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Abstract

Since humans operate trains, vehicles, aircrafts and industrial machinery,fatiguehas always
been one of the major causes of accidents. Experts assert that sleepiness is among the major
causes of severe road accidents. In-vehicle fatigue detection has been a research topic since
the early 80’s. Most approaches are based on driving simulator studies, but do not properly
work under real driving conditions.

The Mercedes-BenzATTENTION ASSIST is the first highly sophisticated series equipment
driver assistance system on the market that detects early signs of fatigue. Seven years of
research and development with an unparalleled demand of resources were necessary for its
series introduction in 2009 for passenger cars and 2012 for busses. The system analyzes
the driving behavior and issues a warning to sleepy drivers.Essentially, this system extracts
a singlemeasure(so-calledfeature), the steering event rateby detecting a characteristic
pattern in the steering wheel angle signal. This pattern is principally described by a steering
pause followed by a sudden correction. Various challenges had to be tackled for the series-
production readiness, such as handling individual drivingstyles and external influences from
the road, traffic and weather. Fuzzy logic, driving style detection, road condition detection,
change of driver detection, fixed-point parameter optimization and sensor surveillance were
some of the side results from this thesis that were essentialfor the system’s maturity.

Simply issuing warnings to sleepy drivers is faintly "experiencable" nor transparent. Thus,
the next version 2.0 of the system was the introduction of themore vividATTENTION LEVEL,
which is a permanently available bargraph monitoring the current driving performance. The
algorithm is another result of this thesis and was introduced 2013 in the new S-Class.

Fatigue is very difficult to grasp since a ground truth reference does not exist. Thus, the
presented findings about camera-based driver monitoring are included as fatigue reference
for algorithm training. Concurrently, the presented results build the basis for eye-monitoring
cameras of the future generation of such systems. The drivermonitoring camera will also
play a key role in "automated driving" since it is necessary to know if the driver looks to the
road while the vehicle is driving and if he is alert enough to take back control over the vehicle
in complex situations. All these improvements represent major steps towards the paradigm
of crash free driving.

In order to develop and improve theATTENTION ASSIST, the central goal of the present
work was the development of pattern detection and classification algorithms to detect fa-
tigue from driving sensors. One major approach to achieve a sufficiently high detection rate
while maintaining the false alarm rate at a minimum was the incorporation of further patterns
with sleepiness-associative ability. Features reported in literature were assessed as well as
improved extraction techniques. Various new features wereproposed for their applicability
under real-road conditions. The mentioned steering pattern detection is the most important
feature and was further optimized.

Essential series sensor signals, available in most today’svehicles were considered, such as
steering wheel angle, lateral and longitudinal acceleration, yaw rate, wheel rotation rate, ac-
celeration pedal, wheel suspension level, and vehicle operation. Another focus was on the
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lateral control using camera-based lane data. Under real driving conditions, the effects of
sleepiness on the driving performance are very small and severely obscured by external in-
fluences such as road condition, curvature, cross-wind, vehicle speed, traffic, steering param-
eters etc. Furthermore, drivers also have very different individual driving styles. Short-term
distraction from vehicle operation also has a big impact on the driving behavior. Proposals
are given on how to incorporate such factors. Since lane features require an optional tracking
camera, a proposal is made on how to estimate some lane deviation features from only inertial
sensory by means of an extended Kalman filter. Every feature is related to a number of param-
eters and implementation details. A highly accelerated method for parameter optimization of
the large amount of data is presented and applied to the most promising features.

The alpha-spindle rate from the Electroencephalogram (EEG) and Electrooculogram (EOG)
were assessed for their performance under real driving conditions. In contrast to the ma-
jority of results in literature, EEG was not observed to contribute any useful information
to the fatigue reference (except for two drives with microsleeps). Generally, the subjective
self-assessments according to the Karolinska Sleepiness Scale and a three level warning ac-
ceptance question were consequently used. Various correlation measures and statistical test
were used to assess the correlation of features with the reference.

This thesis is based on a database with over 27,000 drives that accumulate to over 1.5 mio km
of real-road drives. In addition, various supervised real-road driving studies were conducted
that involve advanced fatigue levels.

The fusion of features is performed by different classifierslike Artificial Neural Networks
(ANN) and Support Vector Machines (SVM).

Fair classification results are achieved withANN andSVM using cross-validation. A selec-
tion of the most potential and independent features is givenbased on automatic SFFS feature
selection. Classical machine learning methods are used in order to yield maximal system
transparency and since the algorithms are targeted to run inpresent control units. The po-
tential of using end-to-end deep learning algorithms is discussed. Whereas its application
to CAN-signals is problematic, there is a high potential fordriver-camera based approaches.
Finally, features were implemented in a real-time demonstrator using an ownCAN-interface
framework.

While various findings are already rolled out inATTENTION ASSIST 1.0, 2.0 andATTEN-
TION LEVEL, it was shown that further improvements are possible by incorporating a selec-
tion of steering- and lane-based features and sophisticated classifiers. The problem can only
be solved on a system level considering all topics discussedin this thesis. After decades of
research, it must be recognized that the limitations of indirect methods have been reached.
Especially in view of emerging automated driving, direct methods like eye-tracking must be
considered and have shown the greatest potential.
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Zusammenfassung

Seit der Bedienung von Fahrzeugen, Zügen, Flugzeugen und industriellen Maschinen durch
Menschen stelltMüdigkeiteine der Hauptursachen für Unfälle dar. Experten versichern, dass
Müdigkeit eine der Hauptursachen für schwere Verkehrsunfälle ist. Seit den 80er Jahren ist
Müdigkeit am Steuer ein Forschungsthema. Die meisten Ansätze basieren auf Fahrsimula-
torstudien, die unter realen Fahrbedingungen jedoch nichtfunktionieren.

Der Mercedes-BenzATTENTION ASSIST ist das erste und fortschrittlichste Seriensystem
auf dem Markt, das frühe Anzeichen von Müdigkeit zuverlässig erkennt. Sieben Jahre
Forschung und Entwicklung sowie ein beispielloser Bedarf an Ressourcen waren für die
Serieneinführung 2009 im PKW und 2012 im Reisebus notwendig. Das System analysiert
das Fahrverhalten und warnt müde Fahrer. Im Wesentlichen extrahiert das System ein Maß
(sog. Merkmal) für die Häufigkeit von Lenkereignissen indem charakteristische Muster im
Lenkwinkelsignal detektiert werden. Die Muster können vereinfacht durch eine Lenkpause
gefolgt von einer plötzlichen Lenkkorrektur beschrieben werden. Für die Serienreife mussten
vielerlei Hürden überwunden werden, wie beispielsweise der Umgang mit fahrerindividu-
ellen Fahrstilen, Umwelteinflüssen von der Straße, Verkehrund Wetter. Fuzzy-Logik, Fahr-
stilerkennung, Straßenzustandserkennung, Fahrerwechsel, Festkomma - Parameteroptimier-
ung und Sensorüberwachung waren einige der Ergebnisse aus dieser Dissertation, die für den
Reifegrad des Systems essenziell waren.

Die schlichte Ausgabe eine Warnung ist weder sehr erlebbar noch transparent. Daher wurde
in der Folgeversion 2.0 des Systems das dynamischereATTENTION LEVEL eingeführt, das
eine permanent verfügbare Balkenanzeige anzeigt, die der aktuell ermittelten Fahrtüchtigkeit
entspricht. Der Algorithmus ist ein weiteres Ergebnis dieser Arbeit und wurde 2013 in der
neuen W222 S-Klasse eingeführt.

Müdigkeit ist sehr schwer zu greifen, da als Referenz keine "absolute Wahrheit" existiert. Aus
diesem Grund wurden die hier vorgestellten Ergebnisse der auf Fahrerkameradaten basieren-
den Fahrerzustandsbeobachtung als Müdigkeitsreferenz zum Training der Algorithmen mit-
verwendet. Gleichzeitig bilden die Ergebnisse die Basis für die Fahrerkamera in der zukünfti-
gen Generation des Systems. Die Fahrerkamera wird auch einewichtige Rolle beim "hochau-
tomatisierten Fahren" spielen, da es notwendig ist zu wissen ob der Fahrer während der Fahrt
auf die Straße schaut und ob er in komplexen Situationen aufmerksam genug ist, um die Kon-
trolle zu übernehmen. Alle diese Verbesserungen repräsentieren einen wesentlichen Schritt
in Richtung der Vision vomunfallfreien Fahren.

Um denATTENTION ASSISTzu entwickeln und zu verbessern bestand das zentrale Ziel der
hier vorgestellten Arbeit in der Entwicklung von Mustererkennungs- und Klassifikationsal-
gorithmen die Müdigkeit anhand von Fahrzeugsensoren erkennen. Ein wesentlicher Ansatz
um eine genügend hohe Erkennungsrate zu erreichen und dabeidie Falschalarmraten min-
imal zu halten war der Einbezug von weiteren Mustern mit müdigkeitsbezogenen Eigen-
schaften. Merkmale aus der Literatur wurden untersucht ebenso wie verbesserte Extraktions-
methoden. Zahlreiche neue Merkmale wurden für den Einsatz unter realen Fahrbedingungen
vorgeschlagen. Das oben genannte Lenkmuster ist das wichtigste Merkmal und wurde weiter
optimiert.
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Die wichtigsten Signale der Seriensensorik, die heute in den meisten Fahrzeugen verfüg-
bar sind wurden verwendet, wie zum Beispiel Lenkwinkelsensor, Quer- und Längsbeschleu-
nigung, Gierrate, Raddrehzahl, Gaspedalweg, Fahrwerkfederwege und Fahrzeugbedienung.
Ein weiterer Fokus bestand in der Querregelung unter Verwendung von kamerabasierten
Spurdaten. Unter realen Fahrbedingungen sind die Einflüssevon Müdigkeit auf das Fahrver-
mögen sehr klein und stark durch externe Einflüsse überlagert, wie beispielsweise Straßen-
zustand, Kurvigkeit, Seitenwind, Geschwindigkeit, Verkehr, Lenkungsparameter usw. Wei-
terhin unterscheiden sich Fahrer durch sehr individuelle Fahrstile. Kurzzeitige Ablenkung
durch Fahrzeugbedienhandlungen haben ebenso einen starken Einfluss auf das Fahrverhalten.
Es werden Vorschläge gemacht um diese Faktoren mit zu berücksichtigen. Da Spurmerk-
male eine Kamera benötigen die nur als Sonderausstattung erhältlich ist, wird ein Vorschlag
gemacht wie einige der Spurmerkmale mittels Inertialsensorik und einem erweiterten Kalman
Filter geschätzt werden können. Jedes Merkmal ist mit einerVielzahl von Parametern und
Implementierungsdetails verknüpft. Eine beschleunigte Methode zur Parameteroptimierung
zur Bewältigung der riesigen Datenmenge wird vorgestellt und für die vielversprechendsten
Merkmale angewendet.

Die Alpha-Spindelrate aus dem Elektroenzephalogramm (EEG) und Elektrookulogramm
(EOG) wurden hinsichtlich ihrer Eignung als Referenz unterrealen Fahrbedingungen be-
wertet. Ausgenommen von wenigen Ausnahmen, konnte im Gegensatz zu den Ergebnissen
in der Literatur nicht beobachtet werden, dass EEG einen wertvollen Beitrag als Müdigkeit-
sreferenz liefert. Die subjektive Selbsteinschätzung nach der Karolinska Müdigkeitsskala
und einer dreistufigen Warnungsakzeptanzfrage wurde daherdurchgängig als Referenz ver-
wendet. Verschiedene Korrelationsmaße und statistische Test wurden herangezogen um die
Korrelation von Merkmalen mit der Referenz zu bewerten.

Diese Dissertation basiert auf einer Datenbank mit über 27.000 Fahrten deren Fahrleistung
über 1.5 mio km reale Fahrdaten umfasst. Zusätzlich wurden überwachte Fahrversuche mit
fortgeschrittenen Müdigkeitsstadien durchgeführt.

Brauchbare Klassifikationsergebnisse werden mit künstlichen neuronalen Netzwerken (ANN)
und Support Vektor Machines (SVM) und Kreuzvalidierung erreicht. Eine Auswahl der un-
abhängigsten Merkmale mit dem höchsten Potential wird vorgestellt, basierend auf automati-
scher Merkmalselektion mittels SFFS. Es werden Mathoden aus dem klassischen maschinell-
en Lernen verwendet, um maximale Transparenz über das System zu erhalten und weil die
Algorithmen in aktuellen Steuergeräten eingesetzt werden. Abschließend wurden diese Merk-
male in einem Echtzeitsystem mit einem eigenenCAN-Interface implementiert. Der Einsatz
von end-to-end deep learning wird dirkutiert. Während die Anwendung auf CAN-Signale
problematisch ist, gibt es ein hohes Potential bei Fahrerkamera-basierten Ansätzen.

Während viele der Erkenntnisse bereits inATTENTION ASSIST 1.0, 2.0 undATTENTION

LEVEL eingeflossen sind, wurde gezeigt, dass weitere Verbesserung durch Einbezug einer
Auswahl von Lenkwinkel- und Spurbasierten Merkmalen und Klassifikatoren erzielt werden
kann. Das Problem kann nur auf der Systemebene gelöst werdenindem alle in dieser Diss-
ertation angesprochenen Themen berücksichtigt werden. Nach Jahrzehnten der Forschung
muss akzeptiert werden, dass die Grenzen der indirekten Methoden erreicht sind. Insbeson-
dere in Betracht auf automatisiertes Fahren sind direkte Methoden wie Lidschlagerkennung
notwendig und zeigen das höchste Potential.
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
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Chapter 1.

Introduction

1.1. Chapter Overview

Chapter 1: Introduction The current chapter will introduce the topic of assistance sys-
tems that detect sleepiness from the driving style. It will provide an overview of the
state-of-the-art in literature and competitor systems while pointing out the new as-
pects of the present work. Countermeasures and warning strategies against sleepiness
behind the steering wheel will be presented and further ideas will be proposed.

Chapter 2: Sensors and Data Acquisition In this chapter, in-vehicle and supplementary
sensors used for the driving data acquisition, their principles and derived signals will
be presented. Another major part of this chapter is the measurement equipment, data
conversion and validation process, theSQLdatabase and everything related to it. This
basic process is very extensive but indispensable and not trivial.

Chapter 3: Evaluation of Driver State References This chapter will explain the defini-
tions ofsleepiness, drowsiness, fatigue, vigilance, and their distinction againstdistrac-
tion (Ch.3.1). Common approaches to directly and indirectly measure sleepiness will
be presented and compared. Physiological measures from brain activity and eyelid
closure are thoroughly investigated in order to obtain a reliable reference. Developing
a system to detect sleepiness is impossible without a good reference, thus merging the
different measures into a single reference was investigated.

Chapter 4: Extraction of Features for Driver State Detection The features in literature
are described and own ideas based on steering angle, lane data and other sensors are
proposed. Moreover, preprocessing of sensor signals and signal processing methods
commonly used for many features are presented. The basic principles behind the fea-
tures are explained as well as the various signals they are based on. Another important
topic of this thesis is the systematic optimization of the countless parameters involved
in the different features. Processing the large amount of data requires smart strategies
to optimize the features within manageable time. Approaches to efficiently cope with
these problems will be presented here exemplarily for the most promising features.

Chapter 5: External Factors and Driver Influences This chapter will structure all influ-
ences that have an impact on the driving behavior into three groups:external, situation
basedanddriver-related influences. External influences such as vehicle speed, road
condition, curves or cross-wind have impacts on the drivingbehavior that is generally
stronger than sleepiness. Situation based factors like daytime, monotony, and traffic
density area priori probabilities that make general statements rather than considering
individual persons. Furthermore, every driver has an individual driving style that needs
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to be adapted. Analyzing, understanding and considering these influences during the
feature extraction will be subject of this chapter.

Chapter 6: Approximation of Lane-based Features from Inertial Sensors This chapter
will describe how some of the features obtained from the lane-tracking camera sensor
unit can be approximated using inertial sensors. The advantage is that inertial sensors
are standard equipment in contrast to the lane-tracking camera and inertial sensors do
not suffer from poor vision conditions. The relevant theoryof vehicle dynamics and
Kalman filters will be presented here.

Chapter 7: Result of Assessment of FeaturesThis chapter will introduce various differ-
ent methods to assess the correlation of single or multiple features with the sleepiness
reference. Metrics as well as graphical illustrations are presented and compared. Since
many measures are based on similar patterns and sensors, a grouping of features is pro-
posed.

Chapter 8: Classification of Features The subject of this chapter will outline the fusion
of features by means of classification. The information fusion either on a signal level,
feature level, or on a decision level will be discussed. The benefits of transforming
the feature space to lower dimensions using principle component analysis or Fisher
transform will be explained. Classification of distractionusing the same features and
methods will be another side-topic of this chapter. It is based on an extensive experi-
ment with 45 real-road drives and defined distraction tasks.

Chapter 9: Conclusion This chapter will present the classification results. A real-time
framework and demonstration system will be introduced in order to assess the perfor-
mance online in the vehicle. A conclusion will be given, as well as potential for future
work and open issues.

Chapter A: Appendix This chapter contains documentation and mathematical background
of important theory this thesis is based on.

1.2. Motivation

1.2.1. History of Safety

Since Karl Benz’s patent application of the Motorwagon over125 years ago1 the number of
vehicles has been steadily increasing. While the number of vehicles in Germany had grown to
3.7 Mio in 1939 (DESTATIS, 2011a), it dropped below 200.000 vehicles as a consequence of
World War II. Fig.1.1shows the number of injured persons and persons killed within 30 days
after a traffic accident. After the fatalities reached theirmaximum of 21.332 persons killed
in 1970, both, the total number of injured and killed personsdecreased. Fig.1.2 shows the
number of vehicles per person on the road in Germany. It can beseen that today, about 70%
of all 82 Mio Germans have a car. The figure also sets the total number of crashes, injured
persons and fatalities in relation to the registered vehicles. The proportion of accidents per
car is steadily diminishing, whereas accident prevention becomes more and more difficult
every year. Even with this positive development, we have to consider that still ten persons
die and about 1000 get injured every day in Germany alone. Thenumber of crashes without
injury is even increasing.

1Patent 37435 of the Benz Patent-Motorwagon by Karl Benz, applied on January 29, 1886 (Benz & Co, 1886)
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Figure 1.2.: Injured persons and fatalities set into relation with registered vehicles (Own drawing,
data fromVerkehrsunfälle Zeitreihen, Statistisches BundesamtDESTATIS, 2011b, 2.1/2)

1.2.2. Safety Systems

Various factors account for the continuous reduction of traffic accidents or their impact.
Fig. 1.1 indicates how the number of fatalities could be reduced overthe years, thanks to
a series of new and strickter regulations, such as traffic signs, road improvements, police
enforcements, and better medical infrastructure. Beside these regulations, Fig.1.1shows the
introduction of important safety innovations. Generally,these safety systems are classified
into activeandpassive safetysystems. According to "Milestones in vehicle safety" (Daimler
COM/M, 2009), active safety comprises all systems and technologies that preventaccidents
whereas passive safety technologiesreduce the consequencesfor the passengers.

Passive Safety:The safety belt, invented by Gustave-Désiré Leveau in 1903,was one of
the first and most important safety inventions (Leveau, 1903). Its German patent applica-
tion of Bohlin (1961) was selected by the German patent office as one of the eight most
valuable inventions for mankind within the last 100 years and is expected to having saved
over 1 mio lives (Hell, 2010). A pioneer in the field of passive safety wasBarényi(1952) at
Mercedes-Benz Sindelfingen who invented the crumple zone and rigid passenger cell in 1939,
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that was first introduced in 1959 (Daimler COM/M, 2009). Another major invention from
Mercedes-Benz was the airbag in 1967, introduced in Germanywith the S-Class (W126) in
1981 (Daimler COM/M, 2009). The passenger airbag, sidebag, windowbag and recently also
the kneebag followed (Mercedes-Benz, 2012; auto.de, 2009).

Active Safety: One of the early active safety systems is the electronic active braking system
"Sure Brake", introduced by Chrysler in 1971 (Heißing, 2011; Angermann, 2011). In 1978,
Bosch introduced the first fully electronic Active Braking System (ABS), launched with the
Mercedes-Benz S-Class (W116) (Daimler COM/M, 2009; Angermann, 2011). With the S
600 Coupé (C140), Mercedes-Benz introduced the first electronic stability program (ESPR©

or ESC) in 1995, supplied by Bosch (Heißing, 2011). If the steering direction does not fit to
the vehicle motion (i.e. for large sideslip anglesβ), theESPcorrects the vehicle trajectory
in the direction of steering by braking a single rear wheel. In 1996, Mercedes-Benz also
introduced the Brake Assistant as standard equipment for passenger cars (Daimler COM/M,
2009). In 1997 Mercedes-Benz presented the emergency call TELEAID (SOS/Emergency
Call, calledmbracein the USA) that automatically or manually submits the GPS position
and relevant vehicle and crash information (Dietsche and Jäger, 2003; Mercedes-Benz USA,
2012). Similar systems are Onstar, also introduced in 1997 and provided by GM (onstar.com,
2013), and BMW ConnectedDrive introduced in 2011 (BMW, 2011). Blind spot monitoring
systems such as the BLIS from Volvo and the BSM (radar-based)from Mercedes-Benz mon-
itor vehicles in the blind spot (Volvo Cars, 2007a). PRE-SAFER©, introduced by Mercedes in
2002, is a system that takes actions to protect passengers shortly before an accident (Daimler
COM/M, 2009). Since 2006, the PRE-SAFE brake can automatically decelerate the car if
a dangerous situation is detected ahead. One of the latest PRE-SAFE based innovations in
2009 is the braking bag, an airbag below the vehicle front that can achieve twice the deceler-
ation of a full brake (Daimler COM/M, 2009). Based on camera vision, the Advanced Lane
Departure Warning Assist (ALDW) and Protection (LDP) support the driver in lane keeping
by warnings or active control. The speed limit assist, nightview and adaptive curve light are
just a few other systems that are based on camera.

One of the latest innovations from Mercedes-Benz is theATTENTION ASSIST, introduced
with the E-Class (W212 and 207) in 2009 which is subject of thepresent work. It detects
fatigue based on the driving behavior and issues a visual andacoustic warning to the driver.

1.2.3. Drowsiness related Accidents

According to theGerman Federal Agency for Statistics(DESTATIS, 2011a), the main reason
for road accidents with injuries in 2010 were speeding (10.7%), mistakes while turning/ma-
neuvering/reversing (10.2%), right of way violation (9.7%), insufficient clearance distance
(8.1%) followed by wrong road use (4.7%). Alcohol plays an important role, especially in
severe accidents (DESTATIS, 2013a,b). Slippery road (from ice, snow, or rain), fog, or veni-
son on road are the main non-driver related accident reasons. In Germany, only 4.2% of the
accidents are related to technical defects (2.9% related totire and 1.3% to brake deficiencies).
Fig. 1.3 shows that the majority of accidents are caused by the driverand only a minor part
by vehicle failure or road condition. The “100-Car Study", conducted by the VTTI for the
National Highway Traffic Safety Administration (NHTSA) in 2006 (Martin, 2006), found that
about 80% of accidents and 65% of near-crashes involved within three seconds before the
event some form of driver inattention, at least as a second reason. According to Volvo, even
up to 90% of all traffic accidents are caused by driver distraction (Volvo Cars, 2007b). Cell
phone use anddrowsinesswere beneath the primary causes for reduced alertness.
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Figure 1.3.:Proportion of accidents by one or several reasons. The driver is accountable for most
traffic accidents (Source:Volvo Cars, 2007b)

Drowsy Driving: When interrogating test subjects and other people about drowsy driving,
it was surprising that many of them could tell about their ownpersonal experience or even
accidents. In most stories nothing happened because they woke up from hitting a traffic cone,
short before the guardrail, or from driving into a field. However, some cases ended in more
severe accidents. It is not possible to prove that a driver was sleepy, since fatigue cannot be
measured as easily as alcohol consumption (e.g. by breathalyzer or blood test). Thus, many
drivers do not admit that sleepiness or distraction was responsible for the accident. Drowsy
driving is prohibited by law and is persecuted by the police.The insurance withdraws meet-
ing the cost of a drowsiness related crash as it is regarded asreckless induced (BGH, 2002)
since falling asleep is always preceded by fatigue signs (BGH, 1969). This also applies to
co-passengers if they are aware of the driver’s condition (Doppelklicker, 2011). This may be
the main reason why drowsy driving is assumed to be significantly under-reported in police
crash investigations. The German Federal Agency for Statistics (DESTATIS, 2011b) pub-
lished that only about 1% of the accidents are related to sleepiness. According toLyznicki
et al.(1998), driver fatigue is the causative factor in 1 to 3% of all US motor vehicle crashes.
However, experts assume that about 24 to 33% of the severe accidents are related to drowsi-
ness (Daimler, 2008; Duncker, 2007; Künzel, 2008; Fertner, 2009; Schneider, 2006; Batista,
2007). According to the earlier mentioned 100-Car Study, drowsiness increases the driver’s
risk of having a crash or near-crash by at least a factor of four. In fatal accidents it is as-
sumed that driver fatigue is more prevalent than either alcohol or drugs, especially for truck
drivers (Knipling and Wang, 1994).

Fig. 1.4shows a picture from press releases that report about accidents with only one vehicle
involved and where the accident cause was not clearly determined. Many of the so called
"single-car crashes" occur late at night and have fatal consequences, especially when the
driver falls asleep and does not react to avoid the crash. In most cases, one can only assume
that fatigue was the cause. For instance, during a microsleep phase of two seconds, a vehicle
that drives with 140 km/h travels a distance of almost 80 meters without control. What many
people do not consider is that not only the microsleep, but also the early phases of fatigue can
increase the risk of having an accident significantly. Fig.1.5 shows the decrease in reaction
time after driving duration. Studies show that after just four hours of non-stop driving, drivers’
reaction times can be up to 50% slower. Thus, the risk of an accident doubles during this
time. And the risk increases more than eight-times after just six hours of non-stop driving.
According toNOVA (2002) andDaimler (2008), 24 hours without sleep can be compared
have an influence comparable to one per mill of alcohol. The combination of fatigue and
even small doses of alcohol can be much more dangerous than the sum of both influences
(Reyner, 2005; Mara, 1999; Oberman, 2006, P. 218). Due to their reduced judgment, sleepy
drivers are often not aware of their condition. They overestimate themselves or do not admit
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Figure 1.4.:So called "single-car crash" - accidents with only one vehicle involved that occur at night
are most probably related to fatigue (Source:Furtwängler, 2013).
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Figure 1.5.:Decreasing reaction time after increasing driving duration (so called "Time-on-Task")
(Source of numbers:Mara, 1999, Fig. 2)

to "give up" the fight against their sleep pressure. Time pressure can also be a factor that keeps
drivers away from having a pause. The risk of falling asleep is at its greatest on long-distance
journeys in the dark or in monotonous conditions. This is when drivers are most likely to
suffer a lapse in attention. Young people under 30 are four times more endangered than elder
groups (Knipling and Wang, 1995). Especially young males are involved in drowsy-driving
crashes five times more likely than females (Wang and Knipling, 1996).

1.2.4. Perspective of Mobility and Safety Systems

Above, German statistics were exemplarily used and can be transfered to the situation in
other countries. Clearly, it is very important to consider the worldwide developments. In
countries like the USA, Australia or France, drowsy drivingis an even bigger problem, as
they have very long monotonous roads through areas with low population density. There
are more than one billion vehicles and trucks on the roads worldwide (Die Welt.de, 2008)
and a growth of almost 20% is predicted within the next seven years. The growth in North
America is expected to be the lowest with only 8% and 15% in Europe, driven by Eastern
Europe. While the automotive growth is nearly saturated in North America and Europe, the
industry in the BRICS countries2 is booming. With 20% growth within the last years, China
is one of the fastest growing markets worldwide. Since only 2% of the Chinese population

2BRICS stands for the emerging market countries:Brasil,Russia,India,China andSouth Africa
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have a car, it is expected that the growth will continue (Bleich, 2009, P. 57). In addition,
the nowadays very dense road infrastructure and the relatedindustry will not disappear all
of a sudden. At the same time, the protection standards in theBRICS are not very evolved.
With 142 485 deaths in 2011, India has the most road fatalities in the world (Government
of India, 2011) followed by China with 68 000 in 2009 (NPC China, 2010) due to the high
population. It is getting more and more difficult to further reduce the number of severe
accidents while keeping the traffic efficient. Autonomous driving is certainly a major step
towards the paradigm of efficient and "crash free driving" (Daimler COM/M, 2009). Berger
and Rumpe(2008) conclude from the Darpa Urban Challenge that autonomous driving is
generally possible, but many open questions are still to be solved. According to Wagoner
(GM CEO) (Wagoner, 2008) autopilots could become reality in 2020 or within the next years,
so Ralf Herrtwich, head ofADAS at Mercedes-Benz (Heuer, 2013). An autopilot has to know
even more that the driver is not sleeping when it needs to handover the vehicle control to the
driver in situations that cannot be handled automatically.And until the question is not solved
of who is responsible if the autopilot causes an accident, the driver will remain in charge of
the steering wheel.

Briefly worded, we can expect that the concept of personal mobility will remain the same
for many years, which makes it crucial to introduce new advanced driver assistance systems
(ADAS) for the reduction of the prohibitive high number of accidents. Thus, research in the
field of driver monitoring has the highest potential with regards to crash reduction.

1.3. Driver State Warning Systems and their Human Machine
Interface (HMI)

Until today, safety systems were focusing on either intervention after a driver made a mistake
or on reducing the impact of a crash. In the precedent vehicles, there were virtually no
systems focusing on the driver. The aim of Advanced Driver Monitoring Systems (ADAS)
is to detect the onset of sleepiness by analyzing the drivingstyle or physiological indicators
of the driver. People who are skeptical about the concept of adriver monitoring system
often argue that they do not need to be told when they are tired. They think that they are
always aware of their condition by themselves. But the danger of reduced vigilance is often
underestimated. 41% of the drivers interrogated in a recentstudy by theAAA Foundation for
Traffic Safetyadmit to having fallen asleep behind the wheel at some point (TRUEcar, 2010).
But just because nothing happened in the past doesn’t mean that it will turn out well every
time in the future. Since drivers obviously underestimate the risk and do not act adequately,
it makes sense to develop systems that support the driver.

Depending on the accuracy with which the driver’s vigilancelevel can be estimated, it needs
to be discussed what to do with this driver state informationin the first place. For the ac-
ceptance of the system, it is essential not to infantilize the driver. Today, most drivers would
probably not accept a system that takes over control and automatically drives to the road
shoulder, brakes and locks the vehicle if sleepiness was detected. (This might be more ap-
propriate if a cardiac flatline was detected). So the most expedient feedback strategy is to
issue an acoustic and visual warning to the driver suggesting to have a pause. Issuing false
warnings too often risks that the driver might later neglecta correct warning. As well, it is
important not to store any data about a driver’s state that could be used against him after an
accident. A system that is switched off by the driver for suchreasons is useless. As long as
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the detection rate doesn’t approach 100%, the driver cannotcompletely rely on the system.
He has to know that the assistance system can only support himand that he is always respon-
sible for his safety himself. When feeling tired, he has to make a pause even though there has
not been any warning.

Fig. 1.15(a)and1.15(b)show pictures of theATTENTION ASSIST warning and status icon
introduced 2009 in the Mercedes-Benz E-Class and then spread to all vehicles and tour buses.
As a next, more "experiencable" step, a bargraph is displayed that is permanently available
in the instrument cluster (Fig.1.16(a)) and Fig.1.6(b)depicts theATTENTION LEVEL of the
version 2.0 launched in the W222 S-Class. The level is based on the algorithms developed in
this thesis. Fig.1.6(a)shows a picture of how theHuman Machine Interface(HMI) of such
a bargraph could further look like. Fig.1.6(b) shows how the history of the past 15 to 30
minutes could further illustrate the degrading trend of thedriving performance. A positive

(a) Bargraph of driving
performance

(b) Bargraph with history

Figure 1.6.:Proposal for two HMI concepts with a permanently available bargraph and a bargraph
with history could be displayed to drivers (own drawing)

side effect of permanently displaying a bargraph is that it reminds the driver to remain aware
of his fitness. Simply displaying a status icon of the system already addresses this topic
as a safety issue and brings the topic into drivers’ minds. Fig. 1.7 shows three frames of an
animated eye that closes with increasing sleepiness. It is more self-explaining than a bargraph
or a status icon and color displays are nowadays available inmany upper class vehicles. This
might suit best for a camera based drowsiness detection system.

(a) Opened eye forawake (b) Half closed eye forsleepy (c) Closed eye forvery sleepy

Figure 1.7.:Another proposed example of a more self-explaining HMI concept for a high resolution
color display (own drawing)

Another possibility of using the information about the driver’s fitness is to adapt the sensitiv-
ity of other driver assistance systems. As an example, the Time-To-Collision (TTC) threshold
for braking warnings and autonomous braking could be lowered with reduced driver vigi-
lance. Also, the ALDW could be adjusted to be more sensitive with increasing fatigue. For
instance, there were test subjects that often exceeded the lane and obtained wrong warnings
while they were awake. But as soon as they became sleepy, the immediate feedback of lane
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departure before entering a dangerous situation became very valuable. These improved HMI
concepts lead to the major goals of the research on driver monitoring systems:

• Estimating a reliable measure of fatigue with multiple levels
• Determining the time instant of suggesting a pause

1.4. Countermeasures against Sleepiness behind the Wheel
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Figure 1.8.:Mindmap of countermeasures to reduce fatigue-related accidents (own drawing)

Fig. 1.8 shows a mindmap of countermeasures against fatigue. The 2010 study of theAAA
Foundation for Traffic Safetyshowed that most of the drowsiness related accidents could
have been prevented (AAA , 2013). But what could be done for the prevention? The most
important prevention is a responsible behavior of the drivers, like planning to get sufficient
sleep before a long drive and limiting drives between midnight and 6 a.m. (Mara, 1999). As
soon as a driver becomes sleepy, a sensible measure would be to let a co-passenger drive
or stop to take a nap. But not everybody is that reasonable, especially if one is in a hurry.
Thus, an important strategy against drowsiness related crashes aremedia campaignsto make
drivers aware of the risks (Nordbakke and Sagberg, 2007; van Wees et al., 2004; Hell, 2001).
Beside press articles and advertising, many book and movie authors use a drowsiness related
accident as a reason for a fatal life-changing incident3. Fig.1.9shows motorway panels that
address drowsy driving.

Fig.1.10(a)showsrumple strips, which are another countermeasure to alert inattentive drivers
(Elango, 2002). Rumble strips are edge- or centerline grooves, cut or rolled in the pavement
that emit an audible rumbling when encountered by vehicle tires. They are most effective if
the road shoulder is wide enough. According to theFHWA Safety, shoulder rumble strips
can reduce overall crashes by 14 to 17%. In particular, centerline rumble strips may reduce
run-off-road crashes by up to 41% and head-on crashes by up to68% (FHWA, 2012). Accord-
ing to the National Highway Traffic Safety Administration (NHTSA) (Mara, 1999), rumble

3Movies that address sleepiness and distraction-related accidents: Mr. Bean, I Robot, 50 first dates, etc.
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(a) US campaign (Source:
wikipedia)

(b) French campaign meaning
"Sleeping or Driving" (own
photograph)

(c) South African campaign
"Stay Alert - Stay Alive" (own
photograph)

Figure 1.9.:US, French and South African motorway signs against drowsy driving

(a) Centerline rumple strips in the US
(Source: wikimedia)

(b) Road arts on french motorways as
"novelty" to occupy drivers (own pho-
tograph)

Figure 1.10.:Countermeasures against drowsy driving in the US and France

strips can reduce drive-off-the-road crashes by 30 to 50%. Besides the high construction and
maintenance cost, rumple strips have some disadvantages, which are still evaluated in Ger-
many (Rieckmann, 2010). For instance, it can be very disturbing if a lane is shiftedto the side
within construction sites, so that cars permanently have todrive on the rumble strips. Rumple
strips are by far not installed on all road markings which speaks for in-vehicleADAS.

Advanced Lane Departure Warning (ALDW) : Lane markings are tracked by a lane track-
ing camera and a warning is issued when the lane is exceeded. ALDW has the advantages
that it works for all lane markings and its warning sensitivity can be adjusted.Altmüller
(2007) investigated how undesired ALDW warnings can be distinguished from desired warn-
ings. ALDW systems are very robust nowadays as long as the lane markings are good, which
is not always the case. And like all camera based systems, theALDW performance suffers
from bad vision conditions. ALDW is focusing on preventing lane exceeding due to distrac-
tion but also helps to prevent accidents by "dozing-off". However, drifting off the road due
to sleepiness happens in a very late stadium of fatigue and a pause should be made earlier.

When the driver is overwhelmed by his fatigue or when he becomes aware of his sleepiness
through a warning system, how can he make it to the next parking lot or hotel? Are there
ways to prolong the driver’s fitness or even bring him back to afit condition in which an
immediate pause is not necessary? The dissertation ofGreschner(2011) is focusing on this
question, especially looking for effective countermeasures that are operating fast and long
lasting. It turned out that therepeated pressing of a buttonandvibrations in the safety belt
did not or almost not improve the fitness.
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In their studies,Reyner and Horne(1998); Horne and Reyner(1999) demonstrate thatcold air
and listening to thecar radiodid not have significant effects on drifting over lane markings,
although there was a trend for the radio to initially reduce such incidents and cold air also
had some effect. The study ofGreschner(2011) confirms the weak and short influence of
listening to the car radio. Unfortunately,exerciseandstretchingis also of little use.

Studies by (Scott, 2009; Philip and Taillard, 2006; Sagaspe et al., 2007; Horne and Reyner,
1999; Anund et al., 2008; Mara, 1999) all came to the conclusion that stopping for acaffeine
containing drink, such as one or two cups of coffee and a shortnap for about 15 to 20
minutes, are the most effective short-term countermeasures for alleviating sleepiness. Based
on two driving simulator studies,Reyner and Horne(2000) concluded that a caffeine dose
of 200mg (feasibly taken via 2 to 3 cups of coffee, energy drinks or caffeine tablets (Anund
et al., 2008; Mets et al., 2011)) effectively reduces early morning driver sleepiness for30
min to two hours, depending on the sleep deprivation. In order to measure sleepiness, the
subjective sleepiness rating, EEGα-band power and lane driftings were used. According
to Scott(2009), up to two cups of coffee can increase alertness for severalhours, but it takes
on average 20 to 30 min to take effect. Thus, it is recommendedto drink the coffee at the
beginning of a break before taking a nap. (Scott, 2009) also proposes to take a break every
two hours on a long journey. Caffeine can prolong the driver’s fitness only to a certain extend
and cannot replace sleep over a longer period (Mara, 1999). In a more recent study,Sagaspe
et al.(2007) considered the age of drivers and came to the conclusion that coffee significantly
improves performance only in young and middle-aged participants. Napping is more efficient
in younger than in older participants, so they proposed thatthe countermeasures should be
adapted to the age of the drivers.Mets et al.(2011) found thatRed BullR© Energy Drinkalso
significantly improves driving performance compared to Placebo drinks and reduces driver
sleepiness during prolonged highway driving during the 3rdand 4th hour of driving (which
is not surprising since energy drinks contain caffeine).

Drory (1985) examined the effects of different rest levels and secondary-tasks on perfor-
mance and fatigue of sixty male truck drivers engaged in a seven hour simulated driving task.
The results showed that performance and perceived fatigue were significantly higher when
a secondary task involving voicecommunicationwas added to the basic driving task, yet an
added vigilance task had less effect. An extra 30 minute restperiod in the middle of the
experimental session significantly alleviated the reported experience of fatigue but did not af-
fect the performance. In contrast to the distraction of atelephone conversationduring normal
driving, Greschner(2011) concluded from his experimental study that a phone talk of 15 min
has a very significant positive influence on the driver alertness.

It is commonly known and confirmed by accident statistics (Greschner, 2011, Fig. 1) and
(Altmüller, 2007) thattalking to co-passengers keeps the driver more alert than driving alone
or when all passengers are sleeping. It helps to prevent frompsychological underload (e.g.
due to monotony), and exhausted drivers become better awareof their fatigue.

Altmüller (2007) concludes fromGillberg et al.(1996) that sleep is the only remedy against
fatigue related from stress overload, physical exhaustionor sleep deprivation while psycho-
logical underload might be threated differently.

Exposing the driver to light was investigated as a countermeasure against fatigue.Blue
light increasingly suppresses melatonin for higher light intensity and length of exposure.
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The photopigments in the human eye mediate circadian photoreception that promote sleepi-
ness (Greschner, 2011; Brainard and Hanifin, 2001, Ch. 3.2). Becker(2008) investigated
light-induced melatonin suppression on 37 females and 35 males. He identified 446 to 477
nm as the most potent wavelength region. For continuous insolation to bright light with
over 2000 Lux, the melatonin level was reduced while the temperature and performance was
higher compared to subjects that were exposed to moderate light below 100 Lux. Own inves-
tigations at Daimler have not shown significant improvementof the degree of fatigue.

In the questionnaire used in this thesis during night experiments, some of the test subjects
answered that theydrive fasterto raise the adrenalin level and to get out of the monotony. In
fact, in the measurements recorded in this thesis, there wasa significant correlation between
the subjective self-ratings of sleepiness and vehicle velocity on monotonous motorways.

An effective but maybe too radical countermeasure tested during some specific drives within
this project wascold water or ice in the neck or face(advisably not while driving). The short-
term increase of alertness is quite obvious as exposure to cold water or ice increases the heart
rate, blood pressure and adrenalin level (Houben et al., 1982). It would be interesting to
investigate this countermeasure more thoroughly even if itis not practicable.

Grace and Steward(2001) emittedpeppermintas an alerting stimulus combined with a buzzer
alarm as a warning, but with little additional impact. The Daimler patents (Jellentrup et al.,
2009; Jellentrup and Rothe, 2009) propose to combine theATTENTION ASSISTwarning by
emitting thesmell of coffeeor fresh cookiesto motivate the driver to have a break.

1.5. Approaches to Detect Drowsiness in the Vehicle

Drowsy drivers exhibit specific observable patterns including eye gaze, eyelid movement,
head movement, and facial expression (Barr and Howarth, 2006).

Fig. 1.11 provides an overview over various approaches todirectly or indirectly detect re-
duced vigilance in a driving context.
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Figure 1.11.:Mindmap of in-vehicle approaches to reduce fatigue-related accidents (own drawing)

Since there is not an objective criteria for fatigue, some ofthe direct approaches are used as
"ground truth" reference. Ch.3 will further investigate promising measures that are suitable
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as fatigue reference in combination with subjective self-ratings. Fatigue can be rated by a
majority voting of experts or self-rated by the driver.

Direct approaches measure vigilance immediately from the driver.For instance, the brain,
muscle or heart activity can be measured by Electroenzephalography (EEG), Electromyo-
gram (EMG) or Electrocardiogram (ECG). Wiring the driver with electrodes is not practica-
ble for series applications, so that there are approaches toestimate theECGby radar in the
vehicle cabin (Mahler, 2005). The eye lid movement is another indicator for fatigue and can
be observed by electrodes around the eyes in the Electrooculogram (EOG) or by attaching
spindles directly to the eye lids (Hargutt and Krüger, 2000). A less intrusive way is to capture
the eye lid movements by an eye-tracking camera. In the past,the acceptance of a camera
pointing directly at the driver was too low for a series application. More recently, internal
studies show that the acceptance for such eye-tracking "sensors" has increased. Measuring
the hand grip force or the humidity directly on the steering wheel is a weak indicator for the
driver fitness and cannot be used as standalone features.

In comparison,indirect methods evaluate secondary effects such as impaired driving accu-
racy. The idea behind indirect approaches is to consider thedriver-vehicle-roadscenario
(Fig. 1.12) as a control system in which the driver has to constantly adjust the lateral and
longitudinal position. Reduced vigilance results in a decrease of control accuracy which can
be represented by different driver model parameter. The driver has to constantly react to
external influences induced by the road or traffic. The vehicle translates the actions with
a certain phase delay into movements. The error that the driver makes within this control
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Figure 1.12.:Driver within a control system

loop is partially correlated with his short-term attention, his fitness and fatigue level, but
unfortunately also to other influences such as varying driving styles, road condition, traffic
influences and many others. Thus, the long term lane keeping performance, steering behavior
or reaction time to external events can be used as indirect indicators for reduced vigilance.
These approaches will be investigated in Ch.4. The external influences will be discussed in
Ch.5.

Due to their non-intrusiveness and lower costs, indirect methods are more suitable for series
applications. Therefore, it is more attractive for car manufacturers to focus on indirect meth-
ods using in-vehicle sensors that are already available forthe Electronic Stability Control
(ESC) and other standard equipment systems.

1.6. Drowsiness Detection Systems on the Market

The first prevention driver assistance systems on the marketfocusing on fatigued drivers
were the VolvoDriver Alert Control (Volvo Cars, 2007b; Ritter, 2007) introduced in 2007,
as special equipment, and the Mercedes-BenzATTENTION ASSIST in 2009 as series equip-
ment (Daimler, 2008; Daimler COM/M, 2009). TheATTENTION ASSIST is running onESC
platforms from Bosch, Delphi and TRW that have all differentarchitectures. In 2010, Bosch



– 14 –

and VW introduced a fatigue detection system in the VW Passat, also as series equipment,
working similarly to theATTENTION ASSIST (von Jan et al., 2005). Nowadays, many auto-
motive OEMs work on fatigue detection systems.

The Mitsubishi’sDriver’s Attention Monitoring System(MDAS-III) from Mitsubishi-Fuso
(2012) is available for heavy duty trucks and large tourist buses based on a white-line-
recognition camera, steering wheel sensor and various sensors to monitor the attention level.
It calculates the degree of monotony by evaluating the clutch, auxiliary brake and signal
lights. The system also emits a fragrance during monotonousdriving in order to maintain
attention without discomfort (Mitsubishi, 2012).

Volvo Driver Alert Control

TheVolvo Driver Alert Control(DAC) detects drowsiness or unintended lane exceeding while
driving. The system turns on at 65 km/h and remains active until the speed falls below 60
km/h. The first version of the DAC was introduced in 2007 in theX60 as special equipment
package in combination with lane departure warning. Ratherthan assessing the human be-
havior directly, DAC monitors the driving behavior directly. DAC determines whether the
vehicle is driven in a controlled or uncontrolled way. Therefore, the system uses signals from
the lane tracking camera along with steering movements and constantly compares erratic be-
havior to the normal driving style (Volvo Cars, 2012). The DAC runs on a Delphi platform
and uses only three signals (lane position, yaw rate, and vehicle speed). When DAC detects

Figure 1.13.:Volvo Driver Alert showing a bargraph (Source:Autokiste.de, 2007)

signs of fatigue or a lack in concentration, an audible warning is emitted. At the same time, a
message is displayed on the instrument panel suggesting a break (Volvo Cars, 2012). In addi-
tion, a bargraph with five levels is provided, as shown in Fig.1.13for more experiencability.
The sensitivity can be adapted via personalization properties. The system is quite simple,
dynamic and therefore transparent. Manipulating the bargraph and provoking a warning is
easy. This brings experiencability whereas reduces the detection accuracy.

Mercedes-Benz Attention Assist

In 2009, Mercedes Benz introduced theATTENTION ASSIST with the new E- and S-Class
as series equipment. Today, the system is spread to the entire product portfolio as series
equipment. The system is a milestone in the history of safetysystems as shown in the latest
cover of the Daimler brochure "Milestones in Vehicle Safety" in Fig. 1.14. Mercedes-Benz
has developed the innovative system, which can detect the onset of driver fatigue or a lack
in concentration and prompts them a proposal to take a break before it is too late. The
system was designed to detect the transition from awakenessto drowsiness while driving and
issues an acoustical and visual warning suggesting a brake.Fig. 1.15 depicts the warning
in the instrument cluster of the first version in the E- and S-Class. Fig.1.16(a)depicts the
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Figure 1.14.:ATTENTION ASSIST as cover of Daimlermilestones in vehicle safety. The vision of
Crash Free Driving.(Source: 5836/1622/00/0609Daimler COM/M, 2009)

(a) E-Class 2008

Status Icon

(b) S-Class 2009

Figure 1.15.:ATTENTION ASSISTwarning in the E- and S-Class

ATTENTION LEVEL in the instrument cluster of the version 2.0 launched in the W222 S-Class
that illustrates an early stage of the algorithms developedin this thesis.

(a) Attention Level (b) HMI and warning concept

Figure 1.16.:ATTENTION LEVEL and warning concept in the W222 (Source:Mercedes-Benz
MBRSA, 2013)

As shown in Fig.1.17, over 80 signals are evaluated and more than 200 parameters are in-
volved. At the heart of this system is a highly sensitive steering wheel sensor which allows an
extremely precise monitoring of the steering wheel movements and the steering speed. Since
tired drivers have difficulties in accurately following thelane, they make small steering mis-
takes that are often corrected in a fast and characteristic way. The frequency and intensity as
well as five other measures represent the basic measure for fatigue. Extensive data analyses
of over 1000 drivers have proven that these mistakes alreadyoccur in an early onset of sleepi-
ness, long before the dangerous micro-sleep. TheATTENTION ASSISTobserves the driver’s
steering behavior and, during the first few minutes of every trip, determines a driver specific
profile that is then continuously compared with the actual steering data. Besides analyzing
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Figure 1.17.:The signals that theATTENTION ASSISTis using (Mercedes-Benz, 2008)

the steering behavior, the system permanently adapts to theactual steering style that may vary
because of external influences, speed or road types. The system is active at speeds between
80 and 180 km/h. The road condition and cross-wind are detected and taken into account.
Operations on buttons, levers, headunits as well as phone calls, etc. are also detected and
taken into account in the same way as overtaking or lane changing maneuvers. The dynamic
of the driving style (i.e. sporty or monotonous) is also incorporated. Also the daytime and
driving duration are taken into account. The system is reseted with engine restart or when
a driver change is detected. Fuzzy logic was introduced in order to improve the system’s
performance and to reduce fixed-point scaling artifacts. Many of the results presented in this
thesis were integrated in this system.

The current system is optimized to issue a warning to the driver in the right moment. However,
many drivers will rarely experience this moment, as it can take a while until such a state is
reached. In order to provide more transparency and make the system more experiencable, a
bargraph would be the next step as presented in Fig.1.6(a).

1.7. State-of-the Art and Literature Review

Monitoring the driver behavior is a research topic reachingback to the 90s and many studies
have been conducted over the last decades. Most studies werebased on data from driving
simulators since in-vehicle drowsiness experiments require a tremendous amount of effort.

Knipling and Wang(1994) found that driving duration and time of day (Circadian) arecorre-
lated with fatigue and can be used for detection.Ueno et al.(1994) used image processing
technology to analyze images of the driver’s face to estimate drowsiness. Using simula-
tor data and Artificial Neural Networks (ANN), Sayed(2001); Eskandarian and Mortazavi
(2007) found that steering activity, among other variables, correlate well with drowsiness.
They achieved an accuracy of 89% for the classawakeand 85% fordrowsy. Knipling and
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Wang(1994); Fairbanks et al.(1995); Wierwille (1996a); Wierwille et al.(1996); Wierwille
(1996b) proposed a set of features based on driving simulator data.Their potential features
are included and further improved in this project. In his dissertation,Altmüller (2007) ana-
lyzed the deadband rate in the steering velocity, based on 44simulator drives. The deadband
is a phase in which the driver is not steering due to a lack of awareness. These features are
included in this thesis and analyzed using real road data.Batavia(1999) used real world data
to optimize a driver aware lane departure system.

Schmitz(2004) proposed improvements to suppress warnings for intended lane departures
based on simulator results that are verified in two field studies. Kozak and Pohl(2006) did
the same, however based on 32 truck simulator drives.

Berglund(2007); Kanstrup(2006); Mattsson(2007) used multiple regression on in-vehicle
steering and lane data variables to accurately (87%) classify drowsiness, based on 22 truck
simulator drives. WhereasLöfgren (2007) was focusing on lane data,Wigh (2007) was
evaluating lane-based features such as time-to-lane crossing at Daimler.

Forsman and Vilaa(2012) performed a driving simulator study with twelve participants and
87 different driving metrics focusing on the detection of moderate drowsiness levels. She con-
firms that steering wheel variability provides a cost-effective and easy-to-install alternative
for in-vehicle drowsy driver detection at moderate fatiguelevels.

1.8. Goals of this Thesis

The general goal of this thesis is to improve online fatigue level estimation algorithms for
the application in drowsiness detection systems such as theMercedes-BenzATTENTION AS-
SIST. For this reason, it is mandatory to use sensor data that are suitable for in-vehicle use
and preferably based on available standard equipment sensors. The detection accuracy of
the system should be as high as possible while keeping the false alarm rate at a minimum.
The algorithms should be robust and reliable under any road condition and for any type of
driver.

The main focus of this thesis is on the study, implementationand evaluation of the fatigue
related features in literature. Moreover, own ideas and approaches will be proposed. This
also involves the data acquisition and handling of over one million kilometers of real road
test data and night experiments.

In order to reach the goals, an adequate reference for sleepiness has to be found and used
to represent the ground truth for optimization. For the effectiveness of the system, the aim
is to provide a warning that is plausible with regards to thesubjectiveself-assessment of the
driver on the one hand, and that prevents accidents by providing objectivefeedback to the
driver about his impaired driving performance at the other hand. Rather than the detection of
short term distraction, the focus of this thesis is on middleand long term lack of concentration
or alertness. At the same time, the onset of fatigue should bedetectedearly enough so that
there remains enough time for the driver to reach the next parking area. The later the system
detects arising fatigue, the more severe is the risk of having an accident. Thus, if the early
onset of fatigue was not detected, it is important to at leastdetect the later phases of sleepiness,
especially when micro-sleep occurs.
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Whereas the current system only displays a warning with an acoustic warning signal, the
next generation is intended to output an online bargraph that constantly monitors the driver.
Providing a permanently available bargraph of the actual driver state demands the estimation
of a continuous-valued measure of the driver’s vigilance level. This drowsiness level is also
valuable for adapting the sensitivity of other driver assistance systems such as lane departure
and collision warning systems.

In addition, there are other demands of series production tofulfill. The number of variants and
the effort for the application of the system to individual vehicle types must be manageable.
Furthermore, it is important to keep the system simple to conquer its complexity and reduce
the risk of software errors. Algorithms that are targeted torun on the ESC controller unit
must run in real-time and in fixed-point with a very limited demand of resources.

1.9. New Contributions of this Thesis

The contributions of this thesis to the field of driver state monitoring are as follows:

Signals and Data
Unparalleled amount of real-world driving data:Compared to any other previous work, this
thesis is based on an unparalleled amount of real world driving data. Most studies in litera-
ture, as for instance (Altmüller, 2007; Knipling and Wang, 1994; Batavia, 1999; Kozak and
Pohl, 2006; Schmitz, 2004; Ueno et al., 1994; Wigh, 2007) are evaluated on a comparatively
smaller amount of simulator drives or sometimes on-road measurements under restricted lab
conditions. As discussed in Sec.2.1, it makes a huge difference if test drives are recorded in
a simulator or on real roads.
Fusion of sensor signals:This thesis deals with the problem of handling mixed, asynchronous
CAN data in which signals are sometimes unavailable. The lane position is often unavailable
due to bad lane markings or vision issues. The lane position and vehicle level signals are not
available in all vehicles. Fail-safe considerations and fall-back strategies of faulty or missing
signals are made. Online sensor fault monitoring algorithms for sensor blindspots and hys-
teresis are proposed that run in fixed-point with very low resource consumption. Methods
for the plausibility check of signals by the use of redundancy, expert knowledge and physical
vehicle models are implemented.

Fatigue References
Assessment of EEG, Camera and Self-estimation:The subjective self-estimation, camera-
based eye-tracking andEEG brain activity are critically evaluated for their validityin real
driving environments. External measures like eye-tracking andEEG suffer from negative
influences during regular road drives. Hence, the Karolinska Sleepiness Scale (KSS) is pri-
marily used since the driver must accept the warnings and when thoroughly recorded, it is
more reliable than any other recorded measure. But since thesubjective understanding of the
KSS scale differs amongst drivers, adesired warning levelwas introduced. In addition, a
warning acceptance questionwas interrogated for cross-validation of theKSS.

Features
New and improved features:In addition to promising fatigue measures (so calledfeatures)
found in literature, new features are proposed. Their suitability for working under real driv-
ing conditions is evaluated thoroughly on an amount of real world measurements of over 1.5
million kilometers. For instance, a feature similar toDegree-of-Interactionis proposed but
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without the need of the steering wheel torque. In comparisonto (Mattsson, 2007), an alterna-
tive method for detecting zig-zag events is given.
Incorporation of a-priori measures:A-priori measures (such as daytime, "time-on-task",
light condition) have been considered separately during the training of the classifiers. This
makes the assessment of features more sensitive to the actual driver state rather than using
the probability of being sleepy in the actual driving situation alone.
Application of new signal processing methods:In order to improve the performance of the
features and their extraction efficiency, new signal processing methods are proposed for this
application (e.g.EWMA , EWVAR , EWIQR, DISPO,...) (cf. Ch.4).
Also, a convenient and resource-efficient online-estimation of steering velocity percentiles is
proposed using an array ofEWMA filters.
Feature extraction using Fuzzy logic:This was introduced to detect steering corrections more
reliably and to reduce fixed-float differences.
Adaptive window size of filters:Drowsiness increases rather slowly, so the correlation be-
tween features and drowsiness is better for smoothing with large window sizes. A major
problem in previous work was the large window sizes of 10-30 minutes that make the system
nonreactive to quick fatigue level changes. Compared toSayed(2001), for instance, an adap-
tive window size is used to be more dynamic in drowsiness supporting situations.
Accelerated optimization of feature parameters:Convex parameter optimization of single
features and global parameter optimization algorithms areapplied. For feature extraction,
computation cost reduction of over factor 100 is achieved byscaling all pre-processed sig-
nals to the tightest data type, loading the 60 GB into the RAM and applying efficient matrix
operations.

Lane Data
Features from advanced lane-departure camera:In addition to sensor data from steering an-
gle, acceleration and yaw-rate, a portion of the investigated features is based on data from
theAdvanced Lane Departure Warning (ALDW)system. ThisadvancedLDW provides addi-
tional signals, is calibrated more accurately and has higher availability compared to individu-
ally built-in aftermarket sensors from previous studies.
Estimation of lane-based features by inertial sensors and extended Kalman filter (EKF): For
the extraction of some features based on lane-tracking camera, it is proposed to only use in-
ertial motion sensors in combination with anEKF. The performance between original lane
features and the estimated coupled motion pendants are compared.

External Factors
Compensation of external factors:Moreover, external factors like road condition, cross-wind,
traffic density and vehicle operations are examined. A noveladaptive notch-filter is used to
suppress vibration noise from unbalanced wheel mass. A new sensitive detection of road
bumps is presented using the temporal delay between front and rear wheels. As in no other
previous publications, vehicle level signals from the air suspension or Active Body Control
(ABC) sensor are evaluated to estimate measures for the roadcondition. A comparison to the
other methods is given.
Compensation of individual driving styles:Adaption to the large variety of individual driving
styles is crucial and handled bybaselining. Different methods are compared.
Compensation of vehicle parameters:There is a large number of vehicle properties like steer-
ing ratio, steering resistance and torque, vehicle mass etc. on which the detection depends.
Cross-wind detection, for instance, is very sensitive to vehicle parameters. Such vehicle
dependencies are incorporated in this thesis.
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Classification
Fusion of features by classificationThe fusion of the features is discussed on the physical, fea-
ture, and decision level. With other words, modeling expertknowledge on feature extraction
level, feature selection and classification are compared. The performance of a combination of
features is assessed by classifiers and dimension reductiontechniques. Classification meth-
ods for modeling expert knowledge are examined by using Hidden Markov Models (HMM).
Real-time online demonstrator and novel CAN-interface:Approved algorithms are imple-
mented with very limited pixed-point resources in real-time in theESCof all today’s Mercedes-
Benz cars. More sophisticated features were implemented inan own Matlab MEX C++ CAN-
Interface with a visualizationGUI for in-vehicle online assessment.

1.10. Challenges of in-vehicle Fatigue Detection

Clearly, a major challenge about drowsiness detection is the amount of data needed for the
development and everything that is related to the data recording and handling. Since the
driver’s state generally decreases slowly over many minutes or even hours, very long mea-
surements are needed. At the same time, fatigue related patterns occur within seconds and
require a sufficiently high sampling frequency. Thus, not only the 2 TB of data, but also the
long duration of the measurements makes them difficult to record, handle, and analyze. Also,
the driving behavior must not be influenced by the touchscreen KSS entries or immediate
feedback of driving performance. Furthermore, it makes a big difference when the driver has
lane departure warnings or lane keeping available and switched on.

Also, a big issue was driving until the onset of sleepiness, but making sure that the risk of
having an accident is not higher than for normal traffic. So, every drive with involved fatigue
required at least a co-driver and sometimes a second set of pedals. These preventions made
it possible that not one single critical situation occurredduring the entire project.

Another difficulty was the large number of signals that have to be processed. Whereas many
signal processing fields are focusing one a few channels, thefeatures in this thesis are based
on over 200 signals that all need to be validated. They all have different characteristics and
each signal originates from different vehicle types with different sensors and controller unit
manufacturers with different software. The computer devices for measurement in the vehicle
are very complex, sensitive to faults, and often suffer frommiss-configuration. The driving
simulator, the various prototype vehicles, the measurement equipment, the 10.000 hours of
driving, the man power for data acquisition, and the research over one decade costed millions
of Euros.

Finally, the most difficult challenge was to uncover the information about the driver’s condi-
tion. The driver hat to be observed within countless hours and in various situations to discover
and cluster promising patterns and to come up with ideas how to automatically detect them.
Every driver drives differently and even one driver can change his behavior depending on
his/her condition, his/her mood, or the situation. So the observed patterns are covered by
many factors that severely overlay the weak fatigue patterns.

Even after all these considerations, the classification results did not reach the results obtained
in a driving simulator. It is still not clear, if online fatigue detection will ever work with very
high accuracy under all circumstances.
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Chapter 2.

Sensors and Data Acquisition

2.1. Driving Experiments

A prerequisite for obtaining results on fatigue detection is a sufficiently large amount of
recorded data with high quality. But even a large amount of data is useless without a reliable
reference and good transparency of what happened during thedrives. It is very important
to know under which conditions the drives have been recorded, for instance, to know the
speed profile, road type, weather and driver type. Fig.2.1 shows a map of valid drives in
Europe. Different experiment scenarios have been designedto record data that represent
regular driving. These experiment types are described in the following section.

Figure 2.1.:Map of drives: begin / end of drives are indicated with a green/ red dot. Green lines
indicateawakedriving sections, orange lines indicateacceptableand red linesdrowsy
drives (see Ch.3.3).

Night experiments: Drives with provoked fatigue levels were typically performed on mo-
notonous motorway sections with very low traffic and limitedspeed from about 120 to 140
km/h. This was the most important scenario since most of these drives involved a certain
extend of fatigue. In addition to the subjective KSS self-rating, the driver’s vigilance level



– 22 –

was constantly monitored by eye-tracking cameras and partially by EEG. For these drives,
the self-assessments of the fatigue level were most accurate thanks to the supervision by the
co-driver. Drivers were carefully monitored by specially trained supervisors, capable to in-
tervene from the passenger seat with a second set of pedals (Schmidt, 2009). The supervisor
made notes about the driver’s vigilance, the driving performance, and happenings that could
later be of interest. As it is usual for driving on public roads, the driver was always respon-
sible for driving safety. The drivers had to stop as soon as they had concerns about safety.
The supervisor also had soft and hard criteria to interrupt the drive. For instance, entering the
KSSlevel 9 one time or entering level 8 two times were hard criteria to interrupt the drive.
In none of the drives, interaction of the co-driver was necessary. Allowing more fatigue than
this was not possible on public roads. A questionnaire had tobe filled out by the driver before
and after the ride to determine irregularities and to collect driver characteristics. More night
drives with fatigue have been recorded on the closed 12km test track in Papenburg. However,
these drives were not realistic enough and thus not considered here.

Customer Near Driving (KNFE) and Free Driving: Daily routine driving profiles com-
prise the majority of drives in this thesis. Random persons obtain a vehicle to drive to their
individual destination. These drives are without any restrictions and do not specifically pur-
sue the goal of becoming tired. It is just desired to drive over 1600 km, thus, the vehicles
are often used to drive long distances on motorways that are more probable to contain fa-
tigue than other drives. All drivers get instructions, especially on how to estimate their level
of fatigue using theKSS. They were instructed to interrupt the drive when they felt tired,
no matter if they get a warning or not. Still, some drivers didnot reliably enter theirKSS
fatigue level, so that a validation process was needed (see Sec.A.7.3). The only thing the
driver had to do was to enter his/her sleepiness level every 15 minutes and fill out a touch
screen questionnaire before and after every drive. In addition, warnings must be rated as
false, acceptable, or correct. Drivers are not always used to the vehicle, so they sometimes
test vehicle dynamics or driver assistance systems. Some drivers tried to provoke anATTEN-
TION ASSISTwarning without being tired. Such drives are not suitable for training and, thus,
excluded from the present study.

Driving Simulator: Simulator studies are the safest and easiest way to record advanced
fatigue levels. Especially falling asleep can only be recorded in a driving simulator. Record-
ing data in the driving simulator in Fig.2.2was part of previous project phases. Anyway, in
the scope of this thesis and the diploma thesis ofAkin (2007), 30 simulator drives had to be
recorded to evaluate the latest eye-tracking system by letting the drivers fall asleep behind
the wheel.

There are big differences between data from regular everyday driving situations compared
to data from simulator drives. As reported in (Belz, 2000; Belz et al., 2004; Berka et al.,
2005), fatigue develops differently in a driving simulator compared to real drives. According
to (Philip and Sagaspe, 2005), the line crossings are of higher amplitude in the simulated
condition. Fig.2.2 shows an advanced moving-base driving simulator compared to a drive
in a real vehicle. Especially psychological factors and external influences have a significant
impact on the driving performance. One of the most essentialdifferences is the driver’s
awareness of being in a situation, in which his life depends on his fitness. In a simulator,
drivers go much closer to the limit of falling asleep, which is much too late for practical
applications. This is confirmed by the fact that most of the 30test persons have fallen asleep
in the simulator experiment conducted for this thesis. As drives on public roads must be
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Figure 2.2.:There are important differences between driving in a simulator compared to real driv-
ing conditions. This is why many fatigue detection approaches that worked well in a
simulator fail on real roads.

interrupted in an early phase of sleepiness, the drowsinessrelated patterns are more rare and
not very significant. Subjects that are monitored by a supervisor drive more strained and
calmer. A lot of "noise" is introduced by different road types, lane markings, traffic density,
curvature, speed profiles, driving styles, and vehicle types. The lane quality varies severely
and is affected by weather. In reality, realistic roads are never perfectly even. Such noise
cannot be simulated by even the most advanced simulators.

Proving Grounds: Driving experiments with safety concerns cannot be performed on pub-
lic roads. Private proving grounds like Papenburg in Germany or Idiada in Spain are not
representative for regular motorway drives. However, these testing areas are very suitable
for testing the detection of road bumps or the application ofvehicle and system parameters.
Therefore, testing the detection of fatigue patterns like zig-zag driving, lane exceeding, and
monotonous or sporty driving was tested on these proving grounds. Fig.A.1 shows a map of
the commonly used proving grounds Papenburg and Idiada.

Excursion Experiments: Long drives which are performed by experts who have a lot of
expertise in estimating their fatigue level are excursion experiments. The driving behavior
is well comparable to regular drives, since they are not limited to any kind of behavior, road
or driving situation. There was always an experienced co-driver when fatigue was involved.
In general, there are several vehicles driving in a group, which allows the comparison of
vehicles and drivers.

2.2. Database

The present results are based on a large selection of the Mercedes-Benz drowsiness database.
An unparalleled amount of data with over 27.000 drives and over 1.46 million kilometers
were recorded. Over 11.170 of these drives were valid for simulation.

• about 13.000 hours of driving time
• all valid drives were over ten kilometers and lasted up to eleven hours
• over 18 night experiments
• 1.485 drivers who’s age ranged from 18 to 77 years, 87% males
• 84 different vehicles from C- to S-Class and SLK- to M-Class
• 12 different countries (Europe, Emirates, Japan, USA, Namibia, South Africa)
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• all kind of roads (motorways, country roads, urban, gravel,testing ground, snow, ice)
• weather and temperatures ranged from -30 degree in Sweden toover +40 degree in the

Death Valley, Dubai and Namibia.
• The drivers were generally experienced, whereas some drivers had little experience.

91% of the drivers were familiar with the actual vehicle type.

App. A.2 shows the filter criteria ofdatasetsfor different applications.

2.2.1. Touchscreen and Questionnaire

TheKSSlevel was interrogated every 15 minutes through a touch screen display by a beep
sound. Fig.2.3shows the questionnaire that the drivers had to answer before and after each
drive. The actually entered value remained highlighted so that the driver could always con-
firm or update the last entry.

Figure 2.3.:MATLAB KSS input GUI for the driving simulator, similar to the touch screen in every
vehicle

Beforethe drive, the driver had to answer the following questions:

• Full Name
• Gender
• Year of birth
• Driven distance in km per year (see statistic in Fig.2.4(a))
• Most often driven vehicle brand and type
• Personally use manual or automatic transmission

(44.2% used automatic and 55.8% manual transmission)
• Usual driving duration until having a break (see statistic in Fig.2.4(b))
• Number of drives over four hours per month (see statistic in Fig. 2.4(c))

After the drive, the following questions had to be answered:

• Weather conditions (rain or fog, aquaplaning)
• Road condition (rills, road bumps)
• Occurrence of cross-wind
• Degree of distraction and reason (discussion, operation, thoughts)
• DesiredKSSwarning level:DWL
• Effectiveness of the warning (reason why driving was continued)
• Opinion on warning design
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(c) Frequency of drives over 4 h

Figure 2.4.:Statistic over the driver’s answers to the touchscreen questionnaire. Even if the recorded
drivers drive many kilometers per year, they only have a few long drives over 4 h per year.
Most drivers usually have a pause every 2 - 4 h whereas 19 % of the drivers drive 5 h and
more without a break.

2.3. Sensors

Every sensor was attached over ADC,LIN- or SPI-bus to anElectronic Controller Unit
(ECU) that translates the physical signals toCAN messages. Some of the sensor modules
send multiple signals. The majority of the CAN signals in Tab. A.1 in App. A.3 are vehicle
operation signals, such as turn indicators or steering wheel buttons that originate from every
different discrete button or lever states.ALDW provides 29 signals as described in Tab.A.2.
Signals from the ALDW lane keeping camera are investigated while longitudinal radar infor-
mation is not used. Some reasons are that the driver’s lateral vehicle control is permanently
necessary while the longitudinal control depends on external driving situations and the lim-
iter or (adaptive) cruise control might be active. The most important sensors are described in
the following.

2.3.1. Vehicle Speed from Wheel Rotation Rate Sensor

The vehicle speed is measured by wheel rotation rate sensors("wheelticks") that use a hall
sensor and a magnet wheel with magnetically encoded pulses to detect partial rotations and
the rotation direction. Depending on the vehicle drive train type, thewheel rotations per
minute WhlRPMat time instantn are calculated according to Eq. (2.1). If one of the used
sensors is implausible, only the plausible sensor is taken.This, however, results in a speed
deviation within curves.

WhlRPM[n] =






(

WhlRPMFL[n] + WhlRPMFR[n]
)

/2 for rear wheel drive
(

WhlRPMRL[n] + WhlRPMRR[n]
)

/2 for front wheel drive
(2.1)

The vehicle speed vveh [km/h] at time intervaln is then obtained using thedynamic wheel
circumference dwhl in [m] according to Eq. (2.2). The wheel circumference grows with in-
creasing speed, so thedynamicwheel circumference was chosen according to the speed range
of interest. Too small or worn out tires cause a small deviation that cannot be detected so far.
This parameter is an input of the algorithm stored as table intheESCand is selected based
on the vehicle variant code (SCN). The values originate fromthe tire suppliers.

vveh[n] = WhlRPM[n] · dwhl ·
3.6km

h ·
s
m

60min
s

(2.2)
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2.3.2. Inertial Sensors

The yaw rotation and acceleration are measured by the sensorcluster in the vehicle’s center
of gravity or directly onboard in theESC. A two-dimensionalMEMS accelerometer (cf.A.5)
measures thelongitudinal andlateral acceleration ax anday, each with the range±10.24m

s2 .
Theyaw rateψ̇ is measured by aMEMS gyroscope, whileyaw angleandaccelerationare
calculated. To cope with mounting tolerances and road inclination, the sensor offsets are
compensated online as explained in App.A.4.

Forces are generally related to the center of gravity of the vehicle. However, for cost reasons
the additional sensor cluster module was integrated from the vehicle’s center of mass into
theESC. While the yaw rate is independent from the mounting position, the measured accel-
erations are influenced by rotation and, thus, must be transformed to the vehicle’s center of
gravity as explained in App.A.4.

2.3.3. Steering Wheel Angle Sensor (STW)

The sensor for thesteering wheel angle(STW) δS is one of the most important components
of the fatigue detection system. In contrast to previous publications, a high precision steering
wheel angle sensor with a resolution of 0.1◦ was used. This sensitivity is an enabling property
for new innovations, for which the legacyESCsensorδS,ESChas an insufficient resolution of
0.5◦ or 2◦. However, theδS,ESC is better secured against failures since it is safety relevant for
theESC. Different vehicle classes have individual assembly requirements regarding packag-
ing space on the steering column, so products from differentsuppliers are needed. Depending
on the manufacturer, the sensor either works according tooptical or magneticalprinciples as
explained in App.A.5.

Depending on the vehicle and steering type (parameter/direct/vario steering),steering an-
gle δA of the wheel is related tosteering wheel angleδS by a speed dependent curve. For
small steering wheel anglesδS, this curve can be simplified to asteering ratio S Rfactor as
described in Eq. (2.3).

δA = δS ·S R(vveh, δS) ≈ δS ·S R (2.3)

In production assembly, the sensor mounting is affected by atolerance and there is usually
a 3% lateral road trend (for rain water drain), so an offset needs to be estimated and com-
pensated for. For reasons of simplicity, the adaptivesteering wheel angle offsetδS,o f f set is
already included inδS.

Sensor Aging

Due to the involved mechanics or optics, the steering wheel sensors suffer from aging. Sen-
sors that were intensively exposed to extreme situations were available to analyze whether
the sensor prototypes fulfill their specification.

For the precise quantitative assessment of sensor errors, asteering robot (see Fig.2.5) and a
steering wheel angle sensor with 0.0001◦ accuracy were installed in the cockpit.

The coded discs of optical sensors can suffer from dust that results in "blind spots" of the
signal, so that certain quantization values occur less often or never while adjacent values are
repeated too often. With the steering robot, perfectly linear triangle movements from -30◦

to +30◦ were repeatedly recorded, so that every quantization valuewas distributed uniformly.
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Figure 2.5.:Steering robot SR60 from Anthony Best Dynamics (Source:Anthony Best Dynamics,
2012) to validate steering wheel angle sensor

Fig. 2.6 shows adiscrete histogramof the steering wheel angle and the reference signal.
Fig. 2.7 shows the recorded trapezodial and a zoom of the signal in thetime-domain where
the gaps and increased occurences can be seen.
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Figure 2.6.: "Blind Spots" in which dust covers a slot of the sensor disc

As Fig. 2.8 shows, aging of the gearing can further result in ahysteresisof several samples
and non-linearity. To detect such a "backlash" across the relevant sensor range, the large
linear triangles were superposed with sines, each with an amplitude of 2◦. The backlash
could be detected as a plateau at inflection points by comparing of the reference and worn-
out sensor signals. Non-linearities could also be detectedthis way.

Simulations with artificial blind spots have shown that the Digital Polynomial Smoothing and
Differentiation Filter (DISPO) (cf. 4.1.1) can cope with up to two blind spots equivalent to
0.2◦ without significantly affecting the detection rate. Largerblind spots do not allow to de-
tect some fast steering corrections and have a severe impacton the detection rate. An efficient
online algorithm was implemented that detects sensor defects from large gaps by exploiting
the fact that adjacent quantization values are equally probable. During the beginning of a



– 28 –

Figure 2.7.: "Blind Spots" in the time-domain

Figure 2.8.:Hysteresis (backlash) in the steering wheel angle sensor

drive, a range of ten adjacent sensor points around the±10◦ region of interest is randomly se-
lected. AnEWMA filter for every point determines if the occurrence of one or more points is
significantly lower after a minimum number of occurrences. If such blind spots are detected
by theESCalgorithm after a number of drives, an error code is stored with the instruction to
replace the sensor during the next service visit.

Online detection of a backlash is much more difficult since itis not known how long the
steering wheel is really stopped at inflection points. Only absence of a hysteresis could be
detected, but is not discussed here.

2.3.4. Advanced Lane Departure Warning (ALDW) Assistance Systems

The driver assistance systemsAdvanced Lane Departure Warning(ALDW) and Lane De-
parture Protection(LDP) help to prevent lane exceeding by distraction or late phases of
fatigue and micro-sleeps. The systems detect lane markingsbased on the images of a multi-
ple purpose camera which is available as special equipment.The quality of the lane detection
depends on the quality of the lane markings as well as the light conditions and environmental
influences like rain or fog (also cf. (Kozak and Pohl, 2006)). Data of a calibrated ALDW
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have been used which provided over 35 signals with high accuracy. Tab.A.2 in App. A.3
lists the CAN signals for the system.

2.3.5. Global Positioning System (GPS) Sensor

Global Positioning System (GPS) data are obtained over the regular built-in seriesGPSsensor
through the head unit as well as over an additional USBGPSdevice (Weiss, 2011). The head-
unit additionally providesGPSsignals matched with vehicle speed and map data. The signals
are listed in Tab.A.1.

2.3.6. Rain and Light Sensor

The rain and light sensor uses an optical photo sensor matrixto detect rain and light through
the reflections on the windshield. The reflection coefficientof the front window is measured
by a matrix of photo resistors and IR-emitters. Rain is detected as a change of this coefficient
while the absolute illumination level is measured at the same time by photo resistors.

2.4. Co-passenger Observations during Night Experiments,
Excursions and Free drives

When looking at recorded driving data, it easily becomes clear that the transparency of what
happened during the drive is very low, especially if no videowas recorded. Aware driving
as co-passenger or by one-self provides much more transparency of the actual driving and
sleepiness context.Online observation of different drivers and driving situations iscrucial
for identifying fatigue related patterns. Roughly spoken,the intensity of driving patterns, as
for instance steering correction, can be experienced live.Some qualitatively noticeable and
prominent examples will be discussed here.

Thus, after every night or excursion drive of three to ten hours, plenty of notes were recorded
over specific observations, the performance of fatigue measures, and sometimes new ideas
for features emerged. Thereby, the focus was particularly on patterns that can realistically
and robustly work in practice and in real-time.

For instance, the beginning of a curve after a straight road section was notably often paralleled
with steering corrections, quite independently of the driver’s state. The consequence is that
steering events are subsequently suppressed that result from curve entries.

Moreover, it was observed that the driving performance correlated quite well with a certain
pattern for one or a group of drivers whereas other patterns correlated with other drivers.
Especially one driver (ID 473) reliably started to approachor exceed the lanes with increasing
fatigue levels. TheALDW system, made him aware of his exceedances and was very valuable
for this driver. This observation underlined the approach to combine driver clustering and
fatigue detection.

It was reported that especially in the free or unsupervised driving, some drivers were not very
motivated to drive properly in specific situations. Such a sloppy driving style is generally
characterized by loose lane keeping on empty roads, lane exceedances or lane changes with-
out the use of the turn indicator. For instance, in France, where the maximum speed is limited
to 130 km/h and where the roads are often very empty, the driver tend to drive in a similar
"sloppy" way as with fatigue. The differentiation between unmotivated and fatigue-related
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driving style is often very difficult. However, it is plausible to objectively be monitored of
such impaired driving performance.

Furthermore, some drivers realized that they have the tendency to drive more to the right,
when another car is overtaking. At the other hand, they tend to drive more to the left when
driving on the middle or lefter lanes if cars on the right laneare present. This effect is
increasing with higher speeds. This was the motivation to compensate driver and situation
dependent lateral lane offsets for lane features.

Changes in the driving situation, e.g. during constructionsites, tunnels, weather changes, can
wake up a driver out of a monotonous fatigue. However, long tunnels can be very monotonous
again after some time. It is very clear to see that the drivingand especially steering behavior
becomes much more hectic within construction sites. For this reason, situation changes were
suppressed in the algorithm until driving parameters adapted to the new situation.

Depending on the motivation and experience of the drivers inestimating theirKSSfatigue
level, some expert drivers were precisely aware of their actual KSSlevel, with even higher
resolution than the scale allows. In this attentive focus, it was observed that the sleepiness
level varies much faster than the 15 min long interrogation interval that only summarizes
the average level. For this purpose the supervising co-pilot noted additional information
about the driver’s fatigue level and sometimes revisedKSSentries. This also supported the
motivation to investigate other fatigue references.

Also, the different reasons for fatigue, whether it is caused by monotony or exhaustion be-
came very experiencable. It was observed that the restrictions "no music", "no talking", "no
cold air" have a huge impact on the time until drivers were getting sleepy. Fatigue is very
rare on regular roads but traffic accidents are also very rarewhen we consider that the average
driver has an accident every≈ 400.000 km (Martin, 2006). Driving condition safetyof the E-
and S-Class are very good, for instance due to low noise, precise steering and comfortable
seats. Studies from Mercedes-Benz show that these factors significantly support the driver
to remain alert for an extended time. For instance, most of the twelve hours drives from
Stuttgart to Barcelona in the S-Class allowed subjects to work afterwards or even continue
driving. Small, sporty cars are louder and require more steering corrections which is much
more exhausting. For this purpose, it was necessary to applyparameters for every vehicle
independently with a sufficiently high number of drives. These observations indicate that a
driver will be longer "fit" under real circumstances than under the monotonous night experi-
ments. These findings build a basis for the implementation ofnew and iteratively improved
features. The repeated driving experiments were also crucial for the assessment of changed
features.
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Chapter 3.

Evaluation of Driver State References
During the development of fatigue detection algorithms, the key importance of a good fatigue
reference became clear. The performance of the fatigue detection can only be as good as the
reference according to which it is optimized. The major problem is to find a "true" reference,
also referred to asground truth. However, there is no such objective ground truth for fatigue
as there is for alphabetic character recognition, for instance. The behavior of the detection
system follows the properties of the reference. For instance, a reference that has a low tem-
poral resolution, will not allow the development of a systemthat is more dynamic than the
reference. For this reason, it is very important that the reference meets the requirements of
the system behavior. At the same time, the amount of effort tomeasure the reference has to
be manageable. There are various approaches to measure fatigue in a driving environment.
The most promising, non-intrusive and practicable ones will be evaluated in this chapter.

3.1. Terminology and Physiology of Fatigue

Fatigue (from lat. Defatigatio) is a discomfort evolving from preceding exertion, disease,
suppressed need for sleep or sleep deprivation. In general,it is an imbalance between exertion
and rest, due to physical or mental overstrain, induced by lifestyle. Fatigue is marked out as
lack of energy, mental or physical exhaustion. Fatigue in a driving context can have different
reasons and has various facets and phases. According toAltmüller (2007, page 6), fatigue
can have the following reasons:

• Stress overload: too much mental demand that can not be handled provokes drowsiness
• Physical exhaustion: hard physical or mental work can lead to a strong desire to rest
• Sleep deprivation: bad or extended lack of sleep can cause a high pressure to sleep
• Psychological underload or monotonous situations can provoke sleepiness. A lack of

motivation can also play a role.

For adolescent persons, fatigue is normal to a certain degree. It is caused by growth, lack of
sleep and social or scholar burdens.Oron-Gilad et al.(2007) state that fatigue is influenced
by two factors: the driver’s initial state before starting the drive and the characteristics of the
drive. Both factors have a cumulative property. "Active" fatigue is caused by lack of sleep,
and does not necessarily prevent "passive" fatigue (inherent boredom) caused by monotonous
driving situations. The sources of active fatigue are homeostatic factors that relate to the
neurobiological need to sleep. The longer the wakefulness cycle, the more difficult it is to
resist the pressure to sleep (Dinges et al., 1987). Homeostatic factors govern circadian factors
to regulate the timing of sleepiness and wakefulness (Mara, 1999). Countermeasures are not
very effective if drowsiness is caused by exhaustion. In contrast, fatigue caused by monotony
can be overcome by different activating countermeasures.
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First of all, we need to define the terminology in regards to fatigue. A definition of the notion
can be found in (Brown, 1994; Blanco and Bocanegra, 2009):

Exhaustion Lack of energy and concentration after prolonged executionof working tasks.
When a driver is extremely exhausted and deprived of sleep, even caffeine or short
pauses do not help any more.

Fatigue The difficulty to remain awake (Philip and Sagaspe, 2005). It is influenced by the
circadian rhythm and homeostatic variables (Schmidt, 2009, 1.1). The alertness can
be medically and psychologically divided in several stages. These range from uncon-
scious coma to highest excitation (e.g. shock). Fatigue, asperceivable physiological
necessity for sleep stands in inverse relationship to alertness and vigilance. Fatigue
is a rather slowly changing inner degree of exhaustion and rather a temporal smooth
average of vigilance variations.

Sleepiness Physical sleep pressure that a person perceives. In (Philip and Sagaspe, 2005),
it is defined as the difficulty to remain awake. It is influencedby circadian and homeo-
static variables (Schmidt, 2009). Sleepiness is describing the late phase offatigue, i.e.
the fight against sleep which is often accompanied bymicrosleep.

Vigilance (lat. vigilantia: wakefulness, sharpness). In physiology and psychology, wake-
fulness denotes a state of permanent alertness. Wakefulness is a partial aspect of con-
sciousness. Vigilance describes the neuro-physiologicallevel of excitation that modu-
lates the willingness of a person to take action.Vigilance variationsare referred to as
temporal variations in performance. A shock can, for instance, change the vigilance
state immediately to wide-awake while the basic fatigue level remains.

Hyper- and Hypovigilance Hypervigilanceis a medical term for augmented wakeful-
ness and the opposite of Hypovigilance, which stands for increased sleepiness.

Attention The ability of a person to consciously or instinctively orientate (e.g. taking con-
trolled action) as a reaction to different sensory or mentalinputs. Attention can be
short, mid or long-term and is strongly moderated by simultaneous secondary tasks
such as distraction by mental thoughts or side-tasks.

Microsleep Short gaps of unawareness from 0.5 to 2 seconds while the eyesare gener-
ally closed. A certain kind of microsleep happens with the eye wide open ("looked-
but-failed-to-see" phenomenon (Herslund and Jorgensen, 2003)). When driving on a
straight motorway while not having control of the car or taking any action for two
seconds, in most cases nothing happens. However, it is oftentoo late to take action in
time when driving in a curve or when approaching a preceding vehicle, a construction
site or when a reaction to an unforeseen obstacle is needed.

Highway Hypnosis Sleep-inducing ("narcotic") impact of a monotonous driving situation.
Prolonged driving in monotonous situations can favor fatigue.

Knowing that one is approaching the target destination has amotivating, arousing effect. It
was often observed that this is the case especially for sleepiness induced by monotony.

Fatigue during the night drives recorded in this thesis is mostly induced by exhaustion from
a regular work day as well as by monotony since drivers were not allowed to talk or listen to
the radio. Otherwise, the experiment would have taken much longer.

There are many aspects related to the physiology of fatigue.In this thesis, the cause or reason
for fatigue is of little interest in contrast to the driving performance which is directly related
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to the risk of having an accident. Thus, the termsfatigue, drowsiness, and tirednessare
used in a similar way to describe the driver’s driving performance across the entire range.
Sleepinessis generally used for the later phase close to falling asleep. The termmicrosleep
is used to describe the latest phase and highest degree of fatigue.

3.2. Phases of Fatigue

There is a broad variety of approaches to detect fatigue within a driving context. Before
discussing these approaches, it needs to be considered thatfatigue consists of different phases
to which the approaches are sensitive to. These phases are depicted in Fig.3.1. A driver
monitoring system has to be sensitive enough to detect sleepinessearly beforedangerous
situations arise, i.e. phase II.

Repeated, short phases of inattentionI.

Longer phases of inattentionII.

Generally no danger

MicrosleepIII.

Increased crash risk

High crash riskIn
cr
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Falling asleepIV. Generally heavy 
accidents

• Typical steering mistakes

• Overseeing of suddenly appearing situations
• Eventually lane exceedings
• Eventually critical approaches to vehicle ahead

• With opened or closed eyes
• Driver temporarily inactive

• Driver continuously inactive

Figure 3.1.:Phases and effects of drowsiness while driving (Source: Daimler, 2007)

3.3. Drowsiness Reference

As mentioned before, the development and optimization of vehicle data based algorithms to
detect driver impairment demands a solid reference.

Inattention and drowsiness both similarly result in decreased driving performance whereas
most references are rather sensitive to either one of them. An overview over the different
approaches to detect fatigue in general was introduced in Sec. 1.5. Since the often used
self-rating according to theKSSscale has certain shortcomings, as summarized in (Schmidt,
2009), this chapter compares alternative drowsiness references in a driving context. Espe-
cially, a better temporal resolution is of central interestfor the development of a drowsiness
detection system.

The utilization ofsubjectivescales generally has several drawbacks like intra- and inter-
individual variation or intrusive influences on the driver.Thus, anobjectivedriver alertness
metric is desirable if the performance should be sufficiently high and robust.

Different measures were investigated as drowsiness reference:

• Subjective ratings of the driver’s fatigue level
• Eye-tracking camera to record blinking behavior and gaze direction
• Electrooculogram (EOG) to electrically monitor eye blinking behavior
• Electroencephalogram (EEG) to measure electric brain activity
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In this thesis,EEG, EOG and eye-tracker equipment were only available in certain night
experiments as these methods are very impractical and it wasnot feasible to wire drivers on
every drive.

As recording units become more and more mature, camera-based approaches are potential
candidates for serial online driver monitoring, includingdistraction recognition. PERCLOS,
introduced by (Hargutt, 2001), is one of the most common measures for drowsiness in litera-
ture. In this chapter, an advanced measure of driver impairment is proposed that incorporates
eye opening frequency, driver adaptive baselining, head movements, distraction and overtak-
ing suppression.

3.3.1. Subjective Self-ratings and Expert-ratings

Subjective ratings of the driver’s fatigue level accordingto theKSSscale can be conducted
in multiple ways:

Online by the driver:aware drivers are "experts" on how they feel and which mistakes they
make. However, their judgment may be subjective and impaired by reduced awareness
e.g. by sleepiness.

Online expert rating by the co-driver:the passenger can remain awake and attentively ob-
serve a sleepy driver. The co-driver perspective allows to directly monitor the driver’s
behavior, facial expression and gestures while keeping an eye on the driving perfor-
mance and situations.

Offline expert majority voting:a group of experts may retrospectively assess the driver’s fa-
tigue level e.g. by watching video recordings of the driver and the road. Behavioral
patterns as eyelid and body movements, yawing, and head nodding (cf. Gallay and
Schleicher(2002)) can also be seen in the video, yet not as good as actually being in
the car. The video additionally allows to rewind questionable situations. The advan-
tage of the majority voting is that multiple persons can repeatedly estimate multiple
drivers which reduces subjective variations. Results from(Wierwille and Ellsworth,
1994) indicate that this is the most reliable and consistent method to estimate fatigue.

The disadvantage of subjective scales is that everyone perceives and understands fatigue and
the scales in different ways which makes the self-ratings very difficult to compare. Also
the opinion on the level from which a driver considers his fatigue as dangerous varies, i.e.
some drivers are more courageous than others. In any case, itis very difficult to compare
the fatigue level of different persons as everyone shows different behaviors and physiological
patterns.

Unfortunately, expert ratings are much too laborious for the amount of data in this project.
For practical reasons, it was decided to use the self-ratings of the drivers since these can even
be made with only one person in the vehicle. In night studies,the co-passenger additionally
noted the driver’s fatigue patterns as well as situations inwhich the driver’s self-rating did
not match his/her opinion.

3.3.2. Karolinska Sleepiness Scale (KSS)

Besides theStanford Sleepiness Scale (SSS)and theTiredness Symptoms Scale (TSS)(see
Akin, 2007), the most commonly used subjective self-estimation reference is theKarolin-
ska Sleepiness Scale(KSS). This interval scale(Bleymüller and Gehlert, 2012) is shown in
Tab.3.1. TheKSS was proposed in 1979 byÅkerstedt and Gillberg(1980) and his group.
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It is a linear scale with nine levels, assuming that the difference between every level corre-
sponds to the difference in the attention level. The scale ranges from the most awake state
KSS1 to the most sleepy stateKSS9. The next state afterKSS9 would be "asleep".

KSS Description
1 Extremely alert
2 Very alert
3 Alert
4 Rather alert
5 Neither alert nor sleepy
6 Some signs of sleepiness
7 Sleepy, no effort to stay awake
8 Sleepy, some effort to stay awake
9 Very sleepy, great effort to keep awake, fighting sleep

Table 3.1.:Karolinska Sleepiness Scale (KSS) ofHorne and Reyner(1995), modified bySvensson
(2004). The colors represent the representation in the touchscreen.

The KSS was recorded during all drives and interrogated through a touchscreen every 15
minutes which was announced by a beep sound. The entries weresupervised by the passenger
(cf. Sec.3.3.1). Fig. 2.3 (cf. Sec.2.2.1) shows an image of the touchscreen display to enter
the self-rating. The colors are supposed to suggestno warning desired(green),warning may
be issued, but does not have to(yellow) andwarning required(red). The use of three colors
may already affect the linearity of the scale, e.g. some drivers hesitate to step to the next level,
for instance from 7 to 8. However, the benefit of unifying different drivers outbalances this
drawback. The colors resolve the region of interest sharperto distinguish whether a warning
is required or not.

A large percentage (about 15%) of the drives were set as not valid becauseKSSentries were
implausible or missing due to unmotivated drivers or misinterpretations of the scale. The 15
minutes were chosen as a trade-off between good temporal resolution and avoiding intrusive
feedback. As a consequence, there is a certain temporal vagueness and it was not possible
to record sudden drowsiness variations caused by differentsituations. Nevertheless, drivers
could make aKSSentry at any time they felt that their level had changed. Sec.3.3.6discusses
the temporal interpolation of theKSS.

Fig. 3.2 shows a histogram and average of theKSS entries over time-of-day and driving
duration. It can be seen that the entries at night are on average four levels higher than during
the day. The sudden increase from 21h00 to midnight stems from the continuous arising
fatigue level during the night experiments staring in the evening. The averageKSS also
increases by one level after three and again after 5 hours of driving. Fig. 3.3shows theKSS
entries over age. The averageKSSentries in the database are about one to two levels higher
between 30 to 40 years in comparison to elder people. It was observed that elder people are
more reasonable and tend to give up fighting against fatigue earlier.

In many night experiments, it was observed that drivers are quite well capable of realizing
relative changes in their attention level but fail in repeatedly estimate theirabsolutelevel.
They compare themself towards previous states while forgetting to focus on the absolute
state. As for all subjective scales, the varying interpretation among different drivers is a major
problem. The absolute value can vary between different drivers by one, or sometimes even
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Figure 3.2.:KSS over time-of-day and driving duration

Figure 3.3.:KSS over age

two, levels in the here conducted experiments. Some driversseem to be quite experienced
and certain in rating their fatigue level while others seem to be very insecure.

Basically, the ultimate goal is to assess the safety risk from how well the driver handles the
vehicle and not when he/she is tired. For these reasons, it appeared not to be sufficient to
solely record theKSSlevel. Thus, a lot of effort was invested in this thesis in searching for
practical and reliable alternatives.

3.3.3. Desired Warning Level (DWL)

The sensitivity to the instant, when to issue a warning to thedriver is another major issue and
differs among drivers. While some drivers would like to havean early warning as they stop
the drive at the first signs of fatigue, others tend to fight thesleep longer. This strongly relates
to the acceptance of the system and the system is worthless ifit is switched off. Moreover,
drivers sometimes realize after a drive that their self-rating was generally too high or too
low. The strategy of theATTENTION ASSIST is to issue an early warning based on the first
signs of fatigue and to point out the increased risk of havingan accident. Introduced in the
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W222, the driver has the possibility to adjust the sensitivity of the system. For these reasons,
a Desired Warning Level(DWL) was interrogated after every drive. ThisDWL declares at
which KSSlevel the driver requires a warning to be obligatory. The default desired warning
level was considered to beKSS8. It was provided to drivers as an orientation and asked if
they wanted to be warned earlier or later than this.

Tab.3.2shows the distribution of the desired warning level based on10 135 drives.

KSS Proportion
KSS 6 12.8%
KSS 7 29.4%
KSS 8 56.5%
KSS 9 1.3%

Table 3.2.:Distribution of the Desired Warning Level (DWL) entered by drivers after each drive

3.3.4. Warning Acceptance and Warning Assessment

After every warning that was issued by theATTENTION ASSIST, awarning assessmenthad
to be entered in the touchscreen, whether the warning wasright, acceptableor wrong. In
the night experiment 2010/03 with 91 drives, thewarning acceptancewas also interrogated
every 15 minutes on how correct a warning would be in this moment. As it can be seen in
Fig. 3.4, the warning acceptance does not always match the enteredKSS, which indicates
contradicting inputs.

Tab.3.3 shows the confusion matrix on how well the warning acceptance question matches
the KSS levels by defining classes under the consideration of the desired warning level
(DWL) minus oneand minustwo. Tab.3.4 shows the same confusion matrix but with the
tighter definition ofacceptableas DWL minusone.

The overall result shows that the tighter definition ofacceptableas desired warning level mi-
nus one matches the warning acceptance question best. This complies with the button colors
in the touchscreen in Fig.2.3 and supports the class definition in the next Sec.3.3.5. With
these discreteKSS levels, a better class definition is not possible. Since these warning ac-
ceptance entries were only continuously interrogated during night experiment 2010/03, only
this information can be used for the class definition using the KSS. However, thewarning
assessmentof issued warnings provides additional transparency during the refinement of the
system. For such transparency reasons and better correlation to alertness variations, the fine
KSSresolution of nine levels can not be replaced by the warning assessment.

3.3.5. Definition of Classesawake, acceptable and drowsy

In regards to the classification algorithms, it is reasonable to define classes of when to issue a
warning or not. Additionally, it makes sense to define an early phase, or a pre-warning phase
in which the driver and the algorithm are in a "transition phase". This yields the three classes
awake, acceptableanddrowsyas defined in Tab.3.5. This definition is based on theKSS
entries (cf. Sec.3.3.2) with and without the desired warning level (DWL) from Sec.3.3.3
and corresponds to the warning assessment in Sec.3.3.4.
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Figure 3.4.:The warning threshold, combined fatigue output and warnings of theATTENTION AS-
SIST are shown in this standard toolchain figure. To counter-check the KSS (bottom),
the driver is asked every 15 minutes if a warning would now bewrong, acceptableand
correct (top). Drivers often contradict themselfs with their own statements. This driver
assesses that his fatigue level is only above the warning threshold (DWL) between 2:17 h
and 2:32 h of driving while he already assesses a warning to becorrect after 0:50 h and
1:50 h of driving. He assesses the firstATTENTION ASSISTwarning after 2:25 h during
hisKSSmaximum only asacceptableand all later warnings to bewrong.

3.3.6. Interpolation of KSS Entries

Fatigue detection must work continuously. Thus, the fatigue reference is necessary more of-
ten than every 15 minutes. Moreover, for the calculation of the correlation, it is helpful to
have the same sampling rate for all signals. For this reason,the KSSentries must be inter-
polated appropriately. TheKSSis prompted retrospectively from the instant of interrogation
back to the last interrogation.KSSentries are thus most accurate shortly before the moments
of the entries. To be concise, the values in between regularKSSentries may severely vary
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KSS / desired warning level (DWL)

KSS≥ DWL KSS = DWL -1 or
KSS = DWL -2

KSS < DWL-2

Warning
Assessment

Drowsy 80.7 % 17.6 % 1.7 %
Acceptable 22.4% 64.2 % 13.4 %

Awake 1.5 % 33.0 % 63.5 %

Table 3.3.:Confusion matrix for warning acceptance and three classes based on KSS and DWL con-
sidering the desired warning level (DWL) minustwo (average correct: 68.5% match)

KSS / desired warning level (DWL)
KSS > DWL-1 KSS = DWL-1 KSS < DWL-1

Warning
Assessment

Drowsy 80.7 % 15.1 % 4.2 %
Acceptable 22.4% 44.8 % 32.8 %

Awake 1.5 % 13.4 % 85.9 %

Table 3.4.:Confusion matrix for warning acceptance and three classes based on KSS and DWL con-
sidering the desired warning level (DWL) minusone(average correct: 80.1% match)

Class with DWL without DWL

(motivated byWierwille and Ellsworth(1994))

Awake KSS<DWL-1 KSS< 7

Acceptable DWL-1≤KSS<DWL KSS= 7

Drowsy DWL ≤KSS 8≤KSS

Table 3.5.:Definition of fatigue classes using the Karolinska Sleepiness Scale (KSS) with and without
consideration of the desired warning level (DWL)

in any arbitrary way, which, however, were not recorded as additional KSS entries. This
information is lost and cannot be recovered by interpolation. However, there are several
approaches to fill the time gaps in betweenKSSentries.

It is obvious that a driver cannot estimate his future fatigue level. Hence, assuming that
the driver follows the instructions and enters theKSS always retrospectively for the last
15 minutes, the interval to thepreviousKSS entry can be filled with the latest entry. The
last entered value is highlighted in the touchscreen, so that the driver can always see what
he/she has entered last. If the driver tries topermanentlyreflect his fatigue level on the
touchscreen, filling up the gaps in between entries by holding the lastKSSto the next entry
would be correct. A trade-off between holding entries and retrospective filling would be the
methodsnearest neighboror linear inter- and extrapolation. Linear interpolation produces
intermediate valuesthat cause a distribution betweenKSSvalues, that depend on the change
frequency. This can be undesired, depending on the application. Fig.3.5shows the piecewise
cubic HermiteinterpolatedKSSas an alternative to linear interpolation.
The correlation between fatigue measures anddiscreteKSSvalues is not optimal and would
be better if theKSSquantization would be finer. The interpolation is more relevant for fast
changing levels. TheEEG spindle rate in Fig.3.5 confirms that the fatigue level changes
faster than theKSS entries. For instance, it can be seen that the first peaks of the EEG is
not represented by theKSS. Sudden variations are also not always recorded and the absolute
peak height does not match. Also the time instant of the peaksand minima appear to be
slightly shifted. More frequent interrogation of theKSS would however have an intrusive



– 40 –

Drive ID: 16870, Driver ID: 340 in Experiment <1003_AA2_A8_Maerz> (81)

9: very sleepy

8: some effort

7: no effort

6: some signs

5: neither nor

4: rather alert

D
ri

v
er

C
o
n
d
it

io
n

[]

3: alert

2: very alert

1: extremely alert

Time-of-day [hh:mm]
20:30 21:00 21:30 22:00 22:30

KSS holding
KSS entry
Desired warning level (DWL)
Piecewise cubic Hermite KSS interpolation
..G spindle rate 300s (qualitative)

Figure 3.5.:KSS entries, interpolation by holding and piecewise cubic Hermite interpolation. In com-
parison, the character of theEEGspindle rate is much more similar to cubic interpolation
than toKSS holding. However, the dynamic resolution of theEEGsignal is still more
agile than anyKSSinterpolation and the peaks are often not synchronous.

influence on the fatigue level of the driver. It must be mentioned that the selected drive is
among the ones in whichEEGperformed best.

TheKSShas the highest confidence at the time instants whenKSSentries are made. Another
approach is thus to just compare theKSS entries to the signal of interest by reducing it to
these instants usingaggregation. This means that the signal values within the time frame of
KSSentries are summarized to a single value by using e.g. themeanor maximum. The latter
has shown to be most appropriate for this application, because drivers tend to focus on the
sleepiest, most dangerous situation peaks within the last time interval.

In this thesis, linear interpolation is generally used for correlation measures and the assess-
ment of warning instants. Aggregation to the maximum is usedfor statistical significance
tests as the values in between entries contain less information.

3.3.7. Temporal Smoothing Delay of Features and KSS

It was observed that vehicle data based features are delayeddue to smoothing with window
sizes of several minutes. TheEEGspindle rate (cf. Sec.3.4) in Fig. 3.5gives an impression
of this. EEGsignals use a causal low-pass filter that has a window size of about six minutes.
It is obvious that all smoothed signals are delayed depending on their window size. When
comparing the phase delays of blinking based fatigue measures, which have a high temporal
resolution, andKSSentries, it turned out that delaying theKSSby τ = 1.8 min improves its
correlation with the blinking based feature PERCLOS. One factor may be that sleepy phases
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can occur before the driver becomes aware of them or is willing to admit his sleepiness. In
any way, the goal remains to develop features which are reactive to the underlying ground
truth. Smoothing with low phase delay is used to obtain good correlation results.

Advantages and Disadvantages of Self-assessment

Schmidt(2009) summarized that research on the self-assessment of vigilance came to contra-
dicting results. Multiple studies showed that self-ratings are not accurate enough to function
as reliable and valid indicators of driving performance andreaction time. For instance,Belz
et al. (2004) evaluated driver performance in an extended-duration real-world environment
of commercial motor vehicles. Without exception, the correlation analyses betweenKSSand
minimum time-to-collision (TTC) and minimum/mean headway yielded that neither of them
are valid indicators of driver fatigue.Philip and Sagaspe(2005) reported as well that the self-
assessment of the subsequent performance in a reaction timetask under prolonged daytime
driving conditions was rather poor.

The findings ofBaranski(2007) from a cognitive work study with 64 adults suggest that
people can accurately assess their own cognitive performance after being deprived of one
night of sleep. In a real car driving simulator study with 38 sleep-restricted young adults,
Horne and Baulk(2004) found that subjective sleepiness,EEGactivity, and lane drifting were
highly correlated.Schmidt(2009) argues that drivers are well aware of their deteriorating
vigilance, but that early warning signs are often ignored ormisinterpreted.

Besides the above mentioned intra- and inter-individual variation, self-ratings are always in-
trusive, i.e. have an awaking impact. According toSchmidt(2009), theKSSpoling has an
aftereffect of about one minute in theEEGalpha spindle rate and about two minutes in the eye
lid closure and can be neglected. Drivers have difficulties in rating their fitness, especially af-
ter more than three hours of continuous monotonous daytime driving with advanced degrees
of fatigue. Schmidt has also shown that subjects that feel more awake after long drives, are
not more powerful, but rather drive even worse, react slowerand have moreα-spindles.

Hargutt et al.(2005) investigate the intrusion influence of driver state and driving perfor-
mance feedback systems. Really drowsy drivers gain small fitness improvements for about
5 to 15 minutes after an interrogation, so the influence is nottoo strong. Own experiments
from (Schmidt, 2009, 2010) and qualitative observations in night experiments generally con-
firmed this finding.

On the other hand, advantages of interrogating the drivers about their sleepiness levels is very
simple and thus relatively robust. If conscientiously used, the probability of intra-individual
deviation is mostly limited to one or twoKSSlevels. Hence, self-ratings are still quite reliable
and consistent compared to other automated methods. Despite the inter-individual variations,
the drivers mostly know about their drowsiness and have to accept warnings of a drowsiness
detection system.

Own observations have shown that at night, especially between midnight and 6 a.m. it is
more difficult to estimate one’s self-rating. The highway hypnosis and lack of situations that
require action makes it difficult to estimate how tired one is. For instance, many drivers
have difficulties to estimate their velocity when they have to brake behind a heading truck.
Generally, drivers have more difficulties in rating their fatigue levels aboveKSS 7 and are
often not aware that they already had small microsleep events.
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3.4. Electrophysiological Measures

Electrophysiological measures that allow inference aboutdrowsiness are, for instance:

• Electroencephalogram(EEG) is a commonly used method to directly estimate driver
fatigue. Thereby, the electric brain activity is measured in theα− andβ-band.

• Electrooculogram(EOG) records the eye and lid movement, discussed in Sec.3.6.
• Electromyogram(EMG) records the muscular activity.
• Electrocardiogram(ECG) records the electrical heart activity, not just the heart rate.

Electrophysiological measures provide input signals for automatically obtained, direct esti-
mation of a vigilance correlated reference. The ability of electrophysiological measures to
predict fatigue was already published under laboratory conditions, but was not yet proven
to work for real-road driving. This, however, is necessary to meet the requirements for the
development of a series system.

As described by (Schmidt, 2009, 2010), electrophysiological measures are commonly used
methods to directly estimate the fatigue level. Hereby, electrodes are attached to the head
and body and filled by a conductive fluid to measure voltage differences in theµV domain.
Very expensive multi-channel amplifiers are necessary. Thesynchronous oscillation of many
neural brain cells is amplified and measured (seeKirchstein(2008)).

The setup of the electrodes is laborious and, thus, in this thesis only available for a selection
of night experiments. Still, the amount of recorded real-road data exceeds previous publica-
tions by magnitudes, as for instance (Yeo et al., 2009; Jap et al., 2009; Pal and Chuang, 2008;
Svensson, 2004; Thorslund, 2003; Lal and Craig, 2002; Hargutt and Krüger, 2000) who in-
volve 13 to 52 subjects in driving simulators with much shorter driving distances. Fig.3.6
shows the cap utilized in the real-road drives. Three LEDs with the colors red, orange and
green indicate if the conductivity is sufficiently high.

Figure 3.6.:EEG cap used in vehicles

Distraction and fatigue both lead to impaired driving performance due to reduced attention on
the driving task.EEGbased parameters, however, measure the brain activity, which is high
during distraction and low for fatigue. Thus, as confirmed bySimon(2012); Sonnleitner and
Simon (2012); Sonnleitner(2012) distraction and fatigue can be distinguished well using
EEG.
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3.4.1. Evaluation of EEG and EOG as Drowsiness References

For the evaluation of the suitability ofEEGandEOGas fatigue references, a night experiment
with six drives (2009/09) and a night experiment (2010/03) with 91 drives was performed.
Further data from other studies were available. Two S-Classand one E-Class vehicle were
equipped withEEGmeasurement and eye tracking camera. Ten supervisors were trained to
avoid systematic distortion due to subjective opinions of single supervisors. Tab.3.6 shows
the routes of the day and night drives.

Day drives Night drives
Num. of Drives: 46 45
Max. Route
Distance: 276 km 434 km
Total Distance: 11.605 km 13.046 km
Duration: 2:33 h 4:12 h
Total Duration: 124 h 181 h

Table 3.6.:Setup of experiment 2010/03 to validate EEG and EOG as fatigue references

For the recording ofEEGandEOG, certain additional steps have to be conducted before and
after the drive. Attaching the electrodes to the head takes about 20 to 40 minutes until the
impedance drops below 5− 10kΩ. Doing so, every electrode must be filled with a conductive
fluid (silver nitrate) to establish the proper connection tothe head skin. After the drive, the
cap must be washed and dried to get rid of the fluid as it would dry out and jam the electrodes.
This process takes again another 10 minutes. The subject must wash at least once his/her hair
immediately after the drive as the fluid gums up the hair aftersome time. Fig.3.7shows the
cap with the injection of the fluid. Tab.3.8(a)shows the different frequency bands of brain

Figure 3.7.:EEG cap in the vehicle (Source: actiCAP)

waves. The alpha band is most related to fatigue and sleep.
An isolation amplifier (5-100µV) is used for the measurement in every electrode (Fig.3.8(b))
with a sampling frequency of 250 Hz (min 128 Hz; up to 1 kHz). The measurement can be
evaluated against the average of all electrodes or against asingle reference (behind the ears
or at electrodeCz). Details can be found in (Sonnleitner, 2012).
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Delta 0 - 4 Hz

Theta 4 - 8 Hz

Alpha 8 - 13 Hz

Beta 13 - 20 Hz

(a) EEG frequency bands (b) Active electrode

Figure 3.8.:EEG measurement

The international 10/20 system was applied for the electrode placement, depicted in Fig.3.9.
Generally, 24 or 32 electrodes are used, whereas in this study a reduced set of only 16 elec-
trodes and two reference electrodes were used. However, using it as a reference in regular
drives is still not possible due to the high effort. In Fig.3.9, the characters indicate the place-
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Figure 3.9.:Placement of the EEG electrodes and table with abbreviationcharacters

ment of the electrodes from the front to the back head. The number shows the lateral angle
in relation to the middle line.

Head and body movements produce heavy artifacts due to electric voltages produced in mus-
cles and impedance changes in electrodes. These artifacts highly affect the signal quality.
The head movement must be constrained and the inflexible headposture is little convenient
for driving. The chin strap slightly pinches off the throat.It has to be assured that driving
safety is never affected. There are several post-processing steps required to remove signal
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artifacts. Artifacts and countermeasures are, for instance:

• Alternating current and power line hum is removed by aNotch filter
• Muscle tension like head movements, gnashing of teeth and chewing gum events are

detected and suppressed
• Eye movements in theEEG signals are either compensated bysubtraction ofEOG

signals under consideration of the spatial distanceor by suppression ofEOGSignals
usingICA (as described in Sec.3.5.1).

Fig. 3.10showsEEGsignals especially of the frontal electrodes (e.g. F3) thatare distorted
by EOG(red) and then after theEOGremoval usingICA (blue).
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Figure 3.10.:EOG artifact removal in EEG signals before and after using ICA

Alpha spindle rate vs. Alpha band power Based on the data outlined in Sec.3.4.1, Si-
mon and Schmidt(2011) found that thealpha spindle rateand intensityis a more sensitive
indicator than the alpha band power used in other publications. Fig.3.11shows the detection
of alpha spindles. Windowing and FFT ofN = 1024 points are applied to everyEEGchan-
nel. Here, the overlap is set toN − 1 as the offline computation complexity is neglectable.
For the detection of spindles in the alpha band, a 1/ f curve (Fisher-Snedecor distribution) is
fitted from the entire signal and used as threshold as shown inFig. 3.12. The 1/ f curve is
multiplied by a factor and used as threshold to detect alpha spindles.

The detected spindles are filtered by a 60 or 300 second movingaverage filter. A proposed
improvement is to use theEWMA andEWVAR filter as described in4.1.2. The intensity and
duration of the spindles yield separate features. Fig.3.13shows both most important features
in the alpha band (8-13Hz) for the night drive of test subject53.



– 46 –

Subject 53, Night Experiment 2010/03
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Figure 3.11.:Raw EEG signals in the time domain at KSS 9 with highlighted alpha spindles
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Figure 3.12.:Alpha spindle detection in the frequency domain using an adaptive 1/ f curve threshold

Different approaches are then used for baselining:

• Warning threshold atµ+ 3 ·σ (as for outlier detection)
• Normalization to the maximum after the first 20 minutes of active time
• Normalization to the last 10 minutes of the active time for subjects that terminated the

drive due to fatigue. This can only be applied offline.
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In literature, the summation signal and the occipital spindle rate suit best for the detection of
fatigue. Here, an equivalent contribution of every channelwas used.

Fig. 3.14shows different measures of fatigue for driverID 156. The correlation of the signals
can be seen quite well. Fig.3.15 shows the two lane based features of fatigue,ZIGZAGS

Figure 3.14.:KSS, EEG and PERCLOS have similar slopes and signal runs, butno simple functional
relationship. The KSS is entered more often and more accurately here compared to the
rest of the drives.
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andLANEAPPROXADAPT (cf. 4.3), together with theEEGspindle rate. The similarity of the
signals can be seen well, even though the relationship between both functions cannot be de-
scribed by a simple functional relationship or correlationmeasures. Fig.3.16shows theEEG

Figure 3.15.:KSS, EEG and lane based features ZIGZAGS and LANEAPPROXADAPT

spindle rate with annotations how external influences have an impact on the alpha spindle
rate. The drops in the signal can be related to activating situations whereas the raising slopes
can be matched with monotonous situations. Fig.3.17shows a histogram of Spearman corre-
lation coefficients calculated betweenKSSandEEGfor every drive. It can be seen that there
is a positive correlation for the majority of drives. More statistical results on the presented
methods and data can be found in (Simon, 2012; Sonnleitner, 2012; Schmidt, 2010).

3.4.2. Assessment of Electrophysiological-based FatigueReferences

In literature, electrophysiological measures perform well for measuring fatigue in simulated
environments. However, even the refined methods here could not reproduce this performance
under real traffic driving conditions.

The validation ofEEGis very difficult since there is no ground truth to reliably assess this
reference. Only a few figures and results of drives and features could be presented here.
Except for a few drivers, the signal runs reveal that theEEGmeasures are by far not plausible
enough to serve as a reliable reference for the development of a series system. TheKSS
may have a bad temporal resolution and be wrong for one or two levels, butEEG based
features widely behave completely arbitrary and implausible. Especially the absolute values
severely vary between different drivers. They severely suffer from intra- and inter-individual
variations and external influences. All observations indicate thatEEGfeatures rather relate
to mental awareness or load than directly with fatigue. Theyappear to correlate with the
attention to "novelty" from external situations.
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Figure 3.16.:EEG alpha spindle rate with annotations about external influences
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Figure 3.17.:Correlation histograms between KSS and EEG 300 seconds

A major deficiency ofEEGis that it does not work for about 20% of the drivers since they
have no alpha spindles. Thus, every subject must perform a pre-test to find out whether they
produce alpha spindles or not. For some drives, the signals are corrupted due to insufficient
contact conductivity of the reference electrodes.

Often, short-term attention can be seen from theEEGsignal incline and decay, even if the
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absolute amplitudes change over time. Also due to the high purchasing cost ofEEGdevices
and the high effort for its recording, it was only used for a small percentage of the drives.
In this scope, one must come to the conclusion thatEEG does not provide any additional
benefit that counterbalances the additional effort compared to theKSS. Yet, EEGprovides
additional transparency over short-term changes when manually evaluating the results.

3.5. Heart Rate Tracking from Driver Camera

Thecardiovascular pulse wave(also called the blood volume pulse) can also be estimated by
tiny skin color variations from a simple camera and Independent Component Analysis (ICA)
on the RGB channels (seePoh and McDuff(2010)). This approach to estimate the heart rate
has also been implemented in this thesis and turned out to well detect the heart rate under
good light conditions. Yet, the performance under light conditions in real-world driving or
at night with IR-Pods turned out to be not very robust. Since the heart rate has strong inter-
individual variations and is not a reliable predictor for fatigue, this approach was not further
investigated.

3.5.1. Independent Component Analysis (ICA)

Blind Source Separation(BSS)is a commonly used technique for noise removal from physi-
ological data as forECG(Chawla et al., 2008) andEEGrecordings (Jung and Makeig, 2000).
The Independent Component Analysis(ICA) (Comon, 1994; Hyvärinen and Oja, 2000) is
oneBSSmethod for uncovering independent source signals from a linear mixture of them,
observed by several independent sensors. The basic principle behind ICA is the assump-
tion that the source signalss(n) = [s1(n), s2(n), . . . , sN(n)]T are linearly combined to the
observed signals, represented byx(n) = [x1(n), x2(n), . . . , xM(n)]T at time instantn. In con-
ventional ICA, the number of recoverable sources cannot exceed the number of observations
behind them. This linear mixing can be described as in Eq. (3.1) with themixture matrix A
of dimension M× N of the mixture coefficientsai, j .

x(n) = As(n) (3.1)

The goal of ICA is to find aseparating matrix W, which is the inverse ofA for M = N with
the estimated output vector ofŝ(n):

ŝ(n) = Wx(n) (3.2)

It is known that the superposition of signals is always more Gaussian than the individual
signals. Hence, a cost function that describes the Gaussianity must be defined and minimized
by iterative variation of the separating matrixW. TheFastICAlibrary was available for this
purpose. Fig.3.18 shows the result of the heart rate estimation wherex(n) is the spatial
average of the RGB channels in the facial region of interest.The three source signalŝs(n)
are obtained after ICA and FFT is applied to the sources to search for the most plausible
heart rate frequency. As side effects, detecting the heart rate from the driver-camera can
also be used for other applications such as emergency stop during cardiac flatline or emotion
detection.
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Figure 3.18.:ICA and FFT applied on the driver-camera RGB channels in order to extract the heart
rate

3.6. Eye Blinking based Fatigue Reference and Features

Head- and eye-tracking driver-cameras allow anotherdirect approach for fatigue detection
that is not only suitable asreference, but also forseries application. The target of this thesis
was to use camera as reference as well as investigate its series capability. The blinking
behavior based on eye-tracking cameras, as well asEOG was analyzed under real traffic
driving conditions. Vision based approaches have the advantage that they are not intrusive as
no wiring or interrogation of the driver is necessary.

Another major benefit of such eye-tracking systems is the detection of short- and mid-term
distraction by the head-position, -rotation and gaze direction ("eyes-on-road").EOGcan also
be used to roughly estimate the eye gaze direction.

A disadvantage of camera based detection of fatigue is that micro-sleep can occur with
opened, staring eyes. Also, the robustness suffers from poor light conditions and with drivers
who wear glasses. Intensive computation for image processing is required.

3.6.1. Evaluation of Eye-Tracking Camera Systems

In this thesis, the latest eye tracking devicesAnti-sleepfrom SmartEye,ESMAfrom Denso
andDSS1.0 to 3.0 from SeeingMachines were evaluated and compared.
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Anti-sleep: The data quality of the Anti-Sleep was almost comparable to the DSS, but re-
quired a regular PC, which was not practicable.

ESMA: The embedded ESMA system from Denso with CAN interface couldnot only detect
the head, but also the gaze direction. The data quality, however, was generally quite poor.

DSS:The DSS 3.0 detects head rotations to the side with up to 90◦ quite robustly. A drawback
of the DSS is that it has no direct CAN output for synchronous recording with the main
measurement equipment. About 220 subjects across all ages were tested using the DSS 3.0
with the goal to provoke a micro-sleep and PERCLOS warning bylooking tired. Only about
five subjects with glasses and two with large beards were not sufficiently detected. From
version 1.0 to 3.0, the DSS still has problems with persons wearing glasses. While the Denso
system can record and process full videos, the DSS records only small eye extracts of micro-
sleep events. More details can be found in (Akin, 2007).

The latestDriver State Sensor(DSS) fromSeeingMachines(2007) was deployed for the
experiments, since it showed the most confident data quality.

All systems provide the opening degree signal of both eyes, GPS and other signals such as
confidence, head- and eye-signals, depending on the system.Manual conversion and synchro-
nization via GPS time are required for micro-sleep detection and for matching lane changes
with head rotations. In this thesis, an own face and eye-lid tracking algorithm was imple-
mented, however, the performance did not compete with the DSS system. The contribution
of this thesis was on camera signalpost-processing and extraction of fatigue, which is at least
as challenging as the image processing part.

The video-based drowsiness measures are explained in (Friedrichs and Yang, 2010a). Some
popular features extracted from the eye signals were used and new ones are proposed. In
addition, for some drives, eye blinking duration and opening duration were derived using
EOGin order to evaluate the camera results.

3.6.2. Literature on Camera-based Driver Monitoring

Within the last years, a lot of effort has been made to investigate driver monitoring based
on blinking behavior. The book ofMoussa(2009) is focusing on the real-time implementa-
tion of designing a device for driver vigilance monitoring on a FPGA based multiprocessor
platform. In (Sherry, 2000; Batista, 2007), the measure, referred to as PERCLOS (Knipling,
1998; Sayed, 2001) (cf. 3.6.7) was found to be the most reliable and valid determination ofa
driver’s alertness level. PERCLOS is defined as the proportion of time within three minutes
in which the eye is closed more than 70% (sometimes 80%). MEANCLOS on the other hand
is the average degree of eye opening.Batista(2007) presents a framework for face local-
ization and extraction of eyelid movement parameters. While focusing on facial detection
algorithms, he also calculates the measures PERCLOS and AECS (cf. 3.6.7) without further
investigating them.Hargutt (2001); Tietze and Hargutt(2001) attached electric spindles to
the eyes in order to analyze vigilance and attention within adriving context. They stated
that a combination of blinking related parameters is necessary for estimating every vigilance
stage. They found out that the blink duration is related to sleepiness (Circadian, sleep depri-
vation and psychoactive drugs), and verified their results by conducting a driving simulator
study with 12 participants. The baselining that they applied made the effects more stable.
They described the blinking rate to depend on the work load and to relate to information
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processing. The blinking rate, but not the blinking duration, increased with raising time-on-
task and decreased during pauses.Picot (2010) recently proposed a fuzzy logic algorithm
for drowsiness detection in high frame rate videos. In 60h ofdriving by 20 drivers, it detects
80% of the drowsiness states.Thorslund(2003) andSvensson(2004) usedEOGto estimate
the driver’s alertness in relation to the subjective self-rating andEEG. Using simulator drives,
Svensson reached a 70% correspondence with the self-ratingand 56% with theEEG.

3.6.3. Driving Simulator Experiment

A simulator study with 21 test subjects was performed with the focus on evaluating the per-
formance of theDSS1.0 and the features derived from it. Details on the experiment design
and results can be found in (Akin, 2007). Only 27.5% of the micro-sleeps were detected by
the DSS 1.0. It was observed that many micro-sleep events occur with opened eyes but the
eye gaze direction was not actively monitoring the scene anymore. Drivers did not react to
road signs or left the lanes. Another conclusion from this and further driving simulator ex-
periments was that even in the most advanced driving simulator, there are severe differences
towards real world driving. The night experiment was also very valuable to evaluate the driv-
ing performance in the simulator. As already stated byWierwille (1996b), drivers are more
tolerant to lane errors in a simulator than in a vehicle.

Own algorithms for blinking detection and feature extraction were implemented. Details can
be found in (Teofilov, 2009).

3.6.4. Database with Eye-tracking Data

Three night experiments and some long free drives was performed with the latest DSS 3.0
camera. In total, 31 real traffic drives (eight with glasses)with valid self-ratings (KSS) and
without measurement problems remained:

• 23 real traffic night study drives (7,054 km)
• eight free daytime drives (2,607 km)

The conduction of night experiments and regular drives is explained in (Friedrichs and Yang,
2010b; Schmidt, 2009).

3.6.5. Eye-tracking Hard-/Software

For the extraction of blinking parameters, theDSS with the latest algorithm version 3.0
from (SeeingMachines, 2007) was used which recorded the eye- and gaze direction. The
IR-camera unit (640×480 pixels) was mounted in the instrument cluster.

For illumination, two IR-pods were installed on the A-column and over the head unit in a
way that reflections on glasses could be minimized. Most glasses are transparent to IR light
so that the eyes can be detected well. Here, the Denso system showed an approach to avoid
reflections on glasses using precisely synchronized shutters.

For the validation of the signals and algorithms, an additional facial video was recorded and
all signals could synchronously be played in a MATLAB GUI (Teofilov, 2009).

The pre-processed signals (Tab.3.7) were recorded with up to 60 fps to an USB-drive of a
portable computer unit. The GPS signals were obtained from an external USB device. The
obtained eye blinking, head posture and gaze direction signals were quite good, especially



– 54 –

for drivers without glasses. The confidence measures showedquite well when the left/right
eye-lid and head signals were not reliable.

Description Signal DSS Signal Name
Eye closure l/r el,r LEFT_ / RIGHT_EYE_CLOSE
Eye confidence l/r cl,r LEFT_ / RIGHT_CLOS_CONF
3D head position x,y,z HPOS_FILT_X / Y / Z
3D head rotation ϕ,ψ,γ HROT_PITCH / _YAW / _ROLL
3D head confidence ch HPOS_CONF
GPS time τ GPS_GMT_TIME
GPS longitude λ GPS_Longitude
GPS latitude θ GPS_Latitude
GPS vehicle speed v GPS_SPEED_KM_H

Table 3.7.:Used signals from the Driver State Sensor (DSS)

3.6.6. Processing of Eye Signals

This section presents several pre-processing steps that are needed for extracting individual
drowsiness-related patterns from the raw signals. The recorded camera data are converted,
synchronized and time offset is compensated for the vehicleCAN data using the interpolated
GPS GMT-time and velocity signal which is sufficiently accurate. The detection of eye blinks
works well for the camera frame rate of 60Hz, but the calculation of the eye-lid velocity
becomes more inaccurate. Svensson (Svensson, 2004) stated that the sampling frequency
should be high (at least 500Hz) when blinking related characteristics like blink duration
are measured. The frame rate often dropped due to windows system resources and caused
measurement gaps of up to half a second. These gaps were linearly interpolated in order to
keep the timestamps synchronized.

For many features, the derivative and intensity are relevant. Thus, anEWVAR or EWMA
filter is applied as described in Ch.4.1.2. For the calculation of the eye-lid velocity, aDISPO
filter was used as explained in Ch.4.1.1.

Next, both eye signalsel ander are combined to a single eye signalec by weighting and
normalization with the confidence valuescl andcr of both eyes.

The system active signal S ASeye is defined to be active for a head yaw angle|ψ| ≤ 15◦ to
suppress lane changes (i.e. 5-20% of the time, depending on driver and traffic) and for a
sufficiently high confidence measure averagec̄ = (cl + cr)/2 ≥ 55%. Furthermore, vehicle
speedv ≤ 30 km/h and lane changes using the turn indicator are suppressed. An average
active time of about 70-90% remains for most drives while it is lower (≈ 60%) for drivers
with glasses.

Detection of Blinks

Another important pre-processing step is the detection of blinks. At first, blinking candidates
are searched by applying an adaptive threshold to the eye signalec. Then the above described
system active signalS ASeye was applied. It is also important to suppress the blink during a
head rotation or at the same moment as the combined confidencesignal c̄ drops below a
threshold. 60 - 90% of the blinks have been detected, which isheavily depending on the
situation and tracking state. Fig.3.19 shows some examples of the blinking detection. A
major problem are vertical looks to the dashboard, instrument cluster or head-unit. Looks



– 55 –

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Time [min]

Eye blink over threshold
Eye-Lid Signal (L+R)
DSS active (scaled:·.2 + 1)
Detection Threshold

Blinking detection (Subject 03, Night Experiment 2008/11)

D
eg

re
e

of
ey

e
lid

op
en

in
g

[]

72:57 73:00 73:02 73:06 73:09

Looks to dashboard

Figure 3.19.:Blinking and look to dashboard detection

to the dashboard can be detected well, since the iris is also lowered towards the dashboard
or head-unit, while the iris turns up during an eye blink. Especially in theEOGthat detects
blinkings via eye ball movements, this property can be utilized well. In the video and signal
validation GUI it was observed that eye-ball movements are coupled with movements of the
eye-lid:

• Horizontal eye-ball movement: small influence on eye-lid
• Vertical eye-ball movement: relevant change in eye openingamplitude

Such eye movements often occur with short blinks. For this reason, a minimum blink duration
of 130 ms was defined to neglect these looks. Then, each blinking candidate that fulfilled
several other criteria (min/max duration, shape and minimum amplitude) was labeled as a
valid eye blink.

Driver Adaption (Baselining)

An essential contribution to the feature performance is theadaption to the driver, referred to as
baselining. The inter-individual variation between drivers has a severe impact on the features
and overlays the drowsiness-related patterns. It is assumed that the drivers are usually awake
during the first 15 minutes of a drive. Themeanor maximumof a feature during this time
is then used for normalization. Themaximumhas shown to yield the best results for most
features. Thezero-mean unit-variance normalization(in statistics also calledz-transform)
is the subtraction of the mean and division by the variance. This method was assessed, but
finally used in a few cases only. Automatic parameter optimization has found the optimal
time frame between 20 and 40 minutes, depending on the feature. 20 minutes is chosen for
all features as a trade-off between quick and sufficiently robust adaption, since the active time
is often below 50%.
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3.6.7. Eye Feature Extraction

From the eye signals returned by the camera system, 23 features, as listed in Tab.3.8, were
extracted for drowsiness detection. The main feature groups are briefly described in this
section. Features with superscript1 are baselined and superscript2 are own proposals.

ID CLASS Feature Name Description
74 EYE AECS Average eye closure speed
75 EYE APCV Amplitude/velocity ratio
92 EYE APCVBL1,2 APCV with regression
95 EYE BLINKDURBL 1,2 BLINKDUR baselined
78 EYE BLINKFREQ Blinking frequency
76 EYE BLINKAMP 2 Blink amplitude
77 EYE BLINKDUR2 Blink duration
79 EYE CLOSINGVEL2 Eye closing velocity
86 EYE OPENINGDUR1 Eye opening duration
87 EYE OPENINGLVL1,2 Eye opening amplitude without blinks
80 EYE EC Energy of blinking
98 EYE ECBL1,2 EC baselined
85 EYE MICROSLEEP Microsleep 0.5 s event rate
94 EYE MICROSLEEP1S1 Microsleep 1.0 s event rate
81 EYE EYEMEAS Mean square eye closure
84 EYE MEANCLOS Mean eye closure
88 EYE PERCLOS70 Percentage eyes>70% closed
89 EYE PERCLOS80 Percentage eyes>80% closed
99 EYE PERCLOS70BL1,2 PERCLOS70 baselined
100 EYE PERCLOSEWBL1,2 PERCLOS80 EWMA baselined
90 EYE HEADNOD Head nodding
82 EYE EYESOFF1 Eyes off road
83 EYE EYETRANS1 Eyes transition rate

Table 3.8.:EYE features derived from DSS 3.0 eye-tracker eye-lid signals, sorted according to the
underlying pattern. IDs are auto-incremented according tothe implementation order.

Blink Duration (ID 77 and 95)

Different methods to estimate the blink durationBLINKDUR have been evaluated. Fig.3.20
illustrates the derived parameters. The blink duration is defined as the time difference be-
tween the beginning and the end of a blink, each at the point where half of the amplitude is
reached. A better definition is the sum of half the raise time and the fall time (Andreassi,
2000; Svensson, 2004; Thorslund, 2003). The raise duration is measured from half the raise
amplitude to the maximum, then to half of the amplitude during the eye closure. Also the
plateau duration(Fig. 3.20) of an eye blink was calculated. As reported byHargutt(2001),
the eye opening duration has been found to follow a Weibull-distribution. The parameters of
the distribution was used for baselining.

Eye Closure (ID 79, 85 and 94)
One of the simplest measures for drowsiness is theMICROSLEEP event rate. Events are
defined as eye closures longer than 0.5s (1s forMICROSLEEP1S). The opening duration
is calculated in the same way as forBLINKDUR. MICROSLEEP events occur in a very
advanced and dangerous phase of drowsiness (cf.3.2). These features indicate fatigue much
too late, but are very important when more sensitive methodsfail. So a rate of long eye
closure events was also worth to be analyzed.
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Figure 3.20.:Extraction of eye opening, plateau, blinking and closing duration and velocity from
smoothed combined eye-lid signalec and its derivative.

PERCLOS, EYEMEAS and EC (ID 80, 88, 89, 98, 99, 100 and 81)
PERCLOS is the most common blinking based measure for drowsiness, first defined byWier-
wille and Ellsworth(1994). It is the proportion of time during three minutes in which the
eyes are at least 80% closed (cf. Fig.3.21). Today, there are also other PERCLOS measures:

Figure 3.21.:Definition of PERCLOS as proportion of time when the eye is over 80% closed

PERCLOS70, which is the same, but with a threshold of 70% andEYEMEAS, which is the
mean square percentage of the eyelid closure rating. EC is the averaged energy of blinks and
is closely related to PERCLOS.PERCLOSEWBL is the same asPERCLOS80, but baselined
and using an EWMA for averaging (cf. App.4.1.2).

Fig. 3.22showsPERCLOS for a night drive. The driver (ID=340) has entered theKSSmore
frequently and with more care than usual. Thus, it can be seenhow wellPERCLOS correlates
with the KSS(ρp = 0.74) andEEGspindle rate (ρp = 0.67) measures. As theKSSentry
is retrospectively hold andEEG spindle rate /PERCLOS are filtered with a three minute
moving average, all signals are delayed. It is one of the major weaknesses thatPERCLOS
detects fatigue too late and fails to detect participants that are drowsy with eyes wide open.

Amplitude-Velocity Ratio (ID 74 and 75)

Hargutt and Krüger(2000) found that the ratio of amplitude and maximum blinking velocity
APCV can be used well for drowsiness detection.AECS is the average eye closure veloc-
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Figure 3.22.:Drive (ID=14 589) with PERCLOS and EEG and a more frequently entered KSS

ity (Batista, 2007; Picot, 2010) that is estimated by the maximum velocity during the eye
closure, which is the amount of time needed to fully close theeyes and to fully open them.
An individual eye closure speed is defined as the time period during which the eye opening
degreerateclossure is between 0.2≤ rateclossure≤ 0.8. The second variant is chosen as it is
more practical.

Blinking Rate (ID 78)

BLINKFREQ is the blinking frequency. According toAndreassi(2000), a relaxed person
blinks about 15-20 times per minute, which drops to 3 blinks per minute when performing
cognitive tasks (Svensson, 2004). According toHargutt and Krüger(2000), an increased
blinking rate indicates reduced vigilance. As stated byHargutt(2001), the blinking rate also
increases with driving duration (time-on-task). During driving experiments, it was observed
thatBLINKFREQ varies severely between different drivers and is also related to the air hu-
midity e.g. when using an air conditioner.

Remaining / Mean Eye Opening (ID 84)

MEANCLOS measures the mean eye opening between blinks. It was observed that drivers
often do not completely open their eyes any more when they become sleepy. This has a lot
of potential for the detection of fatigue before micro-sleeps occur.

Head Nodding Frequency (ID 90)

An often observed sign of drowsiness is head noddingHEADNOD. It is calculated from the
head pitch angleϕwith the EWVAR as described in Sec.4.1.2. The estimation ofϕwas quite
accurate. Drivers often start moving in the seat and move their head to fight sleep. A second
reason for head nodding is related to micro-sleep events when a driver lets his/her head fall
down and hastily pulls it up again, when he realizes his absence. The variance captures this
pattern, but the detection of such patterns poses some potential for improvement.
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3.6.8. Eye Feature Evaluation

The Pearson and Spearman correlation coefficients of the best 11 features against the linearly
interpolated KSS are listed in Tab.3.9. TheBravais-Pearsoncoefficientρp is an indicator
for linear and theSpearmancoefficientρs for monoton relationships between two measures
(cf. Ch.7.1.1).

ID Feature Name ρp ρs

74 AECS -0.43 -0.45
75 APCV 0.48 0.51
76 BLINKAMP 0.18 0.14
77 BLINKDUR 0.09 0.20
78 BLINKFREQ 0.11 0.04
80 EC 0.14 0.21
81 EYEMEAS 0.07 0.08
90 HEADNOD -0.23 -0.21
84 MEANCLOS 0.09 0.07
94 MICROSLEEP1S 0.01 0.07
88 PERCLOS70 0.04 0.15

Table 3.9.:Pearson and Spearman correlation coefficients (ρp andρs) of 11 EYE features against the
linearly interpolated KSS.

In Fig. 3.23, the Spearman correlation coefficients between feature EC (feature-ID=80) and
KSS of all drives are shown in a histogram. It can be seen that there is a tendency towards
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Figure 3.23.:Histogram ofρs coefficients between EC (feature-ID=80) and KSS for all drives

the right, which indicates that most drives are positively correlated with drowsiness. The fea-
ture’s correlation coefficient over all drives isρs = 0.22, which is relatively good for a causal
feature (Friedrichs and Yang, 2010b). Scatter plots, class histograms and boxplots (Löfgren,
2007) are also used to get a visual impression of the features. Theboxplots in Fig.3.24show
the relationship between different features and theKSS. All plots show that the classes are
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severely overlapping, which leads to a lot of difficulties for drowsiness classification. There
are no drives withKSSbelow 3, so these were not included in the plot.
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Figure 3.24.:Boxplot of features AECS, APCV and HEADNOD

3.6.9. Classification of Eye Features

The purpose of drowsiness classification is to combine thesedifferent features to a single
continuous-valued drowsiness measure or the discrete classesawake, acceptableanddrowsy
(cf. class definition in Sec.3.3.5).

All features were downsampled to a sampling frequency of 0.5Hz, as it is assumed that the
blinking behavior change is much slower than that. Anartificial neural network(ANN) was
used for classification (Duda et al., 2001).

Theoretically, the more features are incorporated, the more information can be exploited.
However, when the number of features gets too high, the need for more training data cannot
be fulfilled any more (curse of dimensionality). For this reason, dimension reduction tech-
niques are applied.Principal Component Analysis(PCA) andFisher transform(LDA) are
methods to transform a given feature space to a lower dimensional one. However, these-
quential floating forward selection(SFFS) algorithm, introduced in (Pudil et al., 1994a), was
applied to select the most promising features for a classifier. The advantage of SFFS over
feature transform techniques is its high transparency, as the selected features remain without
any change. For practical applications that means that onlythe most relevant features need to
be computed. In our study, PCA and LDA have shown poor resultsin comparison to SFFS.
Hence only results achieved by SFFS are reported. Tab.3.9 shows the most often selected
features.

3.6.10. Classification Results for Eye Features

A feed-forwardANN with 25 neurons in one hidden layer was trained with the backpropaga-
tion algorithm. The confusion matrix of theANN classification is given in Tab.3.10. More
classification results for Bayes,k-NN, GMM and LDA can be found in (Friedrichs and Yang,
2010a). The results are based on the best eleven features that havebeen selected bySFFS
in combination with the Bayes classifier. The classificationresults have been obtained by
leave-one-out cross-validation with a training to test setratio of 80% to 20%. It is important
to divide the data by entire drives so that the drives in the test set are completely unknown
to the classifier. The results are averaged over several permutations of the training/test set to
obtain a more stable result.
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The total recognition rate withANN is 83.4%, which is very good and reaches the accuracy
of the KSS reference. It is expected that not all third variables related to the experiment
drives could be eliminated completely and thus contribute to this good result by over-fitting.
For instance, all drivers start awake and become tired aftera similar distance where the traffic
and environment become more monotonous. The head movementsfor instance decrease ac-
cordingly and the monotony may induce fatigue to the driver.This indicates that the classifier
adapts to third variables in the training data that are not present in all real-world drives. This
can only be solved by more heterogeneous training data.

❳
❳
❳
❳
❳
❳
❳
❳
❳
❳❳

Detected
True

Awake Acceptable Drowsy

Awake 39.6 % 60.4 % 0.0 %

Acceptable 2.2 % 90.5 % 7.3 %

Drowsy 0.0 % 42.2 % 57.8 %

Table 3.10.:Confusion Matrix for ANN (See Ch.8.2.4for definition of confusion matrix)

3.6.11. Discussion of Camera-Based Results

The camera-based results presented in this chapter are quite acceptable. Observations from
the night experiments show that drowsiness detection worksvery well for some drivers, but
is error-prone for others. Several of the analyzed featuresshow good potential for fatigue
detection. As reported in literature,PERCLOSand features related to the eye opening speed
perform best. Thereof, the ratio of blinking amplitude to velocity is a good indicator. Using
a higher sampling frequency than 60 Hz would be very valuablefor a better estimation of the
blinking velocity. For some drivers, also the eye blinking frequency increases with the driv-
ing duration and during early signs of fatigue. Another promising observation from driving
experiments was that drowsy drivers do not completely open their eyes any more between
blinks. It is difficult to find the maximum degree of eye opening since the driver may not
fully open his eyes during the start of recording. More sophisticated expert knowledge in
the image processing would be valuable here. Microsleep events are also very valuable cues
for the detection of the latest phase of fatigue. At least, they are a valuable backup if the
detection of the early phases fails.

A general problem of blinking based features is that they detect fatigue too late. Moreover,
drivers who are sleepy can have micro sleep events with opened eyes that remain undetected.
A major issue of this investigation is that only 1.6% of used data contain fatigue atKSS
level 9, at which camera based approaches start to perform best. For safety reasons, it is not
possible to allow these advanced fatigue levels on public roads. This is one of the factors, that
spoke against using the driver camera as fatigue reference in this thesis. Another finding was
that there are severe differences between drivers, especially in regards to their eye blinking
frequency. Baselining as described in Sec.5.4.1was necessary to improve the results. There
are drivers that generally blink rarely (i.e. only every oneor two minutes), which makes it
even more difficult to estimate a "frequency". As long as the blinking signals were correctly
detected (high confidence), the drowsiness could be estimated well from the degrading of the
blinking parameters for most drivers. Even after many improvements, the system availability
is sometimes low due to various problems:

• Reflections on glasses lead to bad signal quality, see Fig.3.25(a)
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• Varying light conditions during daytime driving pose problems for the eye signal track-
ing, see Fig.3.25(b)

(a) Reflections on glasses (b) Bad light due to sun backlight

Figure 3.25.:Bad data quality

3.7. Comparison of Eye-Tracker and EOG

An alternative to using a camera to record the eye blinking isusing Electrooculography
(EOG). Similarly as for the recording ofEEG, electrodes are attached to the head and
recorded over a measurement amplifier (see (Brown et al., 2006)). The challenge of deriving
eye blinks fromEOGis that not the degree of eye lid opening is measured, but the eye ball
movement over muscle contraction. The eye ball moves upwards every time the eye lid is
closing. This movement is visible in theEOG signal, as illustrated in Fig.3.26. Thus, the
recorded signal makes only an indirect statement about the eye lid opening degree.

6722.0
0

0.2

Time [s]

EOG [mV]

0.1

-0.1
6723.0

Figure 3.26.:Estimation of eye lid opening using eye ball movement by EOG

In order to estimate the eye lid movement from the eye ball movement, the camera andEOG
signals are compared in Fig.3.27. The similarity between both signal runs can be seen
well. Also the scatter plot in Fig.3.28 indicates a functional relationship that is roughly
proportional. Thus, it is concluded that the eye closure canindeed be estimated by the eye
lid movement inEOG.

EOGoffers several advantage and disadvantages in comparison to camera-based approaches.
A major disadvantage certainly are the wires connected to the electrodes that are attached
to the head. Drivers of series vehicles would not accept this. EOG, however, ensures an
uninterrupted recording, independent of light conditionsand head rotations. Moreover, it
works equivalently well for drivers with and without glasses.

Looks to the dashboard are paralleled by a light closure of the eye lid and, thus, cannot be
distinguished from eye closure by a camera. InEOG, however, looks to the dashboard result
in a light movement of the eye balldownwardsand can, therefore, be distinguished from
the upward eyeball movements of blinks. As it can be seen in Fig. 3.27, looks towards the
dashboard (represented by black boxes) can be distinguished much better byEOGthan using
camera based detection.



– 63 –

Time [s]
6722

E
ye

o
p

en
in

g
d

eg
re

e
fr

o
m

ca
m

er
a

[-
]v

s.
E

O
G

[
µ
V

]

0.0

1.4

1.2

1.0

0.8

0.6

0.4

0.2

674067386736673467326730672867266724

EOG+1µV
Camera

Figure 3.27.:Eye lid closure from camera based eye-tracking and EOG. Comparison of eye blinks
derived from camera and EOG: Looks to the dashboard can be distinguished well using
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Figure 3.28.:Scatter plot shows a good monotonous relationship between EOG and camera signals

Fig. 3.29shows the fatigue section of a measurement atKSSlevel nine. The long eye closure
in the middle has a duration of one second and can, thus, be considered as microsleep. It can
be seen that long eye lid closures are detected as well byEOGas well as by camera.

Based on the derived blinking signals, the same features (listed in Tab.3.8) were calculated
from EOGas from camera-based eye closure signals. Algorithms and parameters had to be
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Figure 3.29.:Long microsleep blinkings at KSS 9 from camera and EOG

slightly adapted. Fig.3.30shows a histogram of Spearman correlation coefficients between
PERCLOS and theKSS. Even if there is a tendency to the right, the drives with negative
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Figure 3.30.:Correlation histograms of KSS and PERCLOS calculated from EOG

coefficients indicate a result inferior to the camera pendant.

3.8. Discussion and Conclusions on Fatigue References

As mentioned before, there is no "ground truth" as fatigue reference which is one of the
major challenges in online fatigue detection. The performance of the online algorithms can
be at best as good as the fatigue reference, so the goal of thissection was to evaluate different
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approaches. The principal motivation is to investigate camera andEEG/ EOGbased measures
to overcome the main deficiencies of the subjectiveKSS self-rating, like its low temporal
resolution and subjectiveness.

Nodine (2008) further investigated the reasons for the weak performances of universal fa-
tigue detection methods and blames it on the large individual differences between drivers.
She found that the steering range and variability have the strongest relationship with driver
drowsiness, better thanEEGor eye closure. She further claims that in-vehicle algorithms can
outperform the reference, which however cannot be validated.

As discussed in this chapter,EEGhas performed well for a few drivers, but was not suitable as
a fatigue reference. This section has shown that the eye blinking signal can also be estimated
from the EOG Signal. WhileEOG and camera-based features show potential for fatigue
detection, it turned out at this point that they could not make the desired contribution for the
following reasons:

• RecordingEEG and blinking signals is laborious, which makes it unsuitable for the
large number of free drives.

• The measurement equipment was not consistently available for most drives
• The camera device was not available for most drives and vehicles
• EEGand camera based features suffer from artifacts
• There is no confidence if the detection is reliable or not

EOGmade a great contribution for the development of eye-tracking based algorithms.

The original goal to mergeKSS, EEG and eye-tracking to a single reference (comparable
to SLEEPER1/2/3 in (Wierwille and Ellsworth, 1994; Wierwille, 1996b) or (Hargutt, 2001))
failed because it was impossible to sufficiently validate the single and combined references.
Knowing about the deficiencies of theKSSscale, theKSSand self-rated warning acceptance
turned out to remain the best reference available and, thus,are used for several reasons:

• Warnings from the assistance system must be transparent andaccepted by thedrivers’
opinion, which is most related to theKSSself-rating

• After verification, theKSSis much more robust compared to physiological measures
• TheKSSis available for all drives
• The technicalKSSrecording is very reliable and relatively accurate, whereasEEGand

eye-tracking does not work for everybody.

For these reasons, theKSSis used as the central criteria whileEEG, EOG, eye-tracking, and
distraction are only considered in certain aspects. Even ifEEG and camera-based results
cannot be used to augment or replace theKSSas a reference, they are still used to assess the
vehicle data based features. Furthermore, camera-based features are high potential candidates
for online in-vehicle fatigue detection.

The lack of a ground truth reference still poses one of the mission-critical hurdles in this
research field.
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Chapter 4.

Extraction of Driver State Features

This chapter presents the theoretical background about general signal processing methodolo-
gies to extract measures from sleepiness related driving patterns, so called "features". The
main part of this chapter explains the pattern extraction ofpotential features from CAN-
signals including their pre - and post-processing. The mostessential signals originate from
the lane keeping camera-tracker, the steering wheel angle sensor, inertial motion sensors,
wheel rotation sensors, light sensors and GPS (as describedin Sec.2.3).

In conventionalmachine learning, feature extraction is a laborious manual process based on
models and hypotheses. The most important features are thenidentified, selected and com-
bined by classification. Indeep learning, Artificial Neural Networks (ANN) with larger and
more sophisticated structures can automatically learn features from raw data. This comes
however at the cost of a vast demand of resources: a much larger amount of data and big data
cluster andGPU computing are required (such as Hadoop/Spark technologies). Thus, nei-
ther the large amount of field data nor the computing resources were available off-board and
on-board. For autonomous driving, the cost margin and thus the computation resources are
much higher and purpose-designedASICs and Systems-on-a-Chip (SOC) with a high degree
of parallelization similar toGPUs can be designed. In contrast, driver monitoring systems
are targeted to require no additional cost and must run on classical vehicleECUs on top of
the base software. For product liability reasons of safety systems in the automotive sector, a
major design goal ofESPsoftware are full transparency, model understanding and predictive
behavior that is validated. Only few of the vehicle variantsare available as prototypes prior
to production, so adaption of parameters (so called "parameter application") to new vehicles
must be possible without the need of recording training data. Classifiers can only learn pat-
terns that are available in the training data and are generally not suitable for extrapolation.
States and hyperparameters ofANNs do not provide the physical representation of parame-
ters and decisions are not very transparent. Especially theextrapolation to operation points
outside the range of training data (e.g. for different countries, driving cultures, road proper-
ties etc.) is a strength of models used in classical feature extraction.ANNs shall only be used
if there is no alternative and if the results justify it. For these reasons, the major focus here
was to investigate model based feature extraction in conjunction with machine learning.

Feature extraction is virtually the core of machine learning since it targets the separation of
different independent patterns from the irrelevant clutter. The more precisely the features
are extracted, the better the performance of classifiers combining these measures to a single
continuous-valued drowsiness measure or the discrete classesawake, acceptableanddrowsy
(See Ch.3.3.5). Drowsiness can result in different patterns for different drivers or situations.
Classification can exploit the combined discriminatory properties of features if they are not
redundant. A model based on expert knowledge that preciselyunderstands the coherences is
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generally superior to naive automated classification algorithms. This expert knowledge can
be incorporated during the feature extraction.

In literature and according to own observations, there is a large number of patterns with
drowsiness associative ability. Ideally, every feature isbased on one pattern that can be, for
instance, a quick steering correction, a lane exceeding, zick-zack lurching in the lane or a
delayed reaction to a road unevenness.

Here, CAN-signals have a maximal sampling frequency of 50 Hz(100 Hz for FlexRay),
which is necessary to properly detect fatigue related patterns like steering corrections. In
comparison, drowsiness is a slowly deteriorating process and changes only within minutes.
For instance, a shock induced by an adrenalin rush can wake upa driver within a second, but
is not essential for detecting the onset of sleepiness. Hence, it is necessary to extract patterns
with at least 50 Hz, whereas for performance reasons, it is not beneficial to aggregate the
derived features with a sampling rate higher than 0.5Hz.

Distraction leads to similar patterns as sleepiness and, thus, cannot always be distinguished.
But the driver has more control and awareness over his distraction than over his drowsiness.
On the other hand, the degree of distraction can change much faster than sleepiness. Since
no reference for distraction was recorded, drivers are requested to avoid distraction in order
to not affect the fatigue features.

Further, it is proposed to distinguish betweencausalanda-priori features. Causal features
result from specific patterns that are caused by the driverbecausehe is drowsy. A-priori
features (e.g.DAYTIME) simply indicate that it isprobablefor the driver to become drowsy.
Causal features are the most selective and thus most important ones. However, a-priori fea-
tures are also important as they can make a significant contribution to the system performance.
For instance, the (causal) features based on road exits are very probable to result from sleepi-
ness when they occur in a monotonous driving situation (a-priori). A-priori features are
discussed in Ch.5.3as they are considered in the context of external influences.

Another grouping of features can be made by classifying theminto event-basedand con-
tinuous. The latter can be calculated permanently, such as the lane deviation (LANEDEV),
whereas zig-zag events, steering corrections or road exitsoccur relatively seldom. The fewer
the number of events, the worse the temporal resolution of the signal is. A few events within
one hour do not allow to make a qualified statement about the driver state. Hence, the goal is
to focus on patterns that occur frequently and also catch small events by tuning parameters
towards high sensitivity.

Another grouping of features is proposed:basefeatures andfunctionalsof base features. In
the following section, the base features are described. In general, for event-based features,
the presence of a single pattern does not directly indicate driver drowsyness. The rate and
intensity of these events are relevant. For this reason, further processing steps are applied to
the base features such as:

• Moving average, median or exponentially weighted moving average (EWMA)
• Standard deviation, interquartile-range or exponentially weighted moving variance

(cf. 4.1.2)
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4.1. Pre-Processing

A number of pre-processing steps were necessary before extracting the drowsiness-related
features from the raw signals. The proposed methods have several advantages with regards
to performance and computation time when compared to the common implementation in
literature such as the mean or variance over a moving window.

Since the measurement of the steering wheel angle originates from four different vehicle
categories with different properties, they needs to be calibrated. Further, a discrete derivative
is necessary for many signals such as thesteering velocity, the longitudinal vehicle speed
andaccelerationfrom the wheel rotation rate sensors and thelateral accelerationfrom the
sensor and from the single track model. This section describes these pre-processing steps.

4.1.1. Digital Polynomial Smoothing- and DifferentiationFilter

Many features require synchronized numerical smoothing and differentiation of some input
signals. The calculation of the steering velocityδ̇S, lateral or longitudinal velocitẏyL, vveh or
accelerationax,whl from the wheel rotation rateWhlRPMx, are a few examples. The differ-
ence between two consecutive samples of a discrete-time signal x[n] is given by

ẋ[n] =
x[n] − x[n− 1]

Ts
, (4.1)

with the sampling interval Ts in seconds can be described as a simple 1st order FIR filter
with the coefficientsb0 = 1, b1 = −1 and one division byTs. However, this difference
calculation commonly used in literature (Pander et al., 2008; Bittner and Hana, 2000; Desai
and Haque, 2006) increases high frequency components (noise) and, thus, requires low-pass
filtering which again has the drawbacks of flattening peaks and shifting the phase.

A more appropriate method for digital smoothing and differentiation is to locally fit a poly-
nomial, referred to asDigital Smoothing Polynomial Filter(DISPO). According to (Schafer,
2011), Savitzky and Golay’s paper (Savitzky and Golay, 1964) introducingDISPOwas rated
in 2000 as one of the top 5 papers ever published in the journalAnalytical Chemistry. Its
major advantage is that the signal distribution, width and maximum height of impulses are
maintained. The derivative is easily obtained by an analytical differentiation of the approxi-
mated polynomial.Savitzky and Golay(1964) have shown that a sliding polynomial-fit and
evaluation of the polynomial at a single point is equivalentto discrete convolution with a fixed
impulse response (i.e. a regular non-recursive FIR-filter), since the coefficients are constant
for a given filter orderP and window SizeN. The polynomial smoothing and differentiation
filter coefficients can be calculated by a least-squares fitting.

For a given input sequencex[n], N = 2F + 1 adjacent pointsx[−F], . . . , x[0], . . . , x[+F]
are considered to fit an (over-determined) polynomial

p(n) =
P∑

k=0

ak nk (4.2)

of orderP with 0 ≤ P ≤ 2F at the point of interestn = 0. An approximated solution for the
coefficientsa = [a0, a1, . . . , aP]T can be found by minimizing the sum of squared errors
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ǫF(a) =
F∑

n=−F

(

p(n) − x[n]
)2

=
F∑

n=−F





P∑

k=0

ak nk − x[n]





2

. (4.3)

By introducing the notations

M =





1 −F · · · (−F)P

...
. . .

...
1 F − 1 · · · (F − 1)P

1 F · · · FP





︸                             ︷︷                             ︸

Vandermonde matrixM∈R(2F+1)×(P+1)

, a =





a0
...

aP





︸︷︷︸

a∈R(P+1)

, x =





x[−F]
...

x[+F]





︸    ︷︷    ︸

x∈R2F+1

, (4.4)

the cost function from Eq. (4.3) can be written as

ǫF(a) = ||M a − x ||2. (4.5)

The least squares solutiona∗ is obtained if the derivative of the error by all polynomial coef-
ficientsa is minimized:

∂ǫF(a)
∂(a)

!
= 0, yields a∗ = (MTM )−1MT

︸           ︷︷           ︸

M+

x (4.6)

whereM+ is theMoore-Penrose Pseudoinverseof M .

The smoothed output value is obtained by evaluating the polynomial at the central point
n = 0, which isy[0] = p(0) =. The next outputy[1] is again obtained by shifting the
analysis interval to the next sample to the right. As shown in(Savitzky and Golay, 1964;
Schafer, 2011), this is equivalent to a convolution with a fixed set of weighting coefficients
h(n). Since only the coefficienta0 is needed,hT is the 0th row ofM+(0, :) from Eq. (4.6).
SinceM+ is independent of the input samples it can be pre-computed for a given 2F + 1
impulse response length and polynomial orderP. The smoothing is stronger, the more over-
determined the polynomial (i.e. the closerP to N) is. This applies for lower polynomial order
P and is large window sizesN.

The first derivative ofp(n) from Eq. (4.2) can be calculated analytically by

dp(n)

dn
=

P−1∑

k=0

(k+ 1) ak+1 nk . (4.7)

With the differentiation matrixD

D =





0 1 0 0

0 0
... 0

0 0 0 1/P
0 0 0 0





(4.8)

we obtain the differentiated sequenceẏ[n] by applying the differentiation matrix as derived
in Orfanidis(1995, Ch. 8.3.5)
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ẏ[n] = MDM +
︸   ︷︷   ︸

H

x (4.9)

ẏ[n] = hT
d x =

N−1∑

i=0

hd[i]x[n− i] (4.10)

with N = 2F + 1 andhT
d = H(1, :) as the 1st row ofH.

The phase delay of the FIR smoothing and differentiation filter isτ = (F + 1) ·Ts and higher
than for recursive filters, which is not problematic for thisapplication. The signal needs to
be synchronized with signals that are not filtered and for thecorrect amplitude the sampling
frequencyFs must be multiplied. Fig.4.1shows for instance the steering wheel angle and its
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Figure 4.1.:Different methods to differentiate signals.

derivative obtained by the common and proposed method. Using a low-passButterworthIIR-
filter with weak filtering i.e. a high cut-off frequencyfc (black dash-dotted line), preserves
the peak height at the cost of a high noise. Stronger filtering, i.e. low cut-off frequency
smoothes the signal but flattens the peak of the derivative. Since in the present application,
the maximum steering velocity shall be determined with highrobustness, theDISPOFIR
filter properly preserves the impulse height while smoothing the signal (red solid line).

Application to CAN Signals

The steering wheel velocity in Fig.4.1 is smoothed and derived by aDISPOfilter of order
N = 13 and polynomial orderP = 5. These parameters are the best trade-off between
preserving the peak height and avoiding toggling around zero for zero-crossing detection.
Both yield a fix phase delay ofN+1

2 = 7 samples. The related smoothing and differentiation
coefficientsh andhd are illustrated in Fig.4.2.

The longitudinal accelerationax,whl is obtained by aDISPOdifferentiation filter with the same
coefficients as in Fig.4.2on vehicle speed from the wheel rotation sensors in Ch. (2.2)

ax,whl[n] = Fs

N−1∑

i=0

hd[i] vveh[n− i] . (4.11)
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Figure 4.2.: Impulse response of smoothing and differentiation DISPO filter for N = 13,P = 5.

4.1.2. Exponentially Weighted Moving Average and Variance

Commonly, a regularmoving average (MA)filter is used for signal smoothing or for cal-
culating event rates (cf.Altmüller, 2007; Batavia, 1999; Schmidt, 2010; Bittner and Hana,
2000; Pander et al., 2008; Fairbanks et al., 1995; Desai and Haque, 2006; Löfgren, 2007,
etc.). A simple, but very powerful improvement is the introduction of a recursiveExpo-
nentially Weighted Moving Average (EWMA)IIR-filter. In Sec.4.1.1, the DISPOfilter is
primarily used for differentiation of continuous signals and smoothing of it’s base signal with
synchronous phase delay. However, thisFIR-filter requires a high filter order and thus high
computational cost. In comparison,EWMA severely reduces the phase delay and computa-
tional complexity since only one value must be stored instead of the entire window length.
Secondly, this has the advantage of taking present values more into account than old values.
EWMA is primarily used for the calculation of event rates.

Following the same principle, it is further proposed a way toapproximate the sliding variance
by anExponentially Weighted Moving Variance (EWVAR)for a giveninput signal x[n]. The
forgetting factorsλµ andλσ2 are used from the adjusted window sizesNµ andNσ2:

λµ =
Nµ − 1

Nµ

, λσ2 =
Nσ2 − 1

Nσ2
. (4.12)

The EWMA µ[n] is calculated by weighting the previous averageµ[n− 1] and the current
input samplex[n] for the initial valueµ[0] = x[0] by

µ[n] = λµ · µ[n− 1] + (1− λµ) · x[n] . (4.13)

TheEWVAR σ2[n] can be approximated using theEWMA µ[n] from Eq. (4.13) by

σ2[n] = λσ2 ·σ2[n− 1] + (1− λσ2) · (x[n] − µ[n])2 (4.14)

with the initial valueσ2[0] = 0. For theEWVAR, the same window sizes have been used for
both forgetting factors:λµ = λσ2.

Further,EwmaNandEWvarN were introduced as a special case ofEWMA andEWVAR,
where only the lastN non-zero samples are taken into account. For samples that are zero,
the update calculation is omitted and the memory value is kept. For instance, the maximum
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steering velocity between inflection points is event-basedand if the frequency of these events
should not be considered, only the events must be considered.

EWIQR is introduced similarly toEWVAR , however with the Interquartile Range (IQR)
instead of the variance.EWIQR is calculated by sorting the values in the preceding sliding
window and calculating the range for 50% of the central values.

Fig.4.3illustrates theEWMA andEWVAR applied to the lateral accelerationax,SC. It can be
seen that theEWMA andEWVAR approximations (−−) fit well their ordinaryMA method
(·−) for similar window sizesN = 12s. Especially theEWVAR is more responsive to changes
in the signal variance and forgets them faster.

Figure 4.3.:Exponentially weighted moving average (EWMA) and variance(EWVAR)

Fig. 4.4shows the advantage of theEWMA again, but for event rate calculation of road exit
intensities. A road exit is an event that is detected if any part of the vehicle exceeds a solid
lane marking. This can be used to measure thetemporaldensity of events ("rate") including
their intensity. It can be seen that the regularMA filter (·−) has stairs and drops every time
an event leaves the sliding window while theEWMA smoothly forgets past events and never
returns to zero (−−).

Figure 4.4.:Exponentially weighted moving average (EWMA) to calculateevent rates
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Computational Complexity: On a fixed-point processor, divisions and multiplications and
especially memory for unit delays (each 32Bit) are very limited and expensive. In regards
to computational complexity, Eq. (4.13) can be transformed to the more efficient Eq. (4.15)
by replacing one multiplication by one subtraction. Compared to the moving average with
one division,N − 1 additions andN − 1 unit delay elements, theEWMA now requires two
additions and a multiplication:

µ[n] = x[n] + λµ·(µ[n− 1] − x[n]) . (4.15)

For EWVAR this works equivalently :

σ2[n] = (x[n] − µ[n])2 + λσ2·
(

σ2[n− 1] − (x[n] − µ[n])2
)

. (4.16)

Fixed-point Error: The weakness of this implementation in fixed-point arithmetics is that

the error of the feedback is accumulated. For this reason,λ+ 1
N

!≡ 1 must be fulfilled as
precisely as possible. For Eq. (4.12), this is achieved by first pre-calculating the division and
thenthe subtraction

λ =
N − 1

N
−→ λ = 1− 1

N
(4.17)

since the subtraction in fixed-point is error free. Second, a32Bit quantization (instead of
16Bit) is at least required for maintaining acceptable drift error of fixed-point towards floating-
point after several hours. These countermeasures reduce the mean deviation of the fixed-point
error by factor 16. Details about the results are presented in (Pape, 2008).

Adaptive Window Size: The adaption to strong signal changes and initialization ofthe
EWMA and EWVAR can take very long for a large window sizeNµ. Thus, further improve-
ments are introduced:

• Initial values: The initial valuesµ[0] andσ2[0] are initialized to the average of the
awake phase of each feature instead to 0 orx[n].

• Initialization: Growing window size is an important improvement. For instance, start-
ing with Nµ = 5 increaseNµ by one for every sample or event up to the final window
size.

• Situation adaption: The window size is reduced when the driving condition severely
changes and a faster adaption is needed, e.g. for a changed vehicle speed in construc-
tion sites, i.e.Nµ(x, vveh).

4.1.3. System-Active Signals

For steering angle and lane based features, there are often driving situations (e.g. overtaking,
curves, road condition etc.) that have a bad influence to the signals and features. As well,
there are moments in which the signal quality is insufficientdue to bad lane markings or bad
weather. During the pre-processing, a BooleanSystem Active Signalfor lane-based features
S ASLANE and a similar signal for steering and CAN based featuresS ASCAN are calculated.
They indicate when distortions requires to neglect a certain situation.

S ASLANE is TRUE if all following conditions are fulfilled:
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1. Vehicle speedis within the range:Pv,lower,LANE ≤ vveh≤ Pv,upper with
Pv,lower,LANE = 70km/h
Pv,upper,LANE = 200km/h

2. No lane changetakes place: the detection is described in Sec.4.1.5whereas
PlaneChgPreS uppT= 4sbefore andPlaneChgPostS uppT= 6safter the lane change are also
suppressed.

3. Lane data quality is sufficient:LaneDataQual≥ PlaneDataQualwith
PlaneDataQual= 80%

4. Noconstruction site: thelane width is used for detection:LaneWidth> PminLaneWidth

with PminLaneWidth= 3.05m

5. No fastvelocity changes: for instance, from 130 to 80 km/h in construction sites also
cause artifacts in driving patterns and, thus, are suppressed forPvelChgPostS uppT= 3s:
EWMA 3s(|v̇veh,LP|) > 1.5 km

h·Ts
with vveh,LP filtered by a Butterworth low-pass filter of

2nd order and a cut-off frequency of 0.5Hz.

6. Noovertakings: lane signals cannot be used during overtaking maneuvers. Achange
in the lane numberLaneNumaccompanied by an acceleration pedal change of
∆AccelPdlPosn≥ 10% is used for detection.

7. No short active sections: in order to avoid toggling, active sections with durations
PshortS ectionsTh≤ 3 sare suppressed as well.

S ASCAN is TRUE if the following conditions are fulfilled:

1. Novehicle operationfrom buttons and levers:
turn indicator operation result in inactivity forPtWghtLnCh= 10s,
steering wheel buttons or clutch operation forPtWghtOper= 5sand
operation of the heat-unit (COMAND) forPtWghtDistr = 10s are suppressed.

2. No Curves: lateral perceived acceleration|EWMA s2(ay,stw)| > 0.8m
s2 is suppressed

for
PcurveS uppT= 0.4susingay,stw from the single-track model (Sec.6.3).

3. NoRoad bumps: longitudinal accelerationax,whl ≤ 4m
s2 is suppressed for

PRoadBumpS uppT= 0.5s usingax,whl from wheel rotation sensors (cf. Sec.4.1.1).

4. Vehicle speedmust be within the range:Pv,lower,CAN ≤ vveh≤ Pv,upper,CAN with
Pv,lower,CAN = 80km/h andPv,upper,CAN = 180km/h.

5. Steering wheel anglemust be within|δS| < PstwLevelwith PstwLevel≤ 40◦.

6. Nodriving style suppression: wDynamicDrivingS tylefrom Sec.4.1.7is suppressed.

7. No Kick-down : AccelPdlPosn≥ 98%∨ AccelPdlPosnRaw ≥ 98% are suppressed
for PtKickDownS hort= 0.1s if the pedal is pressed for shorter than 2sand
PtKickDownLong= 20s otherwise.

8. Nosafety assistance system is active: Traction Control, Stability Control, Anti-lock
Braking System or Hydraulic Brake Assist indicate very sportive driving: AS Rctrl ∨
ES Pctrl ∨ABSctrl ∨HBActrl. Events are suppressed for 0.1s for an intervention shorter
than 2sand up to 20sotherwise.
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9. NoCross-wind: the detection is described in Ch.5.2.6and suppressed for
PswPswgHoldT= 3s.

For most features, individual exceptions had to be made.

During feature extraction, theS ASsignals are included to suppress the computation in these
situations. However, this "blind" inactivity has a negative impact on the feature extraction.
Depending on the feature, the following methods are used to fill these gaps:

1. Event suppression:for rate calculations (e.g.EWMAof steering corrections) the de-
tected events are simply considered as zero. This conservative approach yields a drop
of the event rate which appears right as the SAS inactivitiesare indebted by activating
actions of the driver. IfEwmaNis used insteadEWMA, only the lastN events are
taken in which the SAS was active. Here, the event rate does not drop.

2. Hold: the last feature value is hold. This assumes that the fatiguelevel in such situa-
tions remains unchanged.

4.1.4. Driver Switch and Pause Detection

When a driver has a break or there is a change of the driver, theestimated fatigue level
must be reset. Otherwise it often leads to false warnings. Technically, an engine restart
resets theESC controller and unless a non-volatile memory (EEPROM) is available, the
algorithm restarts. However, many pauses or driver switches are performed with running
engines and must be distinguished from stop-and-go traffic.Fig.4.5shows the state transition
diagram of the detection conditions. In case the vehicle speedvveh is below 5 km/h, a timer

Figure 4.5.:Pause and driver switch detection to reset the features (cf.Patent (Friedrichs et al., 2012))

is started when door and buckle switch are opened. The utilized signals of the driver door
stateDrRLtchFRS tatand buckle switchBcklS wDneed to be debounced fort = 0.3s. The
timer thresholdTgsP_MinDuration = 15s is set to the fastest realistic driver switch that we could
perform. The timer is reset when the vehicle is driving over 5km/h again.

4.1.5. Lane Change Detection

One benefit of theALDW is that lane changes can be detected even if the driver does not
use the turn indicator. According to (Batavia, 1999; Schmitz, 2004), the lateral distance und
velocity are good indicators to detect lane changes. Detection of lane changes (cf. Fig.4.6)
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was performed by using the lange change statusLaneChangeStatas well as detecting zero
crossings in the lateral distancelaneLatDist yL: laneChgDct = |dyL

dt | > PLaneChgThand
LaneChg_S tat, 0∨ TurnIndLvrS tat, 0∨ laneChgDctwith PlaneChgTh= 1.8m.

Figure 4.6.:Detection of lane changes and reconstruction of lateral lane distance

4.1.6. Subjectively Perceived Lateral Acceleration

It was observed that thesubjectively perceivedlateral acceleration is much higher for increas-
ing vehicle speeds (cf. Patent (Katz et al., 2004)). At low speeds strong lateral accelerations
occur without the driver noticing it. It was observed that this speed dependency needs to be
compensated by a weighting according to the drivers perception.

Thesubjective lateral accelerationay,stw,sub j in [m
s2 ] is calculated according to Eq. (4.18) from

thevehicle speedvveh in [m
s ] and thelateral acceleration ay,stw from the single-track model

as described in Ch.6.3. It is not distinguished between left and right curves.

ay,stw,sub j(vveh, ay,stw) = ( vveh · PayS ub jAm+ PayS ub jAc) · |ay,stw|+ (4.18)

vveh · PayS ub jBm+ PayS ub jBc

with the parameters obtained from parameter study

PayS ub jAm = 0.036s
m, PayS ub jAc = 0.3985,

PayS ub jBm = 0.01836s
m, PayS ub jBc = −0.8840.

Fig. 4.7 illustrates the functionay,stw,sub j(vveh, ay,stw) from Eq. (4.18).

4.1.7. Driving Style Model

Sportive driving inhibits fatigue and thus needs to be distinguished. As illustrated in Fig.4.8,
inexperienced drivers tend to not mix longitudinal and lateral acceleration while experienced
race drivers better exploit the physical limits of the tires. As mentioned in the patents of
(Kuhn and Heidinger, 1997; Stolzmann et al., 2002), the right figure shows the thresholds
for the detection of sportive, normal and calm driving styleof drivers with average driving
experience. The threshold curves were the result of a parameter study that optimized the
classification results.
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Figure 4.7.:Subjectively perceived lateral accelerationay,stw,sub j

Driving Style Suppression

Sportive driving was observed to alert a driver for a certaintime. This hypothesis was in-
directly confirmed by improved classification results. The decision how long sportive driv-
ing is suppressed is calculated based on the model from the previous Sec.4.1.6. Using the
threshold from Fig.4.8, a counterC f d is introduced that incrementsPf dCntIncNear = 0.08
for every second while the acceleration magnitudeares is inside thenormal (orange) area
and Pf dCntIncFar = 0.12 outside (red). The maximum for the counter isPf dMax = 2.4s.
ares is calculated according to Eq. (4.19) as the magnitude of perceived lateralay,stw,sub j and
longitudinal accelerationax,whl.

ares =
√

a2
y,stw,sub j+ a2

x,whl (4.19)

The counter counts down as long asares is inside thecalm (green) area and sets thedriving
style weighting wDynamicDrivingS tyle= 1. Parameters are a result of parameter optimization.

4.2. Overview of Features

In this section, an overview of features extracted in this thesis is given. In general, one
extracts as many promising features as possible and selectsthose with the best performance
by feature selectionor transformation(Ch.8). Inspired by own ideas and features in literature
(App. A.9), this section discusses the most essential features.
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Figure 4.8.:Different driving styles are displayed in a so called "GG-diagram" of Longitudinal and
(perceived) lateral acceleration. Left: Experienced drivers exploit physical tire limits bet-
ter than inexperienced drivers. Right: thresholds from a parameter study for the detection
of sportive, normal and calm driving styles for drivers withaverage driving experience.

4.2.1. Feature Matrix

All features are organized in afeature matrix Fwith a structure shown in Tab.4.2. For
each drive, the first three columns are the KSS reference withdifferent interpolation methods.
The next ten columns contain meta information about the drive, allowing fast access for the
grouping, filtering and data analysis. The following columns contain the features with their
Feature-ID in the head row. Each row contains one sample of all features with the features’
sampling rate 0.5Hz.

4.2.2. Feature Classes

Features that are based on similar patterns are structured into groups depending on the pattern
or sensor type they are derived from. The classLANE describes whether they require camera-
based lane information.AA contains measures from theATTENTION ASSISTsystem,STW
from the steering wheel angle, andCAN when they are based on otherCAN-bus signals such
as lateral or longitudinal acceleration, wheel rotation etc. The classesEYE andEEGare used
for evaluation in Ch.3 and otherwise as additional reference.

4.2.3. List of Features

Tab.4.3lists the 48 most important features out of all 144 features listed in App.A.9. Features
with superscript1 are better after baselining and superscript2 are newly introduced.
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Table 4.2.:Elements of the feature matrixF

ID CLASS Feature Name Description
15 LANE LANEDEV1 Lane deviation
17 LANE ZIGZAGS1 Number of zig-zag events
19 LANE LATMEAN 1 Lateral mean
29 LANE LNMNSQ1 Lane mean squared
32 LANE LANEX1 Lane exceeding
33 LANE LNERRSQ1 LANEX squared
34 LANE ORA1 Overrun area
35 LANE TLC1MIN1 Time-to-lane crossing
36 LANE VIBPROP1 Lane departure warnings within 4 minutes
16 LANE LATPOSZCR1,2 Lateral position ZCR
30 LANE LNIQR1,2 IRQ of lateral position
31 LANE LNCHGVEL1,2 Lane change velocity
37 LANE DELTADUR1,2 Duration between inflection points
38 LANE DELTALATPOS1,2 Lateral displacement
39 LANE DELTALATVELMAX 1,2 Maximum lateral velocity
14 LANE LANEAPPROX1,2 Approximation to lane event rate
40 LANE LANEAPPROXADP1,2 LANEAPPROX with adaptive threshold
42 STW ELLIPSE1 Steering angle and velocity magnitude
50 STW NMWRONG1 Number of timesSTWis suddenly corrected
69 STW NMRHOLD1 Number of timesSTWis hold long
48 STW AmpD2Theta1 Area betweenSTWand its mean (Berglund, 2007)
72 STW VHAL 1 Ratio high vs. lowSTWvelocities (King et al., 1999)
71 STW MICROSTEERINGS1 Presence rate of micro-steering adjustments
18 STW STWZCR1,2 Steering ZCR
25 STW STWVELZCR1,2 Steering velocity ZCR
52 STW STV251,2 Steering velocity 1st Quartile
53 STW STV501,2 Steering velocity 2nd Quartile
54 STW STV751,2 Steering velocity 3rd Quartile
44 CAN ACTIVE2 System active signal (S ASCAN)
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24 CAN LNACTIVE2 Lane signals active (S ASLANE )
41 CAN VEHSPEED Vehicle speed [km/h]
47 CAN DAYTIME Seconds since midnight
66 CAN TOT Time-on-task
22 CAN DEGOINT1 Degree of vehicle-driver interaction (Kanstrup, 2006)
23 CAN REACTIM1 Reaction time inSTWto lateral acceleration
45 CAN CIRCADIAN1,2 Circadian daytime weighting
51 CAN STWEVNT1,2 Steering event rate as inATTENTION ASSIST

55 CAN CROSSWIND1,2 Cross-wind / road warping intensity
58 CAN DYNDRIVINGSTYLE1,2 Dynamic driving style
59 CAN MONOTONY1,2 Monotonous driving
61 CAN OPERATION2 Vehicle lever and button operation
63 CAN ROADBUMPS2 Road bump condition
67 CAN TOTMONO2 Monotonous Time-on-Task (TOT)
68 CAN TOTSPEED2 TOT around 130km/h
70 CAN LIGHT2 Light intensity (day/night)
26 CAN TRFCDENS2 Traffic density
27 CAN TURNINDADVANCE1,2 Blinking time before lane change
28 CAN TURNINDDUR1,2 Turn indicator operation duration
. . . . . . . . . . . .

EYE . . . EYE features are listed in Tab.3.8

Table 4.3.:Selection of features

4.3. Lane-Data based Features

In comparison to the "microscopic" steering control, the lateral lane position is a rather
"macroscopic" result of the smoothed reaction of the vehicle to the steering signal and road
condition. The major additional information provided by lateral lane data is the knowledge
of theabsoluteposition in the lane. Another benefit is that lane changes canbe detected even
if the driver does not use the turn indicator.

According toKnipling and Wierwille(1994), "drowsiness can be detected with reasonable
accuracy using driving performance measures such as "drift-and-jerk" steering and fluctu-
ations in vehicle lateral lane position". Wierwille and Ellsworth(1994) concluded "that
lateral control measures are closely related to prolonged driving and might therefore be used
to detect driver sleepiness". Berglund(2007) summarized fromSiegmund et al.(1996) "that
driver sleepiness is most likely indirectly measured either by the steering wheel control input
or lane maintenance output, and that the lane maintenance isarguably the more complete
parameter".

A major problem during the offline development of features using measurement data is the
gap of transparency. The majority of influences could eithernot be recorded or was difficult
to access in the large number of signals. For this reason, a real-time online and offline
vehicle "cockpit" was implemented (App.A.13.3) that brings both domains together: the
visualization of driving signals and the features. Generally, it was observed that the features
are sensitive to what they have been designed for. Yet, therewere also other influences to
which the features were sensitive. With this visualization, these influences could be identified
and compensated.
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4.3.1. Lateral Lane Position Features

Observations from many situations during night studies andfree drives tell that some drivers
tend to drive closer to the right lane border to clear space for overtaking vehicles or oncoming
traffic. The same principle holds for the overtaking vehicles that tend driving to left side.
The average lateral offset also depends on the driver’s specific driving style. Further, it was
observed that for very low traffic, there are drivers who neglect the lane markings and drive
in between lanes, to increase the clearance space to the roadboundaries for a sloppy lane
keeping. LATMEAN is the average lateral lane position during system activityS ASLANE

within the last 1.4min, calculated with theEWMA proposed in Sec.4.1.2. LNMNSQ is the
moving average (notEWMA) of the squared lane position while the zero position is defined
as the position where the center of the front axle is located on the road center.LNMNSQ
is used for comparison as reference for implementations in literature (Tijerina et al., 1998;
Wierwille and Ellsworth, 1994; Kecklund and Åkerstedt, 1993).

Some other driver-specific features areTURNINDADVANCE, the duration between the utiliza-
tion of the turn indicator prior to a lane change,LNCHGVEL, the average lateral velocity of
lane changes andTURNINDDUR, the duration of turn indicator activation. For these features,
only lane changes are suppressed instead of usingS ASLANE. These features are based on
the observation that different drivers have different styles of lane changing and turn indicator
usage according which they can be distinguished. Knowing about these driver-specific prop-
erties does not necessarily allow a causal conclusion aboutthe driver type and state. This
factor will be analyzed later in Ch.5.4.

Some other base features are the average durationDELTADUR between lane center cross-
ings, averaged over the last 15 events usingEwmaNand the zero crossing rateLATPOSZCR.
These two features correspond to the oscillation frequencyaround the individual lane center.
Further features that describe the lane keeping performance areDELTALATPOS, the ampli-
tude (cf. Fig.4.9) andDELTAVELMAX, the maximum velocity between the inflection points
of the lateral lane position (ZC). All these features are vehicle speed dependent and thus had
to be normalized.

Figure 4.9.:Road markings and lane lateral offset to illustrate lane deviation LANEDEV and
DELTALATPOS for awakeanddrowsydriving. The red bars illustrate examples of the
largest lane deviations.
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4.3.2. Lane Deviation (LANEDEV, LNIQR)

There is a large number of features associated with the vehicle’s deviation in the lane, as it is
assumed that the driver-specific lane keeping becomes more sloppy with increasing fatigue
(Kircher et al., 2002; Pilutti and Ulsoy, 1999; Bittner and Hana, 2000) and (seeAltmüller,
2007, Ch. 4.2.3). During the test drives, it was observed that some awake drivers can also
have a bad lane keeping depending on their mood.

The most essential features are implemented.LANEDEVmeasures the lane keeping deviation
using anEWVAR window of size 2min, while theS ASLANE is active. The often mentioned
SDLPfeature (Tietze and Hargutt, 2001; Hargutt, 2001; Kircher et al., 2002; Thiffault and
Bergeron, 2003; Altmüller, 2007; Liu et al., 2009; Mets et al., 2011) is basically the same and,
thus, not implemented. The lateral mean was observed to be driver-dependent and, thus, is
subtracted before the variance is calculated. Simple variants ofLANEDEV are used asground
truth for distraction in many studies with driving simulator data(Greschner, 2011). In fact,
it is a simple measure for driving performance, but it cannotbe completely transfered from
simulator to real world driving. Fig.4.9 depicts an example of how the variance increases
with increasing fatigue.LANEDEVSQ andLANEDEV4 are obtained by taking the power
of two and four respectively, as proposed byWierwille and Ellsworth(1994); Kircher et al.
(2002), to stronger weight large deviations from the driver’s average.LANEDEVBL is simply
the baselined version ofLANEDEV, i.e. it is normalized by itsmaxvalue between the 1st

and 20st minute. LNIQR is the interquartile range (IQR) of the lateral position within the
last two minutes. In comparison to the variance, the IQR doesnot take outliers into account
and thus focuses more on the degradation of the small lane deviations. Again, the driver-
dependent lateral offset had to be compensated. However, parameter optimization has shown
that exponential weighting of the lateral position performed best. This allows the conclusion
that large lane deviation events are more significant signs for fatigue than small deviations.

4.3.3. Over-Run Area (ORA)

The Over Run AreaORA is another deviation measure that senses the average overridden
surface and is an alternative toLANEDEV. Details can be found in the thesis of (Olabe, 2008)
and in literature (Löfgren, 2007; Wigh, 2007). Fig.4.10illustrates the ORA measure. For the

Figure 4.10.:Over Run Area (ORA) as measure for lane deviation

calculation, the lateral offset is subtracted and the absolute value is averaged over anEwmaN
window of 3min, while S ASLANE is active.

4.3.4. Unintended Lane Approximation (LANEAPPROX, VEZ etc.)

LANEAPPROX is a feature that describes the number of times any part of thevehicle is
entering a proximity-zone of the lane bounds.LANEAPPROXADAPT is basically the same,
however using an adaptive, driver dependent zone.
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Kozak and Pohl(2006) andWigh (2007, 2.1) defined in their thesesVEZ as a zone which
focuses on a lane approaching pattern, illustrated in Fig.4.11and comparable toTLC1MIN.
The latter uses a driver adaptive zone size, which can be interpreted as an ‘almost’ lane
departure. The advantage is that these departures occur much more often than real lane
departures and, thus, allow a higher temporal resolution. Unintended lane departures are
suppressed if the driver steers towards the lane or acc-/decelerates (Schmitz, 2004). Different
weightings for curves and lane types have shown to be practical. It was observed that some
drivers almost never exit the lane boundaries, whereas others have over 50 lane exits per hour.
Thus, it is proposed to adapt theALDW warning sensibility to the driver state.

dt
dl

V2Z

Figure 4.11.:Unintended lane approaches with intensitydl and durationdt

4.3.5. Unintended Lane Exceeding (LANEX, LNERRSQ)

The heuristic of distinguishing intended and unintended lane exceedances is discussed in
(Schmidt, 2009) and also in the lane change detection (Sec.4.1.5).

For some drivers, lane departure warningsLANEX andVIBPROP have been observed to be
very helpful features during the onset of drowsiness.LANEX, LNERRSQ andVIBPROP are
based on the intensity and frequency of lane departures and road exits (Wierwille, 1996b;
Mattsson, 2007). Lane departures are defined as exceeding of a dashed road marking, while
road exits describe the exceeding of solid road markings.LNERRSQ is the mean squared
difference between the outer vehicle dimensions that exceed the lane marking. In contrast to
VIBPROP, LANEX takes the intensity into account as shown in Fig.4.12. The warnings are
averaged by anEWMA filter with window sizePVibpropEwmaWinS ize= 4min.

Figure 4.12.:Lane exceedances for intensitydl and durationdt
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4.3.6. Zig-Zag Driving (ZIGZAGS)

ZIGZAGS are based on single lurching patterns as illustrated in Fig.4.13. The maximum

Zig-Zag

Figure 4.13.:Zig-Zag driving

lateral distance and velocity are calculated between all consecutive zero-crossings of the
smoothed lateral distance. The lateral distance is filteredby a low-pass filter with cut-off fre-
quency of 0.6 Hz. A 2nd order Butterworth filter was used instead ofEWMA, since stronger
attenuation in the stop-band was desired for this cut-off frequency. The lateral velocity is
obtained by differentiation with aDISPOfilter (Sec.4.1.1). Criteria for detectingZIGZAGS
events are at least two oscillations within the lane with an amplitude within 0.4 - 1.2 me-
ters and a duration between 2.5 - 17.5 seconds. The resultingevents are averaged with an
EWMA window of N = 4min. Only events are taken into account whenS ASLANE is active.
ZIGZAGBL is the baselined version, normalized by the saturated maximum of theZIGZAGS
value between the 1st and 20st minute. These parameters are obtained from parameter opti-
mization.

4.3.7. Time-to-Lane-Crossing (TLC)

Time-to-Lane-Crossing(TLC) measures the estimated time remaining until any part of the
vehicle exceeds the lane boundaries, if no other driving action is made (Glaser and Mam-
mar, 2005; Mammarand et al., 2006). Fig 4.14 illustrates this principle. As described in

Figure 4.14.:Time-to-Lane-Crossing minima models

(Friedrichs and Yang, 2010b), there are again two models to calculate theTLC time, referred
to asTLC model 1andTLC model 2. TLC model 1 is the simplest method calculated from
the lateral position and velocity. The more accurate model 2a and 2b take the road curva-
ture and vehicle track into account and therefore require additional signals. These, however,
are not so robust as the road curvature signals are not reliable. The inclusion of the second
clothoid parameterco has not shown any improvement, and, thus, is not considered.Details
can be found in the thesis ofOlabe(2008) or in literature (Batavia, 1999; Schmitz, 2004;
Mammarand et al., 2006; Wigh, 2007).
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TLC Model 1

The TLC duration can simply be calculated from the lateral distance to the left or right lane
edgeyl,r and lateral velocitẏyL by

TLC1 =
yl,r

ẏL
. (4.20)

TLC Model 2

TLC Model 2 is the more detailed model that, however, requires more signals and, thus,
is less robust. There are several variants to implement thismodel. However the definition
described in the theses ofOlabe(2008) andWigh (2007) is used.

This definition is based on two models: thevehicle path modeland theroad model. The vehi-
cle path model describes the future path of the vehicle if themotion parameters as the current
yaw-angle would not change. The road model describes the road curvature ahead, based on
the road characteristics obtained by the lane tracking camera. The intersection point of both
trajectories describes the distance at which the vehicle will cross the lane boundaries.

Vehicle Path Model: There are two models described in (Wigh, 2007), whereof the sec-
ond, more detailed model is used here. Taking the yaw angle∆ψ between road and vehicle
(LaneYawAnglfrom Tab.A.2) and the curvature of vehicle pathκc = 1

R into account, yields
Eq. (4.21) for the vehicle path model, wherey0 is the lateral distance,θ the angle against the
lane marking andd is the distance in driving direction:

yveh(d) = y0 + θ · d+
1
2
· κc · d2 (4.21)

The radiusR is obtained from Eq. (6.3) of the single track model described in Ch.6.3.

Eq. (4.21) describes the center line of the future vehicle trajectory. Taking the vehicle width
wv into account, the left and right vehicle edges are obtained by:

yveh,l(d) = +
wv

2
+ y0 + θ · d+

1
2
· κc · d2 (4.22)

yveh,r (d) = −wv

2
+ y0 + θ · d+

1
2
· κc · d2 .

Road Model: Road sections can be modeled by clothoids. Using the mathematical sim-
plifications from Wigh (2007), the driven distances and clothoid parametersc0 and c1

(LaneClothoidParafrom Tab.A.2), the center line of the road can be formulated in x- and
y-coordinates by:

x(d) = x0 + d (4.23)

y(d) = y0 +
1
2
· c0 · d2 +

1
6
· c1 · d3

x0 andy0 are the starting positions of the vehicle and can be set to zero.
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Analogous to the vehicle path model, the lane widthw (LaneWidthfrom Tab.A.2) must be
taken into account. Neglecting the small and noisy parameter c1, yields the left and right road
markingsyroad,l andyroad,r :

x(d) = d

yroad,l(d) =
1
2
(+w+ c0 · d2) (4.24)

yroad,r(d) =
1
2
(−w+ c0 · d2) .

Intersection of both Models: TheDistance-To-Lane Crossing(DLC) is calculated as the
intersection of both models,DLC = d subject to

yveh,l(d) = yroad,l(d) (4.25)

yveh,r (d) = yroad,r(d) .

Only the minimum of the positive solutions for DLC is relevant here:

DLC = d =
θ ±

√

θ2 − (c0 − κc)(±w±wv − 2y0)

(c0 − κc)
(4.26)

In model 2, theTLC2 is obtained by using the vehicle speedvveh from Ch.2.3.1:

TLC2 =
DLC
vveh

. (4.27)

Comparison of Model 1 and 2

Using TLC minima as indicator for fatigue detection, it is not relevant to estimate the real
TLC time, since drivers mostly take action prior to exceeding the lane. SmallTLC values are
already a good indicator of sloppy driving.

Due to calibration problems of the lane tracking camera, model 1 was used in this thesis, as
it has shown more robust results. TheTLC1MIN feature is finally obtained as the number
of TLC minima below 10 seconds and averaged by anEwmaNfilter of the last 15 values.
Fig. 4.15shows the lateral offset of the vehicle bounds (blue), the road markings (black) and
the related TLC minima.

4.4. Steering Wheel Angle based Features

In contrast to the lateral lane position, the steering wheelangle is directly related to the
driver’s control action. The steering signal contains higher frequencies and a finer resolution
of thedesiredvehicle track.

The idea of analyzing the velocity of the steering wheel angle goes back to the expired Ford
Patent ofPlatt (1966) in 1962. Historically, older patterns like steering pauses and fast cor-
rections have lead to a combination of steering correctionsfollowed by slow steering. This
again has lead to the detection of deadbands and the much moresophisticated definition of
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Figure 4.15.:TLC1MIN as TLC minima using the more robust model 1

steering events. Latest ideas focus on considering the driver and vehicle as a control system
and evaluate the control parameters. So called "micro-corrections" and the "degree of inter-
action" are simpler measures for the driver control performance. Steering wheel angle and
velocity frequency domain analysis focus on the frequency domain.

The combination of lane and steering based patterns on a feature level extends their dis-
criminatory property. For instance, steering correctionstowards the lane center are the most
relevant for fatigue detection. The reaction time to Time-to-Lane Crossing Minima is another
steering and lane mixed feature proposed in this thesis.

The steering wheel angle is measured with a 0.1 degree resolution and needs to be unwrapped
and offset compensated for the lateral road trend1. In order not to flatten signal peaks, the
steering velocity is calculated with the Digital Polynomial Smoothing- and Differentiation
Filter (DISPO), described in Sec.4.1.1.

4.4.1. Variance Criterion (VARCRIT)

According to the Daimler Patents ofStolzmann et al.(2002); Hentschel et al.(2005), the
variance criteriondescribes the ratio of a long term and a short term sliding variance window.
The goal is to measure the rate of detected patterns similar to "drift-and-jerk", where the
driver is out-of-the-loop for a short period and then suddenly realizes the mistake by reacting
with a quick steering correction. This is an improved detection method for the patterns in the
expired Nissan Patents (Seko and et. al., 1986; Iizuka and Obara, 1986) for the detection of
driver drowsiness by an abrupt steering change and no steering movement following.

Some changes were made to the featureVARCRIT such as using the DISPO filtered steering
wheel angle velocitẏδS from Sec.4.1.1and taking the variance ratio to the power ofk:

VARCRIT = EWMA N





EWVARshort(δ̇S[n])

max(1,EWVARlong(δ̇S[n− PwinS izeS hort]))





k

(4.28)

1Roads usually have a lateral gradient of up to 3% for rain water drain
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with the sliding variance window sizesPwinS izeS hort= 0.5s, PwinS izeLong= 2.0sand exponent
k = 4 to stress peaks. Fig.4.16 illustrates the principle of the sliding short and long term
variances. The longer steady phase represents the "out-of-the-loop" absent driver activity and
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Figure 4.16.:FeatureVARCRIT: Variance criterion - short over long term variance.

furthermore makes sure that sudden hectic steerings as in construction sites, traffic density or
curvature changes do not lead to miss-detected peaks.

Similarly, a criterionIQRCRIT was investigated, where the variance is replaced by the in-
terquartile rangeIQR2 which neglects slow and fast outliers. However, the performance was
inferior to theEWVAR because the peak height of steering corrections is neglected.

4.4.2. Local Driver Inactivity Event (DEADBAND)

The featureDEADBAND proposed by (Altmüller, 2007) describes very much the same pattern
as (Seko and et. al., 1986; Iizuka and Obara, 1986) and theVARCRIT. Its name is motivated
by events when all driver control signals are steady, i.e. steering wheel angle, gas pedal,
lane drifting and all signals are "dead". This steady-only aspect of theDEADBAND idea (and
the nature of its name) is further analyzed in relation to thefeatureNMRHOLD in Sec.4.4.7.
The nameDEADBAND is slightly misleading because its proposed detection criteria require
the followed steering correction as well. According to our findings, the correction is much
more significant than the intensity and duration of the non-steering period. Furthermore, this
feature is only based on the steering wheel signal and no other driver control signal. This
"dead" pattern is strongly related to microsleeps and usually too late for an application in the
vehicle, but still valuable if the early onset detection fails.

The Bosch Patent (Reichert, 2008) explains the same pattern and detection principle. How-
ever, it is based on the steering wheeltorqueas it is available for steer-by-wire. In [0021],
the patent describes that the driver-related measure can, for instance, be the steering torque
and the pattern detection in [0022] is described similarly.

2The moving IRQ had to be implemented in C++ (mex) as the involved sorting is computationally expensive
with O(n logn). An efficient online estimation of IQR and quantiles is proposed inA.8.
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Since the detection of the steering eventsSTWEVNTwas extensively investigated and focuses
on the same pattern asDEADBAND, STWEVNT was used. Own findings show that some of
the here presented additional criteria show more robustness for real-road drives.

4.4.3. Steering Events (STWEVENT)

As described in the Patent ofGalley et al.(2006), the method to extract the featureSTWEVNT
focuses on a steering inactivity phase and a subsequent steering action. Therefore, the steer-
ing wheel velocity should not exceed a certain threshold fora minimum time and then exceed
a second threshold. The thresholds are adaptive to driver and driving situations. Detected
events are weighted by their intensity and by a factor that increases in monotonous situations
and a factor that is speed dependent with its maximum at 80 km/h. The events are averaged
using anEWMA filter. As explained in Sec.4.1.3, various situations are detected to suppress
steering corrections due to short-term distraction. External influences by cross-wind, road
warping, road bumps and curves are suppressed as well as overtaking and sportive driving.

Driver-Adaptive Thresholds

STVmax (̇δS,max) is the maximum steering velocity between inflection points(i.e. zero cross-
ings) of the steering wheel velocitẏδS while S ASCAN is active. Parameter study yielded that
steering wheel angleδS of steering events has to exceed 0.898 to neglect noise and tomake
sure that the steering amplitude is relevant and observableby the driver. This is illustrated
in Fig. 4.17 in which the inactive (−) and activeδ̇S,max (−) are averaged usingEwmaN, as
described in Eq.4.29 that is only updated on events and hold otherwise. TheEwmaNis
initialized bySTV50[0..4] = 10.5◦/s with a window size ofNinit = 5 that is increased by
one up toN = 110 for every steering. Fig.4.17further illustrates the estimation ofSTV25

Figure 4.17.:Estimation ofSTV50 as the mean oḟδS,max andSTV25 andSTV75 as the means of
the corrections slower and faster thanSTV50.

andSTV75 by Mean Splittingaccording to the calculation in Eq.4.31 and Eq.4.31 with
STV75[0..5] = 7◦/s andSTV75[0..5] = 13◦/s. STV25 is the mean of the slow steering
corrections andSTV75 the mean for all fast steering corrections.

STV50 = EwmaNN(δ̇S,max) . (4.29)

The computation is only evaluated during steering wheel angle reversals.
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STV75 =






EwmaNN(δ̇S,max) δ̇S,max> STV50

hold otherwise
(4.30)

STV25 =






EwmaNN(δ̇S,max) δ̇S,max≤ STV50
hold otherwise

(4.31)

This threshold estimation is motivated by the 1st and 3rd quartiles of the steering velocities
that are, however, computationally too expensive. Using theSTV50 for the decision whether
the actual correction is faster or slower than the actual value, makes the estimation very
sensitive to initialization and errors inSTV50. Parameter optimization has shown that not
exactly the 1st and 3rd quartiles are the best thresholds, but rather different percentiles. Further
repeated mean splitting would be necessary, which would increase the sensitivity to errors
even more. For this reason, two weighting factorswS TV25 andwS TV75 are introduced and
multiplied to both thresholds

Psteady= STV25 ·wS TV25 (4.32)

Pevent= STV75 ·wS TV75 . (4.33)

Fig. 4.18shows the distribution of thėδS,max. The three vertical lines represent an approxi-
mation of the 1st, 2nd and 3rd quartiles.
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Figure 4.18.:Histogram over maximum steering velocities between inflection points.

TheProbability Density Function(PDF)of δ̇S,max fits best theInverse GaussianPDF:

IG(x; µ,λ) =

√

λ

2πx3
e
−λ(x−µ)2

2µ2x (4.34)

with µ = 2.075 and shapeλ = 0.411 for the selected drive. The parameters are estimated
using theMaximum Likelihood Estimate(MLE). The asymmetric distribution explains why
theSTVxx measures increase much quicker for fast steering corrections that are far above
the average than they decrease for slow steering velocitiesclosely below the average. The
rare occurrence of fast steering corrections also causes that theSTV75 are rarely updated,
especially if theSTV50 is high.
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Figure 4.19.:Criteria to detect steering events as in (Galley et al., 2006; Iizuka and Obara, 1986).

Steering Event Detection Criteria

There are five criteria to detect the steering event pattern illustrated in Fig.4.19. The criteria
are implemented according to the Patent ofGalley et al.(2006) and similarly to the expired
Patent ofIizuka and Obara(1986). The thresholds are also comparable to the Patent of
Reichert(2008) and the thesis ofAltmüller (2007).

The five criteria are listed below. They are first combined logically (Galley et al., 2006,
Claims 4,7,9) and finally improved by using fuzzy logic (Sec.4.4.4):

1. a minimum steering wheel angle has to be fulfilledδ̇S,max> 1◦/s

2. inactive (steady) steering phaseδ̇S,max< Pth,steady(?, Claim 15)

3. for at least the durationTsteady> Psteady,T (?, Claims 6,14)

4. followed by the steering action ofδ̇S,max> Pth,event(?, Claims 14,16)

5. for the maximum duration ofTevent< Pevent,T (?, Claim 14).

Peaks are further scaled according to their magnitude, a factor of how monotonous the situ-
ation is, and the vehicle speed. Peaks are saturated to a minimum of 0.4 and a maximum of
3.0.

The featureSTWEVENTBL is baselined using the maximum within the firstτ = 14 minutes
active time:

STWEVENTBL=
STWEVENT

max(STWEVENTτ · S ASCAN)
. (4.35)

4.4.4. Steering Event Detection using Fuzzy Logic

As presented in the thesis ofPape(2008), there are two reasons to useFuzzy Logicto further
improve the previous detection:

• increase the robustness of the detector if one out of the five criteria is slightly not
fulfilled, but the remaining criteria are well satisfied.
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• decrease the numerical error betweenfixed-pointandfloating-point arithmetics
(App. A.13.1) if the event detection criteria from Sec.4.4.3are fulfilled in fixed-point,
but not in floating-point and vice versa.

Fuzzy logic was a central goal of this thesis and the proposedimprovements have increased
the recognition rate by several percent so that this alteration was first introduced to the series
ECU software of the 2009 E-Class. In practice, it means that also small peaks are detected,
which improves the temporal resolution of theSTWEVENT feature.

Theory of Fuzzy Logic

Fig. 4.20shows different threshold functions. The step function (leftmost) is equivalent to
the operator> in the classical logic which only has the output value 0 and 1.

0

1

0

1

0

1

0

1

Step function Linear threshold function Sigmoid of polynomials Sigmoid 1
1+e−t

Figure 4.20.:Different threshold functions.

Fig. 4.21 and Fig.4.22 illustrate the threshold functions used in this thesis as they do not
require a lookup table in fixed-point. Both threshold functions can be described by a center

1

¸¹º

0

a

0»¼ »½¹º ½¹º 4

L(x,a,σ) =






0 x ≤ a−σ
x−a+σ

2σ a−σ < x ≤ a+ σ

1 x > a+ σ

(4.36)

Figure 4.21.:Linear fuzzy logic threshold function (a = 0,σ = 2.5 ) (Pape(2008, page 10)).

point a and a width 2σ. Eq. (4.37) shows the polynomial threshold function from the class
of the sigmoid functions characterized by theirs-shape.

As in classical logic, conjunctions are also defined in FuzzyLogic. A condition for the
negationis, for instance, holding¬1 = 0 and¬0 = 1. The simplest variant to fulfill this
condition in fuzzy logic is used here and defined by

¬A = 1− A . (4.38)

Theconjunctionin fuzzy logic that fulfills the classical definition can be evaluated by

A∧ B = min(A, B) or A∧ B = A · B (4.39)
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S(x,a,σ) =






0 x ≤ a−σ
2
(

x−a+σ
2σ

)2
a−σ < x ≤ a

1− 2
(

a−x+σ
2σ

)2
a < x ≤ a+σ

1 x > a+σ

(4.37)

Figure 4.22.:Sigmoid polynomial fuzzy logic threshold function (a = 0,σ = 2.5 )
(Pape(2008, page 11)).

while the simplest and here useddisjunctionis

A∨ B = max(A, B) . (4.40)

Application to STWEVENTDecision Criteria for Tolerance Increase

Using Fuzzy Logic, thelogical connectiveof the five criteria for the detection of steering
eventsSTWEVENT can be re-formulated from

PEAK′ = (Tsteady> Psteady,T ) ∧ (∆δS,event> Pevent,S tw)∧
(Tevent< Pevent,T ) ∧ (δ̇S,event,max> Pevent,S tv,max) (4.41)

to

PEAK = min( L( Tsteady, Psteady,T , σsteady,T ),
L( ∆δS,event, Pevent,S tw, σevent,S tw ),

1 − L( Tevent, Pevent,T , σevent,T ),
L( δ̇S,event,max, Pevent,S tv, σevent,S tv,max )) .

(4.42)

The min()-function has shown the best results. Tab.4.4shows the thresholds from Eq. (4.41)
and the related fuzzy thresholds for Eq. (4.42).

Table 4.4.:Essential fields of a CAN message
Criterion Threshold / Centera Fuzzy width σ
Tsteady 2.2s 5.0
∆δS,event 1.1◦ 0.4
Tevent 0.5s 0.4
δ̇S,event,max Pevent 0.01

Fuzzy Logic to Reduce Fixed-/Floating-point Errors

As illustrated in Fig.4.23, all signals suffer from precision loss in fixed-point arithmetics.
This is a major problem when applying parameters and predicting the detection rate in online
fixed-point controller units. Controller in the vehicle runin fixed-point and need manual
laborious scaling of every signal and operation, whereas development and simulation are
easier in floating point. When decisions are made, for instance the five criteria to detect a
steering events from the steering wheel angle and velocity,the differences of the signals lead
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to missed detection of event in fixed point compared to the implementation in floating-point
or vice versa. The idea was to use fuzzy logic to soften the decisions so that events are always
detected, but with slightly different amplitudes and, thereby, to decrease errors.
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Figure 4.23.:Signal differences in median steering velocity from precision loss in fixed-point scaling
arithmetics.

4.4.5. Steering Wheel Angle Area (Amp_D2_Theta)

Amp_D2_Theta ("the amplitude duration squaredδS")3, is a time-based feature with a
weighting function to score variations. This feature is defined as the area ofδS and its mean
betweenzero crossingsmultiplied by the time for which the steering wheel angle is on the
same side of its mean. This is another measure for the steering variance that performed well
in (Berglund, 2007) for simulator drives. Eq. (4.43) shows the definition from (King et al.,
1999) and Fig.4.24illustrates the areasAδj and durationstδj between zero crossings.

Amp_D2_Theta=
100
N

J∑

j=1

(

Aδj t
δ
j

)

(4.43)

with

N . . .number of samples in the window (scaling factor was neglected)
J . . .number of area blocks in the sliding window (MA or EWMA)
Aδj . . .area of thej-th block underδS − µ(δS)

tδj . . .the duration of thej-th area block.

Optimization of the feature with the correlation coefficient yields a cut-off frequency
PfCut_stwAngleO f f set= 2.75Hz for a 2nd order Butterworth low-pass filter for obtaining the
meanδS. The moving average of the lastJ = 90 areas performs best forAmp_D2_Theta
andJ = 45s for theEWMA of the event-rate featureAmpD2ThetaEwma.

4.4.6. Steering Wheel Angle and Velocity Phase (ELLIPSE)

According to (King et al., 1999), there are three different ways to evaluate steering wheel
angleδS and velocityδ̇S: time-based, frequency-based andphase-based, i.e.δS versusδ̇S.

3In (King et al., 1999) Θ is the name of the steering wheel angle, which explains the name of the feature
Amp_D2_Theta. However, we useδS, which is more common.
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Figure 4.24.:FeatureAmpD2Theta: Area between steering wheel angle and its mean multiplied
by the duration for which the steering wheel angle is on the same side of the mean.
Removing the steering offset (−−) avoids the influence of curves and the vertical road
inclination.

TheELLIPSE feature (King et al., 1999; Berglund, 2007) is calculated as the offset-compen-
sated magnitude of steering wheel angle and velocity outside a threshold ellipse during a
sliding window. Eq. (4.44) explains the calculation and is depicted in Fig.4.25.

ELLIPSE = EWMA N(





√

(
δS

PδS,radiusTh
)2 + (

δ̇S

Pδ̇S,radiusTh
)2




> 1) (4.44)
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Figure 4.25.:FeatureELLIPSE: Steering wheel angleδS and velocityδ̇S versus their means outside
a threshold ellipse. Removing the meanEWMA (δS) andEWMA (δ̇S) is necessary to
compensate the influence of curves and the vertical road decay for the rainwater drain.

Optimization of this feature yields a cut-off frequencyPfCut_stwAngleO f f set= 0.55Hz for a 2nd

order Butterworth low-pass filter for obtaining the steering offset andPfCut_stvAngleO f f set=
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0.125Hz for δ̇S. TheEWMA window size isN = 60s. The steering ratio, angle and velocity
are different for every vehicle, thus the optimal weightingfactors PδS,radiusTh = 3◦ and
Pδ̇S,radiusTh= 6◦/sare different than in literature (King et al., 1999).

4.4.7. Steering Inactivity (NRMHOLD)

NMRHOLDwas defined by (Wierwille and Ellsworth, 1994) as the number of times for which
the steering wheel angleδS is hold for longer than the threshold valuePNMRHOLDT = 400ms.
According to (Berglund, 2007), the maximum threshold for|δS| was set toPmaxLrw = 0.5◦.
An EWMA filter with PEwmaWinS ize= 5min is applied after suppression of system inactivity
S ASCAN. Curves are removed similarly as forELLIPSE. Further, a second variant of the fea-
ture, based on the SG-differentiator filtered steering velocity, is implementedNRMSTVHOLD
with the thresholdPmaxLrv= 6◦/s for |δ̇S|.

4.4.8. Small Steering Adjustments (MICROCORRECTIONS)

The idea ofMICROCORRECTIONS (discussed inFagerberg, 2004) is that an alert driver per-
manently makes small steering corrections to compensate environmental factors such as road
bumps and crosswinds. With increasing drowsiness, driversbecome more sloppy and these
micro-corrections diminish (Petit and Chaput, 1990; Hartley, 1995). According toKircher
et al.(2002), the after-market device "Steering Attention Monitor" (SAM) monitors the pres-
ence of micro-steerings.

Extending this concept, the presence of many small micro-corrections leads to low values
of this feature, whereas rare and larger corrections yield high feature values. The feature
extraction is updated for every steering wheel angle direction change interval by:

MICROCORRECTIONS=





EWMA (0) PS TW,Th,Min ≤ ∆δS,event≤ PS TW,Th,Max

EWMA (1) S ASCAN = 1

"hold" S ASCAN = 0

. (4.45)

For every interval, the magnitude between inflection pointsis calculated as∆δS,event. Any-
time the steering amplitude∆δS,eventis betweenPS TW,Th,Min = 0.8◦ andPS TW,Th,Max = 2.5◦,
a microsteering is detected and 0 is fed into theEWMA window with lengthN = 0.7min.
Otherwise, if the system is active but no microsteering is detected, the feature increases by
adding a 1 to theEWMA window. For an inactive system, the calculation is hold.

4.4.9. Fast Corrections (FASTCORRECT)

FASTCORRECT is a feature that is proposed here. It is focusing on a patternthat was often
observed in night drives. The pattern is basically the same as inSTWEVENT, however, focus-
ing more on single events and the steering correction phase,especially taking into account
its rate intensity. A single strong event can indicate an advanced fatigue level.
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Maximum Likelihood Parameter Estimation (MLE) of Steering Velocity PDF

The adaptive threshold calculation for steering event detection in Sec.4.4.3suffers from the
compound weakness thatPsteadyandPevent are raising within seconds for single fast events
while taking up to an hour to settle for slow steering corrections. In this section, a superior,
model-based approach is proposed. In Sec.4.4.3it was found that the STVmax distribution
can be described best by the Inverse GaussianPDF in Eq. (4.34), which is defined by two
parametersµ andλ. Using theMLE in a floating window yields the estimated parameters
µ̂[n] andλ̂[n] of δ̇S,max.

Evaluating theCumulative Distribution Function(CDF) of the Inverse GaussianCDF(δ̇th) =
Pth at the given pointPth yields the new threshold for fast correctionsICDFIGeventand the
baselineICDFIGsteady(both in [◦/s]). TheCDFof the Inverse Gaussian is defined by

CDF
(

IG(x; µ,λ)
)

=
1
2

erf





√

λ
x(−x+ µ)
√

2µ





+
1
2

e
2λ
µ erf





√

λ
x(x+ µ)
√

2µ





, x > 0 . (4.46)

TheInverseCDF (ICDF) is then computed for instance by evaluating a look-up table:

ICDFIGsteady= ICDF
(

IG(Pth,steady)
)

(4.47)

ICDFIGevent= ICDF
(

IG(Pth,event)
)

. (4.48)

Fig. 4.26shows a comparison betweenMean Splitting, the here discussedmoving ML PDF
fit andMoving Percentiles, as proposed inA.8. It can be seen that the moving ML PDF fit and

Figure 4.26.:Comparison betweenmean splitting, moving ML PDF fittingandmoving percentiles.

Moving Percentiles adapt faster to changed situations and especially drop faster afterwards.
According to theMLE for the Inverse Gaussian parameters, the following property holds:
µ̂ ≈ STV50 and, thus, the parameter estimation ofµ̂ can be refined by theEWMA again.
Hence, this approach is also superior to theMoving Percentileswith regards to computational
complexity. Further, this distribution model based approach takes every steering into account
while the percentiles leave 50% of the steerings out. This property makes the adaption of
moving ML PDF faster and much smoother. The PDF model approach is also more accurate
as it accurately considers the driving style-related two parametersmeanandvariance, rather
than just themeanin mean splitting.
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Feature Calculation using Fitted Sliding Window PDF as Adaptive Thresholds

For peak detection, we use the moving thresholdsICDFIGsteadyand ICDFIGeventobtained
by a sliding window of durationN = 2.4min. The parameter for the steering correction
thresholdICDFIGevent is set toPth,event = 0.98 to detect outliers of fast steering correc-
tions that are above 98% of all regular steering reversals. The parameter of the baseline
ICDFIGsteady is found asPth,event = 0.30 to represent the calm steering in the actual driv-
ing situation. The detected steering corrections are set inrelation to the steering baseline
ICDFIGsteadyin order to adapt to the current driving situation

FASTCORRECT=






EWMAN

(

(
δ̇S,max·S ASCAN

sat20
4 (ICDFIGsteady)

)Pw,exp

)

δ̇S,max> ICDFIGevent

hold S ASCAN = 0
. (4.49)

The event rate including the peak intensity is averaged by a small EWMA window size of
N = 3min. Weighting the peak by the exponentPw,exp =

1
2 allows to non-linearly adjust the

influence of the peak intensity in comparison to its frequency.

4.4.10. Degree of Driver-Vehicle Interaction (DEGOINT)

DEGOINT is originally defined as the degree of interaction between driver and vehicle ac-
cording to the 2005 Patent by Eriksson and Björkman and is explained in (Kanstrup, 2006).
The idea behind this feature is that the vehicle motion trajectory can be considered as a sys-
tem with low-pass characteristics which reacts to steeringcontrol by the driver and to lateral
displacements by the road surface. Steering oscillations with high frequency cannot be seen
in the vehicle trajectory. From steer-by-wire, it is known that the feedback from the road has
to be provided to the driver via an actuator to enable a responsive steering control. High in-
teraction means quick and precise control that indicates high driver vigilance and vice versa.
DEGOINT is a simpler method to measure control parameters of a drivermodel discussed in
Sec.4.4.16. The original definition of (Kanstrup, 2006) is shown in Eq. (4.50)

DEGOINT′ =
1

|
∫

fa dt−
∫

fb dt|
) (4.50)

with fa as the surface under the steering wheel torque andfb under the lateral acceleration
integrated over time. It has to be remarked that both areas have different units and are not
motivated by an accurate physical model.

Since there was no steeringtorquesensor available in the series vehicles, a similar method
is proposed to obtainDEGOINT based on the steering wheelangle instead. Therefore, the
measuredlateral acceleration ay is compared to thelateral accelerationăy calculated from
thesteering wheel angleδL using the single track model in Eq. (6.8) in Ch.6.3. This way, the
steering and vehicle trajectory interaction can be measured in a physically accurate model.
The advantage of using the steering wheel torque, however, is that even when the steering
wheel angle is not changing, it can be measured how strong thedriver holds the steering
wheel against the feedback from the road.

ay andăy are smoothed by a 2nd order Butterworth low-pass filter with corner frequencies 1
and 2 Hz to compensate different sensor properties, resulting inay,LP andăy,LP. For synchro-
nization,ăy,LP has to be delayed byτ = 280ms. And in order to compensate the lateral road
inclination offset, the difference of
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∆ay = ay,LP − ăy,LP (4.51)

has to be highly low-pass filtered with a 2nd order Butterworth filter offc = 0.03Hzand then
subtracted from

ây,LP = ăy,LP −∆ay,LP . (4.52)

After the system inactivity suppression, the feature is then obtained by

DEGOINT = EWMAN

(

S ASCAN · (ay,LP − ây,LP)
)

(4.53)

with a window size ofN = 50s. Fig.4.27illustrates the feature principle by the marked area.

Figure 4.27.:Area representing the degree of interaction (DEGOINT) between driver and vehicle via
lateral acceleration from sensor and steering wheel angle from single track model.

4.4.11. Reaction Time (REACTIM)

Reaction tests in various real-road and simulator studies have shown that the reaction time
does not dramatically increase with fatigue, but the numberof strongly delayed or even com-
plete missed reactions. For this reason, one approach is to find a way to estimate the driver’s
reaction time. Equivalently, in a driving context, driversconstantly have to react to compen-
sate small changes in road structure, gust of wind etc. The car follows the active steering
of the driver after a short phase delay as reaction time. The driver reacts to lateral vehicle
displacements in the same manner as the vehicle reacts to thedriver control. The drivers’ re-
action patterns need to be analyzed and compared. The featureREACTIM is defined as the re-
action time of the steering wheel angle to lateral acceleration peaks as discussed in (Kanstrup,
2006). Fig.4.28shows how the reaction to lateral displacement is detected.

4.4.12. Steering Reaction Time to TLC Minimum (TLCREACTIM)

The featureTLCREACTIM describes the reaction time toTLC minima. The essential advan-
tage is that TLC minima occure more often than real lane exceedings. For implementation
details, see the thesis of (Olabe, 2008).
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Figure 4.28.:FeatureREACTIM: Steering reaction of driver to lateral displacements by environment.

4.4.13. High vs. Low Steering Velocities and Angles (WHAL, VHAL-Index)

According toBittner and Hana(2000), theVHAL-Index is the ratio of high against low steer-
ing correction velocities and is assumed to diminish with reduced vigilance (Kircher et al.,
2002). The feature is following the idea that fatigued drivers choose an easier driving strategy,
i.e. only compensate large lane deviations. Eq.4.54explains the calculation

VHAL =
EWMAN (S ASCAN · FM)

max(0.003,EWMAN (S ASCAN · S M))
(4.54)

with the EWMA window sizesN = 2min, FM as the number of fast movements andS M is
the number of slow movements. The threshold ranges areS H= 10(◦/s)2 ≤ δ̇2

S ≤ 80(◦/s)2

andMH = 80(◦/s)2 ≤ δ̇2
S ≤ 2000(◦/s)2.

WHAL is an altered version ofVHAL, based on the amplitude of the steering wheelangle
between two zero crossings. EWMA with window sizeN = 1min is used and only the
velocity and steering wheel angle criterion of theS ASCAN are used for suppression. The
threshold to distinguish small from large amplitude deltasis ∆δS > 2◦.

4.4.14. Yaw-Rate Jerk (YAWJERK)

While Desai and Haque(2006) are focusing on the spikiness index4 of the jerk profile, the
idea of the proposed featureYAWJERK is to replace the extra-cost steering wheel sensor
by the available and sensitive yaw rate sensor (Sec.2.3.2). The extraction of the pattern is
basically the same as forVARCRIT, but, with an exponent of jerk variancePexp,short = 1.3.

Comparison between Yaw-rate and Steering Wheel Angle

The finer steering wheel angle has a resolution of 0.1◦, while the yaw rate has 0.005◦/s,
which is 20 times lower. The signals can be compared since under ideal conditions, a constant
yaw rate corresponds to a fixed steering wheel angle for a given velocity. Tab.4.5shows the
standard deviation of the signal and noise for both signals during motorway drives. The
standard deviation of the steering wheel angle is four timeshigher, which means that the
quantization of the yaw rate signal is five times finer. However, since the standard deviation

4They defined thespikiness indexas the local deviation of data from general trend, comparable to theEWVAR .
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of the signal-to-noise ratio (SNR) is about eight times better for the sensor of the steering
wheel angle, the latter is the slightly better signal.

Sensor Resolution σsignal σnoise σsignal/σnoise SNRdb

St.w. angleδS 0.1◦ ≈ 3.00◦ ≈ 0.01◦ 300 117db
Yaw rateψ̇ 0.005◦/s ≈ 0.74◦/s ≈ 0.02◦/s 37 79db
δS / ψ̇: 20 4.05 0.5 8.1 38db

Table 4.5.:Signal qualities

Fig. 4.29 shows a comparison between the steering wheel angle vs. the raw and DISPO
smoothed yaw rate. Fig.4.30shows the derivatives of both signals.

Figure 4.29.:Comparison between yaw rate and steering wheel angle. For this simple comparison,
the yaw rate is fitted and shifted by 4.4s · (ψ̇[n− 1.06s] + 0.8

◦
s) at 120 km/h.

Figure 4.30.:Comparison of yawJerk vs. steering wheel rate. This confirms that both signals are
roughly interchangeable when the speed is taken into account. The yaw jerk was fitted
at 120 km/h by 4.4s2 · (ψ̈[n− 0.5s] + 0.11

s2 ).

The yaw jerkψ̈SC measured by the sensor is very noisy, but also very sensitive. Here, we
can show only the signal̈ψ from the DISPO differentiator using a polynomial orderP = 3
and filter tap sizeN = 19. It can be seen that the signal remains noisier due to the fact
that the yaw rate sensor is connected to the vehicle body and thus more sensitive to external
influences and vehicle speed. Thus, especially bad road conditions have an impact on the
yaw rate signal, while the steering signal is less affected due to the design of the steering unit.
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When further investigating the signal, many steering corrections that are clearly present in
the steering wheel rate, are not visible in the yaw jerk. At the other hand, some peaks in the
yaw jerk signal are not present in the steering pendant and most probably caused by external
influences. Thus, the signal of the steering wheel angle witha resolution of 0.1◦ is better.

4.4.15. Spectral Steering Wheel Angle Analysis (STWZCR)

TheSTWZCR andSTWVELZCR simply measure thezero-crossing-rate(ZCR) of the steering
wheel angle and velocity. It is a measure of how often a driverchanges his steering direction.
In a broader sense, theZCR can also be related to the frequencies in the steering signal.
It provides several advantages over the Fourier-transformas the frequencies are very low. A
classification by different driving styles has also shown that theSTWZCR is very characteristic
for different drivers.

Looking at the frequencies of the signal of the steering wheel angle using aSpectrogram
(Short-time Fast-Fourier Transform(FFT) andPower-Spectrum-Density(PSD), as also dis-
cussed byAltmüller (see2007, Ch. 4.2.2), has not shown any useful results at all, which
confirms the negative results fromKircher et al.(2002, Ch. 16) who used the Burg’s and
MUSIC eigenvector methods. Various different parameters are tried and a practicable result
is obtained for the spectrogram atFs = 50Hz for a Hamming Windowsize of 64, small
overlap 2 and a 128-pointFFT. The ratio of the powers between different frequency ranges
were made but no useful results can be achieved as it is shown in Fig.4.31. The steering fre-
quencies rather depend on the driving situation and individual driving styles. A time-based
event detection appears more expedient since events vanishin the large sliding window.

Figure 4.31.:Spectrogram of steering velocity

4.4.16. Driver Model Parameters

As discussed byPilutti and Ulsoy(1995) and others (Altmüller, 2007; Pilutti and Ulsoy, 1999;
Boyraz et al., 2007; Hermannstädter and Yang, 2013b,a), a promising approach is to reflect
on how an ideal lateral control system would adjust the lateral lane position in comparison
to a real awake or fatigued driver.Pilutti and Ulsoy(1995) use an auto-regressive model to
learn the driver parameters and to infer from the changing parameters to fatigue.
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4.5. Parameter Optimization

There are over 320 parameters involved in the extraction of the features in this chapter and
171 parameters in theATTENTION ASSIST series code that are relevant for the system per-
formance. The goal ofparameter optimizationis to find the parameter values for which
the features contribute the maximum amount of information to identify the fatigue level of
drivers. More generally spoken, optimization pursues the objective to find the best set of
parameters for a system that minimize a givencost function. The definition of a cost func-
tion that represents the system performance is the most essential and difficult task in the
present application. Physical parameters further have restrictedboundary conditionsthat can
be represented aspunishment termsin the cost function.

It is distinguished betweenlocal or global optimization algorithms corresponding to their
ability weather to overcome local minima and find the global optimum. Local algorithms
have the advantage to execute much faster by exploiting the good-natured, "convex" property
of a system with only one local optimum. Thus, the algorithm selection mainly depends
on the cost function property of the system. Choosing goodinitial parameterscan severely
contribute to the performance and is either done empirically or part of the optimization.

This section will briefly summarize the application of parameter optimization to fatigue re-
lated feature extraction. For details refer to the thesis ofIbrahim(2009).

4.5.1. Optimization of Parameters

The general optimization principle is shown in Fig.4.32. Choosing the new parameter set
determines the heuristic of the algorithm.

Figure 4.32.:General block diagram of parameter optimization.

Not only the parameters, but also some implementation details or the order of some signal
processing steps can be optimized automatically. For instance, it can be examed if ameanor
medianyields better results. Tunable parameters and processing variants are for instance:

• Thresholds, weighting factors, exponents, window sizes
• Cut-off frequencies and tab-size of filters
• Suppression times before and after events (e.g. turn indicator lever)
• Baselining duration and method: max, mean and IQR
• Moving average vs.EWMA
• Moving variance vs. moving percentiles vs.EWVAR
• Low-pass and differentiation vs.DISPOdifferentiator, etc.
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Run Level Charts: Due to limited resources, not all parameters could be optimized. Some
parameters were identified to have no measurable influence onthe result and thus could be
excluded. In a first step, relevant parameters were identified usingrun-level chartsas shown
in Fig. 4.33. Exemplarily, theEWMA window size is varied for the featureLANEAPPROX
for one single drive to identify its influence.EWMA parameters always have the effect to
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Figure 4.33.:Run-level chart that shows variation of one parameter for aLANEAPPROX to identify
its influence

flatten peaks as shown in the figure. Due to the low temporal resolution of theKSS, the
optimization favors larger window sizes. This, however, isquestionable since sleepiness was
observed to change faster than theKSS.

Initial Values : Initial parameters were chosen empirically by this methodand were con-
firmed if they yielded good results for a few selected drives.

Cost Function: As cost function for the optimization of each feature, the inverse of the
Spearman correlation coefficients (Sec.7.1.1) and Fisher Linear Discriminant MetricMDA
(Sec.7.1.2) are used. The cost function is calculated as the differencebetween the feature
andKSSfatigue reference (see Ch.7 and3).

Boundary Conditions: As boundary conditions, negative times and frequencies were for
instance punished with high cost to prevent the optimization algorithm to chose such param-
eters. Furthermore, e.g. filter tab-sizes must be integer numbers and thus were rounded.

4.5.2. Computational Complexity Reduction

Most optimization algorithms require many iterations and arun-time of maximally minutes
per iteration to converge within a practical time. Since thesimulation of oneATTENTION

ASSISTparameter set takes several hours for all valid drives, evenefficient algorithms would
take months to years. As the computation time was obviously the main limiting factor, several
measures were taken to speed up the processing:
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RAM instead of HDD: A major bottleneck is to load entire drives (including unnecessary
signals) sequentially from the hard drive during every iteration. Read access from RAM is
about 70 times faster5. Thus, only the needed signals for one feature are load and concate-
nated in RAM at once. 45GB to 80GB were necessary, depending on the features, varied
parameters and dataset (ALDWvalidND or ALDWvalid).

Precision-lossy data type compression:As CAN-signals use 1 to 16 bit integers, using
64 bit double floating-point data types is another waste of resources. Thus, all signals are
compressed to the tightest data type with a maximum precision loss of 1%.

Pre-computation and cachingResource consumption is often a trade-off between memory
and computation. The open-loop pre-processing operationsof CAN-signals could be com-
puted in advance as they solely depend on the sensor signals.Depending on the varied param-
eter, further derived signals could be cached if parametersdid not change or were calculated
before: e.g. the system active signals, external factors and especially cross-wind detection.
The reset of every drive (for baselining) could be triggeredby a drive-ID change.

Causalization: Online algorithms perform all real-time processing steps sequentially. Model-
based algorithms favor "causalized" software architectures (Simulink/TargetLink). Modern
arithmetic logic units(ALU) (such as CPU, GPU and DSP) can process basic function much
faster on vectors or matrices. However, this is only possible offline and if processing steps
do not depend on the closed loop output of a previous time step.

Model-based porting to matrix operations: The completeATTENTION ASSISTalgorithm
was ported bit-true from Simulink/TargetLink to MATLABc© where processor-optimized
(MMX) matrix operation could be performed using LAPACK and BLAS. Recursive algo-
rithms likeEWMA, EwmaN, EWVAR , EWIQRetc. were implemented in MEX C++.

The total performance gain is on average factor 300-500 times faster in comparison to the
Simulink model. This speed up allowed to simulate a smaller selection of drives in seconds.
Optimization with up to six parameters became manageable this way.

Only the most promising features and parameters could have been optimized:LANEDEV,
VHAL, TLC1MIN, ZIGZAGSBL, LANEAPPROXADAPT, YAWJERK andSTEVENT. They
all depend on theATTENTION ASSISTpre-processing.

4.5.3. Application

The features described in this chapter were optimized in several stages:

Parameter Study: TheATTENTION ASSIST series algorithm was optimized independently
from the features, with the cost function based on the detection and false alarm rate of fa-
tigue warnings. The detection rate is quantized due to the discrete number of warnings, thus,
automatic parameter optimization is not possible here. Forobtaining the 171 parameters, the
system understanding was part of the iteration loop, knowledge that optimization algorithms
usually do not have. Iteratively, only five to ten parametersof one module were chosen in a
predefined grid and combination, similar togrid- andhierarchical searchwhile other parame-
ters were kept at the best known point. Still, the simulationdistributed to several workstations
each with up to 16 cores required up to six weeks. The results were then analyzed and the
understanding of parameters and effects lead to a refined selection of parameters.

5e.g. for DDR-3 1066 MHz, SATA 7.200 RPM, XEON server
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Empirical Parameter Selection: Initial values were chosen empirically from physically
plausible values based on graphical assessment for a small selection of drives (cf. Ch.7.2).

Automatic Local Optimization : While the previously described method ensured that the
algorithms perform as desired for every parameter set due tothe understanding of the system,
it is at the other hand very laborious and does not necessarily find the global optimum. With
the fast implementation in Sec.4.5.2, up to six parameters were varied. With this observation,
theNelder-Mead simplex algorithmas described inLagarias and Reeds(1996) was applied
and in fact further improved the feature performance.

Optimizing a combination of features: In a second step, the best features were combined
by multiple regression resulting in a single fatigue measure. For this measure, the Spearman
coefficients were again used as cost function.

Global Optimization : In the scope of the theses ofIbrahim(2009) andOlabe(2008), global
optimization algorithms were implemented. The toolbox wascovering the optimization al-
gorithms: grid search, simplex, particle swarm, genetic and evolutionary algorithms, particle
swarm and simulated annealing. Due to the computational complexity, only three features
could be investigated. For convex problems, they did not show additional benefit.

4.6. Conclusion
Features from literature, improvements thereof and new features were discussed. Many more
features (cf. App.A.9) have been studied, but did not show much potential. There are still
more potential patterns that can be investigated. Different approaches to optimize the in-
volved parameters and to overcome the computational complexity were presented. The pa-
rameters described together with the features are the result of one of the optimization steps.

One problem was that the optimization sometimes converged towards implausible values or
very large window sized of over one hour. The later is most probably related to the fact that
fatigue and especially theKSS entries are changing very slowly. Some parameters had to
be set manually as the results of the optimization were implausible such as zero suppression
times. This can be explained by the observation, that there were not enough occurrences of
such events in the data to make a difference.

It would be better to optimize the combination of features, for instance, by using the classifi-
cation error as cost function. However, this is not yet possible due to the computation time.
Most of all, the major problem was that the optimization can only be as good as the cost
function in respect to the reference.
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Chapter 5.

External Factors and Driver Influences

Figure 5.1.:External influences on the driving behavior that overlay sleepiness related patterns

The goal of feature extraction is to reduce the sensor information to only depend on fatigue
and to be as independent as possible from other factors. In practice, driving performance fea-
tures also depend on environmental influences, driver-individual and situation based factors.
Fig. 5.1 illustrates the most important factors that affect the driving style in real-road driving
situations (Friedrichs and Yang, 2011). The simplest approach to cope with this problem
is to measure the influences and to provide the measures to a classifier that is sophisticated
enough to automatically adapt to these conditions. This topic is not discussed in literature
even though it is the key to transfer the results obtained under laboratory conditions to a real-
road application. The present chapter investigates these influencing factors with the goal to
derive features from them and, if possible, already consider them during the feature extrac-
tion.
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5.1. Methodology to Quantify and Incorporate
Non-Sleepiness-related Influences

In this thesis, new methods are presented to detect road bumps, traffic density and cross-
wind. Specific test drives have been conducted at night to vary only one isolated factor, while
keeping the others constant to identify the influence of a single factor. When, for instance,
the factor vehicle speed was varied, it was assured that the other factors remained constant,
for instance, the driver condition, traffic density, overtaking maneuvers, road curvature, road
bumps, vehicle parameters, cross-wind as well as precipitation and light conditions. The
detection methods have also been implemented in real-time to evaluate the performance while
driving in different situations. In the offline analysis, the correlation between the varied
factors and features, extracted for this road section, was evaluated. The driver’s daily mood
(e.g. economic or aggressive) is another factor, which is difficult to classify and discussed in
Sec.5.4. The way that drivers hold the steering wheel (e.g. with one or two hands) also has a
significant influence on the steering behavior. However, additional sensors would be required
for its detection and, therefore, this factor is not considered here. The results emphasize the
importance of considering driving influences in driver monitoring.

The goal of this work is to find a measure for most of the thirteen factors from Fig.5.1. The
simplest factor is the vehicle velocity, which is already represented by its speedometer signal.
However, measuring the curvature or road condition is not assimple. When we consider these
thirteen dimensions, it is obvious that it’s impossible to record drives for every combination
of these factors. Thereby, we assume that superposition applies, i.e. factors overlay and the
combination can be approximated as linear. Fortunately, the probability of multiple factors
occuring at the same time is increasingly low. For instance,it is not very probable that a
driver is driving on a construction-site that is curvy, during rain with cross-wind and road
bumps at the same time etc. In this example, theSAScriteria for the system activity will set
the system to inactive anyway.

After finding these measures, the next step is to analyze the relationship of these factors
with the fatigue-related features. Usually and if possible, it is easier to compensate the raw
input signals rather than every feature individually. Curvature can, for instance, be removed
from the steering signal by a high-pass filter. The best but most difficult way, however, is to
consider these influences during the extraction of every feature.

5.1.1. Evaluation of Geo-position mapped Events and Signals

Analysis of road bumps and the road surface would be a straightforward task, if there was
a good reference to assess the quality of these signals. One approach to have a reference is
mapping road bumps to real world position where they occur.

Fig. 5.2 shows a method of how events of one or several drives can be mapped to their
geo-coordinates on a map. This way, clusters of steering corrections and road bumps were
identified, that often occurred at the same place.

5.2. Influences from External Factors on the Driving Behavior

This section will explain the most relevant external factors. Details of the detection are
provided and illustrations are given for important examples only.
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Figure 5.2.:Clustering of different events and assignment to geo-positions

5.2.1. Influence of Distraction and Vehicle Operation

Usually, drivers accept distraction in situations which they consider as safe enough to per-
form other tasks besides driving. Drivers can interrupt their side-activities when a traffic
situation requires it. However, they cannot easily "switchoff" their sleepiness. The major
difference between fatigue and distraction is that fatigueis permanently impairing the driving
style while distraction results in a strong and frequent alteration between being very present
and accurately driving vs. being totally out of the loop for up to several seconds when the
eyes are off the road. Thus, it is helpful to distinguish drowsiness from acceptable short
term distraction (e.g. from vehicle operation) or long-term distraction such as phone calls or
discussions with the co-driver.

Distraction can consist of severalchannels:

visual the driver’s eyes are off the road, e.g. during looks to the head-unit or the outside
motoric the driver operates head-unit or adjusts the seat (not necessarily looking there)
audio discussing or listening, which can also increase the cognitive work-load
cognitive intensive thinking, e.g. calculation tasks increases the cognitive work-load

Thework-load resulting from these channels is limited to a certain extend. This means that
the driver can not look to two locations, listen to differentsources or touch different objects
at the same time. On the other hand, when a driver is busy by looking somewhere, he can
additionally listen or talk at the same time, however with limitations.

Also the operation of the levers close to the steering wheel or the manual shifting can result
in steering errors. Distraction from vehicle control can bedetected by the vehicle signals of
buttons and levers. Discussions on the phone can only be detected, if they are performed over
the hands-free head-unit. A measure for this kind of distraction was already introduced using
CAN-signals. Other distractions cannot be measured directly, yet. To simplify matters, steer-
ing operations or lane exceedances during intensive short-term distractions were suppressed
from drowsiness detection.
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Several levers, such as the limiter or high beam levers have multiple permanent states, but
only the instant of operating is of interest for these. Therefore, only the raising and falling
slopes of the signal have been considered.

5.2.2. Influences by Rain, Snow, Fog, Light Conditions and Tunnels

It was observed that the driving behavior changes severely during heavy rain or snow fall.
Usually, the steering becomes more hectic and the driver hasto concentrate more. This
influence is refreshing at the beginning, but can become evenmore exhausting after a while.
Rainfall and foggy weather usually require the driver to slow down. As illustrated in Fig.5.3,
rain can be detected well by the rain sensor and the lever position of the windshield wiper.

Figure 5.3.:Lever position of the windshield wiper, light sensor on the route for rain, snow and
luminosity detection

It was observed that reduced vision due to dark light conditions also affects the steering and
lane keeping performance for several persons even when theyare awake.

These drivers need to concentrate more than during the day, which can be quite exhausting
after a while. The light level can again be measured well by the light sensor and light switch
(or automatic) as shown in Fig.5.3. Illuminated tunnels or other road sections provide a
certain degree ofnoveltyto the driver and usually improve the level of attention for ashort
period. Tunnels can be detected well by looking for fast changes in the light sensor signal.
To simplifiy matters, sections with intensive rain, fog or snow are suppressed here and treated
as system inactivity.

5.2.3. Vehicle Speed Influence

The vehicle velocity has a big influence on the steering velocities and the necessary reaction
times to vehicle displacements. The time remaining to react, when heading towards the
lane markings at high speeds, is of course shorter than for lower speeds. Thus, the vehicle
speed must be considered during the extraction of features.VELOCITY is simply the vehicle
speed.
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Experiment for Data Acquisition

In order to evaluate the speed dependency, a number of driveswas recorded where all factors
were held constant except for the vehicle speed. A 20 km section on a German autobahn was
driven multiple times by the same driver with a Mercedes-Benz S-Class at different speeds.
The speed was varied sequentially from 90, 110, 140 to 180km/h. The drives took place
between 2 and 5 a.m. such that lane changes and interferencesby traffic and trucks could be
kept at a minimum. With the low traffic, the speed could be keptvery constant without the
use of ACC. The drivers rested well for two days before the experiment, so that they were
driving fully awake (KSS≤ 5) at this nocturnal time. Furthermore, a specially trainedco-pilot
supervised the drives. The acceleration pedal, the turn indicator lever signal and the steering
wheel angle have been used to precisely detect the begin and end of the drive. Overtaking
maneuvers were suppressed in the same way.

Results of Speed Dependency Analysis
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Figure 5.4.:Steering velocitiesSTV50 for different vehicle speeds

After extracting the features for these drives as describedin Ch.4, some of the effects were
very clear to see (Friedrichs and Yang, 2010b):

• The steering velocities increased almost proportionally to the vehicle speed. An exam-
ple of the steering velocities at different vehicle speeds can be seen in Fig.5.4.

• The steering amplitudes is also higher with increasing velocity.
• The number of overtaking meneuvers increased from 2/h at 90 km/h to over 84/h at

180 km/h, even with low traffic.
• The maximum lane deviation amplitude remained approximately the same, only the

oscillation frequency increased.
• The variance of the accelerator pedal increased as more gas is required at higher speeds

to obtain the same acceleration.
• When driving with different speeds on the same road section,the frequency of curva-

ture increases with higher velocity.
• Likewise, on similar road sections, the lateral acceleration obviously increased with

higher speeds.

Even when the amplitude of the lane deviation was quite constant, Fig.5.5depicts the increas-
ingLANEDEV feature with increasing speed, which is caused by the increasing frequency and
since the moving average is based on a fixed time-window.
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Fig. 5.6shows the steering event rateSTWEVENT that is significantly larger for high speeds
(red) than for low speeds (green). The simplest approach to compensate this influence is to
normalize the feature by the vehicle speed as shown in the right.
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Figure 5.6.:Vehicle speed dependency of the steering event rateSTWEVENT (left) and the feature
normalized by the vehicle speed (right). The horizontal blue line indicates that the nor-
malized feature is in average independent of the vehicle speed.

.
5.2.4. Influence by Construction Sites and Narrow Lanes

Road construction sites are usually characterized by more narrow lanes and, thus, accompa-
nied by more hectic steering. Lane exceedances are often unavoidable. Even when the speed
limit is reasonably low, people in many countries tend to drive faster than allowed. For this
reason, the following combination of criteria was used to detect construction site passages:

• Narrow roads: lane width< thresholdPConstS iteLnWth

• Vehicle speed< 85km/h
• Bad lane quality signal from the lane tracking unit
• Specific lane colors (In Germany, yellow lane markings indicate construction sites)

Construction sites were not implemented as an individual feature, but were part of the system
active signalS ASCAN andS ASLANE, depending on the available signals. For the evaluation,
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the same drives were used as for road bumps explained on page117. The classification
of road construction sites was performed for all available drives and then projected to the
coordinates, where they occurred. The match of drives in several night experiments was,
in average, very good (over≈ 90%) and it could clearly be verified that one construction
site was terminated from one day to the next. To simplify matters, construction sites were
suppressed and treated as system inactivity.

5.2.5. Influence of Curvature

In order to evaluate the influence of the road curvature, drives from a straight (curvature ra-
diusr = 4 182m), medium (r = 2 008m) and strongly curved road (r = 822m) section were
selected. 27 drives were taken from a night experiment with an average speed of 130 km/h.
All drives were conducted at night with awake drivers (KSS≤ 5). In general, it was observed
that the transition from a straight road to a curve is often followed by steering adjustments that
are more intensive than necessary. Fig.5.7shows how the lateral lane deviation increases for
all drivers with increasing curvature. The correlation between the lateral lane deviation and
the curvature appears stronger than the correlation between the lane deviation and drowsiness.
This means that the external factors are stronger than the fatigue related patterns.
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Fig.5.8shows how the fast steering velocities (significantly) increased with raising curvature.
Since the steering velocities are very driver dependent, they were baselined by the mean of
the steering velocities of straight road sections for each drive. The vertical line indicates the
mean in each class. The measure forCURVATURE is calculated by

CURVATURE = EWMAN(|κLP|) (5.1)

with κLP as the low-pass filtered curvature from Eq.6.1in Ch.6.3and a EWMA window size
of N = 1min.

5.2.6. Road Condition Influences

The road condition is another severe influence on the drivingperformance and comprises the
three following aspects:

Pavement Condition irregularities of the road surface lead to permanent unevenness
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Figure 5.8.:Curvature dependency of the maximum steering velocity between inflection points. Es-
pecially the fast steering corrections increase.

.
Road Bumps short and stronger road bumps that usually affect both wheels

Road warping and Cross-Wind occur when the road changes its lateral inclination caus-
ing the vehicle to roll around the longitudinal axis.Cross-windhas the same effect as
road warping. For the available sensors, it cannot be distinguished, whether the lateral
displacement is caused by an uneven road surface or a wind gust.

Road Pavement Condition

Usually, the vehicle slides calmer on a new pavement than on an old, very damaged road
surface. These irregularities are normally not immediately realized by the driver, but still
result in small lateral displacements of the vehicle which the driver has to correct after a
while. Estimating a measure for the road condition can be done by detecting a simultaneous
vibration in different sensors. As the sensors are mechanically connected road unevenness
and shocks can be observed by the following sensors:

• Wheel rotation sensor
• Longitudinal and lateral acceleration sensor
• Yaw rate sensor
• Vehicle level signals from every wheel1

A combination of all sensors would make the detection even more accurate, but is not neces-
sary. The principle proposed here for the wheel rotation sensor can also be applied to other
sensors, however with different parameters:

PAVEMENT = EWVARN(WhlRPMFL,HP) · EWVARN(WhlRPMFR,HP) (5.2)

WhlRPMFL,HP andWhlRPMFR,HP are the high-pass filtered wheel rotation rate sensor sig-
nals with the cut-off frequencyfc = 0.5Hz evaluated in anEWVAR window of length
N = 1min. The variance of all sensors can then be combined by multiplication to favor
a simultaneous vibration. After theEWVAR calculation, the signals do not necessarily need
to be synchronous. This makes it less sensible to other variations such as the engine rotation.

1Vehicle level signals were available, if the vehicle was equipped with air suspension or active body control.
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The vehicle speed should also have an influence on all sensors. However, it was not investi-
gated due to the lack of suitable measurements. Imbalances of tires introduce a frequency of
the wheel RPM and were filtered out by a notch filter with speed-adaptive frequency.

Fig. 5.9 shows an overlay of the road surface condition signalsPAVEMENT for a selection
of drives on the A81 motorway over the driven distance from a common starting point. It is
very clear to see, that all vehicles detect the road condition in a similar way.

Figure 5.9.:Road surface condition measurePAVEMENT over driven distance from a common start-
ing point for drives on the same motorway

Road Bumps

The signals used to detect road bumps are the same as for the road pavement detection. The
wheel rotation sensors have again shown the most selective results, as they are closest to the
road. Inertial sensors also work well, but are strongly separated from the road by the vehicle
suspension that is designed to filter out road irregularities. Road bump detection from noisy
signals becomes much more selective, when the front and the rear wheel sensor detect the
road bump at the same location. Fig.5.10depicts how the motion of the vehicle can be used
to assign the signals to the ground. The time difference between the front and rear wheel is
determined by the wheelbasel and the vehicle speedv[n]:

τ (n) =
l

v[n]
(5.3)

For synchronization, a FIR filter is used that has an adaptivephase delayτ[n] depending on
the current vehicle speed. Eq.5.4 shows an FIR filter with adaptive coefficientsai [n] that
depend on the wheelbasel and the vehicle speedv[n] in [ m

s ]. x[n] are the front wheel RPM
signalsWhlRPMFL+R.

y[n] = a0x[n] + a1x[n− 1] + . . .+ a⌈τmaxFs⌉x[n− ⌈τmaxFs⌉] (5.4)

The filter has a higher delay for low vehicle speeds by settingall coefficientsai to zero
except the one corresponding to the vehicle speed. Forτ[n] values that are between two
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Figure 5.10.:Mapping the vehicle rotation signals to a position on the road. A road bump is detected
if the duration between the observed peak in the front and therear matches the vehicle
speed and wheel base.

fixed delay elements, linear interpolation is performed by using modulo operation (Euclidean
division):

ai =






mod(τ,1), for i = ⌈τFs⌉
1−mod(τ,1), for i = ⌊τFs⌋

0, otherwise
. (5.5)

All ai and unit delaysx[n− i] outside the speed interval 80-200 km/h can be removed, such
that onlyx[n− lFs

vmax
] to x[n− lFs

vmin
] remain. In real-time implementation, it will saveτmax− 2

unit delays, if only the detected peak value is hold in one unit delay and a counter fort =
τ[v] assuming that only one peak is detected at a time. The featureROADBUMPS2 is then
calculated by

ROADBUMPS2 =
(

FIRai [v]

(

EWVARN(WhlRPMFL,HP) · EWVARN(WhlRPMFR,HP)
)

(5.6)

·EWVARN(WhlRPMRL,HP) · EWVARN(WhlRPMRR,HP)
)

> Pth .

All wheel rotation signals are pre-processed equally as forPAVEMENT, however with a much
smallerEWMA window size ofN = 10samples. Both front wheel rotation signals are
delayed and multiplied with the variance of the rear sensors. A thresholdPth = 8 is used to
detect a road bump.

Fig. 5.11shows a histogram of the delay between steering correctionsand all road bumps at
t = 0. This proves that road bumps indeed have an influence on the driving behavior since the
distribution in the surrounding of road bumps would be uniform otherwise. The time delay
obtained from this histogram was used for the suppression ofroad bumps during extraction.

Road Warping and Cross-wind

TheCROSSWIND feature detects cross-wind and road warping. It also measures the cross-
wind and road-warping intensity from the measured and calculated lateral acceleration. There-
fore, the measured lateral accelerationay is compared to the lateral accelerationăy calculated
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Figure 5.11.:Delay between steering corrections (STWEVENT) and road bumps (ROADBUMP2).

from the steering wheel angle using the single track model. The basic principle behind it is to
detect whether the vehicle moves first laterally and then thedriver corrects the displacement
or whether the driver first steers and the vehicle follows.

The parameter calibration must be done for every vehicle individually by driving with steer-
ing steps on the driving dynamics surfaces of a proving ground (cf. Sec.2).

5.3. Influences from Drowsiness Supporting Situations

It is much better to detect fatigue fromcausalfeatures that are directly related to the driver
state than from a situation where the driver is probable to bedrowsy. However, the best
performance is achieved in practice, when all availablea-priori information are taken into
account. Known a-priori factors that increase the probability of reduced alertness are

• Driving time "Time-on-Task"(TOT),
• Monotonyandvehicle speed(MONOTONYSPD),
• Circadian rhythm(CIRCADIAN),
• Traffic density(TRFCDENS) and
• Light conditions(LIGHT).

5.3.1. Driving Duration (Time-on-Task)

As already mentioned in Ch.1.2.3and shown in Fig.1.5, the driving performance diminishes
with increasing driving duration. Fig.3.2has already illustrated that fatigue increases by two
KSS levels after 5 hours of driving. This is again confirmed inFig. 5.12that shows the KSS
distribution over daytime and over driving duration for theDataSet ALDWvalid (App.A.2).
The featureTOT simply contains the driving duration.

5.3.2. Monotony and Vehicle Speed

According toThiffault and Bergeron(2003), sources of fatigue can beendogenousor exoge-
nousfactors depending on whether they belong to the initial driver condition or to driving
characteristics. They have shown in a simulator study that monotonous situations are exoge-
nous factors that can impair drivers in a way that they are more susceptible to passive fatigue
symptoms.Oron-Gilad et al.(2007) state that drive characteristics like monotonous roads
(inherent boredom) can be a cause of fatigue. Monotonous driving or "highway hypnosis"
are situations with a lack of novelty and external stimuli that are often paired with constant
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Figure 5.12.:Distribution of KSS over daytime and driving duration for all valid drives. The abscissa
shows the starting point of the drive and are not wrapped in order to display entire drives
without cut.

speed as well as empty and long, straight roads.Greschner(2011, 3.3) summarizes that also
darkness, monotonous environments, constant noise levelsand no or a sleeping co-passenger
can make the driver more vulnerable to fatigue. From the experiments in Sec.5.2.3, it can
be concluded that low vehicle speeds also favor sleepiness as the accident risk is reduced,
slower reaction is sufficient and the adrenalin level sinks.

The featureMONOTONYSPD increases for calm driving. It is weighted with a vehicle speed
factor that is at maximum at 80 km/h.

5.3.3. Traffic Density

Traffic density is an exogenous factor that supports fatigueinduced by monotony. It is another
practical way to detect monotonous situations. It was observed that the lower the activation,
the higher the probability of becoming sleepy. The presenceof other vehicles in the proximity
leads to more frequent acceleration, braking, steering andovertaking.

TRFCDENSmeasures the traffic density using the accelerometer, turn indicator and gas/brak-
ing pedal according to the following criteria within the last 5 minutes (EWMA):

• Rate of turn indicator lever use
• Magnitude of longitudinal acceleration> 0.4m

s2

• Variance of the gas and brake pedal
• If available: lane changes from the lane tracker

Furthermore, the radar information could be taken into account. However, a radar sensor
is not a standard equipment in today’s vehicles and was thus not analyzed. In comparison,
the driver activityDRACTIVITY measures how dynamic or sporty the drive is by using the
lateral acceleration.

5.3.4. Circadian Rhythm and Light

According to numerous publications (Knipling and Wang, 1994; Horne and Reyner, 1995;
Lenne et al., 1998; Mara, 1999), the crash probability is at maximum after midnight between
3 and 6 a.m., which is mostly caused by the endogenouscircadian rhythm(lat.: circa dies=
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about one day). The circadian rhythm also produces an alertness dip in the early afternoon
around 2 and 4:00 pm, during which people are sleepier (Monk, 1991). This is supported by
the crash statistic in Fig.5.13and5.14.

Figure 5.13.:Sleepiness tendency by daytime (Source:Zulley, 1995)

Daylight is the pacemaker of the internal biological clock synchronized to day and night (Zul-
ley, 2006) through the production of the hormonemelatonin. Light exposure to the retina in
the eyes regulates the suppression of melatonin (Burgess et al., 2002; Greschner, 2011). Af-
ter several days, the sleep-wake cycle is intrinsic and inevitable rather than voluntary (Mara,
1999).

Fig. 5.14shows that young drivers, especially males (cf. Ch.1.2.3), are particularly endan-
gered at night, while the crash probability shifts to the afternoon with increasing age. Thus,
age and gender could further be considered to improve the fatigue detection as soon as such
driver details are available in vehicles.

Figure 5.14.:Time of occurrence of crash for commercial drivers with different ages, published by
theNHTSA for the years 1990 to 1992. (Source:Mara, 1999, Fig. 3)
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Knipling and Wang(1994) found out that the driving duration (Time-on-task) and daytime
correlate with fatigue and could be used for its detection. Motivated by these findings, the
CIRCADIAN feature is defined as in Fig.5.15.

Figure 5.15.:CIRCADIAN weighting factor of daytime.

Fig. 5.12shows the distribution ofKSSentries for the DataSetALDWvalid. This also con-
firms the a-priori daytime and driving duration influence in the recorded data.

Instead of using the circadian rhythm, the light sensor performs in a similar way in Fig.5.16.
It was clearly observed that the low or bad vision conditionsare more straining and impair
the driving style significantly. Drivers subjectively feelmore awake while driving during
daylight. The advantage ofLIGHT is that it is more adaptive to the actual vision conditions
whereas theCircadian does not change from day to day. The light sensor is used in the
ESPto detect a wrong clock settings resulting in a false Circadian factor. Circadian is a
rather endogenous factor while the light conditions are exogenous and thus more adaptive to
the driving situation.

Figure 5.16.:LIGHT sensor to measure illumination as alternative forCIRCADIAN. The Error-
bars (cf. Ch.7.2.2) of all drivers individually (colored) and their combination (red) are
shown.

Fig. 7.13in Ch. 7.5 shows the strong influence of driving duration and circadianin a ROC-
curve. These two a-priori features (as well asLIGHT) have the strongest contribution to
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the classification result which is not desired as they are notsensitive to the individual driver
state.

5.4. Influences from Inter-individual Driving Styles

The inter-individual driving style is another major topic with significant impacton the detec-
tion of fatigue-related patterns. Different drivers primarily differ in their steering and lane
keeping behaviors, but also numerous other dimensions likeclearance distance to surround-
ing vehicle, speed limit exceedances, blinkind behavior etc. Fig.5.17shows the large variety
of the maximum steering velocities (STVmax) for the DataSetALDWvalid. Both degrees of
freedom of theInverse GaussianPDF (cf. Sec.4.4.3) are necessary to adapt to the different
drivers.

Figure 5.17.:PDF of STVmax while the system is active and drivers are awakeover drives marked
by driveID from DataSetALDWvalid.

There are alsointra-individual differences, i.e. a driver changes his driving style depending
on time pressure, mood or with increasing driving experience. These effects mostly change
slowly and since drivers cannot yet be identified after engine restarts, the driver has to be
considered as unknown.

There are several approaches to overcome these variations.The most common approach is
baselining, i.e. normalization to a period of normal driving at the beginning of a drive. A
second way is theadaption of thresholdsto the driver such that different patterns occur with
the same frequency. In most cases, this is helpful but not sufficient to solve the problem.

A third, new approach proposed in the following section is based on the hypothesis that there
aredriver groupsthat can be adapted. For instance, it was observed that thereare drivers
who almost never make fast steering corrections. Fig.5.18compares the 2D histogram of the
efficient percentile calculationof maximum steering velocities (cf. App.A.8) of a driver with
virtually no high frequencies and of an average driver. Thiseffect was observed to be repro-
ducible over several hundred drives, over several years andwithout notable exception. At the
other hand, the low level of steering control reciprocally reflected in sloppy lane keeping.

Another group of drivers had bad vision at night. They were observed to make more hectic
steering corrections. While the eyesight can sometimes be improved by changing glasses, the
vision at night can usually not be improved. This hypothesisis investigated in more details
in the thesis ofGärtner(2009).
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Figure 5.18.:2D histogram (heatmap) of the efficient percentile calculation of maximum steering
velocities for two mostly awake drivers. The left with many steering corrections, the
right without any high frequency components.

The DataSetvalidTopDriversdesigned for this study including only the top 15 drivers without
fatigue was described in Ch.A.2.

In the first step, single drivers where classified. Then, different driving styles were grouped
by unsupervised clustering with thek-meansalgorithm. In the last step, the driving style
groups were classified in order to use different features to identify their fatigue level.

5.4.1. Normalization by Baselining

Baselining is a common, powerful method for the normalization and adaption of human
processes. There are several possibilities for its implementation. A certain time frame at the
beginning of a drive (e.g. the first 15 minutes) is consideredwhen the system is active and
the driving conditions are normal. Different statistical measures can then be calculated for
this baseline period:

• Mean or median
• Maximum, 90% percentile or final value of the baseline period
• Variance or IQR

Themaximumhas shown the best performance, followed by the final value ofthe baseline pe-
riod. The feature is then normalized by division through this baseline value. The"‘zero-mean
unit-variance"’ normalization(also calledz-transform) in this context was more suitable for
some features and is most commonly used in psychologySonnleitner(2012). It further takes
the variance of the baseline period into account and is calculated for a featureF by:

FBL =
Fraw − µ(F15min)

σ(F15min)
(5.7)

Since all features need some time to initialize, the first oneto five minutes are omitted, de-
pending on the features and especially their averaging window length.

Baselining also has two major drawbacks. First, it is based on the assumption that the driver
is relatively alert at the beginning of a drive, which is not necessarily the case and second, the
ability of the system to detect fatigue is delayed during this learning phase.
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Every feature in Tab.4.2that is marked by2 is baselined. Parameter-optimization has shown
the best results when using themaximum. The optimization tends to favor window size of
up to 40 minutes because theKSSreference also changes so slowly. Thus, not more than 20
minutes active time were used to preserve high feature dynamics and because the baseline
period otherwise takes much too long for low system active levelsS ASx.

5.4.2. Driver-specific Features

While some of the features in Ch.4 are suitable for driver group classification, also additional
features were used that were not suitable for fatigue detection. The following features were
investigated for the classification of driver groups:

• Ratio of lane changes with and without turn indicator use (TURNINDMISS: ratio
averaged by theEwmaNof the last 10 lane changes)

• Lateral lane change velocitẏyL (LNCHGVEL: EwmaNof the last 10 lane changes)
• Duration between turn indicator use and lane change (TURNINDADVANCE: duration

differences between lever operation and lane change if below 10 seconds, averaged by
theEwmaNof the last 10 lane changes)

• Duration of turn indicator use (TURNINDDUR: EwmaNof the last 10 lane changes)
• Lateral lane deviation and mean (LANEDEV: as described in Ch.4.3.2, LATMEAN is

the average lateral driver offset as described in Ch.4.3.1)
• Maximum steering velocities (regular feature from Ch.4 and Fig.5.18)
• Maximum longitudinal and lateral acceleration at specific speeds and curvatures (ACC75

regular features from Ch.4)
• Rate of ALDW warnings (regular features from Ch.4)

5.4.3. Driver Group Clustering and Classification

Fig. 5.19 shows the classification of twelve drivers by their driving style. Details can be
found in the thesis of (Gärtner, 2009).
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Figure 5.19.:Confusion matrix for drivers usingGMM classifier (Courtesy of:Gärtner, 2009)

Drivers that were often mixed up during classification (as for instance driver-ID 133 and 340)
could be combined to one group. Fig.5.20 shows the classification result for the features
STV25, STV50, STV75, LATMEAN, LANEDEV, LNIQR andACC75 and a reduced number
of driving style groups:
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• A: Very calm steering, sloppy lane keeping (Driver-IDs 5, 20, 484)
• B: Calm steering and lane keeping, sportive acceleration (ID 609, 783)
• C: Calm steering, lane keeping and acceleration (ID 59, 133,152, 165, 340, 607)
• D: Hectic steering, precise lane keeping (ID 611)

Figure 5.20.:Confusion matrix usingBayesclassifier and four driving style groups (Courtesy of:
Gärtner, 2009)

The results show that classification of at least two main groups of driving style is quite fea-
sible. As the example in Fig.5.18shows, the fatigue level of hectic drivers can be detected
better by their steering behavior, while the other group with a calm steering style has a more
sloppy lane keeping. Thus, for the different groups, it is more appropriate to use different
features for the classification of their fatigue level. In theory, the more appropriate method-
ology would be to train the classifier in a single step. However, this did not work due to the
larger amount of involved features that require more training data than there were available
here (see Ch.8.4).

5.5. Conclusion

In this chapter, it was shown that there are at least the thirteen external factors from Fig.5.1
that have a strong impact on the driving behavior. The factors are in many situations more
dominant than the sleepiness patterns. Further, the a-priori factors daytime, driving duration,
monotony, novelty and light have the largest effect. Most ofthem can easily be measured,
however are not directly sensitive to the driver state. Driver monitoring does not work under
real-road conditions without taking external factors intoaccount.

For the most important factors, specific drives were recorded and evaluated, i.e. vehicle speed
and curvature. For the factors road condition, light, rain and driving style, appropriate drives
were filtered from the database. In order to consequently findall relevant parameters for their
precise compensation, a matrix of hundreds of specific drives would be necessary for varying
only one external factor at a time while keeping all other factors constant.

For most external factors, methods were proposed to incorporate them. Ideally, for impor-
tant features, the normalization was already part of the theextraction. The system active
signals suppress events resulting from external factors. Specific features were designed
for the purpose of explicitly identifying external factorssuch asPAVEMENT, CURVATURE,
ROADBUMPS2, CROSSWIND and the a-priori factorsTOT, CIRCADIAN, MONOTONYSPD,
TRFCDENS andLIGHT. For the fusion of features on the classifier level, these feature were
provided for classification and feature selection in Ch.8.

Baselining was presented as the predominant method to compensate individual driving styles
during the extraction of features. A driving style classification has shown that different groups
of drivers can be identified for a two-stage classification.
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Chapter 6.

Approximation of Lane-based Features from
Inertial Sensors

The major drawback of the utilization of lane data based features from Sec.4.3 is that the
ALDW camera is only available as special equipment and, thus, limited to the vehicles that
have it installed. Furthermore, the lane data signals are often affected by missing road mark-
ings, bad sight etc. In comparison, inertial sensors are standard equipment and available for
all vehicles.

Some lane-based features such asLANEDEV or ZIGZAGS do not require theabsolutedis-
tance to the lane markings, but only depend on the lateral deviation within the lane. The
idea of this chapter is to use odometric vehicle data only (yaw rate, steering wheel angle
and vehicle speed) to approximate the classical lane-basedfeatures without the need of a
lane-tracking camera.

The basic assumption behind this approach is that the curvature of the road can be estimated
from the odometric data. As described in (Clayton, 2006), there is a minimum curvature
radius for every speed limit. For instance, the minimum curvature radius at 120km/h is 750
meters. Thus, when speed limits are obeyed and if the vehiclewould ideally follow the lane
center, the road curvature never exceeds this low frequencylimit. The vehicle trajectory is
thus a combination of the road curvature and the lane keepingbetween lane markings. Thus,
the deviation within the lane contains much higher frequencies than the road curvature and
can be extracted by a high-pass filter. To estimate the vehicle trajectory, an extended Kalman
filter and a vehicle motion model are applied to the availablesensors.

Since fatigue changes slowly, its detection may be delayed by up to several minutes, so
signals can be analyzed retrospectively. A second hypothesis is that the lateral mean of the
lane keeping does not vary too much for one drive, so that the absolute lateral position can be
assumed to be constant. In this case, also the time-to-lane-crossing and lane approximation
features likeTLC1MIN or LANEAPPROXADAPT can be approximated.

In addition to yaw rate and vehicle speed, the vehicle’s GPS position is also included in an
extended Kalman filter model in order to create a reference toevaluate the system perfor-
mance.

Using odometricCAN data such as yaw rate, steering wheel angle, and wheel rotation highly
improves the knowledge about the absolute position of the vehicle. Many other aspects in re-
gards to drowsiness detection profit from this improved vehicle position. Short lane-tracking
gaps can be filled and road-condition analysis benefits from this improved spatial resolution.
The correlation between features based on lane data and odometric data as well as their rela-
tionship with sleepiness will be compared.
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6.1. Literature review

There are many approaches for vehicle tracking with inertial vehicle data. Hasberg and
Hensel(2009) uses splines and a Kalman filter for online estimation of train tracks.Buehren
(2008) investigates the tracking of vehicle target lists by radar. Weiss(2011) uses a Kalman
filter to match radar, lidar and map data for highly accurate ego-vehicle position estimation.
Miksch (2010) andGuan(2008) use a vehicle motion model to estimate the ego-motion for
motion compensation of camera data.

Forsman and Vilaa(2012) uses a transfer function of steering wheel angle motivatedby
cardiovascular regulation analysis in (Saul and Berger, 1991) to approximate the lateral lane
position. They test their approach with a simulator study with twenty-nine subjects. Using
a transfer function on the steering wheel angle is less accurate in comparison to additionally
using inertial sensors and vehicle tracking with a Kalman filter. Lundquist and Schön(2010)
uses the single-track model and a Kalman filter for road geometry and curvature estimation of
the ego-vehicle. However, no literature was found that analyzes the estimation of lane-based
features from inertial vehicle data.

6.2. Sensor Signals and Synchronization

The yaw rate sensor has a high resolution of 0.005◦/s and a sampling frequency ofFs =
1/T ≈ 50 Hz. The GPS signals are available with a sampling rate ofFs ≈ 1 Hz and not
always valid. Every second, when new GPS data is available, aKalman iteration is called
to update the position according to the GPS data. This way, the Kalman filter takes over the
weighting between inertial data and GPS data.

Tab. 6.1 shows a matrix of the required lane signals for the differentlane feature groups
and the system active signalS ASLANE to suppress special events. From this table, it can be
derived, which features require the distance to the lane andwhich only focus on lurching
within the lane and thus are suitable best for inertial features. For odometry-based features,
the lane signal qualityLaneDataQualis not needed since the signals are always valid. As
well, lane changes (LaneChg_Stat) can be detected from theLaneLtrlDist. The odometry-
based features are the ones (markedgreen) that have no other dependency than yaw rate or
LaneLtrlDist, with the limitation that not the absolute offset is available.

6.3. Single-Track Vehicle Model

In order to estimate the ego-motion of a vehicle from inertial sensor data, different mathemati-
cal models are available.Zomotor and Klinkner(1987) consider inertia torques of the vehicle
and tire models for the description of slip effects. Other approaches require additional sen-
sors like vehicle mass sensors to determine the mass distribution in a vehicle (Weiss, 2011).
Carlson and Gerdes(2002) propose a method for the determination and application of tire
models, that, however, require vehicle specific parametersfor the vehicle’s inertia torque
which again depends on the actual mass (occupied seats and baggage) distribution.

These specific sensors and parameters are not available here. For these reasons, several as-
sumptions are made for simplification in practice (Mitschke and Wallentowitz, 2004, Ch.
C.18). Under these assumptions, thesingle-track model(or Bicycle Model) can be used with
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Lane change (S ASLANE) × × (×)
Overtakings (e.g.S ASLANE) × ×
Lane deviation(e.g.LANEDEV, ORA) × (×) ×
Lateral offset (e.g.LATMEAN) × (×) ×
ZigZags(e.g.ZIGZAGS) × (×) ×
Lane oscillation(e.g.LATPOSZCR) × (×) ×
Yaw events(e.g.YAWJERK) ×
Lane approx. (e.g.LANEAPPROX) × (×) × ×
TLC (e.g.TLC1MIN) (×) (×) × × × (×) (×) (×)

Table 6.1.:Signals needed for lane-based feature types, where (×) indicates that these features are not
absolutely necessary. Lane changes can also be detected by the blinking lever.

good approximation. It is the simplest mathematical model for the stationary and instationary
lateral dynamic of a four-wheel vehicle (Riekert and Schunck, 1940, P. 210-224). Fig.6.1
illustrates the model after a simplification by combining the two wheels of each axle.

ψ̇ vveh

β

yveh

xveh

CG
CG Model

δH

vveh≈ const

ăy

β

Figure 6.1.:Left: Single-track modelsimplification by combining the two wheels of one axis.Right:
steering wheel angleδH and vehicle speedvveh are the model input and lateral accelera-
tion ăy andsideslip angleβ the outputs.β is described in the following.

The vehicle dynamics model is mostly linear with good approximation on dry roads and
for lateral accelerations under 4m/s2 . The appearing angles are then small and can be
approximated by sin(α) ≈ α . According to (Schindler, 2007, Ch. 4) and (Schramm and
Hiller, 2014, Ch. 10), further assumptions are made: the vehicle is assumed to be a rigid
mass withinertia torque Jz and itscenter of gravity(CG) on the ground. Only the front axle
is steerable and the vehicle speedvveh is considered to be stationary, so that only two degrees
of freedom remain: yaw rotatioṅψ and thesideslip angleβ (also calledbodyslip angle). β
is illustrated in Fig.6.2. It describes the angle between the longitudinal vehicle axis towards
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the direction in which the vehicle is actually traveling, resulting from the direction in which
the wheel is pointing. The lateral accelerationăy in which we are interested is implied. This
means that wheel load differences and related roll, pitch and vertical motion are neglected.
The model is illustrated in Fig.6.2 and introduces the notation for the following equations.

ψ̇

vveh

CG

l f

lr

Jz · ψ̈

vr

vf

Fy, f

Fy,r

δ f

α f

β

ey

ex

R= 1/κ
αh

ICR

Figure 6.2.: Illustration of the single-track model

Instant Center of Rotation (ICR) : As mentioned in App.A.4, every point of the rotating
vehicle experiences a different velocity around anInstant Center of Rotation(ICR). TheICR
is located at the point where all orthogonal lines to all velocities are crossing and describes
thecurvature radius Ror curvatureκ with

R=
1
κ
=

v

ψ̇
. (6.1)

Steering Ratio: The Ackerman steering angleδa of the wheel is obtained by thesteering
transmission ratio S Rand thesteering wheel angleδs measured in the steering column:

δA = δS ·S R. (6.2)

Wheel and Sideslip Angles: Assuming that thewheel slip anglesare zero and the wheels
roll along their axis, the vehicle speedv and lateral accelerationay yield the driving radius:

R=
v2

ay
. (6.3)

Thesideslip angleβ in Fig. 6.2 is defined as the angle between the vehicle motion of theCG
and the longitudinal vehicle axis.
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Self Steering Gradient: Theself-steering gradient SGis defined in DIN 70000 as the differ-
ence between the steering angle gradient and the Ackerman angle over the lateral acceleration
ay:

SG=
1

S R
dδS

day
− dδA

day
(6.4)

With the vehiclecharacteristic lower velocity vch and thewheel base l, it is obtained by:

SG= ± l

v2
ch

(6.5)

wherevch andl are vehicle specific properties that are available for the vehicles.

Characteristic Velocity: It is the vehicle speed, at which under-steering vehicles (SG> 0)
have the maximum of their yaw intensification

vch =

√

l
SG

. (6.6)

By Schramm and Hiller(2014), it is also described by "vch is the velocity for which the vehicle
reacts most sensitively to steering inputs. Typical valuesare between 65 and 100 km/h".

An SG > 0 means that the vehicle is under-steering (front wheel slips), SG = 0 means
neutral andSG < 0 means, that the vehicle is over-steering (rear wheel slips). For safety
reasons, today’s vehicles are designed to under-steer, which is easier to handle. This means
that the vehicle tends to turn to the curve outside instead ofobserving additional rotation by
the tail "drifting" out of the curve. All vehicles in this thesis are under-steering.

Yaw intensification: Theyaw intensificationis the ratio of stationary yaw rate and steering
wheel angle for stationary steering wheel angles

δH = S R·
(

l
R
+ SG· ay

)

(6.7)

Lateral Acceleration: The lateral acceleration obtained by the steering wheel angle de-
scribes the vehicle trajectory more precisely than the accelerometer value which is affected
by the road inclination towards the road side (y-direction). For this reason, thesingle-track
modelis used. Thelateral acceleration̆ay is obtained by thevelocity v, thesteering ratio S R,
thesteering angleδa and theself-steering gradient SG:

ăy =
v2 · δa

l + SG· v2
(6.8)

6.4. State Space Model

For the mapping of inertial sensor signals to real-world coordinates, a motion model is re-
quired that describes the trajectory in every calculation step. A description of the motion can
be approximated either by theline segment modelor thearc segment model(Guan, 2008,
Ch. 3.2.2-3). He stated that in conjunction with the Kalman filter, the linear-segment model
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Figure 6.3.:Line segment motion model

performs far better than the arc-segment model. Fig.6.3 illustrates the line segment model.

The vehicle motion is modeled in analogy toBuehren(2008); Miksch (2010) and Weiss
(2011). Thestate vectorx[k] ∈ R

n describes the position and motion state at time instantk
by:

x[k] =





sx[k]
sy[k]
ψ[k]
ψ̇[k]
v[k]
a[k]





x-position [m]
y-position [m]
yaw angle [◦]
yaw rate [◦/s]
longitudinal velocity [m/s]
longitudinal acceleration [m/s2]

(6.9)

For linear systems, the system model with thestate transition matrixA (n× n) describes the
state change ofx between two consecutive instants. Here, the system ist non-linear and the
state transition matrixA is replaced by astate transition functionf(x) (cf. Eq. (6.17)):

x[k+ 1] = f(x[k]). (6.10)

The second part of the system model is the measurement equation that maps the system state
to themeasurement vectorz[k] ∈ R

m using themeasurement matrixH =
(

0 I
)

(m× n):

z[k+ 1] = H x[k+ 1] , z[k] =





ψ̇[k]
v[k]
a[k]





(6.11)
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According Fig.6.3, the non-linear movement of the vehicle is given by

(

sx[k+ 1]
sy[k+ 1]

)

=

(

sx[k]
sy[k]

)

+ v+[k]Ts





cos
(

ψ+
)

sin
(

ψ+
)




. (6.12)

with v+ = v[k] + a[k]Ts
2 , ψ+ = ψ+ ψ̇

Ts
2 and thecycle time Ts.

6.5. Kalman Filter

The Kalman filter is an optimal state estimation algorithm for linear systems to estimate
the system state vectorx[k]. For optimality, it requires that the measurement and process
noise have zero mean, white, uncorrelated and normally distributed additive noise (Welch
and Bishop, 2006). After initialization, the iterative algorithm consistsof apredictionand an
innovation(or correction) step for each iterationk. The prediction step derives from the pre-
vious iterationk− 1 updated state variables and uncertainties under the consideration of the
motion model. The current measurement is included under consideration of its uncertainties
form the innovation step. The Kalman Gain is a feedback that weights the influence of the
model or measurement based on their covariances.

6.5.1. Optimal State Estimation using the Kalman filter

The state transition and measurement equation in Eq. (6.10) and Eq. (6.11) are expanded by
themodel noisew[k] and themeasurement noisev[k] (with processandmeasurement noise
covariance matricesQ andR):

x[k+ 1] = Ax[k] + Bu[k] + w[k], (6.13)

z[k+ 1] = Hx[k+ 1] + v[k+ 1] (6.14)

The influence ofl input parametersu can be included by the(n× l) input matrixB, which is
not relevant here.w[k] andv[k] were found to be additive normally distributed white noise
with zero mean:

E[w[n]wT [k]] = Wδnk

E[v[n]vT [k]] = V δnk

p(w) ∝ N(0,Q), p(v) ∝ N(0,R)

E[w[k]] = E[v[k]] = 0.

Model noise, measurement noise and initial states are uncorrelated:

E[w[k]vT [k]] = E[w[k]xT [0]] = E[v[k]xT [0]] = 0.

Details for the Kalman filter and the validity of its requirements for the yaw rate, vehicle
speed and acceleration sensors can be read in (Welch and Bishop, 2006; Buehren, 2008;
Weiss, 2011). Thepredictionandcorrectionsteps of the linear Kalman filter state estimation
are illustrated in the following:
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Time Update (‘Predict’)

(1) Project the state ahead
x̂−k = Ax̂−k−1 + Buk−1

(2) Project the error
covariance ahead

P−k = APk−1AT + Q

Measurement Update (‘Correct’)

(1) Compute Kalman Gain Factor
K k = P−k HT(HP−k HT + R)−1

(2) Update estimate
with measurementzk

x̂k = x̂−k + Kk(zk −Hx̂−k)

(3) Update the error covariance
Pk = (I −KkH)P−k

Initial estimate for̂xk−1 andPk−1

6.5.2. The Extended Kalman Filter

TheExtended Kalman filter (EKF)is necessary, if the state transition is non-linear, as in our
case. Now the system is described by the non-linear, differentiable functionsf andh:

x[k+ 1] = f
(

x[k], u[k], w[k]

)

(6.15)

z[k+ 1] = h
(

x[k+ 1], v[k+ 1]

)

(6.16)

In our case, the measurement equation stays as in (6.14). The Extended Kalman filter state
estimation is again computed in two steps:predictionandcorrection, but now with the lin-
earized function.

Time Update (‘Predict’)

(1) Project the state ahead
x̂−k = f(x̂−k−1, uk−1, 0)

(2) Project the error
covariance ahead

P−k = AkPk−1AT
k + WkQk−1WT

k

Measurement Update (‘Correct’)

(1) Compute Kalman Gain Factor

Kk = P−k HT
k

(

HkP−k HT
k + VkRkVT

k

)−1

(2) Update estimate
with measurementzk

x̂k = x̂−k + K k

(

zk − h(x̂k,0)

)

(3) Update the error covariance
Pk = (I −K kHk)P−k

Initial estimate forx̂k−1 andPk−1

As the yaw rate in Eq. (6.12) changes very slowly within the cycle timeTs = 20ms, we use
the first orderTaylor series approximation, sin(α) ≈ α andcos(α) ≈ 1 for α ≪ π/2, we can
linearize the trigeonometric functions to the dimensions in Eq.6.9as follows:

f(x, q) =





sx[k] + ·v+[k]Ts cos
(

ψ+
)

sy[k] + ·v+[k]Ts sin
(

ψ+
)

ψ[k] + ψ̇Ts
ψ̇[k]

v[k] + a[k]Ts
a[k]





. (6.17)
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The system is still non-linear so that theEKF is required. Thus, we need to linearize the non-
linear, differentiable functionf in each working point, which is the current system statex[k].
For linearization, theJacobi-Matrix of the differentiable functionf : R

n → R
m is needed.

Finally, we obtain for∂f(x,q)
∂x =





1 0 − sin(ψ+)v+Ts − sin(ψ+)v+ T2
s

2 cos(ψ+)Ts cos(ψ+)T2
s

2

0 1 cos(ψ+)v+Ts cos(ψ+)v+ T2
s

2 sin(ψ+)Ts sin(ψ+)T2
s

2
0 0 1 Ts 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 1 Ts
0 0 0 0 0 1





.

Then, the measurement matrixH is
(

0 I
)

.

When a new GPS sample is available, the measurement matrixH and vectorz[k] are ex-
tended:

H =





1 0

0 1
...

0
· · · I





, z[k] =





Ue[k+ 1]
Un[k+ 1]
ψ̇[k+ 1]
v[k+ 1]
a[k+ 1]





whereUe andUn are theeastingandnorthingpositions where the vehicle is located in UTM
coordinates (cf. Ch.6.6). The process and measurement noise covariance matricesQ andR
of theEKF algorithm are chosen by using the measurements.

6.5.3. Estimation of the Lateral Distance

As illustrated in Fig.6.3, the yaw angleϕ[k] between the vehicle and the lane must be known
in order to calculate the lateral distancel[k]. The lane is estimated by the low-pass filtered
vehicle trajectory using a 2nd-order Butterworth filter with cut-off frequency 0.05 Hz. The
relative lateral displacement∆l related to the lane mean is calculated for every sampling
periodTs. The lateral distance is then obtained by updating the estimated lateral position in
each sampling period:

l[k+ 1] = l[k] + ∆l (6.18)

with the initial conditionl(0) = 0. The lateral distance signal obtained from the vehicle
model is again high-pass filtered to remove accumulating bias errors. Furthermore, it was
low-pass filtered to remove noise and road influences with a 2nd-order Butterworth filter with
the cut-off frequency 0.1 Hz.

6.6. GPS Data in UTM Coordinates

A standard GPS sensor was used for all recorded drives, sincethe recorded CAN-signal from
the head unit was map-matched and thus disturbed by discontinuous gaps. Its temporal sensor
resolution with 1Hz is not very high. Also the absolute position is not very accurate. There
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are often invalid sections from tunnels, synchronization problems, insufficient signal quality
or too few satellites. Furthermore, there are severe outliers in the signal. All these influences
had to be suppressed by post-processing described inCzupalla(2007).

The UTM representation (cf.Hasberg and Hensel, 2009; LVGB, 2009) of GPS has the advan-
tage that the units use a metric world-coordinate system similar to the information obtained
by the vehicle data. Maps fromOpenStreetMaps.org(2020) were used for visualization.

In order to convert global GPS longitude and latitude coordinates tox, y positions in meters,
the following equations can be used:

d = 60 · 1.852· 180
π

︸             ︷︷             ︸

Earth radius

· arccos
(

sin(ϕ1) · sin(ϕ2) + cos(ϕ1) · cos(ϕ2) · cos(λ2 − λ1)
)

(6.19)

with d being the distance between two GPS positions (latitudesϕi, longitudesλi).

The Universal Transverse Mercator(UTM) system splits the world in tiles of six degree
in vertical direction (from 80◦ south to 84◦ north) (Weiss, 2011). The transversal Mercator
projection flattens the zone and defines a Cartesian coordinate system for every tile. Germany
is zone U 32 for instance. App.A.10 shows an illustration of this principle. The converted
GPS coordinates to meters in relation to the zone coordinatesystem allows the calculation
with metric scales.

6.7. Inertial Feature Extraction

An overview of analyzed lane data based features and the methods to extract them, are de-
scribed in (Friedrichs and Yang, 2010a). This section explains the features that are selected
and for which the odometric data are sufficient.

6.7.1. Inertial Features

Tab.6.2 lists the selected features which have been investigated here. Lane data based and
odometric features are calculated with the same algorithms, but different input data.

ID Feature Name Description

15 LANEDEV Lane deviation
17 ZIGZAGS Number of zig-zag events
29 LNMNSQ Lane mean squared
34 ORA Overrun area
16 LATPOSZCR Lateral position ZCR
30 LNIQR IRQ of lateral position
37 DELTADUR Duration between inflection points
38 DELTALATPOS Mean lateral amplitude
39 DELTALATVELMAX Max lateral velocity

Table 6.2.:Selection of lane-based features
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6.7.2. System Active Signal

As the lane changes are not detected by the camera anymore, the turn indicator lever signal
was used to suppress lane changes. Three seconds before and ten seconds after lever opera-
tion have been suppressed. Yaw ratesψ̇ > 3◦/s have been neglected as well. Furthermore,
the system was defined to be active only at velocities over 80 km/h.

6.8. Results

This section describes the comparison between lane data andinertial-data based signals. The
correlation of lane-based and odometric features is shown,as well as the correlation between
odometric features and theKSSdrowsiness reference using the Spearman correlation coeffi-
cient.

6.8.1. Comparison of Lane Data and Inertial Data

Fig. 6.4 shows the lateral deviation ("distance") signal obtained after removing the offset.
However, the mean deviation between the two signals is 38cm,which indicates that there are

Figure 6.4.:Lateral position from lane-based (blue, solid) and odometric sensors (red, dotted)

certain different influences in the signal. The Pearson and Spearman correlation coefficients
between the features derived from the yaw rate and the original lane-based features are shown
in Tab.6.3.

ID Feature Name ρp ρs

15 LANEDEV 0.241 0.367
17 ZIGZAGS 0.512 0.634
29 LNMNSQ 0.051 0.394
34 ORA 0.338 0.414
16 LATPOSZCR 0.908 0.350
30 LNIQR 0.286 0.505
37 DELTADUR 0.768 0.540
38 DELTALATPOS 0.239 0.467
39 DELTALATVELMAX 0.634 0.633

Table 6.3.:Correlation coefficients between lane-data and odometric features
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6.8.2. Feature Evaluation

Features were assessed and optimized in multiple ways. The Spearman correlation coefficient
between theKSSand the features derived from yaw rate and the original lane-based features
are compared in Tab.6.4.

Feature Name ρs Lane vs. KSS ρs Odom. vs. KSS
LANEDEV 0.240 0.064
ZIGZAGS 0.318 0.103
LNMNSQ 0.268 0.080

ORA 0.325 0.105
LATPOSZCR 0.223 0.328

LNIQR 0.187 0.105
DELTADUR 0.281 0.117

DELTALATPOS 0.295 0.079
DELTALATVELMAX 0.266 0.106

Table 6.4.:Spearman Correlation coefficients between lane data and inertial features vs. KSS

Even if some features (ZIGZAGS and LATPOSZCR, zero-crossing rate) correlate very well
with the lane-based pendant, they do not perform as good in regards to drowsiness detection.
Only the feature LATPOSZCR performs better.

6.9. Conclusions
The basic motivation of the presented work is to estimate theclassical lane-based features
solely from inertial sensors instead from camera-based lane data. In this thesis, we present
a comparison of these two methods. This has the benefit that odometric data is available
in almost every vehicle nowadays. In contrast, lane tracking cameras are special equipment
and, thus, still rarely available in today’s fleets. Anothermajor advantage of inertial data is
its independence from weather, camera calibration and lane-marking quality. This property
highly increases the operability of the system. A motion model for inertial sensor signals
using theEKF was presented to derive the lateral lane deviation from odometric data. For a
comparison and visualization of lane data and data derived from inertial sensors, GPS was
additionally used. As the GPS signal is only available everysecond, whereas the CAN data
has a cycle time of 20 ms, a method to include the GPS measurements into the motion model
was proposed. Inertial and GPS data have been converted to the UTM coordinate system
to have the same metric representation. This study shows that the features extracted from
odometric data correlate well with the lane-based features. A large set of data was compared.
However, there are relevant differences in the signal whichmake the exact estimation of the
lane deviation impossible. The major problem remains the separation between road curvature
and vehicle lurching between the lane markings. The nine "lane-based" features estimated
by inertial data have been analyzed for their performance todetect impaired driving. The
correlation of the features with theKSS reference is comparable but inferior to the perfor-
mance of real lane data based features. Generally speaking,some lane-based features can
be approximated very well by odometric data whereas others cannot. OnlyLATPOSZCR
performs better, because of the continuous system availability of the inertial sensors.
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Chapter 7.

Assessment of Features

After the features have been extracted (Ch.4) under the consideration of external and driver
influences (Ch.5) and with a new alternative approach to estimate lane features from inertial
sensors (Ch.6), they are assessed in this chapter. The features are assessed and optimized
in multiple ways. The focus is to assess the performance of single features but also their
combinations according to different references in Ch.3.

In the first step, quantitative metrics for the correlation analysis and their results are presented.
The metrics were used in Ch.4.5 as cost function for parameter optimization. Visual evalu-
ations like boxplots, class histograms, correlation coefficient histograms or scatter plots lead
to a higher transparency of features to identify their characteristics. The metrics from the first
part of the chapter are the basis for these visual methods. The correlations and visualizations
suffer from the discrete interval scale of theKSS. Thus, theKSSvalues were interpolated
and smoothed as described in Ch.3.3.6. Linear and multiple regression is used to assess the
correlations by fitting linear functions by least mean squares. Statistical tests like t-test, F-test
or MANOVA are powerful methods to identify whether differences are significant. Finally,
a visual user-interface (GUI) combines all the methods at once and allows filtering of the
data and reference. The results motivate several improvements in the feature extraction. Sub-
jective, rather qualitative and empirical observations from night drives are also summarized.
A proposal for potential features is given that comprises the various assessment aspects and
knowledge of the nature and potential of features. Featuresthat are highly correlated and
based on the same patterns are reduced to the best of them.

7.1. Feature Assessment by Metrics

The goal of this section is to evaluate different measures that describe the relation between
two signals best. There are various potential metrics such as correlation coefficients or the
Fisher metric to assess the correlation and variance between features and reference. The co-
variance, correlation and scatter matrices describe the relation between features. The Spear-
man correlation coefficient, for instance, has also been used for parameter optimization.

7.1.1. Correlation Coefficients

The correlation describes the linear (or monoton) relationship between two measuresX ∈ F
andY ∈ {F , KSS, EEG, EYE}. The metric is desired to be high when high and low sample
values of the one measureX occur at the same time as for the other measureY. This can be
illustrated by the scatter plot (cf. Sec.7.2.1) of the two measuredX andY in Fig. 7.1.
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Figure 7.1.:Scatter plot to illustrate correlation: positive, no and negative correlation.

This relationship can be quantitatively captured by thecorrelation coefficientsafterBravais-
Pearsonρp for linear andSpearmanρs for monoton relationship. The range of values of both
coefficients lies in−1 ≤ ρp ≤ 1. In caseρ > 0, the measures are positively correlated and
vice versa. Thep-value of correlation indicates the probability with whichthe same result
could be achieved randomly. With other words, it indicates the reliability of the result and is
relevant only for fewer test samples.

Pearson Correlation Coefficient

The empiric(Bravais-)Pearson Correlation Coefficient(Fahrmeir et al., 2003) measures the
linear relationship between two measuresX = [x1, ..,xN]T andY = [y1, ..,yN]T (with ·̄ as
the average):

ρp(X, Y) =

N∑

i=1
(xi − x̄)(yi − ȳ)

√

N∑

i=1
(xi − x̄)2

N∑

i=1
(yi − ȳ)2

=
Cov(X, Y)

√

Var(X) · Var(Y)
. (7.1)

Spearman Correlation Coefficient

The Spearman correlation coefficientρs describes how well the relationship between two
measures can be described by amonotonicfunction. It is calculated in the same way as the
Pearson coefficient, only that arank function rg(·) converts the valuesX andY to a sorted
rank order. For instance, the highest value is mapped to 1, the second highest value becomes
2 and so on. If samples occur multiple times, they will be assigned to mean rank values. The
calculation is defined (seeFahrmeir et al., 2003) by:

ρs(X, Y) =

N∑

i=1
(rg(xi) − rg(X))(rg(yi) − rg(Y))

√

N∑

i=1
(rg(xi) − rg(X))2

n∑

i=1
(rg(yi) − rg(Y)2

=
Cov(rg(X), rg(Y))

√

Var(rg(X)) · Var(rg(Y))
,

(7.2)
with the rank meansrg(X) (andrg(Y)) given by

rg(X) =
1
N

N∑

i=1

rg(xi) =
N + 1

2
. (7.3)

Even though theKSS scale is defined to be linear from a psychological perspective, it is
known that the scale is not interpreted and used linearly. This is one reason why the Spearman
correlation coefficient has shown to be more meaningful in this application.
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7.1.2. Fisher Linear Discriminant Metric

TheFisher Linear Discriminant Metricis motivated by the fitness function of the FisherLDA
(Welling, 2005) and closely related to regression analysis. It sets the scatter between classes
in relation to the scatters within each class.

Multi-dimensional case: TheMultiple Discriminant Analysis(MDA) is defined as explained
in (Yang, 2018; Uhlich, 2006; Duda et al., 2001) by the quotient of the matrix determinants:

MDA (X) =
|SB|
|SW|

(7.4)

whereSB is the scatter matrixbetweenthec classes

SB =
c∑

i=1

ni(m̄i − m̄)(m̄i − m̄)T (7.5)

whereni is the number of patterns in classi. m̄ is the average over all classes andm̄i are the
averages of each classi. SW is the scatterwithin classes:

SW =
c∑

i=1

Si with Si =
∑

x∈X i

(x− m̄i)(x− m̄i)
T , (7.6)

the scatter matrixSi of the patternsXi in classi. The advantage ofMDA is that multiple
features can be assessed by one scalar measure. This measureis invariant to a linear transfor-
mation, i.e. no normalization is required in advance.

Fig. 7.2 illustrates the strengths and weaknesses of theMDA by four examples with three bi-
variate Gaussian distributed clusters and serves as validation of the implementation. Another
weakness of the measure is that when one cluster is rotated, the center of all classes and, thus,
the metric is not changed much, even when the two classes overlap more.

In the two-dimensional case and especially for more than twoclasses, the correlation coef-
ficients are more meaningful since they describe the ordinallinearity. Further, it has to be
noted that theKSScannot be used for theMDA, since it is only defined for classes.

7.1.3. Results

Tab.7.1 lists all metrics from this section, the correlation coefficients, the one-dimensional
MDA metric for 9 classes and theAUC (Ch. 7.5). The ending ’BL’ indicates that a feature
is baselined. Only the best out of all redundant features areused for the comparison with the
KSS. External influences are only relevant after the fusion of features. It can be seen that
most a-priori features perform best, but on the same level asthe majorATTENTION ASSIST

featureGGGLWF. Further, the TLC-based and lane approximation features show the best
results underneath the causal features.

ID Feature Name ρp ρs MDA (9 classes) AUC
45 CIRCADIAN 0.4911 0.4880 84.824554 0.80057
68 TOTSPEED 0.3825 0.4088 12.859585 0.52957

122 GGGLWF 0.3644 0.3541 11.141940 0.74449
66 TOT 0.2579 0.2656 10.385206 0.67326

156 DISTRACTION 0.2266 0.2590 22.924826
160 NMRSTVHOLD 0.2501 0.2415 10.857038
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ID Feature Name ρp ρs MDA (9 classes) AUC
175 TURNINDMISS 0.1866 0.2295 6.906748
59 MONOTONY 0.2190 0.2202 2.173279 0.54915

121 STWEVENTBL 0.1695 0.1910 3.540389 0.64316
155 TLC1MINBL 0.1795 0.1838 13.077203 0.63736
159 AmpD2ThetaEwma 0.1555 0.1620 5.025147
161 TLCREACTIM 0.1392 0.1485 14.907812
14 LANEAPPROX 0.1391 0.1464 9.264948

151 LANEAPPROXBL 0.1400 0.1420 8.597869 0.50169
171 MONOTONYSPD 0.1353 0.1344 3.060937
67 TOTMONO 0.1353 0.1344 3.060937 0.52957
69 NMRHOLD 0.1473 0.1313 2.796519 0.60884

167 NMRHOLDBL 0.1472 0.1313 2.792206 0.61344
38 DELTALATPOS 0.1414 0.1299 4.858002 0.56556

158 AmpD2ThetaBL 0.0576 0.1197 6.671112
51 STWEVENT 0.0988 0.1138 3.120092
32 LANEX 0.0917 0.1103 5.736944
39 DELTALATVELMAX 0.1148 0.1101 5.302499
65 DRACTIVITY 0.0438 0.1067 0.419859
48 AmpD2Theta 0.1126 0.1045 4.915033
17 ZIGZAGS 0.1158 0.1024 6.153849

139 ZIGZAGSBL 0.1158 0.1024 6.153849
33 LNERRSQ 0.0504 0.1014 57.698357

168 MICROCORRECTIONS2 0.0339 0.1007 0.479821
15 LANEDEV 0.0938 0.0965 2.961627

137 LANEDEVBL 0.0938 0.0965 2.961627
146 LANEDEVSQ 0.0699 0.0946 1.821851
30 LNIQR 0.0903 0.0885 1.995599
36 VIBPROP 0.0777 0.0845 4.479706
34 ORA 0.0917 0.0806 2.368282
72 VHAL 0.0799 0.0800 1.389162
27 TURNINDADVANCE 0.0573 0.0528 2.102021

145 LANEDEV4 0.0444 0.0504 10.567072
71 MICROCORRECTIONS 0.0337 0.0430 5.809846
22 DEGOINT 0.0698 0.0375 1.024265

147 MICROCORRECTIONSW 0.0168 0.0346 5.174747
152 LRVFAST -0.0021 0.0248 1.019020
29 LNMNSQ 0.0290 0.0108 0.439556

170 FASTCORRECT -0.0545 0.0104 0.892245
40 LANEAPPROXADAPT 0.0248 0.0070 2.263082
18 STWZCR 0.0028 -0.0124 2.697696

154 LRVVERYFAST -0.0379 -0.0128 1.250960
37 DELTADUR -0.0352 -0.0311 1.197629
25 STWVELZCR -0.0430 -0.0319 3.105123

150 LANEAPPROXAD -0.0267 -0.0333 0.286441
16 LATPOSZCR -0.0216 -0.0437 0.342992

169 YAWJERK -0.0703 -0.0719 1.805102
28 TURNINDDUR -0.0647 -0.0744 2.632143
42 ELLIPSE -0.0524 -0.0757 7.906066
19 LATMEAN -0.0534 -0.0771 1.344164

142 VARCRIT -0.0179 -0.0936 8.110901
153 LRVPERCHIGH -0.1894 -0.1933 4.820714
31 LNCHGVEL -0.1238 -0.1998 2.224121

165 STV50 -0.2646 -0.2697 10.243395
26 TRFCDENS -0.2535 -0.2913 23.574284

164 STV25 -0.2966 -0.2990 15.787481
166 STV75 -0.3149 -0.3255 18.138641
70 LIGHT -0.4353 -0.4354 116.210213

Table 7.1.:Correlation coefficients andMDA measure for selected features sorted byρs. That all
values are significant is indicated by thep < 0.001 due to the high number of samples.
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Figure 7.2.:FisherMDA to measure the scatter between classes in relation to the scatter within
classes. The left and right means are similar. Class 1 in1b has a larger spread than
in 1awhich allows better discrimination, decently reflected by the MDA. Class 1 in2b is
rotated and overlaps which causes worse discrimination, which is reflected by the slightly
lower MDA.

7.2. Visual Feature Assessment

Visual assessment of features gives much more transparencythan a quantitative measure.
This section shows the most practical visualizations in a few selected examples.

7.2.1. Scatter Plots

The most transparent method to compare the combined correlation between two or three
features is thescatter plot. A scatter plot for three features with marked classes is shown in
Fig. 7.3.

7.2.2. Boxplots and Error Bars

Boxplots(or Box-Whisker-Plots) serve to visually illustrate the median, scatter, range and
outliers of class distributions. For every class, the median, IQR and theWhiskersare marked,
as illustrated in Fig.7.4. The latter are defined asWhisker = 1.5 · IQR and define the
limit for outliers. TheNotchesdisplay the variability of the median between the classes
(MathWorks, 2007). The notches of classes, that do not overlap, have different medians at the
5% significance level assuming the samples to be normally distributed, which, is, however,
also reasonably robust for other distributions. This method can be compared to a visual
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Figure 7.3.:Scatterplot for selected featuresCIRCADIAN, TLC1MINBL andSTWEVENTBL for the
three classesawake(•), acceptable(•) anddrowsy(•).

hypothesis test analogous to the t-test for means. Thus, in this example, it can be seen that the
featureNMRSTVHOLD increases with increasingKSS with significant differences between
classes.

Figure 7.4.: Illustration of Boxplot for feature NMRSTVHOLD.

The Boxplots in Fig.7.5show the relationship between different other features andtheKSS.
All plots show that the median of the classes significantly differ, but are still overlapping
which pose difficulties for the drowsiness classification. There are very few drives withKSS
below 2, so these levels should be neglected.

Error bars show the confidence level of data or the deviation along a curve (MathWorks,
2007). In our case, the variance is used as displayed in Fig.7.4. In this example, the dif-
ference between mean/median and variance/IQR can be seen due to the influence of outliers
that can be essential for some features.
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Figure 7.5.:Boxplot of selected features

7.2.3. Class Histograms

Class histograms were also used to get a visual impression ofthe features. The STV50 class
histogram can be found in Fig.7.6 as an example. It can be seen that the steering velocities
decrease with increasing vigilance.

7.2.4. Histogram of Correlation Coefficients

Another method of correlation analysis proposed bySimon(2012) is to cluster the features
by drives (or drivers) and calculate the Spearman (or Pearson) correlation coefficients be-
tween features andKSS reference. A histogram of the coefficients then indicates, for how
many drives this feature correlates well with fatigue. If one portion of the drives correlates
negatively and the other portion positively, it is a contradicting statement and does not speak
for an useful feature. It has to be considered that a long drive contributes as much as a short
drive. However, in App.A.11 the limits of this metric are discussed. Even if all correlation
coefficients are one, the overall correlation can be very bad. With other words, this metric
would work sufficiently, if the online-adaption of every drive by baselining was optimal.

Fig. 7.7 shows other examples of the causal featuresLANEX, ORA andNMRHOLD. It can
be seen that there is a tendency towards the right, that indicates, that most drives are posi-
tively correlated with drowsiness. Further, it can be seen,that the last feature, with the best
overall Spearman coefficient, performs worst from the histogram’s perspective. We can con-
clude, from these three examples, thatLANEX profits most from driver (drive) adaption, i.e.
baselining.
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Figure 7.6.:The class histogram of featureSTV50 split up by classesawake, questionableand
drowsy(ID: 53; ρp = −0.30;ρs = −0.33(bothp= 0.0); MDA = 16.9)

7.3. Assessment of Correlation between Features

If two features correlate well with fatigue, this does not mean that their combination performs
better. Generally, features based on different patterns and sensors have the tendency to be less
correlated. The correlationbetweenfeatures is subject of this section.

7.3.1. Scatter Plot Matrix

Fig. 7.8 shows the scatter plot matrix that give transparency of how correlated features are.
It is a matrix of scatter plots between all features. Ideally, both features are uncorrelated,
but correlate with the reference, so that the values are scattered and the classes can be dis-
tinguished well. It shows that lane based and steering basedfeatures are more uncorrelated,
such asLANEDEV andYAWJERK. No correlation between features is desired (except with
KSS).

7.3.2. Correlation Matrix

Correlation Matrix consists of the pairwise correlation coefficients between the measures
Fi ∈ Mn in their column and row. It indicates how strong the featuresare correlated with
each other:

C(F )





ρ(F1,F1) · · · ρ(F1,Fn)
...

. . .
...

ρ(Fn,F1) · · · ρ(Fn,Fn)





(7.7)

whereρ can be calculated after Pearsonρp and Spearmanρs respectively.
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Figure 7.7.:Histogram ofρs coefficient of KSS and featuresLANEX, ORA andNMRHOLD grouped by
drives

Fig. 7.9 shows an example of the matrix. Baselined features are oftencorrelated. The road
condition features and allLANEDEV derivates are correlated, but also withORA, LANEIQR
andTLC1MIN. CIRCADIAN are negatively correlated withLIGHT.

7.4. Linear and Multiple Regression Analysis

Regression Analysisis a method of statistical analysis that pursues the goal to quantitatively
determine the relationship between a dependent variable (regressand) and one or several in-
dependent variables (regressor(s)). In our case, theKSSreference is the regressand and the
regressor(s) is (are) the feature(s). Regression analysisfor driver state detection was already
used byKnipling and Wang(1994); Wierwille and Ellsworth(1994); Wierwille (1996b);
Belz(2000) and (Mattsson, 2007; Berglund, 2007, Both Sec. 2.5) for identifying the most po-
tential features. When features are normalized, the coefficients indicate, which contribution
a feature makes for the final result and which features are redundant. Linear andMultiple
Regressionare closely related toLDA and classification. Hence, the other application of this
method is prediction or classification, discussed in Ch.8.
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Figure 7.8.:Scatter plot matrices for some selected features to show thecorrelation between features.
Their combined discriminative performance can be seen, since classes are marked indi-
vidually: • for awake,× for questionable and+ for drowsy. The diagonal shows the
distribution of the features.

7.4.1. Multiple Regression Analysis

In multiple regression analysis, every feature is combinedlinearly (or by any other function)
to obtain a combined measure. The regression equation can beformulated mathematically,
in our case, for the one dimensional version as follows:

KSS= f (F0) + ε (7.8)

and for the N-dimensional case:

KSS= f (F0,F1, . . . ,FN−1) + ε (7.9)

with the features from the feature matrixFi ∈ F and ε as theresidual error that is to be
minimized. The residual also indicates, how strong the correlation is. In the next step,f (·)
can be expanded by using theregression coefficientsβ:

KSS = β0 · F0 + β1 · F1 + . . .+ βN · 1+ ε (7.10)

The last coefficientβN allows the adaption of an offset through the vector1. For instance, in
our application, this yields:
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Figure 7.9.:Correlation matrix of selected features (Correlation: negative (blue), no (green), positive
(red))

KSS= β · F =





ZIGZAGSBL
NMWRONG
NMWRONGBL
LANEDEV

LANEAPPROX
LIGHT

. . .
GG

ELLIPSE
DEGOINT

LANEAPPROXADAPT
AATOT

CIRCADIAN
1





·





95.2,
6.9,
0.0,
1.8,

234.5,
−0.074,

. . .
0.081,
−0.034,

1.18,
−411.2,

0.000061,
1.5,
2.9





T

(7.11)

The regression coefficientsβ are obtained by minimizing theMSEof the residuum:

⊂= =
∑

patterns

[KSS− β · F ]2. (7.12)

The solution of this least-squares minimization problem iswell known. Fig.7.10shows the
KSS reference and the resulting signalf (F0,F1, . . . ,FN−1). The trend is correct, but not
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very precise, probably due to fact that theKSSis not a simple linear scale.

Figure 7.10.:KSS reference and the resulting linear combination signal from the multiple regression
for concatenated drives.

Fig.7.11shows the resulting scatter plot off (·) with the improved total correlationρs = 0.68
andρp = 0.66. Still, the detection of the fatigued instances is not optimal.

Figure 7.11.:Scatter plot of the multiple regression result

7.5. Receiver-Operating-Characteristics (ROC)-Analysis and
Area Under Curve (AUC)

The performance of a feature or a binary classifier can be tested in a graphical illustration, the
Receiver-Operating-Characteristics(ROC) (cf. Fawcett, 2004). It allows choosing a working
point as a trade-off between sensitivity (detection rate) and specificity (false alarms). There-
fore, the classifier needs to allow that this trade-off is tunable by either weighting the cost
function or in the simplest case by variation of a threshold from the feature range minimum
to the maximum. For the Bayes classifier, the a-priory distribution of classes can also be
varied in order to obtain the ROC. However, this would be related to a loss of performance,
due to the neglection of valuable training data.
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In case that bothPDF’s are known (sensitivity and specificity), the ROC curve is obtained by
plotting theCDF of the detection probability in the ordinate vs. theCDF of the false alarm
probability in the abscissa.

Fig. 7.12depicts an example ROC curve for the featureGGGLWF based on a two-class classi-
fication. Thesensitivity(True-Positive-Rate) is displayed on the ordinate and 1− speci f icity
(False-Positive-Rate) as abscissa. The target area is marked as well as the region in which
the classification result should be.

Figure 7.12.:ROC explanation exemplarily onGGGLWF based on a two-class classification

TheArea Under Curve(AUC) measures the area under the curve, which is a measure for the
general classification performance, but makes no statementabout the shape on which end it
performs better. Values near 1.0 indicate an ideal classification result, while 0.5 means the
worst possible random result. A tendency towards 0.0 expresses a miss-interpretation of the
classes.

Tab.7.1shows theAUC for some selected features. Fig.8.5in Ch.8 shows some ROC curves
of the classification results of different classifiers. Fig.7.13 shows the strong influence of
driving duration and circadian as explained in Ch.5.3.4.

7.6. Conclusion

This section has shown useful methods to assess features by metrics and visually in regards to
different perspectives. Primarily, in addition to the straight forward metrics, visual methods
pursue the goal to provide more transparency over the characteristics of features. For rea-
sons of space, only a selection of the results could have beenshown exemplarily. The focus
of this chapter was to assess and optimize the amount of sleepiness associative information
of features. However, the scope here was limited to single feature ranking rather than their
combination. With correlation coefficients, only linear and monotonous functional relation-
ships between single features and reference could be assessed. This was motivated by the
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Figure 7.13.:ROC curve for Time-on-TaskTOT andCIRCADIAN

fact that sleepiness is an ordinal scale rather than a multi-modal phenomenon. In contrast
to Pearson correlation coefficients, the Spearman coefficients are more suitable to describe
the single feature correlation for the development of a bargraph. To determine and optimize
the discriminative property of classes, the other measuresare also valuable for transparency.
While the correlation is of central interest, also the redundancy in between features was in-
vestigated. The nonlinear combination of this informationby Classificationis subject to the
next chapter.

The presented methods show that there are good features in every group. It is obvious that the
a-priori features perform best, as they detect the time instant in driving studies, when subjects
become tired. Sleepiness occurs much more often during night experiments compared to real
field drives. Thus, this systematic factor is considered separately and taken into account for
the final classifier based on a dataset that has an a-priori distribution that is representative
for the real field scenario (DataSetFreeDrives). The system performance profits most from
these features, even when they are not causal, i.e. sensitive to the driver.

The most potential pattern appears to be the steering corrections, especially followed by a
steering pause. This pattern is highly analyzed and is further improved in various ways in
this thesis.

The lane features based on lane approximation and exceedingperformed best among the lane
features. For a few drivers, the ALDW warning worked really well and prevented them from
drifting out of the lanes. Zig-zag events and its odometry based variant also appear to have
high potential, especially in regards to robustness when the vision conditions are impaired.
Features that are based on the same pattern as lane deviationfor instance are highly correlated
and only one of them could be used.
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Chapter 8.

Classification of Features

As already stated byKnipling and Wang(1994, P. 9), nosingle feature is capable to detect
fatigue. Thus, multiple features must be used in a combined manner. The purpose of classifi-
cation is tofusemultiple features to a single measure (e.g. theKSSscale) or to assign patterns
to classes (e.g. whether to issue a warning to the driver or not). In theory, the decision in a
higher dimensional features space is always better than forone single feature, presuming that
each feature contains information that is not completely redundant and that enough training
data are available. In Sec.7.3, the correlations between features were analyzed. This chap-
ter will discuss the reduction of feature dimensions and classification of fatigue and show
results.

8.1. Fusion of Features

The combination of different features can be done on severalfusion levels:

• On Decision Level: A decision can be made for every feature and then be combined
by a majority voting. There is always a majority for odd numbers of decisions. This
is motivated by the fact that different features work for different drivers and situations.
The fusion on decision level is the simplest, however, with aloss of accuracy, since it
is not considered that one very certain decision could overrule several other uncertain
decisions. For instance, if a threshold is applied, the information is lost in how far the
threshold is exceeded.

• On Classification Level: The combination of features can be completely done by a
classification algorithm. In comparison to the decision level fusion, the certainties of
decisions are taken into account. Classification is most expedient when little is known
about the problem or when it is too complex to manually understand and model it. The
feature extraction is also a lossy compression of information. Even if the classifier
finds the optimal solution for a given set of features, the drawback will be that its
underlaying model is not further adapted to the problem and the feature extraction
algorithms remain untouched.

• On Feature Level: Similar to feature extraction, classification is also an information
reduction process to get rid of the entire clutter that is irrelevant for the decision. This
has the drawback that also valuable information is omitted.Hence, the most diffi-
cult method for the fusion of patterns is to understand the underlying processes and to
model the fusion directly during feature extraction. For instance, if one feature extracts
the number of steady-state steering events and another feature denotes the number of
corrections per minute, and if the essential crux is that thesteady event must occur
directly before the correction, this can only be detected during the feature extraction,
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since no conclusion about the temporal relation of the two events would be possible
after the sliding averaging. Completely understanding theproblem is often very dif-
ficult and laborious in practice, but this is sometimes the only way when the patterns
are weak and difficult to separate from noise.

Deep Learningis an "end-to-end learning"-approach that comprises all stages at once through
very sophisticated network structures. This alternative topic will be discussed in Ch.8.6.

In the present application, fatigue-related patterns rarely occur. They are relatively vague and
vanish in other influences. For this reason, it is necessary to conduct the fusion on an early
feature level. Classification is, however, useful to identify potential patterns, combinations
and to better understand the underlying mechanisms.

8.2. Pattern Recognition System Design

Figure 8.1.:Block diagram of classifier training, evaluation and application (Friedrichs, 2006)

The development of a pattern recognition system commonly follows the steps illustrated in
the block diagram in Fig.8.1. The following steps are always involved:

1. Features AcquisitionEven the best classifiers will fail, if the underlaying features do
not contain enough information about the desired class labels. The feature extraction
is the core of any pattern recognition system and comprises implementation and verifi-
cation of hypotheses about fatigue-related patterns, efficient extraction algorithms that
are capable of real-time online processing, normalizationof other influencing factors
and optimization of parameters. Chapters4, 5 and6 describe these main issues in de-
tail. It is usually necessary to evaluate features individually and optimize the involved
parameters before proceeding with the next pattern recognition step. The goal is to
extract as many ideas for features as possible and then to analyze, which correlate best
with the desired classes. This was described in Ch.7.

2. Feature Dimension ReductionDue to thecurse-of-dimensionality(Sec.8.4), it is
important to reduce the high number of features gathered in the precedent step to the
best combinationof features that are provided to the classifier. Selecting the top fea-
tures that perform best individually does not mean that alsotheir combination leads to
the best performance, because other combinations may better complement each other.
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The ideal number of features depends on the amount of available training data and
is limited by processing resources. There are two dimensionreduction techniques to
tackle this problem: selection of the most significant features and feature transforma-
tion. Both are discussed and applied in Sec.8.4.

3. Classifier Comparison and SelectionIn literature, there is a large number of classifi-
cation algorithms of different types:statisticalandnon-statisticalas well asparamet-
ric andnon-parametric. This topic will be intensified in Sec.8.2.1and8.5.

4. Classifier Training Most classifiers involve parameters that need to be trained.While
it is distinguished betweenunsupervisedandsupervised learning, the latter is the most
prevalent in our application, since offline training data with labeled class references are
available. The training topic is subject to Sec.8.2.2.

5. Validation To make a reliable statement about the performance and generalization
potential of a trained classifier, it is essential to permutetraining and test data ap-
propriately. Repeatedk-fold cross-validation yields an average training error and the
variance of the iterations allows a meaningful statement about the generalization per-
formance. If the trained classifier performs bad with test data or in the field despite a
low training error, it isoverfittedand the previous steps have to be repeated until the
desired result is obtained.

6. Classifier DeploymentThe trained classifier parameters obtained from the training
can then be used for a real-time implementation. The featureextraction and classifier
evaluation must be implemented, so that it fulfills the real-time condition.

8.2.1. Classifier Comparison and Selection

Figure 8.2.:Overview over classification algorithms (Source:Yang and Uhlich(2013); Uhlich
(2006))
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A large number of classifiers are known in literature and the most important can be found
in (Duda et al., 2001). The different approaches for pattern recognition can be structured as
shown in Fig.8.2.

Unsupervisedalgorithms, for which no class labels are available, areIndependent Component
Analysis(ICA) (Sec.3.5.1), Principal Components Analysis(PCA) or clustering algorithms
like the K-Means algorithm (Duda et al., 2001). The K-Means algorithm is used here to
identify clusters of driver types.

Supervisedclassification algorithms to predict categorical labels can be grouped inparamet-
ric or non-parametricmethods. Parametric methods make assumptions about known feature
distribution shape for each class, such as the Gaussian shape. Linear and quadratic dis-
criminant analysisare examples for parametric methods. Non-parametric algorithms make
no assumption about the features’ distribution shapes per class and estimate the distribution
from the features.Decision trees, k-Nearest-Neighbor(k-NN), the Naive Bayes classifier,
Neural Networks(multi-layer perceptrons) (ANN) andSupport Vector Machines(SVM) are
a few examples.

The available classification algorithms have different strengths, pitfalls and properties. The
selection of the method is determined by feature propertiesand conditions like computation
resources. Then it has to be evaluated by trial-and-error comparison of the different clas-
sifiers, which one performs best after adequate adjustment of parameters. Thek-Nearest
Neigbour(k-NN), Linear Discriminant Analysis(LDA), Bayesclassifier,Gaussian Mixture
Models (GMM), andArtificial Neural Networks(ANN) are evaluated for this application.
Practical considerations like normalization, parameter tuning and classification results can
be found in Sec.8.5.

Hidden Markov Models(HMM) is a general parametric algorithm for predicting arbitrarily-
structured labels of categorical sequences, such as a sequence ofphonemesin speech (i.e.
vowels, consonants and sibilants).HMMs can be trained supervised or unsupervised. The
hypothesis that fatigue might be characterized by a temporal sequence of different patterns
and states, further motivates the evaluation ofHMM in the thesis ofFuersich(2009). The
evaluation ofBayesian Networks(BN) in the scope of this thesis is also motivated by the idea
to use and model expert knowledge and temporal aspects in thedesign of the network.

Support Vector Machines(SVM), Boosting, Bootstrap aggregating("Bagging") andParzen
Window estimationare evaluated for the application of fatigue detection in the thesis of
de Mattos Pimenta(2011, Ch. 2.2.1).

Categorical Classification vs. Ordinal Regression

Two goals are pursued in this application: to issue a warningto the driver and to show a
bar-graph of the driver’s fatigue level. As soon as more thantwo classes are involved, their
ordinal rankplays a role. This means that mis-decisions ofKSSlevels are worse the further
they differ. Categorical(or nominal) classifiers suffer from the problem to sometimes vote
for instance for a high probability ofawakeanddrowsyand a low probability ofacceptable,
which is contradicting for the ordinal classes. Especiallyin this application, is not acceptable
or transparent to show a jumping bargraph or toggle warning states from one instant to the
other. Thus, smooth transitions are highly desired.Gutierrez(2016) has shown that it is
generally better to take this ordering information into account.
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Most of the previously mentioned classifiers perform categorical decisions by default. For a
categoricalANN classifier, the last layer has one neuron for each class. TheKSSrepresents
a discrete quantization of a continuous-valued quantity. As described in Ch.3.3.6, theKSS
entries can be considered as sample points and missing values in between were interpolated.
This represents anordinal regressionproblem that can be performed by a single neuron in
the last layer of anANN, that retains the ordinality and punishes large deviations(cf. (Costa,
2005; Gutierrez, 2016)). The single neuron represents a linear combination of allweighted
inputs (and the bias that is present in every layer). Finallythe sub-intervals are mapped to
three classes or the bar-graph levels. In the present application, this speaks for classifiers that
take rank information into account.

8.2.2. Classifier Training

After selection of the potential classifiers their unknown parameters must be trained by val-
idated features. The heuristic of the classification algorithm consists of estimating good or
optimal parameters that minimize the training error. The training of most classifiers is com-
putationally intensive while the classification in online-application is generally much faster.
One distinguishes between three kinds of training:

• Supervised learningmeans that the data used for training contain reference labels
that define the class membership of a set of feature values. Inour application, the class
membership of features is defined by theATTENTION LEVEL, that is represented by
theKSSinterval scale or the reduced classesawake, acceptableor drowsy.

• Unsupervised learningmeans that no labels are available for the training and the
features have to be clustered into natural groups accordingto some similarity measures.
In this thesis, unsupervised learning was only used to identify driver classes in Sec.5.4
by a clustering analysis (Duda et al., 2001).

• Reinforcement learning means that training parameters are updated online in the
vehicle based on feedback about the correctness of decisions. This is difficult in this
application since there is no reliable way to confirm if a decision was correct and
a much higher demand of resources is needed. An conceivable option would be to
adjust the sensitivity of hyperparameters of a classifier on-board as false warning if
drivers continue to drive after they received a warning. Drivers that make a brake
after a long drive without warning and without refueling/recharging could indicate a
missing warning. Often, only few different drivers share the same car and, since it was
shown in Sec.5.4 that a small group of drivers can be identified well by their driving
style, the reinforced training parameters could be loaded when a driver was identified
after some time of driving.

In the training, a trade-off between training error reduction and remaininggeneralization
capabilities must be found.Over-fittingof the data leads to low training errors, whereas the
generalization capability suffers.

8.2.3. Unbalanced A-priori Class Distribution

A-priori information also covers the proportion of time thedriver is drowsy and the time
drivers are awake. When a classifier is trained, the distribution of the classes is considered.
Knowledge of the a-priori ratio is, thus, advantageous. Dueto the extensive night studies, the
proportion of drives that contain fatigue is much higher in this database than it is expected
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in the field. The proportion of time with KSS≥ 8 in the datasetALDWvalidNDis 5% and,
thus, not very representative. It has to be noted that drowsydriving is usually quite rare,
but still much more frequent than crashes occur. The datasetFieldDrives (Sec.A.2) based
on "free drives" and "Customer Near Driving" (KNFE) in Europe, USA, South Africa and
Japan contains regular all-day drives. This dataset can be considered as representative for
real traffic in every-day life and here, the proportion of fatigue is only 1.9%. The a-priori
distribution of the datasetFreeDrivesis taken into account by weighting the number of class
samples during the creation of the series code.

Vehicle speed, daytime and driving duration are not included in the classifier training as these
features suffer from over-fitting of the data, i.e. the nightdrives are all conducted at about
the same time and at a mean speed of 130km/h.

8.2.4. Metrics for Assessment of Classification Results

The assessment of a trained classifier is essential to make meaningful statements about its
generalizationcapabilities to classify unknown data or on-board in the vehicle. The classifier-
independent assessment of results also allows the comparison of different classifiers.

If the same data were used for the training as for assessment,the training error would be
reduced to its minimum, but strong adaption to the training data would lead toover-fitting,
which does not allow a realistic assessment. To avoid this, the available samples are parti-
tioned into disjunct subsets, thetraining, validation and testing set. The classifier model is
selected and trained by using the training and validation sets and the generalization is tested
by the testing set. The estimation error of the validation set is biased since it is used for
the model selection while the test set is more representative for the true estimation accuracy
as it is not taken into account for the model tuning (e.g. number of hidden layers). Ratios
of 80% for training, 10% for validation of the hyper-parameters and 10% for testing of the
generalization are used. The more data are used for training, the better the classifier, but the
more inaccurate the prediction of the real generalization error becomes.

In the present application, it is of utter importance thatdrivesand especiallydrivers of the
testing set are unknown during the training set to obtain reliable results. If parts of a drive
and especially random samples from the test data are used fortraining, it will be much easier
for the classifier than it will be in practice. Hence, testingdata are always selected byentire
drivesandunknown drivers.

A proven method for the splitting of data iscross-validation. The classification results can
then be assessed by aconfusion matrixand derived measures likesensitivity, specificity, re-
call, precision, accuracy, andFβ-Score. All principles are used in the following sections.

K-fold and Leave-One-Out Cross-validation

Cross-Validationis a validation technique to assess how the training of a classifier will be gen-
eralizable to unknown samples. The data are partitioned into complementary, permuted sets
and the training error is averaged over multiple rounds of classification to reduce variability.
It is distinguished between theK-fold and theLeave-One-Out Cross-Validation.

In K-fold Cross-Validation , the originally availableN samples are randomly segmented into
k ≤ N preferably equally sized subsetsT1, ...,Tk. Over i = 1 . . . k rounds, the subsetTi is
used for testing and thek− 1 subsets{T1, ...,Tk}\{Ti} for training. The total training error is
averaged over thek rounds and its variance indicates the stability of the result. The advantage
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is that each of thek subsets is used exactly once for validation andk− 1 times for training
purposes.k = 10 repetitions are often used in literature. Instratifiedk-fold cross-validation,
the folds are selected such that thek subsets have about the same a-priori distributions of
class labels to reduce the variance between the different rounds.

TheLeave-One-Out Cross-Validationis a special case of the K-fold cross-validation with
k = N. Since stratification is not possible here, the results may be wrong under certain
circumstances. Another drawback is the augmented processing time.

In our application, subsets are randomly selected according to the desired a-priori class dis-
tribution ratio.

For series-deployment of the algorithm, we suggest to trainthe clasifier with and without the
test set and compare the classifier parameters. If the parameters are not severely different, it
can be assumed that the generalization potential is better when all available samples are used
for training. The test set contains also valuable information to improve the model. Under
most circumstances, using all available data for training will perform better in the field with
the drawback that the actual generalization performance isnot known exactly.

Confusion Matrix

The Confusion Matrixrepresents the result of a classification, as shown in Tab.8.1. The
columns describe the true reference and the rows show the classification result. The results
are converted in % by normalization of all samples in one class. In our application, the
distribution of the classesawakeanddrowsycan vary, so the assessment of the classification
should be made together with the measures likesensitivityandspecificity.

❳
❳
❳
❳
❳
❳
❳
❳
❳❳

Detected
True

Alert (N) Drowsy (P) Accuracy

Alert detected (N) True Negative
(TN)

False Negative
(FN)

Negative Predictive Value
NPV= T N/(FN + T N)

Drowsy detected (P) False Positive
(FP)

True Positive
(TP)

Positive Predictive Value
PPV= T P/(T P+ FP)

Total Specificity Sensitivity Accuracy
T N

T N+ FP
T P

T P+ FN
T P+ T N

T P+ T N+ FP+ FN

Table 8.1.:Confusion matrix or contingency table

The Confusion Matrixrepresents the result of a multidimensional classificationprocess as
shown, for instance, in Fig.5.19.

Sensitivity/Recall: or aTrue Positive Rate(TPR) means that all fatigue drivers are warned
correctly or get the rightATTENTION LEVEL shown. We can also refer to it as "detection
rate" of fatigue drivers. In drowsiness detection, it is important to achieve a high sensitivity
value, since it was found out that drivers do accept false warnings, but not missing warnings.
It is defined as the probability that a driver was detected to beawakeunder the condition that
he wasawake:

Sensitivity= Recall= P(Drowsy|Drowsy) or
TP

TP+ FN
[%]. (8.1)
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Specificity: or aTrue Negative Rate(TNR) of 100% means that not one awake driver got a
wrong warning or, with other words, this is the false alarm rate.

Specificity= P(Awake|Awake) or
TN

TN+ FP
[%] (8.2)

TheFalse Positive Rate(FPR) or false alarm rate is defined as:

1−Specificity= P(Drowsy|Awake) or
FP

TN+ FP
[%] (8.3)

Precision: is also referred to aspositive predictive value(PPV). On the other hand, precision
or positive predictive value is defined as the proportion of true positives against all positive
results (both true positives and false positives)

Precision=
TP

TP+ FP
[%] (8.4)

Accuracy: (ACC) is the proportion of true results (both true positivesand true negatives) in
the entire population. An accuracy of 100% means that all classified values are exactly the
same as the reference classes.

Accuracy=
TP+ TN

TP+ TN+ FP+ FN
[%] (8.5)

8.2.5. The Fβ Score

Fβ-score is a measure for the overall performance of a classifier with a single indicator and
defined by

Fβ = (1+ β2)(precision· recall)/(β2 · precision+ recall), (8.6)

whereβ is a parameter to differently punish precision vs. recall. The F1-score is a special
case:

F1 = 2(precision· recall)/(precision+ recall) . (8.7)

β is adapted according to the desired design goals as illustrated in Fig.8.5 andβ = 1.2 is
used in this context. It is used as a combined measure.

8.3. Warning Strategy Assessment

8.3.1. Conversion of Classification Results into Warning

The characteristic of a warning strategy and concept in theATTENTION ASSIST is to issue
a warning at the onset of fatigue. The driver can acknowledgethe warning by pressing the
OK steering wheel button. If the drive is continued, the warning will repeatedly be issued
again after 15 minutes of driving in a state classified asdrowsyin order to remind him having
a pause. If the warning is not confirmed, it will be assumed that the driver has not seen the
warning and will be issued again after 5 minutes. The warningcan only be triggered by a
corrective event that the driver notices.

Now, for the offline evaluation, we assume that the driver always confirms the warning. To
convert the classification result into a warning, the first sample for which the classdrowsyis
classified is set as the first warning. Then, the next warning is issued after at least 15 min, as
soon as drowsy is classified again.
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8.3.2. Warning Assessment with Temporal Tolerance

Warnings can be assessed for an entire drive or by segmentingdrives into time slots of 15
minutes. In the scope of theATTENTION ASSIST series introduction, the system warnings
were assessed according to the definition below. A temporal tolerance was introduced for the
assessment of warnings as drivers accept warnings during the phase of their fatigue onset.

An entire drive can be evaluated in relation to thedesired warning level(cf. Ch.3.3.3) by
the following tolerance criteria:

TN No warning necessary No warning was issued and the maximumKSS< DWL
FN Missing warning No warning received, but maximumKSS≥ DWL
TP Correctly warned Warning received andKSS≥ DWL-1 during first warning

or within 5 min afterwards. (The first correct warning is
essential as the driver is supposed to stop the drive then).

TPE Warned too early Warning received within 5-15 min beforeKSS≥ DWL-1
TPL Warned too late Warning received over 15 min after necessaryKSS≥ DWL
FP False alarm (otherwise) Warning received whileKSS< DWL-1 and at

least 15 min beforeKSS≥ DWL-1

These modified classification results can be combined as described below. The number of
warnings in relation to drowsy intervals or first warnings:

TPR=
TP+TPE

TP + TPE + TPL + FN
(8.8)

Everyone, who did not get a warning in time vs. everyone, who needed a warning:

Missing Warning Rate=
FN+TPL

TP + TPE + TPL + FN
(8.9)

Everyone who got a warning much too early or if no warning was necessary in relation to
everyone who was awake

False Alarm Rate=
FP

FP + TN
. (8.10)

The correct decisions in total vs. all outcomes is then:

Correct Total=
TP + TPE + TN

TP + TPE + TPL + FP + FN + TN
(8.11)

15 min time slots: This principle can now be evaluated for all 15 minute time slots. In this
concept, we will categorize a warning again as wrong, if it isissued in a period, in which
the driver is awake for at least 15 minutes before and after, even if fatigue has been involved
during the beginning of the drive. Tab.8.2 shows this criteria for a selection of features. At
first, only one feature is used for classification as this is the main evaluation method used
to develop theATTENTION ASSIST. The improvedATTENTION ASSIST feature performs
better for this criteria, however, it was not allowed to be published.
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1st warning 15 min interval
Feature TPR PPV FPR ACC Fβ TPR PPV FPR ACC Fβ

STWZCR 95% 28% 83% 36% 48% 45% 43% 16% 76% 44%
LRVFAST 70% 37% 56% 52% 51% 22% 42% 7% 81% 28%
STWVELZCR 77% 31% 63% 47% 48% 30% 40% 10% 79% 34%
LRVVERYFAST 79% 33% 70% 44% 51% 26% 39% 9% 80% 30%
LNCHGVEL 96% 26% 88% 33% 46% 42% 41% 17% 75% 42%
MICROCORRECTIONSW 81% 33% 59% 51% 50% 29% 42% 9% 80% 34%
STWEVENT 67% 45% 38% 64% 56% 25% 49% 6% 83% 31%
TURNINDDUR 96% 27% 85% 34% 46% 41% 42% 14% 77% 41%
DEGOINT 93% 29% 83% 38% 49% 35% 40% 13% 78% 37%
DYNDRIVINGSTYLE 97% 25% 88% 32% 45% 47% 42% 18% 74% 45%
REACTIM 91% 28% 85% 35% 47% 34% 38% 13% 77% 36%
LRVPERCHIGH 94% 27% 85% 35% 47% 42% 40% 16% 75% 41%
LATPOSZCR 79% 34% 62% 50% 52% 21% 40% 7% 81% 26%
DELTALATVELMAX 89% 33% 78% 42% 52% 32% 42% 10% 79% 35%
ZIGZAGS 86% 36% 70% 47% 55% 30% 44% 9% 80% 35%
ELLIPSE 94% 27% 85% 34% 46% 46% 43% 17% 75% 45%
DELTADUR 97% 25% 88% 32% 45% 47% 42% 18% 74% 45%
VIBPROP 68% 35% 58% 50% 49% 23% 43% 7% 81% 29%
LNERRSQ 99% 29% 87% 36% 50% 47% 44% 16% 76% 46%
TURNINDADVANCE 97% 25% 89% 31% 45% 47% 43% 18% 75% 45%
LNMNSQ 96% 27% 87% 34% 47% 41% 42% 15% 77% 41%
LANEX 99% 29% 87% 36% 50% 47% 44% 16% 76% 46%
LATMEAN 92% 30% 82% 39% 50% 41% 46% 13% 78% 43%
LANEAPPROX 79% 32% 70% 44% 50% 29% 43% 9% 80% 34%
LANEAPPROXAD 83% 39% 62% 52% 57% 25% 46% 7% 81% 31%
LANEAPPROXADAPT 83% 34% 65% 49% 52% 26% 41% 8% 80% 30%
DELTALATPOS 81% 34% 70% 46% 52% 31% 46% 8% 81% 36%
LANEDEVSQ 66% 36% 58% 50% 49% 19% 44% 5% 82% 25%
NMRHOLD 73% 37% 50% 57% 52% 29% 51% 6% 82% 35%
LANEDEV 85% 32% 76% 42% 51% 35% 45% 10% 79% 39%
ORA 96% 28% 87% 34% 48% 45% 44% 16% 76% 45%
LNIQR 93% 31% 80% 40% 51% 36% 44% 11% 79% 39%

Table 8.2.:Warning assessment of single feature classification results (without a-priori features), for
whichFβ is maximal forβ = 1.2. All features are baselined bymaxof the first active 1 to
20 min.

8.3.3. False Alarms by Driving Duration

Up to this point, we have not considered that the warning acceptance is much higher at night,
in monotonous situations and after several hours of driving. Our studies show that drivers
accept false warnings, but not missing warnings. However, amajor concern is that drivers
get "spammed" by too many false alarms. Our study shows also that drivers accept wrong
warnings after longer driving duration more than warnings at the beginning of a drive. For
this reason, Fig.8.3 shows the false alarm rate by driving duration. Within 2h of driving,
there are still under 1.4% false alarms.

8.4. Feature Dimension Reduction

Theoretically, the more uncorrelated the features are to fatigue, the better the classification.
But if the number of features gets too high, the need of more training data cannot be fulfilled
any more due to theCurse-of-Dimensionalityproblem. For instance, if 102 samples are
enough to accurately describe the distribution of an one-dimensional random number, 1020

observations will be needed to obtain the same accuracy level in 10-dimensional space.
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Figure 8.3.:False-alarms accumulated by driving duration.

The curse of dimensionality can be tackled by the reduction of feature dimension or selection
techniques that focus on the most relevant features. For this reason, dimension reduction
techniques are applied.Principal Component Analysis(PCA) andFisher transform(LDA)
are methods to transform a given feature space to a lower dimensional one (Duda et al.,
2001).

TheSequential Floating Forward Selection(SFFS) algorithm was first introduced byPudil
et al.(1994a,b). In the forward step,SFFSsequentially adds the most significant new feature
to the set until a given number of features is reached. In order to avoid going straight to a local
optimum, conditional exclusion steps (backward steps) arerepeated until an improvement
of the performance is achieved or the performance starts to decrease. It is assumed that
a new added feature can contain redundant information that is already inside the selected
subset. This way, redundancy can be reduced while not loosing too much discrimination
performance.

PCAdoes not yield any useful results, since the precondition that the variance of the signal is
larger than of noise, is not fulfilled. AlsoLDA has shown poor results compared to theSFFS.
The advantage ofSFFSis its high transparency as the selected features remain unchanged and
only these features need to be extracted.SFFSis applied here to select the most promising
features for a classifier.

Tab.3.9shows the frequently selectedEYE features from theSFFSselection of the features
listed in Tab.4.2.

A statistic is made of how often features are selected after repeated runs of the non-determin-
istic SFFS. It was often observed that related features were selected during different iterations
(e.g.LANEAPPROX andLANEAPPROXADAPT). Thus, we can assume that such features can
be used interchangeably and all features of a family would not provide any performance gain.
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For this reason, only the best feature out of its family is used, the one that was selected
most often. Tab.8.3 lists a statistic of the most frequently selected features after 30 SFFS
repetitions in combination with theBayesclassifier. It can be seen that correlation coeffi-
cients of individual features are not necessarily related to the performance of the features in
combination.

ID Feature Name Selections ρp ρs

45 CIRCADIAN 30 0.49 0.51
43 TOT 30 0.26 0.27
22 DEGOINT 30 -0.19 -0.22
29 LNMNSQ 30 -0.03 0.01
51 STWEVNT 29 0.16 0.17
52 STV25 29 -0.30 -0.34
54 STV75 29 -0.32 -0.36
38 DELTALATPOS 19 0.14 0.13
39 DELTALATVELMAX 18 0.11 0.11
17 ZIGZAGS 17 0.12 0.10
34 ORA 14 0.09 0.08
40 LANEAPPROXADP 14 0.02 0.01
53 STV50 14 -0.27 -0.32
33 LNERRSQ 13 0.05 0.10
35 TLC1MIN 11 0.18 0.18
30 LNIQR 9 0.09 0.09
14 LANEAPPROX 6 0.14 0.15
19 LATMEAN 5 -0.10 -0.11
36 VIBPROP 5 0.08 0.08
26 TRFCDENS 4 -0.33 -0.40
31 LNCHGVEL 3 -0.12 -0.20

Table 8.3.:Correlation coefficients of frequently selected features

8.5. Classification Results

For classification, features in the matrixF from Sec.4.2.1are cleared forNaNand∞ values
and filtered for time instants, for whichS ASCAN andS ASLANE are active.F is downsampled
to Fs = 0.5Hz to speed up processing time, based on the assumptions from Ch. 4 that fatigue
changes slowly. All features are used with baselining from Sec.5.4.1.

Different classifiers, such ask-nearest neighbor, linear discriminant analysis (LDA), Bayes
classifier, Gaussian mixture models (GMM), support vector machines (SVM) and artificial
neural networks (ANN). Results are obtained by cross-validation with a training, valdation
and test set ratio of 80:10:10 percent forANN and 80 to 20 percent for all others. The
results were averaged over ten permutations of the training/testing set to obtain a more stable
result.

Since the classification does not take into account the signal history (except HMM), the
classification result is smoothed based on a majority decision towards adjacent classification
results. A majority weighting is applied by a median filter using theN = 7 adjacent values to
obtain a more stable result. Details can be found in the thesis ofde Mattos Pimenta(2011).

A comparison of test errors for different classifiers is given in Tab.8.4. The best results are
achieved with the best 11 features that have been selected bySFFSin combination with the
Bayes classifier.
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Classifier Test Error [%] AUC

k-NN (k=5) 44.0

GMM (3. Modes) 43.3

Linear discriminant 32.4

Bayes classifier + SFFS 36.6

SVM (C = 2−2,γ = 2−7, RBF kernel) 27.9 0.76539

ANN 16.6

Table 8.4.:Test error for three fatigue classes with a training/testing ratio 80:20 (80:10:10 for ANN)
and 10-fold cross-validation

Tab. 8.5 presents the confusion matrix for Bayes with a full covariance matrix andGMM
with two Gaussian mixture modes.GMM performs better in predicting fatigue, however,
with more false alarms.

Correct

Awake Acceptable Drowsy
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Awake 63.2 % 25.9 % 3.7%

Acceptable 32.1% 62.8 % 62.1 %%

Drowsy 4.7 % 11.3 % 34.2 %

E
st
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ed
G

M
M

Awake 64.4 % 34.5 % 6.1 %

Acceptable 27.8 % 47.8 % 51.6 %%

Drowsy 7.8 % 17.7 % 42.3 %

Table 8.5.:Confusion matrix for Bayes with full covariance matrix and GMM with three modes

8.5.1. Neural Network Classification Results

The best results are obtained by a neural network with the interpolatedKSS, as it allows
the modeling of more complex structures. The detailed confusion matrix in Tab.8.6 stems
from a feed-forward neural network with three hidden layers, each with 30 neurons trained
by backpropagation.

Correct KSS

1 2 3 4 5 6 7 8 9

E
st

im
at

ed
K

S
S

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 100.0 61.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0

3 0.0 38.7 75.6 2.1 0.0 0.0 0.0 0.0 0.0

4 0.0 0.0 20.2 90.6 5.4 0.1 0.0 0.0 0.0

5 0.0 0.0 3.7 7.3 90.8 5.6 0.6 0.6 0.6

6 0.0 0.0 0.4 0.0 3.8 91.4 6.8 2.4 0.6

7 0.0 0.0 0.0 0.0 0.0 2.8 91.3 28.5 7.2

8 0.0 0.0 0.0 0.0 0.0 0.0 1.4 68.4 46.1

9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.045.6

Table 8.6.:Confusion matrix for ANN classification results in percent
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Application of theANN with the same parameters to the classesawakeanddrowsy(including
acceptable) yields:

Awake Drowsy
Awake 96.4 % 10.7 %

Drowsy 3.6 % 89.3 %

Fig. 8.4 shows a scatter plot with regression line of the classification result compared to the
true KSS. The classification result for everyKSS level has a scatter of±1 level. It can be
seen that theKSSlevel 9 is sometimes mixed up with more awake classes. It is interesting
to see that atKSSlevel three, almost everyKSSlevel is estimated by theANN. A plausible
reason for this is, that drives with missingKSSentries are filled with the defaultKSSlevel
three during the plausibility check without really knowingthe real driver state. It shows that
theANN is able to interpolate missingKSSvalues better than using default values.
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Figure 8.4.:Scatter plot and regression line ofANN classification results plotted against and trained
by the nine interpolatedKSSlevels

Fig. 8.5 shows theROCcurves of different feature groups and classifier combinations. The
selection of the best lane and steering features (blue) classified by the Bayes classifier per-
form better than the single featureSTVEVENT from the (black). The baselinedATTENTION

ASSISTseries featureGGGLWF (black) that includes the time-on-taskTOT andCIRCADIAN
just reaches the target area specified by the project. The causal (blue) features set in combina-
tion with TOT andCIRCADIAN perform about 6% better in the target area and much better
for high detection rates at the cost of unacceptable false alarms. The combination of causal
features (blue) and the improved steering event rateSTVEVENT yield the best results. For
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theANN result, only the point with the minimum test error was available and was included
for comparison. It shows by far the best results inside the specified project target, however at
a much lower false alarm rate.

It can be seen, that theANN lies much better in the target area than the other methods.

Figure 8.5.:Comparison of ROC curves of different feature groups

8.6. Deep Learning
Deep Learning(DL) is a subset ofMachine Learning(ML) that has grown exponentially
within the last decade (Goodfellow et al., 2017). For instance,Convolutional Neural Net-
works(CNN) (Patterson and Gibson, 2017) reached a brakethrough in image segmentation
(Krizhevsky et al., 2012). Natural language processing (NLP) or hand writing recognition
often times surpass the level of human accuracy withRecurrent Neural Networks(RNN)
or more specificallyLong Short-Term Memory(LSTM) networks. In contrast to traditional
machine learning,Deep Neural Networks(DNN) can learn from raw signals and laborious
manual feature engineering is not required, however tradedin by higher computational de-
mands. Tab.8.7shows a comparison between conventionalML andDL.

Conventional Machine Learning (ML ) Deep Learning (DL)

+ Fast training of models − Expensive training

+ Good performance with small amount of data− Vast amount of data required

− Manual feature engineering + Learns features and network

parameters automatically

Table 8.7.:Comparison between traditional Machine Learning (ML) and Deep Learning (DL)
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In CNNs, feature extraction can be represented through convolution with trained kernels
moving with a given step size (stride) over the raw input signals. The convolution takes place
in the neurons of convolutional layers that can represent any type of spatial or temporal filter
to smooth, differentiate, integrate or match patterns. Thenetwork structures can consist of
a few or up to over hundred cascaded layers (e.g. VGG, ResNet). As activation functions
of neurons, sigmoidal functions can limit large values. TheReLUfunction (simplified diode
equation) became very popular, since it significantly speeds up the learning rate (gradient
descent) and non-linearity is introduced. One or several convolutional layers are generally
followed by pooling to condense information to save computational cost and reduce over-
fitting. Averageor max poolingare commonly used, since the largest value represents the
highest activation. The last layers generally consist of classical neurons (often dense, i.e.
fully connected) that represent the classification and use the output of convolutional neurons
as features. In case of a classification problem, the finalsoftmaxnormalization converts the
outputs to probabilities in order to make a decision.

For time-series applications,RNNs are frequently used, where neurons additionally have
a feedback memory that can learn sequential information (Patterson and Gibson, 2017).
However,RNNs particularly suffer from numerical problems during training ("vanishing/ex-
ploding gradient problem").LSTM networks (introduced byHochreiter(1991) respectively
Hochreiter and Schmidhuber(1997)) do not suffer from this problem and appeared most
appropriate in the present application in conjunction withconvolutional elements.

For some applications (e.g. WaveNet (Oord et al., 2016)), aCNN with a large enough recep-
tive field (i.e. the kernel size) can successfully be used instead of anRNN, with other words:
a purely feed-forward filter (FIR) instead of a recursive filter (IIR).

For training ofDNNs, theback propagationalgorithm is used in analogy to traditionalANNs.
In order to reduce the computational complexity for large networks and amounts of data, the
processing ofbatchesallows to use only representative subsets of the data for training.

8.6.1. Application of Deep Learning to CAN-Signals

Firstly, the simplest approach to useDL to solve the present problem is to useDNNs on the
manually designed features. Using improved algorithms allows to use more features concur-
rently and suffers less from the curse-of-dimensionality problem. This is an alternative for
dimension reduction withSFFSor PCA. Recursive (such asRNN andLSTM) or convolu-
tional network structure in conjunction with pooling aggregation, dropout and processing of
batches allow to train with a sequence of features. ADNN can be used forordinal regression
(cf. Ch. 8.2.1) and exploits the rank information of interpolatedKSS levels (cf. Ch.3.3.6),
which generally improves the performance (Costa, 2005; Gutierrez, 2016). However, infor-
mation that is lost during the feature extraction cannot be recovered and poses limitations to
the achievable accuracy.

Concepts for Automatic Feature Extraction: As mentioned in Sec.8.1, an end-to-end
DNN can automatically learn features from raw data. Principally, a DNN is able to model
all signal processing steps of traditional feature engineering such as smoothing, differentia-
tion, pattern matching etc. Structures and parameters are learned automatically at the cost
of computational complexity. Reducing the computational inference cost (i.e. the network
complexity) is still a manual process. No literature on using DL on CAN-signals was found
that would have been useful for this application.
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CNNs have shown their strength in detecting patterns in 2D images, but lately also in 1D time-
series applications (e.g.ConvLSTM, ALSTM-FCN, cf. (Cui, 2016; Gehring, 2017; Karim
et al., 2018; Janos, 2018)). LSTMs have shown their strength in long time-span sequence
applications, especially for high sampling rates where temporalCNNs would require to store
a huge amount of the input data.

In the previous chapters, we found that the causal information about fatigue is expected to be
in events and sliding windows in the steering and lane signals mostly. For instance, in order
to detect steering patterns that usually take up to five seconds, a temporal convolution can
be performed on the steering velocity. For the inference of aCNN, this requires to store 250
samples of the input sequence. However, the event itself does not yet correlate with fatigue
and theirfrequencyover a time-span over at least 20 min is required. The same temporal
convolution would be able to find lane-based patterns such aszig-zag events, lane deviation
or approximations. For lane data, the time-spans are even higher and last up to one hour (180k
samples per signal). The detection of single events is possible with aCNN, but especially for
the inference, the memory demand for a large perceptive fieldto retain event rate information
cannot be met. For such long time-spans,LSTM structures are much more promising.

Recent publications (Shi, 2015; Cui, 2016; Wang et al., 2016; Karim et al., 2018) show, that
a combination of convolutional and recurrent/LSTM networks can outperform solitary struc-
tures. Thus, the most promising approach would be a combination of CNN layers, followed
by LSTM layers for the stage of feature extraction.

As input, the steering wheel angle velocity, absolute lateral lane position and width, vertical
and lateral acceleration, accelerator pedal position and wheel rotation speed are suggested
to be used. To remove useless noise, it is proposed to use theDISPOfilter for smoothing
and differentiation, suggested in Ch.4.1.1. Inputs shall be standardized to zero-mean and
unit-variance.

Patterns that are induced by external events, such as lane-camera inactivity, lane changes,
overtaking, cross-wind, road warping, curves, construction sites etc. are not related to fatigue.
These useless patterns that stem from such situations can bemuted by removing samples
when thesystem-active-signalis passive (cf. Ch.4.1.3).

Dense layers take over the classification of these features and the last neuron of theDNN
shall be an ordinal regression neuron. As target reference,the interpolated nine levelKSSen-
tries are most suitable for the regression. The predicted classes finally have to be mapped to
the bar-graph levels or the warning strategy. Finally, tuning the network structure and hyper-
parameters is one of the most challenging tasks.AutoMLapproaches gained high popularity
and can performNeural Architecture Search (NAS) (Hutter et al., 2019) where the structure
of the network and involved parameters can be searched according to predefined strategies
and restrictions, however at the cost of additional complexity.

Challenges: As already argued in Ch.4, due to on-board inference cost and intransparency,
DNNs are not the first choice for deployment on automotiveECUs. For off-board training,
processing of big data andGPUin liaison with cluster/cloud computing would be necessary
and were not available for this thesis.

A-priori factors such asdaytime, time-on-task, vehicle speed, curvature monotonyand light
shall also be included. These signals need no pre-processing to directly correlate with fa-
tigue. As a consequence of the very unbalanced class distribution, classifiers strongly tend to
detect night experiment situations in which fatigue is muchmore prevalent than in real road
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drives. These driving situations are not causal indicatorsfor fatigue. Based on the a-priori
distribution of free drives, random oversampling the minority (sleepy) or undersampling the
majority (awake) is a common approach (e.g.Synthetic minority Over-sampling TEchnique
(SMOTE) usingk-NN). This would either loose information or blow up the amount of train-
ing data by magnitudes. At the other hand, continuous-valued external factors such as speed,
traffic density, curvature and road condition have a strong influence on features as shown in
Ch.5.2. Features need to be independent of these factors. It appears challenging to design a
DNN that is able to distinguish between normalization and taking the a-priori distribution of
free drives into account. When removing samples to mute events, the timing and event rate
information is lost and cannot be learned by the classifier any more. The reaction time to
external events, such as the steering correction after roadbumps is also no longer contained
in the inputs. Adaption to new vehicles types and different countries is a major issue and
only works if all dozens relevant vehicle variants were available prior to production to record
training data, e.g. for transfer learning.

Another challenge is certainly the adaption to the driver inanalogy to baselining. In order
to adapt to individual driving styles, the result of the feature extraction layers from the be-
ginning of the drive would have to be stored, aggregated by max pooling (in analogy to max
baselining) and later fed into the decision stage of the network.

Due to the large spectrum of external factors and driver types that overlay the weak fatigue
patterns, a lot more data and situations would be required totrain aDNN. This could only
be achieved by the oncoming over-the-air (OTA) infrastructure where sensor signals are per-
manently preprocessed on-board and transferred to the back-end. For supervised learning, a
ground truth reference is mandatory. Using real field data may fill the lack of data and solve
the unknown a-priori distribution problems, however will raise an even bigger problem: cus-
tomers will not estimate their fatigue level every few minutes nor will they wearEEG/EOG
electrodes. Transfer of driver-camera video data for offline labeling would require a driver
camera and is not possible over 4G (LTE+) or even 5G since the produced traffic would be
way too expensive. Centrally storing driver videos would also be very critical for data protec-
tion and crash liability reasons. If a camera would be available, it would make more sense to
investigate eye-tracking based approaches.

Reinforced learning would require to interpret the reaction to warnings as reference, as de-
scribed inreinforcement learningin Ch.8.2.2. However, this is even much less reliable than
theKSSand lacks temporal resolution and fatigue levels. An optionwould be to incentivize
customers to rate their warnings and thereby "entertain" them with an experiencable car that
is self-learning.

8.6.2. Application of Deep Learning to Driver Camera

Especially eye-tracking camera-based driver state classification can potentially profit from
DL. Parkhi et al.(2015); Mukherjee and Robertson(2015) andHan et al.(2018) have con-
firmed, that classification with multiple stages work best for eye-blinking detection. At first,
the face is detected in consecutive driver-video images by aCNN. After initialization, the
search region-of-interest (ROI) can be reduced by tracking. As face model reference, exist-
ing databases can be used or manually labeled for this stage.Face models of known drivers
can be stored to accelerate initialization.
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In the second stage, the eyes, pupils and eye-blinks can be detected in the again narrowed
down, but higher-resolutionalROI. TheEOGsignals from Ch.3.4 can be used as reference
for eye-blinks in this stage.

In the last fatigue classification stage, anRNN or LSTM can be used for deriving the sleepi-
ness level from the eye-blinks. As shown in Ch.3.6.11, a video frame rate of at least 100 fps
is required to reliably detect eye-opening and -closure speed. As reference, theKSSentered
by the driver can again be used. Video recordings even allow amajority voting of experts,
which is actually considered to be the most accurate method (cf. Ch.3.3.1). By training these
stages independently, the eye-blink signal is free from influences in the video image that
could lead to over-fitting to the training data. For instance, a full end-to-end approach that
works on the raw data could exploit that fatigue is more prevalent during night experiments,
i.e. low light conditions. Fatigue also occurs most often during low traffic, which results in
fewer shoulder checks, i.e. horizontal head rotations. However, these relationships are only
valid for the training data with artificial night experiments and no causal indicators for fatigue
during real road drives. It is desired to be independent of such situation based a-priori fac-
tors, since the amount of fatigue during night and day or traffic density is unknown. Training
an end-to-endCNN for facial expressions (e.g. yawning or head-nodding) is anadditional
option.

8.6.3. Conclusion on Deep Learning for Fatigue Detection

Even ifDL is superior in many applications, the fatigue patterns are quite weak and obscured
by other factors in theCAN data. In summary, straightforward deployment of aDNN will be
inferior to theML approach in which expert knowledge is explicitly modeled during feature
engineering.

In comparison,DL approaches based on driver-camera are expected to be most feasible and
promising. The gained features are causal and can be mostly independent from the a-priori
distribution or external influences. The missing ground truth problem also remains here.
However, for this thesis, the amount of representative state-of-the-art camera-data with high
frame-rate and withKSS reference were not available. The focus was explicitly on using
CAN-signals, since there was no camera on the market that was ready for production.
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Chapter 9.

Conclusion

9.1. Summary

Fig. 9.1shows a "graphical abstract" of the entire system and development process.

Figure 9.1.:Visual abstract: overview of the entire system

Pursuing the goal of developing an assistance system, to detect the driver sleepiness state,
many steps were necessary that have been refined over many iterations.

Starting with only one feature that detects steering corrections by a driver adaptive threshold,
it soon became clear that more effort is needed to reliably detect driver fatigue.
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A major restriction during the optimization of the system was the lack of a reliable "ground-
truth" reference. For this reason,EEG, EOG and camera-based features were evaluated.
Although the results in literature are often reported to be very good, the use of real-road
drives did not show satisfying results. Direct camera-based blinking features have shown the
most promising results. However, a camera system was not yetavailable at that time that
was robust enough to cope with realistic driving conditions. Further, a large amount of data
were only recorded by using theKSSreference. For this reason, theKSSwas found to be the
most practical reference. Numerous features were analyzedregarding their correlation with
the KSSdrowsiness reference. Many of them correlated relatively well, especially a-priori
features, such as time of day, time-on-task, monotony and traffic density. However, a-priori
features need to be treated carefully as they are not sensitive to the real driver condition.

For the series introduction of theATTENTION ASSIST 2.0 with theATTENTION LEVEL, a
bar graph was implemented based on several features with continuous output. An extensive
night study with a real-time implementation of theATTENTION LEVEL was conducted to
verify its acceptance. Plausible levels were shown most of the time, but it was observed that
a system active / passive detection was introduced which indicates to the driver, whether the
system is passive and unable to detect theATTENTION LEVEL.

The lane based features have shown results comparable to thesteering based features. An
important requirement of our application, however, is to use sensors from series equipment
instead of using a special equipment lane-tracking camera,that is not available for the ma-
jority of vehicles in the field. For this reason, the idea was to estimate the same lane-based
features from inertial sensors and vehicle tracking. Not with the same, but still good accuracy,
some lane-based patterns could be used in this way.

In the last iteration, another major impact on features was addressed, the influence of unde-
sired factors like external influences and inter-individual driving styles. Especially under real
world conditions, the suppression of external influences and adaption to the driver is very
important. It was observed that there are different types ofdrivers, those who accurately
keep the lane by lots of steering corrections and those who donot hastily correct the lateral
position and have a rather loose lane keeping. Specific measurements have been recorded to
quantify and compensate for their effects as good as possible.

Based on the extracted features and a feature selection step, different classifiers have been
compared. In general, lane based features were often selected in combination with steering
based features, as they provided complementary information. Neural networks, LDA and the
Bayes classifier, in combination with SFFS feature selection, performed best for the difficult
features. Especially neural networks have shown to enhancethe system performance. But
even with a large set of new and improved steering and lane based features, the classification
performance was not as good as the results reported in literature, using a smaller amount of
data from a simulator or using drives under testing conditions.

9.2. Future Work and Outlook
An optimally operating fatigue detection system can only bedeveloped by jointly taking all
the factors mentioned in this thesis into account. Investigation on the following approaches
could further improve the results:

• Installation of a steering wheeltorquesensor in order to measure reaction times, as
described in Ch.4.4.12
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• MergingEEG, eye-signals (e.g PERCLOS (Batista, 2007)) and a distraction measure
in addition to theKSSfor a better temporal resolution of the reference

• Further analyze multi-level classification to use driving style specific features
• Further investigate Hidden Markov-Models and Bayes networks to model temporal

aspects and expert knowledge
• Derive driver-model control system parameters, as described in Ch.4.4.16
• Using unsupervised learning to incorporate the driver reaction, whether he is following

the proposed warning or not, to update classification sensitivity
• Applying more extensive parameter optimization, not only of single features but with

the classification performance of selected features as costfunction
• Investigate Deep Learning methods and its ability to learn features automatically from

source signals. Convolutional and recurrent/LSTM neural network structures appeared
to be most appropriate.

• Using existing over-the-air and cloud infrastructure for reinforcement off-board learn-
ing and adaption to known drivers, environments and vehicleproperties.

Driving in a driving simulator and under supervised conditions has a big influence on the
driver’s behavior. It was observed that many awake drivers will also drive sloppy, if the
motorway is empty or if they are distracted by talking or other actions. The driving behavior
in these situations is the same as for drowsiness and, thus, cannot be distinguished. For this
reason, a good strategy would be to provide feedback to the driver about his/her objective
driving performance over theATTENTION LEVEL bargraph. In the actual system, only one
feature is used instead of theANN result in Ch.8.5.1. Usually, drivers tend to drive more
aware, if they get a feedback on their driving performance.

The temporal unavailability of the lane-tracking has already been considered during the fea-
ture extraction. The block diagram in Ch.?? shows how to cope with the case that lane data
are temporarily unavailable due to bad vision, mis-calibration, missing lane markings or in
case the ALDW is not installed or damaged. If theLaneDataQualindicate unavailability, the
training parameters and classification input features should be switched.

In the big picture, after decades of research, one has to accept that the driving parameters
contain only a limited information about the driver state and by magnitudes lower than other
external influences. Indirect fatigue monitoring through driving parameters will still be rele-
vant for at least two decades as manual driving will still play a role until 2040 even in level 5
driverless vehicles and vehicles in lower segments.

In any case,camera-basedeye blinking detection was shown in this thesis to be most suit-
able as a reference and for on-board implementation in series application. Especially under
the viewpoint of a future autonomous driving, a driver camera allows not only direct driver
state estimation by eye-tracking, but also a broad variety of other applications such as driver
distraction detection ("‘eyes-on-road"’), driver identification, driver vitality (heart rate), ges-
ture, emotion and facial expression detection. This directmethod also works for automated
driving and is less affected by external influences and driving styles. For partial automated
driving it must be assured that drivers remain alert to hand the operation over to the driver
in situations the car can’t handle. The driver camera has further benefits such as drivers can
also be identified to continuously learn their driving style. The latest over-the-air and cloud
computing infrastructure are enablers with the highest potential for improved performance.
ADAS warning thresholds can be lowered if the driver’s eyes do notpoint towards a braking
vehicle.
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Appendix A.

Appendix:

A.1. Proving ground Papenburg and Idiada

Fig. A.1 shows a map of the commonly used proving grounds Papenburg and Idiada. The
longest oval course has a length of 12 km.

N

Figure A.1.: Proving ground Papenburg (above) and Idiada (below). (Sources: (ATP Papenburg,
2012) and (Idiada, 2012))

A.2. Datasets

Different datasetswere defined that were dedicated to specific evaluations. These datasets
are criteria to select drives with certain patterns implemented asSQL queries. The resulting
fixed set of drives serves to compare the results. Using a smaller data set speeds up the



– 178–

simulations. The results can then be refined and validated ona larger or full dataset. The
most important datasets used in this thesis are described inthe following section.

For faster processing, the datasetALDWvalidNDwas a smaller set of drives that contained
a large portion of fatigue. It excluded all free and KNFE drives in which fatigue was rare
and the driving situations varied too much. After filtering the full database, 82 269km of real
drives with 781 hours remained:

• 323 drives (141 night drives; 124 free drives; the rest were excursions)
• 10 vehicles (Six E- and four S-Class)
• 103 drivers (26% by women)

The criteria for drives in this data set were:

• Drives werevalid according to the validation criteria in Sec.A.7.3
• KSSself-rating was valid and plausible
• At least oneKSSentry was made
• The driven distance was at least 30 km
• Lane-tracking data had to be valid and without measurement errors
• No driver switch (otherwise the drive would have to be cut up every time)
• Only E- and S-class vehicles (excluding vehicleID=69 due toits miscalibrated camera)
• Availability of plausible and valid ALDW data for over 50% ofthe time

ALDWvalid was defined equally to ALDWvalidND, just that additional drives from all
experiments with ALDW were included (32 of 91 experiments).Especially Customer Near
Driving (KNFE) and free drives were added. The quality of these drives is lower, especially
with regards to the KSS self-estimation. From 25 vehicles, 1.642 drives with over 2.722
hours of driving, and 265.469 km remained. Here, the percentage of women was only 14.3%.
The lane data quality and active time of drives in Sweden and Italy were sometimes very bad
due to bad road conditions.

FieldDrives was a good representation of customer drives in the field and therefore cov-
ered only free drives and customer near driving (KNFE). The 2.133 drives from 425 drivers
covered 299.170 km of driven distance during 3.174 hours, but only 12.5% women.

validTopDrivers For the classification of drivers and clustering of driving styles in Ch.5.4,
the DataSetvalidTopDrivershad to be defined. The filter criteria were the same as forALD-
Wvalid, except with the additional filter criteria:

• Only the top 15 drivers with the highest number of drives wereselected:driverID ∈
20, 152, 609, 607, 133, 59, 5, 340, 753, 165, 483, 485, 484, 19,482.

• Only drives with max(KS S) ≤ 7 were selected.
• Only excursion experiments and free drives, no night studies

233 drives with 542 hours and 57.835 km of driven distance remained and 27% of them were
made by women.
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A.3. CAN Signals

Tab.A.1 lists the names and abbreviations of the essential CAN signals used in this thesis.
The signals are grouped by the sensors they originate from, i.e. the steering wheel angle sen-
sor (STW), accelerometer (ACCEL), Yaw rate sensor (YAW), accelerator pedal (ACCPDL),
switches and buttons (SW), levers (LEVER), rain and light sensor (LIGHT), clock (CLK),
wheel rotation rate sensors (WHLRPM), control system ECU active (CTRLECU), global
positioning system (GPS) and lane tracking camera (ALDW).

Tab.A.2 lists the available signals for the system fromRobert Bosch GmbH.

A.3.1. Synchronization of CAN-Bus Signals

In this thesis, a novel interface for communication with thevehicle CAN-bus was imple-
mented for real-time visualization, measurement and data conversion. The Controller Area
Network (CAN)-bus is an asynchronous, serial message-based bus protocol designed for au-
tomotive application.

Every CAN message ID originates from one dedicated device, to which multiple bus mem-
bers can listen. Message IDs must be unique on a single CAN bus. The message ID is used
as a priority to achieve a bus load of up to 80%. The lower the ID, the more important the
message. The 11-Bit ID Base frame format in CAN 2.0A allows upto 2048 different message
IDs while the Extended frame format in CAN 2.0B allows 229 IDs. Carrier Sense Multiple
Access / Collision Resolution (CSMA/CR) is used for arbitration to avoid collisions. Every
bus member is listening bitwise and submitting its ID. If multiple units try to submit at the
same time, the dominant bit of the member with the lowest ID isoverwriting the recessive
bits of the other units which, then, stop submitting. For this reason and with the present high
bus load, the transmission time instant cannot be assured.

A CAN frame is composed as described in Tab.A.3. In addition, the measurement hardware
stores the message counter and the timestamp of the message reception.

Messages can be transmitted with different rates, depending on the sampling frequency of
the contained signals. Mostly, high-speed CAN with bitrates of up to 1 Mbit/s are used at
network lengths below 40 meters. There are also low-speed CAN with a maximum bitrate of
125 kbit/s.

Every CAN signal is defined according to the structural properties listed in Tab.A.4. The
payload of a CAN-signal cannot be interpreted without this decoding information. These
definitions of all signals of a CAN bus is stored in a DBC-file (along with signal descrip-
tions). Depending on this definition, every payload of one CAN message is composed of one
or several signals. Signals with more than 32 Bit have to be distributed on multiple CAN
messages. The interpretation of the data bits is only possible with this definition (DBC file),
as it defines every signal.

Tab.A.4 shows the header and payload definition bits of a CAN-messageas defined in DBC-
files.

Signal Synchronization

Another challenge is the synchronization of different CAN-signals and sensors that work
with different asynchronous sampling times. The CAN-bus isnot deterministic. Hence, a
message can arrive delayed and lead to gaps and jitter in the signals. Fig.A.2 illustrates
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ID Abbreviation Description Class
1 δS Steering wheel angle sensor with high-precision STW
2 δS,ESC Steering wheel angle sensor fromESC STW
3 δS,o f f set Steering wheel angle sensor offset STW
4 âx Longitudinal acceleration from accelerometer ACCEL
5 âx,o f f set Est.ax offset (correct mounting tolerance, cf. Sec.2.3.2) ACCEL
6 ây Lateral acceleration from accelerometer ACCEL
7 ây,o f f set Est.ay offset (mounting, road inclination, cf. Sec.2.3.2) ACCEL
8 ψ̇ Yaw rate YAW
9 ψ̈ Yaw acceleration from sensor YAW

10 AccelPdlPosn Accelerator pedal ACCPDL
11 AccelPdlPosnRaw Accelerator pedal before manipulation by ACC/limiter ACCPDL
12 TurnIndLvrS tat Turn indicator SW
13 TlmS wPsd Telemetry switch pressed SW
14 S tWS wPsd Steering wheel switches 0 to 15 pressed SW
15 HrnS wPsd Horn pressed SW
16 DTRDistRq Distronic distance state SW
17 Phcall_Act Phonecall active SW
18 AirConS w Air conditioner switches SW
19 S eatAd jS w Seat adjustment switches SW
20 MirrorS w Mirror adjustment switches SW
21 CLUTCH Clutch SW
22 DrRLtchFRS tat Driver door state SW
23 BcklS wD Driver sear buckled up SW
24 S pdCtrlLvrS tat Speed control lever state LEVER
25 HiBmLvrS tat High beam light lever state LEVER
26 W prWashRS wPosn Windshield wiper position LEVER
27 LgtS ens Light and rain sensor LIGHT
28 T IMEHR Time of day in hours CLK
29 T IMEMN Time of day in minutes CLK
30 WhlRPMFL Wheel rotation rate front left WHLRPM
31 WhlRPMFR Wheel rotation rate front right WHLRPM
32 WhlRPMRL Wheel rotation rate rear left WHLRPM
33 WhlRPMRR Wheel rotation rate rear right WHLRPM
34 AS Rctrl Traction Control System active CTRLECU
35 ES Pctrl Electronic Stability Control active CTRLECU
36 ABSctrl Anti-lock Braking System active CTRLECU
37 HBActrl Hydraulic Brake Assist active (e.g. BAS, BAS+) CTRLECU
38 GPSlon GPS longitude GPS
39 GPSlat GPS latitude GPS
40 GPShead GPS heading GPS
41 GPSspeed GPS speed over ground GPS
42 GPSalt GPS altitude GPS
43 GPSvalid GPS valid GPS
44 MMlat map matched latitude from head-unit GPS
45 MMlon map matched longitude from head-unit GPS

Table A.1.: The simplified list of major CAN sensor signals

how the timing is disturbed by the CAN-bus transmission and must be recovered to the fixed
sampling rate. It is important to map the samples not to the receive-time but according to their
order. In the real-time ECU system, this works only with a delay that is larger than the longest
delay. This delay can be compensated to zero for offline computation. Samples that have not
arrived within the timeout, must be filled by holding the sample. Where needed (e.g. for
cross-wind detection), different signals have to be synchronized with individual delays that
are practically measured for every vehicle "electric/electronic" (EE) environment. Therefore,
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ID Abbreviation Description Class
39 LaneClothoidPara lane clothoid parameter ALDW
40 LaneHrztCrv lane horizontal curvature at vehicle position ALDW
41 LaneMark_Lt_S tat lane marking left state ALDW
42 LaneMark_Rt_S tat lane marking right state ALDW
43 LaneMarkCol_Lt lane marking color left ALDW
44 LaneMarkCol_Rt lane marking color right ALDW
45 LaneMarkType_Lt lane marking type left ALDW
46 LaneMarkType_Rt lane marking type right ALDW
47 LaneS iteDtct_S tat lane site detection state ALDW
48 VehPitchAngl vehicle pitch angle ALDW
49 LaneChg_S tat lane change state ALDW
50 LaneDataQual lane data quality ALDW
51 LaneLtrlDistyL lateral lane position, lane center to vehicle middleALDW
52 LaneNum lane number ALDW
53 LaneTrckTm lane tracking time ALDW
54 LaneWidth lane width (typically 3.2 meters) ALDW
55 LaneYawAngl yaw angle of longitudinal axis to tangential lane ALDW
56 NumLane number of lanes ALDW
57 RoadExit_S tat road exit state ALDW
58 RoadType road type ALDW
59 IndLmp_On_Rq indication lamp on request ALDW
60 LaneMarkWidth_Lt lane marking width left ALDW
61 LaneMarkWidth_Rt lane marking width right ALDW
62 Menu_Enbl_Rq menu enable request ALDW
63 MsgDisp_Rq message display request ALDW
64 OnCal_S tat online calibration state ALDW
65 OnCalExecDist online calibration execution distance ALDW
66 VibInsty_Rq vibration intensity request ALDW
67 Warn_Rq warning request ALDW

Table A.2.: List of measured and used lane departure input signals (Bosch)

a special driving maneuver was performed in this thesis for every car on the driving dynamics
ground. In order to synchronize the lateral acceleration, the driving maneuver represents a
step function of the steering wheel angle from 0◦ to 10◦ and back at different speeds between
60 and 180 km/h.
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Figure A.2.: Recovering sampling rate after CAN-bus transmission

A.4. Accelerometer Mounting Transform to Center of Gravity

Fig. A.3 illustrates the yaw rotation and acceleration dimensions over ground measured at
90◦ to each other directly onboard in theESC.
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Field Length [Bits] Description
Identifier field 11 ID that describes the message

(0...2047)
Identifier extension bit 1 Bit that indicates whether the message

type is extended
Extended identifier field 18 The longer ID for more than 2048 mes-

sages
Data Length Code (DLC) 4 Lenght of the payload
Data 0...64 Payload
CRC checksum 15 Cyclic Redundancy Checksum

Table A.3.: Essential fields of a CAN message

Property Description
start-bit Index of the startbit (0...63)
signal length Length of signal in bits
offset Offset of the signal
quantization Size of smallest (least significant) bit (LSB)
sign Signed or unsigned
byte-order Wheter first startbit is LSB or MSB
signal type motorolaor intel byte order

Table A.4.: CAN signal definition (DBC)
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ãx

xm

ym

CG

Sensors
ψ̇

ψ̇

∆ax
∆ay

ac

Figure A.3.: Dimensions measured by gyroscope and accelerometers transformed to the vehicle’s
center of gravity CG. Correction transform of accelerometer values to vehicle center of
gravityCG.

As mentioned in Ch.2.3.2and (Schindler, 2007, Ch. 3.2.2), the yaw ratėψ sensor position is
invariant to the mounting position whereas the vehicle speed v is different in every position of
the vehicle if rotation is involved. Thus, also the measuredacceleratioñax andãy are different
and need to be transformed to the vehicle’s center of gravityCG. With other words, if a steady
object rotates around it’sCGwith ψ̇ , 0◦/sor experiences a torque witḧψ , 0◦/s2, no force
can be measured in theCG point. At any other point, CG, acentrifugal acceleration ac can
be measured foṙψ , 0◦/s. In addition, as illustrated in Fig.A.3, if the object experiences
a torque (̈ψ , 0◦/s2), a force component inx or y direction can be observed at every point
, CG.

With the known sensor mounting positionxm andym and the rotation radiusR, the centrifugal
accelerationac = v2/R= ψ̇2R is obtained according to Eqn. (A.1). Its decomposition inx−
andy−components is then given by Eqn. (A.2) and (A.3).
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ac = ψ̇2 ·
√

x2
m+ y2

m (A.1)

ac,x = ψ̇2 ·
√

x2
m+ y2

m · cos(arctan
ym

xm
) (A.2)

ac,y = ψ̇2 ·
√

x2
m+ y2

m · sin(arctan
ym

xm
) (A.3)

For an applied torque witḧψ , 0◦/s2, the undesiredx− andy−components of the measured
acceleration are calculated by Eqn. (A.4) and (A.5).

∆ax =
1

T2
s

cos(
ψ̈

2
+ arctan

ym

xm
) · 2 ·

√

x2
m+ y2

m cos
ψ̈

2
(A.4)

∆ay =
1

T2
s

sin(
ψ̈

2
+ arctan

ym

xm
) · 2 ·

√

x2
m+ y2

m cos
ψ̈

2
(A.5)

With Eqn. (A.2) to (A.5), the compensated signals of interestax anday in the vehicle’sCG
from the measured̃ax andãy is then given by Eqn. (A.6) and (A.7).

âx = ãx −∆ax − ac,x (A.6)

ây = ãy −∆ay − ac,y (A.7)

According to (Schindler, 2007, Eqn. 3.5), this can be simplified to

âx = ãx − ymψ̈− xmψ̇
2 (A.8)

ây = ãy + yxψ̈ − ymψ̇
2 (A.9)

To cope with mounting tolerances and road inclination, the sensor offsetŝax,o f f setandây,o f f set

with the range±2.56m
s2 are estimated online by assuming that the vehicle is on average driving

straight ahead without road inclination and elevation. These four CAN signals are transferred
as unsigned values and the offsets are subtracted accordingto Eq. (A.10) and (A.11).

ax = âx − âx,o f f set− 2.56
m

s2
− 10.24

m

s2
(A.10)

ay = ây − ây,o f f set− 2.56
m

s2
−






10.24m
s2 for Robert Bosch ESC

12.5568m
s2 for Continental ESC

(A.11)

A.5. Steering Wheel Angle Sensor Principles and Unwrapping

Optical sensors have two code-slotted discs that are scanned by photo interrupters. One disc
is for the absolute angle and an auxiliary disc is connected over a gearing to turn faster and ob-
tain the high resolution. The sensor from Kostal provide non-contact, absolute measurement
ranging from -420 to +420◦ (cf. (Kostal, 2012)).

Magnetical principles always rely on hall sensors. As described in the Patent (Delphi, 2006),
Delphi introduced an auxiliary plate connected by a gear bearing to achieve the 0.1◦ preci-
sion. Beyond thePermanentmagnetic Linear Contactless Displacement(PLCD) technology,
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the Tyco Electronics (Tyco, 2010b) sensor uses a 3D-Hall sensors array triggered by a 360-
degree moving magnet. Fig.A.4 shows this slim sensor package and illustrates the operating
principle. This sensor works in an ambient temperature from-40C◦ to +85C◦ and has a mi-
croprocessor for signal evaluation, linearization, and integrated failure diagnostics. However,
the Tyco sensor does not provide an absolute angle and has different resolutions in different
angular sections. A proposed algorithm to unwrap the signalis explained in App.A.5.

Figure A.4.: Tyco 3D-Hall sensors array (Source:Tyco, 2010a) and operating principle of way and
angle registration (Source:Munzig, 2008)

Micro-Electro-Mechanical Systems (MEMS) The high resolution gyroscope and accelerom-
eter are so calledMicro-Electro-Mechanical Systems(MEMS) as discussed in (Liu, 2005).
Conceptually, an accelerometer behaves as a damped proof mass attached to springs (Liu,
2005; Dietmayer, 2008). Depending on the sensor manufacturer, the spring deflection can
be measured by capacitive, piezoelectric or piezoresistive (silicon semiconductors) princi-
ples. For instance, a movable plate is mounted with springs between two fixed plates (Liu,
2005; Schnabel, 2012). Applied forces result in displacement of the inert plate which can
be measured as a capacity change. Ubiquitously, modernMEMS accelerometers consist of a
cantilever beam with a proof mass (so called "seismic mass")that oscillates in resonance. An
applied force to the cantilever shifts the resonance frequency that can precisely be measured
using heterodyne techniques.MEMS gyroscopes work according to the same measurement
principles, but use a Foucault pendulum as vibrating element.

Steering Wheel Signal Unwrapping

Due to technical reasons, the magnetically coded disc has different encoding resolution quan-
tizations for different angle ranges (lower quantization outside±35◦). The absolute angle is
not known and thus the current section must be unwrapped. Thecode disc is also accompa-
nied by non-linearities.

The sensor for 216 and 221 vehicles has a sensor from Tyco thathas amodulo "overflow"-
behavior. Furthermore, different quantizations resolutions are used for different areas. This
makes the absolute steering wheel angle position ambiguous. Furthermore, a mounting offset
of several degrees has to be considered.

For certain recorded data, there are intermediate values between the modulo "overflow"-
jumps. This behavior can be seen in Fig.A.5.

Fig. A.6 shows the histogram of the recovered sensor signal. It can beseen that the quantiza-
tion changes from linear to logarithmic in different sections. Fig.A.7 shows the intermediate
values that appear for a measurements recorded in 2008. The discrete histogram calcula-
tion has proven to be valuable the analysis of such fixed-point signals. The wrapped and
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Figure A.5.: Tyco steering wheel angle sensor ambiguities

unwrapped signals are shown in Fig.A.8. Fig. A.9 shows that also the yaw rate sensor has
blind spots.

A.6. Measurement Equipment

Over 1.000 selected CAN signals were recorded for every drive. All data communications
in the vehicle work overCAN, LIN, FLEXRAY or Automotive Ethernetbuses. Two automo-
tive computers are used in every vehicle, one with linux for real-time measurement and one
with Miscrosoft Windows for configuration and operation. CANape from VECTOR (Vector,
2012) is running on the windows operation computer. The measurement computer features
three high- and one low-speedCAN. TheCAN Calibration Protocol(CCP) is supported to
readECU internal signals over ameasurement technique adapter(MTA). Custom device
drivers were written to measure touchscreen inputs and a supplementary USB GPS device.
Measurements are stored on an internal hard drive and have tobe copied by a Samba share
to an external USB drive.

A.7. Data Conversion

The data conversion is the most complex process step in the entire tool chain. Reasons for
that are discussed in Sec.A.7.2. The quality of the database is one of the most important basis
of this thesis and also for series-production readiness. Thus, over half a year of development,
over 16.000 lines of MATLAB code and one internship were inevitable to create a solid basis
for credible results. There are several tasks for the conversion:
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Figure A.9.: Also the yaw rate sensor has blind spots

• convert the wireshark data stream to MATLAB
• read the driver profile and store the questionnaire answers to the database
• check whether the driver names are spelled correctly and consistently use the fuzzy

levenshteinstring distance
• make various plausibility checks on missing signals, wrongmeasurement configura-

tions, and wrong touch screen entries
• manipulate or fix wrong signals
• store event markings when the driver has pressedevent
• map varyingCAN signal names to a unique name
• synchronize input data with individual sampling rates to equi-distant timestamps using

linear interpolationfor "physical" signals andnearest neighborfor discrete signals
• store all relevant information and metrics (such as driven distance, number of warn-

ings, etc.) to theSQLdatabase

A.7.1. SQL Database and Entity Relationship-Diagram

Introducing aSQL database (SQLite) with MATLAB interface allowed to access drives and
features according to application specific filter and grouping criteria. Basically, the database
is structured using the tablesdrives, drivers, vehicles, experiment, measurementandques-
tionnaire.

A.7.2. Plausibility Check

Every step in the tool chain, from the sensors, over the measurement, conversion, validation,
to the classification results, can contain errors. The entire system highly depends on the qual-
ity and correctness of the input data. Impaired data integrity can, for instance, be indebted by
the malfunction of sensor prototypes, communication hardware, or measurement equipment
due to vibrations, dirt, humidity, and temperature variations. The ongoing development of
the numerous prototype vehicles and software release updates are also causes of problems as
well as improvements and changes of interfaces and measurement configuration.

Similarly to sensor errors in Sec.2.3.3, systematic errors in the input data can drastically
corrupt simulation results. For this reason, the convertedand validated input data were au-
tomatically checked after the conversion using physical redundancy and knowledge about
signal properties. All important input signals were checked by their valid range, distribution,
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magnitude etc. Only samples at a vehicle speed over 10 km/h and steering wheel angles below
±10◦ were taken into account. In order to verify the correctness of the sign and magnitude
of the most important signals, a physical model was used to match the signals within a confi-
dence tolerance. In our case, it was sufficient to use thesingle track model(see Sec.6.3) to
compare yaw-ratėψ, wheel rotationWhlRPMFL/FR/RL/RR, accelerationsax/y, and steering
wheel anglesδa. Themean squared error (MSE)andcross-correlationfunction were used
as metrics. The conversion process must be reliable enough to meet quality requirements
of the series production. Further on, error memory records,such asESCerrors or sensor
errors were considered. Vehicle parameters and discrete encoded bit-signals were tested by
the validity of values. Pressing a button too long has been detected and suppressed.

Verification of input data does not yet cover mistakes in the simulation or evaluation environ-
ment. For instance, a mistake in the evaluation can completely falsify the results. This could
only be resolved by systematic software reviews and plausibility checks of results and calcu-
lations. The simulation result plots and evaluation metrics of each drive also helped to unveil
implausibilities. The visual plots have the advantage thatthey reveal much more errors than
automatic testing for a limited number of predefined errors.A lot of test drives for develop-
ment purposes could be removed as the driving behavior was abnormal. The combination of
all methods has shown to be very effective. This way, all input data could have been verified,
corrected, or set tonot valid.

A.7.3. Data Validation

The data conversion process is followed by a manual validation procedure. Data that contain
mistakes could not be used for classification training, so a set of hard and soft criteria were
defined:

• KSSentries and other user inputs must be valid and plausible
• A desired warning level of less thanKSS6 is an indicator of careless entries
• The highest reachedKSSis consistent with the number of desired warnings
• The number of desired warnings is implausible
• The received number of warnings does not match the obtained number of warnings
• Automatic check for signal errors, measurement gaps, or byte-shifts successful
• Check of the signal runs and other abnormalities successful
• Drives shorter than 30 km for experiments and 10 km for free drives were set to invalid
• Drives inside the plant, on testing tracks, and test drives are generally invalid

In most cases, the decision was very clear as the hard criteria applied. In the few difficult
cases, several experts had to agree to avoid systematic influences. During the validation pro-
cess, all new drives of one driver were grouped by this driverto quickly point out unreliable
drivers. An automatic rating was given for each driver on howreliably he entered hisKSS
level and questionnaire to easier sort out drivers that wereunreliable. Moreover, an indicator
for inconsistency is, when the driver indicates a differentdesired warning level for each drive.
For instance, some drivers rated their fatigue level toKSS6 even when they already had lane
exceedances. Other drivers, in comparison, rated them asKSS9 without any signs of fatigue.
These drives have been neglected. If not a singleKSSentry was made, a separate field in the
databasenoKSSwas set for a drive and the drive was set to "not valid". Depending on the
error, different consequences had to be drawn:

• Drives withoutKSSentry can not be used for simulation
• Drives without driver profile can be simulated anyway
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• The algorithm must be tolerant to minor measurement gaps or mistakes
• Drives with severe errors cannot be used for simulation

For the verification step, a separate MATLAB GUI was implemented that automatically de-
tects specific implausibilities and highlights them red.

A.8. Efficient Online-Histogram and Percentile Approximation
using EWMAs

Histogram or online quartile calculation is extremely expensive in regards to computational
complexity as the entire window length must be sored and values be sorted. The sorting
result can be stored and every new sample sorted into this list, which still requires a lot of
memory, especially for large window sizesN. For this reason, we propose an approximation
usingl EWMA filters wherel is the number of required delay elements which only depends
on the desired quartile, independent of the window sizeN. l bins are defined for thexmin =
min(x[n]) and xmax = max(x[n]) ∀n. For k(i,n) = i(xmax− xmin)/l ≤ x[n] < i(xmax−
xmin)/l ∀i = 1 . . . l, the EWMA for this bin is updated:

µi [n] = µi [n− 1] + λµ
(

δ(k(i,n)) − µ[n− 1]
)

. (A.12)

Thei/l ·100% percentile is then the value ofµi [n]. Values in between can also be interpolated
to save memory.

A.9. List of all Features

Tab.A.5 list all 144 features implemented in this thesis.

Num. ID CLASS Feature Name Description
1 43 AA AATOT Time-on-task
2 44 AA ACTIVE System Active
3 45 AA CIRCADIAN Circadian rhythm
4 55 AA CROSSWIND Road warping and cross-wind intensity
5 56 AA CROSSWINDSUPPRESSION Cross-wind suppression
6 57 AA CUVESUPPRESSION Curve suppression
7 58 AA DYNDRIVINGSTYLE Driving style suppression
8 120 AA GGG AA fatigue measure including all weightings (GGG)
9 122 AA GGGLWF GGG baselined (division by baseline)
10 59 AA MONOTONY Monotonous driving style
11 60 AA MUEDESTATUS AA drowsy (warning threshold exceeded)
12 61 AA OPERATION Vehicle operation
13 62 AA PEAKS Steering correction event (unweighted)
14 63 AA ROADBUMPS Road bumps
15 164 AA STV25 Mean of slow steering wheel rates1

16 165 AA STV50 Mean steering wheel rates1

17 166 AA STV75 Mean of fast steering wheel rates1

18 51 AA STWEVENT AA weighted fatigue measure from steering corrections
(GGG)

19 121 AA STWEVENTBL GG baselined (division by baseline)
20 64 AA WARNRQ AA warnings
21 22 ACC DEGOINT Degree of interaction from steering wheel angle and veloc-

ity
22 171 ACC MONOTONYSPD A-priori factor increasing for monotonoous situations and

at speeds around 130 km/h1

23 23 ACC REACTIM Reaction time of steering corrections to lateral displace-
ments

24 169 ACC YAWJERK Yaw rate jerks used to identify drift-and-jerk patterns1
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Num. ID CLASS Feature Name Description
25 156 CAN DISTRACTION Distraction based on CAN signals (vehicle operation)1

26 65 CAN DRACTIVITY Driving style (monotonous or dynamic)
27 70 CAN LIGHT Environment luminosity
28 149 CAN ODOZIGZAGS ZIGZAG feature but based on odometry from inertial sen-

sors
29 66 CAN TOT Time-on-task
30 67 CAN TOTMONO Time-on-task of monotonous driving
31 68 CAN TOTSPEED Time-on-task weighted with vehicle speed (max. at

100km/h)
32 26 CAN TRFCDENS Traffic density
33 27 CAN TURNINDADVANCE Duration between turn indicator and lane change
34 28 CAN TURNINDDUR Duration of turn indicator activation (driver dependent)
35 116 EEG EEG300 EEG alpha-spindle rate with 300 second MA
36 117 EEG EEG300BL EEG300 baselined
37 118 EEG EEG60 EEG alpha-spindle rate with 60 second MA
38 123 EEG EEGOFF300
39 124 EEG EEGOFF300BL
40 143 EEG EEGOFF300Z EOG off with 5 min MA using z-transformation
41 101 EOG EOGAECS AECS but using EOG (Average eye closure speed)
42 113 EOG EOGAECSBL EOGAECS baselined
43 102 EOG EOGAPCV APCV but using EOG (Eye-lid amplitude/velocity ratio)
44 103 EOG EOGBLINKAMP BLINKAMP but using EOG (Eye-lid blink amplitude)
45 104 EOG EOGBLINKDUR BLINKDUR but using EOG (Eye-lid blink duration)
46 114 EOG EOGBLINKDURBL EOGBLINKDUR baselined
47 105 EOG EOGBLINKFREQ BLINKFREQ but using EOG (Eye-lid blink frequency)
48 115 EOG EOGBLINKFREQBL EOGBLINKFREQ baselined
49 106 EOG EOGENERGY EC but using EOG (Energy of eye-blinks)
50 107 EOG EOGEYEMEAS EYEMEAS but using EOG (Mean square eye closure)
51 112 EOG EOGEYEMEASBL EOGEYEMEAS baselined
52 108 EOG EOGMICROSLEEP Microsleep events rate with eye-lid closed> 0.5 s but

based on EOG
53 125 EOG EOGOFFAECS
54 126 EOG EOGOFFAECSBL
55 127 EOG EOGOFFAPCV
56 128 EOG EOGOFFBLINKAMP
57 129 EOG EOGOFFBLINKDUR
58 130 EOG EOGOFFBLINKDURBL
59 131 EOG EOGOFFBLINKFREQ
60 132 EOG EOGOFFBLINKFREQBL
61 133 EOG EOGOFFENERGY
62 134 EOG EOGOFFMICROSLEEP
63 135 EOG EOGOFFPERCLOS80
64 136 EOG EOGOFFPERCLOS80BL
65 109 EOG EOGPERCLOS80 Proportion of time eye-lid is>80% closed but based on

EOG
66 111 EOG EOGPERCLOS80BL EOGPERCCLOS80 baselined
67 74 EYE AECS Average eye closure speed
68 75 EYE APCV Eye-lid amplitude/velocity ratio
69 92 EYE APCVBL APCV baselined
70 76 EYE BLINKAMP Eye-lid blink amplitude
71 77 EYE BLINKDUR Eye-lid blink duration
72 95 EYE BLINKDURBL BLINKDUR baselined
73 78 EYE BLINKFREQ Eye-lid blink frequency
74 79 EYE CLOSINGVEL Eye-lid closing velocity
75 80 EYE EC Energy of eye-blinks
76 98 EYE ECBL EC baselined
77 91 EYE EYEACTIVE Eye-tracking system active
78 81 EYE EYEMEAS Mean square eye closure
79 82 EYE EYESOFF Inattention, proportion of time the drivers eyes off the road

(3 min interval) (Belz, 2000)
80 83 EYE EYETRANS Inattention, number of eye transitions made by the driver

(3 min interval) (Belz, 2000)
81 90 EYE HEADNOD Head nodding
82 84 EYE MEANCLOS Mean eye closure amplitude (Wierwille, 1996b)
83 85 EYE MICROSLEEP Microsleep events rate with eye-lid closed> 0.5 s
84 94 EYE MICROSLEEP1S Microsleep events rate with eye-lid closed> 1.0 s
85 86 EYE OPENINGDUR Eye opening duration
86 87 EYE OPENINGLVL Eye-lid amplitude level when opened between blinks
87 88 EYE PERCLOS70 Proportion of time eye-lid is>70% closed
88 99 EYE PERCLOS70BL PERCLOS70 baselined
89 89 EYE PERCLOS80 Proportion of time eye-lid is>80% closed
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Num. ID CLASS Feature Name Description
90 93 EYE PERCLOS80EWMA PERCLOS80 however with EWMA instead MA
91 100 EYE PERCLOS80EWMABL PERCLOS80EWMA baselined
92 37 LANE DELTADUR Duration between lateral inflection points
93 38 LANE DELTALATPOS Delta between lateral displacement
94 39 LANE DELTALATVELMAX Delta maximum lateral velocity
95 14 LANE LANEAPPROX Approximation to Lane proximity
96 150 LANE LANEAPPROXAD Road marking approximation with driver-adaptive thresh-

old
97 40 LANE LANEAPPROXADAPT Approximation to driver adaptive warning range
98 151 LANE LANEAPPROXBL LANEAPPROX baselined
99 15 LANE LANEDEV Deviation in the Lane
100 145 LANE LANEDEV4 LANEDEV but to the power of 4, stronger punishing of

large deviations
101 137 LANE LANEDEVBL LANEDEV baselined
102 146 LANE LANEDEVSQ LANEDEV but squared, stronger punishing of large devi-

ations
103 32 LANE LANEX Lane exceeding
104 19 LANE LATMEAN Mean lateral position
105 16 LANE LATPOSZCR Zero-crossing rate lateral position
106 24 LANE LNACTIVE Lane active signal
107 31 LANE LNCHGVEL Lane change velocity
108 33 LANE LNERRSQ Lane error squared
109 30 LANE LNIQR IQR of lateral position
110 29 LANE LNMNSQ Mean squared lane deviation
111 34 LANE ORA Over run area
112 35 LANE TLC1MIN Time-to-Lane Crossing
113 155 LANE TLC1MINBL TLC using model 1 baselined
114 161 LANE TLCREACTIM Reaction time of steering corrections to TLC 1 minima
115 36 LANE VIBPROP Warning rate of lane exceedings
116 17 LANE ZIGZAGS Zig-Zag Event
117 139 LANE ZIGZAGSBL ZIGZAG baselined
118 47 META DAYTIME Time of day
119 119 META DESWARNKSS Desired warning level (DWL)
120 144 META DISTRACTIONTASKS Distraction task reference
121 140 META LAT GPS latitude
122 141 META LON GPS longitude
123 41 META VEHSPEED Vehicle speed
124 148 META WARNACCEPT Warning acceptance question
125 48 STW AmpD2Theta Lane amplitude duration squared Theta
126 158 STW AmpD2ThetaBL AmpD2Theta baselined by max between 3 and 10 minutes

active time, saturated by 0.5 and 2.0
127 159 STW AmpD2ThetaEwma AmpD2Theta using EWMA rate (time-based) instead MA
128 42 STW ELLIPSE Magnitude of steering wheel angle and velocity (ellipse)
129 170 STW FASTCORRECT Focusing on few fast steering corrections in calm situa-

tions using moving fitted Inverse Gaussian PDF model for
threshold determination1

130 163 STW IQRCRIT Like VARCRIT however using IQR insted variance1

131 152 STW LRVFAST Fast streering wheel velocity corrections
132 153 STW LRVPERCHIGH Upper percentile of streering wheel velocities
133 154 STW LRVVERYFAST Very fast steering wheel velocity corrections
134 71 STW MICROCORRECTIONS Small steering corrections
135 168 STW MICROCORRECTIONS2 Absense of small micro-steering corrections indicate fa-

tigue, using own improved implementation (Petit and Cha-
put, 1990)

136 147 STW MICROCORRECTIONSW Rate of small steering wheel angle corrections
137 69 STW NMRHOLD Steady steering event rate below 0.5 degree
138 167 STW NMRHOLDBL NMRHOLD baselined
139 160 STW NMRSTVHOLD Number of steering wheel velocities below threshold1

140 25 STW STWVELZCR Steering wheel angle velocity zero corssing rate
141 18 STW STWZCR Steering wheel angle zero corssing rate
142 142 STW VARCRIT Variance criterion
143 72 STW VHAL Ratio of fast over slow steering velocities (Kircher et al.,

2002; Bittner and Hana, 2000)
144 162 STW WHAL Large steering wheel angle amplitudes vs. small ampli-

tudes1

Table A.5.: List of all potential features, including the sources if they are based on features in litera-
ture. Features marked with1are own proposals.
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A.10. UTM Zones

In order to match intertial data with GPS data, the longitudeand latitude were mapped to
real-wold positions in the UTM system such that they also have the unit meters. Fig.A.10
shows the UTM zones and illustrates the principle used in this thesis.

Figure A.10.: UTM Zones

A.11. Histogram of Correlation Coefficients for Single Drives

In order to further illustrate the MetricHistogram of Correlation Coefficientsin Ch. 7.2.4,
Fig. A.11 shows an artificialKSSreference signal for 20 consecutively concatenated drives.
Further, an artificial feature with some random noise is shown, that is comparable to the
Time-on-TaskTOT, but for each drive with different inclination. This inclination describes
the different sensitivity of features for different drivers or drives respectively. The temporal
order of the samples is irrelevant for the correlation.

Figure A.11.: Artificial reference (comparable to KSS) from level 1 to 9 andnoisy feature with vary-
ing inclination to illustrate Spearman histogram. The total correlation of all drives is
not as good as for every drive separately. This represents the performance of a feature
for which baselining would be ideal.
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Fig. A.12 shows at the left a scatter plot and correlation coefficient calculated for all drives
at once. The Spearman correlation coefficient of all drives at once is onlyρS = 0.811 while
almost all coefficients in the Spearman histogram, grouped by drives, areρ′S ≈ 1.

Figure A.12.: Scatter plot over all drives and Spearman histogram of coefficients grouped by drives

As a conclusion, we can see that this method of correlation analysis method serves to evaluate
a feature independently from the drive or driver-specific baseline or sensitivity. With other
words, the same result would be achieved, if the online-baselining would be ideal. We have
to consider that this can unfortunately not be achieved in practice.

Another aspect is, that theKSS should be most accurate at the moment when it is entered.
For this reason, alternatively only the instants of theKSSentries are used for evaluation and
the feature was used at this time instant or aggregated from its adjacent values.

A.12. Feature Analysis and Evaluation GUI

Fig. A.13 shows an evaluation GUI to analyze single features. All displayed information
is contained in the feature matrixF . This makes it possible to select different features and
filters for references, vehicles, experiments, drivers anddrives. Scatter plots, error bar plots,
and correlation measures are updated according to the selection. This allows a combination
of qualitative and quantitative assessment of features. This figure provides a good impression,
that the featurePERCLOS80 performs very well for this driver. The signal plot shows that
the feature matches better the holdKSS(green) than the linear interpolated signal due to the
delay of the smoothing.

A.13. Real-time System

The majority of the transparency about driving situations cannot be captured by the mea-
surements. For this reason, it is very valuable to test the implemented features online in
the vehicle to relate signals and events to situations and tune parameters. TheATTENTION

ASSISTalgorithm was developed and tested in Fixed-point TargetLink directly running on a
programmable developerESP. This is much to laborious and limited in resources to imple-
ment sophisticated algorithms. In comparison to the Micro-Autobox MAB II from DSPACE
or Vector CANoe CAPL, an alternative, own implementation inMATLAB, Mex C++ and
C# was chosen for several reasons. A Vector CAN Card and CAN cases were available, but
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Figure A.13.: Evaluation GUI to analyze correlation of features

no own expensive Vector or DSPACE hardware were available. The own cost-free CAN in-
terface MEX C++ implementation allowed much more flexibility, allowed using the same
MATLAB GUI ( MathWorks, 2007) for offline and online evaluation of features that were
already implemented in MATLAB. The Vector or DSPACE solutions would have required to
port everything in SIMULINK and eventually TargetLink.

This section will explain some basics about the CAN bus, the MATLAB GUI, the CAN-
Interface, the DBC can signal database parser and the conversion of raw CAN messages.

A.13.1. Fixed-Point Arithmetic

In digital signal processing, there are different ways to represent real numbers. Due to mem-
ory and word-size limitations on processor units, numbers are limited to a fixed with. In
floating-point arithmetics, a number is defined by thesigned, fixed-lengthsignificand s(or
coefficientor Mantissa) for a givenbase b(or radix) and theexponent ethat modifies the
magnitude of the number. The length of the significand definesthe precision while the radix
point is usually defined to be directly after the most significant (leftmost) digit. For instance
1.2345· 10−5 is represented in

x ≈ s× be (A.13)

by the significands= 1.2345, the base-10b = 10 and exponente= −5.

In fixed-point arithmetics, however, only integer numbers are used where the position of
the point is fixed by theLeast-Significant Bit(LSB). Optionally, anoffset oand asigned
u property can be used to better exploit the value range used inthe application. In this
representation

x ≈ u · n · LS B+ o (A.14)

the precision ofx when processing only theinteger number nis then defined by the word
length, i.e. the number of Bits. For instance, a signed 8 Bit number can represent the values
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-128 to 127 where one Bit for the sign. If it is scaled by aLSB=2−4 and an offseto = 10.0,
the precision (or resolution) is 0.0625 and the fixed-point representation allows to cover the
range[2 . . . 17.9375] (−128· LS B+ o to 127· LS B− o).

The computation in fixed-point is many times faster since theposition of the radix point
does not need to be considered. As is can be seen in Fig.A.14 using an offset increases
precision but slows down the computation time. Also, an arbitrary LSB is more precise but
less performant than using a dual basedLSB. Divisions or multiplications with a dual factor
2k with k ∈N can be computed very fast by logical shift of the binary number to the right or
to the left.

offset=0
LSB=2x

offset=0
LSB=arbitrary

offset=arbitrary
LSB=2x

offset=arbitrary
LSB =arbitrary

More precision

Faster

Figure A.14.: Scaling performance vs. accuracy

Representation of a floating point number in fixed-point always leads to a loss of precision
and thus an error on a 16 bit architecture. A multiplication of two 16 bit numbers requires a
32 Bit intermediate result, even if the final result is rescaled to 16 bit again. Such operations
can be performed with two 16 bit numbers that require howevermore resources and are
thus not expedient. Depending on the signal processing operations, systematic errors lead
to accumulated errors in integrators for instance. An erroris thus more severe the earlier it
occurs in the signal processing chain.

For this reason, especially the filters of the input signals had to be scaled manually and as
good as possible. This is exemplarily shown in Ch.A.15. The ATTENTION ASSIST ist
running on the controller unis of the ESP.

A.13.2. Fixed-point Low-pass Filter

Especially the Butterworth filter of 2nd order of the lateral accelerationay has been identified
as a major cause for fixed- / floating-point errors that are accumulated in the feature extraction.
App.A.13.1explains this problem in more detail. For this reson, the filter has to be optimally
scaled as shown in Fig.A.15.

A.13.3. Offline and Online Real-Time Attention Assist Vehicle Track Viewer

Fig. A.16 shows the GUI of the offline- and real-time onlineAttention Assist PlusSystem
(AAP). It allows online visualization of vehicles signals and features as well as offline play-
back of measurements.
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Figure A.15.: Fixed-point scaling ofIIR-filter (seeYang, 2011, DSP lecture) of 2nd order on input
signalay,SC to obtainay,SC,LP to minimize propagated and accumulated error.

Figure A.16.: Offline- and real-time onlineATTENTION ASSISTvehicle track viewer
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