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Abstract

This bachelor thesis provides an implementation that solves the problem of learning individual route
preferences of drivers, focusing on cycling routes and metrics for cyclists. Currently, many routing
services consider only distance or travel time when calculating a route between some source and
target, but there may be many other criteria that a user has in mind when planning a route, such
as height ascent, route landscape, noise exposure along the route, suitability for cyclists and many
more. Specifying each of these criteria is a non-trivial, unintuitive and time-consuming task for a
user. The aim of this bachelor thesis is therefore to take the task of specifying such a preference
out of the user’s responsibility by automating the process. We present an algorithm that deduces
a user preference from a given path and splits the path if no such preference can be found for the
entire length. In addition, we provide an implementation utilizing this algorithm, which features an
intuitive, state-of-the-art front end that allows a cyclist to specify his personal routes on a map, and
a back end that calculates the preferences and handles user administration.
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1 Introduction

Cyclists choose routes based on a wide variety of different personal preferences. Some may choose
the quickest route possible, while others also try to avoid large gradients, busy roads, or roads at
all. Conventional routing services like Google maps mostly try to optimize traveling distance or
traveling time, but there is no way to add a user’s personal criteria to the mix. Some services allow
to set some values in a yes-or-no fashion, like Google or Bing maps’ option to avoid ferries or tolled
roads, but these on-and-off settings are not sufficient to capture the whole range of opinions on
optimal paths that users might have. Personalized routing is one way of respecting the different
criteria while still achieving relatively fast query times even for many criteria [FLS16].

The personalized route planning problem can be described as follows: Let G(V, E) be a street
network with a d-dimensional cost vector ¢(e) € R for each edge e € E. For example we could
choose ¢ to be distance, co suitability for cyclists, c3 height ascent and so on. A user query now
consists of a source and target s,¢ € V and a non-negative weight vector @ = (a1, @, ...,aq)’. The
values of @ express how important each metric in the cost vector c is for the user. The goal is to
compute the path 7 from s to ¢ in G, which minimizes the a-dependent path costs X.c.a’ c(e), i.e.
the optimal path according to the parameters provided by the user.

Specifying this @, which will be called preference throughout this thesis, is not an easy task for
a user. Expressing how much more important a fast arrival is compared to for example a route’s
scenicness is a non-trivial task, not to mention the countless compromises that have to be made
when considering a wide range of different criteria. The application presented in this thesis intends
to help users find these weights. Using the front end of the software, a user is able to precisely lay
out a cycle route by placing waypoints on a map. The software will show the currently specified
path to the user by calculating shortest paths connecting these waypoints using some initial @, which
gives the user an idea of the route he is constructing. When the user has laid out his cycle route, he
can prompt the software to calculate an individual preference of the given route. Our application
will then greedily split the route into subpaths, finding preferences for which these subpaths become
optimal. The resulting path split is displayed to the user by coloring his specified route in the front
end, each colored subpath referring to one found preference. Should the user find a particular
weight vector very interesting, he can save the preference in his profile and set it as the used a for
calculating shortest paths between future waypoints.
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1 Introduction

Contribution

This bachelor thesis provides the following aspects and ideas for the problem of deducing user
preferences:

» We present a full stack implementation which allows a user to input real-world data to deduce
driving preferences

* If we can not find a single preference explaining the entire route, an algorithm is presented,
which greedily splits the route in subpaths, each of which being explained by a preference

We test the applicability of our software for real-world usage with a case study, using routes that
have been driven by a test person, whose cycling preferences are known to us.

This bachelor thesis is structured as follows. In Chapter 2, we will give an overview of the related
work and introduce preliminaries as well as basic concepts that underlie the thesis. Chapter 3
presents the algorithm, which was developed and used in the implementation to deal with user paths,
that we can not entirely explain. Chapter 4 explains the architecture and logic of the implementation
for this bachelor thesis. The back end of the software will be discussed in section 4.2, the front
end is introduced in section 4.3. In chapter 5, we present the case study for our application, in
which we compare the results of our software with the actual decision process behind the routes.
We continue with a small runtime evaluation of the algorithm in chapter 6 before we close this work
with a conclusion and outlook in chapter 7.

12



2 Preliminaries

In this chapter, we aim to lay down the theoretical basis of this thesis, introducing the fundamental
concepts on which this project is based. We begin with an introduction to the underlying paper
where we present the problem which is the subject of this work and the algorithm proposed by the
authors to solve this problem. Next, we present the graph representation used for the implementation
of our software and also give a refresher on the concept of graph contraction hierarchies. We close
the chapter with a section covering the third party libraries that we used to generate the graph files,
which our software makes use of to construct the data structure.

2.1 Underlying Work

This bachelor thesis builds on the ideas presented in [FLS16]. In this paper, the authors have
proposed an algorithm that deduces a preference based on a set of routes previously driven by the
user. They achieve this by setting up a linear program (LP) formulation of the problem that makes
use of a Dijkstra-based separation oracle. The authors tested their concept by running experiments,
in which they generated random preferences to simulate user behavior and then compared the results
of the algorithm with said preferences. Their experiments showed that the learned preferences
reflected the users definition of an optimal route very well.

2.1.1 Notation

The road network is assumed to be a directed graph G(V, E) with |V| = nnodes and |E| = m edges.
Since we take multiple metrics into account, edge costs are no longer scalar but vectors ¢ : E — R’}
A path from some source s to some target ¢ in G (which does not have to be optimal with respect to
any criterion) is denoted as p(s, 7). For a given preference a, we refer to the graph G with now scalar
edge costs a’ c(e) as G,. The optimal path for a source s and target ¢ for a given @ in G, is referred
to as 7(s, 7, ). Given a path p in G,, we define the total path costs as ¢(p, @) := EeepaTc(e). The
unweighted path costs in each dimension i = 1, ..., d are referred to as ¢;(p) := Yeepci(e).

As an example let us consider a scenario where d = 2. Given a path p, the value ¢;(p) = 2 might
be the total distance in kilometers, while c2(p) = 6 could be the total travel time in minutes. If we
set the preference @ = (0.5,0.5) we get ¢(p, (0.5,0.5)) = 1 + 3 = 4 as the total path cost.

It can be assumed that all a; are in the range of [0, 1] and that Zflzlozi = 1. If this should be not the
case for any preference vector, we simply substitute a with a’, which normalizes the values in «
like so: @] = «a;/ E;lzoa ;. This substitution does not change the ratio between any of the weights
and therefore 7 (s, 1, @) = n(s,t,@") for any choice of s and 7.

13



2 Preliminaries

2.1.2 Problem Definition

The authors of [FLS16] formalize the problem of learning user preferences based on previously
driven routes as follows: Given a set of paths P, compute a preference « for which P is preferentially
feasible. A path p from s to ¢ is called preferentially feasible if there exists a preference @, such that
p = n(s,t,@). A set of paths P is called preferentially feasible if there exists a preference @ such
that Vp; € P : p = n(s, t;, @), i.e. all paths in P are preferentially feasible for the same «.

2.1.3 LP-Formulation

To determine an @ which makes a path preferentially feasible, the authors present an LP-Formulation
with variables a1, ..., 4. Our model suggests that all @; are non-negative and in sum equal 1. These
properties lead to the following initial constraints for our LP.

a1 =0

as >0

ag >0

at+ay+...+a, =1

The procedure now is to solve the LP to optimality and then check if the returned @ makes P
preferentially feasible. If yes, we are done and can return @, otherwise we identify violated constraints
and add them to the LP, which removes this o from the set of possible solutions, then solve the
LP again, check for preferential feasibility with the new @, and so on. In our case, a constraint is
violated if there exists a path p € P, which is not optimal for the current @. So p(s, 1) # n(s,t,a) or
c(p, @) > ¢(m, @). This can quickly be checked with a Dijkstra run from s to ¢ with preference . If
the returned path has a lower cost than p, we know that p is not the optimal path for the current «,
and therefore have to exclude it from the possible LP solutions. We accomplish this by adding the
following constraint to the LP:

2 (eilp) = ci(n) @i < 0

2.1.4 Algorithm

The algorithm that the authors of [FLS16] propose to deduce a preference from a set of user routes
is shown in Figure 2.1. The procedure starts by setting up the initial LP, and then solving it to
receive the first & candidate. They then proceed to loop over all user paths, checking for each p € P
if the current @ explains p, and add the respective constraint to the LP should this not be the case. If
all paths in P are explained by the current @, the algorithm terminates and returns «, otherwise the
updated LP is solved again and we continue with line 7.

14



2.2 Graph Representation

Algorithm 1: Preference Estimator

input : path set P, network G(V, E), cost vectors ¢: E — RY
output: feasible preference «

1 begin

/* initialize LP */
2 LP.add_constraint(Zfz1 a; =1);
3 LP.add constraint(cy > 0);
a
5 LP.add_constraint(cq > 0);

/* get feasible a € R? */
6 o = LP.solve();

/* check and refine */
7 while true do
8 all explained = true ;
9 for p;, € P do
10 m =Dijkstra(G, sk, tr, a);
11 if e(pr, a) > ¢(m, a) then

/* path pp not explained by current « */
12 all_explained = false;
/* add constraint to make current o infeasible */

13 LPﬂd(LCDIlSLraillt(Zf:1(C:(;uk) —ci(m)) - ai <0);
14 if all explained then
15 | break;
16 else
17 | «= LP.solve();
18 return c«;

Figure 2.1: The Algorithm presented in [FLS16]

2.2 Graph Representation

The graph representation we use for this project can be found in chapter 8.2 of [MS08]. Given
a graph G(V, E) with |[V| = n and |E| = m, the general idea is to store the edges leaving any
node in a separate array. If we have a static graph that does not change, which is the case here,
we can concatenate these arrays into a single edge array F. An additional array G stores the
starting positions of the edges for each node, i.e. for every node v € V, G[v] holds the index in
F of the first outgoing edge of node v. All outgoing edges of node v are now easily accessible as
F[G[v]], ..., F[G]v + 1] — 1]. Adding a dummy entry G[n] = m is recommended and ensures that
the properties of this data structure also hold for node n — 1.

Used Metrics

In the course of this bachelor thesis, we work with the following four different edge metrics

Distance Distance is of course one of the most obvious metrics. It denotes the edge distance in
meters. The data for this metric stems from the OpenStreetMap (OSM) project, which provides
open-source geodata for countless regions throughout the entire world [Gmb18].

Unit The unit metric is a constant which has the value 1 for every edge.

15



2 Preliminaries
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Figure 2.2: Bidirected Graph and its representation as adjacency array. Edge array F holds the
target nodes of the respective edges

Height The height of an edge is its positive ascent in meters. Data for this metric is extracted
from the files of the NASA Shuttle Radar Topography Mission [FRC+07]. Downloading this data is
free of charge, but requires a user account on the website. Since only positive altitude differences
are taken into account, the value of this metric is high for routes that run up and down a lot.

Unsuitability Weighted Distance The last metric, which in the following will be abbreviated
with UnsuitDist, combines two different metrics. The unsuitability of an edge is a constant, which
is dependent on the type of road that corresponds to the edge. Road types are also extracted from
the OSM data. Values for this metric are defined hierarchically, Table 2.1 shows some of the values,
which are used throughout this thesis. Roads that have very high traffic load like primary roads are
penalized by this metric, while bike paths are assigned the lowest value and are therefore preferable.
The reason behind weighting the distance of an edge with its unsuitability is OSM’s placement of
nodes in a path. For paths that are mostly straight, we have much less intermediate waypoints and
therefore less edges that make up the path compared to a curvy way. Figure 2.3 shows an example,
where the path that we normally would consider to be not ideal for cyclists would be preferred over
the one that we would expect to be better suited. In practice we encounter this problem when we
are dealing with cycle paths that run parallel to a fairly straight stretch of a car road.

primary 5.0

secondary | 4.0
tertiary 3.0
residential | 2.0

living street | 1.0
track 1.0
cycleway | 0.5

Table 2.1: Unsuitability Values for some example roads
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2.3 Contraction Hierarchies

0 & (o)

0.5 0.5

@ 0.5 @ 0.5 @ 0.5 @ 0.5 5

Figure 2.3: Problem with solely using a fixed number for any edge length. We travel from O to 6.
Taking the upper path would result in an unsuitability cost of 2, while the lower path
results in a cost of 3, which is suboptimal.

2.3 Contraction Hierarchies

Contraction Hierarchies are a means of contracting a graph G(V, E) by augmenting the existing set
of edges E by a set of shortcuts S to obtain an augmented graph G’(V, E’). Performance of shortest
path queries benefits significantly from this pre-processing step. The shortcut graph is created by
first assigning each node in the original graph a value, called priority, and then contracting the nodes
in ascending priority. In the contraction step of a node v € V, we have a look at all neighboring
nodes of v, and add a shortcut edge between two neighbors u, w € V if and only if uvw is a shortest
path, which can be checked with a Dijkstra run from u to w. If this is the case, we obtain the cost
of the shortcut edge by summing the costs of the two edges connecting u and w: ¢(u, v) + c(v, w)
[GSSDO8].

When calculating a shortest path in G’ with source s and target ¢, s,¢ € V, we run a bidirectional
Dijkstra search. In the forward search originating from s, we only relax edges whose target nodes
have a higher priority than the source nodes. Correspondingly, in the backward search originating
from ¢, we only relax edges whose target nodes have a lower priority than the source nodes.

Multi-Criteria CH Multi-Criteria Contraction Hierarchies consider cost vectors with a dimension
greater than 1. This changes the condition, under which we add a shortcut between # and w when
contracting v. Now, a shortcut between the two nodes is added if and only if there exists a preference
a, which makes the shortcut an optimal path between u and w [FLS17]. In Figure 2.4, we illustrate
how these changed conditions may lead to multiple shortcuts being added between two nodes. In

Figure 2.4: A multi-criteria contraction step with d = 2. Original graph is on the left, contracted
graph on the right. Processed nodes are v, w and x.
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2 Preliminaries

this case we add three shortcuts between the nodes u and y because we can find an « that encodes
an optimal path from u to y for each contracted node. We could choose the a vectors like so: (0,1)
for v, (1,0) for w and (0.5,0.5) for x. The single criteria contraction step on the other hand would
have only added one shortcut to the given graph, as the shortest path from u to y would have to be
unique.

2.4 Used Software

In this last section of the preliminaries for this thesis, we give an introduction to the third party
applications that were used to generate a graph representation for our implementation. Both pieces of
software are publicly available on GitHub. They operate on a graph representation, which specifies
all nodes of the graph, one node per line, followed by all edges of the graph, one edge per line.
Nodes are represented with the following pattern:

<internal id> <osmid> <lat> <lng> <height> <ch level>
€.g2. 0 125799 53.074 8.786 3.4728 0

Edges follow a different pattern:

<source id> <target id> <cost 1> ... <cost d> <replaced edge 1> <replaced edge 2>
e.g. 22 104289 6 2 1.5 -1 -1
for an edge that is not a shortcut and d = 3

2.4.1 pbf-extractor

pbf-extractor is a tool to extract graph files from OpenStreetMap and SRTM data. The software
extracts a graph that contains data on the distance, height ascent and bicycle unsuitability for cyclists,
covering two of the four metrics in our model [Bar18b]. We forked the repository to adjust the
code for the requirements of this thesis [Sin19a]. To cover all our criteria, we extended the set of
extracted metrics by the unit metric, and added a new metric UnsuitDist, which merged the values
of distance and unsuitability. In addition, we replaced the preset car edge filter with a bicycle edge
filter in order to sort out motorways and motorway connections, but to include cycle paths and dirt
roads.

2.4.2 multi-ch-constructor

multi-ch-constructor is a tool that creates multi-criteria contraction hierarchy graphs [Bar18a]. The
software implements the core concepts of [FLS17], where the authors present an LP-based approach
to efficiently decide the necessity of a shortcut when contracting a graph with multi-dimensional
cost vectors. We use the tool to contract the graphs that have been extracted by the pbf-extractor,
and use these graphs for our implementation.

18



3 Path Splitting

In [FLS16], the authors mention that there are paths for which no preference « exists such that the
path is optimal in G,. A path with costs (5,4) will never be optimal if there exists an alternative
path between the same source and target with costs (3, 2). In practice, this can only happen if a)
the user is not aware that his path is suboptimal, or b) the path optimizes some metric(s), which
are not represented by our model. We found that the amount of infeasible paths that came up in
the real-world application was so much greater compared to the ones that could be explained, that
we decided to implement the authors’ suggestion to split such paths into smaller subpaths, which
in turn can be explained. In the following, we will introduce the algorithm that we used in our
implementation to split user paths and show that the calculated split always contains the minimal
amount of subpaths.

We formulate the following requirement for our algorithm: Given a path p, divide p into a set of
preferentially feasible subpaths, so that the length of each subpath is maximized. As any single edge
always represents an optimal path for an @ giving full weight to the unit metric, we can split any
given path at every node to receive a valid path split, which means there is no path which we can
not split in the just defined manner.

Our algorithm consists of two main loops. The outer loop iterates through the input path, setting
the node start, which denotes the first node of the subpath we intend to find. In the inner loop,
we utilize a binary search to find the longest feasible subpath originating from node start. Our
search window is defined by the two variables /ow and high. Note, that line 12 calls the Preference
Estimator introduced in chapter 2.1.2, but here we only want to explain a single path. If the estimator
returns an @, we adjust our search window in order to find a bigger subpath, else we search for a
smaller subpath. Since we explore more to the right every time we find a preference, the algorithm
will indeed find the longest feasible subpath, until our search window is empty, i.e. low # high.
When the inner loop breaks, we begin searching for the next subpath, whose starting node is the last
node of the just found subpath.

19



3 Path Splitting

Algorithm 3.1 Path Splitting

1: procedure spLITPATH(path)

2 preferences «— ()

3 cuts «— 0

4 start < 0

5: while start # path.length — 1 do
6 low « start

7 high < path.length

8 bestPref <« null

9

: bestCut «— 0
10: while rrue do
11: m o | fewthigh |
12: pref « calcPreference(path|start..m))
13: if pref then
14: low —m+1
15: bestPref « pref
16: bestCut «— m
17: else
18: high «— m
19: end if
20: if low = high then
21: add bestPref to preferences
22: add bestCut to cuts
23: break
24: end if
25: end while
26: start « bestCut
27: end while
28: return (preferences, cuts)

29: end procedure

We can show that this algorithm will always find the minimal amount of explainable subpaths
in a route. For this, let’s consider a path p that our algorithm splits in three different subpaths
s1, §2, s3 with respective preferences ay, a2, @3. We now assume there exists a minimum amount
of two subpaths 5] and s, for p, which are explained by a7 and a3, respectively. We then lead this
assumption to a contradiction, therefore showing that the proposed algorithm is indeed optimal with
respect to finding the minimal amount of preferentially feasible subpaths in a given route. There are
three different cases we have to take into consideration.

Case1 |s]| < |[s1]

For case 1 we assume that the first subpath of the optimal split is shorter than the first subpath of the
split returned by the algorithm, which means that s3 U s3 C 3. Since it holds that every subpath of
a feasible path can be explained with the same «, and we know that s is explained by a3, it follows
that s U s3 is also explained by @;. As our algorithm always finds the longest feasible subpath, it
would have found s U s3 and therefore returned two subpaths.

20
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Figure 3.1: Setup for our proof, the upper split represents the assumed output of our algorithm, the
lower one displays the optimal split of the path.

Case2 [s]| = |s1]

If the first subpaths of both splits are of equal length, we know that s3 = so U s3. Since @, explains
55, it follows that o also explains s2 U s3, i.e. s2 U s3 is preferentially feasible. We know that the
subroutine calc_preference will find an «, if the given subpath is feasible, which means it would
have found an « for s2 U s3. Therefore, the algorithm would have been able to explain s3, splitting
p in two subpaths.

Case3 |[s]| > [s1]:

In the last case we assume that the first subpath of the optimal path split is longer than the first
subpath returned by our algorithm. Since we utilize a greedy subpath search, we will always find
the longest feasible subpath possible, which contradicts our premise that s7 is preferentially feasible,
but longer than s .

21






4 Implementation

This chapter aims to introduce the implementation of the software, which was created for this
thesis. We begin with an introduction to the architecture of the application, and will then proceed
to present the different aspects and implementation details of the back end as well as the front
end. Furthermore, used libraries and frameworks throughout the application will be mentioned and
described. The source code for both the front end and the back end is publicly available on GitHub
[Sin19c] [Sin19b].

4.1 Architecture

The application is based on the client-server model and features a server-side back end and a client-
side front end. The main functionality of the back end lies in implementing the business logic and the
algorithms which were discussed in the previous chapters. It also provides the necessary endpoints
which are accessed by the front end. Communication between server and client is established via
HTTP requests originating from the client. The front end itself implements no business logic and
its sole purpose is providing a user interface to input and display the data that is sent to and received
from the server.

Back End J Front End J

| user

ry PR apiService I

server [Mrmmmmmmmmmm e .

=]
&
ES
=
A

'y store

Mans

dijkstra

Preference
Manager
Component

Map Route Manager
Component Component

Figure 4.1: Architectural diagram

Figure 4.1 shows an architectural diagram of the entire software. Both client and server contain one
module which handles HTTP communication. The server module of the back end implements a
RESTful web server [RRO7], which responds to the requests issued by the apiService of the front
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4 Implementation

end. The back end of the application consists of various modules, each of which having its own
area of responsibility. At the heart of these modules lies the server module, which apart from
providing HTTP endpoints also handles the processing of requests by invoking functionality in the
other modules. Communication between components in the front end originates from the three Vue
components, which will be introduced in section 4.3.1 and represent the DOM of the front end. The
store module contains and manages the application state of the client and additionally provides an
abstraction layer between the DOM and the apiService.
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4.2 Back End

4.2 Back End

The back end for the application implements the HTTP server and the business logic for the
application. This includes user management, construction of the graph data structure and answering
of requests related to the graph. It is written in the Rust programming language. Rust is a systems
programming language, which was first introduced in July 2010. The language is statically and
strongly typed and focuses on safety, especially safe concurrency [HP10].

In this section we mainly cover the different modules of the back end and mention used libraries
and frameworks when necessary. We begin though, with a small paragraph providing execution
instructions for the software.

Starting the Back End

Rust applications contain an src folder, which holds the source code for the application and is
located in the root directory of the project. This folder contains the file main.rs, whose main
function is the entry point of the application. Starting the software is done by running the command
cargo run --release [path/to/graph/file] in the root folder of the project. This will build the
software and run it automatically after completing the build. The command receives one parameter,
which is the URL to the file containing the graph representation introduced in chapter 2.2. If the path
is provided, the main function will start with initiating the parsing of the graph file and construction
of the graph data structure. When this is done, the HTTP server will be set up and started, and the
application is ready for use.

4.2.1 Modules

Rust enables the organization and scoping of functionality in an implementation with the help
of modules. They are a way of grouping code for better readability and reusability, while also
controlling the privacy of items with the two keywords public and private. The back end of the
implementation for this thesis contains six different modules, which will be explained in the following
sections.

config

The config module can be used by other modules to retrieve information about the configuration
of the application, for example the port that the server should use. The values are stored in a file
config.toml, which lies in the root directory of the project. Table 4.1 shows the initially set values
for the app configuration.

The module implements a Singleton pattern, i.e. there will only ever be one instance of the config
object, which is stored in a static variable. To request the configuration, a module calls the get_config
method. When this function is called for the first time, the config module will parse the config.toml
and create an object, which is stored in said static variable. All following calls to this function will
return a reference to this object, which can then be used to access the configuration data.
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Key Value

port 8000

database_path | database

edge_cost_tags | [Distance, Unit, Height, UnsuitDist]
initial_pref [1,0,0,0]

Table 4.1: Initial configuration for the software

user

All logic regarding user management, e.g. creation of users or updating the routes of a user is
implemented in the user module. Every registered user in the back end will be represented by one
User object, see Figure 4.2, which is created once the user registers himself via the front end of the
application.

User

Userfuth

+ auth: UserAuth
+ Username: String
+ driven_routes: [Path]
+ hash: String
+ counter: Integer

+ token: String

+ alphas: [Preference]

Figure 4.2: User and UserAuth classes

This object holds information like the driven routes as well as all preferences of the particular user
it represents. Furthermore, every user object contains an auth object, which stores username, hash
and token of the user it belongs to. When a user registers himself, we create a new object and set the
username property to the value that was picked by the user. Since we do not want to save sensitive
information like a user’s password as plain text, we hash the value of the given password and save it
to the hash property. When a user logs in and sends his username and password, we check if the
hashes of the saved and given passwords match, and additionally if the username matches with the
saved value. A successful login will set the token property in the auth object of the user and add the
token value as payload to the response of the login HTTP request from the front end. This token is
then added as a header value to every request from the front end (except logging in and registering),
as we do not want to send the user’s credentials in every request concerning business logic. The
server then uses this token to find the corresponding user state in the database.

server

This module implements the server that handles the HTTP-Requests originating from the front end,
e.g. logging in, fetching the user preference or getting a shortest path. It acts as the control center
of the application, which means that the module will use the interfaces of the other modules in the
project to process requests originating from the front end accordingly. The server was implemented
using the actix-web library [Tea]. Actix-web is a Rust framework that provides functionality to
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implement an HTTP server. The library allows setting up a server via a builder-like pattern, where
the different components are registered one after the other, which creates a concise and easily
manageable code.

Using this pattern, we first register the application state for the server. This state holds the graph
data structure that we constructed when starting the application, the URL which denotes the file
we use to save said state to make it persistent, and finally, an array holding all users for our user
management. Secondly, we register a CORS middleware to prevent CORS issues with browsers that
call the endpoints of the server. This middleware adds an allowed origin header to every response
that leaves the server. Next, we register another middleware component, which saves the previously
mentioned user state to the respective file, every time the server finishes processing a request. Doing
this every time we receive a request will guarantee that the persistent database is always up to date,
even if there is a sudden crash of the server. Handlers for the HTTP-Requests are also registered
with this builder-pattern, an overview of all the supported requests and routes is shown in Table 4.2.
Lastly, we register the handler functions for the different requests. The handlers are split into two
separate files in the server module: auth.rs and routing.rs. While the former contains functions that
handle user log in and registration, the latter deals with any requests that are related to the topic of
routing, e.g. managing user preferences or finding shortest paths. Request handlers may receive the
application state as a function parameter, on which they have reading and writing access.

Endpoint HTTP Method | Description

tags GET Gets the edge cost metrics

preference GET Gets user preferences

preference POST Sets user preferences

preference/new | POST Adds user preference with standard values

preference/find | POST Finds preference for given path

closest GET Gets the coordinates of the closest node in the
graph to the given lat and Ing

fsp POST Gets shortest path from given source and target

routes GET Gets all user routes

delete/{id} POST Deletes user route with given id

reset POST Deletes the entire saved data of the user

login POST Logs the user in and creates token

register POST Adds a new user

Table 4.2: Provided endpoints and their description

graph

The graph module on the one hand handles parsing the graph file and construction of the graph data
structure, which is the first thing that is done when the software is executed. Secondly, the module
implements operations on said graph data structure like calculating a shortest path given a set of
waypoints, or finding the closest node that is represented by the graph given some coordinate. The
path splitting algorithm introduced in chapter 3 is also implemented in this module.
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Graph

+ nodes: [Node]

+ edges: [Edge]

+ offsets_in: [Integer]
+ offsets_out: [Integer]

+ half_edges_in: [HalfEdge]

+ half_edges_out: [HalfEdge]

Edge
Node

+id: Integer HalfEdge
+id: Integer

+ source: Integer +edge_id: Integer
+ height: Float

+ target_id: Integer + farget_id: Integer
+ ch_level: Integer

+ edge_costs: [Float] + edge_costs: [Floaf]
+ location: Coordinate

+ replaced_edges: (Integer, Integer) | null

Figure 4.3: Graph class and its subclasses Node, Edge and HalfEdge

The result of constructing the graph structure is an object of class Graph, shown in Figure 4.3.
Apart from the mandatory nodes and edges of the graph, this object contains the offset array graph
representation introduced in chapter 2.2. Note, that we have divided every edge of the graph into
two HalfEdges, which is required to run a bidirectional Dijkstra search on the graph. This also leads
to two different offset arrays.

Path
+id: Integer
+ nodes: [Integer] PathSplit
+ edges: [Integer] + cuts: [Integer]
+ waypoints: [Coordinate] + alphas: [Float] [ ]
+ coordinates: [Coordinate] +dimension_costs: [Floaf] []
+ user_split: PathSplit +costs_by_alpha: [Floaf]
+ algo_split: PathSplit | null
+ total_dimension_costs: [Float]

Figure 4.4: Path and PathSplit classes

The class Path, shown in 4.4 defines what path objects look like in our application. Besides the
nodes and edges of the path, this object also contains two fields representing path splits. The field
user_split represents how the user specified his path using the front end. When the path splitting
algorithm has calculated a path split for a route, the property algo_split of that route will be set
accordingly, otherwise it does not hold a value.
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dijkstra

The dijkstra module implements the functionality to run shortest path queries on the graph data
structure. There are two use cases in which we require shortest paths. Firstly, waypoint input of a
user in the front end will run a shortest path query, the result of which will be sent back to the front
end. Secondly, finding preferences for a given path requires calculating multiple shortest paths. The
module implements a bidirectional Dijkstra algorithm on the contraction hierarchy graph, which
is ran by calling the find_path method, passing a list of waypoints and a preference as parameters.
The list of waypoints defines which intermediate points should be taken into consideration when
calculating the route, while the preference denotes the weighting of the cost metrics for this route.
If the amount of given waypoints is two, we have the case of a standard routing query, with the
first waypoint being the source and the second one the target. Should the number of waypoints be
greater than two, we know that the user has defined intermediate points which should be part of the
resulting path. In this case, we execute multiple Dijkstra runs to compute the shortest path, one for
every successive pair of waypoints in the list. For example, if we have waypoints W = [ny, na, n3|,
we start two Dijkstra runs, one from n; to ng, and the second one from rn to n3. The results of these
subpaths are then concatenated in an array and returned.

Ip

The Ip-module implements setting up the LP required for the calc_pref, which is called by our
algorithm. To set up the linear program, the module makes use of the library /p-modeler, which acts
as a wrapper for the GNU Linear Programming Kit (GLPK) [And12]. This library allows defining
linear programming problems using familiar Rust syntax [Cav16]. The /p module defines a struct
PreferenceEstimator whose constructor function sets up the basic LP defined in 2.1.3. We can then
use an instance of this struct to compute a preference for a given path with source and target id. This
function implements the algorithm presented in [FLS16], which was discussed in section 2.1.2.
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4.3 Front End

This chapter will explain the front end of the application. Similarly to the previous section, which
dealt with the back end, we will start with installation and execution instructions. Afterwards, we
explain the basic concepts of the front end framework Vue.js, on which the application is based.
Then, we will start going over the various components which make up the front end. We begin with
the Map Component of the application, continue with the Route Manager and close the chapter
with explaining the functionality of the Preference Manager.

Starting the Front End

Before running the application, all necessary dependencies have to be installed. Depending on the
preferred package manager, this can be done by running the command npm install and yarn install,
respectively. The package manager will then install the necessary dependencies defined in the file
package.json to a dedicated folder called node_modules, and also create a file package-lock.json,
which describes the exact dependency tree that was generated. For development purposes, the
command npm run serve or yarn run serve is used to start a server that comes with "Hot-Module-
Replacement”, meaning that any changes to the source files will result in the server reloading only
the module that was changed, which saves valuable time when developing [ Youl8]. To build the
application for production, one executes npm run build. This command will optimize and bundle
the software. The resulting JavaScript and CSS files as well as the index.html will then be placed in
a dist folder at the root directory of the project, along with any images and meta files. This folder
can then be deployed by an HTTP server to make the application available to users.

4.3.1 Vue

Vue (pronounced “view”) is an open-source JavaScript library for building user interfaces and
single-page applications. A single-page application is a website, where the user experience is
not interrupted by repeating calls to the server between successive page calls. Instead of loading
the entire new pages from a server, they are dynamically replaced. Vue focuses on component
composition, meaning applications are built by creating reusable modules, which can then be used
by other components. For state management of the application, Vue developers offer a library called
vuex. Vuex serves as a centralized store for all the components in the application, while enforcing
rules that updates on the state are only done in a predictable fashion [Youl4]. Figure 4.5 shows
a simple Vue component, which implements a login functionality. The UI consists of two text
input fields and one button to submit the credentials to a server. The file consists of three different
parts: template, script and style. Note, that a Vue component does not necessarily have to define all
three of these sections. A file only containing the template region for example is also a valid Vue
module.
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1 <template>

2 <div class="red-font">

3 <input v-model="username" type="text" />
4 <input v-model="password" type="password" />
5 <button @click="login">Log In</button>

6 </div>

7 </template>

8

9 <script lang="ts">

10  import Vue from 'vue';

11  import Component from 'vue-class-component';
12

13  @Component

14 export default class SimpleLogin extends Vue {
15 private username = '';

16 private password = '';

17

18 private login() {

19 console.log(this.username, this.password);
20 this.username = '';
21 this.password = '';
22 }
23}
24  </script>
25
26  <style scoped>
27  .red-font {
28 color: Mred;
29 }
30 </style>

Figure 4.5: A Vue component implementing a simple login mask
Template

The template region registers the elements in the DOM of this component. It consists of exactly one
HTML element, mostly a simple div, which contains all the elements needed for this component.
Children components from the same project are also registered in this region, as well as components
from external libraries. In our example of the login mask we first define the two text input fields.
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Each of these inputs features a v-model property which is assigned a variable name. Doing this will
activate the Vue reactivity system for the text inputs. If we now create two variables in the script
code with the same names we used for the v-model properties, every input in the text fields will
result in the values of the variables being updated automatically. Furthermore, changing the value
of any of these variables in the code will result in an update of the value in the respective text input
field, which makes Vue’s v-model a two-way binding. Lastly, we define an HTML button, and
register a listener for the click event of the button. The value of the listener points to a function,
which we will also define in the code.

Script

The script section holds all the necessary logic which is needed for the component to work. It
defines all used variables and functions referenced in the template, handles properties that are passed
into the component by a parent, and imports and registers child components, which can then be used
in the template. Here, we declare the two variables, which we have used for our v-model properties
in the template region. Additionally, we define the login function, which is called when the click
event listener of the HTML button is fired. When line 19 is executed, the console will output exactly
the string values that the user has put into the text fields. At the end of the method, the values of
username and password will be reset to an empty string, which will also clear the text input fields.

Style

The style section is used to define CSS classes which can be used in the template section. In this
case, a simple class is defined, which changes the font in the login mask to have a red color. By
default, the style region is public, which means every component can use the classes it defines. To
make the classes private, which is recommended by the Vue guidelines, we add a property scoped
to the HTML tag of the section, as shown in line 26.

4.3.2 User Interface

Figure 4.7 shows the main user interface (UI) of the front end, which provides the functionalities
the user needs to input routes, manage routes and update preferences. The user interface is built
with the help of the Vuetify front end framework. Clicking on the logout button in the top right
corner of the UI will log the user out and redirect him to the login UI, shown in Figure 4.6 on the
left. Here, a user can either login using an existing account, or create a new one by clicking the
“Register” button in the top right corner, which will lead him to the register UI shown on the right
side of the figure. A click on the login button will redirect the user back to the login page.

Vuetify Vuetify is a Material Design Component Framework crafted for Vue [LLC16]. The
framework provides a vast range of different components, premade layouts and styling classes which
can be used in Vue applications. Usable components range from simple buttons and text input fields
over loading animation components to complex data tables. Thanks to the great documentation
and vibrant community, which contributes to regular updates, Vuetify significantly simplifies and
enhances the process of creating user interfaces.
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Figure 4.7: View of the main UI

The main Ul is built with a grid consisting of two main rows, which make up the whole user interface.
The upper row contains everything that the user needs to input and examine his routes and is split
into two columns. In the second row the user can find everything related to managing his personal
preferences.

Map Component

Most of the user interaction with the application will take place on the map shown in Figure 4.8.
The map is implemented using the vue2-leaflet framework, which wraps the components of the
leaflet library, so they can be used in Vue applications in a modular way [AgalO] [Boul6]. We can
use these components in the template section of the Vue files, which makes it easy to add event
listeners, or add properties to the elements.
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Here, a user can add waypoints to his route by left-clicking on any location on the map. Adding
a waypoint will set it as the new target, i.e. the ordering of the way points follows the order, in
which they were added to the map. When the user adds a waypoint at some location on the map,
this very location will most likely not be represented by an existing node in the graph representation,
because our data structure only covers nodes on actual roads. Imagine for example a user clicking
directly on his house, or the parking lot at his workplace. We therefore issue a request to the back
end every time a user places a marker, sending the input coordinates as request payload. The back
end then looks for the node that is closest to the given coordinates, and replies with its location. We
then move the marker to the location we received from the back end, so that it represents an actual
node in our graph. If the user is not satisfied with the position of a waypoint, he can click and hold
the marker, to drag it across the map. Dropping it at some location will again update its position
to the closest coordinate represented by our graph data structure. Removing a waypoint is done
by right-clicking the corresponding marker on the map. Every addition, removal or dragging of
waypoints will automatically send a shortest path request to the back end, if the number of markers
is greater than two. On response, the front end will display the resulting path on the map with a
brown line. Should the back end not be able to find a route, the user will receive a notification.
Inserting intermediate waypoints on the route is done by clicking on a section of the route between
two markers, and then dragging the resulting marker to the desired location. While the marker
is dragged, the front end will repeatedly send shortest path queries to the server and display the
resulting routes, which gives users immediate feedback on the impact that the repositioning of the
waypoint has.

Figure 4.8: The Map component

Removing a shown path from the map, which includes its coordinates and waypoint markers is done
by clicking on the button showing a trash can in the lower left corner of the map. When the user has
finished laying out his path, pressing the button with the check mark in the same corner will send a
request to the back end which will then begin to find a preference for the current route on the map.
Upon getting a response, the map will display the different subpaths of the route in different colors,
as shown in Figure 4.9. Should the user now add another waypoint to the map, the colored subpaths
will disappear again.
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Figure 4.9: An example path split
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Figure 4.10: The Route Manager

An overview of all routes driven by a user is provided by the route manager component shown in
Figure 4.10. Here, the routes, which were explained by the algorithm are bundled together in a list.
Clicking on a route will show it on the map and expand its details. There can only be one route
selected at a time. The detailed view of a route contains a data table, which shows the different
subpaths of the selected route. The data table will contain one row for every subpath, which shows
the weights in the corresponding preference vector for each metric. A little colored square at the

35



4 Implementation

front of the row will additionally show, which segment on the map belongs to which preference. In
case there is some preference that the user would like to add to his personal ones, he can click the
plus button to add the preference to his profile.

The list will always contain a route called "New Route”, which is the one that is used for placing
and removing waypoints. If the user clicks the check mark button on the map, this "New Route”
will be explained and saved to the driven routes of the user in the back end, which will add it to the
list. If the route has been successfully explained and saved, the "New Route” will be cleared for the
next user input. In case the user already has an explained route, but wanted to see how a different
arrangement of the waypoints would change the resulting subpaths, a click on the corresponding
button in the top right corner will copy the selected route into the "New Route”. Doing this will
copy all waypoints and therefore relieve the user of doing any duplicate work.

Preference Manager

My Preferences + /7 0
1 2 3

Distance Unit

0.052677299827337265 0.8213260173797607

Height UnsuitDist

0.12570899724960327 0.00028766499599441886

Figure 4.11: The Preference Manager

The preference manager shown in Figure 4.11 allows users to manage their own individual set of
preferences. It lists all user preferences in a button group, and displays the values of the currently
selected preference in text input fields. The buttons in the top right corner of the component allow
the user to add a preference, edit the preferences, or delete the selected preference. Apart from
adding a calculated preference from the route manager, a user may also add a custom preference
by clicking on the plus symbol. This will append a new preference to the end of the button group.
It is also possible to edit the preferences by clicking on the pencil button, which will allow the
user to edit all listed preferences. Both adding a preference and editing the list will swap the plus
and pencil buttons out for a save button, as seen in Figure 4.12. In case some of the values do not
lie between 0 and 1 or do not add up to 1, the button will be deactivated. When the user is done
changing values, clicking on the save button will save the changes to the back end. Removing the
selected preference is possible by clicking on the button with the trash can symbol in the top right
corner of the component.
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Figure 4.12: Editing a Preference

If the user adds a waypoint to the map, the currently selected preference will be used for the
calculation of the subpath between the last way point and the one that has just been inserted.
Deleting an intermediate waypoint in an existing path will replace the two preferences of the
subpaths left and right of the deleted way point with the currently selected preference.
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5 Case Study

To examine the applicability of our software for real-world usage, we tested the implementation on
three bike routes driven by a hobby cyclist. We compared the results coming from our software with
the actual decision process behind the route planning. Our test person is cycling for more than 20
years now and has driven countless routes in many different regions. According to his own account
there is no specific preference in mind when it comes to planning a bike route, but there are some
aspects, which are preferred or avoided. Firstly and most importantly, the test person mainly plans
out circular routes, which means that source and target in a given route are identical. The ways
there and back in such routes are chosen to have as little overlapping edges as possible. Secondly,
the cyclist opts to avoid long stretched downhill runs in a route. To meet this criterion, he simply
adjusts the direction of travel to turn downhill runs into ascents. Lastly, the test person avoids any
climbs towards the end of a route to bring the journey to a leisurely finish, oftentimes leading to
detours with respect to path length. Regarding preferred road types, the subject avoids car roads,
especially primary and secondary roads, and favors cycle paths.

5.1 Design

For this case study, we reproduced three bike routes of the test person by carefully laying out
the waypoints of each route using the front end of the application. We then let the path splitting
algorithm find a set of subpaths and preferences, and investigated a) How well the found preferences
resembled the route planning criteria of the cyclist, and ») How some of the resulting subpaths lined
up with specific stretches of the original paths, which we point out in the next section. Apart from
being of different length, we sought to vary the regions through which the routes pass in order to
take into account territorial conditions such as the coverage of cycle paths in a given area.

5.2 Used Routes

In the following, we will go over each route and explain the underlying decision process of the
cyclist when appropriate. Additionally, we will point out certain properties of the routes, which
should be kept in mind and come back to them when we analyze the results. Since the collected
routes begin and end at the same place, we have cut the area around these locations out of the
figures to preserve privacy of the test person. Travel direction is indicated by a brown arrow in the
respective figures.
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Route 1

The first route of our case study, which totals about 43.8 kilometers in length, is shown in Figure 5.1.
This route features a very long stretch of road, indicated by the two blue strokes in the figure, which
runs parallel to the street B 294. Going from top to bottom, this stretch rises mildly but steadily in
height throughout the entire length. Since our test person tries to avoid long descending runs, the
travel direction of this route was chosen to go upwards from the source as to take this stage as a
climb. Shortly before the route comes to an end, we encounter a sudden bend in the path, indicated
by the black circle in the figure. The reason for this is the subject’s tendency to make detours in
order to avoid climbs towards the end of a route.
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Figure 5.1: Route 1 (=44km)
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Route 2

The second route totals a length of approximately 37 kilometers. We added two blue strokes to
the map that highlight a small subpath of the route, which is extremely steep and not very long (in
traveling direction). There is a possibility to avoid that climb with a detour, but this would lead to a
much greater travel distance. Similar to route 1, we find that the test person has again taken a detour
to avoid ascents as the route comes to an end, again indicated by a black circle in the figure.
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Route 3

The third and last route is the biggest one with a total distance of 54.5 kilometers. Again, we encounter
a lengthy route segment, this time beginning in Nagold and following the Nagoldtalradweg, which
runs parallel to the primary road B 463. While the previous two routes showed a detour towards the
end of the journey, here there is no necessity of such a detour, since there is no ascent in the last
section of the route.
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Figure 5.3: Route 3 (~54km)
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5.3 Expectations

Regarding a), we have set very modest expectations. One reason for this is the vast range of different
metrics that could have impact on the decision process of a cyclist, compared to the relatively
low amount of four metrics, that are covered by our model. Furthermore, we doubt that the test
person’s preferences introduced in the first paragraph of this chapter can be sufficiently expressed
by preferences. Since the test person tries to avoids car roads, we expect the UnsuitDist metric to be
the dominating factor in the preferences that are returned by the software.

As far as b) is concerned, we are cautiously confident to receive some meaningful subpaths from
the application. Since detours in a route tend to run in a different direction than the previous
path segment, we expect the preference estimator to find preferences, that cover the path up to the
node from which such a detour is taken, maybe even a bit further, and then proceed with the next
segment.

Route 1

Regarding Route 1, we expect to see a long subpath explaining the marked stretch in Figure 5.1,
since the course of the route does not show any sudden twists or anomalies, which could make
it infeasible. We expect a high weighting of the distance metric for this stage, but as the primary
road B 294 should be shorter than the path that was driven by the subject, we also wager that the
algorithm will assign the UnsuitDist metric some weight to balance out the high bicycle unsuitability
of the primary road. Regarding the detour at the end of the route, we expect the algorithm to return
at least two preferences, since the detour seems suboptimal for any metric.

Route 2

Our main point of interest concerning route 2 lies in the short but intense climb highlighted by the
blue strokes in Figure 5.2. Here, we expect to see this section explained by a preference assigning
the distance metric a high value and the height metric a value of 0. Similar to the first route, we do
not presume that the last stage of this route can be explained by a single preference, as the detour
taken is simply too extensive to be optimal for a preference.

Route 3

For the last route, we expect to see a big part of the marked subpath in Figure 5.3 explained by a
single preference. Since the route taken here (Nagoldtalradweg) is a cycle path, we guess that the
resulting preference will have high weight values for the metric UnsuitDist, but we estimate that the
distance will also be weighted.
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5.4 Results

In the following sections we will examine the path splits, which were calculated by the algorithm.
We show a figure of the path split as well as a view of the route manager for each route. The results
are then compared to the test person’s actual preferences as well as the expectations we set for each
route.

Route 1

Immediately when looking at Figure 5.4, we find a long subpath covering the major part of the
stretch in the route we mentioned previously. The route manager in Figure 5.5 shows that the weight
of the preference for this subpath is split between the metrics distance and UnsuitDist, just as we
expected. Regarding the last part of the route, we examine that the algorithm was indeed not able to
find a preference, which explains the entire finish of the route. Note, that the preference manager
shows a weight value of 1 for the height metric of the last orange colored path, but could not quite
explain the entirety of the last path segment.

Route 2

Regarding the results of route 2, shown in Figure 5.6, we observe that the small path segment
with the heavy ascent mentioned previously has been split into two subpaths. The purple subpath
confirms our expectation that the weighting of the height metric will be 0, while the other weights are
split between distance and unit. Interestingly, we find a weighting of 1 for the height of the following
red segment, which is still part of the ascent. Towards the end of the route, we find various subpaths,
yet we can observe that some of these indeed have a respective preference, which maximizes the
weight value of the height metric, namely the bigger blue subpath and the red subpath, which is the
second to last one.

Route 3

Concerning the last route displayed in Figure 5.8, we again notice a long subpath covering a great
deal of the before mentioned Nagoldtalradweg. The preference returned from our algorithm for this
segment shown in 5.9 turns out to be the default one. For the remaining part of the cycle way path,
we encounter the red preference, which does not assign weight to the UnsuitDist metric, only to the
distance.

Overall, we found that our algorithm returned a wide variety of different preferences for the routes.
Since distance is often a metric that is optimized by users subconsciously, we find a lot of preferences
which assign weight to this metric. However, we did not encounter many high weightings of the
UnsuitDist metric, although we used cycle routes and the test person aims to avoid car roads.
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5.4 Results

Figure 5.4: Path Split of Route 1
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Route 1 O %

Color Distance Unit Height UnsuitDist

[ ] 0.02293260022997856  0.9770669937133788 0 0 +
[ ] 0.2045529931783676 0 0.7933310270309448  0.0021152400877326727 +
[ ] 0.9687309861183168 0 0 0.03126920014679827 +
[ ] 0.7611150145530701 0 0 0.23888500034809113 +
[ ] 0.8837360143661499 0 0 0.11626400053501128 +
. 1 0 0 0 +
. 0 0 1 0 +
. 025 025 025 025 +
:::t's: 43835.668416000015 990 1231.8336888000003  61843.995312000014

Figure 5.5: Preferences for Route 1




5.4 Results

Figure 5.6: Path Split of Route 2
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D
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Figure 5.7: Preferences for Route 2

Color Distance Unit Height UnsuitDist

) 0.08658289909362793 0.9134169816970824 0 0

O 0.11049000173807144 0 0.8895099759101868 0

[ 0 1 0 0

[ 1 0 0 0

[ 0.04043719917535782 0.9505630168914796 0 0

) 0 0 1 0

O 0 0.34055501222610474  0.6504160165786743  0.009029700420796871
[ 0.009792099706828594  0.7985680103302002  0.1916400045156479 0

(J 0 0 1 0

[] 1 0 0 0

) 0 0 1 0

O 0.25 0.25 0.25 0.25

Total

Coote, | 36939188762 830 876.0385422719996  76120.624964




5.4 Results

Figure 5.8: Path Split of Route 3
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Route 3 O u
Color Distance Unit Height UnsuitDist
. 0.003642600029706955 0 0.0963570237159728 0O
. 0.0485881008207798 0.944216012954712 0 0.007195909973233938
- 0.25 0.25 0.25 0.25
. 0 0 0.968666970729828 0.03133299946784973
. 0.25 0.25 0.25 0.25
. 1 0 0 0
. 0.25 0.25 0.25 0.25
- 1 0 0 0
. 1 0 0 0
. 0.990567982196808 0 0 0.009431700222194197
. 1 0 0 0
. 0 0 1 0
. 0.6213189959526062 0 0 0.3786810040473938
. 1 0 0 0
Total
o, 5455467683 1450 1401.6406528799998  77836.37521009999
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Figure 5.9: Preferences for Route 3




6 Algorithm Runtime Analysis

In this chapter, we aim to examine the runtime of the application. Our points of interest here are
the different factors that have impact on the runtime of the path splitting algorithm. We decided
against the idea of creating random waypoints that simulate user behavior to test our application.
The main reason for this is that these random paths simulate actual cyclist behavior very poorly,
since arbitrary waypoints mostly lead to utterly nonsensical routes, which would give us no real
insight on how the software behaves when we input real-world routes. We therefore conduct our
analysis with the cycle paths from our case study.

Specs

The evaluation was conducted on a single core of an Intel i5-8250U CPU with 1.6GHz and 16GB
RAM. The Rust compiler rustc was running on version 1.37.0. The source code was compiled in
release mode.

Results

We received the following values by calculating the mean over 25 runs of our algorithm for each of
the three routes. Table 6.1 shows the results for the routes of our case study. We were interested in
how the number of subpaths and the total length of the route impacted path splitting performance.
While the runtime clearly increased with a greater number of subpaths in the route, we also observe
that total route length impacts the time taken to find a subpath.

Furthermore, our results showed that for each subpath, the algorithm called calcPref on average
8.2 times, the subroutine itself took on average 925ms to calculate a preference. While calculating
a preference, we on average had to solve the LP 2.04 times, which means we also added 2.04
constraints to the LP and ran 2.04 + 1 Dijkstras (depending on whether the LP found a solution
or not). Dijkstras took on average 378ms, while it took merely 3ms on average to solve the LP to
optimality.

Route 1 | Route 2 | Route 3

Length ~44km | = 3Tkm | = bdkm
# Subpaths 8 12 14
Total Time Taken 61.08s | 86.36s 109.2s

Time to find Subpath || 7.14s 6.87s 7.35s

Table 6.1: Runtime evaluation results for the three paths
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7 Conclusion and Outlook

In this bachelor thesis we presented an algorithm, which is able to calculate a preference explaining
some given route by splitting the route into feasible subpaths. We utilized this algorithm in a
software, which features a user-side front end and a server-side back end. The application allows
users to specify their cycle paths using the front end of the application, while the back end of the
software calculates path splits and manages users. Our case study showed that the algorithm could
return some meaningful preferences and subpaths for real-world cycling routes.

7.1 Conclusion

When attempting to explain a real-world bicycle route, we found that the algorithm presented in
[FLS16] could scarcely find a feasible preference for the four metrics used in our model. One possible
explanation for this is the relatively low amount of edge metrics that we took into consideration
for the implementation. Comparing these four with the countless other metrics suited for cyclists,
we recon that adding more metrics to our model increases the probability of finding a feasible
preference. The case study presented in chapter 5 has shown that the algorithm, even when just
considering four metrics, is able to deduce some very interesting preferences and subpaths, a few
of the path splits represented stages of the bike route very well. We have seen that the runtime
of the algorithm naturally increases with increasing path length as well as increasing number of
subpaths.

7.2 Outlook

First and foremost we think that adding more metrics contributes significantly to the algorithm’s
potential of explaining user routes, since every added metric increases the range of possible solutions
for the LP, which makes it more likely that the algorithm finds a preference. In addition, we see
room for improvement considering the runtime of the path splitting algorithm. Currently, processing
a medium sized cycling route (= 30km) takes more than a minute, with the Dijkstra runs being the
greatest factor contributing to the runtime, see chapter 6. During the calculation of a path split
for a given route (which took three minutes for route 3 of our case study), the user receives no
information regarding the progress of the algorithm, provided that he has no access to the logs of
the back end. As this limits user experience significantly, future work could extend the algorithm to
return a subpath and preferences as soon as one is found, because they will not change regardless of
how the algorithm splits the remaining route. Furthermore, our algorithm relies on a greedy binary
search, only looking for the longest possible subpaths, but there are other approaches to find feasible
subpaths. For example, we could try to minimize the amount of unique preferences when splitting a
path, hoping that the user plans certain subpaths with the same preference. Since we focused on
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7 Conclusion and Outlook

splitting paths, because we could not explain them wholly, we did not pay much attention to the
idea of grouping user routes into meaningful groups, as presented in [FLS16]. While joining paths
as a whole into groups seems barely doable in a real-world scenario, we see potential in grouping
preferences rather than routes. Finally, carefully laying out a route in the front end of the application
is very time consuming. Route 3 of our case study for instance required 80 waypoints until it was
specified to our satisfaction. We therefore think that adding a functionality to import routes to the
front end is beneficial for user experience, since users tend to track themselves by using smartphones
or GPS sensors anyway, there is plenty of data to be imported available.
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