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Abstract 

A requirement of future industrial automation systems is the application of intelligence in the context of their optimization, 
adaptation and reconfiguration. This paper begins with an introduction of the definition of (artificial) intelligence to derive a 
framework for artificial intelligence enhanced industrial automation systems: An artificial intelligence component is connected 
with the industrial automation system’s control unit and other entities through a series of standardized interfaces for data and 
information exchange. This framework is then put into context of the intelligent Digital Twin architecture, highlight the latter as a 
possible implementation of such systems. Concluding, a prototypical implementation on the basis of a modular cyber-physical 
production system is described. The intelligent Digital Twin realized this way provides the four fundamental sub-processes of 
intelligence, namely observation, analysis, reasoning and action. A detailed description of all technologies used is given. 
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1. Introduction 

Mass customization [1] and high competition [2] require the 

industrial automation sector to greatly increase productivity as 

well as flexibility [3] or (re)configurability [4]. One approach 

to meet this challenge is the use of cyber-physical systems 

(CPS) equipped with artificial intelligence (AI). A CPS is “an 

integration of computation and physical processes through 

communication infrastructures” [5], which generally enables 

monitoring and controlling of the physical asset in an adaptive 

way [6]–[8].  

The combination of the already existing networking and 

new AI capabilities of future industrial automation systems will 

then enable them to efficiently control real systems and to 

automatically adapt to new customer requirements without the 

need for knowledge or experience of system engineers and 

based only on environmental parameter analysis. One way to 

realize such combination was described by [9], which 

presented an architecture for the integration of AI within the 

Digital Twin, covering all necessary components of a Digital 

Twin to realize various use cases in an AI-enhanced industrial 

automation system. 

Objectives: In this paper, artificial intelligence is first 

discussed generally and related to industrial automation 

forming a framework for artificial intelligence enhanced 

industrial automation systems (Sec. 2). Thereon, an 

architecture for an Intelligent Digital Twin is deduced, which 

enables the realization of this framework (Sec. 3). This 

architecture is then implemented based on various technologies 

prototypically, demonstrating its potential benefits in a 

modular cyber-physical production system (Sec. 4). Finally, a 

summary is given in Sec. 5. 

2. Artificial intelligence in industrial automation 

2.1 Definition of artificial intelligence 

To properly comprehend and apply the term artificial 

intelligence in industrial automated systems, first the human 

intelligence process must be outlined. 
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Intelligence can be defined as the human ability to think 

abstractly and rationally and to thereby derive functional 

actions even in the face of new, meaning previously 

unencountered, problems [10]. From the authors' perspective, 

this human intelligence process can be described in four steps: 

1. Observation and perception of information 

2. Analyzation and (subconscious) storage of this 

information 

3. Reasoning based upon analyzation results  

4. Execution of reasoning results 

The subsequent usage of previously analyzed or processed 

information to enhance reasoning in yet unencountered 

situations, commonly called ‘learning’, is a supplementary 

feature greatly enhancing performance without being required 

for basic intelligence. 

Consequently, AI is an artificial system’s capability to act 

accordingly [11], [12], in our words: AI is the technical 

transformation of aspects of intelligence – namely observing or 

perceiving, analyzing, reasoning and action – into a software 

with the goal of realizing a problem-solving automat.  

The field of AI consists of a large number of sub-fields, 

among which ‘modelling and simulation’, ‘pattern 

recognition’, ‘knowledge-based systems’, ‘robotics’ and 

‘machine learning’ represent the most prominent examples. 

Due to the strong similarities between AI systems’ features in 

all of these sub-fields, the definition of a general AI framework 

for industrial automation systems (IAS) is feasible. 

2.2 AI framework for industrial automation systems 

The authors’ framework for an AI-enhanced IAS is depicted 

in Fig. 1. It is based on the idea of an AI Component enriching 

conventional IAS via new interfaces. 

This AI Component is software situated in the cyber-part of 

a CPS, either locally or in a cloud service accessed via a global 

area network. It collects data supplied by the IAS via a Data 

Acquisition API and its own Information API. Its Networking 

API might provide additional information, giving access to 

other entities, e.g. machines, environment representations or 

users, via common network interfaces. Inside the AI 

Component, the intelligence process is then carried out using 

the information available. The results thereof are relayed to the 

IAS via the Feedback API in order to be executed. The 

Feedback API is used, for example, to transfer new control 

code generated in the AI Component to the system’s Control 

Unit. 

Finally, the AI2AI API provides a direct communication 

interface between different AI Components, either in-domain or 

cross-domain. This allows for the sharing of knowledge and 

increases the overall performance of such systems.  

In order to realize such AI-enhanced IAS, the Intelligent 

Digital Twin can be utilized, providing an already existing 

framework of concepts and interfaces for the implementation 

of AI functionalities. 

3. Intelligent Digital Twin 

Generally, a Digital Twin (DT) is a “virtual representation 

of a physical asset in a CPS, capable of mirroring its static and 

dynamic characteristics [13]. It contains and maps various 

models of a physical asset, of which some are executable, 

called simulation models. Within this context, an asset can be 

an entity that already exists in the real world or can be a 

representation of a future entity that will be constructed.” [9] 

An Intelligent Digital Twin (IDT) is an extension of this 

definition, encompassing the features enumerated above 

enhanced by the ability to observe its physical environment and 

to analyze and learn from it, so that existing models can be 

adapted or the real asset’s interaction with the environment 

caused. The architecture presented in [9] and depicted in Fig. 2 

is therefore to be understood as a specific manifestation of the 

framework for AI-enhanced IAS described in Sec. 2.2: 

As within the conventional DT, the IDT is based on the 

Models of the real asset it represents. Furthermore, it 

incorporates a Model-Management to access the different 

versions thereof, which were created in previous phases of its 

lifecycle [14]. In order to continuously stay synchronized with 

those potentially changing [15] interdisciplinary models, a 

Synchronization Interface is provided. A DT-2-DT Relations 

Fig. 1. AI-enhanced industrial automation system and its components and interfaces 
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component then adds information about other DTs and their 

relation to itself.  

Still exactly like in a conventional DT, an IDT contains a 

Unique ID, allowing identification and addressing of the DT 

throughout its lifecycle, an Organizational or Technical 

Specification component, containing meta-data on the real 

asset, as well as a Data Acquisition Interface collecting and 

storing Operation Data from the real asset. 

However, an IDT consists of several additional components, 

going beyond the functionality of a conventional DT: A DT 

Model Comprehension component adds the capability to 

understand and manage all models and data based upon 

semantic descriptions. Furthermore, all the Services the real 

asset can provide, are stored. And, finally, all information 

provided by the components mentioned so far can be used by 

Intelligent Algorithms providing AI functionalities, e.g. as 

listed in Sec. 2.1. The results thereof are then transferred back 

to the real asset via semantic technologies through the 

Feedback Interface. An interface for communication with other 

IDT, the DT-2-DT-Interface completes the framework, 

allowing semantic exchange of data, models or relations. This 

interface combines both, the AI2AI API and the Networking 

API of the AI-enhanced IAS framework. 

4. Implementation of an intelligent Digital Twin 

To realize the presented architecture, a modular production 

system (MPS) and its IDT were implemented. The MPS is an 

automated system in discrete manufacturing consisting of 

twelve main functional groups (modules, short: FG) that 

together manufacture a product. These FGs are all controlled 

by a central PLC. At the same time, their respective 

decentralized control systems contain Raspberry Pi’s, which 

enables decentralized control.  

In this system, a plastic work piece (as a product) is 

processed in various stations of the system. Fig. 3. illustrates 

the MPS and its FG, namely Stack Magazine, Height 

measurement, Turn, Drill, Drilling hole test, Insert, Press and 

Sorting out FGs. In addition to these FGs, the system consists 

of four conveyor belt FGs, each containing a motor, a belt and 

several light sensors that collectively transport the work piece 

to the workstations. The complete system includes 32 sensors 

and 90 actuators.  

The manufacturing process begins in the MPS with the 

transfer of the work piece through a stacking magazine on the 

conveyor belt. The Stacking magazine FG has the task of 

storing the work pieces and pushing them out to the transfer 

belt. Once the work piece is on the conveyor belt, it is detected 

by the sensors and the conveyor belt transports it to the Height 

measurement FG. In this FG, the sensors are used to check 

whether the work piece has the correct height. In the next 

processing stations, the work piece is first lifted and then turned 

by the grippers of the Turning FG, then a hole is drilled by the 

Drilling FG on the upper side of the work piece. After drilling 

the hole, the work piece is checked in the next station by the 

Drilling hole test FG. When the work piece has reached the 

correct position and the light sensors of the FG are triggered, 

its test pin moves downwards. If the work piece has been drilled 

correctly, the test pin can reach the lower end position. In the 

next station, a nut is inserted into the drilled hole using the 

Insert FG. The Press FG is responsible for pressing the nut into 

the hole if it has not completely been inserted into the hole yet. 

The last step is carried out by the Sort out FG: Its function is to 

sort out the work piece via its sensors if necessary. If a drilled 

work piece without a nut is detected, the work piece is 

considered defective unless this specific work piece was 

ordered without a nut. 

In order to realize the architecture described in Sec. 3, an 

IDT of the MPS is implemented. It consists of various models 

and their relations, operation data and an interface for active 

data acquisition, organizational and technical specifications, 

synchronization interface, feedback interface, model of 

possible services that different actuators can perform, AI-

algorithms and, finally, a model comprehension component. 

Fig. 2. Architecture of the Intelligent Digital Twin according to [9] 
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Fig. 3.  Modular Production System and its Functional Groups (FG) 
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Fig. 4. summarizes the implemented technologies and 

components of the IDT. 

The IDT of the MPS consists of all its multi-disciplinary 

models, e.g. its 3D CAD, electrical circuit, functional and 

simulation models, as well as the organizational and technical 

specifications in the Teamcenter PLM-Platform under a unique 

ID for each mechatronic component in the system. Within this 

demonstrator, the tools NX-Modeling, Line Designer, 

Automation Designer, TIA-Portal, and PLCSIM Advanced 

were used to create multi-disciplinary models of the DT of the 

MPS on the Teamcenter PLM-Platform. In this case, the SOA 

interface of the PLM-Platform is used as the DT’s model 

synchronization interface. This interface allows access to the 

engineering models of the MPS for system engineers or for 

assistance systems to synchronize them automatically: In [9] 

and [15] the authors have described in detail a concept for the 

automated synchronization of the models of the DT and its 

realization by means of an assistance system. 

This assistance system detects the changes in the system by 

means of rule-based analysis of the system’s control software 

at different time points and automatically adapts them to the 

models of the DT by means of its SOA based interface.  

The Raspberry Pi’s, Ethernet, TCP/IP and a database are 

used to implement the active data acquisition and operating 

data components (dynamic and historical sensor data) in the 

architecture. 

The AI algorithms used for this work are k-means clustering 

and autoencoder, by which the information model (model 

comprehension component in the architecture) can be extended 

automatically by analyzing the operating data in the database. 

These algorithms dynamically analyze all sensor and actuator 

data to discover the relations between them and generate an 

information model from all components of the system. For the 

 

 

Fig. 4.  Intelligent Digital Twin of the Modular Production System 

 



 Author name / Procedia CIRP 00 (2019) 000–000  5 

realization of the information model, the ontology method was 

used. In the architecture, the information model is realized with 

OWL technologies. It consists of various abstract models, sub-

models and their dependencies in semantic technology. 

Additionally, a feedback interface with TCP/IP, Raspberry 

Pi’s and Ethernet is implemented between the IDT and the 

MPS. This interface is used to transmit IDT commands to 

Raspberry Pi’s as a service. This allows the actuators in the 

system to be controlled by the IDT.  

The implementation of the DT-2-DT interface was not the 

focus of this work. However, the authors work on various 

technologies such as OWL, agent and cloud technologies in the 

context of standardizing data exchange in a semantic network 

for the implementation of a DT-2-DT interface. This will be 

reported on in the authors’ next publications. 

5. Conclusion 

This paper gives a vision about the future of industrial 

automation systems, which are equipped with artificial 

intelligence algorithms. Accordingly, in this paper a framework 

for intelligent industrial automation systems was presented, 

which can fulfill the four characters of an intelligent system: 

"Observation and perception of information", "Analyzation and 

(subconscious) storage of this information", "Reasoning based 

upon analyzation results" and "Execution of reasoning results". 

Consequently, an architecture for an Intelligent Digital Twin 

was presented, which can realize the characters of the AI 

component within this framework. 

Furthermore, this framework of the AI-enhanced industrial 

automation system was realized by implementing a real asset 

(a modular production system) and it’s Intelligent Digital Twin 

with various technologies. Lastly, the applied technologies and 

interfaces between the real asset and intelligent Digital Twin 

have been described. 

The implemented intelligent modular production system 

using the Intelligent Digital Twin enables the system to react 

automatically to new customer requirements regarding new 

products through the automatic generation of new control code 

for the system based only on environmental parameter analysis. 

In other words, the Intelligent Digital Twin is able to control 

and (re-)configure the real system fully automatically.  

The authors are currently working on the concept of 

semantic networking of Digital Twins using cloud technology 

to realize a DT-2-DT interface within the architecture of an 

Intelligent Digital Twin to be presented in future publications. 
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