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Abstract  

A multitude of high quality, high-resolution data is a cornerstone of the digital services associated with Industry 4.0. However, a great fraction 

of industrial machinery in use today features only a bare minimum of sensors and retrofitting new ones is expensive if possible at all. Instead, 

already existing sensors’ data streams could be utilized to virtually ‘measure’ new parameters. In this paper, a deep learning based virtual sensor 

for estimating a combustion parameter on a large gas engine using only the rotational speed as input is developed and evaluated. The evaluation 

focusses on the influence of data preprocessing compared to network type and structure regarding the estimation quality. 
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1. Introduction 

For at least ten years, there has been an increasingly strong 

trend of utilizing data driven artificial intelligence methods to 

improve machines, processes or products across different 

industrial domains [1]. This improvement could take different 

forms, from lowering energy or raw material consumption [2] 

across a better utilization of machinery [3, 4] or higher levels 

of automation [5] to increasing the quality of the output [6]. In 

recent years, optimizing emissions due to stricter 

environmental regulations has been an important driver as well 

[7, 8].    

However, collecting the data necessary for such approaches 

is facing several challenges, among which is the longevity of 

industrial machinery: Even official service lifetime estimates 

for depreciation run from (rarely) 6 to over 30 years depending 

on country, type of machinery and industrial sector [9]. 

Furthermore, experience shows that especially in small and 

medium sized enterprises resilient equipment might be in daily 

use even longer. Thus, a lot of today’s machinery has been 

manufactured long before the advent of today’s hunger for data. 

It therefore oftentimes lacks at least some of the sensors to 

collect it.   

Problem Statement: Upgrading this machinery to include 

more sensors for the direct measurement of the high quality, 

high-resolution data needed for data driven artificial 

intelligence methods [10] is oftentimes prohibitively expensive 

or even impossible due to a lack of space [11]. Yet, even in 

better cases, it requires disassembling machines and thereby 

causes long downtimes.  

However, using already existing sensors’ signals as an input 

for deep neural networks to indirectly infer the desired data 

rather than measure it directly could be a viable alternative 

[11]. These so-called soft sensors or virtual sensors could 

therefore potentially satisfy today’s need for data while still 

using yesterday’s hardware. 

Objective: A virtual sensor to upgrade an existing industrial 

machine is developed and evaluated. In doing so, the influence 

of network type, network structure and data preprocessing on 

the sensor’s estimation accuracy is analyzed.  

Structure: In this paper, a use case for soft sensors in 

industrial machinery is described (see Sec. 2) and literature 
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surveyed in order to identify promising approaches (see Sec. 3). 

Thereon, a methodology is developed in Sec. 4 and thoroughly 

analyzed (see Results in Sec. 5). Finally, a conclusion is drawn 

in Sec. 6. 

2. Case study description 

For the last years, gas engines for combined heat and power 

plants (CHP) have been facing stricter environmental 

regulations, e.g. regarding their efficiency or the emission of 

potentially harmful substances – a process that will continue in 

the foreseeable future [12]. To fulfil these requirements, it is 

necessary to optimize the engine’s operation based upon a 

monitoring of its combustion parameters. Such an optimization 

then strives to minimize irregular states of operation and 

balance each cylinder’s combustion and load. 

Currently, this monitoring is carried out by measuring the 

cylinder pressure by cylinder pressure sensors and then using it 

to calculate other relevant combustion parameters. However, 

such sensors are only used in large engines due to their 

additional costs as well as their space and maintenance 

requirements. Therefore, to facilitate the above mentioned 

optimization procedures in smaller engines, too, the use of 

virtual cylinder pressure sensors is a promising option.  

2.1. Engine parameters 

When operating a gas engine, both engine-global and 

cylinder-specific actuating variables can be used to alter the 

engine’s behavior. Among the first are the injection volume, 

the air-fuel-ratio λ and the global ignition angle, whereas the 

latter consists of e.g. each cylinders’ offset on the engine’s 

global ignition angle which can be used to optimize the 

individual combustion processes in order to lower emissions or 

increase efficiency. 

To calculate the actuating variables necessary for this 

optimization (or: balancing) process, each individual 

combustion process should be monitored, usually by measuring 

the cylinder pressure. The most relevant combustion 

parameters that can be calculated using a known combustion 

pressure curve are usually considered the maximum 

combustion pressure (pMax), the indicated mean effective 

pressure (IMEP), the center of combustion (CoC), the duration 

of combustion (DoC) and the transformed fuel energy (HR). 

These differ for each individual combustion process and are 

therefore cylinder-specific combustion parameters. 

By averaging the cylinder-specific combustion parameters, 

engine-global combustion parameters can be derived which 

cannot be used to facilitate the optimization process. However, 

they provide a (less accurate) overview of the engine’s 

combustion behavior and can thereby serve as an indicator of 

the need for optimization.  

As a substitute for the cylinder pressure measurement, in 

this study, the crankshaft’s rotational speed is used as the input 

measurement from which the DoC as an example for all other 

relevant cylinder-specific combustion parameters is inferred by 

a deep neural network. 

2.2. Dataset 

The dataset used was created on a mixture-supercharged six-

cylinder gas engine with a displacement of 12 liters and an 

output of 210 kW, which is installed in a CHP. Each cylinder 

had a cylinder pressure sensor (P1 to P6). The rotational speed 

sensor (RS) was mounted on the crankshaft before cylinder 1 

(see Fig. 1). Thereby, each cylinder’s pressure curve as well as 

the engine’s crankshaft’s rotational speed were measured and 

the DoCs calculated based on the pressure curves. 

Both the cylinder pressure indexing and the measurement of 

the rotational speed signal were performed with a sampling rate 

of 48 kHz. The speed signal was recorded on a gear rim with 

120 teeth, resulting in a measuring point every 3° or 120 pulses 

per crankshaft revolution and 240 pulses per working cycle. 

The data set contains data from more than 500,000 working 

cycles from different operating points of the engine. For that 

purpose, the engine-global actuating variables have been varied 

in a way suitable for simulating the actual operation of such an 

engine. In detail, the target power was varied between 25 % and 

100 %, the ignition angle between 24° and 32° and an air-fuel-

ratio λ between 1.52 and 1.60. 

For the training and evaluation of the neural networks, the 

dataset was divided into three parts: a training, a validation and 

a test dataset with respectively 64%, 16% and 20% of the total 

dataset. 

3. Related work 

In published literature, different approaches using deep 

neural networks in which the rotational speed signal was used 

to estimate combustion parameters can be found. Most 

publications (e.g. [13–16]) initially estimate the cylinder 

pressure curve and then derive the combustion parameters 

(usually at least pMax and its position in the crank angle range) 

for subsequent evaluation. There are considerably fewer 

publications, e.g. [17], which, as in this study, estimate and 

evaluate the combustion parameters directly by means of a 

neural network.  

Furthermore, these publications differ significantly as to 

which factors are considered to be most relevant for the 

algorithms’ performance. 

Reference [13] uses a neural network with non-linear 

autoregressive with exogenous input (NARX) architecture to 

estimate the cylinder pressure. It was evaluated based on the 

 

Figure 1: Schematic representation of a gas engine’s crankcase indicating the 

position of a sensor for rotational speed (RS) and sensors for cylinder pressure 

(P1 to P6) as used in the data collection setup 
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relative pMax-error and pMax’s position in the crank angle range 

showing good results: Depending on the operating condition, 

the mean error lay between 5.3 % and 33.6 % respectively 

between 1.7° and 4.3°. 

In [14], the same authors achieved a significant 

improvement of this result by using a time-delay neural 

network (TDNN). In the same scenarios as used in [13], the 

mean error decreased to just 1.14 % to 1.32 % respectively 

1.65° to 3.08°. 

Thus, for these two publications, the type of network used 

greatly affected the algorithms‘ performance. 

In [16], a recurrent neural network is proposed that, in 

addition to the rotational speed signal, also receives 

information about the air-fuel-ratio λ, the ignition angle and the 

boost pressure of the turbocharger. Here, the focus lay on the 

structure of the neural network, which greatly affected the 

algorithm’s performance.  

In [15], a neural network with radial basis functions (RBF) 

and, thus, without recurrence is used to estimate cylinder 

pressure curves. In contrast to other studies that have used an 

RBF network, the authors of [15] do not use the raw rotational 

speed signal, but transform it into the frequency domain and 

processes only the first 20 harmonics. In addition, they use the 

21st-50th harmonics of the structure-borne sound signal. Thus, 

the decisive factor in this work is the preprocessing of the 

available data. The mean errors achieved thereby are 3.4 % for 

pMax and 1.5° for its position in the crank angle range. 

In contrast to the publications mentioned so far, [17]  

estimates the combustion parameters directly from the 

crankshaft’s rotational speed and acceleration signal using a 

multi-layer perceptron (MLP). Here, the mean error lays 

between 4.1 % and 8.0 % respectively between 1.38° and 9.1°. 

4. Approach 

Based on prior research (see Sec. 3), it is highly likely that 

estimating the combustion parameters from the rotational speed 

signal by deep neural networks is possible. However, as 

described above, the identified studies all differ significantly in 

their methodology. In addition, all of them except for [13] and 

[14] which were from the same authors, used different datasets 

for evaluation greatly limiting comparability of the results.  

Therefore, this study is designed to be able to test all three 

major factors (preprocessing of the input data, type of neural 

network, structure of neural network). Due to time restraints, 

the different approaches were tested on estimating engine-

global parameters first. Based on their performance therein, the 

most promising ones were then adapted to estimate cylinder-

specific combustion parameters.  

4.1. Data preprocessing 

In a first step of data preprocessing, the rotational speed 

signal is transformed from the time into the crank angle 

domain, because any evaluation of the combustion parameters 

takes place in this domain as well. Furthermore, implausible 

data is filtered from the dataset. An example of the resulting 

data is depicted in Fig. 2. 

To analyze the impact of different preprocessing 

approaches, differently preprocessed variations of the same 

dataset are created thereon: 

A first variant focuses on the much too high fluctuations of 

the rotational speed signal, which render it physically not 

plausible: The combustion increases the pressure within a 

cylinder, which results in a torque transmission to the 

crankshaft. This then leads to a more or less continuous 

acceleration respectively deceleration of the crankshaft – the 

more cylinders, the smoother the synchronization. Therefore, a 

considerably smoother signal is to be expected. Due to 

vibrations, jitter and a relatively small number of sampling 

points (240) per working cycle of 720° overlaying this signal 

with noise, it is smoothed with a moving average. An example 

of the resulting data is depicted in Fig. 3. 

Due to the fact that the rotational speed signal is a periodic 

signal, following [15], a Fast Fourier Transformation (FFT) is 

conducted on the raw and smoothed (see Fig. 4) rotational 

speed datasets as a second and third variant. It can be seen that 

after the 25th harmonic there is hardly any power left in the 

signal, so these frequencies were not considered in the 

investigation. As expected, the FFT of a filtered signal differs 

from a raw signal only in its power at higher frequencies. The 

difference becomes visible between the 20th and the 25th 

harmonic. 

 

Figure 2: Raw rotational speed signal in the crank angle domain over one 

working cycle under different loads 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Smoothed rotational speed signal in the crank angle domain over one 

working cycle under different loads 
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Furthermore, FFTs of raw and smoothed rotational speed 

signals over two working cycles were created as a fourth and 

fifth variant to test the effect of longer sample times. These then 

contained the first 50 harmonics.  

Additionally, a Principal Component Analysis (PCA) was 

performed on the smoothed rotational speed signal as a sixth 

variant. Of these, the first 25 components already representing 

over 90% of the signal were used. 

4.2. Algorithms 

To analyze the impact of different network types, two 

promising ones from the literature presented in Sec. 3 are 

selected to be tested: a TDNN as used by [14] and a MLP as in 

[17]. 

However, in our setup the TDNN network does neither yield 

good nor reliably reproducible results. Furthermore, this does 

not change substantially when the network is slightly modified. 

Contrastingly, the MLP network shows promising results. 

Therefore, we selected the MLP for further optimization 

over the course of our study and did not continue with the 

TDNN.   

Next, to analyze the impact of different network structures, 

a hyperparameter optimization in form of a grid search is 

carried out on the MLP. The parameters subject to the grid 

search are: 

• Number of hidden layers: 1, 2 or 3 

• Activation function per hidden layer: Sigmoid or 

Rectified Linear Unit (ReLU) 

• Number of neurons in each hidden layer: 50, 75, 

100 or 125 

Initially included in the grid search, different dropout 

strategies [18] were discarded as they always had a negative 

effect on the estimation accuracy. 

All networks make use of batch normalization [19] and have 

a single, linear output neuron to estimate the DoC in °. The 

dataset variant used is FFT (raw, one working cycle). 

The results of this grid search listed by lowest and highest 

root mean squared error (RMSE) per number of layers is 

depicted in Table 1. It reveals that the estimation accuracy is 

largely independent of the used neural network’s structure: 

There is a difference of just under 20% between the best and 

the worst result.  

5. Case study results 

Since adjustments to the network structure hardly result in 

any significant improvements and only the network type MLP 

delivers useful results at all (see Sec. 4.2), the focus is now laid 

entirely on the impact of different preprocessing methods. 

5.1. Engine-global combustion parameters 

Estimating the engine-global mean DoC using an algorithm 

as described in Sec. 4.2 and the dataset variants created in Sec. 

4.1 yields RMSEs as depicted in Table 2: 

The smoothed dataset delivers the best estimates with an 

RMSE of just 0.94°, closely followed by the raw dataset.   

The performance using the FFT data (variants 3 to 6) is 

striking. While there is hardly a difference between raw and 

smoothed FFT datasets (variants 3 and 5 or 4 and 6), 

explainable by the merely minute differences in the selected 

harmonics, the difference to non-FFT preprocessing is 

substantial. FFT preprocessing leads to an RSME up to 50% 

higher. Interestingly, extending the length of the rotational 

speed signal used from one to two working cycles improves the 

estimation accuracy by about 13%.  Apparently, the increase in 

signal length adds valuable information. 

Similarly to FFT, the PCA preprocessing tries to reduce the 

amount of irrelevant information (or: noise) within the signal. 

This hardly decreases the estimation accuracy at all, showing a 

great difference to using FFT. However, the cause of this 

difference was not analyzed any further. 

The scatterplot depicted in Fig. 5 shows the mean DoC 

estimation performance on preprocessing variant 2 in detail: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: FFT of the raw rotational speed signal in the crank angle domain over 

one working cycle under different loads 

Table 1: Results of the grid search 

No. of hidden layers  1 2 3 

Best DoC estimation result  1,45° 1,41° 1,41° 

Network yielding best result 

1st layer 125 neurons, sigmoid 100 neurons, sigmoid 100 neurons, ReLU 

2nd layer - 125 neurons, sigmoid 100 neurons, sigmoid 

3rd layer - - 150 neurons, sigmoid 

Worst DoC estimation result  1,69° 1,48° 1,48° 

Network yielding worst result 

1st layer 75 neurons, ReLU 100 neurons, sigmoid 125 neurons, ReLU 

2nd layer - 100 neurons, ReLU 75 neurons, ReLU 

3rd layer - - 100 neurons, ReLU 
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98% of all estimates lie between the green and orange line, 

indicating a deviation of 2° from the blue target line. 

Based on these results of the engine-global estimation 

quality investigations, the following findings can be derived for 

the cylinder-specific investigations: 

• The FFT datasets do not need to be examined any 

further as they do not yield good results. 

• An in-depth investigation of an extended rotational 

speed signal’s effect on the estimation accuracy 

should be carried out as it improved the FFT results 

substantially. 

This results in the creation of the preprocessed input datasets 

as listed in Table 3 to be further examined. 

5.2. Cylinder-specific combustion parameters 

Estimating the cylinder-specific DoC using an algorithm as 

described in Sec. 4.2 and dataset variants as listed in Table 3 

yields RMSEs as depicted in Fig. 6. The cylinder number was 

neither used as an input variable nor were different instances of 

the algorithm trained for the different cylinders. 

It can be clearly seen that not only the preprocessing 

method, but also the cylinder number greatly influences the 

estimation accuracy. Generally speaking, the estimation is 

better, the smaller the cylinder number. 

This might be due to the rotational speed sensor sitting on 

the crankshaft next to cylinder 1, meaning that all other 

cylinders are increasingly further away (see Fig. 1). This might 

cause the signal to become distorted as the crankshaft warps 

because of torsion. This effect increases with an increasing 

distance to the sensor. 

Furthermore, it can be seen that the preprocessing method 

has an even greater influence here than on the engine-global 

mean DoC: The now cylinder-specific DoCs’ RMSEs increase 

from 9% to between 8% and 15% and from 0.08° to between 

0.12° and 0.26°. 

The overall accuracy with RMSEs between 1.43° and 1.76° 

is worse than on the engine-global mean DoC with an RSME 

of 0.94°. This might be due to the much higher variability of 

the cylinder-specific datasets, which would have to be 

reproduced by the neural networks.  

Because of the promising results shown by the two working 

cycle FFT datasets on engine-global mean DoC, the impact of 

an extended signal length was examined on the cylinder-

specific DoCs as well (see Fig. 7). 

 It can be seen that extending the rotational speed signal 

length from one to two working cycles does indeed increase the 

estimation accuracy by about 0.03° to 0.1°. This increase is 

larger on cylinders number 1 and 6 and smaller on cylinder 

number 2.   

6. Conclusion and Transfer 

In this paper, a virtual sensor for a gas engine’s duration of 

combustion (DoC) was developed based on deep neural 

network. Its estimation accuracy was evaluated with a special 

focus on the influence of network type, network structure and 

data preprocessing. 

Table 2: Influence of different preprocessing approaches on results of 

engine-global mean DoC estimation 

No. of 

preprocessing 

variant 

Preprocessing variant 
RMSE  

[°] 

1 Raw, one working cycle 1,02 

2 Smoothed, one working cycle 0,94 

3 FFT (raw, one working cycle) 1,42 

4 FFT (raw, two working cycles) 1,23 

5 FFT (smoothed, one working cycle) 1,41 

6 FFT (smoothed, two working cycles) 1,23 

7 PCA (smoothed, one working cycle) 0,95 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Scatterplot showing the predicted values and true values of the 

engine-global mean DoC estimate (blue line: target; orange and green lines:  

2° deviation from target) 

Table 3: Different preprocessing methods for estimating cylinder-specific 

DoC values 

No. of 

preprocessing 

variant 

Preprocessing variant 

I Raw, one working cycle 

II Raw, two working cycles 

III Smoothed, one working cycle 

IV Smoothed, two working cycles 

V PCA (smoothed, one working cycle) 

VI PCA (smoothed, two working cycles) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Comparison of the effect of the different preprocessing methods (see 

Table 3) on the estimation of cylinder-specific DoCs    

1,4

1,5

1,6

1,7

1,8

1,9

2,0

2,1

1 2 3 4 5 6

R
S

M
E

 i
n

 °

Cylinder No.

I

II

III

IV

V

VI

 



 Author name / Procedia CIRP 00 (2020) 000–000 

The literature study conducted revealed that all three factors 

do have an influence, but it remained unclear as to which was 

(most) relevant. 

A careful analysis showed that in this scenario, only one of 

the two network types considered did work at all. Therefore, 

only this multi-layer perceptron approach was further 

examined. 

A grid search to assess the influence of the networks 

structure resulted in just small differences between the worst 

and the best structure.  

Key result: Our analysis revealed that input and method of 

data preprocessing had the most significant effect on estimation 

accuracy. Surprisingly, a Fast Fourier Transformation lowered 

the algorithm’s output quality whereas a simple smoothing of 

the measured rotational speed signal delivered the best results 

on the engine’s mean DoC. 

The cylinder-specific DoC was best estimated by a dataset 

on which a Principal Component Analysis had been performed. 

Still, the estimation accuracy was lower than on the engine-

global mean value, most likely due to torsion causing a 

distortion of the measured signal. 

The overall performance of the virtual sensor developed was 

at par with literature values or better. Future work should 

further focus on the effects of data preprocessing. 
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Figure 7: Comparison of the effect of the rotational speed signal length on the 

estimation of cylinder-specific DoCs using the best results of one working 

cycle (1 WC) and two working cycles (2 WC)   
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