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1 Model calibration and evaluation

In the following we provide details on the model calibration to experimental data and additional analysis
methods for model evaluation.

1.1 Optimization details

For model calibration we generated parameter samples from the posterior distribution employing the
Markov Chain Monte Carlo (MCMC) method as described in the main paper. In order to evaluate
the likelihood function LD(θ), all simulations of all three models were performed via Matlab 2017b

(64 bit). For model handling we used the SBTOOLBOX2 and SBPD toolboxes from the SBPOP package
(http://www.sbtoolbox2.org/main.php)1, which make use of the CVODE solver from SUNDIALS for
integration.

As further options we set boundaries for the parameters. We used a logarithmic scale for all parameters,
which allows to cover many orders of magnitude. As a prior step we performed maximum likelihood
optimization by minimizing the negative log-likelihood in order to find good starting points for the
sampling procedure. Initial boundaries were set to [−5, 5]. In order to avoid local optima, optimization
was performed with 1000 latin hypercube samples as starting values. The initial conditions A0, P0 and
E were set according to the conditions specified for each experiment in Table 1 in the main paper. For
optimization we utilized the interior-point algorithm of fmincon, a built-in minimizer of Matlab. Settings
were set to default values.

For the subsequent MCMC sampling the mcmcstat toolbox (https://mjlaine.github.io/mcmcstat/)
was used. The sampling method was set to dram, representing the Delayed Rejection Adaptive Metropolis
algorithm2 with the covariance adaptation interval MCMCoptions.adaptint=20·number of parameters.
We initialized four independent chains starting from the 1st, 5th, 10th and 15th best parameter vectors
of the prior optimization step. To achieve convergence the sampling was split in a warm-up phase of
5 · 105 steps and the main run consisting of 106 samples. In order for the final MAP estimator not to lie
on one of the boundaries, we repeated the sampling procedure for Model 1 and Model 2 with adjusted
bounds as listed in Figure 4A and Figure 5A, respectively. The rejection rates of all chains are between
35-40% and 78-96% for Model 1 and 2, respectively. The exact values are listed in Table S1.

Convergence of individual chains was tested with the Geweke convergence diagnostic, which compares
the sample variance of the first 10% with the last 50% of the chain. All chains passed the convergene
test with a p-value of at least 0.7 after partial sample cut-off for chain 4 in case of Model 1 and chain
1 and 2 in case of Model 2. Overall chain convergence was assessed using the Gelman-Rubin-Brooks
diagnostic via the function mpsrf, which returns a potential scale reduction factor R. The diagnostic
values R = 1.0010 and R = 1.0294 for Model 1 and 2, respectively, suggest also overall chain convergence
of the merged shortened chains. Both diagnostics are implemented in mcmcstat.
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Table S1: Average rejection rates of the MCMC sampling procedure for Model 1 and Model 2.

Rejection rate
Chain 1 Chain 2 Chain 3 Chain 4

Model 1 0.3515 0.3655 0.3920 0.3637
Model 2 0.8780 0.9305 0.7803 0.9586

A B

Fig S1: Additional fits for (A) Model 1 and (B) Model 2. A comparison of model trajecto-

ries simulated with the MAP estimator θ̂MAP and experimental time courses for six initial conditions
(experiments 2, 3, 4, 5, 8 and 9).

We used more than 3 ·105 parameter sets, uniformly sampled from the merged MCMC chain, to evaluate
the model fit and to have an estimate of the resulting uncertainty for each model. Model fits of Model 1
and 2 for experiments not shown in the main paper are presented in Figure S1.

1.2 Profile likelihood analysis

Parameter identifiablity was examined via profile likelihood analysis. In order to obtain the profile
likelihood, one parameter is fixed to specific values while the other model parameters are reoptimized
with respect to the experimental data. Profile likelihood analysis was performed for all parameters of
Model 1 and Model 2 using the Matlab toolbox d2d3, which employs a scaled version of our likelihood
function Eq (5). We used default settings with the exception of the number of sampling steps which was
adapted for each parameter, such that, when possible, confidence interval lengths could be calculated.
Confidence interval lengths listed in Figure 6C represent the range of parameter values such that the
likelihood value in that parameter range remain below the 95% quantile of the chi-square distribution
based on 1 degree of freedom. That threshold is depicted as the upper dashed black line in the profile
likelihoods in Figures 6A,B and S2. The MAP, recalculated using the likelihood function of d2d, is
represented as a black star. Below the profile likelihood for each parameter we also show the recalibrated
values of the other remaining parameters.
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Fig S2: Additional information on profile likelihood analysis for Model 1 (A) and Model 2
(B). Shown are the MAP estimate (black star) and changes of fitted parameters.
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Fig S3: Additional information on residual analysis for Model 1 (A) and 2 (B). Red dots
indicate residuals simulated with the MAP estimator and the proposed multiplicative noise model for the
six experiments not shown in the main paper. (A) Green (Model 1) and (B) blue (Model 2) dots are the
residuals resulting from a comparison between the MAP trajectory and the experimental data.

1.3 Residual analysis

Goodness of fit was evaluated by residual analysis, which was performed for trajectories of the MAP
estimator θ̂MAP. Residuals RMAP were determined for each time point tk, k ∈ 1, . . . , T in all experiments
j ∈ 1, . . . , 9 by

Rj
MAP(tk) = yjA(tk)− zjA(tk, θ̂MAP), (1)

where zjA(tk, θ̂MAP) refers to the solution of the differential equation for substrate A and yjA(tk) denotes the

respective measurement. For comparison, we also drew samples sjA(tk) from the log-normal distribution

sjA(tk) ∼ log N (log zjA(tk, θ̂MAP), σ2) (2)

and evaluated the residuals RSample

Rj
Sample(tk) = sjA(tk)− zjA(tk, θ̂MAP). (3)

The resulting residuals for all experiments for Model 1 (green) and Model 2 (blue) are shown in Figure 8
and Figure S3. Residuals of the samples RSample are depicted in orange.

In order to evaluate the error over all experiments combined, we calculated the mean squared error (MSE)
for the data and the samples

MSEMAP(tk) =
1

9

9∑
j=1

(
Rj

MAP(tk)
)2

(4)

MSESample(tk) =
1

9

9∑
j=1

(
Rj

Sample(tk)
)2
. (5)

Considering that the measured time frames differ for the experiments, only the first 117 data points of
each experiment were used, which corresponds to the longest time frame where measurements for all
experiments are available. The result is shown in the fourth row of Figure 7 in the main paper.
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Fig S4: Additional information on bootstrap analysis for Model 1 (A) and 2 (B). For each
experiment a boxplot of Jopt has been generated by a bootstrap analysis, in which many datasets and
respective likelihood function values were simulated with (A) Model 1 and (B) Model 2 for all experiments.
Resulting data were used to estimate the median (black line), the 25th and 75th percentiles (blue boxes)
and the 5th and 95th percentiles (lower and upper adjacent values, respectively). Outliers are depicted
as crosses. Horizontal lines depict Jopt values with respect to the real experiments.

1.4 Model validation via bootstrapping

Plausibility of all models was tested with a parametric bootstrapping approach (see e.g.4), in which
we generated many datasets from the stochastic model. These were subsequently used to calculate the
likelihood function values J obtained by comparison with the simulation of the MAP estimator. For this
purpose, we resampled Di, i = 1, . . . , 10000 datasets that mimic experimental data used in the study (i.e.

same number of time points, same conditions etc.). Then we calculated the likelihoods p(Di|θ̂MAP) and
used these values to infer the median as well as the 5th, 25th, 75th and 95th percentiles. Figure 7 (last
row) shows the overall result for all experiments for Model 1 and Model 2. Results for each experiment
are presented in Figure S4.

2 Model 3: Modeling and model calibration

For model calibration and subsequent evaluation we followed the same procedure as for Model 1 and
Model 2. The MAP estimator lies well within the bounds of −5 to 5, hence there was no need to adjust
the bounds for Model 3. The average rejection rates of the chains are listed in Table S2. Convergence
of individual chains was again tested with the Geweke convergence diagnostic, which all chains passed
with a p-value of at least 0.7 after partial sample cut-off for all chains. Convergence assessment using the
Gelman-Rubin-Brooks diagnostic suggest also overall chain convergence of the merged shortened chains
of Model 3 with a diagnostic value R = 1.0016.

Figure S5 summarizes the results for Model 3. Shown are the remaining model trajectories (A), the
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Table S2: Average rejection rates of the MCMC sampling procedure for Model 3.

Rejection rate
Chain 1 Chain 2 Chain 3 Chain 4

Model 3 0.2359 0.2644 0.2390 0.9432

Table S3: Best objective function values of the ML method and MCMC sampling together with sampling
times as well as AIC and BIC values for Model 1, Model 2 and Model 3.

Best Jopt of Best J of MCMC MCMC sampling AIC BIC
ML method sampling time [h]

Model 1 −3819.4 −3834.1 7.01 −7656.2 −7620.6
Model 2 −4701.4 −4710.2 12.50 −9406.4 −9364.9
Model 3 7200.5 −1561.6 11.40 −3113.2 −3083.6

boxplots for the bootstrap analysis for each experiment (B), remaining residual analysis plots (C) and
results of the profile likelihood analysis (D).

3 Model comparison

In order to compare all three models we employed the Akaike Information Criterion (AIC)5 and the Bayes
Information Criterion (BIC)6. As can be seen in Table S3, both criteria favour Model 2. Additionally,
we also compare the best Jopt value of the ML method with the best J value of the MCMC sampling for
all three models. In all three cases, the sampling procedure is able to find a better optimum than the
ML method. Finally, we show the required time for MCMC sampling. Model 2 which showed the best
results has the longest sampling time. Model 3 has a similar samling time despite fitting two parameters
less. The fastest run time is achieved by Model 1.
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Fig S5: Model evaluation Model 3. (A) Model trajectories (light blue) with experimental data
(black dots), (B) boxplots of bootstrap results for each experiment (blue horizontal lines represent the
5th, 25th, median, 75th and 95th percentile), (C) residual plots depicting the residuals of the MAP
estimator from the data (light blue) and the residuals of the MAP estimator from the samples (red) and
(D) profile likelihood analysis with resulting changes in other parameters. The black star denotes the
MAP estimate. S-7
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