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Zusammenfassung
Wir rechtfertigen die Nichtlineare Schrödinger Approximation für eine Klasse von
quasilinearen dispersiven Systemen. Wir erlauben nichttriviale Resonanzen und
erlauben dem quasilinearen quadratischen Term ein beliebiges Maß an Regularität
zu verlieren, solange er nicht mehr Regularität als der lineare Term des Systems
verliert. Dies ist das erste Mal, dass die Nichtlineare Schrödinger Approximation
für quasilineare dispersive Systeme gerechtfertigt wird, wo der quasilineare Term
mehr als eine Ableitung verlieren darf.
Wir leiten die NLS Gleichung über Multi-Skalen-Analysis und das Zeigen von
Residuumsabschätzungen her. Wir rechtfertigen die NLS Approximation auf ihrer
natürlichen Zeitskala, indem wir Fehlerabschätzungen beweisen. Für die Fehler-
abschätzungen verwenden wir eine abgewandelte Energie, die auf gewissen Nor-
malformtransformationen beruht. Diese Energie wird weiter angepasst um die
Schließung der Fehlerabschätzungen zu ermöglichen.
Wir geben zudem ein Beispiel dafür, wie unsere Techniken auf allgemeinere quasi-
lineare dispersive Systeme angewandt werden können, indem wir Fehlerabschätzun-
gen für ein reduziertes System zeigen, welches über das zweidimensionale Wasser-
wellen-Problem mit endlicher Tiefe und Oberflächenspannung motiviert ist.
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Abstract
We derive and justify the nonlinear Schrödinger approximation for a class of quasi-
linear dispersive systems. We allow nontrivial resonances to happen and set no
bound on the amount of regularity the quadratic quasilinear term is allowed to
lose, apart from not losing more regularity than the linear term of the system
does. This is the first time the nonlinear Schrödinger approximation is justified
for quasilinear dispersive systems, where the quasilinear term is allowed to lose
more than one derivative.
We rigorously derive the NLS equation via multiple scaling analysis and showing
residual estimates. We justify the NLS approximation on its natural timescale by
proving error estimates. For the error estimates we use a modified energy based
on some normal form transformations. This energy gets modified even further in
order to allow the closing of the error estimates.
We also give an example how our techniques can be applied to more general quasi-
linear dispersive systems by showing error estimates for a reduced system, which
is motivated by the 2D water wave problem with finite depth and surface tension.
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Chapter 1

Introduction

Being able to foresee a certain outcome, after some action was made or observed,
is one of the most valuable skills to have in life. In order to make predictions,
one creates a model in which all aspects that are considered the most relevant
are covered. Thus, in order to make preciser predictions, almost always a more
complicated model is needed. However, a model can quickly become so complicated
that a solution is no longer available for the underlying mathematical equations.
At this point, one can go back to modeling and attempt to create a simpler model,
or, try to approximate the solution of these equations. What makes the second
approach especially interesting is that the model does not need to be changed and,
since only mathematics is involved, one may be able to prove how close a chosen
approximation is to an original solution.

Reality

Model PDE

Approximation

Simple PDE

Simple model

Simple PDE

This thesis focuses on the Nonlinear Schrödinger (NLS) approximation for
quasilinear dispersive systems. The NLS approximation can be used to describe
wave packet like solutions of nonlinear dispersive systems. For nonlinear dispersive

6



systems, the NLS equation

∂TA = iν1, ∂
2
XA+ iν2A|A|2 , (1.1)

with T,X ∈ R, ν1 > 0, ν2 ∈ R and A(T,X) ∈ C, can usually be derived via mul-
tiple scaling analysis as an modulation equation that describes slow modulations
in time and space of the envelope of a temporally and spatially oscillating wave
packet.

Figure 1.1: The NLS approximation, a temporally and spatially oscillating wave
packet with an envelope that is described by the solution of a NLS equation.

Since nonlinear dispersive systems can often be very difficult to solve as well
analytically as numerically and the NLS equation can be explicitly solved, the NLS
approximation can be a great tool for understanding the dynamics of these systems.
For this reason and in order to save computational costs, the NLS approximation
is used in nonlinear optics [A01], mathematical physics [Z68], quantum mechanics
[P11] and many other fields where one is interested in the evolution of wave packets,
e.g. [SH94]. Especially in scenarios where one is only interested in the evolution of
the envelope of a wave packet, as for instance the transport of information via light
pulses in glass fiber, the NLS approximation drastically increases the efficiency of
numerical simulations.
While the NLS approximation is very successful in many applications, a formally
derived NLS approximation can make wrong predictions about the behavior of
the original system, see [S05, SSZ15]. Thus, error estimates have to be proven in
order to show that a NLS approximation is valid. A NLS approximation has to be
justified. Only then, one can truly rely on the predictions of a NLS approximation.

In this thesis, we will first consider the nonlinear Schrödinger approximation
for a class of quasilinear first order systems, where the nonlinearity is allowed to
lose an arbitrary amount of regularity, but not more regularity than the linear term
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does. Later we consider systems of a more general form, where the nonlinearity of
the diagonalized first order system is allowed to lose one derivative. We motivate
these systems by the water wave equations.

1.1 Quasilinear dispersive systems
In the first part of this thesis, we consider the Nonlinear Schrödinger approximation
for a class of first order systems

∂tu =− iωv , (1.2)
∂tv =− iωu− iρu2

with u : R×R→ R : (x, t) 7→ u(x, t) and v : R2 → R, where the pseudo differential
operators ω and ρ are given by some odd functions ρ : R → R and ω : R → R in
Fourier space.
I.e. in Fourier space, we have

∂tû(k, t) = −iω(k)v̂(k, t) ,

∂tv̂(k, t) = −iω(k)û(k, t)− iρ(k)(û ∗ û)(k, t) .

Such a first-order system is also equivalent to the equation

∂2
t u = −ω2u− ρωu2 . (1.3)

When there is some k0 > 0 such that the three conditions

ω′′(k0) 6= 0, (1.4)

ω′(k0) 6= ±ω′(0) and ρ(0) = 0, or lim
k→0+

ω(k) 6= 0 , (1.5)

mω(k0) 6= ±ω(mk0) for m = ±2, ... ,±5 , (1.6)

are fulfilled, we can derive the Nonlinear Schrödinger equation

∂TA = i
ω′′(k0)

2
∂2
XA+ iν2(k0)A|A|2 , (1.7)

with ν2(k0) ∈ R, as a lowest order modulation equation. The explicit formulas for
ν2(k0) can be found in section 2.1.
For the derivation, we use an ansatz of the form

u = εψNLS +O(ε2) ,
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where

εψNLS(x, t) = εA
(
ε(x− cgt), ε2t

)
ei(k0x−ω0t) + c.c. (1.8)

is the Nonlinear Schrödinger approximation for solutions of (1.2).
Here, the complex-valued amplitude A is the solution of the NLS equation (1.7) and
0 < ε � 1 is a small perturbation parameter. The basic temporal wave number
ω0 := ω(k0) of the underlying carrier wave ei(k0x−ω0t) is associated to the basic
spatial wave number k0 > 0. The group velocity of the wave packet is cg := ω′(k0)
and c.c. simply denotes the complex conjugate.

O(ε−1)

O(ε)

cg

Figure 1.2: The NLS approximation ψNLS is an oscillating wave packet with an
envelope that is described by the solution A of the NLS equation (1.7). As time
goes on the envelope of height O(ε) and width O(ε−1) is moving to the right with
the group velocity cg.

The NLS approximation (1.8) describes slow modulations in time and space
of a spatially and temporarily oscillating wave packet. The slow time scale of the
NLS approximation is T = ε2t and the slow spatial scale X = ε(x− cgt), i.e. the
time scale of the modulations is O(ε−2) and the spatial scale of the modulations
O(ε−1).

In order to justify the NLS approximation, we need to make some further
restrictions to our class of systems

∂tu =− iωv ,
∂tv =− iωu− iρu2.
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First off, we do not allow that the nonlinear terms of our system contain more
derivatives than the linear ones. We demand

deg∗(ρ) ≤ deg(ω) . (1.9)

Here we write deg∗(γ) ≤ s for a function γ : R→ R when there are some constants
C,M such that

|γ(k)| ≤ C(1 + |k|)s for |k| ≥M ,

and deg(γ) = s when there is also some c > 0 such that

c(1 + |k|)s ≤ |γ(k)| ≤ C(1 + |k|)s for |k| ≥M.

Apart from (1.9), we set no further restriction on the amount of regularity that
the quadratic term can lose.
The functions ω and ρ are allowed to have a jump in k = 0. However, one of the
functions ω or sign(·)ω(·), and, one of the functions ρ or sign(·)ρ(·) have to lie in
Cmω(R), where mω = max{5, ddeg(ω)e+ 1}.
Furthermore, we demand, that for n = 1, . . . ,mω, we have

deg∗(ρ(n)) ≤ deg∗(ρ(n−1))− 1 (1.10)

as long as ρ(n) 6= 0, and

deg(ω(n)) = deg(ω(n−1))− 1 (1.11)

as long as ω(n) 6= 0. I.e. we want the derivatives of ω and ρ to behave similarly as
the ones of polynomials.
We additionally have to assume the local existence of real-valued solutions to our
system (1.2) in Hs for some s ≥ max{deg(ω) + deg∗(ρ) + 1, sA} with sA as in the
coming theorem. However we do not think of this as a real restriction since we
expect that this local existence can be shown by using the results of [K75a, K75b]
or proceeding similarly as in [A03].

In this thesis, we only justify the NLS approximation for cases where up to three
resonances can occur. However, we expect that more resonances can be handled
by using similar techniques as in [DS06]. We demand that for j1, j2 ∈ {±1} the
only possible (real-valued) solutions of the equations

ω(k)− j1j2ω(k ∓ k0) + j1ω(±k0) = 0 (1.12)

are k = ±k0 and k = 0. Solutions of (1.12) correspond to resonances in our normal
form transforms.
We explicitly exclude resonances at infinity by demanding that there exists some
constant C > 0 such that for all |k| > C we have

ω(k0) 6= ±k0 ω
′(k) when deg(ω) = 1 , (1.13)

ω(k0) 6= 0 when deg(ω) < 1 , (1.14)

ω(k0) 6= ±2ω(k) when deg(ω) = 0 . (1.15)
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We conditionally allow resonances happening in k = 0+ or k = 0− by demanding
that we always have

0 6= ±ω(0+) 6= 2ω(k0), (1.16)

or

ω′(k0) 6= ±ω′(0), ρ(0) = 0 and ω(0±) 6= 2ω(k0) + jω(2k0) for j ∈ {±1} .
(1.17)

In the case ω(0+) = 0, (1.17) is already implied by (1.5) and (1.6).
Under these conditions, we obtain:

Theorem 1.1.1. Fix ω, ρ and k0 > 0 as above and sA ≥ 7. For all C1, T0 > 0
there exists ε0 > 0 such that for all solutions A ∈ C([0, T0], HsA(R,C)) of the NLS
equation (1.7) with

sup
T∈[0,T0]

‖A(·, T )‖HsA (R,C) ≤ C1

the following holds.
For all ε ∈ (0, ε0) there are solutions

u ∈ C
(
[0, T0/ε

2], HsA(R,R)
)

of equation (1.3) which satisfy

sup
t∈[0,T0/ε2]

‖u(·, t)− εψNLS(·, t)‖HsA (R,R) . ε3/2.
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Figure 1.3: Illustration of theorem 1.1.1. The solution of (1.2) cannot leave the
O(ε3/2)-tube around the NLS approximation ψNLS on the O(ε−2) timescale and
the amplitude of ψNLS is determined by the NLS equation (1.7).

The error the approximation makes is of orderO(ε3/2), which is small compared
to the solution u and the approximation εψNLS that are both of order O(ε) in L∞.
Thus, since our estimate holds on the natural time scale of the NLS equation,
the dynamics of the NLS equation can be found in (1.2) too. The construction of
ψNLS is always possible since the NLS equation is a completely integrable Hamil-
tonian system that can be solved explicitly with the help of some inverse scattering
scheme, see for example [AS81].

There are various counterexamples, where approximation equations derived by
reasonable formal arguments make wrong predictions about the dynamics of the
original systems, see for example [SSZ15]. An approximation theorem like theorem
1.1.1 should therefore never be taken for granted.

The smoothness in our error bound is equal to the assumed smoothness of the
amplitude. We achieve this by using a modified approximation that has compact
support in Fourier space but differs only slightly from εψNLS. Such an approxi-
mation can be constructed because the Fourier transform of εψNLS is sufficiently
strongly concentrated around the wave numbers ±k0, see section 2.1.

Our NLS approximation (1.8) describes wave packets moving to the right with
the group velocity cg. By simply replacing −ω0 by ω0 and −cg by cg in (1.8), one
could describe wave packets that are moving to the left with the group velocity
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cg. Implicitly, such a NLS approximation is also rigorously derived and justified
here since the system (1.2) with (ω, ρ) = (ω̃, ρ̃) and the system (1.2) with (ω, ρ) =
(−ω̃,−ρ̃) are equivalent to each other, as one can directly see by looking at (1.3).

1.1.1 Difficulties and method of proof

In order to prove theorem (1.1.1), we first off derive the NLS equation (1.7) in
section 2.1. We do this by showing that the residual of the NLS approximation is
small, i.e. that the terms that remain after plugging in the approximation into the
equations of system (1.2) are small. The intuition behind this is that a residual
close to zero should be a good indication for that an approximation could work,
since the residual of a true solution to the system is zero.
We transform the system (1.2) into an equivalent system of the form

∂tV = ΛV +B(V, V ) (1.18)

where V (x, t) ∈ R2, Λ = diag(−iω, iω) and B is a symmetric bilinear operator.
Then we make the ansatz

V =

(
u−1

u1

)
= ε

(
A(X,T )E + A(X,T )E−1

)( 1
0

)
(1.19)

+ ε2

(
A0(X,T ) + A2(X,T )E2 + A2(X,T )E−2

D0(X,T ) +D2(X,T )E2 +D2(X,T )E−2

)
,

where X := ε(x− cgt), T := ε2t and E = ei(k0x−ω0t). Exploiting Taylor’s theorem
to expand all expressions, like for example

iω
[
AE
]

= iω(k0)AE + εω′(k0)∂XAE− ε2iω′′(k0)∂2
XAE +O(ε3) ,

and equating the coefficients in front of εmEj for m ∈ {1, 2, 3} and j ∈ {0, 1, 2},
we obtain the NLS equation (1.7) and a residual of the formal order O(ε2).
Due to (1.6), we can modify our ansatz (1.19) further to obtain an even smaller
residual. We finally prove in section 2.1 that there even exists some analytic
function Ψ, for which we have a residual Res(εΨ) with

‖Res(εΨ)‖Hs = O(ε11/2)

for all s ≥ 0, while

‖εΨ− (1, 0)T εψNLS‖HsA = O(ε3/2). (1.20)

Although a small residual is a good indication for a working approximation, an
approximation with a small residual still can fail, see [SSZ15]. For this reason,
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we prove in section 2.2 via a priori estimates that the error between the NLS
approximation εΨ and an original solution of the system (1.2) stays small on the
natural timescale of the modulation.
The following properties of the system (1.2) make this difficult

• a quadratic nonlinearity in the presence of a nontrivial resonance,

• a nonlinear term that can lose regularity and is on top of that quadratic,

• a nonlinearity that can lose an arbitrary amount of regularity and is on top
of that quadratic.

We write the error as

εβϑR = V − εΨ (1.21)

where β > 1 and ϑ is an invertible operator on L2(R) that is given by some weight
function ϑ̂ in Fourier space. The constant β and the operator ϑ will be chosen fix
later. We now find the rescaled error R to satisfy the evolution equation

∂tR = ΛR + 2εϑ−1B(Ψ, ϑR) + εβϑ−1B(ϑR, ϑR) + ε−βϑ−1Res(εΨ) ,

where ϑ−1 : L2(R)→ L2(R) is the inverse of the operator ϑ.
If, by assuming ‖R‖Hs ≤ C for some C ≥ 0, we could obtain an estimate of the
form

∂t‖R‖2
Hs ≤ ε2O

(
‖R‖2

Hs + 1
)

then we could exploit Gronwall’s inequality to obtain the boundedness of the
rescaled error R on the O(ε−2)-timescale.
Choosing β = 5/2, we obtain

∂tR = ΛR + 2εϑ−1B(Ψ, ϑR) +O(ε2) .

The term ΛR is fine, since we have Λ = diag(−iω, iω), ∂t‖R‖2
L2 =

∫
RR∂tRdx and∫

R iωf f dx = 0 for f ∈ Hdeg(ω)(R).
The term εϑ−1B(Ψ, ϑR), however, has not the right ε-power.
In subsection 2.2.1, we try to eliminate this term by preforming a normal form
transformation

R→ R̃ = R + εϑ−1N(Ψ, R)

such that

∂tR̃ = ΛR̃ +O(ε2).
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The idea of using a bilinear mapping N to eliminate a O(ε)-term was first used by
Kalyakin in [K88]. It is well known in literature that due to the strong concentra-
tion of the NLS approximation ψNLS around the wavenumbers ±k0, a well-defined
normal form transformation can be found if the equations (1.12), i.e.

ω(k)− j1j2ω(k ∓ k0) + j1ω(±k0) = 0 ,

have no solutions for j1, j2 ∈ {−1, 1}. Solutions to (1.12) are also called resonances,
since a normal form transformation N(Ψ, R) could potentially grow unlimitedly in
Fourier space for arguments near theses solutions.
We here allow resonances in k = 0 and k = ±k0. Our resonance in k = 0 is trivial,
i.e. N(Ψ, R) does not grow unlimitedly in Fourier space for arguments near k = 0.
The resonances in k = ±k0 however are nontrivial.
Just like in [DS06, DH18], we are still able to find a well-defined normal form
transformation by suitably choosing the operator ϑ. However this comes at a
price. Due to this, the operator ϑ−1 can lose us a ε-power and we only obtain

∂tR̃ = ΛR̃ + ε2ϑ−1N
(
Ψ, B(Ψ, ϑR)

)
+O(ε2).

We have to preform a second normal form transformation

R̃→ Ř = R̃ + ε2ϑ−1T (Ψ,Ψ, R)

with a trilinear mapping T , before we finally obtain

∂tŘ = ΛŘ +O(ε2).

We can show that this second normal form transformation T (Ψ,Ψ, R) only has
trivial resonances, especially due to our additional conditions (1.16), (1.17) for
resonances in k = 0±.
At this point, due to the amount of regularity we allow the nonlinear term of (1.2)
to lose, we are now confronted with the following challenges:

• The normal form transformation R→ R̃ = R+εϑ−1N(Ψ, R) is not invertible
since in general N(Ψ, ·) does not map L2 onto L2. The operator N(Ψ, ·) only
maps Hr(R) onto L2(R), when r ≥ min

{
deg∗(ρ), 1 + deg∗(ρ)− deg(ω)

}
.

In particular, this prevents us from estimating the Hs-norm of Ř against the
Hs-norm of R (the other way around can still be handled).

• A more grave problem is that in general, even by assuming ‖Ř‖Hs ≤ C for
some C ≥ 0, the Gronwall estimates for Ř cannot be closed. This is since
we have

∂tŘ = ΛŘ + ε2h(Ř) ,

where, when deg∗(ρ) > 0, the function h only maps Hs+r onto Hs for

r ≥ deg∗(ρ) + min
{

deg∗(ρ), 1 + deg∗(ρ)− deg(ω)
}
.
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In subsection 2.2.2, in order to address the above issues, we proceed similarly as
in [D17, DH18] and use a modified energy

Es := ‖Ř‖L2 + Es , (1.22)

Es :=
1

2
‖∂sxR‖2

L2 + ε

∫
R
∂sxR∂

s
xϑ
−1N(Ψ, R) dx .

Since ‖∂sxŘ‖2
L2 and 2Es only differ by terms of order O(ε2) we maintain

∂tEs = O(ε2).

We gain that:

• The modified energy Es is equivalent to the Hs-energy, i.e.

‖R‖2
Hs ≤ C1Es ≤ C2‖R‖2

Hs

for some C1, C2 ≥ 0 (and ε small enough).

• The evolution ∂tEs contains less derivatives falling on R than the evolution
of ‖Ř‖2

Hs .

However, due to the amount of regularity we allow the nonlinear term of (1.2) to
lose, we still in general do not get

∂tEs = ε2O(Es + 1) ,

but only

∂tEs = ε2O(Es + 1) + ε2 g(R) ,

where the function g only maps Hs+r onto Hs for r ≥ deg∗(ρ).
The occurrence of this problem is not directly linked to the normal form trans-
formation. In fact, this problem also occurs when one skips the normal form
transformation and tries to prove error estimates on a O(ε−1)-timescale.
In subsection 2.2.3, we solve this problem by showing that an expression ε2D(R)
can be constructed such that

ε2 ∂tD(R) = ε2 g(R) + ε2O(Es + 1)

while at the same time

ε2D(R) = εO(Es).

This basic idea may go back to [C87] and has already been used in [D17] and
[CW17], where two systems of the form (1.2) with deg∗(ρ) ≤ 1 are considered.
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However, for systems with deg∗(ρ) > 1 the expression ε2D(R) is much more diffi-
cult to find since a new class of problematic terms is occurring.
We here will present a construction of an expression ε2D(R) that works for arbi-
trary deg∗(ρ). This construction heavily relies on (1.9), i.e. it exploits that the
linear part of our system is at least as strong as the nonlinear part. A fact that
enables us to replace troubling spatial derivatives by time derivatives.
After ε2D(R) is constructed, the final modified energy

Ẽs := Es − ε2D(R) , (1.23)

fulfills

∂tẼs = ε2O(Ẽs + 1) ,

while simultaneously being equivalent to the Hs-energy of the error.
After an application of Gronwall’s inequality theorem 1.1.1 then follows with
(1.20).

1.1.2 Related literature

The first time the NLS equation was derived, it was derived as an amplitude
equation for the water wave problem by Zakharov in [Z68]. The first one to actually
prove a NLS approximation theorem was Kalyakin in [K88]. Later, Kirrmann,
Schneider and Mielke developed a simple method to justify the NLS approximation
for systems without quadratic nonlinear terms in [KSM92]. Quadratic nonlinear
terms are considered more problematic than other nonlinear terms due to the
cubic lifespan the NLS-approximation requires. To illustrate this, let us look at
the ordinary differential equation

∂tu = u3, with u(0) = u0 ∈ R, u0 = O(ε).

The solution to this equation with a cubic nonlinearity

u(t) =
u0√

1− 2u2
0t

has a cubic lifespan, the O(ε−2)-time-interval [0, 1
2u2

0
[.

However, for the equation with a quadratic nonlinearity

∂tu = u2, with u(0) = u0 ∈ R, u0 = O(ε) ,

the solution

u(t) =
u0

1− u0t
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only exists on the O(ε−1)-time-interval [0, 1
u0

[.
As one might guess from this example, the key to a cubic lifespan of solutions
to systems like (1.2) has to lie in the linear term. And so, the basic approach
for handling quadratic terms is to search for a normal form transformation that,
by taking advantage of the linear part of the system, transforms it into a system
without quadratic terms. Using normal form transformations Schneider further
developed the method of [KSM92] in [S98a] such that quadratic nonlinear terms
could be handled, if some non-resonance conditions are fulfilled. There followed
some papers, like e.g. [DS06], where these non-resonance conditions were weak-
ened such that more difficult systems with quadratic terms could be considered.
This however excluded systems with quasilinear terms. These are especially prob-
lematic since quasilinear terms make it much harder to close error estimates.
Quasilinear quadratic terms can also cause normal form transformations to be
non-invertible.
Schneider and Wayne were the first ones to prove the validity of the NLS ap-
proximation for a system with a quasilinear quadratic term on the qualitatively
correct timescale in [SW11]. Thanks to the techniques developed in [SW11] it was
then possible to justify the NLS-approximation for the 2-D water wave problem in
case of zero surface tension and finite depth in [DSW16]. In [SW11] and [DSW16]
quasilinear quadratic terms that lose half a derivative, i.e. deg∗(ρ) = 1/2, were
handled with the help of a Cauchy-Kowalevskaya argument. However, the ob-
tained result was still not optimal in the sense that they could not justify the
NLS approximation on the whole interval of modulation [0, T0/ε

2] but only some
smaller O(ε−2)-interval. Another problem of their method is that the Cauchy-
Kowalevskaya argument does not work for quasilinear terms with deg∗(ρ) > 1/2,
i.e. for quasilinear terms that lose more than half a derivative.
In [HITW15], Hunter, Ifrim, Tataru and Wong proved the existence of solutions
with a cubic lifespan for a non-dispersive equation with a quasilinear quadratic
term that loses one derivative. They further developed the idea behind normal form
transforms by using a modified energy in order to circumvent the non-invertibility
of their normal form transformation.
Motivated by this, we showed the existence of long time solutions for a quasilinear
dispersive equation with resonances in [DH18]. Further, we proved a NLS ap-
proximation theorem for this quasilinear dispersive equation in [DH18] by using a
similar modified energy. In [D17] the NLS approximation was justified for a quasi-
linear dispersive system with deg∗(ρ) = 1 by using a modified energy. Cummings
and Wayne also improved the result of [SW11] in [CW17] by using a modified
energy. The two systems looked at in [D17] and [CW17] are systems of the form
(1.2) with deg∗(ρ) ≤ 1 and deg(ω) = deg∗(ρ) that directly fall into the class of
systems that we consider in this thesis, however this work is much closer in spirit
to [D17, DH18].

In this thesis the NLS approximation is now also justified for quasilinear dis-
persive systems with arbitrarily large deg∗(ρ), i.e. for dispersive systems with
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a quadratic term that loses an arbitrary amount of derivatives. This is partic-
ularly the first time a NLS approximation theorem is proven for deg∗(ρ) > 1.
The case deg∗(ρ) > 1 is more difficult than the case deg∗(ρ) ≤ 1 due to the
fact that a new additional class of problematic terms arises in the error esti-
mates. The works [SW11, D17, CW17] consider the situation deg∗(ρ) ≤ 1 with
ω = ρ or deg(ω) = deg∗(ρ) while this thesis makes do with the lighter restriction
deg(ω) ≥ deg∗(ρ). This thesis is further distinguished from the above mentioned
works in that our NLS approximation theorem does not only hold true for one par-
ticular quasilinear dispersive system but for a whole class of dispersive systems.
Due to the generality of the obtained result, our framework and techniques should
be easily extendable to systems with more complicated nonlinear terms. What we
in particular also will show is that our techniques can be useful for the justification
of the NLS-approximation for the 2-D water wave problem with finite depth and
surface tension.

1.1.3 Example systems

An important example of a system that suffices our conditions, i.e. for that theorem
1.1.1 applies, is the system

∂tu =− iωv , (1.24)
∂tv =− iωu− iρu2

where ω is given in Fourier space by the function

ω(k) = sign(k)
√

(k + bk3) tanh(k)

and ρ either by the function

ρ(k) = ρ1(k) = sign(k)
√
k tanh(k) + bk|k|1/2

or

ρ(k) = ρ2(k) = sign(k)
√
k tanh(k) + bk.

These are model problems for the 2D water wave problem with finite depth and a
surface tension proportional to b ≥ 0. The systems have the same linear dispersion
relation as the 2D water wave problem, i.e.(

ω(k)
)2 − (k + bk3) tanh(k) = 0.

Therefore they also share the difficulty of a trivial resonance at k = 0 and a non-
trivial resonance at k = k0 with the water wave problem. The pseudo differential
operator ρ was chosen such that the quasilinear quadratic terms of (1.24) pose
similar difficulties as the ones of the 2D water wave problem.
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It has to be mentioned that for some combinations of 0 < b < 1/3 and k0 > 0
there are additional resonances happening. So depending on b our theorem cannot
always be applied for all wavenumbers k0 > 0.
As a model problem for the 2D water wave problem in the case of no surface ten-
sion, i.e. for b = 0, this system was already successfully studied in [SW11] and in
[CW17].

Another interesting equation for that the validity of the NLS approximation
can be shown with theorem 1.1.1 is the nonlinear beam equation

∂2
t u = −∂4

xu− ∂4
xu

2 , (1.25)

which is equivalent to the first order system

∂tu =− ∂2
xHv ,

∂tv =− ∂2
xHu− ∂2

xHu2 ,

where H is the so-called Hilbert transformation that is given in Fourier space by
the symbol Ĥ(k) = −i sign(k). One could may also call this equation a double
dispersion equation. Beam equations usually model the deformations of an elastic
beam, while double dispersion equations can appear for surface waves in shallow
water, in the dislocation theory of crystals or the interaction between waves guides
and some external medium. There exists various results for both kind of equations,
see for example [LG19, KV19, WC06]. However, the above fully quasilinear case
seems so far to be avoided due to the difficulties arising from such a nonlinearity,
cf. introduction of [LG19]. We could also not find an article, where the NLS
equation is justified. This could have something to do with the fact that there are
always nontrivial resonances occurring in ±k0. The above equation may also be of
relevance for models with water under a thick ice cover, where a similar dispersion
relation can occur, cf. [I15].
Using theorem 1.1.1 the NLS approximation is now justified for the above equation
for all k0 > 0. One can easily directly check all conditions, only for (1.12) a case
analysis and the quadratic formula are needed.

Only as an example to underline the fact that theorem 1.1.1 allows arbitrarily
large deg∗(ρ), i.e. an arbitrary amount of derivatives falling on the quadratic term,
we give the equation

∂2
t u = −ω2u− ∂100

x u2 , (1.26)

with some suitable ω satisfying deg(ω) ≥ 50.
When an k0 satisfying the conditions of theorem 1.1.1 can be found, the NLS
approximation is valid for such an equation.
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1.2 A reduced system for the water wave problem
While the result of this chapter also stands for itself, it at the same time works
as an example of how the techniques acquired from proving theorem 1.1.1 can be
applied for more general systems.
A goal of this thesis was to develop techniques that can be used for the justification
of the NLS approximation for the water wave problem. The (2-D) water wave
problem is the problem of finding the irrational flow of an incompressible fluid in
an infinitely long canal with flat bottom and a free surface under the influence of
gravity. For more information about the water wave problem we refer to [D18]
and the references therein.

Γ(t)

Ω(t)

B

(x, y)(α, t)

x

y

Figure 1.4: 2-D water wave problem with finite depth. Γ(t) is the free surface, B
is the bottom.

Zakharov non-rigorously derived the NLS equation as an amplitude equation
for the water wave problem in [Z68]. Quite some time passed until the NLS-
approximation for the 2-D water wave problem was rigorously justified on the
right time scale by Totz and Wu in the case of zero surface tension and infinite
depth in [TW12] and by Düll, Schneider and Wayne in the case of zero surface
tension and finite depth in [DSW16]. In this thesis, we will now present techniques
that can also be used to justify the NLS-approximation for the 2-D water wave
problem in case of surface tension and finite depth. Without neglecting surface
tension the water wave problem seemed to get way more complicated, so the case
of nonzero surface tension was until recently still a open problem. In [SSZ15] it
was shown that for weak surface tension the NLS approximation can even fail in
some scenarios. Very recently, the NLS-approximation was justified for the 2-D
water wave problem in case of finite depth and possibly of surface tension in [D19]
(as long as there are no additional nontrivial resonances or k0 is stable). The error
estimates in [D19] are even uniform with respect to the strength of surface tension
as the height of the wave packet and the surface tension tend to zero.
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We here heuristically derive a system from the arc length formulation of the
2-D water wave problem with finite depth and possibly of surface tension. This
reduced system is the system

∂tu−1 = −iωu−1 + ∂α

(
−D−2

α (u−1 + u1)u−1 (1.27)

− 1

2
[σ,D−2

α (u−1 + u1)]σ−1(u−1 − u1)

+
1

2
K0D

−1
α σ−1(u−1 − u1)σ−1(u−1 − u1)

− 1

2
bσ−1(u−1 − u1)K0σ

−1∂α(u−1 − u1)

− 1

2
(D−1

α (u−1 + u1))2 +
1

2
(K0D

−1
α (u−1 + u1))2

)
,

∂tu1 = iωu1 + ∂α

(
−D−2

α (u−1 + u1)u1

+
1

2
[σ,D−2

α (u−1 + u1)]σ−1(u−1 − u1)

+
1

2
K0D

−1
α σ−1(u−1 − u1)σ−1(u−1 − u1)

− 1

2
bσ−1(u−1 − u1)K0σ

−1∂α(u−1 − u1)

− 1

2
(D−1

α (u−1 + u1))2 +
1

2
(K0D

−1
α (u−1 + u1))2

)
,

where the linear operator iω is given in Fourier space by its symbol

ω(k) = ω(k; b) = sign(k)
√

(k + bk3)tanh(k) (1.28)

and b ≥ 0 is the Bond number that is proportional to the strength of surface
tension, i.e. b > 0 would mean nonzero surface tension.
The operator σ is defined in Fourier space by its symbol

σ(k) = σ(k; b) =

√
k + bk3

tanh(k)
, (1.29)

K0 by its symbol K0(k) = −i tanh(k) and the operator σ−1 by its symbol σ−1(k).
The operatorD−1

α : L2(R)→ L2(R) is given in Fourier space by some fixed function
D̂−1
α , which is smooth, odd and fulfills D̂−1

α (k) = O(−ik−1) for |k| → ∞. In order
to avoid resonances being caused by the nonlinear terms, we did not useD−1

α = ∂−1
α .

This system has the same dispersion relation as the full water wave problem.
Furthermore the quadratic terms of this system can be compared to the ones of
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the diagonalized water wave problem in the arc length formulation. We call it a
reduced system since we can heuristically derive it by simplifying a system that
describes the full water wave problem, see section 3.1.
The nonlinear terms of the reduced system have certain properties, which we will
call key properties in the following. These key properties can also be partially
found in the full water wave problem. We will prove our error estimates by only
relying on these key properties such that our result extends to every dispersive
system that shares them.
These key properties are as follows.

The reduced system is an abstract system of the form

∂tu−1 = − iωu−1 +A−1(u−1, u−1) + B−1(u1, u1) + C−1(u−1, u1) (1.30)

∂tu1 = iωu1 +A1(u−1, u−1) + B1(u1, u1) + C1(u−1, u1) , (1.31)

where the linear operator iω is given exactly like before. The quadratic terms are
given in Fourier space by

Âj(u−1, u−1)(k) :=

∫
R
aj(k, k −m,m) û−1(k −m)û−1(m) dm , (1.32)

B̂j(u1, u1)(k) :=

∫
R
bj(k, k −m,m) û1(k −m)û1(m) dm , (1.33)

Ĉj(u−1, u1)(k) :=

∫
R
cj(k, k −m,m) û−1(k −m)û1(m) dm , (1.34)

where j ∈ {±1} and the functions aj, bj and cj are sufficiently smooth.
For Z ∈ {A−1,A1,B−1,B1, C−1, C1} and accordingly chosen z ∈ {a−1, a1, b−1, b1,
c−1, c1}, we have

z(k, k −m,m) = O(k) for |k| → 0 , (1.35)

as long as |k −m| gets uniformly bounded.
The z(k, k −m,m) suffice the conditions of lemma 3.3.10.
Moreover, the operators Z always map a pair of real-valued functions on a real-
valued function and satisfy a priori estimates of the form

‖Z(u, v)‖L2 .


‖u‖H2‖v‖H1 ,

‖u‖H1‖v‖H2 ,

‖û‖L1(4)‖v‖H1 ,

‖u‖H1‖v̂‖L1(4)

. (1.36)
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On top of that, we have the a priori estimates

‖A−1,s(f, g) +A∗−1,s(f, g)‖L2 . min
{
‖f‖H4 , ‖f̂‖L1(4)

}
‖g‖L2 , (1.37)

‖B1,s(f, g) + B∗1,s(f, g)‖L2 . min
{
‖f‖H4 , ‖f̂‖L1(4)

}
‖g‖L2 ,

‖C−1(g, f) + C−1,∗(g, f)‖L2 . min
{
‖f‖H4 , ‖f̂‖L1(4)

}
‖g‖L2 ,

‖C1(f, g) + C∗1(f, g)‖L2 . min
{
‖f‖H4 , ‖f̂‖L1(4)

}
‖g‖L2 ,

and

‖A∗1,s(f, g) + C−1(f, g)‖L2 . min
{
‖f‖H4 , ‖f̂‖L1(4)

}
‖g‖H1/2 , (1.38)

‖B−1,s(f, g) + C1,∗(g, f)‖L2 . min
{
‖f‖H4 , ‖f̂‖L1(4)

}
‖g‖H1/2 .

Here, we are using the notations

Zs(f, ·) := Z(f, ·) + Z(·, f), (1.39)

∫
R
Z∗(g, f)h dx :=

∫
R
f Z(g, h) dx , (1.40)∫

R
Z∗(g, f)h dx :=

∫
R
gZ(h, f) dx .

In subsection 3.2.1, we give some more detailed information on these key properties
and also explain how the conditions (1.37) and (1.38) can be understood.

We assume the local existence of real-valued solutions to our system (1.2) in
HsA with sA as in theorem 1.2.1. In [A03], well-posedness of water waves with
surface tension has been shown.
We chose k0 > 0 such that (1.4), i.e.

ω′′(k0) 6= 0, (1.41)

(1.5), i.e.

ω′(k0) 6= ±ω′(0) (1.42)

and (1.6), i.e.

mω(k0) 6= ±ω(mk0) for m = ±2, ... ,±5 , (1.43)

(1.14), i.e.

ω(k0) 6= 0 when deg(ω) < 1 , (1.44)

are true. Moreover, we chose k0 > 0 such that for j1, j2 ∈ {±1} the only possible
solutions of the equations (1.12), i.e.

ω(k)− j1j2ω(k ∓ k0) + j1ω(±k0) = 0 , (1.45)
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are k = ±k0 and k = 0.
Solutions of (1.45) will correspond to resonances in our normal form transforms.
In literature it has been shown that when b = 0 or b > 1/3 there can always only
occur resonances in k = ±k0 and k = 0 for all k0 > 0. When b ∈]0, 1/3[ there can
occur more than three resonances for some k0 > 0.
We will assume that we can rigorously derive the Nonlinear Schrödinger equation

∂TA = i
ω′′(k0)

2
∂2
XA+ iν2(k0)A|A|2 , (1.46)

with some ν2(k0) ∈ R, via an ansatz of the form(
u−1

u1

)
= εψNLS

(
1
0

)
+O(ε2) .

Here

εψNLS(x, t) = εA
(
ε(x− cgt), ε2t

)
ei(k0x−ω0t) + c.c. (1.47)

is the Nonlinear Schrödinger approximation for solutions of (1.27).
The complex-valued amplitude A is the solution of the NLS equation (1.46) and
0 < ε � 1 is a small perturbation parameter. The basic temporal wave number
ω0 := ω(k0) of the underlying carrier wave ei(k0x−ω0t) is associated to the basic
spatial wave number k0 > 0. The group velocity of the wave packet is cg := ω′(k0)
and c.c. simply denotes the complex conjugate.
Additionally, we assume that we can derive the Nonlinear Schrödinger equation in
a similar way as for (1.2), we further specify this in section 3.2. We disregarding
the derivation of the NLS equation here, since it is already known that it can be
derived for the water wave problem. The only reason we are looking at the reduced
system is to get an idea how the NLS equation can be justified for the water wave
problem with surface tension.

Under these assumptions, we obtain the following result.

Theorem 1.2.1. Let b > 0. Fix k0 > 0 as above and sA ≥ 7. For all C1, T0 > 0
there exists ε0 > 0 such that for all solutions A ∈ C([0, T0], HsA(R,C)) of the NLS
equation (1.46) with

sup
T∈[0,T0]

‖A(·, T )‖HsA (R,C) ≤ C1

the following holds.
For all ε ∈ (0, ε0) there are solutions(

u−1

u1

)
∈ C

(
[0, T0/ε

2], HsA(R,R)
)

of (1.27) which satisfy

sup
t∈[0,T0/ε2]

∥∥∥(u−1

u1

)
(·, t)− εψNLS(·, t)

(
1
0

)∥∥∥
HsA (R,R)

. ε3/2.
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More interesting than the theorem itself is the fact that the above key properties
suffice to prove it, leaving aside the other assumptions we made. In other words the
result extends to a whole class of systems whose nonlinearities have this certain
form. The structure provided by these key properties can also be found in the
arc length formulation of the water wave problem with finite depth and surface
tension, although one cannot directly embed the full water wave problem into our
setting since it is more complicated. Nevertheless we get a good idea of how the
loss of regularity occurring in the error estimates of the full water wave problem
could be approached.

We follow [D19] to first present the Eulerian formulation and then the arc
length formulation of the 2D water wave problem in the case of finite depth and
possibly surface tension. Then we heuristically derive the reduced system (1.27)
from the arc length formulation of the water wave problem and proceed to talk
about the key properties of the reduced system. In section 3.3, we then make
error estimates by applying the techniques from section 2.2. We first construct the
normal form transformations and a modified energy. Then we show the equivalence
of this energy EsA to the HsA-norm of the error and

∂tEsA = O(ε2) .

Finally, we improve the energy a little to obtain

∂tẼsA = ε2O(ẼsA + 1)

such that theorem 1.2.1 follows.
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1.3 General Notation
For functions f : R→ K with K = R or K = C, we use the norms

‖f‖L2 :=

√∫
R
|f(x)|2 dx ,

‖f‖∞ := ess sup
x∈R

|f(x)| ,

‖f‖Cn :=
n∑
j=0

max
x∈R
|∂jxf(x)| ,

‖f‖Hs := ‖(1 + | · |2)s/2f̂(·)‖L2 =

√∫
R
(1 + |k|2)s|f̂(k)|2 dk ,

‖f̂‖L1(s) :=

∫
R
(1 + |k|2)s/2|f̂(k)| dk .

Here f̂ denotes the Fourier transformation of f .
We choose the Fourier transformation F that is defined by

f̂(k) = F [f ](k) :=
1

2π

∫
R
e−ikxf(x) dx

for suitable functions f .
We write f ∈ L2(R,K) when ‖f‖L2 < ∞, f ∈ Hs(R,K) when ‖f‖Hs < ∞,
f̂ ∈ L1(s)(R,K) when ‖f̂‖L1(s) < ∞ and f ∈ Cn

b (R,K) when ‖f‖Cn < ∞ for
f : R→ K. We write f ∈ C∞c (R,K), when f has a compact support and f ∈ Cn

b

for all n ∈ N. Sometimes, we write for example f ∈ Hs(R) instead of f ∈ Hs(R,C).
For f1, f2 ∈ Hs(R), we a few times use∥∥(f1

f2

)∥∥
Hs = ‖f1‖Hs + ‖f2‖Hs .

We have the estimate ‖f‖Cn ≤ C‖f̂‖L1(n) for some C ≥ 0.
For ψ(x) = A(εx)eik0x, we have ψ̂(k) = ε−1Â

(
(k − k0)ε−1

)
. Thus, we only have

‖ψ‖Hs ≤ ε−1/2C‖A‖Hs but ‖ψ‖Cn ≤ C‖A‖Cn and ‖ψ̂‖L1(s) ≤ C‖Â‖L1(s).
We write deg∗(γ) ≤ s for a function γ : R→ R when there are some constants

C,M such that

|γ(k)| ≤ C(1 + |k|)s for |k| ≥M .
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We write deg(γ) = s when there on top of that is some c > 0 such that

c(1 + |k|)s ≤ |γ(k)| ≤ C(1 + |k|)s for |k| ≥M.

We write deg∗(γ) = s, when s is the minimal s for that deg∗(γ) ≤ s is true.
For expressions I and E, we often write

I ≤ O(E) ,

when we want to express that there exists some constant C > 0 such that

I ≤ C E .

The constant C can then always be chosen independently of E and the small
perturbation parameter ε.
A few times, we write I . E instead of I ≤ O(E). We sometimes write I = O(E),
when we want to express that I ≤ O(E) and −I ≤ O(E).

For an operator γ and some functions g, f , we denote the commutator [γ, f ]g
by

[γ, f ]g := γ(fg)− f γg .

For convenience, we often call the operators defining a normal form transfor-
mation also normal form transformations.
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Chapter 2

Quasilinear dispersive systems

2.1 The Derivation of the NLS approximation
In this section, we will first show how the NLS equation (1.7) can be derived for
the dispersive system (1.2). Then, we will prove residual estimates for a improved
NLS approximation Ψ, which only differs slightly from ψNLS. For the derivation of
the NLS equation and for all estimates in this section, we only need the conditions
(1.4), (1.5) and (1.6) to be fulfilled and that the function ω or sign(·)ω(·), and, the
function ρ or sign(·)ρ(·), lie in C5(R).

Before we derive the NLS-equation, we diagonalize our dispersive system

∂tu =− iωv ,
∂tv =− iωu− iρu2

via the transformation (
u−1

u1

)
=

1

2

(
1 1
1 −1

)(
u
v

)
, (2.1)

which we later could invert again by the transformation(
u
v

)
=

(
1 1
1 −1

)(
u−1

u1

)
. (2.2)

We obtain the diagonalized system

∂tu−1(x, t) = −iωu−1(x, t)− 1

2
iρ
(
u−1 + u1

)2
(x, t) , (2.3)

∂tu1(x, t) = iωu1(x, t) +
1

2
iρ
(
u−1 + u1

)2
(x, t) ,

where t, x ∈ R and u−1(x, t), u1(x, t) ∈ R.
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In order to derive the NLS equation, we now make the simple ansatz(
u−1

u1

)
= εΨS := ε

(
A1(X,T )E + A1(X,T )E−1

)( 1
0

)
(2.4)

+ ε2

(
A0(X,T ) + A2(X,T )E2 + A2(X,T )E−2

D0(X,T ) +D2(X,T )E2 +D2(X,T )E−2

)
,

where X := ε(x− cgt), T := ε2t, E = ei(k0x−ω0t), ω0 = ω(k0) and cg = ω′ (k0). This
is an ansatz that leads to an approximation that describes waves moving to the
right with the group velocity cg.

Remark 2.1.1. In order to obtain an approximation that describes waves moving
to the left with the group velocity cg, one could replace in the above ansatz the
vector (1, 0)T by (0, 1)T as well as −ω0 by ω0 and cg by −cg (cf. [SW11]), or just
replace the operators ω and ρ by the operators ω̃ = −ω and ρ̃ = −ρ.

We insert the ansatz εΨS into the diagonalized system (2.3).
In order to be able to directly compare powers in ε, we use Taylors theorem
to expand all resulting terms of the forms ω

[
AjE

j
]
, ω
[
DjE

j
]
, ρ
[
Aj1Aj2E

j1+j2
]
,

ρ
[
Dj1Aj2E

j1+j2
]
and ρ

[
Dj1Dj2E

j1+j2
]
(cf. Lemma 25 of [SW11]).

When ω ∈ C5(R), i.e. in the case ω(0) = 0, Taylor’s theorem yields

ω(k) =ω(jk0) + ω′(jk0) (k − jk0) +
4∑

n=2

ω(n)(jk0)

n!
(k − jk0)n +O

(
(k − jk0)5

)
,

and we therefore have the expansion

iω
[
AjE

j
]

= iω(jk0)AjE
j + ε ω′(jk0) ∂XAjE

j

+
4∑

n=2

εn
i(−i)nω(n)(jk0)

n!
∂nXAjE

j +O(ε5).

Analogously, we expand expressions involving the operator ρ when ρ(0) = 0, i.e.
when ρ ∈ C5(R).
When limk→±0 ω(k) 6= 0 or limk→±0 ρ(k) 6= 0, we have to expand more carefully
since the function ω or ρ has a jump in k = 0.
In the case limk→±0 ω(k) 6= 0, we write

ω(k) = iĤ(k) v(k) = sign(k)v(k),

and then expand the function v := sign(·)ω(·) ∈ C5(R) with Taylor’s theorem in
order to get

ω(k) =sign(k)
(

sign(jk0)ω(jk0) + sign(jk0)ω′(jk0) (k − jk0)

+
4∑

n=2

sign(jk0)ω(n)(jk0)

n!
(k − jk0)n +O

(
(k − jk0)5

))
.
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If the support Sj of AjEj in Fourier space is strictly restricted to a small enough
neighborhood of jk0, we have

sign(k)sign(jk0) = 1 for k ∈ Sj

and thus can still use the expansion

iω
[
AjE

j
]

= iω(jk0)AjE
j + ε ω′(jk0) ∂XAjE

j

+
4∑

n=2

εn
i(−i)nω(n)(jk0)

n!
∂nXAjE

j +O(ε5).

for j 6= 0. However, for j = 0, we obtain

iωAj = −ω(0+)HAj + ε2ω
(2)(0+)

2
H∂2

XAj + ε4ω
(4)(0+)

4!
H∂4

XAj +O(ε5).

Note that ω(n)(0+) = 0 for odd numbers n, what simply is reflecting the fact that
the function v = sign(·)ω(·) ∈ C5(R) is even.
Analogously, we expand expressions involving ρ in the case limk→±0 ρ(k) 6= 0.
After having expanded all expression like this, we now equate the coefficients in
front of εmEj to zero. Since ε is really small, we expect the terms with higher
ε-powers to be smaller and start by looking at the terms with lowest ε-power.
Due to the different expansions being valid, we here have to distinguish between
the two cases ω(0) = 0 and limk→±0 ω(k) 6= 0.

2.1.1 Derivation in the case where ω(0) = 0

In the case where ω(0) = 0, due to (1.5), we have

ω′(k0) 6= ±ω′(0) and ρ(0) = 0

on top of having (1.4) and (1.6):

ω′′(k0) 6= 0,

mω(k0) 6= ±ω(mk0) for m = ±2, ... ,±5 .

We obtain the following equations for the coefficients in front of εEj:

εE

(
1
0

)
: ω(k0)− ω0 = 0 ,

εE−1

(
1
0

)
: ω(k0)− ω0 = 0 .
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Thus, since we have chosen ω0 = ω(k0), all terms of order ε cancel.
In front of ε2Ej, we have the following equations for the coefficients:

ε2E2

(
1
0

)
:

1

2
ρ(2k0)A2

1 +
(
ω(2k0)− 2ω0

)
A2 = 0 ,

ε2E

(
1
0

)
: ω′(k0)− cg = 0 ,

ε2E0

(
1
0

)
: ρ(0) = 0 ,

ε2E−1

(
1
0

)
: ω′(−k0)− cg = 0 ,

ε2E−2

(
1
0

)
:

1

2
ρ(−2k0)A2

1 +
(
ω(−2k0) + 2ω0

)
A2 = 0 ,

ε2E2

(
0
1

)
:

1

2
ρ(2k0)A2

1 +
(
ω(2k0) + 2ω0

)
D2 = 0 ,

ε2E0

(
0
1

)
: ρ(0) = 0 ,

ε2E−2

(
0
1

)
:

1

2
ρ(−2k0)A2

1 +
(
ω(−2k0)− 2ω0

)
D2 = 0 .

Due to (1.6), we can choose

A2 = − ρ(2k0)

2
(
ω(2k0)− 2ω0

)A2
1,

D2 = − ρ(2k0)

2
(
ω(2k0) + 2ω0

)A2
1.

By this choice, all terms of order ε2 cancel, since the functions ω and ρ are odd,
cg = ω′(k0) and ρ(0) = 0.
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In front of ε3Ej, we get the following equations:

ε3E

(
1
0

)
: ∂TA1 − i

ω′′(k0)

2
∂2
XA1 + iρ(k0)

(
A1

(
A0 +D0

)
+ A1

(
A2 +D2

))
= 0 ,

ε3E0

(
1
0

)
: ρ′(0)∂X |A1|2 + (ω′(0)− cg)∂XA0 = 0 ,

ε3E−1

(
1
0

)
:

∂TA1 − i
ω′′(−k0)

2
∂2
XA1 + iρ(−k0)

(
A1

(
A0 +D0

)
+ A1

(
A2 +D2

))
= 0 ,

ε3E0

(
0
1

)
: ρ′(0)∂X |A1|2 + (ω′(0) + cg)∂XD0 = 0 .

We also have coefficients in front of ε3Ej for j ∈ {−3,−2, 2, 3} and in front of
ε3E ( 0, 1)T and ε3E−1 ( 0, 1)T , but, unlike the coefficients above, we can always
get rid of these coefficients by simply extending our ansatz by some O(ε2)-terms
and exploiting (1.6).
Due to (1.5), we can choose

A0 = − ρ′(0)

ω′(0)− cg
|A1|2,

D0 = − ρ′(0)

ω′(0) + cg
|A1|2,

such that the coefficients in front of ε3E0 ( 1, 0)T and ε3E0 ( 1, 0)T vanish.
When we now plug in our choices for A2, D2, A0 and D0, we obtain, in the coeffi-
cients in front of ε3E ( 1, 0)T or ε3E−1 ( 1, 0)T , the NLS-equation

∂TA1 = i
ω′′(k0)

2
∂2
XA1 + iν2(k0)A1|A1|2 ,

with

ν2(k0) = −ρ(k0)
( 2ρ′(0)ω′(0)

c2
g −

(
ω′(0)

)2 +
ρ(2k0)ω(2k0)

4ω2
0 −

(
ω(2k0)

)2

)
. (2.5)

This is how the NLS equation is derived in the case where ω(0) = 0.

2.1.2 Derivation in the case where limk→±0 ω(k) 6= 0

We now derive the NLS-equation in the case where limk→±0 ω(k) 6= 0, that obvi-
ously is the case where we have

lim
k→±0

ω(k) 6= 0
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on top of having (1.4) and (1.6):

ω′′(k0) 6= 0,

mω(k0) 6= ±ω(mk0) for m = ±2, ... ,±5 .

As hinted before, in order to be able to compare the coefficients in front of εmEj

in a similar way as we did in the case where ω(0) = 0, we here will assume that for
j 6= 0, the support of AjEj and DjE

j in Fourier space is such strictly concentrated
around the wavenumbers jk0, that we can replace the expression sign(k)sign(jk0)
by 1 +O(ε6) in our Taylor expansions. This assumption is automatically fulfilled
when Aj, Dj ∈ Hs for some large enough s ≥ 0, due to the estimate

‖χ[−δ,δ]ε
−1f̂(ε−1·)− ε−1f̂(ε−1·)‖L2(m) ≤ C(δ) εm+M−1/2‖f‖Hm+M (2.6)

for f ∈ Hm+M and for all M,m ≥ 0, where χ[−δ,δ] is the characteristic function on
[−δ, δ] (see (24) in [S98b]).

We again obtain the following equations for the coefficients in front of εEj:

εE

(
1
0

)
: ω(k0)− ω0 = 0 ,

εE−1

(
1
0

)
: ω(k0)− ω0 = 0 .

So, since we have chosen ω0 = ω(k0), all terms of order ε cancel.
In front of ε2Ej, we now have the following equations for the coefficients:

ε2E2

(
1
0

)
:

1

2
ρ(2k0)A2

1 +
(
ω(2k0)− 2ω0

)
A2 = 0 ,

ε2E

(
1
0

)
: ω′(k0)− cg = 0 ,

ε2E0

(
1
0

)
: ρ(0+)H|A1|2 + ω(0+)HA0 = 0 ,

ε2E−1

(
1
0

)
: ω′(−k0)− cg = 0 ,

ε2E−2

(
1
0

)
:

1

2
ρ(−2k0)A2

1 +
(
ω(−2k0) + 2ω0

)
A2 = 0 ,

ε2E2

(
0
1

)
:

1

2
ρ(2k0)A2

1 +
(
ω(2k0) + 2ω0

)
D2 = 0 ,

ε2E0

(
0
1

)
: ρ(0+)H|A1|2 + ω(0+)HD0 = 0 ,

ε2E−2

(
0
1

)
:

1

2
ρ(−2k0)A2

1 +
(
ω(−2k0)− 2ω0

)
D2 = 0 .
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Due to (1.6), we can choose

A2 = − ρ(2k0)

2
(
ω(2k0)− 2ω0

)A2
1,

D2 = − ρ(2k0)

2
(
ω(2k0) + 2ω0

)A2
1,

and, since ω(0+) = limk→0+ ω(k) 6= 0, we can choose

A0 = − ρ(0+)

ω(0+)
|A1|2,

D0 = − ρ(0+)

ω(0+)
|A1|2.

By this choice all terms of order ε2 cancel, since the functions ω and ρ are odd
and cg = ω′(k0) .
In front of ε3Ej, we get the equations:

ε3E

(
1
0

)
: ∂TA1 − i

ω′′(k0)

2
∂2
XA1 + iρ(k0)

(
A1

(
A0 +D0

)
+ A1

(
A2 +D2

))
= 0 ,

ε3E−1

(
1
0

)
:

∂TA1 − i
ω′′(−k0)

2
∂2
XA1 + iρ(−k0)

(
A1

(
A0 +D0

)
+ A1

(
A2 +D2

))
= 0 .

We also have coefficients in front of ε3Ej for j ∈ {−3,−2, 0, 2, 3}, in front of
ε3E ( 0, 1)T and in front of ε3E−1 ( 0, 1)T , however we can always get rid of these
coefficients by adding some O(ε2)-terms to our ansatz and exploiting (1.6) and
ω(0+) 6= 0.
When we now plug in our choices for A2, D2, A0 and D0, we obtain, in the coeffi-
cients in front of ε3E ( 1, 0)T or ε3E−1 ( 1, 0)T , the NLS-equation

∂TA1 = i
ω′′(k0)

2
∂2
XA1 + iν2(k0)A1|A1|2 ,

with

ν2(k0) = −ρ(k0)
( ρ(2k0)ω(2k0)

4ω2
0 −

(
ω(2k0)

)2 − 2
ρ( 0+)

ω( 0+)

)
. (2.7)

Remark 2.1.2. Looking at (2.5) and (2.7), we see that the NLS equation (1.7)
can be either defocusing or focusing depending on ω, ρ and k0 > 0.
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2.1.3 Residual estimates for an improved NLS approxima-
tion

When we just derived the NLS-equation by using the ansatz (u−1, u1)T = εΨS, we
also showed that the residual

Resu(εΨS) =

(
Resu−1(εΨS)
Resu1(εΨS)

)
,

which contains all terms that do not cancel after inserting ansatz (2.4) into system
(2.3), is formally O(ε3). However, for our error estimates, we need a much smaller
residual and have to control its norm in high Sobolev spaces.
In order to get a smaller residual, we extent the ansatz εΨS by some O(ε2)-terms
to a approximation εΨ̃. Then, we exploit that the approximation εΨ̃ is strongly
concentrated around a finite number of integer multiples of the basic wave number
k0 > 0 such that we can use some cut-off function to restrict the support of the
approximation εΨ̃ in Fourier space to small neighborhoods of these wave numbers
jk0, with j ∈ {−5, . . . , 5}, without changing the size of the residual. This way, we
obtain a approximation εΨ that is an analytic function and has a residual of the
formal order O(ε6). For more details on this construction we refer to Section 2 of
[DSW16].
The final approximation that we use, is

εΨ = εΨc + ε2Ψq , (2.8)

where

εΨc = εψc

(
1
0

)
= ε(ψ1 + ψ−1)

(
1
0

)
= ε

(
A1(ε(x− cgt), ε2t)E + c.c.

)( 1
0

)
,

ε2Ψq = ε2

(
ψq−1

ψq1

)
= ε2Ψ0 + ε2Ψ2 + ε2Ψh ,

ε2Ψ0 = ε2

(
A0(ε(x− cgt), ε2t)
D0(ε(x− cgt), ε2t)

)
,

ε2Ψ2 = ε2

(
A2(ε(x− cgt), ε2t)E2 + c.c.
D2(ε(x− cgt), ε2t)E2 + c.c.

)
,
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ε2Ψh =
∑

n=1,2,3,4

ε1+n

(
An1 (ε(x− cgt), ε2t)E + c.c.
Dn

1 (ε(x− cgt), ε2t)E + c.c.

)
+
∑

n=1,2,3

ε2+n

(
An0 (ε(x− cgt), ε2t)
Dn

0 (ε(x− cgt), ε2t)

)
+
∑

n=1,2,3

ε2+n

(
An2 (ε(x− cgt), ε2t)E2 + c.c.
Dn

2 (ε(x− cgt), ε2t)E2 + c.c.

)
+
∑

n=0,1,2

ε3+n

(
An3 (ε(x− cgt), ε2t)E3 + c.c.
Dn

3 (ε(x− cgt), ε2t)E3 + c.c.

)
+
∑
n=0,1

ε4+n

(
An4 (ε(x− cgt), ε2t)E4 + c.c.
Dn

4 (ε(x− cgt), ε2t)E4 + c.c.

)
,

+ ε5

(
A0

5(ε(x− cgt), ε2t)E5 + c.c.
D0

5(ε(x− cgt), ε2t)E5 + c.c.

)
,

E = ei(k0x−ω0t), ω0 = ω(k0) and cg = ω′ (k0).
Here, A1

(
ε(· − cgt), ε2t

)
is the restriction of A

(
ε(· − cgt), ε2t

)
in Fourier space to

the interval {k ∈ R : |k| ≤ δ < k0/20} by some cut-off function, where A is the
solution of the NLS-equation (1.7) and δ > 0. More precisely

A1

(
ε(· − cgt), ε2t

)
= P0,δ

[
A
(
ε(· − cgt), ε2t

)]
:= F−1

[
χ[−δ,δ](·)F

[
A
(
ε(· − cgt), ε2t

)]
(·)
]

where χ[−δ,δ] is the characteristic function on the interval [−δ, δ], i.e. χ[−δ,δ](k) = 1
for [−δ, δ] and χ[−δ,δ](k) = 0 for k /∈ [−δ, δ].
The Anj and Dn

j are chosen suitably depending on A1 such that the support of
AnjE

j and Dn
jE

j in Fourier space lies in a small neighborhood of the wave number
jk0.
One can think of εψc as εψNLS, just with a support in Fourier space which is
restricted to small neighborhoods of the wave numbers ±k0.
Similarly as in [SW11, DSW16], we obtain:

Lemma 2.1.3. Let sA ≥ 7 and A ∈ C([0, T0], HsA(R,C)) be a solution of the NLS
equation (1.7) with

sup
T∈[0,T0]

‖A‖HsA ≤ CA.

Then for all s ≥ 0 there exist CRes, CΨ, ε0 > 0 depending on CA such that for all
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ε ∈ (0, ε0) the approximation εΨ = εΨc + ε2Ψq satisfies

sup
t∈[0,T0/ε2]

‖Resu(εΨ)‖Hs ≤ CRes ε
11/2, (2.9)

sup
t∈[0,T0/ε2]

∥∥εΨ− εψNLS ( 1
0

)∥∥
HsA

≤ CΨ ε
3/2, (2.10)

sup
t∈[0,T0/ε2]

(‖Ψ̂c‖L1(s+1)(R,C) + ‖Ψ̂q‖L1(s+1)(R,C)) ≤ CΨ , (2.11)

‖∂tψ̂±1 + iω̂ψ±1‖L1(s) ≤ CΨ ε
2 . (2.12)

Remark 2.1.4. When (1.6) is also true for m ∈ {±5,±6, . . . }, by choosing sA
higher and expanding εΨ further, one could make Resu(εΨ) arbitrary small (if ω
or sign(·)ω(·), and, ρ or sign(·)ρ(·), are smooth enough).

The bound (2.10) is the reason why we can work with εΨ and will still obtain
a result for εψNLS.

We need the bound (2.11) in order to make estimates like

‖ψcf‖Hs ≤ C‖ψc‖Csb‖f‖Hs ≤ C‖ψ̂c‖L1(s)‖f‖Hs

without losing powers in ε as we would with ‖ψc‖Hs = ‖ψ̂c‖L2(s), where the problem
is that ‖g(ε·)‖L2 = ε−1/2‖g(·)‖L2.

The bound (2.12) will be used to approximate ∂tψ±1.

Proof of lemma 2.1.3. We only give a short proof, for more details compare
section 2.4 of [DSW16].
By proceeding for Ψ exactly as for ΨS above, we obtain the NLS-equation (1.7) in
ε3E and ε3E−1. Due to the estimate (see (24) in [S98b])

‖χ[−δ,δ]ε
−1f̂(ε−1·)− ε−1f̂(ε−1·)‖L2(m) ≤ C(δ) εm+M−1/2‖f‖Hm+M (2.13)

and the fact that A solves the NLS-equation (1.7), we have∥∥∥∂TA1 − i
ω′′(k0)

2
∂2
XA1 − iν2(k0)A1|A1|2

∥∥∥
L2

= O(ε3−1/2).

By now looking at the terms ε4Ej, ε5Ej and suitably choosing Anj , Dn
j , we obtain

|Resu(εΨ)‖L2 = O(ε11/2).

As before, for j 6= 1, the Anj , Dn
j are chosen depending on A1 by exploiting (1.5).

The A1
1, A2

1, sometimes even the D1
1, D2

1, are determined by solving linear, but
inhomogeneous, Schrödinger equations, in which the inhomogeneous terms are
determined by A1. Since A1((· − cgt), ε2t

)
has a compact support in Fourier space

the Anj ((· − cgt), ε2t
)
Ej, Dn

j ((· − cgt), ε2t
)
Ej can also be chosen with a support in
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Fourier space that lies in a small neighborhood of jk0. Thus, (2.9) is true for all
s ≥ 0 due to the compact support of Ψ in Fourier space.

The estimate (2.10) is a consequence of

εΨ = ε
(
A1(ε(x− cgt), ε2t)E + c.c.

)( 1
0

)
+ ε2Ψq

and (2.13).
We obtain (2.11), since Ψ̂c and Ψ̂q have compact support and

‖F
[
f(ε·)

]
‖L1 = ‖ε−1f̂(ε−1·)‖L1 = ‖f̂(·)‖L1 ,

for f ∈ L1.
The estimate (2.12) can be seen by expanding the expressions iωA1E and

iωA1E
−1 in the same way as we did before.

For the derivation of the NLS equation and the above lemma, we do not need
the assumption (1.9), i.e. that the linear part of our system is at least as strong as
the nonlinear part. In other words, we can rigorously derive the NLS equation for
a much wider class of systems than the class for which we justify the NLS equation
for in this thesis. While this does not necessarily mean that the NLS equation can
also be justified for systems where the nonlinear part is stronger than the linear
part (see [SSZ15]), it still lets one hope for that.
In [DH18], the NLS equation was justified for an equation with a nonlinear part
stronger than the linear one, however the strategy used there only works for equa-
tions of the form ∂tv = iωv + iρ(v2) with v(x, t) ∈ R and deg∗(ρ) ≤ 1.

2.2 The error estimates
In this section, we ultimately will prove theorem 1.1.1. That means we will show
that there is a solution u to (1.2) such that the HsA-norm of the error

Rerr = u− εψNLS (2.14)

remains bounded on the O(ε−2)-time interval [0, T0/ε] and we have the estimate

‖u− εψNLS‖HsA ≤ O(ε3/2) . (2.15)

To do so, we consider the diagonalized system (2.3) from section 2.1:

∂tu−1(x, t) = −iωu−1(x, t)− 1

2
iρ
(
u−1 + u1

)2
(x, t) ,

∂tu1(x, t) = iωu1(x, t) +
1

2
iρ
(
u−1 + u1

)2
(x, t) ,
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with t, x ∈ R and u−1(x, t), u1(x, t) ∈ R, that emerges from the system (1.2) by
the transformation (

u−1

u1

)
=

1

2

(
1 1
1 −1

)(
u
v

)
.

We then proceed to estimate the error(
R−1

R1

)
=

(
u−1

u1

)
− εΨ , (2.16)

which the improved approximation εΨ from section 2.1 makes on the O(ε−2)-time
interval [0, T0/ε

2] . This will make the proof much simpler and, due to the estimate
(2.10), we directly obtain an estimate for (2.14) from an estimate for (2.16).

Let

Ψ =

(
ψc + εψq−1

εψq1

)
,

be the approximation (2.8) from section 2.1. We write the error (2.16) as

εβ
(
ϑR−1

ϑR1

)
=

(
u−1

u1

)
− εΨ (2.17)

where β = 5/2 and ϑ is an invertible operator on L2(R) that later will be given
by some weight function ϑ̂ in Fourier space. Throughout this section, we will now
work with the rescaled error(

R−1

R1

)
= ε−βϑ−1

(( u−1

u1

)
− εΨ

)
, (2.18)

where ϑ−1 : L2(R)→ L2(R) is the inverse of the operator ϑ.
The dynamics we obtain for this rescaled error by plugging in the above definition
into the diagonalized system are given by

∂tR−1 = −iωR−1 − εiρϑ−1(Rψ(ϑR−1 + ϑR1)) + ε−βϑ−1Resu−1(εΨ) , (2.19)

∂tR1 = iωR1 + εiρϑ−1(Rψ(ϑR−1 + ϑR1)) + ε−βϑ−1Resu1(εΨ) ,

where

Rψ := ψ +
1

2
εβ−1(ϑR−1 + ϑR1), (2.20)

ψ := ψc + εψQ := ψc + ε(ψq−1 + ψq1) . (2.21)
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2.2.1 O(ε−2)- time scale via normal form transformations

If we could obtain an estimate of the form

∂t
(
‖R−1‖2

Hs + ‖R1‖2
Hs

)
≤ ε2O

(
‖R−1‖2

Hs + ‖R1‖2
Hs + 1

)
for t ∈ [0, T0], an application of Gronwall’s inequality would give us

sup
t∈[0,T0/ε2]

‖R−1(t)‖Hs + ‖R1(t)‖Hs ≤ C

for some C ≥ 0 and we would have

sup
t∈[0,T0/ε2]

∥∥( u−1

u1

)
− εΨ

∥∥
Hs = εβ sup

t∈[0,T0/ε2]

∥∥( ϑR−1

ϑR1

)∥∥
Hs ≤ εβ‖ϑ‖L2→L2 C.

We have chosen β = 5/2 large enough and constructed the approximation Ψ
in such a way that we formally have

∂tRj = jiωRj + jεiρϑ−1(Rψ(ϑR−1 + ϑR1)) + ε−βϑ−1Resuj(εΨ)

= jiωRj + jεiρϑ−1
(
ψ(ϑR−1 + ϑR1)

)
+ j

1

2
εβiρϑ−1(ϑR−1 + ϑR1)2 + ε−βϑ−1Resuj(εΨ)

= jiωRj + jεiρϑ−1
(
ψ(ϑR−1 + ϑR1)

)
+O(ε2) ,

for j = ±1.
We will choose the operator ϑ such that we can be sure that

‖iρϑ−1f‖L2 ≤ O(‖f‖Hdeg∗ ρ) , (2.22)
‖ϑf‖L2 ≤ O(‖f‖L2) , (2.23)

i.e. that the operators iρϑ−1 and ϑ do not cause a loss of ε-powers.
For this reason, we can take advantage of the fact that

ψ = ψc + εψQ (2.24)

in order to get

∂tRj = jiωRj + jεiρϑ−1
(
ψc(ϑR−1 + ϑR1)

)
+O(ε2) .

The term jiωRj is harmless, since, due to the fact that the function ω is odd, it
will vanish when we multiply the equation with 2Rj and then integrate in space
to obtain ∂t‖Rj‖L2 on the left hand side.
The O(ε)-term however prevents us from obtaining an estimate on a O(ε−2)-
timescale. The basic approach to get rid of this term is preforming a normal
form transformation

Rj → Rj + ε
∑

j2∈{±1}

ϑ−1Njj2(ψc, Rj2), (2.25)

where N is a suitably chosen bilinear mapping.
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Remark 2.2.1. We treat the operator ϑ−1 similarly as the small perturbation
parameter ε since ϑ−1 can cause a loss of ε-powers.

By defining

R̃j = Rj + ε
∑

j2∈{±1}

ϑ−1Njj2(ψc, Rj2), (2.26)

we formally obtain

∂tR̃j = ∂tRj + ε
∑

j2∈{±1}

ϑ−1Njj2(∂tψc, Rj2) + ε
∑

j2∈{±1}

ϑ−1Njj2(ψc, ∂tRj2)

= jiωR̃j − jε
∑

j2∈{±1}

ϑ−1iωNjj2(ψc, Rj2)

+ jεiρϑ−1
(
ψc(ϑR−1 + ϑR1)

)
+ ε

∑
j2∈{±1}

ϑ−1Njj2(−iωψc, Rj2) + ε
∑

j2∈{±1}

ϑ−1Njj2(ψc, j2iωRj2)

+ ε
∑

j2∈{±1}

ϑ−1Njj2(iωψc + ∂tψc, Rj2)

+ ε
∑

j2∈{±1}

ϑ−1Njj2

(
ψc, j2εiρϑ

−1
(
ψc(ϑR−1 + ϑR1)

)
+O(ε2)

)
+O(ε2) .

The first idea would be to choose normal form transformations Njj2 = Ñjj2 , where
Ñjj2 is defined by

−jiωÑjj2(ψc, Rj2) + jiρ
(
ψc ϑRj2

)
+ Ñjj2(−iωψc, Rj2) + Ñjj2(ψc, j2iωRj2) = 0 ,

i.e. ̂̃N j1j2(ψc, Rj2)(k) =

∫
R
ñj1j2(k, k −m,m)ψ̂c(k −m)R̂j2(m) dm ,

ñj1j2(k, k −m,m) =
ρ(k) ϑ̂(m)χc(k −m)

ω(k)− j1j2ω(m) + j1ω(k −m)
,

where χc is the characteristic function on supp ψ̂c.
We choose the approximation Ψ from section 2.1 such that ψc in Fourier space has
the compact support

supp ψ̂c = {k ∈ R : |k ± k0| ≤ δ < k0/20} , (2.27)

where the parameter δ will later be chosen suitably small, but independent of ε.
Due to our conditions concerning the solution of the equations

ω(k)− j1j2ω(k ∓ k0) + j1ω(±k0) = 0 (2.28)
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for j1, j2 ∈ {±1}, which we have formulated in (1.12)-(1.17), we are able to show
that when (1.16) is true, i.e. when

0 6= ±ω(0+) 6= 2ω(k0) , (2.29)

the mappings Ñjj2(ψc, ·) are indeed well-defined and map H1(R) on L2(R).
However, when we do not have (2.29), the mappings Ñjj2 are in general not

well-defined for functions of H1(R), or even for functions of C∞c (R). This is due
to the resonance happening in m = 0 that corresponds to the solutions k = ±k0

of (2.28), and is in general nontrivial. In other words, we have the problem that
ñj1j2(k, k −m,m) can grow unlimitedly near m = 0.
To address this issue, we define the operator ϑ in Fourier space via the weight
function

ϑ̂(k) =


1 , when 0 6= ±ω(0+) 6= 2ω(k0),{
ε+ (1− ε) |k|

δ
for |k| ≤ δ

1 for |k| > δ
, else.

(2.30)

Herby the parameter δ is the same δ as the one in (2.27). The idea to handle
a nontrivial resonance in m = 0, i.e. k = ±k0, by rescaling the error with such
a weight function has already been used in many papers (e.g. [DS06, DSW16,
CW17, DH18]).
Let P̂a,b denote the characteristic function on the set {k : a ≤ |k| ≤ b} and Pa,b be
the operator defined by the symbol P̂a,b in Fourier space.
Due to our choice of ϑ, we formally have in the case that (2.29) is hurt

jεiρϑ−1
(
ψc(ϑR−1 + ϑR1)

)
= jεiρϑ−1

(
ψcPε,∞ϑ(R−1 +R1)

)
+ jεiρϑ−1

(
ψcP0,εϑ(R−1 +R1)

)
= jεiρϑ−1

(
ψcPε,∞ϑ(R−1 +R1)

)
+O(ε2) ,

since ϑ̂(k) ≤ O(ε) for |k| ≤ ε.
Therefore, we now only have to eliminate the term

jεiρϑ−1
(
ψcPε,∞ϑ(R−1 +R1)

)
when (2.29) is hurt.
So, we define the normal form transformation by

N̂j1j2(ψc, Rj2)(k) =

∫
R
nj1j2(k, k −m,m)ψ̂c(k −m)R̂j2(m) dm , (2.31)

nj1j2(k, k −m,m) =
ρ(k) ϑ̂ε,∞(m)χc(k −m)

ω(k)− j1j2ω(m) + j1ω(k −m)
,

43



where ϑ̂ε,∞(m) = 1 when 0 6= ±ω(0+) 6= 2ω(k0) is true, otherwise

ϑ̂ε,∞(m) =


0 for |m| ≤ ε ,

ε+ (1− ε) |m|
δ

for ε < |m| ≤ δ ,

1 for |m| > δ .

In the case of no resonances happening, i.e. where (2.29) is true, the normal form
transformation Nj1j2 looks exactly like Ñj1j2 from above. In the case where (2.29)
is hurt however, the resonance in m = 0 is cut out.
Due to this (and the fact that ρ(0) = 0 when (2.29) is hurt due to (1.16)-(1.17))
we can show that the normal form transformations Nj1j2 are always well-defined
and the Nj1j2(ψc, ·) map H1(R) on L2(R).

Defining ϑ by (2.30) allowed us to obtain a well-defined normal form trans-
formation Nj1j2 , but it has the direct consequence that when (2.29) is hurt, we
have

‖ϑ−1‖L2→L2 = O(ε−1). (2.32)

So, while we successfully obtain

∂tR̃j = jiωR̃j +O(ε2)

in the case that (2.29) is true, we only obtain

∂tR̃j = jiωR̃j + ε2
∑

j2∈{±1}

ϑ−1Njj2

(
ψc, j2iρϑ

−1
(
ψc(ϑR−1 + ϑR1)

))
+O(ε2) .

when (2.29) is not true.
We first observe that

ε2ϑ−1Njj2

(
ψc, j2iρϑ

−1
(
ψc(ϑR−1 + ϑR1)

))
= ε2P0,δϑ

−1Njj2

(
ψc, j2iρϑ

−1
(
ψc(ϑR−1 + ϑR1)

))
+O(ε2) ,

due to the definition (2.30) of the operator ϑ.
Analyzing this term further in Fourier space, we will see that

ε2ϑ−1Njj2

(
ψc, j2iρϑ

−1
(
ψc(ϑR−1 + ϑR1)

))
= ε2P0,δϑ

−1
∑

j4∈{±1}

Njj2

(
ψj4 , j2iρϑ

−1
(
ψj4(ϑR−1 + ϑR1)

))
+O(ε2) ,

where

ψ1(x, t) = A1

(
ε(x− cgt), ε2t

)
ei(k0x−ω0t) , ψ−1 = ψ1 , ψc = ψ1 + ψ−1 ,
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just as in section 2.1.
For this reason, we have to preform a second normal form transformation

R̃j → Řj := R̃j + ε2
∑

j2,j3,j4∈{±1}

ϑ−1Tjj2j3j4(ψj4 , ψj4 , Rj3) (2.33)

where Tjj2j3j4 is a multi-linear mapping such that

P0,δϑ
−1Nj1j2(ψj4 , j2ϑ

−1 iρ(ψj4ϑRj3)) (2.34)

− j1 iωϑ
−1Tj1j2j3j4(ψj4 , ψj4 , Rj3) + ϑ−1Tj1j2j3j4(−iωψj4 , ψj4 , Rj3)

+ ϑ−1Tj1j2j3j4(ψj4 ,−iωψj4 , Rj3) + ϑ−1Tj1j2j3j4(ψj4 , ψj4 , j3 iωRj3) = O(1) .

We finally obtain this by defining

T̂j1j2j3j4(ψj4 , ψj4 , Rj3)(k) =

∫
R
tj1,j2,j3,j4(k)ψ̂j4(k −m)ψ̂j4(m− n)R̂j3(n) dn dm ,

(2.35)

tj1,j2,j3,j4(k) =


0 if (2.29) is true,

−j2 P̂0,δ(k)nj1j2(k, j4k0, k − j4k0) ρ(k − j4k0)(
− j1ω(k)− 2ω(j4k0) + j3ω(k − 2j4k0)

) else.

Due to our definition of nj1j2 and thanks to (1.16)-(1.17), we can show that this
normal form transformations Tj1j2j3j4 are free of nontrivial resonances and that the
Tj1j2j3j4(ψj4 , ψj4 , ·) map L2(R,C) onto L2(R,C).
We now can obtain

∂tŘj = jiωŘj +O(ε2)

and therefore show

∂t
(
‖Ř−1‖2

L2 + ‖Ř1‖2
L2

)
= O(ε2).

Definition 2.2.2. We define the energy

E0(R) = ‖Ř−1‖2
L2 + ‖Ř1‖2

L2 , (2.36)

with

Řj = Rj + ε
∑

j2∈{±1}

ϑ−1Njj2(ψc, Rj2) + ε2
∑

j2,j3,j4∈{±1}

ϑ−1Tjj2j3j4(ψj4 , ψj4 , Rj3)

for j ∈ {−1, 1}, where Njj2 is as in (2.31), Tjj2j3j4 is as in (2.35), ψj4 is as in
(2.8) and ϑ−1 : L2(R) → L2(R) is the inverse of the operator ϑ that was defined
in (2.30).
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Remark 2.2.3. Since we sometimes have to use the estimate (2.32), we have
placed the operator ϑ−1 outside of our normal-form transforms. This way our
estimates for the normal-form transforms Nj1j2 and Tj1j2j3j4 will be independent of
ε.

We will now prove the statements we have made so far.

Lemma 2.2.4. We always have

|kϑ̂−1(k)| ≤ 1 + |k| , (2.37)

that means in particular that

‖iρϑ−1f‖L2 ≤ O(‖f‖Hdeg∗ ρ). (2.38)

When (2.29) is not true, i.e. ϑ 6= idL2, there is a constant C = C(δ) such that for
all k ∈ R:

|k−1 ϑ̂ε,∞(k)| ≤ C. (2.39)

Proof. Obviously (2.37) is true for ϑ̂(k) = 1, otherwise we have

|k ϑ̂−1(k)| =


|k| for |k| > δ ,

|k|
ε+ (1− ε) |k|

δ

for |k| ≤ δ .

For 0 < |k| ≤ δ, we have

|k|
ε+ (1− ε) |k|

δ

≤ 1
ε
|k| + 1−ε

δ

≤ δ

such that (2.37) is true.
Estimate (2.38) now follows due to the fact that ϑ−1 6= idL2 implicates ρ(0) = 0,

i.e. implicates ρ(k) = O(k) for |k| → 0 .

When (2.29) is not true, we have

|k−1 ϑ̂ε,∞(k)| =



0 for 0 < |k| ≤ ε ,

ε

|k| +
(1− ε)
δ

for ε ≤ |k| ≤ δ ,

1

|k| for |k| ≥ δ .

Thus we get (2.39).
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Lemma 2.2.5. The normal-form transforms Nj1j2 were constructed such that for
all f ∈ Hdeg∗(ρ)+1(R):

−j1iωNj1j2(ψc, f)−Nj1j2(iωψc, f) + j2Nj1j2(ψc, iωf) = −j1iρ(ψcϑε,∞f) , (2.40)

where

‖j1iρ(ψϑf)− j1iρ(ψcϑε,∞f)‖L2 = O(ε) ‖f‖Hdeg∗(ρ) . (2.41)

Moreover, for every fix h ∈ L2(R,R) the operators Nj1j2(h, ·) are continuous
linear operators which map H1(R,R) into L2(R,R). In particular, there is a C =

C(‖ĥ(·)χc(·)‖L1) such that for all g ∈ H1(R) we have

‖Njj(h, g)‖L2 ≤ C‖g‖H1 , (2.42)

‖Nj−j(h, g)‖L2 ≤ C‖g‖L2 . (2.43)

Remark 2.2.6. More precisely, we have

‖Njj(h, g)‖L2 ≤ C‖g‖Hq , (2.44)

‖Nj−j(h, g)‖Hr ≤ C‖g‖L2 , (2.45)

for

q ≥ min{deg∗(ρ), deg∗(ρ)− deg(ω) + 1} and r ≤ deg(ω)− deg∗(ρ).

Proof.
In order to find possible resonances for Nj1j2 , we have to look at the zeros of

the denominator of nj1j2 , i.e. of

ω(k)− j1j2ω(m) + j1ω(k −m),

for χc(k −m) 6= 0, i.e. for |k −m∓ k0| ≤ δ.
Due to (1.12), we can chose δ such small that for |k −m∓ k0| ≤ δ the equation

ω(k)− j1j2ω(m) + j1ω(k −m) = 0, (2.46)

can have no other solutions than k = 0 or m = 0.

We first check k = 0 and therefore assume |k| ≤ δ.
For |k| ≤ δ, we also have | −m∓ k0| ≤ 2δ since |k−m∓ k0| ≤ δ. Using Taylor in
order to expand ω(k) in the point sign(k) · 0+ and ω(k −m) in the point −m, we
obtain

ω(k)− j1j2ω(m) + j1ω(k −m)

= ω(sign(k) · 0+)− j1j2ω(m) + j1ω(−m)

+ ω′(sign(k) · 0+) k + j1ω
′(−m) k +O(k2)

= ω(sign(k) · 0+)− j1(j2 + 1)ω(m) +
(
ω′(0) + j1ω

′(m)
)
k +O(k2).
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Thus, if

ω(0∓) 6= (j2 + 1)ω(k0), (2.47)

and we choose δ small enough, Nj1j2 has no resonance in k = 0.
If (2.47) is hurt but

±ω′(0) 6= ω′(k0), (2.48)

we can choose δ small enough such that

ω(k)− j1j2ω(m) + j1ω(k −m) = O(k) for k → 0.

When (1.16) is true, we have (2.47) and thus Nj1j2 has no resonance in k = 0.
When instead (1.17) is true, we always have (2.48) and ρ(k) = O(k) for k → 0 ,
thus Nj1j2 can at worst have a trivial resonance in k = 0.

Now, we check m = 0 and assume |m| ≤ δ.
For |m| ≤ δ, we also have |k ∓ k0| ≤ 2δ since |k −m ∓ k0| ≤ δ. Using Taylor in
order to expand ω(m) in the point sign(m) · 0+ and ω(k −m) in the point k, we
get

ω(k)− j1j2ω(m) + j1ω(k −m)

= ω(k)− j1j2ω(sign(m) · 0+) + j1ω(k)

− j1j2ω
′(sign(m) · 0+)m− j1ω

′(k)m+O(m2)

= −j1j2ω(sign(m) · 0+) + (1 + j1)ω(k) +
(
− j1j2ω

′(0)− j1ω
′(k)
)
m+O(m2).

If we have

ω(0∓) 6= (j1 + 1)ω(k0), (2.49)

and choose δ small enough, Nj1j2 has no resonance in m = 0.
If (2.49) is hurt but

±ω′(0) 6= ω′(k0), (2.50)

we can choose δ small enough such that

ω(k)− j1j2ω(m) + j1ω(k −m) = O(m) for m→ 0.

When (1.16) holds, we have (2.49) and thus Nj1j2 has no resonance in m = 0.
When instead (1.17) holds, we have (2.50). Due to (2.39), this means Nj1j2 can

at worst have a trivial resonance in m = 0.

Last but not least, we have to check |k|, |m| → ∞.
Note that |m| → ∞ always implies |k| → ∞, since |k−m∓k0| ≤ δ. Using Taylor,
we get

ω(k)− j1j2ω(m) + j1ω(k −m)

= (1− j1j2)ω(k) + j1ω(k −m)− j1j2ω
′(k)(m− k) +O

(
ω′′(k)

)
.
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Due to (1.11), we now only have to look at the following four cases.
When deg(ω) > 1, we can choose δ such small that there are no resonances,
especially since k0 6= 0.
When deg(ω) = 1, we can choose δ such small that there are no resonances due to
(1.13).
When 0 < deg(ω) < 1, we can choose δ such small that there are no resonances
due to (1.14).
When deg(ω) ≤ 0, we can choose δ such small that there are no resonances due to
(1.14) and (1.15).

After we have now shown that our normal-form transform Nj1j2 has no non-
trivial resonances, we can show the rest of the lemma.

The property (2.40) can be easily checked in Fourier space.
For the estimate (2.41), we have

‖j1iρ(ψϑf)− j1iρ(ψcϑε,∞f)‖L2 = ‖iρ(εψQϑf) + iρ(ψcϑ0,εf)‖L2

= O(ε) ‖f‖Hdeg∗(ρ) ,

especially, since ϑ̂0,ε(k) ≤ O(ε).

We now will show that the Nj1j2(h, ·) are continuous linear operators.
For later purposes, we will especially focus on writing the bilinear operatorsNj1j2(·, ·)
as a sum of products of linear operators, plus some smoothing bilinear operator.

First we look at Njj.
For |k| → ∞, we have

njj(k, k −m,m) =
ρ(k)χc(k −m)

ω(k)− ω(m) + j ω(k −m)
.

We want a form for njj(k, k−m,m), for |k| → ∞, which only consists of terms
that are products of functions in one variable, plus some smoothing term. In order
to obtain this, we only have to look at

χc(k −m)

ω(k)− ω(m) + j ω(k −m)
.

Using Taylor, we get

ω(k)− ω(m) = ω′(m) (k −m) + T (k, k −m,m),

where

T (k, k −m,m)χc(k −m) =
( p∑
l=2

1

l!
ω(l)(m) (k −m)l +O

(
ω(p+1)(m)

) )
χc(k −m),
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for some sufficiently large chosen p ≥ ddeg∗(ρ)e.
We then use the expansion

a

b+ c
=

n∑
l=0

(−1)l
acl

bl+1
+ (−1)n+1 acn+1

bn+1(b+ c)
(b+ c 6= 0, b 6= 0) (2.51)

in order to obtain a form for

χc(k −m)

ω(k)− ω(m) + j ω(k −m)
(for |k| → ∞)

which only consists of terms that are products of functions in one variable plus
some O(|m|− deg∗(ρ)−deg∗(ρ′))-term.
We distinguish the three cases deg(ω) > 1, deg(ω) = 1 and deg(ω) < 1.

If deg(ω) > 1 (i.e. deg(ω′) > 0), we have for |k| → ∞:

χc(k −m)

ω(k)− ω(m) + j ω(k −m)
(2.52)

=
χc(k −m)

ω′(m) (k −m) + T (k, k −m,m) + j ω(k −m)

=
( 1

ω′(m) (k −m)
− T (k, k −m,m) + j ω(k −m)

ω′(m)2 (k −m)2

+

(
T (k, k −m,m) + j ω(k −m)

)2

ω′(m)3 (k −m)3
−
(
T (k, k −m,m) + j ω(k −m)

)3

ω′(m)4 (k −m)4

± · · ·+O(|m|− deg∗(ρ)−deg∗(ρ′))
)
χc(k −m).

If deg(ω) = 1 (i.e. deg(ω′) = 0), we have for |k| → ∞:

χc(k −m)

ω(k)− ω(m) + j ω(k −m)
(2.53)

=
( 1

ω′(m) (k −m) + jω(k −m)
+O(|m|−1))

)
χc(k −m).

If deg(ω) < 1 (i.e. deg(ω′) < 0), we have for |k| → ∞:

χc(k −m)

ω(k)− ω(m) + j ω(k −m)
(2.54)

=

n(ω′)∑
n=0

(−1)njn+1 (ω′(m))n (k −m)n

((ω(k −m))n+1
+O(|m|−1)

)
χc(k −m).

Due to (1.9), (1.11) and (1.10), by exploiting (2.52), (2.53) and (2.54), we can
now see that the Njj(h, ·) map H1(R) on L2(R) by taking advantage of Young’s
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inequality for convolutions

‖Njj(h, g)‖L2 . ‖N̂jj(h, g)‖L2 =
∥∥∫

R
njj(·, · −m,m)ĥ(· −m)ĝ(m) dm

∥∥
L2

≤ O
(

sup
k,m∈R

|njj(k, k −m,m)|
(|m|2 + 1)1/2

)∥∥∫
R
|ĥ(· −m)χc(· −m) (|m|2 + 1)1/2 ĝ(m)| dm

∥∥
L2

≤ O
(
‖ĥ(·)χc(·)‖L1

)
‖g‖H1 .

Now, we look at Nj,−j.
Using Taylor, we get for |k| → ∞:

nj,−j(k, k −m,m) =
ρ(k)χc(k −m)

ω(k) + ω(m) + j ω(k −m)

=
ρ(k)χc(k −m)

2ω(k) + T (k, k −m) + j ω(k −m)
,

where T (k, k −m) is now given by

T (k, k −m,m) =

p∑
l=1

(−1)l

l!
ω(l)(k) (k −m)l +O

(
ω(p+1)(k)

)
.

for some sufficiently large chosen p ≥ ddeg∗(ρ)e.
As before, we use the expansion (2.51) in order to obtain a form for nj,−j(k, k−

m,m) for |k| → ∞ which consists of terms that are products of functions in one
variable plus terms which are harmless:

nj,−j(k, k −m,m) =
( ρ(k)

2ω(k)
− ρ(k)

(
T (k, k −m,m) + j ω(k −m)

)
4ω(k)2

(2.55)

+
ρ(k)

(
T (k, k −m,m) + j ω(k −m)

)2

8ω(k)3

∓ · · ·+O(|k|−deg∗(ρ))
)
χc(k −m).

We can now see that due to (1.9) and (1.11) the Nj−j(h, ·) map L2(R) on L2(R)
by exploiting Young’s inequality for convolutions..

Finally, since

nj1j2(−k,−(k −m),−m) = nj1j2(k, k −m,m) ∈ R,

the Nj1j2(h, ·) map real-valued functions on real-valued functions.
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Lemma 2.2.7. (cf. Lemma 3.5 in [DSW16]). Fix p ∈ R. Assume that κ ∈
C(R3,C), that g ∈ C2(R,C) has a finitely supported Fourier transform and that
f ∈ Hs(R,C) for s ≥ 0.

a) If κ is Lipschitz continuous with respect to its second argument in some neigh-
borhood of p, then there exist Cg,κ,p > 0, ε0 > 0 such that∥∥∥∫ (κ(·, · − `, `)− κ(·, p, `)

)
ε−1ĝ

( · − `− p
ε

)
f̂(`) d`

∥∥∥
L2(s)

≤ Cg,κ,p ε‖f‖Hs (2.56)

for all ε ∈ (0, ε0).

b) If κ is globally Lipschitz continuous with respect to its third argument, then
there exist Dg,κ > 0, ε0 > 0 such that∥∥∥∫ (κ(·, · − `, `)− κ(·, · − `, · − p)

)
ε−1ĝ

( · − `− p
ε

)
f̂(`) d`

∥∥∥
L2(s)

≤ Dg,κ ε‖f‖Hs

(2.57)
for all ε ∈ (0, ε0).

Proof. The Lemma is a special case of Lemma 3.5 in [DSW16].

Lemma 2.2.8. The normal-form transforms Tj1j2j3j4 were constructed such that
for all j1, j2, j3, j4 ∈ {±1}, we have

‖ϑ−1Yj1,j2,j3‖L2 ≤ O
(
‖Rj3‖Hdeg∗(ρ)+1

)
. (2.58)

where

Yj1,j2,j3 =Nj1j2(ψc, j2ϑ
−1 iρ(ψϑRj3)) (2.59)

+
∑
j4=±1

(
− j1 iωTj1j2j3j4(ψj4 , ψj4 , Rj3) + Tj1j2j3j4(−iωψj4 , ψj4 , Rj3)

+ Tj1j2j3j4(ψj4 ,−iωψj4 , Rj3) + Tj1j2j3j4(ψj4 , ψj4 , j3 iωRj3)
)
.

Furthermore, for every fix functions g, h with ĝ, ĥ ∈ L1(R,C), the mapping
f 7→ Tjj3(g, h, f) defines a continuous linear map from L2(R,C) into L2(R,C) and
there exists a constant C = C

(
‖ĝ‖L1‖ĥ‖L1

)
such that for all f ∈ L2(R,C), we have

‖Tj1j2j3j4(g, h, f)‖L2 ≤ C‖f‖L2 . (2.60)

Proof. When we are in the case that 0 6= ±ω(0+) 6= 2ω(k0) and therefore have
Tj1j2j3j4 = 0, (2.60) is trivially true and (2.58) is true due to lemma 2.2.5 and the
fact that we have ϑ−1 = 1 in this case.
We now prove the case, where we do not have 0 6= ±ω(0+) 6= 2ω(k0).
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We first show that the normal-form transform Tj1j2j3j4 is well-defined. Therefore,
we look at the zeros of the denominator of tj1,j2,j3,j4(k), i.e. the zeros of(

ω(k)− j1j2ω(k − j4k0) + j1ω(j4k0)
) (
− j1ω(k)− 2ω(j4k0) + j3ω(k − 2j4k0)

)
for |k| ≤ δ.
For the first factor, we have (1.12), so we know that the only possible zero of the
first factor is k = 0.
For the second factor, we get by expanding the expression ω(k) in the point sign(k)·
0+ and ω(k − 2j4k0) in the point −2j4k0:

− j1ω(k)− 2ω(j4k0) + j3ω(k − 2j4k0)

= −j1ω(sign(k) · 0+)− 2ω(j4k0) + j3ω(−2j4k0) +O(k).

When ω(0) = 0, we can choose δ such small that the second factor has no zeros
due to (1.6).
Otherwise, we can choose δ such small that the second factor has no zeros due to
(1.17).
To sum up, there can only occur a resonance in k = 0. Exactly as in the proof
of lemma 2.2.5 we can see that the normal-form transforms Tj1j2j3j4 can have, at
worst, a trivial resonance in k = 0.

We now obtain (2.60) by using Young’s inequality for convolutions and the fact
that ‖t̂j1,j2,j3,j4‖L∞ can be uniformly bounded

‖Tj1j2j3j4(g, h,Rj3)‖L2 ≤ ‖tj1,j2,j3,j4‖L∞‖ĝ‖L1‖ĥ‖L1‖Rj3‖L2 ≤ C‖Rj3‖L2 .

We will now show (2.58).
As a first step, we will prove∥∥∥ϑ−1

(
Nj1j2

(
ψc, j2ϑ

−1iρ(ψϑRj3)
)
−
∑
j4=±1

P0,δNj1j2

(
ψj4 , j2ϑ

−1iρ(ψj4ϑRj3)
))∥∥∥

L2

(2.61)

= O
(
‖Rj3‖Hdeg∗(ρ)+1

)
.

By exploiting the fact that ϑ−1 = P0,δϑ
−1 + Pδ,∞, ψ = ψc + εψQ and ψc =

ψ1 + ψ−1 , we get

ϑ−1Nj1j2(ψc, j2ϑ
−1 iρ(ψϑRj3))

=
∑
j4=±1

(
P0,δϑ

−1Nj1j2

(
ψj4 , j2ϑ

−1 iρ(ψj4ϑRj3)
)

+ P0,δϑ
−1Nj1j2

(
ψj4 , j2ϑ

−1 iρ(ψ−j4ϑRj3)
))

+ εP0,δϑ
−1Nj1j2

(
ψc, j2ϑ

−1 iρ(ψQϑRj3)
)

+ Pδ,∞Nj1j2

(
ψc, j2ϑ

−1 iρ(ψϑRj3)
)
.

53



Using (2.32), (2.42) and (2.43), and (2.38), we see that the L2-norm of the last
two summands can be estimated against O(‖Rj3‖Hdeg∗(ρ)+1)).
For the remaining summands, we have in Fourier space

F
[
P0,δϑ

−1Nj1j2(ψj4 , j2ϑ
−1 iρ(ψ`ϑRj3))

]
(k)

= P̂0,δ(k)

∫
R

∫
R
Kε(k, k −m,m, n)ψ̂j4(k −m)ψ̂`(m− n)R̂j3(n) dndm

where

Kε(k, k −m,m, n) = j2
iρ(k) ρ(m) ϑ̂(n)

ϑ̂(k)
(
ω(k)− j1j2ω(m) + j1ω(k −m)

) .
Please note that we could replace the term ϑ̂ε,∞(m)ϑ̂−1(m) by 1, since |k| ≤ δ and
|k −m− j4k0| ≤ δ implies |m| > k0/2 > ε.

For ` = −j4, we can apply Fubini’s theorem, Young’s inequality for convolu-
tions and Lemma 2.2.7 to obtain

‖F
[
P0,δϑ

−1Nj1j2(ψj4 , j2ϑ
−1 iρ(ψ−j4ϑRj3))

]
‖L2

=
∥∥∥P̂0,δ(·)

∫
R

∫
R
Kε(·, j4k0, · − j4k0, ·)ψ̂j4(· −m)ψ̂−j4(m− n)R̂j3(n) dndm

∥∥∥
L2

+O(‖Rj3‖L2) .

We could especially apply Lemma 2.2.7 since the Lipschitz continuity of the func-
tion K in some neighborhood of ±k0 with respect to its second argument, respec-
tively its third argument, was sufficient due to the finite support of the integrand.
Moreover, the fact that Kε may has a jump discontinuity in k = 0 does not pose a
problem since we could split P̂0,δ(k) accordingly into two characteristic functions.
Now, since

Kε(k, j4k0, k − j4k0, k) = j2
iρ(k) ρ(k − j4k0) ϑ̂(k)

ϑ̂(k)
(
ω(k)− j1j2ω(k − j4k0) + j1ω(j4k0)

)
= j2

iρ(k) ρ(k − j4k0)(
ω(k)− j1j2ω(k − j4k0) + j1ω(j4k0)

) ,
the term Kε(k, jk0, k − jk0, k) contains no factors which could be of order O(ε−1)
such that

P̂0,δ(k)Kε(k, j4k0, k − j4k0, k) = O(1) .

Hence, by using (2.11) and Young’s inequality for convolutions, we obtain

‖
∑
j4=±1

P0,δϑ
−1Nj1j2(ψj4 , j2ϑ

−1 iρ(ψ−j4ϑRj3))‖L2 =O(‖Rj3‖L2)
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and thus have verified (2.61).

Due to (2.61), we now have

‖ϑ−1Yj1,j2,j3‖L2 ≤ ‖ϑ−1Ỹj1,j2,j3‖L2 +O
(
‖Rj3‖Hdeg∗(ρ)+1

)
,

where

ϑ−1Ỹj1,j2,j3 =
∑
j4=±1

(
P0,δϑ

−1Nj1j2(ψj4 , j2ϑ
−1 iρ(ψj4ϑRj3))

− j1 iωϑ
−1Tj1j2j3j4(ψj4 , ψj4 , Rj3) + ϑ−1Tj1j2j3j4(−iωψj4 , ψj4 , Rj3)

+ ϑ−1Tj1j2j3j4(ψj4 ,−iωψj4 , Rj3) + ϑ−1Tj1j2j3j4(ψj4 , ψj4 , j3 iωRj3)
)
.

In Fourier space, we have

ϑ̂−1(k) ̂̃Y j1,j2,j3(k)

=
∑
j4=±1

P̂0,δ(k)

∫
R

∫
R
Kε(k, k −m,m, n)ψ̂j4(k −m)ψ̂j4(m− n)R̂j3(n) dndm

+
∑
j4=±1

P̂0,δ(k)

∫
R

∫
R
Ǩε(k, k −m,m− n, n)ψ̂j4(k −m)ψ̂j4(m− n)R̂j3(n) dndm ,

where

Ǩε(k, k −m,m− n, n)

= ϑ̂−1(k) t̂j1,j2,j3,j4(k)
(
− j1 iω(k)− iω(k −m)− iω(m− n) + j3 iω(n)

)
and Kε is as above.
We can exploit Lemma 2.2.7 together with Fubini’s theorem and Young’s inequality
for convolutions in order to obtain

ϑ̂−1(k) ̂̃Y j1,j2,j3(k)

=
∑
j4=±1

∫
R

∫
R
P̂0,δ(k)Kε(k, j4k0, k− j4k0, k−2j4k0)ψ̂j4(k −m)ψ̂j4(m−n)R̂j3(n) dndm

+
∑
j4=±1

∫
R

∫
R
P̂0,δ(k) Ǩε(k, j4k0, j4k0, k−2j4k0)ψ̂j4(k −m)ψ̂j4(m−n)R̂j3(n) dndm

+O(‖Rj3‖L2) .

Here, we again only needed the Lipschitz continuity of the function Ǩε with respect
to the respective arguments on some bounded sets, for the application of Lemma
2.2.7 due to the finite support of ψ̂j4 and the presence of P̂0,δ.
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Since t̂j1,j2,j3,j4(k) was constructed such that

P̂0,δ(k)Ǩε(k, j4k0, j4k0, k − 2j4k0) = − P̂0,δ(k)Kε(k, j4k0, k − j4k0, k − 2j4k0) ,

the two integral kernels, which could be both of order O(ε−1), cancel each other
out such that we get

‖ϑ−1Ỹj1,j2,j3‖L2 = O(‖Rj3‖L2) .

Lemma 2.2.9. For all m ≥ deg∗(ρ) + 1, we have

∂tE0 ≤ ε2O(ε1/2 G3/2
m + Gm + 1) , (2.62)

where Gm := ‖R−1‖2
Hm + ‖R1‖2

Hm and E0 is as in (2.36).

Proof. Exploiting the skew symmetry of iω, Cauchy-Schwarz and the esti-
mates (2.42), (2.43) and (2.60), we obtain

∂tE0 =
∑
j=±1

∫
R
Řj ∂tŘj + Řj ∂tŘj dx

=
∑
j=±1

∫
R
Řj ∂tŘj + Řj ∂tŘj − Řj jiωŘj − Řj jiωŘj dx

≤ 2
∑
j=±1

‖Řj‖L2‖∂tŘj − jiωŘj‖L2

≤ O(
√
G1)

∑
j=±1

‖∂tŘj − jiωŘj‖L2 ,

where

∂tŘj = ∂tRj + ε
∑

j2∈{±1}

ϑ−1∂tNjj2(ψc, Rj2) + ε2
∑

j2,j3,j4∈{±1}

ϑ−1∂tTjj2j3j4(ψj4 , ψj4 , Rj3).

Due to

j iωRj = j iωŘj − ε
∑

j2∈{±1}

j iωϑ−1Njj2(ψc, Rj2)

− ε2
∑

j2,j3,j4∈{±1}

j iωϑ−1Tj1j2j3j4(ψj4 , ψj4 , Rj3) ,
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we get

∂tŘj =j iωŘj

+ εϑ−1
( ∑
j2∈{±1}

j iρ(ψ ϑRj2)

+
∑

j2∈{±1}

(
− j iωNjj2(ψc, Rj2) +Njj2(∂tψc, Rj2) +Njj2(ψc, j2 iωRj2)

))

+ ε2ϑ−1
( ∑
j2,j3∈{±1}

Njj2(ψc, j2 iρϑ
−1(ψ ϑRj3))

+
∑

j2,j3,j4∈{±1}

(
− j iωTjj2j3j4(ψj4 , ψj4 , Rj3) + Tjj2j3j4(∂tψj4 , ψj4 , Rj3)

+ Tjj2j3j4(ψj4 , ∂tψj4 , Rj3) + Tjj2j3j4(ψj4 , ψj4 , j3 iωRj3)
))

+
εβ

2
j iρϑ−1(ϑR−1 + ϑR1)2 + ε−βϑ−1Resuj(εΨ)

+ ε
∑

j2∈{±1}

ϑ−1Njj2

(
ψc,

εβ

2
j2 iρϑ

−1(ϑR−1 + ϑR1)2 + ε−βϑ−1Resuj2 (εΨ)
)

+ ε3
∑

j2,j3,j4∈{±1}

ϑ−1Tjj2j3j4
(
ψj4 , ψj4 , j3 iρϑ

−1
(
Rψ (ϑR−1 + ϑR1)

))
+ ε2

∑
j2,j3,j4∈{±1}

ϑ−1Tjj2j3j4
(
ψj4 , ψj4 , ε

−βϑ−1Resuj3 (εΨ)
)
.

By construction of our normal-form transforms, i.e. due to (2.40) and (2.41), and,
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(2.58) and (2.59), we obtain

∂tŘj =j iωŘj

+ εϑ−1
∑

j2∈{±1}

Njj2(∂tψc + iωψc, Rj2)

+ ε2ϑ−1
( ∑
j2,j3,j4∈{±1}

Tjj2j3j4(∂tψj4 + iωψj4 , ψj4 , Rj3)

+
∑

j2,j3,j4∈{±1}

Tjj2j3j4(ψj4 , ∂tψj4 + iωψj4 , Rj3)
)

+
εβ

2
j iρϑ−1(ϑR−1 + ϑR1)2 + ε−βϑ−1Resuj(εΨ)

+ ε
∑

j2∈{±1}

ϑ−1Njj2

(
ψc,

εβ

2
j2 iρϑ

−1(ϑR−1 + ϑR1)2 + ε−βϑ−1Resuj2 (εΨ)
)

+ ε3
∑

j2,j3,j4∈{±1}

ϑ−1Tjj2j3j4
(
ψj4 , ψj4 , j3 iρϑ

−1
(
Rψ (ϑR−1 + ϑR1)

))
+ ε2

∑
j2,j3,j4∈{±1}

ϑ−1Tjj2j3j4
(
ψj4 , ψj4 , ε

−βϑ−1Resuj3 (εΨ)
)

+O(ε2)
√
Gm.

Due to the bound (2.12) for ∂tψ±1 + iωψ±1, we obtain that the L2-Norms of the
second, third and forth term are O(ε2)

√G1 by using the estimates (2.32), and
(2.42), (2.43) and (2.60).
Due to our choice of β = 5/2 and Ψ, i.e. due to (2.38), and, (2.32) and (2.9), the
L2-Norm of the fifth and sixth term are bounded by O(ε2)

(
ε1/2 Gm + 1

)
.

Now, we also see, by using the estimates (2.32), (2.42), (2.43) and (2.60) that the
L2-Norms of the last three terms are bounded by O(ε2)

(
ε1/2Gm + 1

)
.

We now obtain

∂tE0 ≤ O(
√
G1)

∑
j=±1

‖∂tŘj − jiωŘj‖L2

≤ ε2O(ε1/2 G3/2
m + Gm +

√
G1 + 1)

≤ ε2O(ε1/2 G3/2
m + Gm + 1).
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2.2.2 Preserving regularity via a modified energy method

In the last subsection, we successfully obtained

∂t
(
‖Ř−1‖2

L2 + ‖Ř1‖2
L2

)
≤ ε2O(ε1/2 G3/2

m + Gm + 1) ,

where Gm := ‖R−1‖2
Hm + ‖R1‖2

Hm and m ≥ deg∗(ρ) + 1.
That means, when we assume

‖R−1‖2
Hm + ‖R1‖2

Hm = O(1) ,

we have

∂t
(
‖Ř−1‖2

L2 + ‖Ř1‖2
L2

)
≤ ε2O(‖R−1‖2

Hm + ‖R1‖2
Hm + 1) .

If we could also obtain the estimates

∂t
(
‖Ř−1‖2

Hs + ‖Ř1‖2
Hs

)
≤ ε2O(‖R−1‖2

Hs + ‖R1‖2
Hs + 1) (2.63)

and

‖R−1‖2
Hs + ‖R1‖2

Hs ≤ c
(
‖Ř−1‖2

Hs + ‖Ř1‖2
Hs

)
≤ C

(
‖R−1‖2

Hs + ‖R1‖2
Hs

)
(2.64)

for some c, C > 0, an application of Gronwall’s inequality would yield

sup
t∈[0,T0/ε2]

‖R−1(t)‖Hs + ‖R1(t)‖Hs ≤ Č.

However, we have the following issues.

• The energies
(
‖R−1‖2

Hs + ‖R1‖2
Hs

)
and

(
‖Ř−1‖2

Hs + ‖Ř1‖2
Hs

)
are in general

not equivalent, i.e. (2.64) is in general not true. This is since the normal
form transformations Nj1j2 can lose regularity. To be more precise, we can
in general not obtain the estimate(

‖Ř−1‖2
Hs + ‖Ř1‖2

Hs

)
≤ C

(
‖R−1‖2

Hs + ‖R1‖2
Hs

)
since

‖Řj‖2
Hs = ε2

∥∥ ∑
j2∈{±1}

ϑ−1Njj2(ψc, Rj2)
∥∥2

Hs +O
(
‖R−1‖2

Hs + ‖R1‖2
Hs

)
and ‖Njj(ψc, Rj)‖Hs can only be estimated against the Hs′-norm of Rj when

s′ ≥ s+ 1 + deg∗(ρ)− deg(ω).

• As we have already seen in the proof of (2.62), we can in general not obtain
(2.63). This is since

∂tŘj = jiωŘj + ε2 hj(R−1, R1) ,

where the mapping hj only maps Hs+r(R)×Hs+r(R) onto Hs(R) when

r ≥ 2 deg∗(ρ)−max{0, deg(ω)− 1}.
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We will now explain the key idea for addressing these issues.
Looking at

‖Řj‖2
L2 =

∥∥∥Rj + ε
∑

j2∈{±1}

ϑ−1Njj2(ψc, Rj2) + ε2
∑

j2,j3,j4∈{±1}

ϑ−1Tjj2j3j4(ψj4 , ψj4 , Rj3)
∥∥∥2

L2
,

we see that the most problematic term for our estimates is

ε2
∥∥∥ ∑
j2∈{±1}

ϑ−1Njj2(ψc, Rj2)
∥∥∥2

L2
.

It is the reason, we can in general not obtain (2.64) and on top of that produces the
terms with the most derivatives falling on R−1 or R1 in the evolution of ‖Řj‖2

L2 .
However, when we look at

‖∂xŘj‖2
L2

=
∥∥∥∂xRj + ε

∑
j2∈{±1}

∂xϑ
−1Njj2(ψc, Rj2) + ε2

∑
j2,j3,j4∈{±1}

∂xϑ
−1Tjj2j3j4(ψj4 , ψj4 , Rj3)

∥∥∥2

L2
,

for ` ≥ 1, we formally have

‖∂xŘj‖2
L2 =

∥∥∂`xRj1

∥∥2

L2 + 2ε
∑

j2∈{±1}

∫
R
∂`xRj∂

`
xϑ
−1Njj2(ψc, Rj2) dx+O(ε2)

due to (2.37).
The temporal derivative of the terms of the order O(ε2) will also be of the order
O(ε2), such that they can only influence terms of the order O(ε2) in the evolution
of ‖∂xŘj‖2

L2 . That means that these terms of the formal order O(ε2), which include
the problematic term

ε2
∥∥∥ ∑
j2∈{±1}

∂`xϑ
−1Njj2(ψc, Rj2)

∥∥∥2

L2
,

are not required to obtain a O(ε−2)-timescale and therefore redundant.
For this very reason, instead of working with the energy

(
‖Ř−1‖2

H` + ‖Ř1‖2
H`

)
, we

use the modified energy:

Definition 2.2.10.

E` = E0 + E` , (2.65)

E` =
∑

j1∈{±1}

( 1

2

∥∥∂`xRj1

∥∥2

L2 + ε
∑

j2∈{±1}

∫
R
∂`xRj1∂

`
xϑ
−1Nj1j2(ψc, Rj2) dx

)
,

where ` ≥ 1, and E0, Nj1j2 and ϑ−1 are exactly as in the last subsection.
I.e. E0 is as in (2.36), Nj1j2 is as in (2.31) and ϑ−1 is the inverse of the operator
ϑ defined by (2.30).
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We can now show that this modified energy is equivalent to the energy

‖R−1‖2
H` + ‖R1‖2

H`

and its evolution only contains O(ε2)-terms. In other words, we solve the first
issue while preserving the O(ε−2)-timescale.
We also address the second issue since the terms, which can potentially have the
most derivatives in the evolution of

(
‖R−1‖2

H` + ‖R1‖2
H`

)
, do no longer occur in

the evolution of E`. However the second issue is not completely solved by using
the above energy, such that we will have to further modify this energy in the next
subsection.

We will now prove the statements we made so far.

We need the following lemma, which can be understood as some generalization
of integration by parts.

Lemma 2.2.11. Let f, g, h ∈ L2(R,R) be real-valued functions and K : R3 → C.
If ∫

R

∫
R

∣∣K(k, k −m,m) f̂(k) ĥ(k −m) ĝ(m)
∣∣ dmdk <∞,

then we have∫
R

∫
R
K(k, k −m,m) f̂(k) ĥ(k −m) ĝ(m) dmdk (2.66)

=

∫
R

∫
R
K(−m, k −m,−k) ĝ(k) ĥ(k −m) f̂(m) dmdk.

Proof. The result is obtained by first exploiting the fact that f̂(k) = f̂(−k),
ĝ(k) = ĝ(−k) then making a change of variables and using Fubini’s theorem∫

R

∫
R
K(k, k −m,m) f̂(k) ĥ(k −m) ĝ(m) dmdk

=

∫
R

∫
R
K(k, k −m,m) f̂(−k) ĥ(k −m) ĝ(−m) dmdk

=

∫
R

∫
R
K(−m, k −m,−k) f̂(m) ĥ(k −m) ĝ(k) dk dm

=

∫
R

∫
R
K(−m, k −m,−k) f̂(m) ĥ(k −m) ĝ(k) dmdk.

Remark 2.2.12. By introducing the notation

N̂∗j1j2(h, f)(k) :=

∫
R
nj1j2(−m, k −m,−k)ĥ(k −m)f̂(m) dm , (2.67)
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we now have ∫
R
Nj1j2(h, g) f dx =

∫
R
N∗j1j2(h, f) g dx (2.68)

for h, f, g ∈ H1(R,R).

Lemma 2.2.13. We have∫
R
f Njj(h, f) dx ≤ O

(
‖ĥc‖L1

)
‖f‖2

L2 , (2.69)

where ĥc(k) := χc(k)ĥ(k).

Proof. Exploiting lemma 2.2.11, i.e. using (2.67) and (2.68), we have∫
R
f Njj(h, f) dx =

1

2

∫
R
f
(
Njj(h, f) +N∗jj(h, f)

)
dx .

Due to the skew-symmetry of ρ and ω, we have for |k| → ∞:

njj(k, k −m,m) + njj(−m, k −m,−k) =
ρ(k)− ρ(m)

ω(k)− ω(m) + j ω(k −m)
χc(k −m).

After using Taylor to expand ρ(k) in the point m and exploiting (2.52), (2.53) and
(2.54), we get

njj(k, k −m,m) + njj(−m, k −m,−k)

=
ρ′(m)(k −m) +O

(
ρ′′(m)

)
ω(k)− ω(m) + j ω(k −m)

χc(k −m) for |k| → ∞

= O
(
χc(k −m)

)
for |k| → ∞ ,

due to (1.11), (1.10) and most importantly (1.9).
We can now get the estimate (2.69) by using Cauchy-Schwarz together with the
Plancherel theorem and Young’s inequality.

Lemma 2.2.14. There are constants C0, Č0 such that the following estimates hold√
E0 ≤ C0

(
‖R1‖H1 + ‖R−1‖H1

)
, (2.70)

‖R1‖L2 + ‖R−1‖L2 ≤ Č0

√
E0 + εO(‖R−1‖L2 + ‖R1‖L2). (2.71)
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Proof. Estimate (2.70) is a direct consequence of the triangle inequality and
the estimates (2.32), (2.42), (2.43) and (2.60).

Let the operator Pa,b be defined for all f ∈ L2(R) by

P̂a,bf(k) =

{
f̂(k) when a ≤ |k| ≤ b

0 else.

In order to prove (2.71), we define

R0
j := P0,δRj, Ř0

j := P0,δŘj, R1
j := Pδ,∞Rj, Ř1

j := Pδ,∞Řj

and split Rj = R0
j +R1

j and Řj = Ř0
j + Ř1

j , here Řj is as in (2.36).
We first look at R0

j .
Since |k −m± k0| ≤ δ and |k| ≤ δ implies

|m∓ k0| ≤ 2δ ,

we have

P0,δϑ
−1Njj2(ψc, Rj2) = P0,δϑ

−1Njj2(ψc, P0,2k0R
1
j2

)

due to the nature of the compact support from ψ̂c.
Exploiting this fact and using the triangle inequality, (2.32), (2.42), (2.43), and
(2.60), we obtain

‖R0
j‖L2

=
∥∥Ř0

j − ε
∑

j2∈{±1}

P0,δϑ
−1Njj2(ψc, Rj2)− ε2

∑
j2,j3,j4∈{±1}

P0,δϑ
−1Tjj2j3j4(ψc, ψc, Rj3)

∥∥
L2

≤ ‖Ř0
j‖L2 +O(1)

(
‖R1
−1‖L2 + ‖R1

1‖L2

)
+O(ε)

(
‖R−1‖L2 + ‖R1‖L2

)
.

Now, we look at R1
j .

Due to the definitions of Tjj2j3j4 and ϑ, we see

R1
j = Ř1

j − ε
∑

j2∈{±1}

Pδ,∞ϑ
−1Njj2(ψc, Rj2)− ε2

∑
j2,j3,j4∈{±1}

Pδ,∞ϑ
−1Tjj2j3j4(ψc, ψc, Rj3)

= Ř1
j − ε

∑
j2∈{±1}

Pδ,∞Njj2(ψc, Rj2).

Multiplying the equation with Rj
1 and then integrating over R in x, we get

‖Rj
1‖2
L2 =

∫
R
Rj

1 Ř1
j dx+ ε

∑
j2∈{±1}

∫
R
Rj

1 Pδ,∞Njj2(ψc, Rj2) dx.
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For j2 = −j, we have

ε

∫
R
Rj

1 Pδ,∞Nj−j(ψc, Rj2) dx = εO(‖R1
j‖L2‖R−j‖L2)

by using Cauchy-Schwarz and (2.43).
For j2 = j, we have

ε

∫
R
Rj

1 Pδ,∞Njj(ψc, Rj2)dx = ε

∫
R
Rj

1Njj(ψc, Rj) dx

= ε

∫
R
Rj

1Njj(ψc, R
1
j ) dx+ εO(‖R1

j‖L2‖R0
j‖L2)

due to the definition of Pa,b, Rj
1 and R0

j , the bilinearity of Njj and estimate (2.42).
With estimate (2.69), we then get

ε

∫
R
Rj

1 Pδ,∞Njj(ψc, Rj2)dx = εO(‖R1
j‖L2‖Rj‖L2) .

Now, we have

‖Rj
1‖2
L2 =

∫
R
Rj

1 Ř1
j dx+ ε‖Rj

1‖L2 O(‖R−1‖L2 + ‖R1‖L2)

such that, with the help of Cauchy-Schwarz, we can obtain

‖Rj
1‖L2 ≤ ‖Ř1

j‖L2 + εO(‖R−1‖L2 + ‖R1‖L2).

Combining the two inequalities for ‖Rj
0‖L2 and ‖Rj

1‖L2 finally proves the estimate
(2.71).

Lemma 2.2.15. (see lemma 4.4. in [DH18].) Let f ∈ H`(R,R) and g ∈ Hm+1(R,R)
with `,m ≥ 0. Then we have∫

R
∂`xf ∂

m
x ϑg dx =

∫
R
∂`xf ∂

m
x g dx+O(‖f‖L2‖g‖L2) , (2.72)

∫
R
∂`xf ∂

m+1
x ϑ−1g dx =

∫
R
∂`xf ∂

m+1
x g dx+O(‖f‖L2‖g‖L2) . (2.73)

Proof. Using the definition of ϑ and integration by parts, we get∫
R
∂`xf ∂

m
x ϑg dx =

∫
R
∂`xf ∂

m
x g dx+ (−1)`

∫
R
f ∂`+mx P0,δ(ϑ− 1)g dx ,∫

R
∂`xf ∂

m+1
x ϑ−1g dx =

∫
R
∂`xf ∂

m+1
x g dx+ (−1)`

∫
R
f ∂`+m+1

x P0,δ(ϑ
−1 − 1)g dx ,

which yields (2.72) and, due to (2.37), also (2.73).
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Corollary 2.2.16. Let ε < ε0 and ε0 be sufficiently small. For ` ≥ 1, the energy
E` is equivalent to

(
‖R−1‖H` + ‖R1‖H`

)2, i.e. there are constants C1, C2 > 0 such
that (

‖R−1‖H` + ‖R1‖H`

)2 ≤ C1 E` ≤ C2

(
‖R−1‖H` + ‖R1‖H`

)2
.

Proof. We examine E`.
Thanks to (2.73), and, (2.42) and (2.43), we have

E` =
∑

j1∈{±1}

(1

2

∥∥∂`xRj1)
∥∥2

L2 + ε
∑

j2∈{±1}

∫
R
∂`xRj1 ∂

`
xϑ
−1Nj1j2(ψc, Rj2) dx

)

=
∑

j1∈{±1}

(1

2

∥∥∂`xRj1)
∥∥2

L2 + ε
∑

j2∈{±1}

∫
R
∂`xRj1 ∂

`
xNj1j2(ψc, Rj2) dx

)
+ εO

((
‖R−1‖H1 + ‖R1‖H1

)2
)

such that we only have to look at the regularity of the terms∫
R
∂`xRj1∂

`
xNj1j2(ψc, Rj2) dx.

For (j1, j2) = (j,−j), we can see by using Cauchy-Schwarz and (2.43) that∫
R
∂`xRj ∂

`
xNj−j(ψc, R−j) dx = O(‖R−1‖H`‖R1‖H`).

For (j1, j2) = (j, j) however, we can have an additional derivative falling on ∂`xRj

due to (1.9). By using Leibniz’s rule, Cauchy-Schwarz and (2.42), we see∫
R
∂`xRj ∂

`
xNjj(ψc, Rj) dx =

∫
R
∂`xRj Njj(ψc, ∂

`
xRj) dx+O(‖Rj‖2

H`)

Thanks to (2.69), we get∫
R
∂`xRj∂

`
xNjj(ψc, Rj) dx = O(‖Rj‖2

H`).

We now obtained

E` =
1

2

(
‖∂`xR−1‖2

L2 + ‖∂`xR1‖2
L2

)
+ εO

((
‖R−1‖H` + ‖R1‖H`

)2)
.

and the statement follows with lemma 2.2.14.
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Lemma 2.2.17. For ` ≥ 1, we have

∂tE` = ε2 V` + ε2O(E` + 1), (2.74)

where

V` =
∑

j1,j2∈{±1}

j1

∫
R
∂`xRj1 iρ∂

`
xϑ
−1(RQϑRj2) dx (2.75)

+
∑

j1,j2,j3∈{±1}

(
j1

∫
R
iρ∂`xϑ

−1(RψϑRj3) ∂`xϑ
−1Nj1j2(ψc, Rj2) dx

+ j2

∫
R
∂`xRj1 ∂

`
xϑ
−1Nj1j2

(
ψc, iρϑ

−1(RψϑRj3)
)
dx
)
,

and

RQ = ψQ +
1

2
εβ−2(ϑR−1 + ϑR1). (2.76)

Remark 2.2.18. Due to (2.73) and (2.38) the term ε2 V` indeed has the desired
ε2-order.

Proof. We have

∂tE` =
∑

j1∈{±1}

(∫
R
∂`xRj1 ∂t∂

`
xRj1 dx

+ ε
∑

j1,j2∈{±1}

(∫
R
∂t∂

`
xRj1 ∂

`
xϑ
−1Nj1j2(ψc, Rj2) dx

+

∫
R
∂`xRj1 ∂

`
xϑ
−1∂tNj1j2(ψc, Rj2) dx

)
.

Using the error equations (2.19) and exploiting

Rψ = ψc + εRQ,
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we get

∂tE` =
∑

j1∈{±1}

j1

∫
R
∂`xRj1 iω∂

`
xRj1 dx

+ ε
∑

j1,j2∈{±1}

(
j1

∫
R
∂`xRj1 iρ∂

`
xϑ
−1(ψcϑRj2) dx

+ j1

∫
R
iω∂`xRj1 ∂

`
xϑ
−1Nj1j2(ψc, Rj2) dx

+ j2

∫
R
∂`xRj1 ∂

`
xϑ
−1Nj1j2(ψc, iωRj2) dx

−
∫
R
∂`xRj1 ∂

`
xϑ
−1Nj1j2(iωψc, Rj2) dx

+

∫
R
∂`xRj1 ∂

`
xϑ
−1Nj1j2(∂tψc + iωψc, Rj2) dx

)
+ ε2

∑
j1,j2∈{±1}

j1

∫
R
∂`xRj1 iρ∂

`
xϑ
−1(RQϑRj2) dx

+ ε2
∑

j1,j2,j3∈{±1}

(
j1

∫
R
iρ∂`xϑ

−1(RψϑRj3) ∂`xϑ
−1Nj1j2(ψc, Rj2) dx

+ j2

∫
R
∂`xRj1 ∂

`
xϑ
−1Nj1j2

(
ψc, iρϑ

−1(RψϑRj3)
)
dx
)

+
∑

j1∈{±1}

∫
R
∂`xRj1 ε

−β∂`xϑ
−1Resuj1(εΨ) dx

+ ε
∑

j1,j2∈{±1}

(∫
R
ε−β∂`xϑ

−1Resuj1(εΨ) ∂`xϑ
−1Nj1j2(ψc, Rj2) dx

+

∫
R
∂`xRj1 ∂

`
xϑ
−1Nj1j2

(
ψc, ε

−βϑ−1Resuj2(εΨ)
)
dx
)

where

RQ = ψQ +
1

2
εβ−2(ϑR−1 + ϑR1).
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Exploiting the skew symmetry of iω in the third integral and then using (2.40)
and the definition (2.75), we get

∂tE` = ε
∑

j1,j2∈{±1}

(
j1

∫
R
∂`xRj1 iρ∂

`
xϑ
−1
(
ψc(ϑ− ϑε,∞)Rj2

)
dx

+

∫
R
∂`xRj1 ∂

`
xϑ
−1Nj1j2(∂tψc + iωψc, Rj2) dx

)
+ ε2 V`

+
∑

j1∈{±1}

∫
R
∂`xRj1 ε

−β∂`xϑ
−1Resuj1(εΨ) dx

+ ε
∑

j1,j2∈{±1}

(∫
R
ε−β∂`xϑ

−1Resuj1(εΨ) ∂`xϑ
−1Nj1j2(ψc, Rj2) dx

+

∫
R
∂`xRj1 ∂

`
xϑ
−1Nj1j2

(
ψc, ε

−βϑ−1Resuj2(εΨ)
)
dx
)
.

We now show that all terms except the term ε2 V` can be estimated against
ε2O(E` + 1). Thereby we will especially take advantage of corollary 2.2.16 and
(2.11).
For the first integral, we can use (2.73), Cauchy-Schwarz and the fact that

(
ϑ̂(k)− ϑ̂ε,∞(k)

)
=

{
ε+ (1− ε) |k|

δ
when 0 6= ±ω(0+) 6= 2ω(k0) and |k| ≤ ε ,

0 else ,

in order to get

ε

∫
R
∂`xRj1 iρ∂

`
xϑ
−1
(
ψc(ϑ− ϑε,∞)Rj2

)
dx

≤ εO
(
‖Rj1‖H` ‖iρ

(
ψc(ϑ− ϑε,∞)Rj2

)
‖H`

)
≤ εO

(
‖Rj1‖H` ‖ψc‖C`+deg∗(ρ)‖(ϑ− ϑε,∞)Rj2‖H`+deg∗(ρ)

)
≤ ε2O(E`).

The second integral in the above evolution equality is ε3O(E`) due to the
estimate (2.12). In order to see this we first use (2.73), then we proceed as in the
proof of (2.2.16) in order to estimate without losing regularity.

The last three integrals are ε2O(E` + 1) due to (2.9). To see this, we use first
(2.73), then integration by parts to shift some derivatives away from R±1, and
finally Cauchy-Schwarz together with (2.42) and (2.43). Here, we also exploit the
estimate

√
x ≤ |x|+ 1 after using corollary 2.2.16.
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2.2.3 Closing the error estimates via energy transformations

If, for some energy E and c, C > 0, we could obtain the estimates

‖R−1‖2
H` + ‖R1‖2

H` ≤ c E ≤ C
(
‖R−1‖2

H` + ‖R1‖2
H`

)
(2.77)

and

∂tE ≤ ε2O
(
‖R−1‖2

H` + ‖R1‖2
H` + 1

)
, (2.78)

an application of Gronwall’s inequality would yield that there is a Č > 0 such that

sup
t∈[0,T0/ε2]

‖R−1(t)‖Hs + ‖R1(t)‖Hs ≤ Č.

In the last subsection, we successfully obtained (2.77) for the energy E = E`.
Moreover, we could show that the evolution of the energy E` is of quadratic ε-
order.
However, we still do in general not have (2.78) for the energy E = E`. Instead, we
only can get

∂tE` = ε2 V` + ε2O(E` + 1) ,

where ε2V` contains integrals like

ε2

∫
R
∂`xRj1 iρ∂

`
xϑ
−1(RQϑRj2) dx = ε2

∫
R
∂`xRj1 iρ∂

`
x(RQϑRj2) dx+ ε2O(E` + 1) .

For deg∗(ρ) > 0, these integrals cannot be estimated againstO(‖R−1‖2
H`+‖R1‖2

H`+
1) since there are to many derivatives falling on R−1 or R1.
We will solve this problem by showing that there is an expression D with

ε2D = εO
(
‖R−1‖2

H` + ‖R1‖2
H`

)
such that

ε2 V` − ε2 ∂tD = ε2O
(
‖R−1‖2

H` + ‖R1‖2
H` + 1

)
,

i.e.

∂tE` − ε2∂tD = ε2O
(
‖R−1‖2

H` + ‖R1‖2
H` + 1

)
.

Then, by defining the final energy by

Ẽ` := E` − ε2D ,
we obtain (2.77) and (2.78) for E = Ẽ` and can finally prove theorem 1.1.1.

Looking closely at the term∑
j1,j2∈{±1}

j1

∫
R
∂`xRj1 iρ∂

`
x(RQϑRj2) dx

of V`, one can see that it basically can be reduced to a sum consisting of three type
of integrals, which have the following form.
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a) The form ∫
R
γ∂`xRj ∂

`
xR−j f dx (2.79)

where γ is a symmetric or skew symmetric pseudo-differential operator with

deg∗(γ) ≤ deg∗(ρ) . (2.80)

b) The form ∫
R
iσ∂`xRj ∂

`
xRj f dx, (2.81)

where iσ is a skew symmetric pseudo-differential operator with

deg∗(σ) ≤ deg∗(ρ) . (2.82)

c) The form ∫
R
υ∂`xRj ∂

`
xRj ∂xf dx, (2.83)

where υ is a symmetric pseudo-differential operator with

deg∗(υ) ≤ deg∗(ρ)− 1 . (2.84)

Here f is always a function whose relevant norms can be controlled well enough.
This partition is also possible for V`, in particular since we can replace the

bilinear operators Nj1j2 by a sums consisting of products of linear operators due
to (2.52), (2.53), (2.54) and (2.55). The fact that (2.80), (2.82) and (2.84) can
also be obtained for V` is more difficult to be seen directly and is related to some
good cancellations happening. The happening of such cancellations however can
already be expected as a consequence of lemma 2.2.16.

The idea now is to find an energy transformation, which exploits the linear
part of our system to eliminate these three type of problematic integrals that were
produced by the nonlinearity.
So, the core idea is similar to the one that was behind the normal form trans-
formations. However, while the goal of the normal form transformations was to
obtain the right ε-order for our estimates in order to achieve a O(ε−2) timescale,
the goal of the energy transformation is to obtain the right Sobolev norms for our
estimates, such that they can be closed and Gronwall can be even applied in the
first place.
Our four key observations for finding the energy transformation

E` → E` − ε2D

are the following ones.
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a) Exploiting

∂tRj = jiωRj +Hj ,

where Hj is defined according to (2.19), and taking advantage of the skew
symmetry of iω, we have

1

2
j ε2 ∂t

∫
R

γ

iω
∂`xRj ∂

`
xR−j f dx

=
1

2
ε2

∫
R
γ∂`xRj ∂

`
xR−j f dx −

1

2
ε2

∫
R

γ

iω
∂`xRj iω∂

`
xR−j f dx + J

=

∫
R
γ∂`xRj ∂

`
xR−j f dx +

1

2
ε2

∫
R

[
iω, f

] γ
iω
∂`xRj ∂

`
xR−j dx + J ,

where the terms coming from Hj and ∂tf were collected in the expression J .
Based on this observation, we will show for (2.79) :∫

R
γ∂`xRj ∂

`
xR−j f dx =

1

2
j ∂t

∫
R

γ

iω
∂`xRj ∂

`
xR−j f dx (2.85)

+ JL + ε JE +O(E` + 1) ,

where JL consists of integrals of the form (2.79) that contain less derivatives
falling on R−1 or R1 than the original one and JE consists of integrals of the
form (2.79), (2.81), (2.83) that contain not more derivatives falling on R−1

or R1 than the original one.

b) Looking at (2.81), we observe∫
R
iσ∂`xRj ∂

`
xRj f dx =

1

2

∫
R
iσ∂`xRj ∂

`
xRj f dx−

1

2

∫
R
∂`xRj iσ

(
∂`xRjf

)
dx ,

i.e. ∫
R
iσ∂`xRj ∂

`
xRj f dx = −1

2

∫
R

[
iσ, f

]
∂`xRj ∂

`
xRj dx . (2.86)

We will show that the right hand side integral can be expressed as a sum of
some O(E` + 1)-terms and integrals of the form (2.79), (2.81), (2.83), which
contain at least a whole derivative less falling on R−1 or R1 than the original
integral.

c) Exploiting

∂tRj = jiωRj +Hj ,
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where Hj is defined according to (2.19), and taking advantage of the skew
symmetry of iω, we get

j ε2 ∂t

∫
R

υ

ω′
∂`xRj ∂

`
xRj f dx

= ε2

∫
R

υ

ω′
iω∂`xRj ∂

`
xRj f dx+ ε2

∫
R

υ

ω′
∂`xRj iω∂

`
xRj f dx+ J

= −ε2

∫
R

[
iω, f

] υ
ω′
∂`xRj ∂

`
xRj dx+ J ,

where all the terms coming from Hj and ∂tf were collected in the expression
J .
Based on this observation, we will show∫

R
υ∂`xRj ∂

`
xRj ∂xf dx = −j ∂t

∫
R

υ

ω′
∂`xRj ∂

`
xRj f dx (2.87)

+ JL + ε JE +O(E` + 1) ,

where JL consists of integrals of the form (2.79) that contain less derivatives
falling on R−1 or R1 than the original one and JE consists of integrals of the
form (2.79), (2.81), (2.83) that contain not more derivatives falling on R−1

or R1 than the original one.

d) Looking back at our original system (1.2), we have ∂tu = −iωv. This means
that for the diagonalized system, we have ∂t(u−1 + u1) = −iω(u−1− u1) and
can therefore easily obtain from (2.19) that

∂t(R1 +R−1) = iω(R1 −R−1) + ε−βϑ−1
(
Resu1(εΨ) + Resu−1(εΨ)

)
. (2.88)

Thus, we have for skew symmetric operators iσ with deg∗(σ) ≤ deg(ω) that∫
R
iσ∂`x(R1 −R−1) ∂`x(R1 +R−1) f dx

=
1

2
∂t

∫
R

σ

ω
∂`x(R1 +R−1) ∂`x(R1 +R−1) f dx

− 1

2

∫
R

[σ
ω
, f
]
iω∂`x(R1 −R−1) ∂`x(R1 +R−1) dx

− 1

2

∫
R

σ

ω
∂`x(R1 +R−1) ∂`x(R1 +R−1) ∂tf dx+O(E` + 1) .

The first term on the above right hand side is a time derivative of an integral
that can be estimated against O(E`) and the last two integrals contain less
derivatives falling on R−1 or R1 than the one on the left hand side.
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Due to (1.9), we can use these results to recursively construct the expression D.
When deg∗(ρ) ≤ 1 or deg∗(ρ) < deg(ω), we obtain D after a finite number of steps.
When deg∗(ρ) > 1 and at the same time deg∗(ρ) = deg(ω), we obtain D as the
sum of an absolutely convergent series.
In order to show that we can indeed find D, we prove that every time we proceed
as in a), b) or c):

[R1] the number of additional derivatives falling on ∂`xR−1 or ∂`xR1 does not in-
crease,

[R2] we do not generate new problematic terms for which a), b) or c) cannot be
applied,

[R3] the number of the emerging integrals only depends on deg∗(ρ) and deg(ω),

[R4] the emerging integrals εJE get much smaller in size.

Finally, we then preform the energy transformation

E` → Ẽ` = E` − ε2D

such that (2.77) and (2.78) are true for E = Ẽ` and we can prove theorem 1.1.1.

Remark 2.2.19. When the functions ω or ω′ have zeros, operators like γ
ω
and γ

ω′

could be not well-defined, however we will show that we can assume without a loss
of generality that the function γ is equal to zero on some set that includes all zeros
of ω and ω′.

Naturally, integrals of the form (2.83) are harmless for deg∗(ρ) ≤ 1. In this
case one can quickly construct an energy transformation by only relying on d) and
b). This also makes the energy transformations in [D17, CW17] much simpler in
comparison to here, where deg∗(ρ) is allowed to be arbitrarily large.

In order to apply our framework to more general quasilinear dispersive sys-
tems, it should be sufficient that either ∂t(R1 +R−1) or ∂t(R1 −R−1) have only a
nonlinearity that loses at most deg(ω′) derivatives, (2.88) is not needed.

We will now prove our claims, what will turn out to be a rather technical
procedure.

In order to handle the commutators, we saw above, we use the following lemma.

Lemma 2.2.20. Let n ∈ N, and γ be a function of Cn+1(R) with deg∗(γ) ∈ R for
which

deg∗(γ(l)) ≤ deg∗(γ(l−1))− 1 for all 1 ≤ l ≤ n+ 1. (2.89)

Moreover let the operators γ and ilγ(l) be given by their symbols in Fourier space.
Then we have for f, g ∈ C∞c (R):[

γ, g
]
f =

n∑
l=1

(−1)l

l!
∂lxg i

lγ(l)f +R(f, g). (2.90)
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For the rest-term R(f, g), given through

R̂(f, g) =

∫
R

((· −m)n+1

n!

∫ 1

0

γ(n+1)
(
m+ (· −m)x

)
(1− x) dx

)
ĝ(· −m)f̂(m) dm ,

we have the estimates

‖R(f, g)‖L2 = O(1) ‖∂n+1
x g‖Hp+q‖f‖Hp , (2.91)

‖R(f, g)‖L2 = O(1) ‖∂̂n+1
x g‖L1(p)‖f‖Hp , (2.92)

for q > 1
2
and

p := max{deg∗(γ)− n− 1, 0}.

Remark 2.2.21. One can think of this lemma as some sort of generalization of
Leibniz’s rule. To give an example, let γ = ∂2

x.
Then we have γ(k) = −k2, γ′(k) = −2k, γ′′(k) = −2 and γ(3)(k) = 0. Thus,

[
∂2
x, g
]
f =

2∑
l=1

(−1)l

l!
∂lxg i

lγ(l)f +R(f, g) =
−1

1!
∂xg iγ

′f +
1

2!
∂2
xg i

2γ′′f + 0

= 2∂xg∂xf + ∂2
xgf .

Proof. We have[̂
γ, g
]
f = γ̂(gf)− ĝγf =

∫
R

(
γ(·)− γ(m)

)
ĝ(· −m)f̂(m) dm.

Using Taylor, we get

γ(k)− γ(m) =
n∑
l=1

(k −m)l

l!
γ(l)(m) + r(k, k −m,m)

=
n∑
l=1

il(k −m)l

l!
(−i)lγ(l)(m) + r(k, k −m,m),

where

r(k, k −m,m) =
(k −m)n+1

n!

∫ 1

0

γ(n+1)
(
m+ (k −m)x

)
(1− x) dx

≤ (k −m)n+1

n!
max
x∈[0,1]

γ(n+1)
(
m+ (k −m)x

)
= O(|k −m|n+1)

(
1 + (1 + |k −m|)deg∗(γ)−n−1+ (1 + |m|)deg∗(γ)−n−1

)
.

For the last step, note that deg∗(γ̃) ∈ R yields

sup
k∈R

γ̃(k)

1 + (1 + |k|)deg∗(γ̃)
≤ C,
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for some C > 0, which implies

max
x∈[0,1]

γ̃(m+ (k −m)x)

1 + (1 + |m+ (k −m)x|)deg∗(γ̃)
≤ C.

For deg∗(γ̃) ≤ 0, γ̃ is obviously bounded.
For deg∗(γ̃) > 0, we can use the triangle inequality to get

maxx∈[0,1] γ̃(m+ (k −m)x)

1 + (1 + |m|+ |k −m|)deg∗(γ̃)
≤ C,

what implies

max
x∈[0,1]

γ̃(m+ (k −m)x) ≤ C
(
1 + (1 + 2|m|)deg∗(γ̃) + (1 + 2|k −m|)deg∗(γ̃)

)
,

since we have |m| ≤ |k −m| or |m| ≥ |k −m|.
We now get

‖R(f, g)‖L2 =
∥∥∥∫

R
r(k, k −m,m) ĝ(k −m) f̂(m) dm

∥∥∥
L2

≤
∥∥∥∫

R
|r(k, k −m,m) ĝ(k −m) f̂(m)| dm

∥∥∥
L2

≤ O(1)
∥∥∥∫

R
|(1 + |k −m|2)p/2 ∂̂n+1

x g(k −m) (1 + |m|2)p/2 f̂(m)| dm
∥∥∥
L2
,

where

p := max{deg∗(γ)− n− 1, 0}.

When we use Young’s inequality, we get

‖R(f, g)‖L2 ≤ O(1) ‖∂̂n+1
x g‖L1(p)‖f‖Hp .

When we exploit Plancherel together with Sobolev’s embedding theorem, we obtain

‖R(f, g)‖L2 ≤ O(1)
∥∥∥F−1

[
|(1 + | · |2)p/2 ∂̂n+1

x g(·)|
]
F−1

[
|(1 + | · |2)p/2 f̂(·)|

] ∥∥∥
L2

≤ O(1)
∥∥∥F−1

[
|(1 + | · |2)p/2 ∂̂n+1

x g(·)|
]∥∥∥
∞

∥∥∥F−1
[
|(1 + | · |2)p/2 f̂(·)|

]∥∥∥
L2

≤ O(1) ‖∂n+1
x g‖Hp+q‖f‖Hp .

The next lemma will help us to address the points [R2] and [R4]. In the context
of the introduction to this subsection, the mappings of this lemma map the f from
the original problematic integral onto the f of an emerging integral from εJE.
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Lemma 2.2.22. Let n ∈ N and m ∈ N0 with m ≤ n.
Let Dn

m be the set of functions defined by

Dn
m := {f ∈ Hn(R) : ‖∂−1

x f‖∞ + ‖∂tf‖Hm + ‖∂t∂−1
x f‖Cm <∞}.

For ϕ ∈ Hn+1(R) with ‖∂tϕ‖Cm , ‖∂tϕ‖Hm+1 ∈ R, the mappings

M1
ϕ : f 7→ ϕf (2.93)

and

M2
ϕ : f 7→ ∂x(ϕ∂

−1
x f) (2.94)

map Dn
m into Dn

m.

Moreover, if for some cϕ ∈ R, we have

‖ϕ‖Hn+1 , ‖∂tϕ‖Hm+1 ≤ ε−1/2cϕ and ‖ϕ‖Cn , ‖∂tϕ‖Cm ≤ cϕ, (2.95)

then there is a constant C = C(cϕ) ≥ 0 such that the following a priori estimates
are true:

‖M1
ϕf‖Hn + ‖∂tM1

ϕf‖Hm

≤ C
(
‖f‖Hn + ‖∂tf‖Hm

)
‖∂−1

x M1
ϕf‖∞ + ‖∂t∂−1

x M1
ϕf‖Cm

≤ ε−1/2C
(
‖f‖L2 + ‖∂tf‖L2

)
+ C

(
‖f‖Cm−1 + ‖∂tf‖Cm−1

)
,

and

‖M2
ϕf‖Hn + ‖∂tM2

ϕf‖Hm

≤ C
(
‖f‖Hn + ‖∂tf‖Hm

)
+ ε−1/2C

(
‖∂−1

x f‖Cm + ‖∂t∂−1
x f‖Cm

)
,

‖∂−1
x M2

ϕf‖∞ + ‖∂t∂−1
x M2

ϕf‖Cm
≤ C

(
‖∂−1

x f‖Cm + ‖∂t∂−1
x f‖Cm

)
.

Remark 2.2.23. In this context, we choose to define the operator ∂−1
x by

∂−1
x f :=

∫ (·)

−∞
f dx+ c(t) , c(t) := 0 .

Proof. For map (2.93), we have

‖M1
ϕf‖Hn = ‖ϕf‖Hn ≤ O

(
‖ϕ‖Cn

)
‖f‖Hn

and

‖∂−1
x M1

ϕf‖∞ = ‖∂−1
x (ϕf)‖∞ =

∥∥∥∫ (·)

−∞
ϕf dx

∥∥∥
∞

≤
∥∥∥∫ (·)

−∞
|ϕf | dx

∥∥∥
∞
≤
∫
R
|ϕf | dx

≤ ‖ϕ‖L2‖f‖L2 .
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Furthermore, we have

‖∂tM1
ϕf‖Hm = ‖∂t(ϕf)‖Hm ≤ ‖∂tϕf‖Hm + ‖ϕ∂tf‖Hm

≤ ‖∂tϕ‖Cm‖f‖Hm + ‖ϕ‖Cm‖∂tf‖Hm ,

and

‖∂−1
x ∂tM

1
ϕf‖∞ = ‖∂−1

x ∂t(ϕf)‖∞ =
∥∥∫ (·)

−∞
∂t(ϕf) dx

∥∥
∞ ≤

∫
R
|∂t(ϕf)| dx

≤ ‖∂tϕ‖L2‖f‖L2 + ‖ϕ‖L2‖∂tf‖L2 ,

while for l = 1, . . . , m:

‖∂l−1
x ∂tM

1
ϕf‖∞ = ‖∂l−1

x ∂t(ϕf)‖∞ = ‖∂l−1
x (∂tϕf) + ∂l−1

x (ϕ∂tf)‖∞
≤ O(‖∂tϕ‖Cm−1)‖f‖Cm−1 +O(‖ϕ‖Cm−1)‖∂tf‖Cm−1 .

For map (2.94), we have

‖M2
ϕf‖Hn = ‖∂x(ϕ∂−1

x f)‖Hn ≤ O(1)
n+1∑
l=1

l∑
k=0

(
l

k

)
‖∂l−kx ϕ∂k−1

x f‖L2

≤ O(1)
n+1∑
l=1

( l∑
k=1

‖∂l−kx ϕ∂k−1
x f‖L2 + ‖∂lxϕ∂−1

x f‖L2

)
≤ O

(
‖ϕ‖Cn

)
‖f‖Hn +O

(
‖ϕ‖Hn+1

)
‖∂−1

x f‖∞ ,

and

‖∂−1
x M2

ϕf‖∞ = ‖ϕ∂−1
x f‖∞ ≤ ‖ϕ‖∞‖∂−1

x f‖∞.

Moreover, we have

‖∂tM2
ϕf‖Hm = ‖∂t∂x(ϕ∂−1

x f)‖Hm = ‖∂t∂xϕ∂−1
x f + ∂xϕ∂t∂

−1
x f + ∂tϕf + ϕ∂tf‖Hm

≤ ‖∂t∂xϕ‖Hm‖∂−1
x f‖Cm + ‖∂xϕ‖Hm‖∂t∂−1

x f‖Cm
+ ‖∂tϕ‖Cm‖f‖Hm + ‖ϕ‖Cm‖∂tf‖Hm ,

and

‖∂t∂−1
x M2

ϕf‖Cm = ‖∂t(ϕ∂−1
x f)‖Cm = ‖∂tϕ∂−1

x f + ϕ∂t∂
−1
x f‖Cm

≤ ‖∂tϕ‖Cm‖∂−1
x f‖Cm + ‖ϕ‖Cm‖∂t∂−1

x f‖Cm .

77



Lemma 2.2.24. Let N ∈ N and ` ≥ 2N + 1.
By introducing the notation

R̃ψ := ψ + εβ−1ϑ(R1 +R−1) (2.96)

we obtain

∂`x
(
Rψϑ(R1 +R−1)

)
=

N∑
n=0

(
`

n

)
∂nx R̃ψ ∂

`−n
x ϑ(R1 +R−1) (2.97)

+
`−N−1∑
n=N+1

(
`

n

)
∂nxRψ ∂

`−n
x ϑ(R1 +R−1)

+
∑̀

n=`−N

(
`

n

)
∂nxψ ∂

`−n
x ϑ(R1 +R−1) .

Proof. Leibniz’s rule and the definition of Rψ = ψ + 1
2
εβ−1ϑ(R1 +R−1) yield

∂`x
(
Rψϑ(R1 +R−1)

)
=

N∑
n=0

(
`

n

)
∂nx
(
ψ +

1

2
εβ−1(ϑR−1 + ϑR1)

)
∂`−nx ϑ(R1 +R−1)

+
`−N−1∑
n=N+1

(
`

n

)
∂nxRψ ∂

`−n
x ϑ(R1 +R−1))

+
∑̀

n=`−N

(
`

n

)
∂nx
(
ψ +

1

2
εβ−1(ϑR−1 + ϑR1)

)
∂`−nx ϑ(R1 +R−1) .

We now obtain (2.97) since∑̀
n=`−N

(
`

n

)
∂nxf ∂

`−n
x f =

N∑
ñ=0

(
`

ñ

)
∂`−ñx f ∂ñxf .

Remark 2.2.25. In the following we will assume that ε0 is chosen such small
that, for 0 < ε < ε0, we have

ε E` ≤ 1. (2.98)

Under this assumption we can for instance make the estimates

ε E3/2
` = O(E`) , ‖R̃ψ‖H` = O(ε−1/2) , or ‖R̃ψ‖C`−1 = O(1).

We can make this assumption due to the fact that there is a some T (ε) > 0 such
that the H`-norms of R−1(t) and R1(t) can be uniformly bounded for 0 ≤ t ≤ T (ε).
Later, when our energy estimates close and we use Gronwall’s inequality, we will
obtain T (ε) ≥ T0 ε

−2.
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We now finally implement the four key observations from the introduction in
such a way that [R1], [R2], [R3] and [R4] are guaranteed.

Notation. We denote the floor function by

bxc = max{z ∈ Z : z ≤ x}
and the ceiling function by

dxe = min{z ∈ Z : z ≥ x}.
Lemma 2.2.26. Let ` ≥ ddeg(ω)e+ ddeg∗(ρ)e+ 1.
Let γ be an pseudo-differential operator that does not depend on ε and is given by
its symbol in Fourier space. Furthermore, let there be some D ≥ 0 such that we
have either

γ(k) = iσ(k) for all |k| ≥ D or γ(k) = υ(k) for all |k| ≥ D .

We assume the function σ ∈ Cddeg∗(σ)e(R,R) to be odd with deg∗(σ) ≤ deg(ω), the
function υ ∈ Cddeg∗(υ)e(R,R) to be even with deg∗(υ) ≤ deg(ω′), and both functions
to share the property (2.89).
When γ(k) = iσ(k) for large |k|, let f = h be a function with

‖h‖Hddeg∗(σ)e+ddeg(ω)e + ‖∂th‖Hddeg∗(σ)e−1 = O(ε−1/2), (2.99)

‖h‖Cddeg∗(σ)e−1 + ‖∂th‖Cddeg∗(σ)e−1 = O(1) .

When γ(k) = υ(k) for large |k|, let f = g be a function with

‖g‖Hddeg∗(υ)e+ddeg(ω)e + ‖∂tg‖Hddeg∗(υ)e = O(ε−1/2), (2.100)

‖∂−1
x g‖Cddeg∗(υ)e + ‖∂t∂−1

x g‖Cddeg∗(υ)e = O(1).

Suppose

‖f‖Hddeg∗(γ)e+ddeg(ω)e = O(1) or ‖f̂‖L1(ddeg∗(γ)e+ddeg(ω)e) = O(1), (2.101)

then there is an expression D with

D = O(E`),
such that for j1, j2 ∈ {±1}:

ε2

∫
R
γ∂`xRj1 ∂

`
xRj2 f dx (2.102)

= ε2∂tD + ε2

ddeg∗(γ)e−1∑
k=1

∫
R
ςk∂

`
xRj1 ∂

`
xRj2 ∂

k
xf dx

+ ε2

m∑
k=1

∫
R
γk∂

`
xRpk ∂

`
xRqk fk dx+ ε2O(E` + 1),
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where ςk and γk are skew symmetric or symmetric operators independent of ε
and given by their symbol in Fourier space, m = m

(
deg∗(γ)

)
∈ N, the fk are

some functions and pk, qk ∈ {−1, 1}. The functions ςk ∈ Cddeg∗(ςk)e(R,R) and
γk ∈ Cddeg∗(γk)e(R,R) share the property (2.89) .
Furthermore, we have

deg∗(ςk) ≤ deg∗(γ)− k , (2.103)

deg∗(γk) ≤ deg∗(γ)−
(

deg(ω)− deg∗(ρ)
)
, (2.104)

and

‖fk‖Hddeg∗(γk)e+ddeg(ω)e + ‖∂tfk‖Hddeg∗(γk)e (2.105)

≤ εC1

(
‖f‖Hddeg∗(γk)e+ddeg(ω)e + ‖∂tf‖Hddeg∗(γk)e

)
+ ε1/2C2

(
‖∂−1

x f‖Cddeg∗(γk)e + ‖∂t∂−1
x f‖Cddeg∗(γk)e

)
,

‖∂−1
x fk‖∞ + ‖∂t∂−1

x fk‖Cddeg∗(γk)e (2.106)

≤ ε1/2C1

(
‖f‖L2 + ‖∂tf‖L2

)
+ εC2

(
‖∂−1

x f‖Cddeg∗(γk)e + ‖∂t∂−1
x f‖Cddeg∗(γk)e

)
,

where the constants C1, C2 depend on R̃ψ, f, γ but are independent of ε. We set
C2 := 0 when f = h.

Remark 2.2.27. When γ is skew symmetric, we can even obtain

deg∗(γk) ≤ deg∗(γ)− 1−
(

deg(ω)− deg∗(ρ)
)
, (2.107)

see a2) and c) in the proof. This makes the case deg∗(ρ) ≤ 1 easy to handle since
the complete energy transformation is done after one step.

Proof. If deg∗(γ) ≤ 0, we have

ε2

∫
R
γ∂`xRj1 ∂

`
xRj2 f dx = ε2O(E` + 1),

such that the lemma is trivially true.
So we will in the following assume deg∗(γ) > 0.

Since deg(ω) ≥ deg∗(γ) > 0, there exist some constants Dω, dω > 0 such that

|ω(k)| ≥ dω > 0 for |k| ≥ Dω.

When γ = υ, we can on top of that find Dω, dω > 0 such that

|ω′(k)| ≥ dω > 0 for |k| ≥ Dω ,
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due to deg(ω′) ≥ deg∗(υ) > 0.
There is some D ≥ Dω and some function γ̃ ∈ Cddeg∗(γ)e(R,R) with (2.89) such
that

γ̃(k) = γ(k) for |k| ≥ D , and γ̃(k) = 0 for |k| ≤ Dω .

Since we have

ε2

∫
R
γ∂`xRj1 ∂

`
xRj2 f dx = ε2

∫
R
γ̃∂`xRj1 ∂

`
xRj2 f dx+ ε2

∫
R
(γ − γ̃)∂`xRj1 ∂

`
xRj2 f dx

= ε2

∫
R
γ̃∂`xRj1 ∂

`
xRj2 f dx+ ε2O(E` + 1),

we can in the following assume that we have γ ∈ Cddeg∗(γ)e(R,R) with (2.89) and
γ(k) = 0 for |k| ≤ Dω. Therefore, the operators given by the expressions γ

ω
and γ

ω′

will make sense, and, we also will be able to make use of (2.90).
In this proof we will sometimes implicitly assume ω, ρ ∈ Cmω(R,R) when we apply
(2.90), we can do this for the same reasons as above.
a) Handling integrals of the form

ε2

∫
R
γ∂`xRj ∂

`
xR−j f dx . (2.108)

By exploiting the skew symmetry of iω and (2.19), we have

ε2

∫
R
γ∂`xRj ∂

`
xR−j f dx

=
1

2
j ε2 ∂t

∫
R

γ

iω
∂`xRj ∂

`
xR−j f dx

− 1

2
ε2

∫
R

[
iω, f

] γ
iω
∂`xRj ∂

`
xR−j dx

− 1

2
ε3

∫
R

γ

iω
iρ∂`xϑ

−1
(
Rψϑ(R1 +R−1)

)
∂`xR−j f dx

+
1

2
ε3

∫
R

γ

iω
∂`xRj iρ∂

`
xϑ
−1
(
Rψϑ(R1 +R−1)

)
f dx

− 1

2
j ε2

∫
R

γ

iω
∂`xRj ∂

`
xR−j ∂tf dx

− 1

2
j ε2−β

∫
R
γ∂`xϑ

−1Resuj(εΨ) ∂`xR−j f dx

− 1

2
j ε2−β

∫
R
γ∂`xRj ∂

`
xϑ
−1Resu−j(εΨ) f dx.
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The first term is the time derivative of an integral, which can be estimated against
ε2O(E`) by using Cauchy-Schwarz.
The last three integrals can be estimated against ε2O(E`+1) since ‖∂tf‖∞ = O(1)
and due to (2.9).
For the second integral, applying (2.90) gives us

− 1

2
ε2

∫
R

[
iω, f

] γ
iω
∂`xRj ∂

`
xR−j dx

= −1

2
ε2

ddeg∗(γ)e−1∑
n=1

1

n!

∫
R
(−i)nω(n) γ

ω
∂`xRj ∂

`
xR−j ∂

n
xf dx

+O(ε2) ‖R(
γ

ω
∂`xRj, f)‖L2‖∂`xR−j‖L2 ,

where we estimate ‖R( γ
ω
∂`xRj, f)‖L2 = O(‖f‖Hddeg(ω)e+1‖Rj‖H`) = O(1) as in (2.91)

or ‖R( γ
ω
∂`xRj, f)‖L2 = O(‖f̂‖L1(ddeg(ω)e)‖Rj‖H`) = O(1) as in (2.92).

We now have obtained

ε2

∫
R
γ∂`xRj ∂

`
xR−j f dx

= ε2 ∂tD̃

− 1

2
ε2

ddeg∗(γ)e−1∑
n=1

1

n!

∫
R
(−i)nω(n) γ

ω
∂`xRj ∂

`
xR−j ∂

n
xf dx

− 1

2
ε3

∫
R

γ

iω
iρ∂`xϑ

−1
(
Rψϑ(R1 +R−1)

)
∂`xR−j f dx

+
1

2
ε3

∫
R

γ

iω
∂`xRj iρ∂

`
xϑ
−1
(
Rψϑ(R1 +R−1)

)
f dx

+ ε2O(E` + 1),

for some D̃ = O(E`).
The second term already has the desired form.
The integrals in the third and the forth place can be written as a sum of some
ε3O(E` + 1)-terms and m many integrals of the form

ε2

∫
R
γk∂

`
xRpk ∂

`
xRqk fk dx

with m, γk, fk, pk and qk just as in the lemma.
We see this by using (2.73), Leibniz’s rule, (2.90) and (2.72). Additionally, we also
have to rely on the results of lemma 2.2.22 for map (2.93) in order to see that the
functions of the form fk = ε ∂nx R̃ψ∂

m
x f in the resulting integrals do fulfill (2.105)
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and (2.106). We show this lengthy calculation once in detail for the third term,
the forth term can be handled analogously.
Using (2.73), then Leibniz’s rule and (2.97) with N := ddeg∗(γ)e − 1 in order to
extract all terms with more than ` spatial derivatives falling on R1 or R−1, we get

− 1

2
ε3

∫
R

γ

iω
iρ∂`xϑ

−1
(
Rψϑ(R1 +R−1)

)
∂`xR−j f dx

= −1

2
ε3

N∑
n=0

(
`

n

)∫
R

ρ

ω
γ
(
∂nx R̃ψ ∂

`−n
x ϑ(R1 +R−1)

)
∂`xR−j f dx

+ ε3O(E` + 1).

With the help of (2.90), (2.91), (2.92) and (2.72) we now arrive at

− 1

2
ε3

∫
R

γ

iω
iρ∂`xϑ

−1
(
Rψϑ(R1 +R−1)

)
∂`xR−j f dx

= −1

2
ε3

N∑
n=0

(
`

n

)(∫
R

ρ

ω
γ∂`−nx ϑ(R1 +R−1) ∂`xR−j ∂

n
x R̃ψ f dx

+

∫
R

[ ρ
ω
γ, ∂nx R̃ψ

]
∂`−nx ϑ(R1 +R−1) ∂`xR−j f dx

)
+ ε3O(E` + 1)

= −1

2
ε3

N∑
n=0

(
`

n

)( ∫
R

ρ

ω
γ∂`−nx (R1 +R−1) ∂`xR−j ∂

n
x R̃ψ f dx

+
Mn∑
m=1

1

m!

∫
R
(−i)m

( ρ
ω
γ
)(m)

∂`−nx (R1 +R−1) ∂`xR−j ∂
m+n
x R̃ψ f dx

)
+ ε3O(E` + 1)

+ ε3O(E`) ‖ψ̂‖L1(2ddeg∗(γ)e−1) + ε3+β−1O(E`) ‖R1 +R−1‖H2ddeg∗(γ)e ,

where Mn := ddeg∗(γ)e−n− 1 and the operators (−i)m
(
ρ
ω
γ
)(m) are given by their

symbols just as in (2.90). We have

‖ψ̂‖L1(2ddeg∗(γ)e−1) = O(1) ,

due to (2.11), and

εβ−1‖R1 +R−1‖H2ddeg∗(γ)e = εβ−1O(
√
E`) = O(1)
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due to ` ≥ 2ddeg∗(γ)e.
The above sum of integrals is now of the form

ε2

m̃∑
k=1

∫
R
γk∂

`
xRpk ∂

`
xRqk fk dx

with γk, fk, pk and qk just as in the lemma.
This is in particular true, since, due to

` ≥ ddeg(ω)e+ ddeg∗(ρ)e+ 1 ≥ ddeg(ω)e+ ddeg∗(γ)e+ 1 , (2.109)

we have for 0 ≤ p ≤ ddeg∗(γ)e − 1 :

‖∂pxR̃ψ‖Hddeg∗(γ)−pe+ddeg(ω)e+1 + ‖∂t∂pxR̃ψ‖Hddeg∗(γ)−pe+1 ≤ ε−1/2 c

and

‖∂pxR̃ψ‖Cddeg∗(γ)−pe+ddeg(ω)e + ‖∂t∂pxR̃ψ‖Cddeg∗(γ)−pe ≤ c ,

for some constant c = c(R̃ψ) that is independent of ε (due to assumption (2.107)).
Therefore the estimates of Lemma 2.2.22 for the map (2.93) give us

‖ε ∂pxR̃ψf‖Hddeg∗(γ)−pe+ddeg(ω)e + ‖ε ∂t(∂pxR̃ψf)‖Hddeg∗(γ)−pe

≤ εC
(
‖f‖Hddeg∗(γ)−pe+ddeg(ω)e + ‖∂tf‖Hddeg∗(γ)−pe

)
and

‖ε ∂−1
x (∂pxR̃ψf)‖∞ + ‖ε ∂t∂−1

x (∂pxR̃ψf)‖Cddeg∗(γ)−pe

≤ ε1/2C
(
‖f‖L2 + ‖∂tf‖L2

)
+ εC

(
‖f‖Cddeg∗(γ)−pe−1 + ‖∂tf‖Cddeg∗(γ)−pe−1 + 1

)
,

for some constant C = C(R̃ψ) that is independent of ε, what verifies (2.105) and
(2.106).

a2) Handling integrals of the form

ε2

∫
R
iσ∂`xRj ∂

`
xR−j h dx . (2.110)

We already proved lemma 2.2.26 for these kind of integrals, but when iσ is skew
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symmetric we can still show some more. In a), we showed that

ε2

∫
R
iσ∂`xRj ∂

`
xR−j h dx

= ε2 ∂tD̃

− 1

2
ε2

ddeg∗(σ)e−1∑
n=1

1

n!

∫
R
(−i)nω(n) iσ

ω
∂`xRj ∂

`
xR−j ∂

n
xh dx

− 1

2
ε3

∫
R

σ

ω
iρ∂`xϑ

−1
(
Rψϑ(R1 +R−1)

)
∂`xR−j h dx

+
1

2
ε3

∫
R

σ

ω
∂`xRj iρ∂

`
xϑ
−1
(
Rψϑ(R1 +R−1)

)
h dx

+ ε2O(E` + 1) ,

for some D̃ = O(E`). Since iσ is skew symmetric, we can handle the last two
integrals better than in a). By using (2.73) and the skew symmetry of iρ and iρσ

ω
,

we get

− 1

2
ε3

∫
R

σ

ω
iρ∂`xϑ

−1
(
Rψϑ(R1 +R−1)

)
∂`xR−j h dx

+
1

2
ε3

∫
R

σ

ω
∂`xRj iρ∂

`
xϑ
−1
(
Rψϑ(R1 +R−1)

)
h dx

= −jε3

∫
R

σ

ω
iρ∂`x(R1 −R−1) ∂`x

(
Rψϑ(R1 +R−1)

)
h dx

+ ε3

∫
R

[σ
ω
iρ, h

]
∂`xR−j ∂

`
x

(
Rψϑ(R1 +R−1)

)
dx.

− ε3

∫
R

[
iρ, h

]σ
ω
∂`xRj ∂

`
x

(
Rψϑ(R1 +R−1)

)
dx

+ ε3O(E` + 1) ,

The last two integrals can be written as some ε2O(E` + 1)-terms plus a sum of
integrals of the form

ε2

∫
R
γk∂

`
xRpk ∂

`
xRqk fk dx

with γk, fk, pk, qk just as in the lemma and

deg∗(γk) ≤ deg∗(σ)− 1 .

We see this by using (2.90), Leibniz’s rule, (2.97), (2.72). By using the result of
lemma 2.2.22 for the map (2.93) we see that the emerging functions of the form
fk = ε ∂nxh∂

p
xR̃ψ, with p ≥ 0, fulfill (2.105) and (2.106).
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Exploiting Leibniz’s rule, (2.97), (2.72) for the first integral on the above right
hand side, we get

− jε3

∫
R

σ

ω
iρ∂`x(R1 −R−1) ∂`x

(
Rψϑ(R1 +R−1)

)
h dx

= −jε3

∫
R

σ

ω
iρ∂`x(R1 −R−1) ∂`x(R1 +R−1) R̃ψh dx

− jε3

N∑
n=1

(
`

n

) ∫
R

σ

ω
iρ∂`x(R1 −R−1) ∂`−nx (R1 +R−1

)
∂nx R̃ψh dx

+ ε3O(E` + 1) ,

where N := bdeg∗(ρσ)− deg(ω)c.
The second term can be written as a sum of integrals of the form

ε2

∫
R
γk∂

`
xRpk ∂

`
xRqk fk dx

with γk, fk, pk, qk just as in the lemma and deg∗(γk) ≤ deg∗(σ)−1 . The functions
of the form fk = ε∂nx R̃ψh, fulfill (2.105) and (2.106) due to the result of lemma
2.2.22 for the map (2.93).
For the other integral, we can exploit (2.88), i.e.

∂t(R1 +R−1) = iω(R1 −R−1) + ε−βϑ−1
(
Resu1(εΨ) + Resu−1(εΨ)

)
,

and the symmetry of the operator σρ
ω2 in order to get

−jε3

∫
R

σ

ω
iρ∂`x(R1 −R−1) ∂`x(R1 +R−1) R̃ψ h dx

= −1

2
j ε3 ∂t

∫
R

ρσ

ω2
∂`x(R−1 +R1) ∂`x(R−1 +R1) R̃ψ h dx

+
1

2
j ε3

∫
R

[ρσ
ω2
, R̃ψh

]
iω∂`x(R1 −R−1) ∂`x(R−1 +R1) dx

+
1

2
j ε3

∫
R

ρσ

ω2
∂`x(R−1 +R1) ∂`x(R−1 +R1) ∂t

(
R̃ψ h

)
dx

+ ε3O(E` + 1) .

The first term is the time derivative of an integral ε3 D̃2, which can be estimated
against ε3O(E`) since ‖R̃ψh‖∞ = O(1).
The last integral can be estimated against ε3O(E` + 1) since deg∗( ρσ

ω2 ) ≤ 0 and
‖∂t(R̃ψh)‖∞ = O(1).
The second integral can be written as ε2O(E` + 1) plus a sum of integrals of the
form

ε2

∫
R
γk∂

`
xRpk ∂

`
xRqk fk dx
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with γk, fk, pk, qk just as in the lemma and deg∗(γk) ≤ deg∗(σ)− 1 . We see this
by using (2.90) and then the result of lemma 2.2.22 for the map (2.93) to see that
the emerging functions of the form fk = ε∂nx (hR̃ψ) fulfill (2.105) and (2.106).
Thus, we obtain

ε2

∫
R
iσ∂`xRj ∂

`
xR−j h dx

= ε2∂tD + ε2

deg∗(σ)−1∑
k=1

∫
R
ςk∂

`
xRj1 ∂

`
xRj2 ∂

k
xh dx

+ ε2

m∑
k=1

∫
R
γk∂

`
xRpk ∂

`
xRqk fk dx+ ε2O(E` + 1),

with D, ςk, m, γk, pk, qk, fk just as in the lemma, and have on top of that

deg∗(γk) ≤ deg∗(σ)− 1.

b) Handling integrals of the form

ε2

∫
R
iσ∂`xRj ∂

`
xRj h dx . (2.111)

Since iσ is skew symmetric and due to (2.90) and, (2.91) or (2.92), we have

ε2

∫
R
iσ∂`xRj ∂

`
xRj h dx = −1

2
ε2

∫
R

[
iσ, h

]
∂`xRj ∂

`
xRj dx,

= ε2

deg∗(σ)−1∑
k=1

∫
R
ςk∂

`
xRj ∂

`
xRj ∂

k
xh dx+ ε2O(E` + 1) ,

with ςk just as in the lemma.
More precisely, we could even write this term as a sum of some ε2O(E` + 1)-terms
and integrals of the form (2.112), which have at least a whole derivative less than
the original term.

c) Handling integrals of the form

ε2

∫
R
υ∂`xRj ∂

`
xRj g dx . (2.112)
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By using (2.90), we get

ε2

∫
R
υ∂`xRj ∂

`
xRj g dx

= ε2

∫
R

[
iω, ∂−1

x g
] υ
ω′
∂`xRj ∂

`
xRj dx

+ ε2

ddeg∗(υ)e∑
n=2

(−1)n

(n)!

∫
R
in+1ω(n) υ

ω′
∂`xRj ∂

`
xRj ∂

n−1
x g dx

+O(ε2) ‖R(
υ

ω′
∂`xRj, ∂

−1
x g)‖L2‖∂`xRj‖L2 ,

where ‖R( υ
ω′∂

`
xRj, ∂

−1
x g)‖L2 = O(‖g‖Hddeg(ω)e−1+q‖Rj‖H`) (for some q > 1/2) as

in (2.91) or ‖R( υ
ω′∂

`
xRj, ∂

−1
x g)‖L2 = O(‖ĝ‖L1(ddeg(ω)e−1)‖Rj‖H`) as in (2.92). The

estimate works without any problems since deg(ω)− 1 ≥ deg∗(υ) > 0.
Now, the second term already has the desired form and the last term is ε2O(E`+1)
such that we only have to look at the first term.
By exploiting the skew symmetry of iω and (2.19) (and (2.9)), we have

ε2

∫
R

[
iω, ∂−1

x g
] υ
ω′
∂`xRj ∂

`
xRj dx

= −j ε2 ∂t

∫
R

υ

ω′
∂`xRj ∂

`
xRj ∂

−1
x g dx

+ ε3

∫
R

υ

ω′
iρ∂`xϑ

−1
(
Rψϑ(R−1 +R1)

)
∂`xRj ∂

−1
x g dx

+ ε3

∫
R

υ

ω′
∂`xRj iρ∂

`
xϑ
−1
(
Rψϑ(R−1 +R1)

)
∂−1
x g dx

+ j ε2

∫
R

υ

ω′
∂`xRj ∂

`
xRj ∂t∂

−1
x g dx

+ ε2O(E` + 1) .
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Due to (2.73), the skew symmetry of iρ and the symmetry of ω′ and υ, we get

ε2

∫
R

[
iω, ∂−1

x g
] υ
ω′
∂`xRj ∂

`
xRj dx

= −j ε2 ∂t

∫
R

υ

ω′
∂`xRj ∂

`
xRj ∂

−1
x g dx

− 2ε3

∫
R
iρ
υ

ω′
∂`xRj ∂

`
x

(
Rψϑ(R−1 +R1)

)
∂−1
x g dx

− ε3

∫
R

[
iρ
υ

ω′
, ∂−1

x g
]
∂`xRj ∂

`
x

(
Rψϑ(R−1 +R1)

)
dx

− ε3

∫
R

[
iρ, ∂−1

x g
] υ
ω′
∂`xRj ∂

`
x

(
Rψϑ(R−1 +R1)

)
dx

+ j ε2

∫
R

υ

ω′
∂`xRj ∂

`
xRj ∂t∂

−1
x g dx

+ ε2O(E` + 1).

The first term is a time derivative of an integral ε2D̃, which can be estimated
against ε2O(E`) since ‖∂−1

x g‖∞ = O(1).
The last integral can be estimated against ε2O(E` + 1).
By using (2.90) and Leibniz’s rule, we can write the third and the fourth integral
as a sum of some ε3O(E` + 1)-terms and integrals of the form

ε2

∫
R
γk∂

`
xRpk ∂

`
xRqk fk dx

with γk, fk, pk, qk just as in the lemma. In order to see that the functions of the
form fk = ε ∂nx R̃ψ∂

m
x g, with n,m ≥ 0, in the resulting integrals do fulfill (2.105),

(2.106) and (2.100), we use the results of lemma 2.2.22 for the map (2.93).
We now have arrived at

ε2

∫
R
υ∂`xRj ∂

`
xRj g dx

= ε2∂tD̃ + ε2

deg∗(υ)−1∑
k=1

∫
R
ςk∂

`
xRj ∂

`
xRj ∂

k
xg dx

+ ε2

m̃∑
k=1

∫
R
γk∂

`
xRpk ∂

`
xRqk fk dx

− 2ε3

∫
R
iρ
υ

ω′
∂`xRj ∂

`
x

(
Rψϑ(R−1 +R1)

)
∂−1
x g dx

+ ε2O(E` + 1),

where D̃, ςk, γk and fk already satisfy the conditions of lemma 2.2.26.
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Using Leibniz’s rule and afterwards (2.97) and (2.72), we obtain

−2ε3

∫
R
iρ
υ

ω′
∂`xRj ∂

`
x

(
Rψϑ(R−1 +R1)

)
∂−1
x g dx

= −2ε3
∑̀
n=0

(
`

n

) ∫
R
iρ
υ

ω′
∂`xRj ∂

`−n
x ϑ(R−1 +R1) ∂nxRψ ∂

−1
x g dx

= −2ε3

∫
R
iρ
υ

ω′
∂`xRj ∂

`
x(R−1 +R1) R̃ψ ∂

−1
x g dx

− 2ε3

N∑
n=1

(
`

n

) ∫
R
iρ
υ

ω′
∂`xRj ∂

`−n
x (R−1 +R1) ∂nx R̃ψ ∂

−1
x g dx

+ ε3O(E` + 1),

where N := bdeg∗(ρυ)− deg(ω′)c.
The second term is a sum of integrals of the form

ε2

∫
R
γk∂

`
xRpk ∂

`
xRqk fk dx

with γk, fk, pk, qk just as in the lemma. Moreover, (2.105) and (2.106) are true
for the fk = ε ∂nx R̃ψ∂

−1
x g with 1 ≤ n ≤ N . This follows due to lemma 2.2.22, since

we can exploit the fact that

ε ∂nx R̃ψ∂
−1
x g = ε ∂x

(
∂n−1
x R̃ψ∂

−1
x g
)
− ε ∂n−1

x R̃ψg

such that we can use the estimates of lemma 2.2.22 for the maps (2.93) and (2.94).
Thus, we now only have to examine the term

−2ε3

∫
R
iρ
υ

ω′
∂`xRj ∂

`
x(R−1 +R1) R̃ψ ∂

−1
x g dx

= −2ε3

∫
R
iρ
υ

ω′
∂`xRj ∂

`
xR−j R̃ψ ∂

−1
x g dx

− 2ε3

∫
R
iρ
υ

ω′
∂`xRj ∂

`
xRj R̃ψ ∂

−1
x g dx

.

The first integral is of the form (2.111) and the second integral of the form (2.110).
However, this is not as trivial as it first may seem, since there is the possibility
that deg∗(ρ υ

ω′ ) > deg∗(υ). Thus, in order to see that the function h = εR̃ψ ∂
−1
x g

does indeed satisfy the conditions (2.99) and (2.101), we also have to use the fact
that

deg∗(ρ
υ

ω′
) = deg∗(υ) + deg∗(ρ)− deg(ω) + 1 ≤ deg∗(υ) + 1 ≤ deg(ω) (2.113)

90



and exploit lemma 2.2.22 for the map (2.94).
Due to (2.113), the lemma is now finally proven by applying the result of paragraph
a2) in this proof to the first integral and the result of paragraph b) to the second
integral.

Corollary 2.2.28. Let ` ≥ ddeg(ω)e+ ddeg∗(ρ)e+ 1.
Let the pseudo-differential operator γ and the function f be exactly as in lemma
2.2.26. Then, for 0 < ε < ε0 and ε0 small enough there exists an expression D
with

D = O(E`) ,

such that

ε2

∫
R
γ∂`xRj1 ∂

`
xRj2 f dx = ε2 ∂tD + ε2O(E` + 1). (2.114)

Proof. Due to lemma 2.2.26, we have

ε2

∫
R
γ∂`xRj1 ∂

`
xRj2 f dx

= ε2∂tD + ε2

ddeg∗(γ)e−1∑
k=1

∫
R
ςk∂

`
xRj1 ∂

`
xRj2 ∂

k
xf dx

+ ε2

m∑
k=1

∫
R
γk∂

`
xRpk ∂

`
xRqk fk dx+ ε2O(E` + 1)

with ςk, γk,m, fk, pq and qk just as in the lemma. Moreover, we can apply 2.2.26
repeatedly, i.e. we can always apply 2.2.26 again to every integral on above right
hand side.
If deg∗(γ) < deg(ω), we can repeatedly use (2.102) until we obtain

ε2

∫
R
γ∂`xRj1 ∂

`
xRj2 f dx = ε2∂tD̃ + ε2O(E` + 1),

for some D̃ with D̃ = O(E`). This is because due to (2.104) and (2.103), every time
we apply (2.102), the resulting integrals will contain

(
deg(ω)−deg∗(ρ)

)
derivatives

or an whole derivative less falling on ∂`xR−1 or ∂`xR1 than the previous integrals
such that the above result is achieved after a finite number of steps.

If deg∗(γ) = deg(ω), we can use (2.102) and exploit (2.103) in order to get

ε2

∫
R
γ∂`xRj1 ∂

`
xRj2 f dx

= ε2∂tD̃ + ε2

mγ∑
k=1

∫
R
γ̃∂`xRpk ∂

`
xRqk f̃k dx+ ε2O(E` + 1),
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for some D̃ with D̃ = O(E`) and some mγ = mγ(deg∗(γ)) ∈ N. Herby, we have

‖f̃k‖Hddeg∗(γ̃k)eddeg(ω)e + ‖∂tf̃k‖Hddeg∗(γ̃k)e ≤ Cf ,

‖∂−1
x f̃k‖∞ + ‖∂t∂−1

x f̃k‖Cddeg∗(γ̃k)e ≤ Cf ,

for some constant Cf = Cf (R̃ψ, f, γ) > 1 due to (2.105) and (2.106).
By using (2.102) and exploiting (2.103) again for every integral on the above right-
hand side, we can obtain an expression Ď = O(E`) such that we have

ε2

∫
R
γ∂`xRj1 ∂

`
xRj2 f dx

= ε2∂tĎ + ε2

m̌∑
k=1

∫
R
γ̌k∂

`
xRpk ∂

`
xRqk f̌k dx+ ε2O(E` + 1),

where m̌ = m2
γ,

‖f̌k‖Hddeg∗(γ̌k)eddeg(ω)e + ‖∂tf̌k‖Hddeg∗(γ̌k)e ≤ ε1/2C2
f ,

‖∂−1
x f̌k‖∞ + ‖∂t∂−1

x f̌k‖Cddeg∗(γ̌k)e ≤ C2
f .

By repeating the last step one more time, we now get

ε2

∫
R
γ∂`xRj1 ∂

`
xRj2 f dx

= ε2∂tD0 + ε2+1/2

m0∑
k=1

∫
R
γk,0∂

`
xRpk ∂

`
xRqk fk,0 dx+ ε2O(E` + 1),

for some D0 with D0 = O(E`), m0 = m3
γ and

‖fk,0‖Hddeg∗(γk,0)e+ddeg(ω)e + ‖∂tfk,0‖Hddeg∗(γk,0)e ≤ ε1/2C3
f ,

‖∂−1
x fk,0‖∞ + ‖∂t∂−1

x fk,0‖Cddeg∗(γk,0)e ≤ C3
f .

After N additional steps, we get

ε2

∫
R
γ∂`xRj1 ∂

`
xRj2 f dx

= ε2

N∑
p=0

εp/2 ∂tDp + ε2 ε
N+1

2

mN∑
k=1

∫
R
γk,N∂

`
xRpk ∂

`
xRqk fk,N dx+ ε2

N∑
p=0

εp/2 Cp,
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for some expressions Dp with Dp = O(E`), some Cp = O(E` + 1), mN = m3+N
γ and

‖fk,N‖Hddeg∗(γk,N )e+ddeg(ω)e + ‖∂tfk,N‖Hddeg∗(γk,N )e ≤ ε1/2C3+N
f ,

‖∂−1
x fk,N‖∞ + ‖∂t∂−1

x fk,N‖Cddeg∗(γk,N )e ≤ C3+N
f .

Moreover, we have deg∗(γk,N) ≤ deg∗(γ) due to (2.104).
We will now show that

D∞ :=
∞∑
p=0

εp/2Dp

does exist, that D∞ = O(E`), and that

ε2

∫
R
γ∂`xRj1 ∂

`
xRj2 f dx = ε2 ∂tD∞ + ε2O(E` + 1).

By taking a close look at the proof of (2.102), we find that

ε
p
2 Dp ≤ ε

p
2 mp+3

γ cp+3
γ Cp+3

f E`,
ε
p
2 Cp ≤ ε

p
2 mp+3

γ cp+3
γ Cp+3

f

(
E` + 1

)
,

for some cγ = cγ(deg∗(γ)) > 1 as long as f, iρ, iω and ` are fixed. We emphasize
that this is in particular possible due to the fact that deg∗(γk,N) ≤ deg∗(γ).
Now, by choosing ε small enough, for instance such that

ε1/4mγcγCf ≤ 1 ,

we get the following.
There is a c ∈ R such that

D∞ =
∞∑
p=0

εp/2Dp ≤
∞∑
p=0

εp/2 |Dp| ≤
∞∑
p=0

εp/4 c E` = c E`
∞∑
p=0

εp/4 = O(E`) ,

analogously we get
∞∑
p=0

εp/2Cp ≤
∞∑
p=0

εp/2 |Cp| = O(E` + 1) .

Moreover,

ε
N+1

2

mN∑
k=1

∫
R
γk,N∂

`
xRjk ∂

`
xRlk fk,N dx

≤ ε
N+1

4 C2
f

(
‖R1‖H`‖R1‖C`+ddeg∗(γ)e + ‖R1‖H`‖R−1‖C`+ddeg∗(γ)e

+ ‖R−1‖H`‖R1‖C`+ddeg∗(γ)e + ‖R−1‖H`‖R−1‖C`+ddeg∗(γ)e

)
= 0, for N →∞.

93



We now obtain

ε2

∫
R
γ∂`xRj1 ∂

`
xRj2 f dx = ε2 ∂tD∞ + ε2

∞∑
p=0

εp/2Cp

+ ε2 lim
N→∞

ε
N+1

2

mN∑
k=1

∫
R
γk,N∂

`
xRqk ∂

`
xRpk fk,N dx

= ε2 ∂tD∞ + ε2O(E` + 1).

Remark 2.2.29. The short involvement of the C`+ddeg∗ ρe-norm is not problematic
since the final estimates here do no longer involve this norm. More precisely,
using some mollifiers ιm and looking at Rm

j := Rj ∗ ιm, one would take the above
limit of ε

N+1
4 for N → ∞ before going over to the limit Rm

j → Rj for the final
energy estimates. Therefore, Ẽ`(Rm

−1, R
m
1 ) would converge against Ẽ`(R−1, R1) and

∂tẼ`(Rm
−1, R

m
1 ) would converge uniformly against ∂tẼ`(R−1, R1).
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Corollary 2.2.30. Let ` ≥ ddeg(ω)e+ ddeg∗(ρ)e+ 1.
For ε < ε0 and ε0 sufficiently small, there exists an energy Ẽ` and some constants
c, C > 0 such that(

‖R−1‖H` + ‖R1‖H`

)2 ≤ c Ẽ` ≤ C
(
‖R−1‖H` + ‖R1‖H`

)2 (2.115)

and

∂tẼ` ≤ ε2O
(
Ẽ` + 1

)
.

Proof. According to the definition of E` in (2.65) and due to lemma 2.2.9, we
have

∂tE` = ∂tE0 + ∂tE` = ∂tE` + ε2O(E` + 1) ,

where, due to lemma 2.2.17,

∂tE` = ε2 V` + ε2O(E` + 1),

= ε2
∑

j1,j3∈{±1}

(
j1

∫
R
∂`xRj1 iρ∂

`
xϑ
−1(RQϑRj3) dx

+j1

∫
R
iρ∂`xϑ

−1(RψϑRj3) ∂`xϑ
−1Nj1j1(ψc, Rj1) dx

+j1

∫
R
∂`xRj1 ∂

`
xϑ
−1Nj1j1(ψc, iρϑ

−1(RψϑRj3)) dx

+j1

∫
R
iρ∂`xϑ

−1(RψϑRj3) ∂`xϑ
−1Nj1−j1(ψc, R−j1) dx

−j1

∫
R
∂`xRj1 ∂

`
xϑ
−1Nj1−j1(ψc, iρϑ

−1(RψϑRj3)) dx
)

+ ε2O(E` + 1)

=:
4∑
i=0

Ii + ε2O(E` + 1) .

First, we analyze the term I0.
Using (2.73), we get

I0 : = ε2
∑

j1,j3∈{±1}

j1

∫
R
∂`xRj1 iρ∂

`
xϑ
−1(RQϑRj3) dx (2.116)

= ε2

∫
R
∂`x(R1 −R−1) iρ∂`x

(
RQϑ(R−1 +R1)

)
dx+ ε2O(E` + 1) .
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Due to Leibniz’s rule and the definition RQ = ψQ + 1
2
εβ−2ϑ(R−1 +R1), we obtain

by proceeding analogously as in (2.97), setting

R̃Q := ψQ + εβ−2ϑ(R−1 +R1) (2.117)

and using (2.72), that

I0 : = ε2

N∑
n=0

(
`

n

)∫
R
∂`x(R1 −R−1) iρ

(
∂nx R̃Q∂

`−n
x (R−1 +R1)

)
dx+ ε2O(E` + 1) ,

where N := ddeg∗(ρe − 1.
After replacing the expression

iρ
(
∂nx R̃Q∂

`−n
x (R−1 +R1)

)
by

∂nx R̃Q iρ∂
`−n
x (R−1 +R1) +

[
iρ, ∂nx R̃Q

]
∂`−nx (R−1 +R1)

and using (2.90), we can use corollary 2.2.28 in order to obtain

I0 = ε2 ∂tD0 + ε2O(E` + 1)

for some D0 with ε2D0 = ε2O(E`).

Now, we analyze the term I1 + I2.
Using (2.73) we get

I1 + I2 := ε2
∑

j1,j3∈{±1}

(
j1

∫
R
iρ∂`xϑ

−1(RψϑRj3) ∂`xϑ
−1Nj1j1(ψc, Rj1) dx (2.118)

+ j1

∫
R
∂`xRj1 ∂

`
xϑ
−1Nj1j1

(
ψc, iρϑ

−1(RψϑRj3)
)
dx
)

= ε2
∑

j1,j3∈{±1}

j1

( ∫
R
iρ∂`xϑ

−1(RψϑRj3) ∂`xNj1j1(ψc, Rj1) dx

+

∫
R
∂`xRj1 ∂

`
xNj1j1

(
ψc, iρϑ

−1(RψϑRj3)
)
dx
)

+ ε2O(E` + εβ−1E3/2
` ) .

In order to extract all terms with more than ` spatial derivatives falling on R1 or
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R−1, we apply Leibniz’s rule and get

I1 + I2 = ε2
∑

j1,j3∈{±1}

j1

( ∫
R
iρ∂`xϑ

−1(RψϑRj3)Nj1j1(ψc, ∂
`
xRj1) dx

+

ddeg∗(ρ)e∑
m=1

(
`

m

)∫
R
iρ∂`xϑ

−1(RψϑRj3)Nj1j1(∂mx ψc, ∂
`−m
x Rj1) dx

+

∫
R
∂`xRj1 Nj1j1

(
ψc, iρ∂

`
xϑ
−1(RψϑRj3)

)
dx

+

ddeg∗(ρ)e∑
m=1

(
`

m

)∫
R
∂`xRj1 Nj1j1

(
∂mx ψc, iρ∂

`−m
x ϑ−1(RψϑRj3)

)
dx
)

+ ε2O(E` + εβ−1E3/2
` ) .

Notice that this is since the Nj1j1(∂mx ψc, ·) map H1(R) on L2(R) due to (1.9) (see
lemma 2.2.5).

By using (2.68), we get

I1 + I2 = ε2
∑

j1,j3∈{±1}

j1

( ∫
R
iρ∂`xϑ

−1(RψϑRj3)Nj1j1(ψc, ∂
`
xRj1) dx

+

∫
R
iρ∂`xϑ

−1(RψϑRj3)N∗j1j1(ψc, ∂
`
xRj1) dx

+

ddeg∗(ρ)e∑
m=1

(
`

m

)∫
R
iρ∂`xϑ

−1(RψϑRj3)Nj1j1(∂mx ψc, ∂
`−m
x Rj1) dx

+

ddeg∗(ρ)e∑
m=1

(
`

m

)∫
R
iρ∂`−mx ϑ−1(RψϑRj3)N∗j1j1(∂mx ψc, ∂

`
xRj1) dx

)
+ ε2O(E` + εβ−1E3/2

` ) ,

where

N̂∗j1j2(ψc, f)(k) :=

∫
R
nj1j2(−m, k −m,−k)ψ̂c(k −m)f̂(m) dm .

For all integrals except the first two, we can now exploit (2.52), or respectively
(2.53) or (2.54), together with (2.73), Leibniz’s rule and (2.72) such that corollary
2.2.28 can be applied. The exact details on how this is done should soon become
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clear in this proof. We get

I1 + I2 = ε2
∑

j1,j3∈{±1}

j1

( ∫
R
iρ∂`xϑ

−1(RψϑRj3)Nj1j1(ψc, ∂
`
xRj1) dx

+

∫
R
iρ∂`xϑ

−1(RψϑRj3)N∗j1j1(ψc, ∂
`
xRj1) dx

)
+ ε2 ∂tD1,2 + ε2O(E` + 1) ,

for some D1,2 with ε2D1,2 = εO(E`).
For the remaining terms, we cannot apply corollary 2.2.28 since in these inte-

grals there are more than deg∗(ρ) derivatives falling on ∂`xR−1 or ∂`xR1. We use
the skew symmetry of iρ and exploit (2.73) in order to get

I1 + I2 = −ε2
∑

j1,j3∈{±1}

j1

∫
R
∂`x(RψϑRj3) iρ

(
Nj1j1(ψc, ∂

`
xRj1) +N∗j1j1(ψc, ∂

`
xRj1)

)
dx

+ ε2 ∂tD1,2 + ε2O(E` + 1) .

If we now look at

iρ(k)
(
njj(k, k −m,m) + njj(−m, k −m,−k)

)
= iρ(k) (ρ(k)− ρ(m))

χc(k −m)

ω(k)− ω(m) + j ω(k −m)
(for |k| → ∞) ,

and use Taylor, the same cancellation as in the proof of corollary 2.2.16 occurs
such that by exploiting (2.52), or respectively (2.53) or (2.54), we obtain

I1 + I2 = ε2
∑

j1,j3∈{±1}

j1

N∑
n=1

∫
R
∂`x(RψϑRj3) βnψc αn∂

`
xRj1 dx

+ ε2 ∂tD1,2 + ε2O(E` + 1) ,

for some N ∈ N and some pseudo-differential operators βn and αn. Here αn is
either skew-symmetric with deg∗(αn) ≤ deg∗(ρ) or symmetric with deg∗(αn) ≤
deg∗(ρ)− 1. Since we now have a derivative less falling on ∂`xR−1 or ∂`xR1, we can
apply corollary 2.2.28 (after we used Leibniz’s rule and (2.72)) and obtain

I1 + I2 = ε2 ∂tD̃1,2 + ε2O(E` + 1)

for some D̃1,2 with ε2 D̃1,2 = εO(E`).
When we applied corollary 2.2.28 to the integrals of the form∫

R
∂`xRj3 αn∂

`−m
x Rj1 ∂

m1
x R̃ψ ∂

m2
x βnψc dx ,
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with m,m1,m2 ≥ 0, we had to proceed considerately. One small thing was that
to obtain (2.101) we spited the functions f = ∂m1

x R̃ψ∂
m2
x βnψc into

f = ∂m1
x (ψc + εR̃Q)∂m2

x βnψc = ∂m1
x ψc∂

m2
x βnψc + ∂m1

x εR̃Q∂
m2
x βnψc =: f1 + f2

such that ‖f1‖L1(s) = O(1) and ‖f2‖Hs = O(1).
Another thing and also the reason for which we only get ε2D̃1,2 = εO(E`) is that,
for functions of the form g = γψcβψc, we have to rely on the estimate

‖∂−1
x g‖∞ = ‖∂−1

x (γψcβψc)‖∞ ≤
∫
R
|γψcβψc| dx ≤ ‖γψc‖L2‖βψc‖L2 ,

such that ‖∂−1
x g‖∞ ≤ O(ε−1). A similarly bad estimate for ‖∂t∂−1

x g‖∞ could be
avoided by estimating in the following way. We exploit that ψc = ψ−1 + ψ1 and

γψj = γ(jk0)ψj +O(ε) , (2.119)

for operators γ that are given in Fourier space by their sufficiently smooth symbol
γ, see section 2.1. Thus we have

γψcβψc =
∑

j1,j2∈{±1}

γ(jk0)β(jk0)ψj1ψj2 +O(ε)

with

ψj1(x, t)ψj2(x, t) = Aj1(ε(x− cgt), ε2t)Aj2(ε(x− cgt), ε2t)ei(j1+j2)(k0x−ω0t),

where A−1 := A1 and A1 is as in (2.8).
Since ψjψj is strictly concentrated around k = ±2k0 in Fourier space, we can
compute ‖∂−1

x (ψjψj)‖L1(s) = O(1) and ‖∂t∂−1
x (ψjψj)‖L1(s) = O(1).

Due to the fact that ψjψ−j is strictly concentrated around k = 0 in Fourier space,
we have to stick with the estimate ‖∂−1

x (ψjψ−j)‖∞ = O(ε−1). However, we can
obtain ‖∂t∂−1

x (ψjψ−j)‖∞ = O(1) because

∂t(ψjψ−j) = ∂t|A1(ε(x− cgt), ε2t)|2 = O(ε).

Thus, we have the estimates

‖∂−1
x (γψcβψc)‖∞ ≤ O(ε−1), ‖∂t∂−1

x (γψcβψc)‖∞ = O(1) .

Due to the first of the above estimates, an extra step was needed to enable the
application of corollary 2.2.28, we give the full details on this technicality directly
after this proof in lemma 2.2.31.
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Now, we analyze the term I3 + I4.
Using (2.73), we have

I3 + I4 : = ε2
∑

j1,j3∈{±1}

(
j1

∫
R
iρ∂`xϑ

−1(RψϑRj3) ∂`xϑ
−1Nj1−j1(ψc, R−j1) dx (2.120)

− j1

∫
R
∂`xRj1 ∂

`
xϑ
−1Nj1−j1

(
ψc, iρϑ

−1(RψϑRj3)
)
dx
)

= ε2
∑

j1,j3∈{±1}

j1

(∫
R
iρ∂`xϑ

−1(RψϑRj3) ∂`xNj1−j1(ψc, R−j1) dx

−
∫
R
∂`xRj1 ∂

`
xNj1−j1

(
ψc, iρϑ

−1(RψϑRj3)
)
dx
)

+ ε2O(E` + εβ−1E3/2
` ).

Applying Leibniz’s rule, (2.38) and exploiting that the Nj1−j1(∂mx ψc, ·) always map
L2(R) on L2(R) due to (1.9) (see lemma 2.2.5), we get

I3 + I4

= ε2
∑

j1,j3∈{±1}

j1

( ∫
R
iρ∂`xϑ

−1(RψϑRj3)Nj1−j1(ψc, ∂
`
xR−j1) dx

+

ddeg∗(ρ)e−1∑
m=1

(
`

m

)∫
R
iρ∂`xϑ

−1(RψϑRj3)Nj1−j1(∂mx ψc, ∂
`−m
x R−j1) dx

−
∫
R
∂`xRj1 Nj1−j1

(
ψc, iρ∂

`
xϑ
−1(RψϑRj3)

)
dx

−
ddeg∗(ρ)e−1∑

m=1

(
`

m

)∫
R
∂`xRj1 Nj1−j1

(
∂mx ψc, iρ∂

`−m
x ϑ−1(RψϑRj3)

)
dx
)

+ ε2O(E` + εβ−1E3/2
` ).
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Using (2.66) and (2.73), we get

I3 + I4 = ε2
∑

j1,j3∈{±1}

j1

( ∫
R
iρ∂`x(RψϑRj3)Nj1−j1(ψc, ∂

`
xR−j1) dx

−
∫
R
iρ∂`x(RψϑRj3)N∗j1−j1(ψc, ∂

`
xRj1) dx

+

ddeg∗(ρ)e−1∑
m=1

(
`

m

)∫
R
iρ∂`x(RψϑRj3)Nj1−j1(∂mx ψc, ∂

`−m
x R−j1) dx

−
ddeg∗(ρ)e−1∑

m=1

(
`

m

)∫
R
iρ∂`−mx (RψϑRj3) N∗j1−j1(∂mx ψc, ∂

`
xRj1) dx

)
+ ε2O(E` + εβ−1E3/2

` ).

After exploiting (2.55), Leibniz’s rule and (2.72), we can now apply corollary 2.2.28
in order to obtain

I3 + I4 = ε2 ∂tD3,4 + ε2O(E` + 1),

for some D3,4 with ε2D3,4 = εO(E`).
Hence, by choosing ε0 small enough and summing up our results for I0-I4, we

can define a modified energy

Ẽ` = E` − ε2(D0 + D̃1,2 +D3,4) ,

with

ε2 (D0 + D̃1,2 +D3,4) = εO(E`)
such that

∂tẼ` . ε2
(
1 + E`

)
.

Since Ẽ` = E` + εO(E`), the statement is now proven with corollary 2.2.16.

Here are the details on the application of corollary 2.2.28 for I1 +I2 and I4 +I4.

Lemma 2.2.31. Let ` ≥ ddeg(ω)e+ ddeg∗(ρ)e+ 1.
Let the pseudo-differential operator γ and the function f be as in lemma 2.2.26 with
the only exception being that ‖∂−1

x g‖∞ = O(ε−1) for f = g. Then, for 0 < ε < ε0

and ε0 small enough there exists an expression D with

ε2D = εO(E`) ,
such that

ε2

∫
R
γ∂`xRj1 ∂

`
xRj2 f dx = ε2 ∂tD + ε2O(E` + 1). (2.121)
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Proof. We proceed as in b) in the proof of lemma 2.2.26.
By using (2.90), we get

ε2

∫
R
υ∂`xRj ∂

`
xRj g dx

= ε2

∫
R

[
iω, ∂−1

x g
] υ
ω′
∂`xRj ∂

`
xRj dx

+ ε2

ddeg∗(υ)e∑
n=2

(−1)n

(n)!

∫
R
inω(n) υ

ω′
∂`xRj ∂

`
xRj ∂

n−1
x g dx

+O(ε2) ‖R(
υ

ω′
∂`xRj, ∂

−1
x g)‖L2‖∂`xRj‖L2 .

The last term can be estimated against ε2O(E` + 1) with (2.91) and (2.92), espe-
cially since only derivatives of ∂−1

x g are involved. The integrals of the sum

ε2

ddeg∗(υ)e∑
n=2

(−1)n

(n)!

∫
R
inω(n) υ

ω′
∂`xRj ∂

`
xRj ∂

n−1
x g dx

are also no longer problematic since there is at least one derivative falling on g.
Proceeding further as in b) in the proof of lemma 2.2.26, we have

ε2

∫
R

[
iω, ∂−1

x g
] υ
ω′
∂`xRj ∂

`
xRj dx

= −j ε2 ∂t

∫
R

υ

ω′
∂`xRj ∂

`
xRj ∂

−1
x g dx

+ ε3

∫
R

υ

ω′
iρ∂`xϑ

−1
(
Rψϑ(R−1 +R1)

)
∂`xRj ∂

−1
x g dx

+ ε3

∫
R

υ

ω′
∂`xRj iρ∂

`
xϑ
−1
(
Rψϑ(R−1 +R1)

)
∂−1
x g dx

+ j ε2

∫
R

υ

ω′
∂`xRj ∂

`
xRj ∂t∂

−1
x g dx

+ ε2O(E` + 1) .

We obtain

ε2D := ε2

∫
R

υ

ω′
∂`xRj ∂

`
xRj ∂

−1
x g dx = εO(E`) ,

since ‖∂−1
x g‖∞ = O(ε−1).

For the last integral, we have

j ε2

∫
R

υ

ω′
∂`xRj ∂

`
xRj ∂t∂

−1
x g dx ≤ ε2O(E` + 1) ,
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since ‖∂t∂−1
x g‖∞ = O(1).

For the integrals

ε3

∫
R

υ

ω′
iρ∂`xϑ

−1
(
Rψϑ(R−1 +R1)

)
∂`xRj ∂

−1
x g dx

+ ε3

∫
R

υ

ω′
∂`xRj iρ∂

`
xϑ
−1
(
Rψϑ(R−1 +R1)

)
∂−1
x g dx

= −2ε3

∫
R
iρ
υ

ω′
∂`xRj ∂

`
x

(
Rψϑ(R−1 +R1)

)
∂−1
x g dx

− ε3

∫
R

[
iρ
υ

ω′
, ∂−1

x g
]
∂`xRj ∂

`
x

(
Rψϑ(R−1 +R1)

)
dx

− ε3

∫
R

[
iρ, ∂−1

x g
] υ
ω′
∂`xRj ∂

`
x

(
Rψϑ(R−1 +R1)

)
dx

+ ε2O(E` + 1) .

corollary 2.2.28 can now be applied since ε‖∂−1
x g‖∞ = O(1). In detail, we have

the following estimates.
We have (2.99) and (2.100), where we need it:

• For m ≥ 0 and n as required, we have

‖ε∂mx R̃Ψ∂
−1
x g‖Hn ≤ ε ‖∂mx R̃Ψ‖Hn‖∂−1

x g‖Cn = O(ε−1/2) ,

and similar

‖ε∂t(∂mx R̃Ψ∂
−1
x g)‖Hn = O(ε−1/2) .

• We also have for m ≥ 0 and n as required,

‖ε∂mx R̃Ψ∂
−1
x g‖Cn ≤ ε ‖∂mx R̃Ψ‖Cn‖∂−1

x g‖Cn = O(1) ,

and similar

‖ε∂t(∂mx R̃Ψ∂
−1
x g)‖Cn = O(1) .

• For for m > 0 and n as required, we have

‖ε∂−1
x (∂mx R̃Ψ∂

−1
x g)‖∞ ≤ ε‖∂m−1

x R̃Ψ∂
−1
x g − ∂−1

x (∂m−1
x R̃Ψg)‖∞

≤ ε‖∂m−1
x R̃Ψ‖∞‖∂−1

x g‖∞ + ε‖∂m−1
x R̃Ψ‖L2‖g‖L2

≤ O(1) ,

similar

‖ε∂t∂−1
x (∂mx R̃Ψ∂

−1
x g)‖∞ ≤ O(1) .

The term R̃Ψ∂
−1
x g only occurs in the skew symmetric case.
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Regarding (2.101), we split

R̃Ψ = ψc + εR̃Q

such that we have ε2‖∂mx R̃Q∂
−1
x g‖Hn = O(1) for m ≥ 0 and n as required. For

f = εψc∂
−1
x g, we can get∥∥∥F−1

[
|(1 + | · |2)p/2 ∂̂n+1

x f(·)|
]∥∥∥
∞

= O(1) , (2.122)

what is sufficient since (2.101) is only needed to apply lemma 2.2.20. We had
estimated this∞-norm by using Sobolev’s embedding theorem to get (2.91) in the
proof of lemma 2.2.20. For the shake of completeness, here are the full details on
how this last estimate is obtained.
We split ψc = ψ−1 +ψ1, set A−1 := A1 where A1 is as in (2.8) and then we compute

ε sup
x∈R

∣∣F−1
[
|(1 + | · |2)p/2(·)n+1ψ̂j∂−1

x g(·)|
]∣∣

= ε
1

4π2
sup

(ε−1x)∈R

∣∣∣ ∫
R
eikεx(1 + |k|2)p/2|k|n+1×

×
∣∣∣ ∫

R
e−i(k−jk0)yAj(ε(y − cgt), ε2t)ejiω0t(∂−1

x g)(y) dy
∣∣∣ dk∣∣∣

= ε
1

4π2
sup
x∈R

∣∣∣ ∫
R
eikx(1 + |εk + jk0|2)p/2|εk + jk0|n+1×

×
∣∣∣ ∫

R
e−ikyAj(y − εcgt, ε2t)ejiω0t(∂−1

x g)(ε−1y) dy
∣∣∣ dk∣∣∣ .

Here, we exploited the property of the supremum on R and made the substitutions

εy 7→ y and ε−1(k − jk0) 7→ k .

Using Sobolev’s embedding theorem, we now get

ε sup
x∈R

∣∣F−1
[
|(1 + | · |2)p/2(·)n+1ψ̂j∂−1

x g(·)|
]∣∣

= ε
1

2π

∥∥∥(1 + |(·)|2)(1 + |ε(·) + jk0|2)p/2|ε(·) + jk0|n+1×

×
∫
R
e−i(·)yAj(y − εcgt, ε2t)ejiω0t(∂−1

x g)(ε−1y) dy
∥∥∥
L2

≤ εO
(
‖(∂−1

x g)(ε−1y)‖C1 +

n+p+2∑
m=1

εm−1‖(∂−1
x g)(ε−1y)‖Cm

)
‖A1‖Hn+p+2

= O(1).
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Corollary 2.2.30 now allows us to prove theorem 1.1.1.
Proof of theorem 1.1.1 When ` ≥ ddeg(ω)e+ddeg∗(ρ)e+1, we can use corollary
2.2.30 together with Gronwall’s inequality in order to obtain theO(1)-boundedness
of Ẽ` for all t ∈ [0, T0/ε

2] as long as ε0 > 0 is chosen sufficiently small:
Since we assumed the local existence of solutions to (1.2), there is a some T (ε) > 0
such that the H`-norms of R−1(t) and R1(t) can be uniformly bounded as long
as 0 ≤ t ≤ T (ε). Due to corollary 2.2.16, we know that for sufficiently small ε0,
(2.98) is true for 0 ≤ t ≤ T (ε), i.e.

εE`(t) ≤ 1 ,

and thus corollary 2.2.30 does indeed hold for 0 ≤ t ≤ T (ε).
In particular, we have

∂tẼ`(t) ≤ ε2C
(
Ẽ`(t) + 1

)
for some C ≥ 0 and 0 ≤ t ≤ T (ε).
Gronwall’s inequality now yields

Ẽ`(t) ≤
(
Ẽ`(0) + ε2Ct

)
eε

2 Ct

for 0 ≤ t ≤ T (ε).
Choosing ε0 such small that(

Ẽ`(0) + CT0

)
eCT0 ≤ ε−1

0 ,

we can now obtain T (ε) ≥ ε−2 T0, i.e. in particular

Ẽ`(t) ≤
(
Ẽ`(0) + ε2Ct

)
eε

2 Ct

for 0 ≤ t ≤ ε−2 T0.
Therefore, for sufficiently small ε0 > 0, there is some constant CR such that

sup
[0,T0/ε2]

∥∥∥( R−1

R1

)∥∥∥
H`
≤ CR ,

due to corollary 2.2.30.
For ` ≥ sA, we can now, due to estimate (2.10), conclude

sup
[0,T0/ε2]

‖u− εψNLS‖HsA

= sup
[0,T0/ε2]

‖u−1 + u1 − εψNLS‖HsA

≤ sup
[0,T0/ε2]

∥∥∥( u−1

u1

)
− ε

(
ψNLS

0

)∥∥∥
HsA

≤ sup
[0,T0/ε2]

εβ
∥∥∥( ϑR−1

ϑR1

)∥∥∥
HsA

+ sup
[0,T0/ε2]

‖εΨ− ε
(
ψNLS

0

)∥∥∥
HsA

. ε3/2.
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Remark 2.2.32. In the above proof, we clearly see that, due to our method of
proof, our estimate for the size of the error

sup
[0,T0/ε2]

‖u− εψNLS‖HsA

cannot be better than the estimate, which we have for the difference between the
NLS-approximation εψNLS and the improved NLS-approximation εΨ.
We however showed that the error between a original solution of (1.2) and the
improved NLS-approximation εΨ,

sup
[0,T0/ε2]

εβ
∥∥∥( ϑR−1

ϑR1

)∥∥∥
HsA

,

is of the size O(εβ), where β = 5/2. If the residual estimate (2.9) can be improved,
for instance as in remark 2.1.4, we can make β even larger. In other words,
our estimate for the error between a original solution of (1.2) and the improved
NLS-approximation εΨ is much smaller than our estimate for the error between
a original solution of (1.2) and the NLS-approximation εψNLS. In some cases it
can even be made arbitrarily small. That being said, we cannot increase the time
interval [0, T0/ε

2] on which the estimate does hold this way.
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Chapter 3

A reduced system for the water
wave problem

3.1 Motivation
For our introduction of the water wave problem here, we will follow [D19].
The 2D water wave problem consists in finding the flow of an incompressible invis-
cid fluid in an infinitely long canal of finite or infinite depth with a free top surface
under the influence of gravity and possibly of surface tension. The 2D water wave
problem with finite depth (formulated in Eulerian coordinates) has the following
form.
In an infinitely long canal of finite depth, an incompressible, inviscid fluid fills
a domain Ω(t) = {(x, y) ∈ R2 : x ∈ R, −h < y < η(x, t)} in between the
impermeable bottom B = {(x, y) : x ∈ R, y = −h} and the free top surface
Γ(t) = {(x, y) ∈ R2 : x ∈ R, y = η(x, t)}. All, under the influence of gravity and
surface tension.

Γ(t)

Ω(t)

B

(x, η(x, t))

x

y
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The velocity field V = (v1, v2) of the fluid is governed by the incompressible
Euler equations

∂tV +
(
V · ∇

)
V = ∇p+ g

(
0
−1

)
in Ω(t), (3.1)

∇ · V = 0 in Ω(t), (3.2)

where p is the pressure and g is the constant of gravity.
Under the assumptions that fluid particles on the top surface stay on the top
surface, that the pressure at the top surface is determined by the Laplace-Young
jump condition and that the bottom is impermeable, one obtains the boundary
conditions

η t = V ·
( −ηx1

1

)
at Γ(t), (3.3)

p = −bgh2κ at Γ(t), (3.4)

v2 = 0 atB, (3.5)

where b ≥ 0 is the Bond number, which is proportional to the strength of surface
tension, and κ is the curvature of Γ(t).
One further assumes the flow to be irrotational, such that one can now show that
there exists a harmonic velocity potential φ with vanishing normal derivative at B
and an operator K = K(η) such that

V = ∇φ and φy = Kφx. (3.6)

Thus, the system (3.1)-(3.5) can be reduced to

η t = V ·
( −ηx1

1

)
at Γ(t), (3.7)

(φ)t = −1

2

(
(φx)

2 + (Kφx)2
)
x
− gη + bgh2

( ηx√
1 + η2

x

)
xx

at Γ(t) (3.8)

or to

η t = Kv1 − v1ηx at Γ(t), (3.9)

(v1)t = −gηx −
1

2

(
(v1)2 + (Kv1)2

)
x

+ bgh2
( ηx√

1 + η2
x

)
xx

at Γ(t). (3.10)

One can assume time and space to be rescaled in such a way that h = 1 and g = 1.
Besides this formulation of the water wave problem in Eulerian coordinates,

there exist also other formulations of the water wave problem and each of these
formulations has its own advantages and disadvantages. Including the arc length

108



formulation, there are local and global well-posedness results for almost all of these
formulations, we refer to [D18] for a quick overview.

Since the water wave problem and its solutions are not expected to be solved
or qualitatively understood in near future, approximations for the water wave
problem are of great importance. The two most promising ones are the Korteweg-
de Vries approximation and the NLS approximation.

In this section, we will now show that our techniques acquired in the last sec-
tion will be useful to prove the validity of the NLS approximation for the 2D
water wave problem in case of finite depth and with or without surface tension,
in the arc length formulation. We choose the arc length formulation, since this
formulation has the advantage that the linear part of the equation is the one with
the most derivatives in the presence of nonzero surface tension. I.e. we have
deg(ω) > deg∗(ρ) in case of nonzero surface tension.
Until recently, the validity of the NLS approximation for the 2D water wave prob-
lem with finite depth and surface tension was an open problem, regardless of the
chosen formulation. The validity of the NLS approximation for the 2D water wave
problem with finite depth and without surface tension has already been proved
in [DSW16] by using Lagrangian coordinates, however the result was not optimal
in the sense that the validity of the approximation could be proven on the right
timescale but not for the full modulation interval.

3.1.1 The 2D water wave problem in arc length formulation

In order to obtain the arc length formulation of the water wave problem, the free
top surface Γ(t) gets parametrized by arc length.

Γ(t)

Ω(t)

B

(x, y)(α, t)

x

y

Let P (t) : R → Γ(t) : α 7→ P (α, t) =
(
x(α, t), y(α, t)

)
be such a parametriza-
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tion, i.e. let P (t) be such that√
(∂αx)2(α, t) + (∂αy)2(α, t) = 1 . (3.11)

Let

θ = arctan

(
∂αx

∂αy

)
(3.12)

denote the tangent angles , U the normal velocity and T the tangential velocity
on the free top surface, i.e.

∂t
(
x(α, t), y(α, t)

)
= U(α, t)n̂(α, t) + T (α, t)t̂(α, t) , (3.13)

where n̂ =
(
−sin(θ), cos(θ)

)
are the upward unit normal vectors to the free surface

and t̂ =
(

cos(θ), sin(θ)
)
the upward unit tangential vectors to the free surface.

Due to (3.11), one can show that T is determined by ϑ and U (up to a constant
that can be set to zero without a loss of generality). One can show

T (α, t) =

∫ α

−∞
∂βθ(β, t)U(β, t) dβ . (3.14)

Since irrotational flows are considered, the normal velocity U can be expressed in
terms of the free top surface and the physical tangential velocity v. The physical
tangential velocity v can be expressed by using the velocity field V = (v1, v2) and
the evolution of v is determined by the equations (3.1)-(3.5) and the form of the
free top surface.
Under the assumption that y(·, t), θ(·, t) and v(·, t) are sufficiently regular, for
example y(·, t), v(·, t) ∈ L2 and θ(·, t) ∈ H2, the evolution of x is completely
determined by the one of θ due to (3.11). Thus U(·, t) can be written as a function
of y(·, t), θ(·, t) and v(·, t) and one can obtain the system

∂ty = U cos(θ) + T∂αy, (3.15)
∂tv = −∂αy + b∂2

αθ − δ∂αδ + U(∂αU − T∂αθ), (3.16)
∂tθ = ∂αU + T∂αθ (3.17)

∂t∂αδ = −c∂αθ + b∂3
αθ − ∂α(δ∂αδ) + (∂αU + v∂αθ)

2 (3.18)
∂αy = sin(θ) (3.19)
δ = v − T , (3.20)

where

c = ∂tU + v∂tθ + δ∂αU + δv∂αθ + cos(θ). (3.21)

The evolution equations (3.17) and (3.18) get included since they have better
regularity properties than the spatial derivatives of y and v.
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In [D19], the linear and quadratic terms, which are also the most troublesome
terms, are extracted. Then, θ and ∂αδ get derived one time in space and the
system gets diagonalized by(

y
v

)
=

(
σ−1 σ−1

1 −1

)(
ũ−1

ũ1

)
, (3.22)

(
∂αθ
∂2
αδ

)
=

(
σ−1 σ−1

1 −1

)(
ũ−2

ũ2

)
, (3.23)

where σ−1 is the inverse of the operator σ, which is defined in Fourier space by its
symbol

σ(k) = σ(k; b) =

√
k + bk3

tanh(k)
. (3.24)

By doing so, the following diagonalized system is obtained

(ũ−1)t = −iωũ−1 (3.25)

+∂α

(
− 1

4
(ũ−1 + ũ1)2 +

1

4
(K0(ũ−1 + ũ1))2

+
1

2
σK0[K0, σ

−1(ũ−1 − ũ1)](ũ−1 + ũ1)

−1

2
σ(1 +K2

0)(σ−1(ũ−1 − ũ1)(ũ−1 + ũ1))
)

+m−1,

(ũ1)t = iωũ1 (3.26)

+∂α

(
− 1

4
(ũ−1 + ũ1)2) +

1

4
(K0(ũ−1 + ũ1))2

−1

2
σK0[K0, σ

−1(ũ−1 − ũ1)](ũ−1 + ũ1)

+
1

2
σ(1 +K2

0)(σ−1(ũ−1 − ũ1)(ũ−1 + ũ1))
)

+m1,
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(ũ−2)t = −iωũ−2 (3.27)

+∂α

(
− ∂−2

α (ũ−2 + ũ2)ũ−2

−1

2
[σ, ∂−2

α (ũ−2 + ũ2)]σ−1(ũ−2 − ũ2)

+
1

2
K0∂

−1
α σ−1(ũ−2 − ũ2)σ−1(ũ−2 − ũ2)

−1

2
bσ−1(ũ−2 − ũ2)K0σ

−1∂α(ũ−2 − ũ2)

−1

2
(∂−1
α (ũ−2 + ũ2))2 +

1

2
(K0∂

−1
α (ũ−2 + ũ2))2

+
1

2
∂α
(
σK0[K0, σ

−1(ũ−1 − ũ1)]∂−1
α (ũ−2 + ũ2)

)
−1

2
∂α
(
σ(1 +K2

0)(σ−1(ũ−1 − ũ1)∂−1
α (ũ−2 + ũ2))

)
+

1

2
σK0[K0, ∂

−1
α σ−1(ũ−2 − ũ2)]∂−1

α (ũ−2 + ũ2)

−1

2
σ(1 +K2

0)(∂−1
α σ−1(ũ−2 − ũ2)∂−1

α (ũ−2 + ũ2))

+
1

2
c1σ
−1(ũ−2 − ũ2) +m−2

)
,
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(ũ2)t = iωũ2 (3.28)

+∂α

(
− ∂−2

α (ũ−2 + ũ2)ũ2

+
1

2
[σ, ∂−2

α (ũ−2 + ũ2)]σ−1(ũ−2 − ũ2)

+
1

2
K0∂

−1
α σ−1(ũ−2 − ũ2)σ−1(ũ−2 − ũ2)

−1

2
bσ−1(ũ−2 − ũ2)K0σ

−1∂α(ũ−2 − ũ2)

−1

2
(∂−1
α (ũ−2 + ũ2))2 +

1

2
(K0∂

−1
α (ũ−2 + ũ2))2

−1

2
∂α
(
σK0[K0, σ

−1(ũ−1 − ũ1)]∂−1
α (ũ−2 + ũ2)

)
+

1

2
∂α
(
σ(1 +K2

0)(σ−1(ũ−1 − ũ1)∂−1
α (ũ−2 + ũ2))

)
−1

2
σK0[K0, ∂

−1
α σ−1(ũ−2 − ũ2)]∂−1

α (ũ−2 + ũ2)

+
1

2
σ(1 +K2

0)(∂−1
α σ−1(ũ−2 − ũ2)∂−1

α (ũ−2 + ũ2))

+
1

2
c1σ
−1(ũ−2 − ũ2) +m2

)
,

with

∂−1
α σ−1(ũ−2 − ũ2) = σ−1∂α(ũ−1 − ũ1) +m3, (3.29)

∂−2
α (ũ−2 + ũ2) = (ũ−1 + ũ1)− ∂−1

α

(
K0(ũ−1 + ũ1)σ−1(ũ−2 − ũ2)

)
+m4, (3.30)

where ω is given in Fourier space by its symbol

ω(k) = ω(k; b) = sign(k)
√

(k + bk3)tanh(k) , (3.31)

K0 is defined by its symbol K0(k) = −i tanh(k) and ∂−1
α by the multiplier −ik−1.

The relevant norms of the nonlinear terms m−1,m1, ∂αm−2, ∂αm2, ∂αm3,m4, c1 can
be controlled. For more details on this and on the whole derivation, we refer to
[D19] and the references therein.

3.2 The Reduced system and its properties
Preventing a loss of regularity stemming from the evolution of ũ−2 and ũ2 is crucial
for justifying a NLS approximation for the above arc length formulation of the full
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2D water wave problem. Instead of the above full water wave problem, which is a
rather complicated system, we will now consider a reduced system, which shares
crucial properties with the full water wave problem. That is in particular the
structure of the linear and quadratic terms of the evolution from ũ−2 and ũ2.
What we will neglect in this reduced system, are all terms, which are neither
linear nor quadratic. On top of that, we will only look at a system with two
evolution parameters, since the evolution parameters ũ−2, ũ2 and ũ−1, ũ1 are deeply
connected, see (3.29)- (3.30) (also remember that ∂αθ and ∂2

αδ were chosen as a
substitute for higher spatial derivatives of y and v).

The reduced system we are looking at is

∂tu−1 = −iωu−1 + ∂α

(
−D−2

α (u−1 + u1)u−1 (3.32)

− 1

2
[σ,D−2

α (u−1 + u1)]σ−1(u−1 − u1)

+
1

2
K0D

−1
α σ−1(u−1 − u1)σ−1(u−1 − u1)

− 1

2
bσ−1(u−1 − u1)K0σ

−1∂α(u−1 − u1)

− 1

2
(D−1

α (u−1 + u1))2 +
1

2
(K0D

−1
α (u−1 + u1))2

)
,

∂tu1 = iωu1 + ∂α

(
−D−2

α (u−1 + u1)u1

+
1

2
[σ,D−2

α (u−1 + u1)]σ−1(u−1 − u1)

+
1

2
K0D

−1
α σ−1(u−1 − u1)σ−1(u−1 − u1)

− 1

2
bσ−1(u−1 − u1)K0σ

−1∂α(u−1 − u1)

− 1

2
(D−1

α (u−1 + u1))2 +
1

2
(K0D

−1
α (u−1 + u1))2

)
,

where the linear operator iω is given in Fourier space by

ω(k) = ω(k; b) = sign(k)
√

(k + bk3)tanh(k) . (3.33)

In order to avoid resonances being caused by the nonlinear terms, we do not use
D−1
α = ∂−1

α . Instead, the operator D−1
α : L2(R)→ L2(R) is given in Fourier space

by some fixed function D̂−1
α , which is smooth, odd and fulfills D̂−1

α (k) = O(−ik−1)
for |k| → ∞. Like before, the operators σ, K0 and σ−1 are given in Fourier space
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by

σ(k) = σ(k; b) =

√
k + bk3

tanh(k)
,

K0(k) = −i tanh(k) and σ−1(k) = (σ(k))−1.

We obtain this reduced system by modifying the evolution equations of ũ−2

and ũ2 from the arc length formulation of the full 2D water wave problem in the
following way:

• We replace the operators ∂−1
α by the operators D−1

α in order to avoid reso-
nances produced by the nonlinear terms.
This has to be done since we only want to consider a system with two evo-
lution parameters and therefore automatically miss out the special interac-
tion between ũ−1, ũ1 and ũ−2, ũ2, which could ensure that expressions like
∂−2
α (ũ−2 + ũ2) make sense.

• We drop all terms that are neither linear nor quadratic and on top of that
also some quadratic terms, which cannot cause a loss of regularity.

In the following, we assume the local existence of real-valued solutions to our
system (1.2) in HsA with sA as in theorem 1.2.1.
We chose k0 > 0 such that (1.4), i.e.

ω′′(k0) 6= 0, (3.34)

(1.5), i.e.

ω′(k0) 6= ±ω′(0) (3.35)

and (1.6), i.e.

mω(k0) 6= ±ω(mk0) for m = ±2, ... ,±5 , (3.36)

(1.14), i.e.

ω(k0) 6= 0 when deg(ω) < 1 , (3.37)

are true. Moreover, we chose k0 > 0 such that for j1, j2 ∈ {±1} the only possible
solutions of the equations (1.12), i.e.

ω(k)− j1j2ω(k ∓ k0) + j1ω(±k0) = 0 , (3.38)

are k = ±k0 and k = 0.
Solutions of (3.38) will correspond to resonances in our normal form transforms.
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Remark 3.2.1. In literature it was shown that when b = 0 or b > 1/3 there
can always only occur resonances in k = ±k0 and k = 0 for all k0 > 0. When
b ∈]0, 1/3[ there can occur more than three resonances for some k0 > 0.

Instead of deriving the NLS equation rigorously by proving residual estimates,
what could get pretty exhaustive, we will just assume that a NLS equation of the
form

∂TA = i
ω′′(k0)

2
∂2
XA+ iν2A|A|2 , (3.39)

with ν2 = ν2(k0; b) ∈ R can be derived via an ansatz of the form(
u−1

u1

)
=

(
εψNLS

0

)
+O(ε2), (3.40)

where

εψNLS(x, t) = εA
(
ε(x− cgt), ε2t

)
ei(k0x−ω0t) + c.c. , (3.41)

ω0 = ω(k0) and cg = ω′ (k0).
Moreover, we assume to have an improved approximation

εΨ = εΨc + ε2Ψq , (3.42)

where

εΨc = εψc

(
1
0

)
= ε(ψ1 + ψ−1)

(
1
0

)
= ε

(
A1(ε(x− cgt), ε2t) ei(k0x−ω0t) + c.c.

)( 1
0

)
,

ε2Ψq = ε2

(
ψq−1

ψq1

)
.

The functions ψq−1 and ψq−1 shall have a finite support in Fourier space, which is
restricted to small neighborhoods of integer multiples from the basic wave numbers
k0. Therefore, A1

(
ε(· − cgt), ε

2t
)
denotes the restriction of A

(
ε(· − cgt), ε

2t
)
in

Fourier space to the interval {k ∈ R : |k| ≤ δ < k0/20} by some cut-off function:

A1

(
ε(· − cgt), ε2t

)
:= F−1

[
χ[−δ,δ](·)F

[
A
(
ε(· − cgt), ε2t

)]
(·)
]
,

where χ[−δ,δ] is the characteristic function on the interval [−δ, δ]. One can again
think of εψc as εψNLS, just with a support in Fourier space which is restricted to
small neighborhoods of the wave numbers ±k0.
The improved approximation εΨ shall have the following properties.
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Lemma 3.2.2. Let sA ≥ 7 and A ∈ C([0, T0], HsA(R,C)) be a solution of the NLS
equation (3.39) with

sup
T∈[0,T0]

‖A‖HsA ≤ CA.

Then for all s ≥ 0 there exist CRes, CΨ, ε0 > 0 depending on CA such that for all
ε ∈ (0, ε0) the approximation εΨ = εΨc + ε2Ψq satisfies

sup
t∈[0,T0/ε2]

‖Resu(εΨ)‖Hs ≤ CRes ε
11/2, (3.43)

sup
t∈[0,T0/ε2]

∥∥εΨ− εψNLS ( 1
0

)∥∥
HsA

≤ CΨ ε
3/2, (3.44)

sup
t∈[0,T0/ε2]

(‖Ψ̂c‖L1(s+1)(R,C) + ‖Ψ̂q‖L1(s+1)(R,C)) ≤ CΨ , (3.45)

‖∂tψ̂±1 + iω̂ψ±1‖L1(s) ≤ CΨ ε
2 . (3.46)

Similar estimates can be shown for the full water wave problem, see [D19].

3.2.1 Key properties of the reduced system

The following properties of the system will now be sufficient for justifying the NLS
equation, i.e. to prove error estimates on the right time scale.
The reduced system is an abstract system of the form

∂tu−1 = − iωu−1 +A−1(u−1, u−1) + B−1(u1, u1) + C−1(u−1, u1) (3.47)

∂tu1 = iωu1 +A1(u−1, u−1) + B1(u1, u1) + C1(u−1, u1) , (3.48)

where the linear operator iω is given exactly like before by

ω(k) = ω(k; b) = sign(k)
√

(k + bk3)tanh(k) . (3.49)

The quadratic terms are given in Fourier space by

Âj(u−1, u−1)(k) :=

∫
R
aj(k, k −m,m) û−1(k −m)û−1(m) dm , (3.50)

B̂j(u1, u1)(k) :=

∫
R
bj(k, k −m,m) û1(k −m)û1(m) dm , (3.51)

Ĉj(u−1, u1)(k) :=

∫
R
cj(k, k −m,m) û−1(k −m)û1(m) dm , (3.52)

where j ∈ {±1} and the functions aj, bj and cj are assumed to be sufficiently
smooth.
For Z ∈ {A−1,A1,B−1,B1, C−1, C1} and accordingly chosen z ∈ {a−1, a1, b−1, b1,
c−1, c1}, we have

z(k, k −m,m) = O(k) for |k| → 0 , (3.53)
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as long as |k −m| gets uniformly bounded.
The z(k, k −m,m) suffice the conditions of lemma 3.3.10.
Moreover, the operators Z always map a pair of real-valued functions on a real-
valued function and satisfy a priori estimates of the form

‖Z(u, v)‖L2 .


‖u‖H2‖v‖H1 ,

‖u‖H1‖v‖H2 ,

‖û‖L1(4)‖v‖H1 ,

‖u‖H1‖v̂‖L1(4)

. (3.54)

On top of that, we have the a priori estimates

‖A−1,s(f, g) +A∗−1,s(f, g)‖L2 . min
{
‖f‖H4 , ‖f̂‖L1(4)

}
‖g‖L2 , (3.55)

‖B1,s(f, g) + B∗1,s(f, g)‖L2 . min
{
‖f‖H4 , ‖f̂‖L1(4)

}
‖g‖L2 ,

‖C−1(g, f) + C−1,∗(g, f)‖L2 . min
{
‖f‖H4 , ‖f̂‖L1(4)

}
‖g‖L2 ,

‖C1(f, g) + C∗1(f, g)‖L2 . min
{
‖f‖H4 , ‖f̂‖L1(4)

}
‖g‖L2 ,

and

‖A∗1,s(f, g) + C−1(f, g)‖L2 . min
{
‖f‖H4 , ‖f̂‖L1(4)

}
‖g‖H1/2 , (3.56)

‖B−1,s(f, g) + C1,∗(g, f)‖L2 . min
{
‖f‖H4 , ‖f̂‖L1(4)

}
‖g‖H1/2 .

Here, we are using the notations

Zs(f, ·) := Z(f, ·) + Z(·, f), zs := z(k, k −m,m) + z(k,m, k −m) , (3.57)

∫
R
Z∗(g, f)h dx :=

∫
R
f Z(g, h) dx , (3.58)∫

R
Z∗(g, f)h dx :=

∫
R
gZ(h, f) dx .

Remark 3.2.3. Due to lemma 2.2.11, Z∗ and Z∗ exists and we can write

Z∗(g, f) =

∫
R
z(−m, k −m,−k) ĝ(k −m)f̂(m) dm , (3.59)

Z∗(g, f) =

∫
R
z(−m,−k, k −m) ĝ(m)f̂(k −m) dm .

Remark 3.2.4. There is no special reason for which we picked the integer 4,
i.e. the H4-norm and L1(4)-norm for f . A larger real number can also be allowed,
however then the condition for corollary 3.3.14 may has to be modified accordingly.
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From our derivation of the NLS equation in section 2.1, we already expected
a condition like (3.53) to be crucial, since in the case ω(0) = 0 we could only
rigorously derive or justify the NLS equation when ρ(0) = 0. The relevance of this
condition is indeed also the reason for which θ and ∂αδ were derived one time in
space before the water wave problem was diagonalized.
The condition (3.53) as well as the assumed smoothness of aj, bj and cj are not
entirely true for ũ−2 and ũ2 in the full water wave problem (3.25)-(3.30) due to the
presence of the operator ∂−1

α . This however should be evened out by the special
interaction between ũ−1, ũ1, ũ−2 and ũ2. The same holds for (3.54), (3.55) and
(3.56).

The structure enforced by (3.55) and (3.56) can also be found in the full water
wave problem for ũ−2 and ũ2 and stems from the dynamics of (3.17)-(3.18). To
make this structure a bit more tangible, one can rewrite the system (3.47)-(3.48)
as

∂tuj = jiωuj +Qj−1u−1 +Qj1u1 ,

Qj−1 = Qj−1(u−1, u1) :=
1

2

(
Aj(u−1, ·) +Aj(·, u−1)

)
+

1

2
Cj(·, u1) ,

Qj1 = Qj1(u−1, u1) :=
1

2

(
Bj(u1, ·) + Bj(·, u1)

)
+

1

2
Cj(u−1, ·)

where j ∈ {±1}. and the Qj1j2 are linear operators for a fixed argument.
Then, we can write the system (3.47)-(3.48) as

∂t

(
u−1

u1

)
= Q

(
u−1

u1

)
:=

(
−iω +Q−1−1 Q−11

Q1−1 iω +Q11

)(
u−1

u1

)
. (3.60)

and the conditions (3.55) and (3.56) can now be understood as a condition regard-
ing the imaging behavior of the matrix

Q+Q∗ =

(
Q−1−1 +Q∗−1−1 Q−11 +Q∗1−1

Q1−1 +Q∗−11 Q11 +Q∗11

)
,

where Q∗j1j2 is given through the L2-product, i.e.∫
R
Qj1j2f g dx =

∫
R
f Q∗j1j2g dx .

To give some more details on this, we have

2
(
Q−1−1 +Q∗−1−1

)
= A−1,s(u−1, ·) +A∗−1,s(u−1, ·) + C−1(·, u1) + C−1,∗(·, u1) ,

2
(
Q−11 +Q∗1−1

)
= A∗1,s(u−1, ·) + C−1(u−1, ·) + B−1,s(u1, ·) + C1,∗(·, u1) ,

2
(
Q1−1 +Q∗−11

)
= A1,s(u−1, ·) + C∗−1(u−1, ·) + B∗−1,s(u1, ·) + C1(·, u1) ,

2
(
Q11 +Q∗11

)
= B1,s(u1, ·) + B∗1,s(u1, ·) + C1(u−1, ·) + C∗1(u−1, ·) ,
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where Aj,s(u−1, ·) := Aj(u−1, ·) +Aj(·, u−1) , Bj,s(u−1, ·) analogously. Thus, (3.55)
refers to the diagonal entries of the matrix Q+Q∗ and (3.56) to the minor diagonal
entries of the matrix Q+Q∗. One could therefore also formulate (3.55) and (3.56)
as a property, which the matrix Q+Q∗ has to fulfill.

As a side note, conditions similar to (3.55) and (3.56) were automatically ful-
filled for the system (1.2) from the last section, i.e. the system (2.3). This was in
particular, since the function ρ was odd and (1.10) held.

Lemma 3.2.5. The system (3.32) indeed satisfies the conditions (3.53), (3.54),
(3.55) and (3.56).

Proof. We write the system (3.32) as

∂tu−1 = −iωu−1 − T0(u−1 + u1, u−1)− T1(u−1 + u1, u−1 − u1)

+ T2(u−1 − u1, u−1 − u1)− T3(u−1 − u1, u−1 − u1)

− T4(u−1 + u1, u−1 + u1) ,

∂tu1 = iωu1 − T0(u−1 + u1, u1) + T1(u−1 + u1, u−1 − u1)

+ T2(u−1 − u1, u−1 − u1)− T3(u−1 − u1, u−1 − u1)

− T4(u−1 + u1, u−1 + u1) ,

where

T0(f, g) = ∂α(D−2
α fg) ,

T1(f, g) =
1

2
∂α[σ,D−2

α f ]σ−1g ,

T2(f, g) =
1

2
∂α(K0D

−1
α σ−1f σ−1g) ,

T3(f, g) =
b

2
∂α(σ−1f K0σ

−1∂αg) ,

T4(f, g) =
1

2
∂α
(
D−1
α f D−1

α g −K0D
−1
α f K0D

−1
α g
)
.

Bringing the system into the form (3.47)-(3.48), we now get

A−1(u−1, u−1) = −T0(u−1, u−1)− T1(u−1, u−1) + T2(u−1, u−1)

− T3(u−1, u−1)− T4(u−1, u−1) ,

B−1(u1, u1) = T1(u1, u1) + T2(u1, u1)

− T3(u1, u1)− T4(u1, u1) ,

C−1(u−1, u1) = −T0(u1, u−1) + T1(u−1, u1)− T1(u1, u−1)− T2(u−1, u1)

− T2(u1, u−1) + T3(u−1, u1) + T3(u1, u−1)− 2T4(u−1, u−1) ,
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A1(u−1, u−1) = T1(u−1, u−1) + T2(u−1, u−1)

− T3(u−1, u−1)− T4(u−1, u−1) ,

B1(u1, u1) = −T0(u1, u1)− T1(u1, u1) + T2(u1, u1)

− T3(u1, u1)− T4(u1, u1) ,

C1(u−1, u1) = −T0(u−1, u1)− T1(u−1, u1) + T1(u1, u−1)− T2(u−1, u1)

− T2(u1, u−1) + T3(u−1, u1) + T3(u1, u−1)− 2T4(u−1, u−1) .

We immediately notice the following interesting structure

A−1(f, g) = B1(f, g) (3.61)
B−1(f, g) = A1(f, g)

C−1(f, g) = C1(g, f) .

This special structure is also present in the quadratic terms of (3.29)-(3.30), i.e.
in the arc length formulation of the full water wave problem. We decided to not
include this property into our key properties since we do not have to exploit it in
order to prove theorem (1.2.1). Nevertheless it could be an important feature of
of the water wave problem.

In order to prove the lemma, we will now take advantage of the operators
T0 − T5.

The property (3.53) is obviously true since all nonlinear terms of the system
are basically a derivative.

Looking at the linear operators

T̂j(f, g) :=

∫
R
tj(k, k −m,m) f̂(k −m) ĝ(m) dm ,

we see that (3.54) is true for every Tj and thus also for A−1,B−1, C−1,A1,B1 and
C1. This can for example be shown by finding s, r ∈ R such that

sup
k,m∈R

|tj(k, k −m,m)|
(1 + |m|2)s/2(1 + |k −m|2)r/2

≤ C

and then exploiting Plancherel together with Cauchy-Schwarz and Young’s in-
equality.
One can in fact show that even better estimates than (3.54) hold. So we can ob-
viously estimate T4 without a loss of regularity. We can estimate the L2-norm of
T0(f, g) only against ‖g‖H1 , i.e. the non-linearity will always lose one derivative.
For b = 0 the L2-norm of T2(f, g) can only be estimated against ‖g‖H1/2 . While for
b > 0 the L2-norm of T3(f, g) can only be estimated against ‖g‖H1/2 . Otherwise
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T2 or T3 are harmless. The operator T1 is harmless for b = 0, otherwise it causes
a loss of half a derivative.

In order to prove (3.55), we prove

‖Tj(f, g) + T ∗j (f, g)‖L2 ≤ min
{
‖f‖H4 , ‖f̂‖L1(4)

}
‖g‖L2 , (3.62)

‖Tj(g, f) + Tj∗(g, f)‖L2 ≤ min
{
‖f‖H4 , ‖f̂‖L1(4)

}
‖g‖L2 ,

such that (3.55) directly can be followed.
Due to lemma 2.2.11, we have

T̂j(f, g) + T̂ ∗j (f, g) =

∫
R

(
tj(k, k −m,m) + t(−m, k −m,−k)

)
f̂(k −m) ĝ(m) dm,

T̂j(g, f) + T̂j∗(g, f) =

∫
R

(
tj(k,m, k −m) + t(−m,−k, k −m)

)
f̂(k −m) ĝ(m) dm.

We have t0(k, k −m,m) = ikD̂−2
α (k −m) such that

t0(k, k −m,m) + t0(−m, k −m,−k) = ikD̂−2
α (k −m)− imD̂−2

α (k −m)

= i(k −m)D̂−2
α (k −m)

and

t0(k,m, k −m) = ikD̂−2
α (m)

= i(k −m)D̂−2
α (m) + imD̂−2

α (m) ,

t0(−m,−k, k −m) = i(k −m)D̂−2
α (k)− ikD̂−2

α (k) .

Therefore we see that (3.62) is true for Tj = T0, e.g. by exploiting Plancherel
together with Cauchy-Schwarz and Young’s inequality like before.
Exactly like this, we can prove (3.62) for the other operators Tj. There are always
either similar cancellations happening as in the first equation, or there are no
derivatives falling on g to begin with as in the other two equations above.

Concerning (3.56), we observe that neither A∗1,s(f, g), C−1(f, g), B−1,s(f, g) nor
C1,∗(g, f) do include the dangerous term

T0(f, g) = ∂α(D−2
α fg) or T0∗(f, g) = −D−2

α f∂αg .

As we have seen above the terms T0(g, f) and T0∗(g, f) are harmless and the
operators Tj can for j ∈ {1, 2, 3, 4} not cause us to lose more than half a derivative.
Thus (3.56) is easily proven.
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3.3 Error estimates for the reduced model
In this section, we ultimately will prove theorem 1.2.1. Therefore, our aim is to
prove that the HsA-norm of the error

Rerr =

(
u−1

u1

)
− ε

(
ψNLS

0

)
remains bounded by some O(ε3/2)-term on the O(ε−2)-time interval [0, T0/ε

2].
In order to achieve this, we will, just as in section 2.2, first estimate the error

R =

(
u−1

u1

)
− εΨ (3.63)

that the improved approximation εΨ makes.

Let

Ψ =

(
Ψ−1

Ψ1

)
be the improved approximation. We write the error (3.63) as

εβ
(
ϑR−1

ϑR1

)
=

(
u−1

u1

)
− εΨ (3.64)

where β = 5/2 and ϑ is an invertible operator on L2(R) that later will be given by
some weight function ϑ̂ in Fourier space.
Throughout this section, we will now work with the rescaled error(

R−1

R1

)
= ε−βϑ−1

(( u−1

u1

)
− εΨ

)
, (3.65)

where ϑ−1 : L2(R)→ L2(R) is the inverse of the operator ϑ.
Plugging in (3.64) into our original system, we obtain the following dynamics for
the rescaled error

∂tR−1 = − iωR−1 + εϑ−1G−1(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1) + ε−βϑ−1Resu−1(εΨ) (3.66)

∂tR1 = iωR1 + εϑ−1G1(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1) + ε−βϑ−1Resu1(εΨ) , (3.67)

where

Gj(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1) :=Aj(RΨ

−1, ϑR−1) +Aj(ϑR−1, R
Ψ
−1) + Bj(RΨ

1 , ϑR1)
(3.68)

+ Bj(ϑR1, R
Ψ
1 ) + Cj(RΨ

−1, ϑR1) + Cj(ϑR−1, R
Ψ
1 ) ,

and

RΨ
j := Ψj +

1

2
εβ−1ϑRj . (3.69)

Remark 3.3.1. The mappings Gj are bilinear, when they are viewed as mappings(
RR
)2 ×

(
RR
)2 → RR.
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3.3.1 Achieving O(ε−2)-time scale while preserving regular-
ity

We have chosen β = 5/2 large enough and assume Resuj(εΨ) to be small enough
such that we formally have

∂tRj = j iωRj + εϑ−1Gj(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1) + ε−βϑ−1Resuj(εΨ)

= j iωRj + εϑ−1Gj(Ψ−1,Ψ1, ϑR−1, ϑR1)

+
1

2
εβϑ−1Gj(ϑR−1, ϑR1, ϑR−1, ϑR1) + ε−βϑ−1Resuj(εΨ)

= j iωRj + εϑ−1Gj(Ψ−1,Ψ1, ϑR−1, ϑR1) +O(ε2) .

We assume that ϑ and the combination ϑ−1Gj cannot cause a loss of ε-powers.
Thus, by exploiting

Ψ =

(
Ψ−1

Ψ1

)
=

(
ψc + εψq−1

εψq1

)
, (3.70)

we obtain

∂tRj = j iωRj + εϑ−1Gj(ψc, 0, ϑR−1, ϑR1) + ε2ϑ−1Gj(ψq−1 , ψq1 , ϑR−1, ϑR1) +O(ε2)

= j iωRj + εϑ−1Gj(ψc, 0, ϑR−1, ϑR1) +O(ε2)

= j iωRj + εϑ−1
(
Aj(ψc, ϑR−1) +Aj(ϑR−1, ψc) + Cj(ψc, ϑR1)

)
+O(ε2) .

Our system has only resonances in k = ±k0 and k = 0, i.e. equation (1.12) is only
solved by k = ±k0 and k = 0. Thus, we define ϑ exactly as in (2.30). Thanks
to our experience gained from section 2.2.1, we now expect to formally obtain a
O(ε−2)-time scale for the error via the normal form transformations

N̂j1j2(ψc, Rj2)(k) =

∫
R
n̂j1j2(k, k −m,m)ψ̂c(k −m)R̂j2(m) dm , (3.71)

and

T̂j1j2j3j4(ψj4 , ψj4 , Rj3)(k) =

∫
R
tj1,j2,j3,j4(k)ψ̂j4(k −m)ψ̂j4(m− n)R̂j3(n) dn dm ,

(3.72)

where

n̂j1j2(k, k −m,m) =
ρj1,j2(k, k −m,m) ϑ̂ε,∞(m)χc(k −m)

ω(k)− j1j2ω(m) + j1ω(k −m)
,

tj1,j2,j3,j4(k) =
−j2 P̂0,δ(k)nj1j2(k, j4k0, k − j4k0) ρj2,j3(k − j4k0, j4k0, k − 2j4k0)(

− j1ω(k)− 2ω(j4k0) + j3ω(k − 2j4k0)
) ,
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ρ−1,−1(k, k −m,m) := i
(
a−1(k, k −m,m) + a−1(k,m, k −m)

)
,

ρ−1,1(k, k −m,m) := i c−1(k, k −m,m) ,

ρ1,−1(k, k −m,m) := −i
(
a1(k, k −m,m) + a1(k,m, k −m)

)
,

ρ1,1(k, k −m,m) := −i c1(k, k −m,m)) .

Just as in the last section, χc is the characteristic function on supp ψ̂c, the function
ϑ̂ε,∞ is given as in (2.31) and P̂a,b denotes the characteristic function of the set
{k : a ≤ |k| ≤ b}.

Considering (2.2.6), we expect the normal form transformations Nj1,j2 to lose
regularity. For this reason, we use the modified energy from section 2.2.2 to pre-
serve regularity. We define

E` = E0 + E` , (3.73)

E` =
∑

j1∈{±1}

( 1

2

∥∥∂`xRj1

∥∥2

L2 + ε
∑

j2∈{±1}

∫
R
∂`xRj1∂

`
xϑ
−1Nj1j2(ψc, Rj2) dx

)
,

E0(R) = ‖Ř−1‖2
L2 + ‖Ř1‖2

L2 ,

Řj := Rj + ε
∑

j2∈{±1}

ϑ−1Njj2(ψc, Rj2) + ε2
∑

j2,j3,j4∈{±1}

ϑ−1Tjj2j3j4(ψj4 , ψj4 , Rj3) .

Herby ϑ−1 : L2(R)→ L2(R) is the inverse of the operator ϑ, ϑ is just as in (2.30)
and ψj4 is defined similar as in (2.8).

We now expect that this energy is equivalent to the energy ‖R−1‖2
H` + ‖R1‖2

H`

for ` ≥ 1, just as in the one in section 2.2.1. Moreover, we expect that the evolution
of this energy only contains terms that are of at least quadratic ε-order.
In the following, we will now show that these expectations are indeed met.

We start by looking at the normal form transformations.

Lemma 3.3.2. The normal-form transforms Nj1j2 were constructed such that∑
j2∈{−1,1}

(
− j1iωNj1j2(ψc, Rj2)−Nj1j2(iωψc, Rj2) + j2Nj1j2(ψc, iωRj2)

)
(3.74)

= −Gj1(ψc, 0, ϑε,∞R−1, ϑε,∞R1)

where

Gj1(Ψ−1,Ψ1, ϑR−1, ϑR1)− Gj1(ψc, 0, ϑε,∞R−1, ϑε,∞R1) (3.75)
≤ εO(‖R−1‖H2 + ‖R1‖H2).

125



Moreover, for every fix h ∈ L2(R,R) the operators Nj1j2(h, ·) are continuous
linear operators which map H1(R,R) into L2(R,R). In particular, there is a
C = C(‖ĥ(·)χc(·)‖L1) such that for all g ∈ H1(R) we have

‖Njj(h, g)‖L2 ≤ C‖g‖H1 , (3.76)

‖Nj−j(h, g)‖L2 ≤ C‖g‖H1/2 . (3.77)

Proof.
In order to find possible resonances for Nj1j2 , we have to look at the zeros of

the denominator of nj1j2 , i.e. of

ω(k)− j1j2ω(m) + j1ω(k −m),

for χc(k −m) 6= 0, i.e. for |k −m∓ k0| ≤ δ.
Due to (3.38), we can chose δ such small that for |k −m∓ k0| ≤ δ the equation

ω(k)− j1j2ω(m) + j1ω(k −m) = 0, (3.78)

can have no other solutions than k = 0 or m = 0.
Since we also have

ρj1j2(k, k −m,m)χc(k) = O(k) for |k| → 0 ,

due to (3.53), we can now proceed exactly as the proof of lemma 2.2.5 in order to
show that the normal-form transform Nj1j2 has no nontrivial resonances.

The property (3.74) can be easily checked in Fourier space.
The estimate (3.75) follows by exploiting 3.3.1, i.e.

Gj1(Ψ−1,Ψ1, ϑR−1, ϑR1)− Gj1(ψc, 0, ϑε,∞R−1, ϑε,∞R1)

= εGj1(ψq−1 , ψq1 , ϑR−1, ϑR1) + Gj1(ψc, 0, (ϑ− ϑε,∞)R−1, (ϑ− ϑε,∞)R1) ,

together with ϑ̂(k)− ϑ̂ε,∞(k) = O(ε) and estimating Gj1 with (3.54).
The estimates (3.76) and (3.77) can be shown by using (1.11), i.e. the expan-

sions (2.52) and (2.54), together with (3.54).
The bilinear operators Aj and Cj map pairs of real-valued functions on real-

valued functions and

−j1i ϑ̂ε,∞(m)χc(k −m)

ω(k)− j1j2ω(m) + j1ω(k −m)
= −

( −j1i ϑ̂ε,∞(m)χc(k −m)

ω(k)− j1j2ω(m) + j1ω(k −m)

)
= −

( −j1i P̂ε,∞(−m)ϑ̂(−m)χc(−k +m)

ω(−k)− j1j2ω(−m) + j1ω(−k +m)

)
.

Thus,

nj1j2(k, k −m,m) = nj1j2(k, k −m,m) = nj1j2(−k,−(k −m),−m)

and the mappings f 7→ Nj1j2(h, f) map real-valued functions on real-valued func-
tions.
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Lemma 3.3.3. The normal-form transforms Tj1j2j3j4 were constructed such that
for all j1, j2, j3, j4 ∈ {±1}, we have

‖ϑ−1Yj1,j2‖L2 ≤ O
(
‖R−1‖H2 + ‖R1‖H2

)
. (3.79)

where

Yj1,j2 =Nj1j2

(
ψc, ϑ

−1 Gj2(Ψ−1,Ψ1, ϑR−1, ϑR1)
)

(3.80)

+
∑

j3,j4=±1

(
− j1 iωTj1j2j3j4(ψj4 , ψj4 , Rj3) + Tj1j2j3j4(−iωψj4 , ψj4 , Rj3)

+ Tj1j2j3j4(ψj4 ,−iωψj4 , Rj3) + Tj1j2j3j4(ψj4 , ψj4 , j3 iωRj3)
)
.

Furthermore, for every fix functions g, h with ĝ, ĥ ∈ L1(R,C), the mapping
f 7→ Tjj3(g, h, f) defines a continuous linear map from L2(R,C) into L2(R,C) and
there exists a constant C = C

(
‖ĝ‖L1‖ĥ‖L1

)
such that for all f ∈ L2(R,C), we have

‖Tj1j2j3j4(g, h, f)‖L2 ≤ C‖f‖L2 . (3.81)

Proof. The proof is analogous to the one of 2.2.8.
That Tj1j2j3j4 is well-defined and estimate (3.81) does hold, can be shown exactly
as in the proof of 2.2.8.
Considering estimate (3.79), one shows

ϑ−1Nj1j2

(
ψc, ϑ

−1 Gj2(Ψ−1,Ψ1, ϑR−1, ϑR1)
)

=
∑
j4=±1

(
P0,δϑ

−1Nj1j2

(
ψj4 , ϑ

−1 Gj2(ψj4 , 0, ϑR−1, ϑR1)
)

+ P0,δϑ
−1Nj1j2

(
ψj4 , ϑ

−1 Gj2(ψ−j4 , 0, ϑR−1, ϑR1)
))

+ εP0,δϑ
−1Nj1j2

(
ψc, ϑ

−1 Gj2(ψq−1 , ψq1 , ϑR−1, ϑR1)
)

+ Pδ,∞Nj1j2

(
ψc, ϑ

−1 Gj2(Ψ−1,Ψ1, ϑR−1, ϑR1)
)

by exploiting the fact that ϑ−1 = P0,δϑ
−1 + Pδ,∞, Ψ =

(
ψc + εψq−1 , εψq1

)T and
ψc = ψ1 + ψ−1.
Using (2.32), (3.76) and (3.77), (2.37) and (3.54), we see that the L2-norm of the
last two summands can be estimated against O( ‖R−1‖H2 + ‖R1‖H2).
For the remaining summands, we have in Fourier space

F
[
P0,δϑ

−1Nj1j2

(
ψj4 , ϑ

−1 Gj2(ψ`, 0, ϑR−1, ϑR1)
)]

(k)

=
∑
j3=±1

P̂0,δ(k)

∫
R

∫
R
Kj3,ε(k, k −m,m, n)ψ̂j4(k −m)ψ̂`(m− n)R̂j3(n) dndm
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where

Kj3,ε(k, k −m,m, n) =
ρj1,j2(k, k −m,m)

(
j2i ρj2,j3(m,m− n, n)

)
ϑ̂(n)

ϑ̂(k)
(
ω(k)− j1j2ω(m) + j1ω(k −m)

) .

We could replace the term ϑ̂ε,∞(m)ϑ̂−1(m) by 1, since |k| ≤ δ and |k−m−j4k0| ≤ δ
implies |m| > k0/2 > ε.
Since the required Lipschitz continuity is given for Kj3,ε, we can now proceed as
in the proof of 2.2.8.

Lemma 3.3.4. For E0 as in (3.73) and m ≥ 2, we have

∂tE0 ≤ ε2O
(
ε1/2

(
‖R−1‖2

Hm + ‖R1‖2
Hm

)3/2
+ ‖R−1‖2

Hm + ‖R1‖2
Hm + 1

)
, (3.82)

Proof. The proof is analogous to the one of lemma 2.2.9.
Exploiting the skew symmetry of iω and then (2.32), (3.76), (3.77) and (3.81), we
obtain

∂tE0 =
∑
j=±1

∫
R
Řj ∂tŘj + Řj ∂tŘj dx

=
∑
j=±1

∫
R
Řj ∂tŘj + Řj ∂tŘj − Řj jiωŘj − Řj jiωŘj dx

≤ 2
∑
j=±1

‖Řj‖L2‖∂tŘj − jiωŘj‖L2

≤ O
((
‖R−1‖2

H1 + ‖R1‖2
H1

)1/2
) ∑
j=±1

‖∂tŘj − jiωŘj‖L2 ,

where

∂tŘj = ∂tRj + ε
∑

j2∈{±1}

ϑ−1∂tNjj2(ψc, Rj2) + ε2
∑

j2,j3,j4∈{±1}

ϑ−1∂tTjj2j3j4(ψj4 , ψj4 , Rj3).

Due to

j iωRj = j iωŘj − ε
∑

j2∈{±1}

j iωϑ−1Njj2(ψc, Rj2)

− ε2
∑

j2,j3,j4∈{±1}

j iωϑ−1Tjj2j3j4(ψj4 , ψj4 , Rj3) ,
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we get

∂tŘj =j iωŘj

+ εϑ−1
(
Gj(Ψ−1,Ψ1, ϑR−1, ϑR1)

)
+

∑
j2∈{±1}

(
− j iωNjj2(ψc, Rj2) +Njj2(∂tψc, Rj2) +Njj2(ψc, j2 iωRj2)

))

+ ε2ϑ−1
( ∑
j2∈{±1}

Njj2

(
ψc, ϑ

−1Gj2(Ψ−1,Ψ1, ϑR−1, ϑR1)
)

+
∑

j2,j3,j4∈{±1}

(
− j iωTjj2j3j4(ψj4 , ψj4 , Rj3) + Tjj2j3j4(∂tψj4 , ψj4 , Rj3)

+ Tjj2j3j4(ψj4 , ∂tψj4 , Rj3) + Tjj2j3j4(ψj4 , ψj4 , j3 iωRj3)
))

+
εβ

2
ϑ−1Gj(ϑR−1, ϑR1, ϑR−1, ϑR1) + ε−βϑ−1Resuj(εΨ)

+ ε
∑

j2∈{±1}

ϑ−1Njj2

(
ψc,

εβ

2
ϑ−1Gj2(ϑR−1, ϑR1, ϑR−1, ϑR1) + ε−βϑ−1Resuj2(εΨ)

)
+ ε3

∑
j2,j3,j4∈{±1}

ϑ−1Tjj2j3j4
(
ψj4 , ψj4 , ϑ

−1Gj3(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1)

)
+ ε2

∑
j2,j3,j4∈{±1}

ϑ−1Tjj2j3j4
(
ψj4 , ψj4 , ε

−βϑ−1Resuj3 (εΨ)
)
.

By construction of our normal-form transforms, i.e. due to (3.74) and (3.75), and,
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(3.79) and (3.80), we obtain

∂tŘj =j iωŘj

+ εϑ−1
∑

j2∈{±1}

Njj2(∂tψc + iωψc, Rj2)

+ ε2ϑ−1
( ∑
j2,j3,j4∈{±1}

Tjj2j3j4(∂tψj4 + iωψj4 , ψj4 , Rj3)

+
∑

j2,j3,j4∈{±1}

Tjj2j3j4(ψj4 , ∂tψj4 + iωψj4 , Rj3)
)

+
εβ

2
ϑ−1Gj(ϑR−1, ϑR1, ϑR−1, ϑR1) + ε−βϑ−1Resuj(εΨ)

+ ε
∑

j2∈{±1}

ϑ−1Njj2

(
ψc,

εβ

2
ϑ−1Gj2(ϑR−1, ϑR1, ϑR−1, ϑR1)

)
+ ε

∑
j2∈{±1}

ϑ−1Njj2

(
ψc, ε

−βϑ−1Resuj2 (εΨ)
)

+ ε3
∑

j2,j3,j4∈{±1}

ϑ−1Tjj2j3j4
(
ψj4 , ψj4 , ϑ

−1Gj3(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1)

)
+ ε2

∑
j2,j3,j4∈{±1}

ϑ−1Tjj2j3j4
(
ψj4 , ψj4 , ε

−βϑ−1Resuj3 (εΨ)
)

+O(ε2)
(
‖R−1‖2

Hm + ‖R1‖2
Hm

)1/2
.

Due to the bound (3.46) for ∂tψ±1 + iωψ±1, we obtain that the L2-Norms of
the second, third and forth term are O(ε2)(‖R−1‖2

H1 + ‖R1‖2
H1)1/2 by using the

estimates (2.32), and (3.76), (3.77) and (3.81).
Due to our choice of β = 5/2 and Ψ, i.e. due to (2.38), and, (2.32) and (3.43),
the L2-Norm of the fifth and sixth term are bounded by O(ε2)

(
ε1/2 (‖R−1‖2

Hm +
‖R1‖2

Hm) + 1
)
.

Now, we also see, by using the estimates (2.32), (3.76), (3.77) and (3.81) that the
L2-Norms of the last three terms are bounded by O(ε2)

(
ε1/2(‖R−1‖2

Hm+‖R1‖2
Hm)+

1
)
.
We now obtain

∂tE0 ≤ O
(
(‖R−1‖2

H1 + ‖R1‖2
H1)1/2

) ∑
j=±1

‖∂tŘj − jiωŘj‖L2

≤ ε2O(ε1/2 (‖R−1‖2
Hm + ‖R1‖2

Hm)3/2 + ‖R−1‖2
Hm + ‖R1‖2

Hm + 1).

(Note
√
x ≤ x+ 1 for x > 0.)
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Lemma 3.3.5. For j ∈ {±1}, g ∈ L1(R) ∩ L2(R) and fj, f ∈ H1(R), we have∫
R
fj Nj−j(g, f−j) dx+

∫
R
f−j N−jj(g, fj) dx ≤ O

(
‖g‖L1

)
‖f−1‖L2‖f1‖L2 , (3.83)

∫
R
f Njj(g, f) dx ≤ O

(
‖g‖L1

)
‖f‖2

L2 . (3.84)

Proof. By using (2.66), i.e. (2.68), we get∫
R
fj Nj−j(g, f−j) dx+

∫
R
f−j N−jj(g, fj) dx

=

∫
R
f−1N−11(g, f1) dx+

∫
R
f1N1−1(g, f−1) dx

=

∫
R
f−1

(
N−11(g, f1) +N∗1−1(g, f1)

)
dx ,

where, just as in (2.67), we use the notation

N̂∗j1j2(ψc, f)(k) :=

∫
R
nj1j2(−m, k −m,−k)ψ̂c(k −m)f̂(m) dm .

For |k|, |m| ≥ δ, we have

n−11(k, k −m,m) + n1−1(−m, k −m,−k)

=
ρ−11(k, k −m,m) χc(k −m)

ω(k) + ω(m)− ω(k −m)
+
ρ1−1(−m, k −m,−k) χc(k −m)

ω(−k) + ω(−m) + ω(k −m)

=
i χc(k −m)

ω(k) + ω(m)− ω(k −m)

(
c−1(k, k −m,m) + a1,s(−m, k −m,−k)

)
.

By making a similar expansion as in (2.55), we get∫
R
f−1

(
N−11(g, f1) +N∗1−1(g, f1)

)
dx

=

∫
R
f−1

1

2 iω

(
C−1(gc, f1) + A∗1,s(gc, f1)

)
dx+O

(
‖g‖L1

)
‖f−1‖L2‖f1‖L2 .

due to (3.54).
Then, by using Cauchy-Schwarz, we obtain (3.83) due to (3.56).

Now, we prove (3.84).
By using (2.66), i.e. (2.68), we get∫

R
f Njj(g, f) dx =

1

2

∫
R
f
(
Njj(g, f) +N∗jj(g, f)

)
dx .
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Therefore, we have∫
R
f Njj(g, f) dx ≤ 1

2
‖f‖L2

∥∥Njj(g, f) +N∗jj(g, f)
∥∥
L2 ,

where

N̂jj(g, f) + N̂∗jj(g, f)

=

∫
R

(
nj1j2(k, k −m,m) + nj1j2(−m, k −m,−k)

)
ĝ(k −m)f̂(m) dm ,

and

njj(k, k −m,m) + njj(−m, k −m,−k)

=
ρjj(k, k −m,m) + ρjj(−m, k −m,−k)

ω(k)− ω(m) + j ω(k −m)
χc(k −m) for |k| → ∞.

Since

ρ−1−1(k, k −m,m) + ρ−1−1(−m, k −m,−k)

= i
(
a−1(k, k −m,m) + a−1(−m, k −m,−k)

+ a−1(k,m, k −m) + a−1(−m,−k, k −m)
)
,

ρ11(k, k −m,m) + ρ11(−m, k −m,−k)

= −i
(
c1(k, k −m,m) + c1(−m, k −m,−k)

)
,

we obtain ∥∥Njj(g, f) +N∗jj(g, f)
∥∥
L2 ≤ O

(
‖g‖L1

)
‖f‖L2 .

due to (3.55) (e.g. by exploiting (2.54) and (2.52)).

Corollary 3.3.6. Let ε < ε0 and ε0 be sufficiently small.
For ` ≥ 1, the energy E` is equivalent to

(
‖R−1‖H` + ‖R1‖H`

)2, i.e. there are
constants C1, C2 > 0 such that(

‖R−1‖H` + ‖R1‖H`

)2 ≤ C1 E` ≤ C2

(
‖R−1‖H` + ‖R1‖H`

)2
.

Proof. In particular thanks to (3.83) and (3.84), the proof works analogous
to the combined proof of lemma 2.2.14 and corollary 2.2.16.

Lemma 3.3.7. For ` ≥ 1, we have

∂tE` = ε2 V` + ε2O(E` + 1), (3.85)
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where

V` =
∑

j1∈{±1}

∫
R
∂`xRj1 ∂

`
xϑ
−1Gj1(R

Ψq
−1, R

Ψq
1 , ϑR−1, ϑR1) dx (3.86)

+
∑

j1,j2∈{±1}

( ∫
R
∂`xϑ

−1Gj1(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1) ∂`xϑ

−1Nj1j2(ψc, Rj2) dx

+

∫
R
∂`xRj1 ∂

`
xϑ
−1Nj1j2

(
ψc, ϑ

−1Gj2(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1)

)
dx
)
,

and

R
Ψq
j = ψqj +

1

2
εβ−2(ϑRj) (3.87)

with ψqj as in (3.70).

Remark 3.3.8. Due to (2.73) and (2.37), we see that ε2 V` has the desired ε-order.

Proof. The proof is analogous to the one of lemma 2.2.17.
We have

∂tE` =
∑

j1∈{±1}

(∫
R
∂`xRj1 ∂t∂

`
xRj1 dx

+ ε
∑

j1,j2∈{±1}

(∫
R
∂t∂

`
xRj1 ∂

`
xϑ
−1Nj1j2(ψc, Rj2) dx

+

∫
R
∂`xRj1 ∂

`
xϑ
−1∂tNj1j2(ψc, Rj2) dx

)
.

Using the error equations (3.66) and (3.67), and exploiting(
RΨ
−1

RΨ
1

)
=

(
ψc
0

)
+ ε

(
R

Ψq
−1

R
Ψq
1

)
,
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we get

∂tE` =
∑

j1∈{±1}

j1

∫
R
∂`xRj1 iω∂

`
xRj1 dx

+ ε
∑

j1∈{±1}

( ∫
R
∂`xRj1 ∂

`
xϑ
−1Gj1(ψc, 0, ϑR−1, ϑR1) dx

+
∑

j2∈{±1}

(
+ j1

∫
R
iω∂`xRj1 ∂

`
xϑ
−1Nj1j2(ψc, Rj2) dx

+ j2

∫
R
∂`xRj1 ∂

`
xϑ
−1Nj1j2(ψc, iωRj2) dx

−
∫
R
∂`xRj1 ∂

`
xϑ
−1Nj1j2(iωψc, Rj2) dx

+

∫
R
∂`xRj1 ∂

`
xϑ
−1Nj1j2(∂tψc + iωψc, Rj2) dx

))
+ ε2

∑
j1∈{±1}

∫
R
∂`xRj1 ∂

`
xϑ
−1Gj1(R

Ψq
−1, R

Ψq
1 , ϑR−1, ϑR1) dx

+ ε2
∑

j1,j2∈{±1}

( ∫
R
∂`xϑ

−1Gj1(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1) ∂`xϑ

−1Nj1j2(ψc, Rj2) dx

+

∫
R
∂`xRj1 ∂

`
xϑ
−1Nj1j2

(
ψc, ϑ

−1Gj2(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1)

)
dx
)

+
∑

j1∈{±1}

∫
R
∂`xRj1 ε

−β∂`xϑ
−1Resuj1(εΨ) dx

+ ε
∑

j1,j2∈{±1}

(∫
R
ε−β∂`xϑ

−1Resuj1(εΨ) ∂`xϑ
−1Nj1j2(ψc, Rj2) dx

+

∫
R
∂`xRj1 ∂

`
xϑ
−1Nj1j2

(
ψc, ε

−βϑ−1Resuj2(εΨ)
)
dx
)
.

Exploiting the skew symmetry of iω in the third integral and then using (3.74)
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and the definition (3.86), we get

∂tE` = ε
∑

j1∈{±1}

( ∫
R
∂`xRj1 ∂

`
xϑ
−1Gj1

(
ψc, 0, (ϑ− ϑε,∞)R−1, (ϑ− ϑε,∞)R1

)
dx

+

∫
R
∂`xRj1 ∂

`
xϑ
−1Nj1j2(∂tψc + iωψc, Rj2) dx

)
+ ε2 V`

+
∑

j1∈{±1}

∫
R
∂`xRj1 ε

−β∂`xϑ
−1Resuj1(εΨ) dx

+ ε
∑

j1,j2∈{±1}

(∫
R
ε−β∂`xϑ

−1Resuj1(εΨ) ∂`xϑ
−1Nj1j2(ψc, Rj2) dx

+

∫
R
∂`xRj1 ∂

`
xϑ
−1Nj1j2

(
ψc, ε

−βϑ−1Resuj2(εΨ)
)
dx
)
.

We now show that all terms except the term ε2 V` can be estimated against
ε2O(E` + 1). Thereby we will especially take advantage of corollary 3.3.6 and
(3.45).
For the first integral, we can use (2.73), Cauchy-Schwarz and the fact that

(
ϑ̂(k)− ϑ̂ε,∞(k)

)
=

{
ε+ (1− ε) |k|

δ
when 0 6= ±ω(0+) 6= 2ω(k0) and |k| ≤ ε ,

0 else ,

in order to get

ε

∫
R
∂`xRj1 ∂

`
xϑ
−1Gj1

(
ψc, 0, (ϑ− ϑε,∞)R−1, (ϑ− ϑε,∞)R1

)
dx ≤ ε2O(E`).

The second integral in the above evolution equality is ε3O(E`) due to the
estimate (3.46). We obtain this by first using (2.73) and then exploiting (3.83)
and (3.84) in order to estimate without losing regularity.

The last three integrals are ε2O(E` + 1) due to (3.43). To see this, we use first
(2.73), then integration by parts to shift some derivatives away from R±1, and
finally Cauchy-Schwarz together with (3.76) and (3.77). Here, we also exploit the
estimate

√
x ≤ |x|+ 1 after using corollary 3.3.6.

3.3.2 Closing the error estimates via energy transformations

We will in the following close our error estimates such that theorem 1.2.1 follows.
Apart from some technical details, closing our energy estimates will in some sense

135



be easy since we are formally in the case deg∗(ρ) ≤ 1. For b > 0, which corresponds
to the for water wave problem unsolved case, all the more so since we have on top
of that deg(ω) > deg∗(ρ).
Interestingly, the case b = 0 is more difficult due to the fact that in this case we
formally have deg(ω) < deg∗(ρ). The arc length formulation of the water wave
problem seems to suit the case b > 0 better than the case b = 0.
Up to this point everything we have proved held for b ≥ 0. We will in the following
close our energy estimates for b > 0 in such a way that one also sees, which terms
would have to be analyzed further for b = 0. In order to close the energy estimates
for b = 0, one would have to exploit some additional key properties of the system
(3.32).

We will now first prove two technical lemmas needed, before we will close our
energy estimates.

Lemma 3.3.9. Let N ∈ N and ` ≥ 2N + 1.
By introducing the notation

R̃Ψ
j := Ψj + εβ−1ϑRj , (3.88)

we obtain

∂`xGj(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1) (3.89)

=
N∑
n=0

(
`

n

)
Gj(∂nx R̃Ψ

−1, ∂
n
x R̃

Ψ
1 , ∂

`−n
x ϑR−1, ∂

`−n
x ϑR1)

+
`−N−1∑
n=N+1

(
`

n

)
Gj(∂nxRΨ

−1, ∂
n
xR

Ψ
1 , ∂

`−n
x ϑR−1, ∂

`−n
x ϑR1)

+
∑̀

n=`−N

(
`

n

)
Gj(∂nxΨ−1, ∂

n
xΨ1, ∂

`−n
x ϑR−1, ∂

`−n
x ϑR1) .

Proof. According to (3.68), we have

∂`xGj(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1) = ∂`x

(
Aj(RΨ

−1, ϑR−1) +Aj(ϑR−1, R
Ψ
−1)
)

+ ∂`x
(
Bj(RΨ

1 , ϑR1) + Bj(ϑR1, R
Ψ
1 )
)

+ ∂`x
(
Cj(RΨ

−1, ϑR1) + Cj(ϑR−1, R
Ψ
1 )
)
.

Leibniz’s rule and the definition of RΨ
j := Ψj + 1

2
εβ−1ϑRj yield that for continuous
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bilinear operators Z:

∂`xZ(RΨ
j1
, ϑRj2) =

N∑
n=0

(
`

n

)
Z(∂nxR

Ψ
j1
, ∂`−nx ϑRj2)

+
`−N−1∑
n=N+1

(
`

n

)
Z(∂nxR

Ψ
j1
, ∂`−nx ϑRj2)

+
∑̀

n=`−N

(
`

n

)
Z(∂nxΨj1 , ∂

`−n
x ϑRj2)

+
1

2
εβ−1

∑̀
n=`−N

(
`

n

)
Z(∂nxϑRj1 , ∂

`−n
x ϑRj2) .

Proceeding analogously for Z(ϑRj2 , R
Ψ
j1

) and then combining all three equations,
we now obtain (3.89) due to the fact that

∑̀
n=`−N

(
`

n

)
Z(∂nxf, ∂

`−n
x g) =

N∑
ñ=0

(
`

ñ

)
Z(∂`−ñx f, ∂ñxg) .

Lemma 3.3.10. Let

Ẑj(f, g) :=

∫
R
zj(k, k −m,m) f̂(k −m) ĝ(m) dm

where

zj(k, k −m,m) =

Ij∑
i=0

z1
j,i(k)z2

j,i(k −m)z3
j,i(m)

with Ij <∞. The functions z1
j,i, z2

j,i and z3
j,i shall be sufficiently smooth, fulfill

deg∗(z1
j,i), deg∗(z2

j,i), deg∗(z3
j,i) <∞ ,

and have the property (1.10).
Let f , h and g be sufficiently regular.
For A := Z1(f, ·), B := Z2(h, ·) there is some C(A,B, f, g) > 0 such that for all
g ∈ Hs+1, we have

‖ABg −BAg‖L2 ≤ C(A,B, f, g) ‖g‖Hs , (3.90)

where

s :=

max
{

max
i∈{0,...,I1}

(
deg∗(z1

1,i) + deg∗(z3
1,i)
)

+ max
i∈{0,...,I2}

(
deg∗(z1

2,i) + deg∗(z3
2,i)
)
− 1 , 0

}
.
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Remark 3.3.11. By proceeding similarly as in the proof for lemma 2.2.20, one
can make a more precise estimate and explicitly calculate the required regularity
for f and h.

Before, we prove this rather abstractly formulated lemma, let us first bring an
example to illustrate the idea behind it.

Example 3.3.12. Let g := ∂`xR.
Moreover, let

Ag = ∂x(f∂
−1
x g) , Bg = ∂xh∂xg .

We have

‖Ag‖L2 ≤ ‖f‖H2‖∂−1
x g‖H1 , ‖Bg‖L2 ≤ ‖h‖H2‖g‖H1 .

We get

ABg −BAg = ∂x
(
f∂−1

x (∂xh∂xg)
)
− ∂xh∂2

x(f∂
−1
x g)

= f∂xh∂xg − ∂xhf∂xg
+ ∂xf∂

−1
x (∂xh∂xg)− ∂xh(2∂xfg + ∂2

xf∂
−1
x g)

= ∂xf∂
−1
x (∂xh∂xg)− ∂xh(2∂xfg + ∂2

xf∂
−1
x g)

and

‖∂xf∂−1
x (∂xh∂xg)‖L2 = ‖∂xf

(
∂xhg − ∂−1

x (∂2
xhg)

)
‖L2

≤ ‖∂xf‖∞‖∂xh‖∞‖g‖L2 + ‖∂xf‖L2

∥∥∫
R
∂2
xhg dx ‖∞

≤ ‖f‖H2‖h‖H2‖g‖L2 ,

‖∂xh(2∂xfg + ∂2
xf∂

−1
x g)‖L2 ≤ ‖f‖H3‖h‖H2‖∂−1

x g‖H1 .

Thus, we obtain

‖AB∂`xR−BA∂`xR‖L2 ≤ O
(
‖f‖H3‖h‖H2

)
‖∂l−1

x R‖H1 .

This is a much better result than the one we could obtain by estimating the L2-
norms of AB∂`xR and BA∂`xR separately, what would involve an estimate like

‖f∂xh∂xg‖L2 = ‖f∂xh∂`+1
x R‖L2 ≤ ‖f‖H1‖h‖H2‖∂`+1

x R‖L2 .

Proof of lemma 3.3.10. Without a loss of generality, let

A(f, g) :=

∫
R
a1(k)ã2(k −m)a3(m) ĝ(m) dm ,

B(h, g) :=

∫
R
b1(k)b̃2(k −m)b3(m) ĝ(m) dm ,
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ã2(k −m) := a2(k −m)f(k −m) and b̃2(k −m) := b2(k −m)h(k −m).
By using the Taylor expansions

a1(k) = a1(n) + (a1)
′
(n) (k − n) + . . .

= a1(n) + (a1)
′
(n) (k −m) + (a1)

′
(n) (m− n) + . . . ,

a3(m) = a3(n) + (a3)
′
(n) (m− n) + . . . ,

b1(m) = b1(n) + (b1)
′
(n) (m− n) + . . . ,

we have

ÂB(g) =

∫
R

∫
R
a1(k)ã2(k −m)a3(m) b1(m)b̃2(m− n)b3(n) ĝ(n) dmdn

=

∫
R

∫
R
ã2(k −m)b̃2(m− n) a1(n)a3(n)b1(n)b3(n) ĝ(n) dmdn

+R1 ,

where in R1 we just collected all the other integrals that emerged.
Via analogous Taylor expansions, we can get

B̂A(g) =

∫
R

∫
R
b1(k)b̃2(k −m)b3(m) a1(m)ã2(m− n)a3(n) ĝ(n) dmdn

=

∫
R

∫
R
b̃2(k −m)ã2(m− n) a1(n)a3(n)b1(n)b3(n) ĝ(n) dmdn

+R2 ,

where in R2 we just collected all the other integrals that emerged.
Since the convolution of functions is a commutative operation, we now get

ÂB(g)− B̂A(g) =

∫
R

∫
R
ã2(k −m)b̃2(m− n) a1(n)a3(n)b1(n)b3(n) ĝ(n) dmdn

−
∫
R

∫
R
b̃2(k −m)ã2(m− n) a1(n)a3(n)b1(n)b3(n) ĝ(n) dmdn

+R1 −R2

= R1 −R2.

Due to the Taylor expansions and Plancherel, the L2-norm of an integral from R1

and R2 can be easily estimated, e.g.∥∥∥∫
R

∫
R
ν(k −m)ã2(k −m)σ(m− n)b̃2(m− n) γ(n)ĝ(n) dmdn

∥∥∥
L2

= O(1) ‖F−1[νã2]F−1[σb̃2]F−1[γĝ]‖L2

≤ O
(
‖F−1[νã2]‖H1‖F−1[σb̃2]‖H1

)
‖F−1[γĝ]‖L2 .
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For the integrals involving the remainder this of course has to be modified by
proceeding similarly as in the proof for lemma 2.2.20.
Since the property (1.10) is assumed, the L2-norm of R1 and R2 can be estimated
by terms only involving the Hs-norm of g, where

s = max
{

deg∗(a1) + deg∗(a3) + deg∗(b1) + deg∗(b3)− 1 , 0
}
.

Remark 3.3.13. As in the last section, we will from now on assume that εE` ≤ 1
for ε < ε0.

Corollary 3.3.14. Let b > 0 and ` ≥ 4.
For ε < ε0 and ε0 sufficiently small, there exists an energy Ẽ` and some constants
c, C > 0 such that(

‖R−1‖H` + ‖R1‖H`

)2 ≤ c Ẽ` ≤ C
(
‖R−1‖H` + ‖R1‖H`

)2 (3.91)

and

∂tẼ` ≤ ε2O
(
Ẽ` + 1

)
.

Remark 3.3.15. Up to this point we have proved everything for b ≥ 0. While we
only prove corollary 3.3.14 for the case b > 0, we will present the proof in such a
way that it is clear which terms have to be further analyzed for the case b = 0.

Proof. According to the definition of E` in (3.73) and due to lemma 3.3.4, we
have

∂tE` = ∂tE0 + ∂tE` = ∂tE` + ε2O(E` + 1) ,
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where, due to lemma 3.3.7,

∂tE` = ε2 V` + ε2O(E` + 1)

= ε2
∑

j1∈{±1}

∫
R
∂`xRj1 ∂

`
xϑ
−1Gj1(R

Ψq
−1, R

Ψq
1 , ϑR−1, ϑR1) dx

+ ε2
∑

j1∈{±1}

∫
R
∂`xϑ

−1Gj1(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1) ∂`xϑ

−1Nj1j1(ψc, Rj1) dx

+ ε2
∑

j1∈{±1}

∫
R
∂`xRj1 ∂

`
xϑ
−1Nj1j1

(
ψc, ϑ

−1Gj1(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1)

)
dx

+ ε2
∑

j1∈{±1}

∫
R
∂`xϑ

−1Gj1(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1) ∂`xϑ

−1Nj1−j1(ψc, R−j1) dx

+ ε2
∑

j1∈{±1}

∫
R
∂`xRj1 ∂

`
xϑ
−1Nj1−j1

(
ψc, ϑ

−1G−j1(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1)

)
dx

+ ε2O(E` + 1)

=:
4∑
i=0

Ii + ε2O(E` + 1) .

First, we analyze the term I0.
Using (2.73), we get

I0 = ε2

∫
R
∂`xR−1 ∂

`
xG−1(R

Ψq
−1, R

Ψq
1 , ϑR−1, ϑR1) dx (3.92)

+ ε2

∫
R
∂`xR1 ∂

`
xG1(R

Ψq
−1, R

Ψq
1 , ϑR−1, ϑR1) dx+ ε2O(E` + εβ−2E3/2

` ) .

By proceeding analogously as in (3.89) and setting

R̃
Ψq
j = ψqj + εβ−2(ϑRj) , (3.93)

we obtain

I0 = ε2

∫
R
∂`xR−1 G−1(R̃

Ψq
−1, R̃

Ψq
1 , ∂`xϑR−1, ∂

`
xϑR1) dx

+ ε2

∫
R
∂`xR1 G1(R̃

Ψq
−1, R̃

Ψq
1 , ∂`xϑR−1, ∂

`
xϑR1) dx+ ε2O(E` + 1) ,

due to (3.54).
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Plugging in the definition of (3.68), we get

I0 = ε2

∫
R
∂`xR−1

(
A−1,s(R̃

Ψq
−1, ∂

`
xϑR−1) + C−1(∂`xϑR−1, R̃

Ψq
1 )
)
dx

+ ε2

∫
R
∂`xR−1

(
B−1,s(R̃

Ψq
1 , ∂`xϑR1) + C−1(R̃

Ψq
−1, ∂

`
xϑR1)

)
dx

+ ε2

∫
R
∂`xR1

(
A1,s(R̃

Ψq
−1, ∂

`
xϑR−1) + C1(∂`xϑR−1, R̃

Ψq
1 )
)
dx

+ ε2

∫
R
∂`xR1

(
B1,s(R̃

Ψq
1 , ∂`xϑR1) + C1(R̃

Ψq
−1, ∂

`
xϑR1)

)
dx

+ ε2O(E` + 1) .

By using lemma 2.2.11 and (2.72) together with the notation (3.58), we have

ε2

∫
R
∂`xRj2 Z(R̃

Ψq
j1
, ∂`xϑRj2) dx = ε2

∫
R
∂`xϑRj2 Z∗(R̃Ψq

j1
, ∂`xRj2) dx

= ε2

∫
R
∂`xRj2 Z∗(R̃Ψq

j1
, ∂`xRj2) dx+ ε2O(E` + 1) ,

and thus

ε2

∫
R
∂`xRj2 Z(R̃

Ψq
j1
, ∂`xϑRj2) dx (3.94)

=
1

2
ε2

∫
R
∂`xRj2

[
Z + Z∗

]
(R̃

Ψq
j1
, ∂`xRj2) dx+ ε2O(E` + 1)

for Z = A−1,s.
Now, we obtain∫

R
∂`xR−1A−1,s(R̃

Ψq
−1, ∂

`
xϑR−1) dx

=
1

2
ε2

∫
R
∂`xR−1

[
A−1,s +A∗−1,s

]
(R̃

Ψq
−1, ∂

`
xR−1) dx+ ε2O(E` + 1)

= ε2O(E` + 1) ,

due to (3.55).
We can proceed analogous for B1,s, C−1 and similarly for C1, such that (3.55) yields

I0 = ε2

∫
R
∂`xR−1

(
B−1,s(R̃

Ψq
1 , ∂`xϑR1) + C−1(R̃

Ψq
−1, ∂

`
xϑR1)

)
dx

+ ε2

∫
R
∂`xR1

(
A1,s(R̃

Ψq
−1, ∂

`
xϑR−1) + C1(∂`xϑR−1, R̃

Ψq
1 )
)
dx

+ ε2O(E` + 1) .
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Using lemma 2.2.11, (2.72) and the notation (3.58) again, we get

I0 = ε2

∫
R
∂`xR−1

(
A∗1,s(R̃Ψq

−1, ∂
`
xR1) + C−1(R̃

Ψq
−1, ∂

`
xR1)

)
dx

+ ε2

∫
R
∂`xR−1

(
B−1,s(R̃

Ψq
1 , ∂`xR1) + C1,∗(∂

`
xR1, R̃

Ψq
1 )
)
dx

+ ε2O(E` + 1) .

According to (3.56), the mapping F (R̃
Ψq
−1, R̃

Ψq
1 , ·), which we define by

F (R̃
Ψq
−1, R̃

Ψq
1 , ·) := A∗1,s(R̃Ψq

−1, ·) + C−1(R̃
Ψq
−1, ·) + B−1,s(R̃

Ψq
1 , ·) + C1,∗(·, R̃Ψq

1 ) , (3.95)

maps H1/2(R) onto L2(R). By exploiting (3.66), (3.67), the skew symmetry of iω
and the properties F (R̃

Ψq
−1, R̃

Ψq
1 , ·) inherited from (3.95), we have

1

2
ε2 ∂t

∫
R
∂`xR−1

1

iω
F (R̃

Ψq
−1, R̃

Ψq
1 , ∂`xR1) dx

=
1

2
ε2

∫
R
∂`xR−1 F (R̃

Ψq
−1, R̃

Ψq
1 , ∂`xR1) dx

+
1

2
ε2

∫
R
∂`xR−1

1

iω
F (R̃

Ψq
−1, R̃

Ψq
1 , iω∂`xR1) dx

+
1

2
ε3

∫
R
∂`xϑ

−1G−1(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1)

1

iω
F (R̃

Ψq
−1, R̃

Ψq
1 , ∂`xR1) dx

+
1

2
ε3

∫
R
∂`xR−1

1

iω
F
(
R̃

Ψq
−1, R̃

Ψq
1 , ∂`xϑ

−1G1(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1)

)
dx

+
1

2
ε2

∫
R
∂`xR−1

1

iω

(
F (∂tR̃

Ψq
−1, R̃

Ψq
1 , ∂`xR1) + F (R̃

Ψq
−1, ∂tR̃

Ψq
1 , ∂`xR1)

)
dx

+
1

2
ε2ε−β

∫
R
∂`xϑ

−1Resu−1(εΨ)
1

iω
F (R̃

Ψq
−1, R̃

Ψq
1 , ∂`xR1) dx

+
1

2
ε2ε−β

∫
R
∂`xR−1

1

iω
F (R̃

Ψq
−1, R̃

Ψq
1 , ∂`xϑ

−1Resu1(εΨ)) dx .

The last three integrals are ε2O(E` + 1) in particular due to lemma 3.2.2 and the
assumption that εE` ≤ 1.
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By adding a zero, we obtain

1

2
ε2 ∂t

∫
R
∂`xR−1

1

iω
F (R̃

Ψq
−1, R̃

Ψq
1 , ∂`xR1) dx

= I0

− 1

2
ε2

∫
R
∂`xR−1

1

iω

(
iωF (R̃

Ψq
−1, R̃

Ψq
1 , ∂`xR1)− F (R̃

Ψq
−1, R̃

Ψq
1 , iω∂`xR1)

)
dx

+
1

2
ε3

∫
R
∂`xϑ

−1G−1(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1)

1

iω
F (R̃

Ψq
−1, R̃

Ψq
1 , ∂`xR1) dx

+
1

2
ε3

∫
R
∂`xR−1

1

iω
F
(
R̃

Ψq
−1, R̃

Ψq
1 , ∂`xϑ

−1G1(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1)

)
dx

+ ε2O(E` + 1) .

Using Plancherel for the second integral, we have

− 1

2
ε2

∫
R
∂`xR−1

1

iω

(
iωF (R̃

Ψq
−1, R̃

Ψq
1 , ∂`xR1)− F (R̃

Ψq
−1, R̃

Ψq
1 , iω∂`xR1)

)
dx

h ε2

∫
R
∂̂`xR−1(k)

∫
R
f̃(k, k −m,m)

ω(k)− ω(m)

ω(k)
∂̂`xR1(m) dmdk ,

where, according to (3.95), the function f̃(k, k −m,m) can be explicitly given by

f̃(k, k −m,m) =
(
as1(−m, k −m,−k) + c−1(k, k −m,m)

)̂̃
R

Ψq
−1(k −m)

+
(
bs−1(k, k −m,m) + c1(−m,−k, k −m)

)̂̃
R

Ψq
1 (k −m) .

For some C > 0, we have∣∣∣( k2

|k|2 + 1

) ω(k)− ω(m)

ω(k)

∣∣∣ ≤ C
(
(|k|2 + 1)−1/2 (|k −m|2 + 1)

)
.

This can be shown by using Taylor, exactly like in the proof of lemma 2.2.20.
By exploiting (3.56), we therefore obtain

− 1

2
ε2

∫
R
∂`xR−1

1

iω

(
iωF (R̃

Ψq
−1, R̃

Ψq
1 , ∂`xR1)− F (R̃

Ψq
−1, R̃

Ψq
1 , iω∂`xR1)

)
dx

≤ ε2O(E` + 1) .
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We now arrive at

I0 =
1

2
ε2 ∂t

∫
R
∂`xR−1

1

iω
F (R̃

Ψq
−1, R̃

Ψq
1 , ∂`xR1) dx

− 1

2
ε3

∫
R
∂`xϑ

−1G−1(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1)

1

iω
F (R̃

Ψq
−1, R̃

Ψq
1 , ∂`xR1) dx

− 1

2
ε3

∫
R
∂`xR−1

1

iω
F
(
R̃

Ψq
−1, R̃

Ψq
1 , ∂`xϑ

−1G1(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1)

)
dx

+ ε2O(E` + 1) .

In the case b 6= 0, we have deg(ω) = 3/2. Therefore we can make the estimates

1

2
ε3

∫
R
∂`xϑ

−1G−1(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1)

1

iω
F (R̃

Ψq
−1, R̃

Ψq
1 , ∂`xR1) dx

≤ O(ε3)
∥∥∂`−1

x ϑ−1G−1(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1)

∥∥
L2

∥∥∂x
iω
F (R̃

Ψq
−1, R̃

Ψq
1 , ∂`xR1)

∥∥
L2

≤ ε3O(E` + 1)

and

1

2
ε3

∫
R
∂`xR−1

1

iω
F
(
R̃

Ψq
−1, R̃

Ψq
1 , ∂`xϑ

−1G1(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1)

)
dx

≤ O(ε3)‖∂`xR−1‖L2

∥∥ 1

iω
F
(
R̃

Ψq
−1, R̃

Ψq
1 , ∂`xϑ

−1G1(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1)

)∥∥
L2

≤ ε3O(E` + 1) .

Thus, we obtain

I0 =
1

2
ε2 ∂t

∫
R
∂`xR−1

1

iω
F (R̃

Ψq
−1, R̃

Ψq
1 , ∂`xR1) dx+ ε2O(E` + 1) ,

due to (3.56) and (3.54).

Now, we analyze the term I1 + I2.
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Using (2.73) we get

I1 + I2 (3.96)

:= ε2
∑

j1∈{±1}

(∫
R
∂`xϑ

−1Gj1(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1) ∂`xϑ

−1Nj1j1(ψc, Rj1) dx

+

∫
R
∂`xRj1 ∂

`
xϑ
−1Nj1j1

(
ψc, ϑ

−1Gj1(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1)

)
dx
)

= ε2
∑

j1∈{±1}

(∫
R
∂`xϑ

−1Gj1(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1) ∂`xNj1j1(ψc, Rj1) dx

+

∫
R
∂`xRj1 ∂

`
xNj1j1

(
ψc, ϑ

−1Gj1(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1)

)
dx
)

+ ε2O(E` + εβ−1E3/2
` ) .

Exploiting Leibniz’s rule, we get

I1 + I2

= ε2
∑

j1∈{±1}

(∫
R
∂`xϑ

−1Gj1(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1)Nj1j1(ψc, ∂

`
xRj1) dx

+ `

∫
R
∂`xϑ

−1Gj1(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1)Nj1j1(∂xψc, ∂

`−1
x Rj1) dx

+

∫
R
∂`xRj1 Nj1j1

(
ψc, ∂

`
xϑ
−1Gj1(RΨ

−1, R
Ψ
1 , ϑR−1, ϑR1)

)
dx

+ `

∫
R
∂`xRj1 Nj1j1

(
∂xψc, ∂

`−1
x ϑ−1Gj1(RΨ

−1, R
Ψ
1 , ϑR−1, ϑR1)

)
dx
)

+ ε2O(E` + εβ−1E3/2
` ) ,

due to (3.54) and (3.76), and, also (3.53) and (2.37).
By using (2.66), we get

I1 + I2

= ε2
∑

j1∈{±1}

(∫
R
∂`xϑ

−1Gj1(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1)

[
Nj1j1 +N∗j1j1

]
(ψc, ∂

`
xRj1) dx

+ `

∫
R
∂`xϑ

−1Gj1(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1)Nj1j1(∂xψc, ∂

`−1
x Rj1) dx

− `
∫
R
∂`xϑ

−1Gj1(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1) ∂−1

x N∗j1j1(∂xψc, ∂
`
xRj1) dx

)
+ ε2O(E` + εβ−1E3/2

` ) .
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By setting

N`(ψc, ∂`xRj1) (3.97)
:=
[
Nj1j1 +N∗j1j1

]
(ψc, ∂

`
xRj1) + `

(
Nj1j1(∂xψc, ∂

`−1
x Rj1)− ∂−1

x N∗j1j1(ψc, ∂
`
xRj1)

)
and using (2.73), we get

I1 + I2 = ε2
∑

j1∈{±1}

∫
R
∂`xGj1(RΨ

−1, R
Ψ
1 , ϑR−1, ϑR1)N`(ψc, ∂`xRj1) dx

+ ε2O(E` + εβ−1E3/2
` ) .

Moreover, we have

‖N`(ψc, ∂`xRj1)‖L2 ≤ O
(
‖Rj1‖H`

)
(3.98)

according to the proofs of (3.84) and (3.76).
Now, we are in almost the same situation as before for I0. The only difference

is that we here have the terms N`(ψc, Rj1) inside the integrals instead of the terms
∂`xRj1 . This makes everything a bit more complicated.

The definition (3.97) implies

N`(ψc, ∂`xRj1) = N ∗` (ψc, ∂
`
xRj1). (3.99)

Moreover, according to (3.90), we have

‖Z∗
(
f,N`(ψc, ∂`xRj1)

)
−N`

(
ψc,Z∗(f, ∂`xRj1)

)
‖L2 ≤ O

(
‖Rj1‖H`

)
(3.100)

for Z ∈ {A−1,s,A1,s,B−1,s,B1,s, C−1, C̃1}, with C̃1(f, g) := C1(g, f).
These two facts will now allow us to proceed for I1 + I2 analogously as for I0.
Using (3.89), exploiting (3.54) and (3.98), and then plugging in the definition of
(3.68), we get

I1 + I2 = ε2

∫
R

(
A−1,s(R̃

Ψ
−1, ∂

`
xϑR−1) + C−1(∂`xϑR−1, R̃

Ψ
1 )
)
N`(ψc, ∂`xR−1) dx

+ ε2

∫
R

(
B−1,s(R̃

Ψ
1 , ∂

`
xϑR1) + C−1(R̃Ψ

−1, ∂
`
xϑR1)

)
N`(ψc, ∂`xR−1) dx

+ ε2

∫
R

(
A1,s(R̃

Ψ
−1, ∂

`
xϑR−1) + C1(∂`xϑR−1, R̃

Ψ
1 )
)
N`(ψc, ∂`xR1) dx

+ ε2

∫
R

(
B1,s(R̃

Ψ
1 , ∂

`
xϑR1) + C1(R̃Ψ

−1, ∂
`
xϑR1)

)
N`(ψc, ∂`xR1) dx

+ ε2O(E` + εβ−1E3/2
` ) .
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By using (2.66), (2.72), (3.100) and (3.99) we have

ε2

∫
R
N`(ψc, ∂`xRj2)Z(R̃Ψ

j1
, ∂`xϑRj3) dx (3.101)

= ε2

∫
R
∂`xϑRj3 Z∗

(
R̃Ψ
j1
,N`(ψc, ∂`xRj2)

)
dx

= ε2

∫
R
∂`xRj3 Z∗

(
R̃Ψ
j1
,N`(ψc, ∂`xRj2)

)
dx+ ε2O(E` + εβ−1E3/2

` )

= ε2

∫
R
∂`xRj3 N`

(
ψc,Z∗(R̃Ψ

j1
, ∂`xRj2)

)
dx+ ε2O(E` + εβ−1E3/2

` )

= ε2

∫
R
N ∗` (ψc, ∂

`
xRj3)Z∗(R̃Ψ

j1
, ∂`xRj2) dx+ ε2O(E` + εβ−1E3/2

` )

= ε2

∫
R
N`(ψc, ∂`xRj3)Z∗(R̃Ψ

j1
, ∂`xRj2) dx+ ε2O(E` + εβ−1E3/2

` ) .

Due to (3.55), we can use (3.101) to get

ε2

∫
R
N`(ψc, ∂`xRj2)Z(R̃Ψ

j1
, ∂`xϑRj2) dx

=
1

2
ε2

∫
R
N`(ψc, ∂`xRj2)

[
Z + Z∗

]
(R̃Ψ

j1
, ∂`xRj2) dx+ ε2O(E` + 1)

= ε2O(E` + εβ−1E3/2
` ) ,

for Z ∈ {A−1,s,B1,s, C−1, C̃1} with C̃1(f, g) := C1(g, f).
We arrive at

I1 + I2 = ε2

∫
R

(
B−1,s(R̃

Ψ
1 , ∂

`
xϑR1) + C−1(R̃Ψ

−1, ∂
`
xϑR1)

)
N`(ψc, ∂`xR−1) dx

+ ε2

∫
R

(
A1,s(R̃

Ψ
−1, ∂

`
xϑR−1) + C1(∂`xϑR−1, R̃

Ψ
1 )
)
N`(ψc, ∂`xR1) dx

+ ε2O(E` + εβ−1E3/2
` ) .

By using (3.101) and (2.72), we get

I1 + I2 = ε2

∫
R

(
A∗1,s(R̃Ψ

−1, ∂
`
xR1) + C−1(R̃Ψ

−1, ∂
`
xR1)

)
N`(ψc, ∂`xR−1) dx

+ ε2

∫
R

(
B−1,s(R̃

Ψ
1 , ∂

`
xR1) + C1,∗(∂

`
xR1, R̃

Ψ
1 )
)
N`(ψc, ∂`xR−1) dx

+ ε2O(E` + εβ−1E3/2
` ) ,

such that we are now in position to exploit (3.56).
When b 6= 0, we have an even better estimate for N`(ψc, ·) than (3.98). In this
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case, we have deg(ω′) = 1/2 such that (3.97), (2.52), (3.54) and (3.55) yield

‖N`(ψc, f)‖H1/2 ≤ O
(
‖f‖L2

)
. (3.102)

Due to (3.56), we therefore obtain

I1 + I2 = ε2

∫
R
∂`xR−1N`

(
ψc,
(
A∗1,s(R̃Ψ

−1, ∂
`
xR1) + C−1(R̃Ψ

−1, ∂
`
xR1)

))
dx

+ ε2

∫
R
∂`xR−1N`

(
ψc,
(
B−1,s(R̃

Ψ
1 , ∂

`
xR1) + C1,∗(∂

`
xR1, R̃

Ψ
1 )
))
dx

+ ε2O(E` + εβ−1E3/2
` )

= ε2O(E` + εβ−1E3/2
` ) .

Now, we analyze the term I3 + I4.
Using (2.73) we get

I3 + I4 (3.103)

:= ε2
∑

j1∈{±1}

(∫
R
∂`xϑ

−1Gj1(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1) ∂`xϑ

−1Nj1−j1(ψc, R−j1) dx

+

∫
R
∂`xR−j1 ∂

`
xϑ
−1N−j1j1

(
ψc, ϑ

−1Gj1(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1)

)
dx
)

= ε2
∑

j1∈{±1}

(∫
R
∂`xϑ

−1Gj1(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1) ∂`xNj1−j1(ψc, R−j1) dx

+

∫
R
∂`xR−j1 ∂

`
xN−j1j1

(
ψc, ϑ

−1Gj1(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1)

)
dx
)

+ ε2O(E` + εβ−1E3/2
` ) .
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Exploiting Leibniz’s rule, we get

I3 + I4

= ε2
∑

j1∈{±1}

(∫
R
∂`xϑ

−1Gj1(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1)Nj1−j1(ψc, ∂

`
xR−j1) dx

+ `

∫
R
∂`xϑ

−1Gj1(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1)Nj1−j1(∂xψc, ∂

`−1
x R−j1) dx

+

∫
R
∂`xR−j1 N−j1j1

(
ψc, ∂

`
xϑ
−1Gj1(RΨ

−1, R
Ψ
1 , ϑR−1, ϑR1)

)
dx

+ `

∫
R
∂`xR−j1 N−j1j1

(
∂xψc, ∂

`−1
x ϑ−1Gj1(RΨ

−1, R
Ψ
1 , ϑR−1, ϑR1)

)
dx
)

+ ε2O(E` + εβ−1E3/2
` ) ,

due to (3.54) and (3.77), and, also (3.53) and (2.37).
By using (2.66), we get

I3 + I4

= ε2
∑

j1∈{±1}

(∫
R
∂`xGj1(RΨ

−1, R
Ψ
1 , ϑR−1, ϑR1)

[
Nj1−j1 +N∗−j1j1

]
(ψc, ∂

`
xR−j1) dx

+ `

∫
R
∂`xϑ

−1Gj1(RΨ
−1, R

Ψ
1 , ϑR−1, ϑR1)Nj1−j1(∂xψc, ∂

`−1
x R−j1) dx

+ `

∫
R
∂`xR−j1 N−j1j1

(
∂xψc, ∂

`−1
x ϑ−1Gj1(RΨ

−1, R
Ψ
1 , ϑR−1, ϑR1)

)
dx
)

+ ε2O(E` + εβ−1E3/2
` ) .

For |k|, |m| ≥ δ, we have

n−11(k, k −m,m) + n1−1(−m, k −m,−k)

=
i χc(k −m)

ω(k) + ω(m)− ω(k −m)

(
c−1(k, k −m,m) + a1,s(−m, k −m,−k)

)
.

In the case b 6= 0, we have deg(ω) = 3/2 such that by making a similar expansion
as in (2.55), we get that for |k| → ∞:

n−11(k, k −m,m) + n1−1(−m, k −m,−k) (3.104)

=
(c−1(k, k −m,m) + a1,s(−m, k −m,−k)

−2iω(k)
+O(|k|−3/2)

)
χc(k −m) .

In the case b 6= 0, we can also improve the estimate (3.77) to

‖Nj−j(ψc, g)‖H1/2 ≤ C‖g‖L2 (3.105)
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by making a similar expansion to (2.55).
We thus get

I3 + I4

= −1

2
ε2

∫
R
∂`xG−1(RΨ

−1, R
Ψ
1 , ϑR−1, ϑR1)

1

iω

[
C−1 + A∗1,s

]
(ψc, ∂

`
xR1) dx

− 1

2
ε2

∫
R
∂`xG1(RΨ

−1, R
Ψ
1 , ϑR−1, ϑR1)

1

iω

[
C∗−1 + A1,s

]
(ψc, ∂

`
xR−1) dx

+ ε2O(E` + εβ−1E3/2
` ) .

Due to (3.56) and deg(ω) = 3/2, we then obtain

I3 + I4 = ε2O(E` + εβ−1E3/2
` ) .

Hence, by choosing ε0 small enough and summing up our results for I0-I4, we
can define a modified energy

Ẽ` = E` − ε2D0 ,

with

D0 :=
1

2
ε2

∫
R
∂`xR−1

1

iω
F (R̃

Ψq
−1, R̃

Ψq
1 , ∂`xR1) dx = O(E`) ,

and F (R̃
Ψq
−1, R̃

Ψq
1 , ∂`xR1) as in (3.95), such that

∂tẼ` . ε2
(
1 + E`

)
.

Corollary 3.3.14 now allows us to prove theorem 1.2.1, in the same fashion we
proved theorem 1.1.1 with corollary 2.2.30 in the last section.
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Outlook

In this thesis, we only considered systems with quadratic quasilinear terms. It
should be easy to extend our result to be valid for systems that can also have
quasilinear terms of higher orders. A more difficult task would be the extension
of our result to quasilinear dispersive systems that are more complicated, in the
sense that their nonlinearities are of a more general form. An example for this
is the class of systems (1.30)-(1.31) from chapter 3. As long as some conditions,
cf. remark 2.2.19, are fulfilled one should also be able to look at such systems
with arbitrarily large deg∗(ρ). Moreover, we expect that for such systems one can
soften (1.9) and allow certain nonlinear terms to be stronger than the linear part
of the system.
As we stated earlier, we expect that our techniques will also be useful for much
more complicated quasilinear systems like the water wave problem. Especially our
approach for handling quasilinear terms with arbitrarily large deg∗(ρ).
Some of the techniques we use for our error estimates here may could also be
transfered in order to show the existence of long time solutions for quasilinear
systems since the methods of proofs resemble each other, see [DH18]. One can most
likely not handle nontrivial resonances with these techniques, but the modified
energy and the energy transformations could may help one to study systems with
arbitrarily large deg∗(ρ).
The techniques, we introduced in order be able to handle quasilinear nonlinearities
with arbitrarily large deg∗(ρ) could maybe also be useful for the justification of
other approximations, like for example the Whitham approximation.
Last but not least, we expect that in particular our energy transformations from
section 2.2.3 could also be interesting for proving the local existence of solutions
to quasilinear dispersive systems.
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