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Zusammenfassung

Diese Dissertation behandelt die Entwicklung von Computer-
modellen zur Beschreibung von Polyelektrolytnetzwerken. Im
Rahmen der Untersuchung von Polymersystemen hat sich ge-
zeigt, dass Computersimulationen, neben Experimenten und
Theorien, ein wertvolles Untersuchungswerkzeug darstellen:
Auf der einen Seite erlauben Computersimulationen die Unter-
suchung von Eigenschaften, welche im Experiment nicht direkt
zugénglich sind. Auf der anderen Seite verzichten Computer-
modlle auf stark vereinfachende Annahmen wie sie hdufig in
analytischen Theorien anzutreffen sind.

Nachdem wir in Kapitel 2 die theoretischen Grundlagen un-
serer Modelle beschrieben haben, entwickeln wir in Kapitel 3
zwei aufeinander aufbauende Computermodelle, welche zur
Beschreibung der elastischen Eigenschaften von Polyelektrolyt-
gelen dienen: das Einzelketten-Zellen-Gelmodell (ZGM) und
das Poisson-Boltzmann Zellen-Gelmodell (PB ZGM). Ausgangs-
punkt ist das bereits bekannte teilchenbasierte periodische Gelm-
odell [1], welches in Bild 0.1 i) dargestellt ist.

Im ersten Modellierungsschritt wird das Gel in einzelne Ket-
ten zerlegt (siehe Abbildung 0.1 ii)). Unser Einzelketten-Zellen-
Gelmodell besitzt eine ausgezeichnete Ubereinstimmung mit



i) Periodisches Gelmoddll i) Einzelketten ZGM ii) PB ZGM

Abbildung 0.1: Schema verschiedener Gelmodelle, adaptiert aus [2]. i)
Vergrobertes (periodisches) Gelmodell, ii) Einzelketten-
Zellen-Gelmodell, iii) PB-Zellen-Gelmodell

dem periodischen Gelmodell, da es ebenfalls teilchenbasiert
ist und somit dieselben ungendherten Teilchenwechselwirkun-
gen verwendet. Das Einzelketten-Zellen-Gelmodell reduziert
jedoch die Zahl der zu simulierenden Teilchen um einen Faktor
16 und verringert daher die Berechnungskosten um circa eine
Groflenordung.

Im Poisson-Boltzmann Zellen-Gelmodell (siehe Abbildung 0.1
iii)) wird die teilchenbasierte Beschreibung zu Gunsten einer
dichtebasierten Beschreibung aufgegeben. Dadurch werden die
Berechnungen nochmals um mehrere Groéfienordnungen be-
schleunigt, was jedoch mit einer verringerten Genauigkeit des
Modells erkauft wird. Die hohe Berechnungseffizienz des PB
ZGM erlaubt das Verhalten von Polyelektrolytgelen in grofsen
Parameterraumen zu untersuchen, was zur Optimierung von
Gelparametern fiir reale Anwendungen notig ist. Im Gegen-
satz zu dem dhnlich effizienten Katchalsky-Modell [3] ist unser
Poisson-Boltzmann ZGM auch fiir hochgeladenen Gele anwend-
bar.

In Kaptiel 4 vergleichen wir erfolgreich das vergroberte peri-
odische Gelmodell und das Poisson-Boltzmann ZGM mit dem



experimentell beobachteten Quellverhalten von Polyacrylsaure-
Hydrogelen.

Da viele Polyelektrolytgele aus Bausteinen bestehen, welche
chemisch reaktiv sind, ist es wichtig diese Eigenschaft korrekt
in Computermodellen abzubilden. Zur Untersuchung dieser
schwachen Polyelektrolytgele fithren wir in Kapitel 5 eine Me-
thode zur Simulation von Ionisationsgleichgewichten in solchen
Systemen ein. Der pH-Wert und die Salzkonzentration werden
durch die Zusammensetzung der Uberstandslésung definiert.
Unsere Implementierung des Teilchenaustausches mit der Uber-
standslosung vermeidet bekannte Artefakte und unphysikalische
Parameterkombinationen, die in der Literatur vielfach Anwen-

dung fanden [4].

In Kapitel 6 benutzen wir die im vorigen Kapitel eingefiihrte
Simulationsmethode zur Beschreibung des pH abhingigen Quell-
verhaltens schwacher Polyelektrolytgele. Im Poisson-Boltzmann
Zellen-Gelmodell verwenden wir den Ansatz der Ladungsregu-
lierung, um schwache Gruppen zu modellieren [5]. Alle unsere
Modelle beschreiben den experimentell bekannten Kollaps von
schwachen Polyelektrolytgelen bei hohem pH-Wert und die
nicht-monotone Quellung als Funktion der Reservoirsalzkon-
zentration.






1 Introduction

DNA, RNA and proteins have vital functions for living organisms
and are examples for the material class of polymers. Polymers
are macromolecules built from repeating building blocks, so
called monomers. Crosslinking charged polymers, i.e. polyelec-
trolytes, results in the material class of hydrogels. Their main
characteristics are the response to external stimuli like pH or
salt concentration and the capability to take up more than a
hundred times their own weight in water. Therefore, hydrogels
are well-known as superabsorbers which find applications, for
example, in agriculture [6, 7] or hygiene products like diapers.
Among other proposed applications like desalination of sea wa-
ter [8,9, 10], pH-sensors [11] or mechanical actors [12], hydrogels
are envisioned to revolutionize drug delivery [13, 14].

Depending on the application, different gels with distinct prop-
erties are required. Accurate and computationally feasible gel
models allow chemical engineers to select the optimal gel for
a given task in much less time and with much less resources
as would otherwise be required if they had to rely solely on
experiments. This thesis aims at introducing such models, and
for the first time perform accurate particle-based simulations of

hydrogels including acid-base reactions.
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1 Introduction

Existing atomistic molecular dynamics simulations can serve
this purpose in principle, but are too costly to exploring large
parameter spaces for typical applications. Providing relief to
these computational limitations, our periodic gel model i) in
Figure 1.1 replaces a group of atoms by a more coarse-grained
representation with effective interactions [15].

i) Periodic gd modd i) Single-chain CGM iii) PB CGM

Figure 1.1: A sketch of the different models employed in this thesis: i)
the periodic gel model; ii) the single-chain cell-gel model;
and iii) a density based continuum model. Ions in solution
are not shown. For more details we refer to Chapter 3

In the case of polyacrylic acid, pictured in Figure 1.2, all atoms
of a monomer are grouped into an individual “bead”. This
coarsening greatly reduces the degrees of freedom of the system
enabling (still costly) screening of parameter spaces on compute
clusters.

In Chapter 3, we introduce two new gel models, which are
computationally less expensive than the previously employed
periodic gel model but are similarly accurate. We introduce
these models in the spirit of multiscale modeling which aims to
strike the balance between very detailed, but computationally
expensive microscopic models and cheaper, in tendency more
inaccurate, macroscopic models [16]. For a quick impression

of our modeling approach, we refer to Figure 1.1: we extract
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information from the many-chain gel model with explicit salt
ions i) to justify the simplification step to the single-chain model
ii). The single-chain model is also particle-based and uses the
same interactions as the original periodic gel model i), however
it only describes the behavior of a single chain as well as the
surrounding salt ions, and therefore again greatly reduces the
number of particles which need to be simulated.

Additional drastic reductions in the computational cost will be
realized through another coarse-graining step towards a con-
tinuum level description, where interactions are approximated
on a mean-field level. In this simplified Poisson-Boltzmann
cell-gel model iii), we approximate the single polymer chain by
a simple cylinder with an effective end-to-end radius R,, line
charge density, and ionic exclusion radius a. The salt ions in
solution are modeled as radially symmetric continuum density
fields.

In the remaining Chapters 5 and 6, we investigate how to model
the pH dependent swelling of polyelectrolyte gels which is
mainly based on the presence of reactive monomers. These gels
contain acids or bases which can release or take up a proton and,
therefore, take part in a chemical reaction in the form of

HA H" + A~.

A common weak acidic monomer used in synthetic hydrogels is

polyacrylic acid (see Figure 1.2).

The chemical reaction couples the charge state of the weak poly-
electrolyte gel to the pH value of the surrounding solution: At
low pH the monomers are mostly in the state HA and, therefore,

13



1 Introduction

Figure 1.2: Polyacrylic acid is an example for a weak polyelectrolyte.

the gel is neutral, while at high pH the monomers are mostly in
the state A~ such that the gel is negatively charged. If the gel
is highly charged it tends to swell more compared to the case
where it is neutral.

Over the course of this PhD project, I created and contributed to
the following publications (see Chapter 7 for details):

1. J. Landsgesell, C. Holm., J. Smiatek “Wang-Landau Re-
action Ensemble Method: Simulation of Weak Polyelec-
trolytes and General Acid-Base Reactions” In: Journal of
Chemical Theory and Computation 13(2)(852-862) (2017)

URL: https://dx.doi.org/10.1021/acs.jctc.6b00791

2. J. Landsgesell, C. Holm, J. Smiatek. “Simulation of weak
polyelectrolytes: A comparison between the constant pH
and the reaction ensemble method” In: The European Physi-
cal Journal Special Topics 226(725-736) (2017)

URL: https://dx.doi.org/10.1140/epjst/e2016-60324-3

3. T. Richter, J. Landsgesell, P. Kosovan, C. Holm. “On
the efficiency of a hydrogel-based desalination cycle” In:
Desalination 414(28-34) (2017)

URL: https://dx.doi.org/10.1016/j.desal.2017.03.027

14


https://dx.doi.org/10.1021/acs.jctc.6b00791
https://dx.doi.org/10.1140/epjst/e2016-60324-3
https://dx.doi.org/10.1016/j.desal.2017.03.027

'S

. D. Sean, J. Landsgesell, C. Holm. “Computer Simulations
of Static and Dynamical Properties of Weak Polyelectrolyte
Nanogels in Salty Solutions” In: Gels 4(2)(2) (2018)

URL: https://dx.doi.org/10.3390/9els4010002

. J. Landsgesell, L. Nova, O. Rud, E. Uhlik, D. Sean, P.
Hebbeker, C. Holm, P. KoSovan. “Simulations of ionization
equilibria in weak polyelectrolyte solutions and gels” In:
Soft Matter 15(6)(1155-1185) (2019)

URL: http://dx.doi.org/10.1039/C8SM02085]

. J. Landsgesell, C. Holm. “Cell Model Approaches for
Predicting the Swelling and Mechanical Properties of Poly-
electrolyte Gels” In: Macromolecules (2019)

URL: https://doi.org/10.1021/acs.macromol.9b01216

. J. Landsgesell, S. Sean, P. Kreissl, K. Szuttor, C. Holm.
“Modeling Gel Swelling Equilibrium in the Mean Field:
From Explicit to Poisson-Boltzmann Models” In: Physical
Review Letters 122(208002) (2019)

URL: https://dx.doi.org/10.1103/PhysRevLett.122.208002

. L. Arens, D. Barther, J. Landsgesell, C. Holm, M. Wilhelm.
“Poly (sodium acrylate) hydrogels: Synthesis of various
network architectures, local molecular dynamics, salt parti-
tioning, desalination and simulation” In: Soft Matter (2019)
URL: https://dx.doi.org/ 10.1039/C9SM01468C

. E. Weik, R. Weeber, K. Szuttor, K. Breitsprecher, J. de Graaf,
M. Kuron J. Landsgesell, H. Menke, D. Sean, C. Holm,
“ESPResSo 4.0 — an extensible software package for simulat-
ing soft matter systems” In: The European Physical Journal

15


https://dx.doi.org/10.3390/gels4010002
http://dx.doi.org/10.1039/C8SM02085J
https://doi.org/10.1021/acs.macromol.9b01216 
https://dx.doi.org/10.1103/PhysRevLett.122.208002
https://dx.doi.org/ 10.1039/C9SM01468C

1 Introduction

10.

11.

Special Topics 227(14)(1789-1816) (2019)
URL: http://dx.doi.org/10.1140/epjst/e2019-800186-9

D. Sean, J. Landsgesell, C. Holm. “Influence of weak
groups on polyelectrolyte mobilities” In: Electrophoresis
40(5)(799-809) (2019)

URL: https://dx.doi.org/10.1002/elps.201800346

F. Weik, K. Szuttor, J. Landsgesell, C. Holm. “Modeling
the current modulation of dsDNA in nanopores — from
mean-field to atomistic and back” In: The European Physical
Journal Special Topics 227(14)(1639-1655) (2019)

URL: https://dx.doi.org/10.1140/epjst/e2019-800189-3

This thesis mainly discusses the topics of publications 2, 3 and

4. We plan to publish the content of chapters 5 and 6 in two

separate papers 12 and 13. The papers in preparation are:

12.

13.

14.

15.

J. Landsgesell, P. Hebbeker, O. Rud, R. Lunkad, P. Ko$ovan,
C. Holm. “Grand-reaction Method for Simulations of
Ionization Equilibria and Ion Partitioning in a Broad Range
of pH and Ionic Strength” In: ChemRxiv (2019)

URL: https://doi.org/10.26434/chemrxiv.9741746.v2

J. Landsgesell, P. Hebbeker, P. KoSovan, C. Holm. “Simu-
lating the pH-dependent Swelling of Weak Gels”

A. Tagliabue, J. Landsgesell, M. Mella, C. Holm. “On
the Formation of Electrostatically Cross-linked Gels via
Self-assembly of Charged Star-shaped Copolymers”

J. Finkbeiner, J. Landsgesell, C. Holm. “Dilution Behaviour
of Weak Acids Under the Influence of Strong Electrostatic
Interactions”

16


http://dx.doi.org/10.1140/epjst/e2019-800186-9
https://dx.doi.org/10.1002/elps.201800346
https://dx.doi.org/10.1140/epjst/e2019-800189-3
https://doi.org/10.26434/chemrxiv.9741746.v2

2 Theoretical Background

The theoretical description of polyelectrolyte gels is based on a
statistical mechanics view which is recapitulated in this chapter.
Depending on the physical situation, different ensembles are
most suitable to describe the system at hand. An isolated system
with constant volume and particle number is best investigated
in the microcanonical (NVE) ensemble. For a system with
constant particle number, volume, and temperature the canonical
ensemble is best suited. The thermodynamic framework of
chemical reactions, the Poisson-Boltzmann mean-field theory,
different gel models, and the justification for the later used
simulation methods are provided in this chapter.

2.1 Canonical Ensemble

One of the most commonly used statistical ensembles is the canon-
ical ensemble, which keeps the particle number N, the volume V
and the temperature T constant. Therefore, this ensemble is often
abbreviated as “NVT ensemble”. The partition function Zu v
as well as the free energy F(N,V,T) = —kgT In(Z(N, V, T)) fully

describe the system. The partition function can be obtained by

17



2 Theoretical Background

integrating the Boltzmann factor over the phase space! {(*, 7N)}
spanned by all particle positions 7 and momenta g

1 N =
Z(N,V,T) = AN f‘;N d*Nr LBN d*Np exp(-pH N, ),

where & is the Planck constant, H is the Hamilton function of
the system. The inverse of the Boltzmann constant kg times the
absolute temperature T is denoted by p = 1/(kgT). For a system
composed by different types i of particles the canonical partition
function is given by an integral over all possible positions and

particle impulses:

1 : : : :
2N, v D = [ | iy f d3N'rfR3N dNip exp(—pH (™, M),

i vhi

where the total energy of the system is a sum of the kinetic energy
and the potential energy:

H = Ekin(ﬁ){Ni}) + Epot(f{Ni})/

and where the superscript {N;} denotes that all particles of each
type i are considered. The kinetic energy is the sum of the kinetic
energy of all N; particles (of each species i):

- (FNihy = @
Ekm(p )= Z Z om;’

N;
i j=1

where f;;) denotes the momentum of the j-th particle of species
i.

1We use the notation f(7N, 7N) = f(71,72,...,7N,P1, P2, - - - Pn) as well as d®Nr =
]_[1]-\;1 dxjdy;dz; and analogously d*Np = H;il dpx,jdpy,jdpz,j-

18



2.1 Canonical Ensemble

The potential energy is a function of the particle positions and
does not depend on the momenta. Due to this independence, we
can separate the partition function into the dimensionless “kinetic
partition function” Zy;, and the dimensionless “configurational

” =

partition function” & (where we introduced the factor 1 = K—Zj):

: = o —BEy.. (7N1)) 43N
zaNb V) = || | g ], expBEn )™ p | x

Zyin(IN:i},V,T)

[HVLNI d3N"rexp(—/3Epot(f4Nf]))].
i LIV

E(N}VT)

2.1)

Therefore, the free energy splits into a kinetic part and a configu-

ration part:

F = —kgTIn(Z({Ni}, V,T)) = Fia + Feont- (2.2)

For a non-interacting system, the potential energy is E,ot = 0 and
the configurational partition function is equal to one. In this case
the ideal gas result for the partition function is obtained, where

the integrals occurring in the kinetic partition function can be

19



2 Theoretical Background

solved analytically:

VN .
Ziin(IN3}, V, T) = NN (jﬂ;s exp [—BExin(Pk,)] d3Pk,-)

3N
_ YN 2mm;

= H Ni!hSN,' ; ﬁ
(v
llwz)

where m; is the mass and A; = T 4/ %m‘ is the thermal de Broglie
wave length of a particle of species i.

However, in most interesting cases the particles in a system
interact and the configurational partition function is a non-trivial
multidimensional integral which cannot be solved analytically
without making simplifying assumptions. Typical simplifica-
tions employ the saddle-point approximation in order to obtain
analytical expressions for the partition function [17]. We will later
investigate one such simplified expression for charged systems
(see Section 2.4).

Although the partition function contains all information about
the system, we are usually more interested in observing average
values of an observable A", 7). In the canonical ensemble the

average value of an observable is given by:

Jon NrAPN, PN )e FHET

Ay = Z(N,V,T)

For calculating these averages, the concept of numerical computer

20



2.1 Canonical Ensemble

simulations is very successful [18, p. 24-27] and we introduce it

in Section 2.5.

2.1.1 Chemical Potential

The chemical potential is an observable which is important in
the context of chemical reactions (see Section 2.3). Starting from
the free energy of a canonical system we can derive the chemical
potential y;. The chemical potential is defined as the change in
free energy which occurs when changing the particle number
of species i at fixed temperature, volume and number of other
particles N

JF(N1,...Ni, V,;T) F(Ni,...Ni+1,V,T)— E(N,...N;, V,T)
His= ON; - 1

(2.3)
Because the free energy splits into an ideal part and an excess
part (see equation (2.2)) we can also split the chemical potential
in the same way:

pi =+ (24)

We independently evaluate the ideal (kinetic) chemical potential

and the excess chemical potential.

The kinetic free energy is given by:

FY(N), V,T) = —kBTZ (— In(Ni!) + Ni ln(%]]

1

21



2 Theoretical Background

which implies the following ideal chemical potential

pd =paC N+ 1,..., V,T) - F4..,N;,...,V,T)

_v__
(N; + 1)A?

2.5
= —kT ln[ 29)

] r kBTln(ci)\?).
In contrast to the ideal chemical potential, the excess chemical
potential ;i is a complicated function of all interactions in the
system. We come back on how to determine the excess chemical

potential in Section 2.5.3.

2.2 (Semi-)Grand-Canonical Ensemble

For a system with constant volume and temperature but the
possibility to exchange particles with a reservoir, the (semi-
)grand-canonical ensemble is used. In this ensemble the chemical
potentials y; of each exchangeable species i is constant. If all
species may be exchanged this is the grand-canonical ensemble,
otherwise the ensemble is referred to as semi-grand-canonical
ensemble. The partition function Z¢ of the grand-canonical

22



2.2 (Semi-)Grand-Canonical Ensemble

ensemble with z particle species is given by [19]:

Zolp, .- uz, V,T) = i i LV, T) exp(ﬁlZ:Ny,

Ni=0 N.=0| [ i=1
———
Zyin(IN:},V,T)

z
[HVLN f exp [~BEpot(P, ... drNt . drN-| x
i=1 v

Z(NLVT)

exp [ﬁ Z Ni,u,-] ,
i=1

(2.6)

where 7;\] "'is the vector containing all particle positions of the
particles of type j and where Z({N;}, V, T) is the canonical parti-
tion function. The (semi-)grand potential is Q = —kgT In(Z¢).

Averages of an observable A are given by:

LNy - LN, Lk Ax exp(—pH + B TN ki)

(A =
Y, - Zn. Lrexp(=pH + p X175 Nigi)

2.7)

The particle reservoir is fully described by the set of chemical
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2 Theoretical Background

potentials {1} of all species i contained in the reservoir and
the temperature. For a reservoir representing an aqueous
solution containing ions of valency z; and concentration ¢,
the chemical potentials of the occurring species are coupled
by two constraints:

1. The macroscopic electroneutrality condition [20]. In
other words, in nature there is, in very good approx-
imation, no macroscopic solution of ions which is not
electroneutral:

Z oz = 0. 2.8)

i
2. The autodissociation of water which connects the

chemical potential of H* and OH™ ions due to the

H* + OH". If the
concentrations of H* and OH™ ions are negligible this

chemical reaction H,O

condition can be ignored.

We elaborate these two points in greater detail later in
Chapter 5.

2.3 Chemical Reactions

In this section the concept of chemical reactions is introduced.
Chemical reactions are fundamentally important in aqueous
solutions of weak polyelectrolytes because they couple the con-
centrations of H* and OH" ions and, additionally, determine the
charge state of the weak polyelectrolyte.

A chemical reaction turns reactants (Sy, . .. S;) into products (S,

24



2.3 Chemical Reactions

... 5;). We can denote this process in a chemical equation:

[vi|S1+...[vi| S VmSm + ... V25, (29)

reactants products

Here, the stochiometric coefficient v; := AN; is the change of
numbers of particles of particle type S; due to the reaction. For
products v; > 0 is positive, for reactants v; < 0 is negative.

Chemical equilibrium is reached when the concentration of
products and reactants does not change over time anymore [21].
In the state of chemical equilibrium (at constant temperature and
constant volume) the sum of the chemical potentials p; times the
stochiometric coefficients v; is zero:

dF(N;, V,T) = Zvi,ui =0.

1

Often the chemical potentials y; are defined with respect to a
reference state (see Note 2). In this case we have the equality
pi =y +ksTln (f—e) + uX, where ¢; = % is the concentration of
species i and yf an arbitrary reference state [22] with reference
concentration c®.

In the derivation of the chemical potential in Section 2.1.1,

no reference state occurred.

We can rearrange equation (2.5) and formally introduce an
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arbitrary reference chemical potential yi°:

tia = ksTIn(ciA?)

©
=kgTIn (c,-/\i3 _e)
¢ (2.10)
=kgTln (/\?Ce) +kgT In (%) )
c
—————

uyp

In our simulations, the solvent is not explicitly modeled and
there is no interaction between the particles and the solvent.
Therefore, the reference chemical potential in equation (2.10)
is different from the infinite dilution reference state used
in experiments. In the experiment, at infinite dilution, ions
interact with the solvent, but not with other ions which are
infinitely far away. In this case the following definitions are
made:

Ui = kBTln(c,'/\?) + Ui

:

= ke TIn(e) + 12 +kaTn (L) + a2 =), 1)
| —

~0 p,ex

ti

with a modified reference chemical potential fi and a mod-
ified excess chemical potential i which satisfies that the
excess chemical potenital goes to zero in the infinite dilution
limit lim, o 7 = 0.

With the above definition of the chemical potentials, the equilib-
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2.3 Chemical Reactions

rium constant K is given by:

K =exp [ﬁ Z vilui — /”‘ie)] = exp (—ﬁ Z vi‘ui@J = exp(—BAF®),
i i
(2.12)
which can equivalently be written (using the definition of the
chemical potentials above) as:

K= H (Ci exlz(eﬁufx))”" _ H (CC_Z ) 2.13)

where we abbreviated y; = exp(Bu;) in the last step.

In chemistry, the activity a; = exp(B(u; — 1)) = c;yi/c® of species
i is introduced for convenience (and we will use this convention
in chapters 5 and 6 too). With this abbreviation the equilibrium
constant is equivalently given by 2:

— Vi
K= H a’. (2.14)
i
The equilibrium constant can be determined from experiment
via the concentrations in the infinite dilution limit:

K = lim (i) . 2.15)

¢—0 4, c®
i

The choice of the experimental reference state guarantees that

=i
2Sometimes people define the activity by a; = exp (HIR#‘ ) Then they employed:

—®
a; = exp (#;(B;’ ) and inserted 1 = II:],—Q, identifiying the universal gas constant

R =kgNy and fi; = Nap;. Reporting the activity like this does not change the
value of a;.
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the activity coefficients y; — 1 in the limit of infinite (high)
dilution.

2.3.1 Example: Ideal Weak Acid

Many phenomena occurring in reacting systems can be under-
stood through examination of the ideal case, where there are no
interactions present, resulting in activity coefficients y; equal to
one.

Let us consider the example of a Brensted acid HA releasing a
proton (H*):
HA =—— H"'+A" (2.16)

In the ideal case (¥i : y; = 0) the equilibrium constant is given

by:

CA-CH+
K= 2.17
CEac® (2.17)

For the simple example of an ideal acid one finds two important

laws: first, the response to a change in H* concentration, and
second, the law of dilution.

Response to a Change in H* Concentration

The law of mass action (equation 2.17) can be used to understand
the dissociation response of an ideal acid. Since K is a constant,

a change of the H* concentration has to affect the other two
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2.3 Chemical Reactions

concentrations. In the following, we look at the degree of
dissociation® a, defined as:
CA-

ad = —-.
CHA + CaA-

Rearranging equation (2.17) yields the ideal titration curve (or
Henderson-Hasselbalch equation):
1
a=—7, (2.18)
1 - 10pk-pH

where pK = —log,,(K), and pHY = - log,(cj;/c®). This equa-
tion describes how an ideal system reacts to a change of H*
concentration, see figure 2.1

An increase in pH can be achieved in the experiment via adding
a strong base, a decrease in pH can be achieved by adding a
strong acid to the solution.

Law of Dilution

Let us assume that the concentration of titratable units is given by
Co = cHa +ca-. If protons are only generated by the dissociation of
the acid, then the concentration of H* is equal to the concentration
of A™: cy+ = ca-. Rewriting equation (2.17) gives

>
= —A7
(co —ca-)c®’

c
K

3 Alternatively, sometimes the degree of association is chosen: 7 = 1 —a =
cHa/(cHA +ca-)-
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Figure 2.1: Ideal titration curve for pK = 4: The higher the pH value,
the lower the H* concentration, resulting in an increased
dissociation (¢ — 1). In contrary, the lower the pH value,
the higher is the H* concentration, resulting in a decreased
dissociation (o — 0).

which yields for the degree of dissociation « := C?—O’:

1 VKc® VKc® + 4cp — Kc®
o= )

Co

(2.19)

This is called the law of dilution. It predicts the two limit-
ing cases limg o = 0 and lim._oa = 1 which is easily seen
by applying L'Hopital’s rule. As a result, the dissociation of
the acid increases as the concentration of titratable units de-
creases. The law of dilution does not hold anymore if a signif-
icant amount of H* is generated from the autodissociation of
water H,O

H* + OH"- If the released amount of H*
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2.4 Poisson-Boltzmann Theory

ions is negligible to the protons released by the autodissociation
reaction of water, the pH is essentially unaltered and constant.
Further dilution does not affect the degree of dissociation. For

interacting systems the law of dilution does not have to hold.

2.4 Poisson-Boltzmann Theory

The Poisson-Boltzmann (PB) theory is frequently used for de-
scribing electrostatic interactions in ionic solutions [23]. In this
chapter, the main assumptions needed for deriving the PB equa-
tion are stated. The following derivation of the PB theory is
inspired by publications [24, 17]. We begin by considering a
system of volume V, which contains some fixed charge density
psand additionally some mobile ions, which explore the phase

space{ ,p N1,

The canonical partition function of this system is [17]:

Z({Ni}’ V’T) = H N 'A3N‘ H VN fd3N’TeXp ﬁECoulomb( 1’1}))

Zxin Zecont

(2.20)

As seen before, the free energy F = kT In(Z) splits into an ideal
part and a part relating to the configuration (see equation (2.2)).
Using the Stirling approximation In(N!) = N In(N)— N, we obtain
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for the ideal part:

NiASY: 3N
ﬁFidzln( VN?’]:Zm(&] ZN(ln(NA3/V) 1),

i i

(2.21)
:Z f ci(In (ciA?) - 1) (2.22)
i 1%

where A; = h/ V2rum;kpT is the thermal de Broglie wave length
and i is the index of the different species present in the system.

Unfortunately, the configurational partition function in equation
(2.20) cannot be easily used to gain further insights since it ex-
plicitly depends on the instantaneous charge density p(7) [17]:

Ecotans(7) = 5. | #1019 2.23)

where 1)(7) is the total electrostatic potential and p(7) = p(¥) +
Y. 9i6(F — 7;) is the total charge density for a given configuration.
The electrostatic potential itself depends on the positions of all
charges (7; and the fixed charge density). We can formally obtain
1 via integrating the lioisson equation AY(7) = %g) with the
Greens function G(7 — ')

B = f e i e (2.24)

where €, is the relative permittivity and €y is the vacuum per-

mittivity. This results in an alternative expression for the instan-
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taneous Coulomb energy (neglecting the renormalization for

self-energy terms proportional to G(@0) [17))

Hor
ECoulomb( rz fd3 fd3 ’ P(T’ p(r) (225)

4dreper — 1 |

For a rigorous treatment of how to obtain the Poisson-Boltzmann
free energy functional we refer to [17] and [25]. The main
idea is to introduce a mean-field Y™ and an average charge
density pMF. It is then assumed that the configurational partition
function can be approximated via Zcont = .; €XpP(—BECoulomb,i) ~
exp(—p{Ecoulomb))- From the analytical treatment [17] it is found
that (Ecoulomb) is the mean-field electrostatic energy:

1
Fconf = <ECoulomb> = E f d3rpMF(f>¢MF(f’)/ (226)
\%

where pME(7) is the mean-field charge density given by:

PME@) = ps(P) + Z qici(®), (2.27)

and ¢;(7) denotes the density of particles of type i.
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Sometimes different notations for the electrostatic energy

are used in literature. Using the Maxwell equation for the
mean field charge density pMF = ege, V- EMF (with the mean
electric field EMF) we can rewrite the PB electrostatic energy

1
(Ecoulomb) = Ef‘;d?’rpMF(?)\I’MF(F)
== f &Prv - EMPWME(7)
14
using the relation
V(EMFQMF) - \pMFy | PMF 4 PME |y MF

and VWMF = _EMF o6 obtain:

{Ecoulomb) = 602€r ( f B rv (WM (HEMF) + f EMF2d3r)
v v

Using Gauss law we obtain

(Ecoutomb) = 5" f dS- (WMFRAEMF) 4 [ EMF 3y
2 A% v

However, on the boundary of our volume the total mean
electric field perpendicular to the surface is by construction
zero (due to charge neutrality) and therefore the first term
vanishes if WM does not diverge on the boundary JV.
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2.4 Poisson-Boltzmann Theory

Hence, the electrostatic energy is alternatively given by:

€0Er 2
(EC0ulomb> = 02 fEMF dST’
\%4

Using the superposition principle of electric potentials yMF :=
YMF + 4 ¢, we arrive at the final Poisson-Boltzmann free energy

functional:
Fpp[{ci(A}] = F'¢ + Fof
= Z f d3rkBTCi(17) [ln(cl(f’)Af’) - 1]
—~ Jv
+ % Z‘ fv zieoci(P) [YMT(P) +  (P)] dr
1 (2.28)
+5 fvd3fpf(7)¢f(7)
:Zjﬁmﬂqﬂwmmﬁq]
—~ Jv
€0€r 2
C [ampog,

From now on we will drop the superscripts MF for simplicity of
notation.

The free energy Fpg describes a canonical system with constant
number of particles {N;}:

N; = f Prei(?). (2.29)
v
We can obtain the grand potential via a Legendre transforma-
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tion [25]:
OV, T, {uh) = F= Y wiNi, (2.30)

where the last term can be rewritten as an integral

Z”fNi = Z fv dryici(7) (2.31)

with y; = pi(7) = const. The grand potential is, therefore, given
by:
Qlfci}l = Fepl{ci(M)}] - Z fd3wz'6f(f)~ (2.32)

ief+-1 vV

The Poisson-Boltzmann theory is expected to work well in aque-
ous solutions if there are no multivalent ions, high charge den-
sities (e.g. at high compression of the gel) or high ionic concen-
trations [26, 27]. Inaccuracies in Poisson-Boltzmann theories
arise due to neglecting ionic correlations and excluded volume
effects.

2.4.1 Derivation of the Poisson-Boltzmann
Equation

Requiring that the variation of the grand potential is extremal
yields:

0Q 0= OFpp[{c:(}]

5¢; oc; F
_ (SFid 5Fex .
= %o D+ 50—
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2.4 Poisson-Boltzmann Theory

Using equation (2.22) we obtain:

Hia(?) = ei() (2.33)

Varying the excess contribution

Fex =€ Z j‘;zici(ﬁ[%‘l’m(ﬂ+Wf(ﬂ]d37+%£d3fpf(ﬁwf(ﬂ,

ie{+,—}

we obtain the excess chemical potential *:

pos() = 52 o (P = zieo [WH7) + Wi ()] = zieg W (),

4 Variation of the excess free energy with respect to the ion density gives two
contributions.
The first contribution is the variation of the free energy of the ion-ion interac-
tion where we need to apply the chain rule [25]:

bc](r) . 5\I’m(7) 3
6C] r’) { e[g‘ )szcz(f)\ljm(?)d 7’] = EOZ]]‘; 3e;( )\I’m _))"'ZCI(") (5(:]-(1’/) &r

\ﬁ/_d NE—
S(r—r") G(r-r")

1 - , -,
= 5e0z; | W) + f Zci(r)G(r—r)aPr = 002} V(7).
VT

Wi (7)

The second contribution is,

bC](r’) € EZ fz C,(17)\I/f(;7)d3r = eﬁzzwf(f').
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Therefore in total the chemical potential is given by:
ui = kg TIn(AZci(7)) + zieo W (7) (2.34)
We can solve for ¢;(7) which gives

ex i) exp(Bu;®)
= ¢i(r) = % exp(—zifeg ¥ (7)) = — 3 exp(—zifeg¥(7))
' (2.35)
where we have used the fact that the chemical potential is

i

independent of the location 7. Inserting the reservoir chemical
potential ui* = kgT In(cI*A?) + z;eg W™ we finally obtain:

ci(r) = ¢ exp (=zifeo(V(7) — '), (2.36)

where ¢ is the density in the reservoir. Since potentials can
be arbitrarily shifted, we choose W™ = 0 for convenience. The

prefactors e alone, without the reservoir potential, have no

physical meaning® [28].

Knowing the functional dependency of the particle densities on

the electrostatic potential, we know the charge density in the
_p0

., Obtaining
T

system and insert it into Gauss’s law ,V?,‘P(f) =

a self-consistent equation for the electrostatic potential:

1
VY = -
2W(7) e

Z ziegc}® exp(zife[ V™ — W (D)) + ps(7) |-
(2.37)

This is the Poisson-Boltzmann equation.

5 In the canonical ensemble ™ takes has the role of a normalization constant
such that equation (2.29) is fulfilled.
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2.4.2 Pressure Tensor

The grand potential is given by the Legendre transformation of
the free energy:

Q=F=) Ny = ~(P)Y, (2.38)

where (P) is the mean pressure and (N;) the mean particle number
of species i in the system. In integral form the grand potential
equals [29]:

a- [ e~ Y v =~ [poav. e

where we have introduced a local pressure P(7). This form is
obviously equivalent in regions where there is no interface, or in
systems without interactions, since the pressure is isotropic and
homogeneous. More care is however required in the presence
of interfaces [29]. Making use of the above equation (2.39), we
equate the integrands and obtain the result that the local pressure
is given by the local energy densities [23, p. 21]

P = — fl{ci(M)] + 2 wici(?), (2.40)

where f is the free energy density and p; the chemical potential
of species i, which is imposed in the grand-canonical ensemble.
For an ideal gas, equation (2.40) is easily verified: In agreement
with equation (2.22) the ideal gas free energy density reads:

flle@) = kT ) e (In@@A) -1).  (@4D)
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We obtain the ideal gas pressure by inserting the above free
energy density and the chemical potential y; = kgT In(c;A?) into
equation (2.40):

P() = kT ) (M), (242)

where of course the densities ¢;(7) do not depend on the location
(ci(’) = (N;)/V) which gives the typical ideal gas result P =
ksT LAN/V.

Using equations (2.40) and (2.28), we obtain the local pressure in

an ionic solution in front of an interface [23]:

€€y

P( = kBTZi“ &) + TS E@P. (2.43)

Unfortunately, the usage of equation (2.40) is limited, since the
local pressure is a tensor in the presence of electric fields [30].
The pressure tensor which governs a PB system is given by the
Maxwell pressure tensor and an isotropic kinetic part [28]:

P(7) = kT ), () + SEE(? |1 - eoe EA O E®),  (244)

The components of the pressure tensor in a Cartesian coordinate

system are illustrated in figure 2.2.
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>py [P

— \\
V<<

Figure 2.2: The components of the pressure tensor P in Cartesian coor-
dinates.

The average pressure normal to a surface S (with local normal

vector 7i(7)) is given by [28]
b= 5 [ OR@RS .45

where dS is a surface element and S = fs dS is the surface area.

In Chapter 3, we consider a charged rod in cylindrical confine-
ment with radius Ryy: to which we couple a grand-canonical
reservoir of ions. Using the above pressure tensor formalism, we
obtain the pressure on the cylinder boundaries, which are also
predicted by the contact value theorem [31, 24]:

P(Rou) = ksT ) ci(Row), (2.46)
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as well as the pressure on the cylinder top as [28]:

€0€r
Peap = ksT Z(o,)z + °T<E3>Z, (2.47)

where E, = —d,(r) is the radial component of the electric field,

. . . . R()Ut
€o is the vacuum permittivity, and (E;), = nZR—’; b rE,(r)dr
out

denotes the average radial electric field over the cap.

The result in equation (2.46) looks like an ideal gas result only
because the mean electric field at the outer cylinder boundary, at
r = Rout, 1S zero.

2.5 Particle-Based Simulations

As we have seen at the beginning of Chapter 2 on statistical
mechanics, interactions of particles influence the properties of
the system, and only in rare cases can the partition function of
the system be determined analytically. In the following, we in-
troduce particle-based simulations which obviate the intractable
analytical evaluation of the partition function and instead esti-
mate the average value of an observable A(FN, ) numerically.
In the canonical ensemble the average value of an observable is
given by:

M
1 _pgqin N 1
A = | @NrAPN, PN) e PHE ~ — ) 7,
(A fv ™, 7N > TN
E/_/ k=1
pr(PN )
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2.5 Particle-Based Simulations

where the estimation in the last step requires the simulation to
draw samples k from the joint probability density of particle
positions and momenta pi (7Y, V).

For observables A(7") which do not depend on particle velocities

the calculation simplifies because momenta may be integrated

out:
in % \fv}\} dSNrﬂ(?N)E_ﬁEpm(fN)
M
L o 1 (2.48)
= fN dSNry{(F) VNE',E BEpor(™) ~, » Zﬂk/
Y — k=1
pr(™N)

where the estimation in the last step only requires that the simu-
lation draws samples k from the probability density of particle
positions px(7Y). In the simple average over discrete states k, these
sample states have to be drawn with a probability proportional

to pr(”') — a concept known as importance sampling [18].

Before introducing molecular dynamics simulations, Monte Carlo
simulations and associated simulation algorithms for systems
with chemical reactions, we define the particle interactions which

are present in our systems.

2.5.1 Interactions

Systems with interactions deviate from a simple ideal gas. Here

we discuss how to incorporate the two most relevant kinds of
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interactions into our particle-based simulations: the electrostatic

interaction, as well as interactions modeling chemical bonds.

Electrostatics

The Coulomb interaction energy of two particles with charges
q1 = z1€9, 2 = Z2€p (z1 and z, denoting their valencies) is given
by [18]:

—= = AgkgT—=,
Ea(r) = 4nereo 7 BEBS T

where ¢ is the elementary charge, r is the particle distance, €y
the vacuum permittivity and e, the relative permittivity. In the
last equality we used the Bjerrum length Ag which is the distance
where the interaction energy of two elementary charges is equal
to the thermal energy kgT :

& €
k T = L= /\ =
B 471 g€ A B 4n co€r kgT

Changing the Bjerrum length at constant temperature (i.e. €;)
can be interpreted as changing the solvent. For water at room
temperature the Bjerrum length is Ag = 0.71 nm.

The sum of the pairwise electrostatic energies gives the electro-

static energy of a system of many charges [18]:

Eel(r /\BkBTZ Z‘ “iE

11]1+1 —1’]

In simulations employing periodic boundary conditions, the

electrostatic energies and forces can be evaluated efficiently
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using a numerical electrostatics solver like such as the P°M
algorithm [32, 33, 34] (for 3D periodic systems).

Weeks-Chandler-Andersen Potential

One popular interaction potential for simulating almost hard
spheres, is the shifted and truncated Lennard-Jones potential, i.e.
the Weeks-Chandler-Andersen (WCA) potential [35], which has

the following from:

4€L] [(%)12 - (%)6] +ey ifr< 21/60

0 else,

Ewca(r) =

where o is the diameter of the WCA particles and €;; the in-
teraction strength of the WCA potential. Since the gradient
—VzEwca(r) > 0 is strictly positive, the potential is strictly re-
pulsive. A purely repulsive short ranged interaction mimics a
good solvent, in which the particles try to maximize the solvent
accessible surface and do not cluster together. Poor solvent
conditions could be modeled via an interaction potential with
additional attractive parts. When we simulate a charged system
a short ranged repulsive potential is needed to avoid the collapse
of opposite charges into one point.

Bonds

In order to simulate polymeric systems, it is essential that the
monomers are bonded together. Bonds restrict the accessible
phase space of the involved particles. A common interaction
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potential for bonding particles together is the “finite extensible
nonlinear elastic” (FENE) potential. The FENE bond energy is
given by [36]:

1 ) r 717
Ereng(r) = _EkFENERmaX In{1- [ ] ,
where kgpng defines the strength of the bond and Rpax is the
maximal stretching of the bond: the bond energy diverges when
the inter-particle distance  approaches Ruax.

2.5.2 Molecular Dynamics Simulation

Having defined a simulation model, i.e. a set of particles which
have certain interactions and the thermodynamic ensemble, we
are interested in obtaining information about ensemble averaged
observables (A).

For a system with conserved energy (i.e. in the microcanonical
ensemble) Newton’s equation of motion determine the trajectory
of each particle:

7
mi—gt = F() = =ViEpar(™), (2.49)

where t is the time, m; is the mass of particle i, 7, its position, ﬁ,
the force on particle i and Epot(7) is the potential energy of the
system, a function of all particle coordinates 7. For a system
with WCA, FENE and electrostatic interactions the potential
energy is:

Epot(?) = Ewca(™) + Epeng(P) + Ea(P).
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The idea behind molecular dynamics (MD) simulations is to
find these trajectories. The equations of motion for systems
containing many interacting particles can typically not be solved
analytically [18]. Therefore, we use a numerical integration
scheme to solve the equations of motion. In the microcanonical
ensemble we are interested in systems with conserved energy. For
these it is especially important that the integrator is symplectic
and energy conserving [18]. One such integration scheme is the
Velocity Verlet integrator [18, 37]:

. Eit
Fi(t + Af) = 7i(t) + Ti(t) At + ﬁAtz
Zmi
Fi(t) + Ei(t + At
Ti(t + At) = Ti(t) + l()—IUAt,

2m;

where ¢ is the discrete time, 6t the time step of the integrator,
i indexes the particle and 7, 7;, m;, ﬁl are its position, velocity,
mass and the force acting on it.

Solving this set of differential equations, a molecular dynamics
simulation generates a trajectory in the 6N dimensional phase
space of the N particle system. Observables are calculated as a
time average:

1 (T
(A) = lim — fo Ar)dt

i(t=T)=N L& (2.50)
r— IADALt = — iAt),
NA? i(t:zo)zo AGADAL= T ;ﬂ(l )

which is equal to the ensemble average of ergodic systems.
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Langevin Dynamics

When simulating other ensembles (like e.g. the canonical ensem-
ble) we can modify the deterministic Newtonian equations of
motion and add random influences, converting the differential
equation to a stochastic differential equation. This approach
is for example taken in the Langevin equation for performing

simulations at constant temperature.

The Langevin equation couples the system to a heat bath [37]
and therefore acts as a “Langevin thermostat”. We introduce
a Gaussian random force ﬁi(t) and a damping constant y in
Newton'’s equations of motion (2.49) [37]:
&7, dri 3
miﬁ = —ViEpot(™) — Vmid—; + Ri(t).
This Gaussian random force on particle i has the mean value

Zero:

(Ri(t)) =0
and a Dirac-6 distributed autocorrelation:
(Ri(t) - Ri(t + 1)) = 6ykgTm;6(1), (2.51)

with the thermal energy kgT and the lag time 7. The random
forces on two different particles at a given time ¢ are uncorrelated,
Le. (Ri(t) - Ri(t)) = 0.
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2.5.3 Monte Carlo Simulation

Monte Carlo simulations allow the calculation of ensemble av-

erages [38]. Applying Monte Carlo sampling does not produce

physically meaningful trajectories in contrast to MD which solves

Newton'’s equations of motion. In statistical physics the prob-

ability P; of a given state i is directly encoded in the partition
sum: "
i

7= Zw = Pi=-, (2.52)

where w; is the weigth of state i, which is in the example of
the canonical partition function given by w; = == exp(—pH)).
Taking samples according to the probability distribution P allows
to calculate the ensemble averages A very efficiently:

(A = Z‘ AP; ~ %] Z‘ As, (2.53)

where the fist sum runs over all states and the last sum runs over
all samples which were collected. This is the idea of importance

sampling.

We can construct a Markov chain which is transitioning from
one state i to another state j such that all states are visited with
frequencies proportional to their probability P. A Monte Carlo
algorithm generates a Markov chain which has the (unique)
stationary distribution equal to the probability distribution P.
The algorithm has the Markov property because the probability
for the transition to a new state soley depends on the last state

but no previous ones.

In the Metropolis algorithm [39] we propose a new state, but

49



2 Theoretical Background

accept or reject it with a certain acceptance probability. Therefore,
the Monte Carlo method is a rejection sampling method [38].
The acceptance probability has to make sure that the resulting
transition probabilities P;_,; (from state i to state j) and P;,; (from
state j to state i ) obey detailed balance [18]:
P, P
P,'_>]'P,' = P]'_>,‘P]' & a = E, (254)
with the probabilities P; and P; resulting from the statistical
ensemble we want to simulate.

Given a symmetric proposal probability of states g;,; = gj.; we
have the transition probability P;_,; = g;-,; - acc;—;. The detailed
balance criterion (2.54) is then:

57+ ACCj—si P
8is7 " ACisj — (2.55)

gjsi raccjsi Py
One possible choice of the acceptance probability which guaran-
tees detailed balance is:

P,
acc;—; = min (1, F]) (2.56)

This is easily understood: if % > 1, then 5 < 1 and we obtain
] 1

acCinj &

accii  Pi°

Using the Metropolis choice (2.56) for the acceptance probability,
we therefore, transit from state 7 to j and obeying detailed balance.
Technically, we draw a uniform random number r between 0 and
1, accept the transition when r < acc;,; and reject the attempted
transition otherwise. Although there are other choices for the ac-
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L . P . .
ceptance criterion — like acc;—,j = 5% — the Metropolis choice
] Pi+P;

is typically used because it has good convergence properties: if
the proposed state has a higher probability p; than the previous
state, then the move is always accepted. In some situations, con-
vergence of the algorithm can further be improved by breaking
that symmetry in the proposal probabilities [40]: g;; # gj-i.
The detailed balance condition (2.54) is then rearranged resulting

in:

acci»j _ Pjgj-i
accjni  Pigis;

P, i
I8} ) (2.57)

= acc¢-; = min (1, P
i8i—j

which can be used with the Metropolis choice resulting in the ac-
ceptance probability for the Metropolis-Hastings algorithm[40].

Canonical Monte Carlo

From the partition function (2.1) we see that the probability of
finding a certain configuration i in the canonical ensemble is
given by:

_ exp(_ﬁEpot,i)

i =
(=)
—

Using equation (2.56) we obtain the acceptance probability:

acc,j = min (1,exp(—‘B(Ep0t,j - Epot,i))). (2.58)

One can combine and/or mix Monte Carlo and molecular dy-
namics steps in one simulation and still take samples from the
canonical partition function [41, 42]. When mixing MD and MC
steps, we find that it is necessary to introduce an “exclusion

radius”: Monte Carlo moves may accept to place particles very

51



2 Theoretical Background

close to each other, resulting in high energy states due to the
short ranged repulsive interaction potentials. Although these
high energy states are rare, they typically result in forces which
are outside the stability window for the MD integration scheme
which results in a broken simulation. One way to avoid this
problem, is to modify the proposal probability: we do not pro-
pose MC moves which result in particles being placed very close
to each other or “inside the exclusion radius”, typically 0.90. On
the other hand we also do not propose moves which remove
particles which are within the exclusion radius. Thus, detailed

balance is obeyed.
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Grand-canonical Monte Carlo

As outlined earlier, the grand-canonical partition function is
given by equation (2.6):

Zo(pa, - pz, V,T) = i iZ( V,T)exp(ﬁliNiM)
i=1

Ni=0 N,=0

3
i

][Iy

N1=0 N.=0 i=1
———
Ziin({Ni},V,T)

V4
1
[HW [ o [pEmts ] i
=1 Vi

E((N:i},V.T)

exp [ﬁ Z Niy,-] ,
i=1

Here we see that the probability of finding a certain set of particle

numbers and a certain configuration k = {N;, i} is given by:

1 z
Py = = Ziin(INF}, V, T)e PEror B L Nt (2.59)
Zc
where Zyi,({N' } V,T) = —— is the kinetic canonical partition
N

function of species i and where Zc = XN Z({Ni}, V, T)efriNi . Sim-
ilarly, we find the probability for a state j.
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Therefore, the acceptance probability in a grand-canonical Monte

Carlo simulation is:

1%

)
H N;(k)! ;
aCCk_)] — min [1, (F LeiﬁAEpoﬁ’ﬁ Zi Hl(Nx(])le(k))
i i

Ni(j)! '
(2.60)
where the products and sums run over all species i, which are

)Ni(j)Ni(k

exchanged with the reservoir in the attempted move.

For the insertion of two particles (e.g. a positive and a negative
ion) at the same time, the corresponding acceptance probability
is [43]:

V2 1

1, eﬁ(,u++,u—_AEput) .
8 (N + )N, + 1)

aCCinsertion = min

We could apply this equation directly, however, if we want to
simulate a reservoir with a given salt concentration concentrations,
we do not (yet) know which chemical potentials i, u_ represent
this concentration. We circumvent this problem by inserting the
definition of the chemical potential i; = kT In(ciA?) + p®* and
exploiting that the chemical potential in the reservoir and the
simulated system are equal in the grand-canonical ensemble p; =
(1%, We obtain the following modified acceptance probability:

. ]. res,ex
ACCinsertion — MIN 1, Vzclfsciesmeﬁ”s e }gAEPM) .
2.61)

res and the excess

It contains the reservoir concentrations c’® and ¢

chemical potential of inserting an ion pair into the reservoir u;">*.

res,ex

It remains the problem to determine ", which can be done
with the Widom insertion method (see next section).

54



2.5 Particle-Based Simulations

Widom Insertion Method

The Widom insertion method is used to determine the excess
chemical potential of species [18]. Determining the excess chem-
ical potential is a task which we left open in Section 2.1.1.

The excess chemical potential is given by the partial derivative of
the conformational free energy with respect to particle number
and results in [18]°:
aFCOﬂf N‘, V, T
‘u?x — % — Fconf(Ni + 1’ V,T) _ Fconf(Ni, V, T)
i

1

(2.62)
:—len( f d3rNi+1<exp(—ﬁAEpot))N).
Vv

In order to estimate the excess chemical potential with equation
(2.62), we insert particles at random positions in the box and
measure the associated change in potential energy [18]. Since
these insertions are only temporary, the Widom insertion method
is a Monte Carlo method that employs “virtual moves”, i.e.
moves which are never accepted [44].

When the inserted particles carry a charge, it is important to
keep the system electroneutral, or else the measured change in
energy would be different. In the case of inserting a positive and
a negative ion simultaneously, the corresponding formula for

6The formula for the excess chemical potential is different, if we want to
determine it for a system simulated in the grand-canonical ensemble or the
isothermal isobaric ensemble.
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Figure 2.3: Linearly interpolated excess chemical potential ™ for
inserting a pair of ions as a function of ionic strength I =
%(c_ +c4) = ¢, = c_. Error bars are smaller than symbol
size. Orange points mark experimental results which are

res,ex

calculated form the activity coefficients y, = exp(B(uy>" +
p>)) provided by [45] and [46]. The deviations of the
simulated data with the experimental data at high ionic
strength are consistent within the simulation model.

the excess chemical potential is:

res,ex 1
pe = —kgTIn|— f f d3rN+1d37N+2<eXP(_ﬁAEpot)>N ’
vz vy
(2.63)

We repeatedly need the excess chemical potential for simulating
systems in contact with a reservoir of specific ionic concentration
of monovalent ions. Therefore, we provide the data in figure 2.3.
The simulations, yielding these data, were performed for systems
containing 400 monovalent ion pairs (i.e. in total 800 ions) at
temperature T = 300K, with €, = 80 and ions interacting with
the WCA potential. By changing the volume of the simulation
box, different ionic strengths were achieved.
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For an electroneutral reservoir, containing only ions with

valency z; = 1 and otherwise identical interactions, the
excess chemical potential (needed to add one additional ion
pair) only depends on the ionic strength I"*® = ¥, ¢/*z7. In
contrast, if our reservoirs contained particles with different
interactions, e.g. additionally some multivalent ions or
ions with different interaction potentials, then the excess
chemical potential would depend on the exact reservoir

composition ¢y, o . ...

With the above insertion of a pair of ions, we can only determine
the excess chemical potential of an ion pair. The single ion excess
chemical potential cannot be determined because we cannot add
a single ion and maintain the electroneutrality condition. The
activity coefficient of the ion pair is:

Vpair = exp(Bps™). (2.64)

It is now convenient to define the mean activity coefficient y. =

\/Vpair OF equivalently the mean excess chemical potentials:
ylfs,ex - #1;(es,ex — H;eS,EX/Z' (2.65)
We make use of this mean activity coefficient in the definition of

pH in Chapter 5.
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Reaction Ensemble Method

Since we are interested in modeling weak polyelectrolytes we
need a simulation algorithm that is capable of simulating chemi-
cal equilibrium. Following the derivation by Heath et al. [19], a
derivation of the reaction ensemble method is given. Using this
simulation method, we can simulate arbitrary reactions, such as

the one given in the general reaction equation (2.9).

The reaction ensemble method is a Monte Carlo method closely
related to the grand-canonical ensemble [19, 47]. Restricting the
particle number fluctuations in the grand-canonical ensemble to
those which follow the stochiometry of a chemical reaction, e.g.
(2.9), we obtain the reaction ensemble. For transitioning from
state k to a state [ = {N¥ +v,;, ANi+7i} due to a chemical reaction
r with stochiometric coefficients v, ;, we obtain (using equation
(2.60)) [19]:

=min|1, V" AT | BEivitii | p=PAEpor i |
i=1 ! (N? + Vi)!

(2.66)

or via using the chemical equilibrium condition AG =} ; pv; =
0

z

acCy_; = min (1, v’ H
i=1

NO!
1

(N? +v)!

e PAEpr H'], (2.67)

where

e J;is the thermal de Broglie wave length of species i

58



2.5 Particle-Based Simulations

o T=[I;A;> := K- (c®)" is proportional to the equilibrium

constant K

o N; denotes the number of particles of type i

® AEpot, k-1 = Epot,1 — Epot, k is the potential energy difference

between the states before (k) and after (/) the reaction

attempt.

e V stands for the volume of the system

o v; is the stoichiometric coefficient of the reacting species i

in the chosen reaction

e v = ).v; denotes the total change of the number of

molecules in the chosen reaction

Simulating in the reaction ensemble at constant volume involves
the following steps [47, 19]:

1. Change the conformation with a canonical Monte Carlo

algorithm or NVT molecular dynamics

2. Perform a reaction trial move:

a)

b)

Choose a reaction and a direction with uniform prob-
ability

Randomly select reactant particles, exchange the se-
lected reactant particles with the corresponding prod-
uct particles. If there are more product particles than
there are reactant particles, create new product parti-
cles. If there is an excess of reactant particles, delete
the excess
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c) Assign Maxwell-Boltzmann distributed velocities to
newly created particles (important if MD moves are
used for changing the configuration of the system)

3. Use the acceptance probability (2.67) to decide whether to
accept the trial move or not. If the move is not accepted,
restore the state of the system prior to the trial move

4. Repeat, starting from step one

Constant pH Method

The work detailed in this section was published earlier in the
following publication:

J. Landsgesell, C. Holm, J. Smiatek. “Simulation of weak
polyelectrolytes: A comparison between the constant pH
and the reaction ensemble method” In: The European Physi-
cal Journal Special Topics 226(725-736) (2017)

URL: https://dx.doi.org/10.1140/epjst/e2016-60324-3

The constant pH method is an alternative way of implement-
ing chemical reactions in equilibrium in computer simulation.
As before, we consider the special case of a weak acid which
dissociates and which follows the chemical equation (2.16).

The partition sum of the constant pH ensemble is given by Reed
and Reed [48] as a sum over all degrees of association # and over
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all corresponding configurational microstates i of the system:

N -7
= X S D e, 269

7l i()

where Ny is the number of titratable unitsandn = 1—a = NTH;‘ the
degree of association. The individual probability for a microstate
with a certain degree of association reads

No

(1- ﬁ)NO)xNO(l_ﬁ) exp(—PEpo, i) (2.69)

p(i, Epoy, i) = (
with x = 10PHn"PK where pH, denotes the pH value and pK the
negative decadic logarithm of the dissociation constant, which
are both simulation input parameters. A deprotonation step for a
single titrable group can be expressed by a change of the degree
of association A7i = 1/Nj in order to describe the transition from
(1, E;) to (n — An, E;). The Metropolis acceptance probability [39]
for this Monte Carlo move reads

(. p(it = ATt Epoy ;)
o P2 4 2.70
ACCass—diss = MIN ( p(?’l, Epot, i) ( )
which yields
N
. ((1—ﬁ+£ﬁ)N{)) NoAn
p—— X exp(—B(Epot,j — Epot, i)
(1—7'1)N0)

(2.71)
after inserting Eqn. (2.69) into Eqn. (2.70). This expression can be
reformulated for a single deprotonation step (A7 = 1/Ny) which
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reads

N
((1—Fl+17N0)N0)
R PN exp(—BAEp) | (272)
(1-7)Ny

ACCass—diss = Min| 1,

with AEpot = Epot,j — Epot,i- By using the relation

((1 n+1/N0)No) _ Non No—e0 Noii. Nua
T No(1-7)+1 No(1-17) Nu-

(2.73)
((1 n)N

in the thermodynamic limit of an infinite number of titrable
groups Ny, we finally obtain a simple expression for the accep-
tance probability in the constant pH method with a symmetric

dissociation proposal probability according to
NHA - ol -pK
ACCassdiss = Min |1, N—lOP in"P% exp(=BAEpot) (2.74)

which can be equivalently formulated for a protonation or asso-

ciation reaction, respectively.

This formulation of the constant pH method is especially useful
for a comparison with the reaction ensemble (which also uses
symmetric proposal probabilities). We performed a direct com-
parison of the reaction ensemble and the constant pH ensemble in
reference [4]. The key take away is that the implicit treatment of
the protons gives serious deviations due to missing electrostatic
screening at high and low pH.

In literature, the constant pH Monte Carlo method typi-
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cally uses the asymmetric proposal probabilities gdiss—ass =
N4- /Ny for a protonation and gass—diss = Nua/No for a de-
protonation, i.e. Gdiss—ass # Sass—diss- 1his choice of the
proposal probabilities yields the Metropolis-Hastings accep-
tance probability to accept a trial move from state k to state
I:

accy; = min (1, e PAF107 (P PK)), (2.75)

where AEpo = Epot1 — Epotk is the change in the potential
energy due to the exchange of chemical species, pHi, is an
input parameter and determines the underlying implicit
pH value, and pK is the negative common logarithm of the
dissociation equilibrium constant, which is also a simulation
parameter. A positive sign is used for a deprotonation
reaction (diss) and a negative sign for a protonation reaction
(ass) [48,49, 50, 51, 52, 53].

2.5.4 General Simulation Protocol

All particle-based simulations in this thesis are performed using
the simulation package ESPREsSo [54]. We use reduced units in
order to improve numerical stability of the algorithms and the
mapping of reduced units to the international system of units
(SI) is given in table 2.1.

The particles which we want to represent have a diameter around
0.355nm = 1lo. Therefore, we choose our Weeks-Chandler-
Andersen (WCA) potential to have the effective particle size
¢ = 0.355nm and interaction strength € = 1.0 kgT. FENE bonds
connect the neighbouring monomers [55], using the typical
Kremer-Grest parameters [36] krpgng = 30.0 kgT/ 02 and Ry =
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Reduced units and SI values

Basic length 0 = 0.355nm

Basic energy €=1kgT

Thermal energy  1kgT = 300 Kkg

Bjerrum length A =20 = 0.71nm (for water)
Mass m =1 (arbitrary, see Section 3.4)

Table 2.1: Mapping of reduced units used in this dissertation to the
international system of units.

1.50 (unless noted otherwise). The Bjerrum length is that of water
at roughly T = 300K (corresponding to €, = 80):
1 €

= — =0.71 = 20. 2.7
B 4drepe, kgT 0.71nm =20 (2.76)

In reduced units we choose the thermal energy kgT = 1€ (with e
the basic simulation unit of energy) and the elementary charge
to be ¢ = 14" (with g* the basic simulation unit of charge).
Temperature is accounted for, using a Langevin thermostat for
MD, or in the MC acceptance criteria. Electrostatic interactions
are calculated using the P3M method [56] tuned to a maximal

pairwise error in electrostatic force of 10~2kgT/a [57].

As shown for the canonical ensemble in Section 2.1, the ensemble
averages of all observables A(™), that only depend on the
particle positions, are independent of the particle mass. Similar
arguments also hold for the (semi-)grand-canonical ensemble.
Therefore, we do not define a time or mass scale in our systems.
The particle mass affects how fast the equilibration takes place,

but not the equilibrium itself.
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2.6 Polymer Physics

As outlined in the introduction in Chapter 1, polyelectrolytes
are ubiquitous in biological systems and chemical applications.
Common to all polymers is the fact, that they are made up of
smaller repeating units connected to chains. Crosslinking these
polymer chains yields polymer gels. Common to all polymeric
systems is that they are strongly influenced by the interactions
in the system. Therefore, polyelectrolyte systems typically react
to “external” changes in:

o the temperature

e the solvent

e the pH

e the salt concentration

o the presence of specificions (e.g. chelation with multivalent
ions)

Additionally, their behavior also depends on “internal” proper-
ties such as

o the dissociation constant in the case of weak polyelec-
trolytes , or the charge fraction in the case of strong poly-
electrolytes

o the polydispersity of the chain length distribution in the
polymer solution or gel
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The above listing illustrates the large parameter space one needs
to investigate for polyelectrolyte systems.

One main idea followed throughout this thesis is that the compli-
cated behavior of a polymer gel can be described by the behavior
of single chains in appropriate geometries. Therefore, we present
some properties of linear polymers in this section. For more
details we refer the reader to common polymer textbooks such
as references [58, 59].

2.6.1 Freely Jointed Chain

Anideal chain (also known as a freely jointed chain or a Gaussian
polymer) is the simplest polymer model. The monomers are
bonded with fixed bond length b, and do not interact with
each other. For a chain containing N monomers, the maximal
extension is, therefore, Ry.x = (N — 1)b.

In general the end-to-end vector of a polymer is given by the
connection vector of the first and last monomer.

N
Ro=in—1 = Z b;, 2.77)
i=1

where 171- is the i-th bond vector. For an ideal chain there is no
correlation in the bond-vectors, i.e. (l;ig )= bzéi,j. Therefore, the
mean squared end-to-end distance is
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where v = 0.5 is the Flory exponent of the ideal chain. For a chain
with excluded volume interactions we have an altered [60] Flory
exponent v = 0.588, and in poor solvent conditions we obtain
v =0.33.

The force needed to separate both ends by a certain distance
R. is given by the force-extension curve. The force extension
curve of a freely jointed chain can be obtained by considering
the configurational partition function of the chain. For details,
we refer to [58, p. 76]. The resulting force-extension curve f is
given by:

kT [ Re
fRe) = ==L (b(N_ 1)), (2.79)

where £7! is the inverse Langevin function. We make use of this
result later in Chapter 3.

2.6.2 Gel Models

In this chapter four different models are presented which are
commonly used to predict gel swelling:

o the Donnan model (mainly for ion partitioning) [61]
o the Flory-Rehner model [62]
o the Katchalsky model [3, 63]

o the molecular dynamics model of a periodic gel [3, 64, 65,
66, 67, 68,69,70,71,72,73,74,75,76]

All four models can be used to describe the swelling of a gel
when it is in contact with a supernatant salt solution. Typically,
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these models are used to investigate the behavior of strong poly-
electrolyte gels in contact with a pH neutral salt solution: For
pH=7, H" and OH" ions can be safely neglected and the super-
natant solution is fully described by the salt concentration cZ; .
In chapters 5 and 6 we go beyond studying strong polyelectrolyte
gels and investigate polymer systems which are in contact with

a solution which is not pH neutral.

Donnan Model

The Donnan Model is the simplest model for determining the
partitioning of ions between an infinite reservoir and a system
containing a macroion and its counterions. In this model we
treat all particles on the level of an ideal gas.

Ion Partitioning: The ion partitioning is determined based on,
first, the electroneutrality constraint for the gel system

Z 8z = 0, (2.80)

1

where z; is the valency and C?el the concentration of particle
species 7 in the gel and, second, the equality of all electrochemical
potentials

=, (2.81)

1

The (electro-)chemical potential is defined as[23]:

0, = us + ks TIn(ci/c®) + ziegip. (2.82)

Consider a simple macroion with charge fraction a and concen-
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tration cy. Let the macroion be negative so that the counterions
have species i = +. For a simple reservoir at pH = 7 the reservoir
contains only i = + and i = — ions and the concentrations inside
the gel and outside the gel satisfy:

gel
—gel _ —res ﬂ res _ jgel) _ G
yi =W < kBT (lnb IP ) - 1n[C1"€S 4

1

gel res
+

or equivalently exp (kz—OT (1,[}“35 - wgd)) =—== ?. Inserting the

ce
last equation into the electroneutrality condition (2.80) gives:
gel _ gel gel Cr_escﬂ_es

acp+c2 =c] = acyp+cZ = gel
cZ

This is the well known Donnan-partitioning [77]

— ./ 2
C§e1 _ aCO + (aCO) + 4:Cr_esctfs ?ﬁ Cl;es. (283)

2

For ion concentrations c?el # ¢* the equality of the electro-
chemical potential ﬁ?el = u;” results in the Donnan potential
Ay
ksT
Ap = e = Bt = 2 In(c /). (2.84)
€0

This potential is also known as the Nernst potential.

Gel Swelling: The Donnan model above captures the “ideal”
aspects of ion partitioning by enforcing chemical potential equi-
librium. For the free swelling equilibrium of polyelectrolyte gels,
we have to additionally prescribe mechanical equilibrium. In

mechanical equilibrium we find that the pressures at the interface
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are equal:
peel = pres, (2.85)

where P8¢ is the pressure inside the gel and P™ the pressure in
the reservoir.

The reservoir pressure is given by (compare equation (2.2)):

JFres dFiq  IFcont

Pres = — =- - 2.86
A% V. IV (286)
———
Moo

In the ideal Donnan model the conformational pressure con-
tribution Pg? is not present because we consider ideal gases

only.

The pressure of the gel is not yet specified. Clearly it contains the
kinetic pressure of the mobile ions in the gel: P& = kT ¥, ¢
This pressure contribution is purely repulsive. In order to model
the stretching of polymers, we additionally include a stretching

term:
Pgel antr _ _antr %

str 9V T OR. 9V

The introduction of the stretching term requires some assump-

(2.87)

tions:

1. an assumption about the form of the stretching free energy
Fs, or alternatively a force extension curve for the gel
ap Spt. For simplicity, we supply the force extension curve

BF@ T
! - 1)b) where N

of a freely jointed chain: —%5z= = "BT L (
is the number of monomers per Cham, b the bond length

and kgT proportional to the absolute temperature. For

small chain extensions R, this force extension curve can be
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approximated by: —ﬁ ~ —kpToRs N

2. an assumption about the deformation of the gel. We make
2
theansatz V=& =R3/A = & = %, where A is a

constant. This ansatz is motivated later in Section 3.2.

Using these two assumptions (like Richter [1, p. 35]) we obtain

the following stretching pressure:

22

(2.88)

str

gel _kB_T R A _ Li
- L ((N 1)b)3R2 ST R R

Finally, we can equate the gel pressure (which depends on the
gel volume) and the reservoir pressure:

peel(vsel) = pE(veel) 4 pESl(yeel) = pres, (2.89)

The volume V&9, which satisfies the above equation, is called
the equilibrium volume of the gel V.. This is the simplest
model on gel swelling and contains the main aspects of all other
investigated models:

e Chemical potential equilibrium

e Mechanical equilibrium
The reason for investigating further models is that the model
predictions are not satisfactory, as it was shown by Richter [1].

Therefore, we investigate more complicated models in the fol-

lowing.
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Figure 2.4: This scheme shows the mixing process of molecules A and
B modeled in the Flory-Huggins model.

Flory-Huggins / Flory-Rehner Models

The Flory-Huggins model is a lattice model used for predicting
the change of free energy due to mixing of polymers with sol-
vents [58, p. 138 ff.]. The Flory-Huggins mixing free energy is
commonly, used in Flory-Rehner theories used to explain the
swelling behavior of polymer systems [13].

Flory-Huggins Model The basic idea of this model is that the
swelling of a polymer gel in a solvent can be understood as a
mixing process of solvent and polymer. Let us consider two
lattice systems (compare figure 2.4): In the first system all Np
lattice sites are occupied by solvent molecules of type B. In the
second system all Ny lattice sites are occupied by monomers of
type A. The mixed system then has N4 + Ny = n lattice sites
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and the fraction of occupied lattice sites for species i is ¢; = %
Mixing the inital systems, results in a change in free energy
AFnix = AlUmix — TASmix which has an entropic and an inner

energetic contribution.

The entropy of a lattice system is S = kgIn(Q1), where Q is
the number of possible states (where we can not distinguish
interchangeable, identical molecules). Therefore, the entropy of a
system where all lattice sites are occupied by the same particles is
S = kg In(Q), where there is only one possible state Q = 1 because
we cannot differentiate between identical particles. Therefore, the
entropyis S = 0 for the two unmixed lattice systems. The number
of states in the mixed system is Q2 = (N4 + Np)!/(NA!Np!) where
the division accounts for the fact that we cannot distinguish

identical particles. Therefore, we obtain the mixing entropy:

ASpix = kg In(Q) = kg(In((Na + Np)!) — In(Ny4!) — In(Np!))
¢ (N (Na), Na (N
- an( n ln( n )+ n ln( n ))'
(2.90)

where we used Stirling’s approximation Inm! = Y/, In(k) ~
flm In(k)dk ~ m In m—m. Introducing the volume fractions ¢; = %,

we can rewrite this equation as following;:

ASmix = ~kon (9aln(¢a) + osIn(9p)).  (@91)

The mixing entropy for a polymer with chain length N is obtained
from “modeling of the chain configurations by a random walk
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without immediate self-reversal” [78, p. 61-65]:

ASnmix = —kBTl (PWA h’l((PA) + (1)3 ln(gbB) >0, (292)

where 7 is the number of lattice sites and N is the chain length
of the polymer, ¢4 is the volume fraction of the monomers of
type A and ¢ is the volume fraction of the solvent. Connecting
monomers to chains reduces the entropy of the system greatly,
which is reflected in equation (2.92). [58, p. 140]. In general, the
mixing entropy favors mixing. The change of internal energy
upon mixing is:

AlUmix = npadppx, (2.93)

with the dimensionless Flory interaction parameter:

_ Z2uap —Uaa — Ups
2 kgT ’

(2.94)

which describes the nearest-neighbor interactions uj between
the A and B lattice sites, where z is the number of neighbors
per lattice site. If x > 0, then the mixing process is energetically
favorable. If y is smaller than zero, then mixing is energetically
unfavorable and phase separations may occur. In total, we obtain
the (Helmholtz) free energy of mixing:

AFmix = AUmix=TASmix = Tl(PA(PBX‘i‘kBTTl % hl((PA) + qu 11’1((1)3)

(2.95)
Using ¢4 =: ¢ and ¢pp = 1 — ¢4, we get the Flory-Huggins
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2.6 Polymer Physics

equation for polymer solutions [58]:

AFnix = kgTn (I% In(¢) + (1 = ¢)In(1 — ) + x(T)p(1 — qb)),
(2.96)

If the free energy AFpix(¢) has two minima (due to the internal
energetic contribution Alniy) phase separation can occur.

The mean-field Flory-Huggins theory is very effective in de-
scribing the miscibility of polymers in a solvent because the x
parameter is an effective fitting parameter that contains “every-
thing which is not understood about the thermodynamics” of
the polymer system. Fitting x to experiments, it is found that it
varies with composition and temperature [58, p. 167].

Flory-Rehner Model: Hydrogels can be described using the
Flory-Rehner theory [13]. The free energy upon swelling is given
by the mixing free energy contribution AFp; (see above) and a
stretching free energy contribution AFj:

AF8 = AF s + AFg. (2.97)

Additionally, if there are some ionic species, the free energy

change is complemented through an ionic contribution AFjens:
AF8 = AFnix + AFgty + AFions (2.98)

Swelling equilibrium is found, where the thermodynamic pres-
sure of the gel and the solution are equal:

Pl Fgel
oV

= pres, (2.99)
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2 Theoretical Background

These theories are quite successful in describing experimental
results due to the free fitting parameter y.

Katchalsky Model

The Katchalsky model is also based on an expression for the free
energy, with a stretching contribution Fy, a contribution for the
ions Fions and one for the electrostatic interaction energy F (on
the level of the Debye-Hiickel approximation) [63]:

Fgel:Fstr+Fions+Fel

The free energy contributions are given in more detail in [1].
Because we do not work with the free energies, we do not
provide them here. Instead, we directly provide the pressure
pgel = —9F8l/9V (i.e. the volume derivative) taken from [1].

In the Katchalsky model, the volumes and the end-to-end dis-
tances are connected through V(R.) = R3/A. The pressure in the
Katchalsky model is then calculated according to

o OFs! I I I
Pl = - = P+ PR+ P (2.100)
yielding [1]:
co (fN)?Ag [5 &
Pe = —kgT— = -In(1 ,
1= RIS 3R [aarg OO
_ _ CORQ -1 Re _ -1 RO
Pstr— kBT3b(N—1) (-E (b(N—l)) ~£ b(N—l) 7
Pl = Plon = koT (25 + feo - 263 (2.101)
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where Ry = 1.2N%%8 js the equilibrium end-to-end distance of a
neutral chain of chain length[1] N. Additionally, the following
variables were introduced:

£ =6V /(RoAy V(R)'), (2.102)

which depends on the inverse Debye screening length, given

by
At = \/471/\]3\/(129)‘1 Z ziN;.

i

The swelling equilibrium is found where the pressure in the gel
equals the pressure of the reservoir:

PEl = P 4 P P4 PR 4 (DB — P ) = PR (2.103)

ext ions str ions ions ext
N e’

PI‘ES
In free swelling equilibrium we do not apply additional pressure
to the reservoir (Pg; = 0).
It is evident from the formulas (2.101) that the pressure contribu-
tions and the swelling equilibrium depend on the salt partitioning
between the inside and the outside of the gel. It is determined

solving the following two equations self-consistently [3]:

gel fCO I fCO
Csalt = \/(7) +( S(;t 2C — 7, (2104)

C=ex il 6/"NAy
= exp ge1+fm)/\1R2(1+é)

salt

(2.105)

where for C = 1 the Donnan salt partitioning (see equation (2.83))
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is obtained, which is chosen as initial guess for solving these two
equations.

Periodic Gel Model

We use molecular dynamics (MD) simulations to model peri-
odically connected tetrafunctional strong polyelectrolyte gels
on a coarse-grained level. Bonds are modeled via FENE bonds
with Kremer-Grest parameters (see section 2.5.4). The solvent is
implicitly modeled via choosing a corresponding value for the
electrostatic permittivity e;.

Figure 2.5: Illustration of the unit cell of the periodic gel model.

We simulate a cubic unit cell of a tetrafunctional gel. The unit
cell contains 16 chains and 8 nodes, i.e. in total 16N + 8 gel
monomers. An example snapshot of a periodic gel can be
seen in figure 2.5. All MD simulations are performed using
the MD simulation package ESPResSo [54]. Simulations of a

periodic gel are performed in full analogy to the setup described
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by Kosovan [3]. The number of monomers per chain in our
simulation varies: N € {40, 64, 80}.

For each simulation the volume and ensemble averaged virial
pressure inside the gel is recorded yielding a pressure-volume
(PV) curve. The Coulomb part of the pressure is calculated as
described by [79]. The simulations are performed in a semi-
grand-canonical ensemble [80] , where salt and counterions are
allowed to enter and leave the gel. The exchange of salt ions
is performed by inserting pairs of salt ions. The acceptance
probability for the insertion of one positive and one negative ion
is [18]:
ACCinsertion = Min |1, V2cescres . eﬁf‘ges'exeﬁAEPO‘)
insertion s + L= (N_ + 1)(N+ + 1) s
(2.106)
with § = &7 and AEpe the potential energy change due to
the Monte Carlo move. N; is the number of ions of species
i in the simulation volume V and ¢*® is the concentration of
species i in the reservoir. The semi-grand canonical simulation

makes use of the pair excess chemical potential in the reservoir

res,ex res,ex

Hs = Uy
negative ion (i = —) at the same time (see Section 2.5.3) so that

+ ™ for inserting a positive (i = +) and a

electroneutrality is satisfied at any time. The pair excess chemical
potential is calculated in independent simulations of the reservoir
(at different but fixed c_},) via the Widom insertion method [18]

(see figure 2.3).
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3 Improved Gel Models:
Cell-Gel Models

The work detailed in this chapter was published earlier. These
results are part of the following publications:

J. Landsgesell, C. Holm. “Cell Model Approaches for
Predicting the Swelling and Mechanical Properties of Poly-
electrolyte Gels” In: Macromolecules (2019)

URL: https://doi.org/10.1021/acs.macromol.9b01216

J. Landsgesell, S. Sean, P. Kreissl, K. Szuttor, C. Holm.
“Modeling Gel Swelling Equilibrium in the Mean Field:
From Explicit to Poisson-Boltzmann Models” In: Physical
Review Letters 122(208002) (2019)

URL: https://dx.doi.org/10.1103/PhysRevLett.122.208002

Polyelectrolyte gels show a large, reversible uptake of water
that is exploited in numerous applications. Tailoring poly-
electrolyte gels to their applications requires a sufficiently ac-
curate prediction of their swelling capabilities and elastic re-
sponses, a task that still goes beyond analytical approaches
[81, 63, 82, 83, 84, 68, 85, 86, 87]. Coarse-grained polyelectrolyte
network models have demonstrated their ability to amend ana-

lytical approaches, showing that structural microscopic details
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3 Improved Gel Models: Cell-Gel Models

can have noticeable effects on the macroscopic properties such as
the swelling [64, 88, 65, 89,70, 71, 66, 73, 3, 90]. Macroscopic gels
with monodisperse chain length can be simulated with micro-
scopic detail using molecular dynamics (MD) simulations with
periodic boundary conditions (PBCs) (cf. periodic gel model) where
a unit gel section is connected periodically to yield an infinite gel
without boundaries. These expensive coarse-grained simulations
provide predictions about mechanical and swelling properties
of macroscopic gels and revealed insights into the validity of
various analytical predictions. However, some features of real
gels like polydispersity are hard to include in such models. To
represent polydispersity faithfully, one would have to simulate a
huge volume element with many chains of different length and
a sufficiently large number of realizations. Huge particle-based
simulations with more than 10° monomers have been performed
for investigating polydispersity in uncharged networks by [91]
and [92]. To our knowledge, the only simulation study that treats
polydispersity in charged polymer gels is that of Edgecombe
[93]. Due to the computational cost of simulations with explicit
charges Edgecombe et al. are only able to simulate gels with 10?
monomers [93]. With this setup the polyelectrolyte chains are
highly correlated since the small unit cell is periodically repeated.
We compare the results obtained by Edgecombe qualitatively to
a simple extension of or our models. Additionally, even MD sim-
ulations of periodic gels remain computationally very expensive
due to the many particles and the slow relaxation times of the

involved polymers.

Thus, the development of computationally efficient mean-field
models capable of predicting swelling equilibria have been of
scientific interest in the last years [94, 68, 3, 90]. The Katchalsky
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model [63, 3, 1] (compare Section 2.6.2) is an established mean-
field model shown to predict swelling equilibria reasonably well
[3] when compared to MD simulations of charged bead-spring
gels. However, the Katchalsky model fails [3] for Manning
parameters & = Ag/{d) > 1 [95], where Ap denotes the Bjerrum
length, and (d) the average distance between polymer backbone
charges. This is presumably due to the usage of the Debye-
Hiickel approximation. First ideas of using a Poisson-Boltzmann
(PB) cell model under tension were put forward by Mann for
salt-free gels, with moderate success [94].

In this chapter we describe two successive mean-field models
to render the determination of swelling equilibria of polyelec-
trolytes accurately and efficiently. Figure 3.1 displays our
construction scheme of the two different models. First, we de-
scribe a single-chain MD cell model, that reproduces results similar
to those obtained from expensive periodic gel MD simulations.
This reduces the many-body problem of the periodic gel to one
of computing the pressure exerted within a cell containing a
single polyelectrolyte chain. The single-chain cell model can thus
be viewed as a mean-field attempt to factorize the many-body
partition function of the macrogel into a product state of suitable
identical subunits [24]. We then show that the single-chain cell
model can further be simplified in a second mean-field step using
a PB description of the chain with appropriate boundary condi-
tions. The PB cell description has been successful in describing a
variety of polyelectrolyte phenomena [96, 97, 98, 27, 99, 100] and
is here applied to macroscopic polyelectrolyte gels for the first
time. The quality of our two mean-field models is gauged by
comparing them to 60 data points for the swelling equilibrium
of periodic monodisperse gel MD simulations obtained within a
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3 Improved Gel Models: Cell-Gel Models

i) Periodic gdl modd i) Single-chain CGM ii) PB CGM

Figure 3.1: A schematic of the i) macroscopic gel; ii) single-chain cell-gel
model (CGM); and iii) PB CGM of a macroscopic gel, which
are in equilibrium with a salt reservoir. The symbols are
introduced in the text.

wide range of system parameters.

In our models, the polymer chains are characterized by the
number of monomers N per chain, and the charge fraction
per monomer f € [0,1]. The reservoir, on the other hand, is
characterized by the salt concentration c7;, which is related

to the reservoir concentrations of positive and negative ions

Coos = €% = ¢ ensuring electroneutrality.

Two important features of all models i-iii) that deserve to be
highlighted, are the following two equilibrium conditions [82,
101]: First, the chemical potentials for all reservoir particle
species i are constant (in the following, we use species i € {+, —}).
Therefore, the chemical potentials (of each species 7) in the gel

(y?el) and in the reservoir (u;*°) are equal:
‘uigel — ’J?es. (31)
Second, there has to be mechanical equilibrium, dictating that

the pressure of the gel (Pin) has to balance the pressure exerted
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3.1 Periodic Gel Model

on the system by the reservoir (Pres):
Pin(Veq) = Pres. (3.2)

In all models we approximate the reservoir pressure by the pres-
sure of an ideal gas Pres ~ kgT ) ; ¢/ (unless specified otherwise).
The gel, while in contact with a reservoir, is simulated at different
volumes and the equilibrium volume V4 is determined by eq.
(3.2). In mechanical and chemical equilibrium the end-to-end

distance is the equilibrium chain extension Req.

3.1 Periodic Gel Model

The periodic gel simulations are performed as described in
Section 2.6.2. All periodic gel data in this thesis stem form
simulations performed explicitly for this thesis with interaction
parameters as discussed in Section 2.5.4.

We could not use the periodic gel data from Richter [3, 1] because
the simulations by Richter were performed using FENE bonds
with a spring constant kggng = 10kgT/0?. For FENE bonds with
such a low spring constant, the average bond length b depends
on the stretching state of the gel, i.e. b(R.). A varying bond length
is a complication we want to avoid in our models. Additionally,
Richter et al. [3, 1] employed a flawed grand-canonical scheme:
when a particle was inserted very close to another particle
(i.e. in a high energy configuration due to the short ranged
repulsive interactions), the trial move was repeated until the
particle was inserted in the simulation box without particle

overlap — this leads to wrong statistics. Instead, the Monte
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Carlo simulation should have rejected this trial move (according
to the acceptance probability) due to a particle overlap and the
corresponding high energy. A correct implementation would
not have repeatedly attempted to insert the particle until a non-

overlapping configuration was found.

3.2 Single-Chain Models

In contrast to the previously discussed expensive MD simulations
of periodic gels, we proposed a reduction of the many-chain
problem to a single-chain problem in our recent publication [102].
In this section we describe common features of the (particle-
based) single-chain CGM and the PB CGM.

Using simple geometric considerations, it is found, that for a fully
stretched tetrafunctional, monodisperse gel the volume Vhain,
which is associated to a single-chain, depends on the end-to-end
distance R, via the relation [3]

Vchain = Rg/A (33)

For an ideal affine compression of a diamond lattice the de-
nominator has the value A = V27/4 ~ 1.3 as discussed in Note
6.
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3.2 Single-Chain Models

Figure 3.2: Diamond lattice containing 8 nodes (in dark blue) and 16
fully stretched chains (in red). Locations where a node occurs
due to periodic boundary conditions are shown in light blue.

The value for the parameter A derives from the following
consideration: There are 16 chains (shown as red strokes in
Figure 3.2) in the unit cell of a tetrafunctional gel. For a fully
stretched gel the chains have chain length Re = Riax. The
cubic unit cell has box length a and the distance between
each node (in blue) is Re = a V3/4 (this is the length of the
connection vector from the node at (0,0,0)” to the node at
11,1, 1)T). Therefore, the total volume of the unit cell is

3
V=a= (R—vg) and the volume per chain is
T
%4 R3 R?
Vihain = < = s = A= \/ﬁ/ 4

167 1633 V27/4

Whenever referring to the volume in the two single-chain models,
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we mean the volume per chain Vein. For a not completely
stretched gel, the denominator A is non-trivially depending
on the end-to-end distance [3]. For simplicity, we neglect this
dependence and assume for the rest of the thesis that A is a
constant (we discuss this point in the Section 3.6.8).

Relation (3.3) connects the end-to-end distance and the volume
which is available for a chain: on compression the end-to-end
distance decreases since the ends of the polymer chains are
brought closer together — at the same time the available volume
per chain shrinks as well. This fact is illustrated in Figure 3.3.

Figure 3.3: Illustration of the scaling of the (cylindrical) volume per
chain Vnain: The volume per chain is bigger for a stretched
gel, than for a compressed gel.

We still need to decide on the geometry of the volume per chain:
In a macroscopic polyelectrolyte gel the monomers on one chain
experience forces that originate from the electrostatic environ-
ment imposed by other chains and from the elastic response
to the cross-linking. To emulate this environment, we choose
a cylindrical volume and connect the chain ends through the
cylinder top and bottom by applying PBCs.
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3.3 Pressures in an Affinely Compressed Cylinder

Because of restrictions in the single-chain CGM and application
of PBCs (see section 3.4) the cylinder height needs to be L(R.) =
Re + b with the bond length b = 0.9660 < R.. Here b takes a
value typical for the Kremer-Grest FENE potential [55]. To use
results obtained for an affine compression of the cylinder (see
Section 3.3), and since b is typically much smaller than R, we
approximate the volume available per chain via:

Vchain =~ L(Re)3 /A (34)

From the cylinder height and the cell volume (3.4) the outer cell
radius Roy is given by:

_ Vchain(Re) _ L(Re)3 _ L(Re)
Fou N TRy~ \iRowd ~ vaa' >

as depicted in Figure 3.1. Because we consider only affine

compressions we keep the aspect ratio & = Royt/L constant in the
single-chain CGM and the PB CGM.

3.3 Pressures in an Affinely
Compressed Cylinder

Applying the chain rule for the volume derivative of the free
energy of the system Fg (at fixed aspect ratio @) we find the
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pressure in the cylindrical cell geometry as [100]:

Po=_ aFgel _ aFgel 8Rout _ aFgel JdL (3 6)
" &Vchain o aRout &Vchain o JdL d Vchain a .
2 1
= gpside + chap- (3.7)

This result allows to express the pressure of the cylindrical system
via the pressure contribution P,y from the top and a pressure
contribution Pgq4e from the side of the cylinder.

3.4 Particle-Based Single-Chain Cell-Gel
Model

Using the above described geometrical considerations, we intro-
duce the first simplification for solving the many-chain problem
of a periodic gel: the particle-based single-chain CGM depicted
in Figure 3.11ii). In the remainder of the text we call this model
“single-chain CGM”. It consists of a single polyelectrolyte chain,
confined to a cylinder of height L(R.) and radius' Roy. The first
and last monomers of the single chain are bonded through the
periodic boundary conditions and fixed to the cylinder center
but are free to diffuse along the cylinder axis. Applying PBCs
mimics the electrostatic interactions in the gel where one end of
the chain sees the beginning of the next chain, and where the
fixed end points of the chain correspond to crosslinks in the gel.

INote that in the MD simulation the outer cell radius is increased by one o
because the WCA wall of the outer cylinder interacts with all particles with a
WCA interaction with cutoff 21/6¢ which corresponds to good approximation
to a reduction of the ion available volume of about one ¢ in radial direction.
This technicality is not further noted in the description of the MD simulations.
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3.4 Particle-Based Single-Chain Cell-Gel Model

A single chain consists of N monomers and its contour length is
Rmax = (N—=1)b, where b is the average bond length. The particles
in this model interact through the same type of interactions and
parameters as in the periodic gel model (FENE bonds, WCA
potential, Langevin thermostat, P3M, semi-grand-canonical en-
semble). To compute the electrostatic forces and energies, we
use the P3M algorithm? with 3D periodic boundary conditions,
tuned to an absolute accuracy [56] in the electrostatic force of at
least 1072%L

In order to obtain a prediction for the swelling equilibrium,
we need to find the state of chemical potential equilibrium
and mechanical equilibrium (see introduction of chapter 3).
Therefore, we need to calculate the pressure inside the gel with
the cap contribution Pc,, and the side contribution Pgige (see
Equation (3.7)). The caps of the cylinder are, however, only
imaginary and not explicitly modeled. In the particle-based
single-chain CGM, the cap pressure is given by the ensemble
average of the (z,z) component of the instantaneous pressure
tensor Peap = (I )

@@ (@)
Yimiv;v; + Zl>lfij "ij + Coulomb, P3M_

Vchain V chain 2)

;) =

Here Vhain is the effective available volume, m; is the mass of
particle i, 7; the velocity (and the superscript (z) denotes the

2 We compared the obtained forces of P3M with the MMM1D algorithm [103]
designed for 1D periodic systems. We observed only small deviations
compared to the P3M forces — this is especially true when using a gap in
radial direction to separate the infinite number of infinitely long cylinders.
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z-component). 7;; is the connection vector between particles
iand j, fl_)] is the pair force (excluding the electrostatic force)
between particles i and j. The last term is the zz-component of
the instantaneous Coulomb pressure tensor [79] and accounts
for the electrostatic interactions:

HCoulomb P3M — HCoulomb P3M, dir HCoulomb P3M, rec (38)
(z,2) (z,2) (z,2)

The first contribution is®:

HCoulomb, P3M, dir _ Z Z
(z2) 4ne0€ 2V i,
i

i,j=1

erfc(Blrj — 7; + 1) . 28112 exp(— (Bl =77 + nl)z)) (7= 7 + 1))
Tj—7i z

ry — 77 + ii? |ry — 77 + iif?

(3.9)
and the second term is:
1 1 exp(-m?R2 /)
Coulomb, P3M, rec __ 2
Hez) " Amege, 2mV Zj % ISP
(3.10)
1+ 2k2 g2
1- zn—/ﬁ k ).
Q2

il is a vector identifying the periodic image [79], B is the P3M
splitting parameter , S (k) is the spacial Fourier transform of the
charge density p(7) = Y; q:6(F - 7;) and k are the wave vectors.

Note that the particle mass is irrelevant to the calculation of the en-

semble averaged kinetic pressure tensor component (Il (7)) =
Z,mv ‘0

7 ) This statement holds in the canonical ensemble, the

3The asterix denotes that terms with i = 0 and i = j are omitted, see [79].
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3.4 Particle-Based Single-Chain Cell-Gel Model

grand-canonical ensemble and the semi-grand-canonical ensem-
ble. The calculation in the canonical ensemble is straight forward
and uses that the velocities are Maxwell-Boltzmann distributed:
The probability density to find a certain component (e.g. the z

o \1/2 ()2
component) is p(vj‘z)) = ( e ) exp(—ﬁ%vl(.z) ). The ensemble

average is:

1 (oe)
(Miin,(z2)) = Vo 2 f;( N mivl(.z)vl(.z)p(vgz))dvgz) (3.11)
i i =%

where the first sum runs over all particles i. A straight forward
Vchain
over all species j. This result is necessary in order to recover the

calculation yields (I'lkin () = , where the last sum runs
limiting case of an ideal gas (which has no interactions) and for
which the result of the isotropic pressure is well known: Pjgeal =
¥ NjksT
(Hkin,(z,z)> = %

form also for the grand-canonical ensemble: (Ilyjn () =

. This result holds in a slightly modified
Y (N ksT
v
(with the average numbers of particles (N;)) which can be proven
by direct calculation. Finally, mixing both cases, we also obtain
in the semi-grand-canonical ensemble that the kinetic pressure
is independent of the particle mass. Therefore, we choose the

arbitrary particle mass m; = 1 simulation unit.

To confine the particles in a cylindrical cell we need to impose a
cylindrical constraint in the cuboid simulation box. To constrain
the particles in the cylinder all particles are repelled from the
cylinder wall via a Weeks-Chandler-Andersen interaction. The
contribution of the pressure Pgg. acting on the side walls is
directly measured as the average normal force on the outer wall
per area. This pressure mainly arises due to the pressure that
the mobile ions exert onto the wall. Therefore, the side pressure
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could have also been obtained using the contact value theorem
for the cylindrical cell model [31]. However, the contact theorem
does not account for a possible interaction of the polymer chain
with the wall and is therefore potentially less accurate.

To increase the accuracy of our description in the particle based
models (namely the single-chain CGM and the periodic gel
model), we include the excess pressure in the pressure of the
reservoir (for Bjerrum lengths Ag > 20, ie. € < 80): Pres =
kgTY; i + pevres (measured via independent MD simulations
of the reservoir). In this case the excess pressure significantly
lowers the pressure in the reservoir compared to the ideal gas
pressure. This is due to the attractive nature of the electrostatic

interaction.

Next, we present the second mean-field model which further
simplifies the single-chain CGM.

3.5 Poisson-Boltzmann Cell-Gel Model

The Poisson-Boltzmann (PB) CGM uses a density-based descrip-
tion of the polymer charges and the surrounding ions instead
of a particle-based description. As before, the polymer and the
ion densities are enclosed in a cylinder with a radius Ry, and
a height of R, + b as shown in Figure 3.1iii). The electrostatic
environment in a gel is mimicked through periodic replication
of the system along the z-axis. Therefore, we can calculate the
electrostatic interaction in the gel by solving the electrostatic
problem for an infinite rod with prescribed charge density. In
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3.5 Poisson-Boltzmann Cell-Gel Model

contrast to the original rod cell model [96, 97] our rod is pene-
trable to the ions. The maximal radial extension of the polymer
density is denoted by the radius a in Figure 3.1 iii).

In the PB model the distribution of the monomers is, in principle,
arbitrary with the following two restrictions: 1) the maximal
extension a needs to be smaller than the cell radius R, and 2)
the monomer distribution should be as realistic and as close as
possible to that of a charged polymer bead-spring chain while
maintaining the simplicity of the model. In the spirit of multiscale
modeling, we use data from our previous single-chain CGM
simulations to fulfill restrictions 1) and 2). From this data we
extract a fitting curve for the average distance (r)mp of the chain
monomers from the cylinder axis as a function of Re:

(MpRe) = N c(&)2+c&+c (3.12)
Mp(Re) = No(Ci{ - 255 T O3) .
with C; = -0.17, C; = 0.14 and C; = 0.03 (fit to single-chain
CGM data for chain lengths N € {39,79,300}, €, = 80, for a fully
charged chain without added salt, see Section 8.2).

This average distance of the monomers (r)mp from the end-to-
end vector is imposed on the monomer densities occurring in the
PB model. To investigate the influence of the chosen monomer
densities, we investigate two distributions: a rectangular dis-
tribution and, in Section 3.6.7, a more realistic approximately
Gaussian distribution with compact support. The probability
density to find a monomer in a given distance r from the cylinder
axis has, in the case of a rectangular distribution, the form

p(¥) = NiH(=(r — a)), (3.13)
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where H(x) denotes the Heaviside function, and N; a normaliza-
tion such that p(7) is a probability density. This condition for p()
gives N1 = —L-. The parameter a is chosen such that the average
distance from the end-to-end vector (r) = fVchain p(ArdV is equal
to the average distance from the end-to-end vector which was
observed in simulations of the single-chain CGM: (r) = {("MD-

Thus, we obtain a = %(r)MD.

The above probability density to find a monomer p(7), together
with the charge fraction f and the number of monomers in the
chain N, imply a corresponding charge density ps(7) = =N feop(7),
where ey is the absolute value of the elementary charge. This
charge density is the key input to the Poisson-Boltzmann equation
which describes the electrostatic interaction in the system:

V2 = —erl—eo (qm(f) +qc (N + pf(V)), (3.14)

where 1 is the total electric potential, €y the vacuum permittivity,
and e, is the relative permittivity. Charge densities p;(¥) = ¢;(¥)g;
are given by standard Poisson-Boltzmann theory [23] (with the
choice of the reservoir potential " = 0):

—qi¥(.y.2)

ci(r) = c;®e BT, (3.15)

where ¢ = ¢} are the ion densities in the reservoir of species i,

and i is either + or —.

Because we model macroscopic gels, we impose charge neutrality.
Hence, there is no flux of electric field through the surface of the
cell. The two boundary conditions which we employ for solving
the PB Equation (3.14) are, therefore, that the radial electric field
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3.5 Poisson-Boltzmann Cell-Gel Model

E,(r)is zero at r = 0 and v = Ryy.

Applying a third incompatible boundary condition like e.g.
setting the electric potential Y(Rou) = 0 would be wrong

and electroneutrality of the system would be violated:

In chemical potential equilibrium we have equality of chem-
ical potentials between the system and the reservoir:

s = e, (3.16)

In Poisson-Boltzmann theory the chemical potential is given
by [23]:

ui = u$ + kg T In(ci(7)/c®) + zieo(F), (3.17)

where ¢ is a reference concentration and y? is a reference
chemical potential. In the limit of €, — co the electrostatic
interaction and therefore the electric field in the system
vanishes. For a system of ideal particles the equation practi-
cally looses its r dependence and we obtain (from Equation
(3.16)):

kBTlrl(c;gel /®) + zieg® = kg T In(c™*/c®) + ziegip™. (3.18)

Due to the influence of the potential i) (which does not
vanish even for a close to ideal system) there may be a
difference between the reservoir density and the density at
the boundary: In general the concentrations at the boundary
do not have to be equal to the reservoir concentrations:
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3 Improved Gel Models: Cell-Gel Models

(s # c;éel). This difference in concentrations translates into
a difference in electric potential:

kgT In(ct*s/ 8¢
‘/’gel -y = e e B S )/ (3.19)

Zi€o

which converges to the ideal Donnan potential (in the limit
of e, — oo, where electric fields vanish). Compare Section
2.6.2, where we investigated an ideal Donnan-partitioned
system.

The point to remember is that forcing the potential /(Rout) to
the reservoir potential i)™ = 0 is an incompatible boundary

condition for a PB system in contact with a salt reservoir.

3.5.1 Pressures in the Poisson-Boltzmann Model

In the PB model the pressure has two contributions: 1) the
combined Maxwell and kinetic pressure and 2) the stretching
pressure. For the standard PB theory the first contribution is

given by [28]:
pons — juT Z ci(R) (3.20)
jions _ ) €0€r 12
PO = kT Z<c,>z +THED:, (3.21)

where E, = —d,1(r) is the radial component of the electric field,
€o is the vacuum permittivity, €, the relative permittivity and

where (A(r)), = n?{} fORWt rA(r)dr is average value of observable
A across the cap. The side pressure is given by kT times the

sum of the ion densities at the outer cylinder wall. This result is
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3.5 Poisson-Boltzmann Cell-Gel Model

in agreement with the contact value theorem [31]. We want to
note that the densities at the outer cylinder wall do not have to
coincide with the densities in the reservoir.

The second contribution is the stretching pressure which only
acts on the cap. The stretching behavior of linear macromolecules
under confinement is a delicate problem on its own and we refer
the reader to further literature [104]. The simple stretching term
which we use is motivated in the following. The stretching
pressure is given as a volume derivative of a stretching free

energy Fg:
IFs(Re)
pstr = _Zsttel 22
cap avchaj_n (3 )
_ OFy JL _ JFy IR 1 (3.23)
0L OVepain  ORe IL mRZ, '
N—— ~—
1/(rR2,) !

Since the stretching free energy needs to contain a confinement
contribution F.yn¢ and a tensile chain contribution Fpain it consists
of two terms: Fg; = Fehain + Feont- Therefore one obtains:

str 1 (aFchain + 8Fconf) ) (324)

“» = 7R \TOR. ' OR.

The first term is given by the force extension curve of a freely

IF chain
JdR.

function £ or anumerical approximation [105] and the maximal
contour length [58] Rmax = (N = 1)b).

jointed chain — = kBTfL*1 (%) (with the inverse Langevin

For the second term, the confinement free energy, we use the
result for a free, ideal polymer: Feonf = BkBTI\’R—IZ2 [58, p. 115]. We
choose the proportionality constant B such that the stretching
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antr

. e . . £
force is zero at the equilibrium extension: 5= Femt
e

IRe =0

Ro

+
Ro

yielding B = 211\{,8;]3 L‘l(%). The final expression for the stretching

pressure is:

por _ 1 "B_T[Rg£1(&)_£1(£)) (3.25)

ap nRgut b Rg Rmax Rmax

The equilibrium extension Ry is a free parameter, and we use the
relation Ry = 1.2bN%% which was found for a system of neutral
chains interacting via a WCA potential [3].

In total, the cap pressure is given by Pep = P, + Pi‘;‘r‘f, and
together with eq. (3.7) one obtains the pressure in the gel
model Pj,. The PB model is expected to work well in aqueous
solutions if there are no multivalent ions, high charge densities
(e.g. at high compression of the gel), or high ionic concentrations
present [26, 27]. Problems in PB theories arise due to neglecting
ionic correlations as well as excluded volume interactions. Also,
the simplistic stretching pressure P, (which is independent of
the charge fraction and the salt concentration) adds a source of
inaccuracy. These limitations are not present in our single-chain

CGM.

3.6 Strong Polyelectrolyte Gels

3.6.1 Pressure-Volume Curves

All models which were described in the previous sections give

pressure-volume curves (similar to stress-strain curves), see Fig-
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Figure 3.4: P(R.) curves for a) f=0.125 and b) f=1, both for N=64,
™ = 0.01mol/L, Ag = 20 (corresponds to €, = 80). The

salt
inset in figure b) shows the Katchalsky model data from

figure b) enlarged. In the inset two zero crossings are visible.
The abscissa is the equilibrium end-to-end distance divided
by the maximum elongation of the chain and therefore
parametrizes the volume per chain via eq. (3.4). As the
end-to-end distance can be easily converted to a volume
via Equation (3.4) we refer to the P(R.) as PV curve. PV
curves for other parameters can be found in the supporting
information of reference [2].

ure 3.4. In addition, we included PV curves from the Katchalsky
model which is a simple free energy model, for details please
consult the papers authored by [3] and [63].

Compared to the Katchalsky model, our new models work for
all charge fractions. At high charge fractions (f > 0.5 [3]) the
Katchalsky model produces non-physical PV curves, which is
obvious because: a) the Katchalsky PV curves have multiple zero
crossings (see Figure 3.4) and b) the Katchalsky PV curves do
not have a form compatible with the PV curves of the periodic
gel model. At those charge fractions the Katchalsky model fails
due to the used electrostatic energy functional which is derived

from a linearization of the PB equation [63]. Since the model is
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only applicable for gels with low charge fractions, it can only be
used for the prediction of desalination energy costs of weakly
charged gels [106]. In contrast to the Katchalsky model, our new
PB CGM gives monotonic PV curves even for highly charged
gels (f > 0.5). Additionally, our PB CGM also shows better
agreement with the periodic gel model than the self-consistent
field theory presented in Ref. [90, Figure 2]. Hence, the PV curves
could be used for an improved prediction of the energy costs for
desalinating seawater using highly charged gels [106].

From Figure 3.4, the swelling equilibrium for the corresponding
gel can be obtained by identifying the zero crossing (where
the reservoir pressure and the pressure in the gel balance). The
dependence of the swelling equilibria on experimental conditions,
like the salt concentration, or gel parameters, like the charge

fraction of the monomers, are examined in the next section.

3.6.2 Swelling Equilibria

In Figure 3.5, the scaled equilibrium extension Req /Rmax 18 shown
as a function of the salt concentration in the reservoir (co; ) and
the charge fraction (f). In agreement with literature [64, 65, 68,
69, 70, 71, 72, 73, 74, 75, 76, 3], we find, that the gel swells a)
more with increased charge fraction f and b) less with higher

salt concentration in the reservoir.

In both subfigures of Figure 3.5 we observe that the single-chain
CGM and the periodic gel model agree very well. However, the
single-chain CGM is more efficient and saves about an order of
magnitude in CPU time. The PB CGM shows deviations from
our reference data which depend on the chosen parameters, but
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Figure 3.5: Comparison of swelling predictions of the periodic gel model

polymer of chain length N = 64 in aqueous solution (e, = 80).
The equilibrium swelling R.q as a) a function of the charge
fraction f for ¢, = 0.01mol L' and b) as a function of the
reservoir salt concentration ¢, for f = 0.5. The equilibrium
volume is determined by locating the volume where Pi,(Veq)
and P, are equal by using a linear interpolation. The error
bar is the width of the interval at which the intersection
happens. The error bar is typically smaller than the symbol
size. Note that in the first plot the points for the Katchalsky
model do not cover the whole plot range. This is due to the
fact that the Katchalsky model fails for these parameters [3].

103



3 Improved Gel Models: Cell-Gel Models

in general the trend is reproduced. We find that the PB CGM also
works for gels which are highly charged (where the Katchalsky
model fails). In agreement with [3] we find, that the Katchalsky
model offers very good gel swelling predictions for gels with
low charge fraction. The exact quantification of inaccuracies of
the different models is, however, a difficult problem. This arises

from two facts:

o The PB model predictions can only be compared to a finite
set of reference data which are computationally expensive

to generate.

o The high dimensionality of the parameter space: predic-
tions for gel swelling R.q are made for different chain
lengths, charge fractions, salt concentrations and dielectric
permittivities. We observe that the PB and the Katchalsky
model show differing suitability in predicting the swelling

equilibrium in various parts of the parameter space.

For completeness, we include the swelling equilibria which were
determined for all parameter combinations in the appendix.
This data, reveals that, compared to the periodic gel model,
the PB CGM predicts too low swelling equilibria at low salt
concentrations (compared to the periodic gel MD data) and too
large swelling equilibria for highly charged gels f — 1. In the
following, we explicitly name some simplifying assumptions
made in the PB model which could cause these deviations:

o The polymer charge density p f(?) in the PB model is, for
simplicity, not dependent on the salt concentration or
the charge fraction which are imposed in the model. In
principle, it would be possible to obtain ps(7) from the
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3.6 Strong Polyelectrolyte Gels

single-chain CGM, making use of multi-scale modeling, for
all parameter combinations ¢Z%;, f, N. This would however

greatly increase the model complexity.

e The stretching contribution P, is independent of the salt
concentration and the charge fraction f. For a charged
polymer, we would expect a different stiffness depending
on a) the salt concentration and b) the charge fraction.
At low salt concentrations or high charge fractions the
stiffness (or persistence length) should increase, resulting
in a higher extension. Therefore, the force-extension of a
polyelectrolyte should favor more stretched states at low
salt concentrations or high charge fractions. To obtain
better suited stretching pressures is not straightforward

and would be a research topic on its own.

As mentioned above, the Katchalsky model does not provide
valid predictions for high charge fractions, which can be seen
in the missing points in Figure 3.5a. Another tendency, which
can be seen for some parameter combinations (e.g. in figure
3.5b), is that the Katchalsky model exhibits bigger deviations
from the periodic gel model for higher salt concentrations. This
could be related to the fact that the Debye-Hiickel approximation
works only well for low ion concentrations (below 0.01 mol/L for
1:1 electrolytes [107] when used for predicting the ionic activity
coefficient). Another possible reason could be that the elastic
pressure contribution in the Katchalsky model is independent of
charge fraction and salt concentration (similar to the PB model
above).

Our new PB CGM also allows to obtain predictions for the equi-
librium extension of long chains in a gel which were previously
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Figure 3.6: Predictions for the equilibrium end-to-end distance of
monodisperse gels of different chain length N for f = 0.5,
€ =80 and ¢ = 0.1mol/L.

salt

too expensive to simulate. For one set of parameters we show
this prediction in Figure 3.6 where the equilibrium end-to-end
distance is plotted as a function of the chain length N. Addition-
ally, we also show the predictions of the single-chain CGM, the
periodic gel model and the Katchalsky model. As one would
expect, the equilibrium end-to-end distance increases with chain
length. The exact results in Figure 3.6 are important for the later
treatment of polydisperse gels (as explained in Section 3.6.6). At
this point, we want to note that the Katchalsky model fails for
chain lengths N 2 80 (at f = 0.5) and already shows significant
deviations to the periodic gel model at N = 80. As reported by
Richter [1, Figure 70.] the electrostatic pressure contributions of
the Katchalsky model are too negative for f = 0.5 compared to
the periodic gel model. These negative pressure contributions
also introduce multiple zero-crossings in the PV curve of the
Katchalsky model for N 2 80 where the model fails.
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The overall agreement between the two new models and the
expensive periodic gel simulations is evaluated in figure 3.7
which is a parametric plot with the periodic gel data on the
abscissa and the data of the other models on the ordinate. A
straight line with slope one would indicate perfect agreement
with the periodic gel simulations (this “ideal line” is indicated
with the label “linear” in Figure 3.7). The single-chain CGM
fits the periodic gel data very well in the whole parameter space
and therefore lies close to the “ideal line” (a fitted line y(x) = mx
through the single-chain CGM data has the slope m = 1.01
and a coefficient of determination R?> = 0.998). The PB CGM
in general has a similar trend as the periodic gel data but has
deviations to the periodic gel data (a fitted line through the PB
CGM data has slope m = 0.968 and R?> = 0.98). As outlined
above, the data points where the swelling is below the “ideal
line” are, in tendency, data at low salt concentration. PB CGM
data which are above the “ideal line” are in tendency data at
high charge fraction f. In contrast to the Katchalsky model our
new models can be applied even at high charge fractions and
high salt concentrations. The Katchalsky model data above the
ideal line are due to deviations at high salt concentrations, while
Katchalsky model data below the ideal line are due to deviations
at high charge fraction. A fitted line to the Katchalsky model
data including the outliers (excluding the outliers at f = 1) has
a slope m = 0.74 (m = 1.07) and a coefficient of determination
R? =0.72 (R* = 0.992).

As we see in Figure 3.7 there seems to be “scattering” around
the predicted periodic gel data which serve as benchmark. The
“scattering” of the different model data around the periodic gel

data in Figure 3.7 is due to the models not working perfectly and
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Figure 3.7: Swelling equilibria of the single-chain CGM and the PB
CGM compared to the more detailed periodic gel model. The
results are presented for a wide set of parameter combinations
with e, = 80, N € {40,64,80}, f € {0.125,0.25,0.5,1} and
cee €{0.01,0.02,0.05,0.1,0.2} mol L~'. The linear function
has the form y(x) = x and is termed “ideal (prediction) line”.
Note that the Katchalsky model produces outliers at high
charge fractions which go hand in hand with high degrees
of swelling in the periodic gel model. To show the failure of
the Katchalsky model we included data points for which the
Katchalsky model failed to give a prediction. For illustration
purposes we assign those data points to Req/Rmax = 0. We
want to note that our comparison includes more charge
fractions below f = 0.5 than above. This might lead to the
wrong impression that the Katchalsky model works in most
of the charge fraction although it does not work for f > 0.5.
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projecting the results obtained in a three-dimensional parameter
space: {c.o}., N, f} onto a one dimensional abscissa. While there
is no “scattering” (in the sense of a strongly non-monotonic
behavior) of the data around the ideal line for a single parameter
set (e.g. Req({ ;’j\i} N = fix, f = fix)/Rmax) there is apparent

“scattering” when plotting two data sets (e.g. Req({cio}, N =

salt
40, f = 0.125)/Rmax and Req(fciy, N = 80, f = 1)/Rmax, see
appendix) from separate regions of the parameter space together
in Figure 3.7. This “scattering” does not mean that predictions of
the models vary in a strongly non-monotonic when only varying

one parameter.

Deviations between the simplified models and the periodic gel
model are either due to simplified descriptions of the interactions
(as discussed above) or at least in part due to the fact that
the parameter A is not a constant but rather a function of the
end-to-end distance [3]. This non-affine behavior exists in the
periodic gel model and probably in real polymer networks [108].
Therefore, a refined theory would also take into account that the
compression of a gel is not affine and would deal with A(R,). In
the Section 3.6.8 we investigate the effect of changing A on the
predicted end-to-end distance in the PB CGM and find, however,
that the influence is small.

3.6.3 Bulk Modulus

Mechanical properties are important, for example, when evaluat-
ing the energetic costs for desalination with polymer gels [106].
One mechanical property of interest is the isothermal bulk mod-
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ulus K of a gel as a measure for the mechanical strength:

P AP
K=-V a‘gfel ~ -V A‘g/‘*l. (3.26)

In the case of the single-chain CGMs we use Vchain instead of V.
The volume derivative of the pressure curve is approximately
calculated via the finite difference quotient of the points which
are at the intersection of the reservoir and system pressure.

The scaling behavior of the shear modulus is connected to the
scaling of the bulk modulus K via* the Poisson ratio [109] v:

_2(1+v)

The scaling analysis by Barrat et al. [101] (which is also based
on the pressure balance of the osmotic and the elastic pressure
using the ideal Donnan equilibrium) predicts that in swelling
equilibrium the shear modulus of a polymer gel is given by G =

N2 )
in the gel in equilibrium [101], N the number of monomers per

R2 . .
kgT (;—3)( = ) where cg = N/ qu is the monomer concentration

chain, and b the size of the monomer. The equilibrium end-to-
end distance scales with the number of monomers per chain
Req o NV, where v is a Flory exponent. Note that the Flory
exponent of a free chain and the Flory exponent vg. do not agree

“We note that our single-chain CGM and the PB CGM have a Poisson ratio

- % ﬁ = —1 and therefore the two models itself are auxetic (v < 0) - i.e.
out

stretching the chain enlarges the volume in the dimension perpendicular to
the applied force. However, real gels are not auxetic materials. It is, therefore,
important to remember that the single-chain CGM and the PB CGM are
models for a gel under isotropic compression: Compressing the gel reduces
the volume which is available per chain and reduces the end-to-end distance
of the chains in the gel.

V=
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in general (compare Barrat et al. [101]). Using this we obtain
G o« N~ *D) Ty salt free solution, we further have the relation
for the equilibrium end-to-end distance in a gel [101] Req o Nb.
Therefore, we expect K o« G o 1/N?. For a gel in contact with a
saline solution and in a good solvent we expect [101] Req o bN®/3,
which alters the scaling prediction K oc G oc N78/5 = N~16,

The bulk modulus obtained by the PB CGM is displayed in
Figure 3.8 together with values obtained from the single-chain
CGM, the periodic gel model, and the Katchalsky model. For
the two particle-based models the PV-curve and the errors in
the pressure are recorded during the simulation. The resulting
error in the bulk modulus is then calculated according to error
propagation in the volume V and the slope dPg./dV. The used

formula is:
oP el JP el
AK = ( 8 ) AVeq + Ve A(—g) , (3.28)
WV ] K =\ v ), q
where the symbol A denotes that the error margin is positive.

. Py . .
The error margins AV.q and A (%) are determined using the
e

error bars of the pressure next to the equilibrium point.

In our PB CGM, we find scaling exponents K oc N™154006 (for
f = 0.125), K o« N71552003 (for f = 0.5) or K oc N7187£0.06 (for
f = 1) via fitting® to data N > 5. The PB CGM data for the
bulk modulus do not follow a perfect power law as predicted by
Barrat [101], there are deviations at very small chain lengths and
large chain lengths. Therefore, the scaling exponents for the N

5The errors () are the standard deviations of the slope obtained from the square
root of the corresponding entry in the covariance matrix of the fit. For fitting
a line in the log-log plot the Levenberg-Marquardt algorithm was used.
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Figure 3.8: Predictions of periodic gel model i), the two single-chain
CGM s ii-iii) and the Katchalsky model for the bulk moduli
K of monodisperse gels of different chain length N for a) f =
0.125,b) f =05and ¢) f =1 ate, = 80 and ¢, = 0.1 mol/L.
For f =1 the Katchalsky model [3] fails.
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dependence of the bulk modulus should be taken with care. We
observe that the scaling exponents of the bulk modulus with N
are close to the scaling prediction K o« G o« N~1° when the gels
carry a low charge fraction. We also find that the PB CGM, the
single-chain CGM, and the periodic gel model agree within error
bars. The Katchalsky model, on the other hand, shows significant
deviations to the periodic gel model, it deviates from the particle-
based model predictions both at charge fraction f = 0.125 and
f =05o0revenfailsat f = 1 (where we have no Katchalsky model
prediction). For low charge fractions the slope of the Katchalsky
data is still compatible with Barrat’s scaling prediction while for
charge fraction f = 0.5 the deviation to Barrats scaling prediction
and the periodic gel data is already significant. We conclude
that our new models provide an improved description of the
mechanical properties of gels at intermediate or high charge
fractions (f > 0.5) when compared to the Katchalsky model.

We also want to note that the error bars on the bulk modulus
for the particle-based models (obtained via propagation of error)
are big. Because of this fact, we do not fit scaling exponents
to the particle-based model data. It seems that in Figure 3.8
b) the periodic gel model would have a different best fit line
than the PB CGM. One possible reason for this could be that
the PB CGM uses a stretching pressure which is derived from
an ideal model, neglecting a possible salt dependence or charge
fraction dependence of this pressure contribution. A chain length
dependent correction to the ideal behavior would also change
the bulk modulus predicted with Equation (3.26).

In Figure 3.9 we also display the volume at swelling equilibrium
as a function of N. Like Barrat, we assume that the volume of the
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Figure 3.9: PB CGM predictions for the chain length (N) dependence
of the volume per chain of monodisperse gels at €, = 80
and ¢’ = 0.1mol/L. The different charge fractions f are

salt
encoded via color as indicated in the legend. The volume

is calculated according to eq. (3.4) using the equilibrium
end-to-end distance. The scaling prediction by Barrat is
shown in red (with fitted y-intercept to the PB model data
for f = 0.125). We expect the idealized model by Barrat [101]
to work best for low charge fractions.

gel is proportional to the end-to-end distance cubed [101]. We
expect the following scaling behavior in swelling equilibrium
Veq & N (in the salt free case) and Veq o« N°/° ~ N'8 (in the case
of added salt) [101]. As one can see in Figure 3.9 the PB CGM
predicts a scaling of Veq oc N224£00%5 (for f = 1), Vq oc N192£003
(for f = 0.5) and Vq o« N'#4001 (for f = 0.125) which is close
to Barrat’s prediction for added the salt (Veq o« N = N'8),
In the case of high charge fraction f = 1 we do not expect
the model by Barrat to work anymore since ions are treated
on the ideal level [101]. Therefore, the scaling exponent in
the PB model is different than the prediction by Barrat [101].
Because Veq o RY; oc N*'#, we find “effective” Flory exponents
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Vgel = 0.613 £ 0.01 (for f = 0.125), vge; = 0.64 £ 0.01 (for f = 0.5)
or vge; = 0.75 £ 0.03 (for f = 1). For highly charged gels the
electrostatic interactions stretch the gel more and the swelling
increases (resulting in a higher vg).

3.6.4 Influence of the Relative Permittivity

The relative permittivity €, controls the strength of the electro-
static interaction in the implicit solvent approach. At e, ~ 80,
both, the single-chain CGM and the PB CGM, agree well in their
prediction for the swelling equilibrium (see figure 3.10). The
results for the PB CGM and the single-chain CGM are shown in
figure 3.10. For lower values of €, the electrostatic interactions
become so strong that ion correlation effects occur [110]. These
correlation effects cannot be captured by the mean-field Poisson-
Boltzmann approach [110] and produce a stronger collapse of
the gel than predicted by the PB CGM.

The effect of varying €, was previously investigated (for periodic
gel model) by Schneider et al. [111] who observed a similar
trend. We also confirm the accuracy of the single chain CGM
by comparing our data to those of periodic gel simulations at
€ =80 and ¢, = 20.

At larger relative permittivities, electrostatic interactions dimin-
ish. In the limit of e, — oo the electrostatic interaction energy
approaches zero, and the salt is partitioned according to the ideal
Donnan prediction [3]:

2
& = (fco) o2 T (3.29)

salt 2 salt 2
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Figure 3.10:
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PB CGM and single-chain CGM predictions for the equilib-
rium end-to-end distance of monodisperse gels for N = 64,
f =1and ¢ = 0.0lmol/L at various different relative
permittivities €,;. Additionally, we confirm the accuracy
of the single-chain CGM simulations by providing two
periodic gel data points for the swelling equilibrium at
€, = 80 and €, = 20. The inset shows the limiting behavior
of the PB CGM and the single-chain CGM for large relative
permittivities. In this limit salt is partitioned according to
the ideal Donnan behavior (gray line) for the PB CGM. The
data point at €, = oo for the single-chain CGM is obtained
by switching the electrostatic interactions off.
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1. ..
Here CE:R is the salt concentration inside the gel, C;fjt

centration in the reservoir and ¢y the concentration of monomers

the salt con-

in the gel.

This salt partitioning allows to predict the behavior in the limit
€ — oo since then ions can be treated as an ideal gas and the
pressure contributions P, and Pgige can be evaluated easily
via the homogeneous densities (the electric field goes to zero
for €, — o0). The Donnan-partitioning is used for calculating
the cell model pressures and yields the gray line in the inset in
Figure 3.10. In figure 3.10 it is visible that the PB CGM and
the single-chain CGM swell slightly different for €, — co. This
difference of roughly 6 % in Re/Rmax appears due to different
stretching pressures in both models and possibly due to the

neglect of excluded volume interactions in the PB model.

We want to point out that the strong collapse in solvents with low
dielectric constant cannot be accurately represented by theories
which treat the electrostatic interactions only on an approximate
ideal level (ensuring electroneutrality via the Donnan equilib-
rium) or on a Debye-Hiickel level, as is done for example in the
approaches by Katchalsky [63], Tanaka [112], Khokhlov [82],
or the model by Barrat [101].

3.6.5 Mass-Based Degree of Swelling (for
Monodisperse Gels)

For better comparison with experimental results on swelling
equilibrium, it is instructive to introduce a mapping from the pre-

dicted end-to-end distances Req to the mass of the solvent taken
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up. This facilitates the comparison of experimental results where
the swelling equilibrium is often [113, 114, 115, 12, 116] reported
as a fraction of the mass of the solvent in the swollen state divided
by the mass of the dry state of the gel Q,; = Msolvent uptake/Mdry-
This mapping requires some modeling assumptions. First, the
mass of the dry state is determined by the number of monomers
N per chain, the total number of chains N hains in the gel and the
mass of the monomers m:

Mary = M(N)Nchains, (3.30)

where m(N) = Nmj is the mass of one chain with N monomers.
The monomer mass depends on the experimental preparation
and we choose 1y =94 u so that the monomers represent sodium
acrylate. The second modeling assumption is that we can mea-
sure the mass of the solvent in the swollen gel via its volume®
and an approximate density p,, ~ 1kg/1 which is close to that of

pure water:

Msolvent uptake = Vchain (N ) pr chains/ (33 1)

where Vpain(N) is the volume per chain given by eq. (3.4). This
volume per chain is predicted, e.g., by the single-chain CGM
or the PB CGM (compare Figure 3.6). The volume of the gel is
obtained by multiplying Vnain with the number of chains Nenains
(which cancels in the calculation of Q).

This simple mapping allows for the prediction of mass-based
degrees of swelling. The results for monodisperse gels are

®Being exact one would need to subtract the volume which is occupied by the
gel monomers from V(N). For swollen gels the excluded volume by the gel
is, however, negligible.
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shown in Figure 3.12 as a black curve. In the following, we
generalize our mapping of the (mass based) degree of swelling
and introduce polydispersity effects.

3.6.6 Chain Length Polydispersity

So far we have only treated monodisperse macroscopic gels.
In reality, however, most gels are highly polydisperse [117, 92,
91, 118]. Properties of polymeric systems typically depend on
the chain length polydispersity and in many applications this
feature may be used to improve material properties for a given
application [59, p.10]. Nevertheless, polydispersity is often
negelected in theoretical considerations and a monodisperse
molar mass distribution is assumed.

Chain length heterogeneity is a parameter for which data for
comparison cannot easily be obtained via MD/MC simulations
of periodic charged gels: A simulation of a heterogeneous gel
would require prohibitively time-consuming simulations with a
huge simulation box to realize a representative distribution of
the chain length distribution. Additionally, a strict comparison
to experiments is difficult because the exact chain length distri-
bution in typical experiments is unknown due to the insufficient
characterization of the topology of real gels. We employ a simple
approach where we assume that a polydisperse macroscopic gel
can be described by partitioning the total volume into subcells
which contain chains of possibly different length in each cell.
Given that we know the probability mass function (pmf) for the
polymer length in a gel p(N) (see e.g. Panyukov and Rabin [117])

119



3 Improved Gel Models: Cell-Gel Models

we can then easily obtain the degree of swelling for a polydis-
perse gel. In the studies by [91] and [92] the strand length
distribution is exponential or close to exponential and therefore
very broad. As outlined by [118] random cross-linking gives a
Flory-Schulz distributed chain length polydispersity, i.e. a geo-
metrical distribution or in good approximation an exponential
distribution [118].

A typical chain length distribution in polymers is the Flory
Schulz distribution [119]. The probability to find an N-mer
(i.e. a polymer made up from N monomers) was derived
by Flory based on the assumption that p is the probability
for a reaction which elongates the polymer and 1 - p is
the probability for a chain termination: In this case the
probability of finding a N-mer is equal to N — 1 successful
reactions and one chain termination reaction:

p(N) =pN'(1 - p) (3.32)

This is geometric distribution is referred to as Flory-Schulz
distribution. Sometimes a = 1 — p is introduced, resulting in
Equation (3.33).

For simplicity, we assume that the chain length is distributed’
according to this geometric or Flory-Schulz distribution [119,
22]:

pa(N) = a(1 — )V, (3.33)

’The monodisperse case for a gel with chain length N is simply given by the
pmf p(N) = 6y, where 6;  is the Kronecker delta.
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where 0 < a < 1 is a fit parameter for a given gel and N € N
is the number of monomers per chain. An illustration of the
corresponding probability mass function can be found in Figure
3.11.

For demonstration purposes we also investigate a Poisson dis-
tribution p,(N) = exp(—‘u)”ﬁN!, where p > 0 is the average value
E(N) = u and the variance Var(N) = u. This narrow distribution
of chain lengths is for example obtained via chain polymeriza-
tions [59]. Finally, we also investigate the distribution that was

used by [93]:

1/8 if N=Nghort

3/4 if N=Nnedi
pNshort/Nmedium,Nlong (N) = . e (334)
1/8 if N=Niong

0 else.

For the different chain lengths which occur in this probabil-
ity mass function, we have the restriction %(Nshort + Niong) =
Nmedium [93].  We always choose Nghort = 0.5Nmedium and
Niong = 1.5Nmedium like Edgecombe et al.

Using the geometrical pmf, the Poisson pmf or the Edgecombe
pmf we weight the contributions of cells with different polymer
chain lengths to predict the (mass-based) degree of swelling of
the gel: The degree of swelling for a polydisperse gel is given
via the following ratio

<msolvent uptake >N

<mdry>N ’ (335)

<Qm>N =
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Figure 3.11:

where the

0.04 Flory-Schulz a=0.009

Flory-Schulz a=0.017

fffff Flory-Schulz a=0.025
0034 —_— Pois);onu=100 '06

® Edgecombe
€ I 10.4
£0.021
0.011 10.2
0.001 T 10.0
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monomers per chain N

Different probability mass functions which we use in this
thesis: the geometrical distribution (Flory-Schulz), the Pois-
son distribution and the distribution in accordance with
Edgecombe [93]. The Flory-Schulz distribution is shown
for different parameters a. The pmfs are only defined for
integer values N, the lines serves only as a guide to the
eye. The three shown values of the parameter a are the
minimally used 4, the maximally used 2 and the median
of the used values of a. The values of @ which we chose,
all guarantee that at least 90 % of the chains have a chain
length between N = 5 and N = 350 for which we have data
Req(N) (see Figure 3.6). This means we choose values of
a such that 213\?35 pa(N) > 0.9. Note that the distribution
from Edgecome is only nonzero for three values of N and
therefore the probability for those values is larger than usual
compared to the other distributions. Therefore, the pmf of
Edgecombe has its own ordinate axis in red.

dry mass of the gel is:

<mdry>N = Z Pa(N)M(N)Nchains,
N

where m(N) = N - my and Ngpains are as before. The mass of the
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Figure 3.12: PB CGM prediction (for f = 0.5, ¢’} = 0.1 mol/L, €, = 80):

salt
The figure shows the (mass-based) degree of swelling Q,,

as a function of the average chain length (N). The results
for different monodisperse gels are shown in black. For the
same charge fraction and reservoir salt concentration, the
plot also shows the average mass-based degree of swelling
(Qum)~ for polydisperse gels (orange, red, green curves)
plotted over the average chain length (N)y.

solvent in the swollen state of the gel is similarly calculated:

<msolver\t uptake>N = Z Pa (N) Vchain (N) prchainsr
N

where again py & 1kg/l and Vnain(N) is given by eq. (3.4) (see
Figure 3.6 for values of Req(N), for other values of N we use the
linear interpolation in between those points). As before, Nchains

cancels from the calculation of {(Q;,)n-

In Figure 3.12 we compare the degree of swelling of monodis-
perse gels to polydisperse gels with the same average chain
length. We find that the swelling of polydisperse gels highly
depends on the chain length distribution. We observe an in-
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creased degree of swelling for polydisperse gels which have a
geometric chain length distribution. The fact that the introduced
Flory-Schulz polydispersity increases the degree of swelling can
be understood as an effect of the tail of the pmf: gels with longer
chains swell more. Close to no increase in the degree of swelling
is observed for a gel with a chain length distribution which is of
Poisson type or follows the distribution by Edgecombe [93]. Be-
cause the Poisson distribution is rather sharp, it is expected [59]
and observed in our simple model, that the polydispersity has
only little influence on the mass based degree of swelling. We
want to emphasize that [93] reported a decrease in the swelling
of his polydisperse gel model compared to the monodisperse
gel in contrast to our approach. This difference could be a result
of strong correlations in their gel model originating basically
from the small unit cell they consider - interchain correlations
are overestimated. Additionally, it is not clear how different
chain length heterogeneities like e.g. a Flory-Schulz distribution
would impact the results reported by [93]. Representing a broad
chain length distribution requires to simulate many chains in a
unit cell, hence a huge computational effort. In contrast to the
simulations of Edgecombe, our simplistic model for accounting
chain length polydispersity lacks inter-chain correlations which
seem to play an important role [108]. Measuring the correlations
and accounting for them in simulations remain an open task
for theorists as well as experimentalists [108]. We conclude that
there is a discrepancy between the reported decrease in swelling
by Edgecombe et al. for polydisperse gels and the data shown
in Figure 3.12 for the chain length distribution of Edgecombe in
our simple model. Our simplistic model for accounting chain

length polydispersity lacks inter-chain correlations (in contrast
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to the simulations of Edgecombe). Therefore, correlations be-
tween the stretching state of different chains in the gel seem to
play an important role [108]. Correlations and special topolog-
ical conditions in the gel cannot be taken into account in our
simple model of polydispersity since we assume independent
chains. Measuring the correlations and accounting for them in
simulations remains an open task for theorists as well as experi-
mentalists [108]. Please note that a non-affine deformation of the
gel alters the equilibrium volume which is predicted by Equation
(3.4). In the case of a non-affine deformation A is a function of
the end-to-end distance. Therefore, non-affine deformations of
the gel alter the prediction of the mass-based degree of swelling
for monodisperse gels, as well as for polydisperse gels.

3.6.7 Influence of the Different Imposed Charge
Densities in the PB CGM

We now investigate the influence of the imposed charge densities
in the PB CGM and exchange the rectangular monomer density
with an approximately Gaussian monomer density with compact
support. The choice of the monomer density affects the charge
density ps which is input to the PB equation.

If the probability density to find a monomer in a given distance r
from the end-to-end vector is approximately Gaussian, then it is

given via the following formula:
p(P) = Na(1 + cos(wr)H(—(r — 1t/w)). (3.36)

N, is a normalization constant such that p(7) is a probability
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Figure 3.13: Different probability densities to find a monomer in distance
r from the end-to-end vector which are used in the PB CGM.
The figure shows i) the rectangular probability density and
ii) the approximately Gaussian probability density.

density ( j“/*h' dVp(?) = 2nL fOR drrp(7) = 1). This normalization

20 1
—4+72 20"

criterion yields N, = The parameter w is chosen

such that (r) - (r)mp is matched to the average distance of the

monomers from the end-to-end vector. This condition yields
2(=6m+7%)

3(~4+12)(rmp

density. A comparison between the approximately Gaussian

W= which determines the width of the probability
probability density and the rectangular probability density to

find a monomer in distance r can be seen in Figure 3.13.

Imposing this alternative monomer density and solving the PB
CGM again for the resulting alternative choice of p¢(7) = =N fp(7).
We obtain only marginally changed swelling equilibria when
imposing different monomer densities, see Figure 3.14 which

barely allows to distinguish the resulting swelling equilibria.
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Figure 3.14: Comparison of the swelling for different monomer densities
(rectangular or approximate Gaussian density) in the PB
model. The equilibrium swelling length R, as a function
of the reservoir salt concentration e for f =1,e, =80 and
N =40.

3.6.8 Influence of the Different Imposed Values
of A

Kosovan et al. [3] investigated the relation between the end-
to-end distance and the volume per chain. They found (their
figure 10) in MD simulations of periodic gels that the ratio
A = R2/V hain varies between roughly 1.8 and 1.5 and depends
on the compression state of the gel, the charge fraction of the gel
and the salt concentration of the reservoir. This fact is in contrast
to our two new models where A = V27/4 ~ 1.3 is fixed.

The easiest approach to test the influence of A on our models is

to impose a value of A = 1.8 and compare it to results where A
was chosen to be V27/4. The absence of a significant change of
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the predicted swelling equilibria when a changing the value of
A be seen in Figure 3.15.
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Figure 3.15: Comparison of different values of A in the PB model (for the
rectangular charge distribution). The equilibrium swelling
length R4 as a function of the reservoir salt concentration
c* for f =1,e =80and N = 40.

salt

We conclude that the value of the end-to-end distance Req, pre-
dicted by the PB CGM, is not sensitive to a change of the exact
value of the ratio A: The predicted swelling equilibria barely
change on a change of A. However, the predicted volume per
chain is quite sensitive to the value of A through Equation (3.4):

3.7 Summary

In summary, we have presented two successive mean-field mod-
els aimed at describing gel swelling and the elastic moduli of
polyelectrolyte gels: the single-chain CGM and the Poisson-
Boltzmann CGM. We find that the single-chain CGM provides
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an excellent agreement with the periodic gel model. Since it is
particle-based, we can use exactly the same interactions as in the
periodic gel model, and hence also investigate specific ion effects
(modeled via different short range interactions), poor solvent
conditions, or the influence of multivalent ions. The single-chain
CGM provides about one order of magnitude reduction of the
computational cost due to the smaller number of particles that
need to be simulated.

In the next model we replaced the charged single-chain and all
ions by suitable charge distributions and use the PB framework
to derive the equilibrium cylindrical cell length. The PB CGM
and the Katchalsky model provide several additional orders of
magnitude in speed-up compared to the single chain model. On
one hand, this speed-up comes at the cost of reduced accuracy.
On the other hand, computationally cheaper models allow to
screen the possible parameter space, needed for optimizing
real-world applications, more efficiently. While the Katchalsky
model fails for charge fractions f > 0.5, our new PB CGM still
works for highly charged gels. The results for the bulk modulus
of the single-chain CGM and the PB CGM are consistent with
periodic gel results (within errorbars).Additionally, we explore
gel swelling as a function of solvent permittivity. For large
relative permittivities the ideal Donnan prediction is recovered,
while for lower relative permittivities electrostatic correlations
lead to the expected deviations between the PB CGM and the
periodic gel model. Nevertheless, our single-chain CGM can
still capture these correlation effects correctly. In addition, we
demonstrated a simplistic approach of introducing chain length
heterogeneity by assuming a mean-field factorization of the gel
into uncorrelated single chain cells. In Chapter 6, the periodic
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gel model, the single-chain CGM and the PB CGM are further
generalized to also describe polyelectrolyte gels containing weak
acidic or basic groups.

130



4 Comparison with
Experiment

The work detailed in this chapter was published earlier. The
results are part of the following publication:

L. Arens, D. Barther, J. Landsgesell, C. Holm, M. Wilhelm.
“Poly (sodium acrylate) hydrogels: Synthesis of various
network architectures, local molecular dynamics, salt parti-
tioning, desalination and simulation” In: Soft Matter (2019)
URL: https://dx.doi.org/ 10.1039/C9SM01468C

The aim of the work presented in this chapter is to compare
the swelling properties of single and interpenetrating gels to
the PB cell-gel model (see Section 3.5) and periodic gel MD
simulations. Interpenetrating networks (IPNs) can be produced
via swelling a single network (SN) in a solution of monomers
and then initializing a second cross-linking process. An example
for such an interpenetrating network is depicted in Figure 4.2.
IPNs show modified mechanical properties, which makes them
e.g. interesting for mechanical actuators [120] like the osmotic
engine [12]. Comparing our simulations to experiments helps to
evaluate their validity.
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4 Comparison with Experiment

4.1 Experiments

The synthesis of the SN and IPN polyacrylic acid gels as well as
the experiments were performed by Lukas Arens at the Karlsruhe
Institute of Technology. As outlined in [116], various IPNs and
SNs were synthesized with varying degrees of cross-linking (DC).
These gels were then used in the experiments as depicted in
Figure 4.1:

Figure 4.1: In the experiments dry gel is added to the solution with initial
salt concentration ¢y until the gel takes half the volume V of
the chamber. Then the salt concentration in the supernatant

phase is ¢} and the salt concentration in the gel phase is
gel

Csalt :

A salt solution of given (initial) salt concentration ¢ is placed
in a chamber of volume V. Then additional dry polymeric
gel is added until the gel volume V8! and the volume of the
supernatant salt solution V*** are half the volume of the chamber
Veel = yres = /2. The relative increase in salt concentration
(“salt rejection”) in the supernatant solution and the gel swelling
is recorded.
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4.2 Simulations

4.2 Simulations

We use the Poisson-Boltzmann cell-gel model (CGM), previously
presented in chapter 3, for the prediction of the salt partitioning
and the swelling equilibrium of SN. The basic simulation protocol
is the same as in Chapter 3.

For IPNSs, it is not directly obvious how to apply the PB CGM
to the problem. However, it is straight forward to perform MD
simulations of IPNs: we first set up a single, diamond-like gel and
then replicate it, shifted by half the box length in each Cartesian
direction. A screenshot of the resulting interpenetrating gels can
be found in Figure 4.2, which are similar to the ones previously
investigated by Edgecombe et al. [121].

a

Figure 4.2: Simulation setup of two interpenetrating diamond-like gels
(first gel is in orange the second gel is in blue).

The simulation protocol is equivalent to the one given previously
for the MD simulations of (single) periodic gels in Section 2.5.4.
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Because we simulated Poly(acrylic) acid in contact with an
aqueous solution at pH = 7 we choose the gel monomers to
be fully negatively charged (f = 1). At pH = 7 the H* and
OH™ concentrations are very low and can, therefore, be safely
neglected in our simulations.

The single and interpenetrating gels are simulated for a fixed
chain length of N = 40 and various salt concentrations in the
supernatant phase coo € {0.01,0.02,0.05,0.1,0.2}mol/L. These
salt concentrations are imposed grand-canonically [102, 122, 3].
The initial salt concentrations ¢y are calculated using Equation
(4.5), making use of the resulting salt concentrations inside the
gel ijllt. At each imposed volume V8! we then record the virial
pressure inside the gel Pi,(V58!). In order to find the swelling
equilibrium of the gel we simulate the gel at different volumes
and record pressure volume curves. We then find the equilibrium
swelling via balancing the pressure in the gel with the pressure

of the bath, see Equation (3.2).

4.3 Mapping of Simulations to
Experiments

The two experimental observables measured by Arens et al. [116]
which we want to reproduce in simulations are the following:

o The mass-based degree of swelling Q,, as a measure for the

degree of swelling. It is defined as the mass of the solvent
in the swollen gel (in free swelling equilibrium) divided by
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the mass of the dry gel:

Qm = mswollen/mdry (41)

e The salt rejection:

res _ o
SR = salt 0/ (4.2)
Co

where ¢} is the salt concentration in the supernatant phase
and ¢ the initial salt concentration prior to inserting dry

polymer into the solution.

Mapping of the Mass-Based Degree of Swelling

For comparison with experimental results, we need to introduce
a mapping from the predicted end-to-end distances Req to the
mass the gel has in swelling equilibrium. This is important since
the experiments report the degree of swelling Q,, as a fraction
of the mass of the water in the swollen state divided by the
mass of the dry polymer. As before, in Section 3.6.5, we have to
introduce some assumptions for mapping our simulation results
to the mass based degree of swelling. First, the mass of the gel in
the dry state is determined by the number of monomers N in the

gel and the mass of the sodium acrylate monomers my = 94 u:
Mary = N - mo, (4.3)
We can measure the mass of the water in the swollen gel via the

volume of the gel and an approximate density which is close to
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that of pure water p,, ~ 1 kg/l:

Mswollen = eq(N)pw/ (44)

where Veg(N) = (Req(N) + b)®/A is the volume of the gel which is
predicted by the PB CGM.

Mapping of Initial Salt Concentrations

An important difference to the experiment is that we cannot
directly obtain information about the gel swelling for a given
initial salt concentration of the salt solution ¢y because our

models always take c;} as input parameter: we impose the

concentration of the supernatant solution ¢’

salt
swollen. In order to make contact with the experiment, we

when the gel is

need to find a mapping of salt concentration in the supernatant

res
salt

the gel cp: Key to relate both concentrations with each other

solution c’*> and the initial salt concentration prior to inserting
is the law of particle number conservation. The number of
salt ion pairs in the inital salt solution (in the volume V) is
given by N1t = ¢oV, and it needs to be conserved in the whole
process of adding dry gel to the initial volume'. Therefore, the
number of salt ion pairs in the supernatant phase N7} and the
number of salt ion pairs in the gel phase N;"’:llt sum up to the total
number of ion pairs Nt = N 4 Nres

salt salt”
respective gel or supernatant phase can again be calculated from

The numbers in the

the respective salt concentrations and volumes of these phases:
NE = & Ve = ¢ V/2 and N = cres yres = cres /2, Plugging

salt — salt salt salt salt salt

1We assume that the change in volume V is negligible AV ~ 0 in the process of
adding the dry gel to the initial salt solution.

136



4.3 Mapping of Simulations to Experiments

these particle numbers in the equation for the particle number
conservation gives:

cgel Vv cres vy Cgel + cres
Nsalt — C()V — saét + saét &= salt 5 salt' (45)

We use the formula above for calculating the initial salt concen-
tration ¢y based on cfaellt and Cooee Therefore we calculate the salt

rejection via:

cres gel
SR(cp) = =2t (4.6)
cres ge
salt salt

The salt concentration inside a negatively charged gel is the
number of negatively charged mobile ions? per volume:

gel _ 1 3
Coalt = V ]‘;d rc,(F)

Since we want to simulate at a fixed inital salt concentration, we
vary the supernatant salt concentration ¢}, imposed in the model
until we conserve ¢y at each point in the PV curve. The swelling
equilibrium is then given by the point where the pressure of the
supernatant phase equals the pressure of the gel phase [102, 2].

2We use the concentration of the negatively charged ions (instead of the
concentration of positively charged ions), in order to not count the positively
charged counterions, which we do not count as salt.
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Figure 4.3:
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The dependency on the initial NaCl concentration of the
degree of swelling is shown for three differently crosslinked
SN hydrogels. Power functions describe this behavior well,
as seen in the double logarithmic plot in the inset. Addition-
ally, data from the PB CGM simulations with various chain
lengths are shown as stars. The comparison of both data sets
is given in the text. In the legend DC stands for degree of
cross-linking. “DCO03” means that the crosslinker density is
0.3 mol%. The higher the degree of cross-linking, the shorter
the chains in the gel.

4.4 Single Networks

4.4.1 Salt Concentration Dependence of the
Swelling Equilibrium

In Figure 4.3 the dependence of the swelling equilibrium on
the initial salt concentration is shown. We find the known re-

sult that the degree of swelling decreases with increasing salt

concentration (compare discussion of Figure 3.5b). This is ex-

plained by the increased electrostatic screening at higher salt
concentrations. The trend predicted by the PB CGM agrees with
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4.4 Single Networks

the experimental data. We give a discussion of possible devia-
tions between experiment and simulations in Section 4.6. The
inset in Figure 4.3 shows the same data in a double logarithmic
plot. Both, the experimental data and the simulation data form
lines in this plot, which means that they exhibit a power law
behavior. For clarity, we added power law fits Q,, = A - (co)® with
prefactor A and exponent b to the experimental data (solid lines).
A power law behavior for the degree of swelling is expected
for the dependence of the degree of swelling on the reservoir
salt concentration [101, 123]. We observe different scaling expo-
nents Q,, « cg, with b € {-0.24, —0.39, —0.43}. The theory on gel
swelling by Barrat et al. [101, Eq. 3] predicts Req o ¢ -1/5

alt

Qun(cl5) o< Vg o Ry o cre 737 Assuming validity of Equation

(4.5) for the given experimental setup and using Equation (2.83),

, 1.e.

we can rewrite the initial salt concentration ¢y as a function of

Cl‘ES .
salt”
_(a+4) L.

0= D+ 2)

For a fully charged gel we have a degree of dissociation o = 1
and the equation further simplifies to

= § cres
0= 6 salt”
Based on Barrat’s theory we, therefore, expect Q,, o c:i_S/ 5«

c53/ >, i.e. a scaling exponent of —3/5 = —0.6. On the other hand,

Mussel et al. [123] reported that the degree of swelling scales with
salt concentration with an exponent —0.47 +0.03. Comparing the
scaling exponents reported in Figure 4.3 to the ones reported
by Barrat or Mussel, we observe deviations. Regarding Barrat’s

s —1/5

theory we want to remark that the scaling of Req oc cior. ™ /7 is not
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4 Comparison with Experiment

always reproduced in our periodic gel MD simulations presented
in Chapter 3 which we expect to be quite reliable: Fitting a power
law to the periodic gel MD data underlying Figure 3.5b, we
obtain Req(ciy, N = 64, f =0.5) e cgii_o'lg, however, fitting a
power law to the periodic gel MD data of a gel with shorter chains,
we obtain for example Req(c;fjt,N =40, f =0.125) < ngi—o,lz_ It
therefore, seems adequate to not expect Barrat’s scaling law to
hold strictly — in the end it is an idealized model. In the light of
the periodic gel MD data the reported variation in the scaling

exponents in Figure 4.3 seems possible.

4.4.2 Chain Length Dependence of the Salt
Rejection

The salt partitioning of three SN hydrogels with different degree
of cross-linking (DC) was studied in differently concentrated
NaCl solutions (in the range of ¢y € [0.017 mol/L, 0.6 mol/L]).
The results are displayed in Figure 4.4, where we show the
parametric plot of the salt rejection SR(N) as a function of the de-
gree of swelling Q,,(N) (for different inital salt concentrations cy).
There are two main trends observed in the PB CGM simulations
and the experiments:

o the gels have a higher salt rejection at lower salt concentra-
tion ¢g

o the the gels have a higher salt rejection for shorter chains,
i.e. increasing degree of cross-linking.

The simulations show qualitatively the same trend as the experi-

mental data. Quantitatively, however, the simulations deliver
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Figure 4.4: Comparison of the salt rejection SR of three SN hydrogels
with varying degree of cross-linking (open symbols) in differ-
ently concentrated NaCl solutions as a function of the degree
of swelling. The simulation data are shown as stars and
overestimate the SR, possible reasons are given in Section
4.6.

always higher SR values compared to the other data points,
where the deviations become larger at low polymer concentra-
tions and high initial salt concentrations. For a list of possible

explainations for the deviations we refer to Section 4.6.

4.5 Interpenetrating Networks

The degree of swelling of a fully charged polyacrylic acid SN
and IPN was studied for different initial salt concentrations. The
molar ratio of the first to the second network in the IPN is about
1:1.

The water uptake of the IPNs decreases compared to the precursor
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Figure 4.5: The degrees of swelling of (fully charged) simulated double
and single networks are shown for different initial NaCl
concentrations as stars. The water absorbency of the SN is
much higher at low concentrations, whereas the difference
in the swelling behavior becomes smaller for higher salt
concentrations. The MD simulations are qualitatively in
good agreement when compared with the experimental data
which are shown as squares

single networks (SN), since the incorporation of the second
polymer causes more constraints of the chains due to additional
network entanglements. This is the case for the IPN in the
experiment as well as in the MD simulations: Gel nodes within
one network are restricted in their freedom to move due to
the presence of the other network. The difference of the water
absorbency is very pronounced in deionized water (the IPN
swells about a factor of 2.5 less), while the degrees of swelling
become very similar in higher concentrated solutions as seen in
Figure 4.5. This trend is consistent across all charge fractions
f€1{0.125,0.25,0.5, 1} (see appendix 8.4).
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Simulations

4.6 Possible Reasons for Deviations
Between Experiments and
Simulations

In figures 4.3, 4.4, 4.5 we observe various deviations between
simulation data and experimental data. There are multiple
reasons why these deviations occur.

e The simulations are based on a monodisperse network,
where all chains have the same length and where the
crosslinker is not explicitly modeled. However, the experi-
mental samples were synthesized by free radical polymer-
ization and thus have a broad distribution of monomer
units between two cross-linking points. Simulation results
in Section 3.6.6 indicate that a broader distribution of chain
lengths could lead to a higher degree of swelling when
an asymmetric distribution with a positive skewness is
present in the gel.

o The average chain length in the gel is expected to be N =
(1-1/f.) &z, where f. = 4is the crosslinker functionality,
DC the crosslinker density and k the crosslinker efficiency
which varies between 15% and 78%. Since the crosslinker
efficiency is unknown, it is not clear what average chain
length should be used in the simulations. Determining the
crosslinker efficiency is still an open problem.

o Different side reactions, e.g. chain transfer, lead to addi-
tional chemical cross-linking points reducing the effective
chain length of the gels.
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4 Comparison with Experiment

e Intermolecular entanglements between chains can act as
additional non-fixed cross-linking points, further reducing
the effective number of monomer units per chain. This
effect becomes more pronounced if more monomers are
present between two cross-linking points. Entanglements
(uncaptured in the PB CGM) would result in a reduced
degree of swelling compared to the PB CGM prediction.

e In the simulations, the dielectric constant of water was
assumed to be constant at €, = 80. However, the dielectric
constant changes with the salt concentration and especially
with the degree of swelling, as the electric environment in
a charged hydrogel depends strongly on its charge density.
Thus, each data point has a slightly different dielectric
constant depending on Q,, and the initial salt concentra-
tion. Furthermore, water molecules in the hydrogel might
orient close to the charges, which results in different local
dielectric constants on a microscopic level. A reduced local
dielectric constant would in tendency increase the number

of condensed ions, therefore collapsing the gel.

e The PB CGM assumes affine deformation of the gel. It
was reported that already periodic gels in MD simulations
do not deform affinely, which results [1, p. 83] in A(R.) €
[1.5,1.8]. This would mean that the PB CGM predicted gel
volume (assuming A = \V27/4 ~ 1.3) could be too high by
factor 1.8/1.3 ~ 1.4 (i.e. 40%)

o The degree of swelling Q,, was determined in an experi-
ment which was different from the experiment which was
used for determining the supernatant salt concentration

Cooy; (for deterimining the salt rejection SR). It is possible
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Simulations

that the condition V8¢l = V™ = V/2 was not exactly obeyed.
An error in the experiment would affect the results reported
in figures 4.3, 4.4, 4.5. If the volume Veel is smaller than
Vres (and therefore V& # V™ = V/2) in the swelling exper-
iments, then the gel is swelling more than expected from
simulations: The actually present salt concentration in the
supernatant phase then increases less from the inital salt
concentration ¢y compared to the simulations. Therefore,
the gel was in contact with a supernatant solution with
lower salt concentration than assumed in the simulations.
Therefore, the gels would swell more than expected from
the simulation. If this error was present in the experiments,
the obtained experimental data in Figure 4.3 are shifted to
higher Q,,, a correction would shift the data down, towards
the simulation data.

o The degree of swelling was experimentally determined by
the ratio of absorbed water to dry polymer mass. How-
ever, the polyelectrolyte hydrogels are very hydrophilic
and contain typically about 10 wt% of moisture. There-
fore, the experimentally determined Q,, is about 10% too
low (because it accounts for residual water). Instead the
experimentally determined Q,, should be higher and all
experimental data points in Figure 4.3 and 4.5 would be
shifted upward by 10% if one accounted for the real dry
polymer mass. Also in Figure 4.4 the experimental data
would be shifted to higher Q,,.

In summary, there are multiple reasons for simulations and

experiments not agreeing perfectly. An open problem is that
the crosslinking structure of the gel used in the experiments is
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random and a representative, average chain length is unknown.
This problem can only be solved with better analysis of the
experimentally realized crosslinking structure or crosslinkers
which result in less random structures. On top of this uncertainty,
it seems possible that a repeated, more controlled experiment
for determining Q,, (where V& = V/2 is strictly obeyed) could
improve agreement with the simulations significantly. It seems,
however, more reasonable to report the gel swelling Q,, as a
function of the salt concentration in the supernatant solution.
These data are straightly available from simulations but, unfor-
tunately, not from the experiments as they were performed in
[116]. Despite all these possible reasons for deviations our gel
models can reproduce significant trends in the experimental data.
Therefore, we conclude that the basic physical driving forces of

gel swelling are incorporated in the models.

4.7 Summary

We have compared the periodic gel model and the PB CGM to
experiments with poly(sodium acrylate) hydrogels with different
network topologies such as single networks (SN) and interpene-
trating double networks (IPN). The comparison was performed
at pH = 7 such that the gels can be treated as strong polyelec-
trolyte gels with charge fraction one. The swelling capacity of the
gels in deionized water and sodium chloride solutions have been
studied, where the absorbency Q,, decreased with higher salini-
ties and more entanglements in the network caused by a higher
degree of cross-linking or the incorporation of a second network.
Simulations based on a PB cell model were used to describe
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4.7 Summary

qualitatively the swelling behavior for differently crosslinked SN
hydrogels. In general, the simulations overestimated Q,,, which
can be ascribed to several simplifications that were made and
to the rather undefined structure of the hydrogels synthesized
via free radical polymerization. Furthermore, MD simulations
showed in agreement with the experiments that the water ab-
sorbency of an IPN is much smaller at low salinities compared
to its related SN, whereas the differences between both network
types vanish at higher salt concentrations.
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5 Grand-Reaction Method

The work detailed in this chapter is in part submitted as:

J. Landsgesell, P. Hebbeker, O. Rud, R. Lunkad, P. Ko$ovan,
C. Holm. “Grand-Reaction Method for Simulations of
Ionization Equilibria and Ion Partitioning in a Broad Range
of pH and Ionic Strength” In: ChemRxiv (2019)

URL: https://doi.org/10.26434/chemrxiv.9741746.v2

Reacting systems in contact with a supernatant solution (i.e. a
reservoir) are ubiquitous in chemical research, especially in
colloid and polymer science. Such a setup is widely used
in applications to separate or purify substances [124], like in
medicine [125, 126, 127] or water purification [128, 129, 130].
Other applications are osmotic motors [12], sensors [131] or sim-
ply weak polyelectrolyte gels (which we investigate in chapter 6). A
schematic view of the systems we want to investigate is depicted
in Figure 5.1.

The equilibrium state of the ionization reaction in such systems
is determined by the pH and by the concentration of other ions
in the system. The presence of charged polymers affects the
partitioning of small ions between the system and the reservoir.

The change in ion concentrations affect the reaction equilibrium,
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5 Grand-Reaction Method

System Reservoir

—— e ————— - —— e —————

Figure 5.1: A system exchanging small ions with a reservoir. The macro-
molecules inside the system take part in chemical reactions.
Different colors represent different particle types. In total,
the problem requires describing at least six particle types:
four for the ionic species in the reservoir (H*, OH™, Na*, Cl")
and two additional types for the different ionization states
of the monomers in the system (HA, A7).

which in turn affects the ion partitioning in a non-trivial feedback

loop.

This feedback loop cannot be captured using the constant pH
method [48] or the reaction ensemble in its original formulation.
The constant pH method cannot be applied due to the fact that it
would need to be used with the pH value in the system containing
an unknown Donnan-partitioning contribution A (see Equation
(5.8)). The reaction ensemble on the other hand needs to be
enhanced by a grand-canonical simulation protocol and it turns
out that this is not straight forward. We, therefore, introduce
the grand-reaction method for coarse-grained simulations of
acid-base equilibria in a system coupled to a reservoir at a given
pH and concentration of added salt.

To perform a coarse-grained simulation of a reactive phase in

equilibrium with a multi-component solution phase, we need to
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5.1 pH and Ionic Strenght

solve two strictly separated tasks:
1. Prescribing the exact composition of the reservoir

2. Incorporating chemical reactions in the simulation of the
system

The first task has its own challenges, related to the definition
of pH, which is why we devote Section 5.1 to defining pH and
describing the ionic strength in an aqueous solutions. In Section
5.2, we introduce an idealized Donnan model which allows to
understand the main consequences of coupling a reactive system
to a reservoir. In Section 5.3, we present how to faithfully
represent a reservoir (defined by a pH value and reservoir salt
concentration) with interacting particles. Using this reservoir,
we can then impose chemical reactions in the system, which is
done in Section 5.4. The approach we present there is aimed at
avoiding sampling problems. Finally, the results for an example
system of a weak polyelectrolyte solution, separated from the
reservoir by a semipermeable membrane, are shown in Section
5.6. In the Chapter 6 we use the grand-reaction method, presented
here, for describing weak polylelectrolyte gels.

5.1 pH and lonic Strenght

pH is a measure for the chemical potential uy+ of H" and is
defined by IUPAC [22] using the relative activity ay-+:

pH = —log,,(an+) = —log,o(cr+yu+/c®), (5.1)
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with the mean activity coefficient' yy+ = exp(Busy,). The chemi-
cal potential of H* and OH™ ions are coupled in aqueous solution
via the auto-dissociation of water:

CH+)YH*COH™ )Y OH™ _
KW = ayg+aoy- = I E— =10 14,
CG

The variation of ionic strength with pH is depicted in Figure
5.2. The impact of pH on the ionic strength implies that even
strong polyelectrolytes react to changes in pH due to a modified
electrostatic screening. Therefore, a strong polyelectrolyte is
more collapsed at extreme pH than around pH = 7, where the

ionic strength is minimal.

In contrast to simulations of strong polyelectrolytes, where the
species of particles are not important, the information about
the species of a particle has to be resolved in simulations in-
volving chemical reactions: Chemical reactions are by definition
sensitive to the chemical potential of specific particle species
(see the defining equation for the equilibrium constant (2.12)).
An important part of the chemical potential of a species is the
ideal part, mainly described by the concentration of the species.
Therefore, this information has to be represented in simulations

of weak polyelectrolyte solutions.

LIf the mean activity coefficient is used in the definition of pH, then we use
that the activity of H" is defined by ap+ = exp(f(up+ — i5,)), where we
use up+ = figg+ — ZH+€oY, i.e. the total (electro-)chemical potential with the
(mean) electric potential contribution subtracted (compare [132, 133]). The
reason for this is, that the mean activity coefficient y+ = /exp(B(u$* + u))
is defined using a sum of the excess chemical potential of a positive and a
negative ion and therefore the electric potential contribution to the excess
chemical potential is canceled, compare Section 2.5.3
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Figure 5.2: Schematic representation of ionic strength I'** in a salt free
solution: I'*® varies, when varying the pH of a solution by
adding strong acid, to lower pH, or base, to increase pH.

Note that it is always possible to distinguish whether a parti-
cle is of a given species or not. This is not in contradiction to
the principle of indistinguishable particles: the principle just
states that particles belonging to the same species cannot be
distinguished.

In coarse-grained simulations it is common to neglect the chem-
ical nature of a species if it has interactions which are, approx-
imately, identical to another species. For example, when we
deal with coarse-grained simulations of strong polyelectrolytes,
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it is natural to ignore the fact that there is a certain amount of
H*, Na*, OH™ and Cl™ ions, because the strong polyelectrolyte
interacts with all ions of same charge in the same way. Therefore,
only the resulting ionic strength is of importance. This insight
allows to simplify the simulations and coarse grain the chemical
nature of the ion species away so that one only has to speak

about positive and negative ions.

5.2 Ideal Donnan Equilibrium in the
Presence of Weak Acidic Groups

The Donnan model is the simplest model to understand dissoci-
ation equilibria in Donnan-partitioned systems since all particles
are treated on an ideal level. We are interested in the pH response
and, therefore, we have to deal with a reservoir containing at
least four ion species (see Section 5.3 ). Compared to the system
presented in note 2.6.2, the new system is more complicated: we

need to prescribe the ion concentrations cﬁ;, crcels,, Crps cg;,.

Additionally (as outlined in Note 10) the degree of dissociation

of a weak polyelectrolyte gel depends on the H* concentration
in the gel (i.e. the ion partitioning) and the value of pK:

1

o= —1 N 1OpKC;¥f . (52)

Chemical equilibrium is determined by the equilibrium
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constant K. This has profound consequences which we want
to discuss here. We start by recalling the definition (Equation
(2.12)) of equilibrium constant K and the definition of the
chemical potential in (ideal) Donnan-partitioned systems
(Equation (2.82)):

K= H al' = H exp (ﬁ(yi - yie)) (5.3)
Ui = ‘I.lle + kBTln(Ci/Ce) + Zieol’b. (54)

The chemical potential is the same in the reservoir and the
system (Equation (2.81)). For the example of a weak acid
the dissociation constant equals:

Ca- /¢ expl(=peqp™)cyy. /¢ exp(Beqty™”)

K= e (5.5)
Sys sys
_ A~ "H*
= e (5.6)

We now make use of the fact that the chemical potentials
are equal in the system and the reservoir (Equation (2.81))
which allows us to rewrite cgf = ot exp(=Peoy™®) (if the
reservoir potential is set to zero per convention " = 0, in
which case we also know pH = —log,,(exp(B(u;s: — 15.))) =

—log;,(c%5 /c®)). Therefore, wehavecy. = 107PHc® exp(—pegi®
Defining A := log, ,(exp(—feo)***)), we have:

SYSq —pH+A
Ch- 10

c
HA
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sys
A

sys

We can rearrange fora=c HA

/ (c;y,S + ¢;3,), resulting in:

1 1
_ _ . 5.8
O TR T 00K ©8)

This means that the Donnan-partitioning creates a shift A
[134] in the dissociation behavior compared to equation
2.18. This shift A can take values of several pH units —as an
example with corresponding discussion we refer to Figure
5.4.

The main take away is, that it is not sufficient to know the
pH of the reservoir to determine the dissociation behavior of
the weak groups in the system. Equation (5.8) differs from
Equation (2.18), which was obtained for an ideal solution of

weak acids, i.e. without considering Donnan-partitioning.

The ion partitioning and the degree of dissociation (five variables)
are obtained by solving the following five equations:

Sys CSYS cres cres
s UNat _ mr _ tar _ tom-
Donnan-partitioning: —= = —= = w5 = <5~ (5.9)
c

Na+ H+ CCI, COH,
Electroneutrality: acg + csc}ﬁ + csoy;, = c;}ff + CEI; (5.10)
1

Chemical equilibrium: ¢« = ———,
q 1+ 10PKc°

(5.11)

where ¢g is the monomer concentration.

Note that the autodissociation constant of water is satisfied in
the system due to the fact that we imposed this condition for the

156



5.2 Ideal Donnan Equilibrium in the Presence of Weak Acidic

Groups
reservoir concentrations (similar to notes 11 and 12):
Sys sys cres cres
H-on- _ “H+fon- _
o K. (5.12)

This simple model already allows to investigate the influence of
the Donnan-partitioning on the dissociation behavior of e.g. a
weak gel. Especially, we can ask for:

e the influence of the reservoir salt concentration on the

degree of dissociation or

e the Donnan-partitioning induced shift A (compare Equa-
tion (5.8)).

Influence of the Reservoir Salt Concentration on
the Degree of Dissociation

The degree of dissociation a(cy,) varies as a function of the
reservoir salt concentration (at fixed reservoir pH and monomer
concentration cg): for pH = 6 and a polymer concentration of

¢p = 0.1mol/L this behavior is shown in Figure 5.3a.

The polyelectrolyte releases H* ions, which are confined in the
system due to the electroneutrality constraint. Increasing the
reservoir salt concentration cio;, more H" ions are exchanged
with the salt cation [112]. This is reflected in Figure 5.3a sowing
a decrease in ¢}}, with increasing concentration czlst Due to the
decreased concentration of H* the reaction equilibrium adapts
and the dissociation increases (red curve in Figure 5.3a). We

will see in Section 6.3 that the dissociation response of weak
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Figure 5.3: We show the response in the degree of dissociation of a
system containing weak polyelectrolytes with fixed monomer
concentration ¢y = 0.1 mol/L. In figure a) concentrations czf
and c}”*, as well as the degree of dissociation « as a function

of the reservoir salt concentration c_; at fixed reservoir

pH = 6 are shown. In figure b) the degree of dissociation
as a function of pH and reservoir salt concentration cl5;, is
displayed.

polyelectrolytes on an increase in reservoir salt concentration

gives rise to a non-monotonic swelling of gels.

The combined effect of pH and reservoir salt concentration on
the degree of dissociation are shown in Figure 5.3b. From this
figure, we also see that the degree of dissociation « increases with
increasing pH: Increasing the reservoir pH, reduces the reservoir
concentration of H* ions and due to the Donnan-partitioning
(5.10) also the H* concentration in the system. Due to Equation
(5.2) this results in an increased degree of dissociation.

Donnan-partitioning Induced Shift A

Another interesting effect which can be studied using an ideal sys-
tem is the Donnan-partitioning induced shift A = log,,(exp(—Beoy™*))
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Figure 5.4: Numerical solution for the shift A of an ideal Donnan-
partitioned system with monomers having pK = 4 and

a reservoir salt concentration cZ;, = 0.01 mol/L.

(compare Equation (5.8)). Depending on the definition of pH, A
could be interpreted as the shift in pH by which the pH in the
system is lower than the reservoir pH. In Figure 5.4, we show
this shift as a function of pH and monomer concentration cgy
for monomers with pK = 4 and reservoir salt concentration

cis. = 0.01mol/L. It is striking that this shift A can be as big as
several pH units. The Donnan-partitioning induced shift A is al-
ways big when the charge density in the system is big compared
to the ionic strength of the reservoir i.e. at pH > pK and at high
monomer concentrations. At very high pH the reservoir ionic
strength increases (due to the high amount of added base) and
the Donnan shift decreases again.

Up till now we have only discussed the dissociation response
of an ideal Donnan-partitioned system. Although discussing an
ideal system helps to understand the general trends observed

in interacting systems, we now elaborate how to perform simu-
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lations of reacting interacting Donnan-partitioned systems. We
start out with defining the reservoir in the case of an interacting

system.

5.3 Reservoir with Interactions

In experiments the composition of the solution, which is in
contact with the system, is typically specified by the dissolved
amount of salt and the pH of the solution®. In this section we
derive the chemical potentials of all particle species in the solution
based on 1) the pH and 2) the salt concentration. As pointed out
innote 1, there are two physical constraints our reservoir has to
fulfill and two conditions with which we prescribe the reservoir

composition:
1. macroscopic electroneutrality: }’; ¢;zi = 0.

. . K _ . .
2. water autodissociation: H,O = H*™ + OH™, with reaction

constant® K, := ap+aop-
3. pH which we want to observe in the reservoir

4. C;Zi which we want to observe in the reservoir

Therefore, we have a set of four equations and four unknowns

res res res res : : . .
(e, COr-7 Cnaer € Cr) resulting in a unique solution.

2In controlled experiments the presence of carbon dioxide is excluded from the
experiments [112, 135], since the reactions of carbon dioxide with water will
create additional ionic species.

3The activity of water is almost always constant and therefore not accounted
for in the reaction constant Ky, .
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5.3 Reservoir with Interactions

5.3.1 Solving the Defining Equations for the
Reservoir Composition

The four defining equations for the reservoir composition were

presented above in the beginning of Section 5.3.

The second constraint in the enumeration given in Section 5.3 has
profound implications. First, it states that in aqueous solutions
H* and OH™ ions are always present. The definition of the
equilibrium constant (see Section 2.3) for the autodissociation
reaction imposes that the product of the relative activities of H*
and OH" ions is a constant:

CH*YH*COH™ Y OH~ _
Ky = agragy- = — = 1071,
Ce

where we have used that [136] Ky, = 1074, This equation states
that there are always H* and OH™ ions (see note 11) and as a
consequence also other ionic species Na* and CI~, which are
needed to fulfill the electroneutrality constraint.

Forgetting the activity coefficients yy+ = 1 and yoy- = 1 for
a second, we can simplify the equation for the equilibrium
constant of the autodissociation of water in the following

way:

2

CH*COH" Ky c®
Ky ¥~ —=— & con-

C62 CH+

This last equation implies that at low concentrations of
H™ the concentration of OH" is large and vice versa. As
a consequence, the electroneutrality constraint cannot be
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5 Grand-Reaction Method

fulfilled by the H* and OH™ ions alone: always other
ions are needed to make the solution electroneutral:Na*
(if cog- > cp+) or CI (if e+ > coy-)- The point to remember
is that our reservoir is composed by at least four ion species
which we choose for convenience to be H*, OH™,Na*,Cl".
Additional salt is modeled in our approach by Na*Cl™. The
salt ions could be different from the neutralizing ions above,
this would, however, only complicate the model.

In a solution with salt concentration Cl:jt the concentration of Na*

or Cl™ ions is given by:

res Cres > cres
T > -
cres, (Cres | cres cres ) — ) salt H OH (513)
Na* \Csalt” CH+7 Copr- cres 4 ( cres Cres) cres < ores
salt OH~ "H* H* = "OH~
res cres > res
- = +
il (e salt OH H (5.14)
Cer Coal CH+ Con- cres +< res _ res ) cles < pres
Csalt * TOH- OH™ — "H*

This choice ensures electroneutrality of the reservoir. Given the
concentrations of OH™, H* and the salt concentration cgt in the

reservoir, the reservoir concentrations are fully described.

The remaining problem is, however, that often the H* concentra-
tion is not reported in experiments but rather the pH value:

pH = —log,,(au+) = —log,(cu+yu+/c®),

with the mean activity coefficient yy+ = exp(Bu;}.). This adds
further complication because the mean excess chemical potential
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5.3 Reservoir with Interactions

pir ({c;**}) is a function of the reservoir composition:

pir-((6) = f(G™D.

As we show later in Section 2.5.3, the function f is non-trivial and
depends on all interactions present in the reservoir. A further
simplification can be made, if all our ions interact with the same
interaction potentials. In this case, the excess chemical potential
becomes a function of the ionic strength I' = 1}, ¢ because
it does not depend on the exact reservoir composition. This
means

e (™) = fI(GE G Coate)-
For the excess chemical potential as a function of ionic strength
we use results shown in Figure 2.3 which we obtained via the
Widom particle insertion method [18]. Knowing the function

f(I**%), we proceed as following: Given the two inputs pH and

¢’ , we can self-consistently solve the following equations for
salt

cigs and p7?" via a numerical scheme:
pH = —log, (5 exp(Be)/c%)) (5.15)
W = P e €3 516
K Ce exp(ﬁHrES ex
e = — = , (5.17)

H+

where we used the pair excess chemical potential yg->* and the
mean excess chemical potential pp?™ = p P = u™/2 (see
discussion on mean activity coefficients in Section 2.5.3).

After solving this set of equations numerically, we obtain ¢} and

res,

g ., From these we can calculate cgfls_[, (using Equation (5.17))

and then we obtain the remaining concentrations ¢, ci*. (using
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5 Grand-Reaction Method

equations (5.14) and (5.13)). The excess chemical potentials of
all ions is the same (u;"*(I"**) = p;1>), due to the ions having
the same interactions. Together with the concentrations ¢;** this
determines all chemical potentials y; in the reservoir (see Section
2.5.3). Therefore, the reservoir chemical potentials are completely
determined by the pH value and the salt concentration in the
reservoir. As starting point for solving the equations we use the

solution for f(I**) = 0 (see also note 12).

A naive approach to determine the reservoir composition would
neglect excess chemical potential contributions due to interac-
tions in the system. In such a case, we would assign the reservoir
concentration of H* ions to cﬁf’ naive . — 10-PH¢® the reservoir con-
centration of OH™ ions to ¢ ™" := 107POHc® = 10-(PKwPH)S
and the Na*, CI” concentrations according to equations (5.13),
(5.14). This would result in H* concentrations being too low
by up to approximately 30%, depending on the reservoir salt

concentration (see Figure 5.5).

Since the excess chemical potential is negative (see Figure 2.3),
the activity coefficients of the ions is y; = exp(Bu;**) < 1 and,
therefore, the actual reservoir concentration cfj; must be higher

res, naive

H+
res , res

pH = —log, (ci5 i /c®). McCarty et al. demonstrate with vari-

than the naively assumed ¢ in order to represent a certain
ous examples why it is important to include the mean activity
coefficient yy+ in the definition of pH [137]. In table 5.1 we
compare, for a given pH, the experimentally observed H* concen-
trations to the ones we determine with the approach presented
in this section and observe excellent agreement. Above and
including pH = 1.1 the deviation in ¢} between our approach
and the experiment is below 3%. At pH = 1.1 the naive approach
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01 —e— 5 0.01 mol/L
s
c£® 0.05 mol/L
—e— l® 0.2 mol/L

~_

res, naiv
i)

_20,

deviation

*—o

-30

25 50 7.5 10.0 12.5
pH

Figure 5.5: Percent-wise deviation between the naively estimated H*
concentration cjiy "™ := 10PH¢® and the H* concentration

actually present at a given pH, determined with equations
(5.15), (5.16) and (5.17).

would result in a deviation of about 20% in the H* concentra-
tion compared to the experiment. The difference between the

naive and our approach increases even further with higher salt
concentration (see Figure 5.5).
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res res res

pH cf® experiment  ¢}5; simulation Cir naive

H* H*
3.31 0.0005 0.00050 0.00049
2.04 0.01 0.01013 0.00912
1.10 0.1 0.10256 0.07943
0.52 0.4 0.42810 0.30200)
(0.2676  0.69 0.77171 0.54000)

Table 5.1:

We compare the experimentally measured pH (column 1)

with the actual molar concentration of HCI (column 2), the
molar concentration of HCl used in our simulations based
on the Section 5.3.1, using the provided pH and ¢} =
0mol/L (column 3) and the naive approach (column 4). The
experimental data are taken from [137, table 1], making use
of Equation (5.1). Data in brackets are only provided for
completeness, but are outside the range of pH values we are
interested in. Deviations in this range are due to different
interactions in a real solution and the particle-based MD
model.

In the Poisson-Boltzmann model, we assume that the excess
chemical potentials in the reservoir are zero. In this case,
the above equations are simplified considerably. pH is then
given by pH = —log,, cj3? /c® and ¢}, is directly given via
Equation (5.17)

o2
res  __ KWC

- res
OH CH*

[

Together with the salt concentration c7; we obtain the
other two concentrations cc- and cy,+ (via equations (5.14)
and (5.13)). Therefore, the reservoir composition is fully

described.
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5.3 Reservoir with Interactions

5.3.2 Particle Exchanges

In the last Section 5.3, we determined the chemical potentials of
all species in the reservoir (uy?, (-, K3+, M) given a specific

pH value and salt concentration.

We now to use these chemical potentials as an input to the
grand-canonical simulation method (see Section 2.5.3). It is
important to realize that the electroneutrality constraint of the
system can only be obeyed if we exchange always a pair of one
anion and one cation. Comparing the acceptance criteria of
the grand-canonical simulation method (Equation (2.60)) to the
acceptance criteria of the reaction ensemble (Equation (2.67)),
we can write these particle exchanges as chemical reactions,
in which particles are created (inserted) in the simulation box
or deleted (removed) from the simulation box. Specifically, to
simulate particle exchange with a reservoir consisting of Na™,
Cl™, H" and OH" ions, we define the following reactions (ion

pair inserctions):

0 = Na* +CI” Knascl (5.18)
0 ==H"+CI Kiscl (5.19)
0 = Na* + OH" Knasot (5.20)
0 = H* + OH" Kizon = Ky (5.21)

where K, is the ionic product of water, and we define the
corresponding equilibrium constants K = [];a;" = exp(B X;(u; —
f)vi). For example, the equilibrium constant of the insertions
(5.18) is given by:

KNa+C] = aNa+aCl—. (522)
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The stoichiometric matrix for this set of exchange moves is given
by [138]:

Na® CI° H* OH~

e 518) [ 1 1 0 0
G191 0 1 1
eq- (5:19) (5.23)
eq. (5.20) 1 0 0 1
eqG21) L 0 0 1 1

This matrix has rank three and therefore it is rank deficient. The
above exchange moves are, hence, not linearly independent. For
example adding ( 5.18 + 5.21) yields the same result as ( 5.20 +
5.19) and the corresponding equilibrium constant is given by:

Kna+c1Kw = Karc1lKNasoH (5.24)

Since K., is fixed, only two of the three remaining constants
can be chosen independently to uniquely determine the system
composition. All sets of exchange moves which can be obtained
via Gaussian elimination of the above stoichiometric matrix can
be used to simulate the system in contact with the reservoir.
A set of moves with a stoichiometric matrix of rank three is
sufficient to observe arbitrary compositions (possibly limited in
the way the particle numbers fluctuate). A different set of particle
exchange move converges to the same final result, however, it
may have very different sampling efficiency under different
conditions [139].

An alternative to inserting and deleting ion pairs is the exchange
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of particle identitities which can be formulated as reactions
(formally obtained by subtracting ( 5.20 - 5.21) and ( 5.19 — 5.21)

):

H" == Na" KNa-H = KNa+on/Kw (5.25)
OH = CI” Kci-on = Kurcar/Kw (5.26)

where Ki_]' = Lli/ﬂj.

Adding the identity exchange moves in 5.25 and 5.26 to the
set of particle exchange moves 5.18 — 5.21 makes the set
of exchange moves even more redundant. However, they are
computationally very cheap, and very efficiently speed up the
simulation. We choose a redundant set of moves to simulate our
systems using the same set of moves in a broad range of reservoir

compositions.

5.4 Chemical Reactions in an Interacting
System

Acid-base ionization equilibria involve a reaction with water.
The acidity constant K, i.e. equilibrium constant of the ionization
reaction in equation 2.16 is defined as

K=t (5.27)
aHA

where g; is the activity of the corresponding component i. By
convention, the activity of water is assumed to be constant and

is included in the definition of K. This is consistent with the
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implicit solvent representation assumed in our simulation model.
The H* and OH™ ions are explicitly treated which is important
for the electrostatic interactions in the system.

We simulate chemical reactions (see section 2.16) using the
reaction ensemble [19]. A problem for the efficiency of the
algorithm arises at pH > 4, where the concentration of H" is so
low that with the usual simulation box size L ~ 20nm one would
obtain less than one H" ion per simulation box. In such case,
the reaction ensemble simulation suffers from serious finite-size
effects. At pH x 11 this problem can be circumvented by re-
formulating the ionization reaction using the OH™ ion instead
of H*, as has been done by Rathee et al. [140, 141]. A different
approach is needed in the intermediate pH range [4, 10] where
both H" and OH™ ions are scarce.

To avoid this bottleneck in the sampling, we re-formulate the
ionization reaction using other ions, and modify the equilib-
rium constants accordingly. This approach greatly increases the
sampling efficiency [139]. By using the reaction in 2.16 and
performing subsequent ion-exchange reactions in Equations 5.20,
5.19, 5.21, we obtain the following set of alternative reactions
with modified reaction constants:

HA = A~ +H* K (5.28)

HA = A~ +Na* K> = K- Knason/Kw  (5.29)

HA +Cl~ == A~ Ks = K/Kysa (5.30)
HA +OH = A~ Ky =K/Ky (5.31)

Each of the above reactions has a different equilibrium constant
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5.4 Chemical Reactions in an Interacting System

that follows from the activities involved in the reaction (see Note
13).

In this note we derive the corresponding equilibrium con-
stants for the alternative forms of reaction (5.28) which has,

by definition, the equilibrium constant

_ aAyg+aa-
aHa

K

The reaction constant K5, for reaction (5.29), is given by:

AA-ONat _ AA-ONat A1+don-  KKNatoH
Ky = - - . (532
AHA AHA AH+*A0H- KW

The reaction constant K3, for reaction (5.30), is given by:

an- aa- Aayg+ K
Ks = - - . (5.33)
apadcr-  agadcr A+ Kaeal

The reaction constant K4, for reaction (5.31), is given by:

. - . K
P S S G R
apAdon-  AHAfdop- anr Ky
Additionally, we attempt particle swapping moves
AT+HA=—=HA+A", (5.35)

which have a symmetric proposal probability and are accepted
with the normal Metropolis criterion of Equation (2.58). These
moves help to equilibrate the charge profile along the polymer

171



5 Grand-Reaction Method

backbone if the number of other ions present is too small to
mediate this swapping reaction.

There are two distinct reasons why we cannot perform the
simulations using the constant pH method (see Section 2.5.3,
[48]):

o First, we showed in [4] that the constant pH method
treats ions implicitly, and hence, gets the electrostatic
screening effects wrong. “Implicit” means, in this
context, that the dissociation equilibrium is adjusted
as if a certain pH was present in the surrounding of
the system, but the H* ions which would need to be
present in the system are not existing in the system. It
is important to note that pH is a measure for the chem-
ical potential of H* and is therefore directly related to
actual H* concentrations (compare Equation (5.15)).
Implicit ions, therefore, cannot contribute to electro-
static screening or even ideal gas pressures. Hence,
this approach is error prone when describing weak
polyelectrolyte gels, which requires finding pressure
equilibria.

e Second, it is important to note that the ionization
equilibrium in a Donnan-partitioned system is not
soley determined by the pH of the reservoir, but is
sensitive to a Donnan potential induced shift A (see
note 10). This is true for non-interacting and in-
teracting systems. Since the Donnan potential (and

172



5.5 Simulation Protocol and Setup

therefore the correct value for the input pH) is un-
known, and it is also coupled to the charge state of the
weak polyelectrolyte (which we do not know prior to
simulation), employing the constant pH method to
simulate Donnan-partitioned systems suffers from a

systematic error.

5.5 Simulation Protocol and Setup

Parameters of the simulated systems We simulate 16 polyelec-
trolyte chains, composed of N = 50 monomers per chain, in anim-
plicit solvent and a cubic simulation box. The simulations are per-
formed at different box lengths L € {23.09, 40.86, 58.62, 76.39, 80.00}c
that correspond to a concentration of monomer units of ¢y €
{2.41,0.435,0.147,0.067,0.058}mol/L, which is within the range
commonly used in the experiments. The pH of the reservoir
is adjusted to the desired value by adding HCl or NaOH as
outlined in Section 5.3. We simulate the polyelectrolytes with
various acidity constants, pK € {1,2,3,4}, in equilibrium with
reservoirs at various pH values, 1 < pH < 13, and various NaCl

concentrations, 0.01mol/L < ¢, < 0.2mol/L.

We use the reaction ensemble method to account for the ionization
reaction. Because we span a broad range of pH values, the H*
ions are often scarce in our simulations. Therefore, we implement
the acid ionization reaction 2.16 using the reactions (5.28), (5.29),
(5.30) (5.31) and the particle swapping move (5.35). The Na™ and
Cl” ions are always present in sufficient number, so that the acid

protonation reaction is not affected by finite size effects.
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The chemical potentials of Na*,Cl”, H*,OH™ are determined as
outlined in Section 5.3, and are used to couple the system to the
reservoir by insertion of Na*Cl™ ion pairs, (5.18) and by identity
exchange moves, (5.25) and (5.26).

Ions are modeled using the restricted primitive model, charac-
terized by the valency and effective ion size. For simplicity, the
short-range interactions (excluded volume) of all particles (small
ions and monomers of the polymer) are represented by a purely
repulsive WCA potential [35], with the effective particle size
o = 0.355nm and strength of the interaction € = 1.0kgT. The
FENE potential is used to account for polymer connectivity, with
the typical Kremer-Grest parameters [36] kpgng = 30.0kgT/ a2,
and Rpax = 1.50. Functional forms of the interaction potentials
are given in Section 2.5. The electrostatic coupling strength is
defined by the Bjerrum length Ag = 2.00 = 0.71nm that approx-
imately corresponds to aqueous solution at T = 298K. We use
the value of pK,, = 14 that corresponds to the same tempera-
ture. Note, that the Bjerrum length, all equilibrium constants,
and all interaction parameters defined above are temperature-
dependent. Therefore, if the simulation has to be performed at a
different temperature, all these parameters need to be adjusted

in order to remain internally consistent.

Simulation protocol The Langevin equation is integrated by a
velocity Verlet algorithm with a time step of 6t = 0.015(1m/kgT)'/?
where m is the mass of the particles.* The equilibration consists

4 Note that mass of the particles is irrelevant and all presented results are
invariant with respect to it. However, the ratio of the particle mass and energy
determines the stability window of the algorithm. Also, the time evolution of
the system is non-physical, as the Monte Carlo reaction moves do not include
the physical dynamics.
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of 50 cycles, where each equilibration cycle consists of 16N + 10
reaction moves and 1000 + 2N MD integration steps followed by
an additional equilibration of the reactions and particle exchanges
with 160000 reaction and particle exchange moves. The following
production run typically contained 13000 production cycles
(median value), each consisting of 3N + 20 reaction moves,
and 1000 + 2N MD integration steps, with N the number of
monomers per chain. We calculate ensemble-averaged values of
the observables from the configurations after each production
cycle. To assess the statistical accuracy of our data, we use the
correlation-corrected error estimate [142]. The total length of
the typically gave ~ 500 uncorrelated samples of the slowest
decorrelating observable (i.e. the end-to-end distance).

5.5.1 Validation of the Reservoir Chemical
Potentials

As a first step to validate our algorithm, we verify that the
reservoir chemical potentials determined using the procedure
described in Section 5.3 lead to the desired concentrations. We
start with a simulation box containing some ions so that the P3M
algorithm can tune®, and simulate exchange of ions with the
reservoir using the exchange moves (5.18), (5.25) and (5.26). We
perform the simulations for all combinations of the parameters:
pHe(1,2,...,13}, co € {0.01, 0.2}mol/L, and various simulation
box lengths between box; € {18.4, ...,72}o. In Figure 5.6, we show

5Tuning of the P3M algorithm is crucial for optimal comutational efficiency but
does not affect the reported results. For optimal efficiency the number of ions
during tuning should be close to the expected average number of ions.
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that the concentration of ions in the box, c:?‘”‘ coincides with the

expected reservoir concentration within 1%.

0.04
Y i=H
0.03 i=OH
+ i=Na
g 0.02- X i=C
8.
= 5
§_ 0.01 i
Ty !
éc 0.00 e+ +
- :
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Figure 5.6: Relative deviation of the ion concentrations inside the simula-
tion box and in the reservoir: There are close to no deviations
between the concentrations which are set and the ones which
are observed.

Results yielding less than 10 particles in the simulation box are
omitted because they are affected by finite-size effects. Deviations
of all the results shown in Figure 5.6 are within the estimated

statistical accuracy, supporting the validity of our algorithm.
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Figure 5.7: Ionization degree of the polyelectrolyte as a function of pH at
various salt concentrations in the reservoir, and various acid-
ity constants of the polymer, as indicated in the legend. The
box length is 800 corresponding to a monomer concentration
co = 0.057 mol/L. Error bars are smaller than the point size.

5.6 Polyelectrolyte Solution

5.6.1 Effect of pH and Salt

After demonstrating that our simulation correctly implements the
grand-canonical scheme, we focus our attention on the combined
effect of pH and salt concentration on the weak polyelectrolyte

ionization process.

In Figure 5.7 a) we show that the polyelectrolyte ionization is
suppressed by mutual repulsion between the ionized groups,
resulting in the well-known shift of the polyelectrolyte titration
curve with respect to the ideal one. Figure 5.7 a) also shows that
addition of salt screens the electrostatic interactions and results
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in a shift of the titration master curve closer to the ideal one. For
comparison, we also show the degree of ionization as a function
of pH in Figure 5.7 b).

In a large pH range the titration curves for polymers with
different pK values in Figure 5.7 collapse onto one master curve
at one reservoir salt concentration (with minor deiviations).
In general, the ionization degree is, however, not a universal
function of pH — pK at a given ionic strength. At intermediate
pH, the ionic strength is approximately equal to the reservoir salt
concentration. Therefore, we obtain the master curves at a fixed
reservoir salt concentration. If the ionic strength induced by pH
(i.e. at low or high pH) is bigger than the ionic strength caused
by the salt, then the added acid or base result in a significantly
increased electrostatic screening and a deviation from the master
curves [4].

The chain swelling is affected by the pH on both ends of the pH
scale, as can be seen from the dependence of chain end-to-end
distance R. on pH, shown in Figure 5.8. On one end of the pH
range, the swelling is controlled by varying polymer ionization,
as is demonstrated by all curves at the same salt concentration
collapsing on one master curve as a function of pH — pK at low
pH values (Figure 5.8a). Interestingly, the deviations from the
master curves at low pH in Figure 5.7 do not show up in Figure
5.8. Presumably, this is because the screening due to H" ions at
low pH has two counter-acting effects: On one hand, it increases
the ionization, which increases the swelling. On the other hand, it
reduces electrostatic repulsion among the ionized groups, which
reduces the swelling. Apparently, these two effects compensate
each other, and we do not observe deviations from the master
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Figure 5.8: End-to-end distance of the polyelectrolyte chain as a function
of pH — pK, (left) and the same data plotted as a function of
pH (right). Reservoir salt concentrations and pK, values are
indicated in the legend. The box length is 80 corresponding
to a monomer concentration ¢y =~ 0.057 mol/L. Error bars are
smaller than the point size.

curve, as in Figure 5.7. On the other end of the pH range, the
swelling is controlled by the electrostatic screening due to OH™
ions. This causes all curves to collapse on one master curve as a
function of pH at high pH values in Figure 5.8b. The collapse is
independent of pK, as long as pH — pK > 1, because then the
polymer is fully ionized.

This non-monotonic swelling as a function of pH and salt concen-
tration has been presumably never observed in coarse-grained
simulations. However, it has been previously detected in experi-
ments and via numerical mean-field models. Borisov et al. [143]
predicted a non-monotonic swelling of star-like weak polyelec-
trolytes as a function of salt concentration, and explained this

effect by similar arguments: starting from low ionic strength, the
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stars first swell because their ionization degree increases as the
ionic strength is increased, and at higher ionic strength the fully
ionized stars shrink because of ionic screening. A similar effect
on the swelling of weak polyelectrolyte micelles are observed
experimentally by Matgjicek et al. [144]. Later, they confirmed it
in simulations, combining explicit-particle representation of the
polymers with mean-field treatment of small ions on the Poisson-
Boltzmann level [145]. The molecular theory of Longo et al. [146]
also combined molecular representation of polyelectrolytes with
mean-field treatment of small ions to observe a similar effect on
the swelling of polyelectrolyte gels grafted to a surface. In all
cases mentioned above, the mean-field representation of small
ions allowed to set the reservoir concentrations as boundary con-
ditions. Using the same approach in coarse-grained simulations
with explicit ions would require unfeasibly big simulation boxes
in order to avoid finite-size effects.

We emphasize that the combined effect of salt (ionic strength)
and pH on the chain swelling can be observed on both ends of
the pH scale only if the concentrations of all ions are correctly
accounted for. In Figure 5.9, we show that the grand-reaction
method predicts the polyelectrolyte collapse at high pH values,
whereas the usual implementation of the constant pH method
fails to predict this effect. Instead, it predicts that the polyelec-
trolyte remains swollen at arbitrarily high pH. At pH > pK the
polyelectrolyte is fully ionized and the collapse is caused by
increasing ionic strength with pH (compare Figure 5.2). The
constant pH simulation cannot predict this effect because it com-
pletely lacks the OH™ ions, and their respective counter-ions.
This failure is important at low salt concentrations, and at high
or low pH values (pH < 3 or pH > 11), where the H" and OH"~
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Figure 5.9: End-to-end distance of a polyelectrolyte with pK = 4.0 as a
function of pH, simulated using the grand-reaction method
(circles) and using the constant pH method (crosses). Differ-
ent monomer concentrations in the reservoir are indicated in
the legend. Error bars are on the order of the point size.

ions dominate the electrostatic screening.
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5 Grand-Reaction Method

5.7 Summary

The grand-reaction method, presented here, provides a robust
tool for coarse-grained simulations of ionization equilibria in
a broad range of pH values. The pH and salt concentration
are defined by the composition of the reservoir, with which
the system can exchange small ions. Our implementation of
particle exchange with the reservoir avoids known artifacts and
nonphysical parameter combinations that have been used in
some previous studies which employed the constant pH method.
With the grand-reaction method, the accessible pH range is no
longer limited by the simulation algorithm.

We demonstrated that our implementation is correct by simulat-
ing a solution of weak polyelectrolytes as a model system. In the
absence of interactions and the polyelectrolytes, our simulations
reproduced the multi-component reservoir. Next, we showed
that the grand-reaction method allows to study the combined
effect of pH and reservoir ionic strength on the ionization and
swelling of weak polyelectrolytes. In particular, it can reproduce
the non-monotonic swelling as a function of pH, that has been
known and understood from experiments and from mean-field

calculations but it has not been observed in simulations before.

The method can be used for simulating any macromolecular
or colloidal system in equilibrium with a reservoir at a given
pH and salt concentration. The same principles and guidelines
can be applied to simulate for example weak polyelectrolyte
gels (as outlined in Chapter 6), polymers attached to a surface,
interpolyelectrolyte complexes in equilibrium with a reservoir

solution, peptides or proteins in salt solutions. In such systems,
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5.7 Summary

the effect of pH and salt on ionization is routinely exploited in
experiments but it is often interpreted assuming ideal ionization
response. Our method opens up the possibility to predict the
properties of such systems, and ensures that the results are
physically consistent.

Extensions of the grand-reaction method to a reservoir with more
components, or to multiple chemical reactions in the system are
straightforward. As another extension to our method one can
envision more sophisticated treatment of ions, such that they
do not have identical parameters. One could account for the
different effective radii of the hydrated ions [147] which affects
their excess chemical potential. The influence of multivalent ions
could also be simulated using our method. Determination of the
reservoir chemical potentials would need to be modified in both
cases mentioned above because different interaction parameter
imply different excess chemical potential of each ion.
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6 Weak Polyelectrolyte Gels

Most simulations of polyelectrolyte gels have considered strong
polyelectrolytes [53], while experiments and applications often
consist of weak polyelectrolytes like, for example, polyacrylic
acid ( shown in Figure 6.1). Polyacrylic acid has titrable groups

n

Figure 6.1: Polyacrylic acid is an example for a weak polyelectrolyte.

which are, depending on pH, either protonated or deprotonated.
The influence of pH gives rise to protonation-configuration cou-
pling [148, 149]. In this chapter, we present (for the first time)
particle-based simulations of weak polyelectrolyte gels with-
out mean-field assumptions. We recently discussed the state
of art for simulating weak polyelectrolytes in reference [53]
and found that so far there are only three simulation methods
capable of describing weak polyelectrolyte gels which, however,
employ mean-field assumptions: Longo et al. [68] presented
their “molecular theory” which combines mean-field approxi-
mations with sampling of gel conformations via explicit particle

representations. Another mean-field approach is presented by
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6 Weak Polyelectrolyte Gels

Rud et al. [90] who applies periodic boundary conditions to a
self-consistent mean-field model of a star such that it represents

a macroscopic gel.

In this chapter we use the grand-reaction method, introduced
in chapter 5, for simulating macroscopic weak polyelectrolyte
gels. The grand-reaction method allows to impose the pH of a
supernatant solution and to treat all further dissociation processes
in the gel correctly. Additionally, we adapt the cell-gel models
(CGMs) from chapter 3 to also model weak polyelectrolyte
gels.

We are able to reproduce two important experimental results
with our adapted periodic gel model and the two CGMs:

o the deswelling of polyelectrolyte gels at high pH [135, 112]

o the non-monotonic swelling of weak polyelectrolyte gels

with increasing salt concentration at fixed pH [112]

These two phenomena can already be understood in the idealized
Donnan model, and we already gave details on this simplistic

model in the Section 5.2.

6.1 Simulation Protocol and Setup

We simulate a tetra-functional weak polyelectrolyte gel with
monodisperse chain length N = 40 and acidity constant pK = 4.
The monomers take part in the following reaction:

HA = A~ +H* (6.1)
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6.1 Simulation Protocol and Setup

We vary the pH of the supernatant solution in the range pH €
{1,2,3,...,13} with reservoir salt concentrations in the range
¢ € {107,107°,...,0.2Jmol/L.

salt

6.1.1 Particle-Based Simulations

We use the grand-reaction method as presented in chapter 5.
Especially, we employ the particle exchange moves (5.18), (5.19),
(5.20), (5.21) and the identity exchange moves, (5.25) and (5.26)
in order to be able to simulate low salt concentrations and
minimize finite size-effects. For ensuring chemical equilibrium
we use reactions (5.28), (5.29), (5.30), (5.31) and the particle
swapping move (5.35). The simulation protocol is similar to the
one presented in Section 5.5. We perform extensive equilibration
of the particle exchanges and reactions in the system prior to
producing data. We simulate at different prescribed volumes
and calculate the pressure in the gel to obtain PV curves. The
difference to the previous simulations of strong gels is that we
now consider weak acidic monomers.

Periodic Gel Simulations The peridodic gel simulations are set
up and used as described in Section 2.6.2.

Single-Chain Cell-Gel Model The single-chain cell-gel model
(CGM) is set up and used as described in chapter 3.

6.1.2 Poisson-Boltzmann Cell-Gel Model

The Poisson Boltzmann cell-gel model (CGM) is set up and used
as described in chapter 3. In contrast to the previous simulations,
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6 Weak Polyelectrolyte Gels

we now consider weak acidic monomers and couple the cell to a
more complicated reservoir containing H*, OH™,Na*, Cl™ ions.
As outlined in Section 2.4, coupling a reservoir to a system which
is modeled via Poisson-Boltzmann theory is straightforward,
given the reservoir concentrations. In PB theory, we set the
reservoir electric potential to zero which means that we assume
zero excess chemical potentials in the reservoir. Therefore, we
can use the results acquired in note 12. Neglecting OH™ ions can
only be done safely at low pH but not at high pH, where OH™
ions are ubiquitous. Neglecting OH™ ions at high pH results in

false predictions of the swelling equilibria.

We treat pH-dependent reactions using the charge regulation
approach by Ninham et al. [5, 23]. The charge regulation de-
termines the degree of dissociation and, therefore, the space
charge density of the penetrable rod. For a weak polyelectrolyte,
monomers may be either neutral or charged (HA == A~ + H").
The dissociation constant in the Poisson-Boltzmann framework
is given by:
_ apraa- _ CH+ (Nea-(7)

K= = , 6.2
AHA cra (e (62)

where we used Equation (2.34) to introduce the position depen-
dence.

The concentration of titratable monomers, A~ or HA, is co(7) =
ca-(P) + cua(P) and is distributed with probability density p(7),
i.e. ¢o(F) = Np(P). This gives cya(¥) = Np(7) — ca-(7) which we
substitute into Equation (6.2) and solve for ca-(7):

co(AKc®
CA—(F): — 0(_>

c1%s exp(—eo(F)/ (ks T)) + Kc® (6:3)
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6.2 pH-dependent Swelling of Gels

The fixed charge density used in the PB Equation (3.14) is then
given by p(7) = —egca- (7).

Equation (6.3) is equivalent to a space dependent degree of
dissociation a(7), given by:

() Kc®
=" " o eploeod T + Ko

(6.4)

Using the charge regulation approach above, we can perform PB
CGM simulations of weak polyelectrolyte gels.

6.2 pH-dependent Swelling of Gels

To compute the equilibrium swelling, we compute, as outlined
before in Section 2.6.2, pressure-volume curves. The pressure
as a function of the end-to-end distance, for two different pH
values and a fixed salt concentration, is shown in Figure 6.2 for
the i) periodic gel MD model, ii) the single-chain CGM and iii)
the PB CGM. The results P(R.) of all three models agree very
well. When the gel is compressed, the pressure is greater than
the pressure of the reservoir (P& — P* > 0) and when the gel
is stretched the pressure of the gel is smaller than the pressure
of the reservoir (P8¢ — P' < (). Changing the pH value of the
supernatant solution increases the pressure in the gel. This can
be seen in Figure 6.2: The P(R.) curves are shifted upwards
for higher pH. The reason for this increased gel pressure is an
increased dissociation of the gel charges: at high pH the weak
acid is more dissociated. This results in a) an increased osmotic

pressure of the ions and b) an increased repulsion of monomers
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6 Weak Polyelectrolyte Gels

along the polymer backbone. As for the strong gels before, the
zero crossing of the pressure curve is the equilibrium end-to-end
distance Req. As we can see in Figure 6.2, the three models agree
in tendency. For pH = 11 there are differences between the
single-chain CGM and the periodic gel model visible left to the
zero crossing of the P — R, curve. In this pH range the weak
polyelectrolyte gel is highly charged and compressing the gel
results in strong electrostatic inter-chain repulsions increasing
the pressure of the system. Since this chain-chain repulsion is
not present in the single chain model, the corresponding P — R,
curve of the single-chain model is below the one for the periodic
gel model. We expect that the chain-chain repulsion decreases,
the more the gel is stretched and indeed Figure 6.2 shows that
both particle-based models have roughly the same zero crossing.
For pH = 3 the gel is alsmost uncharged and the P — R, curve of
the single-chain CGM and the periodic gel model agree within
errorbars. Around pH = 3 the P - R, curve of the PB CGM model
however differs from the ones of the two particle-based models.
In this pH range the gel is almost uncharged (see Figure 6.3b)).
In this case the stretching pressure is the dominating pressure
contribution and a deviation from the particle-based models
reflects that the expression used for the stretching pressure is
based on very simplistic arguments (see Section 3.5.1).

In Figure 6.3 a) we show the equilibrium extension of the chains
Req of a weak polyelectrolyte gel as a function of pH. All models
predict that the gel is collapsed at low pH. With increasing
pH the dissociation of the monomers increases (see Figure 6.3
b). This increased charge of the gel results in a stretching of
the gel which can be seen in Figure 6.3 a). Around pH =9
the maximum degree of dissociation « is reached and the gel
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Figure 6.2: Pressure curves of the different gel models (pK = 4,
¢ = 0.01mol/L) at pH = 3 and pH = 11 as a function

salt

of Re/Rmax,Where Ryax = (N — 1)b is the contour length of
the chain. From these curves the equilibrium end-to-end
distances in swelling equilibrium R.q are found via linear
interpolation. Errors in R./Rmax are typically smaller than
symbol size.

swelling plateaus. A further increase of pH in the reservoir adds
more Na* and OH™ ions. On the one hand, this increases the
electrostatic screening in the gel and reduces the repulsion of
like charged monomers. On the other hand, further addition of
Na" and OH" ions increases the (osmotic) pressure excreted by
the reservoir. Both effects deswell the gel again around pH = 11.
These findings in Figure 6.3 a) are in good qualitative agreement
with experiments [135, 150] and in analogy to the findings for the
end-to-end distance of polyelectrolytes in solution (see Section
5.6).

In Figures 6.3, we observe that the swelling and dissociation
behavior of the two particle-based models are very similar. How-
ever, for small pH value the PB CGM shows slightly lower
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Figure 6.3: a) Swelling of the gel as a function of pH (pK=4, ¢, =
0.01mol/L). b) degree of dissociation with pH

equilibrium extensions Req. From figures 6.3 b), we see that
the gel is only slightly charged in this pH range. Again, the
stretching pressure is the dominant contribution here, and we
attribute the deviation of the PB CGM to the other models to the
simplistic arguments used in deriving the stretching pressure
(see Section 3.5.1).

The dissociation behavior in Figure 6.3 b) shows an even more
pronounced difference of the PB CGM to the two particle-based
models: the degree of dissociation in the PB CGM is constantly in-
creased compared to the two particle-based models. We attribute
this to the fact that the dissociation equilibria are determined
differently in the PB CGM compared to the particle-based mod-
els. In the PB framework only the local concentrations enter the
calculation which determines & (compare Equation (6.4)). In the
particle-based models also an energetic contribution enters in
the reaction-ensemble acceptance probability (compare (2.67)).
This energetic contribution penalizes states with high electro-
static repulsion, resulting in a decreased degree of dissociation
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6.3 Salt-Dependent Swelling of Gels

compared to the PB CGM.

6.3 Salt-Dependent Swelling of Gels

In Figure 6.4 a) we show the equilibrium end-to-end distance of

the chains in the gel as a function of salt concentration.

We observe that the gel swells more with increasing salt con-
centration. This increase in swelling is caused by an increase in
the degree of dissociation (see Figure 6.4 b). This increase of
the degree of dissociation a with increasing salt concentration is
also observed for non-interacting particles in Figure 5.3a. The
mechanism behind this is the exchange of H* ions which are
confined in the gel (due to the electroneutrality constraint) with
Na™* ions from the reservoir (see discussion in Section 5.2). At
high salt concentrations the gel deswells again due to a) increased
electrostatic screening and b) a higher (osmotic) pressure exerted
by the salt reservoir.

This non-monotonic swelling with salt concentration is reported
by experiments [112, 135] and now for the first time also in

particle-based simulations.

In Figure 6.4 a), we again observe that the particle-based models
agree very well in tendency. Only at very reservoir salt concentra-
tions below 107 mol/L, we observe a discrepancy. Since the gel
is almost uncharged in that regime (compare Figure 6.4 a)), the
only pressure contribution which seems capable of causing such
a difference is the stretching pressure, which could be slightly
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Figure 6.4: Swelling of the gel as a function of pH (pK = 4, pH = 6). As
reported by Ricka [112], there is a non-monotonic swelling
as a function of salt concentration b) Degree of dissociation
increases with salt concentration. Figure b) resembles Figure
5.3a for the ideal Donnan-model. When solving the Donnan
model, we assumed a fixed polymer concentration co, in
contrast the polymer concentration ¢y = N,,/V.q in the gel
decreases when the gel swells.

different for a single chain and a network of chains due to cor-
relations. Compared to the above deviations, the difference in
the swelling behavior of the PB CGM and the two particle-based
models is more pronounced. Below reservoir salt concentrations
¢ = 1072 mol/L, the PB CGM is constantly swollen less than the
two particle-based models. A possible explanation could involve,
that the electrostatic repulsion between like charges is higher in
the particle-based models than in the PB CGM. This could be
caused by using a fixed charge distribution p¢(7) in the PB CGM
which is too “dilute”, i.e. the used charge distribution does not
reflect how thightly packed the charged monomers are in the
particle-based models. This would not make a big difference for
high salt concentrations because then the electrostatic repulsion
between like charges is electrostatically screened. In the future,
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6.4 Degree of Dissociation on Compression

one could try to improve the PB CGM with monomer charge
distributions p(7) extracted from the corresponding single-chain
simulations. While this could help to increase the agreement
between the models, it would add further complication to the
density based model.

While the two particle-based models agree again with respect
to their dissociation behavior (see Figure 6.4 b)), it is once more
observed (as in Figure 6.3 b)) that the PB CGM results in a higher
degree of dissociation than the two particle-based models. This
is again due to the fact that the particle-based models penalize
states with high electrostatic repulsion of like charges more than
the PB model.

6.4 Degree of Dissociation on
Compression

In systems containing weak acids or weak bases there is the effect
of protonation-conformation coupling [149]. In weak polyelec-
trolyte gels, the protonation-conformation coupling couples the
degree of dissociation to the stretching state of the polyelectrolyte
gel. In Figure 6.5 a) we observe that the degree of dissociation
a decreases with increasing polymer concentration cy, i.e. with
compression. This behavior is also obtained when solving the
ideal Donnan model (see Section 5.2) which is shown in Fig-
ure 6.5 b). The differences between the Donnan model and the
periodic gel MD results are due to the presence of interactions
in the MD simulations. These interactions reduce the degree
of dissociation compared to an ideal system. A decrease of the
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Figure 6.5: a) Periodic gel MD result and b) Donnan model result: The
degree of dissociation a decreases with higher monomer
concentration, i.e. on compression.

degree of dissociation « when compressing weak polyelectrolyte
gels has been reported previously by Rud et al. [90].

In the spirit of Longo et al. [68], the reduction of the degree of
dissociation with compression can be interpreted in the context
of the Poisson-Boltzmann framework: the local degree of dissoci-
ation in equation 6.4 depends on the local electrostatic potential.
In the Donnan model the degree of dissociation is determined
by the same formula which has, however, no spatial dependence
and makes use of the Donnan potential Wp instead:

A _ Ke®
co s exp(—eoyp/(ksT)) + Kc®”

(6.5)

a =

Let us recall the electrostatic potential i; of a point charge with
charge g; in the three-dimensional space:

WA= o = =) v, (66)

 dnepelF; — 7
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6.5 Charge Profile Along the Polymer Backbone

which can be superpositioned to give the electrostatic potential
of a system of point charges (7). The electrostatic potential ;(7)
has the sign of the charge g;:

sign(yi(7)) = sign(q;) (6.7)

Therefore, the total electrostatic potential ¢(7) is more negative the
more negative charges are located in the vicinity of 7. The density
of negative charges increases when compressing a gel which
undergoes reaction (6.1), or is increased close to the crosslinking
points of the gel (see next section). According to Equation
(6.5), we expect that the degree of dissociation is closer to zero
the more negative the electric potential is (which happens on
compression). In Figure 6.5, we observe that the degree of
dissociation is reduced on compression, i.e. with higher polymer
density co.

6.5 Charge Profile Along the Polymer
Backbone

The charge profile along the polymer backbone, shown in Figure
6.6, is a microscopic observable which can be obtained from the
detailed periodic gel MD simulations. The single-chain CGM
and the PB CGM, on the other hand, only provide the degree
of dissociation averaged over all monomers. The degree of
dissociation a; as a function of the monomer index 7 in the chain
is obtained via averaging over all identical monomers found in

the 16 chains in the periodic gel model.

197



6 Weak Polyelectrolyte Gels

Co 0.256 mol/l ¢ 0.01 mol/l

o
[N)

S 1.0’,. %

(]

o

© 0.8

o —4— pH=4.0
(] =

45; 0.6 pH= 5.0
35 —4— pH=6.0
E —4— pH=7.0
c 0.41 —4— pH=19.0
(]

()]

©

_

(]

>

©

0900°® 00000000

0 5 101520253035
monomer index i

Figure 6.6: Dissociation profile a; along the polymer backbone for each
monomer i at different pH values. The monomer next to a
node has index 0. The monomer index then increases till
N — 1, where the chain meets the next cross-linking point. In
total the chain have N=40 monomers.

As seen in Figure 6.6, monomers close to the nodes (i = 0 and
i # N — 1) have a smaller degree of dissociation a; and, therefore
carry on average a lower absolute charge a; - eg. This behavior
was previously reported for microgels [151] and is related to
the reduced dissociation of central monomers in linear weak
polyelectrolytes [148] or stars [152]. As before, this result can be
understood in the Poisson-Boltzmann framework using Equation
(6.4): Around the cross-linking points in the gel, the concentration
of negatively charged monomers is higher and therefore, the
electric potential ¢ is more negative. According to Equation (6.4)
this results in a reduced local degree of dissociation a(7).

Figure 6.6 also shows the pH-dependence of the dissociation
profile: with increasing pH the overall degree of dissociation
o= % Y.; a; increases (which is similar to the case in Figure 6.3
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6.6 Outlook: Weak Polyampholyte Gels

b)). Atlow pH (around pH = 4) the monomers are almost fully
associated. Therefore, the change in the electric potential i) due to
a monomer carrying the average absolute charge «; is small and
the monomers are very similarly dissociated. With increasing
pH, the average absolute charge «; increases. Around pH =7,
it is energetically more unfavorable for monomers close to a
crosslink to dissociate (due to the increased number of neighbors
at the crosslink). At very high pH (around pH = 9), chemical
equilibrium dictates that the monomers need to be almost fully
dissociated and the monomers along the chain are again more

similarly dissociated.

6.6 Outlook: Weak Polyampholyte Gels

It is straightforward to apply the grand-reaction method pre-
sented in chapter 5 to periodic gels having monomers which
take part in multiple chemical reactions, i.e. polyampholyte
gels [153]. We perform periodic gel MD simulations in analogy
to Section 6.1.1. The monomers in a polyampholyte gel can take

part in an acid reaction
HA 2 A+ HY (6.8)
and a base reaction

H,A* 2 HA + H*. (6.9)

Without referring to a specific chemical substance we impose the
following two reaction constants K; = 107* and K, = 1071°.
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6 Weak Polyelectrolyte Gels

For the first reaction (6.8), we use reactions (5.28), (5.29), (5.30)
and (5.31) in our grand-reaction method.

For the second reaction (6.9), the following set of redundant
reactions is introduced (in analogy to Section 5.4):

H,A* = HA +H"* K, (6.10)

H,A* = HA +Na" K3 = Ky - Knason/Kw  (6.11)

H,A* + CI” = HA K = Ko/Kiaa (6.12)
H,A* + OH = HA Ks = Ko/Ky  (6.13)
(6.14)

Particle swapping moves of the following kind are attempted

A +HA =—HA+ A"~ (6.15)
A" +H A" = H,A" + A~ (6.16)
H,A* + HA = HA + H,A* (6.17)

and accepted with the normal Metropolis criterion of Equation
(2.58). As before, these moves help to equilibrate the charge
profile along the polymer backbone if the number of other ions
present is too small to mediate this swapping reaction.

The black curve in Figure 6.7 shows the non-monotonic swelling
behavior of the polyampholyte gel which is in qualitative agree-
ment with experimentally reported swelling curves [154, 155,
156, 157, 158]. In contrast to the acidic weak polyelectroltyte gel
in Figure 6.3 a), this gel swells in acidic and basic environments
but is collapsed around pH = 7. This behavior results from the
charge of the gel which is shown in red in Figure 6.7. According
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6.6 Outlook: Weak Polyampholyte Gels

to Le Chatelier’s principle, chemical equilibrium is “shifted” to
the state HyA* at low pH. This results in a positively charged gel.
At high pH the gel is negatively charged because the monomers
are mostly in the state A~. Around pH = 7 the gel is charge
neutral and contains both positively and negatively charged
monomers ) ieq{:) = 0. At this charge balance point, the am-
pholytic monomers carry on average zero charge. However,
the fluctuating charges induce attractive Kirkwood-Shumaker
interactions [159] between temporarily positively and negativley
charged monomers. The attraction of the positive and negative
charges along the polymer backbone collapses the gel. The
swelling behavior is symmetric around pH = 7 because the
dissociation constants pK; = 4 and pK, = 10 have the same
distance from pH = 7, namely |pK; — 7| = 3. The decreased
swelling at extreme pH (pH = 1 and pH = 13) is a result of the
increased electrostatic screening and the osmotic pressure of the
reservoir. This is similar to the reduced swelling of an acidic
weak polyelectrolyte gel in Figure 6.3 a).

It could also be interesting to investigate the effect of hydropho-
bicity on the swelling of gels which is reported to cause a phase
transition [112] when changing pH. We could also investigate gels
with monomers taking part in reactions like H,A == A" +nH".
Here, we expect a charge fraction (i.e. pH) dependent collapse
due to counterion condensation when the polyelectrolyte exceeds
a critical charge fraction [160, 161].
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Figure 6.7: Swelling (in black) and gel charge (in red) of polyampholyte

gel as a function of pH (for pK; = 4, pK, = 10, ¢, =

salt

0.01mol/L, N = 40). Data are obtained from periodic gel MD
simulations.

6.7 Summary

We demonstrated how to explicitly account for pH in three
different gel models, namely the periodic gel model, the single-
chain CGM and the PB CGM. In the two particle-based models we
employed the previously introduced grand-reaction method. To
our knowledge, it is the first time that weak polyelectrolyte gels
were simulated in particle-based simulations. We generalized the
PB CGM to make use of the charge regulation approach to model
weak groups [5]. Key to modeling the pH and pOH correctly,
is to account for the presence of all ions which influence the
osmotic pressure of the reservoir and the electrostatic screening.
In conclusion, we found that all three models can predict the
experimentally reported collapse of weak polyelectrolyte gels
at high pH and the non-monotonic swelling with reservoir salt
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concentration.
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7 Conclusion

We have laid out possible applications of hydrogels which span
from superabsorbers in agriculture and hygiene products to pH
sensors, desalination agents, mechanical actors and improved
drug delivery (see Chapter 1). Common to all these use-cases is
the need for selecting gels with fine-tuned properties to achieve
optimal performance. This task is greatly simplified by applying
accurate gel models for finding the optimal gel parameters: in-
stead of tedious synthesis of lots of different gels, the gel with
perfect properties is known from the start. Unfortunately, accu-
rate analytical gel models with predictive power are not readily
available and fundamental atomistic simulations of a gel have
not been performed due to their excessive computational costs.
The most fundamental gel simulations performed to-date are
coarse-grained periodic gel simulations, where multiple atoms
are grouped together to form a particle with effective interactions.
However, these simplified simulations are still compute-intensive
and a consistent description of the pH-dependent behavior of
weak polyelectrolyte gels did not exist, up to now. In this light,
the aims of this thesis were

e to introduce new, more efficient mean-field models for

polyelectrolyte gels
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e to develop methods for studying weak polyelectrolyte
which carry a charge that depends on the pH of the envi-

ronment

e to compare the different models to each other, as well to

experiments, with respect to speed and accuracy.

After having outlined the relevant theory and justification for sim-
ulations in Chapter 2, we spent the rest of this thesis creating more
efficient and reliable gel models: In Chapter 3, we significantly
reduced the computational cost of performing particle-based
simulations by the introduction of the single-chain cell-gel model
(CGM). This simplified model has the advantage that it reduces
the amount of particles which need to be simulated by factor 16
and, therefore, improves the computational efficiency by about
one order of magnitude. At the same time the model is particle-
based, which allowed us to use exactly the same interactions
as in the periodic gel model, and hence also investigate specific
ion effects (modeled via different short range interactions), poor
solvent conditions, as well as the influence of multivalent ions.
We found that the periodic gel model and the single-chain CGM
agree very well with each other (see Section 3.6.2). Additionally,
we demonstrated that the single-chain CGM is also applicable
for highly charged gels or for low dielectric permittivity. This
opens the door to faster and more cost-effective explorations of
parameter spaces. To reduce the computational cost even fur-
thers, we introduced the Poisson-Boltzmann cell-gel model (PB
CGM) which replaces the particle-based description of a single
chain with a density-based description. This comes at the cost of
reduced accuracy but greatly increases the speed of the compu-

tations to a point where compute cluster become unnecessary,

206



since an individual simulation can be performed on a personal
computer within seconds. Our new model is comparable to
the Katchalsky model in efficiency, but has wider applicability
because it can also be used to investigate highly charged gels,
while the Katchalsky model fails for charge fractions f > 0.5. In
addition, we demonstrated a simplistic approach of introducing
chain length heterogeneity by assuming a mean-field factoriza-
tion of the gel into separate cells containing only a single chain.
These independent cells are then used to calculate the average
degree of swelling of a polydisperse gel, with cells weighted

according to their occurrence probability.

In Chapter 4, we have compared the periodic gel model and
the PB CGM with experimental data of poly(sodium acrylate)
hydrogels comprising different network topologies, including
single networks (SN) and interpenetrating double networks
(IPN). The comparison was performed at pH = 7 such that the
gels can be treated as strong polyelectrolyte gels with charge
fraction one. The swelling capacity of the gels in deionized
water and sodium chloride solutions have been studied, where
the absorbency Q,, decreased with higher salinities and more
entanglements in the network caused by a higher degree of cross-
linking or the incorporation of a second network. Furthermore,
like the experimental results, our MD simulations showed that
the water absorbency of an IPN is much smaller at low salinities
compared to its related SN, whereas the differences between both
network types vanish at higher salt concentrations. Although
there are discrepancies between the reported experimental data
and our simulations our models capture the main driving forces
behind gel swelling. We attribute differences between the models
and the experiments to the incomplete characterization of the
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experimental gels: it is not clear which gel parameters are
underlying the real gel such that it is hard to compare our models

directly to experiments.

We introduced a new method in Chapter 5 termed the grand-
reaction method, which is a robust tool for coarse-grained sim-
ulations of ionization equilibrium throughout the whole range
of pH values. In these simulations pH and salt concentration
are defined by the composition of the reservoir. Our implemen-
tation of particle exchanges with the reservoir avoids known
artifacts and non-physical parameter combinations that have
been used in previous studies. We showed that the grand-
reaction method allows for the study of the combined effect of
pH and reservoir ionic strength on the ionization and swelling of
weak polyelectrolytes. In particular, it can correctly reproduce
the experimentally known non-monotonic swelling as a function
of pH which was previously not reproduced in particle-based
simulations. Extensions of the grand-reaction method to a reser-
voir with more components, or to multiple chemical reactions in
the system are straightforward.

In Chapter 6, we employed the grand-reaction method for sim-
ulations of weak polyelectrolyte gels in the periodic gel model
and the single-chain CGM. Additionally, we use the charge regu-
lation approach [5] to model weak polyelectrolyte gels in the PB
CGM. Key to modeling the pH value correctly was to account
for the presence of all ions which influence the osmotic pressure
of the reservoir and the electrostatic screening. In conclusion,
we found that all three models can predict the experimentally
reported collapse of weak polyelectrolyte gels at high pH and

the non-monotonic swelling with reservoir salt concentration.
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The results presented introduce new very efficient gel models:
the single chain CGM and the PB CGM. Both are computationally
less demanding than the previously used periodic gel model.
We hope that in the future our work will be useful for tayloring
polyelectrolyte gels to their application.

During my PhD program, I also contributed to several publica-
tions which are connected to my work either through the fact
that the systems contain reactive groups (i.e. the application of
the reaction ensemble method) or the fact that they consider
polyelectrolyte systems. The following publications were not
discussed in this thesis:

¢ J. Landsgesell, C. Holm., J. Smiatek “Wang-Landau Re-
action Ensemble Method: Simulation of Weak Polyelec-
trolytes and General Acid-Base Reactions” In: Journal of
Chemical Theory and Computation 13(2)(852-862) (2017)
URL: https://dx.doi.org/10.1021/acs.jctc.6b00791
In this publication following my master thesis, we dis-
cuss a combination of the reaction ensemble method and
the Wang-Landau sampling method which allows the en-
hanced sampling of rare protonation states. With this
method we can obtain estimates for the density of states
and the partition sum.

o J. Landsgesell, C. Holm, J. Smiatek. “Simulation of weak
polyelectrolytes: A comparison between the constant pH
and the reaction ensemble method” In: The European Physi-
cal Journal Special Topics 226(725-736) (2017)

URL: https://dx.doi.org/10.1140/epjst/e2016-60324-3
We compare the reaction ensemble method and the constant
pH method (see Chapter 2). We show similarities between
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both methods under certain conditions and pronounced
differences for extreme pH values. These deviations are due
to the presence of explicit protons in the reaction ensemble

method inducing electrostatic screening effects.

o T. Richter, J. Landsgesell, P. Kosovan, C. Holm. “On the
efficiency of a hydrogel-based desalination cycle” In: De-
salination 414(28-34) (2017)

URL: https://dx.doi.org/10.1016/j.desal.2017.03.027

Polyelectrolyte gels swollen in seawater can release par-
tially desalinated water when being compressed. Hence,
they can be used as desalination agents. We use the Katchal-
sky model to analyse the thermodynamic costs of desali-
nation, with a cycle which I proposed in analogy to the

desalination experiments.

e D. Sean, J. Landsgesell, C. Holm. “Computer Simulations
of Static and Dynamical Properties of Weak Polyelectrolyte
Nanogels in Salty Solutions” In: Gels 4(2)(2) (2018)

URL: https://dx.doi.org/10.3390/gels4010002

With the help of my reaction-ensemble implementation
in ESPResSo, we investigate the chemical equilibria of
weak polyelectrolyte nanogels. Using the calculated mean-
charge configurations of the nanogel from the reaction
ensemble simulation as a quenched input to coupled lattice-
Boltzmann molecular dynamics simulations, we investigate
dynamical nanogel properties such as the electrophoretic
mobility and the diffusion coefficient.

e J. Landsgesell, L. Nova, O. Rud, F. Uhlik, D. Sean, P.
Hebbeker, C. Holm, P. KoSovan. “Simulations of ionization
equilibria in weak polyelectrolyte solutions and gels” In:
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Soft Matter 15(6)(1155-1185) (2019)

URL: http://dx.doi.org/10.1039/C8SM02085]

This article recapitulates the state of the art regarding
simulations of ionization equilibria of weak polyelectrolyte
solutions and gels, focusing on two methods: the constant
pH ensemble and the reaction ensemble. We review the
existing simulation literature and try to identify gaps and
open problems.

D. Sean, J. Landsgesell, C. Holm. “Influence of weak
groups on polyelectrolyte mobilities” In: Electrophoresis
40(5)(799-809) (2019)

URL: https://dx.doi.org/10.1002/elps.201800346

With the help of my reaction-ensemble implementation in
ESPResSo, we investigate the inhomogeneous ionization in
weak polyelectrolytes and the effect of the resulting charge
profile on the electrophoretic mobility. An ensemble pre-
average is used to obtain the effective charge profile for
linear, rod-like and flexible four-arm star polyelectrolytes.
Using molecular dynamics simulations within a Lattice-
Boltzman fluid, we investigate how the electrophoretic
mobility is affected by the average dissociation profile. We
find that the mobility is almost unaltered due to counter-ion

condensation effects.

F. Weik, R. Weeber, K. Szuttor, K. Breitsprecher, J. de Graaf,
M. Kuron J. Landsgesell, H. Menke, D. Sean, C. Holm,
“ESPResSo 4.0 — an extensible software package for simulat-
ing soft matter systems” In: The European Physical Journal
Special Topics 227(14)(1789-1816) (2019)

URL: http://dx.doi.org/10.1140/epjst/e2019-800186-9
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We present our new Python interface which replaces the
older Tcl scripting interface. In addition, many new simu-
lation methods have been implemented. I added several
methods handy for simulations of systems with fluctuat-
ing particle numbers: the reaction ensemble method, the
constant pH method, Widom’s insertion method and the
H5MD output format [162].

e E Weik, K. Szuttor, J. Landsgesell, C. Holm. “Modeling
the current modulation of dsDNA in nanopores — from
mean-field to atomistic and back” In: The European Physical
Journal Special Topics 227(14)(1639-1655) (2019)

URL: https://dx.doi.org/10.1140/epjst/e2019-800189-3
All-atom molecular dynamics (MD) simulations of dou-
ble stranded DNA translocating through a cylindrical
nanopore have revealed that ions close to the surface of the
DNA experience an additional friction contribution when
compared to their bulk value. We present an extended
electrokinetic model with such a friction for describing the
behavior of a DNA confined to a cylindrical pore. In radial
direction the mobile ions are distributed similarly to my
PB cell-gel model [102, 2].

¢ ] Finkbeiner, J. Landsgesell, C. Holm. “Dilution Behaviour
of Weak Acids Under the Influence of Strong Electrostatic
Interactions” In preparation
We observe that under the influence of strong electrostatic
interactions the dilution behavior is modified compared
to an ideal solution: While ideal solutions follow the law
of dilution (i.e. become more dissociated the more diluted
they are and vise versa become less dissociated the more
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concentrated they are), we observe an enhanced dissoci-
ation with increasing concentration of weak acids under
the influence of strong electrostatic interactions. Following
my ideas, we can attribute this “abnormal” dissociation
behavior to excess contributions of the chemical potential.
This behavior resembles the non-monotonic dissociation
found in experiments [163], where our simulations could
be compared to recently proposed charge regulation theo-
ries [164, 165].

A. Tagliabue, J. Landsgesell, M. Mella, C. Holm. “On
the Formation of Electrostatically Cross-linked Gels via
Self-assembly of Charged Star-shaped Copolymers” In
preparation

In this work we investigate the possibility to form (meta)stable
networks (i.e., gels) by oppositely charged star-shaped
diblock polyelectrolytes. We simulated electroneutral
mixtures of positively and negatively charged stars with
four arms carrying a varying number of charged terminal
monomers. We find stable gel phases if the stars have
more than two terminal charges per arm. These physically
crosslinked gels can be analyzed in analogy to the periodic
gel model presented in Section 2.6.2.
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8 Appendix

8.1 Directory Structure: Simulation
Scripts and Figures

The simulation scripts used in this thesis are documented in the
following folder:
simulation_scripts
MD
tperiodi c_gel
single_chain_CGM
PB

Figures are located in the folder

figures

tcopied_plots_XYZ
thesis

They are generated in the corresponding git repositories of the
papers and are then copied to the thesis (except for figures which

were only generated for this thesis).
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8.2 Polymer Monomer Distribution in the
Poisson-Boltzmann Cell-Gel Model

In the spirit of hirachical multiscale modeling [16] we use results
from the more detailed single-chain cell-gel model (CGM) to
motivate the fixed charge density p¢(r) = =N fp(r) which needs
to be defined for the Poisson-Boltzmann CGM (PB CGM). We
impose different forms of the probability density (Heaviside vs
approximately Gaussian) and match the first moment to single-
chain CGMV, i.e. the average distance from the end to end vector.
To this end, we perform single-chain CGM simulations and
record the distance r of each monomer from the cylinder axis. We
therefore obtain the average distance from the cylinder axis (*)mp
which depends on the stretching state R. of the polymer: for
highly stretched gels the chain configuration resembles a rod, for

barely stretched gels, we get a more fluffy chain conformation.

From the single-chain CGM data, we extract the parameters for
fitting a curve for the average distance (r)mp of the monomers
from the cylinder axis as a function of Re:

(Mwp(Re) = No (c1 (R—)2 iRy cg). (8.1)
No No

From fitting (for a fully charged chain without added salt, N €
{39,79,300} and €, = 80), we obtain the constants C; = —0.17,
C, = 0.14 and C3 = 0.03. The data to which we fit and the fitted
master curve are shown in figure 8.1 a). The fit goes through the
data reasonably well (considering fluctuations +/Var(r) which
are shown as bars). Figure 8.1 b) shows the application of the

obtained master curve to other parameters than the ones which

216



8.3 Strong Polyelectrolyte Gels

0.20 0.20
—— Master curve —— Master curve
X —— N=39, ¢l =0 molfl, f=1 —— N=80, ¢ =0.2 moll, f=1
0.154* /\ N=79, ce* = 0 molfl, f=1
o LTSN N=300, ¢ = 0 mol/l, f=1
T

0.2 0.4 0.6 0.8 1.0 .
Re/N Re/N

Figure 8.1: Figure a) shows the master curve which was obtained
from fitting to the data at charge fraction f = 1 and salt

concentration ¢} = 0. The inset shows the unscaled data (at

same parameters). Figure b) shows the master curve applied
to data sets which were not included in the fitting process.
In both figures the bars show the standard deviation of the
data points.

were used for the fitting. It can be seen that the master curve
captures the trend of (r)mp(Re) within fluctuations. Although
the conformation of the chain depends on other parameters like
charge fraction and salt concentration, we follow the simplistic
approach and use the obtained fit parameters for all parameter
combinations.

8.3 Strong Polyelectrolyte Gels

8.3.1 Swelling Equilibria

For completeness, we show the swelling equilibria as a function
salt concentration cg,, charge fraction f and chain length N. The
plots are analogous to the plots in Figure 3.5b. For parameters
where the Katchalsky model predicts more than one zero crossing
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in the PV curve, the corresponding value of R4 is set to zero (in

order to indicate failure).

Salt Concentration Dependence
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8.3.2 Comparison of the CGMs to the Periodic

Gel Model

We compare the swelling predictions of the two CGMs and the

Katchalsky model to the periodic gel model predictions in a
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parametric plot (similar to figure 3.7). We seperately show the
data for two data sets A: (N = 40, f = 0.125, cs € {0.01, 0.02,
0.05,0.1, 0.2} mol/l) and B: (N = 80, f = 1, cearr € {0.01, 0.02, 0.05,
0.1, 0.2} mol/l) in figures 8.2a and 8.2b.
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periodic gel model: Req/Rmax periodic gel model: Req/Rmax

(@) (b)

Figure 8.2: a) Data set A: N=40, f=0.125, different salt concentrations. b)
Data set B: N=80, f=1, different salt concentrations. In each
figure the highest salt concentration 0.2 mol/l is associated
with the lowest swelling. Reducing the salt concentration
increases the swelling. The Katchalsky model fails for f=1.

To illustrate this failure, we set the predicted swelling to
Req/ Rmax =0.

Plotting both data sets A and B together, like we do it in figure
3.7 gives figure 8.3 below:
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Figure 8.3: Data sets A and B from figures 8.2a and 8.2b plotted together.
This plot is similar to figure 5 in the manuscript but contains
only 1/6 of the data sets.

The projection of the predictions from a three-dimensional pa-
rameter space on one abscissa results in an apparent “scattering”
of data around the ideal prediction (although the models do not
scatter when plotting one data set alone). This indicates that the
different models perform differently well in different parts of the
parameter space.

8.4 Charge Fraction Dependence of the
Swelling of Single Gels and
Interpenetrating Gels

The data shown here supplement the data presented in section
4.5. The data are obtained from periodic gel MD simulations. In
figure 8.4 we show the behaviour of SNP and IPNs for different
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and Interpenetrating Gels

charge fractions. This is an example, where we harness that
simulations have predictive power and are easier to perform than
experiments. We observe that SNPs and IPNs swell differently.

—e— i) double network at c%;=0.01mol/l —e— i) double network at cf¢=0.2mol/l
80 ii) single network at c{5;=0.01mol/I 20 ii) single network at c[%;=0.2mol/l —*
60
g 3
o o 15
40
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20
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
charge fraction f charge fraction f

Figure 8.4: The mass based degree of swelling of both double and single
networks at varying charge fraction and fixed chain length
N = 40 and concentrations of the supernatant solution as
indicated in the legend.
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