
Institute of Software Technology
Reliable Software Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit

Integration Model for automated
Model Generation from Source

Code based on AUTOSAR

Shoma Kaiser

Course of Study: Informatik

Examiner: Prof. Dr.-Ing. Steffen Becker

Supervisor: Prof. Dr.-Ing. Steffen Becker
Emre Balli, M.Sc. (Daimler AG)

Commenced: Juli 4, 2019

Completed: Januar 6, 2020

CR-Classification: I.7.2

Abstract

Nowadays software development in automotive industry plays an important role. In-
creasing networking between vehicle systems and large number of software components
lead to high complex systems. A modern high-end car has up to 100 Million lines of code
[GTD15]. To master this complexity in the automotive industry, model-driven software
development has been introduced. A model is an abstraction of the software. It can be
applied on different abstraction levels from different viewpoints. Models are necessary
to simplify and develop software.

Besides that, in the automotive industry AUTOSAR has been introduced too. The main
goal of AUTOSAR is to improve the complexity management of vehicles integrated E/E
architectures through increased reuse and exchangeability of software modules.
In reality the model-driven software development is not continuously introduced yet. The
software development process is just used partly so that components of the development
process are incomplete and inconsistent. This leads to the risk of information loss, errors,
missing transparency and overall to lose against the complexity. That is because software
changes are implemented in source code but not into the corresponding models. Thus, a
part of software diagrams in the model-driven software development process are not
consistent and model-driven software development not realized continuously.

This thesis aims to develop an integration model which applies reverse engineering with
modifications to generate software models based on source code. In this integration
model AUTOSAR should be considered too. Main goal of the integration model is to
automatically generate software architecture models. Goal of these models is to increase
source code readability, improve software quality and yield advantages for software
engineers. The models should guarantee no information loss, correctness and a good
transparency for further software development. Therefore, the practical aspects of the
generated models will be considered and evaluated. This integration model will be
applied with an example from the software development at Daimler AG. Finally the
integration model will be applied as prototype on internal source code.

iii

Kurzfassung

Die Softwareentwicklung spielt in der Automobilindustrie eine immer wichtigere Rolle.
Die steigende Vernetzung zwischen Softwaremodulen und wachsende Anzahl von Soft-
warekomponenten führt zu hoch komplexen Systemen. Ein modernes "High-End-Auto"
besitzt bis zu 100 Millionen Zeilen Code [GTD15]. Um diese Komplexität zu beherschen,
wurde die modelbasierte Softwareentwicklung eingeführt. Ein Modell bezeichnet die
Abstraktion einer Software von verschiedenen Betrachtungspunkten auf verschiedenen
Abstraktionsebenen. Modelle sind in der Softwareentwicklung notwending, um Software
zu vereinfachen und weiterzuentwickeln.

Neben der modellbasierten Softwareentwicklung wurde in der Automobilindustrie
AUTOSAR eingeführt. Hauptziel von AUTOSAR ist die Verbesserung des Komplexitäts-
management von Fahrzeugen mit integrierten E/E-Architekturen. Dies wird durch die
Wiederverwendung und vereinfachter Austauschbarkeit der Softwaremodule erreicht.

In der Realiät ist die modellbasierte Softwareentwicklung noch nicht durchgehend
eingeführt. Die Soll-Prozesse werden nur teilweise getrieben. Das führt unter anderem
zu Informationsverlust, Softwarefehler, fehlender Transparenz und dem Risiko an der
Komplexität zu scheitern. Das liegt zumeist daran, dass Softwareänderungen direkt im
Code implementiert werden, ohne dabei zugehörige Modelle anzupassen. Folglich sind
die Software Diagramme inkonsistent mit dem Quellcode.

Diese Thesis fokussiert sich auf die Entwicklung eines Integrationsmodells, welches
Reverse Engineering modifiziert, um aus Quellcode Softwaremodelle zu erzeugen. Dabei
soll stets der AUTOSAR-Standard berücksichtigt werden. Hauptziel des Integrationsmod-
ell ist es, Architekturmodelle zu erzeugen, welche im Entwicklungsprozess fehlen. Ziel
der Modelle ist es, die Lesbarkeit der Software zu verbessern, die Softwarequalität zu
erhöhen und Vorteile für die Softwareentwicklung zu gewinnen. Die generierten Modelle
sollen Informationserhaltung, Korrektheit und eine gute Transparenz berücksichtigen.
Dafür werden vor allem die praktischen Aspekte betrachtet und ausgwertet. Das Integra-
tionsmodell wird abschließend mit einem Quellcode-Beispiel der Softwareentwicklung
der Daimler AG angewendet und entsprechend bewertet.

v

Contents

1. Introduction 1
1.1. Use of Confidential Data . 1
1.2. Motivation . 1
1.3. Goals . 3
1.4. Thesis Structure . 4

2. Foundations 7
2.1. Model-driven Software Development . 7
2.2. UML Architecture Diagrams . 10
2.3. AUTOSAR Standard used at Daimler AG 11
2.4. Reverse Engineering of Software Systems 14

3. State of the Art 17
3.1. Model-driven Software Development with AUTOSAR at Daimler AG . . . 17
3.2. Reverse Engineering of Source Code and Automotive Systems 19

4. Related Work 21
4.1. Search Strategy . 21
4.2. Reverse Engineering with AUTOSAR from SW-Component Source code to

SW-models . 22
4.3. AUTOSAR based model exchange methodology 22
4.4. Reverse engineering processing for embedded systems (with AUTOSAR) 23

5. Methodology 25
5.1. Developing the Integration Model . 25

6. Integration Model 31
6.1. Definitions . 31
6.2. Result . 33
6.3. Development of the Integration Model 34

vii

7. Prototyping 47
7.1. Selection of an Example . 47
7.2. Practical Implementation . 50
7.3. Result . 51

8. Evaluation 53
8.1. Research Questions . 53
8.2. Objective Evaluation . 54
8.3. Subjective Evaluation . 56
8.4. Result . 58

9. Conclusion 61

A. Use Case Description and Manual 63

Bibliography 71

viii

List of Figures

2.1. V-Model, own representation based on [Ope05] 8
2.2. UML Class Diagram [RG98] . 11
2.3. AUTOSAR: Hardware and software-independent Software [Bun11] . . . 12
2.4. AUTOSAR layered Software Architecture [Tea19b] 13
2.5. Classification Reverse Engineering in V-Model, own representation . . . 15

3.1. V-Model Automotive Development, own representation 18

5.1. BPMN Diagram: Methodology for Practical Development of the Integra-
tion Model, own representation with www.bicdesign-free.com 26

6.1. Definition of the Integration Model and given tools, own representation 32
6.2. Integration Model, own representation 33
6.3. Module Specific Architecture with internal software modules (data obfus-

cated), own representation with Rhapsody [Cor08] 35
6.4. Module Specific Architecture for hand-coded software (data obfuscated),

own representation with Rhapsody [Cor08] 36
6.5. Diagram for Vehicle-Function-internal Architecture (data obfuscated),

own representation with Rhapsody [Cor08] 39
6.6. Diagram for Vehicle-Function-across Architecture (data obfuscated), own

representation with Rhapsody [Cor08] 42
6.7. Signal Flow Diagram (data obfuscated), own representation with Rhap-

sody [Cor08] . 44

7.1. "AssistFunction1" Specific Architecture Diagram, own representation with
Rhapsody [Cor08] . 48

7.2. "AssistFunction1 - AssistFunction2" across Architecture Diagram, own
representation with Rhapsody [Cor08] 49

7.3. "AssistFunction1 - AssistFunction2 - AssistFunction3" signal flow Diagram,
own representation with Rhapsody [Cor08] 51

ix

8.1. Subjective Evaluation Survey . 58

x

List of Tables

8.1. Objective Evaluation Criteria . 54
8.2. Objective Evaluation of Prototyping in 7 55
8.3. Survey probands . 56

xi

Chapter 1

Introduction

1.1. Use of Confidential Data

This thesis is written in cooperation with Daimler AG. The practical work is applied
based on internal source code. This source code for reverse engineering is developed
for new Mercedes-Benz vehicles and runs on a ECU. Thus, the source code belongs to
confidential data of Daimler AG. A population of confidential data is not allowed.

A confidentiality declaration is not created because the type of source code does not
affect results of the integration model. Relevant is the generation of UML diagrams from
source code based on AUTOSAR.

Confidential data in this thesis are obfuscated. This means that all necessary diagram
components of models generated by reverse engineering are obfuscated i. e. renamed.
Especially chapter 6 and 7 contain results based on confidential source code. These
results are obfuscated but base on real data.

1.2. Motivation

The software development in the automotive industry is more important than ever.
Due to increasing numbers of control units and software components in vehicles the
complexity and connectivity of the entire system is growing. Vehicles become more as
"driving software" than "vehicle with software components". Big automotive companies
are challenged to master the whole vehicle software. Therefore, the complexity of the
software has to be reduced. This can be done by abstractions. In this paper, a model is
an abstraction of some aspect of a system. These models show a part of the software

1

1. Introduction

as behavior, architecture, structure , requirements or environment etc. in graphical or
textual notations. In this paper only graphical models will be considered.

Mastering complex systems requires an efficient and faultless software development
process. The model-driven software development is necessary for the modern software
development. The processing starts on a high-level abstraction, the requirement analysis,
down to system design and software architecture design. Finally the source code is often
automatically generated based on the software models. This process will be introduced
in detail in section 1.3.

In the automotive industry AUTOSAR as software standardization has been introduced.
AUTOSAR simplifies vehicle software by reducing connectivity between the electronic
control units (ECUs) and improves the reuse and exchangeability of software compo-
nents. It was introduced at Daimler consequently in 2011 [SRH+11]. It consists of
three main working topics: the architecture, methodology and application interfaces
[Tea19b]. AUTOSAR will be introduced in detail in section 1.3.

In the past the software development did not use any standardization like AUTOSAR or
models to reduce the complexity. Even though, the end-product, the software for the
ECUs, in the automotive industry was always successfully applied in the vehicle. The
increasing software complexity claimed the introduction of the model-driven software
development process. In reality this process is not introduced at all software engineering
departments at Daimler AG. Consistent graphical software models are missing on differ-
ent abstraction levels. As already mentioned the final software is successfully applied in
the vehicle nowadays. Thus, there is no high motivation to recreate all models which
are part of the model-driven software development process because the software is
running successfully. That is the reason why many models of the model-driven software
development are missing. On the one side recreation of missing models would mean
a big effort for the developers. But on the other side, the models would yield many
advantages like transparency, reuse, documentation or early error detection.

With the aid of reverse engineering these missing models can be reproduced. Reverse
engineering will be introduced in section 1.3 more specific. In this bachelors thesis the
focus is on reverse engineering with the tool IBM Rational Rhapsody. This thesis will not
focus on the generation of textual models but graphical models. The missing models of
the model-driven software development process should be selected with consideration
of the AUTOSAR-standardization.
These models, reverse engineering and configurations will define the integration
model.

2

1.3. Goals

1.3. Goals

This thesis aims to improve the software development by replenish parts of the archi-
tecture design. Therefore, the software development process at Daimler AG has to be
analyzed. After that existing models will be checked to analyze information about the
architecture. On the basis of this content AUTOSAR-relevant parts will be elaborated
to develop the integration model. To apply reverse engineering in the software devel-
opment department a reverse engineering process will be developed and documented
too.

1.3.1. Analysis of the software development process at Daimler AG:

The first goal in this thesis is to analyze the internal software development process at
Daimler AG. In the analysis the software models and the source code will be considered.
Therefore, suitable current models which are used for the software development have to
be selected. This leads to the first research question:
RQ1: How does the software development process work in the automotive indus-
try (at Daimler AG)?

1.3.2. Development of the integration model:

The development of the integration model contains mainly the improvement of the
reverse engineering with the given tool IBM Rational Rhapsody. Therefore, different
parts can be customized - e.g. Rhapsody configurations, graphical options, source code
architecture, Java APIs and scripts. The goal is to adapt these tools of reverse engineering
to get advantages from the models. This lead to the second research question:
RQ2: Do software developer yield advantages from generated model with reverse
engineering?

The first step is to select an internal example of software development, in which the
architecture diagram is already modeled and source code has been generated automat-
ically. With the aid of this simple example the reverse engineering will be tested in
Rhapsody to generate models based on the source code. First results lead to the third
research question:
RQ3: Which advantages can be yield using reverse engineering?

The next steps is to constantly continue developing the integration model with software,
Runtime Environment and data structure analysis. Therewith, goal is to visualize
additional information in a UML architecture diagram. This formulates the last research

3

1. Introduction

question:
RQ4: Can additional information can be visualized with reverse engineering in
Rhapsody?

1.3.3. Evaluation of generating software models

In the phase of development of the integration model and after final prototyping the
generated models will be evaluated. The evaluation will be applied in two parts. The
first part consists of an objective evaluation. Therefore, different criteria of several
evaluation methods will be selected to create an individual assessment form. This form
is customized for generated models and especially used for the evaluation in the phase
of integration model development. The second part is the subjective evaluation as
survey. Therefore, different experts will evaluate the quality of generated architecture
diagrams.

1.3.4. Prototyping

Here, the goal is to apply practical usage of the integration model for an internal source
code example to generate missing software models. The example of an internal source
code should be selected in cooperation with software experts. So the final evaluation
can be done with practical relevance.

1.4. Thesis Structure

This thesis is structured as following:

Chapter 2 – Foundations: introduces into the foundations of model-driven develop-
ment, reverse engineering, UML modeling and AUTOSAR.

Chapter 3 – State of the Art: describes the current status of reverse engineering used
in practice.

Chapter 4 – Related Work: presents research works for reverse engineering processing
and reverse engineering in the automotive industry.

Chapter 5 – Methodology: explains the methodology procedure to develop the inte-
gration model and the evaluation.

4

1.4. Thesis Structure

Chapter 6 – Integration Model: defines development and result of the integration
model.

Chapter 7 – Prototyping: describes the practical usage of the integration model with
an internal source code example.

Chapter 8 – Evaluation: evaluates the final results. The software models will be evalu-
ated objective and subjective.

Chapter 9 – Conclusion summarizes the thesis and gives an overview of possible future
works.

5

Chapter 2

Foundations

The increasing complexity of today’s software forces the software development to start
on a high abstraction level. Modern high technology car software contains up to 100
million lines of code [GTD15]. Without any model of a higher abstraction level it
would be impossible to control such a big software project. That is why the software
development generally includes a development process like the V-Model with different
abstraction process steps. To develop the whole software for vehicles top down, from
describing the functional behaviour down to generating the code, car manufacturers are
already partly automating their software development. On the low-level abstraction the
code is already generated automatically from software models [SRH+11].

In this thesis only the verification phase will be considered. Reverse engineering of given
source code is applied from coding up to the left side of the V-Model in graphic 2.1.
This contains the generation of abstraction of the source code into parts of the module
design, architecture design, system design and requirement analysis.

2.1. Model-driven Software Development

This section introduces to the model-driven software development in general along the
classical V-Model. After that the software development in the automotive industry will
be analyzed. Their differences to classical software development will be evaluated.

2.1.1. Software Development in General

Modern high complex software systems are developed with the aid of a classical V-Model.
Independent from agile methods, in general the first steps is the high-level description

7

2. Foundations

Figure 2.1.: V-Model, own representation based on [Ope05]

down to the software. Starting on defining systems and software tier-structure down to
source code implementation. Challenges in the common development are structuring the
software clear, creating a great user interface, avoiding bugs and errors etc. The model-
driven software development is a assistance proceeding to master all these challenges.

Model-driven software development in this context describes "software development
approaches in which abstract models of software systems are created and systematically
transformed to concrete implementations" [PBKS07]. The verification phase shown
in figure 2.1 is structured as follows (It is important to know that many software
development proceedings are varying. In practice the development with the V-Model is
often applied in a customized way. This description refers to general proceeding in the
software development):

1. Requirement Analysis: The requirement analysis describes the software on the
most high level abstraction level. The requirements engineer identifies user’s needs
to define the requirements of the system. User’s needs are often documented in a
textual form as requirement for the software. These requirements are structured
into systems to define the software architecture in the following development
steps.

2. System Design: The requirements are analyzed and structured to develop the
first blueprint of the software. This step often contains system design diagrams
to detect logical interfaces between software modules. These diagrams give an
overview about the functional architecture, how the software will be structured.

8

2.1. Model-driven Software Development

Interfaces between several systems will be detected. This also happens on a
high-level abstraction still independent from the hardware realization.

3. Architecture Design: The software engineers define software and hardware ar-
chitecture design based on the system design and requirements. This includes
the software tier-structure, hardware component architecture, software structure
referred to packages, classes and modules. Furthermore, architecture contains the
organization of communication between hardware and software components.

4. Module Design: In this phase the software is specified on a low-level abstraction.
The developer only works in one system. He considers the software requirements
and develops the diagrams based on the defined architecture. here, software
modeling happens close to the final code. Architecture diagrams or behavior
diagrams describe the software. Often, these diagrams are used to generate the
source code automatically.

5. Software Implementation: Depending on the code generation this phase includes
the whole implementation of the final software. If the code was generated auto-
matically only functions of source code and adjustments have to be implemented.
If the code has to be manually written the information from module design has to
be implemented.

Usually every process step is executed by an expert for systems engineering, software
specification, coding etc. This is why a good collaborative work is necessary for the
whole verification software development phase. The knowledge of all involved engineers
should help to improve and optimize the final software.

2.1.2. Software development in the Automotive Industry

The specification of V-Model for model-driven software development is a generalization
too. The detailed processing depends from department again. Big automotive companies
have got several proceedings. This thesis takes focuses on one common wide spread
development process.

In contrast to other software systems the automotive software development has different
challenges to master. As already mentioned, modern high complex systems have several
challenges in the software development. Beyond that, [PBKS07] describes additional
challenges of automotive software systems:

• The architecture of electronic control units (ECU) and software components are
way more complex. A modern high-end car has more than 100 ECUs. These
ECUs always have to communicate. The massive information exchange and high

9

2. Foundations

numbers of ECUs lead to a tailored middleware and different more complex
software architecture.

• Specific requirements related to reliability, safety and security must be respected.
Driving a car is always a security risk for the driver. All car functionalities like
break light, warning light, windshield wipers and assistance systems like ABS and
ESP have to comply legal requirements. Consequently the reliability and security
of software in car is very important.

• The large number of variants and configurations increases the complexity of
software. Nowadays Mercedes-Benz has about 30 different models on the market
[Hee06]. Variant diversity of cars causes the next challenge to solve. Different car
variants need adapted implementation fitted on a specific vehicle.

These challenges lead to an adapted development for vehicle software systems e.g. intro-
duction of AUTOSAR (2.3). High complexity and networking provides well structured
development with different abstraction levels. The common development process at
Daimler AG is introduced in chapter 3.1.

2.2. UML Architecture Diagrams

The Unified Modeling Language (UML) is a standard language for defining software
blueprints. It is a very expressive language, adressing all the views needed to develop and
then deploy such systems [BRJ99]. In general there are two diagram types, structural
or static diagrams and behavioral or dynamic diagrams. The main vocabulary of UML
contains things, relationships and diagrams. The UML is for visualizing, specifying,
constructing and documenting the artifacts of a software-intensive system:

• Visualizing: Graphical symbols express architecture and behavior of a software
system. To understand an existing software, it is mostly better to get an overview
by a graphical model. The beholder will mostly understand the basics of software
systems faster and easier.

• Specifying: Building UML models, that are precise and complete, specify the
software system for all the design.

• Constructing: Models can specify a software very precise and detailed. The in-
formation in models in generated code are often the already specified software.
Modeling environments like IBM Rhapsody or Matlab/Simulink are able to con-
struct and generate source code in a programming language automatically from
models.

10

2.3. AUTOSAR Standard used at Daimler AG

Figure 2.2.: UML Class Diagram [RG98]

• Documenting: A maintained software needs some artifacts in addition to the source
code. This includes requirements, architecture, design, project plans, releases and
prototypes. UML adresses the documentation of system’s architecture and all of its
details.

This thesis focuses on the generation of architecture diagrams. They visualize the
architecture by using things/blocks [BRJ99] and their relations to each other. Relations
can represent a dependency, association, generalization and realization. Figure 2.2
shows a simple example for an UML class diagram. This model shows the high-level
architecture of rental company for cars and motorcycles. The relations are specified
by an additional documentation. The classes are specified by defined attributes and
methods. Later, generated models are constructed similar to figure 2.2.

2.3. AUTOSAR Standard used at Daimler AG

This section introduces to the high-level idea of AUTOSAR (AUTomotive Open System
ARchitecture). This thesis requires a basic knowledge about the software architecture
of automotive systems. Therefore, the AUTOSAR layered Software Architecture will be
introduced in 2.3.2.

11

2. Foundations

Figure 2.3.: AUTOSAR: Hardware and software-independent Software [Bun11]

2.3.1. AUTOSAR in General

AUTOSAR is a standard for automotive software systems. It has gotten very important for
the development of embedded systems. Besides the model-driven software development
AUTOSAR is an additional methodology to master challenges in the automotive industry
mentioned in 2.1.2. Main goal of AUTOSAR is to improve the complexity management
of the vehicles integrated E/E architectures through increased reuse and exchangeability
of software modules between Original Equipment Manufactors (OEMs) and suppliers.
This is realized by hardware and software-independent software modules. AUTOSAR
describes four areas of the automotive software development. The software architecture,
methodology, application interfaces and acceptance tests [FMB+09]. This thesis mainly
focuses on the first area. The software architecture is the most relevant part for the
development of the software models. These four topics of AUTOSAR are defined as
following [Tea19b]:

• Software architecture: This part describes the architecture of electronic control
units (ECUs) - the AUTOSAR Basic Software.

• Methodology: Definition of exchange formats and description templates to enable
a seamless configuration process. This includes software component templates,
ECU configurations and the methodology how to use this framework.

12

2.3. AUTOSAR Standard used at Daimler AG

Figure 2.4.: AUTOSAR layered Software Architecture [Tea19b]

• Application interface: Specification of syntax and semantic of interfaces in typical
vehicle software systems e.g. Interior, Body and Comfort, Powertrain [MRHK10].

• Acceptance tests: Specification of test cases intending of validate behavior of an
AUTOSAR implementation.

Currently Daimler AG is using the "AUTOSAR Classic" release. The current AUTOSAR
platform is the "AUTOSAR Adaptive". The main concept of AUTOSAR Classic is the
separation of hardware-independent application software and hardware-oriented basic
software. The runtime environment (RTE) as virtual bus systems controls the data
exchange between the ECUs.

2.3.2. AUTOSAR Classic Software Architecture of Modern Vehicle
Systems

The AUTOSAR architecture aims the software and hardware-independent programming.
Therefore, three software layers run on a Microcontroller: Application Software, Runtime
Environment (RTE) and Basic Software. The AUTOSAR Basic Software is divided into
the following layers shown in figure 2.4:

• Microcontroller Abstraction Layer: This layer is the lowest software layer of
the basic software and makes higher software independent of the microcontroller.
The task of the microcontroller abstraction layer is to define an abstraction of the
underlying hardware. The goal is to simplify the programming.

13

2. Foundations

• ECU Abstraction Layer: This layer is intended to offer the ECU specific services
(access to I/O signals). It connects the drivers of Microcontroller Abstraction Layer
and makes higher software layers independent of the ECU hardware layout.

• Service Layer: The highest layer of the Basic Software offers hardware indepen-
dent basic services for application. It provides memory services, diagnostic services
and ECU state management.

• Complex Drivers: The complex drivers layer provides the possibility to integrate
special-purpose functionality for instance drivers for devices which are not specified
within AUTOSAR. This part includes functionalities that can not be standardized.

The AUTOSAR Runtime Environment abstracts the application layer from the basic
software and is responsible for the communication between all software components.
The Application Layer contains all software components. These software components
are ECU-independent.

In this thesis several software components from the FAP (Driving assistance package)
will be used for practical implementation. This package contains functionalities like
"Distronic Plus" or "Active Brake Assist". For source code analysis and model generation
the Application Layer and RTE will be considered.

2.4. Reverse Engineering of Software Systems

This section introduces reverse engineering. It is necessary to define the term "reverse
engineering" in relation to this thesis because there are existing many definitions and
use cases.

2.4.1. Definition

Reverse Engineering in general is meant for the recreation of existing systems in higher
abstractions. This can refer to generating source code generated from binaries. Here,
reverse engineering is applied source code in C for the generation of UML diagrams.

The Institute of Electrical and Electronics Engineers defines reverse engineering as "the
process of analyzing a subject system to identify the system’s components and their
interrelationships and to create representations of the system in another form or at a
higher level of abstraction" [CC90], where the "subject system" is the end product of
software development. Generally spoken, the output of a reverse engineering activity
is synthesized, higher-level information that enables the reverse engineer to better

14

2.4. Reverse Engineering of Software Systems

Figure 2.5.: Classification Reverse Engineering in V-Model, own representation

reason about the system and to evolve it in a effective manner. The process of reverse
engineering starts with lower levels of information the system’s source code, possibly
also including the system’s build environment [KKM12]. This lower level can obtain
programming languages like Java, C/C++, Ada or assembly code.

2.4.2. Reverse Engineering of Source Code

In the context of this thesis, the software of ECUs in vehicles is considered. Models
on a higher level are often not complete or inconsistent to source code. Referred to
V-Model this means that the coding part is complete. But the steps before the verification
phase might be incomplete. To fill these gaps in the requirement analysis, system design,
architecture design and module design, reverse engineering is a method to generate
models [BLL06]. At Daimler AG the requirements analysis is just textual. That is why
this thesis only focuses on graphical models, especially architecture diagrams. Therefore,
the verification phase will be passed backwards. The reverse engineering is applied with
given technologies i.e. IBM Rational Rhapsody and additional configurations. The goal
is to optimize the use of these given technologies to generate a great benefit for the
research and development department in software engineering.

Figure 2.5 illustrates the high-level idea of the integration model applied as reverse
engineering in this thesis. Input is source code (in C) of a ECU. Output are diagrams
visualized with Rhapsody, classified in the architecture design of the V-Model.

15

2. Foundations

IBM Rational Rhapsody provides reverse engineering [Cor08] of source code. Rhapsody
is a modeling environment based on UML for system engineers and software developers.
It is able to generate UML and SysML models based on source code in C++, C, Java
and Ada. The user has the opportunity to have a graphical view on the source code
from different viewpoints. This tools reverse engineering function will be modified to
generate useful models for the development.

16

Chapter 3

State of the Art

The following section describes the usual case of model-driven software development
with AUTOSAR at Daimler AG of today. In practice there are many variations of the
model-driven software development process depending on application area. The selected
example in C-Code was developed with the common development process in section 3.1.
3.2 introduces state of the art of reverse engineering used in the automotive industry.

3.1. Model-driven Software Development with AUTOSAR
at Daimler AG

The model-driven software development with AUTOSAR was introduced on a larger scale
the first time in the early 2000’s [SC08] (Development of 204 series, C-Class). Since
then, the model-driven software development is used in almost all areas of software
development at Daimler AG.

In detail internal software development processes are partly different from each other.
This depends on the usage of the software. For example a control software needs to
simulate the software early to detect error and evaluate the behavior. This is why
behavior models like sequence diagrams are very important for control software. A trip
computer in vehicles has to collect many information to show them the driver. That is
why the ECU of trip computer has got many interfaces to other ECUs. In this case a
component diagram is very useful to detect all interfaces.

Figure 3.1 illustrates all steps of the verification phase and their content:

1. The requirements engineering is applied textual mostly in a tabular form. There-
fore, the tool IBM DOORS [SRH+11] is used.

17

3. State of the Art

Figure 3.1.: V-Model Automotive Development, own representation

2. The system diagram divides the whole vehicle software into logical systems. This
separation provides a good collaboration and an efficient development. The
created diagram therefore shows the architecture of vehicles software. Interfaces
and information exchanges become clear.

3. The architecture design defines the software and hardware architecture. The
hardware architecture with a high number of ECUs and high connectivity have to
be well structured. Furthermore, software has to be separated into logical useful
packages and modules. The communication and dependencies between several
modules is specified.

4. The module design depends on the use-case of the software module. In some cases
behavior diagrams are useful, in other cases another low-level architecture diagram
is practicable. These diagrams often use an automated source code generation to
implement the final software code consistently.

5. The final implementation is in the respective programming language, mostly C
or C++. Partly source code is automatically generated by modeling tools. Other
parts are still manually implemented.

As already mentioned usually three kind of models are used in the software development
at Daimler. The first one, a system diagram, describes systems interfaces. It is similar

18

3.2. Reverse Engineering of Source Code and Automotive Systems

to a simple UML class diagram. The second one is the software component diagram.
It describes the architecture of a system consisting of their software components. In
the module design phase the behavior of the ECUs is modeled by a behavior diagram.
Usually in the software development these diagrams are similar to the activity or state-
chart diagrams. In the automotive industry Simulink (Targetlink) is often used for
modeling and simulating the behavior of ECUs.

3.2. Reverse Engineering of Source Code and Automotive
Systems

In fact, there is no widespread or popular practical deployment of automated reverse
engineering in the automotive industry at Daimler AG. There are different approaches of
reverse engineering in the general automotive industry. To generate UML class diagrams
based on source code there are different tools and approaches.

3.2.1. Reverse Engineering Tools Benchmark

In [CN15] different technologies of reverse engineering approaches are compared.
Various tools like IBM Rational Rhapsody, ArgoUML, StarUML, etc. are compared. All
tools are analyzed in terms of complexity, performance and effectiveness. These tools
represent the modern state of the art of reverse engineering. The comparison consists
of a comprehensive set of Java-based targets for reverse engineering and a formal set
of performance measures with which tools are analyzed. With a look on the results
of this benchmark it is notable that Rational Rhapsody is the only tool which detects
all software elements with 100% reliability. Consequently Rational Rhapsody is the
most suitable (2015) tool for reverse engineering of architecture diagrams according to
[CN15].

3.2.2. Reverse Engineering of automotive embedded Systems

There are two approaches of reverse engineering for the automotive industry based
on source code. The first approach is about reverse engineering of ECUs. [HMSN10]
introduces a concept to generate models based on source code of ECUs and ensure safety
regulations. This requirement enables the reuse of ECU software. Therefore different
reverse engineering algorithms are compared and evaluated. In theory this approach
ensures the reuse and safety regulations of models generated by reverse engineering.

19

3. State of the Art

Therefore, several reverse engineering algorithms are introduced. They provide to
generate models from source code, which can be used for further development. But for
productive usage there is no wide spread tool introduced yet.

3.2.3. Reverse Engineering of CAN Bus Systems

The second approach focuses on reverse engineering of CAN (Controller Area Network)
Buses to learn about the communication between the ECUs. [FAK11] and [HVB+17]
describe two approaches for techniques which analyze communication between ECUs
via CAN bus systems. Therefore, the data of CAN bus provide a basis to detect hardware
oriented measurement variables like deviations or flow rates of liquids. Both papers
show that reverse engineering is practicable and useful for some use-cases.

However this thesis only focuses on reverse engineering of vehicle software systems. Re-
sults of reverse engineering should support further software development by generating
architecture diagrams.

20

Chapter 4

Related Work

This chapter introduces to related work of this thesis. Firstly, the search strategy is
presented in 4.1. Secondly relevant related work are proposed in section 4.2. In
section 4.2 the theoretical aspect and correctness of reverse engineering is defined. After
that AUTOSAR based model exchange methodology, which can be used for reverse
engineering 4.3, is introduced. Finally the description of reverse engineering processing
for embedded systems especially with AUTOSAR standard is described in 4.4.

4.1. Search Strategy

The "Schneeball"-method of [BM16] is used as search strategy. The advantage is that
the author does not have to know about all basics of the topic in the beginning. It
starts by researching for general information about the topic of the thesis to get a basic
knowledge.

The basics in this work contain AUTOSAR, model-driven software development and
reverse engineering. Starting from general paper the goal is to get an overall view
of the basics first. From there, the literature research goes into more deep, relevant
information by researching for referenced literature. To look for more deep information
the search was focused on more specific papers: Research paper of model-driven software
development processing at Daimler AG (with AUTOSAR) and reverse engineering of
AUTOSAR software has to be analyzed.

The order of searching for related work was structured from internal to external. This
means the search started in a Daimler internal database with scientific works and other
documents written by employees. This also includes interviewing the experts with regard
to software development with AUTOSAR. After the internal search, open platforms
especially Google Scholar was used to find related work. Therefore, all combinations of

21

4. Related Work

several keywords were used e.g. reverse engineering, model driven, AUTOSAR, reverse
engineering AUTOSAR, model driven AUTOSAR, etc.

Considering the software development process at Daimler AG and reverse engineering
for these models the most relevant related work for this thesis can be selected and
classified as following:

• Reverse Engineering with AUTOSAR from SW-Component source code to SW-
models

• AUTOSAR based model exchange methodology

• Reverse engineering processing for embedded systems (with AUTOSAR)

4.2. Reverse Engineering with AUTOSAR from
SW-Component Source code to SW-models

This scientific work [KKM12] focuses theoretical aspects of reverse engineering with
AUTOSAR. The goal is to apply reverse engineering algorithms on old components which
were not developed with model-driven development. Thus, the development of new
components will be accelerated. With the aid of generated models from old software
components, new software should be developed. The source code in vehicles is often
placed in security critical systems like the airbag function. In this systems the quality
standard is very high. Thus, it is helpful to transform existing models with the aid of
reverse engineering algorithms to test certain security properties.

For recreating models with reverse engineering algorithms certain properties have to
be fulfilled to guarantee correctness. Section 2.3 of [KKM12] is mostly relevant for this
thesis to choose the right examples of source code for reverse engineering. The described
properties have to be ensured for guaranteeing the correctness of generated software
models in this work. Considering modern software standards, these security properties
are ensured for in this thesis used source code example. This work will not analyze
theoretical algorithms behind tool Rhapsody. The focus is on the practical generation of
the generated models with given technologies and adaptions.

4.3. AUTOSAR based model exchange methodology

In [PB06] Pagel and Broerkens evaluate XML exchange formats, which allow wide con-
figuration possibilities based on AUTOSAR. Therefore platform independent UML model

22

4.4. Reverse engineering processing for embedded systems (with AUTOSAR)

transformations to XML-schemes are analyzed. With the aid of these XML-exchange for-
mats the reverse engineering is easy to realize for generating UML-diagrams compliant
with AUTOSAR methodology. These XML schemes define the software architecture and
model transformations. First XML exchange files are defined to describe the software
models with AUTOSAR standard. This is the most important and relevant part for this
thesis. With the aid of description and current state of the AUTOSAR standard release
[Tea19a], relevant parts of the AUTOSAR standard can be considered for the model
generation.

In [GHN10] one approach for a model synchronization between software and system
models are introduced. This bachelors thesis does not consider model transformations
or synchronizations. Only one way, from source code to models is applied. For future
works, introduced in chapter 9, this paper could be important.

4.4. Reverse engineering processing for embedded systems
(with AUTOSAR)

The integration model, developed in this work, should contain a reverse engineering
process to apply it in practice on several source code examples. [KKM12] focuses on
tools and techniques for the software reverse engineering in the domain of complex
embedded systems. The workflow consists of three steps: Extraction, analysis and
visualization. For each step IBM Rational Rhapsody can be used as tool in this work.
[KKM12] especially introduces an approach for timing analyses in behavior models
generated via reverse engineering. But this thesis will not consider behavior models.
The reverse engineering architecture will support and be part for development of the
integration model.

[Sai14] introduces a interactively reverse engineering process partitioned in three steps.
The generated models are based on the AUTOSAR standard and used for real-time
systems. It mainly aims the observation of temporal behavior. This aim is not as the
same as in this thesis. But the introduced three steps especially step 2 in addition to
[KKM12] will support the process for developing the integration model.

In contrast to the related work this aims a widely usable process of reverse engineering
considered by the AUTOSAR standard to improve the further software development in
practice.

23

Chapter 5

Methodology

This chapter introduces the methodology of developing the whole integration model.
Therefore, two scientific work for reverse engineering [KKM12] and software develop-
ment process [Rup10] are adapted. The procedure is based on a cycle of continuous
developing.

5.1. Developing the Integration Model

This section introduces the methodology of developing the reverse engineering part of
the integration model. The process is shown in 5.1. Developing is done by iterating
the process several times, taking customization in every iteration and improve the
quality and benefits of generated diagrams. It is based on Royce’s waterfall model with
iterative feedback [Rup10]. The "Requirements" and "Design"-step of Royce’s waterfall
model in this thesis is realized in the "Objectives"-step. Furthermore, high-level reverse
engineering process workflow is introduced in [KKM12]. These three main steps are
adapted to this thesis (based on [KKM12] Fig. 1):

• Extract: Source code, RTE and build scripts extractions of FAP 5 → corresponds to
Start, not included for continuous development

• Analyze: Analysis of Fact Extractors → corresponds to Development Integration
Model 5.1.4

• Visualize: Generation of architecture diagrams → corresponds to Practical Imple-
mentation 5.1.2

25

5. Methodology

Figure 5.1.: BPMN Diagram: Methodology for Practical Development of the Integration
Model, own representation with www.bicdesign-free.com

5.1.1. Objectives

First, objectives are defined. In contrast to other reverse engineering tools, IBM Rational
Rhapsody provides the best quality of generated models [CN15] (2015). That is why
the first practical implementation is done without any adaptions and usable results can
be expected.

5.1.2. Practical Implementation

The second step includes the practical implementation multiple times with different
inputs. This refers to different source code and various numbers of source code files
as input for reverse engineering with Rhapsody. The practical implementation is done
multiple times for quality assurance. By generating diagrams for once, it is not ensured
that the quality of these diagrams stay consistent for other inputs. Different source code
files and a different size of projects still cause errors, wrong or missing information. To
minimize this risk, the practical implementation is done multiple times with different

26

5.1. Developing the Integration Model

size of projects and different source code files. Thus, the statement of the evaluation is
more expressive.

5.1.3. Evaluation

To recap the main goal of this thesis 1.3: Development of an integration model for gen-
erating software models by reverse engineering existing source code so that the software
developer gets benefits. Goal of the evaluation is to have a review, reflect about the
results and compare it to objectives. After evaluating, potentials for improvement should
be detected and implement in the next iteration. To detect potentials for improvement
the evaluation is separated into three parts:

• Quality Evaluation

• Objective graphical Evaluation

• Subjective Evaluation

Evaluation is done in every iteration of the process. In the last iteration, the prototyping,
the evaluation is done extensively. Otherwise evaluation is carried out on a smaller scale.
Depending on the adaption in previous iteration the evaluation proceeds individual. Only
influenceable parameters of diagrams are evaluated. Reverse engineering algorithms of
Rhapsody are not rated. As already known, IBM Rational Rhapsodys reverse engineering
algorithms perform stable [CN15] compared to the technological quality. So, it is
assumed that the diagrams represent the full information content.

In the final evaluation in 8, the quality rating is realized by objective and subjective
evaluation. The quality evaluation is done to compare intermediate results with its
objectives.

Quality Evaluation

The quality evaluation is necessary in every intermediate iteration process because
results in each iteration are different. This part focuses on comparing to objectives. The
goal is to detect further potentials for improvement. Main questions for this evaluation
are always:

• "Does software developer get benefits with the aid of generated diagrams?"

• "Were the objectives achieved?"

• "Where is still potential for improvement?"

27

5. Methodology

To answer these questions several criteria are selected. These criteria are partly taken
by [SW05] the benefit. A benefit can be e.g. detection of new interfaces, detection
of unnecessary interfaces, graphical representation of the architecture or detection of
dependencies from different viewpoints. Chapter 8 introduces to the selected criteria of
final evaluation.

Objective Graphical Evaluation

The goal of this part is to measure the graphical representation of generated models.
The readability of software diagrams strongly depends on graphical parameters like
symmetric arrangement, hierarchical order or a suitable amount of information. That is
why graphical criteria are evaluated, separated into the following cluster:

• Perceptual Organization

• Perceptual Segregation

• Cognitive Effectiveness

These are chosen by a set of [MH08] and [SW05]. The objective graphical evaluation
is done in the first iteration to rate default design configurations of Rational Rhapsody.
In intermediate steps these criteria are only rated on high-level, if relevant. Lastly the
graphics are evaluated in detail in 8 .

Subjective Evaluation

At the end the integration model will support software developers. Thus, opinions of end
users are important as feedback. This is why the quality and graphical part of generated
models are evaluated by humans. This is done in every iteration by a group of humans
(1-3 persons) of a small setting. In the end subjective evaluation is done by are larger
group of humans (8 persons). Therefore, different criteria are evaluated:

• Visual Presentation

• Diagram Content

• Source Code Readability

• Improvement On-Boarding

• Improvement Software Quality

28

5.1. Developing the Integration Model

For a benchmark several end users will be asked about the difference of understanding
the source code with and without the corresponding software models. In chapter 8
specific criteria are introduced to take part in a small survey. In intermediate steps,
these criteria are only evaluated on high-level. The goal of this part is to measure all
parameters from objective, quality and graphical evaluation on a subjective level.

5.1.4. Development of the Integration Model:

This phase can be executed in different ways. There are several parameters which can
be modified to improve the quality of generated models. Depending on objectives and
evaluation, it is reasonable to adapt different parameters. For example, it is suitable
to configure the design properties in Rhapsody to reach a clear readability. More
accurate, in the context of this thesis there are four parameters to adapt for improving
the integration model:

• Rhapsody Configuration: Pre-processor options of reverse engineering in Rhap-
sody can be configured. Therefore, keywords, defines and undefines can be modified
before importing C-Code-files.

• Data Structure: The data structure of the whole software project has also impact
over generated models. By modifying several source code files into different
hierarchical level, more dependencies and interfaces can be detected.

• RTE Analysis: The RTE (Runtime Environment) is responsible for the whole
communication between ECUs and software modules. The communication is
mapped in an adaption XML-files. Thus, all these files can be analyzed to detect
interfaces and communication flows.

• Visual Modification: Rhapsody allows to configure the visual representation of
software models. With it, visual representation can be improved.

The decision what to adapt in the respective iteration, is influenced by different factors.
As already mentioned, it is important to reflect about objectives in the evaluation. Here,
potentials for improvement can be detected. Furthermore, before acting, the effort is
estimated. In cooperation with experts from IBM and software developers from Daimler
AG, efforts can be estimated realistically. Lastly the expected results can be estimated
too. Based on these criteria a certain "path" in figure 5.1 for one iteration is selected.

29

Chapter 6

Integration Model

This chapter introduces the integration model developed with the methodology presented
in chapter 5. First the term "Integration Model" in this context is defined. After that the
result is presented. At last the development of integration model is described.

The integration model takes a specific source code running on a ECU as input. The source
code is implemented on a ECU in modern Mercedes-Benz-cars for the functionality of
advanced driver-assistance systems (FAP 5). Well-known functions like "DISTRONIC" or
"Lane departure warning system" are implemented on this ECU. All diagrams, shown in
this section, are based on these confidential data. Thus, names of model elements are
obfuscated.

6.1. Definitions

6.1.1. Integration Model

The term integration model can be used in different contexts. In this thesis the in-
tegration model is realized by a Rhapsody Profile to integrate source code from the
software implementation phase (2.1.1) into architecture design phase. It contains the
functionality of reverse engineering from Rhapsody included by extended functions and
precomputations. Output are UML architecture diagrams which show dependencies
between modules.

To define and develop the integration model, illustrated in figure 6.1, different tools are
given:

• Rhapsody Reverse Engineering Configurations

31

6. Integration Model

Figure 6.1.: Definition of the Integration Model and given tools, own representation

• Rhapsody Display Options

• Scripts

• Java APIs

For the final result, everything is included in a Rhapsody profile which offers reverse
engineering functions adapted for the given source code. This is done by a helper-file
which defines includes of JAR- and batch-runnable files. All functions can be called in
Rhapsody by clicking on certain buttons.

6.1.2. Vehicle-Function

As already mentioned, the source code implements different vehicle functions. A vehicle
function describes a customer-experienceable or -executable function e.g. DISTRONIC or
break assistance. Each package of the source code corresponds to a vehicle function.

6.1.3. Software Module

Each package of the source code consists of several functional clustered software mod-
ules. Each module is realized by a C-Code and header file. The UML architecture
diagrams, shown later, consists of blocks corresponding to software modules.

32

6.2. Result

Figure 6.2.: Integration Model, own representation

6.2. Result

The final integration model consists of three functionalities, illustrated and clustered
in 6.2. The vehicle-function specific and vehicle-function across architecture show
static dependencies for one or multiple vehicle-functions. The signal-flow architecture
visualizes potentials for dynamic dependencies. These dependencies were analyzed in a
signal flow analysis. All functions are implemented as scripts and Java API for Rhapsody.
The Profile "ExtendedReverseEngineeringAutomotiveC" contains these three functions in
Rhapsody named as:

• Vehicle-Function specific Architecture Diagram

• Vehicle-Function across Architecture Diagram

• Signal Flow Dependency Architecture Diagram

The Profile is loadable into a Rhapsody Project area, so that the integration model is
usable for every Rhapsody user at Daimler AG. The usage of these three functionalities
is described in a use case document of the Project SEED (Systems Engineering Enhance-
ment @ Daimler) and attached to appendix A. Furthermore, a feature document is
written. It describes source code of the Java API and the scripts for further development.
This is necessary for example adapting the integration model for other ECUs.

33

6. Integration Model

6.3. Development of the Integration Model

In chapter 5 the methodology to improve the integration model is introduced. This
process is iterated four times. This chapter loops four times through the development
process. Every step introduces the procedure and presents intermediate results.

6.3.1. First Iteration

Objective

Main goal is to generate architecture diagrams which improve the source code readability,
software quality and yield advantages for software development. This leads first to the
following objectives.

Generation of architecture diagrams with basic reverse engineering: First, no generated
models based on this software, were known. Thus, no context between diagrams and
source code could be analyzed. The first goal is to test basic reverse engineering with
Rhapsody and generate first models by importing the source code. Furthermore, the
diagrams are analyzed to detect represented and missing information.

Practical Implementation

A part of first practical implementation results are shown in figure 6.3. As already
mentioned in 1.1, all data are obfuscated but based on real data.

Figure 6.3 shows one diagram from the first iteration. Here, reverse engineering was
applied with default configuration without any additional modification. The software
structure with functions, packages and modules was imported, so that for every vehicle-
function an architecture diagram was created. Figure 6.3 shows an example for the
architecture of one vehicle-function. One block represents one software module. Each
association represents a dependency between two modules. The relation from "main"
to "module3" means that "main" depends on and includes "module3". It is noticeable
that the software modules are hierarchical ordered into levels. The top level software
module is responsible for all signals and variables. The second level module provides
functions for the third level which contains the whole computation. The bottom level,
the main module, calls all modules above and initializes them.

34

6.3.
D

evelopm
ent

ofthe
Integration

M
odel

module11
«File»

_variable_0:int

_variable_1:int

_function_0():void

_function_1():void

main
«File»

_variable_0:int

_variable_1:int

_function_0():v...

_function_1():v...

«Usage»

module6
«File»

_variable_0:int

_variable_1:int

_function_0():void

_function_1():void

«Usage»

module9
«File»

_function_0():void

_function_1():void

«Usage»

module8
«File»

_function_0():void

_function_1():void

«Usage»

module2
«File»

_variable_0:int

_variable_1:int

_function_0():void

_function_1():void

«Usage»

module5
«File»

_variable_0:int

_variable_1:int

_function_0():void

_function_1():void

«Usage»

module1
«File»

_variable_0:int

_variable_1:int

_function_0():void

_function_1():void

«Usage»

module3
«File»

_variable_0:int

_variable_1:int

_function_0():void

_function_1():void

«Usage»

module10
«File»

_function_0(...

_function_1(...

«Usage» «Usage»«Usage» «Usage»«Usage» «Usage»«Usage» «Usage»

module7
«File»

_variable_0:int

_variable_1:int

«Usage»

«Usage»

«Usage»

«Usage»

«Usage» «Usage»
«Usage»«Usage» «Usage»«Usage»

module4
«File»

_variable_0:int

_variable_1:int

_function_0():void

_function_1():void

«Usage»

«Usage»

«Usage»

Figure 6.3.: Module Specific Architecture with internal software modules (data obfuscated), own representation with
Rhapsody [Cor08]

35

6.
Integration

M
odel

unittest

module19
«File»

module11
«File»

_funct ion_0():void

_funct ion_1():void

main
«File»

_funct ion_0()...

_funct ion_1()...

«Usage»

module18
«File»

_funct ion_0():void

_funct ion_1():void

«Usage»

module5
«File»

_var iable_0:int

_var iable_1:int

_funct ion_0():void

_funct ion_1():void

«Usage»

module16
«File»

_funct ion_0():void

_funct ion_1():void

«Usage»

«Usage»

«Usage»

module3
«File»

_funct ion_0():void

_funct ion_1():void

«Usage»

«Usage»

«Usage»«Usage»
«Usage»

«Usage»

module15
«File»

_var iable_0.. .

_var iable_1.. .

funct ion...

funct ion...

«Usage»

«Usage»

module4
«File»

_var iable_0:int

_var iable_1:int

_funct ion_0():void

_funct ion_1():void

«Usage»

«Usage»

module2
«File»

_funct ion_0()...

_funct ion_1()...

«Usage»

«Usage»

«Usage» «Usage»

«Usage»

«Usage»

«Usage»

«Usage»

module6
«File»

_funct ion_0():...

_funct ion_1():...

«Usage»«Usage»«Usage»

«Usage»

«Usage»

«Usage»

«Usage»

«Usage»

module8
«File»

var iable...

var iable...

_funct ion...

_funct ion...

«Usage»

«Usage»

«Usage»

«Usage»

«Usage»

module14
«File»

_var iable_0:int

_var iable_1:int

_funct ion_0():void

_funct ion_1():void

«Usage»

«Usage»«Usage»

«Usage»

«Usage»

«Usage»

«Usage»

module7
«File»

_var iable_0:int

_var iable_1:int

_funct ion_0():void

_funct ion_1():void

«Usage»

«Usage»

«Usage»

«Usage»

«Usage»

«Usage»

«Usage»

«Usage»

«Usage»

module12
«File»

_var iable_0:int

_var iable_1:int

«Usage»

«Usage»

«Usage»

«Usage»

«Usage»

«Usage»

module1
«File»

_var iable_0:int

_var iable_1:int

«Usage»

«Usage»

«Usage»

«Usage»

«Usage» «Usage»

«Usage»

«Usage»

module10
«File»

_funct ion_0():void

_funct ion_1():void

«Usage»

«Usage»

«Usage»

«Usage»

«Usage»

«Usage»

«Usage»

module17
«File»

_var iable_0:int

_var iable_1:int

«Usage»
«Usage»

«Usage»

«Usage»

«Usage»

«Usage»

«Usage»

«Usage»

module9
«File»

_funct ion_0():void

_funct ion_1():void

«Usage»

«Usage»

«Usage»

«Usage»

module13
«File»

_var iable_0:int

_var iable_1:int

«Usage»

«Usage»

«Usage»
«Usage»«Usage»

«Usage»

«Usage»

Figure 6.4.: Module Specific Architecture for hand-coded software (data obfuscated), own representation with Rhapsody
[Cor08]

36

6.3. Development of the Integration Model

Most of the diagrams like 6.3 are based on Matlab/Simulink auto generated source code.
Thus, the software architecture looks well structured. The generation automatism causes
a consistent and clear structure. Furthermore, a small part of the software is hand-coded
(manually written), e.g. figure 6.4. This model should not visualize any content about
the source code. It shows the difference of complexity between figure 6.3 and 6.4. This
part differs a lot from auto generated code. Figure 6.4 looks way more unstructured and
contains a lot more software modules and dependencies.

Evaluation

The evaluation of intermediate results contains only small parts of the overall evaluation
in chapter 8. For each iteration only relevant criteria from 8 are considered. Basic
reverse engineering functions should be tested, how close main goals of this thesis 1.3
can be achieved.

Within the module hierarchy, first architecture diagrams could be created successfully.
Dependencies and inheritances are visualized. The software module hierarchy is plain
to see and the perceptual organization is clear. Viewer of these models will definitely get
a better overview of the source code from one vehicle function than only reading the
code. However, the diagram must be viewed critically with regard to its content. Each
diagram for a vehicle-function just shows the architecture of internal software modules.
Later it is analyzed that the content is not complete.

In contrast to auto generated code models in 6.3, a hand-coded software diagram is
shown in figure 6.4. These diagrams do not give a good overview with clear structure.
Figure 6.4 contains confusingly many model elements. Caused by lots of dependencies on
different hierarchy levels, this diagram is very extensive. With the aid of these diagrams,
it is recognizable that auto-generated code is better cleaned up and structured.

It can be concluded that software architecture of manually written source code should
be tide up and better structured. The hand-coded source code is only a small part of the
vehicle-functions. Because there is no clear advantage of hand-coded diagrams, this part
will not be considered in this thesis anymore.

Development of the Integration Model

As already mentioned, diagram 6.3 is not complete regard to the visualized content.
A first source code analysis shows that Rhapsody draws dependencies of C-Code for
included files. But the generated model in 6.3 only shows included files of the same
vehicle-function. After analyzing the data structure of the software, it can be held, that

37

6. Integration Model

package-across dependencies are not visualized. Even one abstraction level higher, the
architecture diagram on package level, shows no direct dependency between packages.

For this reason a script is written for preparation. This Batch-script restructures the
software, so that diagrams for vehicle-functions show the complete structure and depen-
dencies. The batch-script in combination with reverse engineering of Rhapsody build
the first functionality of the integration model.

6.3.2. Second Iteration

Objective

Generation of vehicle-function-specific architecture diagrams: After creating first models,
second goal is to generate vehicle-function-specific architecture diagrams. This means
that generated diagrams should represent the software architecture of one vehicle
function 6.3 and additionally relations to external software modules. Here, external
modules refers to not-vehicle-function package internal ones(the whole source code of
the ECU). That is why the second goal is to set one vehicle-function as viewpoint and
generate vehicle-function specific architecture diagrams supported by a script.

Practical Implementation

Figure 6.5 represents an example for a module-specific architecture diagram for a vehicle-
function. In contrast to 6.3, figure 6.5 shows additionally external module dependencies.
External modules are named as "ext_module". Setting the vehicle-function as viewpoint,
figure 6.5 shows all dependencies in the whole software.

Here, reverse engineering was applied with a prerunning script. This script restructures
the software. External software modules from the vehicle function were analyzed and
added to the model. These included modules are searched in the whole software. Thus,
all dependencies to internal and external modules are shown in 6.5.

38

6.3.
D

evelopm
ent

ofthe
Integration

M
odel

RTE2
«File»

_var0:int

_var1:int

_function...

_function...

ext_module2
«File»

_var0:int

_var1:int

_function0...

_function1...

ext_module4
«File»

_functio...

_functio...

module8
«File»

_function0():void

_function1():void

module10
«File»

_var0:int

_var1:int

_function0():void

_function1():void

RTE1
«File»

module5
«File»

_var0:int

_var1:int

_function0():void

_function1():void

module1
«File»

_var0:int

_var1:int

_function0():void

_function1():void

main
«File»

_var0:int

_var1:int

_function0():v...

_function1():v...

«Usage»«Usage»«Usage» «Usage» «Usage»

«Usage»

«Usage»

module11
«File»

_function0(...

_function1(...

«Usage»

«Usage»

«Usage»

«Usage»

«Usage» «Usage»

module3
«File»

_var0:int

_var1:int

_function0():void

_function1():void

«Usage»

«Usage»

module9
«File»

_function0():void

_function1():void

«Usage»

«Usage»

module2
«File»

_var0:int

_var1:int

_function0():void

_function1():void

«Usage»

«Usage»

module7
«File»

_var0:int

_var1:int

«Usage»

«Usage»

«Usage»

«Usage»
«Usage»

«Usage»

«Usage»
«Usage»

«Usage»

ext_module5
«File»

«Usage»

ext_module1
«File»

_var0:int

_var1:int

__functi...

_functio...

«Usage»

«Usage»

«Usage»

ext_module3
«File»

_var0:int

_var1:int

_functio...

_functio...

«Usage»

«Usage»

«Usage»

«Usage»

«Usage»

«Usage»

«Usage»

«Usage»

«Usage» «Usage»

module4
«File»

_var0:int

_var1:int

_function0():void

_function1():void

«Usage»

«Usage»

«Usage»

«Usage»

module6
«File»

_var0:int

_var1:int

_function0():void

_function1():void

«Usage»

«Usage»

«Usage»

«Usage»

Figure 6.5.: Diagram for Vehicle-Function-internal Architecture (data obfuscated), own representation with Rhapsody
[Cor08]

39

6. Integration Model

Evaluation

In the second iteration, goal was it to generate vehicle-function-specific architecture
diagrams with additional external software modules. By analyzing several diagrams and
the corresponding source code, it can be observed that the diagrams are complete. So,
every dependency to external modules are displayed. In terms of information content,
the goal is achieved. Regard to visual representation, the diagrams are well structured
again. Hierarchy and dependencies are clear.

Observing all external software modules it can be observed that no module is in relation
to another vehicle-function. This fact leads to the question, how two vehicle function
are in relation.

Development of the Integration Model

First, the functionality of script 6.3.1 for software structure preparation was tried
to integrate in Rhapsody. Therewith the functionality would be more homogeneous
and better integrated into Rhapsody. Therefore, properties and reverse engineering
configurations can be adapted. After some attempts, it came to the result, that this
functionality can not be caught by properties or reverse engineering configurations. That
is why the script is necessary. To integrate the functionality into Rhapsody, the script is
callable by an integrated tool-function with "Tools > Automotive Reverse Engineering >
Preparation Module Specific Architecture Diagram".

In the next step, to generate a architecture diagram for multiple vehicle-functions,
software structure and source code were analyzed again. First intermediate results
show that no dependency between software modules of vehicle functions are visualized.
After analyzing source code files indirect dependencies via external software modules
could be detected. Based on this a second script was written. This script analyzes
dependencies of multiple vehicle-functions and restructures the source code files. This
functionality should run as preparation for reverse engineering again. It represents the
second function of the integration model with static source code analysis: "Preparation
Module Across Architecture Diagram".

6.3.3. Third Iteration

Objective

Generation of function-across architecture diagrams: After observing one vehicle-
function with its dependencies, the question arises how the architecture and interaction

40

6.3. Development of the Integration Model

between multiple functions is set up. The viewpoint is not anymore one function, but ob-
serving multiple functions. The overall architecture of the software considering specific
vehicle-functions should be visualized. Thus, third goal is to generate function-across
architecture diagrams.

Practical Implementation

In the third iteration a vehicle-function-across architecture diagram, shown in figure
6.6, is created. A prerunning script analyzes dependencies based on "VehicleFunction1",
"VehicleFunction2" and "VehicleFunction3. Internal package dependencies do not interest
in this case. This is why these three blocks at the bottom represent corresponding
packages for vehicle-functions. Package across dependencies should be observed. So,
other blocks represent external software modules e.g. measuring technology modules,
runtime environment and configurations. Obviously many software modules inherit to
both vehicles-functions. Later the RTE is analyzed. This is why RTE-files are named
separately.

Observing the dependencies, it can be determined that vehicle-functions are not directly
in relation to each other. Indirect relations via external software modules can be traced
(e.g. VehicleFunction1 > module2 > VehicleFunction3).

Evaluation

Goal was to visualize vehicle-function across architecture diagrams by viewing on
multiple vehicle-functions and detect dependencies between. With the aid of a script
external software module dependencies could be successfully detected. Architecture,
hierarchy and inheritance are visualized for multiple vehicle-functions.

The second goal, detecting relations between vehicle-functions, could not be achieved.
No diagram shows direct relations between vehicle-functions. As already mentioned
indirect dependencies can be manually traced. However this does not mean that both
functions depend on each other. An indirect dependency (e.g. VehicleFunction1 >
module2 > VehicleFunction3 in 6.6) only signals: "There can be a signal flow between
two vehicle-functions".

Consequently a static source code analysis, done by the batch-script, is not sufficient to
detect direct dependencies. This leads to further developing.

41

6.
Integration

M
odel

RTE13
«File»

RTE2
«File»

RTE9
«File»

_function_0():void

_function_1():void

RTE7
«File»

RTE5
«File»

_variabl...
_variabl...

_functio...

_functio...

«Usage»

VehicleFunction1
«File»

_variable_0...
_variable_1...

_function_0...
_function_1...

«Usage»

module4
«File»

RTE11
«File»

_variabl...
_variabl...

_functio...

_functio...

«Usage»

RTE8
«File»

_variable...
_variable...

_function...

_function...

«Usage»

RTE6
«File»

_function_0():void

_function_1():void

«Usage»

RTE3
«File»

«Usage»

«Usage»

RTE12
«File»

_function_0():void
_function_1():void

«Usage»

module1
«File»

_variabl...
_variabl...

_functio...

_functio...

«Usage»

module2
«File»

variable...
variable...

function...

function...

«Usage»

VehicleFunction3
«File»

_variable_0...
_variable_1...

_function_0...
_function_1...

«Usage»«Usage» «Usage»

«Usage»

VehicleFunction2
«File»

_variable_0:int
_variable_1:int

_function_0(...
_function_1(...

«Usage»

«Usage»

«Usage» «Usage»«Usage»

module5
«File»

«Usage»

RTE10
«File»

«Usage»

RTE1
«File»

_variabl...
_variabl...

«Usage»

«Usage»

«Usage» «Usage»

module3
«File»

«Usage»

RTE4
«File»

_variabl...
_variabl...

«Usage»

«Usage»

Figure 6.6.: Diagram for Vehicle-Function-across Architecture (data obfuscated), own representation with Rhapsody
[Cor08]

42

6.3. Development of the Integration Model

Development of the Integration Model

First, the second script for preparation function across architecture diagram was included
to Rhapsody similar to the first script as tool-functionality.

After that the runtime environment (RTE) was analyzed. The runtime environment is
responsible for information exchange and communication between software modules
2.3.2. With manually tracing signals on the ECU, read and write accesses could be
detected. This shows that several signals flow from a vehicle-function write access
over the RTE to another vehicle-function as read access. Consequently signals with
a write-read access from two vehicle-functions depend on each other. Furthermore,
write-write accesses are avoided in software development. Read-read accesses will not
interest in this thesis because they would not imply a direct dependency.

To automate the detection of direct dependencies i.e. read-write accesses, a Java API
was implemented which analyzes signal flows of multiple vehicle-functions. Finally,
it visualizes all relations between selectable vehicle-functions in a new architecture
diagram. Additionally the trigger signal for the dependency is saved too. This Java API
realizes the third functionality of the integration model, implemented in Java and added
into Rhapsody via "Tools > Automotive Reverse Engineering > Dynamic Dependency
Architecture Diagram".

6.3.4. Fourth Iteration

Objective

Generation of function-across architecture diagrams with signal flows: Detecting static
dependencies lead to the question if signal flow dependencies can be analyzed. These
dependencies should be detected by analyzing signal accesses of vehicle functions and
visualized automated in a architecture diagram.

Practical Implementation

Diagram 6.7 shows a generated diagram with the Java API. Source code of the vehicle-
functions has to be already imported. After running the Java API and analyzing signal
flows of the RTE, for each read-write access a dependency is drawn. In this case the
relation points from the reader to the writer. In other words: the reader depends
on the writer of the signal. The specific signal name can be read off by clicking into
dependencies. Via properties the signal name is saved.

43

6. Integration Model

VehicleFunction4
«File»

_var1:int

_var2:int

FUNC():int

VehicleFunction2
«File»

_var1:int

_var2:int

FUNC():int

VehicleFunction1
«File»

_var1:int

_var2:int

FUNC():int

VehicleFunction3
«File»

_var1:int

_var2:int

FUNC():int

Figure 6.7.: Signal Flow Diagram (data obfuscated), own representation with Rhapsody
[Cor08]

Each association represents a dependency. The diagram still has a clear representation
because the maximum of dependencies between two vehicle-functions are already tested
(twelve), which can be clearly visualized. Furthermore, the most common use case is to
observe two vehicle functions. So diagrams will have a good clarity.

Evaluation

The goal to detect direct dependencies with signal flow analysis could be achieved
successfully. The result can be visualized clearly in an architecture diagram, where each
block represents one vehicle-function. This makes the architecture clearly recognizable.
It should be noted that this functionality is adapted for the used software. More specific,
the Java API is only usable for Matlab/Simulink auto generated source code. Yet, that
forms the largest part of the ECUs software.

Finally the usability seems to be improvable. In further development software engineers
should be able to apply the integration model intuitively. The function of generating
signal flow architecture diagrams will be applied by only a few developer. Thus, the user
interface was prioritized lower.

44

6.3. Development of the Integration Model

Development of the Integration Model

To finalize the integration model and its functionalities, an additional script for preparing
signal flow dependencies is written. This script is callable via "Tools > Automotive
Reverse Engineering > Preparation Dynamic Dependency" and restructures the software
by only importing the main files of vehicle-functions. Diagram 6.3 shows that the main
software module inherit all variables to every internal software module. After computing
in internal software modules, the signals are given back to master RTE over main-files.
This is why a main file is sufficient as representative for one vehicle-function.

Furthermore, a Rhapsody Profile is created to summarize all functionalities of the
integration model and make them transferable to other user. This profile includes
three functionalities to prepare reverse engineering and one Java API for dynamic
dependencies.

45

Chapter 7

Prototyping

This chapter selects a suitable example of the productive environment and applies the
integration model. The results form the basis for final evaluation.

7.1. Selection of an Example

For prototyping a suitable source code example needs to be selected. The integration
model was developed for the productive environment. That is why the proceeding will
be applied practically oriented. Therefore, different criteria need to be fulfilled:

• Software from ECU Intelligent Drive Controller (FAP)

• Current developing source code example

• Contact to software developer for appropriate evaluation

• Matlab/Simulink auto-generated source code

For developing the integration model in chapter 6, the whole software of ECU for FAP is
used. Now, three specific vehicle functions named "AssistFunction1", "AssistFunction2"
and "AssistFunction3" are chosen from the driver assistance package. The source code of
these functions is auto generated Matlab/Simulink. All are actually in development for
the upcoming "Fahrerassistenzpaket". This is why all data are obfuscated again.

Finally software developers evaluate the results. Thus, "AssistFunction1", "AssistFunc-
tion2" and "AssistFunction3" are well suited for a meaningful evaluation and examples
for prototyping.

47

7.
Prototyping

module5
«File»

_variable_0:int

_variable_1:int

_function_0():void

_function_1():void

module2
«File»

_variable_0:int

_variable_1:int

_function_0():void

_function_1():void

extModule2
«File»

_variable...

_variable...

_function...

_function...

module4
«File»

_variable_0:int

_variable_1:int

_function_0():void

_function_1():void

RTE1
«File»

extModule4
«File»

_variable...

_variable...

_function...

_function...

«Usage» «Usage»

«Usage»

module7
«File»

_variable_0:int

_variable_1:int

_function_0():void

_function_1():void

«Usage»
extModule3

«File»

variable...

variable...

function...

function...

module1
«File»

_variable_0:int

_variable_1:int

«Usage»

«Usage»
«Usage»«Usage»

«Usage»

extModule1
«File»

_variable...

_variable...

_function...

_function...

«Usage»

module6
«File»

_function...

_function...

«Usage»

«Usage»

«Usage» «Usage»

«Usage»

«Usage»

«Usage» «Usage»

module3
«File»

_variable_0:int

_variable_1:int

_function_0():void

_function_1():void

«Usage»

«Usage»

«Usage»

«Usage»

extModule5
«File»

_function...

_function...

«Usage»

«Usage»

«Usage»

extModule6
«File»

module9
«File»

_variable_0:int

_variable_1:int

_function_0():void

_function_1():void

«Usage»

«Usage»

«Usage»

main
«File»

variable...

variable...

function...

function...

«Usage»

«Usage»

«Usage»

«Usage» «Usage»«Usage» «Usage»«Usage» «Usage» «Usage»

«Usage»

RTE2
«File»

_variable...

_variable...

_function...

_function...

«Usage»

module8
«File»

_variable_0:int

_variable_1:int

_function_0():void

_function_1():void

«Usage»

«Usage»

«Usage»

«Usage»

Figure 7.1.: "AssistFunction1" Specific Architecture Diagram, own representation with Rhapsody [Cor08]

48

7.1.
Selection

ofan
Exam

ple

module12
«F ile»

_variabl...

_variabl...

_functi...

_functi...

RTE6
«F ile»

module11
«F ile»

_variable_0:int

_variable_1:int

_function_0():v...

_function_1():v...

module8
«F ile»

_variabl...

_variabl...

_functi...

_functi...

«Usage»

module20
«F ile»

_variabl...

_variabl...

module9
«F ile»

_variable_0:int

_variable_1:int

«Usage»

«Usage»

«Usage»

module2
«F ile»

_variabl...

_variabl...

_functi...

_functi...

module0
«F ile»

_variabl...

_variabl...

_functi...

_functi...

«Usage»

RTE5
«F ile»

_variabl...

_variabl...

_functi...

_functi...

«Usage»

AssistFunction2
«F ile»

variable...

variable...

function...

function...

«Usage»

«Usage»

module24
«F ile»

_function_0(...

_function_1(...

module1
«F ile»

_variable_0:int

_variable_1:int

_function_0():void

_function_1():void

module3
«F ile»

_functi...

_functi...

module13
«F ile»

_variable_0:int

_variable_1:int

_function_0():...

_function_1():...

«Usage»

«Usage»

«Usage»

RTE4
«F ile»

«Usage»
module22

«F ile»

RTE1
«F ile»

_variabl...

_variabl...

_functi...

_functi...

«Usage»

«Usage»

RTE2
«F ile»

_variabl...

_variabl...

«Usage»

«Usage» «Usage»

module25
«F ile»

«Usage»

module4
«F ile»

_variable_0...

_variable_1...

RTE8
«F ile»

Rte_Ini...

Rte_Ini...

_functi...

_functi...

«Usage» module14
«F ile»

_variable...

_variable...

_function...

_function...

«Usage»

RTE7
«F ile»

«Usage»

module16
«F ile»

_variabl...

_variabl...

__attrib...

_functi...

«Usage»

«Usage»

module6
«F ile»

_variabl...

_variabl...

_functi...

_functi...

«Usage»

«Usage»«Usage»

«Usage»

«Usage»
«Usage»

«Usage»

«Usage»

«Usage»

RTE9
«F ile»

«Usage»

module17
«F ile»

_variabl...

_variabl...

_functi...

_functi...

«Usage»

«Usage»

«Usage»

«Usage»

«Usage»

«Usage»

«Usage»

module5
«F ile»

variable...

variable...

RTE0
«F ile»

«Usage»

RTE3
«F ile»

«Usage»

«Usage»

module21
«F ile»

_functi...

_functi...

«Usage»

«Usage»

«Usage»

module19
«F ile»

_variabl...

_variabl...

_functi...

_functi...

«Usage»

«Usage»

module18
«F ile»

_variabl...

_variabl...

_functi...

_functi...

«Usage»

module7
«F ile»

_variable_0:int

_variable_1:int

_function_0():...

_function_1():...

«Usage»

«Usage»

AssistFunction1
«F ile»

variable...

variable...

function...

function...

«Usage»«Usage»
«Usage»

«Usage»

«Usage»

module23
«F ile»

_functio...

_functio...

«Usage»

«Usage»
«Usage»

«Usage»

«Usage»

module10
«F ile»

_variable_0:int

_variable_1:int

«Usage»

«Usage»

«Usage»

«Usage»

«Usage»

«Usage»«Usage»

«Usage»

module15
«F ile»

_variable...

_variable...

_function...

_function...

«Usage»

«Usage»

Figure 7.2.: "AssistFunction1 - AssistFunction2" across Architecture Diagram, own representation with Rhapsody [Cor08]

49

7. Prototyping

7.2. Practical Implementation

In this section all functions of the integration model are applied on the selected vehicle-
functions "AssistFunction1", "AssistFunction2" and "AssistFunction3". So three archi-
tecture diagrams are generated with reverse engineering in Rhapsody with the aid of
prerunnung scripts and JAVA API. A detailed description for the integration model is
written for the internal usage and part of the appendix.

7.2.1. Vehicle-function specific Architecture Diagram

First, a vehicle-function architecture diagram is generated. After preparation script
runs, the source code is imported by reverse engineering to Rhapsody. Obviously the
architecture is very similar to diagram 6.5 because Matlab/Simulink uses automated
mechanism for code generation.

7.2.2. Vehicle-function across Architecture Diagram

Secondly a vehicle-function across functionality is applied. The preparation runs for
restructuring and after that, both functions were imported into Rhapsody with reverse
engineering. Diagram 7.2 shows the architecture of AssistFunction 1-3. As already
analyzed in 6.6, both functions are depending indirectly on each other.

7.2.3. Signal-flow Architecture Diagram

In the last instance a dynamic dependency architecture diagram, analyzed by static
signal flows, is generated. First, a preparing script restructures the software modules.
In the next step these modules are imported via reverse engineering. Lastly the respec-
tive JAVA API is running for analyzing read-write accesses for AssistFunction 1-3. In
practice software developer mostly want to observe two vehicle-functions. This is why
the diagram looks very simple. AssistFunction2 depends on AssistFunction1 because
AssistFunction2 reads Variable2 while AssistFunction1 has write access. Simultaneous
AssistFunction2 and AssistFunction3 have several read-write accesses to each other.

50

7.3. Result

AssistFunction3
«File»

_var1:int

_var2:int

FUNC():int

AssistFunction2
«File»

_var1:int

_var2:int

FUNC():int

AssistFunction1
«File»

_var1:int

_var2:int

FUNC():int

Figure 7.3.: "AssistFunction1 - AssistFunction2 - AssistFunction3" signal flow Diagram,
own representation with Rhapsody [Cor08]

7.3. Result

As a result the integration model was realized as Rhapsody profile. Users can generate
three architecture diagrams for different use cases. These models are located in three
packages for each functionality. Based on this prototype the final evaluation in 8 is
done.

This profile takes part of the project SEED product portfolio. This means that each
developer with access to Rational Rhapsody can import this profile. Inclusion into the
product portfolio was realized by a sprint process. The integration model was checked
with external tool specialists for Rational Rhapsody. After that, several steps were passed
through to become part of the product portfolio:

1. Inclusion into the sprint process

2. Definition of test cases

3. Testing the Functionalities

51

7. Prototyping

4. Detailed Presentation with Stakeholders

5. Sprint Review with short Presentation

6. If test cases passed: Inclusion to the product portfolio

After passing this process the integration model is included in the productive environment
and downloadable for all developers at Daimler AG.

52

Chapter 8

Evaluation

This chapter introduces the final evaluation and takes review about the research ques-
tions of 1.3. First the research questions are listed. Then objective and subjective
evaluation are executed. At the end, the results are presented.

8.1. Research Questions

Goal of evaluation is to give a final review of the results of prototyping. RQ1 is not scope
of the evaluation. RQ1 is answered in chapter 2 by presenting a software developing
process. This process is common in the automotive industry and similar to the software
development process of ECU for FAP 5. RQ2, RQ3 and RQ4 are evaluated based on the
objective 8.2 and subjective evaluation 8.3:

• RQ1: How does the software development process work in the automotive industry
(at Daimler AG)?

• RQ2: Do software developer yield advantages from generated model with reverse
engineering?

• RQ3: Which advantages can be yield using reverse engineering?

• RQ4: Can additional information can be visualized with reverse engineering in
Rhapsody?

To unify the scale of both, evaluation are executed by rate the criteria from one to five.
One represents the best and five the worst rating. Goal of objective evaluation is to
rate the quality of UML architecture diagrams. The advantage for software developer
can not be measured by objective criteria. That is why software experts took part in a

53

8. Evaluation

Table 8.1.: Objective Evaluation Criteria

Cluster Criteria

Perc. Organization Associations Crossings Overlapping Centering
Perc. Segregation Symmetry Orientation Orthogonal arcs Labels
Cogn. Effectiveness Clarity Distinction Immediacy Expressiveness

survey. These results rate the quality of models and benefits for the internal software
development.

8.2. Objective Evaluation

The evaluation of generated models in this thesis is firstly done by chosen criteria from
[MH08] and [SW05]. These criteria evaluate the quality of software models.

8.2.1. Criteria

All criteria are based on three different clusters: perceptual organization, perceptual
segregation and cognitive effectiveness of UML architecture diagrams. All generated dia-
grams are evaluated based on these criteria from one to five (one=very good, two=good,
three=satisfactory, four=sufficient, five=poor). The objective evaluation scheme is struc-
tured as following table 8.1:

Each cluster has several criteria to evaluate, which are explained below in short:

• Perceptual Organization: avoiding inheritance association, minimize crossings
and bends, centering parents and children, positioning of superclasses, avoiding
overlapping

• Perceptual Segregation: Symmetry of diagram, vertical and horizontal orientation,
orthogonal arcs, horizontal labels

• Cognitive Effectiveness:

Principle of semiotic clarity: redundancy, symbol overload and excess

Principle of perceptual discriminability: visual distance, ease and accuracy

Principle of perceptual immediacy: natural associations, logical similarities,

Principle of visual expressiveness: number of different variables, visual notation

54

8.2. Objective Evaluation

Table 8.2.: Objective Evaluation of Prototyping in 7

Rating
Cluster Criteria diagram 1 diagram 2 diagram 3

Perceptual Organization 1.2 1.4 1.8
Perceptual Segregation 1.3 1.5 1.75
Cognitive Effectiveness 1.0 1.0 1.2

For the evaluation each criteria for every cluster is rated. For this thesis it is sufficient,
only to represent one rating for each cluster. Therefore, for each cluster the average
rating of criteria built. Table 8.2 represents the result of the objective evaluation. Here,
diagram 1 belongs to "AssistFunction1" specific architecture diagram 7.1, diagram 2
belongs to "AssistFunction1 - AssistFunction2 - AssistFunction3" across architecture dia-
gram 7.2 and diagram 3 belongs to "AssistFunction1 - AssistFunction2 - AssistFunction3"
signal flow diagram 7.3.

8.2.2. Analysis

The result of objective evaluation is mostly positive from 1 to 2 (very good to good). This
means that the graphical representation is really clear and well structured. Especially
diagram 3 is well rated. That is because figure 7.3 is a simple example with only three
vehicle functions. Diagram 1 and diagram 2 are rated a little worse. It can be concluded
that a diagram gets less clear if the number of model elements like association and
blocks increases.

So in general, Rhapsody generates clear and well structured diagrams. The graphical
representation can be adapted by visual modifications in Rhapsody. However the
evaluation in context of visual representation is in the area of very good to good.
Furthermore, this functions will not be used by a great number of users in productive
environment. Just a few software experts will use these integration model. That is why
visual modifications in Rhapsody have not to be adapted. Thus, generated models by the
integration model in context of graphical representation are sufficient for the usage.

55

8. Evaluation

Table 8.3.: Survey probands

Technical knowledge for

Proband 1 Rational Rhapsody & ECU software development
Proband 2 Rational Rhapsody
Proband 3 Automotive software development
Proband 4 Automotive software development (specific for FAP5)
Proband 5 Rational Rhapsody - Senior IT Specialist
Proband 6 Automotive software development research
Proband 7 Automotive Software development research
Proband 8 Automotive software development research

8.3. Subjective Evaluation

The subjective evaluation is realized by a survey with several internal and external
experts for Rational Rhapsody and software development. First, the evaluation criteria
respectively survey questions are introduced. After that, the results are analyzed.

8.3.1. Criteria

The goal of the survey is to measure the advantage and quality of generated diagrams.
The questions of the survey aim to get a feedback about RQ2, RQ3 and RQ4. Fur-
thermore, graphical representation is rated subjectively. Each parameter (in bold) is
measured by a statement. Probands of the survey rate these statements from 1 to 5 (1 =
agree, 2 = rather agree, 3 = neutral, 4 = rather disagree, 5 = disagree). The following
statements were asked for each diagram of 7:

1. Visual presentation: The diagram is clear and well structured.

2. Diagram content: Information about dependencies and software modules are
quick and easy to read.

3. Source code readability: Source code readability is improved in contrast from
only source code to reading source code and diagram.

4. Improvement on-boarding: On-boarding processes would be easier with the aid
of this diagram.

5. Improvement software quality: This diagram could improve the software quality.

56

8.3. Subjective Evaluation

The integration model will be used in the productive environment only by technical
experts for software development or IBM jazz tools. Thus, just a few user will work with
the integration model. That is why the survey was conducted with a few probands with
expert knowledge for software development or IBM Rational Rhapsody. The participants
are partially from internal at Daimler AG and partially from external service providers.
All have expert knowledge for different areas. This is listed in table 8.3.

8.3.2. Analysis

Graphic 8.1 visualizes the results of the survey. Each dot represents the average of all
probands rating from 1 to 5. At first glance it can be said that the result looks positive.
The rating is in a range of 1 to 3 which means from agree to neutral. Goal of subjective
evaluation is not to compare the selected diagrams from chapter 7. The generated
diagrams should be a suitable usage for the productive environment. That is why the
overall performance has to be considered for each criteria. Thus, each evaluation criteria
is considered for all three models:

1. Graphical Representation: In contrast to the objective evaluation, the subjective
is a little worse with regard to graphical visualization. But the rating is still positive
with 2.0 to 2.5 (= rather agree). Diagram 3 contains the most amount of blocks
and associations. So, presumably this causes a worse rating. Nevertheless all
generated models have a clear representation of their architecture.

2. Diagram content: The next criteria has the same rating as graphical representa-
tion. Diagram 1 - 3 are rated from 2.0 to 2.5 again. This means that necessary
information from models are mostly easy to read. Here, additional functions of
Rhapsody are not considered. Users additionally have the opportunity to click into
blocks or associations and get more information. By clicking into a block e.g. the
user can get all information about the variables and functions. By clicking into a
function, the user can get more specific information up to final implementation.
levels.

3. Source code readability: The result of readability clearly shows that in contrast
to only viewing the source code, the readability has been improved with generated
diagrams. Obviously one diagram is better for getting an overview than only
reading the source code.

4. Improvement on-boarding: Consequential to the improvement of readability,
on-boarding new customers can be improved too. The rating is positive from 1.0
to 1.5. Obviously new employees who do not know the source code, can not
see an architecture on the first view by just reading the source code. Generated

57

8. Evaluation

Figure 8.1.: Subjective Evaluation Survey

architecture diagrams support understanding the source code. Thus, on-boarding
new employees is easier and faster with diagrams.

5. Software quality: Lastly, the software quality improvement is rated from 1.0 to
1.75. It can be recognized that diagram 3 is better rated than 1 and 2. This result
was to be expected because diagram 3 contains a source code analysis of write and
read accesses. Consequential this diagram contains information which only can be
detected manually by analyzing signal flows. Hence, diagram 3 is a good approach
to improve software quality. Therewith for example redundant dependencies or
simultaneous accesses can be detected.

All in all the results of the survey are very good. It can be said that the main goal, to
improve the readability and software quality, is achieved. The graphical representation
of the diagrams has still potential. But all generated models are useful for the productive
environment.

8.4. Result

First, the research questions of this thesis were reconsidered, then a subjective and
objective evaluation were carried out. To answer the research questions and evaluate the

58

8.4. Result

quality of the developed integration model in this thesis, several criteria have been set
up. The results of subjective evaluation as well as the results of objective evaluation are
quite positive. According to ratings of software developers will yield advantages from
generated models with reverse engineering (RQ2). These advantages include better on-
boarding, improved readability and detection of dependencies (RQ3). Finally additional
information could be visualized by detecting dynamic signal flow dependencies between
vehicle functions (RQ4). Summarizing the result of evaluation is positive.

59

Chapter 9

Conclusion

Considering the increasing complexity of vehicle software systems, it is getting pro-
gressively more difficult to master this complexity. Abstractions of source code, like
software diagrams, are necessary for large systems. Today’s complex software systems,
like automotive source code of ECUs, mostly miss a consistent architecture model. In
practice, changes in development are implemented directly in the source code. Thus, cor-
responding models do not contain these changes. To generate consistent models, reverse
engineering can be applied from source code to generate architecture diagrams.

Goal of this thesis was to develop an integration model with IBM Rational Rhapsody to
generate UML architecture diagrams from source code. These diagrams should visualize
software architecture of systems and yield advantages for the software development of
Daimler AG.

The integration model was developed based on a ECUs source code. Therefore, source
code, Runtime Environment and software structure were analyzed to improve the in-
tegration model. These modifications were implemented with scripts and JAVA APIs.
Finally, the integration model is realized by a Rhapsody Profile. It will be used in the pro-
ductive environment of Daimler AG. The Rhapsody Profile contains three functionalities:
generation of vehicle-function specific architecture diagram, vehicle-across architecture
diagram and signal flow dependency diagram.

It should be noted that these functions are adapted for one ECU. Even though source
code is based on AUTOSAR, the integration model is not applicable for other ECUs
without any modifications.

61

9. Conclusion

Future Work

This section introduces two approaches of the most important future works. There are
many more future works for which this thesis can be used.

9.0.1. Transfer to other ECUs

Modern high-end cars contain more than 100 ECUs. Thus, the problem of missing archi-
tecture diagrams for source code is represented on each ECU. Even though source code
is based on AUTOSAR, on deeper abstraction levels the architecture is built individually.
This is why generation of architecture diagrams is important for each single software
system i.e. ECU. Therefore, the transmissibility of this integration model should be
tested. It is to be expected that this can be done with little effort. Furthermore, an
automation for transmission can be considered.

9.0.2. Source Code Generation of Reverse Engineering Diagrams

This thesis explored about reverse engineering respectively proceeding against the
direction of development. Thus, all generated diagrams are read-only and can act as
documentation or development support. IBM Rational Rhapsody supports source code
generation of C-Code too. Generated can be used as basis to generate automatically
source code. It should be investigated if generated source code of reverse engineering
models is practicable for software development.

Furthermore, Rhapsody provides the functionality to keep model and source code
consistent. Changes in source code or diagrams are continuously synchronized with
the whole software model. If this functionality is practically used in development,
model-based software engineering can be realized more efficiently.

62

Appendix A

Use Case Description and Manual

63

 Basic Reverse Engineering in

Rhapsody

Projekt SEED Konzeption

Gedruckt von Kaiser, Shoma-Jakob (059)

 28. November 2019, 11:15:14 CET

Konfiguration SEED Konzeption Master Stream

Konfigurationstyp Lokale Konfiguration

Komponente SEED Konzeption

Inhaltsverzeichnis

1 Basic Reverse Engineering in Rhapsody .. 3

1.1 Introduction ... 3

1.2 Process cluster .. 3

1.3 Roles ... 3

1.4 Precondition ... 3

1.5 Postcondition .. 3

1.6 Scenarios ... 3

1.6.1 Scenario 1 - Usage of Reverse Engineering ... 3

1.6.2 Scenario 2 - Reverse Engineering for one software module .. 4

1.6.2 Scenario 3 - Reverse Engineering for the architecture of several software modules 4

1.6.2 Scenario 4 - Reverse Engineering for dynamic dependencies .. 4

1.7 Open points .. 5

1.8 Responsible Specification ... 5

1.9 Responsible Implementation ... 5

1.10 Stakeholder ... 5

 28. November 2019

 Seite 3 von 5

1 <Basic Reverse Engineering in Rhapsody>

1.1 Introduction

This use case describes the usage of Reverse Engineering with IBM Rational Rhapsody in

general and for a specific application for the FAP 5 source code.

Note(!): Used Rhapsody Version:

1.2 Process cluster

1.3 Roles

Software Module Architect

1.4 Precondition

 The source code has to be from the repository to a local drive. IBM Rational Rhapsody has to

be installed. For Reverse Engineering of C-Code Rational Rhapsody Developer for C has to be

used. The Rhapsody profile has to be loaded in.

1.5 Postcondition

 Rhapsody will generate UML Architecture diagrams to visualize and detect the architecture and

dependencies between several software modules. Furthermore, in a specific use case a

Rhapsody Plugin will analyze dynamic dependencies between software modules.

1.6 Scenarios

1.6.1 Scenario 1 – Usage of Reverse Engineering

1.6.1.1 Step 1

Clone the source code in C to the local drive and start IBM Rational Rhapsody Developer for C.

A new Project has to be created where the diagrams are stored in.

1.6.1.2 Step 2

Switch to the “Advanced” developer mode (in the top left corner, right under the “save”-symbol.

With Tools > Reverse Engineering you can open the reverse engineering window.

 28. November 2019

 Seite 4 von 5

1.6.1.3 Step 3

Choose the Code centric mode, select an input source as top folder and start the process by pressing

“finish”.

Rhapsody will load the entire project with the same folder structure into the project. On every package

level there will be created object model diagrams which visualize the dependencies between the source

code files.

Note: these diagrams just show dependencies in one package. These diagrams do not show dependencies

package across.

1.6.2 Scenario 2 – Reverse Engineering for one software module

1.6.2.1 Step 1

This scenario is adapted for the dmc of FAP 5 source code. Clone the source code again locally. Press the

button “Tools > Automotive Reverse Engineering > Preparation Module Specific”.

Enter the path of the FAP 5 directory and enter the module name (e.g. alc).

1.6.2.2 Step 2

A script is running to restructure relevant source code files. Run the basic reverse engineering (see Scenario

1) applied on the new created folder. zz_bearbeitet > “Created folder” . Choose the module folder and all

files in there.

1.6.2.3 Step 3

This time one diagram is created for the chosen software module. All dependencies shown in the object

model diagram are packing across. This means that this diagram takes the chosen module as point of view

and visualizes all dependencies to other files in the whole software package.

1.6.3 Scenario 3 – Reverse Engineering for the architecture of several software modules

1.6.3.1 Step 1

This scenario is also adapted for the dmc of FAP 5 source code. Clone the source code again locally. Press

the button ““Tools > Automotive Reverse Engineering > Preparation Module Across”.

Enter the path of the FAP 5 directory, number of modules for reverse engineering and enter the module

names (e.g. alc).

1.6.3.2 Step 2

A script is running to restructure relevant source code files. Run the basic reverse engineering (see Scenario

 28. November 2019

 Seite 5 von 5

1)applied on the new created folder. zz_bearbeitet > “Created folder” . Choose the module folder and all

files in there.

1.6.3.3 Step 3

This time one diagram is created for the chosen software modules. This diagram shows the software

architecture between several modules including the architecture of the Runtime Environment (RTE).

1.6.4 Scenario 4 – Reverse Engineering for dynamic dependencies

1.6.4.1 Step 1

This scenario is adapted for the dmc of FAP 5 source code based on Matlab/Simulink generated source

code. Clone the source code again locally. Press the button “Tools > Automotive Reverse Engineering >

Preparation Dynamic Dependencies”.

Enter the path of the FAP 5 directory and enter the module names (e.g. alc).

1.6.4.2 Step 2

Right click on the project and call the function “Automotive Reverse Engineering > Dynamic Dependency

Diagram”. Enter the module names as one string (divided by spaces). After that enter the package name

which includes the files. A new diagram is generated as “DependencyDiagram_yyyy.mm.dd.hh.mm.ss”.

1.6.4.3 Step 3

The new generated diagram only shows the “main”-files. These main files represents one specific software

module. Dependencies between software modules are based on a signal flow analyzation. A dependency is

drawn if two software modules have a write/read-access if on the same signal.

1.7 Open points

Feature Document

1.8 Responsible Specification

-

1.9 Responsible Implementation

Shoma Kaiser (Daimler AG, ITD/I) supported external service providers

1.10 Stakeholder

Ansprechpartner aus RD/A

Appendix A

Bibliography

[BLL06] L. C. Briand, Y. Labiche, J. Leduc. “Toward the reverse engineering of UML
sequence diagrams for distributed Java software.” In: IEEE Transactions on
Software Engineering 32.9 (2006), pp. 642–663 (cit. on p. 15).

[BM16] T. Briselat, S. Malewski. “Literaturrecherche.” In: (2016) (cit. on p. 21).

[BRJ99] G. Booch, J. Rumbaugh, I. Jacobson. “Unified Modeling Language User
Guide, The (2nd Edition) (Addison-Wesley Object Technology Series).” In:
J. Database Manag. 10 (Jan. 1999) (cit. on pp. 10, 11).

[Bun11] S. Bunzel. “Autosar–the standardized software architecture.” In: Informatik-
Spektrum 34.1 (2011), pp. 79–83 (cit. on p. 12).

[CC90] E. J. Chikofsky, J. H. Cross. “Reverse engineering and design recovery: A
taxonomy.” In: IEEE software 7.1 (1990), pp. 13–17 (cit. on p. 14).

[CN15] D. Cutting, J. Noppen. “An extensible benchmark and tooling for comparing
reverse engineering approaches.” In: International Journal on Advances in
Software 8.1&2 (2015), pp. 115–124 (cit. on pp. 19, 26, 27).

[Cor08] I. Corporation. Telelogic Rhapsody User Guide. Ed. by IBM. IBM, 2008 (cit.
on pp. 16, 35, 36, 39, 42, 44, 48, 49, 51).

[FAK11] S. Freiberger, M. Albrecht, J. Käufl. “Reverse engineering technologies for
remanufacturing of automotive systems communicating via CAN bus.” In:
Journal of Remanufacturing 1.1 (2011), p. 6 (cit. on p. 20).

[FMB+09] S. Fürst, J. Mössinger, S. Bunzel, T. Weber, F. Kirschke-Biller, P. Heitkämper,
G. Kinkelin, K. Nishikawa, K. Lange. “AUTOSAR–A Worldwide Standard
is on the Road.” In: 14th International VDI Congress Electronic Systems for
Vehicles, Baden-Baden. Vol. 62. 2009, p. 5 (cit. on p. 12).

69

Bibliography

[GHN09] H. Giese, S. Hildebrandt, S. Neumann. “Towards Integrating SysML and
AUTOSAR Modeling via Bidirectional Model Synchronization.” In: MBEES.
2009, pp. 155–164.

[GHN10] H. Giese, S. Hildebrandt, S. Neumann. “Model synchronization at work:
keeping SysML and AUTOSAR models consistent.” In: Graph transforma-
tions and model-driven engineering. Springer, 2010, pp. 555–579 (cit. on
p. 23).

[GTD15] D. Gelles, H. Tabuchi, M. Dolan. “Complex car software becomes the weak
spot under the hood.” In: The New York Times online (2015) (cit. on pp. iii,
v, 7).

[Hee06] Heel. “Mercedes-Benz Automobile seit 1913.” In: Mercedes-Benz Automobile
seit 1913. Motorbuch Verlag. 2006 (cit. on p. 10).

[HMS55] S. Henkler, J. Meyer, W. Schäfer. “Reverse Engineering mechatronischer
Komponenten.” In: 5955.

[HMSN10] S. Henkler, J. Meyer, W. Schäfer, U. Nickel. “Reverse Engineering vernetzter
automotiver Softwaresysteme.” In: MBEES. Citeseer. 2010, pp. 77–86 (cit.
on p. 19).

[HVB+17] T. Huybrechts, Y. Vanommeslaeghe, D. Blontrock, G. Van Barel, P. Hellinckx.
“Automatic reverse engineering of CAN bus data using machine learning
techniques.” In: International Conference on P2P, Parallel, Grid, Cloud and
Internet Computing. Springer. 2017, pp. 751–761 (cit. on p. 20).

[KKM12] H. M. Kienle, J. Kraft, H. A. Müller. “Software reverse engineering in the
domain of complex embedded systems.” In: Reverse Engineering-Recent
Advances and Applications. IntechOpen, 2012 (cit. on pp. 15, 22, 23, 25).

[MH08] D. Moody, J. van Hillegersberg. “Evaluating the visual syntax of UML: An
analysis of the cognitive effectiveness of the UML family of diagrams.” In:
International Conference on Software Language Engineering. Springer. 2008,
pp. 16–34 (cit. on pp. 28, 54).

[MRHK10] A. Michailidis, T. Ringler, B. Hedenetz, S. Kowalewski. “Virtuelle Integra-
tion modellbasierter Fahrzeugfunktionen unter AUTOSAR.” In: ATZelek-
tronik 5.1 (2010), pp. 32–37 (cit. on p. 13).

[Ope05] C. of Operations. “Clarus.” In: 2005 (cit. on p. 8).

[PB06] M. Pagel, M. Brörkens. “Definition and generation of data exchange for-
mats in AUTOSAR.” In: European Conference on Model Driven Architecture-
Foundations and Applications. Springer. 2006, pp. 52–65 (cit. on p. 22).

70

[PBKS07] A. Pretschner, M. Broy, I. H. Kruger, T. Stauner. “Software engineering
for automotive systems: A roadmap.” In: Future of Software Engineering
(FOSE’07). IEEE. 2007, pp. 55–71 (cit. on pp. 8, 9).

[RG98] M. Richters, M. Gogolla. “On formalizing the UML object constraint lan-
guage OCL.” In: International Conference on Conceptual Modeling. Springer.
1998, pp. 449–464 (cit. on p. 11).

[Rup10] N. B. Ruparelia. “Software development lifecycle models.” In: ACM SIG-
SOFT Software Engineering Notes 35.3 (2010), pp. 8–13 (cit. on p. 25).

[Sai14] A. Sailer. “Towards an automated reverse engineering of design models
from trace recordings.” In: Informatik 2014 (2014) (cit. on p. 23).

[SBMH96] E. Sauerwein, F. Bailom, K. Matzler, H. H. Hinterhuber. “The Kano model:
How to delight your customers.” In: International Working Seminar on
Production Economics. Vol. 1. 4. Innsbruck. 1996, pp. 313–327.

[SC08] M. E. sicherheitskritischer Systeme, A. von Codegeneratoren. “Modell-
basierte Entwicklung von eingebetteten Fahrzeugfunktionen.” In: Workshop
auf der Modellierung. Vol. 12. 14. 2008 (cit. on p. 17).

[SRH+11] S. Schmerler, T. Ringler, B. Hedenetz, U. Grüner, F. Wohlgemuth,
C. Dziobek, P. Lohrmann. “Mit AUTOSAR zu einem integrierten und
durchgängigen Entwicklungsprozess.” In: VDI (Hrsg.) 15 (2011) (cit. on
pp. 2, 7, 17).

[SW05] D. Sun, K. Wong. “On evaluating the layout of UML class diagrams for
program comprehension.” In: 13th International Workshop on Program
Comprehension (IWPC’05). IEEE. 2005, pp. 317–326 (cit. on pp. 28, 54).

[Tea19a] A. W. Team. “AUTOSAR.” In: AUTOSAR-Homepage: https://www.autosar.org/.
2019 (cit. on p. 23).

[Tea19b] A. W. Team. “AUTOSAR Introduction.” In: AUTOSAR Introduction. 2019
(cit. on pp. 2, 12, 13).

All links were last followed on December 04, 2019.

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all
direct or indirect statements from other sources con-
tained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature

Böblingen, 19.12.2019

	1 Introduction
	1.1 Use of Confidential Data
	1.2 Motivation
	1.3 Goals
	1.4 Thesis Structure

	2 Foundations
	2.1 Model-driven Software Development
	2.2 UML Architecture Diagrams
	2.3 AUTOSAR Standard used at Daimler AG
	2.4 Reverse Engineering of Software Systems

	3 State of the Art
	3.1 Model-driven Software Development with AUTOSAR at Daimler AG
	3.2 Reverse Engineering of Source Code and Automotive Systems

	4 Related Work
	4.1 Search Strategy
	4.2 Reverse Engineering with AUTOSAR from SW-Component Source code to SW-models
	4.3 AUTOSAR based model exchange methodology
	4.4 Reverse engineering processing for embedded systems (with AUTOSAR)

	5 Methodology
	5.1 Developing the Integration Model

	6 Integration Model
	6.1 Definitions
	6.2 Result
	6.3 Development of the Integration Model

	7 Prototyping
	7.1 Selection of an Example
	7.2 Practical Implementation
	7.3 Result

	8 Evaluation
	8.1 Research Questions
	8.2 Objective Evaluation
	8.3 Subjective Evaluation
	8.4 Result

	9 Conclusion
	A Use Case Description and Manual
	Bibliography

