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Abstract

Both the Digitalisation and Industry 4.0 result in continuous data streams in all areas of life.
To get high-level information out of these streams in real-time, we can use Complex Event
Processing (CEP) and Stream Processing (SP). This is often done on several operator nodes
on different sites. Each of these operators works on a fraction of the whole information
gathering process. There are different types of operators for different tasks. The most
important for this work are the propositional logic operator, the pattern-finding operator,
and the average-building operator.

The operators are organized in a directed acyclic graph, called the operator graph. Often
the operator graph has to deal with great amounts of continuously incoming data. The
data is bundled in discrete events. We can use load shedding to reduce the workload and
to ensure that the operators process incoming data quickly. Load shedding removes some
of the events from the waiting queue at an operator. As such it leads to lower latency and
workload. But it can also lower the accuracy of the found information.

Most publications on load shedding in CEP or stream processing examine, how to make
good load shedders. But in this work, we examine how inaccuracies caused by load
shedding propagate through the operator graph. This means how load shedding at a
preceding operator can influence the current operator. We examine which operator types
can potentially repair the inaccuracies in the data stream caused by prior load shedding.
That means that the data stream is more accurate after the operator than it was before. As
a baseline for comparison, we take a run of the same scenario without load shedding.

To do this, we created a Java program that can simulate CEP and stream processing
for different scenarios, using different operator types. For the experiment, we apply
load shedding to the operators in the operator graphs of the different scenarios. In the
evaluation, we explain how and why load shedding affects the different operator types
in the way it does. We give guidelines on how to optimally shed load for each operator
type.

If the propositional logic operator has an input event type that is the limiting factor it
reacts well to load shedding of the non-limiting factor. If the limiting factor is greatly
outnumbered, this operator type can even repair the accuracy of the data stream.

The accuracy of the pattern-finding operator is very negatively affected by load shedding,
if we shed whole input events. If at some point in the operator graph we can shed load
in such a way that only the attributes of the input events of the pattern-finding operator
are altered, the resulting accuracy is much better. This could happen if we e.g. aggregate
events prior to the pattern-finding operator. There is no potential here to improve the
accuracy of the data stream.

The average-building operator has very high accuracy when we use load shedding. We
need to do the load shedding in a way that we shed all input data for the average-building
operator proportionally. If that is the case the accuracy remains on average at 100%.
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There is only a small variance for higher load shedding drop rates. This operator type can,
therefore, repair a prior loss of accuracy of the data stream almost entirely.
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Abstract- German Translation:

Die Digitalisierung und Industrie 4.0 sorgen für kontinuierliche Datenströme in allen
Lebensbereichen. Um Informationen aus diesen Streams in Echtzeit zu erhalten, können
wir Complex Event Processing (CEP) und Stream Processing verwenden. Dies geschieht
häufig an mehreren Operator-Knoten an verschiedenen Standorten. Jeder dieser Opera-
toren bearbeitet einen Bruchteil des gesamten Informationserfassungsprozesses. Es gibt
unterschiedliche Typen von Operatoren für verschiedene Aufgaben. Die wichtigsten Typen
für diese Arbeit sind der Aussagenlogik-Operator, der Musterfindungsoperator und der
Durchschnittsbildungsoperator.

Die Operatoren sind in einem gerichteten azyklischen Graphen organisiert, der als Opera-
torgraph bezeichnet wird. Oft muss der Operatorgraph mit großen Mengen kontinuierlich
eingehender Daten umgehen. Die Daten werden oft in diskreten Events gebündelt. Mit
Load-Shedding können wir den Arbeitsaufwand reduzieren und sicherstellen, dass die
Operatoren eingehende Daten schnell verarbeiten. Durch das Load-Shedding werden
einige Events aus der Warteschlange eines Operators entfernt. Dies führt zu einer gerin-
geren Latenz und Arbeitsbelastung. Es kann aber auch die Genauigkeit der gefundenen
Informationen verringern.

In den meisten Veröffentlichungen zum Load-Shedding in CEP oder Stream Processing wird
untersucht, wie man gute Load-Shedder herstellt. In dieser Arbeit untersuchen wir jedoch,
wie sich durch Lastabwurf verursachte Ungenauigkeiten im Operatorgraphen ausbreiten.
Das bedeutet, wie ein Load-Shedding bei einem vorhergehenden Operator den aktuellen
Operator beeinflussen kann. Wir untersuchen, welche Operatortypen möglicherweise die
Ungenauigkeiten im Datenstrom beheben können, die durch vorheriges Load-Shedding
verursacht wurden. Das heißt, dass der Datenstrom nach dem Operator genauer ist als
zuvor. Als Vergleichsbasis nehmen wir genau das gleiche Szenario ohne Load-Shedding.

Zu diesem Zweck haben wir ein Java-Programm erstellt, das CEP und Stream Processing für
verschiedene Szenarien unter Verwendung verschiedener Operatortypen simulieren kann.
Für das Experiment wenden wir Load-Shedding auf die Operatoren in den Operatorgraphen
der verschiedenen Szenarien an. In der Auswertung erklären wir, wie und warum sich das
Load-Shedding auf die verschiedenen Operatortypen auswirkt. Wir geben Richtlinien an,
wie die Load-Shedding für jeden Operatortyp optimal betrieben werden kann.

Hat ein Aussagenlogik-Operator einen Event-Typ, der der begrenzende Faktor ist, reagiert
er gut auf das Abwerfen des nicht begrenzenden Faktors. Wenn der begrenzende Faktor
stark in der Unterzahl ist, kann dieser Operatortyp sogar die Genauigkeit des Datenstroms
reparieren.

Die Genauigkeit des Musterfindungsoperators wird durch den Load-Shedding sehr negativ
beeinflusst, wenn ganze Input-Events abgeworfen werden. Wenn wir an einer Stelle im
Operatorgraphen die Last so reduzieren können, dass nur die Attribute der Input-Events
des Mustersuchoperators geändert werden, ist die resultierende Genauigkeit viel besser.
Das kann z.B. geschehen, wenn wir vor dem Musterfindungsoperators Events aggregieren.
Hier gibt es kein Potenzial, die Genauigkeit des Datenstroms zu verbessern.
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Der Durchschnittsbildungsoperator hat eine sehr hohe Genauigkeit, wenn wir den Load-
Shedding verwenden. Wir müssen das Load-Shedding so durchführen, dass wir alle Input-
Events für den Durchschnittsbildungsoperator proportional abwerfen. In diesem Fall bleibt
die Genauigkeit im Durchschnitt bei 100%. Es gibt nur eine geringe Varianz für höhere
Load-Shedding-Raten. Dieser Operatortyp kann daher einen vorherigen Genauigkeitsverlust
des Datenstroms nahezu vollständig beheben.
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1 Introduction

Many modern IT solutions generate continuous streams of data. Be it user transaction of
online retailers, internal processes of big companies or sensor data in a building, in all
these scenarios we have a continuous stream of data. This data stream is a series of events,
e.g. one sensor data value per event.

We use Complex Event Processing (CEP) to extract information out of these data streams in
near real-time. CEP is a method of analyzing data streams and deriving information from
it. In CEP we implement a query through a directed, acyclic graph of operators. There are
different types of operators that we can use, e.g. to filter, to aggregate, to analyze or to
detect patterns. A complex event consists of a combination of several events. The events
can have different types and sources. The goal of CEP is to detect complex events. To
do this we sent the data stream through our operator graph. The output of the previous
operators is the input for the following ones. If the last operator of the graph detects a
complex event, we have found the desired information.

Often it is not only important that we obtain the information, but also that we get it on
time. Thus it is important, that the processing of incoming events at the operator has low
latency. If e.g. CEP uses sensor data to detect a fire, any delay in the detection caused by
high latency could be very costly. But including outdated data in the processing could lead
to false alarms. To ensure the timeliness of the information we need to take measures.
If we keep the latency low, this also ensures that the operators are not overloaded and
potentially crash.

One mechanism to decrease workload and latency is parallel processing [RBR19; RM19].
In high load situations, we create new operator instances on multiple processing nodes.
The workload is then split between the parallel operators. This reduces the workload
of individual operators. But there are situations, where we do not have the necessary
resources for parallelization. In this thesis, we will not concentrate on parallelization.
Instead, we look at another mechanism called load shedding. Load shedding reduces the
workload at operators and can ensure low latency.

Load shedding drops events from the input queue of an operator in case of high workloads.
This ensures that the operator can process the remaining events with low latency. The
dropping of events can negatively impact the result. This can lead to inaccurate end results.
In an operator graph with multiple operators, it is important, to look for the best location
to perform load shedding at. The correct choice of load shedding location can minimize
resulting inaccuracies. It can also result in a greater reduction in latency per dropped
event.
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1 Introduction

When speaking about inaccuracy it needs to be specified, that in this thesis we are not
looking at the inaccuracy of incoming data. Imprecision of the rules at the operators that
can lead to wrong results is also not part of this thesis. Instead, we investigate how event
shedding at different operators can affect the stream quality and the end result. The stream
quality is a measure of how accurate the data stream is between the operators. At 100%
stream quality, the processing operator detects all possible matches in the data stream.
When we perform load shedding we drop some of the events needed for matches. As a
result, we find fewer matches and the stream quality is thus lower than 100%. The goal
when using load shedding is to keep stream quality as close as possible to 100%.

Upstream load shedding can influence the quality of the result downstream, but it is
challenging to understand the dependencies. The inaccuracy of the stream can lead to false
positives or false negatives. That can in turn influence the following operators through
faulty input data. This can lead to wrong end results (e.g. a faulty detected match).
Especially interesting is, how good the stream quality and the quality of the end result
are. To get a measure for this we compare them to a run of the same input data on the
same operator graph, without load shedding or with load shedding applied at different
operators.

We analyze these dependencies using a representative application. We have three main
operator types that we want to examine: A propositional logic operator, a pattern-finding
operator, and an average-building operator. Each of these operators has its own operator
graph, where it is the sink. In each operator graph, we have several operators before the
sink that prepare the data stream. At these operators, we can use load shedding and change
the composition of incoming events at the sink. Then we can examine, how the sink reacts
to these changes and how accurate the result is.

Questions we answer are how inaccuracies, that we cause through load shedding, propagate
through the operator graph. After load shedding at an operator, how does the stream
quality on the following operators develop? Does it remain the same, further decrease or
even increase? Do certain types of operators propagate inaccuracies differently? Is it more
advantageous to do load shedding before certain operator types? These are some of the
main questions we examine in this thesis.

For our analysis, we extended a provided Java Framework [SBFR19; SBR19]. The Frame-
work handles a CEP stream processing system with load shedding. It enables the use of
different load shedding approaches. That program tests different scenarios of applying load
shedding to an operator graph and captures the data about the stream quality. This data
contains the output of operators and the dropped events. Additionally, we wrote Python
scripts to analyze the stream quality and the accuracy of the end result.

Based on the evaluation the goal is to determine if we can find general rules for load
shedding in a CEP system. The criteria for this are the resulting inaccuracies and the
reduction in latency.
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Structure

The work is structured in the following way:

Chapter 1 – Introduction: Introduces the topic and scope of this work.

Chapter 2 – Definitions: Defines concepts that are important in order to understand this
work.

Chapter 3 – Related Work: Presents and summarizes publications related to the topic of
this work.

Chapter 4 – Scenarios to Analyze Quality Propagation: Describes the program used
for our experiment.

Chapter 5 – Evaluation: Evaluates the results of our experiments.

Chapter 6 – Conclusion: Summarizes the results of the evaluation.

Chapter 7 – Summary and Outlook: Summarizes the results of this work and presents
starting points for future work.

Chapter 8 – Attachment: Contains figures that are referenced in this work, but were too
numerous to be include in the text.
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2 Definitions

In the following, we explain the concepts used throughout this thesis.

2.1 Events

Events generally have event types, which denote what kind of information they store. An
event contains attribute fields with corresponding values. If necessary for its processing an
event can also have a timestamp from the moment of the event’s generation. This type of
events are the input of an operator graph in stream processing or complex event processing.
They are also called primitive events. An example of a primitive event would be the data
of a temperature sensor, that periodically sends its current value to the first source of an
operator graph.

2.2 Data Stream

In general, a data stream is a continuous flow of information. In the case of this work,
where we focus on an operator graph that performs stream processing and complex event
processing, we store the data in events. As such a data stream is a continuous flow of
events through the operator graph.

2.3 Operator

The operator defines how events from the data stream are processed. The events arrive at
the in-queue of the operator. In general the operator processes events after the principle
First In -First Out. Each operator has a predefined task, that determines how it processes
events. After the operator processed the events, it can generate an output event. This
output is then sent on. The task an operator has and the type of output event it generates is
different for each operator type. In this work, we have two big classes of operators: stream
processing and complex event processing.
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2 Definitions

2.4 Operator Graph

The operator graph, also denoted as Ω, is the topology of the operators that are used to
process an incoming data stream. An operator graph has a source, the operator the data
stream arrives at. It also has a sink, the operator that generates the end result. The sink
often sends the end result to a receiver outside of the topology. The most simple topology
contains only one operator that is both source and sink.

In many cases, we need a more structured approach to process the data stream efficiently.
To do so, we use several operators that are connected in a direct acyclic graph. The output
of the preceding operator is the input of the current one. This enables us to run the
operators on different machines as a distributed system.

2.5 Stream Processing

Stream processing can stand for many types of operations. We give a brief overview in the
following.

An often used operator type is the filter operator. It passes on only a subset of incoming
events according to predefined criteria. Another typical stream processing operation is the
averaging of a certain attribute over all events in a window. The average is then sent in one
output event to the next operator. Other cases can require to find the maxima or minima of
an attribute over all events in a window. There can also be operators that prepare events
for processing at following operators. E.g. by bringing the data an event contains, into an
easier processable form.

2.6 Complex Event Processing

Complex Event Processing (CEP) processes incoming primitive events and analyze them.
Out of numerous input events, it generates a small number of output events. Such an output
event is called a complex event. A complex event combines the desired information of the
primitive events that contributed to its detection into one. As such it contains information
in a condensed form. CEP often provides the context that transforms raw information of a
data stream into a usable form.

CEP searches for, e.g. patterns in the data. One such pattern could be the increase of
an attribute value in five consecutive events. Another case of CEP is the application of
propositional logic on the events of the data stream. For all events in a window on operator
could e.g. search for the occurrence of one certain event type (A) and also the occurrence
of another event type (B). Only if both of these event types are present in the same window
does the operator generate an output event (C) and sends it on (A ∧ B → C). Depending
on the configuration, the operator can produce only one output event per window or
several, if the condition is satisfied more than once.
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2.7 Windows

Figure 2.1: Windows with a slide of 1. For a match we need an A and a B in a window.
We see, that both the green and light blue windows share the same B. Thus
they detect a match and put a C out. The dark blue window does not include
a B, it generates no output event.

2.7 Windows

Windows separate the continuous data stream into chunks that the operator then processes
together. This is necessary because the data stream is potentially never-ending. As such
an operation, like building an average over a certain attribute, cannot wait for all events
to arrive. The operator always processes a certain number of events together. The size of
a window can be predefined or dynamically changed at runtime. When using windows
that do not overlap to process events we may miss some matches, because the matching
events are in different windows. To counteract that we use windows that have an overlap
or slide.

The slide parameter of a window determines how many events to consecutive windows
overlap. In Figure 2.1 we see, that two windows that have a size of 5 and a slide of 1, have
4 events in common. In this case, every event is processed among other things together
with all 4 preceding events and also together with all 4 following events. It is impossible to
miss a match if we selected the window size appropriately for this operator. A result is that
a found match can be potentially detected in several consecutive windows.

2.8 Load Shedding

We can use Load Shedding (LS) if an operator is overloaded, to reduce its workload. We
can also use load shedding to reduce the latency in the processing of incoming events.

17



2 Definitions

Load shedding drops a certain percentage of the events, that are in a window, before the
processing. By using load shedding we reduce the latency and workload. But we also
reduce the accuracy of the result we gain.

2.9 Random Load Shedding

Random Load Shedding (RLS) is load shedding that drops each event with an equal
probability. The probability depends on the overall target drop rate.

2.10 Utility-based Load Shedding

Utility-based Load Shedding (ULS) is load shedding that drops events depending on their
utility. The utility value represents how likely the event is to contribute to an output event.
Events that are very likely to contribute have a high utility. Events that have a small change
to contribute have a low utility. If we use load shedding, we preferably drop events with
low utility. ULS offers an overall more accurate result than RLS when they have the same
target drop rate. But ULS does generally have a higher overhead than RLS. The potential
reduction in latency is, therefore, lower for ULS.

2.11 Stream Quality

To determine the stream quality we establish a baseline. This baseline is an average value
for output events for an operator, while no load shedding is used.

The stream quality is the percentage of output events that an operator still sends, when
load shedding is used.

E.g. operator 1 generates on average 100 events when no LS is used. Now we apply load
shedding with 20% drop probability. Operator 1 now only generates 80 output events on
average. The stream quality after operator 1 is therefore 80%.

2.12 Limiting Factor

The limiting factor is a relevant concept to analyze the influence of load shedding in certain
operator types. Let us assume an operator needs two types of events for a match, e.g. A and
B. If only a quarter of the input events are A and the remaining events are B, then A is the
limiting factor. In this case, there are triple the amount of ’B’s, thus ’A’s are outnumbered
three times at this operator.
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3 Related Work

In this chapter we present a selection of papers on the topic of load shedding in CEP and
stream procession systems.

3.1 On Load Shedding in Complex Event Processing

He et al. [HBN13] give an overview of load shedding in CEP. They describe the data and
query model used in CEP systems. For load shedding, it describes what utility values are.
Utility values are the importance of a primitive event towards detecting a complex event.
In the case that load shedding necessary, operators drop events according to their utility.
Operators drop events in such a way, that the overall utility is maximized. This results in
the maximum amount of detected complex events.

The authors discuss two types of resource constraints, that can make load shedding
necessary. These are CPU and memory constraints. After that, they define three types of
load shedding, depending on the limiting resource. These are memory-bound, CPU-bound
and dual-bound (both CPU and memory constraints) load shedding.

The authors also define two types of load shedding mechanisms. These are integral and
fractional load shedding. In integral load shedding an operator drops certain incoming
event types or even whole queries. The operators do that after the principal all or nothing.
In fractional load shedding the operator analyses a random subset of incoming events.
Based on that, the operator drops a fraction of certain event types and or queries. In the
next part He et al. discuss integral and fractional load shedding for all the above-mentioned
resource constraints. These are memory-bound, CPU-bound and dual-bound constraints.
Firstly the discuss Integral Memory-based Load Shedding (IMLS). IMLS works by solving an
optimization problem. It maximizes the product of the number of expected query matches
and their utility value. It does that while not violating the memory constraints. The
Fractional Memory-based Load Shedding (FMLS) works similar to IMLS. An optimization
problem is solved, while not violating the memory constraints. The difference is, as
described above, which part of the input event stream the operators drop. Thus the
optimization problem is built differently.

The CPU-bound load shedding variants Integral CPU-bound Load Shedding (ICLS) and
Fractional CPU-bound Load Shedding (FCLS) work similar to their memory-bound counter-
part. The only difference is the type of limited resource. The dual-bound variants Integral
Dual-bound Load Shedding (IDLS) and Fractional Dual-bound Load Shedding (FDLS) are
also only different in the type of resource constraints.

19



3 Related Work

For all these variants He et at. give a complexity analysis (they are NP-hard), approximations
and further theorems including proofs.

3.2 eSPICE: Probabilistic Load Shedding from Input Event
Streams in Complex Event Processing

Slo et al. [SBR19] introduce a probabilistic load shedder called eSPICE. eSPICE can be
used for window-based CEP-frameworks. In this paper, the authors assume, that there are
infinite resources available. Thus the goal of this load shedder is not to reduce the strain
on the system and its components. The goal is to ensure that certain latency bounds are
not violated while processing events. This is necessary because in CEP detected complex
events often need to be found in a certain time interval. This time interval starts from the
moment of the creation of the primitive events. It ends with the detection of the complex
event. In many applications, it is better to have less accurate current data, than to have
totally accurate, but outdated data.

At the application start, eSPICE learns from the processed data and builds a probabilistic
model. To do this it analyses which events contribute to a complex event and its position in
its window. Both the type of an event, as well as its position in a window are important for
the overall utility value of an event. The position of the event in a window is important
because the authors assume that in a CEP system operators are of the form A∧B → C, with
A and B primitive input event types. The authors also assume, that only one complex event
can be detected per window. In this case, only the first A in a window would contribute
to the complex event C. Any following A in a window would not contribute. As a result
following ′A′s would have a low utility value.

Load shedding at an operator in eSPICE starts, when a predefined percentage of the
maximum capacity of the input queue is filled. If this is the case, the operator drops several
primitive events from the input queue. The operator does this, to ensure that it can process
incoming events promptly. It ensures that the latency bound is not violated. The detected
complex events are thus still relevant once the operator detects them.

The authors also evaluated eSPICE. The result is, that eSPICE is, after the learning phase,
at the beginning, an efficient and lightweight load shedding framework. With only a small
overhead it maintains the set latency bound while delivering a result with only a small loss
of accuracy.

In the test, the authors compare eSPICE to state-of-the-art load shedder [cite] for CEP
systems. eSPICE outperforms them.
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3.3 Concept-Driven Load Shedding: Reducing Size and Error
of Voluminous and Variable Data Streams

Katsipoalakis et al. [KLC18] introduce the approach of Concept-Driven Load Shedding.
The authors call the relevant part of the information in a data stream the concept. They
postulate that the concept of a data stream can change over time. This change in concept
leads to shrinking accuracy when using uniform load shedders. Uniform load shedders use
apriori knowledge to calculate utility values. Then they use these utility values to create
the load shedding function. From that point on the load shedding function is static. As
such it cannot react to concept drift. An example would be the problem of finding the top
routes of taxi traffic in a city, from a data stream. The top route can change drastically over
the span of the day or be affected by other factors like the season or roadworks. Using a
filter created with knowledge from a morning in winter, on the data stream containing the
data from a night in summer, can lead to great inaccuracies.

The Concept-Driven Load Shedding Algorithm divides the input stream into overlapping
time windows. For each window, it estimates the context by sampling the data from the
data stream from this period. It does that by applying the query in question to it. The
information gathered from this is used to filter the stream of the corresponding window. As
such the filter is always fitting for the concept.

Concept-Driven Load Shedding scales comparable to uniform load shedder. In terms of
performance, it is equal at worst or significantly better at best. The accuracy is equal to
uniform load shedders when there is no concept drift in the data stream. Concept-Driven
Load Shedding is more than an order of magnitude better if a concept drift is present. It
achieves more than 90% accuracy.

3.4 THEMIS: Fairness in Federated Stream Processing under
Overload

The paper [KFSP16] from Kalyvianaki et al. Introduces THEMIS, a federated stream
processing system (FSPS) for resource-constrained hardware. A FSPS splits its queries into
query fragments. These query fragments can then be executed on multiple sites. FSPSs
often suffer from overload. Load shedding in an FSPS is hard because the different sides
that process the query fragments are autonomous. There is no centralized entity that can
coordinate load shedding.

The goal of THEMIS is to provide a globally fair load shedding algorithm for FSPSs. For
that purpose, it uses the concept of Source Information Content (SIC). SIC is the value a
tuple has towards a query result. The authors base this value on the amount of source
data that went into the creation of this tuple. As a result, highly aggregated data is valued
more highly. The SIC value is query-independent. The idea is, to balance the SIC values
for each query on every node. THEMIS implements the BALANCE-SIC algorithm. The

21



3 Related Work

BALANCE-SIC algorithm always keeps the least amount of tuples for every query to reach a
certain SIC-threshold. This balances the SIC values for each query on a node. Ever site in a
FSPS implements that. The result is a globally fair load shedding algorithm.

In the evaluation BALANCE-SIC scores 33% higher than random load shedding on the
Jain’s Fairness Index [Raj16]. It is also fairer than [ZXLT10] and outperforms [TÇZ07].
The overhead of BALANCE-SIC is also small. The authors measured only an increase of
11% in runtime compared to random load shedding.

3.5 Staying FIT: Efficient Load Shedding Techniques for
Distributed Stream Processing

Tatbul et al. [TÇZ07] introduce three solutions on how to shed load. The first is a distributed
load shedding algorithm called D-FIT (Distributed Feasible Input Table). The second is
a centralized version of this algorithm called C-FIT. The third is a linear programming
solution (Solver).

These approaches focus only on CPU restriction. They do not address potential memory
overloads. All mentioned approaches have in common, that they calculate load shedding
plans off-line. The approaches are all based on the same basic principle. They use available
metadata about the system to calculate plans off-line. This enables to quickly determine of
best load shedding plan at run time. Then they use these plans to determine where and what
to drop in case an overload occurs. During the run time each operator estimates its load
level, using samples of the data stream. If a node detects an overload, it selects the most
beneficial load shedding plan. The node then executes the according drop operations.

The distributed approach structures the operator graph as a tree. Each node calculates
its own Feasible Input Table (FIT). It contains all possible input combinations that do
not cause a CPU-overload. This FIT is afterwards sent to its parent node, which merges
the FIT of all its children. The parent node also removes all input combinations that are
infeasible for itself. This FIT is then sent to the parent of the current node. Through its
FIT a node can perform load shedding for itself and all its descendants. This requires no
further communication.

The centralized approaches perform the planning at one dedicated coordinator node.
The coordinator also decides when and where load shedding happens. It sends the load
shedding order to the nodes in question. The nodes use the most beneficial load shedding
plan available. C-FIT works similar to D-FIT. The difference is that all FITs are sent to the
coordinator node. The coordinator plans and controls the whole load shedding process.

The solver based approach formulates the load shedding problem as a linear optimization
problem. This approach groups overload causing inputs, that do not differ too much,
together. For this group, a load shedding plan is calculated, through solving the linear
program. This plan can be used for the whole group, without exceeding a certain error
percentage. If an overload situation occurs, the node in question selects the load shedding
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plan for this input and executes it. The authors test only the plan generation time. They
did not perform a comparison to other load shedding algorithms.

The same author also wrote several other papers [Tat02; Tat07; TÇZ+03; TZ06] on the
topic of load shedding.
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4 Scenarios to Analyze Quality
Propagation

In the following chapter, we take a closer look at the program that we used for our
experiment. At the beginning we take a look at the basic architecture. Afterwards we
present the three different scenarios that were used in the experiment. The scenarios were
designed to allows us to influence the composition of input events at different operators
in several ways. This allows us to examine the propagation of losses in stream quality in
various ways.

4.1 Program Architecture

For the experiment in this thesis, we modified the provided Java Framework [SBFR19;
SBR19]. The framework could not run several nodes in parallel. This was a feature that
was necessary for my experiment. Additionally, we programmed three different scenarios
for load shedding and everything needed for their evaluation, from scratch. The scenarios
are described at a later point. We describe in the following the basic architecture of the
Java Program, that we used for the experiment. It gives insight into how we obtained the
data for the evaluation.

As seen in Figure 4.1 the program starts a splitter, executor and merger for every operator
in the operator graph. The operator graph is also denoted as Ω. If the operator is a source
in the topology of Ω, it starts a source as well. Each of these separate components of an
operator has its own thread. The program starts operators and all their internal components
in inverse order. This guarantees that at the moment the first operator of Ω starts running,
all other operators are already online and ready to process incoming events. The structure
of Ω is determined by the connections between the single operators. On creation, the
operator is passed a reference to the splitter of the following operators. The communication
between the components happens via queues. We use the receiveElement() method of the
class Runable for that purpose.

Depending on the scenario run in the program, the source either reads in data from a file
or generates random data values. The source uses the so obtained data to create events,
that are then sent to the splitter. Each scenario has its own event type(s). This is necessary
because all scenarios have events with different attributes. After the source sent all events,
it sends an EndOfStream (EOS) event. The EOS signals to the following operators, that no
more events will be sent over this connection.

25



4 Scenarios to Analyze Quality Propagation

Figure 4.1: Program Architecture. On the left we see the internal structure of the source
of Ω. On the right we see the internal structure of every operator, that is not
the source of Ω.

The splitter distributes the events to the windows. The windows are necessary for the later
processing of events. The splitter sends the start and end of a window to the queue of
the executor. The splitter sends the events belonging in this window between these two
markers as well. The windows can overlap. As such events can be in multiple windows at
once.

The executor processes the events. It processes each incoming event for every window that
contains it. If load shedding is active, it happens here in the executor before the processing
of the event. For the processing of an event, the executor applies a pre-defined logic on the
incoming events for a window, e.g. pattern finding. If the necessary conditions are met
(e.g. pattern detected), the executor generates output events and sends them to the merger.
The logic that is used to process events is dependent on the scenario currently running and
on the operator id. The operator id signals the position of the operator in Ω. The program
defines Ω on creation, after that it is static.

The merger receives incoming events and forwards them to the next operator(s) in Ω. If
the operator is the sink of Ω, the merger sends no events. In that case, it terminates the
program once it reaches the end of the stream. The merger can recognize when all events
have been processed, by the number of EOS events that it has received.

At several spots, the program writes data to file for evaluation. As data format we used the
CSV-format, to simplify evaluation. The program captures the output of each operator’s
executor and writes a statistic of it to file. It also captures and writes to file the overall
runtime of the program.

The program offers the option to start each operator as an individual program. In this
case, the program writes all outputs of the operator’s executor completely to file, including
a timestamp. When the program starts the next operator, it reads in the output of the
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previous operators from the file. Using the timestamps, it sends the events, as close as
possible to the order, they would have in the standard execution of the program. The
operator can never reach this order completely if one or more operators have multiple
input files, that they need to read in. The timestamps used to order the events can only
be used to order the incoming events of one source completely. If there are two or more
sources the operator can not reconstruct the order of the events from different sources
completely. It can only approximate it. This results in a significantly different result than
running single-node mode, compared to the standard execution (all in one program).

4.2 Operator Types

In the following, we introduce the operator types we use in the three different scenarios.

4.2.1 Filter Operator

An operator that only sends incoming events on, if they a certain value in a certain
attribute.

4.2.2 Forwarding Operator

This is a filter operator, that forwards all its input events.

4.2.3 Merge Operator

An operator that merges input events that are in the same window, if they fulfill certain
conditions. One condition could be the same value for an attribute.

We have two types of merge operators in this work. One type merges all events in a window
that can be merged. Then it sends on all events, even those that could not be merged. The
other type has a restriction, it sends only the results of a merge on.

4.2.4 Propositional Logic Operator

An operator of the form A ∧ B → C. It gets events of type A and B as input. If there are
both a A and a B present in the same window, the operator generates an output event C.
In this work, the propositional logic operator can only generate at most one output event
per window.
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Figure 4.2: The operator graph of the Fire Scenario.

4.2.5 Average-building Operator

An operator that builds an average over a certain attribute of all input events that are in
the same window. It generates one output event per window.

We do not take the number of output events as the criterion for the average-building
operator. This number would remain the same even for high drop probabilities. Instead we
take the accuracy of the average as criterion for the stream quality.

4.2.6 Pattern-finding Operator

An operator that searches for a pattern in the attributes of incoming events.E.g. an operator
that detects an increase in a certain attribute for a certain number of events in a row.

4.3 Fire Scenario

In this scenario, we want to detect a fire by using three different types of values. These
values are randomly generated. The first value (type A) is the smoke value. The second
value (type B) is the temperature. The last value (type C) is the humidity value. A
fire should be detected if all three types have a value that exceeds a certain threshold.
Furthermore, all these values need to be close to each other in time. This is necessary
because only if all three types have high values at the same time, a fire occurs. Otherwise,
a false alarm could happen if we group together values of different points in time. In
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Figure 4.3: The operator graph of the Twitter Scenario.

the following, we discuss the structure of the operator graph Ω, that implements the Fire
Scenario. We address each operator as ω, with the id it has in Figure 4.2.

ω1: This is the source of Ω. It generates the values of event types A, B and C. Events of
type A are sent to ω2. ω1 sends events of type B to ω3 and events of type C to ω4.

ω2: ω2 is a forwarding type operator. It forwards incoming events (of type A) to ω5.

ω3: ω3 is a forwarding type operator. It forwards incoming events (of type B) to ω5.

ω4: ω4 is a forwarding type operator. It forwards incoming events (of type C) to ω6.

ω5: This is a propositional logic type operator. It receives events of type A and type B. ω5
has count-based windows of size 10, that do not overlap. If in a window one A and
one B exceed their threshold, an event of type D is send to ω6. ω5 can only detect
one output event of type D per window.

ω6: This is a propositional logic type operator. It is the sink of Ω, it receives events of
type C and type D. ω6 has count-based windows of size 5, with a slide of 1. That
means that windows always overlap in one event with the preceding window and
also overlap in one event with the following window. If in a window a C that exceeds
its threshold is present and also a D, ω6 detects a fire. ω6 can only detect one fire per
window. Because ω6 is the sink of Ω, events are not sent to another operator.

4.4 Twitter Scenario

In this scenario, we read in log files containing captured Tweets in the source of the operator
graph. The captured Tweets were provided by the institute and are saved in Tweet JSON
[Twi19]. The structure of a Tweet log file can be seen in Figure 4.5.

The structure of the Twitter Scenario operator graph Ω can be seen in Figure 4.3. Each
operator processes incoming events differently. As such each operator produces different
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Figure 4.4: The operator graph of the Taxi Scenario.

output events. In the following, we address the operators as ω, with the id they have in
Figure 4.3.

ω1: ω1 only forwards events representing a Tweet with an id string, that is divisible by
two. It does not forward all other events.

ω2: ω2 is a filter type operator. It only forwards events with the language attribute ‘en’ for
English. It does not forward all other events.

ω3: ω3 is a filter type operator. It only forwards events with a language attribute different
than ’en’ for English, which also have a friend’s count greater or equal than 300. It
does not forward all other events.

ω4: ω4 is a filter type operator. It forwards only events representing a Tweet that is a
response to another Tweet. It does not forward all other events.

ω5: ω5 is an average-building type operator. ω5 processes events in windows of a prede-
fined size (here 100 events per window). It builds the average of the follower’s count
of the incoming events. When the end of the stream is reached, ω5 puts the average
value into an output event. Because ω5 is the sink of Ω, events are not sent to another
operator.

4.5 Taxi Scenario

In this scenario we read in two log files ’tripData’ and ’tripFare’, in the source operator. The
log files were downloaded from [Who14]. Both of these files contain each one half of the
information on taxi rides in NYC in August 13. The structure of the log files can be seen in
Figure 4.6.

The structure of the Taxi Scenario operator graph Ω can be seen in Figure 4.4. Each
operator processes incoming events differently. As such each operator produces different
output events. In the following, we address the operators as ω, with the id they have in
Figure 4.4.
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ω1: The source of Ω. It reads in two separate files containing each one half of information
on taxi rides in NYC in August 13. ω1 sends the information from the ’tripData’ file
(Figure 4.6) to ω2. It then sends information of the ’tripFare’ (Figure 4.6) file to ω3.

ω2, ω3: These operators are merge operators. They are located on different branches of
Ω. They have both a window size of 150. Both these operators do the same for
the events that pass through them. These operators merges all events that contain
information about taxi rides on the same day are merged into one event. After the
window is complete, the operator sends the merged to the next operator. ω2 sends its
output to ω4. ω3 sends its output to ω5.

ω4: ω4 is a forwarding operator. It has a window size of 150. All input events that it
receives contain information about taxi rides on the same day. Those events are
the result of the merging of events in ω2. But the input events still contain the
individual values of the events that they were created from. ω4 gets events from ω2
and computes the starting districts of the taxi ride from the GPS data. We use the
coordinate (40.7342645, −73.928357) and sort the taxi rides into rides that started
northwest, northeast, southwest or southeast of the coordinate. ω4 then sends the
events to ω6.

ω5: ω5 is a forwarding operator. It has a window size of 150. All input events that it
receives contain information about taxi rides on the same day. Those events are the
result of the merging of events in ω3. But the input events still contain the individual
values of the events that they were created from. From the price of the individual
taxi rides, ω5 computes the average price per ride. It then sends the events to ω7.

ω6, ω7: These operators are merge operators. They are located on different branches of
Ω. They have both a window size of 150. Both these operators do the same for
the events that pass through them. These operators merge all events that contain
information about taxi rides on the same day are merged into one event. For each
merge, the operator computes the average values for the attributes. After the window
is complete, the operator sends the merged event to the next operator. ω6 sends its
output to ω8. ω7 sends its output to ω9.

ω8, ω9: These operators are merge operators. They are located on different branches of
Ω. They have both a window size of 150. Both these operators do the same for
the events that pass through them. These operators merge all events that contain
information about taxi rides on the same day are merged into one event. For each
merge, the operator computes the average values for the attributes. After the window
is complete, the operator sends the merged event to the next operator. Both of these
operators send their output to ω10.

ω10: This is a merge operator. After ω1, which reads in data from separate files containing
each half the information of the taxi rides on one day, the data is kept separately.
ω1 splits the data between the two branches of Ω. ω10 merges the two data streams
coming from ω8 and ω9. As such ω10 gets one event with half the information of one
day from ω8. It gets the other half from ω9. These events are then merged into only
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one event. This event then contains all data of that day. ω10 then sends the merged
event to ω11.

ω11: ω11 receives events from ω10. These events represent the cumulative information
on taxi rides in NYC on a single day. Each event has five attribute values that are
of interest here: The number of taxi rides in four districts and the average price
for a ride on this day. In a window, we have five events, each event represents one
days. We search for the following: In at least one of the five attributes we want to
have an increase two times in a row. For that purpose, we consider each attribute
separately from the others. Because this ω11 the sink of Ω, events are not sent to
another operator.

4.6 Experiment Setup

In the experiment we first determine the baseline for our scenarios. We do this by running
each scenario several times and saving the average number of output events after each
operator, and the total run time. We determine the stream quality and accuracy the end
result by how many percent of the output events are still sent, when load shedding is used.
When using load shedding, we always run the scenarios after the same principle. We only
use load shedding at one operator at a time. For random load shedding we start with a
drop probability of 5% and increase it every run by 5%. We do this up until 95% drop
probability. Then we repeat this for every operator in the operator graph. This whole
process is one complete run.

For the Fire Scenario we generate 3,000,000 events per run, 1,000,000 of each types. In the
experiment we do 50 runs for random load shedding and another 50 runs for utility-based
load shedding.

In the Twitter Scenario we read in 751545 Tweets in each run. In the experiment we do 15
runs for random load shedding and another 15 runs for utility-based load shedding. We do
not need to do as many runs as in the Fire Scenario, because we do not generate random
data for the events.

In the Taxi Scenario we read in 1,048,675 taxi rides in each run. In the experiment we do
15 runs for random load shedding. For for utility-based load shedding we do only one run,
because we use fixed utility values to drop the events in a fixed order. We do not need to
do as many runs as in the Fire Scenario, because we do not generate random data for the
events.
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Figure 4.5: The structure of a Twitter log file. Here we can see the log of a single Tweet. In
blue we can see the attributes that we need for the Twitter Scenario. Reading
in these log files is very time consuming, as a direct result of the structure and
the amount of information they contain. 33
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Figure 4.6: The taxi data files. As an example we see two taxi rides. Outlined in blue
we see the file ’trip_data’. Outlined in green we see the file ’trip_fare’. The
attributes that are marked in red are used in the Taxi Scenario. We can see that
the first taxi ride in ’trip_fare’ is the continuation of the taxi ride in ’trip_data’.
This principle is true for all taxi rides.
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5.1 Hypotheses

In the following, we present hypotheses on how we expect Random Load Shedding (RLS)
and Utility-based Load Shedding (ULS) to affect the different operator types.

5.1.1 Filter/Forwarding Operator

The percentage of events not detected should be equal to the drop probability of the RLS.
We do expect that this operator type cannot improve the stream quality when we use
RLS.

With a well-working utility function for this operator the percentage of events not detected
should be significantly better than the overall drop rate of the ULS. Therefore we expect,
that operator type can improve the stream quality when we use ULS.

5.1.2 Merge Operator

The worst-case the result should look like the filter operator. The reason is, that in this
case, the operator does not merge events. The events are sent on in the state they had as
an input event.

The higher the number of merged together events in a window is, the better the result
should be for RLS. The reason is that the chance for a single dropped events to reduce the
number of outputs would continuously sink. The higher the number of events that the
operator merges into one is, the better the result.

If we have a high number of events that the operator merges into one, we also expect this
operator type to improve the stream quality. The unrestricted merge operator type should
have a clear advantage in that regard.

ULS should not be a great improvement over RLS in this case. It can potentially improve
the attributes of the merged events by controlling which types of events are left to be
merged. For the number of output events, ULS should only give a small advantage over
RLS, if at all. Only if we can drop events, that are merged together with a high number of
other events, with a higher drop probability, should we see an improvement in the result,
compared to RLS.
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5.1.3 Propositional Logic Operator

This operator type is e.g. of the form A ∧ B → C. In the case that A and B are relative
evenly in numbers it should result in a similar situation as in the case of the filter operator.
If either A or B are present in greater number than the other, then the less numerous one
is the limiting factor. Because it is also dropped with the same drop chance it should also
lead to a result that misses a percentage of events equal to the drop chance of the RLS.

In the case that A and B are relative evenly in numbers, ULS should have similar results as
RLS. If A or B are present in a greater number than the other (e.g. more A than B), then
the less numerous one is still the limiting factor. But if the ULS preferably sheds events
of type A, overall not many, events should be missed, if any at all. This is a significant
improvement compared to RLS, where in this case the percentage of events missed is equal
to the drop chance.

5.1.4 Average-building Operator

If the values of the events are relatively similar, RLS should have only a very small amount
of influence on the result, if any at all. Therefore it is more interesting to look at a case
where this is not true. E.g. 100 events total, five events have a very high value and 95
events a very small one. The RLS now drops events with a chance of a 25% drop chance. If
now, for example, the operator drops two of the high-value events, that could lead to a big
impact in the resulting average, making it much smaller than it should be. ULS should lead
to similar results as RLS.

We expect, that this operator type can improve the stream quality greatly. As long as a
single input event is in a window, we generate one output event. This is the same number
of output events that is generated for a full window. What is more interesting in this case is
the stability of the average value in this output event. We expect there to be a difference to
the baseline average value.

5.1.5 Pattern-finding Operator

RLS should have a great impact on the accuracy of the result. Dropping a single event can
destroy a pattern, or lead to the creation of a new one. Overall this is the operator type
we expect to have the highest loss in accuracy through RLS. Therefore we thing that this
operator type cannot improve the stream quality.

ULS should lead to better results if we have the knowledge to preserve as many patterns as
possible when dropping events. This is still the operator type we expect to have the highest
loss in accuracy through both ULS and RLS.
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(a) (b)

Figure 5.1: Fire Scenario: Figure 5.1a depicts the stream quality after operator 1.
Figure 5.1b depicts the stream quality after operator 2.

(a) (b)

Figure 5.2: Fire Scenario: Figure 5.2a depicts the stream quality after operator 3.
Figure 5.2b depicts the stream quality after operator 4.
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(a) (b)

Figure 5.3: Fire Scenario: Figure 5.3a depicts the stream quality after operator 5.
Figure 5.3b depicts the accuracy of the end result.

5.2 Fire Scenario: Random Load Shedding

In the Fire Scenario we address each operator as ω, with the id it has in Figure 4.2. The
operator graph is also denoted as Ω. Above we described the expected influence of RLS on
the different types of operators. In the Fire Scenario, we have four filter operators (ω1-ω4)
and two propositional logic operators (ω5 − ω6).

In the following, we examine the results of the experiment. Afterwards, we discuss the
accuracy of the hypotheses. We examine the stream quality after each operator separately.

For each operator we examine the result of load shedding at all preceding operators and the
operator itself. For every operator, where load shedding happens, we give a brief overview
of the inner workings of the operator. Afterwards, we explain the impact on the stream
quality caused by load shedding at this operator. Lastly, we compare the hypothesis for this
event type with the results.

5.2.1 Fire Scenario RLS: Stream Quality after Operator 1

The development of stream quality after operator 1 can be seen in Figure 5.1a. It shows
the stream quality for Load Shedding (LS) at one operator at a time for every tested drop
probability. In the following, we explain the results seen in Figure 5.1a.
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ω1: The source of Ω, it generates all events with random values. The decline in stream
quality after ω1 is linear (m = −1, b = 100) to the increase in drop probability. As
such the line in Figure 5.1a for ω1 has a slope of −1. This is a forwarding operator,
the influence of RLS on the stream quality after ω1 is thus exactly as expected.

ω2-ω6: These operators are located after ω1 in Ω (see Figure 4.2). Thus load shedding
at these operators can not retroactively influence the stream quality after ω1. The
stream quality after ω1 remains therefore at 100 % if we use LS at these operators.

5.2.2 Fire Scenario RLS: Stream Quality after Operator 2

The development of stream quality after operator 2 can be seen in Figure 5.1b. It shows
the stream quality for LS at one operator at a time for every tested drop probability. In the
following, we explain the results seen in Figure 5.1b.

ω1: The source of Ω, it generates all events with random values. It sends events to ω2,
which are the only input events that ω2 receives. The decline of the stream quality
after ω2 is linear (m = −1, b = 100) to the increase in drop probability in ω1.

This is a filter operator, the influence of RLS on the stream quality after ω2 is thus
exactly as expected.

ω2: ω2 forwards its input events to ω5. Therefore RLS on this operator results in a decline
of the stream quality after ω2 that is linear (m = −1, b = 100) to the increase in drop
probability.

This is a filter operator, the influence of RLS on the stream quality after ω2 is thus
exactly as expected.

ω3-ω6: These operators are located after ω2 in Ω (see Figure 4.2). Thus load shedding
at these operators can not retroactively influence the stream quality after ω2. The
stream quality after ω2 remains therefore at 100 % if we use LS at these operators.

5.2.3 Fire Scenario RLS: Stream Quality after Operator 3

The development of stream quality after operator 3 can be seen in Figure 5.2a. It shows
the stream quality for LS at one operator at a time for every tested drop probability. In the
following, we explain the results seen in Figure 5.2a.

ω1: The source of Ω , it generates all events with random values. It sends events to ω3,
which are the only input events that ω3 receives. The decline of the stream quality
after ω3 is linear (m = −1, b = 100) to the increase in drop probability in ω1.

This is a filter operator, the influence of RLS on the stream quality after ω3 is thus
exactly as expected.
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ω2: ω2 is located parallel to ω3 in Ω (see Figure 4.2). Thus load shedding at ω2 can not
influence the stream quality after ω3. The stream quality after ω3 remains therefore
at 100 % if we use LS at ω2.

ω3: ω3 forwards its input events to ω5. Therefore RLS on this operator results in a decline
of the stream quality after ω3 that is linear (m = −1, b = 100) to the increase in drop
probability.

ω4-ω6: These operators are located after ω3 in Ω (see Figure 4.2). Thus load shedding
at these operators can not retroactively influence the stream quality after ω3. The
stream quality after ω3 remains therefore at 100 % if we use LS at these operators.

5.2.4 Fire Scenario RLS: Stream Quality after Operator 4

The development of stream quality after operator 4 can be seen in Figure 5.2b. It shows
the stream quality for LS at one operator at a time for every tested drop probability. In the
following, we explain the results seen in Figure 5.2b.

ω1: The source of Ω, it generates all events with random values. It sends events to ω4,
which are the only input events that ω4 receives. The decline of the stream quality
after ω4 is linear (m = −1, b = 100) to the increase in drop probability in ω1.

This is a filter operator, the influence of RLS on the stream quality after ω4 is thus
exactly as expected.

ω2-ω3: These operators are located parallel to ω4 in Ω (see Figure 4.2). Thus load shedding
at these operators can not influence the stream quality after ω4. The stream quality
after ω4 remains therefore at 100 % if we use LS at these operators.

ω4: ω4 forwards its input events to ω6. Therefore RLS on this operator results in a decline
of the stream quality after ω4 that is linear (m = −1, b = 100) to the increase in drop
probability.

This is a filter operator, the influence of RLS on the stream quality after ω4 is thus
exactly as expected.

ω5-ω6: These operators are located after ω4 in Ω (see Figure 4.2). Thus load shedding
at these operators can not retroactively influence the stream quality after ω4. The
stream quality after ω4 remains therefore at 100 % if we use LS at these operators.

5.2.5 Fire Scenario RLS: Stream Quality after Operator 5

The development of stream quality after operator 5 can be seen in Figure 5.3a. It shows
the stream quality for LS at one operator at a time for every tested drop probability. In the
following, we explain the results seen in Figure 5.3a.
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5.2 Fire Scenario: Random Load Shedding

ω1: The source of Ω, it generates all events with random values. ω1 generates events
of type A, B and C in equal numbers. RLS drops events of all types in the same
proportion. All input events at ω5 are of type A and B. Thus the decline of the stream
quality after ω5 is linear (m = −1, b = 100) to the increase in drop probability in ω1.

This is a filter operator, the influence of RLS on the stream quality after ω5 is thus
exactly as expected.

ω2: ω2 forwards events of type A to ω5. The decline in stream quality when using LS in ω2
is linear (b = 100), but not as steep as seen when using LS in ω1. This was expected
because only events of type A pass through this operator. ω5 only needs one event of
type A above the threshold per window for a match. Because events of type B do
not pass through ω2 they are not dropped. A match of ω5 is of the form A ∧ B → D,
with A and B greater threshold. Thus the overall probability to find a match at ω5 is
higher when using load shedding at ω2, compared to using RLS in ω1.

ω2 is of type filter operator and the result matches the expectations.

ω3: ω3 forwards events of type B to ω5. The decline in stream quality when using LS in
ω3 is linear (b = 100), but not as steep as seen when using LS in ω1 or ω2. This was
expected because only events of type B pass through this operator. The threshold for
a B to contribute to a match in ω5 is also lower than for on an A. Events of type B

are thus on average more likely to contribute to a match in ω5 than an event of type
A. We can thus shed comparatively more ’B’s than ’A’s to receive the same stream
quality after ω5. The probability of detecting a match in ω5 is higher when using RLS
at ω3, compared to using RLS at ω2 or ω1.

ω3 is of type filter operator and the result matches the expectations.

ω4: ω4 is on a different branch in Ω than ω5 (see Figure 4.2). Thus load shedding at this
operator can not influence the stream quality after ω5. The stream quality after ω5
remains therefore at 100% if we use LS at ω4.

ω5: ω5 receives input events from ω2 and ω3. From ω2, it receives events of type A and
from ω3, it receives events of type B. Overall the number of ’A’s and ’B’s is equal,
but that proportion can be different for the individual windows of size 10. In each
window, one event of each type needs to be present, which also passes the threshold
for its event type. For events of type A, roughly 10% of events pass this threshold.
For events of type B, the passing rate is about 20%.

It is not easy to find a match, even without using load shedding. When using
load shedding, the load shedder removes events from a window. This reduces the
probability to find a match even further. The loss in stream quality after ω5 is the
greatest if load shedding is done at ω5 itself (seeFigure 5.3a). The degradation of
stream quality is even worse than a linear decline (m = −1, b = 100). The reduction
of available window spots reduces the stream quality to a great degree. It is worse
than shedding input events with the same drop probability.
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ω6: ω6 is located after ω5 in Ω (see Figure 4.2). Thus load shedding at this operator
can not influence the stream quality after ω5. The stream quality after ω5 remains
therefore at 100% if we use LS at ω6.

5.2.6 Fire Scenario RLS: Accuracy of the End Result

The accuracy of the end result is the stream quality after operator 6. The development of
the accuracy of end result can be seen in Figure 5.3b. It shows the accuracy of end result
for LS at one operator at a time for every tested drop probability. In the following, we
explain the results seen in Figure 5.3b.

ω1: The source of Ω, it generates all events with random values. ω1 generates events
of type A, B and C in equal numbers. RLS drops events of all types in the same
proportion. All input events at ω6 are of type C and D, and type D results as a
match of A and B at ω5. Thus the decline of the stream quality after ω6 is linear
(m = −1, b = 100) to the increase in drop probability in ω1.

This is a filter operator, the influence of RLS on the stream quality after ω6 is thus
exactly as expected.

ω2: ω2 forwards events of type A to ω5. The decline in stream quality when using LS in ω2
is linear (b = 100), but not as steep as seen when using LS in ω1. This was expected
because only events of type A pass through this operator. ω5 only needs one event of
type A above the threshold per window for a match. Because events of type B do not
pass through ω2 they are not dropped. A match of ω5 is of the form A ∧ B → D, with
A and B greater threshold.

ω2 sends half of the input for ω5. ω6 follows after ω5 and ω5 sends the limiting
factor for ω6. Thus a higher probability of finding a match in ω5 results in a higher
probability to find a match in ω6.

ω2 is of type filter operator and the result matches the expectations.

ω3: ω3 forwards events of type B to ω5. The decline in stream quality when using LS in
ω3 is linear (b = 100), but not as steep as seen when using LS in ω1 or ω2. This was
expected because only events of type B pass through this operator. The threshold for
a B to contribute to a match in ω5 is also lower than for on an A. Events of type B

are thus on average more likely to contribute to a match in ω5 than an event of type
A. We can thus shed comparatively more ’B’s than ’A’s to receive the same stream
quality after ω5.

ω3 sends half of the input for ω5. ω6 follows after ω5 and ω5 sends the limiting
factor for ω6. Thus a higher probability of finding a match in ω5 results in a higher
probability to find a match in ω6. ω3 is of type filter operator and the result matches
the expectations.
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ω4: ω4 forwards events of type C to ω6. The decline in accuracy of the end result when
using LS in ω4 is significantly better than linear (m = −1, b = 100). Because of the
topology of Ω, we need a smaller amount of events of type C than of type A and B to
detect a match in ω6. The reason is, that ’A’s and ’B’s need to be matched two times,
one time directly at ω5, one time indirectly at ω6. A C only needs to contribute to one
match in ω6 to contribute to the end result. Thus a threshold exceeding C is more
likely to reach ω6, compared to threshold exceeding ’A’s and ’B’s. Therefore more
events of type C can be shed to get an end result of a certain accuracy compared to
events of type A and B.

ω4 is of type filter operator. Thus we expected a linear decrease in accuracy of end
result when using load shedding at Ω. Because of the many spare ‘C ’s that exceed
the threshold at ω6 we do not see a linear decrease in this case. The loss in accuracy
of end result is significantly better than linear decrease with m = −1, b = 100.

ω5: ω5 is a propositional logic operator. It sends events of type D to ω6. Events of type
D represent a match of a threshold exceeding A and a threshold exceeding B. As
explained above in ω4, events of type C are more likely to reach ω6 than events of
type D. Thus ’C ’s reach ω6 in far greater number. RLS in ω5 leads to the overall
greatest loss in accuracy of end result. The reason is, that it results in fewer events of
type D, that are sent to ω6. The ’D’s become the limiting factor in ω6. ω6 is flooded
with ’C ’s. But without a D in the same window, a threshold exceeding C can not lead
to a match.

ω5 is a propositional logic operator that sends the limiting factor to ω6. Thus I
expected a linear decrease (m = −1, b = 100) of the accuracy of end result when
using RLS at ω5. As we have seen, the actual loss in accuracy of the end result is far
worse than that. The reason for this is, how greatly outnumbered ’D’s are at ω6. The
result would look different for a more equal composition of input events at ω6. The
closer in number the event types, the closer the loss in accuracy would get a linear
decrease (m = −1, b = 100).

ω6: ω6 is a propositional logic operator. The decline in the accuracy of end result through
load shedding at ω6 is better than linear (m = −1, b = 100) to the drop probability.
This is true until roughly 67% drop probability, afterwards, it gets continuously worse.
Incoming events of type C are vastly outnumbering events of type D. Thus ’D’s
are more important for a match. With lower drop probabilities unnecessary ’C ’s get
dropped in far greater proportion. This is because many windows only contain ’C ’s. It
gets worse with higher drop probabilities. ω6 drops ’D’s and also threshold exceeding
’C ’s in such a great number, that matches are becoming very unlikely.

ω6 is a propositional logic operator. We expected, that using RLS would result in a
linear decrease (m = −1, b = 100). We have seen that this is not the case. For lower
drop probabilities the result is better, for higher drop probabilities worse. For higher
drop probabilities the number of remaining events per window is very low. Finding
matches become very unlikely as a result.
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Figure 5.4: The latency in the Fire Scenario when using random load shedding.

5.2.7 Fire Scenario RLS: Latency

In the following, we examine the latency of the experiment while using random load
shedding. We examine each operator separately. We address the operator as ω, with the id
it has in Figure 4.2. The operator graph is also denoted as Ω. The latency for each operator
for every tested drop probability can be seen in Figure 5.4.

ω1: The source of the Ω, it generates all events. Thus a decline in the events send from
ω1 leads to a nearly linear (m = −1, b = 100) decrease in overall latency. It linearly
decreases the workload of all other operators in Ω.

ω2: ω2 forwards its input events to ω5 When using RLS here, there is still a high number
of events that need to be processed at ω5 and ω6. This is because ω2 controls only
half the input for ω5 and even less for ω6. The latency of the preceding ω1, which is
responsible for a big part of the overall latency, cannot be influenced here. ω3 and
ω4 are on different branches of Ω and can also not be influenced. As a result, the
decrease in overall latency is far smaller compared to using load shedding at ω1.

ω3: ω3 is parallel to ω2 in Ω. Both operators do the same kind of work: They send the
same number of events to ω5. The reduction of latency is therefore analogous to ω2.
But we know that RLS at ω3 leads to a more accurate result than RLS at ω2. ω3 is
therefore the preferable spot in Ω to shed load, compared to ω2.

ω4: ω4 forwards its input events to ω6. When using RLS here, it leads to a strong decrease
in the latency of ω6. The reason is, that events send by ω4 are the majority of input
events at ω6. Using RLS here leads to the second greatest decrease in overall latency.

The latency of the preceding ω1, which is responsible for a big part of the overall
latency, cannot be influenced here. ω2 and ω3 are on different branches of the Ω and
can also not be influenced.
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ω5: ω5 is a propositional logic operator. When using load shedding here the number of
opened windows in ω5 remains the same. This is because events are only dropped
from the windows, but the windows are still created in the first place. But reducing
the overall number of input events reduces the number of windows opened. With
increasing drop probability ω5 is causing less latency by processing events. But at the
same time, it is causing comparable latency by waiting longer to determine if a match
happens or not.

The latency of the preceding ω1-ω3 that are responsible for a big part of the overall
latency, cannot be influenced here. ω4 is on a different branch of the Ω and can also
not be influenced.

ω6: ω6 is a propositional logic operator. When using load shedding here the number of
opened windows in ω6 remains the same. This is because events are only dropped
from the windows, but the windows are still created in the first place. But reducing
the overall number of input events reduces the number of windows opened. With
increasing drop probability ω6 is causing less latency by processing events. But at the
same time, it is causing comparable latency by waiting longer to determine if a match
happens or not.

ω6 is the sink of Ω, the latency of all other operators cannot be influenced here. This
makes ω6 the worst operator to use RLS on.

Overall RLS can reduce the latency by a high degree, as seen when using RLS in operator 1.
It is most effective if used as early as possible in Ω. RLS at ω4 is the best trade-off between
reducing latency and accuracy of end result.

5.2.8 Fire Scenario RLS: General Observations

Overall the predictions in were accurate for filter operators. They react as expected with a
linear decrease of stream quality after that particular operator.

For propositional logic operators (PLO) the predictions were too simple. Several unexpected
results could be seen. The loss in stream quality after the PLO depends on how the load
shedding affects the ratio of the incoming event types.

We gained new knowledge through the experiment. Load shedding at a propositional logic
operator itself can lead to the greatest loss in stream quality. This is because it removes
events from potentially small windows, leaving only a few spots to find a match. This could
be different for window sizes that are far bigger than necessary to find a single match. In
this case, load shedding at the operator itself could lead to better results. The results could
be comparable to dropping the input events on preceding operators in the correct ratio to
each other.
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5.3 Twitter Scenario: Random Load Shedding

In the Twitter Scenario we address each operator as ω, with the id it has in Figure 4.3. The
operator graph is also denoted as Ω. In the Twitter Scenario, we have four filter operators
(ω1 - ω4) and one average-building operator (ω5).

In the following, we examine the results of the experiment. Afterwards we discuss the
accuracy of the hypotheses.

For each operator we examine the results of load shedding at all preceding operators and
the operator itself. For every operator, where load shedding happens, we give a brief
overview of the inner workings of the operator. Afterwards, we explain the impact on the
stream quality caused by load shedding at this operator. Lastly, we compare the hypothesis
for this event type with the results.

(a) (b)

Figure 5.5: Twitter Scenario:
Figure 5.5a depicts the stream quality after operator 1.
Figure 5.5b depicts the stream quality after operator 2.
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(a) (b)

Figure 5.6: Twitter Scenario:
Figure 5.6a depicts the stream quality after operator 3.
Figure 5.6b depicts the stream quality after operator 4.

(a) (b)

Figure 5.7: Twitter Scenario:
Figure 5.5a depicts the accuracy of the end result.
Figure 5.5b depicts the latency of the experiment.
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5.3.1 Twitter Scenario RLS: Stream Quality after Operator 1

The development of stream quality after operator 1 can be seen in Figure 5.5a. It shows
the stream quality for LS at one operator at a time for every tested drop probability. In the
following, we explain the results seen in Figure 5.5a.

ω1: The source of Ω. ω1 reads in the Twitter files and generated the events using the read
in data. Events that have a Twitter id string divisible by two are sent to ω2 and ω3.

The decline in stream quality after ω1 is linear (m = −1, b = 100) to the increase in
drop probability.

This is a filter operator, the influence of RLS on the stream quality after ω1 is thus
exactly as expected in.

ω2-ω5: These operators are located after ω1 in Ω (see Figure 4.3). Thus load shedding
at these operators can not retroactively influence the stream quality after ω1. The
stream quality after ω1 remains therefore at 100% if we use LS at these operators.

5.3.2 Twitter Scenario RLS: Stream Quality after Operator 2

The development of stream quality after operator 2 can be seen in Figure 5.5b. It shows
the stream quality for LS at one operator at a time for every tested drop probability. In the
following, we explain the results seen in Figure 5.5b.

ω1: The source of Ω. ω1 reads in the Twitter files and generated the events using the read
in data. Events that have a Twitter id string divisible by two are sent to ω2 and ω3.

The decline in stream quality after ω2 is linear (m = −1, b = 100) to the increase in
drop probability.

This is a filter operator, the influence of RLS on the stream quality after ω2 is thus
exactly as expected.

ω2: This is an operator of the type filter. It receives its input from ω1. ω2 sends all
Tweets that are written in English to ω4. The stream quality after ω2 is linear
(m = −1, b = 100) to the RLS drop probability at ω2. Reducing the events that ω2
needs to process, decreases the output in equal measure.

This is a filter operator, the influence of RLS on the stream quality after ω2 is thus
exactly as expected.

ω3-ω5: These operators are located after ω2 in Ω (see Figure 4.3). Thus load shedding
at these operators can not retroactively influence the stream quality after ω2. The
stream quality after ω2 remains therefore at 100% if we use LS at these operators.
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5.3.3 Twitter Scenario RLS: Stream Quality after Operator 3

The development of stream quality after operator 3 can be seen in Figure 5.6a. It shows
the stream quality for LS at one operator at a time for every tested drop probability. In the
following, we explain the results seen in Figure 5.6a.

ω1: The source of Ω. ω1 reads in the Twitter files and generated the events using the read
in data. Events that have a Twitter id string divisible by two are sent to ω2 and ω3.

The decline in stream quality after ω3 is linear (m = −1, b = 100) to the increase in
drop probability.

This is a filter operator, the influence of RLS on the stream quality after ω3 is thus
exactly as expected in.

ω2: ω2 is located parallel to ω3 in Ω (see Figure 4.3). Thus load shedding at ω2 can not
influence the stream quality after ω3. The stream quality after ω3 remains therefore
at 100 % if we use LS at ω2.

ω3: This is an operator of the type filter. It receives its input from ω1. ω3 sends all Tweets
that are not written in English and have a friends count higher than 300 to ω4. The
stream quality after ω3 is linear (m = −1, b = 100) to the RLS drop probability at ω3.
Reducing the events that ω3 needs to process decreases the output in equal measure.

This is a filter operator, the influence of RLS on the stream quality after ω3 is thus
exactly as expected.

ω4-ω5: These operators are located after ω3 in Ω (see Figure 4.3). Thus load shedding
at these operators can not retroactively influence the stream quality after ω3. The
stream quality after ω3 remains therefore at 100% if we use LS at these operators.

5.3.4 Twitter Scenario RLS: Stream Quality after Operator 4

The development of stream quality after operator 4 can be seen in Figure 5.6b. It shows
the stream quality for LS at one operator at a time for every tested drop probability. In the
following, we explain the results seen in Figure 5.6b.

ω1: The source of Ω. ω1 reads in the Twitter files and generated the events using the read
in data. Events that have a Twitter id string divisible by two are sent to ω2 and ω3.

The decline in stream quality after ω4 is linear (m = −1, b = 100) to the increase in
drop probability.

This is a filter operator, the influence of RLS on the stream quality after ω4 is thus
exactly as expected.

49



5 Evaluation

ω2: This is an operator of the type filter. It receives its input from ω1. ω2 sends all Tweets
that are written in English to ω4. The stream quality after ω4 is linear to the RLS drop
probability at ω2 and better than the linear line (m = −1, b = 100), see Figure 5.6b.

The reason why the slope of the line for ω2 in Figure 5.6b is steeper than the line for
ω3, is because ω2 sends more events to ω4. As such RLS at ω2 leads to far fewer input
events at ω4 than RLS with the same drop probability at ω3 would.

This is a filter operator, the influence of RLS on the stream quality after ω4 is thus
exactly as expected.

ω3: This is an operator of the type filter. It receives its input from ω1. ω3 sends all Tweets
that are not written in English and have a friends count higher than 300 to ω4. The
stream quality after ω4 is linear to the RLS drop probability at ω3 and better than the
linear line (m = −1, b = 100), see Figure 5.6b.

The reason why the slope of the line for ω3 in Figure 5.6b is not as steep as the line
for ω2, is because ω2 sends more events to ω4. As such RLS at ω3 leads to a lot more
overall input events at ω4 than RLS with the same drop probability at ω2 would.

This is a filter operator, the influence of RLS on the stream quality after ω4 is thus
exactly as expected.

ω4: This is an operator of the type filter. It receives its input from ω2 and ω3. ω4 sends all
Tweets that are a reply to another Tweet to ω5.

The stream quality after ω4 is linear (m = −1, b = 100) to the RLS drop probability at
ω4 (see Figure 5.6b). As a filter operator, this outcome was to be expected. Reducing
the events that ω4 needs to process will decrease the output in equal measure.

This is a filter operator, the influence of RLS on the stream quality after ω4 is thus
exactly as expected.

ω5: This operators is located after ω4 in Ω (see Figure 4.3). Thus load shedding at these
operators can not retroactively influence the stream quality after ω4. The stream
quality after ω4 remains therefore at 100% if we use LS at these operators.

5.3.5 Twitter Scenario RLS: Accuracy of the End Result

The accuracy of the end result is the stream quality after operator 5. The development of
the accuracy of end result can be seen in Figure 5.7a. It shows the accuracy of end result
for LS at one operator at a time for every tested drop probability. In the following, we
explain the results seen in Figure 5.7a.

ω1: The source of Ω. ω1 reads in the Twitter files and generates the events using the read
in data. Events that have a Twitter id string divisible by two are sent to ω2 and ω3.
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The end result is on average not impacted by RLS at ω1 at all, the average follower
count remains roughly the same. The accuracy of end result can deviate by roughly
+/- 20% for the individual runs at very high drop probabilities.

ω2: This is an operator of the type filter. It receives its input from ω1 and sends all Tweets
that are written in English to ω4.

RLS at ω2 leads to an increase in the average followers count. This increase grows
stronger, the higher the drop probability in ω2 is. This suggests that Twitter users that
Tweet in English, have on average a significantly lower follower count compared to
users using other languages.

ω3: This is an operator of the type filter. It receives its input from ω1. ω3 sends all Tweets
that are not written in English and have a friend’s count higher than 300 to ω4.

RLS at ω3 leads to a decrease in the average followers count. This decrease grows
stronger, the higher the drop probability in ω3 is. This suggests that Twitter users
that Tweet in other languages have on average a significantly higher follower count
than English speaking users. This effect is increased by the required friend count of
at least 300. It stands to reason that a Twitter user with a lot of friends also has many
followers.

The Tweets that ω3 sends as output are low in number compared to the number of
Tweets sent by ω2. To have an impact on the accuracy of the end result as seen in
Figure 5.7a, Tweets that ω3 are sent as output need to have much higher followers
count than the average Tweet.

ω4: This is an operator of the type filter. It receives its input from ω2 and ω3. ω4 sends all
Tweets that are a reply to another Tweet to ω5.

The end result is on average not impacted by RLS at ω4 at all, the average followers
count remains roughly the same. The accuracy of the end result can deviate by
roughly +/- 20% for the individual runs at very high drop probabilities.

ω5: The sink of Ω. This operator builds an average of the follower count over all events it
receives. It receives its input from ω4.

The end result is on average not affected by RLS at ω5 at all, the average follower
count remains roughly the same. The accuracy of end result can deviate by roughly
+/- 20% for the individual runs at very high drop probabilities.

This is an operator type that is very stable when affected by RLS.

5.3.6 Twitter Scenario RLS: Latency

In the following, we examine the latency of the experiment while using random load
shedding. We examine each operator separately. We address the operator as ω, with the id
it has in Figure 4.3. The operator graph is also denoted as Ω. The latency for each operator
for every tested drop probability can be seen in Figure 5.7b.
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In this scenario the potential to reduce latency through load shedding is limited. The
reading in of the data is responsible for a big part of the latency. Hence the actual
processing of the events is responsible for only a small part of the overall latency. Because
load shedding can only affect the number of events that are processed, it can only decrease
this small chunk of latency.

ω1: The source of Ω. It generates all events here from read in data. Therefore a decline
in the events sent from ω1 would be assumed to decrease the overall latency linearly
(m = −1, b = 100) with increasing drop probability. This is not the case here, because
ω1 reads the events in from data files. The reading in of data is responsible for the
biggest part of the runtime. Therefore even high RLS drop probabilities yield only
about 20% latency reduction for RLS in ω1.

Still as expected, RLS here at the source of Ω leads to the highest reduction in overall
latency.

ω2: After ω1 the Ω branches out, with ω2 and ω3 both following after ω1, as can be seen
in Figure 4.3.

RLS at ω2 leads to the second-highest reduction in latency. This is the case because
ω2 sends, while using the given data set, more than three times as many events to
ω4 than ω3 does. Therefore RLS in ω2 has a higher impact on the overall number of
events that have to be processed by the following operators.

ω3: After ω1 the Ω branches out, with ω2 and ω3 both following after ω1.

RLS at ω3 leads a smaller reduction in latency compared to RLS in ω2. This is the case
because ω3 sends, while using the given data set, three times less events to ω4 than
ω2. Therefore RLS in ω3 has a smaller impact on the overall number of events that
have to be processed by the following operators than RLS at ω2 would have. Hence
the slope of the line is not as steep compared to when RLS is used in ω2.

ω4: The two divergent branches of ω2 and ω3 merge back in ω4. Because it is the second
to last operator in Ω the potential to reduce latency through load shedding is very
low here. Events are already processed multiple times before they arrive here.

RLS in ω4 leads to a similar reduction in latency than RLS in ω3. This is the case
because ω4 receives the majority of its input from ω2, and only a smaller part from
ω3. Thus ω4 processes overall more events than ω3 does, but later in Ω. This results
in roughly the same potential to reduce latency through RLS at these two operators.

ω5: The sink of Ω. Here an average over all events that reach ω5 is built. The operation is
not very time consuming for the average event. The backlog of events to be processed
is very small at this operator. Therefore the potential to reduce latency through RLS
at ω6 is not very high because of the operator type, but also the position in Ω. The
reduction in latency is small even for high RLS drop probabilities. Overall this is the
worst operator in Ω to apply RLS too.
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Overall the reduction in latency that is possible through RLS, is compared to e.g. the Fire
Scenario less pronounced. The reason is, that the Twitter Scenario uses a lot of the runtime
to read in the necessary data to generate events. In the Fire Scenario, events are randomly
generated and additionally much leaner. The Fire Scenario uses a greater percentage of the
runtime to process events at the operators. This time we can reduce through load shedding.
But LS can not affect the time used reading in data files.

RLS in this scenario is most effective if used as early as possible in Ω, as seen when using
RLS in ω1. If two branches are parallel to each other, RLS is more effective on the operator
that produces more output events. Load shedding at the later operators in Ω results, as
was expected, in only a small reduction in latency. At this point, a big part of the total
processing is already done.

5.3.7 Twitter Scenario RLS: General Observations

Overall the predictions were accurate, random load shedding at filter operators leads to
a linear decrease of stream quality. This can be seen here at ω1. If the stream quality is
already reduced through RLS before the filter operator, the linear decrease in the input
stream quality leads to a linear decrease in the output stream quality.

The average-building operator produces a relatively stable result. It is only potentially
degraded significantly if, when Ω branches out, RLS is done on only one branch. This is
only problematic if the branches produce output events that are significantly different from
the average value. In the case that RLS is used in only one of those branches, the accuracy
of the end result will degrade strongly. This can be seen in Figure 5.7a, when using RLS in
ω2 or in ω3.

5.4 Taxi Scenario: Random Load Shedding

In the Taxi Scenario, we address the operator as ω, with the id it has in Figure 4.4. The
operator graph is also denoted as Ω. We have six merging operators (ω2, ω3, ω6, ω7, ω8, ω9)
that merge events if possible. Then there are two operators that compute something on
the events before sending them on (ω4, ω5). The second to last operator requires events
to be successfully merged before sending them on (ω10). The last operator (ω11) is a
pattern-finding operator.

In the following, we examine the results of the experiment. Afterwards we discuss the
accuracy of the hypotheses. We examine the stream quality after each operator separately.
We address the operator as ω, with the id it has in Figure 4.4. The operator graph is also
denoted as Ω.

For each operator we examine the effects of load shedding at all the preceding operators
and the operator itself. For every operator, where load shedding happens, we give a brief
overview of the inner workings of the operator. Afterwards, we explain the impact on the
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stream quality caused by load shedding at this operator. Lastly, we compare the hypothesis
for this event type with the results.

(a) (b)

Figure 5.8: Taxi Scenario: This figures depict the stream quality after operator 8.

(a) (b)

Figure 5.9: Taxi Scenario: This figures depict the stream quality after operator 10.
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(a) (b)

Figure 5.10: Taxi Scenario: This figures depict the accuracy of the end result.

5.4.1 Taxi Scenario RLS: Stream Quality after Operator 1

The development of stream quality after operator 1 can be seen in Figure 8.1. It shows the
stream quality for LS at one operator at a time for every tested drop probability. In the
following, we explain the results seen in Figure 8.1.

ω1: The source of Ω, it produces all events from read in data files. The decline in stream
quality after ω1 is linear (m = −1, b = 100) to the increase in drop probability. As
such the line in Figure 8.1a for this operator has a slope of −1.

This is a forwarding operator, the influence of RLS on the stream quality after ω1 is
thus exactly as expected in.

ω2-ω11: These operators are located after ω1 in Ω (see Figure 4.4). Thus load shedding
at these operators can not retroactively influence the stream quality after ω1. The
stream quality after ω1 remains therefore at 100% if we use LS at these operators.

5.4.2 Taxi Scenario RLS: Stream Quality after Operator 2 and 3

In the following, we discuss the development of stream quality after operator 2 (Figure 8.2)
and operator 3 (Figure 8.3). The figures show the stream quality for LS at one operator at
a time for every tested drop probability.

ω1: The source of Ω, it produces all events from read in data files. The decline of the
stream quality after ω2 and ω3 is linear (m = −1, b = 100) to the increase in drop
probability at ω1.
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This is a forwarding operator, the influence of RLS on the stream quality after ω2 and
ω3 is therefore exactly as expected.

ω2-ω3: ω2 is parallel to ω3 on a different branch of Ω. ω2 sends its output to ω4, ω3 sends
it output to ω5. This can be seen in Figure 4.4. These operators are aggregating input
events, that contain information on taxi rides on the same day, into one output event.
In the majority of windows, we have only events of a single day and aggregate them
into one output event. Therefore RLS here does not impact the number of output
events at all. The number of output events after the operator is the measure for the
stream quality. Therefore the stream quality is after ω2 and ω3 is not affected at all
if RLS is applied to these operators. This is true for the drop probabilities we use in
this experiment – up to 95% drop probability. At 100% percent drop probability, we
would have a stream quality of 0%.

These are merge operators, the influence of RLS on the stream quality after ω2 and
ω3 is therefore as expected.

ω4-ω11: These operators are located after ω2 and ω3 in Ω. (see Figure 4.4). Thus load
shedding at these operators can not retroactively influence the stream quality after
ω2 and ω3. The stream quality after ω2 and ω3 remains therefore at 100% if we use
LS at these operators.

5.4.3 Taxi Scenario RLS: Stream Quality after Operator 4 and 5

In the following, we discuss the development of stream quality after operator 4 (Figure 8.4)
and operator 5 (Figure 8.5). The figures show the stream quality for LS at one operator at
a time for every tested drop probability.

ω1: The source of Ω, it produces all events from read in data files. The decline of the
stream quality after ω2 and ω3 is linear (m = −1, b = 100) to the increase in drop
probability at ω1.

This is a forwarding operator, the influence of RLS on the stream quality after ω4 and
ω5 is therefore exactly as expected.

ω2-ω3: ω2 is parallel to ω3 on a different branch of Ω. ω2 sends its output to ω4, ω3 sends
it output to ω5. This can be seen in Figure 4.4.

These operators are aggregating input events, that contain information on taxi rides
on the same day, into one output event. In the majority of windows, we have only
events of a single day and aggregate them into one output event. Therefore RLS here
does not impact the number of output events at all. The number of output events
after the operators is the measure for the stream quality. Therefore the stream quality
is after ω4 and ω5 is not affected at all if RLS is applied to these operators. This is
true for the drop probabilities we use in this experiment – up to 95% drop probability.
At 100% percent drop probability, we would have a stream quality of 0%.
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These are merge operators, the influence of RLS on the stream quality after ω4 and
ω5 is therefore as expected.

ω4-ω5: ω4 is parallel to ω5 on a different branch of Ω. ω4 sends its output to ω6, ω5 sends
it output to ω7. This can be seen in Figure 4.4. These operators compute average
values for the aggregated input events they receive. Thereafter they send the events
to the next operator. RLS at ω4 or ω5 degrades the stream quality after these events
linearly (m = −1, b = 100) to the drop probability. This can be seen in Figure 8.4 and
Figure 8.5.

These events are of type forwarding, because they send on all input events. The
influence of RLS on the stream quality after ω4 and ω5 is therefore as expected

ω6-ω11: These operators are located after ω4 and ω5 in Ω. (see Figure 4.4). Thus load
shedding at these operators can not retroactively influence the stream quality after
ω4 and ω5. The stream quality after ω4 and ω5 remains therefore at 100% if we use
LS at these operators.

5.4.4 Taxi Scenario RLS: Stream Quality after Operator 6 and 7

In the following, we discuss the development of stream quality after operator 6 (Figure 8.6)
and operator 7 (Figure 8.7). The figures show the stream quality for LS at one operator at
a time for every tested drop probability.

ω1: The source of Ω, it produces all events from read in data files. The decline of the
stream quality after ω6 and ω7 is roughly linear to the increase in drop probability at
ω1. The slope of the line is flatter than −1 (Figure 8.6, Figure 8.7). This is because
ω6 and ω7 receive heavily aggregated input events and then aggregate them even
further. The number of events that ω1 sends, that results in one output event in ω6
and ω7 can vary. It is thus not represented by a linear relationship.

ω2-ω3: ω2 is parallel to ω3 on a different branch of Ω. ω2 sends its output to ω4, ω3 sends
it output to ω5. This can be seen in Figure 4.4.

These operators are aggregating input events, that contain information on taxi rides
on the same day, into one output event. In the majority of windows, we have only
events of a single day and aggregate them into one output event.

Therefore RLS here does not impact the number of output events at all. The number
of output events after the operators is the measure for the stream quality. Therefore
the stream quality after ω6 and ω7 is not affected at all if RLS is applied to these
operators until high drop probabilities are reached. For high drop probabilities at ω2
and ω3 a slight reduction in stream quality after ω6 (in case of RLS at ω2), or ω7 (in
case of RLS at ω3) can be seen. This is true for the drop probabilities we use in this
experiment – up to 95%. At 100% percent drop probability, we would have a stream
quality of 0% after ω6 and ω7.
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These are merge operators, the influence of RLS on the stream quality after ω6 and
ω7 is therefore as expected.

ω4-ω5: ω4 is parallel to ω5 on a different branch of Ω. ω4 sends its output to ω6, ω5 sends
it output to ω7. This can be seen in Figure 4.4.

These operators compute average values for the aggregated input events they receive.
Thereafter they send the events to the next operator. RLS at ω4 or ω5 degrades the
stream quality after ω6 or ω7 linearly to the drop change, as can be seen in Figure 8.6,
Figure 8.7.

Here we are dropping aggregated input events when load shedding is applied. There-
fore we have a higher degradation in stream quality after ω6 (if RLS is done at ω4)
or ω7 (if RLS is done at ω5) compared to RLS at ω1. The reason therefore is that we
drop non aggregated events at ω1. Thus we are losing more information per dropped
event if we use RLS at ω4 or ω5.

These events are of type forwarding, because they send on all input events. The
influence of RLS on the stream quality after ω6 and ω7 is therefore as expected.

ω6-ω7: ω6 is parallel to ω7 on a different branch of the Ω. ω6 sends its output to ω8, ω7
sends it output to ω9. This can be seen in Figure 4.4. These are operators of the same
type as ω2 and ω3. The aggregate input events with information from the same day
into one output event. But in contrast to ω2 and ω3 we have here several events of
different days in one window. Thus higher RLS drop probabilities lower the number
of output events. This reduces the stream quality after these operators. This can be
seen in Figure 8.6, Figure 8.7.

These are merge operators, the influence of RLS on the stream quality after ω6 and
ω7 is therefore as expected.

ω8-ω11: These operators are located after ω6 and ω7 in Ω. (see Figure 4.4). Thus load
shedding at these operators can not retroactively influence the stream quality after
ω6 and ω7. The stream quality after ω6 and ω7 remains therefore at 100% if we use
LS at these operators.

5.4.5 Taxi Scenario RLS: Stream Quality after Operator 8 and 9

In the following, we discuss the development of stream quality after operator 8 (Figure 5.8)
and operator 9 (Figure 8.9). The figures show the stream quality for LS at one operator at
a time for every tested drop probability.

ω1: The source of Ω, it produces all events from read in data files. The decline of the
stream quality after ω8 and ω9 is only noticeable for higher drop probabilities at
ω1. This is because ω8 and ω9 receive heavily aggregated input events and then
aggregate them even further. The number of events that are sent by ω1 that result
in one output event in ω8 and ω9 can vary. A small number of events send from ω1,
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containing information from one day, can result in one output event. Adding a great
number of additional events from the same day would result also in only one output.
There is only a small decrease in stream quality for higher drop probabilities at ω1
(Figure 5.8,Figure 8.9).

ω2-ω3: ω2 is parallel to ω3 on a different branch of Ω. ω2 sends its output to ω4, ω3 sends
it output to ω5. This can be seen in Figure 4.4.

These operators are aggregating input events, that contain information on taxi rides
on the same day, into one output event. In the majority of windows, we have only
events of a single day and aggregate them into one output event. Therefore RLS here
does not impact the number of output events at all. The number of output events
after the operators is the measure for the stream quality.

When using RLS at ω2 or ω3 the stream quality after ω8 and ω9 is barely reduced until
high drop probabilities are reached. For high drop probabilities at ω2 and ω3 a slight
reduction in stream quality after ω8 (in case of RLS at ω2), or ω9 (in case of RLS at
ω3) can be seen. This is true for the drop probabilities we use in this experiment – up
to 95%. At 100% percent drop probability, we would have a stream quality of 0%
after ω8 and ω9.

These are merge operators, the influence of RLS on the stream quality after ω8 and
ω9 is therefore as expected.

ω4-ω5: ω4 is parallel to ω5 on a different branch of the Ω. ω4 sends its output to ω6, ω5
sends it output to ω7. This can be seen in Figure 4.4.

The same reasons as seen for RLS in ω1, ω2 or ω3 apply here as well. But when using
RLS in ω4 or ω5 the resulting loss in stream quality at ω8 and ω9 is greater. The reason
is, that the input events at ω4 and ω5 are already much more aggregated then at the
preceding operators. Thus more information is lost when dropping one event. This
results in a higher degradation in the stream quality after ω8 (when using RLS at ω4)
or ω9 (when using RLS at ω5).

ω6-ω7: ω6 is parallel to ω7 on a different branch of Ω. ω6 sends its output to ω8, ω7 sends
it output to ω9. This can be seen in Figure 4.4. These are operators of the same type
as ω2 and ω3. They aggregate input events with information on the same day into
one output event. RLS at these operators leads to the same result as RLS at ω4 or ω5,
for the same reasons. This is the case because the level of aggregation of the input
events is the same for ω4 – ω7. Therefore we lose the same amount of information
when dropping one event. The resulting loss in stream quality after ω8 and ω9 is, as a
result, the same.

ω8-ω9: ω8 is parallel to ω9 on a different branch of the Ω. Both operators send their output
to ω10. This can be seen in Figure 4.4.

These are operators of the same type as ω2, ω3, ω6 and ω7. They aggregate input
events with information on the same day into one output event. At this point in Ω, the
input events are at the highest level of aggregation. Thus we lose more information
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when dropping one event. This results in a higher degradation in the stream quality
after ω8 (when using RLS at ω8) or ω9 (when using RLS at ω9).

ω10-ω11: These operators are located after ω8 and ω9 in Ω. (see Figure 4.4). Thus load
shedding at these operators can not retroactively influence the stream quality after
ω8 and ω9. The stream quality after ω8 and ω9 remains therefore at 100% if we use
LS at these operators.

5.4.6 Taxi Scenario RLS: Stream Quality after Operator 10

In the following, we discuss the development of stream quality after operator 10 (Fig-
ure 5.9). The figure shows the stream quality for LS at one operator at a time for every
tested drop probability.

ω1: The source of the Ω, it produces all events from read in data files. The decline of the
stream quality after ω10 is only significant for higher drop probabilities at ω1. This
is because ω10 receives heavily aggregated input events and then aggregates them
even further. The number of events ω1 sends that result in one output event in ω10
can vary. A small number of events send from ω1, containing information from one
day, can result in one output event. Adding a great number of additional events from
the same day would result also in only one output.

There is only a small decrease in stream quality for higher drop probabilities at ω1
(Figure 5.9).

ω2-ω3: ω2 is parallel to ω3 on a different branch of the Ω. ω2 sends its output to ω4, ω3
sends it output to ω5. This can be seen in Figure 4.4.

RLS at these operators leads to a similar result as RLS at ω1, for the same reasons.
For drop probabilities that are higher than 65% the result for load shedding at ω2 and
ω3 is better than for RLS at ω1. This is because Ω splits after ω1. ω2 and ω3 each get
half of ω1’s output events as input. Therefore RLS at ω1 drop twice as many events
than RLS at ω2 or ω3 with the same drop probability. As a result, RLS at ω2 or ω3 does
not degrade the stream quality at ω10 as much as RLS at ω1 does.

ω4-ω5: ω4 is parallel to ω5 on a different branch of the Ω. ω4 sends its output to ω6, ω5
sends it output to ω7. This can be seen in Figure 4.4. Again the same explanation
as for RLS in ω1, ω2 or ω3 applies here as well. But when using RLS in ω4 or ω5 the
resulting loss in stream quality at ω10 is greater. The reason is that the input events
at ω4 and ω5 are already much more aggregated than at the preceding operators.
Therefore dropping a single event loses more information. That results in a higher
degradation in the stream quality after ω10 compared to using RLS at ω2 or ω3.

ω6-ω7: ω6 is parallel to ω7 on a different branch of the Ω. ω6 sends its output to ω8, ω7
sends it output to ω9. This can be seen in Figure 4.4.
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These are operators of the same type as ω2 and ω3. They aggregate input events, with
information of the same day, into one output event. RLS at these operators leads to
the same result as RLS at ω4 or ω5, for the same reasons. This is the case because the
level of aggregation of the input events is the same for ω4 – ω7. Thus dropping one
event loses the same amount of information. The loss in stream quality after ω10 is,
as a result, the same.

ω8-ω9: ω8 is parallel to ω9 on a different branch of the Ω. Both operators send their output
to ω10. This can be seen in Figure 4.4.

These are operators of the same type as ω2, ω3, ω6 and ω7. They aggregate input
events, with information of the same day, into one output event. At this point in Ω,
the input events are at the highest level of aggregation. Therefore dropping one event
loses more information. This results in a higher degradation in the stream quality
after ω10 when using RLS at ω8 or ω9.

ω10: This is a merge operator. It merges input events, representing information from the
same day, into one. There is always a pair of two events that can only be merged
with each other. Only after a successful match, it sends the resulting events to ω11.

As we can see in Figure 5.9, RLS at ω10 leads to the greatest loss in stream quality.
The reason is that an event shed at ω10 means the other event of that day cannot be
merged any more. Therefore it can not be sent on. Thus shedding only half the input
events could, in the worst case, lead to not finding a single output event. If we shed
an event that has a counterpart that already was dropped, we lose no further output
event. If an event is shed which has a counterpart that was not dropped, one more
output event is lost. Therefore we have a high variance in stream quality when RLS
is used at ω10.

This is merge operator with restriction, the influence of RLS on the stream quality
after ω10 is therefore as expected.

ω11: ω11 is located after ω10 in the Ω (see Figure 4.4). Thus load shedding at this operator
can not influence the stream quality after ω10. The stream quality after ω10 remains
therefore at 100% if we use LS at ω11.

5.4.7 Taxi Scenario RLS: Accuracy of the End Result

The accuracy of the end result is the stream quality after operator 6. The development of
the accuracy of end result can be seen in Figure 5.10. It shows the accuracy of end result
for LS at one operator at a time for every tested drop probability. In the following, we
explain the results seen in Figure 5.10.

ω1: The source of Ω, it produces all events from two read in data files. ω1 sends the
information from one file to ω2 and the information of the other file to ω3. In both
branches, events are aggregated. For all important attributes, we compute average
values in these aggregated events.
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RLS at ω1 does only remove a small fraction of data in the aggregated events. As
such it only greatly impacts the accuracy of end result at higher drop probabilities. At
higher drop probabilities at ω1 a great majority of events, that could later be merged,
get dropped. This results in a greater loss of accuracy because the averaged values of
the aggregated events are greatly altered. This does impact the pattern search at ω11
significantly. We can see this in Figure 5.10, where after 60% drop probability the
line for LS in ω1 has a much steeper slope than before.

ω2-ω3: ω2 is parallel to ω3 on a different branch of Ω. ω2 sends its output to ω4, ω3 sends
it output to ω5. This can be seen in Figure 4.4.

These operators are aggregating input events that contain information on taxi rides
on the same day, into one output event. In the majority of windows, we have only
events of a single day and aggregate them into one output event.

We can see in Figure 5.10, that RLS at ω2 does impact the accuracy of the end result
the least of all load-shedding locations. The reason that RLS at ω3 leads to a greater
degradation in accuracy of the end result is data related.

The information gathered in the branch of ω2, has greater differences between the
individual averaged values than the averaged values on the branch of ω3. As such
pattern-finding at ω11 is more stable on data passing through ω2 when using load
shedding. The reason therefore is that small changes to the averaged attribute values
are less likely to destroy a pattern. E.g. pattern 1-2-3 is less stable than 1-8-22.

Overall RLS an ω2 or ω3 leads to a more accurate end result than load shedding at ω1.
This is because after ω1 the data splits and thus only half the number of events pass
through each ω2 and ω3. Thus we lose only half as much information through RLS
with the same drop probability at ω2 or ω3.

ω4-ω5: ω4 is parallel to ω5 on a different branch of Ω. ω4 sends its output to ω6, ω5 sends
it output to ω7. This can be seen in Figure 4.4.

These operators compute average values for the aggregated input events they receive.
Thereafter they send the events to the next operator.

We can see in Figure 5.10, that RLS at ω4 does not impact the accuracy of the end
result as greatly as RLS at ω5. The reason that RLS at ω5 leads to a greater degradation
in accuracy of the end result, is data related.

The information gathered in the branch of ω4, has greater differences between the
individual averaged values than the averaged values on the branch of ω5. As such
pattern-finding at ω11 is more stable on data passing through ω4 when using load
shedding. The reason therefore is that small changes to the average values are less
likely to destroy a pattern. E.g. pattern 1-2-3 is less stable than 1-8-22.

Overall RLS an ω4 or ω5 leads to a less accurate end result than load shedding at
preceding operators. This is because after ω2 and ω3 the data is aggregated. For each
dropped event at ω4 or ω5 the information of all the events that it was created from is
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also lost. Thus we lose more information through RLS at ω4 or ω5 compared to RLS
at preceding operators in Ω with the same drop probability.

ω6-ω7: ω6 is parallel to ω7 on a different branch of Ω. ω6 sends its output to ω8, ω7 sends
it output to ω9. This can be seen in Figure 4.4.

These are operators of the same type as ω2 and ω3. They aggregate input events with
information from the same day into one output event. But in contrast to ω2 and ω3
we have events of different days in one window. Thus higher RLS drop probabilities
lower the number of output events.

RLS at ω6 or ω7 has roughly the same impact on the accuracy of end the result. The
reason that there is no difference between RLS at this operators is, that at this point
great amounts of information are aggregated into every single event. Dropping even a
small number of events can impact the aggregated values at ω11 greatly. It can destroy
existing patterns or create new ones. Each event contains much more information
compared to events at earlier operators. Therefore RLS here has a bigger impact on
the accuracy of the end result than RLS at preceding operators in Ω. This can be seen
in Figure 5.10.

ω8-ω9: ω8 is parallel to ω9 on a different branch of Ω. Both operators send their output to
ω10. This can be seen in Figure 4.4.

These are operators of the same type as ω2, ω3, ω6 and ω7. They aggregate input
events with information on the same day into one output event. At this point in Ω, the
input events are at the highest level of aggregation. Thus we lose more information
when dropping one event. Therefore RLS here has a bigger impact on the accuracy of
end result than RLS at preceding operators in Ω. This can be seen in Figure 5.10.

ω10: This is a merge operator. It merges input events, representing information from the
same day, into one. There is always a pair of two events that can only be merged
with each other. Only after a successful match, it sends the resulting events to ω11.

As we can see in Figure 5.10, RLS at ω10 leads to the greatest loss in accuracy of end
result. The reason is that an event shed at ω10 is indirectly shed from all windows
in ω11. Hence RLS at ω10 does degrade the accuracy of end result more than RLS
at ω11 does. Because one dropped event here means the loss of information on one
whole day at ω11. As can be seen below, dropping one event at ω11 is not losing the
information on one whole day.

The result of RLS at ω10 also leads to the greatest variance in the end results. The
reason is that RLS before ω10 loses only some data of a day. Load shedding at ω11 as
mentioned, does not lose the information of one day as a whole. RLS at ω10 drops
the greatest amount of information per event. Therefore it is impacting the accuracy
of the end result the most.

This is amerge operator with restriction, the influence of RLS on the stream quality
after ω10 is therefore as expected.
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ω11: The sink of the Ω. This operator searches for a pattern of two increases in a row
in its attributes. The tendency for ω11 in Figure 5.10 is worse than a linear line
(m = −1, b = 100).

ω11 has a window size of five with a slide of one. The decision to shed an event is
always done individually for each window. Therefore an event that is shed from one
window can still remain in other windows. A pattern that we do not find in one
window because of RLS, we can still detect in the next window. Because of this, we
do not lose all information represented in an event by shedding a single event in one
window. This is the reason why RLS in ω11 does not degrade the accuracy of end
result as much as RLS in ω10 does.

This is a pattern-finding operator with restriction, the influence of RLS on the stream
quality after ω10 is therefore as expected. We see that shedding whole input events
can lower the accuracy of the end result very quickly. If we have, as in this case,
merge operators before the pattern-finding operator and use LS on them, the resulting
accuracy can be much better.

5.4.8 Taxi Scenario RLS: Latency

In the following, we examine the latency of the Taxi Scenario experiment for RLS. We
examine each operator separately and use the same id as seen in Figure 4.4. The latency
for each operator for every tested drop probability can be seen in Figure 5.11.

In this scenario the potential to reduce latency through load shedding is limited. The
reading in of the data is responsible for a big part of the latency. Hence the actual
processing of the events is responsible for only a small part of the overall latency. Because
load shedding can only affect the number of events that are processed, it can only decrease
this small chunk of latency.

ω1: The source of Ω. It generates all events here from read in data. Therefore a decline in
the events sent from this operator would be assumed to decrease the overall latency
linearly (m = −1, b = 100) with increasing drop probability. This is not the case here,
because ω1 reads the events in from data files. The reading in of data is responsible
for the biggest part of the runtime. Therefore even high RLS drop probabilities yield
only about 25% latency reduction for RLS in ω1.

Still as expected, RLS here at the source of Ω leads to the highest reduction in overall
latency.

ω2-ω9: At these operators, we aggregate information. To that purpose, we need to wait
until a window is closed to send the output events to the next operator. The time we
win through not having to process an event is lost through waiting for the next event.
There is also a very small overhead for load shedding. As can be seen in Figure 5.11
RLS at these operators does not reduce the latency at all.
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(a) (b)

Figure 5.11: The latency in the Taxi Scenario when using random load shedding.

ω10: At this operator, two halves of information concerning the taxi rides on the same
day in NYC are merged. Only a small number of events arrive here. All other events
were already aggregated into these input events. Thus ω10 spends most of its time
waiting and only a very small fraction of its time processing events. The time we win
through not having to process an event is lost through waiting for the next event.
There is also a very small overhead for load shedding. RLS here does for that reason
not impact the latency noticeably, as seen in Figure 5.11.

ω11: ω11 searches for patterns in the aggregated data. Like ω10 this operator spends most
of its time waiting and only a very small amount of time processing events. The time
we win through not having to process an event, we lose again through waiting for
the next event to arrive. There is also a very small overhead for load shedding.

Additionally ω11 is the sink of Ω. Therefore the majority of the processing is already
done when an event arrives here. RLS here does for that reason not impact the
latency noticeably, as seen in Figure 5.11.

Overall the reduction in latency that is possible through RLS, is compared to e.g. the Fire
Scenario less pronounced. The reason is that the Taxi Scenario uses a lot of the runtime to
read in the necessary data to generate events. In the Fire Scenario, events are randomly
generated and additionally much leaner. The Fire Scenario uses a greater percentage of the
runtime to process events at the operator. This time we can reduce through load shedding.
But LS can not affect the time used reading in data files.

RLS in this scenario is most effective if used as early as possible in Ω, as seen when using
RLS in ω1. In fact for the above-mentioned reasons, RLS at ω1 is the only option in Ω to
significantly reduce the latency.
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5.4.9 Taxi Scenario RLS: General Observations

The prediction for forwarding operators was accurate. ω1, ω4 and ω5 reacts as expected
with a linear decrease of stream quality.

When using RLS, aggregation type operators are more robust in their stream quality than
other operator types. But it also depends on the number of events that they aggregate
into one. If it is a big number of events, RLS results in no noticeable impact on the stream
quality, as seen with ω2 and ω3.

This changes, if the number of events that they aggregate into one is smaller on average.
The impact of RLS on the stream quality should increase in that case. But still, we can
expect a better result than the linear (m = −1, b = 100) that the can see when using RLS
on filter operators like ω1. Only in the worst-case does the loss in stream quality through
LS at this operator type equal the linear line (m = −1, b = 100). The worst-case would
be that no event can be merged with another event. That would mean that the number
of input events would equal the number of output events. In that case, the aggregation
operator would act as a forwarding operator. It would show the same reaction to the usage
of load shedding.

RLS is impacting the accuracy of end result in this scenario less if it happens early in Ω.
Through the aggregation of data, events contain more information the further one traverses
down the Ω. Thus RLS drops more information with each event. As such it impacts the
aggregated values in which we search pattern in ω11 stronger

We also see again something we already saw in the other scenarios, about branching in
Ω. If Ω branches out and splits the data among these branches, generally it leads to better
results to shed load on one of the branches. In this scenario, this is only true for the first
operators after the split. Through the aggregation of data, this advantage is negated for the
following operators. The reason is, at later points in Ω we shed accumulated information
of several primitive events if we shed a single aggregated event.

5.5 All Scenarios: Utility-based Load Shedding

In the following, we examine the results of the experiment with ULS. Afterwards, we
discuss the accuracy of the hypothesis. We address the operator as ω, with the id it has in
the operator graph Ω of its scenario (Fire Scenario: Figure 4.2, Twitter Scenario: Figure 4.3,
Taxi Scenario: Figure 4.4).

We give a brief overview of the inner workings of the operators that are affected by ULS.
Afterwards, we explain the impact on the stream quality caused by load shedding at this
operator. Lastly, we compare the hypothesis for this event type with the results.

The focus of this work is not the development of load shedders. Instead, we focus on how
a loss in stream quality through load shedding propagates. Thus we did not let the load
shedder learn the utility values. Instead, we computed the utility values based on the
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(a) (b)

Figure 5.12: Fire Scenario RLS vs ULS:
Figure 5.12a depicts the stream quality after operator 5.
Figure 5.12b depicts the accuracy of the end result.

probabilities of event types to contribute to a match. The utility values are always local for
the operator itself. This means that we want to maximize the number of output events at
this operator.

5.5.1 Fire Scenario ULS: Accuray of the End Result

The accuracy of end result is the stream quality after operator 6. Figure 5.12a gives
a comparison for the resulting stream quality after ω5 when using RLS and ULS at ω5.
Figure 5.12b gives a comparison for the accuracy of the end result, when we use RLS and
ULS on ω5 or ω6. Both figures show the stream quality for LS at one operator at a time for
every tested drop probability.

ω1-ω4: These operators are located before ω5 in Ω. This can be seen in Figure 4.2. There
is no meaningful way to use ULS with a local scope on these operators. Thus we did
not use ULS on these operators.

ω5: We tried several approaches to determine utility-values, that would allow us to
outperform RLS. As can be seen in Figure 5.12a we did not succeed. In this case,
which performed the best, did we drop ’B’s with double the probability than ’A’s,
because ’A’s that can contribute to an match are half the number of ’B’s that can
contribute. The overall number of ’A’s and ’B’s is equal, but not every event has a
high enough value to contribute.
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But important here is for the scope of this thesis, that we can see, that the loss
in stream quality after ω5 directly propagates to the accuracy of end result (see
Figure 5.12).

ω6: ω6 is a propositional logic operator. We computed the utility values that we used to
weight the random drop probability used in RLS as follows. Through using the upper
cumulative distribution function we got the result, that ’D’s had a 26 times higher
utility than ’C ′s. To make sure that we drop the required number of events even for
higher drop probabilities we need to alter the drop probabilities. This was necessary
because otherwise, the number of remaining ’D’s would be too high for higher drop
probabilities. Too many events would remain in total. We multiply the base drop
probability to reflect the utility for each event type. We multiply the probability for
’D’s with 0, 0795 and for ’C ′s with 1, 0597. This represents a 13,333 times higher
utility for D compared with C. E.g. we aim for a total drop rate of 10%. To achieve
that we drop D with 0.795% and C with 10.597%. Because ’C ’ greatly outnumber
’D’s we drop 10% of incoming events in total.

As we can see in Figure 5.12b ULS in ω6 leads to an overall superior result compared
to RLS at ω6.

5.5.2 Twitter Scenario ULS: Accuray of the End Result

The accuracy of end result is the stream quality after operator 6. Figure 5.13a gives
a comparison for the resulting stream quality after ω4 when using RLS and ULS at ω4.
Figure 5.12a gives a comparison for the accuracy of the end result, when we use RLS and
ULS on ω5. Both figures show the stream quality for LS at one operator at a time for every
tested drop probability.

ω1-ω3: There is no meaningful way to use ULS with a local scope on these operators.
Therefore no ULS was used on these operators.

ω4: ω4 is a filter operator. It sends all events to ω5, which are responses to other Tweets.
The utility for each event was determined after the following principle: We hypoth-
esized that tweets of different character lengths would have a different proportion
of events that were a reply. The result was, that events that have a character length
from 15 to 60 have a probability of 37,88% to be a reply. The rest of the events have
a probability of 14,49% of being a reply.

For drop probabilities up to 75% we therefore only dropped the events with low
utility. We multiply the base drop probability to reflect the utility for each event type.
We multiply the drop probability by 1.2688 for low utility events to compensate for
not shedding high utility events. After a 75% target drop probability, we drop all
events of low utility and start shedding high utility events. High utility events are
shed with a drop probability that is necessary to reach the overall target drop rate.
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(a) (b)

Figure 5.13: Twitter Scenario RLS vs ULS:
Figure 5.13a depicts the stream quality after operator 4.
Figure 5.13b depicts the accuracy of the end result.

E.g. we aim for a total drop rate of 50%. To achieve that we drop low utility events
with a probability of 63,44% and do not drop high utility events at all.

We can see this in Figure 5.13a that ULS up to 75% overall drop rate is linear, after
this point it gets worse because more high utility events are shed. Overall ULS yields
superior results compared to RLS when we look at the stream quality after ω4.

But if we look at Figure 5.13b we see, that ULS at ω4 also significantly lowers the
accuracy of the end result.It seems that events that were designated as low utility
locally in ω4 are not low utility for the end result. They had a lesser probability to
lead to an output event at ω4, but they had Tweets among them that were necessary
for a stable average value at ω6.

Because the events there not dropped proportionally any more in ω4, the accuracy of
end result is degraded greatly. The variance in the end result for each run is lower
when using ULS. But on average it is much worse than the result for RLS, which leads
to a stable average result, with a greater variance for higher drop probabilities.

ω5: For ω5 RLS already delivers very good results. We could not find utility values that
resulted in a greater accuracy of the end result.
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Figure 5.14: Taxi Scenario RLS vs ULS:
The accuracy of the end result.

5.5.3 Taxi Scenario ULS: Accuray of the End Result

The accuracy of end result is the stream quality after operator 11. Figure 5.14 gives a
comparison for the accuracy of the end result, when we use RLS and ULS on ω5. It shows
the stream quality for LS at one operator at a time for every tested drop probability.

ω1-ω10: There is no meaningful way to use ULS with a local scope on these operators.
Therefore no ULS was used on these operators.

ω11: The sink of Ω. This operator searches for a pattern of two increases in a row in its
attributes.

ω11 has a window size of five with a slide of one. The decision to shed an event is
always done individually for each window. Therefore an event that we shed from
one window can still remain in other windows. A pattern that we do not find in one
window because of RLS, we can still detect in the next window. Because of this, we
do not lose all information represented in an event by shedding a single event in one
window.

We decided on the utility of an event similar to what a machine learning solution
would do. For each input event, we analyzed the number of patterns that this event
could participate in. With this information, we made a ranking of the utility of each
input event. We then drop the required number of events for each drop probability,
starting with the event of the lowest utility. Afterwards, we work the way up the
utility ranking.

As we can see in Figure 5.14, the result for ULS is better than RLS at all drop
probabilities up until 90% drop probability. At this point, too many events were
dropped to still find a pattern. Because we use concrete utility values on a certain
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data set, there is no variance in the accuracy of end result for ULS. We required only
one run of the scenario to get the necessary data.

5.5.4 All Scenarios ULS: Latency

All utility-based load shedder we wrote were more complex than a random load shedder.
As such it is no wonder, that latency we measure was always a few percentage higher, when
a ULS was used, compared to a RLS on the same operator with the same drop rate.
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In the following, we present the new information we gained during the evaluation of the
experiments. The results are presented for each operator type separately. For each operator
type we examine how it reacts to losses in stream quality caused by Random Load Shedding
(RLS) or Utility-based Load Shedding (ULS). We show, how changes in its input data stream
propagate after each operator type.

If we speak of repairing the stream quality, we mean that the stream quality after the
operator is higher than it was before.

For two input sources we assume, that the stream quality is the average of the stream
quality of both sources, weighted by the total number of events sent per source.

6.1 Propositional Logic Operator (PLO)

In the case that we shed all input events before a PLO proportionally, e.g. with Random
Load Shedding (RLS), the loss in stream quality after the PLO is linear (m = −1, b = 100)
to the percentage of dropped events. It has thus the same stream quality that was also
measured after its sources(s).

In next part, we discuss how Load Shedding (LS) affects a PLO if it is not done proportionally.
For the following, let us assume that a PLO gets two types of input events. We need one
event of both types to detect a match.

For load shedding at a PLO, it is important to know the composition of the input events.

If among the input events there is no limiting factor, using LS proportionally (e.g. RLS) at
all event types leads to the best results.

But if there is a limiting factor among the input events, it is the best choice to drop the
non-limiting factor preferably. We can only do this until the non-limiting factor, through LS,
becomes the limiting factor itself. If we reach that point then the operator processes the
limiting and non-limiting factors in equal numbers. From that point on we shed the events
in such a way, that this equality in numbers is maintained.

If we have more than two event types, shedding the most numerous of the event types is
preferable. Shedding only this event type, leads to the best result, as long as the event type
is not reduced to the same numbers as the next most numerous event type. If that happens,
we begin with shedding the other event types. The order is from the most numerous event
types left to the limiting factor.
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The potential to use LS and still achieve a very accurate result depends on how many times
the non-limiting factor outnumbers the limiting factor. E.g. if an operator wants to find a
match A ∧ B → C and a third of all input events are ‘A’s and the rest ’B’s, then the limiting
factor A is outnumbered by a factor of 2.

In the following, we assume that there are only two incoming event types at the PLO. The
same results can also be applied to a PLO with more than two incoming event types. But in
that case, we would talk about how many times the most numerous event type outnumbers
the second most numerous event type and so on for all event types.

6.1.1 PLO: Load shedding at the non-limiting factor

In the following, we discuss how targeting the non-limiting factor for load shedding before
the PLO influences the stream quality after the PLO.

If the LS is done at the non-limiting factor the loss of stream quality does not directly
propagate after the PLO. The PLO can repair the stream quality to a significant degree.

There are generally spare events of the non-limiting event type in a window. We can drop a
certain number of them, before we start to greatly impact the number of matches found.
The result is better than proportionally shedding of all event types, e.g. through RLS. The
higher the factor by which the non-limiting factor outnumbers the limiting factor, the better
the result is, if we compare it with RLS with the same drop rate.

The degree by which the PLO can repair the stream quality also rises with the factor
by which the non-limiting factor outnumbers the limiting factor. We can see this in our
experiment, where LS at the non-limiting factor, that outnumbered the limiting factor by a
factor of 23, leads to a greatly improved stream quality after the PLO.

6.1.2 PLO: Load shedding at the limiting factor

In the following, we discuss how targeting the limiting factor for load shedding before the
PLO influences the stream quality after the PLO.

Load shedding at the limiting factor decreases the stream quality. The degree, by which the
stream quality sinks, increases, the more the non-limiting factor outnumbers the limiting
factor. We can see this in our experiment in the Fire Scenario.

6.1.3 PLO: Summary

If there is a limiting input event type dropping the non-limiting event type yields the best
result in terms of stream quality. We can only do this until the non-limiting factor, through
LS, becomes the limiting factor itself. If we reach that point then the operator processes
the limiting and non-limiting factors in equal numbers. From that point on we shed the
events in such a way, that this equality in numbers is maintained.
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The higher the degree by which the non-limiting factor outnumbers the limiting factor, the
better is the stream quality after the PLO. The potential to repair the stream quality is also
higher, the higher the degree by which the non-limiting factor outnumbers the limiting
factor.

If there is no limiting factor, random load shedding leads to the best results.

6.2 Pattern-finding Operator

Load shedding that negatively influences the attributes of an event, but does not shed the
event itself, is preferable to shedding input events completely for this type of operator. We
can see this in the Taxi Scenario with LS at the merging operators. This is at least the
case if the patterns are relatively stable. E.g. the successive increase 1-2-3 is not as stable
under attribute altering LS than the pattern 1-8-23. That is the case because the difference
between the values is smaller and therefore the pattern is more likely to be broken if the
attributes are altered even slightly.

For unstable patterns, negatively influencing the attributes could lead to many false positives
and false negatives. This could reduce the stream quality as much as shedding whole input
events. But for the testing in this work, we counted every found pattern as a valid detected
complex event. In the Taxi Scenario, the patterns were very stable and the window sizes
small, so there are few false positives.

In general, if we do not want to find false positives, every reduction in stream quality before
this operator type reduces the stream quality afterwards even more. But if we do accept
false positives as valid, and have greater window sizes, the resulting stream quality could
become unpredictable without data related knowledge.

6.3 Average-building Operator

We did not take the number of output events as the criterion for the average-building
operator. This number would remain the same even for high drop probabilities. Instead we
took the accuracy of the average as criterion for the stream quality.

If we proportionally shed input events, the computed average value remains on average
100% accurate. It does not matter if this is achieved through LS at the average-building
operator itself or the preceding operators.

If the operator graph branches or has multiple sources, we should not use load shedding
before the data paths merge. Alternatively, we should do it on both branches in the same
ratio. If we don’t do it in the same ratio, shedding on the branches can alter the resulting
average value, depending on the data. The divergence in the average becomes increasingly
stronger with higher drop probabilities.
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In summary, we should do LS for this operator type in a way, that we drop input events in
the same ratio, e.g. through RLS. This leads to a very good and stable result. On average
the stream quality in the Twitter Scenario is roughly 100% for all drop probabilities. At a
95% drop probability, we have a standard deviation that is only up to 20%. For lower drop
probabilities the standard deviation is much lower.

This operator type (or preceding operators) is a very good choice for LS if done in the same
ratio for all input event types.

For the above mentioned reasons we have a great potential to repair the stream quality at
this operator type, even if the input has a very low stream quality.

6.4 Merge Operator

In this work, we have defined two types of merge operators. One type merges all events in
a window that can be merged, before sending the merged and non-merged events on. The
second type only sends on the successfully merged events.

In the following, we discuss both these types separately.

6.4.1 Merge Operator: Merge if possible

The impact of LS on the stream quality depends on how many output events there are per
window (assuming big window sizes). If we e.g. have a window of 100 events that we can
all merge into one output event, even dropping 99 events results in the same number of
output events. And the number of output events is how we measure the stream quality.

In comparison to this, if we have a window of 100 events and only two events can on
average merge with each other we could potentially have 50 output events. If we drop 99
events, in that case, we would see a drastic loss in stream quality.

If the number of output events is very low, then LS at this or preceding operators will not
influence the stream quality, i.e. the number of output events. But the attributes of those
merged events could still be affected. Especially, in the case where the merged events have
attributes that depend on aggregated data like e.g. averaged values.

For a low number of output events per window, this operator has the potential to improve
the stream quality to a high degree. But the content of the attributes of the merged events
could get increasingly inaccurate for higher drop probabilities.

If the number of output events per window is higher, the loss in stream quality will slowly
move towards a linear line (m = −1, b = 100). The more output events per window, the
closer the loss in stream quality gets to this line. This is because the operator becomes
more similar to an operator that just forwards events. In this extreme case, we would have
a loss in stream quality represented by that linear line (m = −1, b = 100). This is the lower
bound for stream quality for load shedding at this operator type.
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6.4.2 Merge Operator: Only forward if merged successfully

The best case for this operator type looks nearly the same as the best case for the merge
operator without restriction. If we e.g. have a window of 100 events that we can all merge
into one output event, even dropping 98 events results in the same number of output
events.

But if we have a window of 100 events and only two events can on average merge with
each other we could potentially have 50 output events. But even dropping only 50 of those
events, could in the worst case lead to the generation of zero output events. We can limit
this by using utility-based load shedding. For each event we shed directly, other events
are most likely shed indirectly. That happens, if through the shedding of a different event
they can not be merged any longer. Thus they can also not be sent on. If we also can shed
this indirectly dropped events directly at preceding operators, the resulting stream quality
could improve.

The loss in stream quality becomes less severe per dropped event, if there are more potential
merge partner per event. The reason is that we have less indirectly dropped events. There
is a higher probability for events of the same type to still find a merge partner.

6.5 Filter Operator

Filter operators propagate the stream quality directly to the following operator. When using
RLS, the loss in stream quality before the filter operator equals the loss in stream quality
after the filter operator.

We have seen that when using RLS, this operator type can not improve the stream quality.

ULS can improve the stream quality, if we choose good utility values. In the best case, the
stream quality could even be repaired up to 100%.

6.6 Forwarding Operator

Forwarding operators can not improve the stream quality. It forwards every input event it
receives, after it potentially did some operation on it, like a computation. Therefore we
have a linear dependency between the number of output events and the number of input
events. A forwarding operator can therefore not compensate a loss in stream quality that
happened before it.
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Figure 6.1: Overview of the how the operator types propagate losses in stream quality.

6.7 Overview

In the following, we give a brief overview of how the different operator types react to
load shedding. In Figure 6.1 we assume that an operator has one source. For two sources
we assumed, that the stream quality would be the average of the stream quality of both
sources, weighted by the total number of events sent per source. That would equal the
stream quality of one source, which does the same as both of these sources combined.
E.g. shedding at only one of the two sources could be simulated by using ULS at a single
source.

We further assume that when using ULS, we select good utility values. That means utility
values that would lead to better results than RLS.

For the merge operators it is dependent on the data and the window size if we have the
best case, the worst case or something in between. For all other operator the worst case for
ULS should never happen, if we assume that we choose good utility values.

For the pattern-finding operator we assumed, that false positives are not counted as valid
matches. Otherwise RLS could, in the best case, improve the stream quality.
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At the beginning of this work, we examined several publications on the topic of load
shedding. Most of these publications discussed how to make a good load shedder for CEP
or stream processing systems. Others gave a general overview of the topic of load shedding
in CEP or stream processing systems.

But no publication we could find examined, how the inaccuracies in the data stream, caused
by load shedding, propagate through the operator graph. Still, the related works gave a
good starting point for the topic of load shedding. They gave us the knowledge we needed
to set up our experiment and evaluate its results.

For the practical part of this thesis, we modified an existing Java Framework. Then we
used it for our experiments. For the experiments, we created three different scenarios.
They all use different operator types, a different topology, and different data sets. For
each of the scenarios, the experiment followed the same pattern. We did load shedding
on each operator in the topology, always one at a time. To analyze the output data of the
experiments we created several Python scripts.

In the evaluation, we examined how load shedding influenced the stream quality after the
operators. Further, we examined how the resulting inaccuracies propagated through the
operator graph. We examined the stream quality after each operator in the topology, which
input we influenced at some point through load shedding.

One general result of the evaluation is, that the earlier in the topology we shed load, the
better is the reduction of the overall latency. But the resulting stream quality and the
accuracy of the end result are often not optimal. We want to find the optimal trade-off
between high accuracy and low latency. But the spot to shed load to achieve this optimal
trade-off is operator graph specific. As such we cannot give a general recommendation.

In the following, we give a brief overview of the results for each operator type and how
they propagate a prior loss in stream quality.

For Propositional Logic Operators (PLO) the result was, that if there is a limiting factor
among the input events, one should always preferably shed the events, that are non-limiting.
We can only do this up to the point where the non-limited factor becomes limited itself.
After that point, we need to start shedding the original limiting factor as well. If we shed a
non-limiting factor prior to the PLO, then the PLO can improve the stream quality over this
connection. This means that the stream quality after the PLO is higher than it was after
the input operator in question. The improvement is stronger, the more outnumbered the
limiting factor is. The stronger the limiting factor is outnumbered, the more events we can
shed at the PLO or before, while still having a very accurate result. If there are more than
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two events types needed for a match, we should shed starting with the most common event
type and than work our way down to the limiting factor.

A filter operator will propagate the loss in accuracy before the operator directly if we use
random load shedding. This means that the stream quality before and after the operator
is the same. For utility-based load shedding, the filter operator can potentially repair the
stream quality to some degree. This is the case if prior to the filter operator we preferably
dropped events, that could not pass the filter.

Merge operators, that merge events together if certain conditions apply, give a very accurate
result when using load shedding on this operator or prior to it. The result is most stable
if the operator can merge many events in a window into one. If on average the operator
merges a high number of events into one, it can repair the stream quality to a high degree.
If the operator can merge no events and sends on all events single, the result of load
shedding is like seen in the filter/forwarding operators.

The next type of merge operator has the restriction, that it only forwards events if there
was a successful merge. Load shedding leads to a potentially great reduction in stream
quality after this operator. The loss in stream quality is great, if the operator can on average
only merge a small number of events. But it can, for the best case that many events can
merge into one, be as stable the merge operator without restriction.

The pattern-finding operator has a very high loss in accuracy if we shed whole events. If we
have merging operators on the path to the pattern-finding operator, load shedding at these
leads to much better results. The reason is, that if we have relatively stable patterns, load
shedding that only influences the attributes of an event, leads to a much more accurate
result. This kind of load shedding is far less likely to change a stable pattern.

The average-building operator is very stable when we use random load shedding. If we
shed load in all branches, that lead to this operator proportionally, we get a very stable
result. It remains on average at 100% accuracy of the result, with only small variance in
the individual runs for higher drop probabilities. As such the average-building operator has
great potential to repair the stream quality.

Outlook

In this thesis, we have applied load shedding at one operator at a time. The next step
would be to test, how load shedding at more than one operator at a time would affect the
stream quality. It would be interesting to see, if the guidelines for load shedding in a CEP
system, that we have found in this thesis, still apply in that case. Furthermore, maybe
new rules could be found, that optimize the reduction in latency and minimize the loss of
stream quality.

The operator types used in the experiment could also be tested in different typologies and
with different data sets. This could be used to confirm the results of this thesis.
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(a) (b)

Figure 8.1: Taxi Scenario: This figures depict the stream quality after operator 1.

(a) (b)

Figure 8.2: Taxi Scenario: This figures depict the stream quality after operator 2.
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(a) (b)

Figure 8.3: Taxi Scenario: This figures depict the stream quality after operator 3.

(a) (b)

Figure 8.4: Taxi Scenario: This figures depict the stream quality after operator 4.
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(a) (b)

Figure 8.5: Taxi Scenario: This figures depict the stream quality after operator 5.

(a) (b)

Figure 8.6: Taxi Scenario: This figures depict the stream quality after operator 6.
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(a) (b)

Figure 8.7: Taxi Scenario: This figures depict the stream quality after operator 7.

(a) (b)

Figure 8.8: Taxi Scenario: This figures depict the stream quality after operator 8.
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(a) (b)

Figure 8.9: Taxi Scenario: This figures depict the stream quality after operator 9.

(a) (b)

Figure 8.10: Taxi Scenario: This figures depict the stream quality after operator 10.

85



8 Attachment

(a) (b)

Figure 8.11: Taxi Scenario: This figures depict the accuracy of the end result.
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