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Zusammenfassung

Wir rechtfertigen die Nichtlineare Schrodinger Approximation fiir eine Klasse von
quasilinearen dispersiven Systemen. Wir erlauben nichttriviale Resonanzen und
erlauben dem quasilinearen quadratischen Term ein beliebiges Maf an Regularitit
zu verlieren, solange er nicht mehr Regularitit als der lineare Term des Systems
verliert. Dies ist das erste Mal, dass die Nichtlineare Schrédinger Approximation
fiir quasilineare dispersive Systeme gerechtfertigt wird, wo der quasilineare Term
mehr als eine Ableitung verlieren darf.

Wir leiten die NLS Gleichung iiber Multi-Skalen-Analysis und das Zeigen von
Residuumsabschétzungen her. Wir rechtfertigen die NLS Approximation auf ihrer
natiirlichen Zeitskala, indem wir Fehlerabschatzungen beweisen. Fiir die Fehler-
abschétzungen verwenden wir eine abgewandelte Energie, die auf gewissen Nor-
malformtransformationen beruht. Diese Energie wird weiter angepasst um die
Schliefsung der Fehlerabschatzungen zu ermoglichen.

Wir geben zudem ein Beispiel dafiir, wie unsere Techniken auf allgemeinere quasi-
lineare dispersive Systeme angewandt werden konnen, indem wir Fehlerabschétzun-
gen fiir ein reduziertes System zeigen, welches {iber das zweidimensionale Wasser-
wellen-Problem mit endlicher Tiefe und Oberflichenspannung motiviert ist.



Abstract

We derive and justify the nonlinear Schrodinger approximation for a class of quasi-
linear dispersive systems. We allow nontrivial resonances to happen and set no
bound on the amount of regularity the quadratic quasilinear term is allowed to
lose, apart from not losing more regularity than the linear term of the system
does. This is the first time the nonlinear Schrédinger approximation is justified
for quasilinear dispersive systems, where the quasilinear term is allowed to lose
more than one derivative.

We rigorously derive the NLS equation via multiple scaling analysis and showing
residual estimates. We justify the NLS approximation on its natural timescale by
proving error estimates. For the error estimates we use a modified energy based
on some normal form transformations. This energy gets modified even further in
order to allow the closing of the error estimates.

We also give an example how our techniques can be applied to more general quasi-
linear dispersive systems by showing error estimates for a reduced system, which
is motivated by the 2D water wave problem with finite depth and surface tension.
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Chapter 1

Introduction

Being able to foresee a certain outcome, after some action was made or observed,
is one of the most valuable skills to have in life. In order to make predictions,
one creates a model in which all aspects that are considered the most relevant
are covered. Thus, in order to make preciser predictions, almost always a more
complicated model is needed. However, a model can quickly become so complicated
that a solution is no longer available for the underlying mathematical equations.
At this point, one can go back to modeling and attempt to create a simpler model,
or, try to approximate the solution of these equations. What makes the second
approach especially interesting is that the model does not need to be changed and,
since only mathematics is involved, one may be able to prove how close a chosen
approximation is to an original solution.

/

Simple model [ Model

} Approximation

N’

<—>[ PDE ]

Simple PDE Simple PDE

This thesis focuses on the Nonlinear Schrédinger (NLS) approximation for
quasilinear dispersive systems. The NLS approximation can be used to describe
wave packet like solutions of nonlinear dispersive systems. For nonlinear dispersive



systems, the NLS equation
OrA =ivy, 0% A + i A| Al (1.1)

with T, X € R, 1y > 0, 5 € R and A(T, X) € C, can usually be derived via mul-
tiple scaling analysis as an modulation equation that describes slow modulations
in time and space of the envelope of a temporally and spatially oscillating wave
packet.

Figure 1.1: The NLS approximation, a temporally and spatially oscillating wave
packet with an envelope that is described by the solution of a NLS equation.

Since nonlinear dispersive systems can often be very difficult to solve as well
analytically as numerically and the NLS equation can be explicitly solved, the NLS
approximation can be a great tool for understanding the dynamics of these systems.
For this reason and in order to save computational costs, the NLS approximation
is used in nonlinear optics [A01], mathematical physics [Z68|, quantum mechanics
[P11] and many other fields where one is interested in the evolution of wave packets,
e.g. [SH94|. Especially in scenarios where one is only interested in the evolution of
the envelope of a wave packet, as for instance the transport of information via light
pulses in glass fiber, the NLS approximation drastically increases the efficiency of
numerical simulations.

While the NLS approximation is very successful in many applications, a formally
derived NLS approximation can make wrong predictions about the behavior of
the original system, see [S05, SSZ15|. Thus, error estimates have to be proven in
order to show that a NLS approximation is valid. A NLS approximation has to be
justified. Only then, one can truly rely on the predictions of a NLS approximation.

In this thesis, we will first consider the nonlinear Schrédinger approximation
for a class of quasilinear first order systems, where the nonlinearity is allowed to
lose an arbitrary amount of regularity, but not more regularity than the linear term



does. Later we consider systems of a more general form, where the nonlinearity of
the diagonalized first order system is allowed to lose one derivative. We motivate
these systems by the water wave equations.

1.1 Quasilinear dispersive systems

In the first part of this thesis, we consider the Nonlinear Schrédinger approximation
for a class of first order systems

Ou = — iwv, (1.2)

O = — iwu — ipu®

withu : RxR — R : (x,t) — u(z,t) and v : R* — R, where the pseudo differential
operators w and p are given by some odd functions p: R — R and w : R — R in
Fourier space.

L.e. in Fourier space, we have

Such a first-order system is also equivalent to the equation

Otu = —wu — pwu’ . (1.3)

When there is some kg > 0 such that the three conditions

u}”(k’o) 7é O, (14)
W' (ko) # +w'(0) and  p(0) =0, or kli%1+w(k) #0, (1.5)
mw(ko) # tw(mko) form ==+2,..., 45, (1.6)

are fulfilled, we can derive the Nonlinear Schrédinger equation

ora =i 00

0% A+ ivg (ko) A| A, (1.7)

with v5(ko) € R, as a lowest order modulation equation. The explicit formulas for
vo(ko) can be found in section 2.1.
For the derivation, we use an ansatz of the form

u=enrs + (’)(82) ,



where
enrs(z,t) = eA(e(z — cyt), £7) eilhor—wot) 4 ¢ (1.8)

is the Nonlinear Schrédinger approximation for solutions of (1.2).

Here, the complex-valued amplitude A is the solution of the NLS equation (1.7) and
0 < e < 1 is a small perturbation parameter. The basic temporal wave number
wo = w(ko) of the underlying carrier wave e'(f07=«0t) ig associated to the basic
spatial wave number ky > 0. The group velocity of the wave packet is ¢, := w'(ko)
and c.c. simply denotes the complex conjugate.

s|
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Figure 1.2: The NLS approximation ¢¥)yg is an oscillating wave packet with an
envelope that is described by the solution A of the NLS equation (1.7). As time
goes on the envelope of height O(g) and width O(¢™!) is moving to the right with
the group velocity c,.

The NLS approximation (1.8) describes slow modulations in time and space
of a spatially and temporarily oscillating wave packet. The slow time scale of the
NLS approximation is T' = £?¢ and the slow spatial scale X = e(z — ¢,t), L.e. the
time scale of the modulations is O(e72) and the spatial scale of the modulations

O(e™1).

In order to justify the NLS approximation, we need to make some further
restrictions to our class of systems

ou = — 1w,

O = — iwu — ipu’.



First off, we do not allow that the nonlinear terms of our system contain more
derivatives than the linear ones. We demand

deg”(p) < deg(w). (1.9)

Here we write deg®(y) < s for a function 7 : R — R when there are some constants
C, M such that

Y(R)] < C(L+ |K]) for |k > M,
and deg(vy) = s when there is also some ¢ > 0 such that
c(1+|k|)* < [y(B)] < C(L+ |k])* for [k[= M.

Apart from (1.9), we set no further restriction on the amount of regularity that
the quadratic term can lose.

The functions w and p are allowed to have a jump in & = 0. However, one of the
functions w or sign(-)w(+), and, one of the functions p or sign(-)p(-) have to lie in
C™(R), where m,, = max{5, [deg(w)] + 1}.

Furthermore, we demand, that for n =1,...,m,, we have

deg*(p™) < deg™(p™ V) — 1 (1.10)
as long as p™ #£ 0, and
deg(w™) = deg(w™ V) — 1 (1.11)

as long as w™ £ 0. I.e. we want the derivatives of w and p to behave similarly as
the ones of polynomials.

We additionally have to assume the local existence of real-valued solutions to our
system (1.2) in H*® for some s > max{deg(w) + deg*(p) + 1,54} with s4 as in the
coming theorem. However we do not think of this as a real restriction since we
expect that this local existence can be shown by using the results of [K75a, K75b]
or proceeding similarly as in [A03].

In this thesis, we only justify the NLS approximation for cases where up to three
resonances can occur. However, we expect that more resonances can be handled
by using similar techniques as in [DS06]. We demand that for ji,jo € {£1} the
only possible (real-valued) solutions of the equations

(,U(k') — j1j2CU(k + k’o) +]1W(:|:k’0) =0 (112)

are k = ko and k = 0. Solutions of (1.12) correspond to resonances in our normal
form transforms.

We explicitly exclude resonances at infinity by demanding that there exists some
constant C' > 0 such that for all |k| > C we have

w(ko) # tkow'(k) when deg(w) =1, (1.13)
w(ko) # 0 when deg(w) < 1, (1.14)
w(ko) # £2w(k) when deg(w) =0. (1.15)

10



We conditionally allow resonances happening in & = 0% or £k = 0~ by demanding
that we always have

0 # +w(0) # 2w(ko), (1.16)

W' (ko) # £4'(0), p(0) =0 and w(0F) # 2w(ke) + jw(2ky)  for j € {£1}.
(1.17)

In the case w(0%) =0, (1.17) is already implied by (1.5) and (1.6).
Under these conditions, we obtain:

Theorem 1.1.1. Fix w, p and ky > 0 as above and sy > 7. For all C;, Ty > 0
there exists €9 > 0 such that for all solutions A € C([0,To], H*A(R, C)) of the NLS
equation (1.7) with

sup [|AC, D) a@e) < Ch
T€[0,To]

the following holds.
For all e € (0,e0) there are solutions

u e C([0,Ty/e’], H**(R,R))
of equation (1.3) which satisfy

sup lu(+t) — ewrs(-, 1) <2

tG[O,To/EQ]

HSA(RR)

11
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Figure 1.3: Illustration of theorem 1.1.1. The solution of (1.2) cannot leave the
O(e¥?)-tube around the NLS approximation 1xrs on the O(¢72) timescale and
the amplitude of ¥y 1s is determined by the NLS equation (1.7).

The error the approximation makes is of order O(3/2), which is small compared
to the solution u and the approximation €1y s that are both of order O(g) in L.
Thus, since our estimate holds on the natural time scale of the NLS equation,
the dynamics of the NLS equation can be found in (1.2) too. The construction of
Unrs 1s always possible since the NLS equation is a completely integrable Hamil-
tonian system that can be solved explicitly with the help of some inverse scattering
scheme, see for example [AS81].

There are various counterexamples, where approximation equations derived by
reasonable formal arguments make wrong predictions about the dynamics of the
original systems, see for example [SSZ15|. An approximation theorem like theorem
1.1.1 should therefore never be taken for granted.

The smoothness in our error bound is equal to the assumed smoothness of the
amplitude. We achieve this by using a modified approximation that has compact
support in Fourier space but differs only slightly from e¢nrs. Such an approxi-
mation can be constructed because the Fourier transform of eing is sufficiently
strongly concentrated around the wave numbers £k, see section 2.1.

Our NLS approximation (1.8) describes wave packets moving to the right with
the group velocity ¢,. By simply replacing —wy by wy and —c, by ¢, in (1.8), one
could describe wave packets that are moving to the left with the group velocity

12



cg. Implicitly, such a NLS approximation is also rigorously derived and justified
here since the system (1.2) with (w, p) = (@, p) and the system (1.2) with (w, p) =
(—w, —p) are equivalent to each other, as one can directly see by looking at (1.3).

1.1.1 Difficulties and method of proof

In order to prove theorem (1.1.1), we first off derive the NLS equation (1.7) in
section 2.1. We do this by showing that the residual of the NLS approximation is
small, i.e. that the terms that remain after plugging in the approximation into the
equations of system (1.2) are small. The intuition behind this is that a residual
close to zero should be a good indication for that an approximation could work,
since the residual of a true solution to the system is zero.

We transform the system (1.2) into an equivalent system of the form

8,V = AV + B(V,V) (1.18)

where V(z,t) € R* A = diag(—iw,iw) and B is a symmetric bilinear operator.
Then we make the ansatz

V= ( . > — ¢ (A(X,T)E + A(X, T)E") ( ; ) (1.19)
o [ Ao(X,T) + Ay(X, T)E? + Ay(X, T)E?
te ( Do(X,T) + Do(X, T)E? + Dy(X, T)E2 ) !

where X := e(x — ¢,t), T := £t and E = ei(ko2=w0t)  Exploiting Taylor’s theorem
to expand all expressions, like for example

iw[AE] = iw(ko) AE + ew'(ko)Ox AE — e*iw" (ko) Ox AE + O(”)

and equating the coefficients in front of e™E’ for m € {1,2,3} and j € {0,1,2},
we obtain the NLS equation (1.7) and a residual of the formal order O(e?).

Due to (1.6), we can modify our ansatz (1.19) further to obtain an even smaller
residual. We finally prove in section 2.1 that there even exists some analytic
function ¥, for which we have a residual Res(e¥) with

|Res(eW)|| s = 0(611/2)

for all s > 0, while

le® — (1, 0)" etowrslmsa = O(*?). (1.20)

Although a small residual is a good indication for a working approximation, an
approximation with a small residual still can fail, see [SSZ15]. For this reason,

13



we prove in section 2.2 via a priori estimates that the error between the NLS
approximation eW and an original solution of the system (1.2) stays small on the
natural timescale of the modulation.

The following properties of the system (1.2) make this difficult

e a quadratic nonlinearity in the presence of a nontrivial resonance,
e a nonlinear term that can lose regularity and is on top of that quadratic,

e a nonlinearity that can lose an arbitrary amount of regularity and is on top
of that quadratic.

We write the error as
PVR=V — eV (1.21)

where 3 > 1 and ¢ is an invertible operator on L*(R) that is given by some weight
function 1 in Fourier space. The constant § and the operator 9 will be chosen fix
later. We now find the rescaled error R to satisfy the evolution equation

O R = AR+ 297 'B(V,9R) + "0 ' B(YR,IR) + e P9 'Res(e¥),

where 971 : L*(R) — L*(R) is the inverse of the operator 9.
If, by assuming ||R| g- < C for some C' > 0, we could obtain an estimate of the
form

O R|

2, <2 O(|R|

7+ 1)

then we could exploit Gronwall’s inequality to obtain the boundedness of the
rescaled error R on the O(e7?)-timescale.
Choosing 8 = 5/2, we obtain

O R = AR+ 2c97'B(¥,9R) + O(c?) .

The term AR is fine, since we have A = diag(—iw,iw), 0| R||7. = [z R0, Rdx and
Jpiwf fdz=0for f e Hde@)(R).

The term e~ 'B(¥,JR), however, has not the right e-power.

In subsection 2.2.1, we try to eliminate this term by preforming a normal form
transformation

R— R=R+c9 'N(T,R)
such that

R = AR+ O(£?).

14



The idea of using a bilinear mapping N to eliminate a O(g)-term was first used by
Kalyakin in [K88|. It is well known in literature that due to the strong concentra-
tion of the NLS approximation ¥ yps around the wavenumbers £k, a well-defined
normal form transformation can be found if the equations (1.12), i.e.

w(k) — j1jaw(k F ko) + jrw(Eko) =0,

have no solutions for ji, jo € {—1,1}. Solutions to (1.12) are also called resonances,
since a normal form transformation N (W, R) could potentially grow unlimitedly in
Fourier space for arguments near theses solutions.

We here allow resonances in k = 0 and k = +ky. Our resonance in k = 0 is trivial,
i.e. N(¥, R) does not grow unlimitedly in Fourier space for arguments near k = 0.
The resonances in k = kg however are nontrivial.

Just like in [DS06, DH18|, we are still able to find a well-defined normal form
transformation by suitably choosing the operator ¢. However this comes at a
price. Due to this, the operator ¥~! can lose us a e-power and we only obtain

R = AR+ *9'N(¥, B(¥,9R)) + O(c?).
We have to preform a second normal form transformation
R— R=R+*™'T(V, ¥, R)
with a trilinear mapping 7', before we finally obtain
OR= AR+ O(£%).

We can show that this second normal form transformation 7'(V, ¥, R) only has
trivial resonances, especially due to our additional conditions (1.16), (1.17) for
resonances in k = 0%.

At this point, due to the amount of regularity we allow the nonlinear term of (1.2)
to lose, we are now confronted with the following challenges:

e The normal form transformation R — R = R+£9~'N(¥, R) is not invertible
since in general N (¥, -) does not map L? onto L?. The operator N(¥,-) only
maps H"(R) onto L?(R), when r > min { deg*(p), 1 + deg*(p) — deg(w)}.
In particular, this prevents us from estimating the H*-norm of R against the
H*-norm of R (the other way around can still be handled).

e A more grave problem is that in general, even by assuming ||R||gs < C for
some C' > 0, the Gronwall estimates for R cannot be closed. This is since
we have

Ok = AR+ 2h(R).
where, when deg”(p) > 0, the function h only maps H*"" onto H* for

r > deg”(p) + min { deg*(p), 1 + deg*(p) — deg(w)}.

15



In subsection 2.2.2; in order to address the above issues, we proceed similarly as
in [D17, DH18| and use a modified energy

E = ||R||z2 + E, . (1.22)

1
R

Since [|0SR||2, and 2E, only differ by terms of order O(¢2) we maintain
0Es = O(e?).
We gain that:
e The modified energy & is equivalent to the H*-energy, i.e.
IR]7: < C1&s < Col|R[f
for some Cy,Cy > 0 (and € small enough).

e The evolution 0,& contains less derivatives falling on R than the evolution
of || R|

2
Hs

However, due to the amount of regularity we allow the nonlinear term of (1.2) to
lose, we still in general do not get

0E =e*O(E+ 1),
but only
0E=e*0E+1)+%g(R),

where the function g only maps H**" onto H® for r > deg”(p).

The occurrence of this problem is not directly linked to the normal form trans-
formation. In fact, this problem also occurs when one skips the normal form
transformation and tries to prove error estimates on a O(e~!)-timescale.

In subsection 2.2.3, we solve this problem by showing that an expression e*D(R)
can be constructed such that

290D(R)=e*g(R) +2O(&E + 1)
while at the same time
e2D(R) = O(&,).

This basic idea may go back to [C87] and has already been used in [D17] and
[CW17|, where two systems of the form (1.2) with deg"(p) < 1 are considered.

16



However, for systems with deg*(p) > 1 the expression ¢*D(R) is much more diffi-
cult to find since a new class of problematic terms is occurring.

We here will present a construction of an expression 2D(R) that works for arbi-
trary deg”(p). This construction heavily relies on (1.9), i.e. it exploits that the
linear part of our system is at least as strong as the nonlinear part. A fact that
enables us to replace troubling spatial derivatives by time derivatives.

After e2D(R) is constructed, the final modified energy

£, =& —*D(R), (1.23)

fulfills

9,& =*0(&, +1),

while simultaneously being equivalent to the H*-energy of the error.
After an application of Gronwall’s inequality theorem 1.1.1 then follows with
(1.20).

1.1.2 Related literature

The first time the NLS equation was derived, it was derived as an amplitude
equation for the water wave problem by Zakharov in [Z68]. The first one to actually
prove a NLS approximation theorem was Kalyakin in [K88]. Later, Kirrmann,
Schneider and Mielke developed a simple method to justify the NLS approximation
for systems without quadratic nonlinear terms in [KSM92|. Quadratic nonlinear
terms are considered more problematic than other nonlinear terms due to the
cubic lifespan the NLS-approximation requires. To illustrate this, let us look at
the ordinary differential equation

O = u®, with w(0) =up € R, up = O(e).

The solution to this equation with a cubic nonlinearity

Up
V1 —2udt

has a cubic lifespan, the O(e~?)-time-interval [0, 35 |.
0

u(t) =

However, for the equation with a quadratic nonlinearity
Opu = u?, with u(0) =up € R, ug=0(e),

the solution




only exists on the O(¢~!)-time-interval [0, u—lo[
As one might guess from this example, the key to a cubic lifespan of solutions
to systems like (1.2) has to lie in the linear term. And so, the basic approach
for handling quadratic terms is to search for a normal form transformation that,
by taking advantage of the linear part of the system, transforms it into a system
without quadratic terms. Using normal form transformations Schneider further
developed the method of [KSM92] in [S98a] such that quadratic nonlinear terms
could be handled, if some non-resonance conditions are fulfilled. There followed
some papers, like e.g. [DS06], where these non-resonance conditions were weak-
ened such that more difficult systems with quadratic terms could be considered.
This however excluded systems with quasilinear terms. These are especially prob-
lematic since quasilinear terms make it much harder to close error estimates.
Quasilinear quadratic terms can also cause normal form transformations to be
non-invertible.
Schneider and Wayne were the first ones to prove the validity of the NLS ap-
proximation for a system with a quasilinear quadratic term on the qualitatively
correct timescale in [SW11]. Thanks to the techniques developed in [SW11] it was
then possible to justify the NLS-approximation for the 2-D water wave problem in
case of zero surface tension and finite depth in [DSW16]. In [SW11]| and [DSW16|
quasilinear quadratic terms that lose half a derivative, i.e. deg*(p) = 1/2, were
handled with the help of a Cauchy-Kowalevskaya argument. However, the ob-
tained result was still not optimal in the sense that they could not justify the
NLS approximation on the whole interval of modulation [0, 7Ty/e?] but only some
smaller O(e7?)-interval. Another problem of their method is that the Cauchy-
Kowalevskaya argument does not work for quasilinear terms with deg*(p) > 1/2,
i.e. for quasilinear terms that lose more than half a derivative.
In [HITW15|, Hunter, Ifrim, Tataru and Wong proved the existence of solutions
with a cubic lifespan for a non-dispersive equation with a quasilinear quadratic
term that loses one derivative. They further developed the idea behind normal form
transforms by using a modified energy in order to circumvent the non-invertibility
of their normal form transformation.
Motivated by this, we showed the existence of long time solutions for a quasilinear
dispersive equation with resonances in [DH18|. Further, we proved a NLS ap-
proximation theorem for this quasilinear dispersive equation in [DH18| by using a
similar modified energy. In [D17| the NLS approximation was justified for a quasi-
linear dispersive system with deg*(p) = 1 by using a modified energy. Cummings
and Wayne also improved the result of [SW11| in [CW17] by using a modified
energy. The two systems looked at in [D17] and [CW17] are systems of the form
(1.2) with deg”(p) < 1 and deg(w) = deg”(p) that directly fall into the class of
systems that we consider in this thesis, however this work is much closer in spirit
to [D17, DH18].

In this thesis the NLS approximation is now also justified for quasilinear dis-
persive systems with arbitrarily large deg®(p), i.e. for dispersive systems with
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a quadratic term that loses an arbitrary amount of derivatives. This is partic-
ularly the first time a NLS approximation theorem is proven for deg*(p) > 1.
The case deg*(p) > 1 is more difficult than the case deg”(p) < 1 due to the
fact that a new additional class of problematic terms arises in the error esti-
mates. The works [SW11, D17, CW17| consider the situation deg*(p) < 1 with
w = p or deg(w) = deg”(p) while this thesis makes do with the lighter restriction
deg(w) > deg*(p). This thesis is further distinguished from the above mentioned
works in that our NLS approximation theorem does not only hold true for one par-
ticular quasilinear dispersive system but for a whole class of dispersive systems.
Due to the generality of the obtained result, our framework and techniques should
be easily extendable to systems with more complicated nonlinear terms. What we
in particular also will show is that our techniques can be useful for the justification
of the NLS-approximation for the 2-D water wave problem with finite depth and
surface tension.

1.1.3 Example systems

An important example of a system that suffices our conditions, i.e. for that theorem
1.1.1 applies, is the system

Ou = — iwv, (1.24)

O = — iwu — ipu?

where w is given in Fourier space by the function

w(k) = sign(k)+/(k + bk3) tanh(k)
and p either by the function

p(k) = py(k) = sign(k)\/k tanh(k) + bk|k|'/?

or

p(k) = pa(k) = sign(k)+/k tanh(k) + bk.

These are model problems for the 2D water wave problem with finite depth and a
surface tension proportional to b > 0. The systems have the same linear dispersion
relation as the 2D water wave problem, i.e.

(w(k))® = (k + bk?) tanh(k) = 0.

Therefore they also share the difficulty of a trivial resonance at k = 0 and a non-
trivial resonance at k = ky with the water wave problem. The pseudo differential
operator p was chosen such that the quasilinear quadratic terms of (1.24) pose
similar difficulties as the ones of the 2D water wave problem.
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It has to be mentioned that for some combinations of 0 < b < 1/3 and ky > 0
there are additional resonances happening. So depending on b our theorem cannot
always be applied for all wavenumbers kg > 0.

As a model problem for the 2D water wave problem in the case of no surface ten-
sion, i.e. for b = 0, this system was already successfully studied in [SW11] and in

[CW17].

Another interesting equation for that the validity of the NLS approximation
can be shown with theorem 1.1.1 is the nonlinear beam equation

Ofu = —0tu — Otu?, (1.25)
which is equivalent to the first order system

o = — O*Hv,
O = — 2 Hu — 02 Hu?

where H is the so-called Hilbert transformation that is given in Fourier space by
the symbol H (k) = —isign(k). One could may also call this equation a double
dispersion equation. Beam equations usually model the deformations of an elastic
beam, while double dispersion equations can appear for surface waves in shallow
water, in the dislocation theory of crystals or the interaction between waves guides
and some external medium. There exists various results for both kind of equations,
see for example [LG19, KV19, WCO06|. However, the above fully quasilinear case
seems so far to be avoided due to the difficulties arising from such a nonlinearity,
cf. introduction of [LG19]. We could also not find an article, where the NLS
equation is justified. This could have something to do with the fact that there are
always nontrivial resonances occurring in +ky. The above equation may also be of
relevance for models with water under a thick ice cover, where a similar dispersion
relation can occur, cf. [I15].

Using theorem 1.1.1 the NLS approximation is now justified for the above equation
for all kg > 0. One can easily directly check all conditions, only for (1.12) a case
analysis and the quadratic formula are needed.

Only as an example to underline the fact that theorem 1.1.1 allows arbitrarily
large deg*(p), i.e. an arbitrary amount of derivatives falling on the quadratic term,
we give the equation

Otu = —w?u — 027 (1.26)

with some suitable w satisfying deg(w) > 50.
When an kq satisfying the conditions of theorem 1.1.1 can be found, the NLS
approximation is valid for such an equation.
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1.2 A reduced system for the water wave problem

While the result of this chapter also stands for itself, it at the same time works
as an example of how the techniques acquired from proving theorem 1.1.1 can be
applied for more general systems.

A goal of this thesis was to develop techniques that can be used for the justification
of the NLS approximation for the water wave problem. The (2-D) water wave
problem is the problem of finding the irrational flow of an incompressible fluid in
an infinitely long canal with flat bottom and a free surface under the influence of
gravity. For more information about the water wave problem we refer to [D18|
and the references therein.

(2,9)(a, 1)

Q(t)

Figure 1.4: 2-D water wave problem with finite depth. I'(¢) is the free surface, B
is the bottom.

Zakharov non-rigorously derived the NLS equation as an amplitude equation
for the water wave problem in [Z68]. Quite some time passed until the NLS-
approximation for the 2-D water wave problem was rigorously justified on the
right time scale by Totz and Wu in the case of zero surface tension and infinite
depth in [TW12| and by Diill, Schneider and Wayne in the case of zero surface
tension and finite depth in [DSW16|. In this thesis, we will now present techniques
that can also be used to justify the NLS-approximation for the 2-D water wave
problem in case of surface tension and finite depth. Without neglecting surface
tension the water wave problem seemed to get way more complicated, so the case
of nonzero surface tension was until recently still a open problem. In [SSZ15] it
was shown that for weak surface tension the NLS approximation can even fail in
some scenarios. Very recently, the NLS-approximation was justified for the 2-D
water wave problem in case of finite depth and possibly of surface tension in [D19]
(as long as there are no additional nontrivial resonances or ky is stable). The error
estimates in [D19] are even uniform with respect to the strength of surface tension
as the height of the wave packet and the surface tension tend to zero.
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We here heuristically derive a system from the arc length formulation of the
2-D water wave problem with finite depth and possibly of surface tension. This
reduced system is the system

Ou_1 = —iwu_q + 8a< — D (u_y +up)u_q (1.27)

[0, D2 (u_y + ur)]o ™ (uoy — uy)

— N

+ -KoD_

ala_l(u_l — ul)a_l(u_l —uy)

1
+ 5[0, D2 (u_y +w)]o Hu_y —uy)

1
+ EKngla_l(u,l — Ul)O'_l(U,1 - ul)

1
- 5[)0'71(16,1 — Ul)KoO'ilaa(Ufl — U1>

_ %(D;I(U—l +up))? + %(KODJI(U—l + “1>>2> ;

where the linear operator iw is given in Fourier space by its symbol

w(k) = w(k;b) = sign(k)\/(k + bk3)tanh(k) (1.28)

and b > 0 is the Bond number that is proportional to the strength of surface
tension, i.e. b > 0 would mean nonzero surface tension.
The operator o is defined in Fourier space by its symbol

k + bk
tanh(k)’

o(k) = o(k;b) = (1.29)

Ky by its symbol Ky(k) = —itanh(k) and the operator o' by its symbol o=*(k).
The operator D! : L?(R) — L?(R) is given in Fourier space by some fixed function
D', which is smooth, odd and fulfills D' (k) = O(—ik™") for |k| — oco. In order
to avoid resonances being caused by the nonlinear terms, we did not use D' = 9, '

This system has the same dispersion relation as the full water wave problem.
Furthermore the quadratic terms of this system can be compared to the ones of
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the diagonalized water wave problem in the arc length formulation. We call it a
reduced system since we can heuristically derive it by simplifying a system that
describes the full water wave problem, see section 3.1.
The nonlinear terms of the reduced system have certain properties, which we will
call key properties in the following. These key properties can also be partially
found in the full water wave problem. We will prove our error estimates by only
relying on these key properties such that our result extends to every dispersive
system that shares them.
These key properties are as follows.

The reduced system is an abstract system of the form

atU,1 = — z'wu,l + A71(U_1, u,l) + B,l(ul, Ul) + C,l(u,l, ul) (130)
&tul = iwul + Al(u_l, u_l) —+ Bl(U17 Ul) + Cl(u_l, u1> s (131)

where the linear operator iw is given exactly like before. The quadratic terms are
given in Fourier space by

Ayuy,u)(k) = /R aj(kk—mom) @ (k—m)a o (m)dm,  (1.32)
gj(ul, uy)(k) == /ij(k;, k —m,m)u; (k —m)u;(m)dm, (1.33)
CAj(u,l, u) (k) = /ch(k, k—m,m)u_1(k —m)u;(m)dm, (1.34)

where j € {£1} and the functions a;, b; and ¢; are sufficiently smooth.
For Z € {A_1,A1,B_1,B1,C_1,C1} and accordingly chosen z € {a_y,a1,b_1, b1,
c_1,c1}, we have

z(k,k —m,m) = O(k) for |[k| — 0, (1.35)

as long as |k — m| gets uniformly bounded.

The z(k, k —m,m) suffice the conditions of lemma 3.3.10.

Moreover, the operators Z always map a pair of real-valued functions on a real-
valued function and satisfy a priori estimates of the form

[l sz V][ 1
[l vl 2

1Z2(uw0)]l2 S 9~
[l rey vl

~Y

(1.36)

[[eell e [0 2 ay
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On top of that, we have the a priori estimates

IA_1s(f ) + A%y (F )2 S min {| Fllae, 1z } lgllze (1.37)
1B1o(f.9) + Bi o(f.9)llze S min {[[ ]z, 11 Fllzrcay} llgllze
C-1(g, £) + Corulg, Hllze < min {I[fllaza, 11w} lgllze
ICL(f, 9) + C(f, )z S min {[[ s, (e} llgllee

and

1A o, 9) + Ca(f )l S min { | Lo, 1 Fllecay} llglre (1.38)
1B-15(f; 9) + Crclg, Nz < min {[|fllzs, [1Fllzey} Ngllre -

Here, we are using the notations

Z(f,) = 2(f )+ 20 1), (1.39)

/RZ*(g,f)hda: ::/RfZ(g,h)dx, (1.40)
[ zannar= [ 2o,

In subsection 3.2.1, we give some more detailed information on these key properties
and also explain how the conditions (1.37) and (1.38) can be understood.

We assume the local existence of real-valued solutions to our system (1.2) in
H*4 with s, as in theorem 1.2.1. In [A03], well-posedness of water waves with
surface tension has been shown.

We chose kg > 0 such that (1.4), i.e.

W (ko) # 0, (1.41)
(1.5), ie.
W' (ko) # ' (0) (1.42)
and (1.6), i.c.
mw (ko) # w(mko) for m = 42, ..., £5, (1.43)
(1.14), ie.
w(ko) # 0 when deg(w) < 1, (1.44)

are true. Moreover, we chose kg > 0 such that for ji, jo € {£1} the only possible
solutions of the equations (1.12), i.e.

w(k) — j1jow(k F ko) + jrw(Eko) =0, (1.45)
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are k = kg and k = 0.

Solutions of (1.45) will correspond to resonances in our normal form transforms.
In literature it has been shown that when b = 0 or b > 1/3 there can always only
occur resonances in k = +ky and k = 0 for all kg > 0. When b €]0, 1/3[ there can
occur more than three resonances for some kg > 0.

We will assume that we can rigorously derive the Nonlinear Schrodinger equation

" (e
aTA =1 v (2 0) 5@(14 + ’ll/g(k'o)A|A|2 s (146)

with some v5(kg) € R, via an ansatz of the form
_ 1
(“ull) — cynis (0) 1O,

eVnps(z,t) = eA(e(z — ¢yt), %) eilkoz=wol) 4 ¢ ¢ (1.47)

Here

is the Nonlinear Schrédinger approximation for solutions of (1.27).
The complex-valued amplitude A is the solution of the NLS equation (1.46) and
0 < e < 1 is a small perturbation parameter. The basic temporal wave number
wo = w(ko) of the underlying carrier wave e'(f07=«0t) ig associated to the basic
spatial wave number ky > 0. The group velocity of the wave packet is ¢, := w'(ko)
and c.c. simply denotes the complex conjugate.
Additionally, we assume that we can derive the Nonlinear Schrodinger equation in
a similar way as for (1.2), we further specify this in section 3.2. We disregarding
the derivation of the NLS equation here, since it is already known that it can be
derived for the water wave problem. The only reason we are looking at the reduced
system is to get an idea how the NLS equation can be justified for the water wave
problem with surface tension.

Under these assumptions, we obtain the following result.

Theorem 1.2.1. Let b > 0. Fixz kg > 0 as above and sy, > 7. For all Cy, Ty > 0
there exists €9 > 0 such that for all solutions A € C([0,To], H*A(R, C)) of the NLS
equation (1.46) with

sup [|AC, T ea@e) < Ch
T€[0,T]

the following holds.
For all e € (0,e0) there are solutions

<uu_11) € C([0,To/"), H** (R, R))

<uu_11) () — etnps(-,t) <(1)> ’
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More interesting than the theorem itself is the fact that the above key properties
suffice to prove it, leaving aside the other assumptions we made. In other words the
result extends to a whole class of systems whose nonlinearities have this certain
form. The structure provided by these key properties can also be found in the
arc length formulation of the water wave problem with finite depth and surface
tension, although one cannot directly embed the full water wave problem into our
setting since it is more complicated. Nevertheless we get a good idea of how the
loss of regularity occurring in the error estimates of the full water wave problem
could be approached.

We follow [D19] to first present the Eulerian formulation and then the arc
length formulation of the 2D water wave problem in the case of finite depth and
possibly surface tension. Then we heuristically derive the reduced system (1.27)
from the arc length formulation of the water wave problem and proceed to talk
about the key properties of the reduced system. In section 3.3, we then make
error estimates by applying the techniques from section 2.2. We first construct the
normal form transformations and a modified energy. Then we show the equivalence
of this energy &, to the H*4-norm of the error and

athA = 0(52) .

Finally, we improve the energy a little to obtain

0, =2 O(&,, +1)

such that theorem 1.2.1 follows.

26



1.3 General Notation

For functions f : R — K with K =R or K = C, we use the norms

1z = / (@),

[flloo := esssup | f(z)],
zeR

Il 1= 3 maelat )]

/1

o=+ P2 )| = \/ / (1+ |k|2)*| f(k)[2 e,

1) = /R<1 + |k[2)*2| f (k)| d .

Here fdenotes the Fourier transformation of f.
We choose the Fourier transformation F that is defined by

k) = FUAGK) = — / e f(2) da

:27T

for suitable functions f.

We write f € L*(R,K) when ||f|2 < oo, f € H*(R,K) when | f|gs < oo,
f e L'(s)(R,K) when ||f]pis < co and f € CJ(R,K) when || f]jcn < oo for
f R — K. We write f € C*(R,K), when f has a compact support and f € C}'
for all n € N. Sometimes, we write for example f € H*(R) instead of f € H*(R,C).
For fi, fo € H*(R), we a few times use

161

We have the estimate || f||cn < C||ﬂ|L1(n) for some C' > 0.
For ¢(z) = A(ex)e*o®, we have (k) = 5‘12((k — ko)e™"). Thus, we only have
[llse < e7V2C) Al s but [[Y]len < ClAllen and [[9]|ra ) < CllAl| L.

We write deg™(y) < s for a function v : R — R when there are some constants
C, M such that

e = LAl

me + || follms -

lv(k)| < C(1+ |k|)® for |k|> M.
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We write deg(y) = s when there on top of that is some ¢ > 0 such that
c(1+[k[)* <|y(k)[ < C(A+ |k])* for [k[= M.

We write deg”(y) = s, when s is the minimal s for that deg() < s is true.
For expressions I and E, we often write

I<O(E),
when we want to express that there exists some constant C' > 0 such that
I<CE.

The constant C' can then always be chosen independently of E and the small
perturbation parameter €.
A few times, we write I < F instead of I < O(F). We sometimes write [ = O(E),
when we want to express that I < O(F) and —1 < O(E).

For an operator v and some functions g, f, we denote the commutator [v, f|g
by

v, flg =~(fg) — fvg.

For convenience, we often call the operators defining a normal form transfor-
mation also normal form transformations.
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Chapter 2

Quasilinear dispersive systems

2.1 The Derivation of the NLS approximation

In this section, we will first show how the NLS equation (1.7) can be derived for
the dispersive system (1.2). Then, we will prove residual estimates for a improved
NLS approximation ¥, which only differs slightly from ¥n1s. For the derivation of
the NLS equation and for all estimates in this section, we only need the conditions
(1.4), (1.5) and (1.6) to be fulfilled and that the function w or sign(-)w(-), and, the
function p or sign(-)p(-), lie in C5(R).

Before we derive the NLS-equation, we diagonalize our dispersive system

Oy = — 1w,

O = — iwu — ipu’

()= 040 !

which we later could invert again by the transformation

(Z)ZG—ll)(uull) (22)

We obtain the diagonalized system

via the transformation

1
Ou_q(x,t) = —iwu_q(x,t)— §ip(u,1 + ul)z(x,t) ) (2.3)
1
Oy (z,t) = dwuy(z,t) + §ip(u_1 + u1)2(:p, t),

where ¢,z € R and u_q(z,t),u1(z,t) € R.
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In order to derive the NLS equation, we now make the simple ansatz

( e ) = Uy = e (A(X,T)E + A (X, T)E) ( : ) (2.4)
1
—|—€2 AO(X7 T) +A2<X> T)E2 +A_2(Xa T)E_2
Do(X,T) + Da(X, T)E? + Dy(X, T)E=2 )
where X :=e(x —cyt), T := £, E = e'lkor=wol) | ;0 = w(ky) and ¢, = w’ (ko). This
is an ansatz that leads to an approximation that describes waves moving to the

right with the group velocity c,.

Remark 2.1.1. In order to obtain an approrimation that describes waves moving
to the left with the group wvelocity c4, one could replace in the above ansatz the
vector (1,0)” by (0,1)T as well as —wy by wy and ¢, by —c, (cf. [SW11]), or just
replace the operators w and p by the operators W = —w and p = —p.

We insert the ansatz eWg into the diagonalized system (2.3).
In order to be able to directly compare powers in ¢, we use Taylors theorem
to expand all resulting terms of the forms w[A;E/], w[D;E], p[A; A;, E 2],
p[Dj, A, ENT2] and p[Dj, Dj, E*72] (cf. Lemma 25 of [SW11]).
When w € C°(R), i.e. in the case w(0) = 0, Taylor’s theorem yields

w(k) =w(jko) +w'(jko) (k — jko) + Z ‘7]{0 — jko)" + O((k — jko)°),

n=2

and we therefore have the expansion

w[AE] = iw(jko) AE + e (jko) Ox AjE

(n) ik ,
+ Z k) gn 4 B 4 0(e),

Analogously, we expand expressions involving the operator p when p(0) = 0, i.e.
when p € C°(R).

When limy_,1ow(k) # 0 or limy 49 p(k) # 0, we have to expand more carefully
since the function w or p has a jump in k = 0.

In the case limy_,+ow(k) # 0, we write

w(k) = iH(k) v(k) = sign(k)v(k),

and then expand the function v := sign(-)w(-) € C5(R) with Taylor’s theorem in
order to get

w(k) :sign(k:)<sign(jko)w(jk0) + sign(jko)w' (7ko) (k — jko)

* sign(jko)w™ (jko : _
+) 5 (Jky)ﬂ (jk)(k—]ko)n+0((/€—j/{0)5)>,
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If the support S; of A;E’ in Fourier space is strictly restricted to a small enough
neighborhood of jky, we have

sign(k)sign(jko) =1 for k € S;
and thus can still use the expansion
W [A]E]} = Zu}(jk’o) A ‘Ej + 5w'(jk0) 8XAjEj

(n) L ,
+z: “’9@@&W+a@.

for j # 0. However, for 7 = 0, we obtain

w@ (()+)
2

4) (0
’iWAj = —CL)(OJr) HAJ + 52 H@%AJ —+ €4w 4( ) H84 A + O( )

Note that w™(0F) = 0 for odd numbers n, what simply is reflecting the fact that
the function v = sign(-)w(-) € C°(R) is even.

Analogously, we expand expressions involving p in the case limy_,1o p(k) # 0.
After having expanded all expression like this, we now equate the coefficients in
front of e™E’ to zero. Since ¢ is really small, we expect the terms with higher
e-powers to be smaller and start by looking at the terms with lowest e-power.
Due to the different expansions being valid, we here have to distinguish between
the two cases w(0) = 0 and limy_, 1o w(k) # 0.

2.1.1 Derivation in the case where w(0) =0

In the case where w(0) = 0, due to (1.5), we have
W'(ko) # £w'(0) and p(0) =0
on top of having (1.4) and (1.6):

W”(kO) 7A 07

mw (ko) # tw(mk) form=+2,...,£5.

We obtain the following equations for the coefficients in front of eE/:

5E<é): wiko) —wo =0,
5E4<é): w(ko) —wp = 0.
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Thus, since we have chosen wy = w(kp), all terms of order e cancel.
In front of e?E’, we have the following equations for the coefficients:

e’E? ( (1) ) : %p(zko)Ai + (w(2ko) — 2wp) A2 =0,
€2E((1)>2 W'(ko) —cg =0,

() p(0) = 0,

eE! ( é ) : W'(—ko) —cy, =0,
2E? ( é ) : %p(—Qko)Ai + (w(—2ko) + 2wy) Ay = 0,
e’E? ( (1) ) : %p(zko)Af + (w(2ko) 4 2wy) Dy = 0,
52E0((1)): p(0) =0,
e?E? ( (1) > : %p(—zko)Af + (w(—2ko) — 2wg) Dy = 0.

Due to (1.6), we can choose

A — _ p(2k0) 2
27 2(w(2ko) — 2wg)
y = — p(2k0> A2

2(w(2ko) + 2wp)

By this choice, all terms of order £? cancel, since the functions w and p are odd,
¢y = w'(ko) and p(0) = 0.
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In front of e3E7, we get the following equations:

1 ) " k . o
SE ( 0 ) : OrA; — ZW (2 0)83(141 +ip(ko) (A1(A0 —|—D0) +A1(A2 + DQ)) =0,

0

1
3p—1 .
e’E <0)

OrAy —i

3E? ( L ) : 0/ (0)0x|A1)? + (W(0) — ¢,)0xAg =0,

) 52 4, (o) (A_l(Ao + Do) + Ar (A + E)) =0

'K’ ( [1) ) 2 p/(0)0x[Ar]* + ('(0) + ¢4)0x Dy = 0.
We also have coefficients in front of e*E’ for j € {—3,—2,2,3} and in front of
eSE (0, 1)T and 3E~ (0, 1)T, but, unlike the coefficients above, we can always
get rid of these coefficients by simply extending our ansatz by some O(g?)-terms
and exploiting (1.6).

Due to (1.5), we can choose

P( 2
Ay = — A
0 w’(())—cg‘ il
/
0
DO_ ,P( |A1|27
W'(0) + ¢4

such that the coefficients in front of e3E° (1, 0)7 and 3E° (1, 0)7 vanish.
When we now plug in our choices for A,, Dy, Ag and Dy, we obtain, in the coeffi-
cients in front of e3E (1, 0)” or ¢*E~! (1, 0)7, the NLS-equation

w//(k‘o)

(9TA1 =1 8?(141 + iVQ(ko)A1|A1’2 s

with

20(0)w'(0)  _p(2ko) w(2ko) )

va(ko) = =p(ko) <c3 — (@(0) 4w — (w(2ko))®

This is how the NLS equation is derived in the case where w(0) = 0.

2.1.2 Derivation in the case where limj_,1qw(k) # 0

We now derive the NLS-equation in the case where limy_,1ow(k) # 0, that obvi-
ously is the case where we have

) 70
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on top of having (1.4) and (1.6):
(JJH(]{?()) 7& 0,

mw (ko) # tw(mkg) form=+2,...,£5.

As hinted before, in order to be able to compare the coefficients in front of e™E/
in a similar way as we did in the case where w(0) = 0, we here will assume that for
J # 0, the support of A;E/ and D;E’ in Fourier space is such strictly concentrated
around the wavenumbers jko, that we can replace the expression sign(k)sign(jko)
by 1+ O(g%) in our Taylor expansions. This assumption is automatically fulfilled
when A;, D; € H® for some large enough s > 0, due to the estimate

Ixisae  Fle™) = e e iz < CE) ™ M2 fllgmens— (26)

for f € H™M and for all M, m > 0, where X[-s,6] is the characteristic function on
[—4, 8] (see (24) in [S98b]).
We again obtain the following equations for the coefficients in front of cE7:

8E<é): w(ko) —wo =0,
eEl((1)>: w(ko) — wo = 0.

So, since we have chosen wy = w(ky), all terms of order ¢ cancel.
In front of e?E’, we now have the following equations for the coefficients:

£’E? ( (1) ) : %p(zko)Af + (w(2ko) — 2wy) A2 =0,
SQE((l)): W'(ko) — ¢y =0,

?E° ( (1) ) : p(ONYH|AL]? +w(0H)HA =0,

eE! ( (1) > : W'(—ko) —cy, =0,

e?E? ( (1) > ; %p(—2k0)Af + (w(—2ko) + 2wy) A = 0,
£’ E? ( (1) ) : %p(zko)Af + (w(2ko) + 2wy) Dy = 0,

£’ E° ( (1) ) : p(ON)YH|A1)? + w(0M)YHDy =0,

e?E? ( (1) > : %p(—zko)Ai + (w(—2ko) — 2wg) Dy = 0.
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Due to (1.6), we can choose

_ p(2ko) 2

2 — = A17
2((0(2]{30) — 20.)0)

D2 — p(2l€0) A2

2(0)(2]{30) + 2&)0) b

and, since w(0") = limy_,o+ w(k) # 0, we can choose

_ _P(O+) 2
AO - (0+)| 1| )
o p(07) 2
Dy= - L5 1AL

By this choice all terms of order &% cancel, since the functions w and p are odd
and ¢, = w'(ko) -
In front of e3E/, we get the equations:

1 W (K , o
I D) < 0 ) : OrAq —@w (20>8§(A1 -|—ZP</€0) (A1(A0+D0) —|—A1(A2 _|_D2)> =0,

1
31 .
e’E (0)

e " _k
Py A )

O+ ip(—k) (A (Ao + Do) + A (A3 + D)) = 0.

We also have coefficients in front of e3E/ for j € {—3,-2,0,2,3}, in front of
e3E (0, 1)T and in front of e3E~! (0, 1)7, however we can always get rid of these
coefficients by adding some O(g?)-terms to our ansatz and exploiting (1.6) and
w(0%) £ 0.

When we now plug in our choices for Ay, Dy, Ag and Dy, we obtain, in the coefhi-
cients in front of e*E (1, 0)” or e*E~* (1, 0)7, the NLS-equation

w//(ko)

OpAL =i 0% Ay + iva(ko) Ar| A2,

with

va(ko) = —p(ko) (4w§ ~ (w<2k0))2 w(0%)

Remark 2.1.2. Looking at (2.5) and (2.7), we see that the NLS equation (1.7)
can be either defocusing or focusing depending on w, p and ko > 0.
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2.1.3 Residual estimates for an improved NLS approxima-
tion

When we just derived the NLS-equation by using the ansatz (u_1,u;)? = Vg, we
also showed that the residual

Resu_l eV
Resu(€\115) = ( Res, ((€‘IJSS)) ) 7

which contains all terms that do not cancel after inserting ansatz (2.4) into system
(2.3), is formally O(e?®). However, for our error estimates, we need a much smaller
residual and have to control its norm in high Sobolev spaces.

In order to get a smaller residual, we extent the ansatz eWg by some O(e?)-terms
to a approximation e¥. Then, we exploit that the approximation ¥ is strongly
concentrated around a finite number of integer multiples of the basic wave number
ko > 0 such that we can use some cut-off function to restrict the support of the
approximation U in Fourier space to small neighborhoods of these wave numbers
Jko, with j € {—5,...,5}, without changing the size of the residual. This way, we
obtain a approximation eW that is an analytic function and has a residual of the
formal order O(£%). For more details on this construction we refer to Section 2 of
[DSW16.

The final approximation that we use, is

eV = eV, + %7, (2.8)

v, = 81/10((1)) = €<¢1+¢—1)<é)

= e (Ai(e(z —cit), ) E+c.c.) ( (1) ) ;

where

52\11q = ( 12;1 ! ) = 2Wy + 32Uy + 20y,
q1

Ao(e(x — cyt), €2t)

2 o 2
eV = ¢ (Do(e(m—cgt),szt) )

= e (b e )
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Al(e(x — ¢gt), e*)E + c.c.
oy, 1+4n 1 9t);
e = Z € ( Dy (e(z — ¢gt), e*t)E + c.c.

n=12,3,4
Al (e(z — c4t), %)
n S2Hn ( 0 gt);
n;,s Dy (e(x — ¢gt), e%t)
n 24 Ab(e(x — ¢gt), e*)E? + c.c
. Dy (e(z — ¢gt), et)E? + c.c
N 3+n A (e(x — ¢gt), e*)E? + c.c.
~, Dy (e(x — cyt), e*)E? + c.c.

N Ln At(e(z — ¢ t), e%)E! + c.c.
Dy(e(x —cyt), e*)E* + ce. )7

2HES + c.c.
HE° 4+ cc. )’

m M

E = eilkor=wot) "y = w(ky) and ¢, = ' (ko).

Here, A;(e(- — ¢yt), %) is the restriction of A(e(- — ¢yt), %) in Fourier space to
the interval {k € R : |k| < 6 < ko/20} by some cut-off function, where A is the
solution of the NLS-equation (1.7) and § > 0. More precisely

A (e(- — ¢4t), %) = Pos[A(e(- — ¢ot), £7t)]
= F [ xsa (OF[AGC = ), 2] )]

where x[_s) is the characteristic function on the interval [—6, d], i.e. x[—s4 (k) =1
for [—0,6] and x[_s5 (k) = 0 for k & [—0,6].

The A} and D7 are chosen suitably depending on A; such that the support of
AJE’ and DTE’ in Fourier space lies in a small neighborhood of the wave number
jko.

One can think of €. as eynrg, just with a support in Fourier space which is
restricted to small neighborhoods of the wave numbers +k.

Similarly as in [SW11, DSW16|, we obtain:

Lemma 2.1.3. Let s, > 7 and A € C([0,Ty], H*4(R, C)) be a solution of the NLS
equation (1.7) with

sup || Al|gsa < Cay.
TG[O,T()}

Then for all s > 0 there exist Cres, Cy,e0 > 0 depending on C4 such that for all
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e € (0,&9) the approzimation eV = eV, + 52\Ifq satisfies

sup  ||[Resy(eW)||gs < Crese''/?, (2.9)
te[0,To /2]
1
sup ||€‘I’—€¢NLS( >‘HA < COye’l?, (2.10)
te[0,Ty /2] 0
sup (| Vellisinee) + 1Yl sryee) < Co, (2.11)
t€[0,Tp /2]
1011 + iwp |1y < Cue”. (2.12)

Remark 2.1.4. When (1.6) is also true for m € {£5,%6,...}, by choosing s,
higher and expanding eV further, one could make Res, (V) arbitrary small (if w
or sign(-)w(+), and, p or sign(-)p(-), are smooth enough).

The bound (2.10) is the reason why we can work with eV and will still obtain
a result for eYnrs.

We need the bound (2.11) in order to make estimates like

[¥ef] /]

c; | fllas < Clldbell s | £l s

without losing powers in € as we would with ||| gs = HQZCHLQ(S), where the problem

is that [|g(e-)llz2 = €72 |lg ()| 2.
The bound (2.12) will be used to approximate Op)1.

Proof of lemma 2.1.3. We only give a short proof, for more details compare
section 2.4 of [DSW16].
By proceeding for ¥ exactly as for Wg above, we obtain the NLS-equation (1.7) in
e3E and e*E~!. Due to the estimate (see (24) in [S98b])

I sae Fe™) = e Pl iz < CO ™2 fllgmen (2.13)
and the fact that A solves the NLS-equation (1.7), we have

w”(ko)
2

HaTA1 i 92 A, — ¢y2(k0)A1|A1|2HL2 — 0312,

n

By now looking at the terms e*E/, ’E/ and suitably choosing A”, D}, we obtain

IRes, (e0)|| 2 = O(e1/?).

As before, for j # 1, the A}, D7 are chosen depending on A; by exploiting (1.5).
The A}, A%, sometimes even the Di, D?, are determined by solving linear, but
inhomogeneous, Schrodinger equations, in which the inhomogeneous terms are
determined by A;. Since A;((- — ¢,t),e%t) has a compact support in Fourier space
the A7((- — ¢gt),e%t)E7, DP((- — ¢ t), %) E/ can also be chosen with a support in
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Fourier space that lies in a small neighborhood of jko. Thus, (2.9) is true for all
s > 0 due to the compact support of ¥ in Fourier space.
The estimate (2.10) is a consequence of

eV =¢ (Ai(e(z — ¢ot),et) E 4 c.c.) ( (1) ) + &2,

and (2.13).
We obtain (2.11), since ¥, and ¥, have compact support and

IF L e = e FEe™ e = 1Ol

for f € L.
The estimate (2.12) can be seen by expanding the expressions iwA,E and
iwA;E~! in the same way as we did before.

[]

For the derivation of the NLS equation and the above lemma, we do not need
the assumption (1.9), i.e. that the linear part of our system is at least as strong as
the nonlinear part. In other words, we can rigorously derive the NLS equation for
a much wider class of systems than the class for which we justify the NLS equation
for in this thesis. While this does not necessarily mean that the NLS equation can
also be justified for systems where the nonlinear part is stronger than the linear
part (see [SSZ15]), it still lets one hope for that.

In [DH18]|, the NLS equation was justified for an equation with a nonlinear part
stronger than the linear one, however the strategy used there only works for equa-
tions of the form d,v = iwv + ip(v?) with v(x,t) € R and deg*(p) < 1.

2.2 The error estimates

In this section, we ultimately will prove theorem 1.1.1. That means we will show
that there is a solution u to (1.2) such that the H®*4-norm of the error

Rerr =Uu-—- 5¢NLS (214)

remains bounded on the O(e~?)-time interval [0, Tp/e] and we have the estimate
lu — enrs|uea < O(EY?). (2.15)
To do so, we consider the diagonalized system (2.3) from section 2.1:
Opu_q(z,t) = —iwu_q(z,t) — %z’p(u_l + u1)2(a:, t),

1
Oyuy (z,t) = iwuy (z,t) + Eip(u_l + ul)z(x, t),
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with ¢,z € R and u_y(z,t),ui(z,t) € R, that emerges from the system (1.2) by

the transformation
U_q . l 1 1 u
(51 o 2 1 -1 v ’

We then proceed to estimate the error

R_l o U_1
(R )=("r) a1t
which the improved approximation e¥ from section 2.1 makes on the O(¢~2)-time

interval [0, Tp/€?] . This will make the proof much simpler and, due to the estimate
(2.10), we directly obtain an estimate for (2.14) from an estimate for (2.16).

Let

5¢Q1

be the approximation (2.8) from section 2.1. We write the error (2.16) as

VR_ U
B 1) — LI
€ ( IR, ) ( w ) el (2.17)
where 3 = 5/2 and 9 is an invertible operator on L?(R) that later will be given

by some weight function ¥ in Fourier space. Throughout this section, we will now
work with the rescaled error

(?ﬂl>:sﬁm4<<l%l>—e@), (2.18)

where 971 : L*(R) — L*(R) is the inverse of the operator 9.
The dynamics we obtain for this rescaled error by plugging in the above definition
into the diagonalized system are given by

@:(m+wm)7

R = —iwR_; —cipd  (Ry(IR_1 + IRy)) + e P9 'Res, , (e¥),  (2.19)
O Ry = iwRy + €ipd  (Ry(IR_1 + IR,)) + e P9 'Res,, (eV),

where

1
Ry =1+ 555—1(03_1 + 9IR,), (2.20)

Y=Y+ g = +e(Wy , +g) . (2.21)
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2.2.1 O(e?)- time scale via normal form transformations

If we could obtain an estimate of the form

O (IRl + 1 Bullzrs) < e* O(IIR 17 + || Ral

G+ 1)
for t € [0, Tp], an application of Gronwall’s inequality would give us

sup |[Ror(8) e + ROl < C

te[0,To /2]

for some C' > 0 and we would have

sup H(“u—11>_5\11||HS: sup ||( )||Hg<€ﬁ,w”mwa

te[0,To /2] €[0,70/¢?]

We have chosen = 5/2 large enough and constructed the approximation W
in such a way that we formally have

O R; = jiwR; + jeipd (Ry(VR_1 + 9Ry)) + "9 'Res,, (e V)
= ijR] + j€7;,019—1 (w(ﬁR_l + 19R1))
1
+ j§55i,019_1(19R_1 +9R)? + e 79 'Res,, (eT)

= jiwR; + jeipd™ (Y(IR_1 + 9Ry)) + O(?),

for j = +£1.
We will choose the operator ¢ such that we can be sure that
lip9 ™" fllzz < O(f | aes») (2.22)
[0f |2 < Ol f]l£2) (2.23)

i.e. that the operators ipd~! and ¥ do not cause a loss of e-powers.
For this reason, we can take advantage of the fact that

Y =1 +elq (2.24)

in order to get
OR; = jiwR; + jeip)  (Go(VR_y +IR))) + O(?)

The term jiwR; is harmless, since, due to the fact that the function w is odd, it
will vanish when we multiply the equation with 2R; and then integrate in space
to obtain 0;|| R;||z2 on the left hand side.

The O(g)-term however prevents us from obtaining an estimate on a O(e7?)-
timescale. The basic approach to get rid of this term is preforming a normal
form transformation

Rj— Rjt+e Y 07'Nj,(the, Ry,), (2.25)

joe{£1}

where N is a suitably chosen bilinear mapping.
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Remark 2.2.1. We treat the operator 9% similarly as the small perturbation
parameter € since V"' can cause a loss of e-powers.

By defining
Rj = Rj te Z U J]z(ww )7 (226)

we formally obtain

OR;=0R;+e Y U 'Nj(0be, Ry) +& > 07 Ny, (e, R,

Ja€{£1} Je€{£1}

:ﬂWRj_jg Z v~ ZWN]JQ(wCJRJQ)

joe{£1}

+ jeipd ™ (Y (VR_1 + IRy))

+e Z 07Ny, (—iwibe, Ry,) + € Z O Ny, (e, JoiwR,)

je€{=£1} jee{=£1}

e Y UTIN, (it + O, Ryy)
jae{£1}

+e Y 0Ny, (wc,jﬁipﬁ*l(wc(ﬁﬂ’,l +9YRy)) + 0(52)> +O(e?).
J2€{£1}

The first idea would be to choose normal form transformations N;;, = Nj;,, where
Nm is defined by

—jzw 772 (?ﬂa ]2) +]ZP(¢C ﬁR]Q) j]z( waca ) ]]2 (¢C7JZZWR]2) - O,
i.e.
Nﬁjz (%, Rjz)(k) = / ﬁjljz (k? k — m, m){b\c(/{ - m)ﬁjé (m) dm>
R

p(k) D(m) xo(k — m)
w(k) = jijaw(m) + jrw(k —m)’

ﬁjl]é(k? k —m, m) =

where . is the characteristic function on supp {/J\C.
We choose the approximation ¥ from section 2.1 such that . in Fourier space has
the compact support

supp e = {k € R : |k & ko| < 8 < ko/20}, (2.27)

where the parameter ¢ will later be chosen suitably small, but independent of ¢.
Due to our conditions concerning the solution of the equations

w(k) — j1jow(k F ko) + jiw(Eko) =0 (2.28)
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for ji, jo € {£1}, which we have formulated in (1.12)-(1.17), we are able to show
that when (1.16) is true, i.e. when

0 # +w(0h) # 2w(ko), (2.29)

the mappings Njj, (1., -) are indeed well-defined and map H'(R) on L2(R).
However, when we do not have (2.29), the mappings Nm are in general not
well-defined for functions of H'(R), or even for functions of C2°(R). This is due
to the resonance happening in m = 0 that corresponds to the solutions k = £k
of (2.28), and is in general nontrivial. In other words, we have the problem that
N, (k, k —m,m) can grow unlimitedly near m = 0.
To address this issue, we define the operator ¥ in Fourier space via the weight
function

1 , when 0 # +w(0") # 2w(ko),
(k) = e+ (1— 5)% for |k] < ¢ olse
1 for k| >¢6 =
(2.30)

Herby the parameter ¢ is the same ¢ as the one in (2.27). The idea to handle
a nontrivial resonance in m = 0, i.e. k = +kg, by rescaling the error with such
a weight function has already been used in many papers (e.g. [DS06, DSW16,
CW17, DH18|).

Let f’a,b denote the characteristic function on the set {k : a < |k| < b} and P, be
the operator defined by the symbol Pal, in Fourier space.

Due to our choice of ¥, we formally have in the case that (2.29) is hurt

jeipd ™ (Ye(VR_1 + IRy))
= jeipd) ™ (YePeoo?(R_y + Ry)) + jeipd ™' (Y PoI(R_y + Ry))
= jeipy ! (%Pg,cxﬂ?(R,l + Rl)) +0(e%),
since 9(k) < O(e) for |k| < .

Therefore, we now only have to eliminate the term
jeipd " (YePeoo(R_1 + Ry))

when (2.29) is hurt.
So, we define the normal form transformation by

lejz <w07 RJ2>(k> = /an1j2 (k7 k—m, m)@c(k - m)ﬁjz (m) dm, (2‘31)

p(k‘) 195,00(771) XC(k — m)
w(k) = jrjaw(m) + jrw(k —m)’

njl]é(kv k—m, m) =
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where 0. o (m) = 1 when 0 # +w(0) # 2w(ko) is true, otherwise

0 for |m| < e,
Ve o(m) = 5—1—(1—8)@ for e < |m| <9,
1 for |m| > 6.

In the case of no resonances happening, i.e. where (2.29) is true, the normal form
transformation Nj, ;, looks exactly like le j, from above. In the case where (2.29)
is hurt however, the resonance in m = 0 is cut out.
Due to this (and the fact that p(0) = 0 when (2.29) is hurt due to (1.16)-(1.17))
we can show that the normal form transformations Nj j, are always well-defined
and the N; ;, (¢, ) map H'(R) on L*(R).

Defining 9 by (2.30) allowed us to obtain a well-defined normal form trans-
formation N, ;,, but it has the direct consequence that when (2.29) is hurt, we

have

1j2

W97 |22 2 = O(e7™). (2.32)
So, while we successfully obtain

O R; = jiwR; + O(£?)
in the case that (2.29) is true, we only obtain

OR; = jiwR;+& Y 97Ny, (¢C,j2¢p19—1(¢c(193_1 + 031))) + 0.

jo€{£1}

when (2.29) is not true.
We first observe that

821971ij2 <wc7j27;,01971 (wc<19R71 + 19R1))>
= €2P0,§19_1ij2 (1/Jc,j2i,019_1 (¢C<79R_1 + 19R1))> + O(€2> s

due to the definition (2.30) of the operator ¥J.
Analyzing this term further in Fourier space, we will see that

821971ij2 (wc, jgi[)’l?il (wc(ﬂRfl + ”ﬁRl)))

=Py Y Ny, (%’47]'2@';019_1 (¥ (Rt + 1931))) +0(e%),
jae{#1}

where
Ui(2,t) = Ay (e(z — cyt), e7t)e'Formeol) - ap | =y, Ve =11 + 11,
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just as in section 2.1.
For this reason, we have to preform a second normal form transformation

Ri— Ry =Ri+& > 0 Tijua (s s Ry) (2.33)
jonds.a€{£1}
where 7;,j,;, is a multi-linear mapping such that
Pos®™ Ny jo (54, 20 ip(1h, 9 Ry, )) (2.34)
= 51809 T jajogs (Was Ve Rig) + 07 T jagaga (—iwthy, e, Ry
F 9 Tgaggs (e =10, Rjg) + 0 T oo Wjas s Gz iwRy,) - = O(1).
We finally obtain this by defining

731]5]3]’4 (¢j47 ¢j4’ Rj:s)(k) = /Rtj17j27j37j4 (k){b\jzl(k: - m){z)\h (m - n)ﬁjzs (n) dn dm,
(2.35)

0 if (2.29) is true,
bivgonins(K) = 4 —j Pos(k) njy5, (k, jako, k — juko) p(k — jako)
(— jiw(k) — 2w(jako) + jsw(k — 2jsko))

Due to our definition of nj;, and thanks to (1.16)-(1.17), we can show that this
normal form transformations 7}, ;,j,;, are free of nontrivial resonances and that the

Tivisjsis(Viss Vis, ) map L*(R, C) onto L*(R, C).
We now can obtain

else.

@tRj = ijR] + 0(62)
and therefore show

(IRl + [ Rul72) = O(e?).

Definition 2.2.2. We define the energy

Eo(R) = [|R[72 + [ Rall72 (2.36)
with
Ri=Rj+e > O7'NjpWe R+ Y 0 Tijnguis (U, ¥, Ry,)
J2€{=£1} J2.j3,da€{£1}

for j € {—1,1}, where Nyj, is as in (2.31), Tjjyjsin @5 as in (2.35), 1, is as in
(2.8) and 7' : L*(R) — L*(R) is the inverse of the operator ¥ that was defined
in (2.30).
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Remark 2.2.3. Since we sometimes have to use the estimate (2.32), we have
placed the operator 9= outside of our normal-form transforms. This way our

estimates for the normal-form transforms N;, j, and T;, 5.5, will be independent of
€.

We will now prove the statements we have made so far.

Lemma 2.2.4. We always have
k01 (k)| < 1+ [k (2.37)

that means in particular that

lip0~" fll2 < O fllsracs» ). (2.38)

When (2.29) is not true, i.e. ¥ # idyz, there is a constant C' = C(0) such that for
all k € R:

~

k71, oo (k)] < C. (2.39)
Proof. Obviously (2.37) is true for J(k) = 1, otherwise we have

k| for |k| > 9,
k9~ (k)| = ||
k

— o for|k[ <.
e+ (1—¢e)5
For 0 < |k| < §, we have

|k| 1
|k| S £ 1—e
et(l-e)y wts

<9

such that (2.37) is true.
Estimate (2.38) now follows due to the fact that ¥=! # idy2 implicates p(0) = 0,
i.e. implicates p(k) = O(k) for |k| = 0 .

When (2.29) is not true, we have

(0 for 0 < |k| < e,
e (1—¢)
L SR G < |kl <
|k lﬁs,oo(k”: |l{’+ (5 for€_|l€|_5,
1
— for k| > 9.
| T "

Thus we get (2.39).
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Lemma 2.2.5. The normal-form transforms N;, ;, were constructed such that for

all f € H¥E PWHY(R):

_jliWleh (wcv f) - lejz (iwww f) + j2Nj1j2 (¢Ca wa) = _jlip(qvbcﬁs,mf) ’ (2'40)

where

1J2

lirip(0f) = jrip(Yede oo f)llz = O(€) [1f ]| gacerw- (2.41)

Moreover, for every fix h € L*(R,R) the operators Nj ;,(h,-) are continuous
linear operators which map H'(R,R) into L*(R,R). In particular, there is a C' =
C(|h(-)xe()|lzr) such that for all g € HY(R) we have

NG (R g2 < Cligllan (2.42)
IN;—i (R, g) |l < Cllgll 2. (2.43)
Remark 2.2.6. More precisely, we have
IN;i (e, )22 < Clliglla s (2.44)
1N (h; gl < Cllgllz2 (2.45)
for
q > min{deg”(p), deg”(p) — deg(w) +1} and 7 < deg(w) — deg™(p)-

Proof.
In order to find possible resonances for NN;, ;,, we have to look at the zeros of
the denominator of n;, ;,, i.e. of

w(k) = jijaw(m) + jrw(k —m),

for x.(k —m) # 0, i.e. for |k —m F ko| < 4.
Due to (1.12), we can chose ¢ such small that for |k —m F ko| < ¢ the equation

w(k) = jijaw(m) + jiw(k —m) = 0, (2.46)
can have no other solutions than £ = 0 or m = 0.

We first check £ = 0 and therefore assume |k| < 0.
For |k| <9, we also have | —m F ko| < 2§ since |k —m F ko| < 9. Using Taylor in
order to expand w(k) in the point sign(k) - 07 and w(k — m) in the point —m, we
obtain
w(k) = jijaw(m) + jiw(k —m)
= w(sign(k) - 07) — jijow(m) + jrw(—m)
+ W' (sign(k) - 0) k + 51w’ (—=m) k + O(k?)

= w(sign(k) - 07) — j1(jo + 1) w(m) + (w’(O) —|—j1w’(m)) k+ O(K%).
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Thus, if
W(0%) # (G2 + 1) w(ko), (2.47)

and we choose ¢ small enough, N;
If (2.47) is hurt but

Lj» has no resonance in k = 0.

+0(0) # o (ko). (2.48)
we can choose § small enough such that
w(k) = jujaw(m) + jiw(k —m) = O(k)  for k — 0,

When (1.16) is true, we have (2.47) and thus Nj,;, has no resonance in k = 0.
When instead (1.17) is true, we always have (2.48) and p(k) = O(k) for k — 0 ,
thus N;, j, can at worst have a trivial resonance in k& = 0.

Now, we check m = 0 and assume |m| < 4.
For |m| < §, we also have |k F ko| < 26 since |k —m F ko| < §. Using Taylor in
order to expand w(m) in the point sign(m) - 07 and w(k — m) in the point k, we
get

1J2

w(k) — jijow(m) + jrw(k —m)
= w(k) — jijow(sign(m) - 07) + jrw(k)
— j1jaw (sign(m) - 01)ym — ji' (k)m + O(m?)
= —jujaw(sign(m) - 07) + (L + ji)w(k) + (= j1jow'(0) — j1w' (k))m + O(m?).
If we have
w(0F) # (j1 + 1) w(ko), (2.49)

and choose ¢ small enough, N;
If (2.49) is hurt but

Lj» has no resonance in m = 0.
+w'(0) # w'(ko), (2.50)
we can choose ¢ small enough such that
w(k) — jijaw(m) + jiw(k —m) = O(m)  for m — 0.

When (1.16) holds, we have (2.49) and thus IV}, ;, has no resonance in m = 0.
When instead (1.17) holds, we have (2.50). Due to (2.39), this means N, j, can
at worst have a trivial resonance in m = 0.

Last but not least, we have to check |k|, |m| — co.
Note that |m| — oo always implies |k| — oo, since |k —m F ko| < . Using Taylor,
we get

w(k) = jrjaw(m) + jrw(k —m)
= (1 = juj2)w(k) + 1wk —m) — jujaw’ (k) (m — k) + O(w" (k).
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Due to (1.11), we now only have to look at the following four cases.

When deg(w) > 1, we can choose § such small that there are no resonances,
especially since kg # 0.

When deg(w) = 1, we can choose ¢ such small that there are no resonances due to
(1.13).

When 0 < deg(w) < 1, we can choose ¢ such small that there are no resonances
due to (1.14).

When deg(w) < 0, we can choose 0 such small that there are no resonances due to
(1.14) and (1.15).

After we have now shown that our normal-form transform Nj ;, has no non-
trivial resonances, we can show the rest of the lemma.
The property (2.40) can be easily checked in Fourier space.

For the estimate (2.41), we have

livip(f) = jrip(edeoc iz = lip(evav ) + ip(edoef)ls2
= () | fll e

172

especially, since g (k) < O(e).

We now will show that the N, j,(h,-) are continuous linear operators.
For later purposes, we will especially focus on writing the bilinear operators N;, j, (-, -)
as a sum of products of linear operators, plus some smoothing bilinear operator.

First we look at Nj;.
For |k| — oo, we have

p(k) Xe(k —m)
w(k) —w(m) + jw(k —m)’

njj(k,k —m,m) =

We want a form for n;;(k, k —m,m), for |k| — oo, which only consists of terms
that are products of functions in one variable, plus some smoothing term. In order
to obtain this, we only have to look at

Xc(k - m)
w(k) —w(m) + jwlk —m)’

Using Taylor, we get

w(k) —w(m) =w'(m) (k. —m) +T(k,k —m,m),
where
TGk, = mm)xe(k = m) = (2 3 O(m) (k= m)! + O (@ () ) xelk —m),
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for some sufficiently large chosen p > [deg™(p)].
We then use the expansion

a - ac ac™tt
= ) 4 (=) — b 0,b#£0 2.51
e~ L g+ U (b+et0.040) (251)
in order to obtain a form for
Xe(k—m)

oTF) —w(m) T jw(h =y dor [kl = o)

which only consists of terms that are products of functions in one variable plus
some O(|m|~deg"(P)=dee”(?))_term.
We distinguish the three cases deg(w) > 1, deg(w) = 1 and deg(w) < 1.

If deg(w) > 1 (i.e. deg(w’) > 0), we have for |k| — oo:

Xc(k - m)

w(k) —w(m) + jw(k —m) (2.52)

_ Xe(k —m)
w'(m)(k—m)+T(k,k—m,m)+ jw(k —m)
( 1 _ T'(k,k—m,m)+ jw(k —m)
w'(m) (k —m) w'(m)? (k —m)?
(Tl k= m,m) +jwlk—m)”  (T(k,k—m,m)+jw(k —m))"
w'(m)? (k —m)? w'(m)t (k —m)*

£ O(|m| e (P)des™ () )Xc(k —m).

+

If deg(w) =1 (i.e. deg(w’) = 0), we have for |k| — oc:

Xc(k - m)
w(k) —w(m) + jw(k —m)
1
- <w’(m) (k—m) + jw(k —m)

(2.53)

+O(Im| ™) )xelk = m).

If deg(w) < 1 (i.e. deg(w’) < 0), we have for |k| — oc:
Xc(k —m)
w(k) —w(m) + jw(k —m)

n(w’)
W) (k= m)"
= 2 VY T =

n=0

(2.54)

+O(m| ™) ) xe(k = m).

Due to (1.9), (1.11) and (1.10), by exploiting (2.52), (2.53) and (2.54), we can
now see that the N;;(h,-) map H'(R) on L*(R) by taking advantage of Young’s
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inequality for convolutions

IV (B, 9)lz2 S NN (R, 9) e = l /R”jj('?' —m,m)h(- — m)§(m) dml|

< (’)( sup Inj;(k, k—m,m

sup P O [ =t =m) (P 1)1 3o o,

< O(IIR()xe()llzr) gl -

Now, we look at N, _;.
Using Taylor, we get for |k| — oo:

p(k) Xc(k —m)
w(k) +wlim)+ jwlk —m)

_ p(k) Xe(k —m)
C 2w(k)+T(kk—m) +jwlk —m)’

nj_;j(k,k —m,m) =

where T'(k, k — m) is now given by

T(k,k—m,m)= Xp: (=1

for some sufficiently large chosen p > [deg™(p)].

As before, we use the expansion (2.51) in order to obtain a form for n; _;(k, k—
m,m) for |k| — oo which consists of terms that are products of functions in one
variable plus terms which are harmless:

o P08) (TCk k= mm) 4 jeo(h —m))”
8w(k)?

F oo O] 0) Y (k= m).

We can now see that due to (1.9) and (1.11) the N;_;(h,-) map L*(R) on L*(R)
by exploiting Young’s inequality for convolutions..

Finally, since
N jn(—k, —(k —m),—m) = n; ;,(k,k —m,m) € R,

the Nj,j,(h,-) map real-valued functions on real-valued functions.
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Lemma 2.2.7. (cf. Lemma 3.5 in [DSW16]). Fiz p € R. Assume that k €
C(R3,C), that g € C*(R,C) has a finitely supported Fourier transform and that
fe H(R,C) for s > 0.

a) If k is Lipschitz continuous with respect to its second argument in some neigh-
borhood of p, then there exist Cy ., > 0, €90 > 0 such that

H / (K(-- = €,0) = k(-,p,0)) 5{2}(#) J?(E) v

<O, . (2.56
iy < Conaelfll (250

for all e € (0,¢).

b) If k is globally Lipschitz continuous with respect to its third argument, then
there ewist Dy, > 0, g9 > 0 such that

| [t =t —nt =t =p) g () Foar |, < Dyl

Hs
(2.57)
for all € € (0,¢9).
Proof. The Lemma is a special case of Lemma 3.5 in [DSW16]. O

Lemma 2.2.8. The normal-form transforms T, ,j.;, were constructed such that
for all ji, j2, js, ja € {£1}, we have

10715, g gsllz < O (N Ryl race 1) - (2.58)
where
iy dags = Njujo (e, 320~ Hip(9Ry,) (2.59)
+ ) ( = J1 1w Tjjagejs (Vias Yias RBjs) + Tjijajaja (1w, ¥jys Ryy)

ja==1
+ TivjagsiaWiar —iwhi,5 Ryy) + Ty jagaia (Vias Vias 3 inj3)> ,

Furthermore, for every fix functions g, h with §,?L € L'(R,C), the mapping
[ T,(g,h, f) defines a continuous linear map from L*(R, C) into L*(R,C) and
there exists a constant C = C(|[g]|1]|h|| 1) such that for all f € L*(R,C), we have

[ T5s253a (9> B )l < ClI fl 2 (2.60)

Proof. When we are in the case that 0 # +w(0") # 2w(ko) and therefore have
Ti1jaisis = 0, (2.60) is trivially true and (2.58) is true due to lemma 2.2.5 and the
fact that we have ¥~! = 1 in this case.

We now prove the case, where we do not have 0 # +w(0") # 2w(ko).
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We first show that the normal-form transform 7j, ,,;, is well-defined. Therefore,

we look at the zeros of the denominator of ¢, j, ;. j,(k), i.e. the zeros of

(w(k) = jrjaw(k — jako) + jrw(jako)) ( — jiw(k) — 2w(jako) + jsw(k — 2jsko))

for |k| < 6.

For the first factor, we have (1.12), so we know that the only possible zero of the
first factor is k = 0.

For the second factor, we get by expanding the expression w(k) in the point sign(k)-
0% and w(k — 2j4ko) in the point —2j,k¢:

— hiw(k) — 2w(jako) + jsw(k — 2j4ko)
= —jiw(sign(k) - 0%) — 2w(jsko) + Jaw(—27ako) + O(k).

When w(0) = 0, we can choose d such small that the second factor has no zeros
due to (1.6).

Otherwise, we can choose ¢ such small that the second factor has no zeros due to
(1.17).

To sum up, there can only occur a resonance in k£ = 0. Exactly as in the proof
of lemma 2.2.5 we can see that the normal-form transforms 7j ;,j,;, can have, at
worst, a trivial resonance in k£ = 0.

We now obtain (2.60) by using Young’s inequality for convolutions and the fact
that ||}, j,.js. |l can be uniformly bounded

J17293Ja\9> Tt Ll53 J | L2 > ||Vg1,52,53,5a [| Lo gl LU|[1Y3(|L2 > ja || L2+
17 (9,1, Rjy)ll2 < |t [z lGl | Al o[ Rjsl 2 < Cl[ Ryl

We will now show (2.58).
As a first step, we will prove

Hﬁ_l (lejz (e 29 ip(WIR,)) — Y PosNyyja (., 20 Vip(th5,9R;, ))) ‘

Ja==£1

L2

(2.61)
= O( Hst ||Hdeg*(p)+1)-

By exploiting the fact that 97" = Pys0™! + P, ¥ = ¥ + g and . =
¢1 + 77Z)—1 y WE get

19_1Nj1j2 (@Z)Ca j219_1 ip(¢ﬁRj3))
- > (P 0,60 Ny gy (U5, 129~ Vip(3,0R;,) )

Jja==%1
+ P0,61971Nj1j2 (¢j47.j27971 Z'p(wszﬂgRJé)))
+ P50 Ny jy (e, J20 ™ ip(1hQUR;,) ) + PsooNjyjy (Yes J20 ™~ ip(YIR;,)) -
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Using (2.32), (2.42) and (2.43), and (2.38), we see that the L?*-norm of the last
two summands can be estimated against O(|| Ry, || grace* (o+1))-
For the remaining summands, we have in Fourier space

‘F[Po,éﬁileljz (%'47]'21971 Z'P(Wﬁst))} (k)
= Pus(h) [ [ Kelhok = mm )5, (= m)im — m) ) dd
R JR
where

K.k, k —m,m,n) = js = iplk) plm) D) .
( )= 50 () — ) + il — )

Please note that we could replace the term . oo (m)9~'(m) by 1, since |k| < § and
|k —m — jako| < 6 implies |m| > ky/2 > ¢.

For ¢ = —j4, we can apply Fubini’s theorem, Young’s inequality for convolu-
tions and Lemma 2.2.7 to obtain

| F[Po.s9 " Njyjo (s, 520V ip(_j, 0 R;,) ]|l 2

|

Pus) [ [ Ko dibo = ik 5 = ), m = m) B o) |

L2
+ O([| Rl z2)

We could especially apply Lemma 2.2.7 since the Lipschitz continuity of the func-
tion K in some neighborhood of +ky with respect to its second argument, respec-
tively its third argument, was sufficient due to the finite support of the integrand.
Moreover, the fact that K. may has a jump discontinuity in k¥ = 0 does not pose a
problem since we could split poﬁ(k) accordingly into two characteristic functions.
Now, since

‘ . . ip(k) p(k = jako) D (k)
Ka(ka j4k07 k— .74k07 k) = J2 ’19(]{) (a)(]{}) _ jleW(k _ j4]€0) N jlw(j4]€0))
ip(k) p(k — jako)
w(k) = jrjaw(k — juko) + j1w(jako)) ’

:jz(

the term K_(k, jko, k — jko, k) contains no factors which could be of order O(s7')
such that
Pos(k) Ko (k, jako, k — jako, k) = O(1).

Hence, by using (2.11) and Young’s inequality for convolutions, we obtain

1Y Postd ™ Ny (W0, 320 ip( 5,9 Ry, )| 2 = O Ryl 2)

Ja==%1
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and thus have verified (2.61).
Due to (2.61), we now have
H19_1Y317j2,j3HL2 < ||19_1}>}1J2,j3 HL2 + O( ||Rj3 ||Hdeg*(ﬂ>+1) )

where

Jl J2:93 Z <P0 519 ]1]2 (wjzm j219_1 Z.p(wjﬂ?Rj?,))

Ja==%1
- i“)ﬁ_l?;ljzjsjz; (ij wjau st) + 0! J1j2j3ja (_iwwj47 ij st)
+ ﬁ_lﬁljzj?)jzx (%4, _iwwjzu Rj3) + 79_17;1j2j3j4 (%'47 %'47 j3 iWRj3)> .

In Fourier space, we have

-~

D E)Y jygags ()

Z Pys(k //K (k,k —m,m n)wj4(k m)¢ (m n)é\( ) dndm

Jja==1
+ Z Py s(k //K (k,k —m,m — )@Z) (k — m)@g (m—n)}/%;(n)dndm,
Ja==1
where

K.(k,k —m,m —n,n)
- 1( ) J1,J2,33 J4(k) ( - jl Zw(k) - iw(k - m) - iw(m - n) + j3 Zw(n))

and K. is as above.
We can exploit Lemma 2.2.7 together with Fubini’s theorem and Young’s inequality
for convolutions in order to obtain

~

9\ (k

.71 »J2 .73

= Z / / Pos(k) Ko (k, jako, k— juko, k—2jsko) 0, (k — m) i, (m—n) Ry, (n) dndm

Ja==%1

+ Z / / P s(k) K.k, jako, jako, k—2jako) s, (k — m)w, (m—n) Ry, (n) dndm
Ja==£1
+ O([| Rl 2) -
Here, we again only needed the Lipschitz continuity of the function K, with respect

to the respective arguments on some bounded sets, for the application of Lemma
2.2.7 due to the finite support of %4 and the presence of Po 5
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Since tAijmsm(k:) was constructed such that
p0,5<k)K8(k7j4k07j4k07 k— 2.]4]‘/;0) = - p0,5(k)KE<k7j4k07 k— j4k07 k— 2]4k0) )

the two integral kernels, which could be both of order O(s7!), cancel each other
out such that we get

||19_1}7j1,j271'3||L2 - O(HR]sHLz) .

[
Lemma 2.2.9. For all m > deg*(p) + 1, we have
O Ey <*O(e? G + G + 1), (2.62)

where Gy, := || R_1||}m + || B1||%m and Eq is as in (2.36).

Proof. Exploiting the skew symmetry of iw, Cauchy-Schwarz and the esti-
mates (2.42), (2.43) and (2.60), we obtain

OBy = Z /R OR; + R; 0,R; du

Jj==1
=y /R OR; + R; 0,R; — R, jiwR; — R; jiwR; du
j==1
<23 Byl 2l R — jiwR; |12
j==+1
< O \ gl) Z HatRJ —jiWRj‘|L2,
j==%1
where
OR; =0Rj+e Y V0N, (e, Ryy) +€> Y 07 0 Tisnguis (U0, Vi, Ry
Ja€{x1} J2,73,7a€{£1}
Due to

jiwRj = jiwRj—e Y jiwd Ny, (e, Rj,)
joe{£1}

—¢? Z J Z‘Wﬁilﬁljzjw@ (wjzu ¢j4> st) )

J2,j3.Ja€{£1}
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we get

(9tf%j :] inj
+e0 (Y Jip(wiRy,)
J2€{£1}
+ Y ( — J iwNjjy (Yo, Rjy) + Nijy (Orthe; Rjy) + Nijjo (Y, 2 inj2)>>
Ja€{x1}

+€219_1( Z ij2(¢caj2 iﬂﬁ_l(?ﬂ 19333))

J2,js€{£1}

+ Z < —J iw,ﬁjzjsﬂ (wjzu "%'47 st) + 7;j2j3j4 (aﬂ/}ju w]'zm st)

J2,j3.Ja€{£1}

+ Thjagsis (Vs> Oiar Ris) + Tijagais(Wiar Via» J3 inj3)>>

B
+ % Jipd {(OR_y + ORy)* + & P9 'Res,, (V)

B
te > 0N, (¢ % Joip0 (R4 + 9Ry)? + £ %0 'Res,, (V)

Je€{%1}

+2 Y I T (%‘4, Vje, g3 ip0 (Ry (WR_; + 1931))>

J2,j3,Ja€{£1}

+ 62 Z 19_17;]'2%]'4 (¢j4a wjzp E_ﬁﬁ_lResujg (6\11))

J2,j3,Ja€{£1}

By construction of our normal-form transforms, i.e. due to (2.40) and (2.41), and,
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(2.58) and (2.59), we obtain
@tRj :j inj

+ 57.971 Z ijz (&ﬂﬂc + ’iwwc, R]z)

Je€{£1}

+6219_1( > Tijagin(0bj, + iwihs, ¥y, Ry,)
J2,93,Ja€{£1}

+ Z 73j2j3j4 ("/’jm 8t¢j4 + iy, Rj3))

Jj2,93,ja€{£1}
b
+ 5 j ipﬁ_l(ﬁR_l + 19R1)2 + E_ﬂﬁ_lResuj (W)

B
_ T 4 _Bq—
+e § Y 1ij2(¢c,5g2zpz9 YOR_ +9R,)? + e P9 Res,, (V)
jo€{x1}

+e? Z 19717}]5]‘3]’4 <wj47 1/@‘47.73 Z-Pﬁil (Rw (19R,1 + 19R1)>>
j2,73,ja€{+1}

+ &2 Z 19_17}j2j3j4 (¢j47 Vi E_Bﬁ_lReS“jB (6\11))

J2.J3,ja€{£1}

+ O/ Gom.

Due to the bound (2.12) for 9141 + w41, we obtain that the L?-Norms of the
second, third and forth term are O(¢?)y/G; by using the estimates (2.32), and
(2.42), (2.43) and (2.60).
Due to our choice of § =5/2 and W, i.e. due to (2.38), and, (2.32) and (2.9), the
L2-Norm of the fifth and sixth term are bounded by O(e?)(e'/? G, + 1).
Now, we also see, by using the estimates (2.32), (2.42), (2.43) and (2.60) that the
L2-Norms of the last three terms are bounded by O(?)(e'/2G,, + 1).

We now obtain

0Ey < O(VG1) Y 10 R; — jiwR]| 2

j=+1
<e20EV2G 4+ G+ VG +1)

<20(EV?GEP 4G, +1).
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2.2.2 Preserving regularity via a modified energy method
In the last subsection, we successfully obtained
Oi(||R-al22 + | Balf22) <2 O(EV2 G + G+ 1),

where G, := || R_1]|%m + || B1||}m and m > deg*(p) + 1.
That means, when we assume

IR Al[7m + [ Ra|f3m = O(1)
we have

O (1R l172 + | Rull72) < &2 O(IR-llfm + | Rallzm + 1)

If we could also obtain the estimates

Oc(IIR-13s + [1Rall3rs) < €® OUIR-1 s + [ Rallfys +1) (2.63)

and

[passt

fe IR < e (IRl + 1RullFe) < C (IRl + (IR

i) (2.64)
for some ¢, C' > 0, an application of Gronwall’s inequality would yield

sup [[R_1(t)]

te[0,To /2]

e+ ROl < €.

However, we have the following issues.

e The energies (|R_1|%. + || Ril%:) and (| R-1]|%- + | R1]|3.) are in general
not equivalent, i.e. (2.64) is in general not true. This is since the normal
form transformations Nj;, ;, can lose regularity. To be more precise, we can
in general not obtain the estimate

(|1 R=1] 7s) < C (IR

i+ 1R he + [[Ri

i)
HS

since

125 2+ O(|R|%e + | Ry

i)

%IS = ¢’ H Z ﬁ_leJé(@bc’ Rj2)|

jee{*1}
and || Nj; (1., R;)|| s can only be estimated against the H*-norm of R; when
' > s+ 1+deg”(p) — deg(w).

e As we have already seen in the proof of (2.62), we can in general not obtain
(2.63). This is since

8t]?j = qu)R] + 62 hj (R_l, Rl) s
where the mapping h; only maps H**"(R) x H**"(R) onto H*(R) when
r > 2deg”(p) — max{0, deg(w) — 1}.
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We will now explain the key idea for addressing these issues.
Looking at

IR =[R2 3 07 N B 22 30 0 T (0, s Ra)

jac{£1} J2:d3,ja€{£1}

2

12’

we see that the most problematic term for our estimates is

> VTN (v By)||

J2e{£1}

2

It is the reason, we can in general not obtain (2.64) and on top of that produces the
terms with the most derivatives falling on R_; or Ry in the evolution of ||R;|3..
However, when we look at

10:R; |72
2
JJz (@ch’ Rjz) + 52 Z 8x19_17;j2j3j4 (¢j4’ ¢j47 st) 12

J2€{i1} J2,j3,ja€{£1}

for £ > 1, we formally have

ol = OLRAl +2e 30 [ OLROL N (v R dn + O(E)

jo€{£1}

due to (2.37).

The temporal derivative of the terms of the order O(g?) will also be of the order
O(e?), such that they can only influence terms of the order O(¢?) in the evolution
of |0, R;||%.. That means that these terms of the formal order O(£?), which include
the problematic term

> 0 Ny (Ye Ry,) ||

J2e{£1}

are not required to obtain a O(e7?)-timescale and therefore redundant.
For this very reason, instead of working with the energy (||R_1||%. + [[R1[|%.), we
use the modified energy:

Definition 2.2.10.

Er=Ey+ E, , (265)
EZ Z ( ”aeRJl ||L2 +e Z /aéleaﬁ ]1]2(w07 ) )
Jj1e{=£1} Ja€{£1}

where £ > 1, and Ey, Ny j, and 9" are exactly as in the last subsection.

Le. Ey is as in (2.36), Nj,j, is as in (2.31) and 9! is the inverse of the operator
Y defined by (2.30).
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We can now show that this modified energy is equivalent to the energy
IRt [3e + 1Rl

and its evolution only contains O(g?)-terms. In other words, we solve the first
issue while preserving the O(e~?)-timescale.

We also address the second issue since the terms, which can potentially have the
most derivatives in the evolution of (||R_1||%. + ||Ri]/%:), do no longer occur in
the evolution of £. However the second issue is not completely solved by using
the above energy, such that we will have to further modify this energy in the next
subsection.

We will now prove the statements we made so far.

We need the following lemma, which can be understood as some generalization
of integration by parts.

Lemma 2.2.11. Let f,g,h € L*(R,R) be real-valued functions and K : R — C.
If

// | K (k k — m,m) F(k) Rk — m)| dm dk < oo,
R JR
then we have

/R é Kk, & — m,m) FO0) Bk — m) §(m) dm dk (2.66)
:/R/RK(—m,k—m,—k) 500 Bk — m) F(m) dm dk.

Proof. The result is obtained by first exploiting the fact that f( k) = f(—k),
g(k) = g(—k) then making a change of variables and using Fubini’s theorem

[ [ k= ) Tk e = ) om) i

//Kk:k: m,m) f(—k)h(k —m)g(—m) dm dk

Remark 2.2.12. By introducing the notation

N; o (h, £)(k) == /anm( m, k —m, —k)h(k — m) f(m) dm (2.67)
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we now have

/ij (h,g fda:—/ Gy f)gdx (2.68)

for h, f,g € HY(R,R).

Lemma 2.2.13. We have

/j S, £ dz < OBl 111 (2.69)

where he(k) == xe(k)h(k).

Proof. Exploiting lemma 2.2.11, i.e. using (2.67) and (2.68), we have
[ £8sn e =5 [ £ (V0 1)+ N0, 1) do

Due to the skew-symmetry of p and w, we have for |k| — oo:

p(k) — p(m)
w(k) —w(m)+jw(k —m

nj;i(k, k —m,m) 4+ n;;(—m,k —m,—k) = )Xc(k—m).

After using Taylor to expand p(k) in the point m and exploiting (2.52), (2.53) and
(2.54), we get

njj(k,k —m,m) +n;;(—m,k —m,—k)

 pm)(k —m) + O(p"(m)
= o) — o) Tk —m) Xe(k —m) for |k| — oo

= O(xc(k —m)) for |k| = o0,

due to (1.11), (1.10) and most importantly (1.9).
We can now get the estimate (2.69) by using Cauchy-Schwarz together with the

Plancherel theorem and Young’s inequality.
m

Lemma 2.2.14. There are constants Cy, Cy such that the following estimates hold

VEy < Co (|Rillmn + [[R-illan), (2.70)
IRy |lz2 + |R=1]lz2 < Co/Eo+ e O(|R_y|| 12 + || Rul|22)- (2.71)
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Proof. Estimate (2.70) is a direct consequence of the triangle inequality and
the estimates (2.32), (2.42), (2.43) and (2.60).
Let the operator P,;, be defined for all f € L*(R) by

0 else.

_ {f(k) when a < |k| <b

In order to prove (2.71), we define

R;) = Po,(st, R;) = Po,(st, Rl = P(;VOOR]‘, le = P&ooRj

J

and split R; = RY + R} and R; = RY + R}, here R; is as in (2.36).
We first look at RY.
Since |k —m £ ko| < § and |k| < § implies

|m + k0| < 257
we have

Py s Nyj, (e, Rjy) = Po s Nyjy (Ye, Po QkoRjg)

due to the nature of the compact support from @C.
Exploiting this fact and using the triangle inequality, (2.32), (2.42), (2.43), and
(2.60), we obtain

1512

- ||RO - Z PO 579 JJ2 ?/Ja Rjz) —¢’ Z Po’éﬁilﬁjﬂsﬂ (wcv wa RJS)“LQ
joe{£1} J2,Js.jac{£1}

< [1Rfllze + O) (IR |22 + 1Rillz2) + O(e) (I1R-1llz2 + | Rullz2).-

Now, we look at R;.
Due to the definitions of 7j;,;,;, and ¥, we see

Rl — £ Z P5oo ]]2 ¢c; ) - 52 Z P5,OOQ9_17;j2j3j4 (¢c7 ¢c> Rjg)

Joe{£1} J2,J3,jac{£1}

V;—g Z P5700ij2(¢07Rj2)'

joe{£1}

Multiplying the equation with le and then integrating over R in z, we get

I1R;|7: = /R Ride+e ) /R PsooNjjy (e, Ryy) da

jo€{£1}

63



For j, = —j, we have
e / Ryt Pao Ny (6o, Ryy) die = £ O(| R |2 | R 1 2)

by using Cauchy-Schwarz and (2.43).
For j5 = 7, we have

S/lepé,oonj(@Dc,Rjz)dx25/Rj1ij(¢c,Rj)dl“
R R

—¢ / Ry N,y (e, RY) di + £ O(| R 02| R 1)

due to the definition of P,;, R;' and RY, the bilinearity of Nj; and estimate (2.42).
With estimate (2.69), we then get

€ARj1P6,mij(¢c,Rj2)dx = O(||B;j || 2| Byl 12) -
Now, we have
1R 172 = /Rle Rjdx + || R (|12 O(||R-1|z2 + || Rallz2)

such that, with the help of Cauchy-Schwarz, we can obtain
IR 22 < [ Rjllee + e O(| Rl 2 + || Rull 2).

Combining the two inequalities for || R,%||z2 and || R;'||z2 finally proves the estimate
(2.71). O

Lemma 2.2.15. (seelemma4.4. in [DH18|.) Let f € HY(R,R) and g € H™™ (R, R)
with £,m > 0. Then we have

/ oL f o™iy d = / oLf orgde + O f12llgl2) (2.72)
R R

/ oLf o9ty do = / oL forigde + O(flsllgli).  (2.73)
R R

Proof. Using the definition of ¥ and integration by parts, we get

/Oefamﬁgdz—/aefamgdm—l— /f(?“mPO(;(ﬁ—l)gdx

/36 fomtty- gdz—/@e fortlgdr + (— /f@”m“P s = 1gde,

which yields (2.72) and, due to (2.37), also (2.73). O
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Corollary 2.2.16. Let ¢ < gy and ¢g be sufficiently small. For { > 1, the energy

& is equivalent to (||R_y||ge + ]|R1HH@)2, i.e. there are constants Cy,Cy > 0 such
that

(1Bl + [ Rllae)” < Ci& < Co(IRalle+ [ Rallae)”

Proof. We examine FE,.
Thanks to (2.73), and, (2.42) and (2.43), we have

= Y (Glmlve 30 [ ot oo ) )
ne{£1} jee{£1}
- Z ( Hae g HL2+€ Z /aé g1 8£N]1J2 1/10,Rj2)dx>
ne{£1} jee{£1}

+eO((IR-Allm + 1 Billin)?)
such that we only have to look at the regularity of the terms
/ OLR; 00Ny, (Yo, Rj,) da
For (j1,72) = (j, —J), we can see by using Cauchy-Schwarz and (2.43) that
[ 0L 0N, (0 R e = OUR e 1)

For (j1,72) = (j, j) however, we can have an additional derivative falling on 9%R;
due to (1.9). By using Leibniz’s rule, Cauchy-Schwarz and (2.42), we see

[ LR 0Ny Ry o = [ LR Ny (0, 0Ly o+ O )
Thanks to (2.69), we get
[ 0RO R do = OB ).
We now obtained

1
= 510z R 7 + 102 Ral72) + 2 O((1B [l + |1 Rille)).

and the statement follows with lemma 2.2.14.
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Lemma 2.2.17. For { > 1, we have

OE =" Vi+ 2 0(& +1), (2.74)
where
V= J1 / L R;, ipdi9 (RoVYR;,) dx (2.75)
Ji J2€{ﬂ:1}
= X ([0 (ReORy) 00 Ny (s Ry o
Ji.je,jse{£1}
+ J2 / aszl aﬁ 3112 (2/}07 lp19 (RTPQ?RJ'B)) dl’) ’
and

1
Rg = g + 555—2(193_1 +9IR,). (2.76)

Remark 2.2.18. Due to (2.73) and (2.38) the term &*V, indeed has the desired
e2-order.

Proof. We have

OE, = / 'R, 0,0°R;, dx

JIE{il}

Z / @tagle 8£ Jl]2 (¢cy )

Ju.ja€{£1}
+ / 0Ly, 00 0Ny (s Ry ).
R

Using the error equations (2.19) and exploiting

Rw = ’QZ)C + €RQ,
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we get

O E, = Z jl/ﬁeRﬁ zw(?Ele dx

Je{£1}

Z / 6£R]1 Zpag (Wmm)

J1.ge€{%1}

+J / ZwaﬁRh aﬁ Njyj, (Yo, Rjy) d
+ 72 / agle 8£ Njyj (e, ZWRJQ) dx
/GZRJl OLITIN; i, (e, Rj,) da

/ 8£RJ1 8ﬁ Ny j (Oithe + iwihe, ]2) dx)

2y / O'R;, ipd' 0~ (RoVR),) da

Ji.j2€{£1}

4+ g2 Z / ip0id (RyIR;,) 050 Ny gy, (e, Rjy) da

J1,J2,j3€{£1}

s [ OB, 907 Ny (v iod (RuOR,,)) o )
R

+ ) / OLR;, =P0L9 Res,,, (c¥) dx

RISESY;

+e Z (Aa_ﬂﬁﬁﬁ_lf{esuh(elll) OIIN i, (e, Ryy) di

J1.j2€{£1}
+ /R@gle af Nj i, (1/16, Bﬁ’IResujZ(a\Il)) dx)
where

1
RQ = ¢Q + 56672(79R_1 + 19R1)
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Exploiting the skew symmetry of iw in the third integral and then using (2.40)
and the definition (2.75), we get

OB, =¢ Z /aﬂ R, ipdt9 7 (Ye(V — Vo) Ry, ) dov

J1.j2€{£1}
+/(96R]1 8£ j1]2(8t1/}0+2w¢cﬂ ) )
R
+ 2V,
+ / OLRj, e P00 Resy, (e V) dx
J1e{£1}
e Y ([ o e, () 00 Ny (0, i) o
Ji.j2€{£1}

+ / QR 0597 Ny, (Yer e 519_1Resu‘7.2(5111)) d:zc) :
R

We now show that all terms except the term &2V, can be estimated against
e2O(& + 1). Thereby we will especially take advantage of corollary 2.2.16 and
(2.11).

For the first integral, we can use (2.73), Cauchy-Schwarz and the fact that

(mk)—ém(k:)):{o H(1=2)5 when 07 £w(0%) # 2u(ko) and K] <<,

else ,

in order to get

£ / R, ipdt9 " (e(V — Ve o) Ryy) d
R

< e O(|| Ry, [lue lip(e(V) = Veo0) Rjy )l 12¢)
< e O(I1Rj llre l1bell gevaes o (0 = Ve o) R | preaest )
S 82 O(gg)

The second integral in the above evolution equality is £ O(&) due to the
estimate (2.12). In order to see this we first use (2.73), then we proceed as in the
proof of (2.2.16) in order to estimate without losing regularity.

The last three integrals are €2 O(&, + 1) due to (2.9). To see this, we use first
(2.73), then integration by parts to shift some derivatives away from Ry, and
finally Cauchy-Schwarz together with (2.42) and (2.43). Here, we also exploit the
estimate y/z < |z| 4+ 1 after using corollary 2.2.16.

[
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2.2.3 Closing the error estimates via energy transformations
If, for some energy £ and ¢,C > 0, we could obtain the estimates
IR+ B < € < C (1Rl + | Brl%) (2.77)
and
01 < 2 O(|Roally + | Bully +1). (2.78)
an application of Gronwall’s inequality would yield that there is a C' > 0 such that

sup  [[R_1(0)]| s + [ R ()]s < C.
t€[0,To/e2]

In the last subsection, we successfully obtained (2.77) for the energy £ = &,.
Moreover, we could show that the evolution of the energy &, is of quadratic e-
order.

However, we still do in general not have (2.78) for the energy £ = &,. Instead, we
only can get

0:& = 52VK+ g2 O(gg—l— 1),

where €2V, contains integrals like
g2 / O R;, ipd 9 (RoUR;,) dv = £ / O R;, ipdt(RoUR,,) dx +eO(& +1).
R R

For deg”(p) > 0, these integrals cannot be estimated against O(||R_1]|%,,+|| R1 |3+
1) since there are to many derivatives falling on R_; or R;.
We will solve this problem by showing that there is an expression D with

e'D = e O(|R1llfge + 1Rl 7e)

such that

eV —e* 0D =" O(|R-1lle + | Rullze + 1),
ie.

0E¢ — 20D = e O (| Ry |3y + | Rull%e + 1) -
Then, by defining the final energy by

E =& — ™D,
we obtain (2.77) and (2.78) for £ = & and can finally prove theorem 1.1.1.
Looking closely at the term

Z J / aﬁle Zpaf:(RQﬁRJQ)dCB
Ji,j2€{£1} R

of V,, one can see that it basically can be reduced to a sum consisting of three type
of integrals, which have the following form.
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a) The form

/R YOLR; OLR_; f d (2.79)
where v is a symmetric or skew symmetric pseudo-differential operator with
deg”(7y) < deg*(p). (2.80)
b) The form
/Rwangj I'R; f dx, (2.81)
where 70 is a skew symmetric pseudo-differential operator with
deg™(0) < deg™(p) . (2.82)
c) The form
/ VI R; O R; 0, f dx, (2.83)
R

where v is a symmetric pseudo-differential operator with

deg*(v) < deg*(p) — 1. (2.84)

Here f is always a function whose relevant norms can be controlled well enough.

This partition is also possible for V,, in particular since we can replace the
bilinear operators Nj; j, by a sums consisting of products of linear operators due
to (2.52), (2.53), (2.54) and (2.55). The fact that (2.80), (2.82) and (2.84) can
also be obtained for V; is more difficult to be seen directly and is related to some
good cancellations happening. The happening of such cancellations however can
already be expected as a consequence of lemma 2.2.16.

The idea now is to find an energy transformation, which exploits the linear
part of our system to eliminate these three type of problematic integrals that were
produced by the nonlinearity.

So, the core idea is similar to the one that was behind the normal form trans-
formations. However, while the goal of the normal form transformations was to
obtain the right e-order for our estimates in order to achieve a O(s7?) timescale,
the goal of the energy transformation is to obtain the right Sobolev norms for our
estimates, such that they can be closed and Gronwall can be even applied in the
first place.

Our four key observations for finding the energy transformation

Sg — 5@ —82D

are the following ones.
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a) Exploiting
@Rj = j/L(A)RJ + Hj s

where H; is defined according to (2.19), and taking advantage of the skew
symmetry of iw, we have

1
—j828t/,laﬁRj aﬁR,deQZ
2 R W
1 1
= 2 ¢? /fyaﬁRj O'R_j fdu — = 2 / LR iwd R, fdx +J
2 R 2 R W

1
:/yaﬁRj O'R_j fdv + —82/ liw, f] L0 R; LR da + T,
R 2 Jr w

where the terms coming from H; and 0, f were collected in the expression J.
Based on this observation, we will show for (2.79) :

1
/yaﬁRj O'R_; fdv==~j at/laﬁRj O'R_; fdx (2.85)
R 2 R W

+JL+€JE+O(53+1),

where J, consists of integrals of the form (2.79) that contain less derivatives
falling on R_; or Ry than the original one and Jg consists of integrals of the
form (2.79), (2.81), (2.83) that contain not more derivatives falling on R_;
or Ry than the original one.

b) Looking at (2.81), we observe
1 1
/ ic0 R; 0LR; f dv = / ic0 R; O'R; fdx — = / O R;io(OLR; f) dx
R 2 R 2 R
ie.
1
/ 100 R; OLR; f dx = -3 / lio, f]OSR; OLR; dx . (2.86)
R R

We will show that the right hand side integral can be expressed as a sum of
some O(& + 1)-terms and integrals of the form (2.79), (2.81), (2.83), which
contain at least a whole derivative less falling on R_; or R; than the original
integral.

c) Exploiting

ﬁtRj = ijR] + Hj ,
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where H; is defined according to (2.19), and taking advantage of the skew
symmetry of 1w, we get

je2d, / %aﬁRj O'R; [ dx
R

= ¢2 / ﬁzwaﬁz{j OLR; fdx + &> %aﬁz-zj iwd'R; fdr+ J
R

R
_ e / T, ] ZOLR, Ry do + 7
R w

where all the terms coming from H; and 0, f were collected in the expression
J.

Based on this observation, we will show

/ v R; OR; 0, f du = —j 0, %aﬁRj O'R; f dx (2.87)
R R
+JL+EJE+O((€@—|—1),

where Jg, consists of integrals of the form (2.79) that contain less derivatives
falling on R_; or R; than the original one and Jg consists of integrals of the
form (2.79), (2.81), (2.83) that contain not more derivatives falling on R_;
or R; than the original one.

d) Looking back at our original system (1.2), we have dyu = —iwv. This means
that for the diagonalized system, we have Op(u_; +u1) = —iw(u_; —u;) and
can therefore easily obtain from (2.19) that

Oy(Ri + R_y) = iw(Ry — R_y) + e P97 (Resy, (e¥) + Res,_, (e¥)) . (2.88)

Thus, we have for skew symmetric operators io with deg*(¢) < deg(w) that

/ZO’&ﬁ(R1 — R_l) 85(}21 + R_l) fd[L'
R
= 1075/ g@ﬁ(Rl + R_l) 8£(R1 + R_1) fdJ?
2 R W

1
5 / [guﬂiwai(Rl — R0 (R +R_)) dx
R

1
-3 / gaﬁ(Rl +R.)OE(R + RO fdr+O(E +1).
R

The first term on the above right hand side is a time derivative of an integral
that can be estimated against O(&,) and the last two integrals contain less
derivatives falling on R_; or R; than the one on the left hand side.
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Due to (1.9), we can use these results to recursively construct the expression D.
When deg*(p) < 1 or deg™(p) < deg(w), we obtain D after a finite number of steps.
When deg*(p) > 1 and at the same time deg*(p) = deg(w), we obtain D as the
sum of an absolutely convergent series.

In order to show that we can indeed find D, we prove that every time we proceed
as in a), b) or ¢):

[R1] the number of additional derivatives falling on R_; or 9°R; does not in-

crease,

[R2] we do not generate new problematic terms for which a), b) or ¢) cannot be
applied,

[R3] the number of the emerging integrals only depends on deg*(p) and deg(w),

[R4] the emerging integrals eJg get much smaller in size.

Finally, we then preform the energy transformation
gg%ggzgg—&‘Q'D
such that (2.77) and (2.78) are true for £ = & and we can prove theorem 1.1.1.

Remark 2.2.19. When the functions w or w" have zeros, operators like 2 and 2
could be not well-defined, however we will show that we can assume without a loss
of generality that the function 7y is equal to zero on some set that includes all zeros
of w and W'.

Naturally, integrals of the form (2.83) are harmless for deg*(p) < 1. In this
case one can quickly construct an energy transformation by only relying on d) and
b). This also makes the energy transformations in [D17, CW17] much simpler in
comparison to here, where deg”(p) is allowed to be arbitrarily large.

In order to apply our framework to more general quasilinear dispersive sys-
tems, it should be sufficient that either O,(Ry + R_1) or 0y(Ry — R_1) have only a
nonlinearity that loses at most deg(w’) derivatives, (2.88) is not needed.

We will now prove our claims, what will turn out to be a rather technical
procedure.

In order to handle the commutators, we saw above, we use the following lemma.

Lemma 2.2.20. Let n € N, and v be a function of C"™(R) with deg*(y) € R for
which

deg* (7)) < deg*(v"Y) — 1 forall 1<1<n+1. (2.89)

Moreover let the operators v and i'v® be given by their symbols in Fourier space.
Then we have for f,g € CX(R):

no
voglf =Y () l,l) 9,9i'y" f +R(f, 9)- (2.90)
=1 )
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For the rest-term R(f,g), given through

R/Uca\g) = /R (ﬂ#)nﬂ /01’7(n+1) (m+ (- —m)z) (1 -2z da:) G(- —m) f(m)dm,

we have the estimates

IR(f,9)l12 = O) 19 gllzosall f 1 o, (2.91)
IR(f, 9z = O N0 gl x| f | 22v, (2.92)

for q > % and
p := max{deg*(y) —n — 1, 0}.

Remark 2.2.21. One can think of this lemma as some sort of generalization of
Leibniz’s rule. To give an example, let v = 02.
Then we have v(k) = —k%, v'(k) = =2k, v"(k) = —2 and v (k) = 0. Thus,

2

_1 l 1 » 1 ;
-1
= 20,90, f +029f .
Proof. We have
[%g]f v(9f) - 97f = / m))g(- — m) f(m) dm

Using Taylor, we get

100) = 2m) = 3 E 50 ) 4 (0, &~ m,m)

n

_ Z M(_i)w(l)(m) +r(k,k —m,m),

where
o n+1 1
r(k,k—m,m) = % / ) (m+ (b —m)x) (1 — ) da
- 0
(k — m)™+! (i)
= T xrél[%?li} Y (m + (k’ — m)x)

= O(U{Z — m|"+1)(1 + (1 -+ ‘]{; — m|)deg*('y)—n—1+ (1 + |m|)deg*('y)fn71).

For the last step, note that deg”(y) € R yields

(k)
*(z < O)
i‘;g 14 (1 + |k|)des™() —
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for some C' > 0, which implies

A(m + (k —m)x)
max — < (.
2€0,1] 1 + (1 + |m + (k — m)x|)des" ()

For deg” (%)

) <0, 7 is obviously bounded.
For deg” (%)

<
> (0, we can use the triangle inequality to get
maxXyeo1] y(m + (k —m)z)
1+ (1+|m|+ |k —m|)des"() —

Y

what implies

max Fm A+ (k —m)x) < C (1+ (14 2m|)%* D + (1 + 2|k — m|)3s" D),

since we have |m| < |k —m]| or |m| > |k — m]|.
We now get

~

IR 9) ez = | | o= m.m) 0 = m) Flm)

< H/Rw,kz—m7m>§<k—m>ﬂm>|dm\

<O | [/ 100+ 1= mf) 55 7Tg(k = m) (1 + 2 Fom)| i

L2
HL2 ’
where
p := max{deg*(y) —n — 1, 0}.
When we use Young’s inequality, we get

IR(F, )2 < O |95l roy | f -

When we exploit Plancherel together with Sobolev’s embedding theorem, we obtain

IR(,)li2 < OW) || FH 10+ 1 B89 ()] F I+ 1 By Tl

L2

<o |F fla+1-PrEagol | _||F e+ - pre Fon|

L2

< OM) 10 gl gwsall fll v

]

The next lemma will help us to address the points [R2] and [R4|. In the context
of the introduction to this subsection, the mappings of this lemma map the f from
the original problematic integral onto the f of an emerging integral from eJg.
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Lemma 2.2.22. Let n € N and m € Ny with m <n.
Let Dy be the set of functions defined by

Dy =A{f € H'R) : [0, flloo + 10:f | + 10:0; " fllem < o0}
For ¢ € H"™Y(R) with ||0spl|cm, ||0sp||grm+1 € R, the mappings
M; cf=pf (2.93)
and
2. -1

Mg f e 0:(p 0, f) (2.94)

map D) into D).
Moreover, if for some c, € R, we have

1/2

1@l 10epllmss < €7 Fcpand— lpllen, |Oipllom < cpr (2:95)

then there is a constant C = C(c,) > 0 such that the following a priori estimates
are true:

HM;fHH" + H@M;fHHm
< C (Ilfllzn + 10 l1rm)
107" M flloo + 110:07* M fll o
<e 2O (Ifllze + 10:fllz2) + C (I fllom=1 + 10 fllom-1),
and
M2 f Nl sin + 1|0 MEf || e
< C ([l + 18 f ) + 2 C (105 Fllom + 11805 Fllom).
107 M flloo + 10:07* M f] o
< C (187" fllem + 110:05 fllom)-
Remark 2.2.23. In this context, we choose to define the operator 9, by
O f = . fdx+c(t), c(t):=0.

Proof. For map (2.93), we have
1Ml = Il < O(llellon) 1o

and

oz Ml = 10 (Dl = | | : of daf

< H/_:!cpfldxHOOS/R\wf!dw

< llpllzz 1 £ 22
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Furthermore, we have

10 M fllem = 110 M am < 10w f lerm + 11084 f | rm
< |[0wplleml fllam + [lellcm |10 f | mm,

and

—1 1 -1 (.)
1010 M2 flloo = 110500 f) ]l = | / di(pf)dxl| < / 0:(pf)| da

< [19llzzlf 2 + ol 2 10 f (] 22,

while for [ =1, ..., m:

10,7 0 M flloe = 110" 0e(0 )lloe = 110" (Do f) + 07 (90:f)
< O(l|0iellcm-2) [ fllem—r + O(llpllem-)l10ef | gm-1.

For map (2.94), we have

n+l 1
1022l = 0.0, )l < O TS ( >Hai’“<p8’£1fHL2

=1 k=0
n+1

<o(1 Z(Zual Y00 e + 0k 0 2 )

=1 k=1

< O(llgllen) Il + Ol s ) 107" flloo

and
107 M2 flloo =l 95 flloo < NlollocllOF £ lloo-
Moreover, we have
10 MG || s = 11002 (005 )l = (10002005 f + 000p0s0; " f + Oup f + Or f ||

< 10:0ull 105 fllem + 10zl 10:0; " fll e
+lGepllomll fllem + llpllem |0 f [l am,

and

10:0; M fllem = [10:(00; " fllom = 10600, f + 00,0, fllom
< lowellom 105 fllcm + llellom 100z fllcm-
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Lemma 2.2.24. Let N € N and ¢ > 2N + 1.
By introducing the notation

R¢ = 1/1 + €'Bil’§(R1 + R71> (296)
we obtain
N
14 4 n D {—n
0L (Ry9(Ry + R_y)) = ) (n) O'Ry 05 "I(Ry + R_y) (2.97)
n=0
Ny,
+ ) (n) 8" Ry, 0 "0(Ry + R_y)
n=N-+1

+ ) (ﬁ) ™ 0" I(Ry + R_1) .

Proof. Leibniz’s rule and the definition of Ry = ¢ + 3 (R, + R_;) yield
9% (Ry¥(Ry + R_y))

N
l 1
= (n) 8;; (w + éﬁﬂil(ﬁR_l + ﬁRl)) 85’"19(]%1 + R_l)
n=0
{—N-—1 E
+ ) (n> 'Ry 05 (Ry + R_y))
n=N-+1

+ Y (f;) " (v + %551(191%1 +9Ry)) 8 I(Ry + R4).

n={—N
We now obtain (2.97) since

14

$ (s (s

n=¢—N

]

Remark 2.2.25. In the following we will assume that €y is chosen such small
that, for 0 < e < gy, we have
e& <1 (2.98)
Under this assumption we can for instance make the estimates
&1 =0E), Rl =0E"?), or||Ryllo = 0(1).

We can make this assumption due to the fact that there is a some T(c) > 0 such
that the H -norms of R_1(t) and Ry(t) can be uniformly bounded for 0 <t < T(e).
Later, when our energy estimates close and we use Gronwall’s inequality, we will
obtain T'(e) > Tye 2.
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We now finally implement the four key observations from the introduction in
such a way that [R1], |[R2], [R3] and [R4] are guaranteed.
Notation. We denote the floor function by

|z] =max{z € Z: z <z}
and the ceiling function by
[z] =min{z € Z: z > x}.

Lemma 2.2.26. Let { > [deg(w)] + [deg™(p)] + 1.

Let v be an pseudo-differential operator that does not depend on € and is given by
its symbol in Fourier space. Furthermore, let there be some D > 0 such that we
have either

v(k) =io(k) for all |k| > D or  ~(k)=wv(k) forall|k|>D.

We assume the function o € Cl4€ (R R) to be odd with deg*(c) < deg(w), the
function v € O (R R) to be even with deg*(v) < deg(w’), and both functions
to share the property (2.89).

When v(k) = io(k) for large |k|, let f = h be a function with

1Pl rraceon+racecan + [[0ch| grracs=on-1 = O(e™"/?), (2.99)
1] races @n-1 4 [|0ch| orace* on-1 = O(1) .
When ~(k) = v(k) for large |k|, let f = g be a function with
91| rraes* n+raceen + |0egll graeawn = O(e™?), (2.100)
187" gll cracs e + 1007 " gllcracewn = O(1).
Suppose
£l srracescorsraesen = O1)  or || Fllza(faeg ()14 faegry = O(1),  (2.101)

then there 1s an expression D with
D =0(&),
such that for ji,jo € {£1}:
g / YOLR;, OLR;, f dx (2.102)
R
[deg" (v)1-1

=D+ Y. / WO'R;, O'R;, OF f du
R

k=1

+ 52 Z / VkaiRPk afiR(Ik fk dz + 52 O(gg + 1),
k=1 YR

79



where G, and v, are skew symmetric or symmetric operators independent of €
and given by their symbol in Fourier space, m = m(deg*(v)) € N, the f;, are
some functions and py,qx € {—1,1}. The functions g, € O IR R) and
vy, € Cldeg”OW1(R R) share the property (2.89) .

Furthermore, we have

deg”(ck) < deg™(7) — k, (2.103)
deg” (k) < deg"(y) — (deg(w) — deg*(p)) , (2.104)
and
| ficll g race o racacon + [|Op fiel| grrace o (2.105)
< e Cy (|| f1] grrace o+ racsen + (|0 f] prracecn)
+e2Cy (105 fll oraesun + 1005 f | cracs= o ).
107 filloo + 1100 fll crace oo (2.106)

< 20 (If 1 + 100 1122) + o (10 Fllgraesson + 100 Flraescun)

where the constants Cy,Csy depend on R¢, f,7 but are independent of €. We set
Cs := 0 when f = h.

Remark 2.2.27. When v is skew symmetric, we can even obtain
deg”(7) < deg™(7) — 1 — (deg(w) —deg™(p)) , (2.107)

see a2) and c) in the proof. This makes the case deg™(p) < 1 easy to handle since
the complete energy transformation is done after one step.

Proof. If deg*(y) < 0, we have
g /vaﬁRﬁ IR, fdr = O& +1),
R

such that the lemma is trivially true.
So we will in the following assume deg”(y) > 0.
Since deg(w) > deg*(y) > 0, there exist some constants D, d, > 0 such that

lw(k)| >d, >0 for |k| > D,,.
When v = v, we can on top of that find D,,, d, > 0 such that

|w'(k)] >d, >0  for |k| > D,,
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due to deg(w’) > deg*(v) > 0.
There is some D > D,, and some function 7 € Cl4e"™MI(R R) with (2.89) such
that

(k) =~(k) for |k| > D, and  J(k)=0 for|k| <D,.

Since we have
[ 0LRy R, fdo = [ 50LR, 0L, fda & [ (6= 3)0LR, DRy, f d
R R R
= ¢? / FOLR;, OLR;, fdx + €2 O(& + 1),
R

we can in the following assume that we have v € C19"WI(R R) with (2.89) and
v(k) = 0 for |k| < D,,. Therefore, the operators given by the expressions I and 7
will make sense, and, we also will be able to make use of (2.90).
In this proof we will sometimes implicitly assume w, p € C" (R, R) when we apply

(2.90), we can do this for the same reasons as above.
a) Handling integrals of the form

g / YOLR; 0LR_j f d. (2.108)
R
By exploiting the skew symmetry of iw and (2.19), we have
52/76&]%]- AR fdx
R

1
= —j 52 8,5/ l@ﬁR] 3ﬁR,j f dx
2 R W

2 w

1
— g2 / [iw, f]-L0.R; O'R_; d
R

1
- 5¢° / Lipdto (Ryd(Ry + R_1)) O'R_; f da
R

w

1
b / L0 R;ip0o ™ (Rud(Ry + R_1) f d
R

1
e / TR O'R_; 0,f d
2 R W

1
- §j g2F /’yﬁﬁﬁlResuj (eV)OLR_; fdx
R

1
-5 g2F /’yﬁﬁRj 9.0 'Res,_,(e¥) [ dx.
R
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The first term is the time derivative of an integral, which can be estimated against
e20(&,) by using Cauchy-Schwarz.

The last three integrals can be estimated against €2 O(&;+1) since ||0; f]|o = O(1)
and due to (2.9).

For the second integral, applying (2.90) gives us

1 . ol
— 582 /R [zw, f} E@fﬁj aﬁR_]‘ dx
1 [deg™(v)]-1 1 o
= —552 2 m /R(—z)"w(");&i}%] 8£R_j 8;‘f dx

gl
+ O IR(—05R;, Hll 0Lz,

where we estimate ||R(295R;, f)||2 = O(|f || grracetn 1 || Rl ge) = O(1) as in (2.91)
or [R(2OR,, )12 = O Pl (esory 1B ze) = O(1) as i (2.92).
We now have obtained

g2 / YOLR; OLR_; f dx
R

1 1 an, (n) Y n
— 562 nz: E/R(—Z) w( );65.}2] aﬁR_]‘ 8xfdx

e [ it (maam + Ro) R far
2 R W

1
s / L0 Ry ip0o ™ (Rd(Ry + R1) f d
R

+ &2 O+ 1),

for some D = O(&,).

The second term already has the desired form.

The integrals in the third and the forth place can be written as a sum of some
g3 O(& + 1)-terms and m many integrals of the form

2 / WO R, OLR, fuda
R

with m, v, fr, pr and ¢, just as in the lemma.

We see this by using (2.73), Leibniz’s rule, (2.90) and (2.72). Additionally, we also
have to rely on the results of lemma 2.2.22 for map (2.93) in order to see that the
functions of the form f = ¢ Q7R 07 f in the resulting integrals do fulfill (2.105)
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and (2.106). We show this lengthy calculation once in detail for the third term,

the forth term can be handled analogously.
Using (2.73), then Leibniz’s rule and (2.97) with N := [deg"(7)] — 1 in order to
extract all terms with more than ¢ spatial derivatives falling on Ry or R_, we get

1
— = / —ipdt9 " (Ry9(Ry + R_1)) OLR_; f dx
2 R ‘W

N
1 4 P n —-n
i Zn_o (n) /Rm(ax Ry 0="0(Ry + R.1)) 0'R_, f du

+ g3 O(gg + 1).
With the help of (2.90), (2.91), (2.92) and (2.72) we now arrive at

1
— ¢ / Lipdy ™ (Ryd(Ry + R_1)) OLR_; f da
2 R W

N
L 4 4 P _ at—n 1
=3¢ ,; (n) </RE”8I O(Ry + R_1) 0“R_; O"Ry, f d

+ / [2r, 08 Ry 0™ 9(Ry + R_y) 0LR_; fd:c)
R w

+20(&+1)
__1 32( )(/ O (Ry 4 Ry) LR 0" Ry f da

+Z m'/ ™Ry + R_y) OR_; 0™ R, fdx)
+ g3 O(gg -+ 1)
+&° O(E) 9]l 22 erace (1-1) + €7 OE) | Ry + Ryl ares o

where M, := [deg*(7)] —n— 1 and the operators (—i)™(2+) ) are given by their
symbols just as in (2.90). We have

191121 2rdeg? (1 -1) = O(1)

due to (2.11), and

YRy + BR[| goraesen = 7L O(V/&) = O(1)
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due to £ > 2[deg*(7v)].
The above sum of integrals is now of the form

522/%83‘;&% 'Ry, frdx
k=1 "R

with v, fx, pr and ¢ just as in the lemma.
This is in particular true, since, due to

> [deg(w)] + [deg™(p)] + 1 > [deg(w)] + [deg"(y)] + 1, (2.109)
we have for 0 < p < [deg"(y)] — 1 :

12,

1108 Ry || pyface* (vy—o1+ racsn+1 + || 0108 R || rracs (ry—s1 41 < €7
and

“agéw||CFdeg*(w)—p1+(deg(w)1 + ||ata£R¢||C[deg*(fy)_p] S c,

for some constant ¢ = ¢(R,;) that is independent of € (due to assumption (2.107)).
Therefore the estimates of Lemma 2.2.22 for the map (2.93) give us

€ OP Ry | prrace o)+ raesten) + ||€ e (OF Ry )| rraes (-1
< e C (||| gracen—p1+acaen + |04 f| rrace (-1 )
and
le 0, (2R f)llow + lle 010, (08 R f) | oracs -1
<2 C (£ 12 + 10:f11122) + & C (| Fll craessr-s1-1 + 10 | eracs -1 + 1) ,

for some constant C' = C(Ry,) that is independent of &, what verifies (2.105) and
(2.106).

a2) Handling integrals of the form
g’ /z‘aaf;Rj O'R_jhdr. (2.110)
R

We already proved lemma 2.2.26 for these kind of integrals, but when ic is skew
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symmetric we can still show some more. In a), we showed that

£’ / ic0 R; 0'R_; hdx
R

== 52 &ﬂ)
1 [deg™ ()] -1 1 () i0
2 An, (n 14 ¢ n
_ §€ ; m/}R(—z) w Eaij O, R_; 0 hdx
1
- / gipaﬁﬁ_l(Rwﬁ(Rl +R_1)) 0 R_jhdx
2 R W
1
+ 553 / gaf;Rj ipdo9 " (RyI(Ry + R_1)) hdx
R

+ &2 O(gg—l— 1),

for some D = O(&). Since io is skew symmetric, we can handle the last two
integrals better than in a). By using (2.73) and the skew symmetry of ip and ipZ,
we get

-3¢ / g@'paﬁﬁ—l(Rw(Rl +R_1)) 0LR_jhdx
R

1
+ §g3 / gaﬁRj ipdi9 " (RyI(Ry + R_1)) hdx
R

— b / gipaﬁ(Rl — R_y) 0L(Ryd(Ry + R_y)) hda
R
+¢° /R [gi,o, h]OLR_; 05 (RyV(Ry + R_y)) d.

_ 3 / [ip. h] 20485 0% (Rud (R + R-1)) da
R
+ &3 O(Sg + 1) ,

The last two integrals can be written as some €2 O(&, + 1)-terms plus a sum of
integrals of the form

g /R'yk@f;Rpk 'R, frdx
with Y&, fx, Pk, qr just as in the lemma and
deg” (k) < deg™(0) — 1.

We see this by using (2.90), Leibniz’s rule, (2.97), (2.72). By using the result of
lemma 2.2.22 for the map (2.93) we see that the emerging functions of the form
fr =€ 02hdP Ry, with p > 0, fulfill (2.105) and (2.106).
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Exploiting Leibniz’s rule, (2.97), (2.72) for the first integral on the above right
hand side, we get

e /R gipaf;(Rl — R_y) 0L(Ryd(Ry + R_y)) hda
= —jeb / gz'paf;(Rl — R_1)9%(Ry + R_,) Ryhdx
R

N
. l 0. . 0
— jeb ; (n) /Razpﬁﬁ(Rl — R_1) 05 ™(Ry 4+ R_y) 00 Ryhdx
+ &3 O(Sg + 1) ,
where N := |deg"(po) — deg(w)|.
The second term can be written as a sum of integrals of the form

& / WO R, O Ry, frdr
R

with v, fr, Pk, @k just as in the lemma and deg*(y;) < deg”(0) —1. The functions
of the form f;, = €07 Ryh, fulfill (2.105) and (2.106) due to the result of lemma
2.2.22 for the map (2.93).

For the other integral, we can exploit (2.88), i.e.

(R + R_y) = iw(Ry — R_y) + ¢ P97 (Res,, (V) + Res,_, (1)),
and the symmetry of the operator %¢ in order to get

—jed /gipﬁi(Rl ~R_1)9 (R, +R_,) Ry hdx
R

1. o ~
= —§j 63 8t/IR%8£(R_1 + Rl) 8£(R_1 + Rl) R¢ hdx

1 B
+ 5] 53 / |:p—02-, Rwh] M@ﬁ(Rl — R_l) 8£(R_1 + Rl) dx
R LW

2
+&3 O(Sg-ﬁ- 1).

1 ~
+=jé / %85(3_1 + R) (R, + Ry) (9,5(R7/, h) dz
R

The first term is the time derivative of an integral £3D,, which can be estimated
against e*O(&) since || Ryh| = O(1).

The last integral can be estimated against € O(&; + 1) since deg”(23) < 0 and
0Byl = OL).

The second integral can be written as 2 O(&; + 1) plus a sum of integrals of the
form

g /%aﬁRpk O Ry, frdx
R
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with vk, fe, Dk, @k just as in the lemma and deg®(yx) < deg*(0) — 1. We see this
by using (2.90) and then the result of lemma 2.2.22 for the map (2.93) to see that
the emerging functions of the form f, = £7(hR,) fulfill (2.105) and (2.106).
Thus, we obtain

g / ic0.R; 0L R_; hdx
R
deg*(c)—1

=20,D + & Z / 0L Ry, 0L Ry, OFh dx
R

k=1
2 - 4 4 2
+e Z/waxRpk IR, fudr+2OE +1),
k=1 7R

with D, <, m, V&, Pk, qk, fr just as in the lemma, and have on top of that

deg” (i) < deg”(o) — 1.

b) Handling integrals of the form
g /waﬁRj O'R;hdx. (2.111)
R
Since io is skew symmetric and due to (2.90) and, (2.91) or (2.92), we have
2 [ . o0 o 1, : P

£ / 100, R; O, R; hdx = —5¢ / lio, h]OLR; OLR; du,
R R
deg* (o

)—1
—2 Y / GO R, LR, O hde + 22 O(E, + 1),
R

k=1

with ¢, just as in the lemma.

More precisely, we could even write this term as a sum of some £2 O(&; + 1)-terms
and integrals of the form (2.112), which have at least a whole derivative less than
the original term.

c) Handling integrals of the form

g /v&ﬁRj 'R gdr. (2.112)
R
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By using (2.90), we get
52/U0£Rj O'R; gdax
R

= 52/ [iw, 0, " g] ElaﬁRj O R; dx
R w
[deg™ (v)] ( 1)n v
2 — ‘n+1 (n)_a@RaéR O lad
U _
+ O() IIR(— 0215, 0, 9)l| 210, s | 2
where ||R(5%05R;,0;'9)|l2 = O(|| gl gracsen-1+a||R;||ze) (for some ¢ > 1/2) as
in (2.91) or |R(Z%5R;,0; 9) |2 = O||9]l L1 (fdeg(wy1—1) | Rjll me) as in (2.92). The
estimate works without any problems since deg(w) — 1 > deg*(v) > 0.
Now, the second term already has the desired form and the last term is €2 O(&,+1)

such that we only have to look at the first term.
By exploiting the skew symmetry of iw and (2.19) (and (2.9)), we have

g/wmpd%%@%&m
R w
=—j¢’ 5t/ LR, OLR; 0, g da
R W
+ée / %ipﬁfﬁfl (Ryd(Roy + B)) 0, R; 0, g da
R
+ el / %%Rj ipde0 ™ (RyO (R + R)) O g d
R

+p{/§%&%&@@ww
R

+82 O(gg—l— 1).
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Due to (2.73), the skew symmetry of ip and the symmetry of w’ and v, we get
g / liw, 8, ' g] E/@ﬁRj O'R; du
R w
= —je%0, / ElaﬁRj O R; 0, gdx
R W
— 263 / Zp%@ﬁR] aﬁ (Rdﬂ%R—l + R1)> @;19 dx
R
— g3 / [z’p%, 9, 9] 0L R; L (RyI(R_y + Ry)) dx
R
— & /R lip, 0, g] %aﬁRj O (RyI(R_y + Ry)) da
. v _
+7 52 / JaﬁR] 8£RJ 8,581, 19 dx
R
+ ¢? O(Eg + 1).
The first term is a time derivative of an integral 2D, which can be estimated
against £2 O(&) since |0, gl = O(1).
The last integral can be estimated against 2 O(& + 1).

By using (2.90) and Leibniz’s rule, we can write the third and the fourth integral
as a sum of some € O(& + 1)-terms and integrals of the form

e? / k0L Ry, OLR,, frdx
R

with Y&, fx, Pr, qr just as in the lemma. In order to see that the functions of the
form f, = eﬁgf%d,@;”g, with n,m > 0, in the resulting integrals do fulfill (2.105),
(2.106) and (2.100), we use the results of lemma 2.2.22 for the map (2.93).

We now have arrived at

g /UaﬁRj O R; gdx
R

deg*(v)—1
=e’0D+e / GO'R; O'R; 0" g dx:
R

k=1
+e?y / WO R, O Ry, fr, dx
k=1"R

—2e? / z’p%@ﬁRj O (RyI(R_y + Ry)) 0, g da
R w
+¢? O&+1),
where D, ¢, v and f;, already satisfy the conditions of lemma 2.2.26.
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Using Leibniz’s rule and afterwards (2.97) and (2.72), we obtain

963 / ip%aiRj 0L (RyI(R_1 + Ry)) 0, g dx
R
V4
14 v
:_23 -4 <£_n’[9 B n —ld
) nZ:O (n) /]Rzpw/a’ERJaz (Ry+ Ry) 0y Ry 0, g da
_ g / ip L OLR; OL(R 1 + Ra) Ry 0 g do
R

N
V4 ) -
— 2¢8 i0—0'R: 0 ™Ry + R) 0" Ry 0= qgd
gnzzg(n)/lgzpw,x]x(l—i_l)xwxgx
+80(&+1),

where N := |deg”(pv) — deg(w')].
The second term is a sum of integrals of the form

g? /%aﬁRpk O'R,, frdr
R

with yx, fr, Dk, g just as in the lemma. Moreover, (2.105) and (2.106) are true
for the f, = 58$R¢8;19 with 1 < n < N. This follows due to lemma 2.2.22, since

we can exploit the fact that
eI Ry0, g =0, (00 'Ry, g) — 02 Ryg

such that we can use the estimates of lemma 2.2.22 for the maps (2.93) and (2.94).
Thus, we now only have to examine the term

.U ~ —
—263 /Rngéfﬁj aﬁ(R—l + Rl) RIP 8:1: 19 dx
22 [ ip L olRy LR R0 g d
R

—2¢* /ﬂ{z’p%@ﬁ]%j 'R, R, 0, gdu

The first integral is of the form (2.111) and the second integral of the form (2.110).
However, this is not as trivial as it first may seem, since there is the possibility
that deg”(p%) > deg”(v). Thus, in order to see that the function h = séw o lg
does indeed satisfy the conditions (2.99) and (2.101), we also have to use the fact
that

deg*(p%) = deg*(v) + deg"(p) — deg(w) + 1 < deg"(v) + 1 < deg(w) (2.113)
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and exploit lemma 2.2.22 for the map (2.94).

Due to (2.113), the lemma is now finally proven by applying the result of paragraph
a2) in this proof to the first integral and the result of paragraph b) to the second
integral. [

Corollary 2.2.28. Let ¢ > [deg(w)] + [deg"(p)] + 1.

Let the pseudo-differential operator v and the function f be exactly as in lemma
2.2.26. Then, for 0 < e < gy and g9 small enough there exists an expression D
with

D=0(&),

such that

J1 Yz

e? /’yﬁﬁR- 'R, fdr =0, D+ > O(& +1). (2.114)
R

Proof. Due to lemma 2.2.26, we have

g / YO R;, OLR;, f dx
R
deg™(v)]—

[deg” ()] -1
=29D+e ) / O R;, O'R;, OF f dx:
k=1 R

+¢* Z / f)/kaﬁRpk aﬁqu frdx + g O +1)
k=1"R

with ¢, vk, m, fi, pg and g just as in the lemma. Moreover, we can apply 2.2.26

repeatedly, i.e. we can always apply 2.2.26 again to every integral on above right
hand side.
If deg™(y) < deg(w), we can repeatedly use (2.102) until we obtain

g2 / YO'R;, O'R;, fdx = 29,D + 2 O(E, + 1),
R

J1 Yz

for some D with D = O(&,). This is because due to (2.104) and (2.103), every time
we apply (2.102), the resulting integrals will contain ( deg(w)—deg*(p)) derivatives
or an whole derivative less falling on 9R_; or ‘R, than the previous integrals
such that the above result is achieved after a finite number of steps.

If deg™(y) = deg(w), we can use (2.102) and exploit (2.103) in order to get
52 /’}/aﬁle Qf;Rjz f dx
R

=9D+e>y / 30L Ry, O“Ry, frdr 4+ 2 0(E + 1),
k=1 YR
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for some D with D = O(&,) and some m., = m.(deg*(v)) € N. Herby, we have

|| Ficll rae o racen + 100 fiell graces o1 < Cy,

1057 Frlloo + 10005 foll cracercon < C
for some constant C; = Cf(Ry, f,7) > 1 due to (2.105) and (2.106).

By using (2.102) and exploiting (2.103) again for every integral on the above right-
hand side, we can obtain an expression D = O(&) such that we have

g /vaﬁle IR, fdx
R
EEPLEELS / LR, LR, fodr+ 22 OE +1),
k=1 "R

where m = m2,

|| fill yraee o racen 4 |0 fl| yrace=cpn < €/ C?,

107" fielloo 4+ 110:0; " fill cracs=can < C7.

By repeating the last step one more time, we now get

g / YOLR;, OLR;, f dx
R
mo
=0 Do + 7M7) / Yeod Ry, &Ry, frodr + 2 O(E + 1),
k=1 7R

for some Dy with Dy = O(&;), mg = m3 and

| fioll e raeson + [|0s ol yracs=on < €2 CF,

10;" fr.o

0o T “ataz_lfk,o||cfdeg*(wc,o>1 S CJ% .

After N additional steps, we get
62 /’Yaﬁle af“Rjé fd&?
R

N my N
_ 23 29D, 42y / N0 Ry, O Ry, fin dz+ 23 P2 C,,
p=0 k=1 YR p=0
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for some expressions D,, with D, = O(&), some C, = O(& + 1), my = m§/+N and

|| fio v || s o1 Fteeent + 1|0 frv || 4y raees o nn < €2 O3V
H H f

Ha.’;lfk,NHOO + ||ataz_1fk,NHC’—deg*(’Yk,Nﬂ S C.?—l—N .

Moreover, we have deg”(y,n) < deg”(7y) due to (2.104).
We will now show that

[e.9]

D> =) D,

p=0

does exist, that D> = O(&), and that
g2 / YOLR;, OLR;, fdx = 20, D™ + 2 O(& +1).
R

By taking a close look at the proof of (2.102), we find that
et D, < et mEPe g,
2 Cy < et mPTPATICET (£, + 1),
for some c, = ¢,(deg*(y)) > 1 as long as f,ip,iw and ¢ are fixed. We emphasize

that this is in particular possible due to the fact that deg” (v n) < deg™ (7).
Now, by choosing € small enough, for instance such that

1/4

e/ mye,Cp <1,

we get the following.
There is a ¢ € R such that

D> = ng/QDp < Zep/Q |D,| < Zep/4cgg =c& ng/4 =0(&),
p=0 p=0 p=0 p=0

analogously we get

Ze”/2 C, < ng/z |Cp| = O(&+1).
p=0 p=0

Moreover,

my

N+1

e 2 Z/’}/h]\[aﬁRﬂc 8£le th dz
k=1"R

N+41

<e i Cf (HRlllHeHRchMdcg*w + ([ Rl e[ R=1 [l e raes=
+ | Rl e || Ral] e race= o + ||R—1||H@||R—1|’C€+(deg*(w)1)

=0, for N — oo.
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We now obtain

g / YL R, OLR, f dx = €2 0;D™ + & Z 2,
R

p=0

my
. N+l
= 62 atDOO + 52 O(gf + 1)

]

Remark 2.2.29. The short involvement of the C*t19€" Pl _norm is not problematic
since the final estimates here do no longer involve this norm. More precisely,
using some mollifiers v, and looking at RY' := R; * i, one would take the above
limit of et Jor N — oo before going over to the limit R — R; for the final
energy estimates. Therefore, E(R™,, RT) would converge against E(R_1, Ry) and
,E((R™,, R™) would converge uniformly against 0,£y(R_y1, Ry).
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Corollary 2.2.30. Let ¢ > [deg(w)] + [deg*(p)] + 1.
For e < ¢y and ¢y sufficiently small, there exists an energy & and some constants
¢,C > 0 such that

(I1B-rllie + 1 Ralle)? < e < C (1Rl + 1R L)’ (2.115)
and
8tgg < g2 O(gg + 1) .

Proof. According to the definition of & in (2.65) and due to lemma 2.2.9, we
have

(9t5g = 815E0 + atEg = atEg + 62 O(gg + ].) s
where, due to lemma 2.2.17,

OE, = Vi+ 20(&+1),

= Z ]1/8£le Zpaeﬂ (RQﬁRh)d

J1,J3€{£1}

+71 / ipds9 (RyOR;,) 0L Ny s, (Yo, Ry, de
it [ OLRy 007N (o0 (R0 Ry)) da

+‘ /Zpae"ﬁ (Rwﬂst)azﬁ Ji ]1(1/Jca _Jl)
_]1/86}2]1 aﬁ ]1 31(1/%,2'019_1(}3%933‘3))%)

—|—€2 O(gg + 1)

4

= > L+0(&+1).

First, we analyze the term I;.
Using (2.73), we get

Iy:=¢° / L R;, ipd 9 (RoVYR;,) dx (2.116)

J1 Jse{:l:l}

=¢ / OL(Ry — R_1)ipds(RoV(R_y + Ry)) dx + 2 O(& + 1).
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Due to Leibniz’s rule and the definition Rg = 1¢g + %55*219(}%_1 + Ry), we obtain
by proceeding analogously as in (2.97), setting

Ry =g + 7 29(R_, + R)) (2.117)

and using (2.72), that

—¢ Z( )/aﬂ (Ry — R_1)ip(0r R0 ™ (Roy + Ry)) da + €2 O(E+ 1),

where N := [deg”(p] — 1.
After replacing the expression

ip(9; R0, ™ (R-1 + Ry))
by
0" Roipds™(R_1 + Ry) + [ip, 0l Rg|05 " (R_y + Ry)
and using (2.90), we can use corollary 2.2.28 in order to obtain
Iy =e?0Dy + 2 0(& + 1)
for some Dy with e2Dy = 2 O(&,).

Now, we analyze the term I1 + I5.
Using (2.73) we get

Bt himet S ([ il (ReoRy) 007 N (e By o (2118)

J1,j3€{£1}

+ 71 / 8€le 85 N (¢ca ip0~ (RtﬂgRja)) d:L‘)

Z /Zpaz R 19RJ3)8 NJ1]1(¢C7 Jl)

Ji,g3€{£1}
/86 J1 aﬁleh wcaipﬁ_l<R¢19Rj3)) dx)
+ 20E+71EN.

In order to extract all terms with more than ¢ spatial derivatives falling on Ry or
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R_4, we apply Leibniz’s rule and get

L+ 1, = g2 Z / Zpag (RwﬁRJ?,) J1J1(w67 >dx
Ji,Jse{£1}
[deg™(

+ Z ( ) / ip00 " (RyOR,,) Njyj, (Obe, 0™ Ry,) da
R

+/6ﬁle Njj, (te, 1p0s0 ™ (RyOR;,)) da

[deg™(
+ Z ( )/(WR ij(a;nwmipaﬁimﬁil(RtbﬂRjg)) dJE)

+ 20E+71EN.
Notice that this is since the Nj, j, (0™, -) map H'(R) on L*(R) due to (1.9) (see

lemma 2.2.5).
By using (2.68), we get

L+ 1, =¢ Z / ipd, 0~ (RwﬁRn) Jm(@bcv R;,)dx

J1.js€{£1}
* /Ripaﬁﬁ_l(Rwﬁst) J1]1(¢C’ ) v
[deg™(p)]
+ Z ( >/ ipaiﬁ_l(Rwﬁst) Nj1j1<a;1¢caafc_ij1) dx
R
fdeg (P

+ Z ( ) /R ipd "9 (RyOR,,) NI, (004b,, OLR;,) dw)

+ 2 0(& +771E)7),

where

~

]1]2 (wcv f)( ) = /I;njljé(_ma k—m, _k){b\c(k - m) (m) dm

For all integrals except the first two, we can now exploit (2.52), or respectively
(2.53) or (2.54), together with (2.73), Leibniz’s rule and (2.72) such that corollary
2.2.28 can be applied. The exact details on how this is done should soon become
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clear in this proof. We get
Li+L=2 ) j1< / ipd 0~ (RyOR;,) Ny, 5, (e, LRy, da
J1,j3€{£1} R

+ / ipaﬁﬁil(RwﬁRJé) N;Ud (wc’ 8£R]1) dSC)
R
+ 62 8tD172 + 52 O(gZ + 1) )

for some D 5 with 2 Dy 5 = ¢ O(&).

For the remaining terms, we cannot apply corollary 2.2.28 since in these inte-
grals there are more than deg”(p) derivatives falling on 9°R_; or 9R;. We use
the skew symmetry of ip and exploit (2.73) in order to get

[1 + [2 = _52 Z jl / 8£(Rw193j3) ip(lejl (wm af:Rjd) + N;jl (ww aﬁRh)) dx
R

Ji,gs€{£1}

+ 62 (9,517172 + 82 O(g[ + 1) .
If we now look at
ip(k) (nj;(k, k —m,m) +nj;(=m, k —m, —k))

Xc(k - m)
w(k) —w(m) + jw(k —m)

= ip(k) (p(k) — p(m)) (for |k = o0),

and use Taylor, the same cancellation as in the proof of corollary 2.2.16 occurs
such that by exploiting (2.52), or respectively (2.53) or (2.54), we obtain

N
Li+L=¢ > > / 0L (RyIR;,) Buthe andiR;, dx:
jrgse{x1y  n=1’R
+ &2 0/D1 o+ 20(& +1),

for some N € N and some pseudo-differential operators 3, and «,. Here «,, is
either skew-symmetric with deg*(c,) < deg®(p) or symmetric with deg(c,) <
deg*(p) — 1. Since we now have a derivative less falling on 9°R_; or 9“R;, we can
apply corollary 2.2.28 (after we used Leibniz’s rule and (2.72)) and obtain

Il -+ [2 = 82 8{]5172 -+ 52 O((c:g -+ 1)

for some 151,2 with &2 15172 =c0(&).
When we applied corollary 2.2.28 to the integrals of the form

/ aﬁRJB Oénafiijl a;mlf{w ag”ﬁnwc dx ,
R
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with m,my, ms > 0, we had to proceed considerately. One small thing was that
to obtain (2.101) we spited the functions f = 07" R0 5,1, into

f = 8;’11 (77ch + ERQ)a;nzﬁn¢c = 8?11/)08;”25711/}0 + 8;7115}?626?25711/}0 = fl + f2

such that [ fi]|z15) = O(1) and || f2||zs = O(1). )
Another thing and also the reason for which we only get D) 5 = £ O(&,) is that,
for functions of the form g = v1.5v., we have to rely on the estimate

1072 glloe = 105 (Ve 1o < / I uBie] da < yebell e 1 8eel e

such that ||071g|lc < O(e7!). A similarly bad estimate for ||0;0,'¢||s could be
avoided by estimating in the following way. We exploit that ¥, = 1¥_; + ¢; and

Y5 =(jko); + Ofe), (2.119)

for operators v that are given in Fourier space by their sufficiently smooth symbol
v, see section 2.1. Thus we have

VeBe =Y y(jko)B(jko)ty by, + O(e)
J1.j2€{£1}
with
U, (2, ), (2, 1) = Aj (e(x — cgt), e%) Ay, (e — cyt), £%t) ! T72) oz —wal).
where A_; := A; and A is as in (2.8).

Since ;1); is strictly concentrated around k = =£2k; in Fourier space, we can
compute [0 (1) 11 = O(1) and 940 (505 130 = O(1).

Due to the fact that 1;1_; is strictly concentrated around k& = 0 in Fourier space,
we have to stick with the estimate [|0;(¥;1—;)[lcc = O(¢7'). However, we can
obtain [|0;0; ' (¥;1—;)||ec = O(1) because

(V) = O Ar(e(x — c,t),e%t)|* = O(e).
Thus, we have the estimates

107" (VeBe)loe < O™, 11007 (TeBie)lloo = O(1) .

Due to the first of the above estimates, an extra step was needed to enable the
application of corollary 2.2.28, we give the full details on this technicality directly
after this proof in lemma 2.2.31.
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Now, we analyze the term I3 + I,.
Using (2.73), we have

Li+l:=¢ /zpaf (Ry9R;,) 0“9 Ny, _j, (e, R_j,) dx (2.120)

Ju.gse{£1}

/ aERh aﬁ Jl —J1 (ww Z.pﬁ_l(RwﬁRj?,)) dZB)

Z /Zpaf (RwﬁR]?,)aﬁle 31(%, _.71) x

Ji.Jjs€{£1}
/ ae R;, aﬁle -5 (% ipﬁ_l(RwﬁRj?)» dI)

+2 0 + 718N,

Applying Leibniz’s rule, (2.38) and exploiting that the Nj, _;, (0., -) always map
L*(R) on L*(R) due to (1.9) (see lemma 2.2.5), we get

I3+ 14
Z /Zpae RWRJS) 7 31(¢c> 731)

Ju.gse{£1}

[deg*(p)]—1

14
p0t9 Y (R,UR Mo, 05 R_)) da
+ mX::l (m>/RZp x ( P ]3) Ji ]1( wa Jl)
_/aﬁle le—jl (¢C,ip8£19_1(Rwl9Rj3)) dx
R
[deg™(p)]—1

_ (6) / OLRy, Ny (00, 1pD ™9 (RyRy,)) do )
m R

m=1

+e20(& + 718N,
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Using (2.66) and (2.73), we get

Is+ 1y = 52 Z .71( / ipaﬁ(RwﬁRj3> le*jl (¢C7 aﬁR*jl) dx
R

J1.gze{£1}

- /R ip0y(RyIRy,) N}, _j, (e, Oy Ry, ) de

[deg™

p)1-1

0N [ -

) (m> /R ip0 (RyOR;,) Ny, (970, 00" R_,) da
=1

m

m

[deg™(p)]—1 /
- > ( )/Ripaf_m(RWst) Nfl—jl(@?@/)c,(?ﬁffﬁ)dff)

m=1
+2O(& +P1EN).

After exploiting (2.55), Leibniz’s rule and (2.72), we can now apply corollary 2.2.28
in order to obtain

13 + ]4 = 62 (9151?374 + 82 O(Eg + 1),
for some Ds 4 with e D34 = £ O(&)).

Hence, by choosing ¢y small enough and summing up our results for Iy-1, we
can define a modified energy

ge =& — 82(D0 + 751,2 +Ds4),

with
e? (Do + D1+ D3a) = O(&)
such that
& S E2(1+&).
Since & = & + £ O(&,), the statement is now proven with corollary 2.2.16. O

Here are the details on the application of corollary 2.2.28 for I, + I, and I+ I4.

Lemma 2.2.31. Let { > [deg(w)] + [deg™(p)] + 1.

Let the pseudo-differential operator v and the function f be as in lemma 2.2.26 with
the only exception being that |07 gllec = O(e7') for f =g. Then, for 0 < e < g
and g9 small enough there exists an expression D with

2D =c0(&),
such that

g? /vﬁﬁle Ry, fdr =*0D+e*O(& +1). (2.121)
R
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Proof. We proceed as in b) in the proof of lemma 2.2.26.
By using (2.90), we get

52/vaﬁRj O R;gdx
R

= 62/}1& liw, 8, ] %%Rj O R; dx

[deg™(v)] (_1>n v
+ 52 Z W /Ran(n)JaﬁR] aﬁRj 0;_19 dx
n=2 ’

v _
+0(e?) ||R(55£Rj, O )2 105 R | 2 -

The last term can be estimated against e2O(&, + 1) with (2.91) and (2.92), espe-
cially since only derivatives of 9;1g are involved. The integrals of the sum

[deg™(v)] (—1) v
2 — n, (n) Y olp alp an—1
€ E ) /Rz w w/&ERJ O,R; 07 gdx

n=2

are also no longer problematic since there is at least one derivative falling on g.
Proceeding further as in b) in the proof of lemma 2.2.26, we have

22 / (1w, 0, 9] S 0L R, OLR; da
R
= —jeo, /R %@‘;Rj O, R; 0, g da

+ & / %ip&fﬁ*l (Ryd(Roy+ R1)) 0,R; 0, g d
R

+ el / 53523]‘ ipdp0 " (RyO (R + R)) O g d
R

+je /R %Q‘;Rj 0,R; 0,0 g dx

+ 62 O(gg + 1) .

We obtain

e’D = 52/ ﬁﬁﬁRj O'R; 0, gdr =cO(&),
R

since [0 'gloo = O(e™").
For the last integral, we have

je? / gaﬁRj 0,R; 0,0, gdr < e O(& + 1),
R
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since [|0,0; g/l = O(1).
For the integrals

g / —ipdid ™ (RyI(R_y + Ry)) OLR; 0, g da

+e / R zp@z (Rwﬁ(Rfl + Rl)) leg dx

_ g / ip O, 0L (RyD(R s + 1)) 0; g do
a 63 / [ _/7 az }aﬁR] aﬁ (Rqﬂ%R—l + Rl)) dx
R

—& / [ip,d, 9] %aﬁRj O (RyI(R_y + Ry)) dz
R
+ g2 O(gg + 1) .

corollary 2.2.28 can now be applied since £]|0, 'g]|ooc = O(1). In detail, we have
the following estimates.
We have (2.99) and (2.100), where we need it:

e For m > 0 and n as required, we have
1207 07 gllin < 2 107 Rl 107 gllcn = O(E2),
and similar

120, (97 R0, g)l|mn = O(71/2) .

e We also have for m > 0 and n as required,

10 Ry, gllen < 1|0 Rullen |03 gllen = O(1),

cn

and similar
100} Ru 0, g) |l on = O(1).
e For for m > 0 and n as required, we have

1£0, (00 Ry 0, g) |0 < |00 Ry0; g — 0,1 (00 Rug) o
< £|0 Ry ||oo)| 05 gl oo + ]| Ry 22| ] 22
<O(1),

similar
128:0; 1 (97 Ry, g)lle < O(1).
The term R\pa{ g only occurs in the skew symmetric case.
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Regarding (2.101), we split
R\p = 1/16 + é’:‘RQ

such that we have 2|07 Rod;  g|lzm = O(1) for m > 0 and n as required. For
f =¢ev.0;'g, we can get

|7 na+1-prraETron| = o, (2.122)
what is sufficient since (2.101) is only needed to apply lemma 2.2.20. We had
estimated this co-norm by using Sobolev’s embedding theorem to get (2.91) in the
proof of lemma 2.2.20. For the shake of completeness, here are the full details on
how this last estimate is obtained.

We split 1, = 1_1+11, set A_y := A; where A, is as in (2.8) and then we compute

e sup |F |1+ PP 0, 9] |

z€R
1 ,
/ zkax(1+ |]€| )p/2|k,|n+1

=¢c—5 sup
T (e—lz)eR

| / A ey — egt) 2007 (05 9) ) dy|

—5—2811p‘/ k(1 + |k + jko )P/ |ek + jko|" T x
A z€R

X ‘ / e M A (y — ecyt, %)l N0, g) (e y) dy‘ dk’ :
R
Here, we exploited the property of the supremum on R and made the substitutions
Yy and etk — ko) — k.
Using Sobolev’s embedding theorem, we now get

€ sup }]—" [[(1+]- \2)p/2(')n+1¢j/aa7\19(')|] ’

zeR

=L IO 0+ Ra2Ie0) + ol

x / e~ Ay — scgt, 2) T (O g) (=
R

n+p+2

<01 9 Wl + Y ™10 9 Wllon ) A lmire
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Corollary 2.2.30 now allows us to prove theorem 1.1.1.
Proof of theorem 1.1.1 When ¢ > [deg(w)|+[deg"(p)]+1, we can use corollary
2.2.30 together with Gronwall’s inequality in order to obtain the O(1)-boundedness
of & for all t € [0,T,/£?] as long as gy > 0 is chosen sufficiently small:
Since we assumed the local existence of solutions to (1.2), there is a some T'(¢) > 0
such that the H%norms of R_;(t) and R;(t) can be uniformly bounded as long
as 0 <t < T(e). Due to corollary 2.2.16, we know that for sufficiently small ¢,
(2.98) is true for 0 <t < T'(e), i.e.
85[@) < 1,
and thus corollary 2.2.30 does indeed hold for 0 <t < T'(¢).
In particular, we have
OEu(t) <20 (&) +1)
for some C' > 0 and 0 <t < T'(e).
Gronwall’s inequality now yields
Eo(t) < (E0(0) + 2 Ct) e !
for 0 <t < T(e).
Choosing ¢y such small that
(£0(0) + CTy)e“™ < g5t
we can now obtain T'(e) > e 2Ty, i.e. in particular
Eo(t) < (E0(0) + 2 Ct) e !

for 0 <t < e 2T,.
Therefore, for sufficiently small £y > 0, there is some constant C'r such that

R, ‘
Ry
due to corollary 2.2.30.
For ¢ > s4, we can now, due to estimate (2.10), conclude

H¢

sup < (g,

[O,To/a2]

sup |lu —enrs|aea

[0,To /2]
= sup |lu_1 +u —e¥nps|aea
[0,Ty /2]
< sup (U1>_5<¢NLS)H
oo/ 1\ W 0 Hea

+ sup eV —¢ < wl\éLS ) ‘

HoA 0,1y /€2]

IR,
[0.To/<2] VR,

5 53/2.

HsA

105



Remark 2.2.32. In the above proof, we clearly see that, due to our method of
proof, our estimate for the size of the error

sup ||u — s mea
[O,To/a‘Q}

cannot be better than the estimate, which we have for the difference between the
NLS-approximation e nrs and the improved NLS-approximation V.

We however showed that the error between a original solution of (1.2) and the
improved NLS-approximation eV,

s ()]

is of the size O(e?), where 3 = 5/2. If the residual estimate (2.9) can be improved,
for instance as in remark 2.1.4, we can make B even larger. In other words,
our estimate for the error between a original solution of (1.2) and the improved
NLS-approximation eV is much smaller than our estimate for the error between
a original solution of (1.2) and the NLS-approzimation ehnps. In some cases it
can even be made arbitrarily small. That being said, we cannot increase the time
interval [0, Ty/€?) on which the estimate does hold this way.

)
HsA
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Chapter 3

A reduced system for the water
wave problem

3.1 Motivation

For our introduction of the water wave problem here, we will follow [D19].

The 2D water wave problem consists in finding the flow of an incompressible invis-
cid fluid in an infinitely long canal of finite or infinite depth with a free top surface
under the influence of gravity and possibly of surface tension. The 2D water wave
problem with finite depth (formulated in Eulerian coordinates) has the following
form.

In an infinitely long canal of finite depth, an incompressible, inviscid fluid fills
a domain Q(t) = {(z,y) € R? : z € R, —h < y < n(x,t)} in between the
impermeable bottom B = {(x,y) : z € R,y = —h} and the free top surface
L) ={(x,y) e R?: 2z € R, y = n(x,t)}. All, under the influence of gravity and
surface tension.
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The velocity field V' = (vy,v9) of the fluid is governed by the incompressible
Euler equations

OV +(V-V)V=Vp+y (_01> in Q(t), (3.1)
V-V=0 in Q(¢t), (3.2)

where p is the pressure and g is the constant of gravity.

Under the assumptions that fluid particles on the top surface stay on the top
surface, that the pressure at the top surface is determined by the Laplace-Young
jump condition and that the bottom is impermeable, one obtains the boundary
conditions

ne=V- ( e ) at (1), (3.3)
p = —bgh*k at I'(t), (3.4)
vy =0 at B, (3.5)

where b > 0 is the Bond number, which is proportional to the strength of surface
tension, and & is the curvature of I'(¢).

One further assumes the flow to be irrotational, such that one can now show that
there exists a harmonic velocity potential ¢ with vanishing normal derivative at B
and an operator K = IC(n) such that

V=V¢ and ¢, = K. (3.6)

Thus, the system (3.1)-(3.5) can be reduced to
ne=V- ( e ) atT(t),  (3.7)

() = —5 (6.7 + (K6, P), —gn+bgh?(—2=)  atTl)  (33)

VI

or to

ne =Koy — v at ['(t), (3.9)

(v1)e = —gn — 1((01)2 + (’Cv1)2)z + bgh2<n—x)m at ['(t). (3.10)

2 V14 n?

One can assume time and space to be rescaled in such a way that h =1 and g = 1.

Besides this formulation of the water wave problem in Eulerian coordinates,
there exist also other formulations of the water wave problem and each of these
formulations has its own advantages and disadvantages. Including the arc length
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formulation, there are local and global well-posedness results for almost all of these
formulations, we refer to [D18] for a quick overview.

Since the water wave problem and its solutions are not expected to be solved
or qualitatively understood in near future, approximations for the water wave
problem are of great importance. The two most promising ones are the Korteweg-
de Vries approximation and the NLS approximation.

In this section, we will now show that our techniques acquired in the last sec-

tion will be useful to prove the validity of the NLS approximation for the 2D
water wave problem in case of finite depth and with or without surface tension,
in the arc length formulation. We choose the arc length formulation, since this
formulation has the advantage that the linear part of the equation is the one with
the most derivatives in the presence of nonzero surface tension. l.e. we have
deg(w) > deg”(p) in case of nonzero surface tension.
Until recently, the validity of the NLS approximation for the 2D water wave prob-
lem with finite depth and surface tension was an open problem, regardless of the
chosen formulation. The validity of the NLS approximation for the 2D water wave
problem with finite depth and without surface tension has already been proved
in [DSW16] by using Lagrangian coordinates, however the result was not optimal
in the sense that the validity of the approximation could be proven on the right
timescale but not for the full modulation interval.

3.1.1 The 2D water wave problem in arc length formulation

In order to obtain the arc length formulation of the water wave problem, the free
top surface I'(¢) gets parametrized by arc length.

Let P(t) : R — ['(t) : @ — P(a,t) = (z(,t),y(,t)) be such a parametriza-
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tion, i.e. let P(t) be such that

V(0a2)2(a, t) 4 (0ay)2(a, t) = 1. (3.11)
Let
¢ = arctan (%) (3.12)

denote the tangent angles , U the normal velocity and 7' the tangential velocity
on the free top surface, i.e.

O (z(a,t),y(a, 1) = U(a, t)ifa, t) + T(a, t)i(er, 1), (3.13)

where 7 = (—sin(6), cos(6)) are the upward unit normal vectors to the free surface
and ¢ = (cos(f),sin(f)) the upward unit tangential vectors to the free surface.
Due to (3.11), one can show that 7" is determined by ¢ and U (up to a constant
that can be set to zero without a loss of generality). One can show

T(a,t) = / " 9,008, U(B.1) dB. (3.14)

Since irrotational flows are considered, the normal velocity U can be expressed in
terms of the free top surface and the physical tangential velocity v. The physical
tangential velocity v can be expressed by using the velocity field V' = (v, v,) and
the evolution of v is determined by the equations (3.1)-(3.5) and the form of the
free top surface.

Under the assumption that y(-,t), 0(-,t) and v(-,t) are sufficiently regular, for
example y(-,t),v(-,t) € L? and 0(-,t) € H? the evolution of z is completely
determined by the one of # due to (3.11). Thus U(-, ) can be written as a function
of y(+, 1), 6(-,t) and v(+,t) and one can obtain the system

Oy = U cos(0) + T0yy, (3.15)

O = —0uy + 0020 — 60,6 + U(0,U — T9,0), (3.16)

00 = 0,U +T0,0 (3.17)

01040 = —CO40 + 0320 — 00(0040) + (0,U + v0,0)? (3.18)

0,y = sin(0) (3.19)

d=v-T, (3.20)

where

¢ =0U 4+ v0i + 00,U + 6v0,0 + cos(6). (3.21)

The evolution equations (3.17) and (3.18) get included since they have better
regularity properties than the spatial derivatives of y and v.
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In [D19], the linear and quadratic terms, which are also the most troublesome
terms, are extracted. Then, # and 0,6 get derived one time in space and the
system gets diagonalized by

(g>:(g1l 0_11)(1;—11) (3.22)
< g‘ég ) B ( 01_1 0—_11 > ( a@j ) : (3.23)

where 0! is the inverse of the operator o, which is defined in Fourier space by its

symbol
o(k) = o(k;b) = 4 | fa:hb(lli) . (3.24)

By doing so, the following diagonalized system is obtained

(1), = —iwii_ (3.25)
100 (= (0 )+ (Kol + 1))

1 N N~ N
+§(7K0[Kg, 0_1(u_1 — ul)](u_l + ul)

_%U(l + K2)(0 M (g — Gy)(G_y + ﬂl)))

+m_y,
(@), = il (3.26)
+aa< - %(a_l +1)2) + ~ (Ko(iioy + 1))
—%JKO[KO, oMy — )| (@ + i)
+%a(1 + K)o ay — 1) (d_y + 711)))
+my,
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—iwii_y (3.27)
+aa( 92y + i2)iis

1 N . 1~ -
—5[0, 8;2(u,2 + UQ)]J 1(u,2 — UQ)

1 N N N
+§K08;10'71(’U/,2 — UQ)O' 1(U,2 — UQ>
L - . 19 (x ~
—éba (U_g — Ug) Koo~ On(t_g — Us2)

1

1
—5(3;1(11—2 +1p))* + 5(}(0@;1(@_2 + 1iy))?

1
‘|‘§8a (O'Ko[Ko, 0'_1(12_1 — ﬁl)]ﬁgl(ﬁ_z + ﬂQ))

1

—50a (o1 + K3) (0™ (a1 — )0, (o + U2)))
1

+§O'K0[K0, 8;10'71(’1172 — 1’12)]8;1(714 + ’L~L2>
1

—50(1 + K3 (0, o Hag — 1ip) 0, (1o + 1))

1
+5010'_1(71_2 — ﬂQ) + m_2>,
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(Gig), = iwily (3.28)

+aa< — 972 (fig + 12y

1
+§[a, 02 (g + ip)|o ™ (T_g — Tig)

1 11/~ ~ N s ~
—i—§ 00, 0 (U9 — Ug)o (U_g — Usz)
Lo, - “1q (~ -
—iba (U_g — Ug) Koo~ On(ti_g — )

1

1
—5(3;1(11—2 +1g))” + §(K03;1(ﬂ—2 + 1))

_% o (0 Ko[Ko, 0 iy — 11)]0, (g + U2))

+%aa (0(1+ K3) (o™ (-1 — @), (iig + 2)))

1
—§UKO[K0, ((90710'71(71,2 - 7:62)]8071('1172 + ﬁg)

1
+§a(1 + K3 (0, o Hag — 1ip) 0, (T1_y + Ti2))

+%C10_1(11—2 — Ug) + m2),

with
O o Ny — 1ig) = 0 0Ty — Ty) + ms, (3.29)
072 (g + o) = (G—1 + W) — O (Ko(_1 4 @)o ™  (lig — Ts)) 4+ ma, (3.30)

where w is given in Fourier space by its symbol

w(k) = w(k;b) = sign(k)y/(k + bk3)tanh(k) (3.31)
Ky is defined by its symbol Ky(k) = —itanh(k) and 9! by the multiplier —ik™".
The relevant norms of the nonlinear terms m_y, my, Oam_s, Oamsa, OaMms, My, ¢; can

be controlled. For more details on this and on the whole derivation, we refer to
[D19] and the references therein.

3.2 The Reduced system and its properties

Preventing a loss of regularity stemming from the evolution of @_5 and s is crucial
for justifying a NLS approximation for the above arc length formulation of the full
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2D water wave problem. Instead of the above full water wave problem, which is a
rather complicated system, we will now consider a reduced system, which shares
crucial properties with the full water wave problem. That is in particular the
structure of the linear and quadratic terms of the evolution from %_o and .
What we will neglect in this reduced system, are all terms, which are neither
linear nor quadratic. On top of that, we will only look at a system with two
evolution parameters, since the evolution parameters u_o, s and %_1, u; are deeply
connected, see (3.29)- (3.30) (also remember that 9,60 and 928 were chosen as a
substitute for higher spatial derivatives of y and v).
The reduced system we are looking at is

Ou_1 = —iwu_q + 8a< — D (u_y +up)u_y (3.32)

1 2 _

= 5l D (um +u)]o ™ (uay — w)
1 -1 -1 —1

+ §K0Da o (u_y —uy)o (u_g — uq)
L -1

- §b0' (Ufl — Ul)KoO' 8a(u,1 — U1>
Lo 2 1 -1 2

— S (D7 (o )+ 5 (Ko Dy (s + un))? )

Oy = iwug + 3,1( — D2 (u_y + up)uy

1
+ 5[0, D;z(u_l + ul)]a_l(u_l — )

1
+ §K0D710'71(U,1 — ul)afl(u,l - U1>

1
ibafl(u,l — Ul)K()O'ilaa(Ufl — U1>

1 -1 2 1 —1 2
— E(Da (U_1 + Ul)) + §<K0Da (u_1 + ul)) ) s

where the linear operator iw is given in Fourier space by

w(k) = w(k; b) = sign(k)/ (k + bk3)tanh(k) . (3.33)

In order to avoid resonances being caused by the nonlinear terms, we do not use
D' = 0. '. Instead, the operator D! : L*(R) — L?(R) is given in Fourier space
by some fixed function D', which is smooth, odd and fulfills D' (k) = O(—ik™")
for [k| — oo. Like before, the operators o, Ky and o~! are given in Fourier space
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o(k) = alkib) = fa:hb(’,i) |

Ko(k) = —itanh(k) and o= (k) = (o(k))~".

We obtain this reduced system by modifying the evolution equations of u_o
and s from the arc length formulation of the full 2D water wave problem in the
following way:

e We replace the operators 9! by the operators D! in order to avoid reso-
nances produced by the nonlinear terms.
This has to be done since we only want to consider a system with two evo-
lution parameters and therefore automatically miss out the special interac-
tion between u_q,u; and %_o, U, which could ensure that expressions like
0,%(u_y + ) make sense.

e We drop all terms that are neither linear nor quadratic and on top of that
also some quadratic terms, which cannot cause a loss of regularity.

In the following, we assume the local existence of real-valued solutions to our
system (1.2) in H®4 with s, as in theorem 1.2.1.
We chose ko > 0 such that (1.4), i.e.

W (ko) # 0, (3.34)
(1.5), ie.
W (ko) # £/ (0) (3.35)
and (1.6), i.c.
mw (ko) # w(mko) for m =42, ..., 45, (3.36)
(1.14), i.c.
w(ko) # 0 when deg(w) < 1, (3.37)

are true. Moreover, we chose ky > 0 such that for ji, jo € {£1} the only possible
solutions of the equations (1.12), i.e.

w(k) — jijsw(k F ko) + jrw(Ehko) = 0, (3.38)

are k = +ko and k£ = 0.
Solutions of (3.38) will correspond to resonances in our normal form transforms.
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Remark 3.2.1. In literature it was shown that when b = 0 or b > 1/3 there
can always only occur resonances in k = tky and k = 0 for all kg > 0. When
b €]0,1/3[ there can occur more than three resonances for some ko > 0.

Instead of deriving the NLS equation rigorously by proving residual estimates,
what could get pretty exhaustive, we will just assume that a NLS equation of the
form

w//(k())

OorA =1 5

O A+ ivgA|AJ?, (3.39)

with vy = 1(ko; b) € R can be derived via an ansatz of the form

(uu11> _ (ewgws) +O@2), (3.40)

where
e¥nrs(z,t) = eA(e(z — cyt), £7t) eilkor—wot) 4 ¢ (3.41)

wo = w(ko) and ¢, = W' (ko).
Moreover, we assume to have an improved approximation

eV = eV, + &%, (3.42)

where

v, = 6%((1)) = 5(¢1+¢—1)<(1J)

= e (Ai(elz —cgt),e%) Formol) e < é ) )

EQ\IJq — 52 ( wqfl ) )
bas
The functions 1, , and v, , shall have a finite support in Fourier space, which is
restricted to small neighborhoods of integer multiples from the basic wave numbers

ko. Therefore, A;(e(- — cyt),£%t) denotes the restriction of A(e(- — ¢yt), %) in
Fourier space to the interval {k € R: |k| < < ky/20} by some cut-off function:

Ay (= = egt), €)= F [xaa (OF[A(( = et) )] ()]
where X[_s) is the characteristic function on the interval [—6,d]. One can again
think of €. as enyrg, just with a support in Fourier space which is restricted to

small neighborhoods of the wave numbers +k.
The improved approximation eV shall have the following properties.
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Lemma 3.2.2. Let sy > 7 and A € C([0,Tp], H*4(R, C)) be a solution of the NLS
equation (3.39) with

sup ||A||lgsa < Ca.

TE[O,T()}

Then for all s > 0 there exist Cres, Cy,c0 > 0 depending on Cy such that for all
e € (0,g0) the approzimation eV = eV, + £2W, satisfies

sup  ||[Resy(e0)||lgs < Crese''/?, (3.43)
te[0,Tp /2]
sup ||5\IJ —ewNLS( 1 > ‘HSA < Oy, (3.44)
t€[0,Tp /2] 0
sup  (|Vellzrrnyeey + 1%l syee) < Cu, (3.45)
tG[O,To/EQ]
18ss1 + ity |1y < Cue?. (3.46)

Similar estimates can be shown for the full water wave problem, see [D19].

3.2.1 Key properties of the reduced system

The following properties of the system will now be sufficient for justifying the NLS
equation, i.e. to prove error estimates on the right time scale.
The reduced system is an abstract system of the form

8tu,1 = — iwu,l + /Ll(u,l, u,l) + B,l(ul, ul) + C,l(u,l, Ul) (347)
Oruy = dwuy + Ay (u—1,u_1) + Bi(ug, ug) + Ci(u_1,u1), (3.48)

where the linear operator iw is given exactly like before by

w(k) = w(k;b) = sign(k)+/ (k + bk3)tanh(k) . (3.49)
The quadratic terms are given in Fourier space by

Ay, u)(k) = / as(k b —mym) iy (k—m)i(m)dm,  (3.50)

R
B, (ur, un)(k) = / by(k, ke — m, m) @ (k — m)n (m) dm, (3.51)

R
G, un) (k) == / 5k, ke — mym) T (k — m)is (m) dm | (3.52)

R

where j € {£1} and the functions a;, b; and ¢; are assumed to be sufficiently

smooth.
For Z2 € {A_1,A1,B_1,B1,C_1,C1} and accordingly chosen z € {a_1,a1,b_1, by,
c_1,c1}, we have

z2(k, k —m,m) = O(k) for |k| — 0, (3.53)
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as long as |k — m| gets uniformly bounded.

The z(k, k —m,m) suffice the conditions of lemma 3.3.10.

Moreover, the operators Z always map a pair of real-valued functions on a real-
valued function and satisfy a priori estimates of the form

[wllm2 (o]l
||U||H1 HUHH2 )

[l L ayllol s

12 (u, )|z S

S (3.54)
[l [[0]] 21.ay

On top of that, we have the a priori estimates

lA-1s(f,9) + AL (fo 912 S min [ f L, (111} llglle (3.55)
1Bus(f,9) + Bi o (f 9)lee S min {1 fllze, [1f ]z} llgllzz
9.f)
(f,9)

g

g
IC-1(g, £) + Corulg, Hllze < min {I[fllaza, 1l } llgllze
ICL(f, 9) + C(f, )z S min {[[ s, [ zry} llglee s

and

IAT(f,9) +Coa(f )2 S min {| £l s, 1l i} gl e s (3.56)
1B-1,s(f9) + Cix(g, F)ll2 S min {|| fll s, |1 Fllercy } gl g -

Here, we are using the notations

ZJ(f,)=Z2(f,)+ Z(,[f), 2°:=zk;k—m,m)+z(k,m,k—m), (3.57)

/RZ*(g,f)hd:L' ::/RfZ(g,h)d;E, (3.58)
/RZ*(g,f)hdm ::/RgZ(h,f)dx.

Remark 3.2.3. Due to lemma 2.2.11, Z* and Z, exists and we can write

~

Z%g, f) = /Rz(—m, k—m,—k)g(k —m)f(m)dm, (3.59)

~

&@J%jédﬂm—hhﬂMﬂmﬁ%—mMm-

Remark 3.2.4. There is no special reason for which we picked the integer 4,
i.e. the H*-norm and L*(4)-norm for f. A larger real number can also be allowed,
however then the condition for corollary 3.3.14 may has to be modified accordingly.
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From our derivation of the NLS equation in section 2.1, we already expected
a condition like (3.53) to be crucial, since in the case w(0) = 0 we could only
rigorously derive or justify the NLS equation when p(0) = 0. The relevance of this
condition is indeed also the reason for which 8 and 0,0 were derived one time in
space before the water wave problem was diagonalized.
The condition (3.53) as well as the assumed smoothness of a;, b; and ¢; are not
entirely true for 4_5 and @, in the full water wave problem (3.25)-(3.30) due to the
presence of the operator d;'. This however should be evened out by the special
interaction between @_1, iy, 4_o and Uy. The same holds for (3.54), (3.55) and
(3.56).

The structure enforced by (3.55) and (3.56) can also be found in the full water
wave problem for @_» and 4y and stems from the dynamics of (3.17)-(3.18). To
make this structure a bit more tangible, one can rewrite the system (3.47)-(3.48)
as

8tu]- = jiwuj -+ Qj,ﬂL,l -+ leul s

Qi = Qpausm) = (A1) + Ayl ) + 3 Gm),
Qi = Qji(u—1,u1) = %(Bj(uh )+ Bj(-,ur)) + %Cj(u—h )

where j € {£1}. and the Q;,;, are linear operators for a fixed argument.
Then, we can write the system (3.47)-(3.48) as

Uu_ B U_ [ Fiw+ Q- Q- U_
at( Ull ) =€ ( Ull ) o ( @11 - iw—i—léu) ( U11 ) - (360

and the conditions (3.55) and (3.56) can now be understood as a condition regard-
ing the imaging behavior of the matrix

e (@t QL Qon+@i,
ere _<Q1—1+Q*11 Qn—l—@fl)7

where Q% . is given through the L?-product, i.e.

Jij2
[ @t gde= [ 105,900
R R

To give some more details on this, we have

2(@ 11+ Q5 1) = A 1s(uy,) + A (uy, ) +Coi(ur) +Corulur)
2(Q-n 4+ Q1) = Af (u_y, ) + Coq(uy, ) + Boys(ur, ) + Coule,wr)
(Q1 1+ Q% 11) Avs(u_y, ) +C(u_y,-) + By [(u,-) +Ci(-,ur),
(Q11+Q11) Bis(u1,-) + Bf ((u1,-) +Ci(u_y,-) +Ci(u_y,-),
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where A; s(u_q,-) = Aj(u_y, ) +A;(-,u_1) , Bjs(u_,-) analogously. Thus, (3.55)
refers to the diagonal entries of the matrix Q@+ Q* and (3.56) to the minor diagonal
entries of the matrix @+ Q*. One could therefore also formulate (3.55) and (3.56)
as a property, which the matrix Q + Q* has to fulfill.

As a side note, conditions similar to (3.55) and (3.56) were automatically ful-
filled for the system (1.2) from the last section, i.e. the system (2.3). This was in
particular, since the function p was odd and (1.10) held.

Lemma 3.2.5. The system (3.32) indeed satisfies the conditions (3.53), (3.54),
(3.55) and (3.56).

Proof. We write the system (3.32) as
Ou_q = —iwu_y — To(u—y + ur,u_y) — T1(u_y + uy,u_q — uy)
+ To(u—y — g, u—q —uy) — Ta(u—q — ur,u_y — uq)

— T4(U_1 + Uy, U—q + ul) s

8tu1 = iwul — Tg(u_l + Uy, Ul) + Tl(u_l + U, U—1 — Ul)
+ To(u—y — ur,u—q —uy) — Ts(u—q — ur,u_y — uq)
—Ty(uq +ur,u_y +uq),

where

To(f.9) = 0a(D;”f9),

Ti(,9) = 5 dulos D2l
Ty(f,9) = 5 0u(KoD; 0™ [0l

T3(f.9) = g w(07 f Koo~ 0ag),

Ti(f.9) = - 9a(D;' 1 D3'g — KoD;'f KoDy'g)

Bringing the system into the form (3.47)-(3.48), we now get
A q(uq,uq)==To(u_y,u_q1) — Ty(u_1,u_1) + To(u_1,u_1)
— T3(u_y,u_1) — Ty(u_1,u_1),
B_i(u1,u1) = Th(ur, ur) + To(ur, ur)
— T3(uy,uq) — Ty(uy, uqg),
C_1(u_y,uy) = =To(ur,u_1) + Ty (u_1,u1) — Ty (uy,u_q) — To(u_q,uy)

— Ty(ur, ur) + Ta(u—r,ur) + Ts(ur,u_1) — 2T4(u_1,u_1),
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Aij(u_y,uy) =Ty (u_y,u_q) + To(u_q,u_1)

- T3(U—1, U—l) - T4(U—1, U—l) )

Bi(uy,u1) = =To(ug,ur) — Ty (ug, ur) + To(ug, uy)
— Ts(uy,uy) — Ty(ug,uy),

Ci(u—1,u1) = =To(u—q,u1) — Th(u_y,ur) + Ti(ur, u_q) — To(u_1,ur)
— To(ur,ur) + Ta(u—1,ur) + Ts(ur,u_1) — 2Tu(u_1,u_q).

We immediately notice the following interesting structure

A—l(fvg) :Bl(f7g) (361)
Bfl(fag) :Al(fvg)
C—l(fag) :Cl(gaf)

This special structure is also present in the quadratic terms of (3.29)-(3.30), i.e.
in the arc length formulation of the full water wave problem. We decided to not
include this property into our key properties since we do not have to exploit it in
order to prove theorem (1.2.1). Nevertheless it could be an important feature of
of the water wave problem.

In order to prove the lemma, we will now take advantage of the operators
Ty — Ts.

The property (3.53) is obviously true since all nonlinear terms of the system
are basically a derivative.

Looking at the linear operators

~

Ty(7,9) = [ (ke = mm) Fok = m) glom) i,

we see that (3.54) is true for every 7 and thus also for A_,B_;,C_;, Ay, By and
C;. This can for example be shown by finding s, € R such that

|tj(k7 k — mvm)’
<C
et (L [m]2)o (1 + [k = mP)y 72 =

and then exploiting Plancherel together with Cauchy-Schwarz and Young’s in-
equality.

One can in fact show that even better estimates than (3.54) hold. So we can ob-
viously estimate T, without a loss of regularity. We can estimate the L?-norm of
To(f,g) only against ||g|| g1, i.e. the non-linearity will always lose one derivative.
For b = 0 the L?-norm of Ty(f, g) can only be estimated against ||g|| ;1/2. While for
b > 0 the L?>norm of T3(f, g) can only be estimated against ||g|| /2. Otherwise
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Ty or Ty are harmless. The operator 77 is harmless for b = 0, otherwise it causes
a loss of half a derivative.

In order to prove (3.55), we prove

IT5(f.9) + T5 (f: ) llaz < min || f s, [1Fllaca } llgllee (3.62)
IT5(g, £) + Tiu(g. F)llzz < min {[|fls, [z} llgllze

such that (3.55) directly can be followed.
Due to lemma 2.2.11, we have

o~

Ty(f.0) + To(fog) = / (t (k. — mm) + t(—m, & — m, —k)) F(k — m) §(m) dm,

)

(g f)+ (g f)= /R (tj(k,m,k —m) 4+ t(—m, —k,k —m)) f(k —m)g(m) dm.

We have to(k, k —m,m) = ikD?(k — m) such that

to(k, k —m,m) + to(—m, k —m, —k) = ikDZ?*(k —m) — imD;*(k — m)
=i(k—m)D2(k —m)

and

to(k,m,k —m) = ik:f)f(m)
= i(k = m)D*(m) +imD;*(m),

to(—m, —k, k —m) = i(k —m)D7%(k) — ikD;*(k) .

Therefore we see that (3.62) is true for 7; = Tp, e.g. by exploiting Plancherel
together with Cauchy-Schwarz and Young’s inequality like before.

Exactly like this, we can prove (3.62) for the other operators Tj. There are always
either similar cancellations happening as in the first equation, or there are no
derivatives falling on ¢ to begin with as in the other two equations above.

Concerning (3.56), we observe that neither A} [(f,9), C-1(f,9), B-1s(f,g) nor
C1.+(g, f) do include the dangerous term

To(f,9) = 0a(D3%fg)  or Tou(f,9) =—D;*f0ag.

As we have seen above the terms To(g, f) and To.(g, f) are harmless and the
operators T; can for j € {1,2,3,4} not cause us to lose more than half a derivative.
Thus (3.56) is easily proven.

]
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3.3 Error estimates for the reduced model

In this section, we ultimately will prove theorem 1.2.1. Therefore, our aim is to
prove that the H®*4A-norm of the error

_f u- YNLs
() (%)

remains bounded by some O(¢%/?)-term on the O(s2)-time interval [0, Tp/<?].
In order to achieve this, we will, just as in section 2.2, first estimate the error

R = ( - ) — e (3.63)

Uy

that the improved approximation e¥ makes.

o= (%)

be the improved approximation. We write the error (3.63) as

IR_ U_
8 1) _ 1
€ ( IR, )—( " )—8\11 (3.64)
where = 5/2 and ¥ is an invertible operator on L?(R) that later will be given by

some weight function ¥ in Fourier space.
Throughout this section, we will now work with the rescaled error

( e ) g ( " ) —ev). (3.65)

where 971 : L?(R) — L*(R) is the inverse of the operator 9.
Plugging in (3.64) into our original system, we obtain the following dynamics for
the rescaled error

OR_y = —iwR_ + 0 'G_1(RY,,RY , 9R_1,9R,) + ¢ P9 Res,_,(e¥) (3.66)

Let

O R, = iwRy + e97'G(RY,, R}, 9R_1,9R,) + £ P9 'Res,, (e7), (3.67)
where
Gi(RY,, RV, 9R_1,9R,) :=A;(R*,,9R_}) + A;(YR_1, RY,) + B;(R} ,9R,)
(3.68)
+ B;(VRy, RY) + C;(RY |, 9R,) + C;(WR_1, R}),
and
RY =V, + %eﬁ—lmj : (3.69)

Remark 3.3.1. The mappings G; are bilinear, when they are viewed as mappings
(RE)? x (RF)? — RE.
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3.3.1 Achieving O(c?)-time scale while preserving regular-
ity

We have chosen 3 = 5/2 large enough and assume Res,, (¢¥) to be small enough
such that we formally have

OR; = jiwR; +e07'Gj(RY,, RY ,0R_1,0Ry) + & "0 'Res,, (£ ¥)
= jiwR; + 07 'G;(V_1, ¥, 9R_1,9Ry)
+ %sﬁﬁ—lgj (VR_1,9R:1,9R_1,9R;) + e "9 'Res,, (cV)
= jiwR; + eV 'G;(V_1, V1, IR 1, 9Ry) + O(e?).

We assume that ¢ and the combination ¥'G; cannot cause a loss of e-powers.

Thus, by exploiting
\ijl wc + €"¢ -
U = = el 3.70
( ¥y > ( g ) ( )

O R; = jiwR; + 07 G;(Ye, 0,9R_1,ORy) 4 €20971G; (¥, gy, VR_1,9Ry) + O(£?)
= jZWRj + Eﬁilgj (¢C, 0, ?9R71, 79R1) + O(€2>

we obtain

= jiwR; + 9! (Ajwc, IR_1) + A (OR_1,9.) + C; (e, 031)) 4O

Our system has only resonances in k = +ko and k = 0, i.e. equation (1.12) is only
solved by k = £k and k = 0. Thus, we define ¥ exactly as in (2.30). Thanks
to our experience gained from section 2.2.1, we now expect to formally obtain a
O(e7?)-time scale for the error via the normal form transformations

N s B () = [ (b= m )k = m) Ry (m) i, (371)
and
7;1j2j3j4 (wjm ¢j47 st)(k) = /Rtj17j27j3,j4 (k)¢j4(/{7 - m)wﬂ (m - n) 73 (n) dn dma
(3.72)
where N
o (kk— Ve oo Ak —
ﬁjljz(ka k— m, m) — 10J1J2( ’ m7m) ) (m)X ( m) ’
w(k) — jijow(m) + jrw(k —m)
) Pos(k) nji gy (K, jako, k — jako) pjyge(k — jako, jako, k — 2jako)
tjl,jz,jsdz; (k) - )

(— fw(k) — 2w(jsko) + jaw(k — 2jako))
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(alk;k; m,m) + a_i(k,m,k — m))

ic_1(k,k—m,m),
:—z(al(k:,k;—m,m)+a1(kamak_m))’
= —ici(k,k—m,m)).

Just as in the last section, x. is the characteristic function on supp {D\C, the function
Ve oo 18 given as in (2.31) and P,; denotes the characteristic function of the set
{k:a <|k| < b}.

Considering (2.2.6), we expect the normal form transformations N, ;, to lose
regularity. For this reason, we use the modified energy from section 2.2.2 to pre-
serve regularity. We define

E=Ey+ Ey, (373)

E= Y (Glotmlre 3 [ om0 N e Ry )

j1e{x1} jee{£1}

Eo(R) = | Rl + |1 Rallz2

- R te Z 0! JJ2 Ilea Rjz) + & Z 19717}]513]'4 (wjm wjm Rj3) .

Jee{£1} J2,j3,Ja€{£1}

Herby 9~' : L*(R) — L?*(R) is the inverse of the operator 9, ¥ is just as in (2.30)
and ;, is defined similar as in (2.8).

We now expect that this energy is equivalent to the energy ||R_1||%. + ||R1 |3
for ¢ > 1, just as in the one in section 2.2.1. Moreover, we expect that the evolution
of this energy only contains terms that are of at least quadratic e-order.

In the following, we will now show that these expectations are indeed met.

We start by looking at the normal form transformations.

Lemma 3.3.2. The normal-form transforms N, ;, were constructed such that
Z < — J1iwN. Jij2 ('lvbca ) - Nj1j2 (iw¢cv Rj2) + j2Nj1j2 (wca iWRj2)> (374)
jQE{_lvl}
- _gj1 (wca 07 19&,00R71> ﬁs,ooRl)
where

gjl (\11—17 \Ijlu ﬁR—la 19R1) - g]l (¢C7 07 195,OOR—1; ﬁS,OORl) (375)
< e O([|[R-illa + [[ Rl 2)-
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Moreover, for every fix h € L*(R,R) the operators Nj ;,(h,:) are continuous
linear operators which map H'(R,R) into L*(R,R). In particular, there is a

C = C(|h(-)xe()||21) such that for all g € H'(R) we have
NG5 (R )|z < Cllgli (3.76)

IN;—i(h, 9)ll2 < Cllgll g (3.77)
Proof.

In order to find possible resonances for IN; ;,, we have to look at the zeros of
the denominator of n;,;,, i.e. of

w(k) — jijaw(m) + jrw(k —m),
for x.(k —m) # 0, i.e. for |k —m F ko| < 0.
Due to (3.38), we can chose ¢ such small that for |k —m F ko| < 6 the equation
w(k) — j1jow(m) + rw(k —m) =0, (3.78)

can have no other solutions than £ =0 or m = 0.
Since we also have

pjle(k’ k— m, m) XC(k> - O(k) for |k‘ - 0’

due to (3.53), we can now proceed exactly as the proof of lemma 2.2.5 in order to
show that the normal-form transform N, ;, has no nontrivial resonances.

The property (3.74) can be easily checked in Fourier space.

The estimate (3.75) follows by exploiting 3.3.1, i.e.

gj1 (‘1171; ‘111, 79R717 ﬁRl) - gjl (%; O, 196,wa17 195,le)
=¢c gjl (77%71, 77Z)q1719R—17 ﬁRl) + gj1 (¢c» 07 (79 - ﬁs,oo)R—l, (79 - 196,00)]%1) )

together with U(k) — U oo (k) = O(e) and estimating G;, with (3.54).

The estimates (3.76) and (3.77) can be shown by using (1.11), i.e. the expan-
sions (2.52) and (2.54), together with (3.54).

The bilinear operators A; and C; map pairs of real-valued functions on real-
valued functions and

—jlz'q/?;’oo(m) Xe(k —m) _ _( — 11 195 oo(m) Xe(k —m) )
w(k) = jrjaw(m) + jrw(k —m) w(k) — jrjaw(m) + jrw(k —m)
(i Peemplm) ek m)
w(=k) — jrjow(—m) + jrw(—k +m)’"

Thus,

njljé(kv k — m7m) = nj1j2<k7 k — m, m) = nj1j2<_k> _(k - m)? _m)

and the mappings f +— Nj,;,(h, f) map real-valued functions on real-valued func-
tions. [
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Lemma 3.3.3. The normal-form transforms T, j,j.;, were constructed such that
for all jy, j2, j3, ja € {£1}, we have

1971, o lle < O(I Rl + 1Rl a2). (3.79)
where

}/}17]'2 = Nj1j2 (wm 79_1 gjz (qj—la \1117 ﬁR—l; ﬁRl)) (380)

+ Z ( - jl iw7}1j2j3j4 (%’47 1/}j47 st) + 7}1j2j3j4 (_wﬂ/)jm 1/13'47 st)

Ja,ja==%1
+ 7;1j2j3j4 (wjm _iwwj47 st) + 7}1j2j3j4 (wjm %'4 ) j3 iWRj3)> .

Furthermore, for every fix functions g, h with §,?L € LY(R,C), the mapping
[+ Tiiu(g, h, f) defines a continuous linear map from L*(R,C) into L*(R,C) and
there exists a constant C = C(|[g]|1]|h|| 1) such that for all f € L*(R,C), we have

H7;1j2j3j4(97 h, f)||L2 < CHfHL2 . (3’81)

Proof. The proof is analogous to the one of 2.2.8.
That T}, .54, 15 well-defined and estimate (3.81) does hold, can be shown exactly
as in the proof of 2.2.8.
Considering estimate (3.79), one shows

ﬁ_leUé (1/}07 19_1 gjz (\11_17 \1117 ﬂR—la ﬁRl))
=) (PO,éﬁileljé (1 971 G (15,, 0,0 Ry, 0 Ry))

Jja==%1

+ Po’aﬁilele (wﬂ’ 1971 gj2 (w*jm 07 ﬂRfla 19Rl)))
+ €P0751971Nj1j2 (¢c7 1971 gjz (%_1 ) ¢q17 19R,1, l(}R1>)
+ P5,00Nj1j2 (77/}07 19—1 g]2 (\11—17 \Ijla ﬁR—l; ﬁRl))

by exploiting the fact that 971 = Pos0™' + Psoo, ¥ = (¢ + €¢q,1>5¢q1)T and

Ve =11 + 1.

Using (2.32), (3.76) and (3.77), (2.37) and (3.54), we see that the L?*-norm of the
last two summands can be estimated against O( [|R_1| g2 + || R1l|z2)-

For the remaining summands, we have in Fourier space

f[PO,éﬁ_lNﬁjz (¢j4’ 19_1 gjz (wfa 07 19R—17 1931))] (k)

=Y Aoslh) /R /R Ko (ks ke — mym, )y, (k — m)de(m — n) B (n) dndm

ja==%1
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where

) k — m, m) (]2Z Pia.j3 (m, m—n, n)) 19(71)

Ko (b — o) pjl,]é(Ak
jae( ) D(k) (w(k) = jijaw(m) + jrw(k —m))

We could replace the term . o (m)9~1(m) by 1, since |k| < 6 and |k—m—jsko| < &
implies |m| > ko/2 > ¢.
Since the required Lipschitz continuity is given for Kj, ., we can now proceed as
in the proof of 2.2.8.

O

Lemma 3.3.4. For Ey as in (3.73) and m > 2, we have

3/2

OBy < & 0(51/2 (IRt Zm + | Rl zm) ™" + 1Rl Fim + | Rl + 1) , (3.82)

Proof. The proof is analogous to the one of lemma 2.2.9.
Exploiting the skew symmetry of iw and then (2.32), (3.76), (3.77) and (3.81), we
obtain

ékEg = Z /Ej@tﬁj + Rj 8t]:2_jdx
j=+17/R

=Y /RT@RJ- + R;0,R; — R, jiwR; — R; jiwR; dx
R

j=+1

<2 Bl 2|0 R; — jiwRy | 12

j=+1
1/2 ~ P
< O((IR-l + IR ) D2 N0y = jisoRyllse,
j=+1

where
OR; =0Rj+e Y V0N, (We, Rpy) +€> > 07 0 Tisnguis (U, Vi, Ryy)-

J2€{£1} J2.J3,Ja€{£1}
Due to

jiwRj = jiwRj—e Y jiwd ™ Ny, (the, Rj,)
joe{£1}

- 52 Z jiwg_lﬁjzjwﬁ (%'4, ¢j4’ Rj3) )

j27j3’j4€{il}
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we get
8tf%j :] inj
-+ 81971 (gj(‘lf,l, ‘Ifl, 19R,1, ﬂRl))

+ Z ( - .7 Z‘W‘]\[jjz Wc, Rjz) + ij2 (aﬂ/}m RjQ) + ij2 (¢c7j2 injé)))

J2€{£1}

+2207 (3 Ny (Yo 071G (Vs W1, 0, 9R,)

J2€{£1}

+ Z ( —J iwﬁj2j3j4 (¢j4’ 7vZ)j47 Rj3) + 7;j2j3j4 (aﬂ/}j4, 77ZJJ’4’ Rja)

Jo,j3.jac{£1}

+ Tijajaja Wia O, Ris) + Tigugajs (Wi Vs Ja iw Ry, )))

B
+ % 971G, (VR_y, 9 Ry, 0R_,9Ry) + %0 'Res,, (e V)
-1 e’ -1 —B.g—1
+e > W Njjither 597Gy, (9R-1, O Ry, VR, O Ry ) + €779 Resy, (0))

jee{£1}

+ 53 Z 19_17;j2j3j4 (wjzu ¢j47 ﬂ_lgjs (REID Ripv ﬂR*b 19Rl))

j2aj37j4€{il}

e Y I T (U a0 Resy, (e9)).

J2,j3.Ja€{£1}

By construction of our normal-form transforms, i.e. due to (3.74) and (3.75), and,
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(3.79) and (3.80), we obtain
&R =J sz

+ev” ! Z JJ2 atd]c + iw¢cv Rj2)

joe{£1}

+ 6219_1 ( Z 73]’2]'3]'4 (at¢j4 + iwwﬂ’ wﬂ’ Rj3)
Jj2.g3.J4€ {1}

+ Z 7;j2j3j4 (chﬂ atwﬁl + iwwjaﬂ Rj3)>

J2.,j3.Ja€{£1}

B
+ %ﬁ*lgij,l, URy, 9R_y, ORy) + £ *0 ' Res,, (V)

+e Z 79 j]g wCJ_ 1gj2(79R—1719R1719R—1719R1))

joe{£1}

+e Y 9TING, (e e "9 Res,, (7))

joe{£1}

+ 83 Z l9717}j2j3j4 (%’47 ij 1971g.7'3 (Rglh R;I}7 Q9R717 19R1)>

J2,j3.Ja€{£1}

+e? Y 9 i (Vi s e P9 Resy, (€0))

Jo,j3.jac{£1}

+ O (IRl + | Ral[7m)

Due to the bound (3.46) for Oyp4; + iwis;, we obtain that the L2-Norms of
the second, third and forth term are O(?)(||R_1||%: + ||R1]%:)Y? by using the
estimates (2.32), and (3.76), (3.77) and (3.81).
Due to our choice of § = 5/2 and W, i.e. due to (2.38), and, (2.32) and (3.43),
the L?-Norm of the fifth and sixth term are bounded by O(e?)("2 (||R_1[|3m +
71 3) +1).
Now, we also see, by using the estimates (2.32), (3.76), (3.77) and (3.81) that the
L2-Norms of the last three terms are bounded by O(2) (eV/2(|| R_1[|3m + || B1 || 3m )+
1).

We now obtain

0By < O((IR-1 17 + [ RullF)?) D I0cR; — jiw Ry

j=+1
< 2OV (IRt 3w + R l3)*? + 1Rt g + Bl + 1)
(Note v/z <z + 1 for z > 0.) O

1/2
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Lemma 3.3.5. For j € {£1}, g € L'(R) N L*(R) and f;, f € H'(R), we have

/R £ Niy (g, ) da + / Fos Noss(a £ de < O(lgll) Il fillie s (3.83)

/ I Nislg, ) dz < O(llglu) 1 £]12: (3.84)

Proof. By using (2.66), i.e. (2.68), we get
/fj Ni_j(g, f-;) dx + / f-i N_j;(g, f;) dx
R R
:/f1N11(9,f1)d33+/f1N11(9,f1)d33
R

/f _u(g, f) + N{_ 1(9>f1))

where, just as in (2.67), we use the notation

~

N e D) = [ (= = m, —K) (k= ) Flm) di
R
For |k|,|m| > 0, we have

n_u(k,k—m,m)+ny_1(—m,k —m, —k)
_ P 1k k—=m,m) x.(k—m)  pii(—=m,k —m, —k) x.(k —m)
w(k) +w(m) —w(k —m) w(—k) +w(=m) + w(k —m)
i Xe(k—m)
w(k) +w(m) —w(k —m)

(coi(k,k —m,m) + a1 s(—m, k —m, —k)) .
By making a similar expansion as in (2.55), we get

/Rf—l (N_11(g, f1) + N{_1 (g, f1)) dz
= [ 11 5 (Coaloe £+ ALl ) da o+ O(Uglor) 5Vl
R w

due to (3.54).
Then, by using Cauchy-Schwarz, we obtain (3.83) due to (3.56).

Now, we prove (3.84).
By using (2.66), i.e. (2.68), we get
[ #8it0. e =5 [ F(Nila.p) + V(0. 1) o
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Therefore, we have

| £3t0 1o < 122Nt £)+ N0, D)
where
Niilg, )+ N3i(g. f)
= [ (= ) s (= k=, —80)§0 = ) F )i,
and

nj;j(k,k —m,m) 4+ n;;(—m,k —m, —k)

_ pij(k,k —m,m) + pj;(—m, k —m, —k)
w(k) —w(m) + jw(k —m)

Xe(k—m) for |k| — oc.

Since

pflfl(ka k— m, m) + pflfl<_ma k— m, _k)
=i (a_1(k,k —m,m) +a_1(—m, k —m, —k)
+a_i(k,m, k —m) + a_i(—m, —k,k —m)),

p11(k, k —m,m) + pi(—m, k —m, —k)
= —i(ci(k, k —m,m) + c;(=m, k —m,—k)),
we obtain

N (g, F) + N9, H)| 2 < Olgllen) 11£ ]2 -

due to (3.55) (e.g. by exploiting (2.54) and (2.52)).

Corollary 3.3.6. Let € < gy and ¢ be sufficiently small.
For £ > 1, the energy & is equivalent to (||R_1||ge + ”R1HH€)2; i.e. there are
constants C1,Cy > 0 such that

(1Bl + I Rle)” < Ci& < Co(lRallwe+ [ Rullae)”

Proof. In particular thanks to (3.83) and (3.84), the proof works analogous
to the combined proof of lemma 2.2.14 and corollary 2.2.16.

Lemma 3.3.7. For ¢ > 1, we have

OBy =e*V+ e O(& + 1), (3.85)
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where

/ O R, 971G, (R, RY OR_1, 0R,) dx (3.86)
jre{£1}
+ Z / af lgjl (R\Ilp R;IJ’ VR 1 ﬁRl) ag .71]2 (w& )
J1,j2€{£1}

+/a’ZRﬂaﬁ Njjs (¥e, 9 1gj2(RE’1,R§’,ﬁR_1,ﬁRl))d:c),
R

and

1
R =, + 5" 2(0Ry) (3.87)

with g, as in (3.70).
Remark 3.3.8. Due to (2.73) and (2.37), we see that €* V; has the desired e-order.

Proof. The proof is analogous to the one of lemma 2.2.17.
We have

OB, = / OLR;, 0,0°R;, dv
le{il}
Z /ataéle a:l; j1J2<w67 )
J1,J2€{£1}

/ aERh 8519 1ath1j2 (ww Rjz) dx > :

Using the error equations (3.66) and (3.67), and exploiting

v vy
(5)-(0)( )
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we get

O E, = Z 31/83331 zw@th dx

Jre{£1}

+e ) /athaf; G (¥e, 0,9R_y, VR, ) da

Je{£1}

+ 3 (i [ w0l Ry 0 N R o

joe{£1}

+ ]2 / aZle af: J1]2 (1/%7 ZWRJQ) dx
/ o, o R, 85 Nj,j, (iwthe, Ry, ) doe
/ 8£R]1 3ﬁ Nijs (8t¢c + wi., R ) dx) )

/ 'R, 097G, (RY, RY" OR_1,9R;) du

Jle{il}
Z / aé lgjl (R‘llh R;Il7 VR_ 1, ﬁRl) al ]1]2 (@Z)M )
J1.J2€{£1}
+ /]R 8€R11 aﬁ ]1]2 (¢C7 lgjé (Rgh Riy’ ﬁR_l’ ﬁRl)) dr >
+ / R, e P00 Resy, (V) dx
Jie{=1}
e 0 ([ o R, (W) 00 N R
ety VR

—i—/@zR]l O Ny, (Ve ﬁﬁflRes%(g\If)) d:c).
R

Exploiting the skew symmetry of iw in the third integral and then using (3.74)
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and the definition (3.86), we get

8tEg =& / aéle 85; lgjl (¢C; 07 (19 — 19€,OO>R717 (19 — ﬁe,oo)Rl) dz

]1€{i1}

/ agle aﬁ ]1]2 (atwc + zwlﬂm ) d.T)

+ &%V,

R

Jre{£1}
o3 ([ R () 00 Ny )
J1,Jje€{£1}

+ / QoR;, 0507 Ny, (Ye, e Bﬁ’IResujZ(a\Il)) dm) :
R

We now show that all terms except the term €2V, can be estimated against
e2O(& + 1). Thereby we will especially take advantage of corollary 3.3.6 and
(3.45).

For the first integral, we can use (2.73), Cauchy-Schwarz and the fact that

(I(k) — Ve mo(k)) =

. B {5 +(1— )5 when 0 # 4w (07) # 2w(ko) and |k < ¢,
0 else ,

in order to get

5/ QR 05971Gs (Ve 0, (9 — Ve ) Rty (¥ — Ve o) Ry ) d < 2 O(&y).
R

Jj1 Yz

The second integral in the above evolution equality is €3 O(&;) due to the
estimate (3.46). We obtain this by first using (2.73) and then exploiting (3.83)
and (3.84) in order to estimate without losing regularity.

The last three integrals are 2 O(&; + 1) due to (3.43). To see this, we use first
(2.73), then integration by parts to shift some derivatives away from Ry;, and
finally Cauchy-Schwarz together with (3.76) and (3.77). Here, we also exploit the
estimate \/z < |z| 4+ 1 after using corollary 3.3.6.

[

3.3.2 Closing the error estimates via energy transformations

We will in the following close our error estimates such that theorem 1.2.1 follows.
Apart from some technical details, closing our energy estimates will in some sense
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be easy since we are formally in the case deg™(p) < 1. For b > 0, which corresponds
to the for water wave problem unsolved case, all the more so since we have on top
of that deg(w) > deg™(p).

Interestingly, the case b = 0 is more difficult due to the fact that in this case we
formally have deg(w) < deg®(p). The arc length formulation of the water wave
problem seems to suit the case b > 0 better than the case b = 0.

Up to this point everything we have proved held for b > 0. We will in the following
close our energy estimates for b > 0 in such a way that one also sees, which terms
would have to be analyzed further for b = 0. In order to close the energy estimates
for b = 0, one would have to exploit some additional key properties of the system
(3.32).

We will now first prove two technical lemmas needed, before we will close our
energy estimates.

Lemma 3.3.9. Let N € N and ¢ > 2N + 1.
By introducing the notation

RY ==, + R, (3.88)
we obtain

G (R, Ry, 9R_1,9R,) (3.89)

N
/ . .
=3 ()o@ ot o om0 o)
n=0

{—N-1

E ¢ n n -n —-n
+ <TL) gj (ax RE]I? a:r R%? aﬁ ﬁR—la aﬁ 19R1)
+ EZ ! G;(OmW_y, 0mWy, 05 IR, 0L IRy
n J\Yr ¥ =1, Vg *1, Uy -1, Uy 1)-
n={—N

Proof. According to (3.68), we have

G (RY |, RY 9R_1,9R,) =04 (A;(RY,,9R_1) + A;(9R_1, RY,))
+ 0% (Bj(RY,9R:) + B;(VR1, RY))
+ 9L (C;(RY|,9R:) + C;(YR_1, RY)) .

Leibniz’s rule and the definition of R}I’ =V, + %55_119Rj yield that for continuous
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bilinear operators Z:

N
QZ(RY R, =Y 5) (O"RY, 0"9R,,)

J1° n J17 T
n=0
{—N—-1 /
n —n
+ > (n) ("R}, 05 "IR,,)
n=N+1
/l

+ (g) (O, 0L "IR,,)
{—N

Y4
Y ( ) ("IR;,, 05 "IR,,) .

n=¢—N

N | —

Proceeding analogously for Z(JR;,, R‘I’) and then combining all three equations,
we now obtain (3.89) due to the fact that

fj() st = (1) zers0m)

n={—N n=0

Lemma 3.3.10. Let
%Uy%z/%%ﬁ—mmﬂﬂhﬂmﬂmMm
R

where
Zj(ka k— m, m) = Z Zjl,z<k)2327z(k - m)’ziz<m)
with I; < co. The functions 2]11, zﬂ and z ; shall be sufficiently smooth, fulfill
deg(z},), deg"(27;), deg™(z};) < o0,
and have the property (1.10).
Let f, h and g be sufficiently reqular.

For A := Z(f,-), B := Z5(h,-) there is some C(A, B, f,g) > 0 such that for all
g € H* we have

|ABg — BAgll2 < C(A, B, f,9) lglla- (3.90)
where
S =
deg*(2L,) + deg* (2, d*l‘d*?"—lo}.
max{ieffff‘fi}( eg”(z1,;) + deg"(27,)) ﬂe%ﬁi}( eg”(zy;) +deg(23,)) — 1,
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Remark 3.3.11. By proceeding similarly as in the proof for lemma 2.2.20, one
can make a more precise estimate and explicitly calculate the required reqularity

for f and h.

Before, we prove this rather abstractly formulated lemma, let us first bring an
example to illustrate the idea behind it.

Example 3.3.12. Let g := 0'R.
Moreover, let

Ag = 0.(f9;9), Bg = 0,h0,g .
We have
| Agllzz < 1 flla=105 gl e 1Bgllzz < [|Alla2lgll e -
We get
ABg — BAg = 0,(f0, " (0,h0,9)) — 0,hd2(f0; )
= f0:h0r9 — Oxh fOrg
+ 0,10, (0:hD,g) — 0,0(20, fg + 03 0, g)
= 0, /0,1 (0:h0,9) — 8,h(20,fg + D2 £, g)
and

10:.f 0, (050029 12 = 1102 f (Oshg — 05 (0zhg)) |12
< [10pfllocll Ozl llgll 22 + ||aocf||L2H/Raghgd$Hoo

< N F =Ml 2llgll 22

10:12(20,.f g + 07 f07 ) |2 < | fllmzs Rl 22110 gl e -

Thus, we obtain
|ABO,R — BAO,R||r2 < O f |l 2|1l 12) 105 Rl 1 -

This is a much better result than the one we could obtain by estimating the L?-
norms of ABOLR and BAOLR separately, what would involve an estimate like

1f0:h0ugllze = 1 fO:hOT Rl < || f e llRllz2 10 Rl 12

Proof of lemma 3.3.10. Without a loss of generality, let
Alfog) = [ (1) (k = m)a®(m) 3(m) dim,
R

Bh,g) := / D (k) (k — m)b(1m) G(m) dm.
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a2(k —m) = a®(k —m) f(k —m) and b%(k — m) := b*(k — m)h(k — m).
By using the Taylor expansions
a*(k) = a*(n) + (a) (n) (k —n) + ...
=a'(n) + (a")' (n) (k —m) + (") (n) (m —n) + ...,
a*(m) = a®(n) + (a®) (n) (m —n) + ...,
bt(m) = b'(n) + (bY) (n) (m —n)+ ...,

we have

= /R/Ral(k;)dQ(k‘ —m)a®(m) b (m)b*(m — n)b3(n) G(n) dm dn

[ ) 0 0 i

+R17

where in R we just collected all the other integrals that emerged.
Via analogous Taylor expansions, we can get

= /R/]Rbl(k)l;Q(k —m)b*(m) a*(m)a*(m — n)a®(n) g(n) dmdn

= /R/Rl;?(k —M)d2<m—n) al(n)ds(n)b1<n)b3(n) /g\(n) dm. dn

+R27

where in Ry we just collected all the other integrals that emerged.
Since the convolution of functions is a commutative operation, we now get

AB(g) / / (h — m)B2(m — n) a* (n)a® ()b (n)b* (n) G(n) dim dn

/ / B(k — m)a2(m — n) a* (n)a® ()b ()6 (n) §(n) dm dn
+ Ry —

:Rl —Rz.

Due to the Taylor expansions and Plancherel, the L?-norm of an integral from R,
and R, can be easily estimated, e.g.

H/R/RJ/U{;—771)&2(/7{:—m)a(m—n)l?(m—n)7(71)/9\(71)dmalnHL2
= O(1) || 7~ [va’] ]:71[052]?71[7/9\]HL2
< O(IIF wa | |7 oo ) 17 [yl =
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For the integrals involving the remainder this of course has to be modified by
proceeding similarly as in the proof for lemma 2.2.20.

Since the property (1.10) is assumed, the L*-norm of R, and R, can be estimated
by terms only involving the H*-norm of g, where

s = max { deg”(a') + deg*(a”) + deg*(b") + deg*(b*) =1, 0}.

]

Remark 3.3.13. As in the last section, we will from now on assume that €& < 1
for e < gq.

Corollary 3.3.14. Let b > 0 and ¢ > 4. )
For e < ey and ¢ sufficiently small, there exists an energy & and some constants
¢,C' > 0 such that

(IRl + [Ralle)® < & < C (|Roallge + | Rillie)® (300)
and
8t8~g S 52 O(gg + 1) .

Remark 3.3.15. Up to this point we have proved everything for b > 0. While we
only prove corollary 3.3.14 for the case b > 0, we will present the proof in such a
way that it is clear which terms have to be further analyzed for the case b = 0.

Proof. According to the definition of & in (3.73) and due to lemma 3.3.4, we
have

8t6’g = @tE() + 8tEg = atEg + 52 O(gg + 1) R
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where, due to lemma 3.3.7,
O E, = g2 Ve + g2 O(Eg + 1)
- 82 Z / 8£RJI aﬁ 1gj1 (Rfia R;Ilq ) ﬁR*l; 79R1) dx

ne{£1}

+<€ / aﬁ 1gjl (R‘ljlaREIjaﬁR 1719R1)a 19 J1]1 (mejl)d:U

ne{£1}

Y / LR, 00 Ny, (e, 971Gy, (RY,, RY ,9R_1,URy)) da

jr1e{£1}

+E / aﬁ 1gj1(R‘P1’R;II719R 1719R1)a€ J1 J1(¢C? —Jl)
J1e{£1}

Z / ath aﬁ J1 —J1 (dj& 19_1g—j1 (R?lv Riya Q9R—17 ﬁRl)) dx

jre{£1}

+ &2 O(Eg-i- 1)

4
=Y L+ 0(&+1).

=0

First, we analyze the term I.
Using (2.73), we get

Iy = & / O'R_1 G (R"", RY*, OR_,,0Ry) du (3.92)
R
+ &2 / 'Ry 0'GI(R"4, RY" R_,,9Ry) dx + £2 O(& + 727 .
R

By proceeding analogously as in (3.89) and setting
=g, + "2 (VRy), (3.93)

we obtain

Iy = &2 /a‘ 1 G (RY, R 0"UR_1,0'0R,) da

+¢? /8£R191(R‘I"{,R;I’q,aﬁz9}% JOUIR ) dr + 2 O(E +1)

due to (3.54).
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Plugging in the definition of (3.68), we get

Iy = & / DRy (A1, (R™,0L9R ) +C_1(90R_y, RYY)) da
R
% / OLR_y (B_1 o(Ry*, 0 9R,) + C_1 (R, 0 0R,)) da
R
/ OLRy (Ars(RY,0%9R 1) + C1(85IR_1, RY")) dx

g’ / OLRy (Bis(Ry",0%9Ry) + Ci(RY1, 0L0R,)) da
R

+ &2 O(gg + 1) .
By using lemma 2.2.11 and (2.72) together with the notation (3.58), we have

/afR Z(R}", 0%9R,,) dx = £ /a%m Z*(R}", 0'R;,) du

Ji T J1 0 Ve

—c /afR ZY(RYOR,) du + 2 O(E + 1)

7 )T ]2

and thus
/ 0LR;, Z(R}", 019 R,,) du (3.94)
— 55 /RaﬁRj2 (2 + 2)(R}", 0 Ry,) da + 2 O(E, + 1)
for Z =A_4,.

Now, we obtain
/a R_y Ay J(RY, 8“0R_y) dx

— %82 /aﬁRl [Ai s+ A% J(RY LR ) do + 2 O(E, + 1)
R

= ¢? O(gz-i- 1),

due to (3.55).
We can proceed analogous for By 5, C_; and similarly for Cy, such that (3.55) yields

Iy = £ / IR 1o(RY",0%0R,) + C_1(RY1,0%9Ry)) d
4 e / 'Ry (AL (RY,0L0R_,) + C(09R_, RY)) da
R
+20(&+1).
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Using lemma 2.2.11, (2.72) and the notation (3.58) again, we get

°ec / OLR -y (A] (RYS, 0LR) + Co (R, 0L Ry)) dae
+€ /(95 —1,s Rl 78 R1)+Cl7*(8ﬁR1’Rf]q)) dx
+ e O(gg+1) .

According to (3.56), the mapping F(Zsf‘{, Rqu, -), which we define by
F(RE&L R;Ijq7 ) = T,s(é?{v ) + C—l(REjl{’ ) + B—I,S(Rqu7 ) + Cl,*('a R%) ’ (395)
maps H'/?(R) onto LQ(R) By exploiting (3.66), (3.67), the skew symmetry of iw

and the properties F(R”, RY?,-) inherited from (3.95), we have

1
5 O / O'R_ 1—F(R‘I"{,Rf’q,8ﬁR1)dx
R

/azR F(RY RY*,0'R)) dx

1 1 g -
+ € / R_, aF(RE"{,qu,iwaﬁRl)dx
R

1 1
+§53 / 8£19‘1Q_1(RE’1,Rf’,ﬂR_l,ﬁRl)a F(RY R}*,0'R,) dx

1
+2€ /afR_l—F(ng,qu,af; “1G,(RY,,RY,9R_1,9R))) dx

1 i )

+ e /afR_l—w( (@R%,qu,aﬁ}a)+F(RY;,@R$4,6§RQ) dx
1 1

+§€2€_5 /aﬁﬁ_lResu_l(s\P) EF(R%,RIPQ,@‘; 1) dx

1
+ 2525 /afR_l —F(RY, R}, 8"0 ' Res,, (cV)) dz .

The last three integrals are 2 O(&, + 1) in particular due to lemma 3.2.2 and the
assumption that €&, < 1.
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By adding a zero, we obtain

1 1
5 O / OR_ 1—F(R“I‘§,Rf’q,aﬁRl)dx

1

- 5¢ / O'R_ 1— sz(R“’g,qu,aﬁRl) —F(R?g,éfq,ma;;&» dzx

1
+§€3 / 85&**19,1(]%?1,R}I’,ﬁR,l,ﬁ‘Rl) — F(RY R}, 0'R)) du

1
+2a /afR I—F(Rq’i,Rf‘l,ﬁﬁ “1G\(RY,,RY,9R_1,9R,)) da

+20 (5@ + 1) .
Using Plancherel for the second integral, we have

1 1
-3¢ / OR_ 1—(sz(Rq’g,Rf’q,a§Rl) F(Rq’g,Rf’q,zwale)) dr

~ g’ /EVR /fkk: mm) wik) (k:)( )65R1( )dm dk ,

where, according to (3.95), the function f(k,k —m,m) can be explicitly given by

—

fk,k—m,m) = (a5(=m,k —m,—k) + c_1(k, k — m,m))}?‘f‘{(k —m)
+ (0%, (k,k —m,m) + c1(—m, —k, k — m))}{%f\q(lﬂ —m).

For some C' > 0, we have

‘(ykyfi 1> w(k)w?kt;m) ‘ < C((KP+ 1) (Jk = m + 1)) .

This can be shown by using Taylor, exactly like in the proof of lemma 2.2.20.
By exploiting (3.56), we therefore obtain

/ PR — sz(R‘I’g,R% O'Ry) — F(R?g,}?f’q,z‘waj;}zl)) dx

1 » Mz

§€ O(gg—i-l).
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We now arrive at

1 1 ~ ~
Iy = =20, / O'R_y —F(R R} 0'Ry)dx
2 R w

1 1 - -
- 553 / 85219’19_1(]%?1,R}P,ﬁR_l,ﬁRl)EF(R?‘{,R}I"’,aﬁRl)dx
R
_1 3 ¢ i pYs pYq afq-1 T T
5€ OLR_, in(R,l,Rl ,0007'G1(RY,, RY ,9R_1,9Ry)) du
R

+62 O(gg—f— 1).

In the case b # 0, we have deg(w) = 3/2. Therefore we can make the estimates

1 »~z

1 1 g -
553 / aﬁﬁ—lg_l(jol,R;”,ﬁR_l,ﬁRl)EF(RE“‘;,R% O'Ry) du
R

Do 1\ o0y 7
< 0|0 071G (RY), RY OR1 R | o | F(RY, R 0,1,
<e0E+1)

and

1 1oy =
553 /QfR_l EF(R?;,R?q,aﬁﬁ—lgl(Rﬂ,Rf’,ﬁR_l,ﬁRl)) dz
R

1 - -
< OE)0 R || 12 HEF(R?;, R, 0%97'GI(RY, RY ,9R_1,9R)))|| .

< 3 O((‘:g -+ 1) .
Thus, we obtain

1 Loz,
lo= 52" 0 / OLR-y —F(R, R, 0LRy) do + > O(€; + 1),
R

due to (3.56) and (3.54).

Now, we analyze the term I, + I5.
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Using (2.73) we get
L+ 1 (3.96)

Z /86 1gJ1(R\I117R111719R 1a19R1)8 o J1]1(1/J67R]'1)d‘7j

jre{£1}

+ /RagRﬂl aﬁ th (¢cv 1gj1 (R?l’ Rip’ ﬁR_l’ ﬁRl)) d:L“)

= 62 /af 1g]1 (R\IjlaR;IjﬂgR 1719R1)a N]l]l (1/}07 Jl) x
Jle{il}

/ a£ 31 achth 1/)0: ﬁ_lgji (R?D Rip’ ’l9R_1, ﬂRl)) dl‘)

+ 20E +71EN.
Exploiting Leibniz’s rule, we get

L + 1
Z /82 1g]l<R\IJ1’R1P>19R 1>79R1) 3131<wc> )dx

ne{£1}

+€/ G (RY), RY ,UR_1,9Ry) Ny, (00, 05 ' Ry,) da
+/3£le Njiji (¢e, 0597'G;, (RY,, RY Ry, URy)) dz

R
+€/ath Njjr (0utpe, 05719 1Qj1(RE/1,R}I’,19R,1,19R1))d:c)

+20(& +71EN?)

due to (3.54) and (3.76), and, also (3.53) and (2.37).
By using (2.66), we get

L+ 1

= 52 / 85 1g]1 (R‘Pla Ripv 19R 1, 19R1> [lejl + N]*UJ (¢c7 aﬁle) d(L’
]1€{i1}

+ ¢ / aﬁﬁ_lg]& (Rglv Ripv 19R—17 19R1) Nj1j1 (ax¢c7 ai_lei) dx
R
JiJ1

y / 9'971G,, (RY,, RY,9R_, 0R,) 9. N7 . ( x@bc,@ﬁle)dx)
R

+ 20(E + 717,
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By setting

Ne(% 9, R;,) (3 97)
[lejl + NJ*UJ (ww 8 ) + g ( ]1]1( xwm ae 1R]1) - 1Nj*1]1 (wca ))

and using (2.73), we get

Lh+L=¢ ) /afgjl (RY,, RY,9R_1,9R,)) Ny(¢e, O'R;,) da

e{£1}
+ 20(& +71E7).
Moreover, we have
INe(e, 02 Rj )12 < O(I| Ry |l e) (3.98)

according to the proofs of (3.84) and (3.76).

Now, we are in almost the same situation as before for I,. The only difference
is that we here have the terms N;(¢., R;,) inside the integrals instead of the terms
0! Rj,. This makes everything a bit more complicated.

The definition (3.97) implies

M(¢07 a:iRJl) = M* (wc? aﬁle) (399)
Moreover, according to (3.90), we have
12 (f, Ne(@e, 02 R;,)) — Ne(e, Z(f, 0.R;)) 1z < O(I R [l e ) (3.100)
fOY Z € {./4,178, ./4175, 871,57 Bl,sa Cfl, él}, Wlth él(f, g) = Cl(g, f)
These two facts will now allow us to proceed for I; + I, analogously as for I;.

Using (3.89), exploiting (3.54) and (3.98), and then plugging in the definition of
(3.68), we get

I+ I, =& / (A1 o(RY,OIR ) + C_1(0SR_, RY)) No(e, OLR 1) da
R
+€2 / (B_ls(Rin’aa{ﬁRl) +C—1< —1 xﬁRl))M(d}w )dﬂf
R
+ &2 / (Ais(RY,,059R 1) + CL(OIR -1, RY)) No(Ye, OLRy) da
R

+2 [ (Bl OLIR) + CulE, DLORY) Nt L R) o
R

+ 20(E+71E.
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By using (2.66), (2.72), (3.100) and (3.99) we have

g / Ne(tbe, 05R;,) Z(RY, 0L0R,) da (3.101)
R
— 2 / OLIR;, Z*(qu;,/\/g(@bc,aﬁ}zh)) dx

— / O Ry, Z*(RY  Nio(ve, ' Ry,)) da + €2 O(E, + P 1))

717

= / 0L R, Ni(tbe, Z2*(RY,0LRy,)) dar + 2 O(E, + P71
R

< / Ni (e, 0Rj,) 2 (RY,, 0L Ry,) du + 2> O, + €77 €)7%)

=¢ / Ni(te, L R;,) Z*(RY,0LRy,) da + €2 O(&, + £°71€)%).

177

Due to (3.55), we can use (3.101) to get
& [ N 0LR,) Z(RY, 0L0R,) da
_—g /Ng e, 05R;,) [Z2 + Z°|(RY,0LR;,) da + € O(E, + 1)
— 2 0E +71E7),

for Z € {Afl,s;BLs,Cfl’él} with CNl(fa g) = Cl(g7f)

We arrive at

11+12252/(B S(RY,09Ry) 4+ C_1(RY,, O OR)) No(ve, OSR_y) dx
R

+ &2 / (A1 o(RY,,059R 1) + CL (DR -1, RY)) Ny(e, 0L Ry ) da
R

2O + 718

By using (3.101) and (2.72), we get

11+12=52/( J(RYLOER) 4+ Ci(RY,,05R))) No(e, 0L R 1) dae
R

+ &2 / (B_1s(RY,05R) + Ci L (0LRy, RY)) No(e, 0L R 1) da
R

+ 208 +1EN

such that we are now in position to exploit (3.56).
When b # 0, we have an even better estimate for Ny(t.,-) than (3.98). In this
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case, we have deg(w') = 1/2 such that (3.97), (2.52), (3.54) and (3.55) yield
INe(e, llsire < O(I1fl22)- (3.102)
Due to (3.56), we therefore obtain

11+12:52/6§R_1A@<¢C,( (RY,,0'R) +C_\(RY,,0'R ))) x
R

w2t [ OLR AN (e, (Bua (R OLR) + (0L, BY) ) da
+2 0 +771)7)
= 20&+1E7).
Now, we analyze the term I3 + I,.
Using (2.73) we get
Is+ 1, (3.103)
_r /a’f G, (RY,, RY,0R_1.9R) 00" 'N, . (Y, R_j,) da

j1€{:|:1}

+ / afR—h aﬁ 1*N—j1j1 (1/107 ﬁ_lgjl (R?b R%? 19R_1, ﬂRl)) dx )
R

= ¢ /af lgjl(R\IllvRipvﬁR 1719R1)88NJ1 Jl(,l/jc7 *Jl)
]1€{i1}

b [ BLRL OLN (071G, (Y, BY O 0R) e )

+ 2 O0(& + 55_155’/2) :
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Exploiting Leibniz’s rule, we get
I3+ 1y

= 3 ([ 007G (RY R IR OR) Ny (0L ) o
]16{:|:1}

+ ¢ / 8gl;ﬁ_lg]d (REID Ripa VR4, ﬁRl) le—jl (acha 8£ IR—Jl) dx
R
+ / aﬁR—jl N—jljl (¢cv aﬁqg_lgji (R%D Rilj’ VR4, 19Rl)) dx
R

+( / OWR_j, N_jj, (aﬂ/;c,aﬁ—lﬁ—lgﬁ(}zfl,R%,ﬁR_l,ﬂRl))dx)
R

+20E+71E7),

due to (3.54) and (3.77), and, also (3.53) and (2.37).
By using (2.66), we get

:62 /aegjl R‘lllaR‘lllaﬂR 171931)[ Ji—Jj1 +Nij1]1}(wc’a£R_j1)dx

JIE{il}

0 [ 0L071G, (R Y OR OR:) Ny, (0ut0s 04 Ry da
R

+( / OLR_j, N_j,j, (axgbc,aﬁ_lﬁ_lgﬁ(}%f’l,R}I’,ﬂR_l,ﬁRl))dm)
R

20 +71EN).
For |k|,|m| > 0, we have

n_11(k,k —m,m)+ny_1(—m,k —m, —k)

i Xe(k — m)
1k E—m,m) 4+ ars(—m, k —m,—k)) .
ST iom) — o = (= ) s = m,6)
In the case b # 0, we have deg(w) = 3/2 such that by making a similar expansion

as in (2.55), we get that for |k| — oo:

n_1i(k,k —m,m)+nyi_1(—m, k —m, —k) (3.104)
ek kE—m,m) +ay(—m, k —m, —k) 372
= ( s + Ok ™"%) ) xell = m) .

In the case b # 0, we can also improve the estimate (3.77) to

[N (We, 9l iz < Cllgllz2 (3.105)
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by making a similar expansion to (2.55).
We thus get

Is+ 1,
1 1
= ——82 / aﬁg,l(RE’l, R‘lll, ﬁRfl, 19R1) [Cfl + Ais} (Q/JC, 8§R1) dx
R

2 iw
1 1
_f{/%@wﬂJﬁﬁRlﬁmh;w1+AQM%%R1mx
R
+20& +1E).
Due to (3.56) and deg(w) = 3/2, we then obtain

i+ 1, =20 + 716X

Hence, by choosing ¢y small enough and summing up our results for Iy-14, we
can define a modified energy

ég = gg — 82D0 s
with

1 1 - N
Dy = o2 / O'R_y ~F(RY, RY,0'R)) dz = O(&)) |
R w

and F(RY RV 0'R,) as in (3.95), such that
81554 5 82(1 + gg) .
[

Corollary 3.3.14 now allows us to prove theorem 1.2.1, in the same fashion we
proved theorem 1.1.1 with corollary 2.2.30 in the last section.
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Outlook

In this thesis, we only considered systems with quadratic quasilinear terms. It
should be easy to extend our result to be valid for systems that can also have
quasilinear terms of higher orders. A more difficult task would be the extension
of our result to quasilinear dispersive systems that are more complicated, in the
sense that their nonlinearities are of a more general form. An example for this
is the class of systems (1.30)-(1.31) from chapter 3. As long as some conditions,
cf. remark 2.2.19, are fulfilled one should also be able to look at such systems
with arbitrarily large deg*(p). Moreover, we expect that for such systems one can
soften (1.9) and allow certain nonlinear terms to be stronger than the linear part
of the system.

As we stated earlier, we expect that our techniques will also be useful for much
more complicated quasilinear systems like the water wave problem. Especially our
approach for handling quasilinear terms with arbitrarily large deg”(p).

Some of the techniques we use for our error estimates here may could also be
transfered in order to show the existence of long time solutions for quasilinear
systems since the methods of proofs resemble each other, see [DH18|. One can most
likely not handle nontrivial resonances with these techniques, but the modified
energy and the energy transformations could may help one to study systems with
arbitrarily large deg®(p).

The techniques, we introduced in order be able to handle quasilinear nonlinearities
with arbitrarily large deg*(p) could maybe also be useful for the justification of
other approximations, like for example the Whitham approximation.

Last but not least, we expect that in particular our energy transformations from
section 2.2.3 could also be interesting for proving the local existence of solutions
to quasilinear dispersive systems.
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