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Abstract

In this thesis, the machine learning method called Gaussian process regression

(GPR) is used to implement different types of optimization algorithms for several

kinds of chemically relevant, geometrical structures. In the introduction part,

the necessity for fast geometry optimizers is argued for and some of the existing

optimization algorithms are explained. After the introduction, a summary of the

existing GPR theory is given, see section II. It is shown how Gaussian processes

can be used as a regression scheme. Furthermore, its statistical properties are

highlighted that allow, e.g., to estimate uncertainties. The explanations given in

the literature are complemented, trying to make GPR understandable without

large prior knowledge. The following part, see section III, is the core of this thesis

and describes the author’s own work in detail. It is shown that even without

making use of the statistical properties, GPR is a reliable regression scheme for

learning energies from ab-initio calculations. The GPR-based approximation of

the potential energy surface is used as a surrogate model on which optimizations

are performed. The results of these optimizations are used to estimate the desired

geometry on the real energy surface. The surrogate is thereby iteratively improved

by adding more and more training data and giving a better estimate for the desired

geometry in later optimization steps until the optimizer is converged. It is shown

in several test cases that the developed algorithms find the desired geometries

faster and in many cases more reliably than it was possible before. All software

developed in this thesis has been implemented in DL-FIND and is therefore open

source. It is also interfaced to ChemShell, which makes it usable with several

electronic structure codes. In the rest of the abstract, the key ideas of the author’s

work is summarized.
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Implementation of Gaussian Process Regression

The presented implementation of GPR has some extra features compared to other

implementations that improve its capabilities for geometry optimization. The

implementation allows to arbitrarily incorporate data with different derivative in-

formation (up to second order), is sped up dramatically by an iterative implemen-

tation of the Cholesky decomposition, allows the handling of larger systems due

to a multi-level scheme, and has implemented several other small features, see sec-

tion 6, that make it better suited for geometry optimization than other available

libraries.

Geometry Optimizier/Minimizer

The first developed optimizer shows how one can speed up minimization processes

in theoretical chemistry by using GPR as a surrogate model. It is based on L-

BFGS optimization on the surrogate model and requires only energy and gradient

information. Two different overshooting processes are presented that overstep the

estimated minimum on purpose. One which simply scales up the step taken by

the optimizer and one which scales up the step in specific dimensions. These over-

shooting procedures are uniquely usable in surrogate-based optimizers as the one

presented. They allow for large step sizes which can speed up optimizations. And

if they overshoot the minimum too much, they still improve the regression capa-

bilities of the surrogate model, which improves further estimates of the minimum.

This is in contrast to classical optimizers in which such estimates are often just

discarded. The resulting algorithm outperforms classical L-BFGS optimization,

which also serves as a proof of concept that surrogate models can improve the

performance of classical optimizers.

Transition State Search

The presented, new algorithm for searching first-order saddle points is based on

using the P-RFO method on the surrogate model. The presented algorithm, in con-

trast to P-RFO, still only needs gradient information and does not require ab-initio

Hessians. Some ideas of the minimizer are adapted to improve the performance of

the transition state search. The algorithm is compared to classical P-RFO with

XII



updated Hessians and to the dimer method. The new algorithm outperforms both

for the cases that were tested. It needs much fewer energy/gradient evaluations

and therefore, easily compensates its computational overhead that arises due to

the GPR model being used.

Minimum Energy Path Optimizer

A completely new method for optimizing minimum energy paths is presented. It

is based on minimizing two different loss functions, one based on energy, one based

on forces. Both loss functions are combined and, again, only energy and gradient

evaluations from the electronic structure calculations are needed. The method is

also based on a surrogate model created with GPR that can be reused in a following

transition state search. This makes it possible to reliably find a transition state

only from the two given minimum structures that it connects. Furthermore, the

optimizer can guarantee that the discretization of the optimized path is evenly

spaced. The method outperforms the classical NEB method in the presented test

cases and makes the search for minimum energy paths and transition states faster

than before.

Updating Hessians

In a rather straightforward approach, it is possible to use GPR to update Hessians

using gradients. This is often done with classical update schemes like the one by

Bofill. As a proof of concept it is shown that P-RFO can be clearly improved using

a GPR-based update scheme for Hessians compared to the classical alternatives.
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Kurzzusammenfassung

Im Rahmen dieser Arbeit wird Gaußprozess-Regression (GPR), eine Methode des

maschinellen Lernens, verwendet, um verschiedene Typen von Optimierungsalgo-

rithmen für chemisch relevante, geometrische Strukturen zu entwickeln. In der

Einleitung wird die Motivation für die Entwicklung schneller Geometrieoptimierer

erklärt und einige bisher existierende Optimierer vorgestellt. Nach der Einleitung

folgt eine Zusammenfassung der Theorie zur GPR, siehe Teil II. Es wird gezeigt

wie Gaußprozesse zur Regression verwendet werden können. Außerdem wird auf

die statistischen Eigenschaften der Methode eingegangen, die es z.B. erlauben,

Unsicherheiten zu quantifizieren. Dabei wird versucht, die Erklärungen aus der

Literatur zu erweitern um sie verständlicher zu machen, auch ohne viele Kennt-

nisse der Thematik vorauszusetzen. Der darauffolgende Teil, siehe Teil III, ist

der Kern dieser Dissertation und beschreibt die eigene Arbeit des Autors im De-

tail. Es wird gezeigt, dass GPR auch ohne den statistischen Hintergrund bereits

eine verlässliche Methode zur Regression von Energien aus ab-initio Berechnun-

gen ist. Die resultierende Regressionsfunktion, die die Energie nachbildet, wird

als ein Modell für die echte Energiefunktion verwendet. Auf ihr werden Opti-

mierungen durchgeführt, um die gewünschte Geometrie zur realen Energiefunktion

abzuschätzen. Das Modell wird dabei iterativ, durch Zufügen einer wachsenden

Zahl von Energien, die im Laufe der Optimierung berechnet werden, verbessert.

Dies verbessert die Vorhersagequalität des Modells schrittweise, bis letztlich die

Schätzung der realen Geometrie ausreichend gut ist um eine konvergierte Geome-

trie zu erhalten. An Hand diverser Testsysteme wird gezeigt, dass die entwickelten

Optimierer es ermöglichen die gewünschten Geometrien schneller und oft auch zu-

verlässiger als zuvor zu finden. Alle in dieser Arbeit entwickelte Software wurde in

DL-FIND implementiert und ist dementsprechend quelloffen. Außerdem ist eine

Schnittstelle zu ChemShell entwickelt worden, die es ermöglicht, verschiedenste
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Elektronenstrukturprogramme zu verwenden. Im Rest der Kurzzusammenfassung

werden die zentralen Ergebnisse der vorliegenden Arbeit kurz erläutert.

Implementierung der Gaußprozess-Regression

Die vorgestellte Implementierung der GPR weist einige Besonderheiten auf, die sie

von anderen GPR-Implementierungen unterscheidet und besonders geeignet für

Geometrieoptimierung in der Chemie macht. Sie erlaubt z.B. die beliebige Ver-

wendung von Trainingsdaten mit Ableitungen unterschiedlicher Ordnung (bis zur

zweiten Ordnung) und wird signifikant beschleunigt durch die Verwendung einer it-

erativen Implementierung der Cholesky-Zerlegung. Weiterhin erlaubt sie die Hand-

habung größerer Systeme durch die Verwendung einer Methode, die mehrere Ebe-

nen von Gaußprozessen kombiniert und hat einige weitere kleine Besonderheiten,

siehe Abschnitt 6, durch welche sie besser für die Geometrieoptimierung geeignet

ist als andere verfügbare Bibliotheken.

Optimierung von Minima

Der erste Optimierer, der im Laufe dieser Arbeit entwickelt wurde, zeigt, wie man

Minimierungsprozesse in der theoretischen Chemie durch die Verwendung eines

GPR-Modells beschleunigen kann. Er basiert auf einer L-BFGS Optimierung auf

dem GPR-Modell und benötigt ausschließlich Energien und Gradienten. Zwei

verschieden overshooting Methoden wurden implementiert, die bewusst über das

vermutete Minimum hinausschießen. Eine dieser Methoden skaliert einfach die

geschätzte Schrittweise durch einen Faktor größer als eins. Die zweite overshoot-

ing Methode führt das selbe durch, allerdings nur für ausgewählte Dimensionen

des Schrittvektors. Diese beiden Methoden erlauben dem Algorithmus beson-

ders große Optimierungsschritte auszuführen, die die Optimierung beschleunigen

können. Sollten die entsprechenden Schritte zu weit über die gewünschte Struktur

hinausschießen, so können die resultierenden Geometrien genutzt werden um das

GPR-Modell in diesem Bereich zu verbessern. Folglich sind auch weitere Schätzun-

gen der gewünschten Struktur deutlich besser möglich. Dies steht ganz im Gegen-

satz zur Vorgehensweise bei klassischen Optimierern, bei der solche Punkte häufig

verworfen werden. Der präsentierte Algorithmus übertrifft die Effizienz des klas-
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sischen L-BFGS Optimierers. Weiterhin zeigt dies die grundsätzliche Möglichkeit,

dass klassische Optimierer mit entsprechenden maschinellen Lernverfahren deut-

lich beschleunigt werden können.

Übergangszustandssuche

Der in dieser Arbeit präsentierte, neue Algorithmus für die Suche von Sattelpunk-

ten erster Ordnung basiert auf der Idee eine P-RFO Optimierung auf dem GPR-

Modell durchzuführen. Der vorgestellte Algorithmus braucht aber dennoch, im

Gegensatz zu P-RFO, ausschließlich Energien und Gradienten und keine ab-initio

Hesse-Matrizen. Einige Ideen des Minimierers werden auch in diesem Optimierer

umgesetzt um seine Leistungsfähigkeit zu steigen. Der Optimierer wird sowohl mit

klassischer P-RFO mit aktualisierten Hesse-Matrizen, wie auch mit der dimer -

Methode verglichen. Der neue Optimierer übertrifft die klassischen Optimierer

deutlich in den vorgestellten Testsystemen. Er braucht beträchtlich weniger Ener-

gie-/Gradientenauswertungen und kann dadurch die benötigte Rechenzeit für die

Verwendung des GPR-Modells einfach kompensieren.

Optimierung des Pfades Geringster Energie

Eine komplett neue Methode der Optimierung für Pfade geringster Energie wird

vorgestellt. Sie basiert auf der Minimierung zweier Kostenfunktionen, die eine

basierend auf der Energie, die andere basierend auf Kräften. Beide Kostenfunk-

tionen werden kombiniert. Wie bereits die anderen Optimierer, benötigt dieser

Algorithmus lediglich Energien und Gradienten der ab-initio Berechnungen und

keine Hesse-Matrizen. Der Optimierer basiert ebenso auf der Verwendung eines

GPR-Modells, das jedoch in einer anschließenden Suche nach Übergangszustän-

den wiederverwendet werden kann. Das macht es möglich, verlässlich Übergangs-

zustände zwischen zwei gegebenen Minima zu finden. Außerdem garantiert der

Optimierer eine gleichmäßige Diskretisierung entlang des Pfades. Die Methode

übertrifft die klassische NEB-Optimierung in den präsentierten Testsystemen und

ermöglicht eine schnellere Suche von Pfaden geringster Energie als zuvor.
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Aktualisierung von Hesse-Matrizen

Mit sehr geringem Aufwand ist es möglich GPR zur Aktualisierung von Hesse-

Matrizen mit Hilfe von Gradienten zu verwenden. Dies wird üblicherweise mit

klassischen Methoden wie der von Bofill durchgeführt. Im Rahmen eines kurzen

Machbarkeitsnachweises wird gezeigt wie P-RFO durch die GPR-basierte Meth-

ode klar verbessert werden kann, verglichen mit klassischen Methoden zur Aktu-

alisierung der Hesse-Matrizen.
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Part I

Introduction
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1 Theoretical Chemistry and

Geometry Optimization

The idea of theoretical chemistry is to explain and predict chemical phenomena

by using theoretical methods. It includes rather intuitive concepts like chemical

bonds, orbitals, valency, potential energies and other approaches that are intended

to facilitate the human understanding of chemistry. On the other hand, it also

makes use of rather abstract methods from mathematics and physics to allow for

explicit calculation of several chemical properties. For example to explain the prin-

ciples of chemistry on a very fundamental level one deploys the laws of quantum

mechanics, which opens the field of quantum chemistry. The most central equation

in this field is the Schrödinger equation, postulated first in 1926. In theory one

can explain all chemical phenomena by solving the Schrödinger equation. Unfortu-

nately, it is a partial differential equation whose solutions are not easily obtained.

In fact, analytical solutions are only available for the smallest of all molecules,

atomic hydrogen and the hydrogen molecular ion H +
2 . Nowadays, one can hope

to approximate the solutions of other chemical systems using elaborate computer

algorithms.

Therefore, a large part of research in theoretical chemistry is concerned with

developing methods to approximate the solutions to the Schrödinger equation in a

fast and reliable way. The most commonly used approximation is the Born–Oppen-

heimer approximation. It assumes that the motion of atomic nuclei and electrons

can be treated separately since their masses are very different and, therefore, the

time-scales of their motion is very different as well. Under the Born–Oppenheimer

approximation one can solve the Schrödinger equation only for the movement of

the electrons, also called the electronic Schrödinger equation, given a fixed configu-

ration of the atomic nuclei. This yields a specific energy of the electronic structure

3



1.1. GEOMETRY OPTIMIZATION

for the respective configuration of the nuclei. The resulting mapping from the

configuration space of the nuclei to the electronic energy of the system is called

the potential energy surface and abbreviated with PES in the rest of the thesis. Its

evaluation for a single configuration of the nuclei requires to solve the electronic

Schrödinger equation. Unfortunately, even solving the electronic Schrödinger equa-

tion in contrast to the full Schrödinger equation is computationally intensive, even

with modern computer algorithms. Depending on the approximations made and

on the chemical system considered, finding a single solution to this equation can

last from seconds to days. In many cases the solution is completely out of reach and

further approximations have to be made. The usage of computers to solve quantum

chemistry problems touches another field of theoretical chemistry, namely compu-

tational chemistry. In computational chemistry one employs computer codes to

obtain all sorts of chemical properties that are otherwise out of reach. And the

probably most frequently desired property in computationally chemistry is the

shape or configuration of a chemical system. To find these one has to perform a

geometry optimization.

1.1 Geometry Optimization

The spatial arrangement of the atoms of a molecule or a chemical system is also

called a geometry. It is mostly interesting to obtain chemically stable geometries

and geometries that occur along chemical reaction pathways. The former corre-

spond to minima on the PES and are therefore the structures that are most likely

to exist in the physical world. The latter are particularly interesting if they are

first-order saddle points on the PES. They can then be used in transition state

theory to obtain insight on the rate of a chemical reaction to estimate how likely

it is that a chemical reaction takes place and under which circumstances. One

determines the eigenvalues of the Hessian of the PES at these geometries. The

eigenvalues are used to calculate the vibrational partition function of the transi-

tion state. From that one can estimate reaction rate constants. In this framework

the negative eigenvalue of the Hessian corresponds to a transition from the reac-

tant to the product regime. In some cases it is also of interest to find a complete,

classical reaction path, a minimum energy path (MEP). It explains the proceeding

4



1.2. MACHINE LEARNING

of a chemical reaction and is often used to facilitate the search for a first-order

saddle point which is the point of highest energy on a MEP. In some theories, like

small curvature tunneling the MEP is also used to calculate semi-classical reac-

tion rates that also incorporate quantum effects like tunneling to a certain extent.

Theoretical chemists that are, e.g., concerned with reaction kinetics spend a lot of

time on finding the said geometries. To find a converged geometry can often be

very tedious and might need a lot of human input. Therefore, developing faster

and especially more stable algorithms for geometry optimizations can massively

improve many future works in computational chemistry. The currently available

algorithms are not necessarily stable in every case or require much computational

power. Fore example, some algorithms require the calculation of Hessians of the

PES. For many electronic structure calculations this is not feasible. Ideally, a

geometry optimizer works as a black box-like system that only needs very little

human input and still converges in a stable way without requiring information

about the Hessian. It also should require as few energy and gradient evaluations

of the PES as possible. In this thesis new approaches to attack this problem are

presented that are based on the concepts of machine learning.

1.2 Machine Learning

There are several possible ways of defining machine learning (ML). In the follow-

ing this is tried by highlighting the contrast to classical, non-ML algorithms.

In non-ML algorithms one usually implements known rules in algorithms. The

resulting program operates on input data based on these rules and calculates the

desired result. In computational chemistry traditional ab initio calculations are

an example of such algorithms. The basic rules that are implemented are the laws

of quantum mechanics. The algorithms apply these rules to given input data, e.g.

a molecule, and calculate a resulting property, e.g. the energy of that molecule,

based on the laws of quantum mechanics. Alternatively one can often think of

classical programming as model-based programming : One defines a model for a

specific problem, e.g. a mathematical description of a molecule, and implements
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an algorithm that solves the equations of the model. The better the model, the

more accurate the solution of the algorithm will be. This requires a huge effort in

building adequate models and also the solution of the equations of the model can

become tedious. This is often the case for problems in computational chemistry.

Therefore, one can consider non-ML algorithms as model-driven.

In contrast to that ML algorithms can often be considered as data-driven. As

a programmer, one does not set up a model to describe the desired system and

one does not lay down rules like laws of physics. Instead, the programmer only

provides data and lets the computer itself learn the underlying physical property.

However, it does not learn the underlying laws of physics but only the results

that are manifested in the learned physical property. In other words, ML can

be viewed as a learning-by-example approach. This is pretty similar to human

learning: We learn to recognize objects or words with examples simply by looking

or hearing. From that we can abstract and build a more complex understanding

of the world. In many cases ML algorithms are able to mimic this behavior and

recognize objects, words, etc. in data.

The most prominently employed methods to achieve these goals are neural net-

works. Their possibility to abstract data on a high level and recent advances in

computational capabilities helped neural networks and other ML methods to gain

large popularity around scientists in many fields. But if it comes to data-driven

models, neural networks are not always the method of choice. Neural networks

require huge amounts of data to learn reliable information and their training pro-

cess can become computationally expensive. Depending on the task that is to be

performed, other ML methods might be more suitable.

In this thesis the focus lies on another data-driven ML method called Gaussian

process regression that was first introduced in 1951 by Danie Krige. Therefore,

it is often also called kriging. It is able to approximate a function with rather

few samples of that function, i.e. with rather few training points. Therefore, it

is extremely suitable for geometry optimization in chemistry: Only few training

data are available; at the beginning often only one single data element.

6



1.2. MACHINE LEARNING

In this thesis it is shown how Gaussian process regression can be used to optimize

chemical geometries faster and often more reliable than before. But since ML is

all about data, do not take my word for it...

Let the data speak for themselves.
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2 Commonly Used Optimization

Algorithms in Theoretical

Chemistry

In this part existing optimizers are reviewed that are used in theoretical chemistry.

The main focus lies on L-BFGS [57] and P-RFO [10] since they are used in the

developed optimizers. None of these algorithms were implemented or changed in

the work for this thesis. They were simply used in the form of existing computer

code implemented in DL-FIND [42].

2.1 Limited-Memory

Broyden–Fletcher–Goldfarb–Shanno

There exist several methods to find stationary points of a function f(x), i.e. points

x0 at which d
dx
f(x)|x=x0 = 0, or in multiple dimensions ∇f(x)|x=x0 = 0. The most

prominent one is Newton’s method for optimization problems. However, it re-

quires the second derivative of the function f(x). Often, like for many cases in

theoretical chemistry, the second derivatives are not available or very expensive

to obtain. Quasi-Newton methods are modifications of the Newton method that

are based on the same idea but do not use the Hessian explicitly. They only ap-

proximate or update the second derivative by analyzing multiple gradient vectors

instead. L-BFGS is an example of such a method and stands for Limited-Memory

Broyden–Fletcher–Goldfarb–Shanno. It is a slight modification suggested in 1980

by Nocedal [57] of the original BFGS method that was suggested independently by

Broyden [18], Fletcher [32], Goldfarb [34], and Shanno [73] in 1970. The limited-

9



2.1. LIMITED-MEMORY BROYDEN–FLETCHER–GOLDFARB–SHANNO

memory version has, as the name suggests, much lower memory requirement.

The update for the Hessian in BFGS is chosen in a way that it guarantees that

the Hessian matrix stays symmetric and is positive definite. The BFGS-update of

a Hessian Hk at position xk to a Hessian Hk+1 at position xk+1 is given by

Hk+1 = Hk +
yky

T
k

yTk sk
− Hksks

T
kH

T
k

sTkHksk
(2.1)

with yk = ∇f(xk+1)−∇f(xk) and sk = xk+1−xk. For the algorithm to effectively

minimize a function one does the following:

• Obtain a direction in which to jump by solving

Hkv = −∇f(xk) (2.2)

• Optionally one can perform a one-dimensional line search to find an accept-

able step size in which to elongate in direction v to find the next point xk+1.

• Calculate the gradient at xk+1. Check for convergence.

• If not converged, update the Hessian according to equation (2.1)

These steps are repeated until convergence. Often one does not update the Hessian

but the inverse of the Hessian since this is required to solve equation (2.2).

H−1k+1 =

(
I − sky

T
k

yTk sk

)
H−1k

(
I − yks

T
k

yTk sk

)
+

sks
T
k

yTk sk
(2.3)

The important thing to note for BFGS is that it guarantees a positive definite

update of the Hessian and keeps it symmetric. The positive definiteness might be

advantageous if one is close to a minimum. If the distance to the minimum is too

large, this might become problematic since the real Hessian is not positive definite

there. Also the optimizer cannot be used to find saddle points.

The memory requirement for the Hessian is often very large. To avoid the

resulting memory problems the limited memory version of BFGS (L-BFGS) does

not store the Hessian explicitly but only stores some vectors that are necessary
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for the update of the Hessian. These vectors consist of the sk and yk above.

Then one defines the initial Hessian as a diagonal matrix, usually the identity

matrix. It’s memory demand is also linear in the dimension of the system. All

updates of the Hessian or its inverse could then be calculated using a loop over

the stored vectors but at no point in this procedure a full Hessian is calculated.

The Hessian is updated only implicitly and a series of vectors is calculated that

converges to the desired direction in which to jump. The number of vectors stored

to update the Hessian is also limited to a number m which further decreases the

memory requirement. Since these are primarily algorithmic details be referred

to the original publication for a more detailed explanation [57]. For the present

work it is sufficient to keep in mind that L-BFGS is designed to work for high-

dimensional systems in regions of positive definite Hessians.

2.2 Trust Region and Acceptance of Steps

Usually L-BFGS can be combined with the concept of a trust region. There is

only a certain region in which one trusts the results of the optimizer. It can be

understood as a very simple version of a line search in which one simply scales

down the step size to the radius of the trust region if the step size would be larger

than that. In DL-FIND the trust radius is chosen based on the so-called Wolfe-

conditions [81,82], proposed in 1969, which are often used to estimate whether the

step size is adequately chosen, i.e. that the chosen step size decreases the function

and the slope sufficiently. They build a simple estimate of choosing an acceptable

trust region. When it is mentioned in later sections that a trust radius based on

energy decrease is chosen, e.g. for section 7, this is the method referred to.

Furthermore, one usually only accepts steps that improve the result of the algo-

rithm. A step that leads to a higher function value or a larger gradient may be a

bad choice. The step is rejected and the trust region is reduced. This is similar to

a line search in which one decreases the step size to find a better choice for it.

11
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2.3 Partitioned Rational Function Optimization

A method to find first-order saddle points reliably is the P-RFO method. P-RFO

stands for partitioned rational function optimization and is based on the idea of

rational function optimization (RFO). The basic idea of RFO is based on the

standard Newton-Raphson step

∆x = −
∑
i

(vTi g)vi/λi (2.4)

with the gradient g, the Hessian’s eigenvalues λi, and the respective eigenvectors

vi. The eigenvalues are shifted by a parameter γ so that the algorithm is walk-

ing uphill in the direction of the lowest eigenvector and downhill along all other

eigenvectors.

∆x = −
∑
i

(vTi g)vi/(λi − γ) (2.5)

In the original publication [10] it is shown that one can choose a certain rational

function approximation of the function that leads to the same equation. This

approximation allows to calculate a suitable value for λ in an iterative way. To

find first-order saddle points the stability of the algorithm can be increased. It

is shown that one can reformulate the problem into two separate optimization

problems, one for maximizing in a certain direction vk and one for minimizing

in the other directions. Let the k-th eigenvector be the one corresponding to the

smallest eigenvalue. One wishes to maximize the function in the direction of this

eigenvector. One obtains two smaller partitioned RFO problems, hence the name

P-RFO, with two shift parameters γp and γn. Both parameters are determined by

solving an eigenvalue problem [10] and the resulting step vector is

∆x = −
∑
i

(vTi g)vi/(λi − γi) (2.6)

in which γi = γp for i = k and γi = γn for all other values of i. The P-RFO

algorithm does the following:

• Diagonalize the Hessian

• Identify the eigenmode to be followed (the smallest one that is not a zero-
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mode due to rotational and translational invariances)

• Compute the shift parameters λp and λn, see [10]

• Compute the step ∆x in equation (2.6) and potentially limit the step size

• Calculate the new gradient at the new position

• Check convergence and abort if the algorithm converged

• Recalculate or update the Hessian at that position

Important to remember for this thesis is that P-RFO allows the convergence to a

first-order saddle point. It requires Hessians (or updated Hessians) and needs to

diagonalize the Hessian which is all computationally expensive. For details on the

algorithm, be referred to the literature [10,40].

2.4 Dimer Method

The dimer method [38,40,43] is a way of following the eigenvector corresponding to

the smallest eigenvalue of the Hessian to a first-order saddle point, a so called min-

imum mode following method [47, 59, 62, 83]. Approximating the minimum-mode

can be done by rotating a dimer (dimer method) or building a Krylow-subspace

(Lanczos method). Since only the dimer method is used in this thesis this approach

is explained in the following. A dimer consists of two points in the configuration

space that lie closely together. The basic idea is that one can approximate the

minimum mode of the Hessian, i.e. the smallest eigenvalue and the respective

eigenvector, by rotating a dimer around a fixed point and performing only gra-

dient, not Hessian evaluations at the endpoints of the dimer. This is done by

minimizing the rotational force Frot acting on the dimer. To calculate this force

one just needs the gradients g1 and g2 at the endpoints of the dimer to calculate

the torque acting on these endpoints.

Frot = −(g1 − g2) + [(g1 − g2) · τ ] τ (2.7)
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When this optimization is done the dimer direction τ points in the direction of the

minimum mode. One can then follow the force

F⊥ = −g0 + 2(g0 · τ)τ (2.8)

with the gradient g0 at the midpoint of the dimer. This force drives the algorithm

in a direction that increases the function value in the direction of the minimum

mode τ but maximizes the function value in all other directions. Following this

force up to a certain distance gives a translational step by which the dimer midpoint

is translated. One then alternates between rotations and translational steps until

one obtains a small gradient at the dimer midpoint. The big advantage of the dimer

method compared to second order methods like P-RFO is that it is applicable to

high-dimensional systems since it only uses gradients and no Hessian information.

For this thesis it is important to keep in mind that the dimer method is a gradient-

based saddle point search algorithm that often performs better than P-RFO when

no analytical Hessians are available [43].

2.5 Nudged Elastic Band

The nudged elastic band method (NEB) optimizes a full path connecting two

minima through a saddle point [14,19,21,39,41,42,61,75]. This path is optimized

by minimizing the function values (energies) at its discretization points. The path

is constructed as a set of points along an initial guess for the path. These points,

or images, are connected by artificial springs with a certain force constant k.

Let τi be the normalized local tangent vector at the image xi (tangential to the

path). The forces on image xi are then the sum of two forces:

Fi = Fspring
i − F⊥i (2.9)

with the spring force

Fspring = k (|xi+1 − xi| − |xi − xi−1|) τi (2.10)
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to the neighboring images and the part of the negative gradient of the function

E(x) that is perpendicular to the spring forces.

F⊥i = ∇E(xi)−∇E(xi)τi (2.11)

The forces on the images are then minimized to find the MEP. Often one also

spawns a so-called climbing image after a few optimization steps. This climbing

image is moved in the direction of increasing function value along the path but

still minimized in all other directions. It is advantageous when trying to find

a first-order saddle point and will probably converge to a point very close or in

many cases even on the saddle point. Note that there are other path optimizers

as an alternative to NEB [6,28,29,49,63] and many adaptions of the NEB method

itself [14, 19, 21, 42, 61]. Important to remember for this thesis is that the NEB

method is probably the most commonly used path optimization method which

uses artificial spring constants to keep images on the path together and often gives

a good estimate for saddle points.
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Part II

Theory of Gaussian Process

Regression
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3 Introduction to Gaussian Process

Regression

In this part of the thesis the fundamental equations of Gaussian Process Regression

(GPR) are explained in detail. This part is partly based on the book by Rasmussen

and Williams, [67] mainly sections 4 and 5. In these sections their explanation of

GPR is revised and complemented with some explanatory remarks. Additionally,

the fundamental equations are thoroughly derived in the cases in which the book

was felt to be not readily understandable or not thorough enough. It is avoided to

use mathematical technicalities in this part of the thesis, especially the ones con-

cerned with measure theory, if they are not necessary for understanding. In some

cases, a more precise formulation is given in the footnotes for the mathematically

interested reader.

Originally, GPR was a method for regression in geostatistics, introduced in

1951 by Danie Krige [46]. Nowadays, several views and interpretations of the ba-

sic interpolation technique of Gaussian Process Regression exist. Most simply one

can interpret the interpolation equations as regularized regression. In this case

the regression technique is often called kernel ridge regression. The interpolative

equations can simply be derived by minimizing the Tikhonov-regularized residual.

For a derivation of this, be referred to other sources [20]. But there is a more

powerful interpretation of the interpolative equations in the context of Bayesian

statistics. Also in the context of Bayesian statistics there are two kinds of inter-

pretations to the formalism: The weight-space view and the function-space view.

The explanations in this thesis are mainly focused on the weight-space view in

which one derives the most probable weights to be used in the regression formal-

ism. This view on GPR is explained in section 4 where GPR is derived completely
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from the concept of linear regression. section 4 is also intended to clarify the idea

of GPR as a kernel-based method in which one uses a feature space to represent

the data and applies the kernel trick to allow for an infinite dimensional feature

space. In section 5 the equations from GPR are derived from another perspective.

This time starting from the more abstract definition of a Gaussian process. This

also allows to explain GPR in the context of the function-space view in section 5.3

and clarifies the statistical background of GPR further. Note that both views, the

weight-space view and the function-space view, will result in the same predictive

equations and the same weights.

One advantage of the Bayesian interpretation of the regression formalism is the

possibility to give uncertainty estimates which is used for the path optimizer de-

scribed in section 9. Furthermore, the statistical view on GPR opens the possibility

to optimize hyperparameters by the so-called maximum likelihood approach. This

approach will be discussed only briefly since no benefits were found when using it

for the algorithms developed in this thesis. The reasons for that will be discussed

in section A.4.

There are many other regression techniques closely related to GPR such as Re-

producing Kernel Hilbert Spaces (RKHS) [5,69,71] with regularization or Support

Vector Machines (SVM) [23,71] for regression. Both these methods are very simi-

lar to GPR in terms of their predictive equations. For example, one can interpret

the GPR formalism in the framework of RKHS [4]. But these formalisms are not

equivalent from their mathematical interpretation. And their statistical interpre-

tation is not straightforward [3, 15]. These alternatives are not discussed in this

thesis. The GPR framework is the most straightforward to yield all the interpre-

tation possibilities needed for geometry optimization. Before deriving the theory

of GPR, some mathematical basics are given.

3.1 Some Basics of Statistics

Before diving into the theory of GPR, one has to establish some nomenclature

concerning the Gaussian distribution, also called normal distribution, and statistics
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in general.

A random variable is a variable that can take on values that are the outcome of

some random phenomenon.1 If the random phenomenon is the roll of a die, one

could define a random variable that can take on the natural numbers from 1 to 6.

But there are also continuous random variables: When GPR is used for regressing

energies we encounter random variables that take on energy values. Capital letters,

e.g. X, are used to refer to random variables and respectively X for random vectors

(collections of random variables). The underlying random phenomenon in GPR

is a Gaussian process, hence the name Gaussian process regression. This will be

explained in section 5.2.

To quantify the possible values that any random variable can take on we define

probability density functions. These are real-valued functions that describe how

probable it is that a random variable takes on a certain value: When integrated

over a certain set of possible outcomes it gives the probability of this set to take

place. It can only take on non-negative values and it integrates to 1 over the

whole space (it is certain that the random variable takes on one of the values of

the space).2 An example of such a probability density function is the Gaussian

distribution.

f(x) =
1√

2πσ2
exp

[
−(x− µ)2

2σ2

]
(3.1)

The most probable value of x is given by maxx f(x) = µ, the mean of the Gaussian.

In figure 3.1 the mean is at x = 0. We also identify the mean with the so-called

expected value E(·) of the random variable. For a continuous random variable X

that can take on the values x with a probability density f(x), the expected value

is defined via an integral.

E(X) =

∫
R
xf(x)dx (3.2)

The term σ2 of equation (3.1) is referred to as the variance of the distribution.

The variance describes the expected value of the squared difference between the

1Formally, a random variable is a measurable function from a probability space in a measurable
space.

2Formally, it must also be Lebesgue integrable.
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Figure 3.1: The Gaussian/normal distribution for different values of σ.

value of a random variable X and its expected value/mean.

Var (X) = E
[
(X − E [X])2

]
(3.3)

This yields an indication of uncertainty in the prediction. The higher the variance,

the flatter the distribution. The flatter the distribution, the smaller the probability

density at the mean, i.e. the probability that the random variable takes on the

value of the mean is smaller. One can also write

X ∼ N (µ, σ2) (3.4)

if a random variable X is distributed normally.

Sometimes a probability of an outcome is dependent on multiple variables which

leads to higher dimensionality. In d dimensions one does not only require a single

random variable but a random vector X = (X1 X2 ... Xd)
T , a list of d random

variables which takes on the value of a vector x ∈ Rd. The covariance becomes the

so-called covariance matrix Σ. A possible common distribution of the d random

variables is then described by the multivariate normal distribution, the multi-
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dimensional form of the normal distribution.

f(x) =
1√

(2π)d det(Σ)
exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
(3.5)

One also writes

X ∼ Nd(µ,Σ) (3.6)

where the entries Σij of the covariance matrix Σ are the covariances between the

respective random variables.

Σij = Cov(Xi, Xj) = E [(Xi − E(Xi)) (Xj − E(Xj))]

= E [(Xi − µi) (Xj − µj)]
(3.7)

The µi are the entries of the mean µ = (µ1 µ2 ... µd)
T .

Note that Cov(Xi, Xi) = Var(Xi). A positive covariance Cov(Xi, Xj) means that

high (low) values of Xi indicate mostly high (low) values of Xj or, to be precise,

it measures the linear relation of two variables. In a simplified manner one can

think of the covariance as a similarity measure of the two variables.

3.2 Bayes’ Theorem

The statistical theory of GPR makes use of Bayes’ theorem. The idea is to gradu-

ally improve a prior belief about the interpolated function with additional training

data. Bayes’ theorem yields the connection between the prediction of the func-

tion without any training data (prior) and the prediction of the function given the

training data (posterior). In the following Bayes’ theorem is explained.

Let P (X) stand for a probability of the random variable X taking on a cer-

tain value. For example for a coin toss the probabilities would be P (Heads) =

P (Tails) = 1/2. For a continuous random variable (for example when it takes on

the value of an energy) the probability of a random variable taking on certain val-

ues is calculated by integrating the probability density function over the respective

values. A probability denoted with P (X|Y ) means the probability of X taking on

a certain value under the assumption that Y has taken on a certain value. One
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often says probability of X given Y .

posterior = P (H|E) =
P (E|H) · P (H)

P (E)
=

likelihood · prior

marginal likelihood
(3.8)

H is a so called hypothesis whose probability may be affected by additional ob-

servations/evidence. In this thesis it might describe the probability of a certain

energy. The most probable energy will then be the prediction of the regression

model. This is done by finding the hypothesis yielding the highest probability.

The prior probability P (H) is an estimate of the probability of the hypothesis H

before the observation data/evidence is given. The posterior P (H|E) is what we

want to calculate in the end and gives us the probability ofH given certain evidence

E. The evidence E is the data from which the system may learn the properties

of the real underlying probability of the hypothesis H. In our case the evidence

might be computed energies of a chemical system. The factor which introduces

the influence of the observed data on the hypothesis is the likelihood P (E|H).

The likelihood describes the probability of observing the evidence under the given

hypothesis. In other words, it indicates the compatibility of the evidence with the

hypothesis. The marginal likelihood P (E) does not influence the process of finding

the highest probability since it does not depend on H and can be considered as a

normalization constant.3

3It is the marginalization of the common distribution of evidence and hypothesis over the
hypothesis.
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4 From the Linear Bayesian Model

to Gaussian Process Regression

In this section the derivation of all the necessary equations for GPR is shown.

The so-called weight-space view on GPR is clarified, which gives a probability

distribution for the weights in the regression scheme. The weights with the highest

probability are then the ones one chooses for predicting the target function (in

this thesis that is the energy). This section clarifies why GPR is often viewed as

a kernel-based method in which the feature space is used to represent the data

and how the kernel trick is applied. The derivation starts with a simple linear

model of regression that will be expanded step by step. It is shown how one can

include some noise in the data, apply Bayes’ theorem, and how one derives the

most probable prediction of a function in this framework. Finally, the feature

space will be introduced in order to apply the kernel trick.

4.1 Linear Regression with Noise

Let us consider n training points (xi, yi) with xi ∈Rd. One further defines the d×n
matrix X = (x1 x2 . . . xn) and the vector y = (y1 y2 . . . yn)T ∈Rn. To derive

the concept of Gaussian Process Regression one can start from the one-dimensional

linear interpolation model.

f(x) = xT w (4.1)

At every training point xi this yields a prediction f(xi) of the underlying function

that one wants to regress. One does not identify f(xi) = yi directly but assumes
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a certain noise on the training data.

yi = f(xi) + εi (4.2)

The difference between the prediction f(xi) and the observation yi, namely the

noise εi is assumed to be given by an independent and identically normally dis-

tributed random variable Xε.

Xε ∼ N (0, σ2
n) (4.3)

From this assumption of independent noise and εi = yi − xTw, following from

equations (4.1) and (4.2), one can immediately give the probability density function

of the likelihood p(y|X,w).

p(y|X,w) =
n∏
i=1

p(yi|xi,w) =
n∏
i=1

1√
2πσn

exp

[
−
(
yi − xTw

)2
2σ2

n

]

=
1√

2πσn
exp

[
−| y −X

Tw |2

2σ2
n

] (4.4)

The prior assumption on the weight vector (which is needed in a Bayesian setting)

is simply another multivariate Gaussian distribution w ∼ N (0,Σw) with positive

definite covariance matrix Σw.

p(w) =
1√

(2π)d | Σw |
exp

[
−1

2
wTΣ−1w w

]
(4.5)

4.2 Applying Bayes’ Theorem

One can now apply Bayes’ theorem, equation (3.8), to get the most probable values

for the weight vector given the training data. In other words, one searches for the

probability density function of the posterior, p(w|X,y). For that one can ignore

all values that are constant in the weights w. Therefore, one drops the marginal

likelihood p(y). In the following, terms that are constant in w are neglected at
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several steps, indicated by the proportionality sign ∝.

p(w|X,y) ∝ p(y|X,w) p(w)

∝ exp

[
− 1

2σ2
n

(
y −XTw

)T (
y −XTw

)
− 1

2
wTΣ−1w w

]
∝ exp

[
−1

2

(
1

σ2
n

[
−wTXy − yTXTw + wTXXTw

]
+ wTΣ−1w w

)]
= exp

[
−1

2

(
wT

(
1

σ2
n

XXT + Σ−1w

)
w − 1

σ2
n

wTXy − 1

σ2
n

(Xy)T w

)]
(4.6)

At this point one introduces the substitution A := 1
σ2
n
XXT +Σ−1w for which A = AT

and therefore, A−1 =
(
AT
)−1

= (A−1)
T

. Furthermore, one multiplies by AA−1 = 1

and also by a new term that is not dependent on w to get

p(w|X,y) ∝ exp

−1

2

wTAw −wTA

(
1

σ2
n

A−1Xy

)
− 1

σ2
n

(A−1Xy)
T︷ ︸︸ ︷

(Xy)T
(
A−1

)T
Aw

+
1

σ2
n

(
A−1Xy

)T
A

1

σ2
n

A−1Xy︸ ︷︷ ︸
does not depend on w




= exp

[
−1

2

(
wT − 1

σ2
n

(
A−1Xy

)T)
A

(
w − 1

σ2
n

A−1Xy

)]
= exp

[
−1

2

(
wT − w̄T

)
A (w − w̄)

]
(4.7)

which is a normal distribution with a mean

w̄ :=
1

σ2
n

(
A−1Xy

)
(4.8)

and its covariance matrix.

A−1 =

(
1

σ2
n

XXT + Σ−1w

)−1
(4.9)
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The predictive equation for the function value f ∗ ≡ f ∗(x∗) at a point x∗ with

the mean w̄ is then

f ∗ =
1

σ2
n

x∗TA−1Xy (4.10)

and one can also calculate the respective variance of this prediction (f ∗ is now

considered to be a random variable that takes on the value of the prediction of the

linear model).

Var [f ∗] = Var
[
wTx∗

]
= E

[
(wTx∗ − x∗T w̄)(wTx∗ − x∗T w̄)

]
= E

[
wTx∗wTx∗ −wTx∗x∗T w̄ − x∗T w̄wTx∗ + x∗T w̄x∗T w̄

]
= E

[
x∗TwwTx∗ − x∗Tww̄Tx∗ − x∗T w̄wTx∗ + x∗T w̄w̄Tx∗

]
= x∗TE

[
wwT −ww̄T − w̄wT + w̄w̄T

]
x∗

= x∗TE
[
(w − w̄)(w − w̄)T

]
x∗

= x∗TVar [w − w̄] x∗

= x∗TA−1x∗

(4.11)

Since f ∗ is calculated by a linear combination of normally distributed random

variables (linear combination of the weights w) it is also normally distributed.

f ∗ ∼ N (
1

σ2
n

x∗TA−1Xy,x∗TA−1x∗) (4.12)

4.3 Introducing the Feature Space

One can represent the training points in the so called feature space rather than with

their coordinates xi. This is done because a representation in this space is usually

much more powerful. Many regression tasks cannot be performed linearly of course.

But the transformation into a high-dimensional feature space allows non-linear

regression. Optimally, the problem becomes very simple (and linear) if expressed in

the feature space. This is a common trick in machine learning: The representation

of the input data is changed in such a way that the computer can handle the data

easier. This is often done with highly nonlinear functions. In modern deep learning
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approaches to image recognition the representation is changed layer by layer from

a simple color information of the pixels to a representation in form of edges, forms,

objects, scenes and even meaning of the picture. In a very general way one defines

the feature space by some (up to here undefined) function φ(x) that maps from

Rd toRN . One also defines the matrix Φ ≡ Φ(x)ij := φi(xj) in which φi represents

the element of φ in the i-th dimension. One can do the same calculations as above

but only substituting x with φ(x). From equation (4.12) follows

f ∗ ∼ N (
1

σ2
n

φ(x∗)T Ã−1Φy, φ(x∗)T Ã−1φ(x∗)) (4.13)

with the newly defined N × N matrix Ã = 1
σ2
n
ΦΦT + Σ−1w . In principle these

are already the predictive equations for GPR. In the following this equation is

reformulated to make it applicable for a large feature space. However, at this

point it becomes clear that GPR can be viewed as a linear regression method with

a possibly infinite number of basis functions. Note that it is necessary to invert this

N×N matrix. Therefore, an algorithm based on this formulation scales cubicly in

the number of dimensions of the feature space (if one inverts the matrix exactly).

Since the feature space is usually chosen to be high dimensional this formulation

is impractical. One can change to a different representation of this equation that

implies the inversion of an n× n matrix where n is the number of training points.

To do that one separately reformulates the mean and the variance of the above

expression. With the definition of Ã one gets the following equations.

1

σ2
n

Φ
(
ΦTΣwΦ + σ2

n 1
)

= ÃΣwΦ (4.14)

Multiplying Ã−1 from the left and
(
ΦTΣwΦ + σ2

n1
)−1

from the right this yields

Ã−1
1

σ2
n

Φ = ΣwΦ
(
ΦTΣwΦ + σ2

n1
)−1

(4.15)

and multiplying φ(x∗)T from the left and y from the right results in

1

σ2
n

φ(x∗)T Ã−1Φy = φ(x∗)TΣwΦ
(
ΦTΣwΦ + σ2

n1
)−1

y (4.16)
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which gives the new mean in a different representation. Applying the Woodbury

Matrix Identity (Lemma A.1.2) with the substitutions A = Σ−1w , U = V T = Φ and

C = σ2
n1 one immediately obtains

φ(x∗)T
[
Ã
]−1

φ(x∗) = φ(x∗)T
[

1

σ2
n

ΦΦT + Σ−1w

]−1
φ(x∗) =

φ(x∗)T
[
Σw − ΣwΦ

(
σ2
n1 + ΦTΣwΦ

)−1
ΦTΣw

]
φ(x∗)

(4.17)

Substituting K := ΦTΣwΦ one can formulate the probability distribution as fol-

lows.

f ∗ | x∗, X,y ∼ N
(
φ(x∗)TΣwΦ

(
K + σ2

n1
)−1

y,

φ(x∗)TΣwφ(x∗)− φ(x∗)TΣwΦ
(
σ2
n1 +K

)−1
ΦTΣwφ(x∗)

)
(4.18)

This formulation is more favorable when there are fewer training points than num-

ber of dimensions in the feature space. The larger the feature space the larger the

function space one can describe with it. Therefore, one usually defines an infinitely

large feature space and I continue with the formulation of equation (4.18).

4.4 The Kernel Trick

There is a very common way to simplify equation (4.18) recognizing that all the

terms involving x∗ or the training points X (implicitly in Φ ≡ Φ(x)ij = φi(xj))

are of one of the following forms: φ(x∗)ΣwΦ, φ(x∗)TΣwφ(x∗) or K = ΦTΣwΦ. All

these forms completely consist of expressions of a particular form.

k(x, x′) := φ(x)TΣwφ(x′) (4.19)

Since Σw is assumed to be positive definite it can be decomposed as Σw = LLT

and with the definition of ψ = LTφ one can write k as a simple inner product.

k(x, x′) = ψ(x)Tψ(x′) (4.20)
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This function k(x, x′) is called the kernel or covariance function. It is not necessary

to calculate the scalar product of the functions ψ explicitly if one simply defines the

covariance function as a function of x and x′. Therefore, the complete procedure of

transferring the data points into the feature space and building the scalar product

of the functions that define that space is reduced to a simple function evaluation:

The evaluation of the kernel. This procedure is referred to as the kernel trick

and is often used when dealing with a feature space (especially when it is high

dimensional). Note that the covariance function (kernel) as the result of an inner

product must be a positive definite, symmetric bilinear form. One can define

(similar to the matrix K ≡ Kij = k(xi, xj)) the vector k∗ := ΦTΣwφ(x∗) with

its elements k∗i = φ(xi)
TΣwφ(x∗) = k(xi, x

∗). Furthermore, saying that w is the

solution to

(K + σ2
n1)w = y (4.21)

and defining c as the solution to

(
σ2
n1 +K

)
c := ΦTΣwφ(x∗) = k∗ (4.22)

one gets

f ∗ | x∗, X,y ∼ N
(

k∗w, k(x∗, x∗)T − k∗c

)
(4.23)

as the predictive equations. One can calculate the mean and the variance of this

distribution by inverting the matrix (K + σ2
n1), i.e. solving equations (4.21) and

(4.22). Given the covariance function, the most probable guess for the function

value at x∗ is given by the mean of the distribution (4.23). The variance of the

distribution can be viewed as an uncertainty measure for the prediction. These

are the final predictive equations for Gaussian process regression.
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5 Gaussian Process Regression from

a Statistical Perspective

In this section another approach to derive GPR will be demonstrated. One can

consider GPR as a statistical methodology in the context of so-called statistical

inference. In statistical inference one assumes that observed data is sampled from

an underlying probability distribution. One tries to describe this distribution and

ultimately use the properties of this distribution in order to infer information

from it. Bayesian inference is a method of statistical inference that is based on

the application of Bayes’ theorem to include information about observations to a

prior belief about the underlying distribution. When additional data, i.e. more

observations, are provided the underlying probability distribution is updated with

the additional data. This chapter is intended to show the statistical perspective

on GPR deriving it from the definition of a Gaussian process. This also allows the

interpretation of GPR in the function-space view.

33



5.1. DEFINING A GAUSSIAN PROCESS

5.1 Defining a Gaussian Process

Definition 5.1.1. “A Gaussian process (GP) is a collection of random variables,

any finite number of which have a joint Gaussian distribution.” [67]

The underlying probability distribution for GPR is described by a certain stochas-

tic process that is called a Gaussian process (GP). A stochastic process is a col-

lection of random variables f(x), x ∈ X with an index set X that can also be Rd.1

Giving the joint probability distribution for every finite subset of random variables

Y = {f(x1), ..., f(xk)} to any index set X = {x1, ..., xk} specifies the kind of the

stochastic process. For example a Gaussian process (GP) is a special stochastic

process for which the distributions over a finite subset is given by a joint multi-

variate Gaussian distribution. The Gaussian process gives rise to the name of GPR.

A Gaussian process that describes a real process f(x) can be specified by only

two features:

• the mean function

m(x) = E[f(x)] (5.1)

which is the expectation value of f(x) and

• the covariance function

k(x, xn) = E
[(
f(x)−m(x)

)(
f(xn)−m(xn)

)]
(5.2)

which is a measure of the correlated change of the values of f at the two lo-

cations x and xn. The covariance function includes an assumption about the

interpolated function. For example, a certain continuity and differentiability.

1 If the index set is multi-dimensional, for example Rd, one usually refers to the stochastic
object as a random field, or a Gaussian random field when the joint probability distribution
for a finite subset is Gaussian. Also the expression spatial random field is commonly used
since Rd can refer to a physical space rather than a time. Note that stochastic processes (and
GPs) are usually defined with an index set referring to the one-dimensional time axis. So
with this notion, one can call a GP a Gaussian random field in one dimension. Nevertheless,
in this work a Gaussian random field is simply referred to as a GP since it is common in the
theoretical chemistry literature (and in other fields as well) to not make this distinction.
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5.2 Gaussian Processeses as a Method of Bayesian

Inference

In this section, some additional understanding of the statistical properties of GPR

is established. It is explained how it can be understood as a method of Bayesian

inference.

It is shown that by assuming a common Gaussian distribution of a finite num-

ber of random variables (definition of a GP), conditioning on the training data,

and then assuming noise on the training data one arrives at the same predictive

equations as in the derivation of GPR from the linear model in section 4.

In the present work, a GP is used for regression of an energy surface. That

means that a scalar function is predicted, given some training data: For that one

has to determine the distribution

p(y∗|T,x∗) (5.3)

of the scalar output y∗, the prediction of the energy at position x∗ given the set

of N training points T = (xi, yi|i = 1, ..., N) which represent the configurations of

the chemical system. Note that one does not have to distinguish between training

and test points in the definition of a GP. All points are considered to be part of the

same distribution: One introduces N + 1 random variables Y1, ..., YN , Y∗ to model

the underlying function’s values at the respective inputs x1, ...,xN ,x∗. The only

thing that is modeled explicitly are the covariances between outputs. In agreement

with the definition of a GP one assumes a multivariate Gaussian distribution on

these variables.

p(y1, ..., yN , y∗|x1, ...,xN ,x∗) ∝ exp

(
−1

2
ỹTΣ−1ỹ

)
(5.4)

The column vector ỹ contains all outputs ỹ = (y1, ..., yN , y∗) and the matrix Σ

is defined as the covariance matrix between the inputs Σmn = k(xm,xn) for all

m,n = 1, ..., N + 1. This distribution is considered as a prior since it has not

included any information about the values of the training data yi. In other words,

no information about the function one wants to approximate is included. In most
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cases it is sensible to chose priors that specify strong covariance of random variables

that are close to each other, meaning that their respective coordinate vectors have

small Euclidean distances. Note that the covariance function has not been specified

yet. In the following, the matrix Σ will be rewritten in a manner that one can

clearly distinguish between the values corresponding to training data y1, ..., yN and

the testing value y∗.

Σ =

[
K a

aT b

]
(5.5)

The matrix K refers to the covariance matrix of the training data with itself while

a is the N dimensional vector of covariances of the test data (at the point x∗)

and the training data. Consequently, the scalar b is the covariance of the testing

data with itself. In the following subsection it is shown that conditioning on the

training data and the subsequent inclusion of noise yields the predictive equations

of GPR.

5.2.1 Conditioning on Noise-Free Observations

In the end the probability density of the test value y∗ given the training data

(xi, yi), i = 1, ..., N has to be derived. Therefore, one must condition the above

distribution (5.4) on the training values, i.e. one builds p(y∗|y1, ..., yN ,x1, ...,x∗).

For this purpose, one splits the vector ỹ of the complete data set in the components

one wants to condition on (putting the training data in a new N dimensional vector

y) and the test data y∗.

ỹ =


y1
...

yN

y∗

 =:

y

y∗

 (5.6)

Then one uses Lemma (A.1.1) on the Σ matrix from equation (5.5).

Σ−1 =

K a

aT b


−1

=

 1 −K−1a

0T 1


K−1 0

0T
(
b− aTK−1a

)−1

 1 0

−aTK−1 1


(5.7)
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The exponent of equation (5.4) becomes

− 1

2
ỹT
[
Σ−1

]
ỹ

= − 1

2

[
y

y∗

]T [
Σ−1

] [y

y∗

]

= − 1

2

 y

−yTK−1a + y∗


T K−1 0

0T
(
b− aTK−1a

)−1

 y

−yTK−1a + y∗


= yTK−1y + (y∗ − yTK−1a)

(
b− aTK−1a

)−1
(y∗ − yTK−1a)

(5.8)

which yields

y∗ ∼ N (yTK−1a, b− aTK−1a) . (5.9)

The query value y∗ has a Gaussian distribution. The prior of equation (5.4) has

been restricted to fit the training data. This will become more clear in section 5.3.

5.2.2 Inclusion of Noise

Unfortunately, the observed values are normally not noise-free. Assuming an in-

dependent, Gaussian noise ε on every observed value with mean 0 and variance σn

ε ∼ N (0, σ2
n) (5.10)

one gets a different covariance between the observation values

Cov(yp, yq) = Cov(f(xp) + εp, f(xa) + εq) (5.11)

in which f(xi), i = 1, ..., N are the exact values of the underlying function and yi

the distorted observations. The value εi is the noise on observation yi. Using the

linearity of the covariance one gets

Cov(yp, yq) = Cov(f(xp), f(xq))︸ ︷︷ ︸
k(xp,xq)

+ Cov(f(xp), εq)︸ ︷︷ ︸
=0

+ Cov(εp, f(xq))︸ ︷︷ ︸
=0

+ Cov(εp, εq)︸ ︷︷ ︸
=δpqσ2

n

(5.12)
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because of the independence of the noise terms εi. Now one only has to substitute

the old covariance matrix K with the new one K̃ which includes the noise.

K̃mn = Kmn + δmnσ
2
n (5.13)

Using this substitution all equations from above apply for the case of noisy observa-

tions (interpreting y as the observed, noisy values) especially equation (5.9). The

most probable y∗ according to equation (5.9) is the mean ȳ∗ of the distribution.

Including noise in the training data this yields

ȳ∗(x∗) = yT K̃−1a =
N∑
n=1

wnk(x∗, xn) (5.14)

with weights

wn =
N∑
m=1

ymK̃
−1
mn (5.15)

and are (using the symmetry of K) the solution of the linear system

K̃w = y . (5.16)

This defines the predictive equations of GPR. Inverting the matrix K̃ explicitly or

solving the above linear system yields weights for the prediction equation (5.14).

Note that from an algorithmic point of view the noise values σ2
n that are included

in K̃ can be viewed as regularization parameters that make the inversion/solution

more stable by enforcing a more diagonally dominant K̃. It is also interesting to

notice that one can also give an estimate of the uncertainty of the prediction using

the covariance of the distribution of y∗. Since it is

Var(X) = Cov(X,X) (5.17)

38



5.2. GAUSSIAN PROCESSESES AS A METHOD OF BAYESIAN INFERENCE

the variance of the observation is (using equation (5.9) with the new covariance

matrix K̃)

Var(y∗) = Cov(y∗, y∗)

= b− aT K̃−1a

= k(x∗,x∗)−
N∑
n=1

k(xn,x∗)cn

(5.18)

with

cn :=
N∑
m=1

K̃−1nmam (5.19)

so that c = (c1, ..., cN) is the solution to the following linear system.

K̃c = a (5.20)

Note that one assumes only noise on the training data, not on the predicted value

y∗. Again, by solving an N × N linear system one gets the variance of the pre-

diction for the test data. This can be an important uncertainty estimate since

Var(y∗) = E
(
(y∗ − E (y∗))

2). The higher the variance, the higher the uncertainty

in the prediction of the energy. This can give an indication where more training

points might be needed in order to decrease uncertainties in the regression scheme.
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5.3 GPR in the Function Space

In the following it is clarified why GPR can also be understood as a method that

chooses functions from a prior-defined function space and restricts the function-

space to only these functions which go through the training data. This section also

tries to clarify the statistical view on GPR using as few mathematical requirements

as possible. Mathematically more precise notions and references are given in the

footnotes.

Stochastic processes have an underlying probability space. Loosely speaking a

probability space consists of the possible outcomes of the process/experiment with

a respective probability measure that assigns each possible outcome a probability.2

The possible outcomes of this probability space can be understood as functions.

In this thesis these functions f(x) represent possible potential energy surfaces, i.e.

functions from Rd to R.3 Therefore, a stochastic process can be seen as a way of

statistically weighting a function space. And the most probable function is the

prediction of the process when it is used for regression.

The probability distribution of these functions is not necessarily directly defined.

Stochastic processes are usually defined by giving the joint probability distribu-

tion over a finite set of random variables that can take on the function’s values

at discrete points.4 For a Gaussian process this distribution is given by a mul-

tivariate normal distribution. A multivariate normal distribution is completely

specified by giving the mean values (most probable values/energies at the con-

sidered points) and the covariance matrix (these are the covariances between the

considered points). Note that the considered points can be training points from

which the energy values are known, but also testing points at which one wants to

infer the energy. The evaluation of the GP at a test point is done by assuming a

2Formally a probability space consists of the sample space Ω, a σ-algebra F on Ω and the
respective probability measure P .

3Formally these are functions from the given index set T (in this thesis this is the set of
coordinates) to a measurable space Z with a given measure Z. The space Z is called the state
space and its elements are the values that the stochastic process can take. In this thesis these
values are values of energy.

4The existence of the stochastic process is guaranteed by Kolmogorov’s existence theorem. More
details can be found in the literature [16].
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common distribution of all considered points and then conditioning over the train-

ing points and marginalizing over the other test points.5 In the prior one does

not have any training data. The most probable function is defined by the mean

of the prior. The statistical weighting of the functions in the underlying function

space is given by the covariance function of the prior. One can see examples of

such functions in figure 5.1 on the left. In the posterior, the conditioning of the

distribution over the training data defines a function space that is restricted to

fulfill the given training data, see figure 5.1 on the right. In the rest of this section

it is explained how the sampling of the functions in figure 5.1 was done. This will

further clarify how the function space in a stochastic process can be understood.

The prior is completely defined by the covariance function k(·, ·) and the mean

of the prior. The mean of the prior is called ȳpr. It can also be a vector, but in this

thesis only scalar functions are considered (ȳpr ∈ R). The prior mean is a guess

of how the underlying function one wants to regress might look like. Let X∗ be a

set of coordinates at which one wants to evaluate the prior. Let Y∗ be a random

vector containing the random variables at the test points in the set X∗. The prior

is given by the following probability distribution.

Y∗|X∗ ∼ N (ȳpr, K(X∗,X∗)) (5.21)

Consider the set of test data (x1, y1), (x2, y2), ..., (xNtest , yNtest) with unknown yi

and xi ∈ X∗. To plot functions of the prior one wants to evaluate the prior’s

possible function values yi at the argument values xi. The covariance matrix

K(X∗,X∗) is of dimension Ntest × Ntest. Its elements are the covariances of the

random variables Yi (contained in the vector Y), namelyKij(X∗,X∗) = Cov(Yi, Yj).

The Yi are random variables that can take on the values of the energies, yi, at

the test points. Their covariances are calculated by the covariance function, i.e.

5Considering two random variables A and B that have a known joint distribution, e.g. a nor-
mal distribution, the marginalization of A over B means that the value of A is evaluated by
averaging over all possible outcomes of B. For a Gaussian distribution the marginalization is
particularly easy. If the common distribution is defined by (A,B) ∼ N (m,Σ), the marginal-
ization of this distribution over B is given by A ∼ N (m1,Σ11) where Σ11 is the respective
upper-left submatrix of Σ and m1 the respective component of m. This property is also called
the marginalization property and simply means that the examination of a larger set of test
data does not change the distribution of the smaller set.
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Kij(X∗,X∗) = k(xi,xj). The covariance function between xi and xj measures the

covariance of the respective random variables Yi and Yj of the stochastic process.

Note that the prior does not contain training data. The distribution only contains

points at which one wants to evaluate the prior.

The prior defines a function space in which every function is assigned a probabil-

ity. The most probable function is the mean of the prior, ȳpr. To get an impression

of how the other functions might look like one can sample some functions from the

function space of the prior (and of the posterior). To sample functions from such a

function space one has to find a function that is different from ȳpr but still satisfies

the conditions of the prior. That means that the function still has an expectation

value of ȳpr and a covariance matrix given by K(X∗,X∗) for all test points. To

do that (for a Gaussian process) one defines a Ntest-dimensional random vector

U in which all random variables are normally distributed U ∼ N (0,1). Let the

covariance matrix K ≡ K(X∗,X∗) be decomposed by the Cholesky decomposition

K = LLT and let ȳpr = (ȳ1, ȳ2, ..., ȳNtest) be the vector containing all evaluations of

the prior mean at the test points. Furthermore, let u be a possible outcome of the

random vector U. Then one can define a new function6 by yU = ȳpr +Lu which is

different from ȳpr by a random vector. This function is contained in the function

space defined by the prior because it still fulfills the conditions of the prior at the

test points: The expectation value (mean) is still ȳpr since the expectation value

of U is 0. And the covariance matrix is still K.

Cov[ȳpr + LU,ȳpr + LU]

=E[(ȳpr + LU−
ȳpr︷ ︸︸ ︷

E[ȳpr + LU])(ȳpr + LU−
ȳpr︷ ︸︸ ︷

E[ȳpr + LU])T ]

=E[(LU)(LU)T ] = E[LUUTLT ]

=LE[UUT ]LT = L1LT = K

(5.22)

6vector containing the set of evaluations of this function at the training points

42



5.3. GPR IN THE FUNCTION SPACE

With this method one can sample a random function from the prior. One can

do the same with the posterior distribution, compare equation (5.14). Given some

training points Xtr with their respective function values contained in the vector

ytr one obtains the following posterior distribution.

Y∗|X∗,ytr,Xtr ∼ N
(
K(X∗,Xtr)K(Xtr,Xtr)

−1ytr,

K(X∗,X∗)−K(X∗,Xtr)K(Xtr,Xtr)
−1K(Xtr,X∗)

) (5.23)
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Figure 5.1: Sampled functions from the prior and the posterior to approximate the
target function f(x) = x

2
+sin (2x). The prior mean is set to m(x) = x

2
.

The grey area depicts the mean +/− the variance of the prediction.
For this example this area corresponds to a 68% confidence region.
This means that 68% of all function values considering all functions in
the prior’s function space are inside this area. The black crosses are
the training points that are included in the posterior. In the posterior
the function space of the prior is restricted to the functions that go
through the training points.
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5.4 The Chosen Covariance Functions

The covariance function is the central element of GPR since it defines the prior

function space (together with the mean of the prior). That means that it defines

the function space used for regression. Therefore, it also defines the properties

of the resulting surrogate model for the PES one wants to regress. In theoretical

chemistry one usually assumes the PES to be smooth, i.e. it has continuous deriva-

tives of all orders which are of physical interest. In this thesis only second order

information of the regressed PES is needed. Therefore, the regression of the PES

only has to be two times continuously differentiable with respect to the atomic

coordinates. Two commonly used covariance functions that result in a GP like

that were implemented in this work, the squared exponential covariance function

and a special case of the Matérn covariance function. To get a good understand-

ing of covariance functions it is often helpful to look at their spectral density. The

spectral density can be understood as the measure of how much certain frequen-

cies contribute to the description of the GP by the covariance function. Bochner’s

theorem [67,77] yields a description for the covariance function in terms of its spec-

tral density. It states that a complex-valued function k on Rd is the covariance

function of a random process7 on Rd if and only if it can be represented as

k(r) =

∫
Rd

e2πis·rdµ(s) (5.24)

where µ is a positive finite measure. If µ has a density S(s),8 S is called the

spectral density corresponding to k and one can interpret the spectral density as

7More mathematically rigorous: k is the covariance function of a weakly stationary mean square
continuous complex-valued random process. Weakly stationary means that the mean of the
process is constant and that the covariance function k(xm,xn) is only a function of r =
xm − xn, i.e. one can write k(r). Mean square continuous means that the process X is
continuous in the mean square sense at all points x, i.e. that lim

h→0
EX(x+h)−X(x)2 = 0 [22].

8With the Radon–Nikodym theorem the existence of a density of a measure µ with respect to
another measure ν (in this case this is the Lebesgue measure) can be shown: The requirements
for its existence is that the measure ν is absolutely continuous with respect to µ, i.e. that
µ(A) = 0 implies ν(A) = 0 for every measureable set A [30]. This is the case for all the
covariance functions presented.
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5.4. THE CHOSEN COVARIANCE FUNCTIONS

a result of a Fourier transformation.

k(r) =

∫
Rd

e2πis·rS(s)ds (5.25)

S(s) =

∫
k(r)e−2πis·rdr (5.26)

That can give some intuition for the behavior of the covariance function. If higher

frequencies are present, the covariance function allows to sample fast changes of

the training data and the resulting GP becomes less smooth. In the following, two

of the most common covariance functions are introduced, the squared exponential

and the Matérn covariance function. Subsequently, a few hints are given why the

Matérn covariance function is preferable for interpolating energies in theoretical

chemistry. Note that all covariance functions k(xm,xn) presented are only func-

tions of the Euclidean norm r := |xm−xn| of the distance between the two vectors.

One calls these kind of covariance functions isotropic.
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Figure 5.2: Comparing the squared exponential covariance function and the
Matérn covariance function (with ν = 5/2) for different length scales l.
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5.4. THE CHOSEN COVARIANCE FUNCTIONS

5.4.1 The Squared Exponential Covariance Function

The most commonly used covariance function in the machine learning community

is the squared exponential covariance function.

kSE(r) = σ2
f exp

(
− r

2

2l2

)
(5.27)

The parameter σf is just a scaling factor and will be set to σf = 1 for the rest of

this thesis. The parameter l determines a characteristic length scale parameter

that determines how strongly the covariance function decreases with distance r. It

describes the range on which the target function might show relevant information.

Looking at the curves in red in figure 5.2 one sees how l influences the squared

exponential covariance function. The spectral density of the squared exponential

covariance function is

SSE(s) =
(
2πl2

)d/2
e−2π

2l2s2 (5.28)

in which d stands for the dimensionality of the system.

5.4.2 The Matérn Covariance Functions

The Matérn covariance functions [52] are a class of functions with a parameter ν

with which one can determine the smoothness of the resulting Gaussian process.

If ν > k for k ∈ N, the process is k-times differentiable in the mean square sense.

The class of the Matérn covariance functions looks like this.

kMatν (r) = σ2
f

2(1−ν)

Γ(ν)

(√
2νr

l

)ν

Kν

(√
2νr

l

)
(5.29)

The parameter σf is again set to σf = 1 in the rest of this thesis. The function

Kν is the modified Bessel function of the second kind, see Ref. 1 and Γ is the

gamma function. The parameter l is (like for the squared exponential covariance

function) a length scale parameter. For an example with ν = 5/2, see figure 5.2.

Note, however, that the length scale has a different influence on the behavior

of the covariance function than for the squared exponential covariance function.

Therefore, it also has a different influence on the resulting process: A less smooth
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5.4. THE CHOSEN COVARIANCE FUNCTIONS

function can have a higher length scale and still cope with faster changes in the

target function. The practically most useful covariance functions of the Matérn

class are the ones with ν = n+ 1/2, n ∈ N. In this case the functions have a much

easier form.

kMat1/2(r) = σ2
f exp

(
−r
l

)
(5.30)

kMat3/2(r) = σ2
f

(
1 +

√
3r

l

)
exp

(
−
√

3r

l

)
(5.31)

kM(r) = kMat5/2(r) = σ2
f

(
1 +

√
5r

l
+

5r2

3l2

)
exp

[
−
√

5r

l

]
(5.32)

Higher values of ν yield results that are very similar to the results of the squared

exponential covariance functions. Therefore, they are usually neither considered

in the literature nor in the present work. For simplicity the function kMat5/2 is

abbreviated with kM(r) since this is the covariance function that will be predomi-

nantly used in this thesis. The spectral density of the Matérn class is given by the

following expression

SMatν (s) =
2dπd/2Γ(ν + d/2)(2ν)ν

Γ(ν)l2ν

(
2ν

l2
+ 4π2s2

)−(ν+d/2)
(5.33)

in which d is the dimensionality of the system.

5.4.3 Comparing Squared Exponential and Matérn Covariance

Functions

In this section it is clarified why the Matérn covariance function with ν = 5/2

is preferred throughout this thesis. First of all, one clearly wants a PES that is

at least two times continuously differentiable. That only leaves the option with

ν = 5/2 of the Matérn class. The second option is the widely used squared

exponential covariance function that is called kSE in the following. To show the

problem with kSE for interpolating energies the behavior in figure 5.3 is discussed

in the following.
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Figure 5.3: GPR of the Lennard-Jones potential regressed using kSE and kM with
different length scales.
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A Lennard-Jones (LJ) potential (the target) is regressed using both kSE and kM.

The training points used for that regression are depicted with black crosses. As

one can see, kSE with l = 1 has problems to cope with the fast changes in the

LJ potential. The small area around the minimum leads to strong oscillations at

points lying further to the right. By choosing a smaller length scale, e.g. l = 0.2,

one sees that the oscillations get weaker but the function is represented well ex-

actly only at the training points. Going to a larger length scale of l = 20 one sees

that kSE is not able to reproduce the function in any meaningful way anymore.

To find the reasons for that one has to consider two things. Firstly, kSE is com-

pletely smooth, i.e. all derivatives are continuous. That puts a very strong re-

striction on the resulting GP. Secondly, one can have a closer look at the spectral

densities for one-dimensional systems, see figure 5.4.9 As one can see the high fre-

quencies in kSE rapidly decline in contrast to the ones in kMatν . For l = 20 there are

basically only very low frequencies present. This explains why kSE cannot represent

the LJ-potential using l = 20. The faster changes in the area of the minimum are

simply not representable anymore. Using a smaller l = 0.2 the higher frequencies

are sufficiently represented to easily fit the training data at any point, but the low-

frequency terms should be much more dominant to give a non-local representation.

Comparing kSE to kM ≡ kMat5/2 , which is also used in figure 5.3, one clearly sees

that kM performs much better. One still obtains oscillations with l = 1 (although

they are much smaller) and the very local behavior for l = 0.2. But for a larger

length scale, i.e. l = 20, kM performs exactly as desired. Actually, l = 20 is the

length scale that was used for the optimizers. A hint for the good behavior can

again be found in the graph of the spectral densities, see figure 5.4. Although low-

frequencies clearly dominate the covariance function, the presence of much higher

frequencies (even for the largest length scale l = 20) allows for more flexibility and

in consequence the ability to represent the target function adequately. As one can

see, the Matérn covariance functions with smaller values for ν represents a larger

amount of higher frequencies which also corresponds to the ability to represent

discontinuities: Remember that the approximation functions (the predictions of

9 One can also determine the smoothness of the covariance function by its spectral den-
sity/moments of the spectral density [58].
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the PES) using GPR with kMat3/2 are only one time continuously differentiable and

are only continuous with kMat1/2 . One can also see, that the Matérn covariance

functions seem to become more similar to kSE for higher values of ν. And in fact,

for ν →∞ one obtains kSE.

Finally, one can conclude that kMat5/2 has a good trade-off between a presence of

high frequencies to allow the sampling of chemical potentials and a decay of higher

frequencies that prevents discontinuities. Simply experimenting with different ker-

nels in the algorithms of this thesis suggested the same: The performance of all

algorithms presented is consistently better when using kMat5/2 rather than kSE.
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Figure 5.4: Spectral densities of the squared exponential covariance function and
three Matérn covariance functions (ν = 1/2, 3/2, 5/2) on a logarithmic
scale for different values for l .
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5.5 Derivative Information

In this section it is described how one can include gradients gn at the data points

xn in the GPR scheme. The quality of the GP increases with the amount of

derivative information one includes in the training process, see figure 5.5. The

uncertainty decreases and the mean (the prediction of the GP) converges to the

target function. Since gradient information are often cheap to obtain in theoretical

chemistry compared to the potential benefit they provide, one wants to use them

to construct the GP surrogate for the PES. In this section elements of vectors are

written with superscript, indices are written in the subscript.

vn = (v1n, v
2
n, ..., v

d
n) ∈ Rd

The derivative of a GP is again a GP and one can use certain derivative infor-

mation for inference with a GP, see Ref. 2, 22, 50, 67 for details. As can be seen

in the aforementioned references, e.g. Ref. 22, the covariance function must fulfill

sufficient smoothness assumptions and the GP must be differentiable in the mean

square sense.10 The covariance functions used in this thesis have the necessary

smoothness requirements for the resulting GPs to be two times differentiable in

the mean square sense [67]. This allows not only to infer information about the

second derivative of the GP-surface but also to train the GP with obtained deriva-

tive information. In this thesis mostly first-order derivatives (gradients) are used

to train the GP-surface.11 But still information up to the second-order derivatives

(Hessians) are inferred from the GP-surface. The necessary equations for that

procedure are shown in the following. Some formulations/sentences of this section

10 Some more detailed information from Ref. 22: A GP X(x) is differentiable in the mean
square sense with respect to the component xi of the point x = (x1, ..., xd) ∈ Rd if

lim
h1,h2→0

E
[
X(x+h1ui)−X(x)

h1
− X(x+h2ui)−X(x)

h2

]2
= 0 with ui being the unit vector along direc-

tion i. From this definition follows [50] that a GP is differentiable in the mean square sense
if and only if (a) the mean value E[X(x)] is differentiable and (b) ∂2k(xm,xn)/∂xim∂x

i
n, the

covariance function of ∂X(x)/∂xi, exists and is finite at all points xm = xn. The following
holds for higher order derivatives. The derivative ∂νX(x)/∂xi1 ...∂xiν exists for all x ∈ Rd in
the mean square sense if and only if ∂2νk(xm,xn)/∂xi1m...∂x

iν
m∂x

i1
n ...∂x

iν
n exists and is finite

at all points xm = xn.
11 Note that it is also possible to train a GP with Hessians if the covariance function is smooth

enough. In fact the presented covariance functions allow that.
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are based on the author’s previously published work, especially the work on the

path optimizer [24].

A prior estimate Eprior(x) of the PES is defined that is an estimate of the desired

PES before including any real energy calculations (the training data) in the GPR-

scheme. GPR then only approximates the distance of Eprior(x) to the real PES.

The energy prediction of such a GP trained on energy and gradient information

can be done as follows.

E(x) =
N∑
n=1

wnk(x,xn) +
N∑
n=1

d∑
i=1

vin
dk(x,xn)

dxin
+ Eprior(x) (5.34)

Predicting the energy like that allows the usage of energy and gradient information

at the training points. The elements wn and the vectors vn (with elements vin) can

be obtained by solving the following linear equation.

K



w1

...

wN

v1

...

vN


=



E1

...

EN

g1

...

gN


−



Eprior(x1)
...

Eprior(xN)

∇Eprior(x)|x=x1

...

∇Eprior(x)|x=xN


(5.35)

The matrix K is called the covariance matrix and has the form

K =

[
k(xm,xn) + σ2

eδmn
dk(xm,xn)

dxin
dk(xm,xn)

dxim

d2k(xm,xn)

dximdx
j
n

+ σ2
gδmnδij

]
(5.36)

in which δmn(δij) is the Kronecker delta. The parameter σe (σg) describes noise that

one assumes on the energy (gradient) data. In the derivation of GPR in previous

sections it was introduced as Gaussian random noise. That noise could be from

numerical errors or even methodological errors of the used electronic structure

method.

The method also allows to include Hessians in the regression scheme. For these

one also has a noise parameter σh. How this can be done is described in the
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appendix, section A.2. For all the presented optimizers in this thesis only energy

and gradient information are used (no Hessian information) to build the GPR

representation of the PES that is called GPR-PES from now on. One can calculate

gradients of the Gaussian process as follows.

d

dxk
E(x) =

N∑
n=1

wn
d

dxk
k(x,xn) +

N∑
n=1

d∑
i=1

vin
d2k(x,xn)

dxkdxin
+

d

dxk
Eprior(x) (5.37)

Hessians can be evaluated by further differentiation of this equation.

d2

dxkdxl
E(x) =

N∑
n=1

wn
d2

dxkdxl
k(x,xn) +

N∑
n=1

d∑
i=1

vin
d3k(x,xn)

dxkdxldxin
+

d2

dxkdxl
Eprior(x)

(5.38)

The equations to calculate the variance also changes when one includes derivative

information. Let Ẽm be the random variable that takes on the value of the energy

at a molecular configuration xm. The variance for a GP trained on energy and

gradient information is given by the following equation.

Var
[
Ẽm

]
= k(xm,xm)− aTc (5.39)

The vector c = (ce1, ..., ceN , cg1, ..., cgN) (in which cgi = (c1gi, ..., c
d
gi)) is the solution

of the linear system

Kc = a (5.40)

with the covariance matrix K from equation (5.36).

The vector a = (ae1, ..., aeN , ag1, agN) (in which agi = (a1gi, ..., a
d
gi)) consists of the

elements aei = k(xi,xm) and agi = ∇xik(xm,xi) for all i = 1, ..., N .

In the appendix, section A.3, the derivatives of the two used covariance func-

tions are shown that are necessary to implement GPR for two times differentiable

surfaces.
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Figure 5.5: Comparing different orders of GPR (the order of the derivatives in-
cluded). The area between the mean +/− two times the standard
deviation is shown in grey.
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5.6 Maximum Likelihood Estimation for Geometry

Optimizers

In the appendix, section A.4, the maximum likelihood estimation for optimizing

the hyperparameters in GPR is reviewed. Here, however, it is explained why this

method is not used in the work for this thesis. Some studies in theoretical chem-

istry suggest that optimization of the maximum likelihood method can increase

the performance of GPR [44, 70]. For the geometry optimizers presented in this

thesis, this method was found to generally increase the number of energy evalu-

ations needed until convergence. Several tests for the optimizers were performed

with and without optimizing the hyperparameter for the length scale, l. Opti-

mization of the hyperparameter was done after every step of the optimization and

until one obtains a fully optimized hyperparameter or a maximum change of the

hyperparameter is reached. In general a worsening of the results was obtained

compared to simply choosing a fixed value for the length scale. Especially for very

fast and small optimizations with only few training points a fixed length scale is

clearly superior to the maximum likelihood approach.

The main reason for this is that maximum likelihood optimization, as a statis-

tical method, requires a lot of training points before it yields meaningful results.

However, the geometry optimizers often handle only a few training points, at the

beginning even only one. The resulting information content of the likelihood is

very limited for geometry optimization. Furthermore, one has to consider that

the algorithms choose new training points based on their current approximation

of the PES. This approximation, however, is dependent on the hyperparameters

that are currently used. Changing the hyperparameters might result in a situation

in which other training points should have been preferred to built the GPR-PES,

based on the predictions using the new hyperparameters.

This mutual dependency of the hyperparameters and the choice of the training

points might decrease the efficiency of the maximum likelihood approach. In fact

one assumes that the training points are sampled independently of each other

which is clearly not the case in geometry optimization. Furthermore, it is bad for

the performance of the presented GPR implementation itself since the Cholesky
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decomposition of the covariance matrix has to be recalculated completely after

changing a hyperparameter. The iterative version of the Cholesky decomposition,

introduced in section 6.1, cannot be used. Therefore, using the maximum likeli-

hood approach can increase the overhead of the optimizer.

In the first geometry optimizer presented the length scale parameter is adapted

nevertheless. This is done in a systematic way, but not based on maximum likeli-

hood optimization, and also only very rarely. The details on that are explained in

the chapters on the respective optimizers. However, the usage of hyperparameter

optimization by maximizing the marginal likelihood can be beneficial GPs trained

on a larger number of training data.

57



5.6. MAXIMUM LIKELIHOOD ESTIMATION FOR GEOMETRY OPTIMIZERS

58



Part III

Optimization Algorithms Based on

Gaussian Process Regression
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This part of the thesis shows the main results/developments achieved in the the-

sis. Some distinct features of the specialized GPR implementation are highlighted

and the developed optimizers are explained in detail. Small discussion parts, spe-

cific to each of the three optimizers, are provided. A larger discussion section at

the end of this part is concerned with all the presented optimizers.

All the optimizers that are presented could be called surrogate optimizers since

they built a surrogate for the PES that is called GPR-PES. Classical optimization

is then performed on the GPR-PES to obtain a new guess for the desired structure

on the real PES. The GPR-PES is then improved by adding a new training point

to it, i.e. the GPR-PES is built in an iterative way. Three different algorithms

to optimize minimum structures, saddle points, and minimum energy paths are

explained in detail. All three algorithms are benchmarked on several test systems.

Thereby, 25 test systems are employed for all three optimizers: The test set sug-

gested by Baker [8] contains comparably small systems but they can be expected

to be (at least partially) quite challenging for geometry optimizers. Furthermore,

at least one larger test system is used to benchmark the algorithms. Visualiza-

tions of the used test systems are given in the respective chapters. Since all three

optimizers are already published, some of the explanations are taken from the re-

spective articles [24–26] although most of it was rewritten for this thesis.

Finally, one last algorithm, yet unpublished, is presented very briefly that allows

accurate updating of Hessians via GPR.

All the algorithms presented in the thesis are open source and available in the

DL-FIND library.

All physical properties are expressed in atomic units (Bohr for positions and

distances, Hartree for energies), unless other units are specified.
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6 Features of the GPR

Implementation

In the work for this thesis a Fortran implementation of GPR was created. In this

section specific details of this implementation are explained. New developments

are explained that improve the straightforward implementation of the GPR theory

to make GPR well suited for geometry optimization in chemistry.

6.1 Overcoming the Cubic Scaling of GPR

As discussed before the standard way of solving the linear system in GPR is using

the Cholesky decomposition. It is a way of exactly solving a linear system of the

form Ax = b with a Hermitian, positive-definite matrix A. When A is a d × d

matrix the Cholesky decomposition of A to a lower triangular matrix L scales with

O(d3). It is then A = LL∗ or simply A = LLT for real numbers. In this thesis

only real-valued matrices have to be considered. Solving the linear equation with

the decomposed matrix scales only with O(d2). Therefore, the cubic scaling of the

Cholesky decomposition limits the number of training points that can be used in

GPR. In geometry optimization one optimally makes very few energy evaluations.

One also includes gradient information of the training points into the GP. This

is mainly done because the gradient is often comparably cheap to evaluate at

a certain configuration of the system when the energy at that configuration is

evaluated already. The value of the information encoded in the gradient clearly

justifies the small computational overhead. The usage of gradient information in

GPR increases the size of the covariance matrix to N(d + 1) × N(d + 1) if N is

the number of training points and d the number of dimensions in the system. In

this case, the Cholesky decomposition scales cubically with N(d + 1). Luckily,
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Cholesky decomposition can be understood as an iterative process in the sense

that the decomposition matrix L can be constructed row-wise. If one reorders the

covariance matrix of equation (5.35) (the same can be done when using Hessian

information as well) in a way that the rows (and columns) concerning the same

training point are next to each other, one can easily add new training points to the

covariance matrix by adding new rows (and columns). Therefore, one can reuse

the existing covariance matrix to construct the new one. In a similar way one can

reuse the older decomposition L of the covariance matrix and add new rows to it.

The addition of a new training point to the decomposition does only scale with

O(N(d+ 1)2). Since the evaluation of the GP already scales with O([N(d+ 1)]2)

the overall scaling of GPR can be considered quadratic when one iteratively builds

the GP-surface. Only when one evaluates Hessians on the GPR-PES this scaling

worsens. Evaluating Hessians on a GPR-PES that was trained based on energies

and gradients scales with O(d3N). If one trains the surface with Hessians, the

scalings naturally becomes worse.

6.2 Multi-level GPR

Another problem arising from the poor scaling of GPR is memory restrictions.

Whether one builds the covariance matrix in an iterative way or not, see sec-

tion 6.1, the memory demand is still the same, and it scales cubically: In a system

with 300 dimensions, using double-precision, and including gradient information

the memory demand for the covariance matrix for 10 training points is 36MB, for

100 training points it is ∼ 3.6GB, for 300 training points it is ∼ 32.6GB. The GPR

algorithm becomes impracticable for a larger number of training data. A possible

way to overcome this problem is to use a multi-level approach that was presented

in the author’s first paper on geometry optimization [25].

The simplest way to bring the scaling down would be to simply use only, e.g.,

the last 50 training points. That would make the scaling independent of the length

of the optimization history. A much better way is to use the older training points

to build another GP: Let N be the number of training points. N increases by one

every step along the optimization. As soon as N = Nmax one can take the oldest
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m training points to build a separate GP called GP1. The remaining Nmax − m
training data are used to correct the prediction of GP1: GP1 is used as the prior

mean function for the GP with the newer training data. The resulting GP with

the new training points and GP1 as a prior mean function is called GP0. Newer

training points are added to GP0. As soon as GP0 holds Nmax training points

again, rename GP1 to GP2, use the oldest m training points of GP0 to build a new

GP called GP1 with GP2 as a prior mean function. The resulting PES prediction of

GP1 is used as a prior mean function for GP0 with the remaining Nmax−m newest

training data. This process is repeated every time GP0 holds Nmax training points.

The number of GPs increases but the overall scaling (number of computations and

required memory) becomes constant with respect to the length of the optimization

history. This makes GPR-based optimization also applicable in higher-dimensional

systems that would otherwise be out of reach. In the example above, a system

with 300 dimensions, setting Nmax = 60 and m = 10, the algorithm only needs

∼ 3GB of memory space for 300 training points, not 32.6GB. In Ref. 25, 26 it

was demonstrated that the capabilities of GPR for geometry optimization are not

significantly diminished by using the multi-level approach.

6.3 Summary and Further Details of the

Implementation

• The Cholesky decomposition is done in an iterative way in the sense that

one can easily add new training points to an existing GP without increasing

the computational scaling of the algorithm, see section 6.1.

• A multi-level approach to GPR to overcome further scaling problems due to

memory constraints has been implemented, see section 6.2.

• The Hessian evaluation of GPR is parallelized row-wise using OpenMP. The

variance evaluation in GPRMEP is parallelized (it must be evaluated at

several points).

• Since the Hessians of the PES are symmetric, only the lower half of the

Hessians is used for training. This reduces the size of the covariance matrix
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considerably.

• The covariance matrix is stored in a linearized fashion: Only the lower half

of the matrix is saved and the remaining entries of the rows are all lined up

one after another to give a vector. This allows for fewer memory demand

and still fast iteration over its elements.

• The GPR implementation itself is programmed in a modular way. That

means that a data type called gpr type exists and the respective module called

gpr module contains all private and public functions operating on that type.

The necessary parameters for optimization on GPR are collected in a sep-

arate data type called optimizer type. The implementations of the geodesic

approach [85], the curve interpolation procedures based on GPR, and the

path optimization algorithms to find MEP that we call GPRMEP later on,

are done in a completely object-oriented way.

• GPR was implemented with several kinds of possible functions for the prior

mean.

– The mean value of all energy values in the GP is taken as a constant

prior mean.

– To that mean value one can add/subtract a constant that can be man-

ually defined.

– Another GP can be taken as an offset. This is used in the multi-level

scheme, see section 6.2.

– A linear interpolation between the first and the last added training point

is chosen as a prior mean. This is used, for example, to interpolate a

curve based on GPR (as an alternative to splines).

– A Taylor expansion (of order zero, one, or two) around an arbitrary

point xT can be used as a prior mean. One should, however, include the

point xT and its known derivatives as training data as well to guarantee

that the GP accurately describes this point. This is used in the GPR-

based update of Hessians.
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• The implemented GPR procedures allow to arbitrarily include points of dif-

ferent order, i.e. points with different amount of derivative information.

• Optimization of the hyperparameters by maximizing the likelihood is imple-

mented, see section A.4. However, it is recommended to avoid this procedure

for geometry optimization since it prohibits to build the GP in an iterative

way which has computational disadvantages.
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7 Minimization Algorithm

In this chapter it is explained in detail how geometry optimization can be improved

using GPR. This chapter is mainly based on Ref. [25]. However, the results vary

slightly from the paper, as I replaced the multi-level approach, see section 6.2, by

the iterative implementation of the Cholesky decomposition, see section 6.1. The

explanations given in this chapter are often similar to Ref. [25].

The basic idea of the GPR optimizer is to use the energy and gradient informa-

tion of the PES to build a GP surrogate, the GPR-PES. The algorithm searches

for a minimum on this GPR-PES to estimate a minimum on the real PES. The

energies and gradients at this estimate are evaluated and included in the GPR-

PES. Then a new search for a minimum on the GPR-PES is started. This process

is repeated until the optimizer can be considered to be converged.

So far, this is similar to other optimizers with different surrogate models based

on Taylor expansions instead of GPR [74, 84]. In the following, the optimization

procedure is explained in detail. Section 7.2.3 explains the algorithm on an example

run of the resulting algorithm in the one-dimensional Lennard–Jones potential.
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7.1 Convergence Criteria

In order to define convergence for the optimizer the standard convergence criteria

of DL-FIND for the step size and the gradient are used: The Euclidean norm of

the step vector, and the gradient vector, as well as the maximum entry of both

vectors have to drop below a certain threshold. The step vector is the vector that

points from the last estimate to the new estimate of the minimum. It describes

the proceeding of the optimization run. Given a single tolerance value, δ, the

convergence criteria in DL-FIND are

max
i

(gi) < δmax(g) := δ (7.1)

|g|
d
< δ|g| :=

2

3
δ (7.2)

max
i

(si) < δmax(s) := 4 δ (7.3)

|s|
d
< δ|s| :=

8

3
δ (7.4)

where |g| (|s|) is the Euclidean norm of the gradient (step vector), and maxi(gi)

(maxi(si)) its maximum entry. The variable d stands for the number of dimensions

in the system. If these four criteria are fulfilled, the algorithm is considered to be

converged. Note that convergence is tested for the gradient on the underlying

ab-initio data rather than the GPR surrogate.

7.2 The Optimization Algorithm

In the first step the GPR-PES is built with only a single energy and gradient

evaluation at the starting point, x0. In later steps, all obtained energies and

gradients from the N training points are used to build the GPR-PES and then find

the minimum, xGPmin
N , on the GPR-PES. The evaluation of the GPR-PES is very

cheap, especially compared to the evaluation of the PES via electronic structure

calculations. Therefore, the search for xGPmin
N can be carried out very fast with an

arbitrary optimization method, like for instance a L-BFGS optimizer [48], as has

been used in this thesis.

Usually the search for a minimum on the GPR-PES is started at the last training
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point that was included in the GPR-PES. In rare cases this choice of the starting

point can go wrong: If the direction along the optimization changes by more

than a 90 degree angle, or if the absolute value of the gradient gets larger, the

optimization is restarted multiple times. A minimum search is started at each of

the 10% of training points with lowest energies. The lowest minimum found is the

next xGPmin
N . The obvious optimization step, s ′N , after one has obtained N ≥ 1

training points would be to take the step vector to position xGPmin
N as the next

guess for our minimum on the PES.

s ′N = xGPmin
N − xN−1 (7.5)

The first training point, x0, is defined as the starting point of the optimization,

and xN−1 is the last estimate of the PES minimum after obtaining N−1 additional

training points. This already yields a functional optimizer, but its performance

is rather poor due to a well known problem: GPR and other machine learning

techniques are not capable of accurate regression in regions where only few training

points or none at all are given. Simply put, in one dimension interpolation works

much better than extrapolation. An iterative optimization as described above is

obviously largely based on extrapolation since it most likely makes a step away

from known training points. By overshooting the estimated minimum on purpose,

the problem of finding the minimum is presented as an interpolation rather than

an extrapolation.

7.2.1 Overshooting

The first optimization step is carried out as described by equation (7.5), and the

first step is defined as s1 = s ′1. From the second step onward, the cosine of the

angle between the last optimization step, sN−1, and the estimated new step, s ′N ,

is determined as

αN =
(sN−1, s

′
N)

|sN−1||s ′N |
(7.6)

with (·, ·) being the Euclidean dot product. The closer αN is to 1, the smaller the

angle becomes. If αN is smaller than 0, the direction of the optimization is changed

by more than a 90 degree angle. If it is close to −1, the direction is completely
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inverted. As soon as

αN > 0.9, (7.7)

the confidence in taking a step in the correct direction is fairly high and the initially

estimated s ′N is scaled up to obtain the next optimization step

sN = λ(αN)s ′N (7.8)

for N ≥ 2, introducing the scaling factor

λ(αN) = 1 + (λmax − 1)

(
αN − 0.9

1− 0.9

)4

(7.9)

with a maximum scaling factor of λmax so that 1 ≤ λ(αN) ≤ λmax. This scaling

factor is depicted in figure 7.1.
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Figure 7.1: The scaling factor for overshooting the step, see equation (7.9), with
λmax = 10 is plotted against αN .

To avoid large overshooting in the area around the actual minimum of the PES

this scaling factor is only applied if the estimated step, s ′N , does not satisfy the

convergence criteria of the maximum step entry in equation (9.28). Furthermore,

close to convergence the maximum scaling factor is limited through

λmax =
(
1 + tanh

(
β2 − 1

)) λ̃max − 1

2
+ 1 (7.10)
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in which

β = max
i

(s′i)/δmax(s) (7.11)

is the ratio of the maximum entry of s ′ and δmax(s), the convergence criterion for

the maximum step entry from equation (9.28). The variable β indicates how close

the algorithm is to convergence with respect to the maximum entry of the step

vector. If β ≤ 1, the convergence criterion is met. No scaling occurs in this region.

See figure 7.2 for a plot of λmax against β.
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λ
m
a
x
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Figure 7.2: The limitation of the scaling factor, see equation (7.10), is plotted
against the variable β, see equation (7.11). The upper limit of λmax is
set to λ̃max = 10.

To some extent, the limitation of the highest possible scaling factor, λ̃max, to λmax

via equation (7.10) is intended to guarantee a smooth transition into the region of

convergence. However, keeping λmax above a threshold of at least λ̃max/2 at the

point where the convergence criterion is met does not seem to hinder convergence.

Consequently, λmax ≈ λ̃max/2 is kept in the area of convergence. The value of λ̃max

is chosen to be 5 at the beginning of the optimization. It is increased by 5%, if the

overshooting procedure according to equation (7.9) is performed more than once in

a row, i.e. that the criteria of equation (7.7) are satisfied for two consecutive steps

in the optimization procedure. At the end of each optimization step, the estimated

step size, |sN |, is limited by the maximum step size, smax, that is set externally

for the optimization procedure. This is similar to all other optimizers in DL-FIND.
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7.2.2 Separate Dimension Overshooting

In several systems one often observes that a few dimensions seem to converge very

slowly, while the convergence in the other dimensions has already been accom-

plished. This is especially the case for longer optimization runs. One reason for

this may be that only one length scale parameter, l, in equation (5.32) is used, and

no different length scales for different dimensions are assumed. On the other hand,

it is not easy to find suitable parameters for every dimension, and introducing more

parameters makes the optimizer become more prone to chance.

Alternatively, one can make use of the fact that the correct solution to the opti-

mization problem can be overshot quite a bit. The separate dimension overshooting

is introduced by considering every dimension independently of the others. If the

optimizer has monotonically changed the value of the coordinate in this dimension

over the last 20 optimization steps, a one dimensional GP is built to represent

the optimization along this single coordinate. This GP approximates the value of

the corresponding coordinate with respect to the number of the steps taken: The

position of the training points for this GP is simply the number of the steps along

the optimization procedure, so its training points are equidistant and it interpo-

lates the value of the considered coordinate at the respective step. On this GP

the next maximum/minimum is searched assuming it could be a good guess for

the dimension’s value at the real minimum of the PES. Thereby, the coupling of

the different coordinates is ignored. To give the optimization procedure time to

explore the omitted coupling, the separate dimension overshooting is suspended

for 20 optimization steps after it was performed.

In order to restrict the overshooting to a reasonable regime, the limit of the

separate dimension overshooting is restricted by a factor of 4 compared to the

originally estimated step without any overshooting. Furthermore, the separate

dimension overshooting is only applied if it suggests higher overshooting than the

scaling factor in equation (7.9) and if the convergence criterion for the maximum

step entry from equation (9.28) is not satisfied. Also this overshooting procedure

is finally limited by the maximum step size, smax, allowed for the optimization

procedure.
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7.2.3 The Algorithm in One Dimension

In this section the overall optimization process is explained with a simple one-

dimensional example PES E(x) illustrated in figure 7.3.

• Step 1: To begin with, the GPR-PES is built with the energy and gradi-

ent information from the starting point. The minimum on the GPR-PES

is found. It is shown by a green circle. This is the next estimate for the

PES minimum, and the energy and gradient of the PES is calculated at that

position, indicated by the arrow pointing to the real PES.

• Step 2: After evaluating the energy and gradient at the estimate from the

last step, the next GPR-PES is now built with two training points. In this

example, the new minimum of the GPR-PES leads the algorithm in the same

direction as in Step 1. Therefore, the estimated step size is scaled up in the

overshooting procedures described above. The overshooting to a more dis-

tant point is indicated by the tilted arrow which points to the next estimate

at which the energy and the gradient are calculated. If the estimated step

size is now larger than the externally set maximum step size smax, we scale

the step down to a step size of smax.

• Step 3: The minimum on the new GPR-PES, with now three training points,

leads to a step in the opposite direction of the last step. Therefore, no over-

shooting is performed.

• Step 4: The next estimate for the minimum is close enough to the last es-

timated minimum, therefore the convergence criteria for the step size are

satisfied. Calculating the gradient at estimate 4, also shows that the con-

vergence criteria for the gradient are satisfied. The optimizer is completely

converged.
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Figure 7.3: The basic idea of the GPR optimizer in the case of a Lennard–Jones
potential as a simple example for a PES.

The limitation of the step size, called smax, lies roughly between 0.5 and 1 a.u.

This prevents the overshooting process from shooting in a region outside of the

domain in which the chosen electronic structure calculations are valid.

7.2.4 Parameters

For all results presented in this section the Matérn covariance function of equa-

tion (5.32) is used. The parameter σf is set to σf = 1 since it does not influence

the result. The only other parameter in the covariance function is l. It is set to

l = 20 at the beginning of the optimization. A dynamic approach is chosen: Every

step along the optimization on which the gradient has become larger, instead of

smaller, 1/l2 is increased by 10% of its current value. This leads to a shrinking
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characteristic length scale along the optimization. This means that the steps pre-

dicted by the GPR optimizer will become smaller and the training points closer.

A smaller characteristic length scale is also advisable towards the end of an opti-

mization procedure, as one often needs more careful steps when approaching the

minimum. The changing of the hyperparameter l is turned off when the covariance

matrix becomes too large (what too large means depends on the memory available

on the computing system). In this case the iterative Cholesky can be used and the

algorithm stays efficient. The noise parameters, see equation (5.36), are chosen to

be σe = σg = 10−7 which is a compromise between the smallest possible value, and

numerical stability tested on various test systems. It is also noteworthy that the

Matérn covariance function is rather insensitive to changes of the σ parameters.

One can also use the maximum likelihood principle to optimize the parameters,

see section A.4. Nevertheless, in our test cases the presented dynamic approach

shows much better results.

The algorithm also includes an offset in the form of the prior mean function,

see equation (5.34). Far away from any training points, the GPR-PES slowly

converges to this function. This fact is exploited in the optimizer: The prior mean

is chosen to be a constant that is much higher than the energy values observed

in the system. This will restrict the optimization to a reasonable area around the

observed training points, and guarantees that a minimum on the GPR-PES can

be found at any time. The prior mean for the minimization procedure is chosen

to be

Emean = max
i
Ei + 10 (7.12)

The value of Emean can change with an increasing amount of training points and

is reevaluated if new training points are added to the GPR-PES.

Just like in L-BFGS optimizations, the maximum step size, smax, is the only

parameter that has to be specified by the user. The parameters in the overshooting

schemes were chosen to provide reasonable performance on the Baker test set shown

in section 7.3. The sensitivity of the performance on these parameters is small.
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7.3 Applications/Benchmarks

The optimization algorithm was tested on several systems. First, a set of 25 test

systems suggested by Baker was chosen [8]. The starting points of the optimization

were chosen following Ref. 8. They are close to a TS on the Hartree–Fock level. In

contrast to Ref. 8 the semi-empirical AM1 [27] method is used for the electronic

structure calculations. The resulting minimum structures are shown in figure 7.4.

These test systems are in the following referred to as IDs 1 to 25. Note that the

structures with ID 23 and 24 start at different geometries but end up in the same

minimum. Additionally, a more realistic test case is set up: a part of a previously

investigated molybdenum amidato bisalkyl alkylidyne complex [72] that includes

41 atoms, see figure 7.5. Electronic structure calculations are carried out with the

BP86 functional [12, 60] in the def2-SVP basis set [80].

The optimization runs on this molybdenum system are given the IDs 26, 27, and

28. For run 27, a different starting point from those in runs 26 and 28 was chosen.

Runs 26 and 28 begin at the same starting point and only differ in the chosen

convergence criteria: The convergence criteria were chosen according to equations

(9.26− 9.29) with δ = 4.5 · 10−4 for the run on the molybdenum system with IDs

26 and 27. The stricter criterion, δ = 1 · 10−4, was chosen for the run on the

molybdenum system with ID 28, and δ = 3 · 10−4 was set for the Baker systems

with IDs 1 to 25.

The maximum step size was set to 5 a.u. (never reached) for L-BFGS since it

yields the best performance. The maximum step size for the GPR optimizer was

set to 0.5 a.u. for the Baker systems and 1 a.u. for the molybdenum system runs.

The number of steps in the L-BFGS memory is chosen to be 50 for the molybdenum

system, and equal to the number of dimensions in the Baker systems. That is the

default setting in DL-FIND. The L-BFGS optimizer in DL-FIND also employs a

variable trust radius based on energy decrease, see section 2.2 [42]. All presented

calculations are performed in Cartesian coordinates. The GPR optimizer is in

principle able to handle other coordinates, but the adaptations of the algorithm

needed to perform well with these are not trivial. Especially the optimal length

scale parameter l may be different in every dimension. This is not possible with

the presented implementation.
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Figure 7.4: The minima of the test systems suggested by Baker [8]. The structures
with ID 23 and 24 are the same.
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Figure 7.5: The minimum structure of the molybdenum amidato bisalkyl alkyli-
dyne complex found by our GPR optimizer in the run with ID 26.
Molybdenum is depicted in golden brown, nitrogen in blue, carbon in
grey and hydrogen in white.

Rigorously proving the convergence order of the optimizer is rather difficult if

not impossible. Instead, a comparison between the GPR optimizer and the super-

linearly converging L-BFGS optimizer of DL-FIND is shown in table 7.1. The

number of steps both optimizers take until convergence is compared as well as the

obtained minima according to their energy and the RMSD value of their geome-

tries. In the respective paper [25] a further comparison to the steepest descent

and the conjugate gradient methods is shown. They perform much worse than

L-BFGS. One can also find results of the optimization runs on the Baker test set

using DFT instead of AM1. The DFT-based benchmarks in Ref. 25 are consistent

with the ones presented here: The electronic structure method does not seem to

have a strong influence on the optimization performance.
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Table 7.1: A comparison of the L-BFGS and the GPR optimizer in the presented
test systems, sorted by the number of dimensions d. The number of
steps required until convergence is given for the L-BFGS and the GPR
optimizer, ∆steps is their difference, ∆energy is the energy difference
between the minima in Hartree, RMSD denotes the root-mean-square
deviation of their atomic positions in Ångström.

steps

d GPR L-BFGS ∆steps ∆energy RMSD ID

123 120 251 131 2.00× 10−11 2.34× 10−1 26

123 96 223 127 5.02× 10−8 2.94× 10−1 27

123 166 436 270 −2.18× 10−4 2.77× 10−1 28

48 73 83 10 8.47× 10−9 1.43 9

42 94 104 10 2.29× 10−7 2.92× 10−2 17

33 29 39 10 1.93× 10−6 1.44× 10−3 18

30 26 27 1 −3.32× 10−7 2.34× 10−3 6

30 58 62 4 −4.17× 10−8 5.48× 10−3 7

30 38 42 4 −1.45× 10−4 3.08× 10−4 8

30 35 37 2 −6.40× 10−9 4.03× 10−3 11

24 29 31 2 −2.62× 10−7 9.16× 10−4 5

24 13 15 2 1.67× 10−8 6.63× 10−5 10

24 15 23 8 1.09× 10−7 1.19× 10−4 12

24 14 19 5 2.52× 10−7 3.09× 10−4 13

24 19 22 3 6.20× 10−10 3.83× 10−4 21

21 16 23 7 −7.08× 10−2 3.36× 10−4 14

21 30 80 50 −2.49× 10−6 8.76× 10−1 16

21 22 25 3 −3.68× 10−7 1.96× 10−4 20

21 19 22 3 −3.50× 10−6 3.54× 10−4 22

15 12 14 2 −1.45× 10−8 9.73× 10−5 4

15 13 26 13 −9.58× 10−8 4.57× 10−3 19

15 14 19 5 1.75× 10−7 2.82× 10−4 23

15 19 23 4 −1.03× 10−7 2.15× 10−4 24

15 25 29 4 −5.16× 10−8 3.52× 10−4 25

12 16 26 10 1.19× 10−7 3.49× 10−4 2

12 18 46 28 −3.97× 10−4 3.59× 10−1 3

12 12 13 1 −6.79× 10−4 2.06× 10−5 15

9 15 19 4 −4.10× 10−4 3.49× 10−4 1
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The GPR optimizer yields good results. In most cases it is faster than the L-

BFGS optimizer. Some qualitative differences can be observed. In the case of

system 16 the GPR optimizer finds a different minimum than L-BFGS. One of

these two different minima represents the reactant, the other one the product of

this system. This happens because the optimization starts in the vicinity of the

TS. System 3 and 9 show high RMSD values between the structures while their

energy differences vanish: These are bimolecular reactions in which the minimum

region of the separated molecules is flat using AM1. In the case of the molyb-

denum system with ID 26 and 27 the GPR optimizer finds a minimum that is

higher in energy, and a little closer to the starting point. The minima look similar

with slightly different torsions in the aliphatic groups. For the molybdenum sys-

tem with ID 28 stricter convergence criteria are applied and the GPR optimizer

is significantly faster. Towards the end of the optimization the convergence of

L-BFGS is mostly hindered by larger predicted step sizes. All obtained minima

look chemically plausible and (except for system 16) similar comparing the results

of L-BFGS and the GPR optimizer.

For some of the test cases the Euclidean norm of the gradient versus the number

of steps taken in the optimizer is shown. This is done for four of the biggest test

cases from the Baker test set in figure 7.6 and the runs on the molybdenum system

with IDs 26 and 27 (the ones with different starting points) in figure 7.7. The

higher fluctuations of the GPR optimizer compared to the L-BFGS optimizer are

due to the overshooting procedures, see section 7.2. They are not necessarily a

sign of bad performance of the algorithm. The high overshooting is intentional and

decreases the overall number of steps needed in almost all cases. The convergence

criteria concerning the step size are usually fulfilled later than the ones concerning

the gradient. This explains the large amount of steps that L-BFGS uses in the

molybdenum system, although, the convergence criterion for the gradients are

already met. Furthermore, the L-BFGS optimizer discards a lot of steps when the

energy increases along the optimization, especially towards the end. This can be

seen when the norm of the gradient stays constant for some time: No actual step

is taken. The discarding of steps is not necessary for the GPR optimizer.
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Figure 7.6: The Euclidean norm of the gradient with respect to the number of steps
taken by the L-BFGS and the GPR optimizer in four of the biggest
systems from the Baker test set.
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Figure 7.7: The Euclidean norm of the gradient with respect to the number of
steps taken by the L-BFGS and the GPR optimizer in the molybdenum
system with two different starting points.
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7.3.1 Timing

The GPR optimizer is more demanding than classical optimizers in terms of com-

putational power per step. The algorithm, including methods like the iterative

Cholesky approach, see section 6.1, and the multi-level approach, see section 6.2,

scales quadratically with the number of steps and dimensions of the system. Con-

sequently, the optimizer takes more time per step than the L-BFGS optimizer.

This can best be seen in our biggest test case, the molybdenum system (IDs 26 to

28): The GPR optimizer took about 40% of the overall computational time. The

L-BFGS optimizer procedures take around 1%. The additional overhead is easily

compensated by faster convergence in the test case. In the longest run with ID

28, the GPR optimization lasted around 77 minutes in total, while the L-BFGS

optimization took around 105 minutes. The runs were all performed on an Intel

i5-4570 quad-core CPU. If more accurate electronic structure methods are cho-

sen than the DFT method used here and for calculating correspondingly smaller

systems, only a negligible overhead from the GPR optimizer can be expected.
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7.4 Discussion

The overall result of the presented benchmark indicates a good performance of the

GPR optimizer. The big advantage of the GPR optimizer over traditional optimiz-

ers is that it can do comparably large steps without compromising the efficiency.

If a step overshoots the minimum or even yields a higher energy structure than

before, this generally improves the performance of the optimizer. It can easily use

the obtained information from an overestimated step to build a more conserva-

tive step afterwards. This results in the possibility of doing large steps without

compromising the efficiency of the optimizer. This speeds up the optimization

procedure as can be seen in the largest test case.

The scaling of the computational requirements for the optimizer is quadratic in

the number of training points and the dimension of the system. The same holds

for the memory demand, especially for the covariance matrix. Therefore, GPR

is less promising in higher dimensional systems. However, since we can employ

the multi-level approach to overcome memory problems to a certain extent, the

optimizer is feasible for quite large systems. In the investigated systems the scal-

ing was not a problem. Even in the 123-dimensional molybdenum system GPR

performs well. Nevertheless, in general the GPR optimizer is only recommended

for systems with less than a thousand atoms.

In summary, it can be said, that the presented optimizer outperforms the super-

linearly converging L-BFGS optimizer on the presented test systems. In addition,

using the step size limit as the only external parameter makes it easily applicable.
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8 Saddle Point Search Algorithm

In this chapter it is explained in detail how one can improve the search for first-

order saddle points. This chapter is largely based on the author’s previous work

on the respective topic [26].

Finding a first-order saddle point on the PES is particularly interesting because

a reaction path from one minimum structure to another proceeds through such a

saddle point. A transition state is formally a surface that separates the two min-

ima. The lowest-energy point on this surface is a first-order saddle point and is

called a transition structure. Often one also uses the term transition state for the

transition structure. In the following it will be abbreviated with TS. Finding TSs

is one of the most central tasks in computational chemistry. In transition state

theory, it builds the basis for the calculation of classical reaction rates or even some

non-classical reaction rates like in small-/large-curvature tunneling [31,51,78]. The

most prominent algorithm to find saddle points is probably Newton’s method. This

method simply finds a point on the PES with a vanishing gradient. Therefore, the

algorithm might find minima or higher-order saddle points. It is a second-order

method which means that it needs Hessian evaluations in every optimization step.

Another second-order method that converges explicitly to first-order saddle points

is the partitioned rational function optimization (P-RFO) [7, 10], see section 2.3.

Its results are usually very reliable but the need for Hessian calculations makes

it often impracticable. So-called minimum-mode following methods [62] like the

dimer method [38] or the Lanczos method [47, 83] only need gradient information

to find TSs. This property makes them much faster and therefore often preferable

to second-order methods like P-RFO [40]. They usually need more steps until con-

vergence but compensate that by the fact that no Hessians have to be calculated.

The basic idea of the mentioned optimizers are shortly explained in section 2. In
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this thesis another alternative that is purely gradient-based was developed.

It uses, very similarly to the geometry optimizer of the previous chapter, a GPR-

surrogate for the PES. Then, like in minimum-mode following methods, the algo-

rithm converges the minimum-mode, see section 8.1.2. When the minimum-mode

is converged P-RFO optimization is performed on this surrogate, see section 8.1.3.

There are other algorithms to find TSs based on GPR than the one presented

here. For example GPR was used to improve the nudged elastic band method

(NEB) [39,44,45,55] which is often used for TS searches. In the next chapter, an

algorithm that is more comparable to the GPR-based NEB method will be shown.

In this chapter, a surface walking algorithm is presented that does not need to

create complete reaction paths but only iteratively finds a TS. It was also shown

that one can optimize TSs using GPR with numerically calculated gradients (no

analytical gradients are necessary) [70].

Finding a good first guess for the TS to start the optimization can often be

challenging. Possible methods to find an initial guess are the image dependent

pair potential (IDPP) [76] that was originally developed to give an initial guess

for the NEB method. Another way of finding a starting guess based on GPR will

be discussed in section 9.

Similar to the previous chapter, the algorithm is explained in detail, present some

benchmarks, and discuss the properties of the algorithm. A few explanations are

partially the same that are given in Ref. [26].

8.1 The Optimization Algorithm

Similar to P-RFO the TS search based on GPR, abbreviated GPRTS, uses a

surrogate model to find a saddle point. Instead of a rational function, as in P-

RFO, GPRTS uses GPR as a surrogate, called GPR-PES. The GPR surface is

iteratively improved until the minimum-mode of the Hessian is converged. Then a

full P-RFO search on the GPR-PES is performed, i.e. the full Hessian is calculated

on the GPR-PES at every step of the P-RFO search. In contrast to a direct P-RFO

search, no Hessian information of the electronic structure calculations are needed.

Only energy and gradient information of the electronic structure calculations are

used to build the GPR-PES. This will speed up the optimization overall. The
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convergence criteria are exactly the same as for the minimizer presented in the

previous chapter, see section 7.1. They are only concerned with the length of the

gradient and the step size and can be used for finding stationary points of any

kind.

8.1.1 Parameters

Also in this optimizer only the Matérn covariance function of equation (5.32) is

used. The parameter σf is chosen to be 1. and l is set to l = 20. The noise

parameters of equation (5.36) are set to σe = σg = 10−7 again. The prior mean,

Eprior, see equation (5.34), is set to the mean value of all training points.

Eprior(x) =
1

N

N∑
i=1

Ei (8.1)

This can lead to confusion since it was stated before that the prior mean function

is chosen before having knowledge of the training points. What is actually meant

is that Eprior is chosen before the training points are used to fit the GP, i.e. to

construct the linear system of equation (5.35).

Their remains one additional parameter, the maximum step size, smax, which has

to be specified by the user. It restricts the optimization to step sizes that are

physically meaningful. Typically values between 0.1 and 1.0 are reasonable for

smax.

8.1.2 Converging the Minimum-Mode

Before a P-RFO optimization on the GPR-PES can be carried out, one has to

have a reasonable representation of the Hessian at that point. The criterion by

which it is decided whether the Hessian is adequately represented by the GPR-

PES is that the minimum-mode, the eigenvector to the lowest eigenvalue of the

Hessian, is converged. This is very similar to a dimer rotation in the dimer method.

Starting at an initial guess for the TS, xtrans
0 , the following procedure explains

the convergence of the minimum-mode at that point. In later steps along the

optimization procedure the minimum-mode is optimized at different points xtrans
j .
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For minimum-mode optimizations at these points, xtrans
0 can be substituted by

xtrans
j in the following.

1. Calculate the energy and the gradient at the point xtrans
0 and also at the

point

xrot
1 = xtrans

0 +
∆

|v0|
v0 (8.2)

with v0 arbitrarily chosen. It works very well to choose v0 = (1 1 ... 1)T

which means just a translation by 1 of the whole molecule in all 3 spatial

dimensions. The energy and gradient are the same for this translated struc-

ture. Therefore, the same energy as at xtrans
0 is used for that training point

and it is immediately included in the GPR scheme without additional elec-

tronic structure calculation. Only one energy and gradient calculation is

then needed for this step. Choosing random numbers for the entries of v0

yielded worse results. The parameter ∆ is set to ∆ = 0.1. Let i = 1.

2. Evaluate the Hessian Hi(x
trans
0 ) of the GPR-PES at the point xtrans

0 .

3. Compute the smallest eigenvalue of Hi and the corresponding eigenvector,

vi.

4. As soon as ∣∣∣∣ vi · vi−1
|vi| · |vi−1|

∣∣∣∣ > 1− δrtol (8.3)

the transition mode is assumed to be converged, this procedure is terminated,

and xtrans
0 is moved on the PES as described in section 8.1.3.

5. If the transition mode is not converged, calculate the energy and gradient at

the point

xrot
i+1 = xtrans

0 +
∆

|vi|
vi (8.4)

and include the results to build a new GPR-PES. Increment i by one and go

back to step 2.
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8.1.3 Performing an Optimization Step on the GPR-PES

After following the procedure of section 8.1.2 the minimum mode is converged. In

agreement with minimum-mode following methods, one can assume that enough

Hessian information is available and one can now move on the PES to proceed to a

TS. The points that are a result from movement on the PES are called xtrans
j . They

correspond to the midpoints in the procedure in section 8.1.2. A user-defined pa-

rameter, smax, is used to limit the steps from xtrans
j to the next point xtrans

j+1 . These

steps can never be larger than smax.

Starting at a point xtrans
j the next point, xtrans

j+1 , is found as follows.

1. Find the saddle point on the GPR-PES using a P-RFO optimizer. This

optimization on the GPR-PES is stopped if one of the following criteria is

fulfilled.

• The step size of the optimization is below δmax(s)/50.

• A negative eigenvalue is found (smaller than −10−10) and the highest

absolute value of all entries of the gradient on the GPR-PES drops

below δmax(g)/100.

• The Euclidean distance between the currently estimated TS and the

starting point of the P-RFO optimization is larger than 2smax.

If none of these are fulfilled after 100 P-RFO steps, a dimer translation is

used to find a guess for the TS. For the dimer translation one uses the same

convergence criteria as for P-RFO but the optimization is also stopped if

the Euclidean distance between the currently estimated TS and the starting

point is larger than smax.

2. Overshoot the estimated step, see section 8.1.4. The result of the overshoot-

ing is called xtrans
j+1 .

3. Calculate the energy and gradient at xtrans
j+1 and include them in the GPR

scheme to build a new GPR-PES.
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If the point xtrans
j+1 is not the converged solution, one converges the minimum-mode

again as described in the previous section. These procedures are alternated until

convergence is reached.

8.1.4 Overshooting

The overshooting procedures introduced in section 7.2.1 and also section 7.2.2 are

exactly the same that are used for GPRTS here. The original step is overshot by

multiplying the step with a certain scaling factor, see section 7.2.1. If the value

of a coordinate along all optimization steps, xtrans
i , changed monotonically for 20

steps in a row, the separate dimension overshooting is applied, see section 7.2.2.

The resulting step is always limited by smax. The overshooting procedures are

applicable to minimization as well as to saddle point search. The argument still

stays the same: Using a surrogate model like GPR allows for a very aggressive

optimization by overshooting the guess for the saddle point. A step that is too far

can still be included in the GPR-PES to improve prediction quality in following

steps.

8.1.5 Starting Point from Minima

In the published article on GPRTS [26] a way of starting the TS search from known

reactant and product is shown. The basic idea is that one can start from an initial

approximation of the minimum energy path (MEP). In this case the initial path to

start GPRTS should not do any energy calculations (in contrast to the algorithm

presented in the next chapter which also optimizes MEPs). Assume that this path,

called initpath in the following, is discretized with M images xinitpath
i , i = 1, ...,M .

GPRTS can take this path and searches for a maximum of the energy on it: The

algorithm calculates energy and gradient of the real PES at the point xinitpath
j with

j = M/2 for even and j = (M − 1)/2 for odd M . This is the very first calculation

of energies on the real PES. Then the scalar product beten the gradient γj at the

point xinitpath
j and the vector to the next image on the initpath is calculated.

β = γj · (xinitpath
j+1 − xinitpath

j ) (8.5)
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If β > 0, the energy and gradient at xinitpath
j+1 is calculated. Otherwise the energy

and gradient is calculated at xIDPP
j−1 . In this way, the algorithm is likely to transit

in the direction of the maximum in the energy. This is repeated until the direction

along the NEB is changed and the algorithm would go back to a point xinitpath
best

at which the energy is already known. The point xinitpath
best is most likely a good

guess for the TS and is chosen as the starting point for GPRTS. Naturally, all

energy and gradient information acquired in the described procedure are included

in the construction of the GPR-PES. This is the same GPR-PES that is used

and then improved by the following GPRTS procedure. This improves the quality

of the GPR-PES compared to starting simply with a single energy calculation

at xinitpath
best . In the original article the initpath was constructed by optimizing

a NEB in the IDPP. However, there is a further alternative approach based on

differential geometry. The method is based on the idea to optimize a path that is

a geodesic [85]. This approach was implemented in DL-FIND during the work for

this thesis. Therefore, both possibilities to find the initpath are compared in the

following. They are abbreviated with GPRTS/IDPP and GPRTS/geodesic. Note

however, that the next chapter offers an alternative to that which includes real

optimization of the MEP based on GPR.

8.2 Applications/Benchmarks

To benchmark GPRTS, 27 test systems were chosen. The first 25 are the ones in the

test set by Baker [8]. The same starting points are chosen as for the benchmark

of the minimizer, i.e. close to a TS on the Hartree–Fock level. Also the same

electronic structure method as for the minimizer is used, namely AM1 [27]. The

TSs obtained by GPRTS are depicted in figure 8.1. However, the shown TSs with

IDs 10 and 15 are found by the dimer method. This is because the TS implied by

the starting point in system 10 is only found by the dimer method and for system

15 GPRTS does not find a TS.
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Figure 8.1: The TSs of the test systems suggested by Baker determined by the
GPRTS method [8]. Only the TSs of the systems 10 and 15 are opti-
mized by the dimer method.

Furthermore, two test systems on DFT level (BP86 functional [12, 60] in 6-

31G* basis set [37]) are chosen: System 26 describes an intramolecular [1,5] H

shift of 1,3(Z)-hexadiene to 2(E),4(Z)-hexadiene as investigated in Ref. 53, see

figure 8.2a. System 27 describes an asymmetric allylation of a simple isoxazoli-

none as investigated in Ref. 68, see figure 8.2b. In the following two different

benchmarks are presented. The first one comparing GPRTS to the dimer method

and P-RFO, all starting from the same initial point. The second one comparing

the performance of GPRTS with a starting guess from the NEB approximation in

the IDPP (GPRTS/IDPP) and with a starting guess from the geodesic approach

(GPRTS/geodesic).
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(a) System 26, the [1,5] H shift of 1,3(Z)-hexadiene to 2(E),4(Z)-hexadiene [53]

.

(b) System 27, an asymmetric allylation of a simple isoxazolinone. The dotted lines
indicate the formed/broken bonds [68]

.

Figure 8.2: TSs found by GPRTS for test system 26 and 27.

8.2.1 Benchmarking GPRTS

All optimizations here are performed with a maximum step size of smax = 0.3 and

a tolerance value δ = 3× 10−4. P-RFO uses the Bofill update mechanism [17]

every 50 steps. The initial Hessians are built by central difference approximation

via gradients in system 1 to 25. In systems 26 and 27 analytical Hessians are

available. In the following energy evaluation automatically implies evaluation of

the energy and the gradient. Table 8.1 shows the number of energy evaluations

that GPRTS, the dimer method, and P-RFO require to yield a converged TS.

The resulting TSs are compared by their respective energy differences and RMSD

values. P-RFO uses 6 analytically calculated Hessians in system 27 that are not

counted as energy evaluations.
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Some values of the obtained TSs in table 8.1 might need some explanation.

• System 3: P-RFO finds a structure in which H2 is abstracted.

• System 6: The structure found by the dimer method has slightly different

angles of the attached H atoms.

• System 7: P-RFO shows an opening of the ring.

• System 10: P-RFO finds a closed, symmetric ring structure. GPRTS finds

a structure corresponding to separation of N2. The dimer method finds the

correct TS, shown in figure 8.1.

• System 11: The structure found by P-RFO is planar and has no negative

eigenvalue.

• System 14: The dimer method finds the mirror image of the TS that the

other methods find.

• System 18: The dimer method finds a structure in which both C atoms, the

Si atom, and the transferred H atom are all in one plane. In the results of

the other methods the dihedral angles are slightly different.

• System 20: P-RFO finds a slightly different distance and angle of the two

separated parts.

• System 22: P-RFO finds a different angle of the attached OH group so that

the structure is not planar as depicted in figure 8.1.

• System 26: P-RFO finds (after 924 steps) a different structure in which no H

atom is transferred but the angles are changed: The distance of the H atom

that should be transferred is almost 3 Å, the dihedral angle of the planes

spanned by the two involved CH2 structures is around 60°. The structure is

too different from the desired TS to be considered as an acceptable TS for

this rather simple reaction.
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Table 8.1: A comparison of GPRTS to dimer and P-RFO in the test systems,
sorted by the number of dimensions d. The number of required energy
calculations until convergence is shown, as well as the energy differ-
ence (Eh) and RMSD values (Å) of the resulting structure compared
to the structure found by GPRTS. Convergence problems of the elec-
tronic structure method are marked with err, non-convergence after
1000 energy evaluations is marked with nc (not converged), and if a
run produces completely a unrealistic TS, it is marked with false.

Energy evaluations Energy differences RMSD values

d GPRTS dimer P-RFO dimer P-RFO dimer P-RFO ID

48 70 151 false −6.4× 10−6 4.1× 10−4 26

57 88 231 262 −4.0× 10−6 −1.6× 10−5 5.5× 10−3 1.0× 10−2 27

48 42 171 nc 9.6× 10−7 2.0× 10−3 9

42 39 92 130 1.4× 10−6 1.4× 10−7 2.0× 10−3 1.3× 10−3 17

33 56 238 232 −7.5× 10−4 −7.2× 10−4 4.3× 10−1 3.6× 10−1 18

30 32 144 175 5.7× 10−3 −5.5× 10−8 1.2× 10−1 4.7× 10−4 6

30 38 101 507 3.2× 10−7 −2.1× 10−1 9.5× 10−4 5.8× 10−1 7

30 27 58 83 5.7× 10−7 −5.1× 10−8 1.0× 10−3 3.1× 10−4 8

30 67 err false 11

24 24 59 85 −4.7× 10−8 −1.6× 10−7 5.5× 10−4 6.6× 10−4 5

24 23 169 151 −1.5× 10−3 −1.2× 10−1 1.0× 10−1 2.3× 10−1 10

24 17 56 68 4.7× 10−7 7.2× 10−9 1.3× 10−3 1.6× 10−4 12

24 30 92 73 1.6× 10−7 −1.2× 10−9 5.3× 10−4 5.3× 10−5 13

24 89 err 55 −2.8× 10−7 4.5× 10−3 21

21 35 72 80 3.4× 10−7 1.0× 10−8 4.2× 10−1 2.5× 10−4 14

21 28 70 79 −3.9× 10−7 −4.5× 10−7 1.0× 10−3 1.4× 10−3 16

21 23 nc 142 −1.1× 10−7 3.0× 10−1 20

21 19 43 174 5.6× 10−7 −1.6× 10−3 5.2× 10−4 2.7× 10−1 22

15 33 48 66 −9.7× 10−7 −1.1× 10−9 2.6× 10−3 4.4× 10−5 4

15 21 75 44 −2.0× 10−10 3.4× 10−6 3.6× 10−5 7.7× 10−3 19

15 16 40 56 2.9× 10−7 −2.2× 10−8 1.0× 10−3 2.8× 10−4 23

15 18 56 114 −1.0× 10−8 −1.8× 10−8 4.2× 10−4 3.9× 10−4 24

15 22 42 59 4.1× 10−7 1.5× 10−7 1.3× 10−3 1.1× 10−3 25

12 14 34 35 4.4× 10−9 6.4× 10−9 8.7× 10−5 7.3× 10−5 2

12 19 31 127 2.1× 10−7 −9.4× 10−2 4.0× 10−4 1.2 3

12 err 59 err 15

9 19 39 30 0.0 −1.8× 10−9 4.0× 10−6 4.0× 10−5 1
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Figure 8.3: The Euclidean norm of the gradient with respect to the number of
steps taken on the PES for the three optimizers in the four biggest
systems in the Baker test set. Steps that are needed to optimize the
minimum mode or calculate the Hessian (in the case of P-RFO) are
not included. The plot for System 09 is truncated since P-RFO does
not converge.

One can clearly see a better performance of the GPRTS method compared to

the other two methods. The number of required energy calculations is more than

halved on average. Overall the algorithm also seems to be more stable. It has the

fewest convergence problems and converges to the correct TS in more cases than

the other methods. To emphasize the fast convergence of the GPRTS method, the

absolute value of the gradient is plotted against the number of steps taken on the

PES in figure 8.3 for four of the largest test systems in the Baker test set and in

figure 8.4 for the DFT test systems. Thereby, only the translational steps on the

PES are shown. This means that all energy evaluations needed for converging the

minimum mode or calculating a Hessian are not shown.
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Figure 8.4: The Euclidean norm of the gradient with respect to the number of steps
taken on the PES for the three optimizers in the test systems 26 and
27. Steps that are needed to optimize the minimum mode or calculate
the Hessian (in the case of P-RFO) are not included. The plot for
System 26 is truncated since P-RFO does not converge correctly.
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8.2.2 Benchmarking Methods for the Initial Point

In this section, the NEB approximation in the IDPP [76] and the geodesic approach

[85] are compared with respect to their capability to find an initial TS for GPRTS

from the respective minima. For this benchmark, the correctly optimized TS for all

the test systems, see Fig. 8.1, 8.2a, and 8.2b, are used to start intrinsic reaction

path (IRC) searches to find the two minimum structures that are connected by

the TS. An IRC is the steepest-descent MEP in mass-weighted Cartesians. For

more information on the IRC algorithm, be referred to the publication on the

respective implementation, see Ref. 54. The resulting minimum structures are

used to optimize a NEB in the IDPP and to optimize a geodesic, each with 10

images. The resulting images are used in the procedure described in section 8.1.5

to find a TS. The results of this procedure are compared to the correctly converged

TSs for the test systems found in section 8.2.1, i.e. all structures are obtained with

GPRTS, except for the structures in system 10 and 15 which are obtained by the

dimer method. Table 8.2 shows the number of energy evaluations that the GPRTS

method requires using the different approaches to find the starting point.
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In some cases the results of GPRTS showed wrong results/different structures

than desired when started from the geodesic approach. This is the case for system

3, 12, 13, and 16. When starting from the NEB approximation in the IDPP, system

21 showed a wrong structure. Some high values of the RMSD need additional

explanation.

• System 10: The angles in the structures are a little off, but the structures

look very similar to the reference structures. Tighter convergence criteria

eliminate this difference.

• System 11: The obtained results are just the mirror image of the reference

structure.

• System 18: The dihedral angles in the obtained structure is different to the

reference structure. This was already the case when comparing the results

of the dimer method and P-RFO to the GPRTS method.

• System 22: The obtained structures are the same as the one found by P-

RFO in the previous benchmark: The structures have a different angle of

the attached OH group so that the structure is not planar as depicted in

figure 8.1.

• System 25: Both methods find a planar structure in contrast to the reference

structure.

Compared to the previous benchmark (GPRTS) the runs also converge in system

15. One can conclude that stability might be increased by including additional

training points, e.g. the ones from the initial path. The estimated initial guess

for GPRTS/IDPP and GPRTS/geodesic does not seem to be as adequate as the

ones given in the previous benchmark and the optimization takes a bit longer.

But note that only the minimum structures are needed to converge the system to

a TS. Comparing GPRTS/IDPP to GPRTS/geodesic it seems that the geodesic

approach does not work equally well. This could happen by chance but also as

a result on fairly large steps that the used geodesic implementation yields along

the geodesic path in some cases. There is however, one system (ID 21) in which it

works better than the GPRTS/IDPP approach.
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Table 8.2: A comparison of GPRTS to the dimer method and P-RFO. The num-
ber of steps until convergence is shown as well as the energy differences
(Hartree) and RMSD values (Ång) comparing the respective structures
to the structure obtained by GPRTS. Convergence problems of the AM1
method are marked with err, non-convergence after 1000 energy eval-
uations is marked with nc for not converged, and if a run produces a
unrealistic TS, it is marked with false.

Energy evaluations Energy differences RMSD values

GPRTS GPRTS/ GPRTS/ GPRTS/ GPRTS/ GPRTS/ GPRTS/

d IDPP geodesic IDPP geodesic IDPP geodesic ID

123 70 57 56 −2.0× 10−7 −6.0× 10−7 2.0× 10−3 3.1× 10−4 26

123 88 131 57 −1.2× 10−5 −3.2× 10−5 3.9× 10−3 2.5× 10−3 27

48 42 45 41 −7.0× 10−9 −2.5× 10−8 4.3× 10−4 7.9× 10−4 9

42 39 90 54 4.8× 10−7 −3.4× 10−8 1.2× 10−3 3.5× 10−4 17

33 56 42 39 −4.0× 10−4 −5.9× 10−4 2.6× 10−1 1.7× 10−1 18

30 32 53 47 −4.7× 10−8 −2.5× 10−8 2.4× 10−4 5.4× 10−4 6

30 38 42 37 8.7× 10−9 1.3× 10−8 2.6× 10−4 1.6× 10−4 7

30 27 37 34 −1.9× 10−8 −3.5× 10−8 2.0× 10−4 3.0× 10−4 8

30 67 44 44 −5.1× 10−9 1.3× 10−9 1.4 1.4 11

24 24 26 24 −1.7× 10−7 −4.6× 10−8 1.5× 10−4 4.8× 10−4 5

24 23 35 35 −1.5× 10−3 −1.4× 10−3 2.0× 10−1 2.0× 10−1 10

24 17 90 false −1.4× 10−8 1.7× 10−2 2.0× 10−5 5.9× 10−1 12

24 30 33 false 7.1× 10−9 −1.3× 10−1 1.0× 10−4 1.3 13

24 89 false 84 −7.8× 10−9 −8.0× 10−9 1.0 1.0× 10−4 21

21 35 21 21 3.0× 10−7 1.9× 10−8 8.8× 10−4 1.8× 10−4 14

21 28 28 false −4.5× 10−7 −1.4× 10−2 6.5× 10−5 4.7× 10−1 16

21 23 45 37 4.0× 10−10 6.8× 10−9 9.2× 10−5 4.6× 10−2 20

21 19 32 30 −1.5× 10−3 −1.5× 10−3 2.7× 10−1 2.7× 10−1 22

15 33 73 64 8.0× 10−2 8.0× 10−2 1.4× 10−4 3.9× 10−5 4

15 21 46 32 0.0 1.8× 10−7 4.1× 10−5 2.1× 10−3 19

15 16 31 55 −4.4× 10−8 −1.2× 10−8 8.3× 10−5 2.1× 10−4 23

15 18 15 17 −1.8× 10−8 −1.8× 10−8 3.7× 10−4 3.6× 10−4 24

15 22 33 50 −2.4× 10−2 −2.4× 10−2 4.2× 10−1 4.2× 10−1 25

12 14 19 28 7.1× 10−9 1.0× 10−8 8.4× 10−5 9.3× 10−5 2

12 19 43 false 1.1× 10−10 −9.5× 10−2 4.9× 10−6 6.2× 10−1 3

12 err 29 33 8.3× 10−10 1.3× 10−10 4.0× 10−5 3.9× 10−5 15

9 19 13 24 0.0 0.0 5.0× 10−6 6.3× 10−6 1
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8.2.2.1 Timing

With the drastic decrease of required energy evaluations the overall time that the

algorithm needs to converge is reduced as well. To show that it is best to consider

the DFT test cases. P-RFO converged only for system 27 to the correct TS and

needed ∼ 36 minutes. For the systems with ID 26/27, the dimer optimizations

presented above took a little over 15/18 minutes while GPRTS took less than 8/9

minutes. The GPRTS algorithm itself took 3%/16% of that time. The optimiza-

tions of GPRTS/IDPP and GPRTS/geodesic were very similar in speed. They

all took around 5 minutes with the optimizer itself taking about 2 − 6% of that

time. For system 27 however, GPRTS/geodesic took nearly 23 minutes with the

optimizer itself taking around 56% of that time. The reason for that behavior

is that the P-RFO method on the GPR-PES did not converge all the time. As

explained above, a dimer translation on the GPR-PES is performed instead. The

large number of unnecessary P-RFO steps on the GPR-PES is the main reason for

the bad timings in this run. Probably the starting guess suggested by using the

geodesic approach is not suitable.

8.3 Discussion

The scaling of the computational requirement of the algorithm is quadratic in the

number of training points and the number of dimensions for constructing the GPR-

PES. The evaluation of the Hessians on the GPR-PES, however, scales linearly with

the number of training points and cubically with the number of dimensions in the

system. The scaling of the memory requirements of the algorithm is quadratic

with respect to the number of dimensions and the number of steps. Therefore,

the algorithm is only advisable for smaller systems: From personal experience the

author suggests to use the algorithm for systems up to 300 dimensions. It is possi-

ble to handle larger systems in combination with the multi-level approach (which

is done automatically) but the performance might decrease. See section 6.2 for

details on the multi-level approach. With the multi-level approach systems with

1000 dimensions might be possible to handle. For high-precision optimizations the

algorithm is very likely to outperform traditional TS optimizers.
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In this algorithm one can see that different floating-point models of the com-

piler can lead to slightly varying results. In the presented test cases different

floating-point models lead to variations in the number of required energy evalua-

tions, mostly less than 5, always less than 20, for better or worse. Note that this

can also be obtained with P-RFO. Therefore, the high sensitivity of GPRTS might

not only be attributed to the GPR part of the algorithm but also to the P-RFO

optimization performed on the GPR-PES. Further numerically sensitive steps in

GPRTS are the solution of the linear system, the evaluation of the GPR-PES, and

the diagonalization of the Hessian.

Overall, GPRTS seems to be clearly superior to the traditional optimizers in

the presented test cases. The ability to overshoot TSs without compromising the

performance of the optimizer is probably the clearest advantage. Furthermore, the

Hessian information on the GPR-PES seem to be accurate enough and probably

better than traditional update mechanisms. In fact this is tested in a later chapter

in the thesis at hand. The usage of MEP estimates to start the optimizations might

be a good idea to get a converging TS in some cases where traditional methods fail.

On the other hand, if good estimates of the TS are present, e.g. from calculations

with lower level of electronic structure theory, the standard GPRTS method is

probably faster.
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9 Minimum Energy Path

Optimization Algorithm

In this chapter, a new method to optimize minimum energy paths (MEPs) is pre-

sented. The described algorithm is based on the author’s previously published

work [24]. If one wants to describe the movement of atoms in a chemical reac-

tion, the most common way to do that is by a MEP. It provides the means to

understanding reaction mechanisms but often it is only optimized to find the TS

connecting two known minima. The most prominent method to optimize a MEP is

the nudged elastic band (NEB) method [39,55]. Further approaches are the string

methods [28, 29] which are very similar to NEB [75]. There exist other methods

for MEP optimizations [6, 49, 63]. But since the NEB method is by far the most

popular method the focus lies on a comparison to NEB.

In this part of the thesis an alternative approach is presented that uses a GPR-

PES like the two optimizers presented before in this thesis. It is noteworthy that

the NEB method itself was significantly improved by a similar approach with GPR

surrogates [44,45]. Similar to their approach, the algorithm presented in this thesis

uses a GPR surrogate and makes use of the statistical properties of GPR. But in-

stead of performing a NEB optimization on the GPR-PES an alternative approach

is used that does not introduce artificial forces like the spring forces in NEB. The

presented approach minimizes energies and forces perpendicular to the path. The

curve parameters are thereby directly optimized. This is similar to an approach

by Vaucher and Reiher [79]. In contrast to their work the presented algorithm also

uses the perpendicular forces on the path for optimization, exploits the GPR-PES,

and uses GPR itself to interpolate a curve not B-splines. All these methods, includ-

ing the one presented here, require the construction of an initial path from which
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the optimization can be started. Choosing a path in which internuclear distances

vary linearly is often referred to as Linear Synchronous Transit (LST) [35]. In the

previous chapter the image dependent pair potential (IDPP) was mentioned in

which a NEB optimization can be performed [76] and the geodesic approach [85].

All three methods are used to benchmark the presented algorithm. Some of the

explanations are similar to the ones given in the author’s previous work on MEP

optimization [24].

A few words on the structure of this section. First two concepts are introduced

that are needed for the optimization procedure. These are the regression of a curve

with GPR in section 9.1 and a possibility to make the control points of this path

equidistant in section 9.2. Then the principle of the optimizer are explained in

detail. Some benchmarks are presented at the end.

9.1 Curve Regression Using GPR

In this section it is explained how one can interpolate a curve C(t) with a parametriza-

tion t = [0, 1] mapping to Rd. The N points that are used to regress the curve are

called control points of the curve and denoted with xn, n = 1, ..., N . They are not

necessarily equidistant in Rd. For the presented algorithm the endpoints of the

curve, C(t = 0) and C(t = 1), are assumed to be minima on the PES representing

reactants and products, respectively. They shall stay constant when optimizing

the MEP.

To regress a d dimensional curve one can build d separate GPs, one for each di-

mension. Each of these one-dimensional GPs is constructed with N training points

(tl̃,n, x
l̃
n) where n enumerates the control points and l̃ the dimensions, respectively.

As before, superscripts refer to the components of a vector in the respective di-

mension and subscripts are indices to enumerate points. Since l̃ runs over all

dimensions of the system, it is also an index for the one-dimensional GPs that are

used for curve regression. In this paragraph, the samples tl̃,n are assumed to be

equidistant and the same for every dimension tl̃,n = n∆t. In the next paragraph

this will be changed to make the points equidistant in Euclidean space. Therefore,

the index l̃ is not dropped here. To regress a curve with N training points one
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builds a GP for every dimension l̃ = 1, ..., d.

xl̃(t) =
N∑
k̃=1

wl̃,k̃k(t, tl̃,k̃) + xl̃prior(t) (9.1)

The prior xl̃prior(t) shall be a linear interpolation of the first and the last training

point.

xl̃prior(t) =
xl̃N − xl̃1
tl̃,N − tl̃,1

t = (xl̃N − xl̃1)t (9.2)

with tl̃,N − tl̃,1 = 1 by definition of the curve. This allows the GPR to learn only

the error of the linear interpolation which is an easier task than directly learning

the values. Non-intersection and non-degeneracy of the resulting parametrization

is not a problem in practice. To regress curves with GPR the Matérn covariance

function is used with a length scale parameter of l = 0.5. This means, since the

path is only parameterized from 0 to 1, that every point has a strong influence

on a large part of the path. A high value of l leads to a smooth regression of

the path. This is what one usually wants to guarantee. Lower values of l can

result in wiggly curves. On the other hand, a higher value of l requires to choose

a higher value of the noise parameter, σe, for the regression of the path. This

is necessary to guarantee numerical stability when solving the linear equations in

GPR. A value of σe,c = 2× 10−4 a0 for the noise is chosen in the curve regression.

Note that no gradient information is used for curve regression here. This facilitates

the GPR equations since the terms considering the gradients at the training points

can be ignored, see for example in Ref. 25,67. The linear system is reduced to N

dimensions which is usually very cheap to solve.

9.2 Securing the Equidistancy of Points on a

Regressed Curve

To get a good representation of the MEP at every position it is often necessary to

have the control points equidistantly distributed in Cartesian coordinate space. To

achieve this, the problem is formulated as an optimization problem. Let there be N
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points x1,x2, ...,xN ∈ Rd at positions t1, t2, ..., tN , respectively, while ti+1−ti = ∆t

is the same for all i.

The Euclidean distances between the points is abbreviated with

δi := ‖xi+1 − xi‖ (9.3)

for all i = 1, ..., N − 1.

The loss function L for the optimization problem shall be the following.

L =
N−2∑
i=1

|δi+1 − δi|2 (9.4)

The endpoints x1 and xN shall be fixed. Therefore, L is minimized with respect

to all tj with j = 2, ..., N − 1. On that account, one needs the derivative of L with

respect to an arbitrary tj with j = 2, ..., N − 1. Changing tj also implies a change

of xj, hence implying a change of δj−1 and δj.

∂L

∂tj
=− 2(δj+1 − δj)

∂δj
∂tj

+

2(δj − δj−1)
[
∂δj
∂tj
− ∂δj−1

∂tj

]
+

2(δj−1 − δj−2)
∂δj−1
∂tj

(9.5)

For the derivative with respect to t2 the last term (orange) is not present. For the

derivative with respect to tN−1 the first term (blue) is not present. The derivatives
∂δj
∂tj

and
∂δj−1

∂tj
are still to be calculated. Let x1j , x

2
j , ..., x

d
j be the components of the

vector xj.

∂δi
∂tj

=
d∑
l=1

∂δi
∂xlj

∂xlj
∂tj

(9.6)

The expression
∂xlj
∂tj

is simply the derivative along the curve in dimension l at the

point where the parametrization variable takes on the value tj. This term can be

obtained by evaluating the derivative of the regressed curve which is fairly easy
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when using GPR. One obtains the following derivatives.

∂δj
∂tj

=
d∑
l=1

[
−

xlj+1 − xlj
‖xj+1 − xj‖

]
∂xlj
∂tj

(9.7)

∂δj−1
∂tj

=
d∑
l=1

[
xlj − xlj−1
‖xj − xj−1‖

]
∂xlj
∂tj

(9.8)

With equation (9.5) one can build a N−2 dimensional gradient dL of the loss

function. Its entries are the derivatives of L with respect to all tj with j =

2, ..., N − 1. With this a N − 2-dimensional, gradient-based optimization problem

is formulated that is equivalent to making the control points on a curve equidistant.

It can be solved by standard gradient-based optimizers like L-BFGS [18,32–34,48,

57,73]. However, some small adaptations are necessary to stabilize the procedure.

To avoid crossing of points on the curve, the step size of the optimization for ti is

limited to half the distance ti+1−ti if ti is increasing and to half the distance ti−ti−1
if ti is decreasing. Usually, one does not require a perfectly equidistant distribution

of the points. Therefore, a rather soft convergence criteria for the optimization

can be chosen. Good results can be obtained by choosing maxi(dL
i) < 5× 10−4

as a convergence criterion with dLi being the entries in dimension i of dL.
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9.3 The Optimization Algorithm

The theoretical basis of the MEP search presented in this thesis is the minimization

of two loss functions by optimizing a path that is constructed via GPR. To optimize

this path one uses a GPR-based surrogate for the PES. First, the two loss functions

are introduced that can be used to optimize a MEP before explaining details on

the optimization itself.

9.3.1 Loss Functions to Optimize a MEP

In order to do derive the loss functions some necessary, mathematical expressions

are presented first. These expressions are colored in red. The norm ‖·‖ is implicitly

assumed to be the 2-norm (Euclidean norm). The derivative of the norm can be

written as follows.
∂

∂x
‖f(x)‖ =

∑d
j=1 fj(x) ∂

∂x
fj(x)

‖f(x)‖
(9.9)

One can write the GPR scheme used to regress a curve at arbitrary points xi =

x(ti) on the curve as a function of the weights.

xl̃i(wα) =
N∑
k̃=1

wl̃,k̃k(ti, tl̃,k̃) (9.10)

One can obtain the following equations.

∂xl̃i
∂wl,k

= k(ti, tl̃,k)δl,l̃ (9.11)

∂2xl̃i
∂wl,k∂ti

=
∂k(ti, tl̃,k)

∂ti
δl,l̃ (9.12)

∂

∂wl,k

∥∥∥∥∂xi
∂ti

∥∥∥∥ =
d∑
l̃=1

∂xl̃i
∂ti

∂2xl̃i
∂wl,k∂ti∥∥∥∂xi
∂ti

∥∥∥ =
d∑
l̃=1

∂xl̃i
∂ti

∂k(ti,tl̃,k)

∂ti
δl,l̃∥∥∥∂xi

∂ti

∥∥∥ (9.13)
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And for the derivative of the point xi = x(ti) with respect to ti one obtains the

following.

∂xl̃i
∂ti

=
N∑
k̃=1

wl̃,k̃
∂k(ti, tl̃,k̃)

∂ti
(9.14)

Note that the points in the parameter space tl̃,k that correspond to the control

points xk of the curve are denoted with two indices, with l̃ = 1, ..., d for the

dimension and k = 1, ..., N for the control point.

The ti with i = 0, ...,M + 1 in the following are another possible discretization

of the curve and do not have to be the same as the tl̃,k. The same applies to the

respective points on the path, xi := x(ti). They do not have to be the same as the

control points.

Let wα ∈ Rd·N be the vector that contains all weights of the GPs used for the

curve regression. Further, let xi = x(ti) be an arbitrary point on the curve with

its components xl̃i as a function of the weights.

xl̃i(wα) =
N∑
k̃=1

wl̃,k̃k(ti, tl̃,k̃) (9.15)

9.3.1.1 Loss Function Using an Energy Criterion

One possible loss function, LE, based on energy values along the curve, is the

following.

Lexact
E =

∫
C
E2(C(t))dL

=

∫ 1

t=0

E2(C(t))
∥∥∥∥∂C(t)∂t

∥∥∥∥ dt (9.16)

The symbol dL can intuitively be interpreted as an elementary arc length of the

curve C. Using a discretization of M + 2 points on the path, xi = x(ti), i =

0, ...,M + 1, this can be approximated by

LE =
M+1∑
i=0

E2(xi)

∥∥∥∥∂xi
∂ti

∥∥∥∥∆t (9.17)
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where ∂xi
∂ti

is short for ∂x(t)
∂t
|t=ti , the derivative along the curve at the discretization

point xi. The values E(xi),
∂xi
∂ti

, and ∆t can easily be calculated. The gradient of

the loss functions in curve-parameter space (the space of the weights for the GPs)

is composed of the following elements. Note that x0 ≡ x(t0) and xM+1 ≡ x(tM+1)

are assumed to be constant.

∂LE

∂wl,k
=

M∑
i=1

[
2E(xi)

d∑
l̃=1

∂E(xi)

∂xl̃i

∂xl̃i
∂wl,k

∥∥∥∥∂xi
∂ti

∥∥∥∥+ E2(xi)
∂

∂wl,k

∥∥∥∥∂xi
∂ti

∥∥∥∥
]

∆t

=
M∑
i=1

[
2E(xi)

∂E(xi)

∂xli
k(ti, tl,k)

∥∥∥∥∂xi
∂ti

∥∥∥∥+ E2(xi)

∂xli
∂ti

∂k(ti,tl,k)

∂ti∥∥∥∂xi
∂ti

∥∥∥
]

∆t

(9.18)

9.3.1.2 Loss Function Using a Force Criterion

A second possible loss function, LF, can be defined via the forces F⊥ perpendicular

to the curve. The forces F⊥ are defined as the negative gradients of E, the PES

or its surrogate, from which the components along the path are projected out. At

a point xi on the curve, given the gradient of the PES at that point, ∇E|xi , this

is

F⊥ = − (1− v ⊗ v)∇E|xi (9.19)

with v = ∂xi
∂ti
/|∂xi

∂ti
| being the normalized vector that is tangential to the curve.

Minimizing these forces along the curve will drive the curve to the MEP. This

gives rise to the following loss function.

Lexact
F =

∫
C
‖F⊥(C(t))‖2 dL

=

∫ 1

t=0

‖F⊥(C(t))‖2
∥∥∥∥∂C(t)∂t

∥∥∥∥ dt (9.20)

Using a discretization of M + 2 points on the path, xi = x(ti), i = 0, ...,M + 1,

this can be approximated by

LF =
M+1∑
i=0

‖F⊥(xi)‖2
∥∥∥∥∂xi
∂ti

∥∥∥∥∆t (9.21)
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where F⊥, ∂xi
∂ti

, and ∆t are known. The gradient of the loss functions in curve-

parameter space is composed of the following elements.

∂LF

∂wl,k
=

M∑
i=1

[
2

d∑
l̃=1

d∑
j=1

F j
⊥(xi)

∂

∂xl̃i
F j
⊥(xi)

∂xl̃i
∂wl,k

∥∥∥∥∂xi
∂ti

∥∥∥∥+ ‖F⊥(xi)‖2
d∑
l̃=1

∂xl̃i
∂ti

∂2xl̃i
∂wl,k∂ti∥∥∥∂xi
∂ti

∥∥∥
]

∆t

=
M∑
i=1

[
2

d∑
j=1

F j
⊥(xi)

∂

∂xli
F j
⊥(xi)k(ti, tl,k)

∥∥∥∥∂xi
∂ti

∥∥∥∥+ ‖F⊥(xi)‖2
∂xli
∂ti

∂k(ti,tl,k)

∂ti∥∥∥∂xi
∂ti

∥∥∥
]

∆t

(9.22)

The elements ∂
∂xli
F j
⊥(xi) = −H lj

⊥(xi) equal the elements of the negative of the

projected Hessian matrix

H⊥(xi) = (1− v ⊗ v)H(xi) (1− v ⊗ v) (9.23)

with v being the normalized vector that is tangential to the curve and H(xi) being

the Hessian matrix of the PES or its surrogate at the point xi.

9.3.1.3 Reformulation in the Space of the Control Points

It is more intuitive to formulate the problem so that the control points xn with

n = 1, ..., N are optimized and not the rather abstract parameters of the regression

scheme. The derivatives of the loss functions from above must be formulated with

respect to the coordinates of the control points.

∂L
∂xlm

=
M∑
k=1

(
K−1l

)km ∂L
∂wkl

(9.24)

The
(
K−1l

)km
are the entries of the inverse of Kl, the covariance matrix for the

GP used to interpolate the curve in dimension l

d∑
m=1

(Kl)
kmwml = xkl (9.25)
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for all k = 1, ..., d. The inverse of this covariance matrix can be explicitly calculated

without being inefficient. This is because the problem is only one-dimensional, does

not include many training points, and since the discretization of t is chosen to be

uniform (Kl)
km = k(tk, tm) stays constant as long as the number of training points

does not change.

This formulation results in a method with which one can optimize the con-

trol points xlm along the curve. After the control points are converged and they

are equidistant, the curve is interpolated anew with the new control points and

equidistant parametrization variables tl̃,k. Applying the described method allows

to find equally distributed control points for the regression of the curve in Carte-

sian coordinates that are also equidistant in the parametrization t of the curve.

How this optimization is performed in detail is explained in the following.

9.3.2 Optimizing the MEP

To illustrate the details of the path optimization algorithm the explanation is

accompanied by a visualization of the optimization in the Müller-Brown PES [56]

in figure 9.1, directly taken from Ref. 24. To find the initial guess of the path, it

is called initpath in the following, three methods are compared.

• Using linear interpolation between the reactant and the product, see fig-

ure 9.1a.

• Using the optimized NEB in the image-dependent pair potential (IDPP) [76].

• Using the optimized geodesic [85].

All configurations on the initpath are aligned to the reactant, i.e. rotational and

translational changes of the system are eliminated. The presented GPR-based

optimizer for MEPs, called GPRMEP in the following, is started from an initial

discretization of the initpath. In the presented test cases these are N = 10 points,

xi, with i = 1, ..., 10. These points are then used to regress a curve using the

regression method for curves presented in section 9.1. The user can specify how

many control points shall be used to regress the curve. In the presented test cases
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simply 10 control points are used as well which is also the default value. If one

chooses a number that is different from the number of points on the initpath, the

curve is first regressed using the discretization of the initpath. Then the desired

number of points is selected on the regressed curve so that the points are equidis-

tant.

The optimization is started by calculating the energies and gradients at all of

the initial points of the curve. This information is used to build up a GPR-based

surrogate for the PES, the GPR-PES. Then the control points of the curve are

optimized by minimizing a loss function L that is yet to be constructed from the

two possible loss functions presented in section 9.3.1. These optimizations of the

control points on the GPR-PES are performed using the gradient-based L-BFGS

optimizer [57]. The L-BFGS optimization is stopped when certain convergence

criteria are fulfilled. Let g be the gradient of the loss function. Further, let s be

the vector suggested by the last L-BFGS step, i.e. the aggregation of the changes of

all control points in all dimensions. The standard convergence criteria of DL-FIND

are chosen.

max
i

(gi) < δmax(g) := δ (9.26)

g

d
< δg :=

2

3
δ (9.27)

max
i

(si) < δmax(s) := 4 δ (9.28)

s

d
< δs :=

8

3
δ (9.29)

The parameter δ is user-defined and gi and si are the components of g and s.

The optimization of the control points is also stopped if their coordinates change

too much compared to the previous guess of the curve. Because when the control

points deviate strongly from the initial ones, the confidence in the GPR-PES model

is low. The coordinates of the endpoints (the first and the last control point) are

never changed since they are assumed to be in the optimized minimum of the real

PES. After L-BFGS suggested a new step on the GPR-PES the algorithm proceeds

as follows.
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• Project out the components parallel to the path from the step vector resulting

from L-BFGS. The same projection is done with the gradient of the loss

function to check its convergence. Note that these are only small corrections

that yield slightly better results in the end.

• Limit the step size to 2× 10−2.

• Move the control points.

• Build the new path with the new control points.

• Avoid small distances: If two points on the path got too close together, all

points on the curve are made equidistant in the coordinate space (Cartesian)

as described in section 9.2.

The complete procedure (until the optimization on the GPR-PES is converged) is

called a GPRMEP step.

The loss function L drives the L-BFGS optimizations. Its construction is ex-

plained in the following. Since the GPR-PES is built solely by energies and gra-

dients it has no meaningful second derivative information in the direction per-

pendicular to the path in the first GPRMEP step. Only energies and gradients

on the initial guess of the path are calculated. Therefore, the energy-based loss

function, LE, see section 9.3.1.1, is used in the first GPRMEP step. This loss func-

tion does only require first-order derivatives of the GPR-PES. The forces drawn in

figure 9.1a are the ones from the energy-based loss function. In the next optimiza-

tions on the GPR-PES one can also make use of the force-based loss function, see

section 9.3.1.2, since more gradient information is added to train the GPR-PES

and the second-derivative information is expected to improve steadily. Therefore,

the force-based loss function, LF , becomes more useful every step: The loss func-

tion L ≡ Li in step i = 1, 2, ..., 6 is chosen as a mixture of both loss functions with

increasing influence of LF . From step 7 onwards only LF is used.

Li =

 i−1
5
LF + 6−i

5
LE i = 1, ..., 6

LF i = 7, ...
(9.30)
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(a) Choose a linear interpolation between
the two minima as the initial guess for
the path.
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(b) The forces on the control points drive
the optimization.
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(c) After making the points equidistant,
decide where to calculate energies. In-
clude calculated energies and gradients
in the GPR-PES.
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(d) The path is considered converged when
the forces on the path are small enough
and all points have a low variance.

Figure 9.1: Visualization of some steps along the optimization in the Müller-Brown
potential. Note that the forces depicted in the diagrams are normalized
so that the largest force in every picture is always portrayed with an
arrow of the same length. As a result, the graphical depiction of the
forces cannot be compared between different images.
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The advantage of the force-based loss function is that it does not drive the control

points along the curve in the direction of the minima. Using only the energy-based

loss function results in an agglomeration of control points in the minima. This can

potentially lead to coiling of the curve and strong movement in that area. For the

Müller-Brown PES the forces in step 5 can be seen in figure 9.1b.

When one GPRMEP step is completed, i.e. the optimization on the GPR-PES

is converged, the points on the curve are made equidistant in real coordinate space

(Cartesians) as described in section 9.2. Such a redistribution process of the con-

trol points only results in small changes of the curve since it is performed after

every GPRMEP step. But it can be seen in the Müller-Brown example when com-

paring figure 9.1b to figure 9.1c.

To determine at which points one should calculate the next energies/gradients

to improve the GPR-PES one makes use of the statistical properties of GPR. The

variance of the GPR-PES is calculated (parallelized with OpenMP) at the con-

trol points of the curve. Only the local maxima of these calculated variances are

considered. In this case a local maximum simply means that the control points

to either side have a lower variance. If the calculated variance of such a local

maximum is above a certain threshold (10−11), the coordinates of this maximum

are added to a list that is called ToCalcList. In figure 9.1c the points that are

added to the ToCalcList are marked in red. The ToCalcList is sorted according

to descending variance. Now one successively calculates energies and gradients on

the real PES at the points on the ToCalcList starting from the point with highest

variance. Every time when energy/gradient were calculated at the point of high-

est variance it is checked whether all other points in the ToCalcList still have

a variance above the threshold (10−11). If not, they are eliminated from the list.

As soon as the energy/gradient for every point on the ToCalcList are calculated

another GPRMEP step is started from the last guessed curve.

The variance criterion avoids the possibility that two training points are very

close to each other. Having two very close training points can lead to numerical

problems for the covariance matrix, i.e. it might not be clearly positive-definite.
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But the variance criterion also gives a good estimate of how confident one can be

that the converged MEP on the GPR-PES is also a valid MEP on the real PES.

Therefore, two convergence criteria are used which both have to be fulfilled.

• The curve did not change much with a GPRMEP step. This is determined

by choosing 60 equidistant (in the curve parametrization t) points on the

old and on the new curve. The mean distance between the respective points

as well as the maximum distance between them must both be smaller than

5× 10−3.

• The ToCalcList is empty.

The resulting curve (the converged MEP) is only a good approximation of the

path, see figure 9.1d, and does not necessarily go through the exact transition

state. However, the energetically highest point on this path is a good guess for

the TS that can be optimized afterwards. This is usually true for NEB as well.

One can start the GPRTS algorithm, presented in the previous chapter, from that

guess for the TS. Fortunately, one can reuse the GPR-PES that was created in the

GPRMEP procedures described above in the GPRTS algorithm. This will speed

up its convergence significantly and GPRTS will only need few additional energy

evaluations to get a properly converged TS.

9.4 Applications/Benchmarks

As a benchmark for GPRMEP the same 27 test cases as for GPRTS in the previous

chapter are chosen. The minima that were used to benchmark the GPRTS/IDPP

and GPRTS/geodesic method in the previous chapter are the same that are used

to start GPRMEP in this chapter. The minima and TSs for all test systems are

shown in figure 9.2 and figure 9.3.
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Figure 9.2: Reactants, TSs and products of the reactions implied by the Baker
test set. The MEP searches are started from the reactant and product
structures only. The TSs are the reference structures for the bench-
mark that were optimized beforehand.
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Reactant Transition State Product

26

27

Figure 9.3: Reactants, TSs and products of the reactions of system 26 [53], the
[1,5] H shift of 1,3(Z)-hexadiene to 2(E),4(Z)-hexadiene and System
27 [68], an asymmetric allylation of a simple isoxazolinone.

All optimizations are carried out in Cartesian coordinates. The results of these

optimizations are shown in table 9.1. Results are marked with false if the found TS

does not correspond to the reference TS, nc if the algorithm did not converge after

1000 energy evaluations, and err if an error of the AM1 convergence occured. Note

that false optimizations might also be occurring because of flaws in the electronic

structure method. They are not necessarily a consequence of a bad optimizer.
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Especially since there are no RMSD values presented in the table, some problems

should be addressed for runs in which the RMSD values of the obtained TSs to

the reference structure are not small.

• System 4

– Starting from either of the three initial paths NEB yields a larger dis-

tance of the H atom in the OH group and the angles are not correct.

The eigenvalue of the Hessian corresponding to the transition mode is

almost zero or even positive.

– Starting from the linear interpolation and the IDPP approximation

GPRMEP + GPRTS finds a TS with a slightly larger distance of the H

atom in the OH group. The negative eigenvalue of the Hessian is larger

than in the reference structure but the structure looks reasonable.

– Starting from the geodesic solution GPRMEP + GPRTS finds an un-

realistically large distance of the H atom as in the NEB calculations.

– This system has a flat PES near the TS which leads to problems with

both optimizers. Setting tighter convergence criteria can overcome this

problem.

• System 8

– GPRMEP + GPRTS starting from the IDPP solution and the geodesic

solution yield a TS in which the ring is opened further.

– NEB starting from the geodesic solution shows the same problem.

• System 10

– NEB starting from linear interpolation yields a structure that looks very

similar to the reference structure but has two negative eigenvalues. The

reason are small angular deviations in the ring structure.

– NEB starting from the geodesic solution yields a closed, deformed ring

structure.
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• System 17

– NEB starting from the IDPP solution yields an opened ring structure

that corresponds to the rotation of the aldehyde group.

– NEB starting from the geodesic solution shows a separation of the

molecule in several smaller structures and has no similarity to the de-

sired TS anymore.

• System 18

– NEB starting from the geodesic solution yields a high distance between

SiH2 and the rest of the molecule.

• System 21

– The GPRMEP + GPRTS results starting from the geodesic solution

yield a TS with a slight rotation of the carboxyl group. The angular

deviation is approximately 10°. The Hessian’s eigenvalues are similar

to the reference structure.

• System 23

– The NEB run starting from the IDPP solution yields a large distance

of the H2 molecule from the rest of the system. There is no negative

eigenvalue.

• System 25

– All converging optimization runs yield the same TS that has a different

angle to the abstracted H2 molecule than in the reference structure.

The H2 molecule is rotated by approximately 90°.

GPRMEP yields plausibly looking MEPs but the obtained TSs from GPRMEP

alone are not fully converged, much like it is often the case in NEB. Usually the

point of maximum energy on the MEP obtained by GPRMEP is a worse estimate

of the TS than the one obtained by NEB. This is to be expected since no TS

optimization in the sense of the climbing image procedure is performed. But the

estimate is intended to work as a starting guess for a GPRTS optimization. Using

the already built GPR-PES it is very advantageous to combine GPRMEP with
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a succeeding GPRTS run to optimize the TS. GPRMEP combined with GPRTS

needs much fewer energy evaluations than NEB and is clearly more stable in the

presented test systems. Furthermore, in contrast to NEB it already yields fully

converged TSs. The TSs from NEB often must be refined with traditional TS op-

timizers. The traditional optimizers are expected to perform worse than GPRTS.

Not only because of the general performance improvement, see section 8, but be-

cause GPRTS can use the GPR-PES that was built during the GPRMEP run.

Comparing the different possibilities for a starting guess the results indicate no

clear advantage of either method. Visually only the paths from the IDPP method

show some unrealistic wiggling of the abstracted H2 molecule in system 12 and 23.

All other paths look acceptable when inspecting them visually.
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9.5 Discussion

The GPRMEP optimizations have a computational overhead. This is mainly be-

cause of the MEP optimization on the GPR-PES and the construction of the

GPR-PES. In the largest test systems 26/27 the average time consumption of

GPRMEP + GPRTS is 21%/35%. The remaining time is used for the DFT calcu-

lations. For system 26 the overall time consumption of the optimizations is 44%

lower, for system 27 it is 17% higher. Note that most of this time is spent in the

GPRTS optimizer, i.e. the refinement of the TS. The TSs obtained by NEB must

be refined with a further optimization which is not necessary for the GPRMEP

+ GPRTS combination. The timings were performed on two 8-core Intel Xeon

E5-2670 with parallelized DFT calculations.

The scaling of the overall algorithm is dominated by the scaling of the evalua-

tion of the Hessians on the GPR-PES: It scales linearly in the number of training

points but cubically with the number of dimensions in the system. The multi-level

approach that must be employed for systems with hundreds of atoms to avoid ex-

cessive memory usage will most likely limit the performance of the optimizer. The

GPRMEP optimizer is not recommended for systems that are much larger than

500 degrees of freedom, although systems up to 1000 degrees of freedom might be

possible to handle. For larger systems one must freeze atoms that are not relevant

to the reaction.

The optimizer is sensitive to numerical errors. Different floating point models for

the compiler lead to different but not consistently worse or better results. The

reason lies mainly in the GPRTS method. Also the creation of the GPR-PES

itself is dependent on the floating point model, compare section 8.3.
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In this rather short chapter it is shown that it is possible to update Hessians

in a very reliable way using GPR. Updating a Hessian in this case means that a

Hessian that was determined by electronic structure theory at a point x0 is changed

by using gradient information at another point x1 so that it gives a reasonable

approximation of the Hessian at the point x1. Commonly used methods for that

are the update mechanisms by Powell [64] and Bofill [17] when performing a TS

search. Also BFGS, explained in section 2.1, is in principle a similar update

mechanism, but it is only usable for minimizations.

10.1 The Update Mechanism

It is quite straightforward to implement an update mechanism for Hessians using

GPR. One simply evaluates the Hessian of the PES surrogate, called GPR-PES,

at the point x1 while the GPR-PES was constructed using the original Hessian in-

formation at point x0 and the gradient information at x1. However, the algorithm

must be able to combine training data of different types, i.e. including only gradi-

ents or including gradients and Hessians. This is possible with the GPR software

that was implemented during the work for this thesis. Furthermore, the prior of

the energy in equation (5.34) is chosen to be a Taylor expansion of order 2 at the

last point at which the Hessian was calculated. This significantly improves the

quality of the update mechanism.

To demonstrate the potential benefits this update mechanism was implemented

in DL-FIND so that it can be used for various optimizations. A short bench-

mark is presented, on the Baker test set and two larger DFT-based test systems,

the same systems used in section 8 and section 9. See these sections for further

information on the test systems. In this benchmark P-RFO optimizations are per-
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formed with different Hessian update mechanisms. New Hessians are calculated

after 50 updates in these optimization runs. Note that analytic Hessians are not

available for the AM1 method used for systems 1-25. The gradient evaluations

needed for the central difference scheme to obtain numerical Hessians are counted

as energy evaluations in the table. Analytic Hessians in systems 26 and 27 are not

counted as energy evaluations. The tolerance parameter is set to δ = 3× 10−4,

the maximum step size to smax = 0.3. The results are presented in table 10.1. The

number of required energy calculations until convergence is shown, as well as the

RMSD values (Å) of the resulting structures compared to the carefully optimized

reference structures that were also used for the GPRTS benchmarks. Convergence

problems of the electronic structure method are marked with err, non-convergence

after 1000 energy evaluations is marked with nc for not converged.
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Energy evaluations RMSD values

d GPR Bofill Powell GPR Bofill Powell ID

123 32 419 120 2.4× 10−2 5.9× 10−1 1.1× 10−2 26

123 18 731 386 6.3× 10−2 1.2 2.1 27

48 nc nc nc 9

42 101 130 nc 5.0× 10−3 9.1× 10−4 17

33 80 421 nc 6.2× 10−1 7.9× 10−3 18

30 79 175 174 1.2× 10−1 1.2× 10−1 1.2× 10−1 6

30 174 433 214 1.2× 10−4 5.8× 10−1 1.7× 10−4 7

30 67 83 112 1.9× 10−4 1.8× 10−4 7.6× 10−4 8

30 185 71 71 1.0× 10−3 7.4× 10−1 7.4× 10−1 11

24 67 85 68 2.7× 10−4 2.8× 10−4 2.8× 10−4 5

24 89 151 259 2.6× 10−1 2.6× 10−1 2.6× 10−1 10

24 86 68 80 1.1× 10−4 1.3× 10−4 1.8× 10−4 12

24 71 73 80 1.1× 10−4 6.5× 10−5 2.1× 10−4 13

24 65 55 55 1.0× 10−4 4.5× 10−3 4.4× 10−3 21

21 68 80 73 4.2× 10−1 2.3× 10−4 4.2× 10−1 14

21 59 79 82 7.4× 10−5 4.4× 10−5 4.6× 10−4 16

21 79 142 912 5.7× 10−2 3.0× 10−1 1.3 20

21 146 174 233 2.7× 10−1 2.7× 10−1 2.7× 10−1 22

15 118 66 115 4.9× 10−1 2.3× 10−1 4.9× 10−1 4

15 52 44 60 1.1× 10−4 7.7× 10−3 3.6× 10−4 19

15 47 56 69 7.8× 10−5 2.2× 10−4 9.0× 10−5 23

15 49 114 58 4.7× 10−5 5.6× 10−5 2.9× 10−4 24

15 47 59 67 5.3× 10−4 1.1× 10−3 3.3× 10−4 25

12 34 35 41 1.0× 10−4 7.4× 10−5 4.9× 10−5 2

12 36 190 101 5.6× 10−6 1.2 3.3× 10−5 3

12 err err err 15

9 30 30 31 1.3× 10−5 4.6× 10−5 8.3× 10−6 1

Table 10.1: A comparison of P-RFO optimizations using different update mecha-
nisms for the Hessian.
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10.1. THE UPDATE MECHANISM

The benchmark suggests that the GPR-based updates are more reliable and

allow faster P-RFO convergence than Bofill- and Powell-based updates. Some

comments on the higher RMSD values in the chart are following:

• System 3: The Bofill-based run finds a different structure with a larger H2

distance in which the Hessian has two negative eigenvalues.

• System 4: Powell- and GPR-based runs show structures that have no neg-

ative eigenvalue in their Hessian and are planar. In the Bofill-based run a

structure with a different distance of the H atom is obtained.

• System 6: The angles are only slightly different from the reference. If the

optimizations are done with a tighter convergence criterion, they converge

to the correct TS.

• System 7: The Bofill-based run finds a different structure in which the ring

structure opens. The negative eigenvalue of its Hessian has a very small

absolute value.

• System 10: All runs yield a closed ring structure with no negative eigenvalue.

• System 11: The Bofill- and Powell-based runs yield an almost plain structure

with no negative eigenvalue.

• System 14: GPR- and Powell-based runs yield the mirror image of the ref-

erence structure.

• System 18: The GPR-based run shows a twist in the molecule.

• System 20: In the GPR- and Bofill-based runs the distance of the two

molecules in the structure vary slightly. In the Powell-based run all H atoms

stay at the N and the structure’s Hessian has no negative eigenvalue.

• System 22: All obtained structures show the same TSs in which the OH

group is attached with a different angle, not in a planar arrangement as in

the reference structure.
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10.2. DISCUSSION

• System 26: The H atom is not transferred but the angles in the molecule are

changed. This is the same phenomenon observed in the P-RFO optimization

in section 8.2.1.

• System 27: Bofill- and Powell-based runs show structures that are close to

either of the two minima. The Powell-based run does not have a negative

eigenvalue. The GPR structure looks close to the reference.

10.2 Discussion

The presented benchmark gives only an indication towards the possibilities of

GPR-based Hessian updates. But it suggests that GPR-based updating can out-

perform other, widely used update schemes for P-RFO optimization. As towards

the limitations of this update scheme one must clearly state that the memory

requirements might become quite large for high-dimensional systems if many Hes-

sians are included. Also the computational scaling is worse when explicitly us-

ing Hessians. But on the other hand one can possibly drop later training data

much like other update-schemes do as well, i.e. only one single Hessian is used

which is updated with following gradients. Then the scaling of the method be-

comes manageable. The dimension of the linear system in GPR is then limited to

d× (d+ 1 +m) +m+ 1 if one performs updates after m steps and d is the number

of dimensions in the system.
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11 Final Discussion/Conclusion

In the present study three different optimizers and a method to update Hessians

were presented, all based on a newly developed GPR implementation, see sec-

tion 6. The results of the benchmarks indicate that the optimizers can outperform

classical optimizers drastically in terms of number of required electronic structure

calculations. It was also shown that the optimizers can be expected to be more

stable in many cases and that they can be a reasonable choice when other opti-

mizers fail to converge.

The largest problem for GPR-based algorithms is the high scaling of classi-

cal GPR in terms of computational and memory demand. The computational

demand is significantly reduced (from cubic scaling to quadratic scaling) by the

iterative implementation of the Cholesky decomposition, see section 6.1. Only

the TS optimizer and the MEP optimizer scale cubically in the number of dimen-

sions in the system. This is because they require Hessians on the GPR-PES that

is constructed using gradients. The memory demand is reduced by employing a

multi-level scheme, see section 6.2. It can make the algorithm’s memory demand

independent of the length of the optimization history, i.e. only the scaling with

the system size can be a problem. However, for very large test systems with many

hundreds of atoms the presented optimizers might not be applicable in a meaning-

ful way because of the memory restrictions. From theoretical considerations and

some practical experience it is recommended to apply the optimizers only for a

maximum of 500 atoms. In larger systems one might consider freezing atoms that

do not participate in the respective reaction. This would allow the algorithms to

be employed on larger systems as well. The higher the level of theory used for

the electronic structure calculations the more beneficial the use of the presented

optimizers can be. The reduced number of energy evaluations often outweighs the
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computational overhead of the GPR-based optimizers.

The presented GPR implementation and optimizers are only capable of han-

dling Cartesian coordinates. Other coordinate systems are able to intrinsically

incorporate translational and rotational invariance. Many coordinate systems can

also incorporate invariance to permutations of identical atoms. These can in many

cases improve the performance of machine learning methods [11,13,36,66].

However, some of these more modern descriptors like the Coulomb matrix rep-

resentation of the Bag of Bonds approach increase the number of dimensions in

the system. That would lead to a larger overhead of the optimizers. In other

works it was shown that the Z-Matrix representation can be used for geometry

optimization with GPR [70] in which new hyperparameters are introduced for

the length scales. The algorithms implemented in this thesis are not capable of

handling those. Cartesian coordinates are preferred because of their simplicity.

Furthermore, it is not clear that the benefits for geometry optimization are large

when using other coordinate systems. The reason is that geometry optimization is

a comparably local task which might make the said invariances irrelevant. It was

shown that for traditional TS optimizers the usage of internal coordinate systems

like the Z-matrix is not generally advisable [8, 9].

The hyperparameters that were chosen in the presented optimizers are mainly

determined heuristically: The interpolation quality on several test systems was

measured using different hyperparameters to find the best performing ones for a

large amount of systems. In principle it is possible to optimize these hyperparam-

eters via the maximum likelihood method. The underlying reasons are manifold

and summarized in section 5.6.

Statistical training methods like GPR usually perform better in interpolation when

smaller quantities are interpolated [65]. This inspires the idea of delta machine

learning in which one uses low-level approximations to the PES and only interpo-

lates the error to a higher-level approximation. This approach has the potential

to further increase the performance of the optimizers.
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The developed black box optimizers can be expected, especially in smaller sys-

tems, to outperform classical optimizers significantly in terms of performance and

stability. They find minimum structures, transition states, and minimum energy

paths in a reliable and fast way.
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A.1. MATHEMATICAL APPENDIX

A.1 Mathematical Appendix

Lemma A.1.1 (Schur Complement). The inverse of a matrix of the formK a

aT b

 (A.1)

can be written asK a

aT b


−1

=

 1 −K−1a

0T 1


K−1 0

0T
(
b− aTK−1a

)−1

 1 0

−aTK−1 1

 (A.2)

Proof.  1 −K−1a

0T 1


K−1 0

0T
(
b− aTK−1a

)−1

 1 0

−aTK−1 1


K a

aT b


=

 1 −K−1a

0T 1


K−1 0

0T
(
b− aTK−1a

)−1

K a

0T −aTK−1a + b


=

 1 −K−1a

0T 1


 1 K−1a

0T 1


=

 1 0

0T 1



(A.3)
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Lemma A.1.2 (Woodbury Matrix Identity). Let the necessary (implicitly stated)

invertibility requirements in the following formula hold for given Matrices A, U , C,

V . The dimension of these matrices shall be such that usual matrix multiplication

in the equation shall be defined properly.

(A+ UCV )−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1 (A.4)

Proof.

[A+ UCV ]
[
A−1 − A−1U

[
C−1 + V A−1U

]−1
V A−1

]
= 1− U

[
C−1 + V A−1U

]−1
V A−1

+ UCV A−1 − UCV A−1U
[
C−1 + V A−1U

]−1
V A−1

= 1 + UCV A−1 −
(
U + UCV A−1U

) [
C−1 + V A−1U

]−1
V A−1

= 1 + UCV A−1 − UC
[
C−1 + V A−1U

] [
C−1 + V A−1U

]−1︸ ︷︷ ︸
=1

V A−1

= 1

(A.5)
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A.2 Including Second-Order Derivatives

This section was borrowed from the appendix of the author’s work on the GPR-

based minimizer [25]. If one wants to use derivative information up to second

order, the energy is given by the following equation.

E(x) =
N∑
n=1

wnk(x,xn) +
N∑
n=1

d∑
i=1

vin
dk(x,xn)

dxin

+
N∑
n=1

d∑
i=1

d∑
j=1

uijn
d2k(x,xn)

dxindx
j
n

+ Eprior(x)

(A.6)

The number of dimensions in the system is given by d and the number of training

points is given by N . The weights wn, v
i
n, u

ij
n will be obtained through a larger

covariance matrix. Introducing σh, the assumed noise on the Hessian entries, the

covariance matrix has the following form.

K =


k(xm,xn) + σ2

eδmn
dk(xm,xn)

dxin

d2k(xm,xn)

dxindx
j
n

dk(xm,xn)
dxim

d2k(xm,xn)

dximdx
j
n

+ σ2
gδmnδij

d3k(xm,xn)

dxindx
j
ndxkm

d2k(xm,xn)

dximdx
j
m

d3k(xm,xn)

dximdx
j
mdxkn

d4k(xm,xn)

dxindx
j
ndxkmdx

l
m

+ σ2
hδmnδikδjl


(A.7)

The linear system will become

K



w1

...

wN

v1

...

vN

u1

...

uN



=



E1

...

EN

g1

...

gN

h1

...

hN



−



Eprior(x1)
...

Eprior(xN)

∇Eprior(x)|x=x1

...

∇Eprior(x)|x=xN

hprior(x)|x=x1

...

hprior(x)|x=xN



(A.8)
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in which the entry (i · d+ j) of vector hm is hi·d+jm = H ij
m, the entry of the Hessian

matrix corresponding to the coordinates i and j at the training point m and the

entry (i · d+ j) of hprior(x)|x=xm the second derivative of the prior mean function
d2

dxidxj
Eprior(x)|x=xm , respectively. The vectors um are of the same shape. In the

GPR implementation of this thesis only half of the Hessian entries are used by ex-

ploiting the Hessian’s symmetry. This will limit the number of entries in the vectors

hm and um to (d[d+1])/2 which increases the efficiency quite a bit. Calculations us-

ing second order derivative information scale with O([Nd[d+ 1]2/2 +Nd+N ]
3
).

Therefore, they should only be used for regression tasks with only a view data

points for which the Hessian information is available.

A.3 Derivatives of Covariance Functions

In the following the derivatives necessary for implementing GPR up to second for

two different kernels are presented. The derivatives of the squared exponential and

the Matérn covariance function with ν = 5/2 are shown. For the optimization of

the likelihood additional derivatives with respect to the parameters are needed.

They are not shown here but can be extracted from the DL-FIND code.
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A.3.0.1 Squared Exponential Kernel

k(xm, xn) = σ2
f exp

(
−γ

2
|xm − xn|2

)
dk(xm, xn)

dxin
= σ2

fγ(xim − xin) exp
(
−γ

2
|xm − xn|2

)
dk(xm, xn)

dxim
= − dk(xm, xn)

dxin
d2k(xm, xn)

dximdx
j
n

= σ2
fγ
[
δij + γ(xin − xim)(xjm − xjn)

]
exp (...)

d2k(xm, xn)

dxindx
j
n

= − d2k(xm, xn)

dximdx
j
n

d2k(xm, xn)

dximdx
j
m

=
d2k(xm, xn)

dxindx
j
n

d3k(xm, xn)

dxindx
j
ndxkm

= σ2
fγ

2
[
− δij(xkn − xkm) + δjk(x

i
m − xin) + δik(x

j
m − xjn)

+ γ(xjm − xjn)(xim − xin)(xkn − xkm)
]

exp (...)

d3k(xm, xn)

dximdx
j
mdxkn

= − d3k(xm, xn)

dxindx
j
ndxkm

d4k(xm, xn)

dxindx
j
ndxkmdx

l
m

= σ2
fγ

2
[
δij
[
δkl − γ(xkn − xkm)(xln − xlm)

]
+

δjk
[
δil − γ(xin − xim)(xln − xlm)

]
+

δik
[
δjl − γ(xjn − xjm)(xln − xlm)

]
+

γ
[
δjl(x

i
m − xin)(xkn − xkm)+

δil(x
j
m − xjn)(xkn − xkm)+

δkl(x
j
m − xjn)(xin − xim)+

γ(xjm − xjn)(xim − xin)(xkn − xkm)(xln − xlm)
]]

exp (...)

(A.9)
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A.3.0.2 Matérn Kernel for ν = 5/2

Let r := |xm − xn|.

k(xm, xn) = σ2
f

(
1 +

√
5r

l
+

5r2

3l2

)
exp

[
−
√

5r

l

]
dk(xm, xn)

dxin
= σ2

f

5

3l3

[
(xim − xin)

(
l +
√

5r
)]

exp

[
−
√

5r

l

]
dk(xm, xn)

dxim
= − dk(xm, xn)

dxin

d2k(xm, xn)

dximdx
j
n

= σ2
f

5

3l4

[
(δijl(l +

√
5r)− 5(xim − xin)(xjm − xjn))

]
exp

[
−
√

5r

l

]
d2k(xm, xn)

dxindx
j
n

= − d2k(xm, xn)

dximdx
j
n

d2k(xm, xn)

dximdx
j
m

=
d2k(xm, xn)

dxindx
j
n

d3k(xm, xn)

dxindx
j
ndxkm

= σ2
f

−25

3rl5

[
− rl

[
δij(x

k
m − xkn) + δik(x

j
m − xjn) + δjk(x

i
m − xin)

]
+
√

5(xim − xin)(xjm − xjn)(xkm − xkn)
]

exp

[
−
√

5r

l

]
d3k(xm, xn)

dximdx
j
mdxkn

= − d3k(xm, xn)

dxindx
j
ndxkm

d4k(xm, xn)

dxindx
j
ndxkmdx

l
m

= σ2
f

25

3r3l6

[
r3l2(δijδkl + δijδjl + δilδjk)+

(
√

5l + 5r)(xim − xin)(xjm − xjn)(xkm − xkn)(xlm − xln)−
√

5lr2
(
δij(x

k
m − xkn)(xlm − xln) + δik(x

j
m − xjn)(xlm − xln)+

δil(x
j
m − xjn)(xkm − xkn) + δjk(x

i
m − xin)(xlm − xln)+

δjl(x
i
m − xin)(xkm − xkn) + δkl(x

i
m − xin)(xjm − xjn)

)]
exp

[
−
√

5r

l

]
(A.10)
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A.4 Maximum Likelihood Estimation

In this section the maximum likelihood estimation is shortly reviewed as a method

to optimize the hyperparameters in GPR. The likelihood describes the probability

of a set of observations given the parameters and hyperparameters of the model.

Therefore, it seems plausible to make use of this property to optimize the hyperpa-

rameters of the model. Specifically, one can use p(y|X). It is the likelihood of the

prediction marginalized over the function values (not the observed function values

but the “real” values of the underlying function). Marginalization just means that

the probability distribution is averaged over the information about the function

values. This is done by integrating over the likelihood of the prediction times the

prior.

p(y|X) =

∫
p(y|f , X)p(f |X) (A.11)

The prior, f |X ∼ N (ȳpr, K), as well as the likelihood, y|f ∼ N (f , σ2
n1), are de-

scribed by Gaussian probability distributions. The logarithm of the marginal like-

lihood is given by [67]

log [p(y|X)] = −1

2
(y − ȳ)T (K)−1 (y − ȳ)− 1

2
log|K| − n

2
log [2π] (A.12)

where K = k(xi,xj) + δijσ
2
n and |K| is the determinant of K. Note that the

marginal likelihood is also a function of the hyperparameters, the parameters of

the covariance function, i.e. the length scale l and the noise parameter σ. The first

term of equation (A.12), − (y − ȳ)T (K)−1 (y − ȳ) /2 describes the fitting quality

to the training data. The larger this term is (the closer to zero since it is negative)

the better the training data is fitted. One could think about optimizing the hy-

perparameters by considering only this term. And in fact the training data will be

fitted better and better. But this will lead to strong overfitting, no generalization

to further test points is possible. The second term of equation (A.12), −log|K|/2,

counters this behavior: The expression log|K|/2 is a complexity penalty that pun-

ishes complex models. A complex model would be for example one with a very low

length scale that fits training points perfectly but only very close to them. The

most simplest model would be a linear or even constant model. This term will be-

come larger for more complex models. Including the minus sign it pushes simpler
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models to a higher marginal likelihood. The last term, log [2π], is a normalization

constant.
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