
Adaptive Grid Implementation for
Parallel Continuum Mechanics

Methods in Particle Simulations

Vom Stuttgarter Zentrum für Simulationswissenschaften (SC SimTech) und
der Fakultät für Informatik, Elektrotechnik und Informationstechnik

der Universität Stuttgart zur Erlangung der Würde eines Doktors
der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Michael Stefan Lahnert
aus Oberwesel

Hauptberichter: Prof. Dr. Miriam Mehl

Mitberichter: Prof. Dr. Carsten Burstedde
Mitprüfer: Prof. Dr. Daniel Weiskopf

Tag der mündlichen Prüfung: October 14, 2019

Institute for Parallel and Distributed Systems

2019

“ Focusing your life solely on making a buck shows a

poverty of ambition. It asks too little of yourself.

And it will leave you unfulfilled.

— Barack Obama, 2006

Although this thesis was written with uttermost care, it cannot be ruled out that it contains errors.

Please send any corrections and mistakes to michael.lahnert@gmail.com.

mailto:michael.lahnert@gmail.com

5

Contents

Lists of Figures, Tables, and Algorithms 9

List of Symbols and Acronyms 13

Preface 21

1 Introduction 23
1.1 Simulations on Different Time and Length Scales 23
1.2 Target System: DNA Translocation Through a Nanopore 24
1.3 Integrating Tree-Structured Grids Into Legacy Codes 26
1.4 Contributions in This Work . 27

2 Tree-Structured Cartesian Grids 29
2.1 Fundamental Ideas . 29

2.1.1 Different Ways to Realize Grid-Adaptivity 29
2.1.2 Handling Data . 32
2.1.3 Important Algorithms . 33

2.2 The p4est Library . 37
2.3 Summary . 40

3 Target Software, Models, and Algorithms 43
3.1 Target Software ESPResSo Simulation Software 43
3.2 Electrokinetic Equations . 44
3.3 Hydrodynamics: Lattice-Boltzmann Method 46

3.3.1 Introduction . 46
3.3.2 Reducing the Limitations of the LBM 49
3.3.3 LBM in ESPResSo . 50

3.4 Ionic Flux . 50
3.4.1 Diffusive Flux . 50
3.4.2 Advective Flux . 51
3.4.3 Total Ionic Flux . 51

3.5 Electrostatic Potential . 52
3.6 Molecular Dynamics . 53

3.6.1 Short-Range Molecular Dynamics . 53
3.6.2 Long-Range Molecular Dynamics . 55

6 CONTENTS

3.7 Parallelization . 56
3.8 Interaction of Components . 56
3.9 Summary . 57

4 Adaptive Discretization of Physical Models 59
4.1 Hydrodynamics . 59

4.1.1 Interpolation Schemes . 59
4.1.2 Volumetric Schemes . 60
4.1.3 Data-Dependencies for Volumetric LBM 63
4.1.4 Further Schemes . 68

4.2 Ionic Flux . 71
4.3 Electrostatic Potential . 72
4.4 Molecular Dynamics . 72
4.5 Coupling . 73
4.6 Summary . 74

5 Integrating ESPResSo with p4est 75
5.1 Preparing p4est for Minimally-Invasive Integration 75

5.1.1 Random-Access to Direct Neighbors 76
5.1.2 Integration of Virtual Cells . 80

5.2 Changing the Discretization in ESPResSo . 88
5.2.1 Data-Layout and Adjusting Kernels . 88
5.2.2 Coupling Physical Subsystems . 89
5.2.3 Dynamic Adaptivity in ESPResSo . 96

5.3 Summary . 100

6 Computational Results 103
6.1 Testing the Implementation . 103

6.1.1 Lattice-Boltzmann Method . 103
6.1.2 Molecular Dynamics . 107
6.1.3 Electrokinetics . 107

6.2 Performance and Scalability . 112
6.2.1 Lattice-Boltzmann Method . 115

Strong Scaling . 117
Weak Scaling . 120

6.2.2 Molecular Dynamics . 127
6.2.3 Coupled Simulations . 130

6.3 Towards the Full Electrokinetic System . 136

7 Conclusion 139
7.1 Contributions . 139
7.2 Report on Minimal Invasiveness . 140
7.3 Outlook . 142

A LBM Weak Scaling, Absolute Times 143

CONTENTS 7

B Bibliography 149

C Declaration of Authorship 165

9

Lists of Figures, Tables, and
Algorithms

List of Figures

1.1 Schematic setup of a DNA translocation experiment 25

2.1 Different types of structured grid-adaptivity . 30
2.2 Simple example of a tree-structured Cartesian grid in 2D and 3D 31
2.3 Hanging entities . 31
2.4 Different data layouts for splitting grid and payload 32
2.5 Insulation layer of a cell for 2:1 balancing . 35
2.6 Naming scheme of faces, edges, and corners used by p4est in 2D and 3D . . 38
2.7 Schematic representation of the sparse matrix scheme in p4est_ghost 39
2.8 Exemplary grid with corresponding tree . 41

3.1 Popular stencils of the lattice-Boltzmann method 48
3.2 Streaming step of the lattice-Boltzmann method 49
3.3 Bounce-back boundary . 49
3.4 Different storage schemes for the LBM . 50
3.5 Volume-of-fluid scheme for the advective ionic flux 52
3.6 Lennard Jones potential and Linked-Cell algorithm 55

4.1 Position of virtual cells and available neighbors per level 61
4.2 Multivariate time stepping in adaptive LBM simulations 62
4.3 Adaptive LBM in volumetric formulation . 62
4.4 Streaming operation at a refinement boundary 64
4.5 Data-dependencies for streaming between virtual cells in 2D 65
4.6 Data-dependencies for streaming between virtual cells in 3D 66
4.7 Local positioning of virtual cells . 69
4.8 Error bound for streaming of virtual cells at domain boundary 70
4.9 Adaptive FDM stencils for solving for the electrostatic potential 73

5.1 Orientation in p4est . 77
5.2 Cells available in an edge iterator callback . 80
5.3 Data layout and available data in p4est_virtual 82
5.4 Extending p4est_ghost for handling virtual quadrants 85

10 LISTS OF FIGURES, TABLES, AND ALGORITHMS

5.5 Different cases occuring in neighbor search . 86
5.6 Different cases in neighbor search for virtual cells in 2D and 3D 87
5.7 Finding a p4est cell containing a given position 92
5.8 Issue with coupling without common partitioning 93
5.9 Aligning process boundaries using the finest common tree 97
5.10 Different cases during repartitioning . 99

6.1 Geometry of the channel to verify the LBM implementation 104
6.2 Flow profile Couette flow, regular grid . 105
6.3 Flow profile Couette flow, adaptive grid . 106
6.4 Prolonged geometry of the channel for the Poiseuille flow 107
6.5 Flow profile Poiseuille flow, regular grid . 108
6.6 Flow profile Poiseuille flow, adaptive grid . 109
6.7 Energy of microcanonical ensemble . 110
6.8 Geometry for the electro-osmotic flow . 112
6.9 Electro-osmotic flow: density and velocity profile for a regular grid 113
6.10 Electro-osmotic flow: density and velocity profile for an adaptive grid 114
6.11 Driven cavity geometry . 116
6.12 Benefits of communication hiding for strong and weak scaling 116
6.13 Parallel efficiency driven cavity, strong scaling . 117
6.14 Fluid Lattice Updates per Second per core, strong scaling 118
6.15 Algorithmic steps of LBM, strong scaling, regular grid level eight 119
6.16 Algorithmic steps of LBM, strong scaling, statically adaptive grid 120
6.17 Algorithmic steps of LBM, strong scaling, dynamically adaptive grid 121
6.18 Algorithmic steps of adapting the grid, strong scaling 122
6.19 Algorithmic steps of adapting the grid, strong scaling, building metadata . . . 123
6.20 Load per process compared to previous scaling step 123
6.21 Parallel efficiency driven cavity, weak scaling . 124
6.22 Fluid Lattice Updates per Second per core, weak scaling 124
6.23 Algorithmic steps of LBM, weak scaling, regular grid level six 125
6.24 Algorithmic steps of LBM, weak scaling, statically adaptive grid 126
6.25 Algorithmic steps of LBM, weak scaling, dynamically adaptive grid 127
6.26 Algorithmic steps of adapting the grid, weak scaling 128
6.27 Algorithmic steps of adapting the grid, weak scaling, building metadata . . . 129
6.28 Weak scaling short-range MD . 129
6.29 Dynamic repartitioning during a short-range MD simulation 130
6.30 Setup and refinement pattern of coupled simulation, no obstacle 131
6.31 Weak scaling of coupled simulation, no obstacle 132
6.32 Setup and refinement pattern of coupled simulation, simple pore obstacle . . 133
6.33 Weak scaling of coupled simulation, simple pore obstacle 134
6.34 Simulation setup of a charged pore . 136
6.35 Velocity field of charged pore after 8000 time steps 138

A.1 Algorithmic steps of LBM, weak scaling, regular grid level six 144
A.2 Algorithmic steps of LBM, weak scaling, statically adaptive grid 145

LIST OF TABLES 11

A.3 Algorithmic steps of LBM, width scaling, dynamically adaptive grid 146
A.4 Algorithmic steps of adapting the grid, weak scaling 147
A.5 Algorithmic steps of adapting the grid, weak scaling, building metadata . . . 148

List of Tables

4.1 Projections to reduce 3D hanging entity cases to 2D 67

5.1 Post-processing of obtained neighbors . 88
5.2 Overview over load imbalance introduced by aligned partitioning 96

6.1 Structure of Hazel Hen . 115
6.2 Imbalance for the smaller dynamically adaptive coupled scenario with pore . 135
6.3 Imbalance for the larger dynamically adaptive coupled scenario with pore . . 135

7.1 Report on minimal-invasiveness: Code changes in ESPResSo in this project . . 141

List of Algorithms

5.1 Finding a cell in a p4est instance containing a given position 90
5.2 Constructing the finest common tree by coarsening cells 94
5.3 Aligned partitioning of multiple p4est instances 95
5.4 Mapping data between grids after grid has changed 98
5.5 Dynamically adapting the grid at run time . 101

6.1 Bisection scheme for evaluating the system constant ξ 111

13

List of Symbols and Acronyms

Symbol Meaning Page with First Occurrence

ρ Fluid density . 47
p Fluid momentum . 47
p Fluid pressure . 44
π Fluid stress tensor . 47
u Fluid velocity . 44
Q Volumetric flow rate . 104
ζ Fluid vorticity . 98

`B Bjerrum length `B =
e2

4πεkB T . 52
kB Boltzmann constant . 44
e Elementary charge . 44
ε Electric permittivity . 44
E Electric field E = −∇Φ . 57
Φ Electrostatic potential . 44
f Force . 44
Γ Friction coefficient . 57
T Temperature . 44

% Net charge density % =
∑

± z±ec± . 52
c Ionic species density . 44
D Diffusion coefficient . 44
j Ionic flux . 44
µ Ionic species mobility . 44
z Ionic species valency . 44

Lik Lattice-Boltzmann collision operator . 46
fi Lattice-Boltzmann probability density in discrete direction i 46
f eq
i Lattice-Boltzmann equilibrium probability density in discrete direction i . . . 47

cs Lattice-Boltzmann speed of sound . 47
c i Discrete direction of a given lattice-Boltzmann stencil 46

N Natural numbers without zero (1,2, 3, . . .) . 30
N0 Natural numbers with zero (N∪ {0}) . 84
R Real numbers . 16

14 LIST OF SYMBOLS AND ACRONYMS

Symbol Meaning Page with First Occurrence

‖·‖2 `2 norm ‖x‖2 :=
Ç

∑d
t=1 x2

t . 51
O (f (x)) Big-O Landau notation . 25

δik Kronecker delta δik =

¨

0 if i 6= k

1 if i = k
. 47

∧ Logical “and” . 30
xor Bitwise “exclusive or” . 76

rc Cut-off radius of a MD potential . 54
v Particle velocity . 57

| · |! Number of elements of a set . 74

AMR Adaptive mesh refinement . 26
BFS Breadth-first search . 36
CPU Central processing unit . 50
CSR Compressed sparse row . 37
DFS Depth-first search . 30
DFT Discrete Fourier transform . 46
DG Discontinuous Galerkin . 68
EK Electrokinetic . 44
FCT Finest common tree . 18
FDM Finite difference method . 24
FEM Finite element method . 24
FFT Fast Fourier transform . 53
FMA Fused multiply-add . 53
FVM Finite volume method . 24
GPL GNU General Public License . 37
GPU Graphics processing unit . 26
LBM Lattice-Boltzmann method . 24
LJ Lennard-Jones . 54
MD Molecular dynamics . 24
MRT Multi-relaxation-time . 47
SFC Space-filling curve . 26
SOR Successive over-relaxation . 46
SRT Single-relaxation-time . 47
TRT Two-relaxation-time . 47

15

Zusammenfassung

Die Arbeit befasst sich mit der minimal-invasiven Integration dynamisch-adaptiver

baumstrukturierter Rechengitter in bestehende Anwendungen. Viele Simulationsprogram-

me beinhalten komplizierte naturwissenschaftliche Modelle und sind in vielen Personen-

jahren Entwicklungsarbeit entstanden. Zur räumlichen Diskretisierung werden allerdings

einfache reguläre, kartesische Gitter benutzt. Bei der Untersuchung von Systemen, für

deren Simulation ein größeres Volumen mit einer feinen Auflösung berechnet werden

muss, stoßen diese Gitter an Grenzen, insbesondere hinsichtlich des Speicherverbrauchs.

Um die Berechnung größerer Gebiete und längerer Zeitskalen zu ermöglichen, sind

räumlich-adaptive Gitter ein bekannter Lösungsweg. Werden strukturierte Gitter verwen-

det, können während der Laufzeit mit moderatem Aufwand lokale Gitteränderungen

durchgeführt werden. Bei der Integration solcher Gitter in bestehende Anwendungen

soll im Zuge dessen nicht das in der Anwendung vorhandene Expertenwissen wegen der

neuen räumlichen Diskretisierung verloren gehen. Unser Ziel besteht also darin, räumliche

Adaptivität in existierenden Simulationsprogrammen nachzurüsten und dabei möglichst

große Teile des ursprünglichen Codes zu erhalten, um möglichst viel enthaltenes Wissen

zu konservieren.

Wir verwenden die bekannte und skalierbare p4est Gitterbibliothek, um das Gitter

darzustellen und von der Anwendung abzukapseln. Diese Bibliothek erweitern wir so, dass

sie sich leichter in bestehende Anwendungen integrieren lässt. Wir demonstrieren unser

Modell am Beispiel der Simulation von DNA-Translokation durch Nanoporen, modelliert

mithilfe des Simulationscodes ESPResSo, der speziell für die Simulation von weicher

Materie geeignet ist. Nach der Erweiterung von p4est sowie der Portierung der ersten

physikalischen Komponente [1–3], konnten die übrigen physikalischen Subsysteme in

zwei studentischen Masterarbeiten portiert werden [4, 5].
Die übrige Arbeit ist wie folgt gegliedert. Kapitel 2 erläutert verschiedene Formen

räumlicher Adaptivität mit ihren jeweiligen Vorzügen und Defiziten vor. Wir entwickeln

eine Schnittstelle für adaptive Gitter, um diese in bestehende Anwendungen zu integrieren

und betrachten verschiedene Ansätze zur Implementierung dieser Schnittstelle. Außerdem

16 LIST OF SYMBOLS AND ACRONYMS

stellen wir die relevanten Teile der p4est Bibliothek vor und erläutern, wie die erwähnten

Algorithmen hier umgesetzt wurden.

In Kapitel 3 geben wir einen detaillierten Überblick über das physikalische Modell

und die ESPResSo Software. Wir stellen die Gleichungen der einzelnen physikalischen

Subsysteme vor, aus denen sich die Simulation zusammensetzt, erläutern deren Kopplung

sowie die in ESPResSo verwendete Diskretisierung.

Die Erweiterung der Diskretisierung für adaptive Gitter stellen wir in Kapitel 4 vor.

Insbesondere erläutern wir den Umgang mit der zusätzlichen Komplexität aus Verfeine-

rungsgrenzen in der Diskretisierung durch virtuelle Zellen.

Die Beschreibung der Integration von ESPResSo und p4est folgt in Kapitel 5. Wir

beschreiben die Vorarbeiten in p4est sowie die wichtigsten Schritte in ESPResSo. Wir

erläutern unser Verfahren zur gemeinsamen Partitionierung mehrerer unabhängiger p4est
Instanzen mithilfe des Finest-Common-Tree (FCT) und wie wir zu einer Position x ∈ Ω ⊆
R3 die richtige Zelle in einer p4est Instanz finden; beispielsweise für die Kopplung oder

um Partikel einer Zelle im Linked-Cell Verfahren zuzuweisen.

In Kapitel 6 demonstrieren wir die physikalische Korrektheit unserer Integration

anhand bekannter Beispiele mit bekannter analytischer Lösung. Außerdem analysieren

wir das Skalierungsverhalten und die Performance verschiedener Komponenten auf dem

Tier 1 Supercomputer “Hazel Hen” am HLRS in Stuttgart. Zusätzlich geben wir einen

kurzen Ausblick auf das Gesamtsystem mithilfe eines vorläufigen Modells der in [6]
modellierten Porengeometrie, erweitert auf 3D. Hierbei verwenden wir einen größeren

Porendurchmesser und verzichten auf Partikel.

Kapitel 7 fasst die Arbeit zusammen und zeigt Ansätze für weitergehende Arbeiten

auf.

17

Abstract

This work presents a way for integrating dynamically-adaptive tree-structured grids

into existing applications in a minimally invasive way. Multiple simulation software

feature complex scientific models and have been developed in several man-years. Often,

their spatial discretization uses simple regular Cartesian grids. If we study systems that

require simulating larger volumes with fine grid resolution, these grids reach their limits,

especially regarding memory-consumption.

To allow simulating systems on larger time and length scales, spatially-adaptive grids

are a well-known way to mitigate this issue. If we use structured adaptive grids, we can

change the discretization during run time at moderate cost. At the same time, we do not

want to lose the existing domain-specific knowledge contained in the application for no

other reason that changing the spatial discretization. Thus, we aim for integrating dynamic

spatial adaptivity into legacy codes while preserving most of the original knowledge

contained in the application.

We use the well-known and scalable p4est grid library to represent the grid and

encapsulate it from the application. We add features to this library to facilitate its inte-

gration into legacy codes. We demonstrate our model by simulating DNA translocation

through nanopores using the soft matter simulation software ESPResSo. After the initial

extensions to p4est have been made and the first component was ported [1–3], porting

the remaining subsystems could be done in two students Master’s theses [4, 5].
The rest of the work is structured as follows. Chap. 2 introduces different ways for

realizing spatial adaptivity with their respective benefits and deficits. We develop an

interface for adaptive grids to integrate them into existing applications. We consider

different algorithms to implement the respective parts of the interface. Additionally, we

present the p4est library and describe its implementation of the interface.

In Chap. 3, we describe the underlying physical model of our system in detail. We

present the system of equations for the individual physical subsystems that built our

exemplary system and their coupling. Additionally, we describe the discretization used in

ESPResSo.

18 LIST OF SYMBOLS AND ACRONYMS

We extend the discretization to adaptive grids in Chap. 4. We introduce virtual cells

for dealing with the complexity of refinement boundaries in the spatial discretization.

Chap. 5 describes the integration of ESPResSo with p4est, focussing on the work in

p4est and the main aspects in ESPResSo. We explain our algorithm for a joint partitioning

of multiple independent p4est instances using the finest common tree (FCT) and how

we identify the cell in a given p4est instance containing a position x ∈ Ω ⊆ R3, e.g., for

coupling or for inserting particles into cells of the grid of the Linked-Cell method.

We show results of the work in this thesis in Chap. 6. We verify the correctness

of our implementation using systems whose physics are well-known and understood.

Then, we go into detail about performance and scalability of individual subsystems and

their coupling using the Tier 1 supercomputer “Hazel Hen” at the HLRS in Stuttgart.

Additionally, we give a brief outlook on simulating the target system using a preliminary

three-dimensional geometry derived from the pore geometry in [6] using a larger pore

diameter.

Chap. 7 summarizes the work and gives a brief outlook.

19

Publications

During this PhD project, I created and contributed to a number of publications. Some

parts of the work are already published there:

1. M. Lahnert; T. Aoki; C. Burstedde; M. Mehl. “Minimally-Invasive Integration
of p4est in ESPResSo for Adaptive Lattice-Boltzmann.” The 30th Computational
Fluid Dynamics Symposium. Japan Society of Fluid Mechanics, 2016. Entry [2] in
bibliography.

2. M. Lahnert; C. Burstedde; C. Holm; M. Mehl; G. Rempfer; F. Weik. “Towards Lattice-
Boltzmann on Dynamically Adaptive Grids – Minimally-Invasive Grid Exchange in
ESPResSo.” ECCOMAS Congress 2016, VII European Congress on Computational Meth-
ods in Applied Sciences and Engineering. Ed. by M. Papadrakakis; V. Papadopoulos;
G. Stefanou; V. Plevris. ECCOMAS, 2016. Entry [1] in bibliography.

3. S. Hirschmann; M. Brunn; M. Lahnert; C. W. Glass; M. Mehl; D. Pflüger. “Load
Balancing with p4est for Short-Range Molecular Dynamics with ESPResSo.” Ed. by
S. Bassini; M. Danelutto; P. Dazzi; G. R. Joubert; F. Peters. Vol. 32. Advances in
Parallel Computing. IOS Press, 2017, pp. 455–464. Entry [205] in bibliography.

4. S. Hirschmann; M. Lahnert; C. Schober; M. Brunn; M. Mehl; D. Pflüger. “Load-
Balancing and Spatial Adaptivity for Coarse-Grained Molecular Dynamics Applica-
tions.” High Performance Computing in Science and Engineering ’18. Ed. by W. E.
Nagel; D. H. Kröner; M. M. Resch. Springer International Publishing, 2018, pp. 409–
423. Entry [207] in bibliography.

5. M. Mehl; M. Lahnert. “Adaptive grid implementation for parallel continuum
mechanics methods in particle simulations.” The European Physical Journal Special
Topics 227.14 (2019), pp. 1757–1778. Erratum. M. Lahnert; Burstedde; Mehl [6].
Entry [206] in bibliography.

6. M. Lahnert; C. Burstedde; M. Mehl. “Erratum to: Adaptive grid implementation for
parallel continuum mechanics methods in particle simulations.” European Physical
Journal Special Topics 227 (2019), pp. 1757–1778. Entry [226] in bibliography.

21

Preface

“ I’ve missed more than 9000 shots in my career.

I’ve lost almost 300 games. 26 times, I’ve been

trusted to take the game winning shot and

missed. I’ve failed over and over and over again in

my life. And that is why I succeed.

— Michael Jordan

This work would not have been possible without the help from lots of great people

who supported me in lots of different ways. I want to thank

Prof. Dr. Miriam Mehl for giving me the opportunity to pursue this work. You

challenged and supported me in more ways than I can imagine. While constantly

offering guidance throughout my work, you gave me the freedom to follow projects

according to my personal interests. I am very grateful for the countless hours you

have spent reading short and not so short texts and text snippets or discussing the

current state of my work.

Prof. Dr. Carsten Burstedde for your efforts in supervising me. You have taught

me a lot, in hour-long sessions discussing p4est APIs in Stuttgart and Bonn as well

as in discussing more mundane topics at conferences or in our free time.

Prof. Dr. Takayuki Aoki and his group at the Tokyo Institute of Technology for

hosting me during my stay-abroad in Japan. Living in Japan and being part of your

group was one of the greatest experiences I’ve ever had.

My collaborators for countless fun discussions about ESPResSo, physics, and more.

You are: Carolin Schober and Steffen Hirschmann from SGS/SSE and Georg Rempfer,

22 PREFACE

Florian Weik, Ingo Tischler, and Christian Holm from the ICP.

My coworkers for great discussions and fun at the ÖZ, the table football, during

coffee breaks, and beyond. You are: Alexander, Amin, Benjamin, Carolin, David,

Dirk, Fabian, Florian, Gregor, Julian, Kai, Klaudius, Kyle, Malte, Mario, Marvin,

Michael, Nehzat, Raphael, Stefan, Steffen, Theresa, and anyone I forgot to mention

here.

Special thanks to Julian for providing this awesome template.

My student coworkers Axel, Benjamin K., Benjamin M., Daniel, Felix, Ingo, and

Malte.

The Collaborative Research Center (SFB) 716 and the Cluster of Excellence

SimTech for providing funding and getting to know lots of great people.

Anyone performing administrative tasks, thus, significantly relieving workloads

and stress from PhD students such as myself at the IPVS, in SimTech, the SFB 716,

and at Tokodai. You are: Andreas, Barbara, Bernd, Chieko-san, Christine, Claudia,

Meike, Manfred, Ralf, and Stefanie.

My family and friends for always having my back, believing in me, and supporting

me.

Stuttgart, August 28, 2019

Michael Stefan Lahnert

23

1 Introduction

Simulations play an increasingly important role in modern society. From develop-

ing new products, predicting the weather, or understanding processes at very large or

very small scales; simulation has emerged as the third pillar of science besides theory

and experiments for numerous reasons. These include, among others, that performing

experiments may be expensive, difficult or even outright impossible. Simulations offer

an alternative path for studying systems whose setup can, at least theoretically, be fully

customized and whose properties can be easily investigated throughout the domain.

Relevant systems of interest typically combine different fundamental processes such

as motion, flow, structural mechanics, or population growth. Each of these processes is

typically described by a set of (partial) differential equations. When modeling a system,

we must choose the relevant size of the system, the relevant processes steering it, define

ways in which the chosen processes interact with each other, and define an initial state

as well as boundary conditions to model the interactions of the system at hand and the

outside world.

1.1 Simulations on Different Time and Length Scales

Setting up a simulation is challenging. If we want to study a certain effect, we have to

model the system within a prescribed regime of time and length scales. We can model,

e.g., flow phenomena at four different scales. To increase the scale from small to large,

we reduce the level of detail. In turn, we can consider larger time and length scales. At

the most detailed scale, the quantum scale, our system is governed by the Schrödinger

equation. Our system representation includes the full electronic structure and position of

nuclei including relativistic corrections and quantum effects [7, 8]. If we model individual

atoms as spheres, we represent the system at the microscopic scale. The interactions of

24 CHAPTER 1: INTRODUCTION

atoms is governed by Newton’s equations of motion. All atomic interactions are visible and

observable (molecular dynamics (MD)). Interaction potentials allow simpler modeling

of the electronic structure [9]. Using a priori information about the modeled system

at hand, we can locally bridge scales using the quantum mechanics molecular method

(QMMM) [10] and locally include the electronic structure into the microscopic model.

At the mesoscopic scale, we substitute groups of atoms by a probabilistic description

using Boltzmann’s equation that models the interaction of those super-particles. Thus,

we can no longer observe atomic interactions. There are multiple approaches, e.g.,

dissipative particle dynamics (DPD) [11, 12], multi-particle collision dynamics (MPC) [13,

14], smoothed particle hydrodynamics (SPH) [15, 16], or the lattice-Boltzmann method

(LBM) [17, 18]. At the macroscopic scale, we neglect individual elements forming the

fluid altogether and describe the fluid from continuous properties such as density and

flow velocity using the Navier-Stokes equations. The most widely used approaches for

macroscopic fluid modeling are the finite difference method (FDM) [19, 20], the finite

element method (FEM) [21, 22], and the finite volume method (FVM) [23, 24].
Getting the modeling of a system right is a hard problem. That is why Maître et al.

consider it one of the three main sources of error in simulations besides numerical errors

and data errors [25].

1.2 Target System: DNA Translocation Through a
Nanopore

For the project at hand, we want to model DNA translocation through a nanopore. This

target application was first described in [26]. We simulate a domain containing an ionic

fluid and the DNA string. A membrane splits the domain into two dedicated basins

connected through the thin channel of a nanopore. By applying a current, the DNA string

should move through the pore in a controlled way. We sketch the setup in Fig. 1.1, [27,

28].
At the end of the day, the goal is to answer the question if molecules and colloidal

particles can be characterized or manipulated using such a system. This would be a

major break-through, as it would, e.g., allow producing personalized medicine [29].
First approaches to model this in a simulation using the ESPResSo software have been

made in [30]. ESPResSo is a feature-rich simulation software [31–33] designed for soft

matter applications. Other software packages in this field are, e.g., ESPResSo++ [34, 35],
LAMMPS [36], GROMACS [37, 38], or ls1 mardyn [39–43].

This system is too large to be fully modeled at the microscopic scale. Instead, we

want to model the DNA string microscopically and use a continuous model for the ionic

1.2 TARGET SYSTEM: DNA TRANSLOCATION THROUGH A NANOPORE 25

A

cis trans

FIGURE 1.1 Our target simulation scenario: schematic setup of a DNA translocation experiment
from [27, 28]. The basin is modeled as a rectangle, the gray blocks illustrate the
nanopore and the curved blue line is a coarse-grained DNA model. An electric field
is applied by the red and blue electrodes.

fluid and couple the respective subsystems. It turned out that coarse graining alone,

i.e., fitted force-fields or boundary conditions are not enough to accurately model the

system [27]. Therefore, together with our collaborators from the Physics department,

we want to simulate the full system and see if this allows developing new boundary

conditions. In Sec. 6.3, we present an exemplary configuration of the nanopore system

with a total system size of 64µm. Eventually, we want to simulate pore diameters in the

range of 150 nm to 7.5 nm. Thus, we must target a grid spacing of 1 nm or less which

is hard to achieve for regular Cartesian grids: in this system we would need at least

(64
0.001)

3
= 2.6 · 1014 cells, which induces memory requirements of O (1PB). Among the

first ten systems of the TOP500 list of the world’s largest supercomputers1 released in

June 2019, only six systems can provide this amount of memory.

Additionally, it is clear that our simulations must be run in parallel. Not only does

Moore’s Law no longer apply to single node performance [44] but the sheer size of the

system requires distributing the load among multiple processors. Domain decomposition

approaches are the most commonly used approach for parallelizing simulations [45].
Here, each process is assigned a disjoint part Ωi of the simulation domain Ω such that
⋃

i
Ωi = Ω. To maximize the benefits of parallelization, we want to partition the system in

such a way that for each process the computation takes the same amount of time. In this

case, the load is evenly distributed among the processors or balanced.

Most modern-day simulation software is implemented as distributed-memory appli-

1https://www.top500.org/lists/

https://www.top500.org/lists/

26 CHAPTER 1: INTRODUCTION

cations, relying on message-oriented communication using the message-passing interface

(MPI) [46]. Some algorithms allow using graphic cards (graphics processing unit (GPU))

or other accelerator hardware using, e.g., NVIDIA’s CUDA [47] language or some domain-

specific language used for automatic code-generation [48]. In terms of Flynn’s taxonomy,

we are in an multiple instruction multiple data (MIMD) setting [49].

The goal of this project is simulating the full nanopore system using structured

adaptive mesh refinement (AMR) and a newly developed coarse grain DNA model [50].
AMR is a well-known way to reduce the number of unknowns in a system while achieving

good performance and parallel scalability [51, 52].

1.3 Integrating Tree-Structured Grids Into Legacy Codes

Changing fundamental aspects of legacy codes such as the spatial discretization is hard,

because usually many dependencies have been implemented in the code over time.

Moreover, modern simulation scenarios represent complex processes requiring different

physical models to be mapped from the real-world application. In most cases, we have

an established application code on the one hand and an optimized grid-library on the

other hand. Both software packages have specific constraints to data-storage, data-access

patterns, or communication schemes.

We propose our approach to answering the question of how both software packages

can be integrated without rewriting the application from scratch. To integrate tree-

structured grids into legacy codes minimally invasive, we suggest a three-step process [2]:
First, replace the original grid with a regular tree-structured grid. The order of the

numerical payload has to be adapted to match the space-filling curve (SFC) underlying

the tree-structured grid. Additionally, partitioning the grid and exchanging data at process

boundaries can be delegated to the grid library. This step must be used to verify that

changing the traversal order of cells and the domain decomposition does not change

numerical results. In the second step, we introduce actual spatial adaptivity and deal with

numerical issues such as hanging nodes. In this work, we add virtual cells at refinement

boundaries, i.e., we virtually overlay coarse cells at refinement boundaries with their

children. This allows exchanging data logically with cells of the same size and introduces

a local data-exchange between the levels by interpolation and restriction. In the final step,

we want to make optimal use of the new grid implementation by thoroughly investigating

the implementation for performance hotspots and implementing suitable optimizations.

Examples are improved data-access patterns, implementing communication hiding, or

whatever else seems appropriate to reduce the time to solution.

1.4 CONTRIBUTIONS IN THIS WORK 27

1.4 Contributions in This Work

In summary, the main contributions in this work are

• providing random-access to neighboring cells in p4est as required by most applica-

tions;

• integrating virtual cells in p4est to deal with refinement boundaries;

• an iterator that allows visiting specific cells, e.g., cells of a given refinement level,

without traversing the entire grid;

• integrating ESPResSo with p4est, porting all relevant physical subsystems of our

target application and their coupling scheme;

• extending their discretizations to dynamically-adaptive tree-structured grids; and

• partitioning multiple independent p4est instances using the finest common tree

(FCT).

Compared to highly optimized software such as waLBerla [53–58] or the lattice-Boltz-

mann method (LBM) software developed in the group of Manfred Krafczyk [59, 60], which

were specifically developed for performance, our approach is slower. Instead, we retain

the domain-specific knowledge of the existing code. Both tasks, writing high-performance

extreme-scale software and simulating multi-physics systems spanning several scales, are

complex and often conflicting with each other.

For this reason, Maruyama et al. propose developing special purpose software that is

tailored for specific applications [61]. They have ported the operative Japanese weather

prediction model “ASUCA” to GPUs [48]. They obtained speed-ups of up to 5x while over

85% of the existing code base have been left untouched [61]. This, however, still involved

changing more than 20,000 lines of code. We report on the amount of code we changed

in Chap. 7.

We have taken a similar approach, although we have extended a generic grid library

which is well-known and well-scaling. p4est is the grid library of the ACM Gordon Bell

Prize winner in 2015 [52] and of Gordon Bell Prize finalists in 2008, 2010, and 2012 [62].
We develop an interface between existing software packages using regular Cartesian grids

and p4est and test it for our target application ESPResSo.

29

2 Tree-Structured Cartesian Grids

In this chapter, we present our main reasons for using tree-structured Cartesian

grids. Additionally, we define a high-level interface that a grid must provide to satisfy

our requirements and present methods to implement it. Finally, we present the p4est
grid library which we use and extend for our goal to integrate it into a legacy code in a

minimally-invasive way.

2.1 Fundamental Ideas

In this section we give an overview on how to realize an adaptive spatial discretization.

We derive a high-level interface to integrate a grid library with an application. We briefly

summarize different ways for implementing sub-components of this interface.

2.1.1 Different Ways to Realize Grid-Adaptivity

There are several ways to discretize a spatial domain by an adaptive grid, which fall

into two major categories: structured and unstructured grids. Albeit unstructured grids

offer potentially perfect boundary approximation, they are not particularly well suited

for dynamic simulations. In dynamic scenarios, regions-of-interest may move through

the simulation domain, form, or vanish. Thus, dynamic simulation scenarios require

constantly adapting the grid to the current state of the simulation. This leads to frequent

re-meshing, a global operation for unstructured grids that cannot be readily afforded

in highly parallel and highly dynamic scenarios. Additionally, unstructured grid usually

come with a high memory consumption, because for each cell all neighbor relations across

faces, edges, and corners must be stored.

Therefore, we will use structured grids. There are, however, several ways for con-

structing structured grids, e.g., moving meshes [63], patch-based grids [64], or tree-based

30 CHAPTER 2: TREE-STRUCTURED CARTESIAN GRIDS

FIGURE 2.1 Schematic representation of different types of structured grid-adaptivity for resolv-
ing the geometry of a circle. From left to right: A moving mesh, patch-based AMR,
and tree-based AMR.

grids [65]. Examples for each mentioned grid type discretizing the geometric boundary

of a circle on a plane are shown in Fig. 2.1.

Several implementations of patch-based and tree-based grid-libraries have been

compared in [66]. Additionally, Donna Calhoun maintains a collection of links related to

adaptive mesh refinement (AMR) on her website1.

In patch-based grids, adaptivity is realized as areas (“patches”) of finer resolution,

see Fig. 2.1. This leads to more cells than mathematically required and limits the dis-

cretization’s flexibility. Examples for patch-based AMR-codes are, e.g., (i) AMROC [67],
(ii) BoxLib [68–70] and its successor AMReX [71], (iii) Carpet [72, 73] as an AMR-

framework for Cactus [74], (iv) Chombo [75], or (v) ENZO [76].

Unlike patch-based grids, tree-based grids are strictly coupled to a quadtree, octree,

or a similar k-spacetree with (k ∈ N∧ k > 2), e.g., k = 3 in Peano [77]. The grid is created

by recursively refining a cell into 2dim children or by coarsening a family of 2dim children

into their parent cell.

Simple examples of a quadtree and an octree grid are shown in Fig. 2.2. To facilitate

efficiently covering non-cubic domains, multiple trees can be combined into a forest of

octrees. Libraries providing implementations of tree-based grids are, e.g., (i) Daino [78],
(ii) Dendro [79], (iii) FLASH [80, 81], (iv) Gamer [82] (v) Octor [83], (vi) Parallel grid

generator [84], (vii) p4est [85, 86], (viii) Peano [77], (ix) t8code [87], an extension to

p4est for different element types such as triangles, tetrahedrons, and prisms using an

extension to the Morton space-filling curve (SFC) [88], (x) TreElM [89] (part of the APES

framework [90, 91]), (xi) Uintah [92], or (xii) waLBerla [53, 93].

Tree-based grids can be stored efficiently in a single bit per cell. This bit indicates for

a depth-first search (DFS) traversal of the tree if the respective cell is refined. Additionally,

traversing the grid in DFS order circumvents the problem of ambiguous cell-ordering.

1http://math.boisestate.edu/~calhoun/www_personal/research/amr_software/

http://math.boisestate.edu/~calhoun/www_personal/research/amr_software/

2.1 FUNDAMENTAL IDEAS 31

FIGURE 2.2 Simple example of a tree-structured Cartesian grid in 2D and 3D.

FIGURE 2.3 Illustration of all possible hanging entities in 2D and 3D. On the left, we show the
2D case. The blue face and the red corner hang across a face, thus we call them
face-hanging. The same holds for the 3D case shown in the center, where we also
name face (blue), edge (brown), and corner (red) face-hanging. On the right, we
show hanging entities across an edge, which may only occur in 3D. Following the
logic from before, we refer to the brown edge and the red corner as edge-hanging.

This issue would arise if cells of varying mesh-width were ordered lexicographically (as it

is common for regular Cartesian grids). Usually, DFS order is associated with linearizing

cells along a SFC. Different SFCs are used for cell ordering, e.g. (i) Morton-curve [94]
(despite being discontinuous, at most two disjoint partitions are created [95]), (ii) Hilbert

curve [96], (iii) Peano curve [97], or (iv) Sierpiński curve [98]. More detailed information

about SFCs can be found in [99]. Note, that a bijective mapping between grid, tree,

and bit-code exists for each curve. Individual bit-codes, however, vary between the

respective curves for a given grid. Even if the Hilbert curve is the SFC with the best

locality, performance is not significantly increased compared to the Morton curve [55,

100].

We refer to entities, i.e., faces, edges, or corners, at refinement boundaries that do

not have a matching counter part on the other side of the refinement boundary as hanging

entities. Hanging entities may occur at faces and edges, but not at corners. At faces, we

refer to hanging faces, edges, and corners as face-hanging entities. Analogously, we refer

to hanging edges and hanging corners at edges as edge-hanging entities. We illustrate all

cases of hanging entities in 2D and 3D in Fig. 2.3.

32 CHAPTER 2: TREE-STRUCTURED CARTESIAN GRIDS

0
1 2

3 4

5 6 plain 0 1 2 3 4 5 6

level l1 0 5 6
level l2 1 2 3 4

FIGURE 2.4 We illustrate two different ways for storing cell-centered data in a tree-structured
Cartesian grid. We can store data in a linear list, “plain”, or we can separate the
data by level.

2.1.2 Handling Data

To perform simulations, spatial and temporal discretizations have to be amended with

a way to associate data with points in the grid. To make use of the locality offered by

the SFC, storing data is closely related to the order of traversing the grid. Thus, data of

payload and grid have to stored in the order of the SFC. Implementations differ in terms

of the amount of tree-topology information that is stored. While some implementations

only store leaf cells [79, 85], others store the full tree which might be partially replicated

among different ranks [77, 78, 101]. In the latter case the local copy of the tree gets

pruned to ensure minimal overhead for replication.

Evaluating stencil-based algorithms requires associating data with different entities

in the grid ranging from cell volumes to cell corners. Additionally, data must be accessible

from different cells to evaluate stencils. If data are associated with cell volumes, we can

store them along with the metadata of the grid. This, however, impairs the locality of both,

numerical payload and cell metadata. A simple solution is separating grid metadata from

payload. We can store the payload linearly, following the SFC, or we can split the payload

and follow the SFC separately for each level. We illustrate both options in Fig. 2.4.

Another common problem for stencil codes is accessing data of neighboring cells. All

cells have a unique (level, index)-tuple within the tree, encoding their size and position.

The most efficient option in terms of memory efficiency is calculating the respective

index of neighboring cells and search for the index in the list of cells [86]. As neighbor

relations only change after adapting the grid, avoiding the cost of searching and replacing

them with O (1)-lookups is straight-forward. To this end, we can either store pointers to

neighboring cells [100] or use look-up tables to store cell-indices of neighboring cells [1].
Even more involved concepts where vertex data are loaded from a stream and shared

between cells via stacks [77] exist. The idea here is that while traversing the grid along

the SFC, one can algorithmically derive where to obtain the required data. Initially, the

2.1 FUNDAMENTAL IDEAS 33

data will be read from an input stream. After the first cell has processed the data, they

will be written to a specific stack. Here, they can be read from the next cell requiring

access and be written to another specific stack. After the last cell requiring access has

processed the data, they are written to an output stream. This output stream serves as

an input stream in the next grid traversal. In this work, we use separate containers for

payload and grid metadata. To find neighbors, we create look-up tables.

2.1.3 Important Algorithms

Evaluating stencil-codes requires five algorithms supported by the grid library. We want

to (i) create and (ii) partition a grid among the ranks in parallel. Additionally, we want

to (iii) restrict the level difference between neighboring cells to one (2:1 balancing) for

two reasons. First, we want to avoid large local differences in grid resolution to avoid

numerical artefacts. Second, we want to limit the number of cases in neighbor search

for populating look-up tables. To evaluate stencil-codes independently for each local

domain, we want to (iv) replicate at least one layer of the discretization and payload

from neighboring processes adjacent to process boundaries (ghost layer). Additionally, we

require means to (v) adapt the grid in parallel during run time.

We use the naming scheme from [79] to describe the respective algorithms. They

have been extended to forest of octrees in [85].

Locally creating the grid. Sundar et al. distinguish two different approaches for creating

a tree-structured grid in parallel [79]. The top-down approach creates a grid by recursively

splitting one or more root cells according to one or more refinement criteria. During

the process, cells are re-distributed among the ranks. Note, that this problem may be

mitigated by constructing a regular grid of level ` which results in 2dim` cells [83], where

dim is the spatial dimension. Thus, cells of the regular grid may be used as a starting

point for the top-down approach. By contrast, grids may also be created using a bottom-up

approach. Here, points are converted into cells of the finest level, sorted according to the

SFC, and distributed among the processors such that the load on all ranks is approximately

the same. These cells serve as anchors for constructing the grid. The grid is constructed

by filling the space between two consecutive cells with the coarsest possible tree. Note,

that it suffices to choose one point per rank [79].

Traversing the grid. There are two natural ways for traversing a tree, depth-first and

breadth-first. The former descends in the tree whenever possible while the latter explores

the tree by level. The depth-first algorithms can be implemented in different ways. For

binary trees, there are three fundamental ways for traversing the tree recursively using

34 CHAPTER 2: TREE-STRUCTURED CARTESIAN GRIDS

depth-first search. Each traversal consists of three steps, visiting the root and traversing

both subtrees. We always traverse the left tree before the right tree. This leaves three

possibilities when to visit the node:

1 function traverse_tree_dfs(tree)
2 traverse_tree_dfs(left_subtree)

3 traverse_tree_dfs(right_subtree)

4 end function

We can insert the call for visiting the current root before lines 2 (preorder, before visiting

subtrees), 3 (inorder), or 4 (postorder) [102, 103]. Generalizing the idea of preorder and

postorder traversals to trees with more than two subtrees is straight-forward by iteratively

traversing all subtrees before or after visiting the node.

Parallel partitioning of the grid. The global ordering imposed by the SFC is commonly

used to partition the grid among the ranks (chain-on-chain partitioning) [104]. To this

end, the SFC is split into nproc chunks of equal “length” according to a user-defined metric.

Each process locally determines the weight of each cell as defined by the metric. The sum

of local cell weights is accumulated by global reduction, e.g., MPI_Allreduce [46], and

distributed among all ranks. The cells’ weights are equally distributed among ranks by

partial reduction, e.g., MPI_Scan or MPI_Exscan [46]. This way, we can accumulate cell

weights in parallel on each rank and obtain updated chunks. These chunks determine

where the cells are obtained from or migrated to.

2:1 balancing. If neighboring cells may have arbitrary differences in size, this will lead

to two different effects. First, we have large local differences in the grid resolution.

Second, finding neighbors is more involved, because a lot of different cases have to

be distinguished. Both issues can be resolved by limiting the maximum difference in

mesh-width for adjacent cells. In the context of this thesis, the maximum difference is

chosen to be one. Sundar et al. propose an algorithm that first balances the local cells

of a rank and then balances process boundaries. For local balancing, they present two

approaches [79]: For each quadrant, we may search for any neighbors violating 2:1

balancing and refine those quadrants accordingly. The second approach is to virtually

place the coarsest possible balanced cells as neighbors and remove overlaps. A hybrid

implementation avoids costly search operations as well as large numbers of duplicates.

Both approaches require several grid iterations.

To balance the grid across process-boundaries, the prioritized ripple propagation

algorithm [105] can be used. It is important to note that there are no guarantees about

the locality of the ripples. Additionally, balancing introduces iterative communication, as

ripples may propagate over multiple ranks. To mitigate the issue, Sundar et al. propose a

2.1 FUNDAMENTAL IDEAS 35

FIGURE 2.5 On the left, we show two exemplary grids as input for the balancing algorithm and
the effects of refined cells inside (top) and outside (bottom) that cell’s insulation
layer (red area around highlighted cell). In the middle, we see balanced grids
across faces and on the right balanced grids across faces and corners. In the upper
row, the highlighted cell is split after balancing. The graphic was created with the
help of an octree-visualization software for the p4est library [106].

two-step approach which introduces redundancy and communication overhead but avoids

iterative communication. First, each rank communicates each local cell of a parallel

boundary to all ranks overlapping with the cell’s insulation layer. Second, each rank

communicates all local cells overlapping with the insulation layer of a cell received in the

first step to that cell’s owner.

The insulation layer is the only region in the domain where there might be cells

requiring the current cell to split [79]. It is the space spanned by the cell itself and

virtual copies of that cell in all eight or 26 directions directly adjacent to it. Besides face

neighbors, which have to be considered at all times, we are free to additionally include

edge neighbors or edge and corner neighbors, depending on whether we want to enforce

2:1 balancing also across these entities. This, however, does not affect the size of the

insulation layer. We consider two examples for balancing across faces and across faces

and corners in Fig. 2.5. After exchanging cells, another local rebalancing step ensures

that the grid is globally 2:1 balanced.

This approach is improved by Isaac et al. in [107] by minimizing the cost of repeatedly

inserting newly created cells in the octree structure. They compress the octree and, thus,

36 CHAPTER 2: TREE-STRUCTURED CARTESIAN GRIDS

reduce the search space where a cell has to be inserted using preclusion. Cell a precludes

cell b if and only if the parent of a is an ancestor of the parent of cell b or equal to b’s

parent cell. The advantage compared to the above algorithm is that it can continuously

work on the smallest possible set sufficient to reproduce the final balanced octree.

Ghost layer and exchanging ghost data. When performing numerical simulations, the

evaluation of the stencil inflicts data-dependencies between different partitions. To avoid

infeasibly frequent communication, it is beneficial to replicate cells at the parallel boundary

on neighboring processors. If we additionally store where which cell is replicated, data

can be exchanged by point-to-point communication between processes at the end of a full

iterative step. Codes using points for constructing their grid and store a truncated tree-

topology on each rank, e.g., when implementing a fast multipole method (FMM) [108],
may create ghost cells by locally replication. To this end, they send the coordinates of those

points ending up in cells at the partition boundary to the respective neighboring processes.

Then neighboring processes can locally construct the respective ghost cells [109].
An alternative way to construct a ghost layer for 2:1 balanced grids maps all cells to

a virtual regular grid of the finest level. This creates a globally consistent naming scheme

for all cells. We use this naming scheme to virtually create half-sized neighbors of all

leaf cells adjacent to a process boundary in the tree. As partition boundaries are globally

known and the tree is known to be balanced beforehand, neighboring cells on neighboring

processes must not be finer than those virtually created. Thus, we can determine the

owner of each virtual neighbor cell using binary search. Finally, we communicate the

respective boundary cells to all neighboring processes that have been found [85].
This algorithm can be improved and generalized to arbitrarily refined grids [86] by

recursively determining if a leaf touches the subdomain covered by a process. To this end,

we traverse the tree using breadth-first search (BFS) (or a top-down approach) until all

leafs have been reached. This allows reducing the search space by truncating all children

that do not match the given search criteria. For creating the ghost layer, we abort the

recursion for a cell if all its children end up on the same node. This is most effective,

when evaluating multiple search criteria at the same time. When reaching a leaf-node,

we check whether it is part of the parallel boundary and add the communication relation

accordingly if needed [86, 87].

Dynamic grid adaptivity. To dynamically change the grid during simulation, we refine

one cell into its 2dim children or reduce a set of 2dim cells to its parent cell and map, i.e.,

interpolate or restrict, the cells’ payload accordingly. To this end, we evaluate one or

more criteria for refinement and coarsening per cell or cell-group and store the result. We

obtain three different outcomes (refine, keep, or coarsen) and, thus, have to define an

2.2 THE P4EST LIBRARY 37

order if different criteria yield different results.

If coarsening is executed before (e.g. [85]) or after (e.g. [55]) 2:1 balancing depends

on the implementation. The latter avoids implementing a balancing algorithm for arbitrary

grids, because coarsening may be denied based on a cell’s neighbors. This approach

requires accessing information about the size of neighboring cells during coarsening but

avoids refining cells that have been coarsened immediately beforehand.

Mapping the numerical payload between both grids may happen either during actually

refining or coarsening cells or in a separate grid traversal. In the second case, we have to

keep track of the operation that was performed on the cell associated with the payload. As

locally changing the grid generally introduces load imbalances, the grid is repartitioned

after it has been adapted.

2.2 The p4est Library

In this work, we choose the grid framework p4est2. p4est is written in C and uses MPI

for distributed memory parallelization. It is released as free software licensed under the

GNU General Public License (GPL) in version 2.

p4est provides efficient and scalable implementations of the adaptive mesh re-

finement (AMR)-algorithms described above [62], contained in a well-designed library.

Additionally, it is flexible through the forest-of-octrees approach. p4est stores cells

in Morton-order. This makes p4est a good choice to integrate tree-structured grids

into existing applications with ease, because Morton-order allows accessing neighbors

comparably easy.

The library consists of four central elements: The macro-structure, i.e., the way

octrees are arranged and connected to each other, is stored in p4est_connectivity. To

uniquely identify elements, p4est uses a fixed naming scheme w.r.t. the local coordinate

system of each tree which is shown in Fig. 2.6. This allows different octrees to have

different local orientations by simply plugging them together. p4est_connectivity
allows, e.g., to connect face f1 of octree t i to face f3 of octree t j. Based on the macro-

structure, the micro-structure, i.e. the concrete discretization of the grid, is stored in the

p4est data-structure. While the micro-structure can be arbitrarily adapted throughout

the simulation, the macro-structure remains untouched by grid-adaptivity. The local

orientation is fixed within each tree, i.e., all cells have the same local coordinate system.

Adding one or more layers of replicated cells on neighboring processes for efficiently

performing simulations in parallel, is implemented in p4est_ghost. Here, a sparse

matrix scheme, similar to compressed sparse row (CSR), is used to store which local

2http://p4est.org/

http://p4est.org/

38 CHAPTER 2: TREE-STRUCTURED CARTESIAN GRIDS

x

y

• •

• •

c0 f2 c1

f0 f1

c2 f3 c3

x

y

z

•

•

•

•

•

•

•

•

f0 f1

f2

f3

f4

f5

e0

e1

e2

e3

e4
e5

e6
e7

e8 e9

e10 e11

c0 c1

c2 c3

c4 c5

c6 c7

FIGURE 2.6 Naming scheme of faces, edges, and corners used by p4est in 2D and 3D.

cells have to be sent as replicates to other processes (mirror cells) and how many replicas

are received from which process (ghost cells). This scheme allows exchanging ghost-

data by asynchronous point-to-point communication which is crucial for overlapping

communication with computation (communication hiding). We sketch the ideas of the

sparse matrix scheme used in p4est_ghost in Fig. 2.7.

For traversing the grid, p4est provides an efficient iterator which can not only

traverse the grid cell by cell but also visits each face, edge, and corner using recursion.

The naive implementation for finding cell neighbors using the Morton curve would be

to calculate the cell index of a neighboring cell and perform a binary search for a cell

covering the respective area. p4est provides an improved algorithm in p4est_iterate.

The algorithm traverses the forest top-down and enumerates all interfaces between cells

exactly once [86]. This allows to efficiently identify adjacent cells when visiting interfaces

between cells. p4est_iterate allows executing user-defined callback functions at each

cell volume and at each interface.

p4est allows to dynamically change the grid by offering optionally recursive re-

finement and coarsening functions. Recursive refinement is implemented as a preorder

depth-first traversal. This allows creating the grid shown in Fig. 2.8 in one grid traversal

from the root A. Leafs in the tree are indexed by numbers, matching the SFC traversal

order of the grid. Parent nodes, that p4est does not store in its leaf-only storage scheme,

are indexed by capital letters using a depth-first traversal order. To create the grid in a

single tree-traversal using recursive refinement, we start from root A, refining it. Then,

we traverse A’s children, beginning with child node B which we refine. We visit B’s first

child (node 0) and do not refine it and so forth. Analogously, we can recursively coarsen

the given tree to node (A) in a single postorder depth-first traversal. Here, we visit each

node after we visited its children and count the number of children that are leaf nodes

Thus, we start with node A, descend to its first child node B and further to nodes 0, 1, 2,

and C. In node C, we descend to nodes 3, 4, 5, and 6, identify them as leaf nodes and

2.2 THE P4EST LIBRARY 39

0 1

2
3 4

5
6 7
8 9

10 11

12 13

14 15
16 17 18

19

20
21

22 23
24 25

26 27

28 29

30 31
32 33

34

35 36
37

38 39

0

1 2
3 4 5

6

7
8

9 10
11 12

13 14

0
1

2 3
4 5

6 7

8

9 10

11 12
13

14

15
16

17

ghosts 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
proc_offsets 0 9 9 18

mirrors 0 1 2 3 4 5 6 7 8 9 10 12 13 14
mirror_proc_mirrors 0 1 2 3 5 6 7 8 9 10 3 4 5 6 7 10 12 13 14
mirror_proc_offsets 0 10 10 19

FIGURE 2.7 Schematic representation of the sparse matrix scheme used for storing communi-
cation patterns in p4est_ghost. We illustrate data-structures and locally existing
cells for an exemplary grid of 40 cells distributed among three processes. On the
left, we show the grid and a space-filling curve (SFC)-based domain decompo-
sition based on the Morton ordering of cells. On the right, we show the local
perspective of rank 1 (green). Its local cells are depicted in green while we hatch
the share of the domain for which rank 1 knows the discretization. Local and
ghost cells are locally ordered according to the global SFC-based ordering. Below,
we show the data-structure that stems from this grid. Replicas of remote cells
are collected in ghosts. Local cells, which will be replicated on other ranks,
are copied to the mirrors array. The proc_offsets array is used to properly
allocate receive-buffers. Its contains one more element than ranks in the system.
At index i, we store the first element that is obtained from rank i. Thus, rank 1,
e.g., obtains from rank 0 (9 − 0) = 9 cells or (9 − 9) = 0 cells from itself. The
same idea holds for allocating send buffers. Here, mirror_proc_offsets indexes
into mirrors_proc_mirrors. This vector then stores indices from the mirrors
array which stores pointers to the local cells that have to be sent to neighboring
processes.

40 CHAPTER 2: TREE-STRUCTURED CARTESIAN GRIDS

return to node C. We coarsen nodes 3, 4, 5, and 6 to node C̃ and ascend to node B. Now,

we coarsen nodes 0, 1, 2, and C̃ to node B̃. Following this traversal scheme allows to

finally ascend to A and coarsen its four children into node Ã.

2.3 Summary

In this chapter, we have settled the background of the spatially-adaptive discretization

that is used in this work. We have briefly reviewed different ways for realizing spatially-

adaptive grids. We decided that dynamically-adaptive tree-structured Cartesian grids

best suit our needs in dynamic simulation scenarios. Additionally, we have outlined

an interface of important algorithms and presented different ideas for realizing them

within a grid library. In the following, we choose to use the implementations provided by

p4est, because p4est is not only well-structured and flexible but also elaborate, fast,

and scalable. In the following chapters, we introduce the physical models that we port to

adaptive grids, present ways to extend their discretizations to spatially adaptive grids,

and give details on extending p4est to impelement the previously described extensions.

2.3 SUMMARY 41

0 1

2
3 4

5 6

7 8

9 10

11 12
13

14
15 16

17 18

19 20

21 22

23 24
25

26 27

A

B

0 1 2 C

3 4 5 6

D

7 8 E

9 10 11 12

13

F

14 G

15 16 17 18

19 20

H

I

21 22 23 24

25 26 27

FIGURE 2.8 Exemplary grid with its corresponding tree to illustrate recursive coarsening and
recursive refinement. Leafs in the tree are indexed by numbers, matching the SFC
traversal order of the grid. Parent nodes that p4est does not store in its leaf-
only storage scheme are indexed by capital letters in a depth-first traversal order.
Recursive refinement allows to create this tree in a single iteration. Analogously,
recursive coarsening allows to coarsen the given tree to the root node in a single
grid traversal.

43

3 Target Software, Models, and
Algorithms

In this chapter, we present several physical models which we use as building blocks to

model our target application. Each model has a certain data access pattern and requires

certain communication steps. To model the full system, we need an interaction layer on

top of the individual models as well as an order in which the individual steps are executed

within a time step. Different subsystems may even have different time step sizes. These

factors result in a complex code-base, where different subsystems have to be suitably

modeled and coupled to each other.

To observe multi-scale phenomena in the first place, we face the challenges of a large

scenario, among other things, a huge amount of data, the coordination and load-balancing

for several thousands of processes. In the following, we introduce the ESPResSo soft

matter simulation software which we used to model our target application. We present

the important aspects of the physical models and their coupling the way they are realized

in ESPResSo.

3.1 Target Software ESPResSo Simulation Software

To simulate ionic liquids, potentially containing charged particles, we use ESPResSo1,

the Extensible Simulation Package for Research on Soft Matter [31–33]. ESPResSo is

released as free and open-source software under the GNU General Public License (GPL)

in version 3. ESPResSo’s physical algorithms are written in C++. Message Passing

according to the MPI standard [46] enables parallel simulations. Users write Python

scripts to set up and control their simulations. Core and simulation scripts exchange

data via Cython [110] (C-extensions for Python). Some algorithms support using a

single graphics processing unit (GPU) which is programmed based on NVIDIA’s CUDA

1http://espressomd.org/

http://espressomd.org/

44 CHAPTER 3: TARGET SOFTWARE, MODELS, AND ALGORITHMS

platform [47]. ESPResSo was originally developed as a molecular dynamics (MD) code

but has been extended to a versatile and feature-rich simulation toolbox for a multitude

of soft-matter scenarios over the years. ESPResSo has been used to simulate a large

range of problems spanning from soot aggregation [111], cabin air filtration [112],
hydrogels [113], biological membranes [114], DNA like-charge attraction [115], DNA

translocation [30], to ionic liquids [116, 117].

3.2 Electrokinetic Equations

The bulk phase of the DNA translocation experiment described in Sec. 1.2 is modeled by

the electrokinetic (EK) equations. The first continuous representation was introduced

by Capuani et al. in [118]. The model consists of three main components: (i) Ionic flux,

(ii) electrostatic potential, and (iii) hydrodynamics. For two ionic species, a positive

ionic species denoted by index ’+’ and a negative species denoted by index ’−’, using the

notation from [29], the EK equations read:

∂t c± = −∇ · j±(3.1)

j± = −D±∇c± −µ±z±ec±∇Φ
︸ ︷︷ ︸

jdiff
±

+ c±u
︸︷︷︸

jadv
±

(3.2)

∇ · (ε∇Φ) = −
∑

±

z±ec±(3.3)

η∇2u =∇p+
∑

±

z±ec±∇Φ
︸ ︷︷ ︸

− f

(3.4)

∇ · u = 0(3.5)

Equation (3.1) is the continuity equation for the species density fields c± and their ionic

flux j±. Equation (3.2) is a diffusion-advection equation for the total ionic flux. The

diffusive component consists of the species valencies z± and the electrostatic potential Φ,

e denotes the elementary charge. The diffusion coefficient D± and the species mobility µ±
are related by the Einstein-Smoluchowski relation [119, 120] (D±/µ± = kB T , where kB

denotes the Boltzmann constant and T the electrolyte’s absolute temperature, which is

assumed to be constant). Advection refers to ions drifting along the fluid velocity field

u. Depending on the system’s characteristic length scale one or the other component

dominates. This relation, i.e., the relative share of diffusion compared to advection, is

described by the Péclet number (advective transport rate over diffusive transport rate). For

our system, where the characteristic length scale is in the nanometer range, the diffusive

3.2 ELECTROKINETIC EQUATIONS 45

component dominates.

Equation (3.3) is a Poisson equation for the electrostatic potential Φ. The electric

permittivity is defined as a product ε = ε0εr(x), where ε0 is the vacuum permittivity and

εr(x) the relative local permittivity of the medium. All magnetic effects are excluded. This

is a valid assumption for aeqeous solutions, because the currents are typically small [29].

As the fluid is within Stokes regime, it is sufficient to prescribe the fluid’s motion by

Stokes’ equation (3.4). Equation (3.5) is the continuity equation for an incompressible

fluid.

The model is numerically instable, because different contributions to the ionic fluxes

and the fluid flow cannot cancel exactly. Rempfer et al. illustrate for a discretization based

on the finite element method (FEM) that no valid polynomial degree can be found for the

ansatz functions given a system in thermodynamic equilibrium where all ionic fluxes and

fluid flows vanish, i.e., u = 0 and j = 0 [121]. They mitigate the issue of spurious flow

by adding a gradient field to the force density

(3.6) f = −
∑

±

(z±ec±∇Φ),

which is absorbed into the pressure gradient. In particular, they extend the force density

to

(3.7) f = −
∑

±

(kB T∇c± + z±ec±∇Φ),

which lets the force density vanish in thermodynamic equilibrium. This follows from the

definition of the equilibrium state,

j±/µ= −kB T∇c± − z±ec±∇Φ= 0(3.8)

u = 0.(3.9)

Thus, in contrast to the definition of the force density in (3.4), the pressure field does

not have to compensate the non-vanishing force-term. Compared to Equation (3.4), the

modified Stokes equation reads

(3.10) η∇2u =∇p′ +
∑

±

(kB T∇c±
︸ ︷︷ ︸

= ∇p

+z±ec±∇Φ).

This reduces spurious flow by several orders of magnitude.

In the following, we describe the individual components, their implementation

46 CHAPTER 3: TARGET SOFTWARE, MODELS, AND ALGORITHMS

in ESPResSo, and their coupling in more detail. We introduce the lattice-Boltzmann

method (LBM) to simulate hydrodynamics in Sec. 3.3, the finite volume method (FVM)

representation of the ionic flux in Sec. 3.4, and conclude with describing the discretization

of the electrostatic potential using iterative methods such as successive over-relaxation

(SOR) as well as discrete Fourier transform (DFT). These algorithms can be coupled

to ESPResSo’s molecular dynamics (MD) simulation engine. We introduce molecular

dynamics in Sec. 3.6 and describe the coupling of the components in Sec. 3.8.

3.3 Hydrodynamics: Lattice-Boltzmann Method

3.3.1 Introduction

To solve the Navier-Stokes equations, ESPResSo ships an implementation of the lattice-

Boltzmann method (LBM). Here, we will only give a short introduction on the central

concepts. For a more detailed introduction, we refer to [17, 18]. Instead of directly

discretizing the Navier-Stokes equations, the LBM is based on Boltzmann’s equation (3.11).

(3.11)
d f (x , v , t)

d t
= ∂t f +∇x f +

F
m
· ∇v f = Ω(f)

The Boltzmann equation neither models the fluid based on macroscopic quantities nor

microscopically by considering individual particles. Instead, the fluid is described meso-

scopically by probability distributions f and a potentially arbitrary complex collision

operator Ω. The probability distributions describe the probability of finding a virtual

mesoscopic particle at a given point in time and space with a given velocity. Thus,

the Boltzmann-equation spans a seven-dimensional space with independent variables

position x , moment v , and time t.

The LBM offers a way to discretize Boltzmann’s equation (3.11). To discretize space,

LBM uses a regular Cartesian grid. The velocity space is discretized by restricting the

velocity space to few distinct velocities linking grid nodes with each other. Typically, one

of the four stencils shown in Fig. 3.1 is used and characterized according to the DnQm

notation [122]. Here, n describes the spatial dimension and m the number of distinct

velocities. With this, the LBM-equation can be formulated as follows:

fi(x + c id t, t + d t) = fi(x , t)
︸ ︷︷ ︸

propagation/streaming

+
∑

k

Lik{ f
eq

k − fk(x , t)}+Ξi.

︸ ︷︷ ︸

collision/relaxation

(3.12)

Here, fi denotes the densities of virtual particle populations of velocity c i. The density

3.3 HYDRODYNAMICS: LATTICE-BOLTZMANN METHOD 47

change of population fi due to external forces is given by Ξi. We derive the local equilib-

rium distribution f eq
i by a second order expansion of the Maxwell-Boltzmann equilibrium

distribution

f eq
i = aiρ

�

1+
u · c i

c2
s

+
(u · c i)2

2c4
s

−
u2

2c2
s

�

,(3.13)

where ai are prefactors, u denotes the local fluid velocity, and cs is the speed of sound on

the lattice. The choice of mesh width and stencil implicitly yields the time step, which is

chosen such that a mesoscopic particle moves from one lattice node to the next in one

time step. It can be proven by Chapman-Enskog expansion [123] that LBM is equivalent

to directly solving the Navier-Stokes equations. We recover macroscopic fluid moments

(density ρ, momentum p, stress π) from population densities by integrating over the

probability densities

ρ =
∑

i

fi, p =
∑

i

fic i π=
∑

i

fic i ⊗ c i,(3.14)

where ⊗ denotes the tensor product. The fluid velocity u can be derived from the fluid’s

momentum p = ρ · u. As the LBM is an explicit and matrix-free method without any

global synchronization steps and a small stencil, it is excellently suited for parallelization.

The LBM is classically implemented as a two-step algorithm of collision and streaming.

Depending on which step is executed first, the scheme is called push (collision precedes

streaming) or pull scheme.

Collision. The collision step is a local interaction of populations which drives the fluid

towards its local equilibrium. There are different schemes to model the collision operator

Lik. The simplest was introduced by Bhatnagar et al. where Lik = λδik. The so-called BGK

(after the inventors Bhatnagar, Gross, and Krook) or single-relaxation-time (SRT) collision

operator relaxes all populations with a single relaxation parameter λ which we choose

according to the desired shear viscosity of the fluid. Different fluid-parameters such as

the bulk viscosity cannot be chosen independently. This mitigation can be resolved by

choosing more involved collision operators such as two-relaxation-time (TRT) [125, 126]
or multi-relaxation-time (MRT) [127] schemes. Here, different linear combinations mi of

the LBM populations fi (modes) are relaxed towards their local equilibria at different rates

λi. Modes correspond to different macroscopic quantities such as fluid density, velocity,

or stress. MRT is an actual superset of the simpler collision models TRT and SRT. Thus,

MRT can recover those schemes when parametrized accordingly and is proven to be more

stable than the simpler schemes [128].

48 CHAPTER 3: TARGET SOFTWARE, MODELS, AND ALGORITHMS

FIGURE 3.1 Popular LBM stencils: D2Q9 (top left), D3Q15 (top right), D3Q19 (bottom left),
and D3Q27 (bottom right).

Streaming. During the streaming step, the results of the previous collision step are

propagated to the next lattice sites (acoustic scaling). As shown in Fig. 3.2 for a D2Q9

stencil, populations are directly transported to their neighboring cells.

Boundary conditions. Until now, we only considered the fluid domain, i.e., our system

neither contains obstacles nor inflow or outflow regions. The simplest way of modeling

obstacles are bounce-back boundaries. The idea of bounce-back boundaries is illustrated

in Fig. 3.3: Populations entering the boundary are reflected back into the originating

fluid node. This antisymmetry results in an effective fluid velocity of 0 at the boundary

(no-slip). More advanced boundary conditions can, e.g., be found in [129–132].

3.3 HYDRODYNAMICS: LATTICE-BOLTZMANN METHOD 49

FIGURE 3.2 Streaming operation on a regular LBM grid using a D2Q9 stencil. Populations are
directly transported to the cell in the direction of the respective discrete velocity.

FIGURE 3.3 Bounce-back boundary conditions for a wall-boundary (gray) on a regular LBM
grid using a D2Q9 stencil before streaming and bounce-back (left) and afterwards
(right). The populations entering the boundary (dashed arrows on the right in
brown, blue, and green) are highlighted. The highlighted populations are reflected
back into the originating cell (solid arrows, colored accordingly).

3.3.2 Reducing the Limitations of the LBM

The classical LBM has several short-comings in terms of stability such as the low Mach

number limit or the restriction to weakly compressible flows. Some of these issues can

be mitigated, but going into detail about the concrete measures is beyond the scope of

this work. Apart from improved boundary conditions, there are several ways to make

the LBM numerically more robust. One option is to systematically derive a higher order

equilibrium distribution [133]. Alternatively, we can use more stable LBM kernels such as

cascaded LBM [134, 135] or, even more stable, cumulated LBM [136, 137] which resolve

issues with Galilean invariance. A nice overview is given in [138].

Classically, the LBM suffers from a large memory footprint. This stems from us-

ing double-buffering schemes which avoid overwriting population densities fi during

streaming. Streaming in a particular order resolves these data-dependencies. By using

50 CHAPTER 3: TARGET SOFTWARE, MODELS, AND ALGORITHMS

f c0
0 f c1

0 f c2
0

… f cn
0 f c0

1 f c1
1

… f cn
17 f c0

18 f c1
18

… f cn
18 f c0

0 f c0
1 f c0

2
… f c0

18 f c1
0 f c1

1
… f

cn−1
18 f cn

0 f cn
1

… f cn
18

FIGURE 3.4 Struct-of-arrays-based storage scheme (streaming-optimized, left) compared to
an array-of-structs-based storage scheme (collision-optimized, right) for a D3Q19
implementation of the LBM as it is used in ESPResSo. Colors encode the cell which
the respective value is associated with.

single-buffering schemes [139, 140] the memory footprint of the LBM can be halved.

3.3.3 LBM in ESPResSo

ESPResSo ships an MRT-based implementation of the LBM using a D3Q19 stencil. Origi-

nally, the LBM was developed to subject a molecular ensemble to a background flow. To

account for Brownian motion, the LBM can be thermalized by different probability distri-

butions to generate noise [129, 141]. Data are stored in a streaming-optimized storage

scheme [142]. Streaming-optimized refers to a struct-of-arrays data-structure in contrast

to the collision-optimized storage scheme which is an array-of-structs data-structure.

Figure 3.4 illustrates the difference between both schemes.

Obstacles are modeled by bounce-back boundary conditions. Those obstacles can

have different shapes and the fluid cells overlapping an obstacle are marked as boundary

cells. Inflow and outflow boundary conditions are realized in the same way. They are

implemented similar to velocity Dirichlet boundary conditions and have an assigned

velocity value. Instead of just mirroring the populations that have left the fluid, those

populations are shifted according to the respective velocity difference during bounce-back.

ESPResSo ships no implementations of further boundary conditions as, e.g., free outflow.

ESPResSo contains two different implementations, a central processing unit (CPU)-

based implementation parallelized by a domain-decomposition approach using MPI.

Additionally, ESPResSo contains a CUDA-based version for a single GPU [143].

3.4 Ionic Flux

The ionic flux in the continuous model by Capuani et al. consists of a continuity equa-

tion (3.1) and a diffusion-advection equation (3.2) based on the Nernst-Planck equa-

tion [118]. In ESPResSo, the diffusive and the advective component of the flux are

discretized separately.

3.4.1 Diffusive Flux

Local differences in the ion density drive the diffusive flux. As it is crucial to conserve ionic

densities to ensure constant net charge, ESPResSo uses a finite volume method (FVM) to

3.4 IONIC FLUX 51

discretize the diffusive flux [5, 29]. We calculate the flux to the neighboring lattice site in

direction +di using a symmetric finite difference equation:

jdiff
±,i (x) = −D±

c±(x)− c±(x + di)
‖di‖2

−µ±z±e
c±(x + di) + c±(x)

2
·
Φ(x − di)−Φ(x)

‖di‖2
.

(3.15)

A D3Q18 stencil ensures consistency with the D3Q19 stencil chosen in the lattice-Boltz-

mann method (LBM) in terms of data-access patterns. Both stencils access data from

neighbors across faces and edges, however, the D3Q18 stencil lacks a link with the cell

itself. FVM schemes are known to fulfill conservation laws particularly well as they

describe quantities in an integral formulation over cell volumes rather than pointwise

approximations [24].

3.4.2 Advective Flux

The advective flux component describes the flux of ions which are dragged along the

direction of the local flow field. ESPResSo uses a volume-of-fluid scheme to model

advection. The scheme virtually displaces the fluid contained in each grid cell by the

distance s which the fluid travels given its local velocity u in one time step ∆t,

s = u∆t.(3.16)

Assuming homogeneous ionic concentrations within each cell, a FVM scheme propagates

ionic concentrations between neighboring cells. We calculate the relative size of the

overlap between neighboring cell and virtually displaced cell. Then, we propagate the

relative amount of ionic concentration to the neighboring cell, corresponding to the

relative size of the overlap. We illustrate this algorithm in Fig. 3.5. The inherently

diffusive behavior of this scheme is not an issue, because in our regime diffusion dominates

advection.

3.4.3 Total Ionic Flux

The total ionic flux is calculated as a weighted sum of diffusive and advective flux. It

is used to propagate ionic concentrations in a finite volume representation of the ionic

continuity equation (3.1) between grid nodes

c±(x , t +∆t) = c±(x , t)−∆t
∑

i

Ai j±,i(x , t)(3.17)

52 CHAPTER 3: TARGET SOFTWARE, MODELS, AND ALGORITHMS

s

0.44

0.12

0.34

0.10

FIGURE 3.5 Illustration of the volume-of-fluid method used to calculate the advective flux. We
virtually displace the highlighted cell by the distance s the fluid travels given its
local velocity u within the time step ∆t. We assume a homogeneous distribution
of ions within each cell. Thus, we calculate the relative size of the overlap between
the neighboring cell and the displaced image of the current cell. Then, we transfer
exactly this amount of ionic concentration to that neighbor.

with

j±,i(x , t) = jdiff
±,i (x , t) + jadv

±,i (x , t).(3.18)

The weighting factors Ai are chosen such that the mean square displacement (MSD) of an

ionic species is correctly reproduced for a fluid-at-rest and a neutral electric field. This

scheme ensures conservation of ionic densities c down to arithmetic precision, because

the inflow of one cell exactly equals the outflow of the neighboring cell [29].

3.5 Electrostatic Potential

We derive the electrostatic potential Φ from the ionic densities c using Poisson’s equation:

∇ · (ε∇Φ) = −
∑

±

z±ec±.(3.3)

Assuming constant electric permittivity ε, Poisson’s equation (3.3) can be written as

∇2Φ= −
4π`BkB T

e2
%(3.19)

3.6 MOLECULAR DYNAMICS 53

with net charge density % and Bjerrum length `B where % =
∑

± z±ec± and `B =
e2

4πεkB T .

We discretize the Laplacian by a seven-point finite difference stencil on the same grid as

the finite volume method (FVM) described above to avoid interpolation during coupling.

This yields the following stencil

(3.20)

−
4πh2`BkB T

e2
%(x0, x1, x2) = Φ(x0 + h, x1, x2) +Φ(x0 − h, x1, x2)

+Φ(x0, x1 + h, x2) +Φ(x0, x1 − h, x2)

+Φ(x0, x1, x2 + h) +Φ(x0, x1, x2 − h)

− 6Φ(x0, x1, x2).

with global mesh width h. To solve this scheme, several approaches have been compared

in [144]. Here, methods based on discrete Fourier transform (DFT) were deemed best

despite enforcing globally constant electric permittivity ε and, thus, globally constant

Bjerrum length `B. As evaluating the Laplacian is turned into a set of fused multiply-add

(FMA) operations in Fourier space, DFT methods yield accurate results at low computa-

tional cost compared to, e.g., iterative methods such as successive over-relaxation (SOR)

which Capuani et al. use in their original implementation. To transform between Fourier

space and back we use fast Fourier transform (FFT) [29].

3.6 Molecular Dynamics

All subsystems for modelling the electrokinetic (EK) equations in a continuous represen-

tation have been discretized on a grid. In the following, we will add discrete particles that

are dissolved in the ionic fluid. In our target-application, this might be the DNA string.

3.6.1 Short-Range Molecular Dynamics

ESPResSo was originally designed as a molecular dynamics (MD) simulation software.

Detailed introductions about MD simulations can, e.g., be found in [145, 146]. In MD,

we trace the trajectories of particles that interact through different kinds of force fields.

The movement of particles is governed by Newton’s equation of motion. Theoretically,

we would have to evaluate all forces between any arbitrary number of particles and the

current particle pk. These forces are derived from intermolecular potentials V for particle

positions xpi
,

f (pk) = −∇xpk
V (xp0

, . . . , xpn
).(3.21)

54 CHAPTER 3: TARGET SOFTWARE, MODELS, AND ALGORITHMS

In practice, however, we approximate the generic potential V by a pair potential U . Again,

the force acting on an individual particle pk is calculated as a sum over all attractive and

repulsive forces between the current particle and all remaining particles in the system

f (pk) = −∇xk
V (x0, . . . , xn)≈

∑

i,i 6=k

−∇xk
U(rik) =
∑

i,i 6=k

f ik.(3.22)

We designate the Euclidean distance between particles i and k by rik. Evaluating the

potential yields a force fik between both particles. The sum over all intermolecular forces

yields the force acting on particle pk [147].

The computational complexity of this algorithm is O (n2) where n is the number of

particles in the system. For short-ranged potentials, this complexity can be reduced to

O (n). An arbitrary pair-potential U is short-ranged if and only if

∫

‖x‖2>rc

U(‖x‖2)dx
rc→∞−−−→ 0,(3.23)

i.e., if the influence of the potential can be neglected beyond a particle distance r, if

r is large enough. Then, we can define a maximum distance rc between two particles

(cut-off radius). For particle pairs which are farther apart than this distance, i.e., r > rc,

we neglect the force contribution of the respective interaction. Given such a potential,

we can employ the Linked-Cell method [148, 149]. Here, the domain is discretized by

a Cartesian grid with a mesh width of rc. It can be further optimized using Newton’s

Third Law. By using an appropriate search pattern, we can guarantee to visit each particle

pair exactly once and add the respective force to both particles. We refer to all 26 direct

neighbor cells as full shell neighborhood and the optimized pattern based on Newton’s

Third Law with 13 neighbor cells as half shell neighborhood. If an exact matching between

multiples of rc and the spatial domain size is impossible, it is easier to choose a slightly

larger mesh width than a smaller one. This guarantees finding all interacting particles

within directly adjacent neighbor cells. We will, however, have to probe more particles

outside the cut-off radius rc. The fundamental idea of the Linked-Cell method as well as

half shell and full shell neighborhood is illustrated on the right of Fig. 3.6.

Another way for reducing computational cost uses Verlet lists [150]. Here, we store

for each particle a list of all particles within the sum of the cut-off radius and an additional

distance (skin). This skin allows reusing Verlet lists over multiple time steps.

A well-known and widely used short-range interaction potential is the Lennard-Jones

3.6 MOLECULAR DYNAMICS 55

0.5 12 1
6 1.5 2 2.5

−1

1

2

3

4

5

0 r/σ

U/ε

rc

FIGURE 3.6 We print the LJ potential on the left where we plot the potential U over the particle
distance r. ε steers the minimum of the potential and, thus, the strength of
the bonds, while σ controls the distance where the potential’s influence can be
neglected.
On the right, we illustrate the basic idea of the Linked-Cell method. After calculating
the distances of all particles (black and blue), in the current cell and in neighboring
cells, to the red particle, only the blue particles (those within the blue circle)
contribute to the force acting on the red particle. The half shell neighborhood is
marked e.g. by the red or gray area, their union yields the full shell neighborhood.
The pairs in the cell containing the current particle (brown) must be considered.

(LJ) potential [151, 152] which represents a special case of the Mie potential [153].

ULJ(r) = 4ε
�

�σ

r

�12
−
�σ

r

�6�

.(3.24)

It represents two physical aspects, that is Pauli repulsion, modeled by
�

σ
r

�12
, and van der

Waals attraction, modeled by
�

σ
r

�6
. The potential curve of the LJ potential is depicted on

the left in Fig. 3.6. The parameter ε controls the depth of the minimum in the potential

curve and, thus, the strength of the repulsive and attractive forces. This allows simulating

materials with different properties. Larger values of ε lead to stronger bonds, i.e., harder

materials. σ models the distance where the potential almost vanishes [147].

3.6.2 Long-Range Molecular Dynamics

Long-range interactions mostly refer to charged systems where we evaluate the Coulomb

potential between particles. To reduce the computational cost, we can use Ewald sum-

mation [154, 155]. Further improvements can be made by interpolating the charges to

a grid, e.g., the particle-particle-particle-mesh (P3M) algorithm [148]. As we did not

perform any simulations with charged particles over the course of this work, we will not

56 CHAPTER 3: TARGET SOFTWARE, MODELS, AND ALGORITHMS

go beyond mentioning that ESPResSo is capable of performing such simulation for the

sake of completeness.

3.7 Parallelization

To perform large-scale simulations, we have to parallelize the aforementioned concepts.

According to the message-passing paradigm, the grid-based concepts described in Sec. 3.3

to Sec. 3.5 use a domain decomposition approach. To this end, we slice the rectangular

simulation domain into nproc (number of processes in the system) smaller rectangles of fixed

size. Then, we assign one such slice to each process. To make each domain independent

of its direct neighbors, each domain is surrounded by a ghost layer, where information

from neighboring processes gets replicated using MPI-based message-exchange.

Parallelizing molecular dynamics (MD) simulations offers more options. Similar to

grid-based algorithms, we can employ a domain decomposition. However, we can also

distribute the computational load based on the number of particles (atom decomposition)

or on the number of force pairs (force decomposition). Domain decomposition is known

to be the most efficient approach [36].
To this end, ESPResSo also has a domain decomposition method implemented which

is fixed over the course of the simulation. To reduce the computational complexity of the

short-range MD algorithm, ESPResSo uses a combination of a Linked-Cell grid with Verlet

lists. Here, we set mesh width to the sum of cut-off radius and skin. Thus, the Linked-Cell

method can be recovered by setting the skin-size to 0.

3.8 Interaction of Components

Up to now, we have described the individual subsystems. To simulate meaningful physical

systems, we have to connect these subsystems by a coupling scheme and define an

execution order within a time step. As described in the previous section, all components

use the domain decomposition approach for parallelization. Thus, coupling can be

performed locally on each process.

If we simulate a system that consists of all subsystems, ESPResSo executes the

algorithms of the respective subsystems in the following order within a time step:

1. Short-range molecular dynamics (MD),

2. diffusive ionic flux,

3. advective ionic flux,

4. electrostatic potential and long-range MD, and

3.9 SUMMARY 57

5. hydrodynamics.

Coupling between grid-based algorithms is given by the system equations (3.1) to (3.5).

As we use the same grid for all three grid-based components of the electrokinetic (EK)

model (ionic flux, electrostatic potential, and hydrodynamics), we can simply read the

required values of the respective cells. For coupling short-range MD to the grid algorithms,

ESPResSo implements the scheme by Dünweg et al. [156].
An electric field E applies a potential force based on the net charge density % on the

fluid given as

f pot,fl = %E = −
∑

±

z±ec±∇Φ.(3.25)

We derive a coupling-force from the local velocity difference of particle and fluid as a

bi-directional frictional force coupling

f fl,pi
= −Γ (v i − u(x j, t)) + f st,i.(3.26)

The force f fl,pi
between particle pi and fluid is given by the friction coefficient Γ times

the velocity difference between particle and fluid. We determine the local fluid velocity

by trilinear interpolation [157]. To model Brownian motion, we add a stochastic force

f st,i. The sum of both forces and a global external force forms the density change due to

external forces Ξi in equation (3.12)

Ξi = f global + f pot,fl + f fl,pi
.(3.27)

3.9 Summary

In this section, we have described the physical models describing our target application.

We have introduced the ESPResSo simulation software that can model this system. Addi-

tionally, we have described the status quo of this software: Both in terms of how ESPResSo

discretizes and implements the respective models as well as how ESPResSo realizes the

coupling of the individual subsystems. In Chap. 4, we generalize the grid-based algo-

rithms to adaptive grids. This defines constraints that have to be met by the p4est library.

We describe our extensions to p4est in order to meet these constraints as well as our

integration of p4est with ESPResSo in Chap. 5.

59

4 Adaptive Discretization of
Physical Models

In this chapter, we generalize the algorithms and discretization schemes presented

in the previous chapter to adaptive grids. We present adaptive formulations for hydro-

dynamics, ionic flux, and the evaluation of the electrostatic potential. Additionally, we

explain how an adaptive representation of the respective models affects coupling between

subsystems. Each extension defines constraints on the underlying adaptive discretization.

4.1 Hydrodynamics

The fundamental idea of the adaptive lattice-Boltzmann method (LBM) schemes that we

present in the following, is to consider different discretization levels as separate, locally

regular grids. The union of the respective grids yields the spatial domain. To transmit

information between these different grids, we introduce an overlap region at refinement

boundaries. This region allows transferring information between different grid levels.

4.1.1 Interpolation Schemes

Interpolation-based LBM schemes [158–160] locally embed regions with finer grid reso-

lution into a global coarse grid. The smaller grid cells are finer by a constant refinement

factor k. As the refinement factor must adhere to the grid-structure, we use an integral

multiple of the number of children created within recursive refinement. I.e., for quadtrees

and octrees, we have k = 2 · `, ` ∈ N (in the special case of a 2:1 balanced octree `= 1).

Interpolation-based LBM schemes first calculate the values on the coarse grid. These

values serve as boundary conditions on the fine grid by second order interpolation in

space and time. This allows calculating k steps on the fine grid subsequently, whose values

are then restricted back onto the coarse grid.

These schemes are widely used [161–166]. The main issue with these schemes is

60 CHAPTER 4: ADAPTIVE DISCRETIZATION OF PHYSICAL MODELS

that they violate the Nyquist-Shannon sampling theorem [167] when populations are

transferred from the fine to the coarse grid without (suitable) interpolation1. Without

correcting the step accordingly [165, 166], these methods are not applicable to high

Reynolds number flows [138].
The LBM populations are positioned on the grid points, i.e., the corners of the

underlying grid. In ESPResSo’s implementations, however, populations reside in cell

centers. For that reason, we have not investigated these schemes further.

4.1.2 Volumetric Schemes

In volumetric LBM schemes [168–170], the LBM populations are positioned in the cell

centers. This staggering of cells acts as an implicit low-pass filter and lets volumetric

schemes comply with the Nyquist-Shannon theorem without further ado.

We decide to use the same scheme as PEANO [171] and waLBerla [54, 55], that is

the scheme proposed by Rohde et al. [170]. The scheme is independent of the respective

collision operator and first order accurate. To obtain second order accuracy, we need

an additional interpolation step, e.g., compact interpolation [59, 172, 173]. We have

not implemented this interpolation yet. Communication between different grid levels

takes place through an overlap region of virtual cells that are embedded into coarse

cells at refinement boundaries. The idea of virtual cells is illustrated in Fig. 4.1 for an

exemplary grid section with one refinement boundary. The embedded virtual cells make

the refinement boundary transparent to the streaming and bounce back step. They allow

executing collision and streaming steps in locally regular grids for each level. Information

traveling from a coarser cell to finer cells is first interpolated to the respective virtual cells

and then streamed. Vice versa, information traveling from fine cells to a coarser neighbor

is first streamed into the virtual children of the coarse cell before it is restricted to the

coarse cell.

The local time step of a cell is proportional to its local mesh width (acoustic scaling).

We refer to this kind of multivariate time stepping as subcycling. Subcycling resembles a

“W-cycle”, see Fig. 4.2. Moreover, numerical quantities, such as relaxation parameters or

external forces must be rescaled according to the respective refinement level to ensure

homogeneous fluid properties across all refinement levels [1, 170].
The full algorithm is illustrated in Fig. 4.3. It begins by colliding on all available

levels. Populations in virtual cells do not perform a collision step. Instead, virtual cells’

populations are interpolated from the real coarse parent grid cell after its collision. In the

scheme of Rohde et al., we copy populations from the parent cell to its virtual children

1The theorem states that the reduced signal must not contain frequencies that cannot be represented on
the coarse grid side.

4.1 HYDRODYNAMICS 61

Subgrid

Level lk

Level lk+1

FIGURE 4.1 Top: Exemplary subdomain containg a refinement boundary. The coarse cell of
level `k at this boundary embeds virtual cells of level `k+1, printed in gray. This
leads to locally regular grids, shown in the local views of levels `k and level `k+1
which we print in the middle and bottom. These local views are used to perform
the streaming step for both refinement levels.

given a mass-free representation. All cells, i.e., real and virtual cells, of a given level

participate in the following streaming step, starting with the finest level. Due to subcycling,

finer cells perform several LBM steps depending on the refinement ratio. In case of 2:1

balanced grids, fine cells at refinement boundaries perform two LBM steps during one

LBM step of the coarse cell, Fig. 4.2 Fig. 4.3. After streaming, populations from virtual

subcells are restricted to the coarse parent cell. In the scheme of Rohde et al., we calculate

the arithmetic mean of the populations in the virtual cell for each distinct velocity c i from

the stencil.

62 CHAPTER 4: ADAPTIVE DISCRETIZATION OF PHYSICAL MODELS

l0

l1

l2

cl0

cl1

cl2 sl2 cl2 sl2

sl1 cl1

cl2 sl2 cl2 sl2

sl1

sl0

tl2,0 tl2,1 tl2,2 tl2,3

tl1,0 tl1,1

tl0,0

FIGURE 4.2 We illustrate that multivariate time stepping in adaptive LBM simulations resembles
a “W-cycle” by plotting the execution order of collision and streaming over three
levels. Brackets indicate the size of a time step on each level. We abbreviate
“collision on level i” with c`i

and “streaming on level j” with s` j
.

collide coarse

interpolate to virtual cells

collide fine

stream fine

collide fine

stream fine

restrict from virtual cells

stream coarse

FIGURE 4.3 Schematic illustration of a coarse time step in the volumetric LBM scheme according
to Rohde et al. [170]. The time axis of the figure goes from top to bottom. Different
colors indicate the position of distributions at the beginning of the coarse time
step. Black and gray populations are undefined: black populations stem from cells
outside the Figure’s domain and gray populations are algorithmically undefined
within a substep. Gray populations must not propagate through the domain. The
scheme works as follows: 1. Collision on coarse grid. 2. Interpolate data to
virtual children of coarse cells. 3. Collide on fine grid (not on virtual fine grid).
4. Streaming step on virtual fine and fine grid. 5., 6. Repeat steps 3 and 4. 7.
Restrict populations from virtual fine to coarse grid. 8. Stream on coarse grid. If
the grid was not 2:1 balanced step 5 would contain more than one repetition of
steps 3 and 4.

4.1 HYDRODYNAMICS 63

4.1.3 Data-Dependencies for Volumetric LBM

As described above, the LBM algorithm considers the adaptive grid as a set of locally

regular grids. To transmit information between cells of different refinement levels, the

algorithm extends the size of the fine grid by virtual cells overlapping coarse cells at

refinement boundaries as illustrated in Fig. 4.1. The algorithm requires streaming data to

and from real cells, leading to complex data-dependencies involving virtual cells. In the

following, we address this by analyzing those data-dependencies between virtual cells. In

other words, we investigate if we can optimize the implementation of the algorithm by

omitting redundant streaming operations between virtual cells at refinement boundaries.

We consider an arbitrary refinement boundary in a simulation that runs on a single

processor based on our definition of hanging entities from Sec. 2.1.1. Serial execution

leads to an omniscient process regarding the discretization of the simulation domain, thus

we avoid introducing additional complexity through different local perspectives on the

grid. By definition, there is at least one coarse cell of level `k adjacent to at least one fine

cell of level `k+1. This introduces virtual cells of level `k+1 in all cells of level `k adjacent

to that refinement boundary.

The key aspect for answering the question of redundancy for a given streaming

operation between two virtual cells of level `k+1 is the order of streaming operations at

different refinement levels. As illustrated in Fig. 4.2, cells of level `k+1, i.e., virtual cells

and fine cells, stream information before the virtual cells’ host cell or cells with level `k

do.

We illustrate the streaming operation for an exemplary cell in Fig. 4.4. We observe

that the direction of the virtual cells’ streaming operation relative to the position of

the refinement boundary determines if data streamed on level `k+1 gets overwritten by

data streamed on level `k. If streaming on level `k overwrites the streamed data of its

virtual subcells, we refer to the respective streaming operation between virtual cells as

optional streaming in a specific direction, so
virt(`k+1, ci). Otherwise, we speak of mandatory

streaming, sm
virt(`k+1, ci). We recite all two-dimensional cases occurring for 2:1 balanced

grid listed in [3] in Fig. 4.5. Their extension to three dimensions and the respective 2D

equivalent is recited in Fig. 4.6 and Tab. 4.1.

We observe that optional streaming occurs if and only if the respective virtual cell

data neither stem from nor arrive in a real cell of level `k+1 within two streaming steps

of level `k+1. Thus, in order to abstain from performing optional streaming steps, we

generally have to perform four neighbor searches. That is, two consecutive neighbor

searches in the direction of the streaming operation and in the opposite direction. Thus,

we cannot answer this question locally, i.e., based on the local cell and its directly adjacent

neighbors. Moreover, there are several cases that would lead to a complex code structure.

64 CHAPTER 4: ADAPTIVE DISCRETIZATION OF PHYSICAL MODELS

collision coarse

interpolate to virtual cells

stream twice on fine level

restrict to parent cell

stream on coarse level

FIGURE 4.4 We trace two populations over one coarse time step at a refinement boundary.
We see that if we omit streaming of the red populations, there is no way that
this information reaches the fine grid cells on the left. For the blue populations,
however, we see that it is irrelevant if we stream on the level of virtual cells, because
that data is overwritten during the coarse streaming step.

4.1 HYDRODYNAMICS 65

FIGURE 4.5 Two-dimensional data-dependencies for streaming between virtual cells in a 2:1
balanced grid. Arrows indicate streaming directions across the respective entities.
Red and blue arrows indicate mandatory streaming operations while green and
brown arrows indicate optional streaming operations. The result of optional
streaming is overwritten by the following streaming step of the parent cell. We
distinguish three different cases: (i) Streaming across faces (top), (ii) streaming
across corners (center), and (iii) streaming across hanging corners. In each case
we see that streaming is mandatory if data reach real fine cells within at most two
fine time steps.

66 CHAPTER 4: ADAPTIVE DISCRETIZATION OF PHYSICAL MODELS

FIGURE 4.6 Three-dimensional data-dependencies for streaming between virtual cells and the
projection to the respective 2D case. We illustrate the respective projections to the
2D cases by the sketched planes. The figure is organized tabularly. In the top row,
we depict faces, in the middle row edges, and in the bottom row corners. In the
left column we illustrate face-hanging entities, in the center column edge-hanging
entities and in the right column non-hanging corners.

4.1 HYDRODYNAMICS 67

TABLE 4.1 Projections to reduce 3D hanging entity cases to 2D.

3D entity case Equivalent 2D entity case

face face
face-hanging face face-hanging face

edge corner
face-hanging edge face-hanging corner
edge-hanging edge non-hanging corner

corner corner
face-hanging corner face-hanging corner
edge-hanging corner face-hanging corner
non-hanging corner non-hanging corner

Thus, we do not implement our local LBM scheme in such a way that it omits optional

streaming, i.e., we do not only stream sm
virt(`k+1, ci). Instead, we stream both optional and

mandatory cases, i.e., svirt(`k+1, ci) = so
virt(`k+1, ci)
⋃

sm
virt(`k+1, ci).

While we cannot profit from omitting virtual streaming in the serial case, it, however,

turns out to be helpful in the parallel case. A natural constraint to any parallel algorithm

is that the number of processes may only affect the time-to-solution but not the actual

result of the computation. We analyzed before, that we can either do or omit optional

streaming without affecting the result of the computation. In the serial case, we found

it beneficial to include optional streaming, in the parallel case, we restrict ourselves to

mandatory streaming. As a consequence, we create virtual cells locally on each process,

i.e., based on the information about refined regions in the respective partition and its

ghost layer. In particular, no information about virtual cells induced by refinement in other

partitions’ inner domain is required. Moreover, the latter would substantially increase

the cost of communication. We illustrate the idea in Fig. 4.7 using the same grid and the

same number of processes as in Fig. 2.7. We show the three local views of each processor.

Each local domain is filled by the respective color, and the hatched area indicates the part

of the simulation domain of which the respective processor is aware of the discretization

by its ghost layer. We frame cells where each rank locally places virtual cells based on its

local information. Specifically, we place virtual cells in all ghost cells adjacent to local

cells with higher level. The union of local cells leads to the global grid. In our case, we

have a grid with a refined region refinement in the center. This region is surrounded by

two layers of coarser cells. Thus, on a global perspective, each cell with level ` < `max has

to host virtual cells. Going back to the local perspective of each processor, we see that this

is true for all process-local cells. However, there are cell replicas in the ghost layer with

levels ` < `max where this does not hold, e.g., ghost cells 0, 4, or 5 on the red process. We

68 CHAPTER 4: ADAPTIVE DISCRETIZATION OF PHYSICAL MODELS

observe that none of the mentioned ghost cells with level `k receives information from

local cells of level `k+1 within two time steps of level `k+1. This is exactly the definition of

optional streaming mentioned above.

Thus, we find an optimization that comes at zero cost but brings significant benefits.

By locally creating virtual cells instead of placing virtual cells in all replicas, we omit

communication during initializing the position of virtual cells. Additionally, we reduce

the communication volume during run time. On top of that, this is transparent to the

local implementation of the streaming algorithm, because all that happens is that local

cells will not find virtual neighbor cells in a given direction for streaming. Thus, they do

not execute the optional streaming step.

Up to now, we only considered data transfer between fluid cells. We extend our

analysis to physical boundaries, and, again, restrict ourselves to bounce-back boundaries.

We observe that virtual cells at obstacle cells are not exactly mass-conserving. The main

issue is illustrated on the left of Fig. 4.8. Unlike real cells, where the complete mass

is reflected back into the original cell, see Fig. 3.3, virtual cells dissipate some mass to

neighboring cells. Thus, in the following coarse cell streaming step we do not overwrite the

populations originating from the current cell but a combination of populations originating

from different parent cells, see the right column of Fig. 4.8. Thus, virtual cells directly

adjacent to obstacles cells only conserve mass up to a discretization error.

We illustrate why the error is not unbounded in Fig. 4.8 where we compare where

populations originating from a given cell end up with where populations originate ending

up in a given cell. We see that populations are symmetrically exchanged between cells.

We conclude that virtual cells at obstacles should be avoided. The simplest way to

achieve this is to always refine boundaries up to the finest level. This also yields the best

possible geometric approximation of the boundary. For the sake of completeness, we will

briefly describe further adaptive LBM schemes before introducing adaptive discretizations

for the ionic flux and the electrostatic potential.

4.1.4 Further Schemes

In recent years, further approaches for generalizing LBM to adaptive grids have been

developed. There are approaches with variable Courant-Friedrichs-Lewy (CFL) number

for octree grids [174–176].
Additionally, there are different approaches to implement LBM on unstructured grids

which we briefly mention. There are spectral methods, mostly based on Discontinuous

Galerkin (DG) methods [177–182]. Moreover, there is interpolation supplemented LBM

(ISLBM) [183, 184]. This technique can also be used for body-fitted structured grids

(moving meshes) [185]. Moreover, there are LBM schemes based on a least-squares

4.1 HYDRODYNAMICS 69

0 1

2
3 4

5
6 7
8 9

10 11

12 13

14 15
16 17 18

19

20
21

22 23
24 25

26 27

28 29

30 31
32 33

34

35 36
37

38 39

0 1

2
3 4

5
6 7
8 9

10 11

12 0

1 2
3

4
5

6
7 8 9 10

0

1 2
3 4 5

6

7
8

9 10
11 12

13 14

0
1

2 3
4 5

6 7

8

9 10

11 12
13

14

15
16

17 0 1

2 3
4 5

6

7 8
9

10 11

0 1 2 3
4

5

6
7

8 9

cell not hosting virtual cells cell hosting virtual cells

FIGURE 4.7 Example for a two-dimensional adaptive grid partitioned into three domains (top-
left). We depict the three local grid views of each processor in the bottom and
in the top-right corner. For each process, the local domain is the area filled by
the respective color, and the hatched area indicates the ghost layer and, thus,
the region of the simulation domain in which the respective processor knows the
exact discretization. Local cell-indices are printed in black while we color-code
ghost-indices according to the process owning the original cell. We highlight cells
where each rank places virtual cells based on its local information by framing the
respective cell. The union of the local perspectives yields the global perspective in
the top-left corner.

70 CHAPTER 4: ADAPTIVE DISCRETIZATION OF PHYSICAL MODELS

FIGURE 4.8 Bounce-back for virtual cells at outer domain boundaries. We compare where
populations originating from a family of virtual cells (red arrows) end up after
two streaming steps on that respective level (blue arrows) (left column) to where
populations ending up in the same family of virtual cells (brown arrows) originate
(green arrows) (right column). In contrast to bounce back boundaries of real cells
or a regular grid (Fig. 3.3), some populations have left the original cell after the
coarse time step. We observe that populations get locally exchanged between the
same neighboring cells, i.e., there is a symmetrical exchange between two different
parent cells.

4.2 IONIC FLUX 71

finite element method (FEM) [186], Total Variation Diminishing (TVD) LBM based on a

finite volume method (FVM) [187], or finite difference method (FDM) based LBM using

short-characteristic upwinding techniques [188].

4.2 Ionic Flux

In the following, we introduce an adaptive discretization for the diffusion-advection

equation (3.2) for the ionic flux from the continuous model of the electrokinetic equations

introduced by Capuani et al. [118]. This discretization has been developed and integrated

into ESPResSo by Ingo Tischler during his Master’s thesis [5].

For both, advective and diffusive component, we use virtual cells in combination with

multivariate time stepping. Similar to the lattice-Boltzmann method (LBM), this yields

locally regular grids and makes the position of a refinement boundary transparent to the

underlying stencil-code implementation. To transfer data between different refinement

levels, we use first order interpolation. Mass-free data such as the charge density are

interpolated to all 2dim virtual child cells by copying the respective values. The data

are restricted back to the parent cell by calculating the arithmetic mean over all virtual

children. Otherwise, we interpolate data by evenly distributing mass among the 2dim

virtual children, e.g. local force densities. In this case, data-restriction is done by summing

up data to the parent cell.

In the following, we want to discuss two more aspects of our implementation. Similar

to the LBM, we have to rescale some numerical quantities. In addition to the LBM

quantities described in the previous section, we have to scale the discrete diffusion

coefficient according to the Einstein-Smoluchowski relation. Given a diffusion coefficient

D` for level `, we can derive the diffusion coefficient Dk for level k as

Dk = 2`−kD`.(4.1)

Second, we know fluxes in the finite volume method (FVM) are symmetrical over

shared entities. If two cells a and b touch across an entity, the inflow across that entity in

cell a equals the outflow of cell b. Thus, it suffices to search half the neighbors according

to a fixed pattern and use the obtained flux for both cells with opposite algebraic sign.

The idea is similar to the half shell neighborhood introduced in Sec. 3.6.

There are, however, several more ways to extend the FVM to adaptive grids. We refer

to, e.g., [189–192].

72 CHAPTER 4: ADAPTIVE DISCRETIZATION OF PHYSICAL MODELS

4.3 Electrostatic Potential

The original implementation for regular grids uses discrete Fourier transform (DFT) for

discretizing the Poisson equation of the electrostatic potential, Eq. (3.3). DFT is a global

transformation method where we cannot add virtual cells and treat the grid as locally

regular. Thus, we choose a different approach than in Sec. 4.1 and Sec. 4.2. We use

successive over-relaxation (SOR) as in the original implementation by Capuani et al. [118].
This discretization has been developed and integrated into ESPResSo by Ingo Tischler

during his Master’s thesis [5].

To create the stencil, we use a tensor-product approach using central differences.

We deal with different refinement levels by adapting the stencil such that the respective

coefficients vanish per dimension. Given a 2:1 balanced grid, there are five cases to

distinguish per dimension, depending on the size of the neighbors: (i) Both neighbors

have the same size. Here, we do not have to modify the stencil and can stick to the

classical (1,−2, 1) stencil per dimension. (ii) One neighbor has the same size, one is finer.

(iii) Both neighbors are finer. (iv) One neighbor has the same size, one is coarser. (v) One

neighbor is finer, the other coarser. In the cases (ii) to (v), we adapt the weights and

rescale the size of the stencil such that the sum of the coefficients vanishes. We illustrate

all five occurring cases for one direction in Fig. 4.9.

Alternative approaches for extending the finite difference method (FDM) to adaptive

grids have been proposed in [193–197].

4.4 Molecular Dynamics

Multiple molecular dynamics (MD) codes using space-filling curve (SFC)-based domain

decompositions have been developed, e.g., [198, 199]. SFC-based domain decompositions

yield an efficient partitioning scheme for stencil-like algorithms [200, 201]. Adaptive

variants, however, have not consistently proven to be beneficial [202–204], because of the

more involved neighbor search. Additionally, in a short-range MD simulation, the main

portion of the computational load is generated by the number of force pairs and only

loosely coupled to the number of cells. This is fundamentally different from grid-based

methods where the computational load is directly related to the number of cells. To this

end, we abstain from extending the MD discretization to adaptive grids. Instead, we

only provide a new SFC-based domain decomposition using p4est [4, 205] using regular

grids.

4.5 COUPLING 73

61 1

1

1

1

1

20
3

8
7

8
21

8
21

8
21

8
21

1

1

1

1

22
3

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

1

1

1

1

16
3

4
5

8
15

1

1

1

1

61
9

8
27

8
27

8
27

8
27

16
27

1

1

1

1

FIGURE 4.9 Exemplary FDM stencils for solving for the electrostatic potentials for all five
occuring cases in the x-direction. Numbers denote the respective cell weights.

4.5 Coupling

For coupling particles and fluid, ESPResSo uses tri-linear interpolation between the eight

closest fluid cells and the particle. To port the coupling to adaptive grids, we have to

allow a variable number of neighbors, ranging from five (one face neighbor is same-sized,

all others are double-sized) to twenty (all face and edge neighbors are half-sized). The

generalized coupling has been implemented by Malte Brunn in his Master’s thesis [4].
We have two constraints on the scheme. First, we want the interpolation scheme to

be consistent with tri-linear interpolation in the regular case. Second, we want the scheme

to be continuous across cell boundaries. I.e., if the particle changes its position, and we

interpolate with different cells, we do not want the interpolant to be discontinuous. We

interpolate the fluid’s velocity u at the position of particle pi as weighted sum over the

74 CHAPTER 4: ADAPTIVE DISCRETIZATION OF PHYSICAL MODELS

fluid velocity of the respective set of neighbor cells {`n},

u(pi) =
|{`n}|!
∑

k=0

λk`k(4.2)

where λk is a suitable coefficient for cell `k. We calculate λk = αβγλ̂k based on directional

coefficients α,β ,γ which encode the position of the particle relative to the position of the

velocity and λ̂k which encodes the number of neighbors found in a given direction. For

four neighbors across a hanging face, we obtain λ̂k = 0.25, similarly we obtain for two

neighbors across a hanging edge λ̂k = 0.5, and for exactly one neighbor λ̂k = 1.

This reduces the accuracy from O (h2) to O (h). Given the one-dimensional formula

for linear interpolation between two points pi, p j

f (pi +λh) = (1−λ) f (pi) +λ f (p j) +O (h2),(4.3)

we obtain positions p j with variable distance h. For double-sized cells the actual distance

between interpolation points is 1.5 · h compared to same-sized cells, for half-sized cells

0.75 · h.

4.6 Summary

In this chapter, we have presented ways for extending the discretization of the physical

models described in Chap. 3 to adaptive grids.

In the following, we describe the necessary steps to successfully integrate the above

models into ESPResSo using p4est and present numerical results. This includes extending

p4est, by, e.g., implementing random-access to the nearest neighbors or virtual cells. In

ESPResSo, we replace the discretization of each relevant component, implement coupling,

and develop criteria and algorithms for dynamically adapting the grid.

75

5 Integrating ESPResSo with p4est

We have introduced different physical algorithms and their adaptive discretization

as well as algorithms for dynamically-adaptive Cartesian grids. To actually integrate

ESPResSo with p4est, i.e., to provide a p4est-based grid implementation in ESPResSo,

several steps have to be performed in both software packages. Regarding the p4est side,

we provide random-access for arbitrarily connected trees and add support for virtual cells

including routines for neighbor-search and ghost-exchange. We integrate our extended

version of p4est into ESPResSo by changing the data-storage patterns and adapting

kernels accordingly. We port each algorithmic component [1, 2, 4, 5, 205, 206] and

couple them [4, 5, 206]. To this end, we implement a way to ensure local coupling, i.e., to

align partition boundaries of different p4est grid-instances [207]. Additionally, we add

means for dynamically adapting the grid during run time [3]. Dynamic grid-adaptivity

and dynamic repartitioning are integrated with each other [205, 207].

5.1 Preparing p4est for Minimally-Invasive Integration

Our requirements on a grid-implementation are manifold. On the one hand, we define

a basic interface of grid-algorithms in Sec. 2.1.3. As we explain in Sec. 2.2, providing

efficient implementations for these algorithms in a well-designed and encapsulated form

is one of our main motivations for choosing p4est.

We obtain more requirements from the discretization schemes presented in Chap. 3

and Chap. 4. From the demand of a minimally invasive integration, i.e., leaving as much

code untouched as possible and reusing as much of the existing code as possible, we

derive the need for random-access to evaluate stencil algorithms. Additionally, our grid

has to support virtual cells due to the adaptive formulations of hydrodynamics, Sec. 4.1,

and ionic flux, Sec. 4.2.

76 CHAPTER 5: INTEGRATING ESPRESSO WITH P4EST

5.1.1 Random-Access to Direct Neighbors

For providing random-access, we enforce a 2:1 balanced grid. This significantly reduces

complexity, because for each cell, each neighbor cell must either be double-sized, same-

sized, or half-sized (in terms of side length). Otherwise, we would have to deal with a

larger recursion depth that is only bounded by the maximum discretization level supported

by the grid library.

From the alternatives for accessing neighbor data presented in Sec. 2.1.2, we choose

O (1) lookups using neighbor lists. We store neighbor information based on the local

discretization and the local ghost layer in p4est_mesh. We create p4est_mesh by

traversing the grid once using p4est_iterate and logging the respective neighbor

relations in p4est_mesh’s lookup tables. Besides storing neighbor relations, p4est_mesh
can optionally create per-level lists of cells and tag cells at the parallel boundary. The

lookup tables in p4est_mesh logically form a directed graph connecting each local cell to

all of its direct neighbors. The project started with an implementation of p4est_mesh that

did not contain neighbor relations of edges and did not fully resolve inter-tree neighbor

relations across corners.

As p4est allows combining trees in different ways, tree-local coordinate systems may

have different local orientations. Thus, it is not sufficient to only store the neighboring

cells’ index and calculate the neighboring entity that is connected to the current entity as

f j = fi xor1, e j = ei xor3, or c j = ci xor
�

2dim − 1
�

(5.1)

for faces f , edges e, and corners c according to p4est’s internal naming scheme, Fig. 2.6.

Within a tree, however, all cells are oriented equally.

Instead, we explicitly store the neighboring cell index as well as the way the neigh-

boring entity j is connected to the local entity i. Besides the entity indices over which the

respective cells are connected, we also have to encode the size of the neighboring cell and

if the cell is a local cell or a replica in the ghost layer. To encode the way that entities are

connected, p4est has a concept of “orientation”. For defining the orientation r between

cells connected over a face, we use face corners ξi, that is numbering the corner indices

c j enclosing a face fk consecutively according to p4est’s naming scheme, Fig. 2.6. In

Fig. 5.1, we illustrate the idea: Face f0 is surrounded by the corners c0, c2, c4, and c6.

The lowest corner index, c0, is assigned face corner index ξ0 and so on. The orientation

is defined as follows: Given two faces fi, f j with index i < j. Then, the orientation r

is determined by the face corner index ξk on face f j that is touching face corner ξ0 on

face fi. We illustrate the four different orientations for a “fixed” face f1 on the left and a

face f0 on the right that we rotate to have the specified orientation in Fig. 5.1. Here, the

5.1 PREPARING P4EST FOR MINIMALLY-INVASIVE INTEGRATION 77

r = 0
c0 = ξ0

c2 = ξ1

c4 = ξ2

c6 = ξ3

c1 = ξ0

c3 = ξ1

c5 = ξ2

c7 = ξ3

x
yz

r = 1
c0 = ξ0

c2 = ξ1

c4 = ξ2

c6 = ξ3

c3 = ξ1

c7 = ξ3

c1 = ξ0

c5 = ξ2

x

y

z
r = 2
c0 = ξ0

c2 = ξ1

c4 = ξ2

c6 = ξ3

c5 = ξ2

c1 = ξ0

c7 = ξ3

c3 = ξ1

x

y

z
r = 3
c0 = ξ0

c2 = ξ1

c4 = ξ2

c6 = ξ3

c7 = ξ3

c5 = ξ2

c3 = ξ1

c1 = ξ0

x
y

z

FIGURE 5.1 p4est defines relative orientation of two trees via faces. We illustrate this for the
connection of the “fixed” face f0 on the right and face f1 on the left which we
rotate to obtain the respective orientation. As 0< 1, the face corner touching ξ0
on f0, the face on the right, defines the orientation. For clarity, we color the face
corners of f0 consistent in each figure. The resulting local coordinate system of
the tree on the left is printed beside the orientation. The local coordinate system
of the right tree is fixed as in r = 0.

face corner index ξi of the fixed face f1 touching face corner ξ0 of face f0 determines the

orientation. Later we will see that we can derive a similar concept for edges.

Given the orientation r and two face indices fi and f j, Burstedde et al. present a

transformation to map a face corner index ξi of fi to the corresponding face corner index

ξ j on face f j [85] as

ξ j =Pc(Qc(Rc(fi, f j), r),ξi)≡ ξ j(ξi),(5.2)

where

Rc =





















0 1 1 0 0 1

2 0 0 1 1 0

2 0 0 1 1 0

0 2 2 0 0 1

0 2 2 0 0 1

2 0 0 2 2 0





















Qc =







1 2 5 6

0 3 4 7

0 4 3 7






Pc =





























0 1 2 3

0 2 1 3

1 0 3 2

1 3 0 2

2 0 3 1

2 3 0 1

3 1 2 0

3 2 1 0





























.

(5.3)

The rows ofPc list permutations of face corner indices corresponding to the 2×4 elements

78 CHAPTER 5: INTEGRATING ESPRESSO WITH P4EST

of the dihedral group of face orientations. The matrices Rc and Qc choose the correct

one in a non-redundant way. We use an additional lookup table to map from a tuple of

face index and face corner index to the actual corner index.

Extending this concept to edges is straight-forward, because faces are also enclosed

by the same fixed edges that are, themselves, enclosed by the same corners. We developed

this in [1]. Analog to face corners ξi, we define face edges νi and edge corners µi by

numbering edge and corner indices consecutively according to p4est’s naming scheme.

Each face edge µi is enclosed by two face corners ξi that can be written as columns

of

Ξi =

�

0 2 0 1

1 3 2 3

�

.(5.4)

Face f0 touches the four edges e4, e6, e8, and e10, thus we refer to edge e4 as face edge ν0.

Face edge ν0 touches face corners ξ0 and ξ1, ν1 touches ξ2 and ξ3. Thus, the columns of

Ξi contain for each face edge index νi the respective face corner indices ξi and ξ j. We

refer to the lower face corner index as edge corner µ0 and to the larger face corner index

as edge corner µ1. According to this definition, we can derive the face corners ξi seen

from the adjacent tree by applying Eq. (5.2) for both elements of the respective column

of Ξi,

Ξ j(k,νi) = ξ j (Ξi(k,νi)) , k = 0,1.(5.5)

Using Eq. (5.4) in reverse, the resulting two face corners can be identified one-to-one

with the face edge’s number seen from the other tree. We condense this into the form

used earlier by writing the edge transformation

ν j =Pe(Qe(Re(fi, f j), r),νi)≡ ν j(νi)(5.6)

with

Re =Rc Qe =







4 1 2 7

0 6 5 3

0 5 6 3






Pe =





























0 1 2 3

0 1 3 2

1 0 2 3

1 0 3 2

2 3 0 1

2 3 1 0

3 2 0 1

3 2 1 0





























.(5.7)

5.1 PREPARING P4EST FOR MINIMALLY-INVASIVE INTEGRATION 79

Again, Pe lists the relevant permutations of the index set {0,1,2,3} which Re and Qe

select accordingly.

For edge corners, the number of cases is smaller, because the edges either have the

same orientation, i.e., edge corner µ0 of edge ei touches edge corner µ0 of edge e j or the

edges are flipped. We can condense the transformation into

µi = µ j xor re(5.8)

where re denotes the orientation of the edge. For edges with the same orientation, we set

re = 0, for flipped edges we set re = 1.

These transformations allow finding the correct neighbor for each cell from the

list of cells returned in an entity-callback issued by p4est_iterate. These callbacks

are functions which p4est calls upon visiting the respective entity when traversing the

grid, passing status information and the respective cells touching the respective entity

as parameters. The callback function is called with a variable number of sets of cells.

In case of face neighbors, the number of sets is always two; at non-periodic domain

boundaries one set is empty and if the face is hanging one set contains four cells. All

other sets contain exactly one cell. In this case, cells in the first set are face neighbor of

the second set. For edges and corners the number of sets is generally four for edges and

eight for corners. However, in case of tree boundaries, any arbitrary number of sets is

possible. In case of edge neighbors, hanging sets contain two cells and in case of corner

neighbors there are no sets containing more than one cell. Additionally, as we illustrate

in Fig. 5.2, if we consider a cell of a specific set, not all remaining sets contain valid

edge neighbors. If we, e.g., log the neighbors of a cell from the blue set, we may only

log cells from the black set. Cells from the green and brown set are face neighbors to

cells from the blue set. When processing the other sets, we have to filter different sets

accordingly. In intra-tree cases, we can deduce the edge index of the correct neighboring

set using Eq. (5.1). This allows processing the respective sets pairwise, because cells of the

blue and the black set filter cells from the green and the brown set. For inter-tree cases,

we transform the current edge over both neighboring faces into the respective neighboring

tree. This allows determining those edge indices that are actual face neighbors. We omit

these cells while logging neighbor relations. As we do not know the number of trees

adjacent to an edge beforehand, we process each set separately. For corner neighbors, we

filter face neighbors and edge neighbors using the same concepts. In intra-tree cases we

log neighbors pair-wise while we process each set of cells separately in inter-tree cases.

Creating the aforementioned sets of cells is handled by p4est_iterate [86] and

not part of the work in this thesis. During this thesis, we have extended p4est_mesh to

80 CHAPTER 5: INTEGRATING ESPRESSO WITH P4EST

FIGURE 5.2 Top view on the sets of cells passed as parameter when entering an edge callback
of p4est_iterate. We process all four sets in this call, thus, we loop over the
sets and log cells of those sets that are not face neighbors. If we, e.g., process the
blue set, we log cells contained in the black set and omit cells contained in the
green and brown sets.

include edges and to correctly filter edge neighbors for inter-tree corner neighbors. To

this end, we developed a storage-scheme and an encoding scheme similar to faces and

corners. For inter-tree edge and corner neighbors, we use the same compressed sparse row

(CSR)-like storage scheme as in p4est_ghost. Analog to the existing implementation

for faces and corners, we encode size, orientation, and neighboring entity within one

integer value. To indicate that a cell is part of the ghost layer, we add the number of

local cells to the cell’s ghost index, i.e., if there are eleven local cells on a domain, we

assign them the cell index 0, . . . , 10 and the first ghost cell is assigned cell index 11.

We have developed a neighbor-lookup function to provide the user with an easy-to-use

interface that provides a uniform way for querying face, edge, and corner neighbors. This

function encapsulates the internal storage scheme of p4est_mesh which uses separate

arrays to store information about face, edge, and corner neighbors. It fetches data from

the p4est_mesh data-structure and appends it into a set of user-defined arrays.

5.1.2 Integration of Virtual Cells

Realization in p4est. We realize virtual cells in a separate, new component in p4est
which we call p4est_virtual. As p4est stores only leaf cells instead of the full tree

structure, it does not store overlapping cells. Integrating virtual cells requires actually

extending p4est. However, we do not want to abandon the leaf-only concept. We can

5.1 PREPARING P4EST FOR MINIMALLY-INVASIVE INTEGRATION 81

integrate virtual cells in two fundamentally different ways. Either we store virtual cells

explicitly by refining each cell at a refinement boundary and virtually add one real cell, or

we keep the real cell in p4est and separately add the virtual child cells. We choose the

latter solution, because it implies that each p4est cell is an actual grid cell. This point

seems trivial, however, its implications are fundamentally important. Storing only real

cells in p4est means that we can reuse all internal algorithms as they are. Otherwise,

we would have to add conditionals to each internal algorithm — such as refinement,

coarsening, 2:1 balancing, partitioning, creating the ghost layer or the lookup-tables for

random access — to treat virtual cells in such a way that we recover the behavior of

real cells. Thus, we minimize the risk of interfering with p4est’s efficiency and scaling

behavior and reduce the complexity of the task at hand. With this in mind, we choose to

integrate virtual cells as light-weight as possible. Our implementation of p4est_virtual
is designed to extend p4est_mesh using the same design principles.

We tag each local and ghost cell hosting virtual cells. Thus, virtual cells do only exist

in the payload data and as a tag, i.e., we do not create actual cells in p4est. To map cells

in p4est_virtual to their data, we provide an offset, i.e., the number of cells preceding

the current real cell as well as the first virtual subcell if the current cell is at a refinement

boundary. Similar to p4est_mesh, we optionally store a per-level list of cells and an

offset per-level.

This design constraints the ways of storing data. p4est_virtual is designed to

support both layouts introduced in Sec. 2.1.2 and illustrated in Fig. 2.4. We allow storing

data in a plain array where data of virtual cells are inserted in the array in Morton-order

after the parent cell. Additionally, we support storing data in per-level Morton order.

Here, virtual cells are inserted according to their parent’s Morton index in separate lists

according to the cell’s refinement level. We illustrate both data schemes for an exemplary

grid in Fig. 5.3 and the information that allows retrieving the data associated with the

respective cell. As we use multi-variate time-stepping to discretize the electrokinetic

equations introduced in Sec. 3.2, we choose to use the per-level data layout.

In both cases we have to derive the offset of the current cell to retrieve its associated

data. For the plain array, we calculate the offset from the cell id and the last cell hosting

virtual cells, i.e., the last flag that is not set to ‘-1’. For the per-level storage scheme, we

directly use the offsets in real and virtual data structures in Fig. 5.3. These values index

into the level arrays by yielding the number of cells preceding the current real or the first

virtual cell on their respective level.

Following the results of our analysis in Sec. 4.1.3, we omit communication for

positioning virtual cells in the ghost layer. As each process knows the full neighborhood

for each of its cells, we can also locally derive for each ghost replica if the respective

82 CHAPTER 5: INTEGRATING ESPRESSO WITH P4EST

0
1 2

3 4

5 6

plain 0 0v0 0v1 0v2 0v3 1 2 3 4 5 5v0 5v1 5v2 5v3 6 6v0 6v1 6v2 6v3

per-level
level l1 0 5 6
level l2 0v0 0v1 0v2 0v3 1 2 3 4 5v0 5v1 5v2 5v3 6v0 6v1 6v2 6v3

virtual flags 0 -1 -1 -1 -1 1 2
offset level real 0 4 5 6 7 1 2

offset level virtual 0 -1 -1 -1 -1 8 12

FIGURE 5.3 We use the above grid to illustrate the supported data-layouts for real and virtual
cells, plain and per-level. Additionally, we show the available information in
p4est_virtual. For real cells without virtual cells, we set the virtual flag to ‘-1’.
For the plain array, we obtain the offset from the cell id and the flag or the last
flag that differs from ‘-1’. In case of the per-level storage scheme, we use the offset
arrays. These values index into the level arrays and indicate the number of cells
preceding the real or the first virtual cell on their respective level.

processor will place virtual cells inside this replica and adapt the local communication

rules accordingly. In Sec. 4.1.3 we show that information from virtual cells in ghost

replicas induced by a different partition is not required for streaming correctly.

In the following, we explain the way we detect refinement boundaries, how we build

the ghost layer and include virtual cells in the data-exchange, as well as the necessary

extensions for providing random-access including virtual cells.

Detecting Refinement Boundaries and Generating Virtual Cells. As we have decided

to create p4est_virtual as a separate component, we need an additional grid traversal

for embedding virtual cells at refinement boundaries. We detect refinement boundaries by

traversing each cell and checking the size of its neighbors. If there is any smaller neighbor,

we embed virtual cells. We use the information in p4est_mesh to check the size of the

neighboring cells which restricts us to 2:1 balanced grids.

5.1 PREPARING P4EST FOR MINIMALLY-INVASIVE INTEGRATION 83

If the input-data in p4est_mesh includes tags for the parallel boundary we can

optimize this process for inner cells. Using dynamic programming and early loop-exits,

we can minimize the number of necessary neighbor-queries. We stop querying neighbors

as soon as we know that the current cell hosts virtual cells, and we “inject” virtual cells

into all double-sized neighbors we find. Otherwise, i.e., if we either do not know if a cell

is adjacent to a parallel boundary or if a cell is actually adjacent to a parallel boundary, we

have to query all neighbors. As explained in Sec. 5.1.1, ghost cells are no valid starting

points for neighbor queries in p4est_mesh. Thus, we have to query all neighbors, because

they could be larger ghost cells. In this case, these ghost cells must embed virtual cells on

this rank.

This leaves calculating offset values. For the plain array, we obtain the offset o of cell

ci from

oreal(ci) = ncell, real + 2dimncell, virtual(5.9)

where n is the total number of real and virtual cells with cell id ck < ci. If the cell hosts

virtual cells, their payload is stored directly after the parent’s cell, thus, the offset of its

first virtual subcell is o′ = o + 1. We populate the level offset values by counting the

number of real and virtual cells on each level. Then, we obtain the offset o for the real

cell ci with level ` as

oreal(ci) = ncell, real(`) + 2dimncell, virtual(`),(5.10)

where n(`) is the number of real and virtual cells on level ` with cell id ck < ci. For

evaluating the offset of the first virtual cell, we use Eq. (5.10) with level `′ = `+ 1.

Ghost-Exchange Including Virtual Cells. To perform simulations in parallel, p4est
provides functions in p4est_ghost that allow exchanging data. These work fine, allow

communication hiding, i.e., overlapping communication and computation, and can handle

different scenarios such as only transferring quadrants of a specific level. However, if

a process boundary coincides with a refinement boundary, there are virtual cell data to

be potentially sent and received. Moreover, Fig. 5.3 illustrates that we have offsets in

the data induced by virtual cells. To address both issues, we extend p4est_ghost in a

component we call p4est_virtual_ghost which allows directly integrating virtual cells

in the ghost-exchange. Compared to Fig. 2.7, we add an array that indicates for each

mirror cell, if the respective receiving process expects virtual cells. This is the case if that

process places virtual cells in the respective cell. As explained above, this happens if and

only if the current cell has neighbors with a higher refinement level that are local cells on

84 CHAPTER 5: INTEGRATING ESPRESSO WITH P4EST

the respective receiving process. We illustrate our extension to p4est_ghost in Fig. 5.4.

We support both storage schemes visualized in Fig. 5.3 and allow communication

hiding using the same mechanisms as p4est_ghost. Independent of the chosen storage

scheme, we iterate over the local mirrors and copy their payload in separate send buffers.

We receive the data directly in the respective ghost data-structure, i.e., we avoid allocating

additional receive buffers and copying or moving data.

Random-Access Including Virtual Cells. The most challenging task in integrating vir-

tual cells is to integrate them into the random-access logic. For searching neighbors when

only real cells are involved, we obtain a set of cell indices and encodings from the neighbor

search using p4est_mesh. In intra-tree cases, the size of the set can be either one, two,

or four, while in inter-tree cases, the size of the set may be k, with k ∈ N0.

Adding virtual cells, the size of the set of cells returned from neighbor search in

intra-tree cases is always either one or zero. If it is one, the neighboring cell must have

the same size as the current cell by design. Thus, the encoding comprises the neighboring

entity and orientation, the size information is obsolete. However, cell index and encoding,

are not sufficient to uniquely identify a neighboring cell, because we could either mean

the real cell or one of its 2dim virtual subcells. Therefore, we additionally return the virtual

index of neighboring cells or ‘-1’ if we refer to the real cell.

In the following, we explain how to find neighbors including virtual cells, i.e., how

to find the three values of cell index, virtual index, and encoding. p4est_mesh contains

information about real cells. Therefore, we have no direct way for obtaining the virtual

cell index and no direct information at all when searching for neighbors of virtual cells.

In the following, we briefly describe the algorithms for searching neighbors from real and

virtual cells, respectively. In a 2:1 balanced grid, we have three times two cases, because

real and virtual cells may search for neighbors. We illustrate the six occurring cases in

Fig. 5.5.

Given a real cell, we can perform an ordinary neighbor search using p4est_mesh
and inspect the result. If we find a same-sized neighbor we pass it through and there is no

virtual cell index to be determined. We discard half-sized neighbors, because they will be

dealt with at the level of the current cell’s virtual subcells. For a double-sized neighbor,

we must find the correct virtual cell within this neighbor to obtain a same-sized neighbor.

In case of corner neighbors, the respective virtual cell is the one assigned to the current

corner in the neighboring cell. In case of faces or edges, we know the neighboring cell’s

face or edge corner index touching the current cell’s entity as well as our subcell’s index

and the respective orientation from the neighboring encoding. This is all we need for

transforming the current cell’s sub-index onto the respective face or edge, which gives the

5.1 PREPARING P4EST FOR MINIMALLY-INVASIVE INTEGRATION 85

0 1

2
3 4

5
6 7
8 9

10 11

12 13

14 15
16 17 18

19

20
21

22 23
24 25

26 27

28 29

30 31
32 33

34

35 36
37

38 39

0 1

2
3 4

5
6 7
8 9

10 11

12 0

1 2
3

4
5

6
7 8 9 10

0

1 2
3 4 5

6

7
8

9 10
11 12

13 14

0
1

2 3
4 5

6 7

8

9 10

11 12
13

14

15
16

17 0 1

2 3
4 5

6

7 8
9

10 11

0 1 2 3
4

5

6
7

8 9

cell not hosting virtual cells cell hosting virtual cells

Green processor:
ghosts 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

proc_offsets 0 9 9 18
mirrors 0 1 2 3 4 5 6 7 8 9 10 12 13 14

mirror_proc_mirrors 0 1 2 3 5 6 7 8 9 10 3 4 5 6 7 10 12 13 14
mirror_proc_offsets 0 10 10 19

mirror_proc_virtual 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1

FIGURE 5.4 We illustrate the vector mirror_proc_virtual which extends p4est_ghost in
p4est_virtual_ghost. We read the data as in mirror_proc_mirrors. High-
lighted indices are local virtual cells not mirrored in their replica. Thus, their
data are not sent during ghost exchange. The color matches the coloring of the
respective receiving process’s domain.

86 CHAPTER 5: INTEGRATING ESPRESSO WITH P4EST

FIGURE 5.5 We illustrate all three possible cases when finding a neighbor in a 2:1 balanced grid.
The search originates from the red cell and can yield same-sized, double-sized, or
half-sized neighbors. In case of a real cell (top), this size difference relates to the
actual cell searching for neighbors. For a virtual cell (bottom), the different size
relates to the parent cell. All valid neighbor relations are marked in blue.

virtual cell index.

For neighboring queries originating from a virtual cell, there are two cases which

we illustrate in Fig. 5.6: we either search for neighbors in the same host cell or outside

it. Given a virtual cell and a direction that yields a neighbor in the same host cell, we

already know the cell index and can easily derive the virtual cell index. We generate

the missing encoding from Eq. (5.1). For a virtual cell that requires searching neighbors

outside the parent cell, we always perform an indirect neighbor search, i.e., we first search

the neighbor of the real host of the virtual cell and then derive the respective same-sized

neighbor of the virtual cell if that neighbor exists. We adapt the direction of the neighbor

search from the real host where necessary. We illustrate the different cases in Fig. 5.6 for

an exemplary virtual cell that has neighbors inside its parent cell as well as outside its

parent cell.

The size information we obtain in the encoding relates to the parent cell, i.e., a

same-sized neighbor actually is a double-sized neighbor from the virtual cell’s point of

view. We do not store this information into another set of lookup tables. Instead, we

re-generate the information about the vicinity of the current cell in each neighbor query.

If we obtain a same-sized cell with respect to the parent cell, it must host virtual cells

to contain a neighbor relation. In case it does, we transform the current virtual index

across the respective entity to obtain the virtual cell index of the neighbor cell. Otherwise,

we discard the neighbor relation. We also discard double-sized neighbors w.r.t. the parent

cell, as the host cell interacts with one of the double-sized neighbor’s virtual subcells. For

5.1 PREPARING P4EST FOR MINIMALLY-INVASIVE INTEGRATION 87

FIGURE 5.6 Illustration of different cases in neighbor search for an exemplary virtual cell.
Green entities find their neighbors within the parent cell. Blue entities retain their
search direction. For red entities, we change the search direction for the neighbor
search originating from the host cell to a face, and for brown entities, we change
the search direction to an edge. According to our definition from Sec. 2.1.1, red
entities are face-hanging entities and brown entities are edge-hanging entities.

half-sized neighbors, we perform the same transformation that we used to find the virtual

cell index of a real cell’s neighbor to find the correct index in the list of hanging cells.

Summing up, in our case of a 2:1 balanced grid, we return the neighbors as stated in

Tab. 5.1.

Facilitating Grid-Traversals Including Virtual Cells. For multi-variate time-stepping

we have to traverse cells of a specific level. This can be done in two ways: Either we

traverse the full grid and skip all cells with a different level than the currently active level,

or we specifically only traverse those cells that have the desired refinement level.

We want to use the latter option and avoid touching all cells in each grid traversal.

To encapsulate the complexity of finding the next cell when traversing different kinds of

cells of a given level, we implement an iterator based on the information in p4est_mesh
and p4est_virtual that exclusively traverses the cells of a given level. We support three

criteria for selecting cells when creating the iterator, that is local or ghost cells, real cells

or virtual cells as well as cells at the parallel boundary or inner cells. We can also traverse

cells matching both criteria. Additionally, we integrate helper functions that facilitate

88 CHAPTER 5: INTEGRATING ESPRESSO WITH P4EST

TABLE 5.1 Post-processing to return a same-sized neighbor for a neighbor search originating
from a real or virtual cell given the neighbor or neighbors found using the neighbor
search based on p4est_mesh.

Same-sized neighbor Double-sized neighbor Half-sized neighbors

Real cell Return neighbor Find virtual cell Discard neighbors
Virtual cell Find virtual cell Discard neighbor Find correct cell

searching neighbors and calculating offsets for retrieving data.

This concludes our extensions to p4est. In the next chapter, we describe how to

integrate our extended version of p4est into an existing application using the example of

the ESPResSo simulation software.

5.2 Changing the Discretization in ESPResSo

The integration of our extended version of p4est with ESPResSo comprises several

tasks according to our three-step integration procedure introduced in Sec. 1.3. First,

we adapt the data-layout to the space-filling curve (SFC) and consider these changes

in the implementations of numerical kernels. Then, we integrate these subcomponents

which each other. To this end, we develop a common partitioning such that the data

assigned to a given position in the simulation domain of all interaction partners are

always located on the same process. We also develop a mapping between two p4est
instances covering the same domain with a different discretization. Additionally, we

create a model for dynamic grid adaptivity. Both previous points are closely related to

dynamic load-balancing techniques.

5.2.1 Data-Layout and Adjusting Kernels

Changing the discretization from regular to dynamically-adaptive grids involves four

crucial tasks. (i) We must change the data-layout such that it follows the SFC to make

use of the locality imposed by the SFC for accessing data. (ii) This enforces a different

grid-traversal where we no longer loop lexicographically over the data but linearly over

a section of the SFC. (iii) This changes the way of accessing data of neighboring cells.

(iv) For parallel simulations, we have to either change or extend the communication

pattern such that it can fulfill the requirements of tree-structured grids. As the partitions

are no longer cuboids and may consist of two separate parts when using certain curves,

we can no longer rely on synchronous communication rounds.

During this thesis, we have ported the discretization of four logical components in

ESPResSo from a regular Cartesian grid to using a dynamically-adaptive tree-structured

5.2 CHANGING THE DISCRETIZATION IN ESPRESSO 89

grid based on p4est. We began by porting the implementation of the lattice-Boltzmann

method (LBM) [1–3]. We use this implementation to verify that our extensions to p4est
work beyond synthetic scenarios.

Then, Brunn ported the Linked-Cell method of ESPResSo’s molecular dynamics (MD)

implementation during his Master’s thesis [4]. We introduce asynchronous communica-

tion and let p4est populate ESPResSo’s internal data structures instead of exchanging

kernels [205]. As already explained in Sec. 4.4, we abstain from extending the MD

algorithm to adaptive grids.

Tischler ported the algorithms missing for solving the electrokinetic (EK) equations,

that is the algorithm for the ionic flux and the electrostatic potential, during his Mas-

ter’s thesis [5]. We decided to use the same spatial discretization for the ionic flux,

hydrodynamics, and the electrostatic potential.

For the grid-based algorithms (LBM, ionic flux, and electrostatic potential), we replace

the lexicographically ordered data-structure by a per-level data in Morton-order including

the payload of virtual cells. Additionally, we substitute loops over all coordinates with our

iterator based on p4est_mesh (Sec. 5.1.2) and use p4est-based neighbor search instead

of index calculations. Moreover, we replace ESPResSo’s synchronous communication with

the implementation we developed in p4est_virtual. Where possible, we adapt the

kernels to match the new ways for accessing data. In case of the electrostatic potential,

we implement the new algorithm (successive over-relaxation (SOR) instead of discrete

Fourier transform (DFT), Sec. 4.3).

In the MD implementation, we do not touch the kernels, because the existing im-

plementation is sufficiently generic to deal with non-cubic domain decompositions and

cells ordered along a SFC. Here, it is sufficient to populate the algorithm’s data structures

using information from p4est and add a flag for asynchronous communication in the

data exchange.

Summing up, we have two different p4est instances: One regular grid for the MD and

one potentially adaptive grid for the three algorithmic components of the EK equations.

5.2.2 Coupling Physical Subsystems

To couple the different physical subsystems, we need a mapping between grids, i.e., we

have to find cells that cover a given position x ∈ R3. Using the same discretization for

ionic flux, hydrodynamics, and the electrostatic potential facilitates coupling significantly,

because between these components partition boundaries, cell indices, and neighbors

match by design. This leaves the coupling between particles and fluid.

90 CHAPTER 5: INTEGRATING ESPRESSO WITH P4EST

ALGORITHM 5.1 Algorithm for finding a cell in a given p4est instance that contains a given
position. We calculate the coordinate of a cell in the domain in tree coordinates
(where each tree has a normalized side length of 1) and derive a virtual
Morton index for this cell. We then binary search for this index in the other
grid.

1 function encode_position(pos)
2 for all p ∈ pos do Loop over given coordinates
3 c← p ∗ 2`max Calculate lexicographic cell index
4 end for
5 return encode_morton(c) Calculate Morton-index for given cell index
6 end function

7 function pos_to_cell(p4est, pos) pos in p4est coordinates
8 pos_idx← encode_position(pos)
9 cell_idx← binary_search(0, ncells, pos_idx) From cell’s coordinate and level: derive

overlap with virtual cell
10 return cell_idx
11 end function

Mapping between different discretizations. To couple between differently discretized

p4est instances, we need a mapping between both discretizations. In other words, we

have a cell containing a given position x ∈ R3 in p4est instance t1, and we search the

cell that contains that position in p4est instance t2. To map between the discretizations

of LBM and MD, both p4est instances have the same macrostructure, i.e., the different

trees in the forest of octrees are arranged in the same way. This means, both instances

use the same p4est_connectivity structure which describes the macrostructure of

the grid. This implies that cells with the level ` have the same size in both grids. To

generate a search space, we overlap the domain with a virtual regular single-tree grid

that fully contains the entire simulation domain. We choose the mesh width such that

finest level cells in the respective grid are equal to a single cell in the virtual regular grid.

This restricts our simulation setup to “brick-like” scenarios where all octrees must have

the same local orientation. We illustrate the idea in Fig. 5.7. We can now use Alg. 5.1 for

mapping between different instances using the cell’s coordinate. The virtual grid provides

the virtual cell index of the position we want to localize in the second p4est instance.

We search for this position in the second grid using binary search. This search yields the

cell in the second instance covering the virtual cell’s area which we are looking for.

For locating the blue dot in Fig. 5.7, we obtain virtual cell index 29 which we binary

search in the adaptive grid. To this end, we calculate the virtual index of the front lower

left corner of the cell. To correctly implement binary search with variable cell sizes in an

adaptive grid, we must also consider the current cell’s level, because coarser cells cover

5.2 CHANGING THE DISCRETIZATION IN ESPRESSO 91

multiple virtual cells. We obtain the virtual index of the next cell by

i(cnext) = i(ccurrent) + 2dim ·(`max−`(ccurrent)).(5.11)

This ensures that we detect hits correctly. If we, e.g., perform a binary search for virtual

cell index 42 in the adaptive grid in Fig. 5.7, we have a grid of 17 cells and, thus, binary

search starts at cell index 8. This cell has virtual cell index 32. Using Eq. (5.11), we detect

that cell 8 is the correct cell.

Partitioning multiple p4est instances. We illustrate in Fig. 5.8 that we obtain a

volume-to-volume communication problem if we have different domain decompositions

for particles and fluid. This would require an additional binary search for each local

particle and two rounds of communication: First, we have to find the process to which

we have to send a varying number of particles, send these particles, couple them with the

fluid, and transmit the result of the interaction. This issue arises either if we omit porting

the MD implementation altogether or if we partition both grids independently. It makes

large simulations infeasible.

Thus, we develop an algorithm to align partition boundaries and come up with a

partitioning where the local cells of each process on both grids overlap perfectly. We

achieve this by constructing the finest common tree (FCT) of both grids, Alg. 5.2. Note,

that our algorithm requires aligned partition boundaries beforehand. We fulfill this initial

condition by starting with two regular grids where we transfer the partition boundaries of

the coarser grid to the finer grid. The algorithms presented in the following ensure that

this constraint holds in the remaining simulation.

We coarsen all cells in p4est instance t1, where cells in t1 are finer than those in t2

and vice versa. The algorithm traverses both p4est instances in parallel. One instance is

automatically traversed using p4est’s coarsening function, and we follow in the second

instance using a global state to save the cell index. We compare the level of the first cell

of the family of cells that can technically be coarsened in instance t1 (we traverse t1 using

p4est’s coarsening function) with the first overlapping cell in the second instance t2 that

we find. We coarsen, if the overlapping cell in t2 is coarser than our current cell in t1. As

we do not constrain the level-difference between the instances t1 and t2 and create the

FCT in a single iteration, we use recursive coarsening. In order to always find a matching

cell for the first cell, we must catch those recursive coarsening calls. We calculate the

virtual Morton index of the first cell and compare it to the one of the previous callback

call. If the index is smaller, we subtract 2dim − 1 from the iteration variable for the second

instance.

After constructing the FCT, we partition it using variable cell weights as described in

92 CHAPTER 5: INTEGRATING ESPRESSO WITH P4EST

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

16 17

18 19

20 21

22 23

24 25

26 27

28 29

30 31

0
1 2

3
4 5
6 7

8
9 10

11 12

13 14

15 16

0

15

16
19

20
23

24
27

28 29
30 31

32

47

48
51

52
55

56
59

60
63

64

127
128

143

144

159
160

175

176

191

192

255

FIGURE 5.7 Illustration for calculating the cell index and retrieving the cell containing a given
position (red or blue dot) for a potentially adaptive grid. We virtually overlap the
domain with a regular Cartesian grid spanned by a single tree. This yields for
maximally refined cells a single virtual cell index that matches the respective cell
(cell 5 in the right grid) and an overlap region of 2dim ·(`max−`) virtual cell indices
for coarser cells (e.g. cell 11 in the right grid). Thus, given we want to find the cell
index of the red dot in the right grid, we search for the cell covering the virtual
cell index 29 which is cell 5. For the regular grid on the left, our virtual grid has
the refinement level of the regular grid. Virtual indices either match a cell index
or are located outside the simulation domain. Thus, if we search in the opposite
direction and look for the cell in the left grid that contains the blue dot, we search
for the virtual cell index 7 which is cell 7.

5.2 CHANGING THE DISCRETIZATION IN ESPRESSO 93

FIGURE 5.8 We compare different domain decompositions for coupling two systems with differ-
ent discretizations. One grid is regular (right) and the other one is a tree-structured
grid with a potentially arbitrary yet 2:1 balanced adaptive refinement pattern which
may change between different integration steps (left). We see that we generally
cannot match a regular Cartesian grid decomposition with lexicographic cell order-
ing with the SFC-based domain decomposition on the left (top-right). Moreover,
we find that porting the regular grid to using a regular tree-structured grid and
an SFC-based domain decomposition in itself is not a solution if the domain de-
compositions are created independently (bottom-right). In both cases, we obtain a
volume-to-volume communication problem.

94 CHAPTER 5: INTEGRATING ESPRESSO WITH P4EST

ALGORITHM 5.2 Algorithm to construct the FCT of two p4est instances t1 and t2 based on
p4est_coarsen in p4est instance t1. Within the coarsen-callback, we find
a cell in t2 that overlaps the first cell in the family of cells that may currently
be coarsened using a depth-first postorder traversal scheme. We mark cells
in t1 for coarsening if their level is higher, i.e., they are smaller than their
counterpart in t2. As p4est_coarsen traverses one p4est instance, we use a
global state to traverse the second instance concurrently. We detect recursive
coarsening calls using virtual cell indices that we calculate using the function
virt_morton_idx and saving the virtual index of the previous call. If we
detect a recursive call, we modify the iteration variable for t2 accordingly.

1 function create_fct(t1, t2) Generate finest common tree
2 fct← p4est_copy(t1)
3 fct.user_pointer← t2 Let FCT contain both p4est instances
4 qid← 0 Global variable, stores position in t2
5 old_morton_idx← 0 Global variable, stores virtual cell index of last callback call
6 p4est_coarsen(fct, coarsen_callback) Initiate postorder traversal of grid
7 return fct
8 end function

9 function coarsen_callback(t1, tree_no, qs[]) Recursively called for families of
2dim leaf cells

10 q← qs[0]
11 t2← t1.user_pointer Extract second p4est instance
12 if virt_morton_idx(q)< old_morton_idx then Handle recursive calls
13 qid←max{0, qid− (P4EST_CHILDREN− 1)}
14 end if
15 old_morton_idx← virt_morton_idx(q)
16 repeat
17 p← t2(qid) Assign p from global variable
18 qid← qid+ 1 Proceed in t2
19 until p4est_cell_overlaps(p, q)
20 return p.level< q.level Coarsen cells if overlapping cell is coarser
21 end function

Sec. 2.1.3 [104, 208]. We calculate the partition-weight of a cell ck in the FCT wfct
i (ck) as

weighted sum over all input grids g,

wfct
i (ck) =
∑

g

ωg

∑

c

wc,g(c j),(5.12)

where wc,g(c j) is the cell weight of all cells c j in grid g that are contained in the current

FCT-cell ck and ωg is the weight of the respective grid g. Then, we transfer the partition

boundaries of the FCT to both instances.

We illustrate the full process of Alg. 5.3 in Fig. 5.9 for two input grids with an arbitrary

yet aligned domain decomposition among three processes. The common partitioning

5.2 CHANGING THE DISCRETIZATION IN ESPRESSO 95

ALGORITHM 5.3 Algorithm for common partitioning. We calculate the FCT from both inputs
grids, accumulate their weights for the FCT’s cells, and partition the FCT. We
convert this partitioning to the p4est instances t1 and t2, respectively. The
inputs of this function besides t1 and t2 are weights for their cells returned
by repart_weights and factors α1 and α2 for the linear combination of cell
weights between trees.

1 function partition_jointly(α1, t1, α2, t2)
2 fct← create_fct(t1, t2)
3 for all (s f , s1, s2) ∈ fct.trees× t1.trees× t2.trees do Calculate weights for FCT
4 for all q ∈ s f .quadrants do
5 Q1← {p ∈ s1 : p overlaps q}
6 Q2← {p ∈ s2 : p overlaps q}
7 w1←

∑

p∈Q1
repart_weights(t1, p)

8 w2←
∑

p∈Q2
repart_weights(t1, p)

9 W[q]← α1w1 +α2w2 Combined repart weight for FCT cell
10 N1[q]← |Q1| Number of cells in t1 for given FCT quad
11 N2[q]← |Q2|
12 end for
13 end for
14 P ← determine_partitions(W)
15 for all (r, P) ∈ P do Calculate the number of cells per proc. r for t1, t2
16 cells1[r]←

∑

q∈P N1[q]
17 cells2[r]←

∑

q∈P N2[q]
18 end for
19 p4est_partition_given(t1, cells1) Transfer FCT partitioning to both grids
20 p4est_partition_given(t2, cells2)
21 end function

avoids additional volume-to-volume communication at the cost of load imbalances in

both grids. In Tab. 5.2, we compare the effects of common partitioning to independent

partitioning in terms of weight per process and the resulting imbalance in weights. We

define local imbalance Ilocal as

Ilocal =

nlocal cells
∑

i=1
w(i)

W
(5.13)

the local sum of cell weights w(i) over the global average of cell weights per partition W .

Global imbalance Iglobal is defined as

Iglobal =
maxp

�

nlocal cells
∑

i=1
w(i)

�

W
(5.14)

96 CHAPTER 5: INTEGRATING ESPRESSO WITH P4EST

TABLE 5.2 Examplary evaluation of load imbalances in local components induced by the com-
mon partitioning for the grids shown in Fig. 5.9. Given the uniform cell and grid
weights as well as the resulting partitions from Fig. 5.9, we show the sum of local
weights W as well as the local and global load imbalance. We show values for both
grids and the FCT for independent and aligned partitioning. In the given scenario,
our maximum load imbalance is bound by 1.2.

Independent Partitioning Aligned Partitioning
Proc. Adaptive Regular FCT Adaptive Regular

W Imb. W Imb. W Imb. W Imb. W Imb.

Red 13 0.975 21 0.984 31 0.894 11 0.825 20 0.938
Green 13 0.975 21 0.984 35 1.010 16 1.200 19 0.891
Blue 14 1.050 22 1.031 38 1.096 13 0.975 25 1.172

Total 40 1.050 64 1.031 104 1.096 40 1.200 64 1.172

the maximum local sum of cell weights over the global average of cell weights per

partition. Thus, imbalances below one indicate underloaded processes, imbalances above

one indicate overloaded processes. For an imbalance value of one, the load is perfectly

balanced.

Alg. 5.2 and Alg. 5.3 can be run in parallel with little communication for accumulating

weights using global reduction and partial reduction for distributing cells to their new

owners. p4est instances must initially have aligned partition boundaries. Thus, we

align partitions once during startup when the grids of MD and LBM are both regular.

We partition the finer grid according to the coarser one and ensure that their partition

boundaries do not diverge from this point in time [207] by calling Alg. 5.3 for any

repartitioning operation afterwards, e.g., after dynamically altering the adaptive grid.

After partitioning, we have to prepare the next integration step. We have to trans-

fer the payload to their respective new owners and update metadata, i.e. regenerate

p4est_ghost, p4est_mesh, p4est_virtual, and p4est_virtual_ghost. To trans-

fer payload, we compare the partition tables before and after repartitioning. In the same

way we overlap communication and computation in the main time-stepping loop, we allow

updating p4est metadata while migrating the payload via p4est_transfer_fixed.

5.2.3 Dynamic Adaptivity in ESPResSo

We integrate the previously described partitioning scheme into our implementation of

dynamic grid adaptivity. Our model is based on [209]. Implementing dynamic grid

adaptivity, our central focus is on minimizing the memory-footprint, i.e., allocating new

structures at the latest and freeing old structures as soon as possible.

To adapt the grid, we use multiple grid traversals and restrict ourselves to non-

5.2 CHANGING THE DISCRETIZATION IN ESPRESSO 97

1 1

1
1 1

1
1 1
1 1

1 1

1 1

1 1
1 1

1
1

1
1

1 1
1 1

1 1

1 1

1 1
1 1

1

1 1
1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 + 4 1 + 4

1 + 4
1 + 1 1 + 1

1 + 1 4 + 1

1 + 4 1 + 4

1 + 1 1 + 1

4 + 1 1 + 1
1 + 4

1 + 4
1 + 1 4 + 1

1 + 1 1 + 1

1 + 4 1 + 4

4 + 1 1 + 1

1 + 1 1 + 1
1 + 4

1 + 4 1 + 4

1 1

1
1 1

1
1 1
1 1

1 1

1 1

1 1
1 1

1
1

1
1

1 1
1 1

1 1

1 1

1 1
1 1

1

1 1
1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

FIGURE 5.9 Example for the generation of a common partitioning based on the FCT of two
grids. Top: Input grids with uniform cell weights and different discretization.
Center: FCT of both grids that we partition according to its accumulated cell
weight among the processes. Bottom: Transfer domain decomposition from FCT
to both input grids.

98 CHAPTER 5: INTEGRATING ESPRESSO WITH P4EST

ALGORITHM 5.4 Map data between grids for non-recursive grid-change, [210]. We refer to
the data of a cell c as data(c). We transfer the p4est instances before and
after adapting the grid in parallel. By comparing the respective refinement
levels we know which flag was set, and we can map the data accordingly.

1 function map_data(p4est_old, p4est_adapted, local_data, mapped_data)
2 qid← 0
3 for all c ∈ local_cells(p4est_adapted) do
4 c_ref ← p4est_old(qid)
5 if c.level≡ c_ref .level then Cell was not changed
6 mapped_data(c)← local_data
7 qid← qid+ 1
8 else if c.level+ 1≡ c_ref .level then Cell was coarsened
9 interpolate(local_data, qid, mapped_data(c))

10 qid← qid+ 2dim

11 else if c.level− 1≡ c_ref .level then Cell was refined
12 restrict(local_data, qid, mapped_data(c))
13 qid← qid+ 1
14 else
15 raise(SIGABRT) Abort, must not happen
16 end if
17 end for
18 end function

recursive adaptivity. This means that cells may be either refined by one level, kept, or

coarsened by one level. In our implementation, we prioritize refine over keep over coarsen.

To take the decision, arbitrary cell-local functions might be implemented. We provide

several pre-defined functions, based on information in different components. We allow

refinement around obstacle cells and in (potentially moving) cuboids. Additionally, we

refine the region around particles, i.e., cells taking part in the coupling between particles

and fluid. Moreover, we provide several physical criteria. We can set threshold values for

the fluid velocity u, where we use the Euclidean norm, and the fluid’s vorticity ζ, where

we use the Chebyshev distance or maximum metric. In addition, there are threshold

values for the gradient of densities ∇c and the gradient of the electrostatic potential ∇Φ.

Before actually changing the grid, we copy the p4est instance. Then, we locally

refine, coarsen, and balance the grid on each process. By traversing both p4est instances,

the original p4est and the adapted, simultaneously, we can map data from the old to the

modified grid, see Alg. 5.4. This algorithm was introduced in the mangll-software, [210].
By design, there are three cases to consider for each cell, because it was either refined, kept,

or coarsened. We choose to store the mapped data in a plain-array, because it facilitates

data-transfer after repartitioning. After mapping data, we can free the data-structure of

the local payload as well as all metadata for the old discretization.

5.2 CHANGING THE DISCRETIZATION IN ESPRESSO 99

case 1
case 2
case 3

case 4
case 5
case 6
case 7

FIGURE 5.10 Cases for payload overlap before and after repartitioning. The process originally
holding the red chunk along the SFC, may be assigned any of the blue chunks.
Depending on which chunk it obtains, it has to exchange a certain number of
cells with different processes.

We repartition the grid among processors according to Alg. 5.3 and transfer the

payload accordingly to its new owner. To this end, we partition a copy of the adapted

p4est instance. Thus, we keep the original partition table for sending and receiving

data afterwards. Several cases may occur regarding the part of the SFC assigned to the

current process before and after partitioning. (i) Former payload fully precedes new

payload in SFC ordering. (ii) Former payload precedes new payload partially with partial

or complete overlap over former payload. (iii) Former payload starts or ends at the same

point as remote data with partial or full overlap. (iv) Former payload succeeds remote

data with partial overlap. (v) Former payload succeeds remote data without any overlap.

(vi) Former payload is a subset of the new payload. (vii) Former payload is a superset of

the new payload. We illustrate these cases in Fig. 5.10.

Given the old and the new partition table, we can calculate which cells to send from

process i to process j using Eq. (5.15) and which cells to receive on process i from process

j using Eq. (5.16) [85, 211].

ni
cells send, j =max(0,min(c i

maxold, c j
maxnew)−max(c i

minold, c j
minnew))(5.15)

ni
cells recv, j =max(0,min(c j

maxold, c i
maxnew)−max(c j

minold, c i
minnew))(5.16)

We denote the minimum and maximum cell index on rank k by ck
min and ck

max. We transfer

data from a plain array in Morton-ordering, which we directly use as send-buffer, into

a dedicated receive buffer. By design, the data within the receive-buffer are in Morton-

ordering and all local cell data that remains on the respective rank are moved to the

respective index within the receive-buffer.

100 CHAPTER 5: INTEGRATING ESPRESSO WITH P4EST

We free the adapted yet not partitioned p4est instance and initiate the actual

data-transfer. While the processes exchange messages, we create new instances of

p4est_ghost, p4est_mesh, p4est_virtual, and p4est_virtual_ghost. As build-

ing p4est_ghost also involves communication, we must tag messages accordingly. Gener-

ally, tagging messages is optional, however, it becomes mandatory to distinguish messages

if we exchange multiple messages of the same data-type between the same sender and

receiver. We wait for the data-transfer to complete and free our send-buffers. Before

the next integration step can begin, we re-create per-level data-structures by traversing

the receive-buffer and move the data to the respective position in the per-level array.

Populating the data of ghost-replicas completes Alg. 5.5.

5.3 Summary

In this chapter we have illustrated all necessary steps for integrating p4est with ESPResSo.

We have extended p4est to facilitate random-access and added support for virtual cells.

Here, we emphasize that we have not touched existing internal algorithms and, thus, not

impaired their scaling behavior. In ESPResSo, we have ported four physical subsystems to

a p4est-based discretization. To ensure local coupling, we present an algorithm to align

partition boundaries of multiple distinct p4est instances having the same macrostructure

using the finest common tree (FCT). Moreover, we have developed a concept for dynamic

spatial adaptivity and integrated it with a dynamic load balancing mechanism. In the

following chapter, we prove that our implementations are physically correct and analyze

their scaling behavior.

5.3 SUMMARY 101

ALGORITHM 5.5 Algorithm to dynamically adapt the grid at run time. We collect refine-
ment markers using arbitrary user-defined criteria per cell, where refine is
stronger than keep which is stronger than coarsen. Then, we adapt a copy
of the grid according to the markers previously collected and re-establish
2:1 balancing. We traverse the original grid and the adapted grid in parallel
and map the numerical payload to the new discretization. Here, we use the
plain linear storage scheme. Now, we can discard all remaining metadata
and partition a copy of the adapted grid. We compare the partition tables to
create MPI requests for sending the payload. These are processed while we
create updated metadata for the grid. Finally, we store data in the per-level
data structure.

1 function adapt_grid
2 ghost_data←⊥ Discard ghost data
3 p4est_copy← p4est Save original discretization for transferring data
4 collect_markers(flags)
5 p4est_refine(p4est_copy)
6 p4est_coarsen(p4est_copy)
7 p4est_balance(p4est_copy)
8 map_data(p4est, p4est_copy, local_data, mapped_data) Map data to new

discretization, Alg. 5.4
9 p4est_ghost, p4est_mesh, p4est_virtual, p4est_virtual_ghost, local_data←⊥ Reset

level-wise payload, and metadata
10 p4est← p4est_copy Backup old partition table
11 partition_jointly(1.0, p4est_copy, 1.0, p4est_md) Repartition, Alg. 5.3, fixed

uniform grid weights
12 status ← p4est_transfer_fixed_begin(p4est, p4est_copy, mapped_data, recv_buffer)
 Initiate transfer of payload

13 p4est← p4est_copy
14 rebuild_p4est_meta_data(p4est) Rebuild p4est_ghost, p4est_mesh, . . .
15 p4est_transfer_fixed_end(status) End pending data transfer
16 unflatten_data(local_data, recv_buffer) Restore per-level data-structure
17 p4est_ghost_exchange_data(local_data, recv_buffer) Replicate payload to

neighboring processes
18 end function

103

6 Computational Results

In this chapter we test our implementation. First, we verify its physical correctness

by simulating scenarios with well-known behavior and analytical solution. Then, we

investigate the run time performance and scaling behavior of the lattice-Boltzmann meth-

od (LBM) and the short-range molecular dynamics (MD) implementation as well as of

the coupling between them. Finally, we consider a nanopore setup similar to [6, 26].

6.1 Testing the Implementation

We test the physical correctness of our implementation using publicly available ESPResSo

system test cases1 and add a simple molecular dynamics (MD) test for energy conservation.

Couette and a Poiseuille flow serve as test cases for our lattice-Boltzmann method (LBM)

implementation, a microcanonical ensemble (NVE ensemble with constant number of

particles, constant volume, and constant energy) to verify energy conservation of our MD

implementation, and an electro-osmotic flow for the continuous electrokinetic model.

Similar tests using this implementation were already performed in [1, 2] for the LBM,

in [4, 205] for MD, and in [5] for the full electrokinetic system.

6.1.1 Lattice-Boltzmann Method

We verify our LBM implementation by simulating a Couette flow and a Poiseuille flow. For

these simple scenarios, the analytical solution is well-known and understood. We choose

a cubical domain with side length 8 with periodic boundaries in x and y directions and

walls positioned at z = 0.5 and z = 7.5, see Fig. 6.1. We discretize the domain by a single

octree.

1https://github.com/espressomd/espresso/tree/python/testsuite/python

https://github.com/espressomd/espresso/tree/python/testsuite/python

104 CHAPTER 6: COMPUTATIONAL RESULTS

FIGURE 6.1 Verification scenario for our implementation of the LBM on adaptive grids. We
show a cut through the 3d geometry in the x-z-plane. Walls enclose the domain in
z direction, in x and y directions we use periodic boundaries.

In a Couette flow, we simulate a flow between two plates with no-slip boundary

conditions. The lower plate is fixed and the upper one is moving with a constant velocity.

At the upper plate, we set a velocity Dirichlet boundary condition with ũ = (0.1,0.2, 0.0)T .

We expect a linear velocity profile between both plates in x and y direction as well as for

the total velocity. We use two regular grids of level six and seven as well as two randomly

refined, statically adaptive grids. To generate the latter, we use regular grids of level four

and five, refine them twice at random locations, and re-establish 2:1 balancing afterwards.

For all grids, we see good agreement with the analytical solution, see Fig. 6.2 and Fig. 6.3.

Poiseuille flow is a flow between two static plates with no-slip boundary conditions.

Here, we drive the flow by velocity boundary conditions. We enlarge the domain by a

factor of four in x-direction to (32, 8, 8) and add walls acting as velocity Dirichlet boundary

conditions at x = 0.5 and x = 31.5 of ũ = (0.1,0.0, 0.0)T . Thus, we discretize the domain

by concatenating four octrees, Fig. 6.4

We derive the analytical solution from the volumetric flow rate Q of a Poiseuille flow

for a given channel surface A, which is given as

Q = ūA=
2
3

umaxA(6.1)

where ū and umax denote the average and maximum fluid velocity [56]. Eq. (6.1) allows

fitting a parabola through the maximum velocity value umax =
3
2 ū = 3

2 ũ at z = 4 and both

boundaries where the velocity is 0.

Using the same discretizations as in the Couette flow scenario, we again see good

6.1 TESTING THE IMPLEMENTATION 105

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

·10−2

Position

Ve
lo

ci
ty

vx vy ||v||2
vx analytic vy analytic ||v||2 analytic

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

·10−2

Position

Ve
lo

ci
ty

vx vy ||v||2
vx analytic vy analytic ||v||2 analytic

FIGURE 6.2 Validation test case for the LBM solver. We show the flow profile of a Couette
flow for the regular grids of level six (top) and level seven (bottom) with a veloc-
ity Dirichlet boundary condition of (0.1,0.2, 0.0)T plotted from (4.0,4.0,0.0) to
(4.0, 4.0, 8.0). Hatched areas indicate walls. Ticks along the bottom axis illustrate
the discretization.

106 CHAPTER 6: COMPUTATIONAL RESULTS

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

·10−2

Position

Ve
lo

ci
ty

vx vy ||v||2
vx analytic vy analytic ||v||2 analytic

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

·10−2

Position

Ve
lo

ci
ty

vx vy ||v||2
vx analytic vy analytic ||v||2 analytic

FIGURE 6.3 Validation test case for the LBM solver. We show the flow profile of a Couette
flow for statically adaptive grids with a velocity Dirichlet boundary condition of
(0.1,0.2, 0.0)T plotted from (4.0, 4.0, 0.0) to (4.0, 4.0, 8.0). Hatched areas indicate
walls. Statically adaptive grid randomly refined twice from level four (top) and
level five (bottom). We establish 2:1 balancing once after refinement. Ticks along
the bottom axis illustrate the discretization.

6.1 TESTING THE IMPLEMENTATION 107

FIGURE 6.4 Prolonged verification scenario for the velocity-driven Poiseuille flow on adaptive
grids. We show a cut through the 3d geometry in the x-z-plane. Walls (hatched
areas) enclose the domain in x and z direction, in y direction we use periodic
boundaries. Crosshatched walls serve as velocity Dirichlet boundary conditions.

agreement with the analytical solution, see Fig. 6.5 and Fig. 6.6.

6.1.2 Molecular Dynamics

To prove the correctness of our short-range MD implementation based on regular p4est
grids as a Linked-Cell structure, we consider the energy of a microcanonical ensemble of

600 particles. We model the short-range interaction by a Lennard-Jones (LJ) potential

with a cut-off radius rc = 2.5, ε = 1, and σ = 1. Initially, we distribute the particles

randomly within a cubical domain with a side length of 80 and assign in each dimension

a random velocity between 0 and 0.1. This yields a total velocity between 0 and 0.1 ·
p

3.

We obtain a regular Linked-Cell grid consisting of a single tree with a refinement level of

5.

We equilibrate the system and analyze the energy of the system for 10,000 time steps.

Fig. 6.7 shows that energy is conserved as expected.

6.1.3 Electrokinetics

We verify the electrokinetics implementation using an electro-osmotic flow. In this sce-

nario, an ionic fluid and a charged surface are subjected to an external electrical field.

The ionic fluid forms a double layer where positive ions accumulate close to a negatively

charged surface. The surface attracts positively charged ions and repulses negatively

charged ions. From the electric field and this distribution of ions, a net motion of ions in

the direction of the electric field is induced. This leads to a flow in the direction of the

electric field [29]. While complex phenomena may occur in complex geometries [212],

108 CHAPTER 6: COMPUTATIONAL RESULTS

0 1 2 3 4 5 6 7 8
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

Position

Ve
lo

ci
ty

||v||2 ||v||2 analytic

0 1 2 3 4 5 6 7 8
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

Position

Ve
lo

ci
ty

||v||2 ||v||2 analytic

FIGURE 6.5 Validation test case for the LBM solver. We show the flow profile of a Poiseuille
flow for regular grids of level six (top) and seven (bottom) with a velocity
Dirichlet boundary condition of (0.1,0.0, 0.0)T plotted from (16.0,4.0,0.0) to
(16.0, 4.0, 8.0). Hatched areas indicate walls. Ticks along the bottom axis illustrate
the discretization.

6.1 TESTING THE IMPLEMENTATION 109

0 1 2 3 4 5 6 7 8
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

Position

Ve
lo

ci
ty

||v||2 ||v||2 analytic

0 1 2 3 4 5 6 7 8
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

Position

Ve
lo

ci
ty

||v||2 ||v||2 analytic

FIGURE 6.6 Validation test case for the LBM solver. We show the flow profile of a Poiseuille
flow for statically adaptive grids with a velocity Dirichlet boundary condition
of (0.1,0.0, 0.0)T plotted from (16.0,4.0,0.0) to (16.0,4.0,8.0). Hatched areas
indicate walls. Top: statically adaptive grid randomly refined twice from level
four. Bottom: statically adaptive grid randomly refined twice from level five. We
establish 2:1 balancing once after refinement. Ticks along the bottom axis illustrate
the discretization.

110 CHAPTER 6: COMPUTATIONAL RESULTS

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000
−100

−80

−60

−40

−20

0

20

40

60

80

100

Time step

En
er

gy

Kinetic energy Potential energy Total energy

FIGURE 6.7 Energy of an equilibrated microcanonical ensemble of 600 particles over 10,000
time steps.

analytical solutions can be derived for simple geometries [213]. In case of a simplistic

slit-pore geometry, where we have two infinite parallel plates, we can derive the analytical

solution for both flow profile and ionic density normal to the plates. The solution for the

ionic density profile c(x) is given as

c(x) =
ξ2

2 ·π · `B · cos2(ξ · x)
(6.2)

where `B denotes the Bjerrum length and ξ is a constant based on the geometric and

physical properties of the system. Relevant parameters for ξ are the distance between

both plates d, the Bjerrum length `B, the valency z, and the surface charge density σ. We

calculate ξ using bisection. To this end, we search the zero point of

g(ξ) = ξ · tan
�

ξ · d
2

�

+ 2 ·π · `B ·
σ

z
(6.3)

at three points. Initially, we use {ξa = 0,ξb = k,ξc = 2k} with step size k = π
2·d . Then,

we search the zero value in the interval (ξa,ξc) using Alg. 6.1. The algorithm works if

and only if there is exactly one solution for g(x) = 0 in the interval. Additionally, g(x̃)
and g(x ′) must have opposite sign with ξa < x̃ < x and x < x ′ < ξc. For the system at

hand, we have ξ' 0.0515.

6.1 TESTING THE IMPLEMENTATION 111

ALGORITHM 6.1 Bisection scheme for evaluating the system constant ξ. We search for the
zero value of g in the interval (0, π2·d). The algorithm works if and only if
there is exactly one solution for g(x) = 0. Additionally, g(x̃) and g(x ′) must
have opposite sign with 0< x̃ < x and x < x ′ < π

2·d .

1 function bisect(min_step, d)
2 step← π

2·d d: distance between plates
3 pa← 0
4 pb← step
5 pc← 2 · step
6 while step>min_step do
7 vala← g(pa) Evaluate Eq. (6.3) at pa, pb, and pc
8 valb← g(pb)
9 valc← g(pc)

10 step← 0.5 · step Half step size
11 if ((vala < 0 and valb < 0 and valc > 0) or (vala > 0 and valb > 0 and valc < 0))

then Zero between [pb, pc]
12 pa← pb
13 pb← pb+ step
14 else if ((vala > 0 and valb < 0 and valc < 0) or (vala < 0 and valb > 0 and valc >

0)) then Zero between [pa, pb]
15 pc← pb
16 pb← pb− step
17 else
18 raise(SIGABRT) Abort, input condition not met
19 end if
20 end while
21 end function

The solution for the fluid profile u(x) is given as

u(x) = f · log

�

cos(ξ · x)
cos
�

ξ·d
2

�

�

/(2 ·π · `B ·η ·ρ)(6.4)

where ξ is the same system constant as for the ionic density in Eq. (6.2), f denotes an

external force, η the fluid’s dynamic viscosity, and ρ the fluid’s density.

For our system we use the geometric setup shown in Fig. 6.8. We discretize the

4× 4× 60 domain with 15 octrees, each with a side-length of four, and use a maximum

refinement level of two.

We choose the physical parameters of the system as follows: We apply an external

force f = (−0.13,0, 0)T and set the surface charge density σ = 0.05. The system contains

two species, water as a neutral species with a density ρH2O = 26.15 and counterions

with a density of ρc = 0.002. We set the counterions’ valency to z = 1 and the diffusion

coefficient to D = 0.3. Moreover, we set the kinematic viscosity to η= 2.3, the friction

112 CHAPTER 6: COMPUTATIONAL RESULTS

FIGURE 6.8 Verification scenario for the electrokinetic solver. We display the geometry for the
electro-osmotic flow scenario. Hatched areas denote charged walls. We discretize
the system with 15 octrees.

coefficient of the bidirectional force-coupling to Γ = 4.3, the Bjerrum length to `B = 0.47,

and use a constant global time step ∆t = 1
7 .

We simulate the system until it is converged. To this end, we compare the velocity

and the charge density in the domain’s center, i.e., at (2, 2, 30), every 256 fine grid time

steps. We consider the system to have converged to its steady state if the accumulated

absolute difference between both values is less than 10−7.

We compare the density profile and the velocity profile of the converged simulation

to the analytical solution for a regular grid of level two in Fig. 6.9. Results for the same

scenario using an adaptive grid where we refine cells if the gradient of the density is

larger than 0.0003 and coarsen cells if for each cell of a family the gradient is smaller

than 0.0003 are visualized in Fig. 6.10.

Summing up, we have shown that we successfully ported the implementation of all

four major physical components—hydrodynamics, ionic flux, electrostatic potential, and

short-range MD—from a regular Cartesian grid to dynamically-adaptive tree-structured

grids based on the forest-of-octree approach. We have changed the discretization while

retaining the physical correctness of the implementation. In the following, we analyze

the new implementation’s run time performance and scalability.

6.2 Performance and Scalability

We test the performance and scalability of our implementation on the Tier 1 supercomputer

“Hazel Hen” at the HLRS in Stuttgart, a Cray XC40 installation consisting of 7712 nodes,

each of which is equipped with two twelve-core Intel Xeon E5-2680 processors and 128 GB

of RAM. The processors are built in Intel’s Haswell architecture. The nodes are connected

by Cray’s Aries Interconnect, and, at the time of our measurements, the system ran a

Linux kernel in version 4.4.143. Tab. 6.1 gives more details about the machine’s structure.

6.2 PERFORMANCE AND SCALABILITY 113

0 5 10 15 20 25 30 35 40 45 50 55 60
−8

−6

−4

−2

0

2

4

6

8

·10−3

Position

D
en

sit
y

c c analytic

0 5 10 15 20 25 30 35 40 45 50 55 60
0

1

2

3

4

5

6

7

8

·10−4

Position

Ve
lo

ci
ty

||v||2 ||v||2 analytic

FIGURE 6.9 Validation test case for the electrokinetic solver. We show the comparison of the
density profile (top) and the velocity profile of an electro-osmotic flow, discretized
using 15 octrees with regular grids of level two, with the analytical solution. We
plot the profile from (2.0, 2.0, 0.0) to (2.0, 2.0, 60.0). Hatched areas denote walls,
ticks along the bottom axis illustrate the discretization.

114 CHAPTER 6: COMPUTATIONAL RESULTS

0 5 10 15 20 25 30 35 40 45 50 55 60
−8

−6

−4

−2

0

2

4

6

8

·10−3

Position

D
en

sit
y

c c analytic

0 5 10 15 20 25 30 35 40 45 50 55 60
0

1

2

3

4

5

6

7

8

·10−4

Position

Ve
lo

ci
ty

||v||2 ||v||2 analytic

FIGURE 6.10 Validation test case for the electrokinetic solver. We show the comparison of the
density profile (top) and the velocity profile of an electro-osmotic flow, discretized
using an adaptive grid with maximum refinement level two, with the analytical
solution. We use a threshold value of 0.0003. Whenever the gradient of the
density exceeds the threshold, we refine the cell. We coarsen families of cells
where for each cell the gradient of the density is below the threshold. We plot the
profile from (2.0,2.0,0.0) to (2.0,2.0,60.0). Hatched areas denote walls, ticks
along the bottom axis illustrate the discretization.

6.2 PERFORMANCE AND SCALABILITY 115

TABLE 6.1 Structure of the Hazel Hen supercomputer. We abbreviate Cabinet Groups by “Cab.
Grps.”.

Cores Processors Nodes Blades Chassis Cabinets Cab. Grps.
Processors 12 1
Nodes 24 2 1
Blades 96 8 4 1
Chassis 1536 128 64 16 1
Cabinets 4608 384 192 48 3 1
Cab. Grps. 9216 768 384 96 6 2 1
Machine 185,088 15,424 7712 1928 121 41 21

6.2.1 Lattice-Boltzmann Method

To investigate the scalability of our implementation of the lattice-Boltzmann method

(LBM), we simulate a driven cavity in a cubical domain with a side length of 8. We

discretize the domain by a single octree. The geometric setup is shown in Fig. 6.11, where

hatched areas denote walls. On each wall, we apply no-slip boundary conditions. The

top wall moves with a constant velocity of (0.1,0.0, 0.0)T , the other walls are static. In

y-direction, we use periodic boundaries.

We investigate the scaling behavior for two regular grids, a statically refined grid

(maximum refinement at geometric boundaries and in the cross-hatched region indicated

in Fig. 6.11), and a dynamically adaptive grid where we move the refinement region

in y-direction by one fine grid cell every two coarse time steps. We simulate 160 fine

grid time steps, thus, in case of dynamic adaptivity, we adapt the grid ten times. We

overlap communication with computation during the LBM step and while sending data

after adapting the grid as explained in Sec. 5.2. We show the benefit in performance for

all types of grids and for both scaling experiments in Fig. 6.12. We show the performance

enhancement as
tcomm max, not hidden − tcomm max, hidden

tcomm max, not hidden
. While we see a consistent benefit

for strong scaling, in weak scaling this is only the case for regular grids. For adaptive

grids there are scenarios where we benefit and others where we do not. The massive

break down for data transfer in weak scaling may be related to concurrently creating

p4est_ghost and, thus, putting a lot of load on the network. The remaining occasions

where this occurs are outliers resulting from comparing the maximum values.

To partition the load among processors using space-filling curve (SFC)-based parti-

tioning, we assign each cell a uniform weight. Specifically, we do not take into account

if a cell is a boundary cell or a fluid cell. This reduces load imbalance, e.g., for building

metadata, specifically when building p4est_mesh and p4est_virtual, at the cost of

introducing load imbalance during the LBM step. We decided to use a simple scheme,

116 CHAPTER 6: COMPUTATIONAL RESULTS

FIGURE 6.11 Geometric setup for LBM scaling experiments (2D projections of the 3D domain).
Linearly hatched areas denote geometric boundaries, in y-direction we use peri-
odic boundaries. Each wall has no-slip boundary conditions. We set a constant
Dirichlet velocity boundary condition of (0.1,0, 0)T at the top wall. The remain-
ing walls are static. The crosshatched box within the simulation domain marks
the area of maximum refinement within the simulation domain for adaptive
simulations. We use a square base and, in case of dynamic adaptivity, we move
this region by one fine cell after two coarse time steps along the y-axis.

192 384 768 1536 3072 6144

−0.5

0

0.5

1

Number of Processes

P
er

fo
rm

an
ce

E
n
h
an

ce
m

en
t

fr
om

C
H

dyn. adapt. ghost stat. adapt. ghost
regular small ghost regular large ghost
dyn. adapt. data transfer

8 64 512 4096 32768

−20

−15

−10

−5

0

Number of Processes

P
er

fo
rm

an
ce

E
n
h

an
ce

m
en

t
fr

om
C

H

dyn. adapt. ghost stat. adapt. ghost
regular small ghost regular large ghost
dyn. adapt. data transfer

FIGURE 6.12 LBM scaling experiments: benefits of communication hiding (abbreviated as
“CH”) for strong scaling (left) and weak scaling (right) for operations involving
communication. We compare maximum run times over all ranks and time steps
for the respective operations.

6.2 PERFORMANCE AND SCALABILITY 117

192 384 768 1536 3072 6144

0

0.2

0.4

0.6

0.8

1

1.2

Number of Processes

P
ar

a
ll
el

E
ffi

ci
en

cy

dyn. adapt. stat. adapt.
regular small regular large

FIGURE 6.13 Overall parallel efficiency for strong scaling of the driven cavity scenario.

since choosing the optimal solution depends on several problem specific parameters that

may evolve during run time.

Strong Scaling

In strong scaling experiments, we keep the total load constant and vary the number of

available resources. We measure the parallel efficiency

νstrong =
pbase · tbase

p · t
(6.5)

where p denotes the number of processes and t the simulation time. The optimal parallel

efficiency is νstrong = 1, i.e., the increase in resources p′ = p
pbase

equals the decrease in

time to solution t ′ = t
tbase

. Due to Amdahl’s Law [214], the parallel efficiency is in general

smaller than one.

We measure scaling from eight to 256 fully occupied nodes, i.e., 192 to 6144 pro-

cesses, allocating one MPI rank per process. We use regular grids of level seven and eight

as well as adaptive grids from level six to nine and compare their overall parallel efficiency

in Fig. 6.13. The regular grids have approximately 2 and 16 million cells, the adaptive

grids 8 million. In each case, approximately half the cells are boundary cells.

We plot the performance of our implementation, that is fluid lattice updates per

second per core (FLUPSC), in Fig. 6.14. To this end, we consider the time steps on the

maximum refinement level. We measure the time of the LBM solver and divide it by the

number of fluid cells active during the respective time step. One step of the LBM solver

118 CHAPTER 6: COMPUTATIONAL RESULTS

192 384 768 1536 3072 6144

0

0.5

1

1.5

2

2.5

3

·105

Number of Processes

F
lu

id
L

a
tt

ic
e

U
p

d
a
te

s
p

er
S
ec

o
n
d

p
er

C
or

e

dyn. adapt. stat. adapt.
regular small regular large

FIGURE 6.14 Fluid Lattice Updates per Second per core for strong scaling of the driven cav-
ity scenario. The average value is the curve and the respective minimum and
maximum values are shown as error bars. Empty processors, i.e., processors
containing no active cells or only boundary cells, perform no fluid updates, thus
they store zero.

contains collision and populating virtual cells, updating from virtual cells, streaming,

swapping of the double-buffer, and exchanging messages with neighboring processes.

Operations with virtual cells are only performed if they are necessary. The number of fluid

cells per finest level time step changes due to multivariate time stepping and dynamic grid

adaptivity including repartitioning. Empty processors, i.e., processors that only contain

boundary cells, perform no fluid updates, thus, they store zero. We show the average

value as the curve and the respective minimum and maximum values as error bars. We

see almost no differences for the different discretizations and no drop in performance if

the load per process decreases.

We further analyze the scaling behavior of our implementation by investigating the

individual sub-steps of the algorithm. To this end, we measure the execution time of each

main algorithmic step on each rank and take the maximum value over all ranks. To allow

for potential grid adaptation, we measure 10× 16 steps and average over the ten maxima

arithmetically.

As the regular grid neither contains grid change nor LBM operations on different

levels, it is the simplest case. We visualize the scaling of each operation in Fig. 6.15.

Streaming is the dominant operation and both, collision and streaming run into a satura-

tion effect where the load per process is too small for an efficient scaling. This happens

between 768 and 1536 processes for collision and between 3072 and 6144 processes for

6.2 PERFORMANCE AND SCALABILITY 119

192 384 768 1536 3072 6144

2−11

2−9

2−7

2−5

2−3

2−1

Number of Processes

T
im

e
[s
]

collision stream/bounce back swap ghost exchange

FIGURE 6.15 LBM driven cavity scalability test case: Strong scaling of LBM sub-steps for a
regular grid of level eight. We split the overall 160 time steps into ten groups
of sixteen steps. For each group, we calculate for each operation the maximum
value over all sixteen time steps and all processes. We show the arithmetic mean
of these ten values for each operation.

streaming.

We show the same plot for static adaptivity in Fig. 6.16. Compared to the regular

case, we now have LBM operations on multiple refinement levels with multivariate time

stepping. We add up the cost for each level, i.e., we do not weigh operations on higher

levels according to multivariate time stepping. Instead of showing a full coarse time step,
`max
∑

i=`min

2i−`min t(i),we create all columns in the figures as a worst-case estimation of a fine

time step to better compare them with the regular grid,
`max
∑

i=`min

t(i). As we do not change

our partitioning strategy, we introduce a load imbalance. The run time is generally longer

than in the regular case. Besides streaming, which is more expensive due to the more

complicated neighbor lookup including virtual cells, exchanging ghost information is

another expensive operation. Similar to the regular case, we see saturation effects if the

number of cells per process drops, for collision between 384 and 768 processes and for

streaming between 768 and 1536 processes.

When considering dynamic grid adaptivity, not much is changing in the LBM step

(Fig. 6.17). Total computational cost, however, now not only stems from the main loop

but also from adapting the grid. Fig. 6.18 visualizes the cost of the adaptivity scheme

120 CHAPTER 6: COMPUTATIONAL RESULTS

192 384 768 1536 3072 6144

2−11

2−9

2−7

2−5

2−3

Number of Processes

T
im

e
[s
]

collision update from virtuals stream/bounce back
swap ghost exchange

FIGURE 6.16 LBM driven cavity scalability test case: Strong scaling of LBM sub-steps for a
statically adaptive grid of levels six to nine. We split the overall 160 time steps
into ten groups of sixteen steps. For each group, we calculate for each operation
the maximum value over all sixteen time steps and all processes. We show the
arithmetic mean of these ten values for each operation. Values of multiple levels
are summed using uniform weights, i.e., we do not include multivariate time
stepping.

explained in Sec. 5.2.3.

Here, the increase in building metadata is the most significant observation. When

analyzing the individual operations in Fig. 6.19, it turns out that the issues stem from

building the ghost layer, in particular from creating p4est_ghost.

Weak Scaling

In weak scaling experiments, we increase the total load with the number of available

resources, thus keeping the load per resource constant. We measure parallel efficiency as

νweak =
tbase

t
(6.6)

where tbase denotes the time to solution of the initial run and t the time to solution

of following scaling steps. Similarly to strong scaling, optimal scaling yields a parallel

efficiency νweak = 1. Thus, adding computational resources and increasing the problem-

size such that the problem-size per resource is constant, should have no effect on the

6.2 PERFORMANCE AND SCALABILITY 121

192 384 768 1536 3072 6144

2−11

2−9

2−7

2−5

2−3

Number of Processes

T
im

e
[s
]

collision update from virtuals stream/bounce back
swap ghost exchange

FIGURE 6.17 LBM driven cavity scalability test case: Strong scaling of LBM sub-steps for a
dynamically adaptive grid of levels six to nine. We split the overall 160 time steps
into ten groups of sixteen steps. For each group, we calculate for each operation
the maximum value over all sixteen time steps and all processes. We show the
arithmetic mean of these ten values for each operation. Values of multiple levels
are summed using uniform weights, i.e., we do not include multivariate time
stepping.

overall performance. As Gustafson’s Law [215] applies, it is, again, very hard to achieve

optimal scalability.

We show upscaling results from one to 32,768 processes. We start at a given level `

and for each scaling step we increment the level by one and use eight times the computa-

tional resources. We use one MPI rank per processor and minimize the number of nodes

by fully occupying
� p

24

�

processes. For the remaining (p mod 24) processes we add one

node. Thus, we use 4096 nodes in the final scaling step.

We use regular grids with an initial refinement level of five and six as well as adaptive

grids with initial levels from three to six. The regular grids have 32,768 and 262,144 cells

per process.

In our setup, the load per process is not constant for adaptive grids, i.e., the number

of cells does not continuously increase by a factor of eight, as shown in Fig. 6.20. In the

adaptive scenarios, we initially have approximately 82,800 cells per process, 10,400 at

4096 processes, and 7750 at 32,768 processes. Thus, we initially have approximately

twice the load per process compared to the first strong scaling step and end up with a load

122 CHAPTER 6: COMPUTATIONAL RESULTS

192 384 768 1536 3072 6144

2−10

2−8

2−6

2−4

2−2

20

Number of Processes

T
im

e
[s
]

adapt grid map data repartition

transfer data build metadata insert data

FIGURE 6.18 LBM driven cavity scalability test case: Strong scaling of sub-steps during grid
change. For each operation, we show the arithmetic mean of the maxima over all
processes.

per process that compares to strong scaling between 768 and 1536 processes. We mitigate

this effect by normalizing the time by the number of relevant cells per process. Thus, for

analyzing the LBM operations, we normalize by the average number of fluid cells, and for

grid operations, we normalize by the average number of total cells. However, the effect

of non-constant load cannot be fully compensated, because the load varies over a region

that turned out to be the scaling limit in strong scaling. For the sake of completeness, we

also show the absolute numbers in Appendix A.

The parallel efficiency for weak scaling of the driven cavity scenario using different

discretizations is shown in Fig. 6.21.

We plot the performance of our implementation, that is fluid lattice updates per

second per core (FLUPSC), in Fig. 6.22. Empty processors, i.e., processors that only

contain boundary cells, perform no fluid updates, thus, they store zero. We show the

average value as the curve and the respective minimum and maximum values as error

bars. We see similar behavior for the regular grids and similar behavior for the adaptive

grids.

As before, we split the 160 time steps into ten groups, take the maximum value from

6.2 PERFORMANCE AND SCALABILITY 123

192 384 768 1536 3072 6144
2−12

2−10

2−8

2−6

2−4

2−2

20

Number of Processes

T
im

e
[s
]

ghost layer random-access virtual cells add virt. cells to ghost layer

FIGURE 6.19 LBM driven cavity scalability test case: Strong scaling of sub-steps to build
metadata during grid change. For each operation, we show the arithmetic mean
of the maxima over all processes. We see that the significant increase in cost stems
almost completely from building the ghost layer. The columns directly translate to
creating the p4est components p4est_ghost, p4est_mesh, p4est_virtual,
and p4est_virtual_ghost.

8 64 512 4096 32768

0.6

0.7

0.8

0.9

1

Number of Processes

G
ro

w
th

R
a
te

T
ot

al
C

el
ls

p
er

C
or

e

dyn. adapt. stat. adapt.
regular small regular large

8 64 512 4096 32768

0.6

0.7

0.8

0.9

1

Number of Processes

G
ro

w
th

R
a
te

F
lu

id
C

el
ls

p
er

C
o
re

dyn. adapt. stat. adapt.
regular small regular large

FIGURE 6.20 LBM driven cavity scalability test case: Load per process in weak scaling where
each value compares to the previous scaling step in terms of total cells (right) and
fluid cells (left). We see that for the adaptive grid load per process decreases, i.e.,
the number of cells does not increase by a factor of eight. We mitigate this effect
normalizing the measured absolute times by the number of cells per process.

124 CHAPTER 6: COMPUTATIONAL RESULTS

1 8 64 512 4096 32768

0

0.2

0.4

0.6

0.8

1

Number of Processes

P
ar

a
ll
el

E
ffi

ci
en

cy

dyn. adapt. stat. adapt.
regular small regular large

FIGURE 6.21 Overall parallel efficiency for weak scaling of the driven cavity scenario, weighted
by the number of cells per process.

1 8 64 512 4096 32768

0

0.5

1

1.5

2

2.5

3

·105

Number of Processes

F
lu

id
L

at
ti

ce
U

p
d
at

es
p

er
S
ec

on
d

p
er

C
or

e

dyn. adapt. stat. adapt.
regular small regular large

FIGURE 6.22 Fluid Lattice Updates per Second per core (FLUPSC) for weak scaling of the driven
cavity scenario. The average value is the curve and the respective minimum and
maximum values are shown as error bars. Empty processors, i.e., processors
containing no active cells or only boundary cells, perform no fluid updates, thus
they store zero.

6.2 PERFORMANCE AND SCALABILITY 125

1 8 64 512 4096 32768

2−27

2−25

2−23

2−21

2−19

2−17

Number of Processes

N
o
rm

ed
T
im

e
(t
·p

/n
ce
ll
s,

f)

collision stream/bounce back swap ghost exchange

FIGURE 6.23 LBM driven cavity scalability test case: Weak scaling of LBM sub-steps for a
regular grid of level six. We split the overall 160 time steps into ten groups of
sixteen steps. For each group and for each operation, we calculate the maximum
value over all sixteen time steps and all processes. We show the arithmetic mean
of these ten values for each operation and normalize the time by the number of
cells per process.

each group, and show their arithmetic mean. We proceed in the same way as we did for

the strong scaling study: we begin with the main loop on a single level, then proceed to

multiple levels before finally adding dynamic grid adaptivity. In Fig. 6.23, we show weak

scaling of the LBM operations for a regular grid of level six. We observe that streaming is

the dominant operation and find that the drop in performance at 512 processes stems

from communication.

For the statically adaptive grid, we, again, find the streaming step to be the most costly

operation. Again, we create the columns as
`max
∑

i=`min

t(i). Moreover, the drop in scalability at

512 processes, stems from exchanging data between processes2. As in the strong scaling

study, computational cost in the adaptive case is slightly larger than in the regular case.

When adding dynamic grid adaptivity (Fig. 6.25), we see mostly the same effects.

However, in the dynamically adaptive case, the communication issues do not occur for

512 cores.

For the grid adaptation step (Fig. 6.26) we, again, find a significant increase for build-

ing metadata. From Fig. 6.27, we see this is mostly generated from building p4est_ghost.

2The data for the run using 32,768 processes are corrupted and not shown here.

126 CHAPTER 6: COMPUTATIONAL RESULTS

1 8 64 512 4096
2−24

2−22

2−20

2−18

2−16

2−14

Number of Processes

N
or
m
ed

T
im

e
(t
·p

/n
ce
ll
s,

f)

collision update from virtuals stream/bounce back
swap ghost exchange

FIGURE 6.24 LBM driven cavity scalability test case: Weak scaling of LBM sub-steps for a
statically adaptive grid of levels three to six. We split the overall 160 time steps
into ten groups of sixteen steps. For each group, we calculate for each operation
the maximum value over all sixteen time steps and all processes. We show the
arithmetic mean of these ten values for each operation and normalize the time
by the number of cells per process. Values of multiple levels are summed using
uniform weights, i.e., we do not include multivariate time stepping.

Additionally, transferring the payload to their new owners after repartitioning the grid

shows a significant increase in the last scaling step. Both effects may stem from sending

and receiving a rather large number of messages to and from many processes containing

relatively little data.

Overall, we see good scalability in the p4est components touched in this project

(p4est_mesh, p4est_virtual, and p4est_virtual_ghost). In the LBM implementa-

tion we suffer from our choice of using a collision optimized data layout, see Fig. 3.4. Here,

we have greater flexibility for realizing dynamic spatial adaptivity (we could, e.g., change

the grid and map data in the same loop) at the cost of more cache misses in the streaming

step. Additionally, there were issues with building p4est_ghost which we could not

fully resolve and that were surprising giving that p4est_ghost is known to scale well

with low overall execution times [86]. In terms of performance, we have not expected to

match the performance of specifically tuned implementations such as [54, 55] or [59, 60].
However, we propose testing an optimized algorithm with a streaming-optimized storage

scheme on different hardware to resolve the issues with p4est_ghost. In the following,

6.2 PERFORMANCE AND SCALABILITY 127

1 8 64 512 4096 32768
2−24

2−22

2−20

2−18

2−16

2−14

Number of Processes

N
o
rm

ed
T
im

e
(t
·p

/n
ce
ll
s,

f)

collision update from virtuals stream/bounce back
swap ghost exchange

FIGURE 6.25 LBM driven cavity scalability test case: Weak scaling of LBM sub-steps for a
dynamically adaptive grid of levels three to six. We split the overall 160 time
steps into ten groups of sixteen steps. For each group, we calculate for each
operation the maximum value over all sixteen time steps and all processes. We
show the arithmetic mean of these ten values for each operation and normalize
the time by the number of cells per process. Values of multiple levels are summed
using uniform weights, i.e., we do not include multivariate time stepping.

we analyze the scaling behavior of the Linked-Cell method and of coupled short-range

molecular dynamics (MD) and LBM simulations.

6.2.2 Molecular Dynamics

In this section, we investigate the scaling behavior of the short-range MD implementation.

Results from this section have previously been published in [4, 205].
We show the parallel efficiency of a static Lennard-Jones (LJ) weak scaling scenario.

We arrange the particles in a grid such that they are equidistant and the system is perfectly

balanced. Then, we calculate the forces between particles and reset it to zero before

updating positions. With each scaling step we increase the number of particles and the

volume of the simulation box such that the particle density is constant. We compare

the previously existing implementation with Cartesian domain decomposition to our

implementation using regular p4est grids in Fig. 6.28.

We see that we surpass the parallel efficiency of the original implementation at 96

processes. The absolute time-to-solution is faster for our implementation when using eight

128 CHAPTER 6: COMPUTATIONAL RESULTS

1 8 64 512 4096 32768

2−24

2−22

2−20

2−18

2−16

2−14

2−12

Number of Processes

N
o
rm

ed
T
im

e
(t
·p

/n
ce
ll
s)

adapt grid map data repartition

transfer data build metadata insert data

FIGURE 6.26 LBM driven cavity scalability test case: Weak scaling of sub-steps during grid
change. For each operation, we show the arithmetic mean of the maxima over all
processes. We normalize the time by the number of cells per process.

nodes (192 processes) or more. The main reason is the asynchronous communication

that we have implemented for the SFC-based domain decomposition.

We show the benefits of dynamic repartitioning in Fig. 6.29. Here, we perform a

simulation containing 1700 particles per process on 100 fully occupied nodes, i.e., 2400

processes. In total, we simulate 4,080,000 particles which in this scenario agglomerate

to small droplets. We simulate 1,000,000 time steps and compare the cost of 1000

consecutive force calculations in the Linked-Cell algorithm as well as the imbalance

between the processes for the unbalanced, default version of ESPResSo with our the

dynamically repartitioned version based on p4est. The imbalance I is defined as

I =
max t
avg t

,(6.7)

where max t is the maximum run time for a specific operation and avg t the average. We

repartition the simulation whenever the imbalance exceeds 1.1. Dynamic repartitioning

saves computation time even in this simple scenario and effectively keeps the imbalance

at a level close to one.

6.2 PERFORMANCE AND SCALABILITY 129

1 8 64 512 4096 32768

2−25

2−23

2−21

2−19

2−17

2−15

2−13

Number of Processes

N
or
m
ed

T
im

e
(t
·p

/n
ce
ll
s)

ghost layer random-access virtual cells add virt. cells to ghost layer

FIGURE 6.27 LBM driven cavity scalability test case: Weak scaling of sub-steps to build metadata
during grid change. For each operation, we show the arithmetic mean of the max-
ima over all processes. We normalize the time by the number of cells per process.
We see that the significant increase in cost stems almost completely from building
the ghost layer. The columns directly translate to creating the p4est components
p4est_ghost, p4est_mesh, p4est_virtual, and p4est_virtual_ghost.

24 48 96 192 384 768 1536 3072 6144 12288

0

0.2

0.4

0.6

0.8

1

Number of Processes

Pa
ra

lle
lE

ffi
ci

en
cy

default ESPResSo
p4est-based version

FIGURE 6.28 Weak scaling of short-range MD in a static LJ scenario. We compare the existing
static domain decomposition with our SFC-based implementation using regular
p4est grids.

130 CHAPTER 6: COMPUTATIONAL RESULTS

0 0.2 0.4 0.6 0.8 1

·106

0

1

2

3

Time Step

T
im

e
[s]

run time
imbalance

0 0.2 0.4 0.6 0.8 1

·106

0

1

2

3

Time Step

run time
imbalance

repartitioning

FIGURE 6.29 Short-range MD test case including dynamic repartitioning: Run time in seconds
for 1000 consecutive time steps each and imbalance for the force calculation
of 4,080,000 particles on 2400 processes. Left: default ESPResSo, right: SFC-
based version using regular p4est grids and dynamic repartitioning. The error
bars indicate the maximum and minimum run time, respectively, the blue line
indicates the average. Note that the maximum run time determines the overall
performance. The imbalance is shown in green. The vertical dashed lines in the
right picture indicate time steps at which re-balancing is performed.

Hirschmann et al. compared this implementation using SFC-based partitioning to a

graph-based partitioning scheme based on ParMETIS [217, 218] in [216]. They found

SFC-based partitioning to be slightly slower when comparing different imhomogeneous

MD scenarios and dynamic repartitioning. However, it has to be noted that fully coupled

simulations using graph-based partitioning are infeasible with the current version of

ESPResSo, because none of the discretizations of the electrokinetic equations is ported to

a graph-based domain-decomposition. For regular grids, there are approaches based on

padding [219], for adaptive grids it is questionable if this approach is feasible.

In the following, we analyze the scalability of our coupled implementation and show

results towards the fully coupled electrokinetic system.

6.2.3 Coupled Simulations

In this section, we investigate the performance and scaling behavior of a coupled particle-

fluid application using short-range MD and the LBM. Results presented in this section

have previously been published in [206] and [207].
We demonstrate our coupling scheme and our algorithms for building the finest

common tree (FCT) work by a weak scaling experiment using a rectangular domain with

periodic boundaries in all directions with a side length of 2a × a × a. Here, a denotes

some length that we increase with each scaling step. We discretize the domain using two

6.2 PERFORMANCE AND SCALABILITY 131

FIGURE 6.30 Setup and refinement pattern of the coupled short-range MD-LBM simulation
without obstacle. We show a cut through the y-plane at y = 0. The system has
periodic boundaries in all directions. We use a dynamically adaptive grid where we
refine cells in the direct vicinity of particles. All other cells are implicitly coarsened.
Different colors indicate different processes. For visualization purposes, we show
fewer particles and a smaller number of ranks than in our scaling runs.

octrees. Within one half, we insert 1000 particles per process randomly with uniform

distribution. Each particle has no velocity and is placed into a fluid-at-rest. We use a

purely repelling LJ pair potential, i.e., we set the cut-off radius rc = 1 and the parameters

σ = 1 and ε = 1. We apply a constant force in x-direction. The fluid consists of four

different levels, we refine cells around particles such that the coupling takes place at

the maximum refinement level. This setup leads to particles moving in x-direction. To

keep coupling on the finest grid level, we have to adapt the grid and repartition both

particles and fluid3. To this end, we have to repeatedly build the FCT. We show the setup

in Fig. 6.30.

We have performed two weak scaling runs, using the same scaling strategy as in

Sec. 6.2.1: With each scaling step, we increment the minimum and maximum refinement

level by one and use eight times the computational resources. Additionally, we add eight

times more particles and set a′ = 2a, thus, also scaling up the volume by a factor of eight,

to keep the density constant. We compare one set of runs, where we have an initial level

of refinement ranging from three to six, case 3-6, to another run, where we have an initial

level of refinement from four to seven, case 4-7. In both test cases, we use the same volume

3This way, we ensure fewer interpolation errors and more frequent interactions between both systems.
Additionally, particles are often either part of the region-of-interest or in the near vicinity.

132 CHAPTER 6: COMPUTATIONAL RESULTS

24 192 1536

101

102

103

Number of Processes

T
im

e
[s]

Case 3-6

MD time
LBM time

total run time

24 192 1536

101

102

103

Number of Processes

T
im

e
[s]

Case 4-7

FIGURE 6.31 Weak scaling of the coupled short-range MD-LBM simulation without any obstacle.
We compare the run time of short-range MD (green) and LBM (blue) to the total
run time for our test cases.

and the same number of particles. We begin scaling for 24 processes and scale up twice

to 1536 processes. We adapt the grid after sixteen time steps and run the simulation for a

total of 160 time steps. For joint repartitioning using the FCT, we choose uniform weights

for the LBM and weigh the cells of the Linked-Cell algorithm with the number of particles

per cell. The computational times for LBM and short-range MD as well as the total time

are shown in Fig. 6.31. We see a drop in overall performance of approximately 0.5 for

case 3-6 and of approximately 0.135 for case 4-7. Both losses stem from the respective

sub-components. We obtain an imbalance I , as defined in Eq. (6.7), that is bounded by

1.16. The cost of building the FCT is only a small fraction of adapting the grid. For the

largest test case (case 4-7 on 1536 processes with approximately 120 million cells), the

summarized run time of creating the FCT, Alg. 5.2, and jointly repartitioning the grids of

the Linked-Cell algorithm and the LBM, Alg. 5.3, is approximately 0.053 s which is less

than 2% of the total run time for adapting the grid.

We see good overall scalability. Particularly for the larger case, case 4-7, LBM domi-

nates the run time. In order to move towards the target application, we added a simple

pore model to the domain. This pore consists of two planes with a cylindrical hole and a

rounded edge. We choose the same setup as before and add 1000 particles per process

uniformly at random into one half of the domain. We illustrate the setup in Fig. 6.32.

We compare the run time of six different discretizations for the pore scenario: Default

ESPResSo using a discretization resembling refinement levels six and seven, corresponding

regular p4est grids of levels six and seven, and dynamically adaptive grids from initially

level three to six and four to seven. When scaling up according to the same principles as

6.2 PERFORMANCE AND SCALABILITY 133

FIGURE 6.32 Setup and refinement pattern of the coupled short-range MD-LBM simulation
with a simple pore obstacle. We show a cut through the y-plane at y = 0.5a. The
system has periodic boundaries in all directions. We use a dynamically adaptive
grid where we refine cells in the direct vicinity of particles and around the surface
of the pore. All other cells are implicitly coarsened. Different colors indicate
different processes. For visualization purposes, we show fewer particles and a
smaller number of ranks than in our scaling runs.

stated above, we obtain results shown in Fig. 6.33. As the default version of ESPResSo

only accepts rectangular sub-domains of exactly the same size, we scaled the default

version from 16 to 1024 processes.

When comparing the run time of the regular p4est grid with the adaptive grid, we see

an actual benefit of spatial adaptivity, because the adaptive implementation is faster than

the regular grid. With the same resolution in the area of interest, i.e., around the particles,

the total time to solution of the adaptive grid is approximately two-thirds of the regular

case in the smaller scenario where we scale from level six. In the larger case, we can save

approximately half of the total run time. Moreover, the imbalance induced into the run

time dominating LBM algorithm due to the particles is generally bounded by 1.5 in both

dynamically adaptive scenarios, except from the first MD step. We show the imbalances

of the largest scaling step in Tab. 6.2 for the dynamically-adaptive discretization from

level five to eight, based on the smaller adaptive case, and the dynamically-adaptive from

level six to nine, based on the larger adaptive case, in Tab. 6.3.

Additionally, even in the largest scenario, a full cycle of adapting the grid and jointly

repartitioning two p4est instances takes on average less than a second. Thus, even if

in this scenario both p4est-based algorithms were slower than their counterparts in the

default implementation, we can build scenarios, where spatial adaptivity pays off. In the

134 CHAPTER 6: COMPUTATIONAL RESULTS

16 24 128 192 10241536
22

23

24

25

26

27

To
ta

lR
un

T
im

e
[s]

16 24 128 192 1024 1536

2−3

2−2

2−1

Av
er

ag
e

R
un

T
im

e
G

rid
C

ha
ng

e
[s]

16 24 128 192 10241536
2−6

2−5

2−4

2−3

2−2

2−1

Av
er

ag
e

R
un

T
im

e
LB

St
ep

[s]

16 24 128 192 10241536

2−6

2−5

2−4

2−3

2−2
Av

er
ag

e
R

un
T

im
e

M
D

St
ep

[s]

16 24 128 192 10241536

218

219

220

221

Number of Processes

Fl
ui

d
La

tt
ic

e
U

pd
at

es
Pe

r
Se

co
nd

Pe
r

C
or

e
[1

/s
]

16 24 128 192 10241536

1

1.5

2

2.5

3

Number of Processes

Im
ba

la
nc

e
in

R
un

T
im

e
of

LB
M

(m
ax

/a
vg

)

ESPResSo, 6 ESPResSo, 7 p4est, 6 p4est, 7 p4est, 3 – 6 p4est, 4 – 7

FIGURE 6.33 Weak scaling of the coupled short-range MD-LBM simulation with a simple pore
obstacle. We compare the run time of six different discretizations for the pore
scenario. We show the total run time (top left), the average run times for adapting
the grid (top right), LBM algorithm (center left), and short-range MD (center
right), FLUPSC (bottom left), and the imbalance for the LBM (bottom right).

6.2 PERFORMANCE AND SCALABILITY 135

TABLE 6.2 Weak scaling test case for the coupled particle-fluid simulation with a simple pore
obstacle: We show the imbalances for every two coarse time steps, i.e., for each
grid configuration, for a run on 1536 processes. We use a dynamically adaptive grid
with refinement levels between five and eight. This is the last scaling step for the
smaller test case. We measure imbalance as defined in Eq. (6.7).

grid version ncells imb. LBM imb. MD imb. grid change

config. 0 1.371 · 107 1.289 6.869 1.008
config. 1 1.37 · 107 1.256 1.006 1.008
config. 2 1.371 · 107 1.256 1.013 1.009
config. 3 1.37 · 107 1.256 1.012 1.009
config. 4 1.371 · 107 1.253 1.015 1.009
config. 5 1.37 · 107 1.257 1.006 1.008
config. 6 1.371 · 107 1.268 1.018 1.009
config. 7 1.37 · 107 1.264 1.01 1.022
config. 8 1.371 · 107 1.472 1.006 1.009
config. 9 1.37 · 107 1.272 1.015 1.008

TABLE 6.3 Weak scaling test case for the coupled particle-fluid simulation with a simple pore
obstacle: We show the imbalances for every two coarse time steps, i.e., for each
grid configuration, for a run on 1536 processes. We use a dynamically adaptive grid
with refinement levels between six and nine. This is the last scaling step for the
larger test case. We measure imbalance as defined in Eq. (6.7).

grid version ncells imb. LBM imb. MD imb. grid change

config. 0 1.067 · 108 1.291 7.259 1.002
config. 1 1.013 · 108 1.295 1.135 1.002
config. 2 1.012 · 108 1.302 1.218 1.003
config. 3 1.012 · 108 1.292 1.069 1.002
config. 4 1.012 · 108 1.301 1.136 1.003
config. 5 1.012 · 108 1.284 1.111 1.002
config. 6 1.012 · 108 1.301 1.05 1.002
config. 7 1.012 · 108 1.284 1.338 1.002
config. 8 1.012 · 108 1.3 1.254 1.002
config. 9 1.013 · 108 1.304 1.144 1.002

136 CHAPTER 6: COMPUTATIONAL RESULTS

FIGURE 6.34 Simulation setup of a charged pore. We charge the body of the capillary (royal
blue) and apply an electric field by setting a potential at the hemispheres (orange
and red) to obtain an electro-osmotic flow around the pore.

following, we move closer to the target application by modeling a pore more precisely and

adding wall charges as well as by simulating an ionic solution instead of an uncharged

fluid.

6.3 Towards the Full Electrokinetic System

We have set up a three-dimensional geometry of the system described in [6, 26] and

shown first simulation runs in [206]. A cut through the geometry is shown in Fig. 6.34.

The system’s total size is 64µm × 64µm × 64µm. We discretize the system by a

single octree and use a discretization level from seven to ten. We statically refine the area

around the pore, resulting in a grid consisting of 2,261,736 cells. We model the nanopore

geometry as two hemispheres separated by a cylindrical plane with a hole. This hole is

connected to a cone whose edges are rounded by a torus. The hemisphere’s radius is set

to r = 30µm, the total length of the pore is set to L = 20µm. The cone angle is set to

α = 5◦, the thickness of the wall splitting both basins is 3µm. In our first simulations, we

used a larger pore diameter than in the real-world system, rtip = 250nm. The real-world

6.3 TOWARDS THE FULL ELECTROKINETIC SYSTEM 137

system has pore diameters rtip ranging from 7.5 nm to 150 nm. To fully capture this,

we need a finer grid: If we refine the grid up to level 16, we obtain a grid-spacing of

approximately 1 nm. A regular octree grid of level 16 contains approximately 2.815 · 1014

cells. We can give an upper bound for an adaptive grid with a level difference of four from

our simulation up to level 10 as 2,261,736 · 86 = 5.929 · 1011. Compared to the regular

grid with a memory footprint from O (1PB), we end up in the regime of O (1TB). If we

can keep the minimum refinement level constant, we can reduce the memory footprint

even more: we obtain 6.057 · 108 cells which reduces memory requirements to O (1GB).
However, it has to be noted, that the successive over-relaxation (SOR) solver takes very

long to converge in these scenarios. An implementation of a parallel algebraic multi-grid

method [220] can mitigate the problem, implementations based on p4est [221] have

been scaled up to 122,880 processes [85].
We set the hemisphere potentials to +1 and −1. At the capilar body, we set a fixed

charge density of % = −0.06. The system contains two ionic species, ions and counterions

which only differ in their valency (counterions: z = −1, ions: z = 1). The species’ density

is set to c = 0.006, and we choose the diffusion coefficient D = 0.006. We set the fluid

density to ρ = 26.106, the kinematic viscosity to η = 2.73, the friction coefficient to

Γ = 4.3, and the Bjerrum length to `B = 0.709.

We show the resulting flow field after 8000 time steps with a fixed length of ∆t = 1
32

in Fig. 6.35.

138 CHAPTER 6: COMPUTATIONAL RESULTS

FIGURE 6.35 Velocity field of the simulated electro-osmotic flow in the charged pore system
after 8000 time steps.

139

7 Conclusion

7.1 Contributions

In this work, we have presented our model for integrating dynamically-adaptive tree-

structured grids into existing applications with minimal invasiveness. We have extended

the p4est grid library such that it supports random-access from each grid cell to every

neighboring cell. This allows reusing the numerical kernels in the application algorithms

with the same data-access patterns but a different order of traversing the grid and a

different domain-decomposition in parallel simulations.

To deal with refinement boundaries, we have integrated virtual cells. They allow

considering a refinement boundary as an overlap region between two logically regular

grids. This allows numerical kernels to exchange information with cells of the same

size. To combine the information on both grids, we need a separate interpolation and

restriction step.

This way, we have ported the discretizations of four different algorithmic components

in ESPResSo, hydrodynamics, ionic flux, electrostatic, and molecular dynamics, one after

another, to a p4est-based spatial discretization. To ensure process-local coupling during

parallel execution, we have proposed a joint partitioning of multiple p4est instances with

the same macrostructure, i.e., a matching set of octrees, and arbitrary microstructure, i.e.,

arbitrary refinement within each octree, using the finest common tree (FCT). We have

shown at a small example using three processes and at two coupled simulations using

1536 processes that the introduced load imbalances are moderate.

We have tested our implementation in terms of physical correctness as well as in

terms of performance and scalability. The simple test cases showed good agreement with

the analytical solutions. For performance and scalability, we have shown the current state

and proposed ways to optimize the implementation.

140 CHAPTER 7: CONCLUSION

Additionally, we have taken important steps towards simulating the target application.

We have extended the two-dimensional model of Rempfer et al. [6] to three dimensions

and performed preliminary simulations using a statically adaptive grid and a larger pore

diameter compared to the real-world application. Moreover, we have demonstrated

that our setup reduces the memory footprint by six orders of magnitude compared to

a corresponding regular grid. This makes the application accessible even on mid-range

supercomputers.

7.2 Report on Minimal Invasiveness

At the end of this project, where we could simulate a preliminary version of the target

system, we have changed the code in several places. According to cloc1, we have added

or changed around 20,000 lines of code compared to the last merge from the ESPResSo

upstream branch. We present a detailed report, separated by programming language, in

Tab. 7.1. Besides the algorithms already presented here, the added functionality includes

(i) code to control p4est such as evaluating criteria for adapting the grid; (ii) managing

the payload; i.e., allocation and deallocation or mapping data between grids for dynamic

spatial adaptivity; (iii) utility functions regarding spatial coordinates in p4est-based grids,

e.g., finding the respective cell given a position in R3; (iv) functions enabling dynamic load

balancing of short-range molecular dynamics (MD) according to user-defined metrics [205,

207, 216], and (v) a graphics processing unit (GPU) implementation of the p4est-based

lattice-Boltzmann method (LBM) using multiple GPUs, including VTK output [222].

Summarizing, we have preserved the project’s core functionality and added new

features. Some of these new features are independent of the grid implementation at hand,

e.g., mappings between cells of different refinement levels during an adaptivity step or the

logic for dealing with refinement boundaries. Other functionality had to be added, because

the previous algorithm did not allow directly porting it to adaptive grids, e.g., replacing

the discrete Fourier transform (DFT) solver by an successive over-relaxation (SOR) solver

for solving Poisson’s equation to calculate the elelectrostatic potential. However, we

avoided implementing new numerical kernels for LBM, short-range MD, and the ionic

flux: instead, we modified the data-access, integrated the functionality for dealing with

refinement boundaries, and reused the existing logic.

1https://github.com/AlDanial/cloc

https://github.com/AlDanial/cloc

7.2 REPORT ON MINIMAL INVASIVENESS 141

TABLE 7.1 Report on minimal-invasiveness: Code changes in ESPResSo in this project according
to the cloc software.

Language files comment code

C++
same 0 5784 24029
modified 63 43 1059
added 16 1361 13434
removed 8 150 342

C/C++ Header
same 0 4712 6524
modified 68 14 183
added 33 1621 3270
removed 8 120 194

CUDA
same 0 1129 7803
modified 6 1 71
added 1 93 1048
removed 1 5 44

Cython
same 0 1274 2405
modified 7 0 11
added 2 97 433
removed 0 1 25

Others
same 0 2094 5774
modified 49 10 110
added 8 183 965
removed 2 78 291

SUM
same 0 14993 46535
modified 193 68 1434
added 60 3355 19150
removed 19 354 896

142 CHAPTER 7: CONCLUSION

7.3 Outlook

The next step following the work in this project should prevent that the implementation

for the regular grid and the p4est grid may diverge in the future. We think, this is

especially important in the time of decentralized distributed version control systems such

as git. To further enhance efficiency, apart from the optimization we already mentioned,

that is using a streaming-optimized data-layout in the lattice-Boltzmann method (LBM)

(Fig. 3.4) and replacing the successive over-relaxation (SOR) solver of Poisson’s equation

for the electrostatic potential with an algebraic multigrid implementation, we propose

expressing the numerical kernels independent of the underlying discretization. We can

achieve this either by integrating a pre-defined framework such as dune-grid [223, 224]
or by developing a domain-specific language, specifically tailored for the situation at hand.

Moreover, we can improve the LBM implementation numerically, by using a more

robust collision kernel such as cumulant LBM [136, 137] and improve the accuracy at

refinement boundaries by adding an interpolation step [59, 172, 173]. We can reduce the

memory footprint by switching to a single-buffering scheme [139, 140].
To enhance overall performance, we propose following an ambitious vision: the

complexity of the application at hand allows adding a hybrid parallelization approach to

the MPI based distributed memory parallelization. Nodes of modern day supercomputers

using graphics processing unit (GPU) as accelerator hardware typically combine between

20 and 60 central processing unit (CPU) cores with less than ten GPU. Examplary systems

with this kind of node-architecture are TSUBAME 3.0 (28 cores, 4 GPU), Summit (44

cores, 6 GPU), Sierra (44 cores, 4 GPU), or Piz Daint (12 cores, 1 GPU). In our application,

we can use as many MPI ranks as there are GPUs for the algorithms involved in solving

the electrokinetic equations. This architecture uses patches, i.e., small regular grids, in

p4est cells [192, 225]. A first version using regular grids was integrated in ESPResSo

in [222]. We can use shared-memory parallelism on the remaining CPU cores using, e.g.,

OpenMP2 or Intel TBB3, to perform the molecular dynamics (MD) time step.

2https://www.openmp.org/
3http://threadingbuildingblocks.org/

143

A LBM Weak Scaling, Absolute
Times

Absolute timing values for the lattice-Boltzmann method (LBM) driven cavity test

case, weak scaling (Sec. 6.2.1) of the LBM sub-steps for a regular grid of level six (Fig. A.1),

a statically adaptive grid (Fig. A.2) and a dynamically adaptive grid (Fig. A.3) with levels

three to six. We show the absolute run times for grid change in Fig. A.4 and, specifically

for constructing metadata, in Fig. A.5.

144 CHAPTER A: LBM WEAK SCALING, ABSOLUTE TIMES

1 8 64 512 4096 32768

2−9

2−7

2−5

2−3

2−1

21

Number of Processes

T
im

e
[s
]

collision stream/bounce back swap ghost exchange

FIGURE A.1 LBM driven cavity scalability test case: Weak scaling of LBM sub-steps for a regular
grid of level six. We split the overall 160 time steps into ten groups of sixteen
steps. For each group, we calculate for each operation the maximum value over
all sixteen time steps and all processes. We show the arithmetic mean of these ten
values for each operation.

145

1 8 64 512 4096
2−9

2−7

2−5

2−3

2−1

Number of Processes

T
im

e
[s
]

collision update from virtuals stream/bounce back
swap ghost exchange

FIGURE A.2 LBM driven cavity scalability test case: Weak scaling of LBM sub-steps for a
statically adaptive grid of levels three to six. We split the overall 160 time steps
into ten groups of sixteen steps. For each group we calculate for each operation
the maximum value over all sixteen time steps and all processes. We show the
arithmetic mean of these ten values for each operation. Values of multiple levels
are summed using uniform weights, i.e., we do not include multivariate time
stepping.

146 CHAPTER A: LBM WEAK SCALING, ABSOLUTE TIMES

1 8 64 512 4096 32768
2−9

2−8

2−7

2−6

2−5

2−4

2−3

2−2

2−1

Number of Processes

T
im

e
[s
]

collision update from virtuals stream/bounce back
swap ghost exchange

FIGURE A.3 LBM driven cavity scalability test case: Weak scaling of LBM sub-steps for a
dynamically adaptive grid of levels three to six. We split the overall 160 time steps
into ten groups of sixteen steps. For each group, we calculate for each operation
the maximum value over all sixteen time steps and all processes. We show the
arithmetic mean of these ten values for each operation. Values of multiple levels
are summed using uniform weights, i.e., we do not include multivariate time
stepping.

147

1 8 64 512 4096 32768
2−8

2−7

2−6

2−5

2−4

2−3

2−2

2−1

20

21

Number of Processes

T
im

e
[s
]

adapt grid map data repartition

transfer data build metadata insert data

FIGURE A.4 LBM driven cavity scalability test case: Weak scaling of sub-steps during grid
change. For each operation, we show the arithmetic mean of the maxima over all
processes.

148 CHAPTER A: LBM WEAK SCALING, ABSOLUTE TIMES

1 8 64 512 4096 32768
2−10

2−8

2−6

2−4

2−2

20

Number of Processes

T
im

e
[s
]

ghost layer random-access virtual cells add virt. cells to ghost layer

FIGURE A.5 LBM driven cavity scalability test case: Weak scaling of sub-steps to build metadata
during grid change. For each operation, we show the arithmetic mean of the
maxima over all processes. We see that the significant increase in cost stems
almost completely from building the ghost layer. The columns directly translate to
creating the p4est components p4est_ghost, p4est_mesh, p4est_virtual,
and p4est_virtual_ghost.

149

B Bibliography

[1] M. Lahnert; C. Burstedde; C. Holm; M. Mehl; G. Rempfer; F. Weik. “Towards Lattice-
Boltzmann on Dynamically Adaptive Grids – Minimally-Invasive Grid Exchange in ESPResSo.”
ECCOMAS Congress 2016, VII European Congress on Computational Methods in Applied
Sciences and Engineering. Ed. by M. Papadrakakis; V. Papadopoulos; G. Stefanou; V. Plevris.
ECCOMAS, 2016.

[2] M. Lahnert; T. Aoki; C. Burstedde; M. Mehl. “Minimally-Invasive Integration of p4est
in ESPResSo for Adaptive Lattice-Boltzmann.” The 30th Computational Fluid Dynamics
Symposium. Japan Society of Fluid Mechanics, 2016.

[3] M. Lahnert; C. Burstedde; M. Mehl. “Scalable Lattice-Boltzmann Simulation on Dynami-
cally Adaptive Grids.” to be submitted (2019). Forthcoming.

[4] M. Brunn. “Coupling of Particle Simulation and Lattice Boltzmann Background Flow on
Adaptive Grids.” Master’s thesis. Universität Stuttgart, 2017.

[5] I. Tischler. “Implementing adaptive Electrokinetics in ESPResSo.” Master’s thesis. Univer-
sity of Stuttgart, 2018.

[6] G. Rempfer; S. Ehrhardt; C. Holm; J. de Graaf. “Nanoparticle Translocation through
Conical Nanopores: A Finite Element Study of Electrokinetic Transport.” Macromolecular
Theory and Simulations 26.1 (2017), p. 160051.

[7] C. J. Cramer. Essentials of Computational Chemistry: Theories and Models. 2nd ed. John
Wiley & Sons, Ltd., 2006.

[8] R. A. Friesner. “Ab initio quantum chemistry: Methodology and applications.” Proceedings
of the National Academy of Sciences 102.19 (2005), pp. 6648–6653.

[9] A. Rahman. “Correlations in the Motion of Atoms in Liquid Argon.” Phys. Rev. 136 (2A
1964), A405–A411.

[10] A. Warshel; M. Levitt. “Theoretical studies of enzymic reactions: Dielectric, electrostatic
and steric stabilization of the carbonium ion in the reaction of lysozyme.” Journal of
Molecular Biology 103.2 (1976), pp. 227–249.

[11] M. B. Liu; G. R. Liu; L. W. Zhou; J. Z. Chang. “Dissipative Particle Dynamics (DPD): An
Overview and Recent Developments.” Archives of Computational Methods in Engineering
22.4 (2015), pp. 529–556.

150 BIBLIOGRAPHY

[12] P. Español; P. B. Warren. “Perspective: Dissipative particle dynamics.” The Journal of
Chemical Physics 146.15 (2017), p. 150901.

[13] G. Gompper; T. Ihle; D. M. Kroll; R. G. Winkler. “Multi-Particle Collision Dynamics: A
Particle-Based Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids.”
Advanced Computer Simulation Approaches for Soft Matter Sciences III. ed. by C. Holm;
K. Kremer. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 1–87.

[14] E. De Angelis; M. Chinappi; G. Graziani. “Flow simulations with multi-particle collision
dynamics.” Meccanica 47.8 (2012), pp. 2069–2077.

[15] J. J. Monaghan. “Smoothed particle hydrodynamics.” Reports on Progress in Physics 68.8
(2005), pp. 1703–1759.

[16] M. B. Liu; G. R. Liu. “Smoothed Particle Hydrodynamics (SPH): an Overview and Recent
Developments.” Archives of Computational Methods in Engineering 17.1 (2010), pp. 25–76.

[17] S. Succi. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Clarendon Press,
2001.

[18] S. Succi. The Lattice Boltzmann Equation: For Complex States of Flowing Matter. Oxford
University Press, 2018.

[19] M. Griebel; T. Dornseifer; T. Neunhoeffer. Numerical simulation in fluid dynamics: a
practical introduction. Philadelphia, Pa.: SIAM, 1998.

[20] A. Taflove; S. C. Hagness. Computational electrodynamics: the finite-difference time-domain
method. 3rd ed. Artech House antennas and propagation library. Boston, MA: Artech
House, 2005.

[21] R. W. Lewis; P. Nithiarasu; K. N. Seetharamu. Fundamentals of the Finite Element Method
for Heat and Fluid Flow. Wiley, 2004.

[22] D. Braess. Finite Elemente: Theorie, schnelle Löser und Anwendungen in der Elastizitätstheo-
rie. Berlin: Springer, 2007.

[23] R. Eymard; T. Gallouët; R. Herbin. “Finite volume methods.” Solution of Equation in Rn

(Part 3), Techniques of Scientific Computing (Part 3). Vol. Handbook of Numerical Analysis.
Elsevier, 2000.

[24] R. J. LeVeque. Finite volume methods for hyperbolic problems. Cambridge: Cambridge Univ.
Press, 2002.

[25] O. P. L. Maître; O. M. Knio. Spectral Methods for Uncertainty Quantification: With Applica-
tions to Computational Fluid Dynamics. Scientific Computation. Springer, 2010.

[26] R. M. M. Smeets; U. F. Keyser; D. Krapf; M.-Y. Wu; N. H. Dekker; C. Dekker. “Salt
Dependence of Ion Transport and DNA Translocation through Solid-State Nanopores.”
Nano Letters 6.1 (2006), pp. 89–95.

[27] S. Kesselheim; W. Müller; C. Holm. “Origin of Current Blockades in Nanopore Translocation
Experiments.” Phys. Rev. Lett. 112 (1 2014), p. 018101.

[28] T. Ertl; M. Krone; S. Kesselheim; K. Scharnowski; G. Reina; C. Holm. “Visual Analysis for
Space-Time Aggregation of Biomolecular Simulations.” Faraday Discussions 169 (2014),
pp. 167–178.

[29] G. Rempfer. “Electrokinetic Transport Phenomena in Soft-Matter Systems.” PhD thesis.
University of Stuttgart, 2018.

BIBLIOGRAPHY 151

[30] S. Kesselheim; M. Sega; C. Holm. “Effects of dielectric mismatch and chain flexibility on
the translocation barriers of charged macromolecules through solid state nanopores.” Soft
Matter 8.36 (2012), pp. 9480–9486.

[31] H. J. Limbach; A. Arnold; B. A. Mann; C. Holm. “ESPResSo – An Extensible Simulation
Package for Research on Soft Matter Systems.” Computer Physics Communications 174.9
(2006), pp. 704–727.

[32] A. Arnold; O. Lenz; S. Kesselheim; R. Weeber; F. Fahrenberger; D. Roehm; P. Koovan;
C. Holm. “ESPResSo 3.1: Molecular Dynamics Software for Coarse-Grained Models.”
Meshfree Methods for Partial Differential Equations VI. ed. by M. Griebel; M. A. Schweitzer.
Vol. 89. Lecture Notes in Computational Science and Engineering. Springer Berlin
Heidelberg, 2012, pp. 1–23.

[33] F. Weik; R. Weeber; K. Szuttor; K. Breitsprecher; J. de Graaf; M. Kuron; J. Landsgesell; H.
Menke; D. Sean; C. Holm. “ESPResSo 4.0 – an extensible software package for simulating
soft matter systems.” The European Physical Journal Special Topics 227.14 (2019), pp. 1789–
1816.

[34] J. D. Halverson; T. Brandes; O. Lenz; A. Arnold; S. Bevc; V. Starchenko; K. Kremer; T.
Stuehn; D. Reith. “ESPResSo++: A modern multiscale simulation package for soft matter
systems.” Computer Physics Communications 184.4 (2013), pp. 1129–1149.

[35] H. V. Guzman; N. Tretyakov; H. Kobayashi; A. C. Fogarty; K. Kreis; J. Krajniak; C. Junghans;
K. Kremer; T. Stuehn. “ESPResSo++ 2.0: Advanced methods for multiscale molecular
simulation.” Computer Physics Communications 238 (2019), pp. 66–76.

[36] S. Plimpton. “Fast Parallel Algorithms for Short-Range Molecular Dynamics.” Journal of
Computational Physics 117.1 (1995), pp. 1–19.

[37] H. Berendsen; D. van der Spoel; R. van Drunen. “GROMACS: A message-passing parallel
molecular dynamics implementation.” Computer Physics Communications 91.1 (1995),
pp. 43–56.

[38] M. J. Abraham; T. Murtola; R. Schulz; S. Páll; J. C. Smith; B. Hess; E. Lindahl. “GROMACS:
High performance molecular simulations through multi-level parallelism from laptops to
supercomputers.” SoftwareX 1-2 (2015), pp. 19–25.

[39] M. Buchholz; H.-J. Bungartz; J. Vrabec. “Software design for a highly parallel molecular
dynamics simulation framework in chemical engineering.” Journal of Computational
Science 2.2 (2011). Simulation Software for Supercomputers, pp. 124–129.

[40] C. Niethammer; S. Becker; M. Bernreuther; M. Buchholz; W. Eckhardt; A. Heinecke; S.
Werth; H.-J. Bungartz; C. W. Glass; H. Hasse; J. Vrabec; M. Horsch. “ls1 mardyn: The
Massively Parallel Molecular Dynamics Code for Large Systems.” J. Chem. Theory Comput.
10.10 (2014), pp. 4455–4464.

[41] S. Seckler; N. Tchipev; H.-J. Bungartz; P. Neumann. “Load Balancing for Molecular
Dynamics Simulations on Heterogeneous Architectures.” 2016 IEEE 23rd International
Conference on High Performance Computing. 2016, pp. 101–110.

[42] J. Vrabec; M. Bernreuther; H.-J. Bungartz; W.-L. Chen; W. Cordes; R. Fingerhut; C. W.
Glass; J. Gmehling; R. Hamburger; M. Heilig; M. Heinen; M. T. Horsch; C.-M. Hsieh; M.
Hülsmann; P. Jäger; P. Klein; S. Knauer; T. Köddermann; A. Köster; K. Langenbach; S.-T. Lin;
P. Neumann; J. Rarey; D. Reith; G. Rutkai; M. Schappals; M. Schenk; A. Schedemann; M.
Schönherr; S. Seckler; S. Stephan; K. Stöbener; N. Tchipev; A. Wafai; S. Werth; H. Hasse.

152 BIBLIOGRAPHY

“SkaSim - Skalierbare HPC-Software für molekulare Simulationen in der chemischen
Industrie.” Chemie Ingenieur Technik 90.3 (2018), pp. 295–306.

[43] N. Tchipev; S. Seckler; M. Heinen; J. Vrabec; F. Gratl; M. Horsch; M. Bernreuther; C. W.
Glass; C. Niethammer; N. Hammer; B. Krischok; M. Resch; D. Kranzlmüller; H. Hasse;
H.-J. Bungartz; P. Neumann. “TweTriS: Twenty trillion-atom simulation.” The International
Journal of High Performance Computing Applications 0.0 (2019), p. 1094342018819741.

[44] H. Sutter. “The free lunch is over: A fundamental turn toward concurrency in software.”
Dr. Dobb’s Journal 30.3 (2005), pp. 202–210.

[45] D. E. Keyes. “Domain decomposition in the mainstream of computational science.” Pro-
ceedings of the 14 international conference on Domain Decomposition Methods. UNAM Press,
Mexico City, 2003, pp. 79–93.

[46] MPI Standard 3.1. 2015.

[47] NVIDIA. CUDA RUNTIME API V 10.1.243. 2019.

[48] M. Müller; T. Aoki. “Hybrid Fortran: High Productivity GPU Porting Framework Applied
to Japanese Weather Prediction Model.” Accelerator Programming Using Directives. Ed.
by S. Chandrasekaran; G. Juckeland. Cham: Springer International Publishing, 2018,
pp. 20–41.

[49] A. S. Tanenbaum; M. Van Steen. Distributed Systems: Principles and Paradigms. 2nd ed.
Pearson Prentice Hall, 2007.

[50] F. Weik; S. Kesselheim; C. Holm. “A coarse-grained DNA model for the prediction of
current signals in DNA translocation experiments.” The Journal of Chemical Physics 145.19
(2016), p. 194106.

[51] A. C. Calder; B. C. Curts; L. J. Dursi; B. Fryxell; G. Henry; P. MacNece; K. Olson; P. Ricker;
R. Rosner; F. X. Timmes; H. M. Tufo; J. W. Truran; M. Zingale. “High-Performance Reactive
Fluid Flow Simulations Using Adaptive Mesh Refinement on Thousands of Processors.” SC
’00: Proceedings of the 2000 ACM/IEEE Conference on Supercomputing. 2000, pp. 56–56.

[52] J. Rudi; A. C. I. Malossi; T. Isaac; G. Stadler; M. Gurnis; P. W. J. Staar; Y. Ineichen; C. Bekas;
A. Curioni; O. Ghattas. “An Extreme-scale Implicit Solver for Complex PDEs: Highly
Heterogeneous Flow in Earth’s Mantle.” Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. SC ’15. Austin, Texas:
ACM, 2015, 5:1–5:12.

[53] C. Godenschwager; F. Schornbaum; M. Bauer; H. Köstler; U. Rüde. “A framework for
hybrid parallel flow simulations with a trillion cells in complex geometries.” Proceedings
of the International Conference for High Performance Computing, Networking, Storage and
Analysis on - SC ’13. ACM Press, 2013.

[54] F. Schornbaum; U. Rüde. “Massively Parallel Algorithms for the Lattice Boltzmann Method
on NonUniform Grids.” SIAM Journal on Scientific Computing 38.2 (2016), pp. C96–C126.

[55] F. Schornbaum; U. Rüde. “Extreme-Scale Block-Structured Adaptive Mesh Refinement.”
SIAM Journal on Scientific Computing 40.3 (2018), pp. C358–C387.

[56] F. Schornbaum. “Block-Structured Adaptive Mesh Refinement for Simulations on Extreme-
Scale Supercomputers.” PhD thesis. Friedrich-Alexander-Universität Erlangen-Nürnberg
(FAU), 2018, p. 152.

BIBLIOGRAPHY 153

[57] C. Rettinger; U. Rüde. “A coupled lattice Boltzmann method and discrete element method
for discrete particle simulations of particulate flows.” Computers & Fluids 172 (2018),
pp. 706–719.

[58] C. Rettinger; U. Rüde. “Dynamic Load Balancing Techniques for Particulate Flow Simula-
tions.” Computation 7 (2019).

[59] M. Schönherr; K. Kucher; M. Geier; M. Stiebler; S. Freudiger; M. Krafczyk. “Multi-thread
implementations of the lattice Boltzmann method on non-uniform grids for CPUs and
GPUs.” Computers and Mathematics with Applications 61.12 (2011), pp. 3730–3743.

[60] S. Lenz; M. Schönherr; M. Geier; M. Krafczyk; A. Pasquali; A. Christen; M. Giometto.
“Towards real-time simulation of turbulent air flow over a resolved urban canopy using
the cumulant lattice Boltzmann method on a GPGPU.” Journal of Wind Engineering and
Industrial Aerodynamics 189 (2019), pp. 151–162.

[61] N. Maruyama; T. Aoki; K. Taura; R. Yokota; M. Wahib; M. Matsuda; K. Fukuda; T.
Shimokawabe; N. Onodera; M. Müller; S. Iwasaki. “Highly Productive, High-Performance
Application Frameworks for Post-Petascale Computing.” Advanced Software Technologies
for Post-Peta Scale Computing: The Japanese Post-Peta CREST Research Project. Ed. by M.
Sato. Singapore: Springer Singapore, 2019, pp. 77–98.

[62] C. Burstedde; J. Holke. “p4est: Scalable Algorithms for Parallel Adaptive Mesh Refine-
ment.” JUQUEEN Extreme Scaling Workshop 2016. Ed. by D. Brömmel; W. Frings; B. J. N.
Wylie. JSC Internal Report FZJ-JSC-IB-2016-01. Jülich Supercomputing Centre, 2016,
pp. 49–54.

[63] U.-L. Pen. “A Linear Moving Adaptive Particle-Mesh N-Body Algorithm.” The Astrophysical
Journal Supplement Series 100 (1995), pp. 269–280.

[64] M. Berger; P. Colella. “Local adaptive mesh refinement for shock hydrodynamics.” Journal
of Computational Physics 82.1 (1989), pp. 64–84.

[65] S. Adjerid; J. Flaherty. “A Local Refinement Finite-Element Method for Two-Dimensional
Parabolic Systems.” SIAM Journal on Scientific and Statistical Computing 9.5 (1988),
pp. 792–811.

[66] A. Dubey; A. Almgren; J. Bell; M. Berzins; S. Brandt; G. Bryan; P. Colella; D. Graves;
M. Lijewski; F. Löffler; B. O’Shea; E. Schnetter; B. Van Straalen; K. Weide. “A Survey of
High Level Frameworks in Block-structured Adaptive Mesh Refinement Packages.” Journal
of Parallel and Distributed Computing 74.12 (2014), pp. 3217–3227.

[67] R. Deiterding. “Block-structured Adaptive Mesh Refinement - Theory, Implementation and
Application.” ESIAM Proceedings. Ed. by E. Cancès; V. Louvet; M. Massot. Vol. 34. 2011,
pp. 97–150.

[68] BoxLib. https://boxlib-codes.github.io/. 2011.

[69] A. S. Almgren; J. B. Bell; M. J. Lijewski; Z. Luki; E. Van Andel. “Nyx: A Massively Parallel
AMR Code for Computational Cosmology.” The Astrophysical Journal 765.1 (2013), p. 39.

[70] W. Zhang; A. Almgren; M. Day; T. Nguyen; J. Shalf; D. Unat. “BoxLib with Tiling: An AMR
Software Framework.” SIAM J. Scientific Computing (2016).

[71] M. Zingale; A. S. Almgren; M. G. Barrios Sazo; V. E. Beckner; J. B. Bell; B. Friesen; A. M.
Jacobs; M. P. Katz; C. M. Malone; A. J. Nonaka; D. E. Willcox; W. Zhang. “Meeting the
Challenges of Modeling Astrophysical Thermonuclear Explosions: Castro, Maestro and
the AMReX Astrophysics Suite.” 2017.

154 BIBLIOGRAPHY

[72] E. Schnetter; S. H. Hawley; I. Hawke. “Evolutions in 3D numerical relativity using fixed
mesh refinement.” Classical and Quantum Gravity 21.6 (2004), p. 1465.

[73] E. Schnetter; P. Diener; E. N. Dorband; M. Tiglio. “A multi-block infrastructure for three-
dimensional time-dependent numerical relativity.” Classical and Quantum Gravity 23.16
(2006), S553.

[74] T. Goodale; G. Allen; G. Lanfermann; J. Massó; T. Radke; E. Seidel; J. Shalf. “The Cactus
Framework and Toolkit: Design and Applications.” Proceedings of the 5th International
Conference on High Performance Computing for Computational Science. VECPAR’02. Porto,
Portugal: Springer-Verlag, 2003, pp. 197–227.

[75] M. Adams; P. Colella; D. Graves; J. N. Johnson; N. D. Keen; T. J. Ligocki; D. F. Martin;
P. W. McCorquodale; D. Modiano; P. O. Schwartz; T. D. Sternberg; B. Van Straalen. Chombo
Software Package for AMR Applications Design Document. Tech. rep. Applied Numerical Al-
gorithms Group, Computational Research Division, Larence Berkeley National Laboratory,
Berkeley, CA, 2015.

[76] G. L. Bryan; M. L. Norman; B. W. O’Shea; T. Abel; J. H. Wise; M. J. Turk; D. R. Reynolds;
D. C. Collins; P. Wang; S. W. Skillman; B. Smith; R. P. Harkness; J. Bordner; J.-h. Kim;
M. Kuhlen; H. Xu; N. Goldbaum; C. Hummels; A. G. Kritsuk; E. Tasker; S. Skory; C. M.
Simpson; O. Hahn; J. S. Oishi; G. C. So; F. Zhao; R. Cen; Y. Li; T. E. Collaboration.
“ENZO: An Adaptive Mesh Refinement Code for Astrophysics.” The Astrophysical Journal
Supplement Series 211.2 (2014), p. 19.

[77] T. Weinzierl; M. Mehl. “Peano A Traversal and Storage Scheme for Octree-Like Adaptive
Cartesian Multiscale Grids.” SIAM Journal on Scientific Computing 33.5 (2011), pp. 2732–
2760.

[78] M. Wahib; N. Maruyama; T. Aoki. “Daino: A High-Level Framework for Parallel and
Efficient AMR on GPUs.” SC16: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 2016, pp. 621–632.

[79] H. Sundar; R. S. Sampath; G. Biros. “Bottom-Up Construction and 2:1 Balance Refinement
of Linear Octrees in Parallel.” SIAM Journal on Scientific Computing 30.5 (2008), pp. 2675–
2708.

[80] B. Fryxell; K. Olson; P. Ricker; F. X. Timmes; M. Zingale; D. Q. Lamb; P. MacNeice; R.
Rosner; J. W. Truran; H. Tufo. “FLASH: An Adaptive Mesh Hydrodynamics Code for
Modeling Astrophysical Thermonuclear Flashes.” The Astrophysical Journal Supplement
Series 131.1 (2000), p. 273.

[81] A. Dubey; K. Antypas; M. K. Ganapathy; L. B. Reid; K. Riley; D. Sheeler; A. Siegel; K. Weide.
“Extensible component-based architecture for FLASH, a massively parallel, multiphysics
simulation code.” Parallel Computing 35.10 (2009), pp. 512–522.

[82] H. Schive; Y. Tsai; T. Chiueh. “Gamer: A graphic processing unit accelerated adaptive-
mesh-refinement code for astrophysics.” The Astrophysical Journal Supplement Series 186
(2010), p. 457.

[83] T. Tu; D. R. O’Hallaron; O. Ghattas. “Scalable Parallel Octree Meshing for TeraScale
Applications.” SC ’05: Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis. ACM/IEEE, 2005.

[84] A. Lintermann; S. Schlimpert; J. Grimmen; C. Günther; M. Meinke; W. Schröder. “Massively
parallel grid generation on HPC systems.” Computer Methods in Applied Mechanics and
Engineering 277 (2014), pp. 131–153.

BIBLIOGRAPHY 155

[85] C. Burstedde; L. C. Wilcox; O. Ghattas. “p4est: Scalable Algorithms for Parallel Adaptive
Mesh Refinement on Forests of Octrees.” SIAM Journal on Scientific Computing 33.3
(2011), pp. 1103–1133.

[86] T. Isaac; C. Burstedde; L. C. Wilcox; O. Ghattas. “Recursive Algorithms for Distributed
Forests of Octrees.” SIAM J. Sci. Comput. 37.5 (2015), pp. C497–C531.

[87] J. Holke. “Scalable Algorithms for Parallel Tree-based Adaptive Mesh Refinement with
General Element Types.” PhD thesis. Universität Bonn, 2018.

[88] C. Burstedde; J. Holke. “A Tetrahedral Space-Filling Curve for Nonconforming Adaptive
Meshes.” SIAM Journal on Scientific Computing 38.5 (2016), pp. C471–C503.

[89] H. G. Klimach; M. Hasert; J. Zudrop; S. P. Roller. “Distributed octree mesh infrastructure
for flow simulations.” European Congress on Computational Methods in Applied Sciences
and Engineering. 2012, pp. 1–15.

[90] S. Roller; J. Bernsdorf; H. Klimach; M. Hasert; D. Harlacher; M. Cakircali; S. Zimny;
K. Masilamani; L. Didinger; J. Zudrop. “An Adaptable Simulation Framework Based on a
Linearized Octree.” High Performance Computing on Vector Systems 2011. Ed. by M. Resch;
X. Wang; W. Bez; E. Focht; H. Kobayashi; S. Roller. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 93–105.

[91] H. Klimach; K. Jain; S. Roller. “End-to-end parallel simulations with APES.” Advances in
Parallel Computing 25 (2014), pp. 703–711.

[92] S. G. Parker. “A component-based architecture for parallel multi-physics PDE simulation.”
Future Generation Computer Systems 22.1-2 (2006), pp. 204–216.

[93] C. Feichtinger; S. Donath; H. Köstler; J. Götz; U. Rüde. “WaLBerla: HPC software design
for computational engineering simulations.” Journal of Computational Science 2 (2 2011),
pp. 105–112.

[94] G. M. Morton. A computer Oriented Geodetic Data Base; and a New Technique in File
Sequencing. Tech. rep. IBM Ltd., 1966.

[95] C. Burstedde; J. Holke; T. Isaac. “Bounds on the number of discontinuities of Morton-type
space-filling curves” (2015).

[96] D. Hilbert. “Über die stetige Abbildung einer Linie auf ein Flächenstück.” Mathematische
Annalen 38 (1891), pp. 459–460.

[97] G. Peano. “Sur une courbe, qui remplit toute une aire plane.” Mathematische Annalen
36.1 (1890), pp. 157–160.

[98] W. Sierpiski. “Sur une nouvelle courbe continue qui remplit toute une aire plane.” Bull.
Acad. Sci. Cracovie (Sci. math. et nat. Serie A) (1912), pp. 462–478.

[99] M. Bader. Space-filling curves: an introduction with applications in scientific computing.
Heidelberg, New York [u.a.]: Springer, 2013.

[100] P. M. Campbell; K. D. Devine; J. E. Flaherty; L. G. Gervasio; J. D. Teresco. “Dynamic
octree load balancing using space-filling curves.” Williams College Department of Computer
Science, Technical Report (2003), pp. 1–26.

[101] W. F. Mitchell. “The full domain partition approach to distributing adaptive grids.” Applied
Numerical Mathematics 26.1 (1998), pp. 265–275.

[102] D. E. Knuth. The Art of Computer Programming, Volume 1 (3rd Ed.): Fundamental Algo-
rithms. Redwood City, CA, USA: Addison Wesley Longman Publishing Co., Inc., 1997.

156 BIBLIOGRAPHY

[103] J. M. Morris. “Traversing binary trees simply and cheaply.” Information Processing Letters
9.5 (1979), pp. 197–200.

[104] A. Pnar; C. Aykanat. “Fast optimal load balancing algorithms for 1D partitioning.” Journal
of Parallel and Distributed Computing 64.8 (2004), pp. 974–996.

[105] T. Tu; D. R. O’Hallaron. “Balance refinement of massive linear octree datasets.” Technical
Report CMU-CS-04 (2004).

[106] F. Kohlgrüber. “Visualisierung von oktalbaumbasierten kartesischen Gittern.” Bachelor’s
thesis. Universität Stuttgart, IPVS/SGS, 2016.

[107] T. Isaac; C. Burstedde; O. Ghattas. “Low-cost parallel algorithms for 2:1 octree bal-
ance.” Proceedings of the 2012 IEEE 26th International Parallel and Distributed Processing
Symposium, IPDPS 2012 (2012), pp. 426–437.

[108] L. Greengard; V. Rokhlin. “A fast algorithm for particle simulations.” Journal of Computa-
tional Physics 73.2 (1987), pp. 325–348.

[109] M. S. Warren; J. K. Salmon. “A Parallel Hashed Oct-Tree N-body Algorithm.” Proceedings
of the 1993 ACM/IEEE Conference on Supercomputing. Supercomputing ’93. Portland,
Oregon, USA: ACM, 1993, pp. 12–21.

[110] L. Dalcin; R. Bradshaw; K. Smith; C. Citro; S. Behnel; D. S. Seljebotn. “Cython: The Best
of Both Worlds.” Computing in Science & Engineering 13 (2010), pp. 31–39.

[111] G. Inci; A. Arnold; A. Kronenburg; R. Weeber. “Modeling Nanoparticle Agglomeration
using Local Interactions.” Aerosol Science and Technology 48.8 (2014), pp. 842–852.

[112] C. Schober; D. Keerl; M. Lehmann; M. Mehl. “Simulating The Interaction of Electro-
statically Charged Particles in the Inflow Area of Cabin Air Filters Using a Fully Coupled
System.” Coupled Problems in Science and Engineering VII. ed. by M. Papadrakakis; E.
Oñate; B. Schrefler. 2017.

[113] J. Höpfner; T. Richter; P. Koovan; C. Holm; M. Wilhelm. “Seawater desalination via
hydrogels: Coarse grained simulations and practical realisation.” Progr. Colloid. Polym.
Sci. Progress in Colloid and Polymer Science 140.140 (2013). Ed. by G. Sadowski; W.
Richtering.

[114] B. J. Reynwar; G. Illya; V. A. Harmandaris; M. M. Muller; K. Kremer; M. Deserno. “Ag-
gregation and vesiculation of membrane proteins by curvature-mediated interactions.”
Nature 447.7143 (2007), pp. 461–464.

[115] M. Kuron; A. Arnold. “Role of geometrical shape in like-charge attraction of DNA.”
European Physical Journal E: Soft Matter 38 (2015), p. 20.

[116] K. Breitsprecher; P. Koovan; C. Holm. “Coarse-grained simulations of an ionic liquid-based
capacitor: I. Density, ion size, and valency effects.” Journal of Physics: Condensed Matter
26.28 (2014), p. 284108.

[117] K. Breitsprecher; P. Koovan; C. Holm. “Coarse-grained simulations of an ionic liquid-
based capacitor: II. Asymmetry in ion shape and charge localization.” Journal of Physics:
Condensed Matter 26.28 (2014), p. 284114.

[118] F. Capuani; I. Pagonabarraga; D. Frenkel. “Discrete solution of the electrokinetic equa-
tions.” The Journal of Chemical Physics 121.2 (2004), pp. 973–986.

[119] A. Einstein. “Über die von der molekularkinetischen Theorie der Wärme geforderte
Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen.” Annalen der Physik
322.8 (1905), pp. 549–560.

BIBLIOGRAPHY 157

[120] M. von Smoluchowski. “Zur kinetischen Theorie der Brownschen Molekularbewegung
und der Suspensionen.” Annalen der Physik 326.14 (1906), pp. 756–780.

[121] G. Rempfer; G. B. Davies; C. Holm; J. de Graaf. “Reducing spurious flow in simulations of
electrokinetic phenomena.” The Journal of Chemical Physics 145.4 (2016), p. 044901.

[122] Y. H. Qian; D. D’Humières; P. Lallemand. “Lattice BGK Models for Navier-Stokes Equation.”
EPL (Europhysics Letters) 17.6 (1992), p. 479.

[123] S. Chapman; T. Cowling. “The Mathematical Theory of Non-uniform Gases: An Account
of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge
Mathematical Library” (1970), pp. 27–52.

[124] P. L. Bhatnagar; E. P. Gross; M. Krook. “A model for collision processes in gases. I. Small
amplitude processes in charged and neutral one-component systems.” Physical Review
94.3 (1954), pp. 511–525.

[125] I. Ginzburg; F. Verhaeghe; D. dHumières. “Two-relaxation-time lattice Boltzmann scheme:
About parametrization, velocity, pressure and mixed boundary conditions.” Communica-
tions in computational physics 3.2 (2008), pp. 427–478.

[126] I. Ginzburg; F. Verhaeghe; D. dHumieres. “Study of simple hydrodynamic solutions with
the two-relaxation-times lattice Boltzmann scheme.” Communications in computational
physics 3.3 (2008), pp. 519–581.

[127] D. dHumières; I. Ginzburg; M. Krafczyk; P. Lallemand; L.-S. Luo. “Multiple-relaxation-time
lattice Boltzmann models in three dimensions.” Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences 360.1792 (2002), pp. 437–451.

[128] L.-S. Luo; W. Liao; X. Chen; Y. Peng; W. Zhang. “Numerics of the lattice Boltzmann method:
Effects of collision models on the lattice Boltzmann simulations.” Physical Review E 83.5
(2011), p. 056710.

[129] U. D. Schiller. “Thermal fluctuations and boundary conditions in the lattice Boltzmann
method.” PhD thesis. Johannes Gutenberg-Universität, Mainz, 2008.

[130] L. Li; R. Mei; J. F. Klausner. “Boundary conditions for thermal lattice Boltzmann equation
method.” Journal of Computational Physics 237 (2013), pp. 366–395.

[131] R. Deiterding; S. L. Wood. “Predictive wind turbine simulation with an adaptive lattice
Boltzmann method for moving boundaries.” Journal of Physics: Conference Series 753.8
(2016), p. 082005.

[132] A. Pasquali; M. Geier; M. Krafczyk. “Near-wall treatment for the simulation of turbu-
lent flow by the cumulant lattice Boltzmann method.” Computers & Mathematics with
Applications (2017).

[133] X. Shan; X.-F. Yuan; H. Chen. “Kinetic Theory Representation of Hydrodynamics: A Way
Beyond the NavierStokes Equation.” Journal of Fluid Mechanics 550 (2006), pp. 413–441.

[134] M. Geier; A. Greiner; J. G. Korvink. “Cascaded digital lattice Boltzmann automata for high
Reynolds number flow.” Phys. Rev. E 73 (6 2006), p. 066705.

[135] P. Asinari. “Generalized local equilibrium in the cascaded lattice Boltzmann method.”
Phys. Rev. E 78 (1 2008), p. 016701.

[136] S. Seeger; H. Hoffmann. “The cumulant method for computational kinetic theory.” Con-
tinuum Mechanics and Thermodynamics 12.6 (2000), pp. 403–421.

158 BIBLIOGRAPHY

[137] M. Geier; M. Schönherr; A. Pasquali; M. Krafczyk. “The cumulant lattice Boltzmann
equation in three dimensions: Theory and validation.” Computers & Mathematics with
Applications 70.4 (2015), pp. 507–547.

[138] K. Kutscher; M. Geier; M. Krafczyk. “Multiscale simulation of turbulent flow interacting
with porous media based on a massively parallel implementation of the cumulant lattice
Boltzmann method.” Computers & Fluids (2018).

[139] M. Wittmann; T. Zeiser; G. Hager; G. Wellein. “Modeling and analyzing performance for
highly optimized propagation steps of the lattice Boltzmann method on sparse lattices.”
CoRR abs/1410.0412 (2014).

[140] M. Geier; M. Schönherr. “Esoteric Twist: An Efficient in-Place Streaming Algorithmus
for the Lattice Boltzmann Method on Massively Parallel Hardware.” Computation 5.19
(2017), p. 15.

[141] Adhikari, R.; Stratford, K.; Cates, M. E.; Wagner, A. J. “Fluctuating lattice Boltzmann.”
Europhys. Lett. 71.3 (2005), pp. 473–479.

[142] G. Wellein; T. Zeiser; G. Hager; S. Donath. “On the single processor performance of simple
lattice Boltzmann kernels.” Computers & Fluids 35.8-9 (2006), pp. 910–919.

[143] D. Roehm; A. Arnold. “Lattice Boltzmann simulations on GPUs with ESPResSo.” The
European Physical Journal Special Topics 210.1 (2012), pp. 89–100.

[144] A. Arnold; F. Fahrenberger; C. Holm; O. Lenz; M. Bolten; H. Dachsel; R. Halver; I.
Kabadshow; F. Gähler; F. Heber; J. Iseringhausen; M. Hofmann; M. Pippig; D. Potts; G.
Sutmann. “Comparison of scalable fast methods for long-range interactions.” Phys. Rev. E
88 (6 2013), p. 063308.

[145] D. C. Rapaport. The Art of Molecular Dynamics Simulation. Cambridge University Press,
1995.

[146] J. M. Haile. Molecular Dynamics Simulation. John Wiley & Sons, Ltd., 1997. 512 pp.

[147] M. Griebel; S. Knapek; G. Zumbusch. Numerical Simulation in Molecular Dynamics. 2007.

[148] R. W. Hockney; J. W. Eastwood. Computer Simulation Using Particles. Bristol, PA, USA:
Taylor & Francis, Inc., 1988.

[149] M. Allen; D. Tildesley. Computer Simulation of Liquids. Oxford Science Publ. Clarendon
Press, 1989.

[150] L. Verlet. “Computer "Experiments"on Classical Fluids. I. Thermodynamical Properties of
Lennard-Jones Molecules.” Phys. Rev. 159 (1 1967), pp. 98–103.

[151] J. E. Jones. “On the Determination of Molecular Fields. II. From the Equation of State of a
Gas.” Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences 106.738 (1924), pp. 463–477.

[152] J. E. Lennard-Jones. “Cohesion.” Proceedings of the Physical Society 43.5 (1931), pp. 461–
482.

[153] G. Mie. “Zur kinetischen Theorie der einatomigen Körper.” Annalen der Physik 316.8
(1903), pp. 657–697.

[154] P. P. Ewald. “Die Berechnung optischer und elektrostatischer Gitterpotentiale.” Annalen
der Physik 369.3 (1921), pp. 253–287.

BIBLIOGRAPHY 159

[155] S. W. de Leeuw; J. W. Perram; E. R. Smith. “Simulation of electrostatic systems in periodic
boundary conditions. I. Lattice sums and dielectric constants.” Proceedings of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences 373.1752 (1980),
pp. 27–56.

[156] B. Dünweg; A. J. C. Ladd. “Lattice Boltzmann Simulations of Soft Matter Systems” (2009),
pp. 89–166.

[157] P. Ahlrichs; B. Dünweg. “Simulation of a single polymer chain in solution by combining
lattice Boltzmann and molecular dynamics.” The Journal of chemical physics 111.17 (1999),
pp. 8225–8239.

[158] O. Filippova; D. Hänel. “Grid Refinement for Lattice-BGK Models.” Journal of Computa-
tional Physics 147.1 (1998), pp. 219–228.

[159] O. Filippova; D. Hänel. “Boundary-Fitting and Local Grid Refinement for Lattice-BGK
Models.” International Journal of Modern Physics C 09.08 (1998), pp. 1271–1279.

[160] O. Filippova; D. Hänel. “Acceleration of Lattice-BGK Schemes with Grid Refinement.”
Journal of Computational Physics 165.2 (2000), pp. 407–427.

[161] D. Yu; R. Mei; W. Shyy. “A multi-block lattice Boltzmann method for viscous fluid flows.”
International Journal for Numerical Methods in Fluids 39.2 (), pp. 99–120.

[162] B. Crouse; E. Rank; M. Krafczyk; J. Tölke. “A LB-Based Approach For Adaptive Flow
Simulations.” International Journal of Modern Physics B 17.01n02 (2003), pp. 109–112.

[163] A. Dupuis; B. Chopard. “Theory and applications of an alternative lattice Boltzmann grid
refinement algorithm.” Phys. Rev. E 67 (6 2003), p. 066707.

[164] J. Tölke; S. Freudiger; M. Krafczyk. “An adaptive scheme using hierarchical grids for lattice
Boltzmann multi-phase flow simulations.” Computers & Fluids 35.8 (2006). Proceedings
of the First International Conference for Mesoscopic Methods in Engineering and Science,
pp. 820–830.

[165] D. Lagrava; O. Malaspinas; J. Latt; B. Chopard. “Advances in multi-domain lattice Boltz-
mann grid refinement.” Journal of Computational Physics 231.14 (2012), pp. 4808–4822.

[166] Y. Kuwata; K. Suga. “Imbalance-correction grid-refinement method for lattice Boltzmann
flow simulations.” Journal of Computational Physics 311 (2016), pp. 348–362.

[167] C. E. Shannon. “Communication in the presence of noise.” Proceedings of the IRE 37.1
(1949), pp. 10–21.

[168] H. Chen. “Volumetric formulation of the lattice Boltzmann method for fluid dynamics:
Basic concept.” Physical Review E 58.3 (1998), pp. 3955–3963.

[169] H. Chen; O. Filippova; J. Hoch; K. Molvig; R. Shock; C. Teixeira; R. Zhang. “Grid refinement
in lattice Boltzmann methods based on volumetric formulation.” Physica A: Statistical
Mechanics and its Applications 362.1 (2006), pp. 158–167.

[170] M. Rohde; D. Kandhai; J. J. Derksen; H. E. A. Van den Akker. “A generic, mass conservative
local grid refinement technique for lattice-Boltzmann schemes.” International Journal for
Numerical Methods in Fluids 51.4 (2006), pp. 439–468.

[171] P. Neumann; T. Neckel. “A dynamic mesh refinement technique for Lattice Boltzmann
simulations on octree-like grids.” Computational Mechanics 51.2 (2012), pp. 237–253.

160 BIBLIOGRAPHY

[172] M. Geier; A. Greiner; J. G. Korvink. “Bubble functions for the lattice Boltzmann method
and their application to grid refinement.” The European Physical Journal Special Topics
171.1 (2009), pp. 173–179.

[173] J. Tölke; M. Krafczyk. “Second order interpolation of the flow field in the lattice Boltzmann
method.” Computers & Mathematics with Applications 58.5 (2009). Mesoscopic Methods
in Engineering and Science, pp. 898–902.

[174] A. Fakhari; T. Lee. “Finite-difference lattice Boltzmann method with a block-structured
adaptive-mesh-refinement technique.” Physical Review E 89.3 (2014), p. 033310.

[175] A. Fakhari; T. Lee. “Numerics of the lattice boltzmann method on nonuniform grids:
Standard LBM and finite-difference LBM.” Computers & Fluids 107 (2015), pp. 205–213.

[176] A. Fakhari; M. Geier; T. Lee. “A mass-conserving lattice Boltzmann method with dynamic
grid refinement for immiscible two-phase flows.” Journal of Computational Physics 315
(2016), pp. 434–457.

[177] X. Shi; J. Lin; Z. Yu. “Discontinuous Galerkin spectral element lattice Boltzmann method on
triangular element.” International Journal for Numerical Methods in Fluids 42.11 (2003),
pp. 1249–1261.

[178] M. Min; T. Lee. “A spectral-element discontinuous Galerkin lattice Boltzmann method for
nearly incompressible flows.” Journal of Computational Physics 230.1 (2011), pp. 245–259.

[179] M. D. Mazzeo. “Fast discontinuous Galerkin lattice-Boltzmann simulations on GPUs via
maximal kernel fusion.” Computer Physics Communications 184.3 (2013), pp. 537–549.

[180] K. C. Uga; M. Min; T. Lee; P. F. Fischer. “Spectral-element discontinuous Galerkin lattice
Boltzmann simulation of flow past two cylinders in tandem with an exponential time
integrator.” Computers & Mathematics with Applications 65.2 (2013). Special Issue on
Mesoscopic Methods in Engineering and Science (ICMMES-2010, Edmonton, Canada),
pp. 239–251.

[181] S. S. Patel; M. Min; K. C. Uga; T. Lee. “A spectral-element discontinuous Galerkin lat-
tice Boltzmann method for simulating natural convection heat transfer in a horizontal
concentric annulus.” Computers & Fluids 95 (2014), pp. 197–209.

[182] A. Zadehgol; M. Ashrafizaadeh; S. Musavi. “A nodal discontinuous Galerkin lattice
Boltzmann method for fluid flow problems.” Computers & Fluids 105 (2014), pp. 58–65.

[183] S.-L. Han; P. Zhu; Z.-Q. Lin. “Two-dimensional interpolation-supplemented and Taylor-
series expansion-based lattice Boltzmann method and its application.” Communications in
Nonlinear Science and Numerical Simulation 12.7 (2007), pp. 1162–1171.

[184] K. Qu; C. Shu; Y. T. Chew. “An Isoparametric Transformation-Based Interpolation-
Supplemented Lattice Boltzmann Method and Its Application.” Modern Physics Letters B
24.13 (2010), pp. 1315–1318.

[185] M. Mirzaei; A. Poozesh. “Simulation of fluid flow in a body-fitted grid system using the
lattice Boltzmann method.” Phys. Rev. E 87 (6 2013), p. 063312.

[186] Y. Li; E. J. LeBoeuf; P. K. Basu. “Least-squares finite-element scheme for the lattice
Boltzmann method on an unstructured mesh.” Phys. Rev. E 72 (4 2005), p. 046711.

[187] D. V. Patil; K. Lakshmisha. “Finite volume TVD formulation of lattice Boltzmann simulation
on unstructured mesh.” Journal of Computational Physics 228.14 (2009), pp. 5262–5279.

BIBLIOGRAPHY 161

[188] T. Hübner; S. Turek. “Efficient monolithic simulation techniques for the stationary Lattice
Boltzmann equation on general meshes.” Computing and Visualization in Science 13.3
(2010), pp. 129–143.

[189] A. Harten. “Multiresolution algorithms for the numerical solution of hyperbolic conserva-
tion laws.” Communications on Pure and Applied Mathematics 48.12 (1995), pp. 1305–
1342.

[190] D. L. George; R. J. LeVeque. “Finite Volume Methods and Adaptive Refinement for Global
Tsunami Propagation and Local Inundation.” Science of Tsunami Hazards 24.5 (2006),
pp. 319–328.

[191] C. Burstedde; D. Calhoun; K. Mandli; A. R. Terrel. “ForestClaw: Hybrid forest-of-octrees
AMR for hyperbolic conservation laws.” Advances in Parallel Computing 25 (2014), pp. 253–
262.

[192] D. A. Calhoun; C. Burstedde. “ForestClaw: A parallel algorithm for patch-based adaptive
mesh refinement on a forest of quadtrees.” CoRR abs/1703.03116 (2017).

[193] F. Losasso; F. Gibou; R. Fedkiw. “Simulating Water and Smoke with an Octree Data
Structure.” ACM SIGGRAPH 2004 Papers. SIGGRAPH ’04. Los Angeles, California: ACM,
2004, pp. 457–462.

[194] F. Losasso; R. Fedkiw; S. Osher. “Spatially adaptive techniques for level set methods and
incompressible flow.” Computers & Fluids 35.10 (2006), pp. 995–1010.

[195] C. Min; F. Gibou; H. D. Ceniceros. “A supra-convergent finite difference scheme for the
variable coefficient Poisson equation on non-graded grids.” Journal of Computational
Physics 218.1 (2006), pp. 123–140.

[196] H. Chen; C. Min; F. Gibou. “A Supra-Convergent Finite Difference Scheme for the Poisson
and Heat Equations on Irregular Domains and Non-Graded Adaptive Cartesian Grids.” J.
Sci. Comput. 31.1-2 (2007), pp. 19–60.

[197] M. A. Olshanskii; K. M. Terekhov; Y. V. Vassilevski. “An octree-based solver for the incom-
pressible Navier–Stokes equations with enhanced stability and low dissipation.” Computer
& Fluids 84 (2013), pp. 231–246.

[198] C. Xiaolin; M. Zeyao. “A New Scalable Parallel Method for Molecular Dynamics Based on
Cell-Block Data Structure.” Parallel and Distributed Processing and Applications. Ed. by
J. Cao; L. Yang; M. Guo; F. Lau. Vol. 3358. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2005, pp. 757–764.

[199] J. A. Anderson; C. D. Lorenz; A. Travesset. “General purpose molecular dynamics simula-
tions fully implemented on graphics processing units.” Journal of Computational Physics
227.10 (2008), pp. 5342–5359.

[200] B. Hendrickson; K. Devine. “Dynamic load balancing in computational mechanics.”
Computer Methods in Applied Mechanics and Engineering 184.2 (2000), pp. 485–500.

[201] S. Tirthapura; S. Seal; S. Aluru. “A Formal Analysis of Space Filling Curves for Parallel
Domain Decomposition.” 2006 International Conference on Parallel Processing (ICPP’06).
2006, pp. 505–512.

[202] A. Nakano; T. Campbell. “An adaptive curvilinear-coordinate approach to dynamic load
balancing of parallel multiresolution molecular dynamics.” Parallel Computing 23.10
(1997), pp. 1461–1478.

162 BIBLIOGRAPHY

[203] M. Buchholz. “Framework zur Parallelisierung von Molekulardynamiksimulationen in
verfahrenstechnischen Anwendungen.” PhD thesis. München: Institut für Informatik,
Technische Universität München, 2010.

[204] R. Prat; L. Colombet; R. Namyst. “Combining Task-based Parallelism and Adaptive Mesh
Refinement Techniques in Molecular Dynamics Simulations.” Proceedings of the 47th
International Conference on Parallel Processing. ICPP 2018. Eugene, OR, USA: ACM, 2018,
48:1–48:10.

[205] S. Hirschmann; M. Brunn; M. Lahnert; C. W. Glass; M. Mehl; D. Pflüger. “Load Balancing
with p4est for Short-Range Molecular Dynamics with ESPResSo.” Ed. by S. Bassini; M.
Danelutto; P. Dazzi; G. R. Joubert; F. Peters. Vol. 32. Advances in Parallel Computing. IOS
Press, 2017, pp. 455–464.

[206] M. Mehl; M. Lahnert. “Adaptive grid implementation for parallel continuum mechanics
methods in particle simulations.” The European Physical Journal Special Topics 227.14
(2019), pp. 1757–1778. Erratum. Lahnert; Burstedde; Mehl [226].

[207] S. Hirschmann; M. Lahnert; C. Schober; M. Brunn; M. Mehl; D. Pflüger. “Load-Balancing
and Spatial Adaptivity for Coarse-Grained Molecular Dynamics Applications.” High Per-
formance Computing in Science and Engineering ’18. Ed. by W. E. Nagel; D. H. Kröner;
M. M. Resch. Springer International Publishing, 2018, pp. 409–423.

[208] S. Hirschmann; D. Pflüger; C. W. Glass. “Towards Understanding Optimal Load-Balancing
of Heterogeneous Short-Range Molecular Dynamics.” Workshop on High Performance
Computing and Big Data in Molecular Engineering 2016 (HBME 2016). Hyderabad, India,
2016.

[209] C. Burstedde; O. Ghattas; G. Stadler; T. Tu; L. C. Wilcox. “Towards adaptive mesh PDE
simulations on petascale computers.” Proceedings of Teragrid 8 (2008).

[210] L. C. Wilcox; G. Stadler; C. Burstedde; O. Ghattas. “A high-order discontinuous Galerkin
method for wave propagation through coupled elastic-acoustic media.” Journal of Compu-
tational Physics 229.24 (2010), pp. 9373–9396.

[211] C. Burstedde. Parallel tree algorithms for AMR and non-standard data access. 2018.

[212] O. A. Hickey; C. Holm; J. L. Harden; G. W. Slater. “Implicit method for simulating electro-
hydrodynamics of polyelectrolytes.” Physical review letters 105.14 (2010), p. 148301.

[213] G. Rempfer. “A Lattice based Model for Electrokinetics.” Master’s thesis. University of
Stuttgart, 2013.

[214] G. M. Amdahl. “Validity of the Single Processor Approach to Achieving Large Scale
Computing Capabilities.” Proceedings of the April 18-20, 1967, Spring Joint Computer
Conference. AFIPS ’67 (Spring). Atlantic City, New Jersey: ACM, 1967, pp. 483–485.

[215] J. L. Gustafson. “Reevaluating Amdahl’s Law.” Commun. ACM 31.5 (1988), pp. 532–533.

[216] S. Hirschmann; C. W. Glass; D. Pflüger. “Enabling unstructured domain decompositions
for inhomogeneous short-range molecular dynamics in ESPResSo.” The European Physical
Journal Special Topics 227.14 (2019), pp. 1779–1788.

[217] G. Karypis; V. Kumar. “A Fast and High Quality Multilevel Scheme for Partitioning Irregular
Graphs.” SIAM Journal on Scientific Computing 20.1 (1998), pp. 359–392.

[218] K. Schloegel; G. Karypis; V. Kumar. “Parallel Multilevel Algorithms for Multi-constraint
Graph Partitioning (Distinguished Paper).” Proceedings from the 6th International Euro-Par

BIBLIOGRAPHY 163

Conference on Parallel Processing. Euro-Par ’00. Berlin, Heidelberg: Springer-Verlag, 2000,
pp. 296–310.

[219] C. Begau; G. Sutmann. “Adaptive dynamic load-balancing with irregular domain de-
composition for particle simulations.” Computer Physics Communications 190.0 (2015),
pp. 51–61.

[220] W. Hackbusch. Multi-grid methods and applications. Vol. 4. Springer series in computational
mathematics. Berlin [u.a.]: Springer, 1985, pp. XIV, 377.

[221] H. Sundar; G. Biros; C. Burstedde; J. Rudi; O. Ghattas; G. Stadler. “Parallel geometric-
algebraic multigrid on unstructured forests of octrees.” SC12: Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and Analysis.
2012.

[222] B. Kurz. “Lattice-Boltzmann Simulationen auf mehreren GPUs.” Bachelor’s thesis. Univer-
sity of Stuttgart, 2018.

[223] P. Bastian; M. Blatt; A. Dedner; C. Engwer; R. Klöfkorn; M. Ohlberger; O. Sander. “A
generic grid interface for parallel and adaptive scientific computing. Part I: abstract
framework.” Computing 82.2 (2008), pp. 103–119.

[224] P. Bastian; M. Blatt; A. Dedner; C. Engwer; R. Klöfkorn; R. Kornhuber; M. Ohlberger;
O. Sander. “A generic grid interface for parallel and adaptive scientific computing. Part II:
implementation and tests in DUNE.” Computing 82.2 (2008), pp. 121–138.

[225] T. Weinzierl; R. Wittmann; K. Unterweger; M. Bader; A. Breuer; S. Rettenberger. “Hardware-
aware block size tailoring on adaptive spacetree grids for shallow water waves.” HiStencils
2014 - Proceedings of the 1st international workshop on high-performance stencil computa-
tions. Ed. by A. GröSSlinger; H. Köstler. HiPEAC. HiStencils, 2014, pp. 57–64.

[226] M. Lahnert; C. Burstedde; M. Mehl. “Erratum to: Adaptive grid implementation for
parallel continuum mechanics methods in particle simulations.” European Physical Journal
Special Topics 227 (2019), pp. 1757–1778.

All URLs have last been checked on August 28, 2019.

165

C Declaration of Authorship

I, Michael Stefan Lahnert, declare that this thesis titled, “Adaptive Grid Implementation for

Parallel Continuum Mechanics Methods in Particle Simulations” and the work presented

in it, are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at

the University of Stuttgart.

• Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

• Where I have consulted the published work of others, this is always clearly attributed.

• Where I have quoted from the work of others, the source is always given. Except for

such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Stuttgart, August 28, 2019

Michael Stefan Lahnert

	Contents
	Lists of Figures, Tables, and Algorithms
	List of Symbols and Acronyms
	Preface
	1 Introduction
	1.1 Simulations on Different Time and Length Scales
	1.2 Target System: DNA Translocation Through a Nanopore
	1.3 Integrating Tree-Structured Grids Into Legacy Codes
	1.4 Contributions in This Work

	2 Tree-Structured Cartesian Grids
	2.1 Fundamental Ideas
	2.1.1 Different Ways to Realize Grid-Adaptivity
	2.1.2 Handling Data
	2.1.3 Important Algorithms

	2.2 The p4est Library
	2.3 Summary

	3 Target Software, Models, and Algorithms
	3.1 Target Software ESPResSo Simulation Software
	3.2 Electrokinetic Equations
	3.3 Hydrodynamics: Lattice-Boltzmann Method
	3.3.1 Introduction
	3.3.2 Reducing the Limitations of the LBM
	3.3.3 LBM in ESPResSo

	3.4 Ionic Flux
	3.4.1 Diffusive Flux
	3.4.2 Advective Flux
	3.4.3 Total Ionic Flux

	3.5 Electrostatic Potential
	3.6 Molecular Dynamics
	3.6.1 Short-Range Molecular Dynamics
	3.6.2 Long-Range Molecular Dynamics

	3.7 Parallelization
	3.8 Interaction of Components
	3.9 Summary

	4 Adaptive Discretization of Physical Models
	4.1 Hydrodynamics
	4.1.1 Interpolation Schemes
	4.1.2 Volumetric Schemes
	4.1.3 Data-Dependencies for Volumetric LBM
	4.1.4 Further Schemes

	4.2 Ionic Flux
	4.3 Electrostatic Potential
	4.4 Molecular Dynamics
	4.5 Coupling
	4.6 Summary

	5 Integrating ESPResSo with p4est
	5.1 Preparing p4est for Minimally-Invasive Integration
	5.1.1 Random-Access to Direct Neighbors
	5.1.2 Integration of Virtual Cells

	5.2 Changing the Discretization in ESPResSo
	5.2.1 Data-Layout and Adjusting Kernels
	5.2.2 Coupling Physical Subsystems
	5.2.3 Dynamic Adaptivity in ESPResSo

	5.3 Summary

	6 Computational Results
	6.1 Testing the Implementation
	6.1.1 Lattice-Boltzmann Method
	6.1.2 Molecular Dynamics
	6.1.3 Electrokinetics

	6.2 Performance and Scalability
	6.2.1 Lattice-Boltzmann Method
	Strong Scaling
	Weak Scaling

	6.2.2 Molecular Dynamics
	6.2.3 Coupled Simulations

	6.3 Towards the Full Electrokinetic System

	7 Conclusion
	7.1 Contributions
	7.2 Report on Minimal Invasiveness
	7.3 Outlook

	A LBM Weak Scaling, Absolute Times
	B Bibliography
	C Declaration of Authorship

