
R E A C T I O N ENG I N E E R I N G , K I N E T I C S AND C A T A L Y S I S

Modeling of biocatalytic reactions: A workflow for model
calibration, selection, and validation using Bayesian statistics

Ina Eisenkolb1 | Antje Jensch1 | Kerstin Eisenkolb1 | Andrei Kramer2 |

Patrick C. F. Buchholz3 | Jürgen Pleiss3 | Antje Spiess4 | Nicole E. Radde1

1Institute for Systems Theory and Automatic

Control, University of Stuttgart, Stuttgart,

Germany

2Science for Life Laboratory, KTH Royal

Institute of Technology, Stockholm, Sweden

3Institute for Biochemistry and Technical

Biochemistry, University of Stuttgart,

Stuttgart, Germany

4Institute for Biochemical Engineering,

Technical University Braunschweig,

Braunschweig, Germany

Correspondence

Nicole E. Radde, Institute for Systems Theory

and Automatic Control, University of Stuttgart,

Pfaffenwaldring 9, D-70569 Stuttgart,

Germany.

Email: nicole.radde@ist.uni-stuttgart.de

Funding information

Deutsche Forschungsgemeinschaft, Grant/

Award Numbers: PL145/16-1, EXC

2075-390740016, EXC 310/2

Abstract

We present a workflow for kinetic modeling of biocatalytic reactions which combines

methods from Bayesian learning and uncertainty quantification for model calibration,

model selection, evaluation, and model reduction in a consistent statistical frame-

work. Our workflow is particularly tailored to sparse data settings in which a consid-

erable variability of the parameters remains after the models have been adapted to

available data, a ubiquitous problem in many real-world applications. Our workflow is

exemplified on an enzyme-catalyzed two-substrate reaction mechanism describing

the symmetric carboligation of 3,5-dimethoxy-benzaldehyde to (R)-3,30,5,50-

tetramethoxybenzoin catalyzed by benzaldehyde lyase from Pseudomonas fluorescens.

Results indicate a substrate-dependent inactivation of enzyme, which is in accor-

dance with other recent studies.

K E YWORD S

carboligation, enzyme kinetics, Markov chain Monte Carlo, parameter estimation, profile
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1 | INTRODUCTION

Modeling is a difficult task with many challenges. A good model is pre-

dictive and helps to get deeper insight into the described system or

phenomenon by, for example, explaining underlying mechanisms or

giving raise to nonobvious hypotheses which can be tested in a subse-

quent step. In many applications, building a good model renders it

necessary to adapt the model's granularity to the available data and

also to the kind of scientific questions the model should answer.

For (bio-)chemical reaction networks, as considered here on an

example of an enzyme-catalyzed two-substrate conversion, standard

modeling approaches based on chemical reaction kinetics exist. In

addition, several workflows guide the researcher through a sequence

or iteration of experiments, parameter estimation and model quality

assessment as well as model refinement and/or experimental design

steps.1-5 These models are usually available in parameterized form,

and parameter estimation is formulated as an optimization problem in

which the model behavior is calibrated to experimental data. We

often face the problem that the data sets do not contain enough infor-

mation for the parameters to be uniquely identified. This is either cau-

sed by structural nonidentifiabilities, that is, the kind of data used for

estimation do generally not allow for a unique parameter identifica-

tion regardless of a particular realization and measurement noise, or

by practical nonidentifiabilites, which can occur in a setting in which

given data are sparse or very noisy. Methods based on point estimates

and local approximations cannot be used in these cases. Structural

identifiability can be tested by algebraic methods, which are often

only applicable to small or medium size models or need at least a ref-

erence value and suitable neighborhood.6 Regularization methods can

be used to convert ill-posed into well-posed problems for particularIna Eisenkolb and Antje Jensch contributed equally to this study.
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problem settings.7 Suitable methodology to investigate practical

identifiability comprises profile likelihood analysis8 and Bayesian

methods.9 The later also allow for a consistent uncertainty quantifica-

tion from data to model parameters to model predictions for any

quantity of interest.

In addition to nonidentifiable parameters, sometimes the reaction

mechanism is not known in full detail, the reaction kinetics is

influenced by its environment, or the reaction system is embedded in

a larger reaction network with yet uncharacterized crosstalk effects.

Then, the model is not completely specified, resulting in problems

such as structure identification or model selection, which are usually

even more difficult than parameter estimation for a single model.10

Here, we introduce a modeling workflow for parameter estima-

tion, model selection, model reduction, and validation based on Bayes-

ian statistics, which is particularly tailored for consistent uncertainty

quantification, and compare it to a similar workflow which uses local

methods.11 Moreover, we discuss different ways to visualize out-

comes of individual steps in the workflow. We regard such a workflow

as a prerequisite for an automated data and model management sys-

tem, which makes modeling results transparent and reproducible and

facilitates standardization of processes.

Our approach is exemplified on an enzyme-catalyzed two-

substrate reaction mechanism describing the symmetric carboligation

of 3,5-dimethoxy-benzaldehyde (3,5-DMBA) to (R)-3,30,5,50-tetrame-

thoxybenzoin ((R)-3,30 ,5,50-TMB) catalyzed by benzaldehyde lyase

(BAL) from Pseudomonas fluorescens (PDB accession 2AG0), for which

we compare two competing model hypotheses. Results confirm previ-

ous recent findings about this reaction mechanism4,5,11 and illustrate

that global methods such as sampling-based analysis provide superior

insights into underlying parameter dependencies compared to local

approximations.

2 | RESULTS

2.1 | Modeling workflow

Our proposed modeling workflow is depicted in Figure 1. We start

with an experimental data set and a set of initial models, here exempli-

fied with models 1 and 2. These models are calibrated independently

by using sampling-based Bayesian approaches. For model selection,

we compare model fits and introduce additional methods, which make

use of residual and parameter identifiability analysis, to judge overall

plausibility of the models. If both models give satisfactory results, one

can use model-based experiment design to suggest further experi-

ments which help to discriminate between both models, leading to

Initial Models

Model 1 Model 2
Experimental

Data

New Hypothesis

Model 3

New Data

Model Calibration

Model Selection

Model prediction
satisfactory?

Parameter precision
satisfactory?

Experiment Design

Model reduction

Model revision

Best model
identified

both yes

both no

both no

both yes

one yes

one yes

Model Calibration : Bayesian framework

Model prediction
satisfactory?

: model fits, residuals, bootstrap

Parameter precision
satisfactory?

: 1D/2D marginals of posterior
distribution, profile likelihood

Model reduction
: correlation analysis of posterior
samples, PCA

F IGURE 1 Modeling workflow. Different parameterized initial model hypotheses are calibrated independently to experimental data. For
model selection, we evaluate model predictions and parameter precision. If more than one model hypothesis gives satisfactory results, model-
based experiment design is used to discriminate between these alternatives. If all models fail, the models are revised either by including expert
knowledge or by model reduction techniques, leading to new model hypotheses, which enter the workflow from scratch. Color code of the model
blocks is used for subsequent presentation of results. Dashed parts indicate workflow blocks not applied in this study. Methods employed for
each block are listed on the right [Color figure can be viewed at wileyonlinelibrary.com]
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new experimental data. Methods for this are available and are, for

example, based on Fisher information matrices12 or on optimizations

of output variances.13 In case that none of the two models provide

satisfactory fits, the model has to be revised, leading to a new model

hypothesis. If the fits are good but parameter precision is not satisfac-

tory, we employ model reduction techniques based on the sampled

parameters, which also leads to a new model hypothesis that can be

compared in the same way. The individual workflow steps are

explained in more detail for the particular example in the following.

Color codes for the three models in Figure 1 are reused in the simula-

tions of the respective models in this study. We do not explicitly con-

sider model-driven experiment design methods and model revision

here, which is indicated by dashed lines and boxes in Figure 1, since

standard methods are available for this and model revision is usually

done manually, for example, via including expert knowledge and/or

more details about the process at hand.

2.2 | Experimental time course data and
competing modeling approaches

We use experimental data obtained from Zavrel et al.,11 which

describe the symmetric carboligation of 3,5-DMBA resulting in (R)-

3,30,5,50-TMB catalyzed by BAL (Figure 2a). The conversion of sub-

strate was measured as time courses in nine experiments, which differ

in initial substrate and/or enzyme concentrations (Figure 2b). The

range in which the initial substrate concentration A0 could be varied

was bounded by limited product solubility. Initial enzyme concentra-

tion E was either set to 4.17 × 10−5 mM or 8.33 × 10−5 mM, and the

initial product concentration P0 was 0 mM in all experiments. Equidis-

tant measurement points with Δt = 6 s were taken until equilibrium

was reached, 2,777 data points in total were available.

Two initial model hypotheses (models 1 and 2) based on the

mechanistic kinetic models derived in Zavrel et al.11 are calibrated and

compared in a first step. The enzyme reaction of BAL follows an

ordered bi-uni reaction mechanism since two (identical) substrate mol-

ecules are converted to one product molecule. Both models are

based on the same reaction mechanism, which is shown with its

microreaction steps in Figure 2c.14 Here, we have used A and B for

the two identical substrates, which bind with different affinities to the

enzyme (donor-acceptor principle).15

The macrokinetic model reads11

v =−
1
2
dA
dt

ð1aÞ

= E�
kcatf

KiAKmB
A2− P

Keq

� �

1+ A
KiA

1 + KmA
KmB

� �
+ A2

KiAKmB
+ P

KmP
+ AP

KmPKiB

, ð1bÞ

with seven parameters that are listed in Figure 2d. Due to the fact

that only six microreaction constants exist (Figure 2c), we employ the

functional relation.11

KiB =
KmBKiA

KmA 1− KmA
KiA −1

� �
KmP

KeqKmBKiA

h i : ð2Þ

We refer to this model as model 1, with parameter vector

θ1 = (kcatf, Keq, KmA, KmB, KmP, KiA). Model 2 includes in addition a

substrate-dependent enzyme inactivation, which is described by mass

action kinetics,

dE
dt

=−kinS�A�E, ð3Þ

such that Model 2 comprises one additional parameter kinS and hence

θ2 = (kcatf, Keq, KmA, KmB, KmP, KiA, kinS). The theory that the enzyme

F IGURE 2 Bi-uni reaction mechanism specifics according to
Reference 14. (a) Reaction scheme for the symmetric carboligation of
3,5-dimethoxy-benzaldehyde (3,5-DMBA) to (R)-3,30 ,5,50-
tetramethoxybenzoin ((R)-3,30,5,50-TMB) catalyzed by benzaldehyde
lyase (BAL). (b) Initial experimental conditions and time periods until
reaching equilibrium. (c) First, the enzyme-substrate complex EA
forms by the binding of substrate A (donor) to enzyme E. This is
followed by the binding of B (acceptor) resulting in the ternary EAB
complex. Finally, the enzyme E releases the product P. (d) Parameters
of Models 1 and 2. The parameter kinS only applies to Model 2
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BAL is inactivated by the substrate 3,5-DMBA is in accordance with

previous studies, in which an inactivation of a decarboxylase by benz-

aldehydes has also been reported.16-18

2.3 | Both models capture experimental data but
differ in parameter values and confidence bounds

For model calibration, we use a Bayesian approach, which provides a

consistent description of all quantities of interest in terms of probabil-

ity distributions and thus allows to transform variability in measure-

ments into uncertainties in parameters and, ultimately, model

predictions. We do this separately for all initial models. Such statistical

approaches require a stochastic model in order to define a likelihood

function. Therefore, we embed the differential equation system into a

stochastic error model. The resulting model generally captures besides

the dynamics of the system also the noise characteristics, which can

be integrated into the objective function, and allows to analyze model

fits and uncertainty in terms of comparisons of probability distribu-

tions, for which measures from statistics and information theory are

available. Several variants of such an error model exist in the litera-

ture, and additive normal errors, multiplicative log-normal errors or a

mixture of both are among the most frequently used.19 A proper

choice of parameters for these error models is another task. In

some cases, they can be fixed beforehand, for example, by data

preprocessing (see for example, Jensch et al.20), in other cases they

have to be estimated together with the other model parameters.

Often it makes sense to use a shrinkage approach or to partly pool

parameters such as SD for the same model output within the same

experiment. As pooling reduces the number of parameters, it is often

used for computational reasons.

Here, we employ a multiplicative error model according to

y j
A tkð Þ= z j

A tk ,θð Þ�ϵ ϵ� logN 0,σ2
� �

, ð4Þ

where z j
A tk ,θð Þ refers to the solution of the differential equation for

substrate A at time point tk, k ∈ 1, …, T in experiment j ∈ 1, …, 9 and

y j
A tkð Þ denotes the respective noise-corrupted measurement.

The resulting likelihood function for experimental data set

D reads

LD θð Þ=
Y9
j=1

YT
k =1

1ffiffiffiffiffiffi
2π

p
σ
exp −

logzjA tk ,θð Þ− logyjA tkð Þ
� �2

2σ2

0
B@

1
CA: ð5Þ

A Bayesian approach requires a prior distribution π(θ) on the

parameters, for which we choose a uniform distribution on the log-

transformed parameters. This transformation is usually employed in

cases where the order of magnitude of the unknown parameters is

not known a priori since it enables to cover several orders of magni-

tude and obeys Benford's law according to which the mantissa of log-

arithms of numbers are equally distributed.21,22 In addition, it maps

positive parameters onto the entire set of real numbers, and in this

way we get rid of this positivity assumption as a constraint. This log

transformation has been shown to be highly advantageous for param-

eter estimation in systems biology models, see for example, Kreutz23

and Villaverde et al.24 Of note is here that probability distributions are

generally not invariant for such nonlinear transformations, and results

are different from choosing a uniform prior for the nontransformed

parameters. An unbounded uniform measure corresponds to an

improper prior distribution, resulting in the posterior distribution

being proportional to the likelihood function.

For implementation, we use a proper prior distribution on the

parameters by choosing reasonable bounds. This is usually done in an

adaptive way. We cover a large range initially, solve the optimization

problem to find the maximum a posteriori (MAP) estimator, and then

adapt the boundaries such that they enclose this estimator and com-

prise most of the probability mass. The MAP estimator is thus

defined as

θ̂
MAP

= argminθ − logLD θð Þ subject to θ ∈ θl ,θu½ � ð6Þ

with corresponding objective function value Jopt

Jopt θ̂
MAP

� �
=− logLD θ̂

MAP
� �

: ð7Þ

The posterior distribution then reads

p θjDð Þ= π θð ÞLD θð Þ
p Dð Þ , p Dð Þ=

ð
π θð ÞLD θð Þdθ : ð8Þ

This distribution is investigated by sampling, which circumvents

evaluating the integral p(D). Direct sampling techniques that provide

independent samples are usually not efficient and Markov Chain Monte

Carlo (MCMC) sampling is used instead. Different sampling schemes

exist for this purpose, which are discussed, for example, in Weber et al.10

and Kramer et al.25,26 For technical details about the sampling scheme

that we use and convergence tests we refer to supporting Section 1.

Once a representative sample of the posterior distribution is

available, distributions of interest, for example, marginal and posterior

predictive distributions (PPDs) can be analyzed. Marginal distributions

for parameters of interest can be obtained by integrating the joint

probability distribution over all other parameters. In case of 1D and

2D marginal distributions, this reads

p θijDð Þ=
ð
θm6¼i

p θjDð Þdθm and p θi,θ jjD
� �

=
ð
θm6¼i, j

p θjDð Þdθm ð9Þ

These PPDs or, generally, PPDs for any quantity of interest ~y can

be inferred via Monte Carlo integration,

p ~yjDð Þ=
ð
p ~y,θjDð Þdθ ð10aÞ

=
ð
p ~yjθ,Dð Þp θjDð Þdθ ð10bÞ
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=
ð
p ~yjθð Þp θjDð Þdθ ð10cÞ

≈
1
N

XN
i=1

p ~yjθið Þ , ð10dÞ

where θi are N samples from the posterior distribution p(θ|D). For param-

eter marginals, that is, ~y is a subset of the parameters, this translates

into just considering the respective entries in the sampled parameter

vectors and using these to estimate marginal densities. Since the θi

have been generated from a Markov process, the series is usually

autocorrelated, which has to be taken into account when estimating

the variance of the measure of interest. The variable ~y can, for exam-

ple, also be a state y(t*) at a particular time point t* or a waiting time

until a particular event occurs.

If the measurement noise σ2 in Equation (4) is small, interquartile

ranges of this distribution can directly be approximated by using the

posterior sample to simulate a bundle of trajectories and using these

to empirically estimate these ranges.

Figure 3 shows model fits for three exemplary time series for Model

1 (left) and Model 2 (right). Data are represented as dots, solid lines indi-

cate MAP estimators θ̂
MAP

. Empirical interquartile ranges of trajectory

bundles are omitted here since they form very narrow bands around

the maximum likelihood values, as suggested by the data.

Model fits of the remaining six experiments are shown in

Figure S1. Visually, there is not much difference between the two

model variants in terms of fit quality.

The MAP estimators for Models 1 and 2 are listed in Figures 4a

and 5a, respectively, and are indicated as white dots in Figures 4b and

5b. Figures 4b and 5b visualize estimated 2D parameter marginals p(θi,

θj|D) (Equation (9)) of the posterior distributions for Models 1 and 2 as

2D scatterplots (lower right half) and corresponding binning plots

on a hexagonal lattice (upper left half). 1D Parameter marginals

(Equation (9)) are depicted below.

MAP estimates of both models are similar only for the parameters

kcatf and Keq. All other parameters differ significantly by several orders

of magnitude, showing that estimated parameter values strongly

depend on model equations and thus have to be handled with care.

This is a phenomenon which was also observed in Buchholz et al.5

As indicated by the 1D marginal distributions for Model 1, the

parameters kcatf and Keq are well identifiable. The parameter KiA has a

broader distribution, and those of KmA, KmB, and KmP cover a wide

range and are not identifiable. Correlations with absolute values of

coefficients larger than 0.5 only exist between KiA and KmA (ρ = 0.67)

and between KiA and KmB (ρ = −0.69).

For Model 2, kcatf, Keq, KmA, KmP, and kinS are well identifiable,

while KmB and KiA have broader distributions. Moreover, the parame-

ters are much more correlated. Besides the two correlations which are

also present in Model 1, ρ(KiA, KmA) = 0.72 and ρ(KiA, KmB) = −0.96,

the parameters KiA and KmP, KmP, and KmA, KmP, and KmB as well as

KmA and KmB are also correlated with a coefficient ρ > 0.5.

We note here that these 1D and 2D parameter marginals clearly

show that a FIM-based local analysis, as presented in Reference 11,

comes to its limits. Confidence bounds are estimated in this analysis

by approximating the 2D densities with bivariate normal distributions

centered around θ̂
MAP

, and corresponding 1D marginals, which are

also normally distributed. While this might still be a reasonable

approximation for some parameters of Model 1, in particular the well-

identifiable parameters kcatf and Keq, it cannot describe the nonlinear

relationships between parameters of Model 2.

In summary, although Model 2 has more parameters, these

parameters are much better identifiable than those of Model 1, which

indicates that Model 2 is better suited to describe the data. Estimation

of confidence bounds via profile likelihoods analysis,8,27-29 as depicted

in Figure 6, confirms these results. Respective confidence interval

lengths are listed in Figure 6c. Changes of other parameters along the

profile curves are shown in Figure S2.

2.4 | Model comparison suggests substrate-
dependent enzyme inactivation

Residual analysis is a way to judge whether the deviations between

the progress curves produced by θ̂
MAP

and the data are in the range

of noise. Therefore, we use our trained stochastically embedded dif-

ferential equation model (1b) to simulate experimental data and com-

pare residuals with those observed in real experiments. In an ideal

setting, for example, in an in silico study where the calibrated model

was also used to generate artificial data and all parameters are identi-

fiable, both residual sets are stochastically indistinguishable. When

(a) (b)

F IGURE 3 Calibrated model trajectories for (a) Model 1 and
(b) Model 2. A comparison of model trajectories simulated with the
maximum a posteriori (MAP) estimator θ̂

MAP
and experimental time

courses for three exemplary initial conditions (Experiments 1, 6, and
7) [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 4 Maximum a posteriori (MAP) estimates and 2D marginal posterior densities for Model 1. (a) Best parameter vectors θ̂
MAP

as well
as upper and lower parameter bounds of the Markov Chain Monte Carlo (MCMC) sampling for Model 1. (b) Parameter scatterplots (lower right
half) and 2D histograms with hexagonal bins (upper left half) for the MCMC samples of Model 1. MAP estimates θ̂

MAP
are indicated by white

dots. 1D marginal densities are shown below (for parameters named in the column above). Correlation coefficients ρ are shown in the upper left
corner of the hexbin plots. Units are as listed in (a)

6 of 13 EISENKOLB ET AL.



F IGURE 5 Maximum a posteriori (MAP) estimates and 2D marginal posterior densities for Model 2. (a) Best parameter vectors θ̂
MAP

as well
as upper and lower parameter bounds of the Markov Chain Monte Carlo (MCMC) sampling for Model 2. (b) Parameter scatterplots (lower right
half) and 2D histograms with hexagonal bins (upper left half) for the MCMC samples of Model 2. MAP estimates θ̂

MAP
are indicated by white

dots. 1D marginal densities are shown below (for parameters named in the column above). Correlation coefficients ρ are shown in the upper left
corner of the hexbin plots. Units are as listed in (a)

EISENKOLB ET AL. 7 of 13



working with experimental data, this might also be the case if the sto-

chastic noise is large compared to the deviation and residuals are

dominated by this stochastic part. In case of small noise, however, the

difference between the sets of residuals should be visible.

Figure 7 shows a comparison of both sets of residuals: for Models

1 (left) and 2 (right). Residuals of simulated and experimental data are

depicted in red and green (Model 1) and red and blue (Model 2),

respectively.

Looking at Model 1, the long-term behavior, which describes the

equilibrium of the reaction, is well captured and both residual sets are

visually almost indistinguishable for t ≥ 500 s. However, this is differ-

ent for some transients. In particular, residuals of the experimental

data are clearly above those of the simulated data for large enzyme

concentrations, and below for small enzyme concentrations, respec-

tively. Figure S3a shows that this is consistently true for all five sub-

strate concentrations. Interestingly, these effects average out when

taking the residual means of all experiments. For Model 2, ranges of

both residual sets consistently overlap in almost all experiments, indi-

cating again that the experimental data and especially their noise char-

acteristics are better captured by Model 2.

We employ parametric bootstrap30 for an aggregated analysis of

the model fit. We use the calibrated model to simulate responses

under the same input conditions and noise as for the data sets used

for parameter estimation. For each of these output sets, the likelihood

function value, given the calibrated model, is evaluated. The maximum

likelihood value of the experimental data is compared to the distribu-

tion of those in silico results (represented by box and whisker plots). If

it lies below the fifth percentile, experimental data are far more likely

than most of the simulated data, which is an indication for overfitting.

Similarly, a value above the 95th percentile means that most simu-

lated data sets are in better accordance with model predictions than

the experimental data set and the model might lack relevant structural

information. Results of this analysis for Models 1 (green) and 2 (blue)

are depicted in the last row of Figure 7 for an average of all

experiments.

The difference between the two models is small in this analysis

for all experiments combined as well as for all nine experiments

(Figure S4). The MAP estimator of both models lies within the major

mass of the empirical distribution and thus both models cannot be

rejected based on this analysis. Of note is that this analysis has to be

interpreted with care in two respects. First, the resulting empirical dis-

tribution is highly sensitive to the choice of the error model and its

parameters. Second, the effects of underfitting and overfitting of indi-

vidual experiments often average out in the overall averaged

F IGURE 6 Profile likelihood analysis for Models 1 and 2. Profile likelihood analysis for parameters of (a) Models 1 and (b) 2 and (c) profile
likelihood 95% confidence interval lengths of the respective parameters

8 of 13 EISENKOLB ET AL.



bootstrap statistics. Thus, parametric bootstrap as introduced here

might be a way to reject models especially in cases where the error

model is well known.

Overall, Model 2 is favorable according to our analysis,

which supports the hypothesis of a substrate-dependent enzyme

inactivation.

2.5 | Model reduction based on statistical analysis

Equipped with a model which gives satisfactory predictions, but

whose parameters are not completely identifiable, we decided to

apply model reduction techniques to Model 2 according to our

workflow (Figure 1). Model reduction is a broad field, and many differ-

ent techniques are on the market. For larger chemical reaction net-

works, time-scale separation techniques such as quasi-steady state or

rapid equilibrium approximations are sensible approaches.31-33

Model-order reduction techniques can be applied to reduce the com-

putational complexity in numerical simulations. Since we are inter-

ested in improving parameter identifiability, and we already observed

several linear correlations between pairs of parameters in Model

2 (Figure 5b), we applied principal component analysis to the parame-

ter samples of Model 2 in order to investigate whether subgroups of

linearly related parameters exist. The following correlations were

found:

0 =0:7819KmA−0:7489KmP , ð11Þ

0=−0:3682KmA +0:3800KmB +0:3733KiA : ð12Þ

The scatterplots in Figure 8 show the 2D (left) and 3D (right) cor-

relations. In order to be able to compare to results in Zavrel et al.11

and Buchholz et al.,5 these linear relations were used to eliminate the

parameters KmP and KiA.

The parameters of the reduced model (Model 3) were sampled

and Figure S2b shows that all parameters except KinS are well identifi-

able with small variances. Interestingly, model reduction led to an

almost completely flat distribution of KinS.

Results of the fit analysis are shown in Figure 9. Model fits look

reasonable in terms of time series fits (Figure 9a). The visual analysis

of the residuals in Figure 9b, however, reveals systematic deviations

(a) (b)

F IGURE 7 Residual and bootstrap analysis for Models 1 and
2. Red dots indicate residuals simulated with the maximum a
posteriori (MAP) estimator and the proposed multiplicative noise
model for three representative experiments, plotted against time.
(a) Green (Model 1) and (b) blue (Model 2) dots are the residuals
resulting from a comparison between the MAP trajectory and the
experimental data. The respective mean squared error (MSE) is shown
in the fourth row. In the last row, a distribution of Jopt has been

generated by a bootstrap analysis, in which many data sets and
respective likelihood function values were simulated with (a) Model
1 and (b) Model 2 for all experiments. Resulting data were used to
estimate the median, the 25th and 75th percentiles (colored boxes)
and the 5th and 95th percentiles (lower and upper adjacent values,
respectively). Outliers are depicted as crosses. Horizontal lines depict
Jopt values of the real experiments

F IGURE 8 Correlation analysis of Model 2. 2D and 3D
scatterplots (gray) with their corresponding regression line/plane
(black) of the correlated parameters log10KmP and log10KmA (left) and
log10KmA, log10KmB, and log10KiA (right), respectively
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between model and data at several places. Residuals simulated by the

calibrated model and residuals of the experimental data show signifi-

cant differences in their distribution, with a worse model fit after

reduction. Similar to the MCMC parameter marginals, four of the five

parameters have small confidence intervals according to their profile

likelihoods (Figure 9c). Calculations of the profile likelihood of KinS did

not converge, hence was omitted here. The bootstrap analysis

(Figure 9d) confirms results from the residual analysis. The Jopt value

of the real experiments (black line) lies in the upper tail of the distribu-

tion of objective function values estimated by a bootstrap, indicating

that the observed deviations are systematic and unlikely to be mere

noise.

MAP estimates of the parameters of Model 3 are listed in

Figure 10a and are shown as white dots in Figure 10b together

with parameter samples of the posterior distributions as 2D sca-

tterplots (lower right half) and corresponding binning plots on a

hexagonal lattice (upper left half). 1D parameter marginals are

depicted below. Values for kcatf and Keq are similar to those of

Models 1 and 2, indicating that the data do contain sufficient infor-

mation to identify these two parameters reliably and that they are

not much affected by the differences between the three models.

Estimates for the other three parameters differ considerably from

respective values of both Models 1 and 2. Confidence intervals

resulting from the profile likelihood analysis are given in

Figure 9e. Also here, results are in accordance with posterior mar-

ginals estimated from the MCMC sampling. Results for additional

experiments and profile likelihood together with parameter changes

are depicted in Figure S5.

In summary, the reduced model is inferior to Model 2 in terms of

Model fit and overall plausibility. This overall conclusion is further

supported by statistical measures for model comparison such as the

Akaike or the Bayesian information criteria (Table S3).

F IGURE 9 Model evaluation Model 3. (a) Model trajectories, (b) residual, (c) profile likelihood, and (d) bootstrap analysis as well as (e) profile
likelihood confidence interval lengths. Analysis was done analogous to Models 1 and 2
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F IGURE 10 Maximum a posteriori (MAP) estimates and 2D marginal posterior densities for Model 3. (a) Best parameter vectors θ̂
MAP

of the
Markov Chain Monte Carlo (MCMC) sampling for Model 3. (b) Parameter scatterplots (lower right half) and hexbin plots (upper left half) for the
MCMC samples of Model 3. MAP estimates θ̂

MAP
are indicated by white dots. 1D marginal densities are shown below. Lower and upper bounds

have been set to −5 and 5 for log values of all parameters. Units are as listed in (a)
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3 | CONCLUSION

In this study, we have introduced a workflow for model calibration,

selection and model reduction based on statistical Bayesian sampling,

which was exemplified on the symmetric carboligation of 3,5-DMBA

to (R)-3,30,5,50-TMB catalyzed by BAL. Beyond visualizing model fits,

also overall plausibility of the stochastic model was investigated via

residual analysis and parametric bootstrapping. Together, these

methods allowed us to discriminate between different model variants

and to identify the overall most plausible model. In this model, the

enzyme is assumed to be inactivated by the substrate, which is in

accordance with findings in Ohs et al.4 and Buchholz et al.5

Statistical Bayesian approaches are powerful since they deliver a

complete stochastic model which can readily be used to simulate data

including noise characteristics in silico and to compare these with the

experimental data in various ways. This allows to propagate sparse-

ness and empirical variances in experimental data through uncer-

tainties in model parameters to confidence bounds for model

predictions. For our showcase example, the different methods that

were used here to evaluate model performance all led to consistent

results, which is reassuring. For model calibration, the following key

conclusions can be drawn from our findings:

First, the estimation of individual model parameter values is diffi-

cult and parameter values have to be taken with care. This is not only

caused by high correlations between model parameters and non-

identifiabilities, but also by their dependence on model formulations.

Although all three model variants provide reasonable fits of trajectories,

they differ substantially in most of their parameter values. Exceptions

are the two parameters kcatf and Keq, whose values were robust across

all model variants. The overall reaction velocity is directly proportional

to kcatf, which is known to be a good prerequisite for identifiability of

this parameter from time series data. In case of Keq, we anticipate that

this parameter is identifiable since it describes the equilibrium of the

reaction, for which we have information from experiments with differ-

ent initial conditions. A sensitivity-based design of experiments could

facilitate identifiability in the parameter space, if this is a desired goal.

Second, Model 1 of our study matches the mechanistic model of

Zavrel et al.,11 while methods for model calibration differ. In both

studies parameter values of KmA, KmB, KmP, and KiA cannot be esti-

mated precisely and span several orders of magnitude, while the well

identifiable parameters kcatf and Keq are in agreement with Zavrel

et al.11 Correlation analysis detects correlations between KmA and KiA

as well as KmB and KiA in both investigations, whereas further correla-

tions do not coincide. In Buchholz et al.,5 several kinetic models

describing the carboligation of 3,5-DMBA to (R)-3,30,5,50-TMB are

compared. The authors conclude that a substrate-dependent enzyme

inactivation exists, which nicely matches our findings. Additionally,

while the enzyme inactivation rate kinS derived in Buchholz et al.5 is in

the same range as that of our Model 2 that is selected here, it is two

orders of magnitude smaller than that of our Model 3, that was

rejected, which is a further support of our results.

Subsequently, we present the methodological key findings: The

superiority of statistical methods for model calibration over classical

least squares approaches lies in the fact that they include information

about the data generation process by taking the noise characteristics

in the data into account. This enables a thorough analysis including

uncertainties and confidence bounds on all levels, which ultimately

also allows to judge overall model plausibility.

Sampling-based approaches as applied here are computationally

expensive (for runtimes, see Table S3), which constitutes a clear

limitation. Despite many attempts and progress, the development of

advanced sampling schemes to improve scalability of these approaches

is still a current research topic.34 Usually, many parameter samples are

needed for convergence of the sampling schemes, which is, for exam-

ple, caused by low acceptance rates of standard sampling schemes

especially in cases where parameter correlations are high,25,26 or

because the posterior mass is spread and a large space has to be

explored. In addition, if, for example, the data set contains many exper-

iments, evaluation of the likelihood function via numerical integration

for each parameter sample might be time consuming as well.

In other studies, we have observed that the parametric bootstrap

statistics, as presented here, is highly influenced by the error model,

which therefore has to be chosen carefully. Here, we have used a mul-

tiplicative error model with predefined SD. Residual analysis indicated

that this was a good choice, but we still lack suitable methods for set-

ting up a good error model in general.

Furthermore, we have used linear correlation analysis for model

reduction. This was justified by the fact that we observed high corre-

lations between pairs of parameters in the scatterplot analysis. Similar

analysis methods that are able to detect nonlinear relations between

model parameters exist.35 In general, however, such purely data-based

model reduction techniques are more difficult to interpret and we

generally recommend using these techniques that do not deviate

much from the underlying physical process if this is possible.

Overall, we are convinced that Bayesian methods for the analysis

of dynamic models will become a standard approach once computa-

tion times are not that limiting anymore. They are more and more fre-

quently used in different contexts for model calibration, model

selection, and uncertainty quantification, see, for example, Davies

et al.36 and Luzyanina and Bocharov.37

Future work includes the development of bootstrap methods

which exploit information of the full posterior distribution rather than

just using the MAP estimate as well as methodology on how to make

decisions in case that results of the presented analysis methods are

not as consistent as they were in this study. Moreover, in future inter-

disciplinary projects in which we acquire new data we intend to

explicitly integrate optimal experiment design methods into our

workflow that go beyond local methods (see, e.g., Stigter et al.6) and

that make use of the Bayesian viewpoint.
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