𝑔2) + (𝛿𝑔1) · (𝛿𝑔2) .
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(d) If 𝑔1, 𝑔2 : R3𝑛+1 → R𝑚, then

𝛿(𝑔1 + 𝑔2) = 𝛿𝑔1 + 𝛿𝑔2 .

(e) If 𝑔2 : R3𝑛+1 → R𝑚, 𝑔1 : R𝑚 → R𝑚′ and 𝑔1 is linear, then

𝛿(𝑔1 ∘ 𝑔2) = 𝑔1 ∘ (𝛿𝑔2) .

(f) If 𝑔1, . . . , 𝑔𝑚 : R3𝑛+1 → R, then

𝛿

⎛⎜⎜⎝
𝑔1
...

𝑔𝑚

⎞⎟⎟⎠ =

⎛⎜⎜⎝
𝛿𝑔1
...

𝛿𝑔𝑚

⎞⎟⎟⎠ .

Proof.

(a) If 𝑔 is linear, then

𝛿𝑔(𝑊 ) = 𝑔(𝑊 + 𝛿𝑊 ) − 𝑔(𝑊 ) = 𝑔(𝛿𝑊 ) = 𝑔(−ℎ∇𝐿𝐷,𝜏 (𝑊 )) = −ℎ𝑔(∇𝐿𝐷,𝜏 (𝑊 )) .

(b) Trivial.

(c) In this case,

𝛿𝑔(𝑊 ) = 𝑔(𝑊 + 𝛿𝑊 ) − 𝑔(𝑊 )
= 𝑔1(𝑊 )𝑔2(𝛿𝑊 ) + 𝑔1(𝛿𝑊 )𝑔2(𝑊 )

+ 𝑔1(𝛿𝑊 )𝑔2(𝛿𝑊 )
(a)= 𝛿𝑔1(𝑊 )𝑔2(𝑊 ) + 𝑔1(𝑊 )𝛿𝑔2(𝑊 ) + 𝛿𝑔1(𝑊 )𝛿𝑔2(𝑊 ) .

(d) We have

𝛿(𝑔1 + 𝑔2)(𝑊 ) = (𝑔1 + 𝑔2)(𝑊 + 𝛿𝑊 ) − (𝑔1 + 𝑔2)(𝑊 )
= (𝑔1(𝑊 + 𝛿𝑊 ) − 𝑔1(𝑊 )) + (𝑔2(𝑊 + 𝛿𝑊 ) − 𝑔2(𝑊 ))
= 𝛿𝑔1(𝑊 ) + 𝛿𝑔2(𝑊 ) .

(e) For 𝑊 ∈ R3𝑛+1,

𝛿(𝑔1 ∘ 𝑔2)(𝑊 ) = 𝑔1(𝑔2(𝑊 + 𝛿𝑊 )) − 𝑔1(𝑔2(𝑊 )) = 𝑔1(𝑔2(𝑊 + 𝛿𝑊 ) − 𝑔2(𝑊 ))
= 𝑔1(𝛿𝑔2(𝑊 )) .

(f) This follows from⎛⎜⎜⎝
𝑔1
...

𝑔𝑚

⎞⎟⎟⎠ (𝑊 + 𝛿𝑊 ) −

⎛⎜⎜⎝
𝑔1
...

𝑔𝑚

⎞⎟⎟⎠ (𝑊 ) =

⎛⎜⎜⎝
𝑔1(𝑊 + 𝛿𝑊 ) − 𝑔1(𝑊 )

...
𝑔𝑚(𝑊 + 𝛿𝑊 ) − 𝑔1(𝑊 )

⎞⎟⎟⎠ .
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The following definition introduces essential terms that will be used throughout this
thesis.

Definition 5.5 (Derived quantities).

(a) For 𝜎 ∈ {−1, 1}, we write Σ𝜎,𝑎2 := ∑︀
𝑖∈𝐼𝜎

𝑎2
𝑖 , Σ𝜎,𝑤𝑎 := ∑︀

𝑖∈𝐼𝜎
𝑤𝑖𝑎𝑖 and so on.

(b) Let 𝑘1 < . . . < 𝑘|𝐽𝜎 | such that 𝐽𝜎 = {𝑘1, . . . , 𝑘|𝐽𝜎 |}. Define

𝑋𝜎 :=

⎛⎜⎜⎝
𝑥𝑘1 1
... ...

𝑥𝑘|𝐽𝜎 | 1

⎞⎟⎟⎠ ∈ R|𝐽𝜎 |×2, 𝑌𝜎 :=

⎛⎜⎜⎝
𝑦𝑘1
...

𝑦𝑘|𝐽𝜎 |

⎞⎟⎟⎠ ∈ R|𝐽𝜎 |,

𝑀𝜎 := 1
𝑁

𝑋⊤
𝜎 𝑋𝜎 = 1

𝑁

(︃∑︀
𝑗∈𝐽𝜎

𝑥2
𝑗

∑︀
𝑗∈𝐽𝜎

𝑥𝑗∑︀
𝑗∈𝐽𝜎

𝑥𝑗
∑︀

𝑗∈𝐽𝜎
1

)︃
∈ R2×2 .

Since 𝑀𝜎 = 1
𝑁

𝑋⊤
𝜎 𝑋𝜎, we have 𝑀𝜎 ⪰ 0. Moreover, if |{𝑥𝑗 | 𝑗 ∈ 𝐽𝜎}| ≥ 2, then

rank(𝑋𝜎) = 2 and hence 𝑀𝜎 is invertible, which implies 𝑀𝜎 ≻ 0.

(c) The matrix 𝑀𝜎 helps in relating different interesting quantities. For 𝑀𝜎 ≻ 0, let

𝑣𝜎 :=
(︃

𝑝𝜎

𝑞𝜎

)︃
:=
(︃

Σ𝜎,𝑤𝑎

Σ𝜎,𝑤𝑏

)︃
𝑣𝜎 :=

(︃
𝑝𝜎

𝑞𝜎

)︃
:=
(︃

𝑝𝜎 + 𝛼𝑝−𝜎

𝑐 + 𝑞𝜎 + 𝛼𝑞−𝜎

)︃

𝑢̂𝜎 :=
(︃

𝑟𝜎

𝑠𝜎

)︃
:=
(︃

− 1
𝑁

∑︀
𝑗∈𝐽𝜎

(𝑓𝑊,𝜏,𝜎(𝑥𝑗) − 𝑦𝑗)𝑥𝑗

− 1
𝑁

∑︀
𝑗∈𝐽𝜎

(𝑓𝑊,𝜏,𝜎(𝑥𝑗) − 𝑦𝑗)

)︃
𝑢𝜎 :=

(︃
𝑟𝜎

𝑠𝜎

)︃
:=
(︃

𝑟𝜎 + 𝛼𝑟−𝜎

𝑠𝜎 + 𝛼𝑠−𝜎

)︃

and

𝑢̂0
𝜎 := 1

𝑁
𝑋⊤

𝜎 𝑌𝜎, 𝑣opt
𝜎 := 𝑀−1

𝜎 𝑢̂0
𝜎, 𝑣𝜎 := 𝑣𝜎 − 𝑣opt

𝜎 .

We will show in Lemma 5.8 that 𝑢̂𝜎 = −𝑀𝜎𝑣𝜎. The 𝑢-vectors are interesting since
their components can be used to simplify 𝛿𝑊 . As we will see in Lemma 5.8, 𝑣𝜎

is interesting since 𝑓𝑊,𝜏,𝜎(𝑥) = 𝑝𝜎𝑥 + 𝑞𝜎 for 𝑗 ∈ 𝐽𝜎, 𝑥 ∈ R (cf. Figure 1b). The
notation of the different variants is motivated as follows: Expressions with a hat
such as 𝑣𝜎 and 𝑢̂𝜎 only sum over one sign 𝜎. We will prove in Proposition 5.10
that 𝐿𝐷,𝜏 is minimal iff 𝑣𝜎 = 0 for 𝜎 ∈ {−1, 1}. Hence, in the optimum 𝑣𝜎 = 0,
we have 𝑣𝜎 = 𝑣opt

𝜎 = (𝑋⊤
𝜎 𝑋𝜎)−1𝑋⊤

𝜎 𝑌𝜎, which is a vector containing the slope and
intercept of the optimal least-squares regression line through {(𝑥𝑗, 𝑦𝑗) | 𝑗 ∈ 𝐽𝜎} (see
e.g. Section 5.1.4 in [17]).
We will also use the matrices

𝐺w
𝜎 :=

(︃
Σ𝜎,𝑤2 0

0 Σ𝜎,𝑤2

)︃
, 𝐺ab

𝜎 :=
(︃

Σ𝜎,𝑎2 Σ𝜎,𝑎𝑏

Σ𝜎,𝑎𝑏 Σ𝜎,𝑏2

)︃
, 𝐺wab

𝜎 := (𝑟𝜎Σ𝜎,𝑤𝑎 + 𝑠𝜎Σ𝜎,𝑤𝑏)𝐼2 ,

where 𝐼2 is the 2 × 2 identity matrix.

(d) For any two vectors 𝑧1, 𝑧−1 ∈ R2 defined in step (c) and any two matrices 𝐹1, 𝐹−1 ∈
R2×2 defined in step (b), we define

𝑧 :=
(︃

𝑧1
𝑧−1

)︃
∈ R4, 𝐹 :=

(︃
𝐹1

𝐹−1

)︃
∈ R4×4 .
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For example, this means that

𝑢̃ =
(︃

𝑢1
𝑢−1

)︃
=

⎛⎜⎜⎜⎝
𝑟1
𝑠1
𝑟−1
𝑠−1

⎞⎟⎟⎟⎠ .

In addition, we define new matrices

𝐶 :=

⎛⎜⎜⎜⎝
0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 1

⎞⎟⎟⎟⎠ , 𝐵̃ :=

⎛⎜⎜⎜⎝
1 0 𝛼 0
0 1 0 𝛼
𝛼 0 1 0
0 𝛼 0 1

⎞⎟⎟⎟⎠ =
(︃

𝐼2 𝛼𝐼2
𝛼𝐼2 𝐼2

)︃
,

𝐴 := 𝐵̃(𝐺̃w + 𝐺̃ab + ℎ𝐺̃wab)𝐵̃ + 𝐶 .

We will prove in Proposition 5.9 that 𝛿𝑣 = ℎ𝐴˜̂𝑢 = −ℎ𝐴𝑀̃𝑣.

(e) For any vector 𝑧 ∈ R4 and any matrix 𝐹 ∈ R4×4 defined in step (d), we define

𝑧 := 𝑃𝑧, 𝐹 := 𝑃𝐹𝑃 −1 = 𝑃𝐹𝑃 ,

where 𝑃 = 𝑃 ⊤ = 𝑃 −1 is the permutation matrix

𝑃 :=

⎛⎜⎜⎜⎝
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎟⎠ .

For example, this yields

𝑢 = 𝑃𝑢̃ =

⎛⎜⎜⎜⎝
𝑟1
𝑟−1
𝑠1
𝑠−1

⎞⎟⎟⎟⎠ , 𝐶 =

⎛⎜⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 1 1
0 0 1 1

⎞⎟⎟⎟⎠ , 𝐵 =

⎛⎜⎜⎜⎝
1 𝛼
𝛼 1

1 𝛼
𝛼 1

⎞⎟⎟⎟⎠ =:
(︃

𝐵̂

𝐵̂

)︃
.

We see that this change of basis by 𝑃 makes the matrices 𝐵̃ and 𝐶 block-diagonal
while it destroys the block-diagonal structure of 𝐺̃ab and 𝑀̃ . We will see in
Lemma 5.27 that 𝐺ab is still (block-)diagonal at initialization. We will use the tilde
quantities as an intermediate step to derive equations for the non-tilde quantities,
since the latter will be more suitable for us to analyze eigenvectors and eigenvalues.
Elementary arguments show that

(𝑀1 ≻ 0 and 𝑀−1 ≻ 0) ⇔ 𝑀̃ ≻ 0 ⇔ 𝑀 = 𝑃𝑀̃𝑃 ⊤ ≻ 0 .

Therefore, we need to require 𝑀 ≻ 0 so that 𝑣opt and 𝑣 can be defined.

(f) Many of the quantities above depend on the dataset 𝐷, which we may highlight
later by indexing them with 𝐷. For example, we may write 𝑢𝐷 instead of 𝑢.
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(g) Finally, let

𝜃𝑖 :=

⎛⎜⎝𝑎𝑖

𝑏𝑖

𝑤𝑖

⎞⎟⎠ , Σ𝜎 :=
∑︁
𝑖∈𝐼𝜎

𝜃𝑖𝜃
⊤
𝑖 =

⎛⎜⎝Σ𝜎,𝑎2 Σ𝜎,𝑎𝑏 Σ𝜎,𝑤𝑎

Σ𝜎,𝑎𝑏 Σ𝜎,𝑏2 Σ𝜎,𝑤𝑏

Σ𝜎,𝑤𝑎 Σ𝜎,𝑤𝑏 Σ𝜎,𝑤2

⎞⎟⎠ , 𝑄𝜎 :=

⎛⎜⎝ 0 0 𝑟𝜎

0 0 𝑠𝜎

𝑟𝜎 𝑠𝜎 0

⎞⎟⎠ .

These quantities will be analyzed in the next proposition. J

Proposition 5.6. For 𝑖 ∈ 𝐼𝜎, 𝜎 ∈ {−1, 1}, we have

𝛿𝜃𝑖 = ℎ𝑄𝜎𝜃𝑖

𝛿𝑐 = ℎ(𝑠1 + 𝑠−1)
𝛿Σ𝜎 = ℎ𝑄𝜎Σ𝜎 + ℎΣ𝜎𝑄𝜎 + ℎ2𝑄𝜎Σ𝜎𝑄𝜎

and the latter identity can also be written as

Σ𝜎,𝑘+1 = (𝐼 + ℎ𝑄𝜎,𝑘)Σ𝜎,𝑘(𝐼 + ℎ𝑄𝜎,𝑘) .

Proof. The first two equations can also be written as

𝛿𝑎𝑖 = ℎ𝑟𝜎𝑤𝑖

𝛿𝑏𝑖 = ℎ𝑠𝜎𝑤𝑖

𝛿𝑤𝑖 = ℎ𝑟𝜎𝑎𝑖 + ℎ𝑠𝜎𝑏𝑖

𝛿𝑐 = ℎ(𝑠1 + 𝑠−1) .

We will prove the first of these equations, the other ones follow similarly. Set 𝑔(𝑊 ) := 𝑎𝑖.
With Lemma 5.4 (a), we obtain

𝛿𝑎𝑖 = 𝛿𝑔(𝑊 ) = −ℎ𝑔(∇𝐿𝐷,𝜏 (𝑊 )) = −ℎ
𝜕𝐿𝐷,𝜏

𝜕𝑎𝑖

(𝑊 )

(5.1)= −ℎ
1
𝑁

∑︁
𝑗∈𝐽

(𝑓𝑊,𝜏,sgn(𝑥𝑗)(𝑥𝑗) − 𝑦𝑗)𝜙′(𝜏𝑖 · sgn(𝑥𝑗))𝑤𝑖𝑥𝑗

= −ℎ
1
𝑁

⎛⎝∑︁
𝑗∈𝐽𝜎

(𝑓𝑊,𝜏,𝜎(𝑥𝑗) − 𝑦𝑗)𝑤𝑖𝑥𝑗 + 𝛼
∑︁

𝑗∈𝐽−𝜎

(𝑓𝑊,𝜏,−𝜎(𝑥𝑗) − 𝑦𝑗)𝑤𝑖𝑥𝑗

⎞⎠
= ℎ(𝑟𝜎 + 𝛼𝑟−𝜎)𝑤𝑖 = ℎ𝑟𝜎𝑤𝑖 .

Now for Σ𝜎: Since 𝑄𝜎 = 𝑄⊤
𝜎 , we have

Σ𝜎,𝑘+1 =
∑︁
𝑖∈𝐼𝜎

𝜃𝑖,𝑘+1𝜃
⊤
𝑖,𝑘+1 =

∑︁
𝑖∈𝐼𝜎

(𝐼 + ℎ𝑄𝜎,𝑘)𝜃𝑖,𝑘𝜃⊤
𝑖,𝑘(𝐼 + ℎ𝑄𝜎,𝑘)⊤

= (𝐼 + ℎ𝑄𝜎,𝑘)
⎛⎝∑︁

𝑖∈𝐼𝜎

𝜃𝑖,𝑘𝜃⊤
𝑖,𝑘

⎞⎠ (𝐼 + ℎ𝑄𝜎,𝑘)⊤ = (𝐼 + ℎ𝑄𝜎,𝑘)Σ𝜎,𝑘(𝐼 + ℎ𝑄𝜎,𝑘) ,

which means that

𝛿Σ𝑘 = Σ𝑘+1 − Σ𝑘 = ℎ𝑄𝜎,𝑘Σ𝜎,𝑘 + ℎΣ𝜎,𝑘𝑄𝜎,𝑘 + ℎ2𝑄𝜎,𝑘Σ𝜎,𝑘𝑄𝜎,𝑘 .
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Remark 5.7. The term ℎ2𝑄𝜎Σ𝜎𝑄⊤
𝜎 in Proposition 5.6 corresponds to the term 𝛿𝑔1 · 𝛿𝑔2

in the “product rule” for 𝛿 (Lemma 5.4 (c)). It vanishes when using negative gradient
flow. We will see that for small enough ℎ, this term does not affect the qualitative
behavior of gradient descent. J

The following lemma shows relations between several quantities from Definition 5.5.

Lemma 5.8. Let 𝑀 ≻ 0. For 𝜎 ∈ {−1, 1} and 𝑥 ∈ R, we have

𝑓𝑊,𝜏,𝜎(𝑥) = 𝑝𝜎𝑥 + 𝑞𝜎

𝑢̂𝜎 = −𝑀𝜎𝑣𝜎 .

Moreover,

𝑢̃ = 𝐵̃ ˜̂𝑢, ˜̂𝑢 = −𝑀̃𝑣, 𝑣 = 𝐵̃ ˜̂𝑣 +

⎛⎜⎜⎜⎝
0
𝑐
0
𝑐

⎞⎟⎟⎟⎠ .

Proof. For 𝑥 ∈ R,

𝑓𝑊,𝜏,𝜎(𝑥) = 𝑐 +
∑︁
𝑖∈𝐼

𝑤𝑖𝜙
′(𝜏𝑖𝜎)(𝑎𝑖𝑥 + 𝑏𝑖)

= 𝑐 +
∑︁
𝑖∈𝐼𝜎

(𝑤𝑖𝑎𝑖𝑥 + 𝑤𝑖𝑏𝑖) + 𝛼
∑︁

𝑖∈𝐼−𝜎

(𝑤𝑖𝑎𝑖𝑥 + 𝑤𝑖𝑏𝑖) = 𝑝𝜎𝑥 + 𝑞𝜎 .

Therefore,

𝑢̂𝜎 =
(︃

𝑟𝜎

𝑠𝜎

)︃
= − 1

𝑁

(︃∑︀
𝑗∈𝐽𝜎

(𝑓𝑊,𝜏,𝜎(𝑥𝑗) − 𝑦𝑗)𝑥𝑗∑︀
𝑗∈𝐽𝜎

(𝑓𝑊,𝜏,𝜎(𝑥𝑗) − 𝑦𝑗)

)︃

= − 1
𝑁

(︃∑︀
𝑗∈𝐽𝜎

(𝑝𝜎𝑥𝑗 + 𝑞𝜎 − 𝑦𝑗)𝑥𝑗∑︀
𝑗∈𝐽𝜎

(𝑝𝜎𝑥𝑗 + 𝑞𝜎 − 𝑦𝑗)

)︃

= − 1
𝑁

(︃
𝑝𝜎
∑︀

𝑗∈𝐽𝜎
𝑥2

𝑗 + 𝑞𝜎
∑︀

𝑗∈𝐽𝜎
𝑥𝑗 −∑︀

𝑗∈𝐽𝜎
𝑥𝑗𝑦𝑗

𝑝𝜎
∑︀

𝑗∈𝐽𝜎
𝑥𝑗 + 𝑞𝜎

∑︀
𝑗∈𝐽𝜎

1 −∑︀
𝑗∈𝐽𝜎

𝑦𝑗

)︃

= −𝑀𝜎

(︃
𝑝𝜎

𝑞𝜎

)︃
+ 1

𝑁
𝑋⊤

𝜎 𝑌𝜎 = −𝑀𝜎𝑣𝜎 + 𝑢̂0
𝜎 = −𝑀𝜎(𝑣𝜎 − 𝑣opt

𝜎 ) = −𝑀𝜎𝑣𝜎 .

We now obtain

𝑢̃ =

⎛⎜⎜⎜⎝
𝑟1
𝑠1
𝑟−1
𝑠−1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
𝑟1 + 𝛼𝑟−1
𝑠1 + 𝛼𝑠−1
𝑟−1 + 𝛼𝑟1
𝑠−1 + 𝛼𝑠1

⎞⎟⎟⎟⎠ = 𝐵̃ ˜̂𝑢

˜̂𝑢 =
(︃

𝑢̂1
𝑢̂−1

)︃
=
(︃

𝑀1
𝑀−1

)︃(︃
𝑣1
𝑣−1

)︃
= 𝑀̃𝑣

𝑣 =

⎛⎜⎜⎜⎝
𝑝1
𝑞1

𝑝−1
𝑞−1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
𝑝1 + 𝛼𝑝−1

𝑐 + 𝑞1 + 𝛼𝑞−1
𝑝−1 + 𝛼𝑝1

𝑐 + 𝑞−1 + 𝛼𝑞1

⎞⎟⎟⎟⎠ = 𝐵̃ ˜̂𝑣 +

⎛⎜⎜⎜⎝
0
𝑐
0
𝑐

⎞⎟⎟⎟⎠ .
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This enables us to compute another iteration equation:

Proposition 5.9. Let 𝑀 ≻ 0. Then,

𝛿𝑣 = −ℎ𝐴𝑀̃𝑣 = −ℎ(𝐵̃(𝐺̃w + 𝐺̃ab + ℎ𝐺̃wab)𝐵̃ + 𝐶)𝑀̃𝑣

𝛿𝑣 = −ℎ𝐴𝑀𝑣 = −ℎ(𝐵(𝐺w + 𝐺ab + ℎ𝐺wab)𝐵 + 𝐶)𝑀𝑣 .

Hence,

𝑣𝑘+1 = 𝑣𝑘 + 𝛿𝑣𝑘 = (𝐼 − ℎ𝐴𝑘𝑀)𝑣𝑘 .

Proof. Consider

𝑣𝜎 =
(︃

𝑝𝜎

𝑞𝜎

)︃
=
(︃

Σ𝜎,𝑤𝑎

Σ𝜎,𝑤𝑏

)︃
=
(︁
𝐼2 0

)︁
Σ𝜎

⎛⎜⎝0
0
1

⎞⎟⎠ .

Using Proposition 5.6 and Lemma 5.4, we obtain

𝛿𝑣𝜎 =
(︁
𝐼2 0

)︁ (︁
ℎ𝑄𝜎Σ𝜎 + ℎΣ𝜎𝑄𝜎 + ℎ2𝑄𝜎Σ𝜎𝑄𝜎

)︁⎛⎜⎝0
0
1

⎞⎟⎠
= ℎ

(︃
0 0 𝑟𝜎

0 0 𝑠𝜎

)︃⎛⎜⎝Σ𝜎,𝑤𝑎

Σ𝜎,𝑤𝑏

Σ𝜎,𝑤2

⎞⎟⎠+ ℎ

(︃
Σ𝜎,𝑎2 Σ𝜎,𝑎𝑏 Σ𝜎,𝑤𝑎

Σ𝜎,𝑎𝑏 Σ𝜎,𝑏2 Σ𝜎,𝑤𝑏

)︃⎛⎜⎝𝑟𝜎

𝑠𝜎

0

⎞⎟⎠
+ ℎ2

(︃
0 0 𝑟𝜎

0 0 𝑠𝜎

)︃⎛⎜⎝Σ𝜎,𝑎2 Σ𝜎,𝑎𝑏 Σ𝜎,𝑤𝑎

Σ𝜎,𝑎𝑏 Σ𝜎,𝑏2 Σ𝜎,𝑤𝑏

Σ𝜎,𝑤𝑎 Σ𝜎,𝑤𝑏 Σ𝜎,𝑤2

⎞⎟⎠
⎛⎜⎝𝑟𝜎

𝑠𝜎

0

⎞⎟⎠
= ℎ

(︃
Σ𝜎,𝑤2 0

0 Σ𝜎,𝑤2

)︃
𝑢𝜎 + ℎ

(︃
Σ𝜎,𝑎2 Σ𝜎,𝑎𝑏

Σ𝜎,𝑎𝑏 Σ𝜎,𝑏2

)︃
𝑢𝜎 + ℎ2(𝑟𝜎Σ𝜎,𝑤𝑎 + 𝑠𝜎Σ𝜎,𝑤𝑏)𝑢𝜎

= ℎ
(︁
𝐺̃w

𝜎 + 𝐺̃ab
𝜎 + ℎ𝐺̃wab

𝜎

)︁
𝑢𝜎 .

Therefore, 𝛿 ˜̂𝑣 = ℎ
(︁
𝐺̃w + 𝐺̃ab + ℎ𝐺̃wab

)︁
𝑢̃. Also,

𝛿

⎛⎜⎜⎜⎝
0
𝑐
0
𝑐

⎞⎟⎟⎟⎠ = ℎ

⎛⎜⎜⎜⎝
0

𝑠1 + 𝑠−1
0

𝑠1 + 𝑠−1

⎞⎟⎟⎟⎠ = ℎ

⎛⎜⎜⎜⎝
0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

𝑟1
𝑠1
𝑟−1
𝑠−1

⎞⎟⎟⎟⎠ = ℎ𝐶 ˜̂𝑢 .

We can now use the identities from Lemma 5.8 and the fact that 𝑣 −𝑣 = 𝑣opt is constant
to compute

𝛿𝑣 = 𝛿𝑣 = 𝐵̃𝛿 ˜̂𝑣 + 𝛿

⎛⎜⎜⎜⎝
0
𝑐
0
𝑐

⎞⎟⎟⎟⎠ = 𝐵̃ℎ
(︁
𝐺̃w + 𝐺̃ab + ℎ𝐺̃wab

)︁
𝑢̃ + ℎ𝐶 ˜̂𝑢

= ℎ(𝐵̃(𝐺̃w + 𝐺̃ab + ℎ𝐺̃wab)𝐵̃ + 𝐶)˜̂𝑢 = ℎ𝐴˜̂𝑢 = −ℎ𝐴𝑀̃𝑣 .
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Since 𝑃 2 = 𝐼, it follows that

𝛿𝑣 = 𝛿(𝑃𝑣) = 𝑃𝛿𝑣 = −ℎ𝑃𝐴𝑀̃𝑣 = −ℎ𝑃𝐴𝑃𝑃𝑀̃𝑃𝑃𝑣 = −ℎ𝐴𝑀𝑣

and

𝐴 = 𝑃𝐴𝑃 = 𝑃
(︁
𝐵̃𝑃𝑃 (𝐺̃w + 𝐺̃ab + ℎ𝐺̃wab)𝑃𝑃𝐵̃ + 𝐶

)︁
𝑃

= 𝐵(𝐺w + 𝐺ab + ℎ𝐺wab)𝐵 + 𝐶 .

The next proposition explains the relation of the previously investigated quantities to
the loss. It is not necessary for investigating the dynamics of gradient descent but will
help to establish the suboptimality of the trained networks in Corollary 5.39.

Proposition 5.10. The (modified) loss 𝐿𝐷,𝜏 is quadratic in 𝑣:

𝐿𝐷,𝜏 (𝑊 ) = 1
2𝑣⊤𝑀𝑣 + 1

2𝑁

∑︁
𝜎∈{−1,1}

𝑌 ⊤
𝜎 (𝐼 − 𝑋𝜎(𝑋⊤

𝜎 𝑋𝜎)−1𝑋⊤
𝜎 )𝑌𝜎 .

Proof. The loss can be rewritten by completing the square:

2𝐿𝐷,𝜏 (𝑊 ) = 1
𝑁

∑︁
𝜎∈{−1,1}

∑︁
𝑗∈𝐽𝜎

(𝑓𝑊,𝜏,𝜎(𝑥𝑗) − 𝑦𝑗)2

5.8= 1
𝑁

∑︁
𝜎∈{−1,1}

∑︁
𝑗∈𝐽𝜎

(𝑝𝜎𝑥𝑗 + 𝑞𝜎 − 𝑦𝑗)2

= 1
𝑁

∑︁
𝜎∈{−1,1}

|𝐽𝜎 |∑︁
𝑗=1

(𝑋𝜎𝑣𝜎 − 𝑌𝜎)2
𝑗

= 1
𝑁

∑︁
𝜎∈{−1,1}

(𝑋𝜎𝑣𝜎 − 𝑌𝜎)⊤(𝑋𝜎𝑣𝜎 − 𝑌𝜎)

= 1
𝑁

∑︁
𝜎∈{−1,1}

(︁
𝑁𝑣⊤

𝜎 𝑀𝜎𝑣𝜎 − 𝑣⊤
𝜎 (𝑋⊤

𝜎 𝑌𝜎) − (𝑋⊤
𝜎 𝑌𝜎)⊤𝑣𝜎 + 𝑌 ⊤

𝜎 𝑌𝜎

)︁
=

∑︁
𝜎∈{−1,1}

(︁
𝑣𝜎 − (𝑋⊤

𝜎 𝑋𝜎)−1𝑋⊤
𝜎 𝑌𝜎

)︁⊤
𝑀𝜎

(︁
𝑣𝜎 − (𝑋⊤

𝜎 𝑋𝜎)−1𝑋⊤
𝜎 𝑌𝜎

)︁
+ 1

𝑁

∑︁
𝜎∈{−1,1}

𝑌 ⊤
𝜎 (𝐼 − 𝑋𝜎(𝑋⊤

𝜎 𝑋𝜎)−1𝑋⊤
𝜎 )𝑌𝜎

5.5 (c)=
∑︁

𝜎∈{−1,1}
𝑣⊤

𝜎 𝑀𝜎𝑣𝜎 + 1
𝑁

∑︁
𝜎∈{−1,1}

𝑌 ⊤
𝜎 (𝐼 − 𝑋𝜎(𝑋⊤

𝜎 𝑋𝜎)−1𝑋⊤
𝜎 )𝑌𝜎 .

Since 𝑃 = 𝑃 ⊤ = 𝑃 −1, we conclude

∑︁
𝜎∈{−1,1}

𝑣⊤
𝜎 𝑀𝜎𝑣𝜎 =

(︃
𝑣1
𝑣−1

)︃⊤ (︃
𝑀1

𝑀−1

)︃(︃
𝑣1
𝑣−1

)︃
= 𝑣

⊤
𝑀̃𝑣 = 𝑣

⊤
𝑃𝑃𝑀̃𝑃𝑃𝑣 = 𝑣⊤𝑀𝑣 ,

which yields the claim.
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Σ1,𝑘+1 = (𝐼 + ℎ𝑄1,𝑘)Σ1,𝑘(𝐼 + ℎ𝑄1,𝑘)
where 𝑄1,𝑘 depends on 𝑣𝑘

9-dimensional (Proposition 5.6)

Σ−1,𝑘+1 = (𝐼 +ℎ𝑄−1,𝑘)Σ−1,𝑘(𝐼 +ℎ𝑄−1,𝑘)
where 𝑄−1,𝑘 depends on 𝑣𝑘

9-dimensional (Proposition 5.6)

𝛿𝑣 = −ℎ𝐴𝑀𝑣
where 𝐴 depends on 𝑣, Σ1, Σ−1
4-dimensional (Proposition 5.9)

for 𝑖 ∈ 𝐼𝜎, 𝜎 ∈ {−1, 1}

𝛿𝜃𝑖 = ℎ𝑄𝜎𝜃𝑖

where 𝑄𝜎 depends on 𝑣
3-dimensional (Proposition 5.6)

𝛿𝜃𝑖 = ℎ𝑄𝜎𝜃𝑖

where 𝑄𝜎 depends on 𝑣
3-dimensional (Proposition 5.6)

𝛿𝜃𝑖 = ℎ𝑄𝜎𝜃𝑖

where 𝑄𝜎 depends on 𝑣
3-dimensional (Proposition 5.6)

𝛿𝑐 = ℎ(𝑠1 + 𝑠−1)
where 𝑠1, 𝑠−1 depend on 𝑣

1-dimensional (Proposition 5.6)

affects affects

affects affects

Figure 3: Decomposition into different systems that can be used to analyze the behavior
of gradient descent.

5.2 Comments

Remark 5.11 (System decomposition). We have so far derived different “systems”,
i.e. results on how quantities evolve during gradient descent. These systems and their
dependencies are depicted in Figure 3. In particular, we see that the systems for
Σ1, Σ−1 and 𝑣 together yield a 22-dimensional system that does not depend on any
other quantities. This 22-dimensional system describes some central properties of the
neural network parameters 𝑊 although its dimension does not depend on 𝑛. These
properties include:

∙ The loss 𝐿𝐷,𝜏 (𝑊 ) (cf. Proposition 5.10).

∙ Slope 𝑝𝜎 and intercept 𝑞𝜎 for both signs 𝜎 ∈ {−1, 1}.

∙ We can derive upper bounds on the weights 𝑊 : For 𝑖 ∈ 𝐼𝜎, we obtain |𝑎𝑖| ≤
√︁

Σ𝜎,𝑎2

and similarly for 𝑏, 𝑤. Since 𝑐 occurs in 𝑞1, 𝑞−1, we can use |𝑞1| or |𝑞−1| to derive
an upper bound on 𝑐 as well.

While this system has a dimension independent of 𝑛, the probability distribution over
its initialization may well depend on 𝑛. If its evolution is known, the evolution (𝑊𝑘)𝑘∈N0

can be determined by solving 𝑛 independent three-dimensional systems and the one-
dimensional system 𝛿𝑐 = ℎ(𝑠1 + 𝑠−1). In this thesis, we will proceed along similar lines
(cf. Remark 5.15): We will first analyze the behavior of the 22-dimensional system and
then apply our results to the three-dimensional systems.
In fact, the 22-dimensional system can be reduced to a 14-dimensional system: The
matrices Σ𝜎 are always symmetric and thus effectively 6-dimensional, which reduces
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the dimension from 22 to 16. Moreover, we always have(︃
𝑝1
𝑝−1

)︃
=
(︃

1 𝛼
𝛼 1

)︃(︃
Σ1,𝑤𝑎

Σ−1,𝑤𝑎

)︃
.

However, removing these redundancies is not beneficial for our analysis. J

Remark 5.12. The components of the equation 𝛿𝑣 = −ℎ𝐴𝑀𝑣 in Proposition 5.9 can
be interpreted as follows: Recall that

𝐺w
𝜎 =

(︃
Σ𝜎,𝑤2 0

0 Σ𝜎,𝑤2

)︃
, 𝐺ab

𝜎 =
(︃

Σ𝜎,𝑎2 Σ𝜎,𝑎𝑏

Σ𝜎,𝑎𝑏 Σ𝜎,𝑏2

)︃
, 𝐺wab = (𝑟𝜎Σ𝜎,𝑤𝑎 + 𝑠𝜎Σ𝜎,𝑤𝑏)𝐼2,

𝐵̃ =
(︃

𝐼2 𝛼𝐼2
𝛼𝐼2 𝐼2

)︃
, 𝐶 =

⎛⎜⎜⎜⎝
0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 1

⎞⎟⎟⎟⎠ ,

𝐴 = 𝐵̃

(︃
𝐺w

1 + 𝐺ab
1 + ℎ𝐺wab

1
𝐺w

−1 + 𝐺ab
−1 + ℎ𝐺wab

−1

)︃
𝐵̃ + 𝐶 .

∙ The matrix 𝐺w
𝜎 ⪰ 0 describes the improvement of 𝑣𝜎 by updating the weights 𝑎𝑖

and 𝑏𝑖. The larger |𝑤𝑖|, the larger the gradients 𝜕𝐿𝐷,𝜏

𝜕𝑎𝑖
,

𝜕𝐿𝐷,𝜏

𝜕𝑏𝑖
and the more effect

does a change in 𝑎𝑖, 𝑏𝑖 have on the overall function 𝑓𝑊,𝜏,𝜎.

∙ The matrix 𝐺ab
𝜎 is also positive semidefinite since tr(𝐺ab

𝜎 ) ≥ 0 and det(𝐺ab
𝜎 ) =

Σ𝜎,𝑎2Σ𝜎,𝑏2 − Σ2
𝜎,𝑎𝑏 ≥ 0 due to Cauchy-Schwarz. It describes the improvement

of 𝑣𝜎 by updating the weights (𝑤𝑖)𝑖∈𝐼𝜎 . Larger values of |𝑎𝑖|, |𝑏𝑖| mean stronger
effects of changing 𝑤𝑖. If the vectors (𝑎𝑖)𝑖∈𝐼𝜎 and (𝑏𝑖)𝑖∈𝐼𝜎 are linearly dependent
(perfectly correlated), then 𝐺̃ab

𝜎 only has rank one and changing the 𝑤𝑖 cannot
independently update both components of 𝑣𝜎. Recall that the components of
𝑣𝜎 are the differences of the slope and intercept of 𝑓𝑊,𝜏,𝜎 to the optimal linear
regression slope and intercept, respectively.

∙ The matrix 𝐵̃ causes an interaction between both signs 𝜎 ∈ {−1, 1} if the leaky
parameter 𝛼 is nonzero. If it is zero, the hidden neurons are only active for one
sign 𝜎 and do only indirectly interact via the bias 𝑐.

∙ The matrix 𝐶 describes the improvement of 𝑣𝜎 by updating the bias 𝑐. It is not
block-diagonal since 𝑐 is active for both signs 𝜎 ∈ {−1, 1}. However, 𝐶 only has
rank one since changing 𝑐 can only change 𝑞1 and 𝑞−1 by the same amount. 𝐶 is
positive semidefinite since it is symmetric and it has eigenvectors 𝑒1, 𝑒3, (0, 1, 0, −1)
to the eigenvalue 0 and (0, 1, 0, 1) to the eigenvalue 2.

∙ The matrix 𝐺̃wab represents parts of the error that (discrete) gradient descent
makes when trying to approximate negative gradient flow. It arises from the
additional term 𝛿𝑔1 · 𝛿𝑔2 in the product rule for 𝛿 (Lemma 5.4 (c)) and does not
need to be positive semidefinite. If ℎ is too large, the matrix 𝐴 might therefore
not be positive semidefinite. This corresponds to the fact that the loss might
increase during gradient descent if the step size ℎ is too large. We will now derive
why 𝐴 ⪰ 0 is related to a nonincreasing loss.
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By Proposition 5.10, 𝐿𝐷,𝜏 (𝑊 ) − 𝑣⊤𝑀𝑣 is constant. Hence,

𝛿𝐿𝐷,𝜏 (𝑊 ) = (𝛿𝑣)⊤𝑀𝑣 + 𝑣𝑀(𝛿𝑣) + (𝛿𝑣)⊤𝑀(𝛿𝑣)
= −ℎ𝑣⊤𝑀𝐴𝑀𝑣 − ℎ𝑣⊤𝑀𝐴𝑀𝑣 + ℎ2𝑣⊤𝑀𝐴𝑀𝐴𝑀𝑣 . (5.2)

Now assume 𝐴 ⪰ 0. We have

𝑀𝐴𝑀𝐴𝑀 ⪯ 𝜆max(𝑀)𝜆max(𝐴)𝑀𝐴𝑀 (5.3)

and hence if

ℎ𝜆max(𝑀)𝜆max(𝐴) ≤ 2 ,

we can combine Eq. (5.2) and Eq. (5.3) to obtain 𝛿𝐿𝐷,𝜏 (𝑊 ) ≤ 0, hence the loss is
non-increasing. Similarly, 𝐴 ≻ 0 and ℎ𝜆max(𝑀)𝜆max(𝐴) < 2 yields strictly decreasing
loss. In these cases, the loss and hence the function 𝑣 ↦→ 𝑣⊤𝑀𝑣 are Lyapunov functions.
By the above argument, we find that the matrix 𝑀 and hence the data points affect
the evolution of 𝑣 although (for small enough step size) it does not prevent that 𝑣
converges to zero. However, if 𝑀 is badly conditioned, the speed of convergence might
deteriorate. J

Remark 5.13 (Discretization error). We have already seen that the systems for Σ𝜎

and 𝑣 are affected by terms that arise from the term 𝛿𝑔1 · 𝛿𝑔2 in the “discrete product
rule” of Lemma 5.4 (c). We will see that in our scenario (with small enough step
size), these “disturbances” are small enough to not influence the qualitative behavior of
gradient descent. There is also an invariant that holds when using negative gradient
flow but breaks down when using gradient descent: In the former case, 𝑎2

𝑖 + 𝑏2
𝑖 − 𝑤2

𝑖

remains constant during the optimization for each 𝑖 ∈ 𝐼. An analogous identity for
linear networks has been observed in [29]. J

Remark 5.14 (Alternative systems). In some special cases, the approach presented
here only works if we modify the systems. For example, the assumption 𝑀 ≻ 0 is not
satisfied if the dataset is contained in (0, ∞) since this implies 𝑀−1 = 0. In this case,
the system 𝛿𝑣 = −ℎ𝐴𝑀𝑣 could be reduced to a two-dimensional system since 𝑝−1 and
𝑞−1 are irrelevant for the loss. We will also see that the argument here does not work
for |𝛼| = 1 since this renders the matrix 𝐵 singular. The case 𝛼 = 1 corresponds to
a linear activation function 𝜙(𝑥) = 𝑥, which implies 𝑝1 = 𝑝−1 and 𝑞1 = 𝑞−1. Similarly,
the case 𝛼 = −1 corresponds to 𝜙(𝑥) = |𝑥|, which implies 𝑝1 = −𝑝−1. In both cases,
the dimension of 𝑣 could be reduced. J

Remark 5.15 (Proof idea). We can now formulate the proof idea more precisely.
We will roughly show that under certain circumstances and with high probability
for a randomly sampled initialization and dataset, the following statements (up to
subpolynomial factors) can be argued:

∙ For a modified system 𝛿𝑣 = −ℎ𝐴ref𝑀𝑣, where 𝐴ref = 𝐴0 − ℎ𝐵𝐺wab𝐵 will be
introduced in Definition 5.261, we prove in Proposition 5.29 that ℎ

∑︀∞
𝑘=0 ‖𝑣𝑘‖ =

𝑂(1/𝑛).
1We could also have used 𝐴ref := 𝐴0 but this would not guarantee 𝐴ref ⪰ 0 for large ℎ.
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∙ The following two statements can be proven together by induction on 𝑘:

– For the original system 𝛿𝑣 = −ℎ𝐴𝑀𝑣, we have ℎ
∑︀𝑘

𝑙=0 ‖𝑣𝑙‖ = 𝑂(1/𝑛).
– For 𝜎 ∈ {−1, 1}, |Σ𝜎,𝑘 − Σ𝜎,0| is “small”.

Essentially, Σ𝜎 does not change much because 𝛿Σ𝜎 = ℎ𝑄𝜎Σ𝜎+ℎΣ𝜎𝑄𝜎+ℎ2𝑄𝜎Σ𝜎𝑄𝜎,
where

ℎ
𝑘∑︁

𝑙=0
‖𝑄𝜎,𝑙‖ = 𝑂

(︃
ℎ

𝑘∑︁
𝑙=0

‖𝑣𝑙‖
)︃

= 𝑂(1/𝑛) .

Conversely, the system 𝛿𝑣 = −ℎ𝐴𝑀𝑣 does not deviate much from 𝛿𝑣 = −ℎ𝐴ref𝑀𝑣
since 𝐴 depends on Σ1, Σ−1 which do not change much. (Also, 𝐴 depends on 𝑣
via 𝐺̃quad, but with an additional factor ℎ which is assumed to be small.) One
part of the induction is handled in Proposition 5.31, the overall induction is then
handled in Proposition 5.33.

∙ In Corollary 5.35, we prove that the quantities 𝑎𝑖 and 𝑏𝑖 only change by 𝑂(𝑛−3/2):
For example, for 𝑖 ∈ 𝐼𝜎, we have 𝛿𝑎𝑖 = ℎ𝑟𝜎𝑤𝑖. We will see that the ini-
tialization roughly implies sup𝑘∈N0 |𝑤𝑖,𝑘| = 𝑂(𝑛−1/2). Moreover, ∑︀∞

𝑘=0 |𝑟𝜎,𝑘| =
𝑂 (∑︀∞

𝑘=0 ‖𝑣𝑘‖) = 𝑂(1/𝑛). By a simple argument, this yields sup𝑘∈N0 |𝑎𝑖,𝑘 − 𝑎𝑖,0| =
𝑂(𝑛−3/2).

∙ We will see in Definition 5.23 and Theorem 5.25 that the initialization roughly
implies min𝑖∈𝐼 |𝑎𝑖,0| = Ω(1/𝑛). Since 𝑏𝑖,0 is initialized to zero, this means that for
𝑛 being large enough, sgn(𝑎𝑖,𝑘𝑥𝑗 + 𝑏𝑖,𝑘) is constant in 𝑘 for all 𝑖 and hence the
kinks do not cross the data points. J

5.3 Stochastic Properties of Initialization and Dataset

When training a neural network, there are usually two sources of randomness: The
dataset and the initialization. We will investigate both of them in this section, starting
with the dataset.

Assumption 5.16. Let 𝑃 be a probability distribution on R × R. Let 𝑃𝑋 be the
marginal distribution of 𝑃 with respect to the first component of R × R. We impose
some constraints on 𝑃 :

(P1)
∫︀
(|𝑥|𝑝 + |𝑦|𝑝) d𝑃 (𝑥, 𝑦) < ∞ for all 𝑝 ∈ (0, ∞).

(P2) For 𝜎 ∈ {−1, 1} and all 𝑥 ∈ R, 𝑃𝑋(𝜎(0, ∞) ∖ {𝑥}) > 0, where 𝜎(0, ∞) := {𝜎𝑥 |
𝑥 ∈ (0, ∞)}.

(P3) There exists a value 𝑚𝑃 > 0 with 𝑃𝑋((−𝑚𝑃 , 𝑚𝑃 )) = 0.

Let

𝑀𝑃,𝜎 := E𝑥∼𝑃𝑋
1(0,∞)(𝜎𝑥)

(︃
𝑥2 𝑥
𝑥 1

)︃
, 𝑢̂0

𝑃,𝜎 := E(𝑥,𝑦)∼𝑃1(0,∞)(𝜎𝑥)
(︃

𝑥𝑦
𝑦

)︃
.
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These expected values are well-defined because of assumption (P1). Moreover, the
matrices

𝑀𝑥 :=
(︃

𝑥2 𝑥
𝑥 1

)︃

for 𝑥 ∈ R are positive semidefinite and their kernels Span{(1, −𝑥)⊤} are disjoint for
different 𝑥. Hence, for each 0 ̸= 𝑣 ∈ R2, 𝑣⊤𝑀𝑥𝑣 can only be zero for one value of 𝑥.
Therefore,

𝑣⊤𝑀𝑃,𝜎𝑣 = E𝑥∼𝑃𝑋
1𝜎(0,∞)(𝑥)𝑣⊤𝑀𝑥𝑣 > 0

because of assumption (P2). This shows 𝑀𝑃 ≻ 0. Hence, we can define

𝑣opt
𝑃,𝜎 := 𝑀−1

𝑃,𝜎𝑢̂0
𝑃,𝜎, 𝑣opt

𝑃 :=
(︃

𝑣opt
𝑃,1

𝑣opt
𝑃,−1

)︃
, 𝑣opt

𝑃 := 𝑃𝑣opt
𝑃 ,

where 𝑃 is the permutation matrix from Definition 5.5.
We can now formulate a fourth assumption on 𝑃 :

(P4) For 𝜎 ∈ {−1, 1}, the second component of 𝑣opt
𝑃,𝜎 ∈ R2 is zero.

Let ℱaff be the class of all functions of the form

𝑓𝑣 : R → R, 𝑥 ↦→

⎧⎨⎩𝑝1𝑥 + 𝑞1 , if 𝑥 ≥ 0
𝑝−1𝑥 + 𝑞−1 , if 𝑥 < 0,

where 𝑣 = (𝑝1, 𝑝−1, 𝑞1, 𝑞−1)⊤ ∈ R4. Our last assumption is the following one:

(P5) We have

inf
𝑓∈ℱaff

𝑅𝑃 (𝑓) > inf
𝑓 :R→R

𝑅𝑃 (𝑓) .

Remark 5.17. In Assumption 5.16, (P1) is a technical condition ensuring the existence
of all moments. Condition (P2) requires that the support of 𝑃𝑋 intersects the positive
and negative parts of the 𝑥-axis in more than one point, respectively. Condition (P3)
requires that no data points can be sampled in a neighborhood of 𝑥 = 0.
The main limitation of Assumption 5.16 lies in condition (P4), which requires the
intercepts of the optimal linear regression lines for 𝑃 ((𝑋, 𝑌 ) | sgn(𝑋) = 𝜎) to be zero
for both signs 𝜎 ∈ {−1, 1}. This can be interpreted as restricting 𝑃 to a submanifold
of codimension 2 of the set of all probability distributions on R × R. However, 𝑃 may
still be a continuous distribution with observation noise.
Condition (P5) ensures that a neural network which is affine on (−∞, −𝑚𝑃 ) and on
(𝑚𝑃 , ∞) cannot achieve a close-to-optimal training loss, which is required for showing
the inconsistency of a neural network estimator. J

We now show a particularly simple example of a probability distribution that satisfies
Assumption 5.16:
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Figure 4: Example of a set of points where the uniform distribution on this set satisfies
Assumption 5.16.

Example 5.18. Let 𝑃 be the uniform distribution on

𝐷𝑃 := {(−3, −1), (−2, 2), (−1, −1), (1, 1), (2, −2), (3, 1)} .

These points are depicted in Figure 4. We verify the conditions from Assumption 5.16:

(P1) Since any (𝑥, 𝑦) ∈ 𝐷𝑃 satisfies |𝑥| ≤ 3 and |𝑦| ≤ 2, we have∫︁
(|𝑥|𝑝 + |𝑦|𝑝) d𝑃 (𝑥, 𝑦) ≤ 3𝑝 + 2𝑝 < ∞ .

(P2) The measure 𝑃𝑋 is uniformly distributed on {−3, −2, −1, 1, 2, 3}. For 𝜎 ∈ {−1, 1},
we hence have 𝑃 (𝜎(0, ∞)) = 1/2 and

𝑃 (𝜎(0, ∞) ∖ {𝑥}) ≥ 1
2 − 𝑃 ({𝑥}) ≥ 1

2 − 1
6 = 1

3 > 0 .

We can also directly compute

𝑀𝑃,1 =
(︃

7/3 1
1 1/2

)︃
, 𝑀𝑃,−1 =

(︃
7/3 −1
−1 1/2

)︃
, 𝑀𝑃 =

⎛⎜⎜⎜⎝
7/3 0 1 0
0 7/3 0 −1
1 0 1/2 0
0 −1 0 1/2

⎞⎟⎟⎟⎠
and all of these matrices are positive definite.

(P3) We can choose 𝑚𝑃 = 1.

(P4) We compute

𝑢̂0
𝑃,1 = 1

6

(︃
1 · 1 + 2 · (−2) + 3 · 1 + 0 + 0 + 0

1 + (−2) + 1 + 0 + 0 + 0

)︃
=
(︃

0
0

)︃

𝑢̂0
𝑃,−1 = 1

6

(︃
0 + 0 + 0 + (−1) · (−1) + (−2) · 2 + (−3) · (−1)

0 + 0 + 0 + (−1) + 2 + (−1)

)︃
=
(︃

0
0

)︃
,

which implies 𝑢̂0
𝑃 = 0 and hence 𝑣opt

𝑃 = 𝑀−1
𝑃 𝑢̂0

𝑃 = 0.
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(P5) This is intuitively clear. A formal proof can be done using Proposition 5.10 as
shown in the proof of Corollary 5.39. J

Weights of neural networks are often initialized from uniform or Gaussian distributions
(cf. e.g. [17], Section 8.4). We allow a more general class of distributions:

Assumption 5.19. Let 𝑄wa be a probability distribution on R that satisfies the
following assumptions:

(Q1) 𝑄wa has a bounded symmetric probability density function 𝑝wa
𝑄 , i.e.

∙ There exists 𝐵wa
𝑄 ∈ R such that 0 ≤ 𝑝wa

𝑄 (𝑥) ≤ 𝐵wa
𝑄 for all 𝑥 ∈ R,

∙ 𝑝wa
𝑄 (𝑥) = 𝑝wa

𝑄 (−𝑥) for all 𝑥 ∈ R,
∙ 𝑝wa

𝑄 is a probability density function of 𝑄wa:

𝑄wa(𝐸) =
∫︁

𝐸
𝑝wa

𝑄 (𝑥) d𝑥

for all events 𝐸 ⊆ R.

(Q2) 𝑄wa is 𝑝-integrable for all 𝑝 ∈ (0, ∞), i.e.∫︁
R

|𝑥|𝑝𝑝wa
𝑄 (𝑥) d𝑥 < ∞

for all 𝑝 ∈ (0, ∞).

(Q3) 𝑄wa has variance 1: ∫︁
R

𝑥2𝑝wa
𝑄 (𝑥) d𝑥 = 1 .

This “normalization condition” does not impose any restriction on the initialization
since, as we will see later, the variables can be scaled.

Example 5.20. Two examples for distributions that satisfy the conditions from As-
sumption 5.19 are:

∙ The standard normal distribution 𝑄wa = 𝒩 (0, 1).

∙ The uniform distribution on [−
√

3,
√

3], which has variance 1. J

Next, we want to define probability spaces which involve random sampling and random
initialization:

Definition 5.21. Let 𝑃 be a probability distribution on R × R satisfying Assump-
tion 5.16 and let 𝑄wa be a probability distribution on R satisfying Assumption 5.19.
Furthermore, let 𝑐𝑎, 𝑐𝑤 > 0 be arbitrary constants.
For a number 𝑛 ≥ 1 of neurons and 𝑁 ≥ 1 of data points, we consider probability
spaces (Ω𝑛,𝑁 , ℱ𝑛,𝑁 , 𝑃𝑛,𝑁) with independent random variables 𝐷 and 𝑊0 distributed as
follows:
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∙ The dataset 𝐷 = ((𝑥1, 𝑦1), . . . , (𝑥𝑁 , 𝑦𝑁 )) ∈ (R×R)𝑁 consists of i.i.d. pairs (𝑥𝑗, 𝑦𝑗)
that are distributed according to 𝑃 . In other words, 𝐷 ∼ 𝑃 𝑁 .

∙ The components of the vector 𝑊0 = (𝑎·,0, 𝑏·,0, 𝑐0, 𝑤·,0) ∈ R3𝑛+1 are independent
and distributed as follows: √︃

1
𝑐𝑎

𝑎𝑖,0 ∼ 𝑄wa

√︃
𝑛

𝑐𝑤

𝑤𝑖,0 ∼ 𝑄wa

𝑏𝑖,0 = 0
𝑐0 = 0 .

We denote the distribution of 𝑊0 on R3𝑛+1 by 𝑃𝑛.

The initialization 𝑊0 induces a sign pattern 𝜏 = 𝜏(𝑊0) as defined in Definition 5.1. We
can now define the random variables 𝑊𝑘, 𝑘 ∈ N0, recursively as usual:

𝑊𝑘+1 := 𝑊𝑘 − ℎ∇𝐿𝐷,𝜏 (𝑊𝑘) . J

Example 5.22. In the popular initialization scheme proposed by He et al. [20], the
components of 𝑊0 are sampled independently as follows:

𝑎𝑖,0 ∼ 𝒩 (0, 2)
𝑤𝑖,0 ∼ 𝒩 (0, 2/𝑛)
𝑏𝑖,0 = 0
𝑐0 = 0 .

This is covered by Definition 5.21 by setting 𝑄wa = 𝒩 (0, 1) as in Example 5.20 and
choosing 𝑐𝑎 = 𝑐𝑤 = 2. J

In the following, we will define an event that is likely to occur and guarantees some
important properties of the initialization and dataset:

Definition 5.23. For 𝜀, 𝛾 > 0 and 𝑛 ≥ 1, let 𝐸W
𝑛,𝜀,𝛾 denote the set of all 𝑊0 ∈ R3𝑛+1

where the following properties hold:

(W1) 𝑏𝑖,0 = 𝑐0 = 0,

(W2) max𝑖 |𝑤𝑖,0| ≤ 𝑛−1/2+𝜀,

(W3) max𝑖 |𝑎𝑖,0| ≤ 𝑛𝜀,

(W4) min𝑖 |𝑎𝑖,0| ≥ 𝑛−(1+𝛾),

(W5) Σ𝜎,𝑎2,0 ∈ [𝑛𝑐𝑎/4, 𝑛𝑐𝑎] for all 𝜎 ∈ {−1, 1},

(W6) Σ𝜎,𝑤2,0 ∈ [𝑐𝑤/4, 𝑐𝑤] for all 𝜎 ∈ {−1, 1},

(W7) |Σ𝜎,𝑤𝑎,0| ≤ 𝑛𝜀 for all 𝜎 ∈ {−1, 1}.
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For 𝜀 > 0 and 𝑁 ≥ 1, let 𝐸D
𝑁,𝜀 denote the set of all datasets 𝐷 ∈ (R × R)𝑁 where the

following properties hold:

(D1) 𝑣opt
𝐷 is well-defined, i.e. 𝑀𝐷 is invertible, and ‖𝑣opt

𝑃 − 𝑣opt
𝐷 ‖∞ ≤ 𝑁 (𝜀−1)/2.

(D2) 𝜆min(𝑀𝐷) ≥ 1
2𝜆min(𝑀𝑃 ) and 𝜆max(𝑀𝐷) ≤ 2𝜆max(𝑀𝑃 ).

(D3) min𝑗 |𝑥𝑗| ≥ 𝑚𝑃 .

Finally, for 𝜀, 𝛾 > 0 and 𝑛, 𝑁 ≥ 1, define the event where all of the previous properties
hold:

𝐸𝑛,𝑁,𝜀,𝛾 := {𝜔 ∈ Ω𝑛,𝑁 | 𝑊0(𝜔) ∈ 𝐸W
𝑛,𝜀,𝛾 and 𝐷(𝜔) ∈ 𝐸D

𝑁,𝜀} . J

In order to bound 𝑃𝑛,𝑁 (𝐸𝑛,𝑁,𝜀,𝛾) asymptotically and bound many other quantities later
on, we use asymptotic notation to simplify our calculations:

Definition 5.24 (Asymptotic notation). We want to prove what happens in the limit
as 𝑛 → ∞ and 𝑁 → ∞. Some other parameters may vary along with 𝑛, 𝑁 while other
parameters remain constant:

∙ The variable parameters 𝜃var comprise the number 𝑛 of hidden neurons, the number
𝑁 of data points, the step size ℎ > 0, step count variables such as 𝑘, 𝑙 ∈ N0 and
the randomness 𝜔 ∈ Ω𝑛,𝑁 .

∙ The fixed parameters 𝜃const comprise the probability distributions 𝑃 and 𝑄wa,
the constants 𝑐𝑎, 𝑐𝑤 in Definition 5.21, the LeakyReLU parameter 𝛼 and further
parameters used in the proof such as 𝜀 and 𝛾.

Given a domain 𝒟var for 𝜃var and any assignment of 𝜃const, we may be given a function
𝑓𝜃const : 𝒟var → R := R ∪ {−∞, ∞}, 𝜃var ↦→ 𝑓𝜃const(𝜃var). We then define complexity
classes as follows:

𝑂(𝑓𝜃const) := {𝑔 : 𝒟var → R | ∃𝐶𝜃const > 0, 𝑛0 ∈ N0, 𝑁0 ∈ N0 s.t.
for all 𝜃var ∈ 𝒟var with 𝑛 ≥ 𝑛0, 𝑁 ≥ 𝑁0:
𝑔(𝜃var) ≤ 𝐶𝜃const𝑓𝜃const(𝜃var)}

Θ(𝑓𝜃const) := {𝑔 : 𝒟var → R | 𝑔 ∈ 𝑂(𝑓𝜃const) and 𝑓𝜃const ∈ 𝑂(𝑔)}
𝑜(𝑓𝜃const) := {𝑔 : 𝒟var → R | ∀𝐶 > 0 ∃𝑛0 ∈ N0, 𝑁0 ∈ N0 s.t.

for all 𝜃var ∈ 𝒟var with 𝑛 ≥ 𝑛0, 𝑁 ≥ 𝑁0:
𝑔(𝜃var) ≤ 𝐶𝑓𝜃const(𝜃var)}

Ω(𝑓𝜃const) := {𝑔 : 𝒟var → R | 𝑓𝜃const ∈ 𝑂(𝑔)} .

Note that the constant 𝐶𝜃const in the 𝑂-notation may depend on 𝜃const but not on 𝜃var.
As usual, we write 𝑓(𝜃var) = 𝑂(𝑔(𝜃var)) instead of 𝑓 ∈ 𝑂(𝑔) and similarly for Θ, 𝑜 and Ω.
We may also write 𝑓(𝜃var) = 1 − 𝑂(𝑔(𝜃var)) instead of 𝑓 ∈ 1 − 𝑂(𝑔), which is equivalent
to 1 − 𝑓 ∈ 𝑂(𝑔).
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If no domain 𝒟var is specified, we allow 𝑛, 𝑁 ∈ N≥1, 𝑘, 𝑙 ∈ N0, ℎ > 0, 𝜔 ∈ Ω𝑛,𝑁 . However,
we frequently impose further restrictions on the domain. For example, if we restrict the
domain 𝒟var by requiring 𝜔 ∈ 𝐸𝑛,𝑁,𝜀,𝛾, property (W5) implies

Σ𝜎,𝑎2,0 = Θ(𝑛) .

Note that Σ𝜎,𝑎2,0 implicitly depends on 𝑛 and 𝜔. Without the restriction to 𝜔 ∈ 𝐸𝑛,𝑁,𝜀,𝛾 ,
this asymptotic statement would not be true.
As an other example, we will later require 𝑁 ≥ 𝜚𝑛2 for a fixed parameter 𝜚 > 0. Then,
we have 𝑛 = 𝑂(

√
𝑁). J

The following theorem contains all stochastic properties that we will need here:

Theorem 5.25. Let 𝜀, 𝛾 > 0. Then,

𝑃𝑛,𝑁(𝐸𝑛,𝑁,𝜀,𝛾) = 1 − 𝑂(𝑛−𝛾 + 𝑁−𝛾′)

for all 𝛾′ > 0.2

Proof. This is proven in Appendix A:

∙ Proposition A.3 shows 𝑃𝑛,𝑁(𝑊 /∈ 𝐸W
𝑛,𝜀,𝛾) = 𝑂(𝑛−𝛾).

∙ Proposition A.5 shows 𝑃𝑛,𝑁(𝐷 /∈ 𝐸D
𝑁,𝜀) = 𝑂(𝑁−𝛾′).

By the union bound, it follows that

1 − 𝑃𝑛,𝑁(𝐸𝑛,𝑁,𝜀,𝛾) = 𝑃𝑛,𝑁(𝑊 /∈ 𝐸W
𝑛,𝜀,𝛾 or 𝐷 /∈ 𝐸D

𝑁,𝜀)
≤ 𝑃𝑛,𝑁(𝑊 /∈ 𝐸W

𝑛,𝜀,𝛾) + 𝑃𝑛,𝑁(𝑊 /∈ 𝐸D
𝑁,𝜀)

= 𝑂(𝑛−𝛾 + 𝑁−𝛾′) .

5.4 Interactions between Systems

In the following, we prove asymptotic results using 𝑂-notation as defined in Defini-
tion 5.24 about the quantities defined in Definition 5.5 conditioned on the event 𝐸𝑛,𝑁,𝜀,𝛾

from Definition 5.23. First, we want to investigate a reference matrix that is close to
𝐴0:

Definition 5.26. Let 𝐴ref := 𝐵(𝐺w
0 + 𝐺ab

0 )𝐵 + 𝐶, where 𝐵, 𝐺w, 𝐺ab, 𝐶 are defined in
Definition 5.5. J

Lemma 5.27. Let |𝛼| ̸= 1 and 𝜀, 𝛾 > 0. Then, for 𝜔 ∈ 𝐸𝑛,𝑁,𝜀,𝛾, the matrix 𝐴ref is of
the form

𝐴ref =
(︃

𝐴ref
1

𝐴ref
2

)︃
2This means that the term corresponding to 𝑁 decreases faster than the inverse of any positive

polynomial.
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with 0 ≺ 𝐴ref
1 , 𝐴ref

2 ∈ R2×2 and

eig(𝐴ref
1 ) ⊆

[︂
(1 − |𝛼|)2 𝑛𝑐𝑎 + 𝑐𝑤

4 , (1 + |𝛼|)2(𝑛𝑐𝑎 + 𝑐𝑤)
]︂

eig(𝐴ref
2 ) ⊆

[︂
(1 − |𝛼|)2 𝑐𝑤

4 , (1 + |𝛼|)2𝑐𝑤 + 2
]︂

.

In the asymptotic notation of Definition 5.24, this means

𝜆min(𝐴ref
1 ) = Θ(𝑛), 𝜆max(𝐴ref

1 ) = Θ(𝑛), 𝜆min(𝐴ref
2 ) = Θ(1), 𝜆max(𝐴ref

2 ) = Θ(1) .

Proof. Since 𝑏𝑖,0 = 0 by initialization property (W1) in Definition 5.23, we have
Σ𝜎,𝑎𝑏,0 = Σ𝜎,𝑏2,0 = 0. This yields

𝐺w
𝜎,0 + 𝐺ab

𝜎,0 =
(︃

Σ𝜎,𝑤2,0 + Σ𝜎,𝑎2,0
Σ𝜎,𝑤2,0

)︃
=:
(︃

𝜉𝜎

𝜁𝜎

)︃
.

Hence,

𝐺w
0 + 𝐺ab

0 = 𝑃 (𝐺̃w
0 + 𝐺̃ab

0 )𝑃 = 𝑃

(︃
𝐺w

1,0 + 𝐺ab
1,0

𝐺w
−1,0 + 𝐺ab

−1,0

)︃
𝑃

= 𝑃

⎛⎜⎜⎜⎝
𝜉1

𝜁1
𝜉−1

𝜁−1

⎞⎟⎟⎟⎠𝑃 =

⎛⎜⎜⎜⎝
𝜉1

𝜉−1
𝜁1

𝜁−1

⎞⎟⎟⎟⎠ =:
(︃

𝐺1
𝐺2

)︃
.

We have seen in Definition 5.5 that

𝐵 =
(︃

𝐵̂

𝐵̂

)︃
, 𝐵̂ =

(︃
1 𝛼
𝛼 1

)︃
, 𝐶 =

⎛⎜⎜⎜⎝
0 0
0 0

1 1
1 1

⎞⎟⎟⎟⎠ =:
(︃

0
𝐶

)︃
.

Using the previous results, we obtain

𝐴ref =
(︃

𝐵̂𝐺1𝐵̂

𝐵̂𝐺2𝐵̂ + 𝐶

)︃
=:
(︃

𝐴ref
1

𝐴ref
2

)︃
.

It remains to investigate the eigenvalues of these symmetric blocks. Properties (W5)
and (W6) yield

eig(𝐺1) = {𝜉1, 𝜉−1} ⊆
[︂
𝑛𝑐𝑎 + 𝑐𝑤

4 , 𝑛𝑐𝑎 + 𝑐𝑤

]︂
, eig(𝐺2) = {𝜁1, 𝜁−1} ⊆

[︂
𝑐𝑤

4 , 𝑐𝑤

]︂
.

The matrix 𝐵̂ has eigenvectors (1, 1) to the eigenvalue 1+𝛼 and (1, −1) to the eigenvalue
1 − 𝛼. The eigenvalues of 𝐵̂ are thus 1 + |𝛼| and 1 − |𝛼|. Since 𝐵̂ is symmetric, its
singular values are the absolute values of the eigenvalues. Hence 𝜎max(𝐵̂) = 1 + |𝛼| and
𝜎min(𝐵̂) = |1 − |𝛼|| > 0 since we assumed |𝛼| ≠ 1. Finally, eig(𝐶) = {0, 2}. This yields

eig(𝐴ref
1 ) = eig(𝐵̂𝐺1𝐵̂) ∈

[︂
(1 − |𝛼|)2 𝑛𝑐𝑎 + 𝑐𝑤

4 , (1 + |𝛼|)2(𝑛𝑐𝑎 + 𝑐𝑤)
]︂

eig(𝐴ref
2 ) = eig(𝐵̂𝐺2𝐵̂ + 𝐶) ∈

[︂
(1 − |𝛼|)2 𝑐𝑤

4 , (1 + |𝛼|)2𝑐𝑤 + 2
]︂

.
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The following lemma extends the facts from Section 4 in order to handle a quantity
that will occur in many theorems afterwards.

Lemma 5.28. Let 𝐴 ∈ R𝑚×𝑚 be symmetric and let 0 ≺ 𝑀 ∈ R𝑚×𝑚. Then, eig(𝐴𝑀) ⊆
R and

𝜆max(𝐴𝑀) = 𝜆max(𝑀1/2𝐴𝑀1/2) ≤ 𝜆max(𝐴)𝜆max(𝑀)
𝜆min(𝐴𝑀) = 𝜆min(𝑀1/2𝐴𝑀1/2) ≥ 𝜆min(𝐴)𝜆min(𝑀) .

Proof. Since 𝑀 ≻ 0, there exists a square root 𝑀1/2 ≻ 0 of 𝑀 . Thus, 𝐴𝑀 is similar to
the symmetric matrix 𝑀1/2𝐴𝑀1/2 = 𝑀1/2𝐴𝑀𝑀−1/2 which has real eigenvalues. Hence,
𝐴𝑀 has real eigenvalues and

𝜆max(𝐴𝑀) = 𝜆max(𝑀1/2𝐴𝑀1/2), 𝜆min(𝐴𝑀) = 𝜆min(𝑀1/2𝐴𝑀1/2) .

Moreover, for 𝑣 ∈ R𝑚, we have

𝑣⊤𝑀1/2𝐴𝑀1/2𝑣 ≤ 𝑣⊤𝑀1/2𝜆max(𝐴)𝑀1/2𝑣 = 𝜆max(𝐴)𝑣⊤𝑀𝑣 ≤ 𝜆max(𝐴)𝜆max(𝑀)𝑣⊤𝑣

𝑣⊤𝑀1/2𝐴𝑀1/2𝑣 ≥ 𝑣⊤𝑀1/2𝜆min(𝐴)𝑀1/2𝑣 = 𝜆min(𝐴)𝑣⊤𝑀𝑣 ≥ 𝜆min(𝐴)𝜆min(𝑀)𝑣⊤𝑣 ,

which shows 𝜆max(𝐴𝑀) ≤ 𝜆max(𝐴)𝜆max(𝑀) and 𝜆min(𝐴𝑀) ≥ 𝜆min(𝐴)𝜆min(𝑀).

Proposition 5.29. Let |𝛼| ̸= 1, 𝜀 ∈ (0, 1), 𝛾 > 0 and 𝜚 > 0. Then, for 𝜔 ∈ 𝐸𝑛,𝑁,𝜀,𝛾

and

ℎ ≤ 1
𝜆max(𝐴ref𝑀𝐷) ,

with 𝜆max(𝐴ref𝑀𝐷) as in Lemma 5.28 and 𝑀𝐷 = 𝑀 as in Definition 5.5, we have for
𝑁 ≥ 𝜚𝑛2:

ℎ
∞∑︁

𝑘=0
‖(𝐼 − ℎ𝐴ref𝑀𝐷)𝑘𝑣0‖∞ = 𝑂(𝑛𝜀−1)

ℎ
∞∑︁

𝑘=0
‖(𝐼 − ℎ𝐴ref𝑀𝐷)𝑘‖∞ = 𝑂(1) .

Proof. By definition, we have 𝑣0 = 𝑣0 − 𝑣opt, where

|𝑣0| =

⎛⎜⎜⎜⎝
|𝑝1,0|
|𝑝−1,0|
|𝑞1,0|
|𝑞−1,0|

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
|Σ1,𝑤𝑎,0 + 𝛼Σ−1,𝑤𝑎,0|
|Σ−1,𝑤𝑎,0 + 𝛼Σ1,𝑤𝑎,0|
|Σ1,𝑤𝑏,0 + 𝛼Σ−1,𝑤𝑏,0|
|Σ−1,𝑤𝑏,0 + 𝛼Σ1,𝑤𝑏,0|

⎞⎟⎟⎟⎠ (W1), (W7)
≤

⎛⎜⎜⎜⎝
(1 + |𝛼|)𝑛𝜀

(1 + |𝛼|)𝑛𝜀

0
0

⎞⎟⎟⎟⎠
and 𝑣opt = 𝑣opt

𝐷 = 𝑣opt
𝑃 + (𝑣opt

𝐷 − 𝑣opt
𝑃 ) with

|𝑣opt
𝑃 | (P4)=

⎛⎜⎜⎜⎝
𝑂(1)
𝑂(1)

0
0

⎞⎟⎟⎟⎠ , ‖𝑣opt
𝐷 − 𝑣opt

𝑃 ‖∞
(D1)
≤ 𝑁 (𝜀−1)/2 𝜀−1<0

≤ 𝜚(𝜀−1)/2𝑛𝜀−1 = 𝑂(𝑛𝜀−1) .
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Thus, we can group

𝑣0 =
(︃

𝑣0,1
𝑣0,2

)︃

with 𝑣0,1, 𝑣0,2 ∈ R2 and ‖𝑣0,1‖∞ = 𝑂(𝑛𝜀), ‖𝑣0,2‖∞ = 𝑂(𝑛𝜀−1).
Now, we want to apply Proposition B.2 using the eigenvalue bounds from Lemma 5.27:
Because of (D2),

𝜆min(𝑀𝐷), 𝜆max(𝑀𝐷) ∈
[︂1
2𝜆min(𝑀𝑃 ), 2𝜆max(𝑀𝑃 )

]︂
and therefore 𝜆min(𝑀𝐷) = Θ(1), 𝜆max(𝑀𝐷) = Θ(1). Thus,

𝜆 := 𝜆min(𝐴ref
1 )𝜆min(𝑀𝐷) = Θ(𝑛)Θ(1) = Θ(𝑛)

𝛽 := 𝜆max(𝐴ref
2 )𝜆max(𝑀𝐷)

𝜆 − 𝜆max(𝐴ref
2 )𝜆max(𝑀𝐷) = Θ(1)Θ(1)

Θ(𝑛) − Θ(1)Θ(1) = Θ(1/𝑛)

and the conditions of Proposition B.2 are satisfied for 𝑛 large enough (with 𝐴 =
𝐴ref , 𝑀 = 𝑀𝐷, 𝑚1 = 𝑚2 = 2, 𝑚 = 4):

𝜆 ≥
(︂

1 + 2√
𝑚1

√︁
cond(𝑀𝐷)

)︂
𝜆max(𝐴ref

2 )𝜆max(𝑀𝐷) = Θ(1)

𝛽 ≤ 1
2√

𝑚1

√︁
cond(𝑀𝐷)

= Θ(1)

ℎ ≤ 1
𝜆max(𝐴𝑀) .

Observe that

𝜆min(𝐴ref𝑀𝐷)
Lemma 5.28

≥ 𝜆min(𝐴ref)𝜆min(𝑀𝐷) = Θ(1) .

Hence, Proposition B.2 yields for 𝑛 large enough:

ℎ
∞∑︁

𝑘=0
‖(𝐼 − ℎ𝐴ref𝑀𝐷)𝑘‖2 ≤

√︁
cond(𝑀𝐷)

𝜆min(𝐴ref𝑀𝐷) = 𝑂(1)

ℎ
∞∑︁

𝑘=0
‖(𝐼 − ℎ𝐴ref𝑀𝐷)𝑘𝑣0‖2 ≤ 2

√︁
cond(𝑀𝐷)

⎛⎝⎛⎝1
𝜆

+
2√

𝑚1

√︁
cond(𝑀)𝛽

𝜆min(𝐴ref𝑀𝐷)

⎞⎠ ‖𝑣0,1‖2

+ 1
𝜆min(𝐴ref𝑀𝐷)‖𝑣0,2‖2

⎞⎠
= Θ(1)

(︁
(𝑂(1/𝑛) + 𝑂(1/𝑛)) 𝑂(𝑛𝜀) + 𝑂(1)𝑂(𝑛𝜀−1)

)︁
= 𝑂(𝑛𝜀−1) .

Since ‖ · ‖2 ≤
√

4‖ · ‖∞ on R4×4 as mentioned in Definition 4.1, the claim follows.

Now, we want to investigate how much 𝜃𝑖 and Σ𝜎 change during gradient descent. We
first derive a general result without restriction to 𝐸𝑛,𝑁,𝜀,𝛾 and then derive further results
that hold on 𝐸𝑛,𝑁,𝜀,𝛾.
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Definition 5.30. Let

𝜅𝑢,𝑘 := ℎ
𝑘∑︁

𝑙=0
‖𝑢𝑙‖∞, 𝑄̃ :=

⎛⎜⎝0 0 1
0 0 1
1 1 0

⎞⎟⎠ ,

1𝑚 :=

⎛⎜⎜⎝
1
...
1

⎞⎟⎟⎠ ∈ R𝑚, 1𝑚×𝑚 :=

⎛⎜⎜⎝
1 . . . 1
... ...
1 . . . 1

⎞⎟⎟⎠ ∈ R𝑚×𝑚 . J

Now, we can state the general result, which resembles a first-order Taylor approxima-
tion:3

Proposition 5.31. Here, | · | and ≤ for matrices and vectors should be understood
component-wise. Let 𝑘 ∈ N0, 𝜎 ∈ {−1, 1} and 𝑖 ∈ 𝐼𝜎. Then,

|𝜃𝑖,𝑘 − 𝜃𝑖,0| ≤ 𝜅𝑢,𝑘𝑄̃|𝜃𝑖,0| + 2𝜅2
𝑢,𝑘𝑒2𝜅𝑢,𝑘‖𝜃𝑖,0‖∞13

|Σ𝜎,𝑘 − Σ𝜎,0| ≤ 𝜅𝑢,𝑘(𝑄̃|Σ𝜎,0| + |Σ𝜎,0|𝑄̃) + 8𝜅2
𝑢,𝑘𝑒4𝜅𝑢,𝑘‖Σ𝜎,0‖∞13×3 .

Proof. We will use the following identities for arbitrary matrices 𝐴, 𝐵 ∈ R𝑚×𝑚 and
vectors 𝑣 ∈ R𝑚 that are easy to verify:

|𝐴𝐵| ≤ |𝐴| · |𝐵|, |𝐴 + 𝐵| ≤ |𝐴| + |𝐵|, |𝐴𝑣| ≤ |𝐴| · |𝑣|,
|𝐴| ≤ ‖𝐴‖∞ · 1𝑚×𝑚, |𝑣| ≤ ‖𝑣‖∞ · 1𝑚 .

Define

𝑄̃𝑘 := ℎ
𝑘∑︁

𝑙=0
𝑄𝜎,𝑙

𝑠𝑘 := ℎ
𝑘∑︁

𝑙=0
‖𝑄𝜎,𝑙‖∞

𝐸𝑘 :=
(︁
(𝐼 + ℎ𝑄𝜎,𝑘) · . . . · (𝐼 + ℎ𝑄𝜎,0) − 𝑄̃𝑘 − 𝐼

)︁
𝐹𝑘 := (𝐼 + ℎ𝑄𝜎,𝑘) · . . . · (𝐼 + ℎ𝑄𝜎,0)Σ𝜎,0(𝐼 + ℎ𝑄𝜎,0) · . . . · (𝐼 + ℎ𝑄𝜎,𝑘)

− 𝑄̃𝑘Σ𝜎,0 − Σ𝜎,0𝑄̃𝑘 − Σ𝜎,0 .

Then, by Proposition 5.6, we have for 𝑘 ≥ 1:

|𝜃𝑖,𝑘 − 𝜃𝑖,0| = |((𝐼 + ℎ𝑄𝜎,𝑘−1) · . . . · (𝐼 + ℎ𝑄𝜎,0) − 𝐼)𝜃𝑖,0|
=
⃒⃒⃒
𝑄̃𝑘−1𝜃𝑖,0 + 𝐸𝑘−1𝜃𝑖,0

⃒⃒⃒
≤ |𝑄̃𝑘−1||𝜃𝑖,0| + ‖𝐸𝑘−1‖∞‖𝜃𝑖,0‖∞13 (5.4)

and

|Σ𝜎,𝑘 − Σ𝜎,0|
= |(𝐼 + ℎ𝑄𝜎,𝑘−1) · . . . · (𝐼 + ℎ𝑄𝜎,0)Σ𝜎,0(𝐼 + ℎ𝑄𝜎,0) · . . . · (𝐼 + ℎ𝑄𝜎,𝑘−1) − Σ𝜎,0|
=
⃒⃒⃒
𝑄̃𝑘−1Σ𝜎,0 + Σ𝜎,0𝑄̃𝑘−1 + 𝐹𝑘−1

⃒⃒⃒
3In the “first-order term”, the matrices are still sparse. “Higher-order” approximations are not

useful for our purpose.
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≤ |𝑄̃𝑘−1||Σ𝜎,0| + |Σ𝜎,0||𝑄̃𝑘−1| + ‖𝐹𝑘−1‖∞13×3 . (5.5)

Observe that for 𝑘 ≥ 0,

(𝐼 + ℎ𝑄𝜎,𝑘) · . . . · (𝐼 + ℎ𝑄𝜎,0) =
𝑘+1∑︁
𝑙=0

∑︁
0≤𝑘1<...<𝑘𝑙≤𝑘

ℎ𝑄𝑘𝑙
· . . . · ℎ𝑄𝑘1

and hence

‖𝐸𝑘‖∞ =

⃦⃦⃦⃦
⃦⃦𝑘+1∑︁

𝑙=2

∑︁
0≤𝑘1<...<𝑘𝑙≤𝑘

ℎ𝑄𝜎,𝑘𝑙
· . . . · ℎ𝑄𝜎,𝑘1

⃦⃦⃦⃦
⃦⃦

∞

≤
𝑘+1∑︁
𝑙=2

∑︁
0≤𝑘1<...<𝑘𝑙≤𝑘

‖ℎ𝑄𝜎,𝑘𝑙
‖∞ · . . . · ‖ℎ𝑄𝜎,𝑘1‖∞

= (1 + ‖ℎ𝑄𝜎,𝑘‖∞) · . . . · (1 + ‖ℎ𝑄𝜎,0‖∞) − 𝑠𝑘 − 1
≤ 𝑒‖ℎ𝑄𝜎,𝑘‖∞ · . . . · 𝑒‖ℎ𝑄𝜎,0‖∞ − 𝑠𝑘 − 1

= 𝑒𝑠𝑘 − 𝑠𝑘 − 1 =
∞∑︁

𝑙=2

𝑠𝑙
𝑘

𝑙! = 𝑠2
𝑘

∞∑︁
𝑙=0

𝑠𝑙
𝑘

(𝑙 + 2)!
(𝑙+2)!≥2(𝑙!)

≤ 1
2𝑠2

𝑘𝑒𝑠𝑘 .

Similarly, we can use the index set ℐ := {0, . . . , 𝑘 + 1}2 ∖ {(0, 0), (1, 0), (0, 1)} to derive

‖𝐹𝑘‖∞ =

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦
∑︁

(𝑙,𝑙′)∈ℐ

∑︁
0≤𝑘1<...<𝑘𝑙≤𝑘
0≤𝑘′

1<...<𝑘′
𝑙′ ≤𝑘

ℎ𝑄𝜎,𝑘𝑙
· · · ℎ𝑄𝜎,𝑘1Σ𝜎,0ℎ𝑄𝜎,𝑘′

1
· · · ℎ𝑄𝜎,𝑘′

𝑙′

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦

∞

≤
∑︁

(𝑙,𝑙′)∈ℐ

∑︁
0≤𝑘1<...<𝑘𝑙≤𝑘
0≤𝑘′

1<...<𝑘′
𝑙′ ≤𝑘

ℎ‖𝑄𝜎,𝑘𝑙
‖∞ · · · ℎ‖𝑄𝜎,𝑘1‖∞‖Σ𝜎,0‖∞ℎ‖𝑄𝜎,𝑘′

1
‖∞ · · · ℎ‖𝑄𝜎,𝑘′

𝑙′
‖∞

≤ 𝑒𝑠𝑘‖Σ𝜎,0‖∞𝑒𝑠𝑘 − 𝑠𝑘‖Σ𝜎,0‖∞ − ‖Σ𝜎,0‖∞𝑠𝑘 − ‖Σ𝜎,0‖∞

= (𝑒2𝑠𝑘 − 2𝑠𝑘 − 1)‖Σ𝜎,0‖∞

≤ 2𝑠2
𝑘𝑒2𝑠𝑘‖Σ𝜎,0‖∞ .

Obviously,

|𝑄̃𝑘| ≤ ℎ
𝑘∑︁

𝑙=0
|𝑄𝜎,𝑙| = ℎ

⎛⎜⎝ 0 0 ∑︀𝑘
𝑙=0 |𝑟𝜎,𝑙|

0 0 ∑︀𝑘
𝑙=0 |𝑠𝜎,𝑙|∑︀𝑘

𝑙=0 |𝑟𝜎,𝑙|
∑︀𝑘

𝑙=0 |𝑠𝜎,𝑙|

⎞⎟⎠ ≤ 𝜅𝑢,𝑘𝑄̃ .

We also have 𝑠𝑘 ≤ 2𝜅𝑢,𝑘 since

‖𝑄𝜎,𝑙‖∞ = max
𝑖∈{1,...,3}

3∑︁
𝑗=1

|(𝑄𝜎,𝑙)𝑖𝑗| = |𝑟𝜎,𝑙| + |𝑠𝜎,𝑙| ≤ 2‖𝑢𝑘‖∞ .

We now obtain for 𝑘 ≥ 1:

|𝜃𝑖,𝑘 − 𝜃𝑖,0|
(5.4)
≤ |𝑄̃𝑘−1||𝜃𝑖,0| + ‖𝐸𝑘−1‖∞‖𝜃𝑖,0‖∞13

≤ 𝜅𝑢,𝑘−1𝑄̃|𝜃𝑖,0| + 1
2𝑠2

𝑘−1𝑒
𝑠𝑘−1‖𝜃𝑖,0‖∞13

≤ 𝜅𝑢,𝑘−1𝑄̃|𝜃𝑖,0| + 2𝜅2
𝑢,𝑘−1𝑒

2𝜅𝑢,𝑘−1‖𝜃𝑖,0‖∞13
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|Σ𝜎,𝑘 − Σ𝜎,0|
(5.5)
≤ |𝑄̃𝑘−1||Σ𝜎,0| + |Σ𝜎,0||𝑄̃𝑘−1| + ‖𝐹𝑘−1‖∞13×3

≤ 𝜅𝑢,𝑘−1(𝑄̃|Σ𝜎,0| + |Σ𝜎,0|𝑄̃) + 2𝑠2
𝑘−1𝑒

2𝑠𝑘−1‖Σ𝜎,0‖∞13×3

≤ 𝜅𝑢,𝑘−1(𝑄̃|Σ𝜎,0| + |Σ𝜎,0|𝑄̃) + 8𝜅2
𝑢,𝑘−1𝑒

4𝜅𝑢,𝑘−1‖Σ𝜎,0‖∞13×3 .

The claim then follows for 𝑘 ≥ 1 using 𝜅𝑢,𝑘−1 ≤ 𝜅𝑢,𝑘. For 𝑘 = 0, the claim is trivial.

Using the properties of 𝐸𝑛,𝑁,𝜀,𝛾, we obtain the following result:

Corollary 5.32. Let 𝜀, 𝛾 > 0 with 𝜀 ≤ 1. For 𝜔 ∈ 𝐸𝑛,𝑁,𝜀,𝛾, we have

(a) sup
𝑖

|𝜃𝑖,𝑘 − 𝜃𝑖,0| ≤ 𝜅𝑢,𝑘

⎛⎜⎝𝑛𝜀−1/2

𝑛𝜀−1/2

𝑛𝜀

⎞⎟⎠+ 2𝜅2
𝑢,𝑘𝑒2𝜅𝑢,𝑘𝑛𝜀13,

(b) |Σ𝜎,𝑘 − Σ𝜎,0| = 𝜅𝑢,𝑘

⎛⎜⎝𝑂(𝑛𝜀) 𝑂(𝑛𝜀) 𝑂(𝑛)
𝑂(𝑛𝜀) 0 𝑂(1)
𝑂(𝑛) 𝑂(1) 𝑂(𝑛𝜀)

⎞⎟⎠+ 8𝜅2
𝑢,𝑘𝑒4𝜅𝑢,𝑘𝑂(𝑛)13×3.

Proof.

(a) By properties (W1), (W2) and (W3) in Definition 5.23, we have

|𝜃𝑖,0| =

⎛⎜⎝ |𝑎𝑖,0|
|𝑏𝑖,0|
|𝑤𝑖,0|

⎞⎟⎠ ≤

⎛⎜⎝ 𝑛𝜀

0
𝑛𝜀−1/2

⎞⎟⎠ .

We can now apply Proposition 5.31 to obtain

|𝜃𝑖,𝑘 − 𝜃𝑖,0| ≤ 𝜅𝑢,𝑘𝑄̃|𝜃𝑖,0| + 2𝜅2
𝑢,𝑘𝑒2𝜅𝑢,𝑘‖𝜃𝑖,0‖∞13 ≤ 𝜅𝑢,𝑘

⎛⎜⎝𝑛𝜀−1/2

𝑛𝜀−1/2

𝑛𝜀

⎞⎟⎠+ 2𝜅2
𝑢,𝑘𝑒2𝜅𝑢,𝑘𝑛𝜀13 .

(b) By properties (W1), (W5), (W6) and (W7) in Definition 5.23, we have

|Σ𝜎,0| =

⎛⎜⎝ |Σ𝜎,𝑎2,0| |Σ𝜎,𝑎𝑏,0| |Σ𝜎,𝑤𝑎,0|
|Σ𝜎,𝑎𝑏,0| |Σ𝜎,𝑏2,0| |Σ𝜎,𝑤𝑏,0|
|Σ𝜎,𝑤𝑎,0| |Σ𝜎,𝑤𝑏,0| |Σ𝜎,𝑤2,0|

⎞⎟⎠ =

⎛⎜⎝𝑂(𝑛) 0 𝑂(𝑛𝜀)
0 0 0

𝑂(𝑛𝜀) 0 𝑂(1)

⎞⎟⎠ .

We can now apply Proposition 5.31 to obtain

|Σ𝜎,𝑘 − Σ𝜎,0| ≤ 𝜅𝑢,𝑘(𝑄̃|Σ𝜎,0| + |Σ𝜎,0|𝑄̃) + 8𝜅2
𝑢,𝑘𝑒4𝜅𝑢,𝑘‖Σ𝜎,0‖∞13×3 .

Since 0 < 𝜀 ≤ 1, we can conclude ‖Σ𝜎,0‖∞ = 𝑂(𝑛) and

𝑄̃|Σ𝜎,0| + |Σ𝜎,0|𝑄̃ =

⎛⎜⎝𝑂(𝑛𝜀) 0 𝑂(1)
𝑂(𝑛𝜀) 0 𝑂(1)
𝑂(𝑛) 0 𝑂(𝑛𝜀)

⎞⎟⎠+

⎛⎜⎝𝑂(𝑛𝜀) 𝑂(𝑛𝜀) 𝑂(𝑛)
0 0 0

𝑂(1) 𝑂(1) 𝑂(𝑛𝜀)

⎞⎟⎠
=

⎛⎜⎝𝑂(𝑛𝜀) 𝑂(𝑛𝜀) 𝑂(𝑛)
𝑂(𝑛𝜀) 0 𝑂(1)
𝑂(𝑛) 𝑂(1) 𝑂(𝑛𝜀)

⎞⎟⎠ .
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The following result uses an induction argument to show that for large enough 𝑛, Σ𝜎

stays almost constant and 𝜅𝑢,𝑘 is small. It is one of the main steps in this section.

Proposition 5.33. Let |𝛼| ̸= 1, 𝜀 ∈ (0, 1/2), 𝛾 > 0 and 𝜚 > 0. Then, for 𝑁 ≥ 𝜚𝑛2,
𝜔 ∈ 𝐸𝑛,𝑁,𝜀,𝛾 and

ℎ ≤ 1
𝜆max(𝐴ref𝑀𝐷) ,

with 𝜆max(𝐴ref𝑀𝐷) as in Lemma 5.28, we have

𝜅𝑢,𝑘 = 𝑂(𝑛𝜀−1) ,

where 𝜅𝑢,𝑘 was defined in Definition 5.30 and the bound 𝑂(𝑛𝜀−1) is independent of
𝑘 ∈ N0.

Proof. By Proposition 5.9, we know that 𝑣𝑘+1 = (𝐼 − ℎ𝐴𝑘𝑀𝐷)𝑣𝑘. We want to bound
𝜅𝑢,𝑘 = ℎ

∑︀𝑘
𝑙=0 ‖𝑢𝑙‖∞ = ℎ

∑︀𝑘
𝑙=0 ‖𝐵𝑀𝐷𝑣𝑙‖∞ by comparing it to the reference system

𝛿𝑣 = −ℎ𝐴ref𝑀𝐷𝑣 using Lemma B.3. Hence, we define

𝛿𝑘 :=
𝑘∑︁

𝑙=0
‖(𝐼 − ℎ𝐴ref𝑀𝐷)𝑙‖∞ · sup

0≤𝑙≤𝑘
‖(𝐼 − ℎ𝐴ref𝑀𝐷) − (𝐼 − ℎ𝐴𝑙𝑀𝐷)‖∞

= ℎ
𝑘∑︁

𝑙=0
‖(𝐼 − ℎ𝐴ref𝑀𝐷)𝑙‖∞ · sup

0≤𝑙≤𝑘
‖(𝐴𝑙 − 𝐴ref)𝑀𝐷‖∞ . (5.6)

For 𝑛 large enough, we want to prove by induction that 𝛿𝑘 ≤ 1/2 for all 𝑘 ∈ N0.
Trivially, 𝛿−1 = 0 ≤ 1/2. Now let 𝑘 ∈ N0 with 𝛿𝑘−1 ≤ 1/2.

(1) By Lemma 5.8, we have 𝑢̃𝑘 = −𝐵̃𝑀̃𝐷𝑣𝑘 and hence 𝑢𝑘 = −𝐵𝑀𝐷𝑣𝑘. Thus,

𝜅𝑢,𝑘 = ℎ
𝑘∑︁

𝑙=0
‖𝑢𝑙‖∞ ≤ ‖𝐵‖∞‖𝑀𝐷‖∞ · ℎ

𝑘∑︁
𝑙=0

‖𝑣𝑙‖∞ .

Because 𝛿𝑘−1 ≤ 1/2, we can apply Lemma B.3 and obtain

ℎ
𝑘∑︁

𝑙=0
‖𝑣𝑙‖∞ ≤ 1

1 − 𝛿𝑘−1
ℎ

𝑘∑︁
𝑙=0

‖(𝐼 − ℎ𝐴ref𝑀𝐷)𝑙𝑣0‖∞

≤ 2ℎ
∞∑︁

𝑙=0
‖(𝐼 − ℎ𝐴ref𝑀𝐷)𝑙𝑣0‖∞

Proposition 5.29= 𝑂(𝑛𝜀−1) .

Moreover, as mentioned in Definition 4.1, we know that ‖𝑀𝐷‖∞ ≤
√

4‖𝑀𝐷‖2 since
𝑀𝐷 ∈ R4×4 and thus

‖𝑀𝐷‖∞ ≤ 2‖𝑀𝐷‖2 = 2𝜆max(𝑀𝐷)
(D2)
≤ 4𝜆max(𝑀𝑃 ) = 𝑂(1) . (5.7)

Hence, we can write

𝜅𝑢,𝑘 = 𝑂(𝑛𝜀−1) , (5.8)

where, in accordance with Definition 5.24, the constant in 𝑂(𝑛𝜀−1) does not depend
on the induction step 𝑘.
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(2) Let us investigate the components of Eq. (5.6):

ℎ
𝑘∑︁

𝑙=0
‖(𝐼 − ℎ𝐴ref𝑀𝐷)𝑙‖∞ ≤ ℎ

∞∑︁
𝑙=0

‖(𝐼 − ℎ𝐴ref𝑀𝐷)𝑙‖∞
Proposition 5.29= 𝑂(1)

(𝐴𝑙 − 𝐴ref)𝑀𝐷 = 𝐵
(︁
(𝐺w

𝑙 − 𝐺w
0 ) + (𝐺ab

𝑙 − 𝐺ab
0 ) + ℎ𝐺wab

𝑙

)︁
𝐵𝑀𝐷

⇒ ‖(𝐴𝑙 − 𝐴ref)𝑀𝐷‖∞
(5.7)= 𝑂(1) · (‖𝐺w

𝑙 − 𝐺w
0 ‖∞ + ‖𝐺ab

𝑙 − 𝐺ab
0 ‖∞ + ℎ‖𝐺wab

𝑙 ‖∞).

First of all, for 0 ≤ 𝑙 ≤ 𝑘,

‖𝐺w
𝑙 − 𝐺w

0 ‖∞ = max
𝜎∈{−1,1}

|Σ𝜎,𝑤2,𝑙 − Σ𝜎,𝑤2,0|
Corollary 5.32= 𝜅𝑢,𝑙𝑂(𝑛𝜀) + 8𝜅2

𝑢,𝑙𝑒
4𝜅𝑢,𝑙𝑂(𝑛)

(5.8), 𝜅𝑢,𝑙≤𝜅𝑢,𝑘= 𝑂(𝑛𝜀−1)𝑂(𝑛𝜀) + 8𝑂(𝑛2𝜀−2)𝑒𝑂(𝑛𝜀−1)𝑂(𝑛) 𝜀<1= 𝑂(𝑛2𝜀−1) .

Similarly, for 0 ≤ 𝑙 ≤ 𝑘,

‖𝐺ab
𝑙 − 𝐺ab

0 ‖∞ ≤ max
𝜎∈{−1,1}

|Σ𝜎,𝑎2,𝑙 − Σ𝜎,𝑎2,0| + |Σ𝜎,𝑎𝑏,𝑙 − Σ𝜎,𝑎𝑏,0| + |Σ𝜎,𝑏2,𝑙 − Σ𝜎,𝑏2,0|

= 𝜅𝑢,𝑙𝑂(𝑛𝜀) + 8𝜅2
𝑢,𝑙𝑒

4𝜅𝑢,𝑙𝑂(𝑛)
= . . . = 𝑂(𝑛2𝜀−1) .

Observe that

ℎ|𝑟𝜎,𝑙| ≤ ℎ‖𝑢𝑙‖∞ ≤ ℎ
𝑘∑︁

𝑙′=0
‖𝑢𝑙′‖∞ = 𝜅𝑢,𝑘

(5.8)= 𝑂(𝑛𝜀−1)

and similarly ℎ|𝑠𝜎,𝑙| = 𝑂(𝑛𝜀−1). Thus, we find

ℎ‖𝐺wab
𝑙 ‖∞ = max

𝜎∈{−1,1}
ℎ|𝑟𝜎,𝑙Σ𝜎,𝑤𝑎,𝑙 + 𝑠𝜎,𝑙Σ𝜎,𝑤𝑏,𝑙|

= 𝑂(𝑛𝜀−1) ·
(︃

max
𝜎∈{−1,1}

|Σ𝜎,𝑤𝑎,𝑙| + |Σ𝜎,𝑤𝑏,𝑙|
)︃

.

Similar to the other calculations, we can compute for 0 ≤ 𝑙 ≤ 𝑘

|Σ𝜎,𝑤𝑎,𝑙| ≤ |Σ𝜎,𝑤𝑎,0| + |Σ𝜎,𝑤𝑎,𝑙 − Σ𝜎,𝑤𝑎,0|
(W7)= 𝑂(𝑛𝜀) + 𝑂(𝑛𝜀−1)𝑂(𝑛) + 𝑂(𝑛2𝜀−2)𝑂(𝑛) 𝜀∈(0,1)= 𝑂(𝑛𝜀)

|Σ𝜎,𝑤𝑏,𝑙| ≤ |Σ𝜎,𝑤𝑏,0| + |Σ𝜎,𝑤𝑏,𝑙 − Σ𝜎,𝑤𝑏,0|
= 0 + 𝑂(𝑛𝜀−1)𝑂(1) + 𝑂(𝑛2𝜀−2)𝑂(𝑛) = 𝑂(𝑛2𝜀−1) 𝜀<1= 𝑂(𝑛𝜀) ,

which yields ℎ‖𝐺wab
𝑙 ‖∞ = 𝑂(𝑛2𝜀−1).

We can now revisit the beginning of step (2) and obtain ‖(𝐴𝑙 − 𝐴ref)𝑀𝐷‖∞ =
𝑂(𝑛2𝜀−1) and

𝛿𝑘
(5.6)= ℎ

𝑘∑︁
𝑙=0

‖(𝐼 − ℎ𝐴ref𝑀𝐷)𝑙‖∞ · sup
0≤𝑙≤𝑘

‖(𝐴𝑙 − 𝐴ref)𝑀𝐷‖∞

= 𝑂(1) · 𝑂(𝑛2𝜀−1) = 𝑂(𝑛2𝜀−1) .
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We have shown that 𝛿𝑘−1 ≤ 1/2 implies 𝛿𝑘 = 𝑂(𝑛2𝜀−1), where the constant in 𝑂(𝑛2𝜀−1)
does not depend on 𝑘. Since 𝜀 < 1/2, 𝑛2𝜀−1 → 0 as 𝑛 → ∞ and there exists 𝑛0 ∈ N0
such that for all 𝑛 ≥ 𝑛0 and 𝑘 ∈ N0, 𝛿𝑘−1 ≤ 1/2 implies 𝛿𝑘 ≤ 1/2 and the induction
works. Thus, for all 𝑛 ≥ 𝑛0 and 𝑘 ∈ N0, we know that 𝛿𝑘−1 ≤ 1/2 and we can apply
step (1) to obtain

𝜅𝑢,𝑘 = 𝑂(𝑛𝜀−1) .

Remark 5.34. Proposition 5.33 can be formulated and proved in a non-asymptotic
manner that does not use condition (P4) from Assumption 5.16 (which is used
in Proposition 5.29). In this non-asymptotic formulation, one would show that if
ℎ
∑︀∞

𝑘=0 ‖(𝐼 −ℎ𝐴ref𝑀𝐷)𝑘𝑣0‖∞, ℎ
∑︀∞

𝑘=0 ‖(𝐼 −ℎ𝐴ref𝑀𝐷)𝑘‖∞, |Σ𝜎,0| and ℎ are small enough
in some sense, then

sup
𝑘∈N0

𝜅𝑢,𝑘 ≤ 2‖𝐵‖∞‖𝑀𝐷‖∞ · ℎ
∞∑︁

𝑘=0
‖(𝐼 − ℎ𝐴ref𝑀𝐷)𝑘‖∞ . J

Corollary 5.35. Let |𝛼| ≠ 1, 𝜀 ∈ (0, 1/2), 𝛾 > 0 and 𝜚 > 0. Then, for 𝑁 ≥ 𝜚𝑛2,
𝜔 ∈ 𝐸𝑛,𝑁,𝜀,𝛾 and

ℎ ≤ 1
𝜆max(𝐴ref𝑀𝐷) ,

with 𝜆max(𝐴ref𝑀𝐷) as in Lemma 5.28, we have

sup
𝑖

|𝜃𝑖,𝑘 − 𝜃𝑖,0| =

⎛⎜⎝𝑂(𝑛2𝜀−3/2)
𝑂(𝑛2𝜀−3/2)
𝑂(𝑛2𝜀−1)

⎞⎟⎠ , |Σ𝜎,𝑘 − Σ𝜎,0| =

⎛⎜⎝𝑂(𝑛2𝜀−1) 𝑂(𝑛2𝜀−1) 𝑂(𝑛𝜀)
𝑂(𝑛2𝜀−1) 𝑂(𝑛2𝜀−1) 𝑂(𝑛2𝜀−1)

𝑂(𝑛𝜀) 𝑂(𝑛2𝜀−1) 𝑂(𝑛2𝜀−1)

⎞⎟⎠ .

Proof. This follows directly from inserting 𝜅𝑢,𝑘 = 𝑂(𝑛𝜀−1) (Proposition 5.33) into
Corollary 5.32.

Remark 5.36. Corollary 5.35 shows that Σ𝜎,𝑤𝑎 changes by at most 𝑂(𝑛𝜀), while other
quantities like Σ𝜎,𝑎2 change by at most 𝑂(𝑛2𝜀−1) (which is much less since 𝜀 ∈ (0, 1/2)).
Since Σ𝜎,𝑤𝑎 = 𝑝𝜎 is related to the slope of 𝑓𝑊,𝜏,𝜎, it must change by a nontrivial amount
since the slope should converge to the optimal slope. Our proof of Proposition 5.33
works since Σ𝜎,𝑤𝑎 does not occur in 𝐺w and 𝐺ab, hence 𝐺w and 𝐺ab only change by
𝑂(𝑛2𝜀−1). While Σ𝜎,𝑤𝑎 does occur in ℎ𝐺wab, choosing a small ℎ mitigates the “large”
change in Σ𝜎,𝑤𝑎. J

5.5 Inconsistency Results

In the following, we derive inconsistency results in several formulations. We start with
a general formulation and then proceed to introduce versions that are more directly
related to universal consistency as defined in Definition 2.2.

Theorem 5.37 (General inconsistency result). Let |𝛼| ̸= 1, 𝛾 ∈ (0, 1/2), 𝜀 ∈ (0, 1/4 −
𝛾/2) and 𝜚 > 0. Let 𝑃 be a probability distribution that satisfies conditions (P1) –
(P4) in Assumption 5.16 with a constant 𝑚𝑃 > 0. With this distribution 𝑃 , define
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the random variables 𝑊0 and 𝐷 as in Definition 5.21 and the event 𝐸𝑛,𝑁,𝜀,𝛾 as in
Definition 5.23. Moreover, define (𝑊̃𝑘)𝑘∈N0 for 𝑘 ≥ 0 by 𝑊̃0 := 𝑊0 and the gradient
descent iteration

𝑊̃𝑘+1 = 𝑊̃𝑘 − ℎ∇𝐿𝐷(𝑊̃𝑘)

for a step width

0 < ℎ ≤ 1
𝜆max(𝐴ref𝑀𝐷)

with 𝜆max(𝐴ref𝑀𝐷) as in Lemma 5.28.
Then there exists an 𝑛0 ∈ N0 such that for all 𝑛 ≥ 𝑛0, 𝑁 ≥ 𝜚𝑛2, 𝑘 ∈ N0 and 𝜔 ∈ 𝐸𝑛,𝑁,𝜀,𝛾

(cf. Definition 5.23),

∙ 𝑓𝑊̃𝑘(𝜔)(𝑥) = 𝑓𝑊̃𝑘(𝜔),𝜏(𝑊0(𝜔)),sgn(𝑥)(𝑥) for |𝑥| ≥ 𝑚𝑃 ,

∙ 𝑓𝑊̃𝑘(𝜔)|(−∞,𝑚𝑃 ] and 𝑓𝑊̃𝑘(𝜔)|[𝑚𝑃 ,∞) are affine functions.

Proof.

(1) Let 𝑊0, 𝐷 be random variables as in Definition 5.21 and 𝜏 := 𝜏(𝑊0), cf. Defini-
tion 5.1. Define the random variables 𝑊𝑘, 𝑘 ∈ N0, recursively by

𝑊𝑘+1 := 𝑊𝑘 − ℎ∇𝐿𝐷,𝜏 (𝑊𝑘) .

We want to show that ∇𝐿𝐷,𝜏 (𝑊𝑘) = ∇𝐿𝐷(𝑊𝑘) for all 𝑘 ∈ N0, 𝑛 ≥ 𝑛0, 𝑁 ≥ 𝜚𝑛2, 𝜔 ∈
𝐸𝑛,𝑁,𝜀,𝛾 for some 𝑛0 ∈ N0 that has yet to be chosen.

(2) Recall that due to the special structure of 𝜙,

𝐿𝐷(𝑊 ) = 1
2𝑁

∑︁
𝑗∈𝐽

(𝑦𝑗 − 𝑓𝑊 (𝑥𝑗))2

𝐿𝐷,𝜏 (𝑊 ) = 1
2𝑁

∑︁
𝑗∈𝐽

(𝑦𝑗 − 𝑓𝑊,𝜏,sgn(𝑥𝑗)(𝑥𝑗))2

𝑓𝑊 (𝑥𝑗) = 𝑐 +
∑︁
𝑖∈𝐼

𝜙′(sgn(𝑎𝑖𝑥𝑗 + 𝑏𝑖))𝑤𝑖(𝑎𝑖𝑥𝑗 + 𝑏𝑖)

𝑓𝑊,𝜏,sgn(𝑥𝑗)(𝑥𝑗) = 𝑐 +
∑︁
𝑖∈𝐼

𝜙′(𝜏𝑖 · sgn(𝑥𝑗))𝑤𝑖(𝑎𝑖𝑥𝑗 + 𝑏𝑖) .

Define the set

𝒮𝑊0 := {(𝑎, 𝑏, 𝑐, 𝑤) ∈ R3𝑛+1 | ∀𝑖 ∈ 𝐼, |𝑥| ≥ 𝑚𝑃 : sgn(𝑎𝑖𝑥 + 𝑏𝑖) = sgn(𝑎𝑖,0𝑥 + 𝑏𝑖,0)} ,

which is open since (W4) and (W1) yield 𝑎𝑖,0 ̸= 0, 𝑏𝑖,0 = 0 and hence 𝑎𝑖,0𝑥 + 𝑏𝑖,0 ̸= 0
for |𝑥| ≥ 𝑚𝑃 > 0. Since 𝜏𝑖 · sgn(𝑥) = sgn(𝑎𝑖,0) · sgn(𝑥) = sgn(𝑎𝑖,0𝑥 + 𝑏𝑖,0), we
conclude

𝑓𝑊 (𝑥) = 𝑓𝑊,𝜏,sgn(𝑥)(𝑥) for all 𝑊 ∈ 𝒮𝑊0 , |𝑥| ≥ 𝑚𝑃 . (5.9)

Since |𝑥𝑗| ≥ 𝑚𝑃 by (D3), 𝐿𝐷(𝑊 ) = 𝐿𝐷,𝜏 (𝑊 ) for all 𝑊 ∈ 𝒮𝑊0 . Since 𝒮𝑊0 is open,
this also means ∇𝐿𝐷(𝑊 ) = ∇𝐿𝐷,𝜏 (𝑊 ) for all 𝑊 ∈ 𝒮𝑊0 . Hence, we need to show
that 𝑊𝑘 ∈ 𝒮𝑊0 for all 𝑘 ∈ N0, 𝑛 ≥ 𝑛0, 𝜔 ∈ 𝐸𝑛,𝑁,𝜀,𝛾 for a suitable 𝑛0 ∈ N0.
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(3) As usual, assume 𝜔 ∈ 𝐸𝑛,𝑁,𝜀,𝛾. Then, Corollary 5.35 yields

sup
𝑖,𝑘

|𝑎𝑖,𝑘 − 𝑎𝑖,0| = 𝑂(𝑛2𝜀−3/2)

sup
𝑖,𝑘

|𝑏𝑖,𝑘 − 𝑏𝑖,0| = 𝑂(𝑛2𝜀−3/2) .

Moreover, properties (W1) and (W4) of Definition 5.23 yield

min
𝑖

|𝑎𝑖,0| ≥ 𝑛−(1+𝛾)

max
𝑖

|𝑏𝑖,0| = 0 .

For 𝑥 ∈ R, we thus have

𝑚𝑥 := min
𝑖

|𝑎𝑖,0𝑥 + 𝑏𝑖,0| ≥ 𝑛−(1+𝛾)|𝑥|

𝛿𝑥 := sup
𝑖,𝑘

|(𝑎𝑖,0𝑥𝑗 + 𝑏𝑖,0) − (𝑎𝑖,𝑘𝑥𝑗 + 𝑏𝑖,𝑘)| = 𝑂(𝑛2𝜀−3/2)|𝑥| + 𝑂(𝑛2𝜀−3/2) .

and for |𝑥| ≥ 𝑚𝑃 , where 𝑚𝑃 was defined in Assumption 5.16, we obtain

𝛿𝑥

𝑚𝑥

= 𝑂
(︁
𝑛2𝜀−3/2+1+𝛾

)︁(︃ 1
|𝑥|

+ 1
)︃

⏟  ⏞  
≤ 1

𝑚𝑃
+1

= 𝑂
(︁
𝑛2(𝜀−(1/4−𝛾/2))

)︁
= 𝑜(1)

since 𝜀 ∈ (0, 1/4 − 𝛾/2) by assumption. Hence, there exists an 𝑛0 ∈ N0 such that
𝛿𝑥/𝑚𝑥 < 1 for 𝑛 ≥ 𝑛0 and 𝑁 ≥ 𝜚𝑛2. But 𝛿𝑥/𝑚𝑥 < 1 means 𝛿𝑥 < 𝑚𝑥 and thus

min
𝑖

|𝑎𝑖,0𝑥 + 𝑏𝑖,0| > sup
𝑖,𝑘

|(𝑎𝑖,0𝑥 + 𝑏𝑖,0) − (𝑎𝑖,𝑘𝑥 + 𝑏𝑖,𝑘)|

for |𝑥| ≥ 𝑚𝑃 . This means 𝑊𝑘 ∈ 𝒮𝑊0 for all 𝑘 ∈ N0. Therefore, ∇𝐿𝐷,𝜏 (𝑊𝑘) =
∇𝐿𝐷(𝑊𝑘) for all 𝑘 ∈ N0 and (𝑊𝑘)𝑘∈N0 satisfies the original gradient descent
iteration:

𝑊𝑘+1 = 𝑊𝑘 − ℎ∇𝐿𝐷(𝑊𝑘) .

By induction, we conclude 𝑊𝑘 = 𝑊̃𝑘 for all 𝜔 ∈ 𝐸𝑛,𝑁,𝜀,𝛾 and all 𝑘 ∈ N0. Moreover,
we have shown in Eq. (5.9) that 𝑓𝑊𝑘

and 𝑓𝑊𝑘,𝜏,𝜎 agree on 𝜎[𝑚𝑃 , ∞). Since 𝑓𝑊𝑘,𝜏,𝜎

is affine, the claim follows.

Remark 5.38. The right-hand side of the bound

ℎ ≤ 1
𝜆max(𝐴ref𝑀𝐷)

in Theorem 5.37 can be computed for any specific dataset 𝐷 and initialization 𝑊0, but
it depends on 𝐷 and 𝑊0. Note that for 𝜔 ∈ 𝐸𝑛,𝑁,𝜀,𝛾, we have

𝜆max(𝐴ref𝑀𝐷)
Lemma 5.28

≤ 𝜆max(𝐴ref)𝜆max(𝑀𝐷)
Lemma 5.27, (D2)

≤ (1 + |𝛼|)2(𝑐𝑤 + max{2, 𝑛𝑐𝑎}) · 2𝜆max(𝑀𝑃 ) = Θ(𝑛) .
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In the proof of Proposition B.2, it is shown that indeed 𝜆max(𝐴ref𝑀𝐷) = Θ(𝑛), but
knowing 𝜆max(𝐴ref𝑀𝐷) = 𝑂(𝑛) is sufficient here. This means that in Theorem 5.37, it
is sufficient for the step width ℎ to satisfy

ℎ ≤ 1
(1 + |𝛼|)2(𝑐𝑤 + max{2, 𝑛𝑐𝑎}) · 2𝜆max(𝑀𝑃 ) = Θ(1/𝑛) , (5.10)

although this bound cannot be computed in general since 𝑃 might be unknown. An
alternative is to choose ℎ = 𝑜(𝑛−1), which ensures that Eq. (5.10) is satisfied for
sufficiently large 𝑛. J

For the next inconsistency result, recall from Definition 2.1 that

𝐿𝐷(𝑊 ) = 1
2𝑁

𝑁∑︁
𝑗=1

(𝑦𝑗 − 𝑓𝑊 (𝑥𝑗))2

𝐿𝑃 (𝑊 ) = 1
2E(𝑥,𝑦)∼𝑃 (𝑦 − 𝑓𝑊 (𝑥))2 .

Corollary 5.39 (Explicit inconsistency result). Let |𝛼| ̸= 1 and 𝜚 > 0. Let 𝑃 be the
(symmetric) uniform probability distribution on the finite set

{(−3, −1), (−2, 2), (−1, −1), (1, 1), (2, −2), (3, 1)} ⊆ R × R .

With this distribution 𝑃 , define the random variables 𝑊0 and 𝐷 on the probability
spaces (Ω𝑛,𝑁 , ℱ𝑛,𝑁 , 𝑃𝑛,𝑁) as in Definition 5.21 and the events 𝐸𝑛,𝑁,𝜀,𝛾 ⊆ Ω𝑛,𝑁 as in
Definition 5.23. Moreover, define (𝑊̃𝑘)𝑘∈N0 by 𝑊̃0 := 𝑊0 and the gradient descent
iteration

𝑊̃𝑘+1 = 𝑊̃𝑘 − ℎ∇𝐿𝐷(𝑊̃𝑘)

for a step width

0 < ℎ ≤ 1
𝜆max(𝐴ref𝑀𝐷)

with 𝜆max(𝐴ref𝑀𝐷) as in Lemma 5.28.
Then, for 𝑁 ≥ 𝜚𝑛2,

𝑃𝑛,𝑁(∃𝑘 ∈ N0 : 𝐿𝑃 (𝑊̃𝑘) < 1) = 𝑂(𝑛−𝛾)

for all 𝛾 ∈ (0, 1/2), even though for all 𝑛 ≥ 5, there exists a 𝑊 ∈ R3𝑛+1 such that
𝐿𝑃 (𝑊 ) = 0.

Proof. By Example 5.18, 𝑃 satisfies conditions (P1) – (P4) of Assumption 5.16 with
𝑚𝑃 = 1. Let 𝛾 ∈ (0, 1/2). Choose 𝜀 ∈ (0, 1/4 − 𝛾/2) arbitrarily. By Theorem 5.37,
there exists 𝑛0 ∈ N0 such that for all 𝑛 ≥ 𝑛0, 𝑘 ∈ N, 𝜔 ∈ 𝐸𝑛,𝑁,𝜀,𝛾 and |𝑥| ≥ 𝑚𝑃 = 1, we
have

𝑓𝑊̃𝑘(𝜔),𝜏,sgn(𝑥)(𝑥) = 𝑓𝑊̃𝑘(𝜔)(𝑥) .
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For the dataset

𝐷̃ := ((𝑥̃1, 𝑦1), . . . , (𝑥̃6, 𝑦6)) := ((−3, −1), (−2, 2), (−1, −1), (1, 1), (2, −2), (3, 1)) ,

we have 𝐿𝑃 = 𝐿𝐷̃ and hence, since |𝑥𝑗| ≥ 𝑚𝑃 by (D3),

𝐿𝑃 (𝑊̃𝑘(𝜔)) = 𝐿𝐷̃(𝑊̃𝑘(𝜔)) = 1
2 · 6

6∑︁
𝑗=1

(𝑦𝑗 − 𝑓𝑊̃𝑘(𝜔)(𝑥̃𝑗))2

= 1
2 · 6

6∑︁
𝑗=1

(𝑦𝑗 − 𝑓𝑊̃𝑘(𝜔),𝜏,sgn(𝑥̃𝑗)(𝑥̃𝑗))2 = 𝐿𝐷̃,𝜏 (𝑊̃𝑘(𝜔)) .

Moreover, by Proposition 5.10, any weight vector 𝑊 ∈ R3𝑛+1 satisfies

𝐿𝐷̃,𝜏 (𝑊 ) = 1
2𝑣⊤𝑀𝐷̃𝑣 + 1

2𝑁

∑︁
𝜎∈{−1,1}

𝑌 ⊤
𝐷̃,𝜎(𝐼 − 𝑋𝐷̃,𝜎(𝑋⊤

𝐷̃,𝜎𝑋𝐷̃,𝜎)−1𝑋⊤
𝐷̃,𝜎)𝑌𝐷̃,𝜎 ,

where 𝑣⊤𝑀𝐷̃𝑣 ≥ 0 and

𝑋⊤
𝐷̃,1𝑌𝐷̃,1 =

⎛⎜⎝1 1
2 1
3 1

⎞⎟⎠
⊤⎛⎜⎝ 1

−2
1

⎞⎟⎠ =
(︃

0
0

)︃
, 𝑋⊤

𝐷̃,−1𝑌𝐷̃,−1 =

⎛⎜⎝−3 1
−2 1
−1 1

⎞⎟⎠
⊤⎛⎜⎝−1

2
−1

⎞⎟⎠ =
(︃

0
0

)︃
.

Hence,

𝐿𝐷̃,𝜏 (𝑊 ) ≥ 1
2𝑁

∑︁
𝜎∈{−1,1}

𝑌 ⊤
𝐷̃,𝜎𝑌𝐷̃,𝜎 = 1

2 · 6(6 + 6) = 1 .

This shows

𝐿𝑃 (𝑊̃𝑘(𝜔)) ≥ 1

for all 𝑛 ≥ 𝑛0, 𝑘 ∈ N0 and 𝜔 ∈ 𝐸𝑛,𝑁,𝜀,𝛾. By Theorem 5.25 with 𝛾′ := 𝛾 > 0 we have

𝑃𝑛,𝑁(∃𝑘 ∈ N0 : 𝐿𝑃 (𝑊̃𝑘) < 1)
𝑛≥𝑛0
≤ 𝑃𝑛,𝑁((𝐸𝑛,𝑁,𝜀,𝛾)𝑐) = 𝑂(𝑛−𝛾 + 𝑁−𝛾′)
= 𝑂(𝑛−𝛾 + (𝜚𝑛2)−𝛾) = 𝑂(𝑛−𝛾) .

By Lemma C.1, for 𝑛 ≥ 5, there exists 𝑊 ∈ R3𝑛+1 such that 𝑓𝑊 interpolates 𝐷̃ and
hence 𝐿𝑃 (𝑊 ) = 0.

Remark 5.40. If we consider the case 𝜀 → 0, we essentially have

min
𝑖

|𝑎𝑖,0𝑥𝑗 + 𝑏𝑖,0| = Ω(𝑛−1−𝛾)

sup
𝑖,𝑘

|(𝑎𝑖,𝑘𝑥𝑗 + 𝑏𝑖,0) − (𝑎𝑖,0𝑥𝑗 + 𝑏𝑖,0)| = 𝑂(𝑛−3/2) .

If we choose 𝛾 ∈ (0, 1/2) to be small, there is still almost 𝑂(𝑛−1/2) of room left that can
be used to strengthen some part of Theorem 5.37 or Corollary 5.39. In Corollary 5.39,
we chose to allow larger values of 𝛾, which makes the probability of reaching the global
optimum converge to zero almost like 𝑂(𝑛−1/2). We could also weaken condition (P3)
in Assumption 5.16 instead, allowing for a small probability of generating data points
near zero (i.e. min𝑗 |𝑥𝑗| = Ω(𝑛𝜀−1/2)). Another possibility would be to allow 𝑛 to grow
faster than 𝑂(

√
𝑁), up to 𝑂(𝑁1−𝜀) for some 𝜀 > 0. J
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Remark 5.41. In Corollary 5.39, it is possible to use the fixed dataset4

𝐷 = ((−3, −1), (−2, 2), (−1, −1), (1, 1), (2, −2), (3, 1))

instead of sampling 𝐷 from the corresponding probability distribution 𝑃 : Since 𝑀𝐷 =
𝑀𝑃 and 𝑣opt

𝑃 = 𝑣opt
𝐷 , the conditions (D1) – (D3) in Definition 5.23 are always satisfied,

hence 𝐷 ∈ 𝐸D
𝑁,𝜀. This means that even if we fix 𝐷, we have

𝑃𝑛,𝑁(𝐸𝑛,𝑁,𝜀,𝛾) = 1 − 𝑂(𝑛−𝛾) .

Theorem 5.37 now shows that for 𝑛 ≥ 𝑛0 and all 𝜔 ∈ 𝐸𝑛,𝑁,𝜀,𝛾, the kinks will not reach
the data points. J

Finally, we want to formulate a result that relates more directly to (universal) consis-
tency as defined in Definition 2.2. To this end, we formally introduce neural network
estimators.

Definition 5.42. Let 𝑄wa satisfy Assumption 5.19 and let 𝑛, 𝑁 ∈ N, 𝛼 ∈ R, ℎ > 0,
𝑐𝑎, 𝑐𝑤 > 0 and 𝐷 ∈ (R × R)𝑁 . A NN-algorithm is a random function

𝒜𝑛,𝑁,𝛼,ℎ,𝑄wa,𝑐𝑎,𝑐𝑤 : 𝐷 ↦→ 𝒜𝑛,𝑁,𝛼,ℎ,𝑄wa,𝑐𝑎,𝑐𝑤(𝐷) := (𝑓𝑊𝑘
)𝑘∈N0 ,

where 𝑊𝑘+1 = 𝑊𝑘 − ℎ∇𝐿𝐷(𝑊𝑘) and the components of 𝑊0 = (𝑎·,0, 𝑏·,0, 𝑐0, 𝑤·,0) are
independent and distributed as √︃

1
𝑐𝑎

𝑎𝑖,0 ∼ 𝑄wa

√︃
𝑛

𝑐𝑤

𝑤𝑖,0 ∼ 𝑄wa

𝑏𝑖,0 = 0
𝑐0 = 0 . J

Corollary 5.43 (High-level inconsistency result). Let 𝑃 be a probability distribution
on R × R satisfying conditions (P1) – (P5) from Assumption 5.16. Let 𝑄wa satisfy
Assumption 5.19, let 𝛼 ∈ R ∖ {−1, 1}, let 𝑐𝑎, 𝑐𝑤 > 0 and let (𝑛𝑁)𝑁∈N, (ℎ𝑁)𝑁∈N be
sequences with

∙ 𝑛𝑁 ∈ N, 𝑛𝑁 = 𝑂(
√

𝑁),

∙ ℎ𝑁 ∈ (0, ∞), ℎ𝑁 = 𝑜(𝑛−1
𝑁 ).

For 𝐷 ∈ (R×R)𝑁 , let (𝑓𝐷,𝑘)𝑘∈N0 := 𝒜𝑛𝑁 ,𝑁,𝛼,ℎ𝑁 ,𝑄wa,𝑐𝑎,𝑐𝑤(𝐷). Then, there exist 𝐶, 𝐶 > 0
independent of 𝑛𝑁 , 𝑁, ℎ𝑁 such that

𝑃𝑛𝑁 ,𝑁

(︂
inf

𝑘∈N0
𝑅𝑃 (𝑓𝐷,𝑘) ≤ inf

𝑓 :R→R
𝑅𝑃 (𝑓) + 𝐶

)︂
≤ 𝐶𝑛−𝛾

𝑁

for all 𝛾 < 1/2.
4Of course, we can then also drop the assumption 𝑁 ≥ 𝜚𝑛2.
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Proof. Let 𝛾 ∈ (0, 1/2). Choose 𝜀 ∈ (0, 1/4 − 𝛾/2) arbitrarily. Since

1
𝜆max(𝐴ref𝑀𝐷) = Ω(𝑛−1

𝑁 )

for 𝜔 ∈ 𝐸𝑛𝑁 ,𝑁,𝜀,𝛾 by Remark 5.38 and since we assumed ℎ𝑁 = 𝑜(𝑛−1
𝑁 ), it follows that

ℎ𝑁 ≤ 1
𝜆max(𝐴ref𝑀𝐷)

whenever 𝑛𝑁 is sufficiently large. Since 𝑛𝑁 = 𝑂(
√

𝑁), there exists 𝜚 > 0 with 𝑁 ≥ 𝜚𝑛2
𝑁

for all 𝑁 ∈ N. By Theorem 5.37, there exists 𝑛0 ∈ N0 such that whenever 𝑛𝑁 ≥ 𝑛0, it
holds true for all 𝑘 ∈ N, 𝜔 ∈ 𝐸𝑛𝑁 ,𝑁,𝜀,𝛾 and |𝑥| ≥ 𝑚𝑃 that

𝑓𝑊̃𝑘(𝜔)(𝑥) = 𝑓𝑊̃𝑘(𝜔),𝜏,sgn(𝑥)(𝑥) .

Hence, whenever 𝑛𝑁 ≥ 𝑛0, 𝜔 ∈ 𝐸𝑛𝑁 ,𝑁,𝜀,𝛾, 𝑘 ∈ N0, there exists a function 𝑓 ∈ ℱaff (with
ℱaff defined in Assumption 5.16) such that 𝑓(𝑥) = 𝑓𝑊̃𝑘(𝜔)(𝑥) for all |𝑥| ≥ 𝑚𝑃 . By (P5),
we have 𝐶 := inf𝑓∈ℱaff 𝑅𝑃 (𝑓) − inf𝑓 :R→R 𝑅𝑃 (𝑓) > 0. By (P3), this implies

𝑅𝑃 (𝑓𝑊̃𝑘(𝜔)) ≥ inf
𝑓∈ℱaff

𝑅𝑃 (𝑓) = inf
𝑓 :R→R

𝑅𝑃 (𝑓) + 𝐶 .

For sufficiently large 𝑛𝑁 , we hence obtain with 𝛾′ := 𝛾 > 0:

𝑃𝑛𝑁 ,𝑁

(︂
𝑅𝑃 (𝑓𝑊̃𝑘(𝜔)) ≥ inf

𝑓 :R→R
𝑅𝑃 (𝑓) + 𝐶

)︂
≤ 𝑃 ((𝐸𝑛𝑁 ,𝑁,𝜀,𝛾)𝑐)

Theorem 5.25= 𝑂
(︁
𝑛−𝛾

𝑁 + 𝑁−𝛾′)︁
= 𝑂

(︁
𝑛−𝛾

𝑁 + (𝜚𝑛2
𝑁)−𝛾

)︁
= 𝑂

(︁
𝑛−𝛾

𝑁

)︁
.

Remark 5.44. The presented proofs could have been simplified by considering dis-
tributions 𝑃 on [𝑚𝑃 , ∞) instead. This would lead to 𝑀−1 = 0, allowing us to reduce
the four-dimensional system 𝛿𝑣 = −ℎ𝐴𝑀𝑣 to a two-dimensional system and thus
to simplify many formulas. Here, we chose to prove the results for distributions on
(−∞, 𝑚𝑃 ] ∪ [𝑚𝑃 , ∞) since this allows for distributions that are normalized (even sym-
metric) around zero, which arguably strengthens the results and also provides more
insights about how the “signs” interact. J

Remark 5.45. For the negative gradient flow equation

𝑊̇ (𝑡) = −∇𝐿𝐷,𝜏 (𝑊 (𝑡)) ,

we can use similar arguments to show that 𝑎𝑖 and 𝑏𝑖 only change by 𝑜(1/𝑛) with
high probability. These arguments are partially simpler because using 𝑊̇ instead of
𝛿𝑊 yields slightly simpler formulas. However, the induction argument in Section 5.4
becomes slightly more complicated and, more importantly, bounding the error between
𝑊 (𝑘ℎ) and 𝑊𝑘 (the discrete gradient descent version) yields a very bad bound on the
maximum step size ℎ for which the argument works. J
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Remark 5.46. A crucial step in the inconsistency proof was to obtain the 𝐿1 bound

ℎ
∞∑︁

𝑘=0
‖(𝐼 − ℎ𝐴ref𝑀)𝑘𝑣0‖∞ = 𝑂(1/𝑛)

in Proposition 5.29 using the eigenvector analysis in Proposition B.2. In the continuous
case outlined in Remark 5.45, this corresponds to∫︁ ∞

0
‖𝑒−𝐴ref𝑀𝑡𝑣(0)‖∞ d𝑡 = 𝑂(1/𝑛) .

The trajectory 𝑡 ↦→ 𝑒−𝐴ref𝑀𝑡𝑣0 satisfies the differential equation 𝑣̇(𝑡) = −𝐴ref𝑀𝑣(𝑡) and
serves as an approximation of the true trajectory 𝑣(𝑡) with 𝑣̇(𝑡) = −𝐴(𝑡)𝑀𝑣(𝑡). A 𝐿2

bound would have been much easier to obtain but is not useful for our proof:5∫︁ ∞

0
(𝐿𝐷,𝜏 (𝑊 (𝑡)) − inf

𝑡′
𝐿𝐷,𝜏 (𝑊 (𝑡′))) d𝑡

5.10=
∫︁ ∞

0
𝑣(𝑡)⊤𝑀𝑣(𝑡) d𝑡

≈
∫︁ ∞

0

(︁
𝑒−𝐴ref𝑀𝑡𝑣0

)︁⊤
𝑀(𝑒−𝐴ref𝑀𝑡𝑣0) d𝑡

= 𝑣⊤
0

(︂∫︁ ∞

0

(︁
𝑒−𝐴ref𝑀𝑡

)︁⊤
𝑀𝑒−𝐴ref𝑀𝑡 d𝑡

)︂
𝑣0 ,

where ∫︁ ∞

0

(︁
𝑒−𝐴ref𝑀𝑡

)︁⊤
𝑀𝑒−𝐴ref𝑀𝑡 d𝑡

=
∫︁ ∞

0

(︁
𝑒−𝐴ref𝑀𝑡

)︁⊤
(︂

(𝐴ref𝑀)⊤ · 1
2(𝐴ref)−1 + 1

2(𝐴ref)−1 · (𝐴ref𝑀)
)︂

𝑒−𝐴ref𝑀𝑡 d𝑡

=
∫︁ ∞

0

d
d𝑡

[︂
−
(︁
𝑒−𝐴ref𝑀𝑡

)︁⊤
(︂1

2(𝐴ref)−1
)︂

𝑒−𝐴ref𝑀𝑡
]︂

d𝑡

=
[︂
−
(︁
𝑒−𝐴ref𝑀𝑡

)︁⊤
(︂1

2(𝐴ref)−1
)︂

𝑒−𝐴ref𝑀𝑡
]︂∞

0

= −0 + 𝐼 · 1
2(𝐴ref)−1 · 𝐼

= 1
2(𝐴ref)−1 .

The resulting term 1
2𝑣⊤

0 (𝐴ref)−1𝑣⊤
0 resembles the term 𝑦⊤(𝐻∞)−1𝑦 that describes the

convergence speed of the neural network found by Arora et al. [2]. J

5At the core of this calculation is the observation that 𝑋 = 1
2 (𝐴ref)−1 is the solution to the

Lyapunov equation (−𝐴ref𝑀)⊤𝑋 + 𝑋(−𝐴ref𝑀) + 𝑀 = 0. Solutions of Lyapunov equations can be
used to compute such integrals (cf. e.g. Theorem 18 in [31]).
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6 Empirical Results
In this section, we empirically estimate the probability that no kink crosses a data point
when the datasets are sampled from the distribution 𝑃 specified in Example 5.18. Our im-
plementation is provided at https://github.com/dholzmueller/nn_inconsistency.
We use 𝑁 = 𝑛2, which does not render the computations infeasible because this particu-
lar distribution 𝑃 only samples from six distinct points. Training on a dataset sampled
from 𝑃 can be represented by weighting these six points appropriately in the training
objective. Specifically, we estimate

𝑃𝑛,𝑁(∃𝑖, 𝑘 : |𝑏𝑖,𝑘/𝑎𝑖,𝑘| ≥ 1)

for 𝛼 = 0, 𝑁 = 𝑛2 and 𝑛 ∈ {16, 32, . . . , 2048} with 104 Monte Carlo samples for each 𝑛.
We consider two different optimizers:

∙ Gradient Descent (GD) as used previously, and

∙ Stochastic Gradient Descent (SGD) with batch size 16 on batches that are sampled
independently from the training data.

We use two ways of choosing the step size:

∙ ℎ = 1
𝜆max(𝐴ref𝑀𝐷) , which we find to be approximately 0.4 · 𝑛−1 for our choice of 𝑃 .

∙ ℎ = 0.01 · 𝑛−1 as a smaller choice for SGD.

We stop the training process whenever a kink crosses 1 or −1. In order to also stop the
runs where no kink crosses a data point, we consider two stopping criteria:

∙ In some settings, we use an early stopping criterion. Every 1000 epochs (GD)
or 1000 minibatches (SGD), the criterion checks the validation loss on an inde-
pendently drawn but fixed validation set. If the validation loss does not decrease
by more than 10−8 within the last ten of these checks, the criterion stops the
training process. This is equivalent to using early stopping in Keras [6] with
patience = 10 and min delta = 10−8.

∙ We employ the theory developed in this thesis to obtain a sufficient criterion for
stopping. This means that if the criterion is satisfied, the theory guarantees (for
GD) that the kinks will never reach 1 or −1. It works as follows:

– Treat the current weight vector 𝑊𝑘 as if it was the initialization 𝑊0.
– Compute the matrices 𝐴ref and 𝑀 .
– Compute upper bounds on

ℎ
∞∑︁

𝑘=0
‖(𝐼 − ℎ𝑀1/2𝐴ref𝑀1/2)𝑘‖∞ and ℎ

∞∑︁
𝑘=0

‖(𝐼 − ℎ𝑀1/2𝐴ref𝑀1/2)𝑘𝑀1/2𝑣0‖∞

based on an orthogonal diagonalization of 𝑀1/2𝐴ref𝑀1/2.
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– As in the proof of Proposition 5.33, assume 𝛿𝑘−1 ≤ 1/2 and use the previous
step and Proposition 5.31 to obtain bounds on 𝜅𝑢,𝑘 and on the differences
𝐴𝑘 − 𝐴ref . Then, obtain a new bound for 𝛿𝑘. If this bound, which is
independent of 𝑘, is at most 1/2, then the induction argument works and we
can employ Proposition 5.31 to find bounds on |𝜃𝑖,𝑘 − 𝜃𝑖,0|. If these bounds
imply that no kink will reach a data point, stop the training process.

For 𝑛 ∈ {1, 2, 4, 8}, we observed some randomly sampled (𝑊0, 𝐷) pairs where
all 𝑎𝑖 had the same sign or the condition 𝑀𝐷 ≻ 0 was violated. In these cases,
the sufficient criterion will never be satisfied since this yields 𝜆min(𝐴ref𝑀𝐷) = 0,
which implies ℎ

∑︀∞
𝑘=0 ‖(𝐼 − ℎ𝐴ref𝑀𝐷)𝑘‖∞ = ∞. For 𝑛 ≥ 16, this problem did not

occur in our experiments.

Finally, we also consider shifted versions 𝑃Δ of the distribution 𝑃 . We specify with Δ how
much this distribution is shifted upwards, i.e. if (𝑥, 𝑦) ∼ 𝑃 , then (𝑥, 𝑦 + Δ) ∼ 𝑃Δ. Note
that 𝑃Δ satisfies condition (P4) of Assumption 5.16 only if Δ = 0. Since Corollary 5.39
predicts 𝑃𝑛,𝑁(∃𝑖, 𝑘 : |𝑏𝑖,𝑘/𝑎𝑖,𝑘| ≥ 1) = 𝑂(𝑛−𝛾) for Δ = 0 and all 𝛾 < 1/2, the function
𝑛 ↦→ 2𝑛−1/2 is plotted as a comparison. (The factor 2 is used for visual reasons.) Our
plots provide evidence that for small |Δ| and practical hidden layer sizes, the probability
that the kinks reach 1 or −1 is still rather low.
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Figure 5: Monte Carlo estimates for the probability that a kink crosses 𝑥 = 1 or 𝑥 = −1
when using gradient descent, ℎ = 1

𝜆max(𝐴ref𝑀𝐷) and only the sufficient stopping criterion.
Data is sampled from 𝑃Δ for different values of Δ.

Figure 5 shows the probability estimates for gradient descent with the larger step size.
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For Δ = 0, the probabilities behave similarly to 𝑛−1/2 while for Δ ̸= 0, they start to
deviate from this behavior once 𝑛 is large enough. This is due to the fact that

𝑣opt
𝑃Δ

= (0, 0, Δ, Δ)⊤ .

Inserting this 𝑣opt
𝑃Δ

into the proof of Proposition 5.29, one obtains (in the limit 𝜀 → 0)

ℎ
∞∑︁

𝑘=0
‖(𝐼 − ℎ𝐴ref𝑀𝐷)𝑘𝑣0‖∞ = 𝑂(𝑛−1 + |Δ|) .

Once the term |Δ| dominates the term 𝑛−1, the probability of a kink crossing 1 or −1
gets significantly larger than the corresponding probability for Δ = 0. It can also be
seen in Figure 5 that the curve for Δ = 0.01 has its minimum at an about ten times
larger value of 𝑛 than the curve for Δ = 0.1.
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Figure 6: Monte Carlo estimates for the probability that a kink crosses 𝑥 = 1 or 𝑥 = −1
when using gradient descent, ℎ = 1

𝜆max(𝐴ref𝑀𝐷) and both early and sufficient stopping
criteria. Training and validation data is sampled from 𝑃Δ for different values of Δ.

Figure 6 shows that when additionally using the early stopping criterion, the probability
estimates get slightly lower since some configurations get stopped even though the kinks
would cross 1 or −1 later. When using SGD with early stopping as in Figure 7, we
observe that the probabilities are generally higher than for gradient descent but show
similar asymptotic behavior. The reason that the probabilities are higher might be
that the step size ℎ = 1

𝜆max(𝐴ref𝑀𝐷) is too large for stochastic gradient descent to mimic
gradient descent. If we reduce the step size to ℎ = 0.01 · 𝑛−1, we observe significantly
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reduced probabilities as shown in Figure 8. Another reason for the lower probabilities
in Figure 8 may be that while we reduce the step size, we do not increase the number
of batches between each early stopping check. Hence, the early stopping criterion might
stop the training even earlier in terms of optimization progress.
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Figure 7: Monte Carlo estimates for the probability that a kink crosses 𝑥 = 1 or 𝑥 = −1
when using stochastic gradient descent, ℎ = 1

𝜆max(𝐴ref𝑀𝐷) and only the early stopping
criterion. Training and validation data is sampled from 𝑃Δ for different values of Δ.

Let us now roughly estimate what would happen if we chose the asymptotic variances
of the initialization differently. Let us assume that

Var(𝑎𝑖) = Θ(𝑛−𝑝), Var(𝑤𝑖) = Θ(𝑛−𝑞)

with 𝑝, 𝑞 ≤ 1. Let us also assume that we work with the dataset 𝐷 corresponding
to the probability distribution 𝑃 in Example 5.18 so that 𝑣opt

𝐷 = 0 and we do not
have to care about sampling. In the following, we ignore factors like 𝑛𝜀 and the fact
that 𝐴, 𝑤 and Σ𝜎 might change significantly during gradient descent. We also require
𝜔 ∈ 𝐸𝑛,𝑁,𝜀,𝛾 as usual. For the case 𝑝 < 𝑞, we have Σ𝜎,𝑤2 = Θ(𝑛1−𝑞) = 𝑜(𝑛1−𝑝) = 𝑜(Σ𝜎,𝑎2)
and can therefore argue similar to Proposition 5.29: We apply Proposition B.2 (with
𝑓 ≃ 𝑔 :⇔ 𝑓 = Θ(𝑔)) to obtain

ℎ
∞∑︁

𝑘=0
‖(𝐼 − ℎ𝐴ref𝑀)𝑘𝑣0‖2

≤ 2
√︁

cond(𝑀)
⎛⎝⎛⎝1

𝜆
+

2√
𝑚1

√︁
cond(𝑀)𝛽

𝜆min(𝐴ref𝑀)

⎞⎠ ‖𝑣1‖2 + 1
𝜆min(𝐴ref𝑀)‖𝑣2‖2

⎞⎠
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Figure 8: Monte Carlo estimates for the probability that a kink crosses 𝑥 = 1 or 𝑥 = −1
when using stochastic gradient descent, ℎ = 0.01 · 𝑛−1 and only the early stopping
criterion. Training and validation data is sampled from 𝑃Δ for different values of Δ.

≃
(︃

1
𝜆

+ 𝛽

𝜆min(𝐴ref)

)︃
‖𝑣0‖2

≃
(︃

1
Σ𝜎,𝑎2 + Σ𝜎,𝑤2

+ 1
Σ𝜎,𝑎2 + Σ𝜎,𝑤2

)︃
|Σ𝜎,𝑤𝑎|

≃ 1
𝑛 · 𝑛−𝑝

· 𝑛1/2−𝑝/2−𝑞/2 = 𝑛−1/2(1+𝑞−𝑝) = 𝑛−1/2(1+|𝑝−𝑞|) .

In the case 𝑝 ≥ 𝑞, we may not be able to satisfy the conditions on 𝜆 and 𝛽, but we can
still apply step (1) of the proof of Proposition B.2: We have 𝜆min(𝐴ref), 𝜆max(𝐴ref) ≃ 𝑛1−𝑞

and hence

ℎ
∞∑︁

𝑘=0
‖(𝐼 − ℎ𝐴ref𝑀)𝑘𝑣0‖2 ≤

(︃
ℎ

∞∑︁
𝑘=0

‖(𝐼 − ℎ𝐴ref𝑀)𝑘‖2

)︃
· ‖𝑣0‖2

≤

√︁
cond(𝑀)

𝜆min(𝐴ref𝑀) · ‖𝑣0‖2

≃ 1
𝑛1−𝑞

𝑛1/2−𝑝/2−𝑞/2 = 𝑛−1/2(1+𝑝−𝑞) = 𝑛−1/2(1+|𝑝−𝑞|) .

Hence, in both cases we can perform the following heuristic calculation:

min
𝑖

|𝑎𝑖,0| ≃ 𝑛−1−𝑝/2
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max
𝑖

|𝑎𝑖,𝑘 − 𝑎𝑖,0| ≃ |𝑤𝑖,0| · ℎ
∞∑︁

𝑘=0
‖(𝐼 − ℎ𝐴ref𝑀𝐷)𝑘𝑣0‖∞

≃ 𝑛−𝑞/2 · 𝑛−1/2(1+|𝑝−𝑞|)

= 𝑛−1/2(1+𝑞+|𝑝−𝑞|) .

The kinks now fail to reach the data points with high probability if −1/2(1+𝑞+|𝑝−𝑞|) <
−1 − 𝑝/2 (cf. the proof of Theorem 5.37), which can be reformulated as

1 + 𝑞 + |𝑝 − 𝑞| > 2 + 𝑝 ⇔ 𝑞 − 𝑝 + |𝑞 − 𝑝| > 1 ⇔ 𝑞 > 𝑝 + 1
2 .

This heuristic criterion is satisfied by He et al. [20] asymptotics (𝑝 = 0, 𝑞 = 1). If we
choose 𝑝 = 1 and 𝑞 = 0 instead, we achieve the same initial distribution for Σ𝜎,𝑤𝑎 and
Σ𝜎,𝑤𝑏 and hence for the vector 𝑣. However, our criterion 𝑞 > 𝑝 + 1/2 for convergence
failure is not satisfied. Indeed, if we initialize the weights independently according to

𝑎𝑖 ∼ 𝒩 (0, 2/𝑛)
𝑤𝑖 ∼ 𝒩 (0, 2)
𝑏𝑖 = 0
𝑐 = 0 ,

we find empirically that the probabilities of kinks crossing 1 or −1 are much higher, as
shown in Figure 9. For Xavier initialization [15], which in our case yields 𝑝 = 1 and
𝑞 = 1, the criterion 𝑞 > 𝑝 + 1/2 is also not satisfied. However, Xavier initialization is
not constructed for ReLU activations and yields a different initial distribution for 𝑣.
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Figure 9: Monte Carlo estimates for the probability that a kink crosses 𝑥 = 1 or
𝑥 = −1 when using gradient descent, switched variances of 𝑤 and 𝑎 at initialization,
ℎ = 1

𝜆max(𝐴ref𝑀𝐷) and only the sufficient stopping criterion. Data is sampled from 𝑃Δ
for different values of Δ.
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7 Conclusion
In Theorem 5.37, Corollary 5.39 and Corollary 5.43, we have shown conditions under
which two-layer (Leaky)ReLU networks fail to reach a good loss on a least-squares
regression task. In Section 6, we provide numerical evidence that this failure also
exists for stochastic gradient descent and practical network sizes. An interesting
research question is therefore whether this result can be extended, for example to other
optimizers, other initialization methods, deeper nets, higher input dimensions or more
data distributions 𝑃 .
Additionally, one may ask whether the proof can be simplified. Another proof approach
would be to find positively invariant sets 𝑆𝑛,𝑁 ⊆ R3𝑛+1 × (R×R)𝑁 with 𝑃𝑛,𝑁 ((𝑊0, 𝐷) ∈
𝑆𝑛,𝑁) → 1 and such that no (𝑊, 𝐷) ∈ 𝑆 constitutes a “good” neural network with
respect to the least-squares loss. Here, positively invariant means that (𝑊, 𝐷) ∈ 𝑆𝑛,𝑁

implies (𝑊 − ℎ∇𝐿𝐷(𝑊 ), 𝐷) ∈ 𝑆𝑛,𝑁 . Such a set 𝑆𝑛,𝑁 must exist for 𝑛, 𝑁 large enough:
The set

𝑆𝑛,𝑁 := {(𝑊𝑘(𝜔), 𝐷(𝜔)) | 𝜔 ∈ 𝐸𝑛,𝑁,𝜀,𝛾, 𝑘 ∈ N0}

with 𝑊𝑘+1 = 𝑊𝑘 − ℎ∇𝐿𝐷(𝑊𝑘) is positively invariant, we proved in Theorem 5.37
that it does not contain “good” parameters 𝑊 and we proved in Theorem 5.25 that
𝑃𝑛,𝑁((𝑊0, 𝐷) ∈ 𝑆𝑛,𝑁) → 1. The question is whether one can (explicitly) specify sets
𝑆𝑛,𝑁 for which these properties are easier to prove, which might considerably reduce
the length of the given proof. A disadvantage would be that this does not characterize
the trajectories found by gradient descent very precisely.
The matrices 𝐴 and 𝑀 have been very useful in this thesis to understand the behavior
of gradient descent. We have shown that 𝜆max(𝐴ref𝑀)−1 yields a bound on the step
size ℎ such that gradient descent behaves similarly to gradient flow, which is discussed
in Remark 5.38. This poses the question whether similar methods can be used to
determine useful step sizes in other scenarios. It might also be interesting to investigate
how data normalization affects the condition of the matrix 𝑀 and thus the probabilities
of not reaching a global optimum. It is also unclear whether the matrix 𝑀1/2 or the
condition of 𝑀 have an intuitive interpretation.
In this thesis, it remains open what happens in the case where a kink reaches a data
point, which is a necessary, but potentially not sufficient condition for gradient descent
to find a global optimum. If gradient descent finds a global optimum, convergence might
still be rather slow since a large absolute value of −𝑏𝑖/𝑎𝑖 suggests that the denominator
𝑎𝑖 is rather small. Under certain assumptions, it has been shown that overparameterized
networks converge to a global minimum with high probability although few kinks do
ever cross data points [11]. Thus, the kinks must have already been well-spread across
the data points at initialization. In the scenario investigated in this thesis, kinks do
not spread well across the data. This poses the question whether kinks spread well
in other (underparameterized) scenarios. Moreover, further research may attempt to
clarify whether similar phenomena exist for smooth activation functions.
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A Stochastic Proofs
In this section, we prove the main theorem from Section 5.3, Theorem 5.25. In order to
show that 𝑊0 and 𝐷 likely have certain properties, we employ concentration inequalities.
Besides Markov’s inequality, we use Hoeffding’s inequality:

Theorem A.1 (Hoeffding’s inequality, e.g. Theorem 6.10 in [35]). Let (Ω, ℱ , 𝑃 ) be
a probability space, 𝑎 < 𝑏, 𝑛 ≥ 1 and 𝑋1, . . . , 𝑋𝑛 : Ω → [𝑎, 𝑏] be independent random
variables. Then, for 𝜏 ≥ 0, we have

𝑃

(︃⃒⃒⃒⃒
⃒ 1𝑛

𝑛∑︁
𝑖=1

(𝑋𝑖 − E𝑋𝑖)
⃒⃒⃒⃒
⃒ ≥ (𝑏 − 𝑎)

√︂
𝜏

2𝑛

)︃
≤ 2𝑒−𝜏 .

Using Markov and Hoeffding, we can prove an asymptotic concentration result. The
intuition behind this result is that for random variables 𝑋1, . . . , 𝑋𝑛 with mean zero
and finite variance, the value 𝑛−1/2(𝑋1 + . . . + 𝑋𝑛) asymptotically has a Gaussian
distribution by the central limit theorem. The tail of the Gaussian distribution decreases
stronger than any inverse polynomial: If Φ is the CDF of a Gaussian distribution,
then Φ(𝛽𝑛𝜀) = 𝑂(𝑛−𝛾) for all 𝛽, 𝜀, 𝛾 > 0, where the constant in 𝑂(𝑛−𝛾) depends on
𝛽, 𝜀, 𝛾. However, the central limit theorem does not tell us how close the CDF of
𝑛−1/2(𝑋1 + . . . + 𝑋𝑛) is to Φ, so we use Markov’s and Hoeffding’s inequalities instead.

Lemma A.2. Let 𝑄 be a probability distribution on R with 𝜇𝑝 :=
∫︀

|𝑥|𝑝 d𝑄(𝑥) < ∞ for
all 𝑝 ∈ (1, ∞). For 𝑛 ∈ N, let (Ω𝑛, ℱ𝑛, 𝑃𝑛) be probability spaces with independent 𝑄-
distributed random variables 𝑋𝑛1, 𝑋𝑛2, . . . , 𝑋𝑛𝑛 : Ω𝑛 → R. Then, the random variables
𝑆𝑛 := 1

𝑛

∑︀𝑛
𝑖=1 𝑋𝑛𝑖 satisfy

𝑃𝑛

(︁
|𝑆𝑛 − E𝑆𝑛| ≥ 𝛽𝑛𝜀−1/2

)︁
= 𝑂(𝑛−𝛾)

for all 𝛽, 𝜀, 𝛾 > 0, where the constant in 𝑂(𝑛−𝛾) may depend on 𝛽, 𝜀, 𝛾 (cf. Defini-
tion 5.24).

Proof. Let 𝛽, 𝜀, 𝛾 > 0 be fixed. For 𝑛 ∈ N and 𝑏 > 0 to be determined later, define
𝐵 := {max1≤𝑖≤𝑛 |𝑋𝑛𝑖| ≤ 𝑏}. Then, for all 𝑝 > 0,

𝑃𝑛(𝐵𝑐) ≤
𝑛∑︁

𝑖=1
𝑃𝑛(|𝑋𝑛𝑖| ≥ 𝑏) ≤ 𝑛𝑃𝑛(|𝑋𝑛1|𝑝 ≥ 𝑏𝑝)

Markov
≤ 𝑛

E𝑃𝑛|𝑋𝑛1|𝑝

𝑏𝑝
= 𝑛

𝜇𝑝

𝑏𝑝
. (A.1)

Since 𝑆𝑛 = 𝑆𝑛1𝐵 + 𝑆𝑛1𝐵𝑐 , we can now bound

𝑃𝑛(|𝑆𝑛 − E𝑆𝑛| ≥ 𝛽𝑛𝜀−1/2) ≤ 𝑃𝑛(|𝑆𝑛1𝐵 − E(𝑆𝑛1𝐵)| ≥ 𝛽𝑛𝜀−1/2/2)⏟  ⏞  
I

+ 𝑃𝑛(|𝑆𝑛1𝐵𝑐 − E(𝑆𝑛1𝐵𝑐)| ≥ 𝛽𝑛𝜀−1/2/2)⏟  ⏞  
II

.

With 𝜏 := 𝛾 log 𝑛 and 𝑏 := 𝛽𝑛𝜀
√︁

1
8𝛾 log 𝑛

, we have

(𝑏 − (−𝑏))
√︂

𝜏

2𝑛
= 2𝛽𝑛𝜀

√︃
1

8𝛾 log 𝑛
·
√︃

𝛾 log 𝑛

2𝑛
= 𝛽𝑛𝜀−1/2/2
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and hence, Hoeffding (Theorem A.1) applied to 𝑋𝑖 := 𝑋𝑛𝑖1|𝑋𝑛𝑖|≤𝑏 yields

I ≤ 2𝑒−𝜏 = 2𝑛−𝛾 .

Moreover, we have

|E𝑃 𝑛(𝑆𝑛1𝐵𝑐)| ≤ ‖𝑆𝑛1𝐵𝑐‖ℒ1(𝑃𝑛)
Hölder

≤ ‖𝑆𝑛‖ℒ2(𝑃𝑛)‖1𝐵𝑐‖ℒ2(𝑃𝑛)

≤
(︃

1
𝑛

𝑛∑︁
𝑖=1

‖𝑋𝑛𝑖‖ℒ2(𝑃𝑛)

)︃
‖1𝐵𝑐‖ℒ2(𝑃𝑛) = √

𝜇2

√︁
𝑃𝑛(𝐵𝑐)

(A.1)
≤ √

𝜇2

√︂
𝑛

𝜇𝑝

𝑏𝑝
=
√︃

𝜇2𝜇𝑝

𝛽𝑝
(8𝛾 log 𝑛)𝑝/4𝑛(1−𝜀𝑝)/2 .

If we choose 𝑝 ≥ 2/𝜀, we have (1 − 𝜀𝑝)/2 ≤ −1/2 < 𝜀 − 1/2 and hence |E(𝑆𝑛1𝐵𝑐)| <
𝛽𝑛𝜀−1/2/2 for 𝑛 large enough. Now, let 𝑛 be sufficiently large. For 𝜔 ∈ 𝐵, we have
𝑆𝑛(𝜔)1𝐵𝑐(𝜔) = 0 and hence |𝑆𝑛(𝜔)1𝐵𝑐(𝜔) − E(𝑆𝑛1𝐵𝑐)| < 𝛽𝑛𝜀−1/2/2. Thus,

II ≤ 𝑃 (𝐵𝑐) ≤ 𝑛
𝜇𝑝

𝑏𝑝
= 𝜇𝑝

𝛽𝑝
· (8𝛾 log 𝑛)𝑝/2𝑛1−𝜀𝑝 .

If we choose 𝑝 > (1 + 𝛾)/𝜀, then 1 − 𝜀𝑝 < −𝛾 and hence II = 𝑂(𝑛−𝛾).

Now, we can prove that certain properties of the initialization 𝑊0 hold with high
probability. We will see that in all properties except (W4), the tails of the probability
distributions decrease so quickly that only the parameter 𝛾 in (W4) is relevant for the
rate of convergence.

Proposition A.3. Let 𝜀, 𝛾 > 0. As in Definition 5.23, let 𝐸W
𝑛,𝜀,𝛾 ⊆ R3𝑛+1 for 𝑛 ∈ N

denote the set of all 𝑊0 ∈ R3𝑛+1 for which the following properties hold:

(W1) 𝑏𝑖,0 = 𝑐0 = 0,

(W2) max𝑖 |𝑤𝑖,0| ≤ 𝑛−1/2+𝜀,

(W3) max𝑖 |𝑎𝑖,0| ≤ 𝑛𝜀,

(W4) min𝑖 |𝑎𝑖,0| ≥ 𝑛−(1+𝛾),

(W5) Σ𝜎,𝑎2,0 ∈ [𝑛𝑐𝑎/4, 𝑛𝑐𝑎] for all 𝜎 ∈ {−1, 1},

(W6) Σ𝜎,𝑤2,0 ∈ [𝑐𝑤/4, 𝑐𝑤] for all 𝜎 ∈ {−1, 1},

(W7) |Σ𝜎,𝑤𝑎,0| ≤ 𝑛𝜀 for all 𝜎 ∈ {−1, 1}.

Then, 𝑃𝑛,𝑁 (𝑊0 /∈ 𝐸W
𝑛,𝜀,𝛾) = 𝑂(𝑛−𝛾), where the constant in 𝑂(𝑛−𝛾) may depend on 𝜀 and

𝛾 (cf. Definition 5.24).

Proof. We will show the statement for each of the properties (W1) – (W7) individually,
the rest follows by the union bound. Note that 𝑎𝑖,0 and

√
𝑛𝑤𝑖,0 have a distribution

independent of 𝑛. Recall from Definition 5.21 that 𝑃𝑛 denotes the distribution of
𝑊0 ∈ R3𝑛+1.
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By property (Q2) in Assumption 5.19,∫︁
R

|𝑥|𝑝𝑝wa
𝑄 (𝑥) d𝑥 < ∞

for all 𝑝 ∈ (0, ∞). All random variables 𝑋 that will be used later in the argument are
simple combinations of random variables that are distributed according to 𝑄wa. It can
be shown (using the Minkowski and Hölder inequalities) that these random variables
satisfy E|𝑋|𝑝 < ∞ for all 𝑝 ∈ (0, ∞). We will repeatedly use this property.

(W1) True by Definition 5.21.

(W2) For 𝑝 > 0, define

𝑐𝑝 := E𝑃𝑛|
√

𝑛𝑤𝑖,0|𝑝 = 𝑐𝑝/2
𝑤 E𝑃𝑛

⃒⃒⃒⃒
⃒
√︃

𝑛

𝑐𝑤

𝑤𝑖,0⏟  ⏞  
∼𝑄wa

⃒⃒⃒⃒
⃒
𝑝

= 𝑐𝑝/2
𝑤

∫︁
R

|𝑥|𝑝𝑝wa
𝑄 (𝑥) d𝑥 < ∞ ,

hence 𝑐𝑝 is independent of 𝑖 and 𝑛. By the Markov inequality,

𝑃𝑛

(︁
|𝑤𝑖,0| ≥ 𝑛−1/2+𝜀

)︁
= 𝑃𝑛

(︁
|𝑤𝑖,0|𝑝 ≥ 𝑛(−1/2+𝜀)𝑝

)︁
≤ E|𝑤𝑖,0|𝑝

𝑛(−1/2+𝜀)𝑝 = E|
√

𝑛𝑤𝑖,0|𝑝

𝑛𝑝/2𝑛(−1/2+𝜀)𝑝 = 𝑐𝑝𝑛−𝜀𝑝 .

By choosing 𝑝 = (1 + 𝛾)/𝜀, we can use the union bound to conclude

𝑃𝑛

(︂
max

𝑖
|𝑤𝑖,0| ≥ 𝑛−1/2+𝜀

)︂
≤ 𝑛 · 𝑐𝑝𝑛−𝜀𝑝 = 𝑐𝑝𝑛1−𝜀𝑝 = 𝑂(𝑛−𝛾) .

(W3) Similar to (W2).

(W4) By property (Q1) of Assumption 5.19, 𝑄wa has a probability density 𝑝wa
𝑄 that is

bounded by 𝐵wa
𝑄 . Thus, for all 𝛿 ≥ 0, we obtain

𝑃𝑛(|𝑎𝑖,0| ≤ 𝛿) =
∫︁ 𝛿

−𝛿
𝑝wa

𝑄 (𝑥) d𝑥 ≤ 2𝛿 · 𝐵wa
𝑄 .

Therefore,

𝑃𝑛

(︂
min

𝑖
|𝑎𝑖,0| ≤ 𝑛−(1+𝛾)

)︂
≤

𝑛∑︁
𝑖=1

𝑃𝑛

(︁
|𝑎𝑖,0| ≤ 𝑛−(1+𝛾)

)︁
≤ 𝑛 · 2𝐵wa

𝑄 𝑛−(1+𝛾)

= 𝑂(𝑛−𝛾) .

(W5) For the next three properties, we need some preparation. Let

𝐴𝜎,𝑖 := 1(0,∞)(𝜎𝑎𝑖,0)𝑎𝑖,0

𝑊𝜎,𝑖 := 1(0,∞)(𝜎𝑎𝑖,0)𝑤𝑖,0 .

Note that the indicator function is applied to 𝜎𝑎𝑖,0 in both definitions. Then,
Σ𝜎,𝑎2,0 = ∑︀

𝑖∈𝐼𝜎
𝑎2

𝑖,0 = ∑︀𝑛
𝑖=1 𝐴2

𝜎,𝑖 and similarly for Σ𝜎,𝑤2,0 and Σ𝜎,𝑤𝑎,0. We obtain

E𝑃𝑛𝐴2
𝜎,𝑖 =

∫︁
𝐴2

𝜎,𝑖 d𝑃𝑛 =
∫︁ (︁

1(0,∞)(𝜎𝑎𝑖,0)𝑎𝑖,0
)︁2

d𝑃𝑛
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=
∫︁

{𝜎𝑎𝑖,0>0}
𝑎2

𝑖,0 d𝑃𝑛 =
∫︁

(0,∞)
(√𝑐𝑎𝑥)2𝑝wa

𝑄 (𝑥) d𝑥

(Q1)= 1
2𝑐𝑎

∫︁
R

𝑥2𝑝wa
𝑄 (𝑥) d𝑥

(Q3)= 𝑐𝑎

2 .

E𝑃𝑛𝑊 2
𝜎,𝑖 = E𝑃𝑛

(︂(︁
1(0,∞)(𝜎𝑎𝑖,0)

)︁2
𝑤2

𝑖,0

)︂
indep.=

(︂
E𝑃𝑛

(︁
1(0,∞)(𝜎𝑎𝑖,0)

)︁2
)︂

·
(︁
E𝑃𝑛𝑤2

𝑖,0

)︁
= 𝑃𝑛(𝜎𝑎𝑖,0 > 0) ·

∫︁ (︂√︂
𝑐𝑤

𝑛
𝑥
)︂2

𝑝wa
𝑄 (𝑥) d𝑥

(Q1), (Q3)= 1
2 · 𝑐𝑤

𝑛
.

E𝑃𝑛𝑊𝜎,𝑖𝐴𝜎,𝑖 = E𝑃𝑛1(0,∞)(𝜎𝑎𝑖,0)𝑤𝑖,0𝑎𝑖,0
indep.=

(︁
E𝑃𝑛𝑤𝑖,0⏟  ⏞  

(Q1)
= 0

)︁
·
(︁
E𝑃𝑛1(0,∞)(𝜎𝑎𝑖,0)𝑎𝑖,0

)︁

= 0 .

Now, define

𝑆𝑛 := Σ𝜎,𝑎2,0

𝑛
= 1

𝑛

𝑛∑︁
𝑖=1

𝐴2
𝜎,𝑖 ,

which is an average of 𝑛 i.i.d. variables that are 𝑝-integrable for every 𝑝 > 0.
Then, E𝑃𝑛𝑆𝑛 = E𝑃𝑛𝐴2

𝜎,1 = 𝑐𝑎/2 and Lemma A.2 with 𝜀 = 1/2, 𝛽 = 𝑐𝑎/4 yields:

𝑃𝑛

(︂⃒⃒⃒⃒
𝑆𝑛 − 𝑐𝑎

2

⃒⃒⃒⃒
≥ 𝑐𝑎

4

)︂
= 𝑂(𝑛−𝛾) .

Hence,

𝑃𝑛(Σ𝜎,𝑎2,0 /∈ [𝑛𝑐𝑎/4, 𝑛𝑐𝑎]) = 𝑃𝑛 (𝑆𝑛 /∈ [𝑐𝑎/4, 𝑐𝑎]) ≤ 𝑃𝑛(𝑆𝑛 /∈ [𝑐𝑎/4, 3𝑐𝑎/4])
= 𝑂(𝑛−𝛾) .

(W6) An analogous argument yields 𝑃𝑛(Σ𝜎,𝑤2,0 /∈ [𝑐𝑤/4, 𝑐𝑤]) = 𝑂(𝑛−𝛾).

(W7) Let 𝑆𝑛 := 1
𝑛

∑︀𝑛
𝑖=1 𝐴𝜎,𝑖 ·

√
𝑛𝑊𝜎,𝑖 = Σ𝜎,𝑤𝑎,0/

√
𝑛. Then, E𝑃𝑛𝑆𝑛 = 0 and thus

𝑃𝑛(|Σ𝜎,𝑤𝑎,0| ≤ 𝑛𝜀) = 𝑃𝑛(|𝑆𝑛| ≤ 𝑛𝜀−1/2) Lemma A.2= 𝑂(𝑛−𝛾) .

Now, we want to investigate stochastic properties of the dataset. In order to show that
𝑀−1

𝑃 (as defined in Assumption 5.16) is likely close to 𝑀−1
𝐷 (as defined in Definition 5.5),

we need the following lemma, which is similar for example to Theorem 2.3.4 in [16]:

Lemma A.4. Let 𝐴, 𝐵 ∈ R𝑚×𝑚 and let ‖ · ‖ be a matrix norm on R𝑚×𝑚. If 𝐴 is
invertible and ‖𝐴−1‖‖𝐴 − 𝐵‖ < 1, then 𝐵 is invertible with

‖𝐵−1 − 𝐴−1‖ ≤ ‖𝐴−1‖‖𝐴 − 𝐵‖‖𝐵−1‖, ‖𝐵−1‖ ≤ ‖𝐴−1‖
1 − ‖𝐴−1‖‖𝐴 − 𝐵‖

.
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Proof. We have 𝐵 = 𝐴(𝐼 −𝐴−1(𝐴−𝐵)) and since ‖𝐴−1(𝐴−𝐵)‖ ≤ ‖𝐴−1‖‖𝐴−𝐵‖ < 1,
the Neumann series implies that

(𝐼 − 𝐴−1(𝐴 − 𝐵))−1 =
∞∑︁

𝑘=0
(𝐴−1(𝐴 − 𝐵))𝑘 .

Hence 𝐵 is invertible with 𝐵−1 − 𝐴−1 = 𝐴−1(𝐴 − 𝐵)𝐵−1 and

𝐵−1 = (𝐼 − 𝐴−1(𝐴 − 𝐵))−1𝐴−1 =
∞∑︁

𝑘=0
(𝐴−1(𝐴 − 𝐵))𝑘𝐴−1 ,

which yields both bounds using the submultiplicativity of ‖ · ‖.

Now, we can show that for large 𝑁 , a dataset 𝐷 ∼ 𝑃 𝑁 likely has characteristics that
are close to 𝑃 .

Proposition A.5. Let 𝜀, 𝛾 > 0. As in Definition 5.23, let 𝐸D
𝑁,𝜀 ⊆ (R × R)𝑁 be the set

of all datasets 𝐷 ∈ (R × R)𝑁 for which the following properties are satisfied:

(D1) 𝑣opt
𝐷 is well-defined, i.e. 𝑀𝐷 is invertible, and ‖𝑣opt

𝑃 − 𝑣opt
𝐷 ‖∞ ≤ 𝑁 (𝜀−1)/2.

(D2) 𝜆min(𝑀𝐷) ≥ 1
2𝜆min(𝑀𝑃 ) and 𝜆max(𝑀𝐷) ≤ 2𝜆max(𝑀𝑃 ).

(D3) min𝑗 |𝑥𝑗| ≥ 𝑚𝑃 .

Then, 𝑃𝑛,𝑁(𝐷 /∈ 𝐸D
𝑁,𝜀) = 𝑃 𝑁((𝐸D

𝑁,𝜀)𝑐) = 𝑂(𝑁−𝛾), where the constant in 𝑂(𝑁−𝛾) may
depend on 𝜀, 𝛾 (cf. Definition 5.24).

Proof. Again, we bound the probabilities for each property separately.

(D1) For 𝜎 ∈ {−1, 1}, define

𝑆𝑁 := (𝑀𝐷,𝜎)11 = 1
𝑁

𝑁∑︁
𝑗=1

1(0,∞)(𝜎𝑥𝑗)𝑥2
𝑗 .

Then,

E𝑃 𝑁 𝑆𝑁 = 1
𝑁

𝑁∑︁
𝑗=1

E𝑃 𝑁 (1(0,∞)(𝜎𝑥𝑗)𝑥2
𝑗) = E(𝑥,𝑦)∼𝑃1(0,∞)(𝜎𝑥)𝑥2 = (𝑀𝑃,𝜎)11 .

Because of property (P1) from Assumption 5.16, 𝑃 has finite moments and we
can apply Lemma A.2: For all 𝛽 > 0,

𝑃 𝑁
(︁
|(𝑀𝐷,𝜎)11 − (𝑀𝑃,𝜎)11| ≥ 𝛽𝑁 (𝜀−1)/2

)︁
= 𝑂(𝑁−𝛾) .

We can get similar bounds for other entries of 𝑀𝐷,𝜎 and 𝑢̂0
𝐷,𝜎. Since

𝑀𝐷 − 𝑀𝑃 = 𝑃

(︃
𝑀𝐷,1 − 𝑀𝑃,1 0

0 𝑀𝐷,−1 − 𝑀𝑃,−1

)︃
𝑃 , 𝑢̂0

𝐷 = 𝑃

(︃
𝑢̂0

𝐷,1
𝑢̂0

𝐷,−1

)︃
,
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and ‖𝑃‖∞ = 1, the union bound implies that the following properties hold with
probability 1 − 𝑂(𝑛−𝛾):

‖𝑀𝐷 − 𝑀𝑃 ‖∞ ≤ 2𝛽𝑁 (𝜀−1)/2, ‖𝑢̂0
𝐷 − 𝑢̂0

𝑃 ‖∞ ≤ 𝛽𝑁 (𝜀−1)/2 . (A.2)

Now assume that (A.2) holds. Set 𝐴 := 𝑀𝑃 , 𝐵 := 𝑀𝐷, 𝑎 := 𝑢̂0
𝑃 , 𝑏 := 𝑢̂0

𝐷. As
shown in Assumption 5.16, condition (P2) implies that 𝐴 is invertible. Without
loss of generality, we can assume 𝜀 < 1/2. Then, for 𝑁 large enough,

‖𝐴−1‖∞‖𝐴 − 𝐵‖∞ ≤ ‖𝐴−1‖∞2𝛽𝑁 (𝜀−1)/2 ≤ 1
2 .

Hence, Lemma A.4 implies that 𝐵 = 𝑀𝐷 is invertible with ‖𝐵−1‖∞ ≤ 2‖𝐴−1‖∞
and

‖𝑣opt
𝐷 − 𝑣opt

𝑃 ‖∞ = ‖𝐵−1𝑏 − 𝐴−1𝑎‖∞

≤ ‖𝐵−1‖∞‖𝑏 − 𝑎‖∞ + ‖𝐵−1 − 𝐴−1‖∞‖𝑎‖∞

≤ ‖𝐵−1‖∞‖𝑏 − 𝑎‖∞ + ‖𝐴−1‖∞‖𝐴 − 𝐵‖∞‖𝐵−1‖∞‖𝑎‖∞

≤ 2‖𝐴−1‖∞
(︁
‖𝑏 − 𝑎‖∞ + ‖𝐴−1‖∞‖𝑎‖∞‖𝐵 − 𝐴‖∞

)︁
(A.2)
≤ 4‖𝐴−1‖∞(1 + ‖𝐴−1‖∞‖𝑎‖∞)𝛽𝑁 (𝜀−1)/2 .

We can choose 𝛽 > 0 such that 4‖𝐴−1‖∞(1 + ‖𝐴−1‖∞‖𝑎‖∞)𝛽 ≤ 1. Therefore,

‖𝑣opt
𝑃,𝜎 − 𝑣opt

𝐷,𝜎‖∞ ≤ 𝑁 (𝜀−1)/2

with probability 1 − 𝑂(𝑁−𝛾).

(D2) For each 𝑣 ∈ R4, we have

|𝑣⊤𝑀𝐷𝑣 − 𝑣⊤𝑀𝑃 𝑣| ≤ ‖𝑣‖2‖𝑀𝐷 − 𝑀𝑃 ‖2‖𝑣‖2 ≤
√

4‖𝑀𝐷 − 𝑀𝑃 ‖∞‖𝑣‖2
2

since ‖ · ‖2 ≤
√

4‖ · ‖∞ on R4×4 as mentioned in Definition 4.1. If we choose 𝛽 > 0
small enough such that (A.2) implies 2‖𝑀𝐷 − 𝑀𝑃 ‖∞ ≤ 𝜆min(𝑀𝑃 )/2, it follows
that

𝜆min(𝑀𝐷) = inf
‖𝑣‖2=1

𝑣⊤𝑀𝐷𝑣 ≥ inf
‖𝑣‖2=1

𝑣⊤𝑀𝑃 𝑣 − |𝑣⊤𝑀𝑃 𝑣 − 𝑣⊤𝑀𝐷𝑣|

≥ 𝜆min(𝑀𝑃 ) − 2‖𝑀𝐷 − 𝑀𝑃 ‖∞ ≥ 𝜆min(𝑀𝑃 )/2 .

Since (A.2) holds with probability 1 − 𝑂(𝑁−𝛾), we have 𝜆min(𝑀𝐷) ≥ 𝜆min(𝑀𝑃 )/2
with probability 1 − 𝑂(𝑁−𝛾). The probability for 𝜆max(𝑀𝐷) ≤ 2𝜆max(𝑀𝑃 ) can
be bounded similarly.

(D3) This holds with probability one due to property (P3) from Assumption 5.16.

Remark A.6. In this section, we did not use property (P4) and (P5) from Assump-
tion 5.16. Property (P4) is used in Proposition 5.29 and (P5) is used in Corol-
lary 5.43. J
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B L1 Bounds
In this section, we show how to bound ℎ

∑︀∞
𝑘=0 ‖𝑣𝑘‖∞, where (𝑣𝑘)𝑘∈N0 solves 𝛿𝑣𝑘 =

−ℎ𝐴𝑘𝑀𝑣𝑘. We first show how to proceed for the reference system 𝛿𝑣𝑘 = −ℎ𝐴ref𝑀𝑣𝑘

and then how to apply this bound to the original system 𝛿𝑣𝑘 = −ℎ𝐴𝑘𝑀𝑣𝑘. For analyzing
the reference system 𝛿𝑣𝑘 = −ℎ𝐴ref𝑀𝑣𝑘, we will use Cauchy’s interlacing theorem:
Theorem B.1 (Cauchy’s interlacing theorem). Let

𝐸 =
(︃

𝐸11 𝐸12
𝐸⊤

12 𝐸22

)︃
∈ R𝑚×𝑚

be symmetric with 𝐸11 ∈ R𝑚1×𝑚1. Let 𝜆1(𝐸) ≥ 𝜆2(𝐸) ≥ . . . ≥ 𝜆𝑚(𝐸) be the eigenvalues
of 𝐸 and let 𝜆1(𝐸11) ≥ . . . ≥ 𝜆𝑚1(𝐸11) be the eigenvalues of 𝐸11. Then,

𝜆𝑖(𝐸) ≥ 𝜆𝑖(𝐸11) ≥ 𝜆𝑖+(𝑚−𝑚1)(𝐸)

for all 𝑖 ∈ {1, . . . , 𝑚1}.

Proof. See e.g. Corollary III.1.5 in [3].

The following proposition is used to analyze the reference system. Its proof uses the
facts from Section 4. The idea is that 𝐴1 should contain the “large” eigenvalues of 𝐴.
Proposition B.2. Let 0 ≺ 𝐴, 𝑀 ∈ R𝑚×𝑚 with

𝐴 =
(︃

𝐴1
𝐴2

)︃
, 𝑀 =

(︃
𝑀11 𝑀12
𝑀⊤

12 𝑀22

)︃
and 𝐴1, 𝑀11 ∈ R𝑚1×𝑚1 , 𝐴2, 𝑀22 ∈ R𝑚2×𝑚2. With 𝜆min, 𝜆max and cond defined in
Definition 4.1, assume

𝜆 := 𝜆min(𝐴1)𝜆min(𝑀) ≥
(︂

1 + 2√
𝑚1

√︁
cond(𝑀)

)︂
𝜆max(𝐴2)𝜆max(𝑀) (B.1)

such that

𝛽 := 𝜆max(𝐴2)𝜆max(𝑀)
𝜆 − 𝜆max(𝐴2)𝜆max(𝑀) ≤ 1

2√
𝑚1

√︁
cond(𝑀)

. (B.2)

Moreover, let ℎ > 0 with6

ℎ ≤ 1
𝜆max(𝐴𝑀) . (B.3)

Then, for 𝑣 = (𝑣1, 𝑣2)⊤ ∈ R4 with 𝑣1, 𝑣2 ∈ R2,

ℎ
∞∑︁

𝑘=0
‖(𝐼 − ℎ𝐴𝑀)𝑘‖2 ≤

√︁
cond(𝑀)

𝜆min(𝐴𝑀)

ℎ
∞∑︁

𝑘=0
‖(𝐼 − ℎ𝐴𝑀)𝑘𝑣‖2 ≤ 2

√︁
cond(𝑀)

⎛⎝⎛⎝1
𝜆

+
2√

𝑚1

√︁
cond(𝑀)𝛽

𝜆min(𝐴𝑀)

⎞⎠ ‖𝑣1‖2

+ 1
𝜆min(𝐴𝑀)‖𝑣2‖2

⎞⎠ .

6Cf. Lemma 5.28.
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Proof. The proof is divided in multiple steps.

(1) Diagonalization yields a simple bound:
As shown in Lemma 5.28, the matrix 𝐴𝑀 is similar to the symmetric matrix

𝐴 := 𝑀1/2𝐴𝑀1/2 = 𝑀1/2(𝐴𝑀)𝑀−1/2 ≻ 0 .

The matrix 𝐴 can thus be orthogonally diagonalized as 𝐴 = 𝑈𝐷𝑈⊤ with 𝑈
orthogonal and 𝐷 diagonal such that 𝐷 contains the eigenvalues of 𝐴 in descending
order. Then, 𝐼 − ℎ𝐷 only contains non-negative entries due to (B.3) with its
maximal entry being 1 − ℎ𝜆min(𝐴𝑀). Thus, ‖(𝐼 − ℎ𝐷)𝑘‖2 = (1 − ℎ𝜆min(𝐴𝑀))𝑘.
By applying (𝐼 − ℎ𝐴𝑀)𝑀−1/2 = 𝑀−1/2 − ℎ𝐴𝑀−1/2 = 𝑀−1/2(𝐼 − 𝐴) inductively,
we find (𝐼 − ℎ𝐴𝑀)𝑘𝑀−1/2 = 𝑀−1/2(𝐼 − ℎ𝐴)𝑘. We can now compute

ℎ
∞∑︁

𝑘=0
‖(𝐼 − ℎ𝐴𝑀)𝑘‖2 = ℎ

∞∑︁
𝑘=0

‖𝑀−1/2(𝐼 − ℎ𝐴)𝑘𝑀1/2‖2

= ℎ
∞∑︁

𝑘=0
‖𝑀−1/2𝑈(𝐼 − ℎ𝐷)𝑘𝑈⊤𝑀1/2‖2

≤ ‖𝑀−1/2‖2‖𝑀1/2‖2 · ℎ
∞∑︁

𝑘=0
‖(𝐼 − ℎ𝐷)𝑘‖2

= cond(𝑀1/2)ℎ
∞∑︁

𝑘=0
(1 − ℎ𝜆min(𝐴𝑀))𝑘

=
√︁

cond(𝑀) ℎ

1 − (1 − ℎ𝜆min(𝐴𝑀))

=

√︁
cond(𝑀)

𝜆min(𝐴𝑀) . (B.4)

(2) 𝐴𝑀 has 𝑚1 “large” eigenvalues:
Let

𝑀1/2 =
(︃

𝑀̃11 𝑀̃12
𝑀̃⊤

12 𝑀̃22

)︃

be the block decomposition of 𝑀1/2. Then,

𝑀1/2𝐴𝑀1/2 =
(︃

𝑀̃11𝐴1𝑀̃11 + 𝑀̃12𝐴2𝑀̃
⊤
12 *

* *

)︃

and by Cauchy’s interlacing theorem (Theorem B.1),

𝜆𝑚1(𝐴) ≥ 𝜆𝑚1(𝑀̃11𝐴1𝑀̃11 + 𝑀̃12𝐴2𝑀̃
⊤
12)

= 𝜆min(𝑀̃11𝐴1𝑀̃11 + 𝑀̃12𝐴2𝑀̃
⊤
12)

≥ 𝜆min(𝑀̃11𝐴1𝑀̃11) ≥ 𝜆min(𝐴1)𝜆min(𝑀̃11)2

≥ 𝜆min(𝐴1)𝜆min(𝑀1/2)2 = 𝜆min(𝐴1)𝜆min(𝑀) = 𝜆 . (B.5)
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(3) Lower components of eigenvectors to large eigenvalues are small:
Let 𝑤 = (𝑤1, 𝑤2)⊤ be an eigenvector of 𝐴𝑀 with eigenvalue 𝜆𝑤 ≥ 𝜆. The lower
part of the identity 𝜆𝑤𝑤 = 𝐴𝑀𝑤 reads as

𝜆𝑤𝑤2 = 𝐴2𝑀
⊤
12𝑤1 + 𝐴2𝑀22𝑤2 ,

which yields

𝜆‖𝑤2‖2 ≤ 𝜆𝑤‖𝑤2‖2 ≤ ‖𝐴2‖2‖𝑀⊤
12‖2‖𝑤1‖2 + ‖𝐴2‖2‖𝑀22‖2‖𝑤2‖2

≤ 𝜆max(𝐴2)𝜆max(𝑀)‖𝑤1‖2 + 𝜆max(𝐴2)𝜆max(𝑀)‖𝑤2‖2

and, since 𝜆 − 𝜆max(𝐴2)𝜆max(𝑀)
(B.1)
> 0,

‖𝑤2‖2 ≤ 𝜆max(𝐴2)𝜆max(𝑀)
𝜆 − 𝜆max(𝐴2)𝜆max(𝑀)‖𝑤1‖2 = 𝛽‖𝑤1‖2 . (B.6)

(4) The first 𝑚1 eigenvectors of 𝐴𝑀 are “well-conditioned”:
Let

𝑈 =
(︁
𝑈1 𝑈2

)︁
=
(︃

𝑈11 𝑈12
𝑈21 𝑈22

)︃
.

Since 𝑈⊤𝑈 = 𝐼𝑚, we have 𝑈⊤
1 𝑈1 = 𝐼𝑚1 . Moreover, let

𝐹 =
(︁
𝐹1 𝐹2

)︁
:= 𝑈⊤

1 𝑀1/2, 𝑊 =
(︃

𝑊1
𝑊2

)︃
:= 𝑀−1/2𝑈1 .

The columns of 𝑊 are the eigenvectors of 𝐴𝑀 to the 𝑚1 largest eigenvalues:

𝐴𝑀𝑊 = 𝑀−1/2𝑀1/2𝐴𝑀1/2𝑈1 = 𝑀−1/2𝑈𝐷𝑈⊤𝑈1 = 𝑀−1/2𝑈𝐷

(︃
𝐼𝑚1

0

)︃
= 𝑀−1/2𝑈1𝐷1 = 𝑊𝐷1 , (B.7)

where 𝐷1 is the upper left 𝑚1 × 𝑚1 block of 𝐷. Thus,

‖𝐹‖2 ≤ ‖𝑈⊤
1 ‖2‖𝑀1/2‖2 = 1 · 𝜆max(𝑀1/2) = 𝜆max(𝑀)1/2

‖𝑊‖2 ≤ ‖𝑀−1/2‖2‖𝑈1‖2 = 𝜆max(𝑀−1/2) · 1 = 𝜆min(𝑀)−1/2

‖𝑊2‖2 ≤ ‖𝑊2‖𝐹

(B.6)
≤ 𝛽‖𝑊1‖𝐹 ≤ 𝛽‖𝑊‖𝐹 ≤ 𝛽

√
𝑚1‖𝑊‖2 ≤ 𝛽

√
𝑚1𝜆min(𝑀)−1/2 .

We want to show that 𝑊 −1
1 exists and ‖𝑊 −1

1 ‖2 is sufficiently small. Observe that
𝐼 = 𝑈⊤

1 𝑈1 = 𝐹𝑊 = 𝐹1𝑊1 + 𝐹2𝑊2 and

‖𝐹2𝑊2‖2 ≤ ‖𝐹2‖2‖𝑊2‖2 ≤ 𝜆max(𝑀)1/2𝛽
√

𝑚1𝜆min(𝑀)−1/2
(B.2)
≤ 1

2 .

Hence, 𝐹1𝑊1 = 𝐼 − 𝐹2𝑊2 is invertible with

(𝐹1𝑊1)−1 =
∞∑︁

𝑘=0
(𝐹2𝑊2)𝑘, ‖(𝐹1𝑊1)−1‖2 ≤

∞∑︁
𝑘=0

‖𝐹2𝑊2‖𝑘
2 ≤ 2 .

Since 𝐹1𝑊1 has full rank, 𝑊1 and 𝐹1 must also have full rank. Hence, (𝐹1𝑊1)−1 =
𝑊 −1

1 𝐹 −1
1 and

‖𝑊 −1
1 ‖2 ≤ ‖(𝐹1𝑊1)−1‖2‖𝐹1‖2 ≤ 2𝜆max(𝑀)1/2 .
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(5) Bound the sum for a “similar” initial vector:
Note that for 𝑣2 := 𝑊2𝑊

−1
1 𝑣1, we have

𝑊𝑊 −1
1 𝑣1 =

(︃
𝐼

𝑊2𝑊
−1
1

)︃
𝑣1 =

(︃
𝑣1
𝑣2

)︃
(B.8)

and 𝑣2 is “small”:

‖𝑣2‖2 ≤ ‖𝑊2‖2‖𝑊 −1
1 ‖2‖𝑣1‖2 ≤ 𝛽

√
𝑚1𝜆min(𝑀)−1/2 · 2𝜆max(𝑀)1/2 · ‖𝑣1‖2 .

By Eq. (B.7), we have 𝐴𝑀𝑊 = 𝑊𝐷1, where 𝐷1 is the upper left 𝑚1 × 𝑚1 block
of 𝐷. Therefore,

ℎ
∞∑︁

𝑘=0
‖(𝐼𝑚 − ℎ𝐴𝑀)𝑘𝑊𝑊 −1

1 𝑣1‖2 = ℎ
∞∑︁

𝑘=0
‖𝑊 (𝐼𝑚1 − ℎ𝐷1)𝑘𝑊 −1

1 𝑣1‖2

≤ ‖𝑊‖2‖𝑊 −1
1 ‖2‖𝑣1‖2 · ℎ

∞∑︁
𝑘=0

‖(𝐼𝑚1 − ℎ𝐷1)𝑘‖2 ,

where

‖𝑊‖2‖𝑊 −1
1 ‖2‖𝑣1‖2 ≤ 2𝜆max(𝑀)1/2𝜆min(𝑀)−1/2‖𝑣1‖2 = 2

√︁
cond(𝑀)‖𝑣1‖2

and we can compute the remaining sum similarly as in step (1):

ℎ
∞∑︁

𝑘=0
‖(𝐼 − ℎ𝐷1)𝑘‖2 = ℎ

∞∑︁
𝑘=0

(1 − ℎ𝜆𝑚1(𝐴𝑀))𝑘

(B.5)
≤ ℎ

∞∑︁
𝑘=0

(1 − ℎ𝜆)𝑘 = ℎ

1 − (1 − ℎ𝜆) = 1
𝜆

.

(6) Bound the original sum:

Using 𝑣 = 𝑊𝑊 −1
1 𝑣1 +

(︃
0

𝑣2 − 𝑣2

)︃
, we obtain

ℎ
∞∑︁

𝑘=0
‖(𝐼 − ℎ𝐴𝑀)𝑘𝑣‖2

(B.8)
≤ ℎ

∞∑︁
𝑘=0

‖(𝐼 − ℎ𝐴𝑀)𝑘𝑊𝑊 −1
1 𝑣1‖2 + ℎ

∞∑︁
𝑘=0

⃦⃦⃦⃦
⃦(𝐼 − ℎ𝐴𝑀)𝑘

(︃
0

𝑣2 − 𝑣2

)︃⃦⃦⃦⃦
⃦

2

≤ ℎ
∞∑︁

𝑘=0
‖(𝐼 − ℎ𝐴𝑀)𝑘𝑊𝑊 −1

1 𝑣1‖2 + ℎ
∞∑︁

𝑘=0
‖(𝐼 − ℎ𝐴𝑀)𝑘‖2 · (‖𝑣2‖2 + ‖𝑣2‖2)

(5), (B.4)
≤ 2

√︁
cond(𝑀)

𝜆
‖𝑣1‖2 + 2

√︁
cond(𝑀)

𝜆min(𝐴𝑀)

(︂
‖𝑣2‖2 + 2𝛽

√
𝑚1

√︁
cond(𝑀)‖𝑣1‖2

)︂

= 2
√︁

cond(𝑀)
⎛⎝⎛⎝1

𝜆
+

2√
𝑚1

√︁
cond(𝑀)𝛽

𝜆min(𝐴𝑀)

⎞⎠ ‖𝑣1‖2 + 1
𝜆min(𝐴𝑀)‖𝑣2‖2

⎞⎠ .

The bound from Proposition B.2 can be transferred to the original system via the next
lemma:
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Lemma B.3. Let ‖ · ‖ denote an arbitrary vector norm on R𝑚 and its induced matrix
norm. Let 𝑘 ∈ N0, 𝐾0, . . . , 𝐾𝑘−1 ∈ R𝑚×𝑚 and 𝐾̃ ∈ R𝑚×𝑚. If

𝛿𝑘−1 :=
𝑘−1∑︁
𝑙=0

‖𝐾̃ 𝑙‖ · sup
𝑙∈{0,...,𝑘−1}

‖𝐾𝑙 − 𝐾̃‖ < 1 ,

where 𝛿−1 := 0, then each sequence 𝑣0, . . . , 𝑣𝑘 with 𝑣𝑙+1 = 𝐾𝑙𝑣𝑙 for all 𝑙 ∈ {0, . . . , 𝑘 − 1}
satisfies

𝑘∑︁
𝑙=0

‖𝑣𝑙‖ ≤ 1
1 − 𝛿𝑘−1

𝑘∑︁
𝑙=0

‖𝐾̃ 𝑙𝑣0‖ .

Proof. Clearly, for 𝑙 ∈ {0, . . . , 𝑘 − 1},

𝑣𝑙+1 = 𝐾̃𝑣𝑙 + (𝐾𝑙 − 𝐾̃)𝑣𝑙

and hence, by induction on 𝑙,

𝑣𝑙 = 𝐾̃ 𝑙𝑣0 +
𝑙−1∑︁
𝑙′=0

𝐾̃ 𝑙−1−𝑙′(𝐾𝑙′ − 𝐾̃)𝑣𝑙′

for all 𝑙 ∈ {0, . . . , 𝑘}. Summing norms on both sides yields

𝑘∑︁
𝑙=0

‖𝑣𝑙‖ ≤
𝑘∑︁

𝑙=0
‖𝐾̃ 𝑙𝑣0‖ +

𝑘∑︁
𝑙=0

𝑙−1∑︁
𝑙′=0

‖𝐾̃ 𝑙−1−𝑙′(𝐾𝑙′ − 𝐾̃)𝑣𝑙′‖

=
𝑘∑︁

𝑙=0
‖𝐾̃ 𝑙𝑣0‖ +

𝑘−1∑︁
𝑙′=0

𝑘∑︁
𝑙=𝑙′+1

‖𝐾̃ 𝑙−1−𝑙′(𝐾𝑙′ − 𝐾̃)𝑣𝑙′‖

≤
𝑘∑︁

𝑙=0
‖𝐾̃ 𝑙𝑣0‖ +

𝑘−1∑︁
𝑙′=0

⎛⎝𝑘−1−𝑙′∑︁
𝑙=0

‖𝐾̃ 𝑙‖

⎞⎠ · sup
𝑙∈{0,...,𝑘−1}

‖𝐾𝑙 − 𝐾̃‖ · ‖𝑣𝑙′‖

≤
𝑘∑︁

𝑙=0
‖𝐾̃ 𝑙𝑣0‖ + 𝛿𝑘−1

𝑘∑︁
𝑙′=0

‖𝑣𝑙′‖ .

Hence (1−𝛿𝑘−1)∑︀𝑘
𝑙=0 ‖𝑣𝑙‖ ≤ ∑︀𝑘

𝑙=0 ‖𝐾̃ 𝑙𝑣0‖ and since 𝛿𝑘−1 < 1, the inequality is preserved
when dividing by 1 − 𝛿𝑘−1.
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C Interpolation with LeakyReLU Networks
The following lemma shows that 𝑁 data points can be interpolated using 𝑁 − 1 hidden
neurons:

Lemma C.1. Let 𝛼 ̸= 1 and let 𝐷 = ((𝑥1, 𝑦1), . . . , (𝑥𝑁 , 𝑦𝑁 )) ∈ (R × R)𝑁 with 𝑥𝑗 ≠ 𝑥𝑗′

for 𝑗 ̸= 𝑗′. Then, for 𝑛 ≥ 𝑁 − 1, there exists 𝑊 = (𝑎, 𝑏, 𝑐, 𝑤) ∈ R3𝑛+1 such that

𝑓𝑊 (𝑥𝑗) = 𝑦𝑗

for all 𝑗 ∈ {1, . . . , 𝑁}.

Proof. Without loss of generality, assume 𝑥1 < . . . < 𝑥𝑁 . Using 𝑁 − 1 hidden neurons,
we can represent a function 𝑓𝑤 of the form

𝑓𝑤(𝑥) :=
𝑁−1∑︁
𝑖=1

𝑤𝑖𝜙(1 · 𝑥 + (−𝑥𝑖)) .

Then, 𝑓𝑤 is continuous and for 𝑥 ∈ (𝑥𝑗, 𝑥𝑗+1), we have

𝑓 ′
𝑤(𝑥) =

𝑗∑︁
𝑖=1

𝑤𝑖 +
𝑁−1∑︁

𝑖=𝑗+1
𝛼𝑤𝑖 ,

i.e.

⎛⎜⎜⎝
𝑓 ′

𝑤|(𝑥1,𝑥2)
...

𝑓 ′
𝑤|(𝑥𝑁−1,𝑥𝑁 )

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1 𝛼 . . . 𝛼

1 1 ...
... . . . 𝛼
1 1 . . . 1

⎞⎟⎟⎟⎟⎟⎠
⏟  ⏞  
=:𝑀̃∈R(𝑁−1)×(𝑁−1)

⎛⎜⎜⎝
𝑤1
...

𝑤𝑁−1

⎞⎟⎟⎠ .

By subtracting 𝛼 times the first column of 𝑀̃ of the other columns of 𝑀̃ , we see that
𝑀̃ can be transformed into a triangular matrix with nonzero diagonal entries. Hence,
𝑀̃ is invertible. Choose 𝑤 such that

𝑓 ′
𝑤|(𝑥𝑗 ,𝑥𝑗+1) = 𝑦𝑗+1 − 𝑦𝑗

𝑥𝑗+1 − 𝑥𝑗

.

Then, the function

𝑓(𝑥) = (𝑦1 − 𝑓𝑤(𝑥1))⏟  ⏞  
=:𝑐

+𝑓𝑤(𝑥) +
𝑛∑︁

𝑖=𝑁

0 · 𝜙(0 · 𝑥 + 0)

corresponds to an interpolating neural net with 𝑛 hidden neurons.
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