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Abstract

Since humans operate trains, vehicles, aircrafts and tinalusachineryfatiguehas always
been one of the major causes of accidents. Experts assestabpiness is among the major
causes of severe road accidents. In-vehicle fatigue dateahs been a research topic since
the early 80’s. Most approaches are based on driving siorusiidies, but do not properly
work under real driving conditions.

The Mercedes-BenATTENTION ASSISTis the first highly sophisticated series equipment
driver assistance system on the market that detects egrig sif fatigue. Seven years of
research and development with an unparalleled demand afineess were necessary for its
series introduction in 2009 for passenger cars and 2012ussds. The system analyzes
the driving behavior and issues a warning to sleepy driiessentially, this system extracts
a singlemeasure(so-calledfeaturg, the steering event ratdy detecting a characteristic
pattern in the steering wheel angle signal. This pattermincipally described by a steering
pause followed by a sudden correction. Various challengestd be tackled for the series-
production readiness, such as handling individual drigitydes and external influences from
the road, traffic and weather. Fuzzy logic, driving styleegtibn, road condition detection,
change of driver detection, fixed-point parameter optitloreand sensor surveillance were
some of the side results from this thesis that were essdotittie system’s maturity.

Simply issuing warnings to sleepy drivers is faintly "expacable” nor transparent. Thus,
the next version 2.0 of the system was the introduction ofrithee vividATTENTION LEVEL,
which is a permanently available bargraph monitoring theeru driving performance. The
algorithm is another result of this thesis and was introd2@13 in the new S-Class.

Fatigue is very difficult to grasp since a ground truth rafeeedoes not exist. Thus, the
presented findings about camera-based driver monitoriagnatuded as fatigue reference
for algorithm training. Concurrently, the presented resshilild the basis for eye-monitoring
cameras of the future generation of such systems. The driegitoring camera will also
play a key role in "automated driving" since it is necessaririow if the driver looks to the
road while the vehicle is driving and if he is alert enoughetketback control over the vehicle
in complex situations. All these improvements represerjbnseps towards the paradigm
of crash free driving

In order to develop and improve tHeTTENTION ASSIST, the central goal of the present
work was the development of pattern detection and classditalgorithms to detect fa-
tigue from driving sensors. One major approach to achievdfecigntly high detection rate
while maintaining the false alarm rate at a minimum was tkeeriporation of further patterns
with sleepiness-associative ability. Features repomeldrature were assessed as well as
improved extraction techniques. Various new features \wesposed for their applicability
under real-road conditions. The mentioned steering pattetection is the most important
feature and was further optimized.

Essential series sensor signals, available in most todayigles were considered, such as
steering wheel angle, lateral and longitudinal accelenatyaw rate, wheel rotation rate, ac-
celeration pedal, wheel suspension level, and vehicleatiper Another focus was on the



lateral control using camera-based lane data. Under reahglrconditions, the effects of
sleepiness on the driving performance are very small anersigvobscured by external in-
fluences such as road condition, curvature, cross-windcheetpeed, traffic, steering param-
eters etc. Furthermore, drivers also have very differesividual driving styles. Short-term
distraction from vehicle operation also has a big impacthendriving behavior. Proposals
are given on how to incorporate such factors. Since laneifeatequire an optional tracking
camera, a proposal is made on how to estimate some laneidev&dtures from only inertial
sensory by means of an extended Kalman filter. Every feadusddated to a number of param-
eters and implementation details. A highly acceleratechotetor parameter optimization of
the large amount of data is presented and applied to the mmsiging features.

The alpha-spindle rate from the Electroencephalogram (E#B@ Electrooculogram (EOG)
were assessed for their performance under real drivingitonsl In contrast to the ma-
jority of results in literature, EEG was not observed to cbote any useful information
to the fatigue reference (except for two drives with micgegls). Generally, the subjective
self-assessments according to the Karolinska Sleepirezde 8nd a three level warning ac-
ceptance question were consequently used. Various diorelaeasures and statistical test
were used to assess the correlation of features with theerefe.

This thesis is based on a database with over 27,000 driveadbamulate to over 1.5 mio km
of real-road drives. In addition, various supervised reald driving studies were conducted
that involve advanced fatigue levels.

The fusion of features is performed by different classifides Artificial Neural Networks
(ANN) and Support Vector Machines (SVM).

Fair classification results are achieved WitNN andSVM using cross-validation. A selec-
tion of the most potential and independent features is gdeesed on automatic SFFS feature
selection. Classical machine learning methods are usedder ¢o yield maximal system
transparency and since the algorithms are targeted to rpresent control units. The po-
tential of using end-to-end deep learning algorithms isudised. Whereas its application
to CAN-signals is problematic, there is a high potentialddver-camera based approaches.
Finally, features were implemented in a real-time dematstrusing an owiCAN-interface
framework.

While various findings are already rolled out ATTENTION ASsSIST 1.0, 2.0 andATTEN-
TION LEVEL, it was shown that further improvements are possible byrppamating a selec-
tion of steering- and lane-based features and sophidiicdassifiers. The problem can only
be solved on a system level considering all topics discugs#ds thesis. After decades of
research, it must be recognized that the limitations ofréadimethods have been reached.
Especially in view of emerging automated driving, directtihoels like eye-tracking must be
considered and have shown the greatest potential.
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Zusammenfassung

Seit der Bedienung von Fahrzeugen, Zigen, Flugzeugen dudtiellen Maschinen durch
Menschen stellMidigkeiteine der Hauptursachen fir Unfélle dar. Experten versighaass
Mudigkeit eine der Hauptursachen fir schwere Verkehrdlenit. Seit den 80er Jahren ist
Mudigkeit am Steuer ein Forschungsthema. Die meisten Aedadsieren auf Fahrsimula-
torstudien, die unter realen Fahrbedingungen jedoch hicktionieren.

Der Mercedes-BenATTENTION AssISTist das erste und fortschrittlichste Seriensystem
auf dem Markt, das friihe Anzeichen von Muidigkeit zuverliissikennt. Sieben Jahre
Forschung und Entwicklung sowie ein beispielloser BedariR@ssourcen waren fiir die
Serieneinfihrung 2009 im PKW und 2012 im Reisebus notwentigs System analysiert
das Fahrverhalten und warnt miide Fahrer. Im Wesentlicheahgsrt das System ein Maf3
(sog. Merkma) fur die Haufigkeit von Lenkereignissen indem charaktisgsie Muster im
Lenkwinkelsignal detektiert werden. Die Muster kénneneirgiacht durch eine Lenkpause
gefolgt von einer plétzlichen Lenkkorrektur beschriebesrden. Fir die Serienreife mussten
vielerlei Hirden tUberwunden werden, wie beispielsweiselagang mit fahrerindividu-
ellen Fahrstilen, Umwelteinfliissen von der StralRe, Verkelr\Wetter. Fuzzy-Logik, Fahr-
stilerkennung, StralRenzustandserkennung, Fahrerweéestkomma - Parameteroptimier-
ung und Sensoruberwachung waren einige der Ergebnisséezes Dissertation, die fir den
Reifegrad des Systems essenziell waren.

Die schlichte Ausgabe eine Warnung ist weder sehr erleldigr transparent. Daher wurde
in der Folgeversion 2.0 des Systems das dynamischereNTION LEVEL eingefuhrt, das
eine permanent verfigbare Balkenanzeige anzeigt, diektlezlbermittelten Fahrtlichtigkeit
entspricht. Der Algorithmus ist ein weiteres Ergebnis elie&rbeit und wurde 2013 in der
neuen W222 S-Klasse eingeflhrt.

Mudigkeit ist sehr schwer zu greifen, da als Referenz keabsélute Wahrheit" existiert. Aus
diesem Grund wurden die hier vorgestellten Ergebnisseuddfanrerkameradaten basieren-
den Fahrerzustandsbeobachtung als MidigkeitsreferanzZTzaining der Algorithmen mit-
verwendet. Gleichzeitig bilden die Ergebnisse die BasigligiFahrerkamera in der zukinfti-
gen Generation des Systems. Die Fahrerkamera wird auckvihtge Rolle beim "hochau-
tomatisierten Fahren" spielen, da es notwendig ist zu wiebader Fahrer wahrend der Fahrt
auf die Stral3e schaut und ob er in komplexen SituationenexltBam genug ist, um die Kon-
trolle zu Ubernehmen. Alle diese Verbesserungen repliasemteinen wesentlichen Schritt
in Richtung der Vision vonunfallfreien Fahren

Um denATTENTION ASsISTzu entwickeln und zu verbessern bestand das zentrale Ziel de
hier vorgestellten Arbeit in der Entwicklung von Musteremkungs- und Klassifikationsal-
gorithmen die Mudigkeit anhand von Fahrzeugsensoren eekenEin wesentlicher Ansatz
um eine genltgend hohe Erkennungsrate zu erreichen und diabiealschalarmraten min-
imal zu halten war der Einbezug von weiteren Mustern mit rgkigitsbezogenen Eigen-
schaften. Merkmale aus der Literatur wurden untersuchissberie verbesserte Extraktions-
methoden. Zahlreiche neue Merkmale wurden fir den Eingdaér vealen Fahrbedingungen
vorgeschlagen. Das oben genannte Lenkmuster ist das gathivlerkmal und wurde weiter
optimiert.
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Die wichtigsten Signale der Seriensensorik, die heute m meisten Fahrzeugen verfug-
bar sind wurden verwendet, wie zum Beispiel LenkwinkelsenQuer- und Langsbeschleu-
nigung, Gierrate, Raddrehzahl, Gaspedalweg, Fahrweskfesje und Fahrzeugbedienung.
Ein weiterer Fokus bestand in der Querregelung unter Veshweg von kamerabasierten
Spurdaten. Unter realen Fahrbedingungen sind die Einflims&lldigkeit auf das Fahrver-
mdgen sehr klein und stark durch externe Einfliisse Ubet|ager beispielsweise Stralien-
zustand, Kurvigkeit, Seitenwind, Geschwindigkeit, Vdmke_enkungsparameter usw. Wei-
terhin unterscheiden sich Fahrer durch sehr individuetiergtile. Kurzzeitige Ablenkung
durch Fahrzeugbedienhandlungen haben ebenso einemdiniieiss auf das Fahrverhalten.
Es werden Vorschlage gemacht um diese Faktoren mit zu ®citigen. Da Spurmerk-
male eine Kamera bendtigen die nur als Sonderausstatthétjlieh ist, wird ein Vorschlag
gemacht wie einige der Spurmerkmale mittels Inertialseksmd einem erweiterten Kalman
Filter geschatzt werden kdnnen. Jedes Merkmal ist mit efielzahl von Parametern und
Implementierungsdetails verknupft. Eine beschleunigethidde zur Parameteroptimierung
zur Bewaltigung der riesigen Datenmenge wird vorgesteilit fiir die vielversprechendsten
Merkmale angewendet.

Die Alpha-Spindelrate aus dem Elektroenzephalogramm (EH@& Elektrookulogramm
(EOG) wurden hinsichtlich ihrer Eignung als Referenz umialen Fahrbedingungen be-
wertet. Ausgenommen von wenigen Ausnahmen, konnte im Gateru den Ergebnissen
in der Literatur nicht beobachtet werden, dass EEG einetvalen Beitrag als Mudigkeit-
sreferenz liefert. Die subjektive Selbsteinschatzunghrder Karolinska Mudigkeitsskala
und einer dreistufigen Warnungsakzeptanzfrage wurde ahhiehgéngig als Referenz ver-
wendet. Verschiedene Korrelationsmal3e und statistisesewurden herangezogen um die
Korrelation von Merkmalen mit der Referenz zu bewerten.

Diese Dissertation basiert auf einer Datenbank mit Ubed@yFahrten deren Fahrleistung
tiber 1.5mio km reale Fahrdaten umfasst. Zusatzlich wurtbemwachte Fahrversuche mit
fortgeschrittenen Mudigkeitsstadien durchgefthrt.

Brauchbare Klassifikationsergebnisse werden mit kii&tfimeuronalen Netzwerken (ANN)
und Support Vektor Machines (SVM) und Kreuzvalidierungearint. Eine Auswahl der un-
abhangigsten Merkmale mit dem hochsten Potential wirdesigdlt, basierend auf automati-
scher Merkmalselektion mittels SFFS. Es werden Mathodsemeam klassischen maschinell-
en Lernen verwendet, um maximale Transparenz Uber dasnsyst@rhalten und weil die
Algorithmen in aktuellen Steuergeraten eingesetzt werdbschlieRend wurden diese Merk-
male in einem Echtzeitsystem mit einem eige@ZN-Interface implementiert. Der Einsatz
von end-to-end deep learning wird dirkutiert. Wéahrend diev&ndung auf CAN-Signale
problematisch ist, gibt es ein hohes Potential bei Fahnegka-basierten Ansatzen.

Wahrend viele der Erkenntnisse bereitsAMTENTION ASSIST 1.0, 2.0 undATTENTION
LEVEL eingeflossen sind, wurde gezeigt, dass weitere Verbegpeiunch Einbezug einer
Auswahl von Lenkwinkel- und Spurbasierten Merkmalen unadsifikatoren erzielt werden
kann. Das Problem kann nur auf der Systemebene geltst wierdiem alle in dieser Diss-
ertation angesprochenen Themen bertcksichtigt werdech Bahrzehnten der Forschung
muss akzeptiert werden, dass die Grenzen der indirektehdden erreicht sind. Insbeson-
dere in Betracht auf automatisiertes Fahren sind direktthdien wie Lidschlagerkennung
notwendig und zeigen das héchste Potential.
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Chapter 1.

Introduction

1.1. Chapter Overview

Chapter 1: Introduction The current chapter will introduce the topic of assistange s
tems that detect sleepiness from the driving style. It witlyide an overview of the
state-of-the-art in literature and competitor systemslavpointing out the new as-
pects of the present work. Countermeasures and warningga against sleepiness
behind the steering wheel will be presented and furthersigét be proposed.

Chapter 2: Sensors and Data Acquisition In this chapter, in-vehicle and supplementary
sensors used for the driving data acquisition, their ppiesi and derived signals will
be presented. Another major part of this chapter is the meamnt equipment, data
conversion and validation process, B@®L database and everything related to it. This
basic process is very extensive but indispensable andivial.tr

Chapter 3: Evaluation of Driver State References This chapter will explain the defini-
tions ofsleepinessdrowsinessfatigue vigilance and their distinction againslistrac-
tion (Ch.3.1). Common approaches to directly and indirectly measuepsiess will
be presented and compared. Physiological measures framdwrtvity and eyelid
closure are thoroughly investigated in order to obtain ialéd reference. Developing
a system to detect sleepiness is impossible without a gdeckree, thus merging the
different measures into a single reference was investigate

Chapter 4. Extraction of Features for Driver State Detection The features in literature
are described and own ideas based on steering angle, lanardhbther sensors are
proposed. Moreover, preprocessing of sensor signals gndlgirocessing methods
commonly used for many features are presented. The basitigiés behind the fea-
tures are explained as well as the various signals they aeslltmn. Another important
topic of this thesis is the systematic optimization of tharttess parameters involved
in the different features. Processing the large amount taf idsjuires smart strategies
to optimize the features within manageable time. Approstbesfficiently cope with
these problems will be presented here exemplarily for thstpmising features.

Chapter 5: External Factors and Driver Influences This chapter will structure all influ-
ences that have an impact on the driving behavior into threeps: external situation
basedanddriver-relatedinfluences. External influences such as vehicle speed, road
condition, curves or cross-wind have impacts on the driielgavior that is generally
stronger than sleepiness. Situation based factors likéndaymonotony, and traffic
density area priori probabilities that make general statements rather thasiaenng
individual persons. Furthermore, every driver has an idd&l driving style that needs
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to be adapted. Analyzing, understanding and consideriegetinfluences during the
feature extraction will be subject of this chapter.

Chapter 6: Approximation of Lane-based Features from Inertial Senseos This chapter
will describe how some of the features obtained from the-taseking camera sensor
unit can be approximated using inertial sensors. The adgarit that inertial sensors
are standard equipment in contrast to the lane-trackingecaand inertial sensors do
not suffer from poor vision conditions. The relevant theofwehicle dynamics and
Kalman filters will be presented here.

Chapter 7. Result of Assessment of FeaturesThis chapter will introduce various differ-
ent methods to assess the correlation of single or multgaeufes with the sleepiness
reference. Metrics as well as graphical illustrations aes@nted and compared. Since
many measures are based on similar patterns and sensavapingrof features is pro-
posed.

Chapter 8: Classification of Features The subject of this chapter will outline the fusion
of features by means of classification. The informationdngither on a signal level,
feature level, or on a decision level will be discussed. Toeefits of transforming
the feature space to lower dimensions using principle comapbanalysis or Fisher
transform will be explained. Classification of distractiesing the same features and
methods will be another side-topic of this chapter. It isdoasn an extensive experi-
ment with 45 real-road drives and defined distraction tasks.

Chapter 9: Conclusion This chapter will present the classification results. A -teak
framework and demonstration system will be introduced dreoto assess the perfor-
mance online in the vehicle. A conclusion will be given, adl &g potential for future
work and open issues.

Chapter A: Appendix This chapter contains documentation and mathematicabpackd
of important theory this thesis is based on.

1.2. Motivation

1.2.1. History of Safety

Since Karl Benz’s patent application of the Motorwagon di25 years agothe number of
vehicles has been steadily increasing. While the numbegluties in Germany had grown to
3.7 Mio in 1939 DESTATIS, 201139, it dropped below 200.000 vehicles as a consequence of
World War 1l. Fig.1.1shows the number of injured persons and persons killedm@didays
after a traffic accident. After the fatalities reached timeaximum of 21.332 persons killed
in 1970, both, the total number of injured and killed persdesreased. Fidl.2 shows the
number of vehicles per person on the road in Germany. It caeée that today, about 70%
of all 82 Mio Germans have a car. The figure also sets the toraber of crashes, injured
persons and fatalities in relation to the registered vehkiclThe proportion of accidents per
car is steadily diminishing, whereas accident preventiecones more and more difficult
every year. Even with this positive development, we haveottsitler that still ten persons
die and about 1000 get injured every day in Germany alone.ntlih@er of crashes without
injury is even increasing.

Ipatent 37435 of the Benz Patent-Motorwagon by Karl Benzjegpn January 29, 188®&nz & Cq 1886
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Figure 1.1.: Persons killed and injured in traffic accidents in Germany
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Figure 1.2.:Injured persons and fatalities set into relation with resgisd vehicles (Own drawing,
data fromVerkehrsunfélle Zeitreihen, Statistisches Bunde$aB&TATIS 2011h 2.1/2)

1.2.2. Safety Systems

Various factors account for the continuous reduction offiraaccidents or their impact.
Fig. 1.1 indicates how the number of fatalities could be reduced twveryears, thanks to
a series of new and strickter regulations, such as traffiessigpad improvements, police
enforcements, and better medical infrastructure. Bebiggetregulations, Fid..1shows the
introduction of important safety innovations. Generalhgse safety systems are classified
into activeandpassive safetgystems. According to "Milestones in vehicle safetya{mler
COM/M, 2009, active safety comprises all systems and technologidpthaentaccidents
whereas passive safety technologieduce the consequencies the passengers.

Passive Safety:The safety belt, invented by Gustave-Désiré Leveau in 19@3, one of
the first and most important safety inventionseay 1903. Its German patent applica-
tion of Bohlin (1961 was selected by the German patent office as one of the eigbt mo
valuable inventions for mankind within the last 100 yeard enexpected to having saved
over 1 mio lives Hell, 2010. A pioneer in the field of passive safety waarényi(1952 at
Mercedes-Benz Sindelfingen who invented the crumple zodeigid passenger cell in 1939,
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that was first introduced in 195®&imler COM/M, 2009. Another major invention from
Mercedes-Benz was the airbag in 1967, introduced in Germatiwthe S-Class (W126) in
1981 Paimler COM/M, 2009. The passenger airbag, sidebag, windowbag and recesdly al
the kneebag followed\{ercedes-Ben2012 auto.de 2009.

Active Safety: One of the early active safety systems is the electronigeabtiaking system
"Sure Brake", introduced by Chrysler in 19M€i3ing 2011, Angermann2011). In 1978,
Bosch introduced the first fully electronic Active Brakingstem @BS), launched with the
Mercedes-Benz S-Class (W1l@)dimler COM/M, 2009 Angermann 2011). With the S
600 Coupé (C140), Mercedes-Benz introduced the first eleictistability program ESF®

or ESQ in 1995, supplied by BosclHgilRing 2011). If the steering direction does not fit to
the vehicle motion (i.e. for large sideslip ang)®s the ESPcorrects the vehicle trajectory
in the direction of steering by braking a single rear wheel.1996, Mercedes-Benz also
introduced the Brake Assistant as standard equipment &sepger cardXaimler COM/M,
2009. In 1997 Mercedes-Benz presented the emergency call THREBOS/Emergency
Call, calledmbracein the USA) that automatically or manually submits the GPSitmm
and relevant vehicle and crash informati@idtsche and Jage?003 Mercedes-Benz USA
2012. Similar systems are Onstar, also introduced in 1997 aovghed by GM pnstar.com
2013, and BMW ConnectedDrive introduced in 20 B\MW, 2011). Blind spot monitoring
systems such as the BLIS from Volvo and the BSM (radar-basen) Mercedes-Benz mon-
itor vehicles in the blind spoMplvo Cars 20073. PRE-SAFER, introduced by Mercedes in
2002, is a system that takes actions to protect passengmtly dfefore an accidenD@imler
COM/M, 2009. Since 2006, the PRE-SAFE brake can automatically dextel¢he car if
a dangerous situation is detected ahead. One of the lat&StIARE based innovations in
2009 is the braking bag, an airbag below the vehicle frorttdha achieve twice the deceler-
ation of a full brake Daimler COM/M, 2009. Based on camera vision, the Advanced Lane
Departure Warning AssisALDW) and Protectionl{DP) support the driver in lane keeping
by warnings or active control. The speed limit assist, nigetv and adaptive curve light are
just a few other systems that are based on camera.

One of the latest innovations from Mercedes-Benz isAMEENTION ASSIST, introduced
with the E-Class (W212 and 207) in 2009 which is subject ofghesent work. It detects
fatigue based on the driving behavior and issues a visuahemastic warning to the driver.

1.2.3. Drowsiness related Accidents

According to theGerman Federal Agency for StatistiSESTATIS, 20113, the main reason
for road accidents with injuries in 2010 were speeding (%), fnistakes while turning/ma-
neuvering/reversing (10.2%), right of way violation (9.)%sufficient clearance distance
(8.1%) followed by wrong road use (4.7%). Alcohol plays ampartant role, especially in
severe accidentDESTATIS, 2013ab). Slippery road (from ice, snow, or rain), fog, or veni-
son on road are the main non-driver related accident reaso@@ermany, only 4.2% of the
accidents are related to technical defects (2.9% relatibtand 1.3% to brake deficiencies).
Fig. 1.3 shows that the majority of accidents are caused by the daivéronly a minor part
by vehicle failure or road condition. The “100-Car Studybnducted by the VTTI for the
National Highway Traffic Safety AdministratioNKITSA in 2006 (Martin, 2006, found that
about 80% of accidents and 65% of near-crashes involvednattinee seconds before the
event some form of driver inattention, at least as a secomsbre According to Volvo, even
up to 90% of all traffic accidents are caused by driver diswaq\Volvo Cars 2007H. Cell
phone use androwsinesavere beneath the primary causes for reduced alertness.



Figure 1.3.: Proportion of accidents by one or several reasons. Therdeva@ccountable for most
traffic accidents (SourceVolvo Cars 2007H

Drowsy Driving: When interrogating test subjects and other people abowsyrariving,

it was surprising that many of them could tell about their grensonal experience or even
accidents. In most stories nothing happened because tHeywpdrom hitting a traffic cone,
short before the guardrail, or from driving into a field. Hs®e some cases ended in more
severe accidents. It is not possible to prove that a driverskeepy, since fatigue cannot be
measured as easily as alcohol consumption (e.g. by brgatiair blood test). Thus, many
drivers do not admit that sleepiness or distraction wasoresiple for the accident. Drowsy
driving is prohibited by law and is persecuted by the politke insurance withdraws meet-
ing the cost of a drowsiness related crash as it is regardeztkiess inducedBGH, 2002
since falling asleep is always preceded by fatigue si@BH, 1969. This also applies to
co-passengers if they are aware of the driver’s conditiwoppelklicker 2017). This may be
the main reason why drowsy driving is assumed to be significamder-reported in police
crash investigations. The German Federal Agency for 8taifDESTATIS, 20110 pub-
lished that only about 1% of the accidents are related t@sless. According tayznicki

et al.(19998, driver fatigue is the causative factor in 1 to 3% of all UStarosehicle crashes.
However, experts assume that about 24 to 33% of the sevedeatxare related to drowsi-
ness Daimler, 2008 Duncker 2007 Kiinzel 2008 Fertner 2009 Schneider2006 Batistg
2007). According to the earlier mentioned 100-Car Study, droess increases the driver’s
risk of having a crash or near-crash by at least a factor af féu fatal accidents it is as-
sumed that driver fatigue is more prevalent than eitherhalcor drugs, especially for truck
drivers Knipling and Wang1994).

Fig. 1.4shows a picture from press releases that report about atsidéth only one vehicle
involved and where the accident cause was not clearly detedn Many of the so called
"single-car crashes" occur late at night and have fatal emuences, especially when the
driver falls asleep and does not react to avoid the crash.ost oases, one can only assume
that fatigue was the cause. For instance, during a micipglkase of two seconds, a vehicle
that drives with 140 km/h travels a distance of almost 80 rsetéthout control. What many
people do not consider is that not only the microsleep, taat tile early phases of fatigue can
increase the risk of having an accident significantly. Ei§.shows the decrease in reaction
time after driving duration. Studies show that after jusirfoours of non-stop driving, drivers’
reaction times can be up to 50% slower. Thus, the risk of aidewtdoubles during this
time. And the risk increases more than eight-times aftergixshours of non-stop driving.
According toNOVA (2002 and Daimler (2009, 24 hours without sleep can be compared
have an influence comparable to one per mill of alcohol. Thalgoation of fatigue and
even small doses of alcohol can be much more dangerous teasuth of both influences
(Reyner 2005 Mara, 1999 Oberman200§ P. 218). Due to their reduced judgment, sleepy
drivers are often not aware of their condition. They oveneste themselves or do not admit



Figure 1.4.: So called "single-car crash” - accidents with only one vehiosolved that occur at night
are most probably related to fatigue (Sour¢eirtwangler2013.
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Figure 1.5.: Decreasing reaction time after increasing driving dura{io called "Time-on-Task")
(Source of numbersMara, 1999 Fig. 2)

to "give up" the fight against their sleep pressure. Timequnescan also be a factor that keeps
drivers away from having a pause. The risk of falling asleagt its greatest on long-distance
journeys in the dark or in monotonous conditions. This is nvHevers are most likely to
suffer a lapse in attention. Young people under 30 are fouggimore endangered than elder
groups Knipling and Wang1995. Especially young males are involved in drowsy-driving
crashes five times more likely than femal®¢afg and Knipling1999.

1.2.4. Perspective of Mobility and Safety Systems

Above, German statistics were exemplarily used and candmsfered to the situation in
other countries. Clearly, it is very important to considee wvorldwide developments. In
countries like the USA, Australia or France, drowsy drivisgan even bigger problem, as
they have very long monotonous roads through areas with lmpulption density. There
are more than one billion vehicles and trucks on the road$dwade (Die Welt.de 2008
and a growth of almost 20% is predicted within the next sevearsy. The growth in North
America is expected to be the lowest with only 8% and 15% irogey driven by Eastern
Europe. While the automotive growth is nearly saturated anttNAmerica and Europe, the
industry in the BRICS countriéss booming. With 20% growth within the last years, China
is one of the fastest growing markets worldwide. Since o8y the Chinese population

2BRICS stands for the emerging market countrBsasil, Russia,l ndia, China andSouth Africa
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have a car, it is expected that the growth will contingéeich, 2009 P. 57). In addition,
the nowadays very dense road infrastructure and the reilladedtry will not disappear all
of a sudden. At the same time, the protection standards iBRIES are not very evolved.
With 142 485 deaths in 2011, India has the most road fatslitiehe world Government
of India, 2011) followed by China with 68 000 in 2009\PC China 2010 due to the high
population. It is getting more and more difficult to furtheduce the number of severe
accidents while keeping the traffic efficient. Autonomouwidg is certainly a major step
towards the paradigm of efficient and "crash free drivingaigmler COM/M, 2009. Berger
and Rumpg2008 conclude from the Darpa Urban Challenge that autonomongdris
generally possible, but many open questions are still toobeed. According to Wagoner
(GM CEO) Wagoney 2008 autopilots could become reality in 2020 or within the nexass,
so Ralf Herrtwich, head AADAS at Mercedes-BenzHeuer 2013. An autopilot has to know
even more that the driver is not sleeping when it needs to baadthe vehicle control to the
driver in situations that cannot be handled automatic&lhd until the question is not solved
of who is responsible if the autopilot causes an accidestdtiver will remain in charge of
the steering wheel.

Briefly worded, we can expect that the concept of personalilityotvill remain the same
for many years, which makes it crucial to introduce new adedrdriver assistance systems
(ADAS) for the reduction of the prohibitive high number of accitenThus, research in the
field of driver monitoring has the highest potential withaeds to crash reduction.

1.3. Driver State Warning Systems and their Human Machine
Interface (HMI)

Until today, safety systems were focusing on either intetiea after a driver made a mistake
or on reducing the impact of a crash. In the precedent veditheere were virtually no
systems focusing on the driver. The aim of Advanced DrivenNming SystemsADAS)

is to detect the onset of sleepiness by analyzing the dristylg or physiological indicators
of the driver. People who are skeptical about the concept drfiveer monitoring system
often argue that they do not need to be told when they are. tiféeby think that they are
always aware of their condition by themselves. But the dan§esduced vigilance is often
underestimated. 41% of the drivers interrogated in a restenty by theAAA Foundation for
Traffic Safetyadmit to having fallen asleep behind the wheel at some péiRUEcar 2010.
But just because nothing happened in the past doesn’t maait thill turn out well every
time in the future. Since drivers obviously underestimagerisk and do not act adequately,
it makes sense to develop systems that support the driver.

Depending on the accuracy with which the driver’s vigilafeeel can be estimated, it needs
to be discussed what to do with this driver state informatiothe first place. For the ac-
ceptance of the system, it is essential not to infantilizedtiver. Today, most drivers would
probably not accept a system that takes over control andreatitcally drives to the road
shoulder, brakes and locks the vehicle if sleepiness wastdet (This might be more ap-
propriate if a cardiac flatline was detected). So the moseeigmt feedback strategy is to
issue an acoustic and visual warning to the driver suggesbirnave a pause. Issuing false
warnings too often risks that the driver might later negkecorrect warning. As well, it is
important not to store any data about a driver’s state thalddoe used against him after an
accident. A system that is switched off by the driver for stedsons is useless. As long as
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the detection rate doesn’t approach 100%, the driver cacorapletely rely on the system.
He has to know that the assistance system can only suppogrdrthat he is always respon-
sible for his safety himself. When feeling tired, he has tkenapause even though there has
not been any warning.

Fig. 1.15(a)and 1.15(b)show pictures of thATTENTION ASSISTwarning and status icon
introduced 2009 in the Mercedes-Benz E-Class and thenagspedl vehicles and tour buses.
As a next, more "experiencable" step, a bargraph is displ#lyat is permanently available
in the instrument cluster (Fid..16(a) and Fig.1.6(b)depicts theATTENTION LEVEL of the
version 2.0 launched in the W222 S-Class. The level is basehkecalgorithms developed in
this thesis. Figl.6(a)shows a picture of how thuman Machine InterfacéHMI) of such

a bargraph could further look like. Fid.6(b) shows how the history of the past 15 to 30
minutes could further illustrate the degrading trend of dnging performance. A positive

i i

-1 5min iy

(a) Bargraph of driving (b) Bargraph with history
performance

Figure 1.6.: Proposal for two HMI concepts with a permanently availatdegbaph and a bargraph
with history could be displayed to drivers (own drawing)

side effect of permanently displaying a bargraph is thadrtinds the driver to remain aware
of his fitness. Simply displaying a status icon of the systémady addresses this topic
as a safety issue and brings the topic into drivers’ mindg. Ei7 shows three frames of an
animated eye that closes with increasing sleepiness. i gelf-explaining than a bargraph
or a status icon and color displays are nowadays availalteiny upper class vehicles. This
might suit best for a camera based drowsiness detectioansyst

(a) Opened eye faawake (b) Half closed eye fosleepy (c) Closed eye fovery sleepy

Figure 1.7.: Another proposed example of a more self-explaining HMI egtdor a high resolution
color display (own drawing)

Another possibility of using the information about the érig fitness is to adapt the sensitiv-
ity of other driver assistance systems. As an example, tine-Tlio-Collision (TTC) threshold
for braking warnings and autonomous braking could be lodevigh reduced driver vigi-
lance. Also, the ALDW could be adjusted to be more sensitiith imcreasing fatigue. For
instance, there were test subjects that often exceededrtheahd obtained wrong warnings
while they were awake. But as soon as they became sleepynthediate feedback of lane
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departure before entering a dangerous situation becameakable. These improved HMI
concepts lead to the major goals of the research on driveitonimgy systems:

e Estimating a reliable measure of fatigue with multiple lsve
e Determining the time instant of suggesting a pause

1.4. Countermeasures against Sleepiness behind the Wheel

Lane
Departure

Warning
Lane

Departure
Protection Parkings /
Rest Areas

Vehicle Rumple
Features Strips

Fatigue
Counter- Campaigns
measures

Media

Figure 1.8.: Mindmap of countermeasures to reduce fatigue-relatedients (own drawing)

Fig. 1.8 shows a mindmap of countermeasures against fatigue. Tte<20dy of theAAA
Foundation for Traffic Safetghowed that most of the drowsiness related accidents could
have been preventedQfA, 2013. But what could be done for the prevention? The most
important prevention is a responsible behavior of the dsivike planning to get sufficient
sleep before a long drive and limiting drives between mithand 6 a.m.lara 1999. As
soon as a driver becomes sleepy, a sensible measure woutdldteat co-passenger drive
or stop to take a nap. But not everybody is that reasonabypecesdly if one is in a hurry.
Thus, an important strategy against drowsiness relatethesearenedia campaignt make
drivers aware of the riskdNpordbakke and Sagberg007 van Wees et al2004 Hell, 2001).
Beside press articles and advertising, many book and mot®es use a drowsiness related
accident as a reason for a fatal life-changing incidefitig. 1.9 shows motorway panels that
address drowsy driving.

Fig. 1.10(a)showsrumple strips which are another countermeasure to alert inattentivedri
(Elangq 2002. Rumble strips are edge- or centerline grooves, cut cedah the pavement
that emit an audible rumbling when encountered by vehioéstiThey are most effective if
the road shoulder is wide enough. According to Et¢WA Safety, shoulder rumble strips
can reduce overall crashes by 14 to 17%. In particular, dem@eumble strips may reduce
run-off-road crashes by up to 41% and head-on crashes bya@3tdq-HWA, 2012. Accord-
ing to the National Highway Traffic Safety AdministratioNKITSA) (Mara 1999, rumble

3Movies that address sleepiness and distraction-relatideats: Mr. Bean, | Robot, 50 first dates, etc.



—-10-

[ DROWSY DRIvERS |

USE NEXT EXIT
EATlGUED DRIVING

(& US campaign (Source(b) French campaign meanindc) South African campaign
wikipedia) "Sleeping or Driving" (own "Stay Alert - Stay Alive" (own
photograph) photograph)

Figure 1.9.: US, French and South African motorway signs against drowisynd

(@) Centerline rumple strips in the US (b) Road arts on french motorways as
(Source: wikimedia) "novelty” to occupy drivers (own pho-
tograph)

Figure 1.10.:Countermeasures against drowsy driving in the US and France

strips can reduce drive-off-the-road crashes by 30 to 508sid@s the high construction and
maintenance cost, rumple strips have some disadvantadpsh are still evaluated in Ger-
many Rieckmann2010. For instance, it can be very disturbing if a lane is shittethe side
within construction sites, so that cars permanently hadgite on the rumble strips. Rumple
strips are by far not installed on all road markings whichesgefor in-vehicleADAS.

Advanced Lane Departure Warning (ALDW): Lane markings are tracked by a lane track-
ing camera and a warning is issued when the lane is exceedddWhas the advantages
that it works for all lane markings and its warning sendivian be adjusted Altmuller
(2007 investigated how undesired ALDW warnings can be distisiged from desired warn-
ings. ALDW systems are very robust nowadays as long as tlkeenfemkings are good, which
is not always the case. And like all camera based system&UB&V performance suffers
from bad vision conditions. ALDW is focusing on preventirggné exceeding due to distrac-
tion but also helps to prevent accidents by "dozing-off".wdwaer, drifting off the road due
to sleepiness happens in a very late stadium of fatigue aadseshould be made earlier.

When the driver is overwhelmed by his fatigue or when he besoaware of his sleepiness
through a warning system, how can he make it to the next paukinor hotel? Are there
ways to prolong the driver’s fitness or even bring him back fi@ aondition in which an
immediate pause is not necessary? The dissertati@raxdfchne(2017) is focusing on this
guestion, especially looking for effective countermeasuhat are operating fast and long
lasting. It turned out that theepeated pressing of a buttandvibrations in the safety belt
did not or almost not improve the fitness.
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In their studiesReyner and Horn€l999; Horne and Reyngl 999 demonstrate thatold air
and listening to thear radiodid not have significant effects on drifting over lane magsn
although there was a trend for the radio to initially redugehsincidents and cold air also
had some effect. The study &freschne (2011 confirms the weak and short influence of
listening to the car radio. Unfortunatelyxerciseandstretchingis also of little use.

Studies by §cott 2009 Philip and Taillard 2006 Sagaspe et al2007 Horne and Reyner
1999 Anund et al, 2008 Mara, 1999 all came to the conclusion that stopping faradfeine
containing drink, such as one or two cups of coffee and a gheyt for about 15 to 20
minutes, are the most effective short-term countermeadurealleviating sleepiness. Based
on two driving simulator studieskeyner and Horn€2000 concluded that a caffeine dose
of 200mg (feasibly taken via 2 to 3 cups of coffee, energyldrior caffeine tabletsAnhund

et al, 2008 Mets et al, 2011)) effectively reduces early morning driver sleepiness3or
min to two hours, depending on the sleep deprivation. Inotleneasure sleepiness, the
subjective sleepiness rating, EEband power and lane driftings were used. According
to Scott(2009, up to two cups of coffee can increase alertness for sekietak, but it takes
on average 20 to 30 min to take effect. Thus, it is recommendaltink the coffee at the
beginning of a break before taking a nag.cét; 2009 also proposes to take a break every
two hours on a long journey. Caffeine can prolong the drs/Bthess only to a certain extend
and cannot replace sleep over a longer periddrg, 1999. In a more recent stud§gagaspe
et al.(2007) considered the age of drivers and came to the conclusitaffae significantly
improves performance only in young and middle-aged paditis. Napping is more efficient
in younger than in older participants, so they proposed tti@tcountermeasures should be
adapted to the age of the driveldets et al(2011) found thatRed BullR) Energy Drinkalso
significantly improves driving performance compared tocBko drinks and reduces driver
sleepiness during prolonged highway driving during the&rd 4th hour of driving (which
is not surprising since energy drinks contain caffeine).

Drory (19895 examined the effects of different rest levels and secontiemks on perfor-
mance and fatigue of sixty male truck drivers engaged in arsheur simulated driving task.
The results showed that performance and perceived fatigue significantly higher when
a secondary task involving voi@mmunicatiorwas added to the basic driving task, yet an
added vigilance task had less effect. An extra 30 minutepesod in the middle of the
experimental session significantly alleviated the regbeteperience of fatigue but did not af-
fect the performance. In contrast to the distraction @flephone conversatiaturing normal
driving, Greschne(2011) concluded from his experimental study that a phone tallbahin
has a very significant positive influence on the driver aks$n

It is commonly known and confirmed by accident statistiGseschner2011, Fig. 1) and
(Altmller, 2007 thattalking to co-passengers keeps the driver more alert than drivorgeal
or when all passengers are sleeping. It helps to prevent fiyrohological underload (e.g.
due to monotony), and exhausted drivers become better afvtreir fatigue.

Altmuller (2007 concludes fronGillberg et al.(1996 that sleep is the only remedy against
fatigue related from stress overload, physical exhaugiiosieep deprivation while psycho-
logical underload might be threated differently.

Exposing the driver to light was investigated as a countesuee against fatigueBlue
light increasingly suppresses melatonin for higher light intgrsnd length of exposure.
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The photopigments in the human eye mediate circadian piagption that promote sleepi-
ness Greschner2012; Brainard and Hanifin2001, Ch. 3.2). Becker(2009 investigated
light-induced melatonin suppression on 37 females and 36an#le identified 446 to 477
nm as the most potent wavelength region. For continuoudaitign to bright light with
over 2000 Lux, the melatonin level was reduced while the emaipre and performance was
higher compared to subjects that were exposed to modegatedielow 100 Lux. Own inves-
tigations at Daimler have not shown significant improvenadnhe degree of fatigue.

In the questionnaire used in this thesis during night expenis, some of the test subjects
answered that thegrive fasterto raise the adrenalin level and to get out of the monotony. In
fact, in the measurements recorded in this thesis, theraw@gificant correlation between
the subjective self-ratings of sleepiness and vehiclecitylon monotonous motorways.

An effective but maybe too radical countermeasure testedgisome specific drives within
this project wagold water or ice in the neck or fa¢advisably not while driving). The short-
term increase of alertness is quite obvious as exposurddavater or ice increases the heart
rate, blood pressure and adrenalin leugb(ben et al.1982. It would be interesting to
investigate this countermeasure more thoroughly evensfribt practicable.

Grace and Stewa@007) emittedpeppermings an alerting stimulus combined with a buzzer
alarm as a warning, but with little additional impact. TheiDker patents {ellentrup et aJ.
2009 Jellentrup and Rothe009 propose to combine th&TTENTION ASsiSTwarning by
emitting thesmell of coffeeor fresh cookiego motivate the driver to have a break.

1.5. Approaches to Detect Drowsiness in the Vehicle

Drowsy drivers exhibit specific observable patterns initigdeye gaze, eyelid movement,
head movement, and facial expressiBauf and Howarth2006).

Fig. 1.11 provides an overview over various approacheslitectly or indirectly detect re-
duced vigilance in a driving context.

Electro-
encephalo-
gram

In-vehicle
Fatigue
Detection

Driver
Camera

Figure 1.11.:Mindmap of in-vehicle approaches to reduce fatigue-rdlateidents (own drawing)

Since there is not an objective criteria for fatigue, somthefdirect approaches are used as
"ground truth" reference. CRB.will further investigate promising measures that are blgta
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as fatigue reference in combination with subjective safiings. Fatigue can be rated by a
majority voting of experts or self-rated by the driver.

Direct approaches measure vigilance immediately from the driker. instance, the brain,
muscle or heart activity can be measured by Electroenzegtegdhy EEG), Electromyo-
gram EMG) or ElectrocardiogramgCG). Wiring the driver with electrodes is not practica-
ble for series applications, so that there are approachestitnate thd=CG by radar in the
vehicle cabin lahler, 2005. The eye lid movement is another indicator for fatigue aaa ¢
be observed by electrodes around the eyes in the Electagramh EOG) or by attaching
spindles directly to the eye lidsiargutt and Kriiger2000. A less intrusive way is to capture
the eye lid movements by an eye-tracking camera. In the ffestacceptance of a camera
pointing directly at the driver was too low for a series apgtion. More recently, internal
studies show that the acceptance for such eye-trackingdsghhas increased. Measuring
the hand grip force or the humidity directly on the steerirtgeel is a weak indicator for the
driver fitness and cannot be used as standalone features.

In comparisonjndirect methods evaluate secondary effects such as impaired gitadou-
racy. The idea behind indirect approaches is to considedtiver-vehicle-roadscenario
(Fig. 1.12) as a control system in which the driver has to constantlysidhe lateral and
longitudinal position. Reduced vigilance results in a dase of control accuracy which can
be represented by different driver model parameter. Thedhas to constantly react to
external influences induced by the road or traffic. The vehinslates the actions with
a certain phase delay into movements. The error that therdmakes within this control

<\v

(_ Environment )

Figure 1.12.: Driver within a control system

loop is partially correlated with his short-term attentidns fithess and fatigue level, but

unfortunately also to other influences such as varying nigigtyles, road condition, traffic

influences and many others. Thus, the long term lane keepirigrmance, steering behavior
or reaction time to external events can be used as indirdatators for reduced vigilance.

These approaches will be investigated in €hThe external influences will be discussed in
Ch.5.

Due to their non-intrusiveness and lower costs, indiredhiods are more suitable for series
applications. Therefore, it is more attractive for car nfanturers to focus on indirect meth-
ods using in-vehicle sensors that are already availabléhtElectronic Stability Control
(ESQ and other standard equipment systems.

1.6. Drowsiness Detection Systems on the Market

The first prevention driver assistance systems on the méokesing on fatigued drivers
were the VolvoDriver Alert Control (Volvo Cars 2007h Ritter, 2007) introduced in 2007,
as special equipment, and the Mercedes-B&NzeENTION ASSISTIn 2009 as series equip-
ment Oaimler, 200§ Daimler COM/M, 2009. The ATTENTION ASSISTIis running onESC
platforms from Bosch, Delphi and TRW that have all differarthitectures. In 2010, Bosch
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and VW introduced a fatigue detection system in the VW Pasdst as series equipment,
working similarly to theATTENTION AssIST(von Jan et a.2005. Nowadays, many auto-
motive OEMs work on fatigue detection systems.

The Mitsubishi'sDriver's Attention Monitoring SystertMDAS-III) from Mitsubishi-Fuso
(2012 is available for heavy duty trucks and large tourist busasedd on a white-line-
recognition camera, steering wheel sensor and variousiettsmonitor the attention level.
It calculates the degree of monotony by evaluating the kjuswixiliary brake and signal
lights. The system also emits a fragrance during monotodauig in order to maintain
attention without discomfort\{itsubishi 2012).

Volvo Driver Alert Control

TheVolvo Driver Alert Contro DAC) detects drowsiness or unintended lane exceedingswhil
driving. The system turns on at 65 km/h and remains active tvet speed falls below 60
km/h. The first version of the DAC was introduced in 2007 in X&) as special equipment
package in combination with lane departure warning. Ratten assessing the human be-
havior directly, DAC monitors the driving behavior dirgctiIDAC determines whether the
vehicle is driven in a controlled or uncontrolled way. THere, the system uses signals from
the lane tracking camera along with steering movements anstantly compares erratic be-
havior to the normal driving stylevblvo Cars 2012. The DAC runs on a Delphi platform
and uses only three signals (lane position, yaw rate, anidleetpeed). When DAC detects

~
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Figure 1.13.:Volvo Driver Alert showing a bargraph (Sourckutokiste.de2007)

signs of fatigue or a lack in concentration, an audible waytié emitted. At the same time, a
message is displayed on the instrument panel suggestirgak pblvo Cars 2012). In addi-
tion, a bargraph with five levels is provided, as shown in Eig3for more experiencability.
The sensitivity can be adapted via personalization pragsertThe system is quite simple,
dynamic and therefore transparent. Manipulating the batgiand provoking a warning is
easy. This brings experiencability whereas reduces theetieh accuracy.

Mercedes-Benz Attention Assist

In 2009, Mercedes Benz introduced tABTENTION ASSIST with the new E- and S-Class
as series equipment. Today, the system is spread to the @ntiduct portfolio as series
equipment. The system is a milestone in the history of safgsyems as shown in the latest
cover of the Daimler brochure "Milestones in Vehicle SafetyFig. 1.14 Mercedes-Benz
has developed the innovative system, which can detect thet anf driver fatigue or a lack
in concentration and prompts them a proposal to take a brefikebit is too late. The
system was designed to detect the transition from awakeéoesswsiness while driving and
issues an acoustical and visual warning suggesting a bifike.1.15 depicts the warning
in the instrument cluster of the first version in the E- andI8s€. Fig.1.16(a)depicts the
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Figure 1.14.:ATTENTION AssisT as cover of Daimlemilestones in vehicle safety. The vision of
Crash Free Driving(Source: 5836/1622/00/0609aimler COM/M, 2009

Attention Assist:

Pause!

1706.0 km
56684 km
Navi Audio Telefon »

(a) E-Class 2008 (b) S-Class 2009

Figure 1.15.: ATTENTION AssisTwarning in the E- and S-Class

ATTENTION LEVEL in the instrument cluster of the version 2.0 launched in tt&2®RS-Class
that illustrates an early stage of the algorithms develdpéiis thesis.
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100 ™% 7 160 N < AN Pause vor 02:35 h
@« P\ < N |
i 8 ’80\ Attention Assist ) p e

2007\ pause vor 00:15 h

220 =
7 Attention Level

(a) Attention Level (b) HMI and warning concept

Figure 1.16.:ATTENTION LEVEL and warning concept in the W222 (Sourddercedes-Benz
MBRSA, 2013

As shown in Fig.1.17, over 80 signals are evaluated and more than 200 parameters- a
volved. At the heart of this system is a highly sensitive tgewheel sensor which allows an
extremely precise monitoring of the steering wheel movemand the steering speed. Since
tired drivers have difficulties in accurately following ttane, they make small steering mis-
takes that are often corrected in a fast and characteristyc Whe frequency and intensity as
well as five other measures represent the basic measurdifprefaExtensive data analyses
of over 1000 drivers have proven that these mistakes alreeclyr in an early onset of sleepi-
ness, long before the dangerous micro-sleep. ATEENTION ASSISTobserves the driver's
steering behavior and, during the first few minutes of evepy tletermines a driver specific
profile that is then continuously compared with the actua¢ishg data. Besides analyzing
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Figure 1.17.:The signals that th&TTENTION AssISTis using Mercedes-Ben2008

the steering behavior, the system permanently adapts &xthal steering style that may vary
because of external influences, speed or road types. Thensystactive at speeds between
80 and 180 km/h. The road condition and cross-wind are detesmhd taken into account.
Operations on buttons, levers, headunits as well as phdls e&. are also detected and
taken into account in the same way as overtaking or lane amgnganeuvers. The dynamic

of the driving style (i.e. sporty or monotonous) is also mavated. Also the daytime and

driving duration are taken into account. The system is egselith engine restart or when

a driver change is detected. Fuzzy logic was introduced dieroto improve the system’s

performance and to reduce fixed-point scaling artifactsnyaf the results presented in this
thesis were integrated in this system.

The current system is optimized to issue a warning to thedmthe right moment. However,
many drivers will rarely experience this moment, as it cde ta while until such a state is
reached. In order to provide more transparency and makeystens more experiencable, a
bargraph would be the next step as presented inlFgga)

1.7. State-of-the Art and Literature Review

Monitoring the driver behavior is a research topic reacltiiagk to the 90s and many studies
have been conducted over the last decades. Most studiesbased on data from driving
simulators since in-vehicle drowsiness experiments requiremendous amount of effort.

Knipling and Wang1994) found that driving duration and time of day (Circadian) eoere-
lated with fatigue and can be used for detectitleno et al.(1994) used image processing
technology to analyze images of the driver’s face to esgntibwsiness. Using simula-
tor data and Artificial Neural NetworksA(NN), Sayed(2001); Eskandarian and Mortazavi
(2007 found that steering activity, among other variables, elate well with drowsiness.
They achieved an accuracy of 89% for the clagsmkeand 85% fordrowsy Knipling and
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Wang(19949; Fairbanks et al(1999; Wierwille (19963; Wierwille et al.(1996; Wierwille
(19961 proposed a set of features based on driving simulator ddteir potential features
are included and further improved in this project. In hissdigation,Altmuller (2007 ana-
lyzed the deadband rate in the steering velocity, based @madlator drives. The deadband
is a phase in which the driver is not steering due to a lack @framess. These features are
included in this thesis and analyzed using real road d&dgavia(1999 used real world data
to optimize a driver aware lane departure system.

Schmitz(2004) proposed improvements to suppress warnings for interaieel departures
based on simulator results that are verified in two field stidfozak and Poh(2009 did
the same, however based on 32 truck simulator drives.

Berglund(2007); Kanstrup(20069; Mattsson(2007) used multiple regression on in-vehicle
steering and lane data variables to accurately (87%) ffagsiwsiness, based on 22 truck
simulator drives. Wherealstfgren (2007 was focusing on lane dataVigh (2007 was
evaluating lane-based features such as time-to-laneirngossDaimler.

Forsman and Vilag§2012 performed a driving simulator study with twelve partiaipg and
87 different driving metrics focusing on the detection ofderate drowsiness levels. She con-
firms that steering wheel variability provides a cost-dffecand easy-to-install alternative
for in-vehicle drowsy driver detection at moderate fatidgeels.

1.8. Goals of this Thesis

The general goal of this thesis is to improve online fatigesel estimation algorithms for
the application in drowsiness detection systems such ddéheedes-BenATTENTION AS-
SIST. For this reason, it is mandatory to use sensor data thaudebke for in-vehicle use
and preferably based on available standard equipment rsen$be detection accuracy of
the system should be as high as possible while keeping the &hrm rate at a minimum.
The algorithms should be robust and reliable under any roaditon and for any type of
driver.

The main focus of this thesis is on the study, implementagiod evaluation of the fatigue
related features in literature. Moreover, own ideas andagghes will be proposed. This
also involves the data acquisition and handling of over oiikom kilometers of real road
test data and night experiments.

In order to reach the goals, an adequate reference for sksphas to be found and used
to represent the ground truth for optimization. For theaieness of the system, the aim
is to provide a warning that is plausible with regards toghbjectiveself-assessment of the
driver on the one hand, and that prevents accidents by pngvabjectivefeedback to the
driver about his impaired driving performance at the otlarch Rather than the detection of
short term distraction, the focus of this thesis is on middtié long term lack of concentration
or alertness. At the same time, the onset of fatigue shoultebectedearly enough so that
there remains enough time for the driver to reach the nekinmgarea. The later the system
detects arising fatigue, the more severe is the risk of lgagimaccident. Thus, if the early
onset of fatigue was not detected, it is important to at ldetsct the later phases of sleepiness,
especially when micro-sleep occurs.
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Whereas the current system only displays a warning with aoisiic warning signal, the
next generation is intended to output an online bargraphdbrastantly monitors the driver.
Providing a permanently available bargraph of the actuaédstate demands the estimation
of a continuous-valued measure of the driver’s vigilaneelleThis drowsiness level is also
valuable for adapting the sensitivity of other driver assise systems such as lane departure
and collision warning systems.

In addition, there are other demands of series productitriftth. The number of variants and
the effort for the application of the system to individuahige types must be manageable.
Furthermore, it is important to keep the system simple tajoenits complexity and reduce
the risk of software errors. Algorithms that are targeteduto on the ESC controller unit
must run in real-time and in fixed-point with a very limitedndend of resources.

1.9. New Contributions of this Thesis

The contributions of this thesis to the field of driver statenitoring are as follows:

Signals and Data

Unparalleled amount of real-world driving dat&Compared to any other previous work, this
thesis is based on an unparalleled amount of real worldrdyidata. Most studies in litera-
ture, as for instanceA(tmuller, 2007 Knipling and Wang 1994 Batavig 1999 Kozak and
Pohl 2006 Schmitz 2004 Ueno et al. 1994 Wigh, 2007) are evaluated on a comparatively
smaller amount of simulator drives or sometimes on-roadsoregnents under restricted lab
conditions. As discussed in Set1, it makes a huge difference if test drives are recorded in
a simulator or on real roads.

Fusion of sensor signalsthis thesis deals with the problem of handling mixed, asyobus
CAN data in which signals are sometimes unavailable. The pesition is often unavailable
due to bad lane markings or vision issues. The lane positidrvahicle level signals are not
available in all vehicles. Fail-safe considerations alebfack strategies of faulty or missing
signals are made. Online sensor fault monitoring algorithion sensor blindspots and hys-
teresis are proposed that run in fixed-point with very lowotese consumption. Methods
for the plausibility check of signals by the use of redungaegpert knowledge and physical
vehicle models are implemented.

Fatigue References

Assessment of EEG, Camera and Self-estimatiime subjective self-estimation, camera-
based eye-tracking arlEG brain activity are critically evaluated for their validity real
driving environments. External measures like eye-tragldnd EEG suffer from negative
influences during regular road drives. Hence, the KarotirfSleepiness Scal&§S) is pri-
marily used since the driver must accept the warnings andhwheroughly recorded, it is
more reliable than any other recorded measure. But sincauthjective understanding of the
KSS scale differs amongst drivers,desired warning levelvas introduced. In addition, a
warning acceptance questiavas interrogated for cross-validation of tK&S.

Features

New and improved featuresn addition to promising fatigue measures (so cafiegture3
found in literature, new features are proposed. Their Bilitya for working under real driv-
ing conditions is evaluated thoroughly on an amount of realdvmeasurements of over 1.5
million kilometers. For instance, a feature similarRegree-of-Interactioris proposed but
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without the need of the steering wheel torque. In comparisgilattsson 2007, an alterna-
tive method for detecting zig-zag events is given.

Incorporation of a-priori measures:A-priori measures (such as daytime, "time-on-task”,
light condition) have been considered separately duriegrining of the classifiers. This
makes the assessment of features more sensitive to the dictes state rather than using
the probability of being sleepy in the actual driving sitaatalone.

Application of new signal processing methodis:order to improve the performance of the
features and their extraction efficiency, new signal preicgsmethods are proposed for this
application (e.gEWMA , EWVAR , EWIQR, DISPQ...) (cf. Ch.4).

Also, a convenient and resource-efficient online-estiomatif steering velocity percentiles is
proposed using an array BWMA filters.

Feature extraction using Fuzzy logi¢his was introduced to detect steering corrections more
reliably and to reduce fixed-float differences.

Adaptive window size of filtersDrowsiness increases rather slowly, so the correlation be-
tween features and drowsiness is better for smoothing \&itel window sizes. A major
problem in previous work was the large window sizes of 10-3@utes that make the system
nonreactive to quick fatigue level changes. Comparesktged2001), for instance, an adap-
tive window size is used to be more dynamic in drowsiness @tioig situations.

Accelerated optimization of feature parametefSonvex parameter optimization of single
features and global parameter optimization algorithmsagdied. For feature extraction,
computation cost reduction of over factor 100 is achieveddsling all pre-processed sig-
nals to the tightest data type, loading the 60 GB into the RAW applying efficient matrix
operations.

Lane Data

Features from advanced lane-departure camdraaddition to sensor data from steering an-
gle, acceleration and yaw-rate, a portion of the investigideatures is based on data from
the Advanced Lane Departure Warning (ALD®ystem. Thisdvanced_.DW provides addi-
tional signals, is calibrated more accurately and has higVeslability compared to individu-
ally built-in aftermarket sensors from previous studies.

Estimation of lane-based features by inertial sensors atelneled Kalman filterEKF): For
the extraction of some features based on lane-tracking reanés proposed to only use in-
ertial motion sensors in combination with &iKF. The performance between original lane
features and the estimated coupled motion pendants areacedp

External Factors

Compensation of external factorsloreover, external factors like road condition, crossayin
traffic density and vehicle operations are examined. A nadabtive notch-filter is used to
suppress vibration noise from unbalanced wheel mass. A pesitsve detection of road
bumps is presented using the temporal delay between frohtesm wheels. As in no other
previous publications, vehicle level signals from the aspension or Active Body Control
(ABC) sensor are evaluated to estimate measures for theomatition. A comparison to the
other methods is given.

Compensation of individual driving style8daption to the large variety of individual driving
styles is crucial and handled tmaselining Different methods are compared.
Compensation of vehicle parametefihere is a large number of vehicle properties like steer-
ing ratio, steering resistance and torque, vehicle massoetavhich the detection depends.
Cross-wind detection, for instance, is very sensitive tbicle parameters. Such vehicle
dependencies are incorporated in this thesis.
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Classification

Fusion of features by classificatidrhe fusion of the features is discussed on the physical, fea-
ture, and decision level. With other words, modeling exgrdwledge on feature extraction
level, feature selection and classification are comparkd.performance of a combination of
features is assessed by classifiers and dimension reduetibniques. Classification meth-
ods for modeling expert knowledge are examined by using étiddarkov Models (HMM).
Real-time online demonstrator and novel CAN-interfaégaiproved algorithms are imple-
mented with very limited pixed-point resources in realdim theESCof all today’s Mercedes-
Benz cars. More sophisticated features were implementaad adwn Matlab MEX C++ CAN-
Interface with a visualizatio®UI for in-vehicle online assessment.

1.10. Challenges of in-vehicle Fatigue Detection

Clearly, a major challenge about drowsiness detectionesathount of data needed for the
development and everything that is related to the data dewprand handling. Since the

driver's state generally decreases slowly over many m@ateeven hours, very long mea-
surements are needed. At the same time, fatigue relategtqatbccur within seconds and
require a sufficiently high sampling frequency. Thus, ndydhe 2 TB of data, but also the

long duration of the measurements makes them difficult tortedhandle, and analyze. Also,
the driving behavior must not be influenced by the touchsci€8S entries or immediate

feedback of driving performance. Furthermore, it makegalifference when the driver has
lane departure warnings or lane keeping available and Isedton.

Also, a big issue was driving until the onset of sleepiness,naking sure that the risk of
having an accident is not higher than for normal traffic. Sergdrive with involved fatigue
required at least a co-driver and sometimes a second setlafsperhese preventions made
it possible that not one single critical situation occurdeding the entire project.

Another difficulty was the large number of signals that hawbe processed. Whereas many
signal processing fields are focusing one a few channelde#tteres in this thesis are based
on over 200 signals that all need to be validated. They ak lthfferent characteristics and
each signal originates from different vehicle types witfiedlent sensors and controller unit
manufacturers with different software. The computer devilor measurement in the vehicle
are very complex, sensitive to faults, and often suffer firoms-configuration. The driving
simulator, the various prototype vehicles, the measurémgmpment, the 10.000 hours of
driving, the man power for data acquisition, and the reseaver one decade costed millions
of Euros.

Finally, the most difficult challenge was to uncover the infation about the driver’s condi-

tion. The driver hat to be observed within countless houdsmararious situations to discover

and cluster promising patterns and to come up with ideas bautomatically detect them.

Every driver drives differently and even one driver can gehis behavior depending on

his/her condition, his/her mood, or the situation. So theeoked patterns are covered by
many factors that severely overlay the weak fatigue pattern

Even after all these considerations, the classificationltsedid not reach the results obtained
in a driving simulator. It is still not clear, if online fatige detection will ever work with very
high accuracy under all circumstances.
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Chapter 2.

Sensors and Data Acquisition

2.1. Driving Experiments

A prerequisite for obtaining results on fatigue detectisraisufficiently large amount of
recorded data with high quality. But even a large amount td dauseless without a reliable
reference and good transparency of what happened durindrithes. It is very important
to know under which conditions the drives have been recorftednstance, to know the
speed profile, road type, weather and driver type. Eifj.shows a map of valid drives in
Europe. Different experiment scenarios have been desitmeecord data that represent
regular driving. These experiment types are describedeariatowing section.

- sGoogle

Figure 2.1.: Map of drives: begin / end of drives are indicated with a greeed dot. Green lines
indicateawakedriving sections, orange lines indicaaeceptableand red linegdrowsy
drives (see Ch3.3).

Night experiments: Drives with provoked fatigue levels were typically perfadon mo-
notonous motorway sections with very low traffic and limiguked from about 120 to 140
km/h. This was the most important scenario since most ofetlteises involved a certain
extend of fatigue. In addition to the subjective KSS seling the driver’s vigilance level
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was constantly monitored by eye-tracking cameras andafigrby EEG. For these drives,
the self-assessments of the fatigue level were most aectimanks to the supervision by the
co-driver. Drivers were carefully monitored by specialigihed supervisors, capable to in-
tervene from the passenger seat with a second set of p&tddm{df 2009. The supervisor
made notes about the driver’s vigilance, the driving penfamce, and happenings that could
later be of interest. As it is usual for driving on public reathe driver was always respon-
sible for driving safety. The drivers had to stop as soon ag tlad concerns about safety.
The supervisor also had soft and hard criteria to intertuptrive. For instance, entering the
KSSlevel 9 one time or entering level 8 two times were hard datés interrupt the drive.
In none of the drives, interaction of the co-driver was nsags Allowing more fatigue than
this was not possible on public roads. A questionnaire hae filed out by the driver before
and after the ride to determine irregularities and to colisiver characteristics. More night
drives with fatigue have been recorded on the closed 12kintréek in Papenburg. However,
these drives were not realistic enough and thus not comrsidesre.

Customer Near Driving (KNFE) and Free Driving:  Daily routine driving profiles com-
prise the majority of drives in this thesis. Random persditain a vehicle to drive to their
individual destination. These drives are without any festns and do not specifically pur-
sue the goal of becoming tired. It is just desired to driver &0 km, thus, the vehicles
are often used to drive long distances on motorways that are probable to contain fa-
tigue than other drives. All drivers get instructions, esgity on how to estimate their level
of fatigue using theKSS. They were instructed to interrupt the drive when they fiedd,
no matter if they get a warning or not. Still, some drivers dad reliably enter theiKSS
fatigue level, so that a validation process was needed (8eeAY.3). The only thing the
driver had to do was to enter his/her sleepiness level evempihutes and fill out a touch
screen questionnaire before and after every drive. In iadditvarnings must be rated as
false acceptableor correct Drivers are not always used to the vehicle, so they somstime
test vehicle dynamics or driver assistance systems. Soregitried to provoke aATTEN-
TION AssisTwarning without being tired. Such drives are not suitabterf@ning and, thus,
excluded from the present study.

Driving Simulator:  Simulator studies are the safest and easiest way to recostheed
fatigue levels. Especially falling asleep can only be rdedrin a driving simulator. Record-
ing data in the driving simulator in Fi@.2was part of previous project phases. Anyway, in
the scope of this thesis and the diploma thesi8lah (2007, 30 simulator drives had to be
recorded to evaluate the latest eye-tracking system hpdetihe drivers fall asleep behind
the wheel.

There are big differences between data from regular evgrgdaing situations compared
to data from simulator drives. As reported iBglz, 200Q Belz et al, 2004 Berka et al.
2009, fatigue develops differently in a driving simulator coaned to real drives. According
to (Philip and Sagasp&0039, the line crossings are of higher amplitude in the simualate
condition. Fig.2.2 shows an advanced moving-base driving simulator compareddrive

in a real vehicle. Especially psychological factors aneémdl influences have a significant
impact on the driving performance. One of the most essediffdrences is the driver’s
awareness of being in a situation, in which his life dependdie fitness. In a simulator,
drivers go much closer to the limit of falling asleep, whichmuch too late for practical
applications. This is confirmed by the fact that most of theée3d persons have fallen asleep
in the simulator experiment conducted for this thesis. Asedron public roads must be



23—

Figure 2.2.: There are important differences between driving in a sitoulaompared to real driv-
ing conditions. This is why many fatigue detection appresctihat worked well in a
simulator fail on real roads.

interrupted in an early phase of sleepiness, the drowsneésted patterns are more rare and
not very significant. Subjects that are monitored by a supendrive more strained and
calmer. A lot of "noise" is introduced by different road tgpéane markings, traffic density,
curvature, speed profiles, driving styles, and vehicle dypkhe lane quality varies severely
and is affected by weather. In reality, realistic roads areen perfectly even. Such noise
cannot be simulated by even the most advanced simulators.

Proving Grounds: Driving experiments with safety concerns cannot be peréotion pub-
lic roads. Private proving grounds like Papenburg in Geymamldiada in Spain are not
representative for regular motorway drives. However, dhiesting areas are very suitable
for testing the detection of road bumps or the applicatiometficle and system parameters.
Therefore, testing the detection of fatigue patterns likezag driving, lane exceeding, and
monotonous or sporty driving was tested on these provingrgie. FigA.1 shows a map of
the commonly used proving grounds Papenburg and Idiada.

Excursion Experiments: Long drives which are performed by experts who have a lot of
expertise in estimating their fatigue level are excursigpegiments. The driving behavior
is well comparable to regular drives, since they are nottéichto any kind of behavior, road
or driving situation. There was always an experienced esediwhen fatigue was involved.
In general, there are several vehicles driving in a groupchviallows the comparison of
vehicles and drivers.

2.2. Database

The present results are based on a large selection of theees:dBenz drowsiness database.
An unparalleled amount of data with over 27.000 drives aner dv46 million kilometers
were recorded. Over 11.170 of these drives were valid foulsition.

about 13.000 hours of driving time

all valid drives were over ten kilometers and lasted up teezidhours

over 18 night experiments

1.485 drivers who'’s age ranged from 18 to 77 years, 87% males

84 different vehicles from C- to S-Class and SLK- to M-Class

12 different countries (Europe, Emirates, Japan, USA, ManBouth Africa)
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e all kind of roads (motorways, country roads, urban, graesiting ground, snow, ice)
e weather and temperatures ranged from -30 degree in Swedearta40 degree in the

Death Valley, Dubai and Namibia.

e The drivers were generally experienced, whereas somerslinad little experience.

91% of the drivers were familiar with the actual vehicle type

App. A.2 shows the filter criteria oflatasetdor different applications.

2.2.1. Touchscreen and Questionnaire

The KSSlevel was interrogated every 15 minutes through a touctescdésplay by a beep
sound. Fig2.3shows the questionnaire that the drivers had to answerdafat after each
drive. The actually entered value remained highlightechst the driver could always con-
firm or update the last entry.

Please rate your fatigue level

L Ll 111 L

mely alert Very alert

Figure 2.3.: MATLAB KSS input GUI for the driving simulator, similar to éntouch screen in every

vehicle

Beforethe drive, the driver had to answer the following questions:

Full Name

Gender

Year of birth

Driven distance in km per year (see statistic in Rigl(a)
Most often driven vehicle brand and type

Personally use manual or automatic transmission
(44.2% used automatic and 55.8% manual transmission)

e Usual driving duration until having a break (see statisii€ig. 2.4(b)

Number of drives over four hours per month (see statistidgn Z4(c)

After the drive, the following questions had to be answered:

Weather conditions (rain or fog, aquaplaning)

Road condition (rills, road bumps)

Occurrence of cross-wind

Degree of distraction and reason (discussion, operatimughts)
DesiredKSSwarning level:DWL

Effectiveness of the warning (reason why driving was cardd)
Opinion on warning design
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(a) Drivers’ annual driven distancéb) Driving duration after which (c) Frequency of drives over 4 h
drivers have a break

Figure 2.4.: Statistic over the driver’s answers to the touchscreentguesire. Even if the recorded
drivers drive many kilometers per year, they only have a favgldrives over 4 h per year.
Most drivers usually have a pause every 2 - 4 h whereas 19 %eafriers drive 5h and
more without a break.

2.3. Sensors

Every sensor was attached over ADIGN - or SPkbus to anElectronic Controller Unit
(ECU) that translates the physical signalsGAN messages. Some of the sensor modules
send multiple signals. The majority of the CAN signals in.TA in App. A.3 are vehicle
operation signals, such as turn indicators or steering Whetons that originate from every
different discrete button or lever stated_.DW provides 29 signals as described in TAIR.
Signals from the ALDW lane keeping camera are investigateitbviongitudinal radar infor-
mation is not used. Some reasons are that the driver’s latehile control is permanently
necessary while the longitudinal control depends on eatadriving situations and the lim-
iter or (adaptive) cruise control might be active. The mogtartant sensors are described in
the following.

2.3.1. Vehicle Speed from Wheel Rotation Rate Sensor

The vehicle speed is measured by wheel rotation rate sefisdrselticks™) that use a hall
sensor and a magnet wheel with magnetically encoded pulsdbstéct partial rotations and
the rotation direction. Depending on the vehicle driventrgipe, thewheel rotations per
minute WhIRP Mat time instani are calculated according to EQ.{). If one of the used
sensors is implausible, only the plausible sensor is takéis, however, results in a speed
deviation within curves.

(WhIRPMEL[N] + WhIRPMeR[N]) /2 for rear wheel drive

2.1
(WhIRPNhL[n]+WhIRPI\/hR[n])/2 for front wheel drive &)

WhIRPMn] =

The vehicle speedn [km/h] at time intervaln is then obtained using thgynamic wheel
circumference g in [m] according to Eq.Z.2). The wheel circumference grows with in-
creasing speed, so tdgnamicwheel circumference was chosen according to the speed range
of interest. Too small or worn out tires cause a small destiathat cannot be detected so far.
This parameter is an input of the algorithm stored as tabtheéfeSCand is selected based

on the vehicle variant code (SCN). The values originate fiioentire suppliers.

k
3.6km. S
60D

Weh[N] = WhIRPMN] - dyp; - . (2.2)
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2.3.2. Inertial Sensors

The yaw rotation and acceleration are measured by the seluster in the vehicle’s center
of gravity or directly onboard in thESC A two-dimensionaMEMS accelerometer (cfA.5)
measures thiongitudinal andlateral acceleration @ anday, each with the range10.24sr—2.
Theyaw ratey is measured by MEMS gyroscope, whileyaw angleandaccelerationare
calculated. To cope with mounting tolerances and roadratitn, the sensor offsets are
compensated online as explained in App4.

Forces are generally related to the center of gravity of #tecke. However, for cost reasons
the additional sensor cluster module was integrated frarvhicle's center of mass into
the ESC While the yaw rate is independent from the mounting pasjtihe measured accel-
erations are influenced by rotation and, thus, must be wemsid to the vehicle’s center of
gravity as explained in ApfA.4.

2.3.3. Steering Wheel Angle Sensor (STW)

The sensor for theteering wheel angléSTW) 65 is one of the most important components
of the fatigue detection system. In contrast to previoudigations, a high precision steering
wheel angle sensor with a resolution of Owlas used. This sensitivity is an enabling property
for new innovations, for which the lega&5Csensois gschas an insufficient resolution of
0.5 or 2°. However, thejs escis better secured against failures since it is safety rateiea
the ESC Different vehicle classes have individual assembly nexoents regarding packag-
ing space on the steering column, so products from diffexeppliers are needed. Depending
on the manufacturer, the sensor either works accordigtioal or magneticalprinciples as
explained in AppA.5.

Depending on the vehicle and steering type (parametettfliegio steering)steering an-
gle 65 of the wheel is related teteering wheel anglés by a speed dependent curve. For
small steering wheel angl@és, this curve can be simplified tosteering ratio S Ractor as
described in Eq.4.3).

6a = s - SRWen 0s) ~ 6s-SR (2.3)

In production assembly, the sensor mounting is affected tojeaance and there is usually
a 3% lateral road trend (for rain water drain), so an offsetdseto be estimated and com-
pensated for. For reasons of simplicity, the adapsiteering wheel angle offség ot fsetiS
already included ids.

Sensor Aging

Due to the involved mechanics or optics, the steering whaddars suffer from aging. Sen-
sors that were intensively exposed to extreme situations weailable to analyze whether
the sensor prototypes fulfill their specification.

For the precise quantitative assessment of sensor errsteseidng robot (see Fig.5 and a
steering wheel angle sensor with 0.00@tcuracy were installed in the cockpit.

The coded discs of optical sensors can suffer from dust #satlts in "blind spots" of the
signal, so that certain quantization values occur lessi@ftenever while adjacent values are
repeated too often. With the steering robot, perfectlydimgiangle movements from -30
to +3C were repeatedly recorded, so that every quantization wehsedistributed uniformly.



Figure 2.5.: Steering robot SR60 from Anthony Best Dynamics (Souragthony Best Dynamigs
2012 to validate steering wheel angle sensor

Fig. 2.6 shows adiscrete histogranof the steering wheel angle and the reference signal.
Fig. 2.7 shows the recorded trapezodial and a zoom of the signal itinteedomain where
the gaps and increased occurences can be seen.
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Figure 2.6.:"Blind Spots" in which dust covers a slot of the sensor disc

As Fig. 2.8 shows, aging of the gearing can further result imyateresif several samples
and non-linearity. To detect such a "backlash" across tlewast sensor range, the large
linear triangles were superposed with sines, each with gulitugle of 2. The backlash
could be detected as a plateau at inflection points by congpafi the reference and worn-
out sensor signals. Non-linearities could also be detdtisdvay.

Simulations with artificial blind spots have shown that thgifal Polynomial Smoothing and
Differentiation Filter DISPO (cf. 4.1.1) can cope with up to two blind spots equivalent to
0.2 without significantly affecting the detection rate. Largpdind spots do not allow to de-
tect some fast steering corrections and have a severe impé#et detection rate. An efficient
online algorithm was implemented that detects sensor tiefiemn large gaps by exploiting
the fact that adjacent quantization values are equallygiieb During the beginning of a
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Figure 2.7.:"Blind Spots" in the time-domain
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Figure 2.8.: Hysteresis (backlash) in the steering wheel angle sensor

drive, a range of ten adjacent sensor points around 1@& region of interest is randomly se-
lected. ANEWMA filter for every point determines if the occurrence of one orepoints is
significantly lower after a minimum number of occurrencdsukch blind spots are detected
by theESCalgorithm after a number of drives, an error code is stordt thie instruction to
replace the sensor during the next service visit.

Online detection of a backlash is much more difficult sincis ihot known how long the
steering wheel is really stopped at inflection points. Ordgemce of a hysteresis could be
detected, but is not discussed here.

2.3.4. Advanced Lane Departure Warning (ALDW) Assistance $stems

The driver assistance systerAgvanced Lane Departure WarnirfgLDW) and Lane De-
parture Protection(LDP) help to prevent lane exceeding by distraction or ldtases of
fatigue and micro-sleeps. The systems detect lane markagsd on the images of a multi-
ple purpose camera which is available as special equiprii@etquality of the lane detection
depends on the quality of the lane markings as well as thedigiditions and environmental
influences like rain or fog (also cf.Kfzak and PohI200§). Data of a calibrated ALDW
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have been used which provided over 35 signals with high acgurTab.A.2 in App. A.3
lists the CAN signals for the system.

2.3.5. Global Positioning System (GPS) Sensor

Global Positioning SystentPS data are obtained over the regular built-in se@&Ssensor
through the head unit as well as over an additional E&Esdevice {Neiss 2011). The head-

unit additionally provide$sPSsignals matched with vehicle speed and map data. The signals
are listed in TabA.1.

2.3.6. Rain and Light Sensor

The rain and light sensor uses an optical photo sensor ntatd&tect rain and light through
the reflections on the windshield. The reflection coefficrthe front window is measured
by a matrix of photo resistors and IR-emitters. Rain is detdas a change of this coefficient
while the absolute illumination level is measured at theeséime by photo resistors.

2.4. Co-passenger Observations during Night Experiments,
Excursions and Free drives

When looking at recorded driving data, it easily becomeardleat the transparency of what
happened during the drive is very low, especially if no videxs recorded. Aware driving
as co-passenger or by one-self provides much more tramsyaoé the actual driving and
sleepiness contextOnline observation of different drivers and driving situationscisicial
for identifying fatigue related patterns. Roughly spokiw, intensity of driving patterns, as
for instance steering correction, can be experienced $ame qualitatively noticeable and
prominent examples will be discussed here.

Thus, after every night or excursion drive of three to tenrBpplenty of notes were recorded

over specific observations, the performance of fatigue nreasand sometimes new ideas
for features emerged. Thereby, the focus was particularlpaiterns that can realistically

and robustly work in practice and in real-time.

For instance, the beginning of a curve after a straight reatia was notably often paralleled
with steering corrections, quite independently of the elts/state. The consequence is that
steering events are subsequently suppressed that resualtiérve entries.

Moreover, it was observed that the driving performanceetated quite well with a certain
pattern for one or a group of drivers whereas other patteon®lated with other drivers.
Especially one driver (ID 473) reliably started to approackxceed the lanes with increasing
fatigue levels. ThALDW system, made him aware of his exceedances and was very kaluab
for this driver. This observation underlined the approazttdmbine driver clustering and
fatigue detection.

It was reported that especially in the free or unsupervisadhg, some drivers were not very
motivated to drive properly in specific situations. Suchapply driving style is generally
characterized by loose lane keeping on empty roads, lareedaaces or lane changes with-
out the use of the turn indicator. For instance, in Franceresthe maximum speed is limited
to 130 km/h and where the roads are often very empty, therdewvel to drive in a similar
"sloppy" way as with fatigue. The differentiation betweemmotivated and fatigue-related
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driving style is often very difficult. However, it is plaus#bto objectively be monitored of
such impaired driving performance.

Furthermore, some drivers realized that they have the teyd® drive more to the right,
when another car is overtaking. At the other hand, they tertdtive more to the left when
driving on the middle or lefter lanes if cars on the right laare present. This effect is
increasing with higher speeds. This was the motivation topensate driver and situation
dependent lateral lane offsets for lane features.

Changes in the driving situation, e.g. during construcsioes, tunnels, weather changes, can
wake up a driver out of a monotonous fatigue. However, longéls can be very monotonous
again after some time. It is very clear to see that the driging especially steering behavior
becomes much more hectic within construction sites. Femrason, situation changes were
suppressed in the algorithm until driving parameters adhiut the new situation.

Depending on the motivation and experience of the drivesstimating theilKSS fatigue
level, some expert drivers were precisely aware of thewa¢{SS level, with even higher
resolution than the scale allows. In this attentive foctigyas observed that the sleepiness
level varies much faster than the 15 min long interrogatiaterival that only summarizes
the average level. For this purpose the supervising ca-pidded additional information
about the driver’s fatigue level and sometimes revik&® entries. This also supported the
motivation to investigate other fatigue references.

Also, the different reasons for fatigue, whether it is caulsg monotony or exhaustion be-
came very experiencable. It was observed that the restr&tino music”, "no talking”, "no
cold air" have a huge impact on the time until drivers werdiggtsleepy. Fatigue is very
rare on regular roads but traffic accidents are also verywhesn we consider that the average
driver has an accident every400.000 km flartin, 200§. Driving condition safetyf the E-
and S-Class are very good, for instance due to low noisejggrateering and comfortable
seats. Studies from Mercedes-Benz show that these fadgmificantly support the driver
to remain alert for an extended time. For instance, most ®ftttelve hours drives from
Stuttgart to Barcelona in the S-Class allowed subjects i \&tierwards or even continue
driving. Small, sporty cars are louder and require morerstgeorrections which is much
more exhausting. For this purpose, it was necessary to ggaphmeters for every vehicle
independently with a sufficiently high number of drives. $&@bservations indicate that a
driver will be longer "fit" under real circumstances than enthe monotonous night experi-
ments. These findings build a basis for the implementatiomeaf and iteratively improved
features. The repeated driving experiments were alsoairfai the assessment of changed
features.
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Chapter 3.

Evaluation of Driver State References

During the development of fatigue detection algorithme,kéy importance of a good fatigue
reference became clear. The performance of the fatigueta®tecan only be as good as the
reference according to which it is optimized. The major probis to find a "true” reference,
also referred to aground truth However, there is no such objective ground truth for fagigu
as there is for alphabetic character recognition, for imcta The behavior of the detection
system follows the properties of the reference. For ingaaaeference that has a low tem-
poral resolution, will not allow the development of a systérat is more dynamic than the
reference. For this reason, it is very important that theregfce meets the requirements of
the system behavior. At the same time, the amount of effame¢asure the reference has to
be manageable. There are various approaches to measgtefatia driving environment.
The most promising, non-intrusive and practicable onekhgikvaluated in this chapter.

3.1. Terminology and Physiology of Fatigue

Fatigue (from lat. Defatigatig is a discomfort evolving from preceding exertion, disease
suppressed need for sleep or sleep deprivation. In geitésan imbalance between exertion
and rest, due to physical or mental overstrain, inducedfbgtiile. Fatigue is marked out as
lack of energy, mental or physical exhaustion. Fatigue irmargl context can have different
reasons and has various facets and phases. Accordifigntdller (2007, page 6), fatigue
can have the following reasons:

Stress overload: too much mental demand that can not bedthpidivokes drowsiness
Physical exhaustion: hard physical or mental work can leaddtrong desire to rest
Sleep deprivation: bad or extended lack of sleep can cauigg gtessure to sleep
Psychological underload or monotonous situations cangiegleepiness. A lack of
motivation can also play a role.

For adolescent persons, fatigue is normal to a certain dedfres caused by growth, lack of
sleep and social or scholar burde@ron-Gilad et al(2007) state that fatigue is influenced
by two factors: the driver’s initial state before startiig trive and the characteristics of the
drive. Both factors have a cumulative property. "Activetldae is caused by lack of sleep,
and does not necessarily prevent "passive" fatigue (inthé&xredom) caused by monotonous
driving situations. The sources of active fatigue are hastati@ factors that relate to the
neurobiological need to sleep. The longer the wakefulngske cthe more difficult it is to
resist the pressure to sledpiliges et al.1987. Homeostatic factors govern circadian factors
to regulate the timing of sleepiness and wakefulné&sr§ 1999. Countermeasures are not
very effective if drowsiness is caused by exhaustion. Irireai, fatigue caused by monotony
can be overcome by different activating countermeasures.
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First of all, we need to define the terminology in regards tigéee. A definition of the notion
can be found inBrown, 1994 Blanco and Bocanegr2009:

Exhaustion Lack of energy and concentration after prolonged execuifamorking tasks.
When a driver is extremely exhausted and deprived of sleag eaffeine or short
pauses do not help any more.

Fatigue The difficulty to remain awakeRhilip and Sagasp009. It is influenced by the
circadian rhythm and homeostatic variabl&€stfmidf 2009 1.1). The alertness can
be medically and psychologically divided in several stagdgese range from uncon-
scious coma to highest excitation (e.g. shock). Fatigupeeseivable physiological
necessity for sleep stands in inverse relationship toraegt and vigilance. Fatigue
is a rather slowly changing inner degree of exhaustion atietra temporal smooth
average of vigilance variations.

Sleepiness Physical sleep pressure that a person perceive®Hitiff and Sagasp2005),
it is defined as the difficulty to remain awake. It is influenbgccircadian and homeo-
static variables§chmidf 2009. Sleepiness is describing the late phastatfue i.e.
the fight against sleep which is often accompaniednigrosleep

Vigilance (lat. vigilantia: wakefulness, sharpness). In physiology and psychologikew
fulness denotes a state of permanent alertness. Wakefufagpartial aspect of con-
sciousness. Vigilance describes the neuro-physiolotgeal of excitation that modu-
lates the willingness of a person to take activigilance variationsare referred to as
temporal variations in performance. A shock can, for instarchange the vigilance
state immediately to wide-awake while the basic fatiguelleemains.

Hyper- and Hypovigilance Hypervigilanceis a medical term for augmented wakeful-
ness and the opposite of Hypovigilance, which stands foeased sleepiness.

Attention The ability of a person to consciously or instinctively origte (e.g. taking con-
trolled action) as a reaction to different sensory or meimjalits. Attention can be
short, mid or long-term and is strongly moderated by sinmgtais secondary tasks
such as distraction by mental thoughts or side-tasks.

Microsleep Short gaps of unawareness from 0.5 to 2 seconds while theaggegener-
ally closed. A certain kind of microsleep happens with the eyde open ("looked-
but-failed-to-see" phenomenoHiérslund and Jorgense?003). When driving on a
straight motorway while not having control of the car or takiany action for two
seconds, in most cases nothing happens. However, it is witelate to take action in
time when driving in a curve or when approaching a precedetygole, a construction
site or when a reaction to an unforeseen obstacle is needed.

Highway Hypnosis Sleep-inducing ("narcotic") impact of a monotonous drgvgituation.
Prolonged driving in monotonous situations can favor fagig

Knowing that one is approaching the target destination hastivating, arousing effect. It
was often observed that this is the case especially forislegpinduced by monotony.

Fatigue during the night drives recorded in this thesis isttgonduced by exhaustion from
a regular work day as well as by monotony since drivers wetallmved to talk or listen to
the radio. Otherwise, the experiment would have taken moogdr.

There are many aspects related to the physiology of fatiguis thesis, the cause or reason
for fatigue is of little interest in contrast to the drivingnformance which is directly related
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to the risk of having an accident. Thus, the terfasgue, drowsiness andtirednessare
used in a similar way to describe the driver’'s driving perfance across the entire range.
Sleepinesss generally used for the later phase close to falling asléep termmicrosleep

is used to describe the latest phase and highest degreégoifat

3.2. Phases of Fatigue

There is a broad variety of approaches to detect fatigueirwahdriving context. Before
discussing these approaches, it needs to be considerddtipae consists of different phases
to which the approaches are sensitive to. These phases @ictedein Fig.3.1 A driver
monitoring system has to be sensitive enough to detectisksgearly beforedangerous
situations arise, i.e. phase Il.

I. Repeated, short phases of inattention Generally no danger
* Typical steering mistakes
II. Longer phases of inattention Increased crash risk

* Overseeing of suddenly appearing situations
* Eventually lane exceedings
* Eventually critical approaches to vehicle ahead

. Microsleep High crash risk
» With opened or closed eyes
* Driver temporarily inactive

Figure 3.1.: Phases and effects of drowsiness while driving (Sourcemi2aj 2007)

Increasing fatigue

—
—
—

3.3. Drowsiness Reference

As mentioned before, the development and optimization bicke data based algorithms to
detect driver impairment demands a solid reference.

Inattention and drowsiness both similarly result in desegladriving performance whereas
most references are rather sensitive to either one of themov&rview over the different
approaches to detect fatigue in general was introduced én1Se Since the often used
self-rating according to thkSSscale has certain shortcomings, as summarize8dhrfidt
2009, this chapter compares alternative drowsiness refeseimca driving context. Espe-
cially, a better temporal resolution is of central interfestthe development of a drowsiness
detection system.

The utilization of subjectivescales generally has several drawbacks like intra- and- inte
individual variation or intrusive influences on the driv@hus, anobjectivedriver alertness
metric is desirable if the performance should be sufficiehidjh and robust.

Different measures were investigated as drowsiness refere

Subjective ratings of the driver’s fatigue level

Eye-tracking camera to record blinking behavior and gagesction
ElectrooculogramEOQG ) to electrically monitor eye blinking behavior
ElectroencephalograntE EG) to measure electric brain activity
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In this thesis,EEG, EOG and eye-tracker equipment were only available in certagintni
experiments as these methods are very impractical and ihatafeasible to wire drivers on
every drive.

As recording units become more and more mature, cameraktzggEoaches are potential
candidates for serial online driver monitoring, includisigtraction recognition. PERCLOS,
introduced by ldargutt 2007), is one of the most common measures for drowsiness in-itera
ture. In this chapter, an advanced measure of driver impaitis proposed that incorporates
eye opening frequency, driver adaptive baselining, heagements, distraction and overtak-
ing suppression.

3.3.1. Subjective Self-ratings and Expert-ratings

Subjective ratings of the driver’s fatigue level accordingheKSS scale can be conducted
in multiple ways:

Online by the driver: aware drivers are "experts" on how they feel and which méstakey
make. However, their judgment may be subjective and imgdiyereduced awareness
e.g. by sleepiness.

Online expert rating by the co-driverthe passenger can remain awake and attentively ob-
serve a sleepy driver. The co-driver perspective allowsrectly monitor the driver’s
behavior, facial expression and gestures while keepingyaror the driving perfor-
mance and situations.

Offline expert majority voting:a group of experts may retrospectively assess the driweer’s f
tigue level e.g. by watching video recordings of the drived ¢he road. Behavioral
patterns as eyelid and body movements, yawing, and headngp(d. Gallay and
Schleicher(2002) can also be seen in the video, yet not as good as actualtg loei
the car. The video additionally allows to rewind questidaadituations. The advan-
tage of the majority voting is that multiple persons can atpdly estimate multiple
drivers which reduces subjective variations. Results f(@vierwille and Ellsworth
1994 indicate that this is the most reliable and consistent otetb estimate fatigue.

The disadvantage of subjective scales is that everyoneigescand understands fatigue and
the scales in different ways which makes the self-ratingy adéficult to compare. Also
the opinion on the level from which a driver considers higgize as dangerous varies, i.e.
some drivers are more courageous than others. In any casejeity difficult to compare
the fatigue level of different persons as everyone shovierdiiit behaviors and physiological
patterns.

Unfortunately, expert ratings are much too laborious fer 2imount of data in this project.
For practical reasons, it was decided to use the self-mtifthe drivers since these can even
be made with only one person in the vehicle. In night studles co-passenger additionally
noted the driver’s fatigue patterns as well as situationshich the driver's self-rating did
not match his/her opinion.

3.3.2. Karolinska Sleepiness Scale (KSS)

Besides theStanford Sleepiness Scale (S&8Jl theTiredness Symptoms Scale (T&®e
Akin, 2007, the most commonly used subjective self-estimation esfeg is theKarolin-
ska Sleepiness ScalkSS). Thisinterval scale(Bleymdller and Gehley2012 is shown in
Tab.3.1 TheKSSwas proposed in 1979 bikerstedt and Gillberg1980 and his group.
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It is a linear scale with nine levels, assuming that the difiee between every level corre-
sponds to the difference in the attention level. The scalges from the most awake state
KSS1 to the most sleepy stakSS9. The next state afté¢SS9 would be "asleep”.

KSS | Description

Extremely alert

Very alert

Alert

Rather alert

Neither alert nor sleepy

Some signs of sleepiness

Sleepy, no effort to stay awake

Sleepy, some effort to stay awake

Very sleepy, great effort to keep awake, fighting sleep

Table 3.1.:Karolinska Sleepiness Scale (KSS)Hbrne and Reynef1995, modified bySvensson
(2004). The colors represent the representation in the touchiscre
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The KSSwas recorded during all drives and interrogated throughuahtecreen every 15
minutes which was announced by a beep sound. The entriesupeevised by the passenger
(cf. Sec.3.3.]. Fig.2.3(cf. Sec.2.2.1) shows an image of the touchscreen display to enter
the self-rating. The colors are supposed to suggestarning desiredgreen),warning may

be issued, but does not have(y@llow) andwarning required(red). The use of three colors
may already affect the linearity of the scale, e.g. someetgihesitate to step to the next level,
for instance from 7 to 8. However, the benefit of unifying eiiéint drivers outbalances this
drawback. The colors resolve the region of interest shameistinguish whether a warning

is required or not.

A large percentage (about 15%) of the drives were set as lidthecaus&k SSentries were
implausible or missing due to unmotivated drivers or meiptetations of the scale. The 15
minutes were chosen as a trade-off between good tempoddlities and avoiding intrusive
feedback. As a consequence, there is a certain temporaéwagsi and it was not possible
to record sudden drowsiness variations caused by diffetirdtions. Nevertheless, drivers
could make &SSentry at any time they felt that their level had changed. S&c6discusses
the temporal interpolation of tH€SS.

Fig. 3.2 shows a histogram and average of i8S entries over time-of-day and driving
duration. It can be seen that the entries at night are ongedoar levels higher than during
the day. The sudden increase from 21h00 to midnight stenms fhe continuous arising
fatigue level during the night experiments staring in thergwg. The averag&SS also
increases by one level after three and again after 5 hounvirigl Fig. 3.3 shows theKSS
entries over age. The averag&Sentries in the database are about one to two levels higher
between 30 to 40 years in comparison to elder people. It wesreed that elder people are
more reasonable and tend to give up fighting against fatigtleee

In many night experiments, it was observed that drivers aite qvell capable of realizing
relative changes in their attention level but fail in repeatedlyreate theirabsolutelevel.
They compare themself towards previous states while fongeto focus on the absolute
state. As for all subjective scales, the varying intergi@teamong different drivers is a major
problem. The absolute value can vary between differenedsiby one, or sometimes even
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Histogram of KSS Entries over Time—of—Day Histogram of KSS Entries over Driving Duration
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Figure 3.2.:KSS over time-of-day and driving duration

Histogram of KSS Entries over Age (only NightDrives)
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Figure 3.3.:KSS over age

two, levels in the here conducted experiments. Some draesm to be quite experienced
and certain in rating their fatigue level while others seerhd very insecure.

Basically, the ultimate goal is to assess the safety rigk fnow well the driver handles the
vehicle and not when he/she is tired. For these reasonspéaapd not to be sufficient to
solely record th&kSSlevel. Thus, a lot of effort was invested in this thesis inrskimg for
practical and reliable alternatives.

3.3.3. Desired Warning Level (DWL)

The sensitivity to the instant, when to issue a warning taltineer is another major issue and
differs among drivers. While some drivers would like to haveearly warning as they stop
the drive at the first signs of fatigue, others tend to fightstieep longer. This strongly relates
to the acceptance of the system and the system is worthlagds gwitched off. Moreover,
drivers sometimes realize after a drive that their selfigatvas generally too high or too
low. The strategy of thTTENTION ASSISTIs to issue an early warning based on the first
signs of fatigue and to point out the increased risk of ha@ngccident. Introduced in the
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W222, the driver has the possibility to adjust the sensjtigf the system. For these reasons,
a Desired Warning LevglDWL) was interrogated after every drive. THWVL declares at
which KSSlevel the driver requires a warning to be obligatory. Thead&fdesired warning
level was considered to H€SS 8. It was provided to drivers as an orientation and asked if
they wanted to be warned earlier or later than this.

Tab.3.2shows the distribution of the desired warning level baseti®h35 drives.

KSS | Proportion

KSS 6 12.8%
KSS 7 29.4%
KSS 8 56.5%
KSS 9 1.3%

Table 3.2.:Distribution of the Desired Warning Level (DWL) entered hyvdrs after each drive

3.3.4. Warning Acceptance and Warning Assessment

After every warning that was issued by tAE TENTION ASSIST, awarning assessmeiiad
to be entered in the touchscreen, whether the warningright acceptableor wrong In
the night experiment 2010/03 with 91 drives, tharning acceptanceas also interrogated
every 15 minutes on how correct a warning would be in this n@maAs it can be seen in
Fig. 3.4, the warning acceptance does not always match the ert&@&dwhich indicates
contradicting inputs.

Tab. 3.3 shows the confusion matrix on how well the warning accemaneestion matches
the KSS levels by defining classes under the consideration of th@edesvarning level
(DWL) minusoneand minustwo. Tab. 3.4 shows the same confusion matrix but with the
tighter definition ofacceptableas DWL minusone

The overall result shows that the tighter definitioraocteptableas desired warning level mi-
nus one matches the warning acceptance question best.orhies with the button colors
in the touchscreen in Fi@.3 and supports the class definition in the next 8.5 With
these discret&SS levels, a better class definition is not possible. Sinceetlvesrning ac-
ceptance entries were only continuously interrogatechdumight experiment 2010/03, only
this information can be used for the class definition usigktBS. However, thewarning
assessmertdf issued warnings provides additional transparency dute refinement of the
system. For such transparency reasons and better caretatalertness variations, the fine
KSSresolution of nine levels can not be replaced by the warngsgssment.

3.3.5. Definition of Classeswake, acceptable and drowsy

In regards to the classification algorithms, it is reasométdefine classes of when to issue a
warning or not. Additionally, it makes sense to define anygatnbse, or a pre-warning phase
in which the driver and the algorithm are in a "transition gdia This yields the three classes
awake acceptableanddrowsyas defined in TalB3.5. This definition is based on th€SS
entries (cf. Sec3.3.2 with and without the desired warning level (DWL) from S&c3.3
and corresponds to the warning assessment inS&el
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Figure 3.4.: The warning threshold, combined fatigue output and wamofgghe ATTENTION AS-
SIST are shown in this standard toolchain figure. To counterkhiee KSS (bottom),
the driver is asked every 15 minutes if a warning would nowjeng, acceptableand
correct(top). Drivers often contradict themselfs with their owatsments. This driver
assesses that his fatigue level is only above the warnieghioid (DWL) between 2:17 h
and 2:32h of driving while he already assesses a warning tmtrect after 0:50 h and
1:50h of driving. He assesses the filStTENTION AssisTwarning after 2:25 h during
his KSSmaximum only ascceptableand all later warnings to bsrong

3.3.6. Interpolation of KSS Entries

Fatigue detection must work continuously. Thus, the fatigeference is necessary more of-
ten than every 15 minutes. Moreover, for the calculationhef ¢orrelation, it is helpful to
have the same sampling rate for all signals. For this reaberKSS entries must be inter-
polated appropriately. TH€SSis prompted retrospectively from the instant of interrogat
back to the last interrogatiolK SSentries are thus most accurate shortly before the moments
of the entries. To be concise, the values in between re¢fi#& entries may severely vary
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KSS / desired warning level (DWL)
KSS> DWL KSS < DWL-=2
. Drowsy 80.7 % 17.6 % 1.7%
X\’Sasrgg;?nem 22.4% 64.2 % 13.4 %
Awake 1.5% 33.0% 63.5 %

Table 3.3.:Confusion matrix for warning acceptance and three classsscdon KSS and DWL con-
sidering the desired warning level (DWL) mintvgo (average correct: 68.5% match)

KSS / desired warning level (DWL)
KSS > DWL-1 KSS < DWL-1
. Drowsy 80.7 % 15.1% 4.2 %
X\’Sasrg;g?nem 22.4% 44.8 % 32.8 %
Awake 1.5% 13.4% 85.9%

Table 3.4.:Confusion matrix for warning acceptance and three classsscon KSS and DWL con-
sidering the desired warning level (DWL) minaee(average correct: 80.1% match)

Class with DWL without DWL
(motivated byWierwille and Ellsworth(1994))
Awake KSS<DWL-1 KSS<7
DWL-1 < KSS<DWL KSS=7
Drowsy DWL <KSS 8<KSS

Table 3.5.:Definition of fatigue classes using the Karolinska Sleegsrigcale (KSS) with and without
consideration of the desired warning level (DWL)

in any arbitrary way, which, however, were not recorded aditathal KSS entries. This
information is lost and cannot be recovered by interpafatitiowever, there are several
approaches to fill the time gaps in betwd€aSentries.

It is obvious that a driver cannot estimate his future faidevel. Hence, assuming that
the driver follows the instructions and enters tR8S always retrospectively for the last
15 minutes, the interval to thereviousKSS entry can be filled with the latest entry. The
last entered value is highlighted in the touchscreen, sotligadriver can always see what
he/she has entered last. If the driver triesprmanentlyreflect his fatigue level on the
touchscreen, filling up the gaps in between entries by hglthie lastKSSto the next entry
would be correct. A trade-off between holding entries aribspective filling would be the
methodsnearest neighboor linear inter- and extrapolation. Linear interpolation produces
intermediate valuethat cause a distribution betweki$Svalues, that depend on the change
frequency. This can be undesired, depending on the agphcatig. 3.5shows the piecewise
cubic HermiteinterpolatedKSSas an alternative to linear interpolation.

The correlation between fatigue measures disdreteKSSvalues is not optimal and would
be better if theKSS quantization would be finer. The interpolation is more ratevfor fast
changing levels. Th&EG spindle rate in Fig3.5 confirms that the fatigue level changes
faster than th&KSS entries. For instance, it can be seen that the first peakse®HG is
not represented by th€SS Sudden variations are also not always recorded and théusdso
peak height does not match. Also the time instant of the paaklsminima appear to be
slightly shifted. More frequent interrogation of tieSS would however have an intrusive
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Drive ID: 16870, Driver ID: 340 in Experiment <1003_AA2 A8 Maerz> (81)
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Figure 3.5.: KSS entries, interpolation by holding and piecewise culgctite interpolation. In com-
parison, the character of ti=Gspindle rate is much more similar to cubic interpolation
than toKSS holding. However, the dynamic resolution of tR&G signal is still more
agile than anKSSinterpolation and the peaks are often not synchronous.

influence on the fatigue level of the driver. It must be mame that the selected drive is
among the ones in whidBEG performed best.

TheKSShas the highest confidence at the time instants vit®&entries are made. Another
approach is thus to just compare tK8S entries to the signal of interest by reducing it to
these instants usinaggregation This means that the signal values within the time frame of
KSSentries are summarized to a single value by using e.gntrenor maximum The latter
has shown to be most appropriate for this application, salivers tend to focus on the
sleepiest, most dangerous situation peaks within theitastinterval.

In this thesis, linear interpolation is generally used forrelation measures and the assess-
ment of warning instants. Aggregation to the maximum is usedtatistical significance
tests as the values in between entries contain less infanmat

3.3.7. Temporal Smoothing Delay of Features and KSS

It was observed that vehicle data based features are deflayeth smoothing with window
sizes of several minutes. TlEEG spindle rate (cf. Se®.4) in Fig. 3.5gives an impression
of this. EEGsignals use a causal low-pass filter that has a window sizbaftasix minutes.
It is obvious that all smoothed signals are delayed depgnaimtheir window size. When
comparing the phase delays of blinking based fatigue measwuthich have a high temporal
resolution, andKSSentries, it turned out that delaying th&Sby r = 1.8 min improves its
correlation with the blinking based feature PERCLOS. Ogtofamay be that sleepy phases
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can occur before the driver becomes aware of them or is gitiinadmit his sleepiness. In
any way, the goal remains to develop features which areiveaat the underlying ground
truth. Smoothing with low phase delay is used to obtain gawdetation results.

Advantages and Disadvantages of Self-assessment

Schmidt(2009 summarized that research on the self-assessment ofndgilzame to contra-
dicting results. Multiple studies showed that self-ragirgge not accurate enough to function
as reliable and valid indicators of driving performance esgktion time. For instanc&elz

et al. (2009 evaluated driver performance in an extended-duratiohwedd environment

of commercial motor vehicles. Without exception, the clatien analyses betwedtSSand
minimum time-to-collision TTC) and minimum/mean headway yielded that neither of them
are valid indicators of driver fatigud2hilip and Sagasp@009 reported as well that the self-
assessment of the subsequent performance in a reactiotasiender prolonged daytime
driving conditions was rather poor.

The findings ofBaranski(2007) from a cognitive work study with 64 adults suggest that
people can accurately assess their own cognitive perfarenafter being deprived of one
night of sleep. In a real car driving simulator study with 38ep-restricted young adults,
Horne and Baulk2004) found that subjective sleepine&E Gactivity, and lane drifting were
highly correlated.Schmidt(2009 argues that drivers are well aware of their deteriorating
vigilance, but that early warning signs are often ignoreth@interpreted.

Besides the above mentioned intra- and inter-individualtian, self-ratings are always in-
trusive, i.e. have an awaking impact. Accordingchmidt(2009, the KSS poling has an
aftereffect of about one minute in tk=Galpha spindle rate and about two minutes in the eye
lid closure and can be neglected. Drivers have difficultiesting their fithess, especially af-
ter more than three hours of continuous monotonous daytiiggl with advanced degrees
of fatigue. Schmidt has also shown that subjects that feetrawake after long drives, are
not more powerful, but rather drive even worse, react sl@amerhave more-spindles.

Hargutt et al.(2009 investigate the intrusion influence of driver state andidg perfor-
mance feedback systems. Really drowsy drivers gain smadistimprovements for about
5 to 15 minutes after an interrogation, so the influence igomistrong. Own experiments
from (Schmidf 2009 2010 and qualitative observations in night experiments gdiyecan-
firmed this finding.

On the other hand, advantages of interrogating the drivestaheir sleepiness levels is very
simple and thus relatively robust. If conscientiously yskd probability of intra-individual
deviation is mostly limited to one or twSSlevels. Hence, self-ratings are still quite reliable
and consistent compared to other automated methods. Bdspiinter-individual variations,
the drivers mostly know about their drowsiness and havedegtavarnings of a drowsiness
detection system.

Own observations have shown that at night, especially atwaidnight and 6 a.m. it is
more difficult to estimate one’s self-rating. The highwayhgsis and lack of situations that
require action makes it difficult to estimate how tired one Bor instance, many drivers
have difficulties to estimate their velocity when they havéotake behind a heading truck.
Generally, drivers have more difficulties in rating theitidae levels abov&KSS 7 and are
often not aware that they already had small microsleep svent
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3.4. Electrophysiological Measures

Electrophysiological measures that allow inference adooivsiness are, for instance:

ElectroencephalograntEEG) is a commonly used method to directly estimate driver
fatigue. Thereby, the electric brain activity is measurethea— andg-band.
Electrooculogram(EOG) records the eye and lid movement, discussed in Séc.
Electromyogram(EMG) records the muscular activity.

Electrocardiogram(ECG) records the electrical heart activity, not just the heaite.r

Electrophysiological measures provide input signals fdpmatically obtained, direct esti-
mation of a vigilance correlated reference. The ability lecgophysiological measures to
predict fatigue was already published under laboratonditmms, but was not yet proven
to work for real-road driving. This, however, is necessaryrteet the requirements for the
development of a series system.

As described by$chmidt 2009 2010, electrophysiological measures are commonly used
methods to directly estimate the fatigue level. Herebytebeles are attached to the head
and body and filled by a conductive fluid to measure voltagiemrihces in theV domain.
Very expensive multi-channel amplifiers are necessary.syhehronous oscillation of many
neural brain cells is amplified and measured (seehstein(20098).

The setup of the electrodes is laborious and, thus, in tesiglonly available for a selection
of night experiments. Still, the amount of recorded reaeralata exceeds previous publica-
tions by magnitudes, as for instanc&6 et al, 2009 Jap et al.2009 Pal and Chuan@008
Svensson2004 Thorslund 2003 Lal and Craig 2002 Hargutt and Kriiger2000 who in-
volve 13 to 52 subjects in driving simulators with much shodriving distances. Figs.6
shows the cap utilized in the real-road drives. Three LED wie colors red, orange and
green indicate if the conductivity is sufficiently high.

L 3 ;
Figure 3.6.: EEG cap used in vehicles

Distraction and fatigue both lead to impaired driving pariance due to reduced attention on
the driving task.EEG based parameters, however, measure the brain activitghvighhigh
during distraction and low for fatigue. Thus, as confirmedsioyon(2012); Sonnleitner and
Simon (2012; Sonnleitner(2012 distraction and fatigue can be distinguished well using
EEG
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3.4.1. Evaluation of EEG and EOG as Drowsiness References

For the evaluation of the suitability &EGandEOGas fatigue references, a night experiment
with six drives (2009/09) and a night experiment (2010/08hwW1 drives was performed.
Further data from other studies were available. Two S-Glassone E-Class vehicle were
equipped withEEG measurement and eye tracking camera. Ten supervisors nagred to
avoid systematic distortion due to subjective opinionsingle supervisors. Tal®.6 shows
the routes of the day and night drives.

Day drives Night drives
Num. of Drives: || 46 . | 45 e .
Max. Route || mme e S8 e | mm om0
Distance: 276 km 434 km
Total Distance: || 11.605 km 13.046 km
Duration: 2:33h - 4:12 h

Total Duration: || 124 h 181h = .

Table 3.6.:Setup of experiment 2010/03 to validate EEG and EOG as fatigierences

For the recording dEEGandEOG, certain additional steps have to be conducted before and
after the drive. Attaching the electrodes to the head takesta20 to 40 minutes until the
impedance drops below-510k(). Doing so, every electrode must be filled with a conductive
fluid (silver nitrate) to establish the proper connectiorihi® head skin. After the drive, the
cap must be washed and dried to get rid of the fluid as it wouylebdt and jam the electrodes.
This process takes again another 10 minutes. The subjettvask at least once his/her hair
immediately after the drive as the fluid gums up the hair aftene time. Fig3.7 shows the

cap with the injection of the fluid. TaR.8(a)shows the different frequency bands of brain

&t ol (AN A@BcticAP
Figure 3.7.:EEG cap in the vehicle (Source: actiCAP)

waves. The alpha band is most related to fatigue and sleep.

An isolation amplifier (5-10@xV) is used for the measurement in every electrode &8yb)
with a sampling frequency of 250 Hz (min 128 Hz; up to 1 kHz).eTheasurement can be
evaluated against the average of all electrodes or agasisgk reference (behind the ears
or at electrodeC,). Details can be found irSonnleitney2012).
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Delta 0-4 Hz
Theta|| 4-8 Hz
Alpha || 8-13 Hz
Beta || 13-20 Hz

(a) EEG frequency bands (b) Active electrode

Figure 3.8.: EEG measurement

The international 10/20 system was applied for the eleetmdcement, depicted in Fig.9.
Generally, 24 or 32 electrodes are used, whereas in thig stveduced set of only 16 elec-
trodes and two reference electrodes were used. Howevag usas a reference in regular
drives is still not possible due to the high effort. In F&9, the characters indicate the place-

F Frontal
O Occipital
C Central
P Parietal
T Temporal
z

inion =
odd numbers (rear head) _g_veh numbers

| Center line

Figure 3.9.: Placement of the EEG electrodes and table with abbreviatiaracters

ment of the electrodes from the front to the back head. Thebearshows the lateral angle
in relation to the middle line.

Head and body movements produce heavy artifacts due teielesttages produced in mus-
cles and impedance changes in electrodes. These artifgtly hffect the signal quality.
The head movement must be constrained and the inflexible gesidre is little convenient
for driving. The chin strap slightly pinches off the throdt.has to be assured that driving
safety is never affected. There are several post-progessaps required to remove signal
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artifacts. Artifacts and countermeasures are, for ingtanc

e Alternating current and power line hum is removed byaich filter

e Muscle tension like head movements, gnashing of teeth agding gum events are
detected and suppressed

e Eye movements in thEEG signals are either compensated dybtraction ofEOG
signals under consideration of the spatial distamcdy suppression dOG Signals
usingICA (as described in Se8.5.]).

Fig. 3.10showsEEG signals especially of the frontal electrodes (e.g. F3) &énatdistorted
by EOG(red) and then after theOGremoval usingCA (blue).

Subject 53, Night Experiment 2010/03 [ __ pefore ICA
: : : — after ICA
FUM AT
VEOG_r ARV
VEOG_I}--

vEOG_ult- T VI W aind

VEOG_of V)

Fp Ll b A T A AL

EEG signalsgV]
@) il
N W

; ; ; ; i
51:00 51:12 51:24 51:36 51:48 52:00
Time [min]

Figure 3.10.:EOG artifact removal in EEG signals before and after usingy IC

Alpha spindle rate vs. Alpha band power Based on the data outlined in S&c4.1, Si-
mon and Schmidf2011) found that thealpha spindle rateandintensityis a more sensitive
indicator than the alpha band power used in other publieati&ig.3.11shows the detection
of alpha spindles. Windowing and FFT Nf = 1024 points are applied to eveBEG chan-
nel. Here, the overlap is set & — 1 as the offline computation complexity is neglectable.
For the detection of spindles in the alpha band/ & turve (Fisher-Snedecor distribution) is
fitted from the entire signal and used as threshold as showigir8.12 The 1/f curve is
multiplied by a factor and used as threshold to detect alphalkes.

The detected spindles are filtered by a 60 or 300 second mavieigge filter. A proposed
improvement is to use ttEWMA andEWVAR filter as described id.1.2 The intensity and
duration of the spindles yield separate features. Eit3shows both most important features
in the alpha band (8-13Hz) for the night drive of test subf:t
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Figure 3.11.:Raw EEG signals in the time domain at KSS 9 with highlightghalspindles
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Figure 3.12.:Alpha spindle detection in the frequency domain using aptdal/ f curve threshold

Different approaches are then used for baselining:

e Warning threshold gt + 3 o (as for outlier detection)

e Normalization to the maximum after the first 20 minutes ofvactime

e Normalization to the last 10 minutes of the active time fdsjeats that terminated the
drive due to fatigue. This can only be applied offline.
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— Energy alpha band (8-13Hz)Y?2/300s]
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Figure 3.13.:Most important EEG features (Band power and 300s EWMA of dipimate) in the
alpha band

In literature, the summation signal and the occipital slgimdte suit best for the detection of
fatigue. Here, an equivalent contribution of every chanves used.

Fig. 3.14shows different measures of fatigue for driverID 156. Theelation of the signals
can be seen quite well. Fi§.15shows the two lane based features of fatigieGZAGS
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Figure 3.14.:KSS, EEG and PERCLOS have similar slopes and signal runagxsimple functional

relationship. The KSS is entered more often and more aayda¢re compared to the
rest of the drives.



—48—

andLANEAPPROXADAPT (cf. 4.3), together with th&EEGspindle rate. The similarity of the
signals can be seen well, even though the relationship leatleth functions cannot be de-
scribed by a simple functional relationship or correlatioeasures. Fig.16shows theEEG

—— KSS

—— EEG Subject 53, Night Experiment 2010/03
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Figure 3.15.:KSS, EEG and lane based features ZIGZAGS and LANEAPPROXADAP

spindle rate with annotations how external influences havargact on the alpha spindle
rate. The drops in the signal can be related to activatingtsitns whereas the raising slopes
can be matched with monotonous situations. Bif@j7 shows a histogram of Spearman corre-
lation coefficients calculated betwek®SSandEEGfor every drive. It can be seen that there
is a positive correlation for the majority of drives. Moratistical results on the presented
methods and data can be found $irton 2012 Sonnleitner2012 Schmidt 2010).

3.4.2. Assessment of Electrophysiological-based FatigReferences

In literature, electrophysiological measures performl ¥eglmeasuring fatigue in simulated
environments. However, even the refined methods here cotlgéproduce this performance
under real traffic driving conditions.

The validation ofEEG s very difficult since there is no ground truth to reliablysass this
reference. Only a few figures and results of drives and featapuld be presented here.
Except for a few drivers, the signal runs reveal thatBEk&€ measures are by far not plausible
enough to serve as a reliable reference for the developniemiseries system. Thi€SS
may have a bad temporal resolution and be wrong for one or éweld, butEEG based
features widely behave completely arbitrary and impldasikspecially the absolute values
severely vary between different drivers. They severelfestdifom intra- and inter-individual
variations and external influences. All observations iaichatEEG features rather relate
to mental awareness or load than directly with fatigue. Tapgear to correlate with the
attention to "novelty" from external situations.
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Figure 3.17.:Correlation histograms between KSS and EEG 300 seconds
A major deficiency ofEEGis that it does not work for about 20% of the drivers since they
have no alpha spindles. Thus, every subject must perforra-gept to find out whether they

produce alpha spindles or not. For some drives, the signalsarupted due to insufficient
contact conductivity of the reference electrodes.

Often, short-term attention can be seen from E&G signal incline and decay, even if the
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absolute amplitudes change over time. Also due to the higthpsing cost cEEG devices
and the high effort for its recording, it was only used for aafirpercentage of the drives.
In this scope, one must come to the conclusion BRG does not provide any additional
benefit that counterbalances the additional effort conthtweheKSS. Yet, EEG provides
additional transparency over short-term changes when afigrevaluating the results.

3.5. Heart Rate Tracking from Driver Camera

Thecardiovascular pulse wav@lso called the blood volume pulse) can also be estimated by
tiny skin color variations from a simple camera and Indegemdomponent Analysis (ICA)

on the RGB channels (s&®h and McDuff{2010). This approach to estimate the heart rate
has also been implemented in this thesis and turned out fodetct the heart rate under
good light conditions. Yet, the performance under lightdibans in real-world driving or

at night with IR-Pods turned out to be not very robust. Sifeeheart rate has strong inter-
individual variations and is not a reliable predictor fotigae, this approach was not further
investigated.

3.5.1. Independent Component Analysis (ICA)

Blind Source Separatio(BSS)is a commonly used technique for noise removal from physi-
ological data as fOECG(Chawla et al.2008 andEEGrecordings Jung and Makeig2000).

The Independent Component Analy$i€A) (Comon 1994 Hyvarinen and Oja2000 is
oneBSSmethod for uncovering independent source signals fromeafimixture of them,
observed by several independent sensors. The basic peirmghind ICA is the assump-
tion that the source signat§n) = [sy(n), s2(n), ..., sn(n)]" are linearly combined to the
observed signals, representedifn) = [x1(n), x2(n), ..., xw(n)]" at time instant. In con-
ventional ICA, the number of recoverable sources cannaezkthe number of observations
behind them. This linear mixing can be described as in Bq) (vith the mixture matrix A

of dimension Mx N of the mixture coefficients ;.

x(n) = As(n) (3.1)

The goal of ICA is to find aseparating matrix Wwhich is the inverse ofA for M = N with
the estimated output vector &fn):

§(n) = Wx(n) (3.2)

It is known that the superposition of signals is always moe$sian than the individual
signals. Hence, a cost function that describes the Galutysmaast be defined and minimized
by iterative variation of the separating matibk TheFastICAlibrary was available for this
purpose. Fig3.18 shows the result of the heart rate estimation wher® is the spatial
average of the RGB channels in the facial region of inter€ke three source signatgn)
are obtained after ICA and FFT is applied to the sources tochefar the most plausible
heart rate frequency. As side effects, detecting the hatetfrom the driver-camera can
also be used for other applications such as emergency stogaardiac flatline or emotion
detection.
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Figure 3.18.:ICA and FFT applied on the driver-camera RGB channels inraiextract the heart
rate

3.6. Eye Blinking based Fatigue Reference and Features

Head- and eye-tracking driver-cameras allow anothezct approach for fatigue detection
that is not only suitable agference but also forseries application The target of this thesis
was to use camera as reference as well as investigate i€s sEpability. The blinking
behavior based on eye-tracking cameras, as wel@& was analyzed under real traffic
driving conditions. Vision based approaches have the ddgarthat they are not intrusive as
no wiring or interrogation of the driver is necessary.

Another major benefit of such eye-tracking systems is theatien of short- and mid-term
distraction by the head-position, -rotation and gaze toad"eyes-on-road")EOGcan also
be used to roughly estimate the eye gaze direction.

A disadvantage of camera based detection of fatigue is thertoraleep can occur with
opened, staring eyes. Also, the robustness suffers fromligbd conditions and with drivers
who wear glasses. Intensive computation for image praogssirequired.

3.6.1. Evaluation of Eye-Tracking Camera Systems

In this thesis, the latest eye tracking deviéeti-sleepfrom SmartEye ESMAfrom Denso
andDSS1.0 to 3.0 from SeeingMachines were evaluated and compared.
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Anti-sleep: The data quality of the Anti-Sleep was almost comparabld¢oDSS, but re-
quired a regular PC, which was not practicable.

ESMA: The embedded ESMA system from Denso with CAN interface coatanly detect
the head, but also the gaze direction. The data quality, henveras generally quite poor.

DSS:The DSS 3.0 detects head rotations to the side with uptq@ife robustly. A drawback
of the DSS is that it has no direct CAN output for synchroncesording with the main
measurement equipment. About 220 subjects across all agrestested using the DSS 3.0
with the goal to provoke a micro-sleep and PERCLOS warningpbling tired. Only about
five subjects with glasses and two with large beards were uféitiently detected. From
version 1.0 to 3.0, the DSS still has problems with persorering glasses. While the Denso
system can record and process full videos, the DSS recolgsimall eye extracts of micro-
sleep events. More details can be foundAiif, 2007).

The latestDriver State Senso(DSS) from SeeingMachine$2007) was deployed for the
experiments, since it showed the most confident data quality

All systems provide the opening degree signal of both ey&S @nd other signals such as
confidence, head- and eye-signals, depending on the systanual conversion and synchro-
nization via GPS time are required for micro-sleep detectiod for matching lane changes
with head rotations. In this thesis, an own face and eyerdidking algorithm was imple-
mented, however, the performance did not compete with the §Stem. The contribution
of this thesis was on camera sigpalstprocessing and extraction of fatigue, which is at least
as challenging as the image processing part.

The video-based drowsiness measures are explainédiad(ichs and Yang20103. Some
popular features extracted from the eye signals were usgdean ones are proposed. In
addition, for some drives, eye blinking duration and opgmniluration were derived using
EOGin order to evaluate the camera results.

3.6.2. Literature on Camera-based Driver Monitoring

Within the last years, a lot of effort has been made to ingasti driver monitoring based
on blinking behavior. The book dfloussa(2009 is focusing on the real-time implementa-
tion of designing a device for driver vigilance monitoring a FPGA based multiprocessor
platform. In Sherry 200Q Batistg 2007, the measure, referred to as PERCL@Sipling,
1998 Sayed 200]) (cf. 3.6.7) was found to be the most reliable and valid determinatioa of
driver’s alertness level. PERCLOS is defined as the prapodi time within three minutes
in which the eye is closed more than 70% (sometimes 80%). MEIXDIS on the other hand
is the average degree of eye openirigatista(2007) presents a framework for face local-
ization and extraction of eyelid movement parameters. ®Vttusing on facial detection
algorithms, he also calculates the measures PERCLOS an@ A& (3.6.7) without further
investigating them Hargutt(2001); Tietze and Hargutf2001) attached electric spindles to
the eyes in order to analyze vigilance and attention withdriging context. They stated
that a combination of blinking related parameters is neggder estimating every vigilance
stage. They found out that the blink duration is related ¢einess (Circadian, sleep depri-
vation and psychoactive drugs), and verified their resyltednducting a driving simulator
study with 12 participants. The baselining that they apbligade the effects more stable.
They described the blinking rate to depend on the work loatitarrelate to information
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processing. The blinking rate, but not the blinking dunatimcreased with raising time-on-
task and decreased during pausBgot (2010 recently proposed a fuzzy logic algorithm
for drowsiness detection in high frame rate videos. In 60driving by 20 drivers, it detects
80% of the drowsiness stateBhorslund(2003 andSvenssor{2004) usedEOGto estimate
the driver’s alertness in relation to the subjective satfrg andEEG. Using simulator drives,
Svensson reached a 70% correspondence with the self-eatth§6% with th&eEG,

3.6.3. Driving Simulator Experiment

A simulator study with 21 test subjects was performed withftitus on evaluating the per-
formance of theDSS1.0 and the features derived from it. Details on the expertrdesign
and results can be found iAKin, 2007). Only 27.5% of the micro-sleeps were detected by
the DSS 1.0. It was observed that many micro-sleep events @dth opened eyes but the
eye gaze direction was not actively monitoring the scenenaore. Drivers did not react to
road signs or left the lanes. Another conclusion from thid famther driving simulator ex-
periments was that even in the most advanced driving sioidiere are severe differences
towards real world driving. The night experiment was alstywaluable to evaluate the driv-
ing performance in the simulator. As already stated\dgrwille (19961, drivers are more
tolerant to lane errors in a simulator than in a vehicle.

Own algorithms for blinking detection and feature extragtivere implemented. Details can
be found in Teofilov, 2009.

3.6.4. Database with Eye-tracking Data

Three night experiments and some long free drives was peeidwith the latest DSS 3.0
camera. In total, 31 real traffic drives (eight with glasseih valid self-ratings KSS) and
without measurement problems remained:

e 23 real traffic night study drives (7,054 km)
e eight free daytime drives (2,607 km)

The conduction of night experiments and regular drives jBaged in Friedrichs and Yang
2010k Schmidt 2009.

3.6.5. Eye-tracking Hard-/Software

For the extraction of blinking parameters, tB&S with the latest algorithm version 3.0
from (SeeingMachings2007) was used which recorded the eye- and gaze direction. The
IR-camera unit (648480 pixels) was mounted in the instrument cluster.

For illumination, two IR-pods were installed on the A-colarand over the head unit in a
way that reflections on glasses could be minimized. Moskgkaare transparent to IR light
so that the eyes can be detected well. Here, the Denso systened an approach to avoid
reflections on glasses using precisely synchronized shutte

For the validation of the signals and algorithms, an add#idacial video was recorded and
all signals could synchronously be played in a MATLAB GUk6filov, 2009.

The pre-processed signals (T&8br) were recorded with up to 60 fps to an USB-drive of a
portable computer unit. The GPS signals were obtained fromxéernal USB device. The
obtained eye blinking, head posture and gaze directioralsigmere quite good, especially
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for drivers without glasses. The confidence measures shquigelwell when the left/right
eye-lid and head signals were not reliable.

Description | Signal | DSS Signal Name

Eye closure I/r ar LEFT_/RIGHT_EYE_CLOSE
Eye confidence I/r Cir LEFT_/RIGHT_CLOS_CONF
3D head position xy,z | HPOS FILT X/Y/Z

3D head rotation ey | HROT_PITCH/ _YAW/_ROLL
3D head confidence ¢y HPOS_CONF

GPS time T GPS_GMT_TIME
GPS longitude A GPS_Longitude
GPS latitude 0 GPS_Latitude

GPS vehicle speed \ GPS_SPEED_KM_H
Table 3.7.:Used signals from the Driver State Sensor (DSS)

3.6.6. Processing of Eye Signals

This section presents several pre-processing steps thateaded for extracting individual
drowsiness-related patterns from the raw signals. Therdedocamera data are converted,
synchronized and time offset is compensated for the velliAld data using the interpolated
GPS GMT-time and velocity signal which is sufficiently acata. The detection of eye blinks
works well for the camera frame rate of 60Hz, but the caleutabf the eye-lid velocity
becomes more inaccurate. SvenssBrefisson2004) stated that the sampling frequency
should be high (at least 500Hz) when blinking related charatics like blink duration
are measured. The frame rate often dropped due to windowsnsyssources and caused
measurement gaps of up to half a second. These gaps wendylimterpolated in order to
keep the timestamps synchronized.

For many features, the derivative and intensity are relevahus, anEWVAR or EWMA
filter is applied as described in Ch.1.2 For the calculation of the eye-lid velocityCLdSPO
filter was used as explained in Chl.1

Next, both eye signals; ande are combined to a single eye sigrelby weighting and
normalization with the confidence valugsandc; of both eyes.

The system active signal S Ag is defined to be active for a head yaw anggle< 15° to
suppress lane changes (i.e. 5-20% of the time, dependingiwer dnd traffic) and for a
sufficiently high confidence measure avergge (¢ + ¢;)/2 > 55%. Furthermore, vehicle
speedv < 30 km/h and lane changes using the turn indicator are suggesAn average
active time of about 70-90% remains for most drives whiles itower & 60%) for drivers
with glasses.

Detection of Blinks

Another important pre-processing step is the detectiodioks At first, blinking candidates
are searched by applying an adaptive threshold to the eyalgig Then the above described
system active signa ASye was applied. It is also important to suppress the blink du&n
head rotation or at the same moment as the combined confidégmal ¢ drops below a
threshold. 60 - 90% of the blinks have been detected, whitte&vily depending on the
situation and tracking state. Fig.19 shows some examples of the blinking detection. A
major problem are vertical looks to the dashboard, instntnokuster or head-unit. Looks



—55—

1 2Bli king detection (Subject 03, Night Experiment 2008/11)

n
e
iy ,
i Eye blink over threshold
{ :: . Looks to dashboard| ____ Eve-Lid Signal (L+R)
gl R - - - DSS active (scaled:2 + 1
< — Detection Threshold
c
208 h
o J \
o
% 0.6 / \
- y \ \
© 0.4 \ \
0.2 w

72:57 73:.00 73:02 73:06 73:09Time [min]
Figure 3.19.:Blinking and look to dashboard detection

to the dashboard can be detected well, since the iris is algeréd towards the dashboard
or head-unit, while the iris turns up during an eye blink. &sglly in theEOGthat detects
blinkings via eye ball movements, this property can beagdiwell. In the video and signal
validation GUI it was observed that eye-ball movements atpled with movements of the
eye-lid:

e Horizontal eye-ball movement: small influence on eye-lid
e Vertical eye-ball movement: relevant change in eye opeainglitude

Such eye movements often occur with short blinks. For tlisaa, a minimum blink duration
of 130 ms was defined to neglect these looks. Then, each mfjrdandidate that fulfilled
several other criteria (min/max duration, shape and mininamplitude) was labeled as a
valid eye blink.

Driver Adaption (Baselining)

An essential contribution to the feature performance isttaption to the driver, referred to as
baselining The inter-individual variation between drivers has a sewapact on the features
and overlays the drowsiness-related patterns. It is asstimaéthe drivers are usually awake
during the first 15 minutes of a drive. Timeanor maximumof a feature during this time
is then used for normalization. Thmeaximumhas shown to yield the best results for most
features. Theero-mean unit-variance normalizatigin statistics also called-transforn)

is the subtraction of the mean and division by the variandgs method was assessed, but
finally used in a few cases only. Automatic parameter optition has found the optimal
time frame between 20 and 40 minutes, depending on the &a20rminutes is chosen for
all features as a trade-off between quick and sufficienthysbadaption, since the active time
is often below 50%.
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3.6.7. Eye Feature Extraction

From the eye signals returned by the camera system, 23 ésatas listed in Tal8.8, were
extracted for drowsiness detection. The main feature gr@up briefly described in this
section. Features with superscripare baselined and superscrire own proposals.

ID | CLASS | Feature Name | Description

74 EYE AECS Average eye closure speed
75 EYE APCV Amplitude/velocity ratio

92 | EYE | APCVBL!? APCV with regression

95 | EYE | BLINKDURBL?'? | BLINKDUR baselined

78 EYE BLINKFREQ Blinking frequency

76 EYE BLINKAMP 2 Blink amplitude

77 EYE BLINKDUR? Blink duration

79 EYE CLOSINGVEL? Eye closing velocity

86 | EYE | OPENINGDUR Eye opening duration
87 | EYE | OPENINGLVL!? Eye opening amplitude without blinks

80 EYE EC Energy of blinking

98 | EYE | ECBL!'? EC baselined

85 EYE MICROSLEEP Microsleep 0.5 s event rate
94 EYE MICROSLEEP1$ | Microsleep 1.0 s event rate
81 EYE EYEMEAS Mean square eye closure
84 EYE MEANCLOS Mean eye closure

88 EYE PERCLOS70 Percentage eyes’0% closed
89 EYE PERCLOS80 Percentage eyes30% closed

99 EYE | PERCLOS70BL2 | PERCLOS70 baselined
100| EYE | PERCLOSEWBL?2 | PERCLOS80 EWMA baselined

90 EYE HEADNOD Head nodding
82 | EYE | EYESOFE Eyes off road
83 EYE EYETRANS! Eyes transition rate

Table 3.8.:EYE features derived from DSS 3.0 eye-tracker eye-lid dggrsorted according to the
underlying pattern. IDs are auto-incremented accordirtggamplementation order.

Blink Duration (ID 77 and 95)

Different methods to estimate the blink duratihl NKDUR have been evaluated. Fig.20
illustrates the derived parameters. The blink durationeiingéd as the time difference be-
tween the beginning and the end of a blink, each at the poietevhalf of the amplitude is
reached. A better definition is the sum of half the raise time the fall time Andreassi
200Q Svensson2004 Thorslund 2003. The raise duration is measured from half the raise
amplitude to the maximum, then to half of the amplitude dyrine eye closure. Also the
plateau duration(Fig. 3.20 of an eye blink was calculated. As reportedgrgutt(2007),

the eye opening duration has been found to follow a WeibstrH@ution. The parameters of
the distribution was used for baselining.

Eye Closure (ID 79, 85 and 94)

One of the simplest measures for drowsiness isMhEROSLEEP event rate. Events are
defined as eye closures longer than 0.5s (13IACROSLEEPLS). The opening duration
is calculated in the same way as Bkl NKDUR. M CROSLEEP events occur in a very
advanced and dangerous phase of drowsines8.@f.These features indicate fatigue much
too late, but are very important when more sensitive mettiaills So a rate of long eye
closure events was also worth to be analyzed.
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Figure 3.20.:Extraction of eye opening, plateau, blinking and closingation and velocity from
smoothed combined eye-lid sigregland its derivative.

PERCLOS, EYEMEAS and EC (ID 80, 88, 89, 98, 99, 100 and 81)

PERCLGS s the most common blinking based measure for drowsinessdéfined bywier-
wille and Ellsworth(1994. It is the proportion of time during three minutes in whidtet
eyes are at least 80% closed (cf. BR1). Today, there are also other PERCLOS measures:

EC RN

100% opened (learned) 80% closed
Figure 3.21.: Definition of PERCLOS as proportion of time when the eye isr@@% closed

PERCLOS70, which is the same, but with a threshold of 70% &¥ENMEAS, which is the
mean square percentage of the eyelid closure rating. E@ svidraged energy of blinks and
is closely related to PERCLOSERCLOSEWBL is the same aBERCLOS80, but baselined
and using an EWMA for averaging (cf. Apgp.1.2.

Fig. 3.22showsPERCL CS for a night drive. The driver (ID=340) has entered K@Smore
frequently and with more care than usual. Thus, it can be lseerwell PERCLOS correlates
with the KSS (pp, = 0.74) andEEG spindle rate 4, = 0.67) measures. As theSSentry

is retrospectively hold an&EG spindle rate /PERCLCS are filtered with a three minute
moving average, all signals are delayed. It is one of the magaknesses th&ERCLOS
detects fatigue too late and fails to detect participaras déine drowsy with eyes wide open.

Amplitude-Velocity Ratio (ID 74 and 75)

Hargutt and Kriige(2000 found that the ratio of amplitude and maximum blinking \céty
APCV can be used well for drowsiness detectiohECS is the average eye closure veloc-
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Figure 3.22.:Drive (ID=14589) with PERCLOS and EEG and a more frequenttged KSS

ity (Batistg 2007 Picot, 2010 that is estimated by the maximum velocity during the eye
closure, which is the amount of time needed to fully closeayes and to fully open them.
An individual eye closure speed is defined as the time penipohg which the eye opening
degreerategossureiS between 0.X rategossure < 0.8. The second variant is chosen as it is
more practical.

Blinking Rate (ID 78)

BLI NKFREQis the blinking frequency. According tAndreassi(2000, a relaxed person

blinks about 15-20 times per minute, which drops to 3 blinks pinute when performing

cognitive tasks $vensson2004). According toHargutt and Kriige(2000, an increased

blinking rate indicates reduced vigilance. As statedHaygutt(2001), the blinking rate also

increases with driving duration (time-on-task). Duringyilrg experiments, it was observed
that BLI NKFREQVvaries severely between different drivers and is alsoedl#t the air hu-

midity e.g. when using an air conditioner.

Remaining / Mean Eye Opening (ID 84)

MEANCLOS measures the mean eye opening between blinks. It was oHdséraedrivers
often do not completely open their eyes any more when thegrbecsleepy. This has a lot
of potential for the detection of fatigue before micro-gie®ccur.

Head Nodding Frequency (ID 90)

An often observed sign of drowsiness is head noddiB&DNCD. It is calculated from the
head pitch angle with the EWVAR as described in Set.1.2 The estimation op was quite
accurate. Drivers often start moving in the seat and move ltead to fight sleep. A second
reason for head nodding is related to micro-sleep events atdriver lets his/her head fall
down and hastily pulls it up again, when he realizes his al#sefhe variance captures this
pattern, but the detection of such patterns poses sometjabtfen improvement.



—59—

3.6.8. Eye Feature Evaluation

The Pearson and Spearman correlation coefficients of thd bésatures against the linearly
interpolated KSS are listed in TaB.9. The Bravais-Pearsorcoefficientpy is an indicator
for linear and theSpearmarcoefficientps for monoton relationships between two measures
(cf. Ch.7.1.1).

ID || Feature Name | pp| ps
74 || AECS -0.43 | -0.45
75 || APCV 0.48| 0.51
76 || BLINKAMP 0.18| 0.14
77 || BLINKDUR 0.09| 0.20
78 || BLINKFREQ 0.11| 0.04
80 || EC 0.14| 0.21
81 || EYEMEAS 0.07| 0.08
90 || HEADNOD -0.23| -0.21
84 || MEANCLOS 0.09| 0.07
94 || MICROSLEEP1S| 0.01| 0.07
88 || PERCLOS70 0.04] 0.15

Table 3.9.:Pearson and Spearman correlation coefficigingg(idps) of 11 EYE features against the
linearly interpolated KSS.

In Fig. 3.23 the Spearman correlation coefficients between featureféiufe-ID=80) and
KSS of all drives are shown in a histogram. It can be seen heaetis a tendency towards

(6]
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Figure 3.23.:Histogram ofos coefficients between EC (feature-ID=80) and KSS for allekiv

the right, which indicates that most drives are positivelyrelated with drowsiness. The fea-
ture’s correlation coefficient over all drivesds = 0.22, which is relatively good for a causal
feature Friedrichs and Yandg20108. Scatter plots, class histograms and boxplotEdren
2007 are also used to get a visual impression of the featuresbdxots in Fig.3.24show
the relationship between different features andKiB& All plots show that the classes are
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severely overlapping, which leads to a lot of difficulties dmowsiness classification. There
are no drives witlKSSbelow 3, so these were not included in the plot.
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Figure 3.24.:Boxplot of features AECS, APCV and HEADNOD

3.6.9. Classification of Eye Features

The purpose of drowsiness classification is to combine tdéBent features to a single
continuous-valued drowsiness measure or the discreteesiawake acceptableanddrowsy
(cf. class definition in Se@&.3.5.

All features were downsampled to a sampling frequency oHZ,ms it is assumed that the
blinking behavior change is much slower than that. atificial neural network(ANN) was
used for classificationjuda et al. 2001).

Theoretically, the more features are incorporated, theenmtfiormation can be exploited.
However, when the number of features gets too high, the r@endre training data cannot
be fulfilled any more ¢urse of dimensionali}y For this reason, dimension reduction tech-
niques are appliedPrincipal Component Analysi@®CA) andFisher transform(LDA) are
methods to transform a given feature space to a lower dirmealsbne. However, thee-
guential floating forward selectio(6FFg algorithm, introduced inKudil et al, 19943, was
applied to select the most promising features for a classifibe advantage of SFFS over
feature transform techniques is its high transparencyyaselected features remain without
any change. For practical applications that means thattbelynost relevant features need to
be computed. In our study, PCA and LDA have shown poor regultemparison to SFFS.
Hence only results achieved by SFFS are reported. Jatshows the most often selected
features.

3.6.10. Classification Results for Eye Features

A feed-forwardANN with 25 neurons in one hidden layer was trained with the beopgmya-
tion algorithm. The confusion matrix of th&®NN classification is given in Tal3.10 More
classification results for Bayels;NN, GMM and LDA can be found inKriedrichs and Yang
20103. The results are based on the best eleven features thabbawneselected bFFS

in combination with the Bayes classifier. The classificatiesults have been obtained by
leave-one-out cross-validation with a training to testragb of 80% to 20%. It is important
to divide the data by entire drives so that the drives in tisé det are completely unknown
to the classifier. The results are averaged over severalypations of the training/test set to
obtain a more stable result.
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The total recognition rate witANN is 83.4%, which is very good and reaches the accuracy
of the KSSreference. It is expected that not all third variables eslaib the experiment
drives could be eliminated completely and thus contribatthis good result by over-fitting.
For instance, all drivers start awake and become tired aftenilar distance where the traffic
and environment become more monotonous. The head movefoeiristance decrease ac-
cordingly and the monotony may induce fatigue to the driVéis indicates that the classifier
adapts to third variables in the training data that are netgmt in all real-world drives. This
can only be solved by more heterogeneous training data.

Trug
Detected Awake Acceptable Drowsy

Awake 39.6 % 60.4 % 0.0%
Acceptable 2.2% 90.5 % 7.3 %
Drowsy 0.0% 42.2 % 57.8 %

Table 3.10.:Confusion Matrix for ANN (See Ci8.2.4for definition of confusion matrix)

3.6.11. Discussion of Camera-Based Results

The camera-based results presented in this chapter ascamaieptable. Observations from
the night experiments show that drowsiness detection waekgwell for some drivers, but
is error-prone for others. Several of the analyzed featsihesv good potential for fatigue
detection. As reported in literaturBERCLOSand features related to the eye opening speed
perform best. Thereof, the ratio of blinking amplitude tdoeity is a good indicator. Using
a higher sampling frequency than 60 Hz would be very valufisla better estimation of the
blinking velocity. For some drivers, also the eye blinkimgduency increases with the driv-
ing duration and during early signs of fatigue. Another piging observation from driving
experiments was that drowsy drivers do not completely opeir eyes any more between
blinks. It is difficult to find the maximum degree of eye opanisince the driver may not
fully open his eyes during the start of recording. More sefitited expert knowledge in
the image processing would be valuable here. Microsleeptgae also very valuable cues
for the detection of the latest phase of fatigue. At leasty thre a valuable backup if the
detection of the early phases fails.

A general problem of blinking based features is that thegaedhtigue too late. Moreover,
drivers who are sleepy can have micro sleep events with opeyes that remain undetected.
A major issue of this investigation is that only 1.6% of usedadcontain fatigue a@SS
level 9, at which camera based approaches start to perfostn lbar safety reasons, it is not
possible to allow these advanced fatigue levels on pukdidsoThis is one of the factors, that
spoke against using the driver camera as fatigue referertbésithesis. Another finding was
that there are severe differences between drivers, efipeniaegards to their eye blinking
frequency. Baselining as described in S2d.1was necessary to improve the results. There
are drivers that generally blink rarely (i.e. only every argwo minutes), which makes it
even more difficult to estimate a "frequency”. As long as tlreking signals were correctly
detected (high confidence), the drowsiness could be estihvetll from the degrading of the
blinking parameters for most drivers. Even after many inaprments, the system availability
is sometimes low due to various problems:

¢ Reflections on glasses lead to bad signal quality, see3FR2§(a)
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¢ Varying light conditions during daytime driving pose preiis for the eye signal track-
ing, see Fig3.25(b)

(a) Reflections on glasses (b) Bad light due to sun backlight

Figure 3.25.:Bad data quality

3.7. Comparison of Eye-Tracker and EOG

An alternative to using a camera to record the eye blinkingsisig Electrooculography
(EOGQ). Similarly as for the recording oEEG, electrodes are attached to the head and
recorded over a measurement amplifier (&e\n et al, 2009). The challenge of deriving
eye blinks fromEOGis that not the degree of eye lid opening is measured, butytbédall
movement over muscle contraction. The eye ball moves umaewdry time the eye lid is
closing. This movement is visible in tHeOG signal, as illustrated in Fig3.26 Thus, the
recorded signal makes only an indirect statement aboutyéaéceopening degree.

J— EOG [mV]
0

0.2

20°
. ”
0 v T W
01k 67220  6723.0
| ’ Time [s]

Figure 3.26.:Estimation of eye lid opening using eye ball movement by EOG

In order to estimate the eye lid movement from the eye ballerment, the camera aftDG
signals are compared in Fi§.27. The similarity between both signal runs can be seen
well. Also the scatter plot in Fig3.28 indicates a functional relationship that is roughly
proportional. Thus, it is concluded that the eye closureindeed be estimated by the eye
lid movement inEOG

EOGooffers several advantage and disadvantages in compads@amtera-based approaches.
A major disadvantage certainly are the wires connecteddcaeléctrodes that are attached
to the head. Drivers of series vehicles would not accept tB®G, however, ensures an
uninterrupted recording, independent of light conditiam&l head rotations. Moreover, it
works equivalently well for drivers with and without glasse

Looks to the dashboard are paralleled by a light closure efffe lid and, thus, cannot be
distinguished from eye closure by a cameraE@G, however, looks to the dashboard result
in a light movement of the eye baflownwardsand can, therefore, be distinguished from
the upward eyeball movements of blinks. As it can be seendn¥27, looks towards the
dashboard (represented by black boxes) can be distinglisheh better bfgOGthan using
camera based detection.
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Figure 3.28.:Scatter plot shows a good monotonous relationship betw&&n &d camera signals

Fig. 3.29shows the fatigue section of a measuremeriE$level nine. The long eye closure
in the middle has a duration of one second and can, thus, Isédesed as microsleep. It can
be seen that long eye lid closures are detected as w&ldfg as well as by camera.

Based on the derived blinking signals, the same featurgedlin Tab3.8) were calculated
from EOG as from camera-based eye closure signals. Algorithms ardngders had to be
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Figure 3.29.:Long microsleep blinkings at KSS 9 from camera and EOG

slightly adapted. Fig3.30shows a histogram of Spearman correlation coefficients deriw
PERCLGCS and theKSS Even if there is a tendency to the right, the drives with tigga

Features EEGOFF300:

.....

Number of drives histogram [-]
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Figure 3.30.:Correlation histograms of KSS and PERCLOS calculated fraGE

coefficients indicate a result inferior to the camera pehdan

3.8. Discussion and Conclusions on Fatigue References

As mentioned before, there is no "ground truth" as fatigdferemce which is one of the
major challenges in online fatigue detection. The perforoeaof the online algorithms can
be at best as good as the fatigue reference, so the goal eetttisn was to evaluate different
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approaches. The principal motivation is to investigate@@anEEG EOGbased measures
to overcome the main deficiencies of the subjecl&S self-rating, like its low temporal
resolution and subjectiveness.

Nodine (2008 further investigated the reasons for the weak performmatainiversal fa-
tigue detection methods and blames it on the large indiVidifierences between drivers.
She found that the steering range and variability have ttomgést relationship with driver
drowsiness, better th&fEGor eye closure. She further claims that in-vehicle algargtcan
outperform the reference, which however cannot be valitlate

As discussed in this chapt&EGhas performed well for a few drivers, but was not suitable as
a fatigue reference. This section has shown that the eylfjrsignal can also be estimated
from the EOG Signal. WhileEOG and camera-based features show potential for fatigue
detection, it turned out at this point that they could not mtiie desired contribution for the
following reasons:

e RecordingEEG and blinking signals is laborious, which makes it unsu#afar the
large number of free drives.

e The measurement equipment was not consistently availabladst drives

e The camera device was not available for most drives and leshic

e EEGand camera based features suffer from artifacts

e There is no confidence if the detection is reliable or not

EOGmade a great contribution for the development of eye-trackiased algorithms.

The original goal to merg&KSS EEG and eye-tracking to a single reference (comparable
to SLEEPER1/2/3 inWierwille and Ellsworth 1994 Wierwille, 19961 or (Hargutt 2007))
failed because it was impossible to sufficiently validate simgle and combined references.
Knowing about the deficiencies of tisSSscale, theKSSand self-rated warning acceptance
turned out to remain the best reference available and, #nasjsed for several reasons:

e Warnings from the assistance system must be transpareisicasdted by thdrivers’
opinion, which is most related to the€SSself-rating

o After verification, theKSSis much more robust compared to physiological measures

e TheKSSis available for all drives

e The technicaKSSrecording is very reliable and relatively accurate, wheEBGand
eye-tracking does not work for everybody.

For these reasons, the&Sis used as the central criteria whiEG, EOG, eye-tracking, and
distraction are only considered in certain aspects. EvéfEi and camera-based results
cannot be used to augment or replaceKi&S as a reference, they are still used to assess the
vehicle data based features. Furthermore, camera-basede® are high potential candidates
for online in-vehicle fatigue detection.

The lack of a ground truth reference still poses one of thesimiscritical hurdles in this
research field.
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Chapter 4.

Extraction of Driver State Features

This chapter presents the theoretical background aboetrglesignal processing methodolo-
gies to extract measures from sleepiness related drivitigrpa, so calledfeatures. The
main part of this chapter explains the pattern extractiopaiential features from CAN-
signals including their pre - and post-processing. The rasséntial signals originate from
the lane keeping camera-tracker, the steering wheel aegigos inertial motion sensors,
wheel rotation sensors, light sensors and GPS (as desanils=t.2.3).

In conventionalmachine learningfeature extraction is a laborious manual process based on
models and hypotheses. The most important features araddmetified, selected and com-
bined by classification. Ideep learningArtificial Neural Networks ANN) with larger and
more sophisticated structures can automatically leartuffes from raw data. This comes
however at the cost of a vast demand of resources: a much &rgaunt of data and big data
cluster andGPU computing are required (such as Hadoop/Spark technologiduus, nei-
ther the large amount of field data nor the computing ressunege available off-board and
on-board. For autonomous driving, the cost margin and thecoémputation resources are
much higher and purpose-design&81Cs and Systems-on-a-ChigQQ with a high degree

of parallelization similar tdGPUs can be designed. In contrast, driver monitoring systems
are targeted to require no additional cost and must run asicl vehicleECUs on top of

the base software. For product liability reasons of safgsyesns in the automotive sector, a
major design goal dESPsoftware are full transparency, model understanding aedigtive
behavior that is validated. Only few of the vehicle variaats available as prototypes prior
to production, so adaption of parameters (so called "pa@ma@plication™) to new vehicles
must be possible without the need of recording training.d@fassifiers can only learn pat-
terns that are available in the training data and are gdyerat suitable for extrapolation.
States and hyperparametersAdiNs do not provide the physical representation of parame-
ters and decisions are not very transparent. Especiallgxtrapolation to operation points
outside the range of training data (e.g. for different caaest driving cultures, road proper-
ties etc.) is a strength of models used in classical featiraaion. ANNs shall only be used

if there is no alternative and if the results justify it. Fhese reasons, the major focus here
was to investigate model based feature extraction in catipmwith machine learning.

Feature extraction is virtually the core of machine leagréimce it targets the separation of
different independent patterns from the irrelevant ctutfehe more precisely the features
are extracted, the better the performance of classifierdiong these measures to a single
continuous-valued drowsiness measure or the discreteesawake acceptableanddrowsy
(See Ch3.3.5. Drowsiness can result in different patterns for différérivers or situations.
Classification can exploit the combined discriminatorypgemies of features if they are not
redundant. A model based on expert knowledge that preaiselgrstands the coherences is
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generally superior to naive automated classification &lgos. This expert knowledge can
be incorporated during the feature extraction.

In literature and according to own observations, there iargel number of patterns with
drowsiness associative ability. Ideally, every featurbased on one pattern that can be, for
instance, a quick steering correction, a lane exceedinfj;zack lurching in the lane or a
delayed reaction to a road unevenness.

Here, CAN-signals have a maximal sampling frequency of 500 Hz for FlexRay),
which is necessary to properly detect fatigue related pettbke steering corrections. In
comparison, drowsiness is a slowly deteriorating procesischanges only within minutes.
For instance, a shock induced by an adrenalin rush can waleltiper within a second, but
is not essential for detecting the onset of sleepiness. ¢Jétris necessary to extract patterns
with at least 50 Hz, whereas for performance reasons, it ti9oapeficial to aggregate the
derived features with a sampling rate higher thanHx5

Distraction leads to similar patterns as sleepiness ang, tannot always be distinguished.
But the driver has more control and awareness over his digtrathan over his drowsiness.
On the other hand, the degree of distraction can change nastér fthan sleepiness. Since
no reference for distraction was recorded, drivers areastgd to avoid distraction in order
to not affect the fatigue features.

Further, it is proposed to distinguish betwesusalanda-priori features. Causal features
result from specific patterns that are caused by the dbeeausehe is drowsy. A-priori
features (e.gDAYTI ME) simply indicate that it igrobablefor the driver to become drowsy.
Causal features are the most selective and thus most impaortas. However, a-priori fea-
tures are also important as they can make a significant batitin to the system performance.
For instance, the (causal) features based on road exitegr@robable to result from sleepi-
ness when they occur in a monotonous driving situation i@rijpr A-priori features are
discussed in Chb.3as they are considered in the context of external influences.

Another grouping of features can be made by classifying tiremevent-basedind con-
tinuous The latter can be calculated permanently, such as the kaviatibn ( ANEDEV),
whereas zig-zag events, steering corrections or road &gt relatively seldom. The fewer
the number of events, the worse the temporal resolutioneo$iinal is. A few events within
one hour do not allow to make a qualified statement about ilierdstate. Hence, the goal is
to focus on patterns that occur frequently and also catchl &wvents by tuning parameters
towards high sensitivity.

Another grouping of features is proposdalisefeatures andunctionalsof base features. In
the following section, the base features are described.eieml, for event-based features,
the presence of a single pattern does not directly indicaterddrowsyness. The rate and
intensity of these events are relevant. For this reasothduprocessing steps are applied to
the base features such as:

e Moving average, median or exponentially weighted movingrage EWMA)
e Standard deviation, interquartile-range or exponestialeighted moving variance
(cf.4.1.2
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4.1. Pre-Processing

A number of pre-processing steps were necessary beforecarty the drowsiness-related
features from the raw signals. The proposed methods haeead@dvantages with regards
to performance and computation time when compared to themmmmplementation in
literature such as the mean or variance over a moving window.

Since the measurement of the steering wheel angle origirffeden four different vehicle
categories with different properties, they needs to béatked. Further, a discrete derivative
is necessary for many signals such as gteering velocity the longitudinal vehicle speed
andaccelerationfrom the wheel rotation rate sensors and ldéteral accelerationfrom the
sensor and from the single track model. This section de=ttibese pre-processing steps.

4.1.1. Digital Polynomial Smoothing- and DifferentiationFilter

Many features require synchronized numerical smoothirhdiifierentiation of some input
signals. The calculation of the steering velodity lateral or longitudinal velocity, , Weh Or
acceleratioraywn from the wheel rotation raté&/hIRPM, are a few examples. The differ-
ence between two consecutive samples of a discrete-timalsi] is given by

X[n| = x[n]—T—xs[n—l] (4.2)

with the sampling interval T in seconds can be described as a simpleofder FIR filter

with the coefficientdyg = 1, by = -1 and one division byls. However, this difference
calculation commonly used in literaturBgnder et al.2008 Bittner and Hana200Q Desai

and Haque2006 increases high frequency components (noise) and, thysires low-pass
filtering which again has the drawbacks of flattening peakk<hifting the phase.

A more appropriate method for digital smoothing and diffeiaion is to locally fit a poly-
nomial, referred to aBigital Smoothing Polynomial Filte(DISPO). According to Schafey
2017), Savitzky and Golay’s papegavitzky and Golayl1964) introducingDISPOwas rated
in 2000 as one of the top 5 papers ever published in the jodmnalytical Chemistry Its
major advantage is that the signal distribution, width arakimum height of impulses are
maintained. The derivative is easily obtained by an ar@ytlifferentiation of the approxi-
mated polynomial Savitzky and Golay1964 have shown that a sliding polynomial-fit and
evaluation of the polynomial at a single point is equivaterdiscrete convolution with a fixed
impulse response (i.e. a regular non-recursive FIR-fjlgnce the coefficients are constant
for a given filter ordeiP and window SizeN. The polynomial smoothing and differentiation
filter coefficients can be calculated by a least-squaresditti

For a given input sequencegn], N = 2F + 1 adjacent pointx|[-F], ..., X[0], ..., X[+F]
are considered to fit an (over-determined) polynomial

p(n) = > an® (4.2)

of orderP with 0 < P < 2F at the point of interest = 0. An approximated solution for the
coefficientsa = [ag, ay, . . . ,ap]T can be found by minimizing the sum of squared errors
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n=-F n=-—

F F (P 2
(@ = > (pm-xm) = Y [Zaknk—xw] . (4.3)

By introducing the notations

1 -F —-F)P
oo 2 X-F]
M= : N : , a= , X = : : (4.4)
1 F-1 .- (F-1)P ‘
1 F .. EP ap X[+F]
acR(P+1) xeR2F+1
Vandermonde matri% R (2F+1)x(P+1)
the cost function from Eq4(3) can be written as
€r(a) = IMa—x|?. (4.5)

The least squares solutia is obtained if the derivative of the error by all polynomialed-
ficientsa is minimized:

oe
@) 1o yieldsa® = (MTM)IMT x (4.6)
d(a) —
M+

whereM T is theMoore-Penrose PseudoinverséM .

The smoothed output value is obtained by evaluating thenpohjal at the central point
n = 0, which isy[0] = p(0) =. The next outpuy[1] is again obtained by shifting the
analysis interval to the next sample to the right. As show(Savitzky and Golay1964
Schafey 2017), this is equivalent to a convolution with a fixed set of weigh coefficients
h(n). Since only the coefficierdy is neededh’ is the Oth row oM * (0, :) from Eq. @.6).
SinceM " is independent of the input samples it can be pre-computed fgven F + 1
impulse response length and polynomial orBeiThe smoothing is stronger, the more over-
determined the polynomial (i.e. the clo$eto N) is. This applies for lower polynomial order
P and is large window sizeN.

The first derivative ofp(n) from Eq. @.2) can be calculated analytically by

[y

d =
F():I(nn) - kZ (k4 1) a1 n®. (4.7)

o

With the differentiation matrixD

01 0
D=|0 0 . 0 (4.8)
00 0 VP
00 0 O

we obtain the differentiated sequengm| by applying the differentiation matrix as derived
in Orfanidis(1995 Ch. 8.3.5)
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y[n] = MDM * x (4.9)
H
N-1
y[n = hix = > hgfi]xn—i] (4.10)
i=0

with N = 2F + 1 andh] = H(1,:) as the 1st row oH.

The phase delay of the FIR smoothing and differentiatioarfitr = (F + 1) - Tsand higher
than for recursive filters, which is not problematic for thigplication. The signal needs to
be synchronized with signals that are not filtered and forctreect amplitude the sampling
frequencyFs must be multiplied. Figd.1shows for instance the steering wheel angle and its
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Figure 4.1.: Different methods to differentiate signals.

derivative obtained by the common and proposed method.glasiow-pas®8ButterworthlIR-
filter with weak filtering i.e. a high cut-off frequenci (black dash-dotted line), preserves
the peak height at the cost of a high noise. Stronger filteriveg low cut-off frequency
smoothes the signal but flattens the peak of the derivatiiceSn the present application,
the maximum steering velocity shall be determined with highustness, th®ISPOFIR
filter properly preserves the impulse height while smodahhe signal (red solid line).

Application to CAN Signals

The steering wheel velocity in Fig.1is smoothed and derived byLASPOfilter of order

N = 13 and polynomial ordeP = 5. These parameters are the best trade-off between
preserving the peak height and avoiding toggling around fer zero-crossing detection.
Both yield a fix phase delay dﬁ*;—l = 7 samples. The related smoothing and differentiation
coefficientsh andhy are illustrated in Fig4.2

The longitudinal acceleratioay wn is obtained by ®ISPOdifferentiation filter with the same
coefficients as in Figd.2on vehicle speed from the wheel rotation sensors in £R8) (

N-1
aun[N] = Fs ) ha[i] wen[n ] . (4.11)
i=0
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Figure 4.2.: Impulse response of smoothing and differentiation DISP@rfforN = 13,P = 5.
4.1.2. Exponentially Weighted Moving Average and Variance

Commonly, a regulamoving average (MAYilter is used for signal smoothing or for cal-
culating event rates (cfAltmuller, 2007 Batavig 1999 Schmidt 201Q Bittner and Hana
200Q Pander et aJ.2008 Fairbanks et a).1995 Desai and Haquye2006 Lofgren 2007,
etc.). A simple, but very powerful improvement is the intiotion of a recursiveExpo-
nentially Weighted Moving Average (EWMA)R-filter. In Sec.4.1.1 the DISPOfilter is
primarily used for differentiation of continuous signatelasmoothing of it's base signal with
synchronous phase delay. However, fRiR-filter requires a high filter order and thus high
computational cost. In comparisoBWMA severely reduces the phase delay and computa-
tional complexity since only one value must be stored inbtgfathe entire window length.
Secondly, this has the advantage of taking present values imo account than old values.
EWMA is primarily used for the calculation of event rates.

Following the same principle, it is further proposed a wagpproximate the sliding variance
by anExponentially Weighted Moving Variance (EWVAR)r a giveninput signal Xn|. The
forgetting factorst, anda,- are used from the adjusted window si2¢sandN,2:

N/_[_l NO.Z_l
W= TN

(o8

(4.12)

The EWMA u[n| is calculated by weighting the previous average — 1] and the current
input samplex[n] for the initial valueu[0] = x[0] by

un =2, -un-1+(1-2,)-x[n| . (4.13)

The EWVAR ¢2[n] can be approximated using tE&VMA u[n] from Eq. @.13 by
o?[n] = A2 -0?n=1] + (1-A,2) - (X[n] = u[n])? (4.14)

with the initial valuec?[0] = 0. For theEWVAR, the same window sizes have been used for
both forgetting factorsa, = A,.

Further,EwmaN and EWvarN were introduced as a special caseedWMA and EWVAR,
where only the laslN non-zero samples are taken into account. For samples thakeao,
the update calculation is omitted and the memory value it K&qr instance, the maximum
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steering velocity between inflection points is event-basadlif the frequency of these events
should not be considered, only the events must be considered

EWIQR is introduced similarly tcEWVAR , however with the Interquartile Range (IQR)
instead of the varianceEWIQR is calculated by sorting the values in the preceding sliding
window and calculating the range for 50% of the central w&lue

Fig. 4.3illustrates theeEWMA andEWVAR applied to the lateral acceleratiapsc. It can be
seen that thEWMA andEWVAR approximations () fit well their ordinaryMA method

(-—) for similar window sizedN = 12s. Especially the&eWVAR is more responsive to changes
in the signal variance and forgets them faster.
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Figure 4.3.: Exponentially weighted moving average (EWMA) and varia(if&/VAR)

Fig. 4.4 shows the advantage of tBE&VMA again, but for event rate calculation of road exit
intensities. A road exit is an event that is detected if any pbthe vehicle exceeds a solid
lane marking. This can be used to measuret¢heporaldensity of events ("rate") including
their intensity. It can be seen that the regWN@k filter (-—) has stairs and drops every time
an event leaves the sliding window while tB®/MA smoothly forgets past events and never
returns to zero-{-).
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Figure 4.4.: Exponentially weighted moving average (EWMA) to calculewent rates
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Computational Complexity: On a fixed-point processor, divisions and multiplicationd a
especially memory for unit delays (each 32Bit) are very tédiand expensive. In regards
to computational complexity, Eq4(13 can be transformed to the more efficient E418
by replacing one multiplication by one subtraction. Coneplato the moving average with
one division,N — 1 additions andN — 1 unit delay elements, tHEWMA now requires two
additions and a multiplication:

uln] = x[n] + A,-(u[n-1] = x[n]) . (4.15)
For EWVAR this works equivalently :

2] = (xfn] -l + Ay (20— 2] = (] = lri)?) . (4.16)

Fixed-point Error:  The weakness of this implementation in fixed-point arithiosets that

the error of the feedback is accumulated. For this reaseh,ﬁ é 1 must be fulfilled as

precisely as possible. For Ed..12), this is achieved by first pre-calculating the division and
thenthe subtraction
N-1 1
1=—= 1=1-= 4.17
N~ N (4.17)

since the subtraction in fixed-point is error free. Second2Bit quantization (instead of
16Bit) is at least required for maintaining acceptablet@rifor of fixed-point towards floating-
point after several hours. These countermeasures redeiogstin deviation of the fixed-point
error by factor 16. Details about the results are presemt@@zape 2008.

Adaptive Window Size: The adaption to strong signal changes and initializatiothef
EWMA and EWVAR can take very long for a large window sidg. Thus, further improve-
ments are introduced:

e Initial values: The initial valuesu[0] ando2[0] are initialized to the average of the
awake phase of each feature instead to g

e |nitialization: Growing window size is an important improvement. For ins&grstart-
ing with N, = 5 increaseN,, by one for every sample or event up to the final window
size.

e Situation adaption: The window size is reduced when the driving condition sdyere
changes and a faster adaption is needed, e.g. for a chanigiete\apeed in construc-
tion sites, i.e N, (X, Vyen).

4.1.3. System-Active Signals

For steering angle and lane based features, there are oftérgdsituations (e.g. overtaking,
curves, road condition etc.) that have a bad influence toigmals and features. As well,
there are moments in which the signal quality is insufficun to bad lane markings or bad
weather. During the pre-processing, a Bool&ystem Active Signébr lane-based features
S AS ane and a similar signal for steering and CAN based feat@@s:- an are calculated.

They indicate when distortions requires to neglect a aegailation.

S AS ane is TRUE if all following conditions are fulfilled:
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1. Vehicle speeds within the rangePy jower,LANE < Weh < Pyupper With
Pujower,LANE = 70km/h
PyupperLANE = 200km/h

2. Nolane changetakes place: the detection is described in et.5whereas
Planechgpres uppm= 4sbefore andPjanechgrosts upp= 6safter the lane change are also
suppressed.

3. Lane data quality is sufficient:LaneDataQual> PjanepatagualWith
PIaneDataQua|: 80%

4. Noconstruction site thelane width is used for detectionLaneWidth> PminLanewidth
With PminLanewidth= 3.05m

5. No fastvelocity changes for instance, from 130 to 80 km/h in construction sites also
cause artifacts in driving patterns and, thus, are sup@uef®s Pyeichgposts upp™= 3S:
EWMA 3s(IWenLpl) > 1.5% with wenp filtered by a Butterworth low-pass filter of

2"d order and a cut-off frequency of 0.5Hz.

6. Noovertakings. lane signals cannot be used during overtaking maneuvethaAge
in the lane numbekaneNumaccompanied by an acceleration pedal change of
AAccelPdIPosre 10% is used for detection.

7. No short active sections in order to avoid toggling, active sections with durations
Pshorts ectionsTHS 3 Sare suppressed as well.

S ASan is TRUE if the following conditions are fulfilled:

1. Novehicle operationfrom buttons and levers:
turn indicator operation result in inactivity f@wgnhinch= 10s,
steering wheel buttons or clutch operation R ghtoper= 5sand
operation of the heat-unit (COMAND) fd?ygntpistr = 10s are suppressed.

2. NoCurves: lateral perceived acceleratidBWMA «(ay,sw)| > 0.8§ is suppressed
for
Pcurves uppt= 0.4s usingay st from the single-track model (Se6.3).

3. NoRoad bumps longitudinal acceleratioBy wh < 45—"21 is suppressed for
ProadBumps uppt= 0.5s usingaywni from wheel rotation sensors (cf. Secl.]).

4. Vehicle speedmust be within the range?y jowercan < Weh < Pyuppercan With
va|owerycAN — 80km/h and vaupper'CAN — 180km/ h

5. Steering wheel anglemust be withinds| < PsuwiLevelWith Psuwievel< 40°.
6. Nodriving style suppression WpynamicDrivings tyleffom Sec4.1.7is suppressed.

7. NoKick-down: AccelPdIPosn> 98%V AccelPdIPosRaw > 98% are suppressed
for Piickpowns hort= 0.1sif the pedal is pressed for shorter thamahd

8. Nosafety assistance system is activ@raction Control, Stability Control, Anti-lock
Braking System or Hydraulic Brake Assist indicate very sgerdriving: AS Ry V
ES Ry vV ABSy V HBAy. Events are suppressed for §far an intervention shorter
than Zand up to 28 otherwise.
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9. NoCross-wind: the detection is described in Ch2.6and suppressed for
PswpswgHoldT= 3S.

For most features, individual exceptions had to be made.

During feature extraction, th® ASsignals are included to suppress the computation in these
situations. However, this "blind" inactivity has a negatimpact on the feature extraction.
Depending on the feature, the following methods are used thdse gaps:

1. Event suppressiontor rate calculations (e.gEWMAoof steering corrections) the de-
tected events are simply considered as zero. This consenegiproach yields a drop
of the event rate which appears right as the SAS inactivitiesndebted by activating
actions of the driver. EEwmaNis used insteadEWMA, only the lastN events are
taken in which the SAS was active. Here, the event rate daedrop.

2. Hold: the last feature value is hold. This assumes that the fateys in such situa-
tions remains unchanged.

4.1.4. Driver Switch and Pause Detection

When a driver has a break or there is a change of the driveredtimated fatigue level
must be reset. Otherwise it often leads to false warninghrieally, an engine restart
resets theESC controller and unless a non-volatile memory (EEPROM) isilalike, the

algorithm restarts. However, many pauses or driver swit@dre performed with running
engines and must be distinguished from stop-and-go tr&figc 4.5 shows the state transition
diagram of the detection conditions. In case the vehicledpg is below 5 km/h, a timer

@tan I \
;J—[}’:T,}fCh >3] ~dmg—'>(Driver - present j

[vref>20]

- [DriverDoor =1 && /. T [DriverDoor = 0 &&...
- DriverBelt =1] } DriverBelt = 0]
[vveh<3] Driver_ away

during:
timer +=Ts;

.. .
72 [timer > MinDuration]

Pause_Detected

entry:

Pause =1;

- /

Figure 4.5.: Pause and driver switch detection to reset the featureBé&tént Friedrichs et a].2012)

is started when door and buckle switch are opened. Theedil&gnals of the driver door
stateDrRLtchFRS taend buckle switctBcklS wDneed to be debounced foe= 0.3s. The
timer thresholdl'ysp minburation = 15sis set to the fastest realistic driver switch that we could
perform. The timer is reset when the vehicle is driving ov&nBh again.

4.1.5. Lane Change Detection

One benefit of theALDW is that lane changes can be detected even if the driver ddes no
use the turn indicator. According t8#&tavig 1999 Schmitz 2004, the lateral distance und
velocity are good indicators to detect lane changes. Oeteof lane changes (cf. Fig..6)
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was performed by using the lange change stharseChangeStads well as detecting zero

crossings in the lateral distan¢enelLatDist y: laneChgDct = |%| > PLanechgrhand
LaneChgStat# OV TurnindLvrStat# 0V laneChgDctwith Pianechgth= 1.8m.
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Figure 4.6.: Detection of lane changes and reconstruction of lateral thstance

4.1.6. Subjectively Perceived Lateral Acceleration

It was observed that theubjectively perceiveldteral acceleration is much higher for increas-
ing vehicle speeds (cf. Patemtdiz et al, 2004). At low speeds strong lateral accelerations
occur without the driver noticing it. It was observed thastspeed dependency needs to be
compensated by a weighting according to the drivers pemept

Thesubjective lateral acceleratioay,spysubjin [52] is calculated according to Egt.(8 from
the vehicle speedeh in [ | and thelateral acceleration @y from the single-track model
as described in CH.3. It is not distinguished between left and right curves.

ay,stvv,subj(Vveh, ay,stw) = ( Vyeh Paysubjamt  Pays ubjAc) “|ay,stwl + (4.18)
Vveh* PaysubjBm  Paysubjse

with the parameters obtained from parameter study

Paysubjam = 0-03651, Paysubjac = 0.3985,
Paysubjpm = 0-0183%, Paysubjgc = —0.8840.

Fig. 4.7 illustrates the functiomy, swsubj(Vveh ay,stw) from Eq. @.18).

4.1.7. Driving Style Model

Sportive driving inhibits fatigue and thus needs to be digiished. As illustrated in Fig..8,
inexperienced drivers tend to not mix longitudinal andratacceleration while experienced
race drivers better exploit the physical limits of the tiress mentioned in the patents of
(Kuhn and Heidinger1997 Stolzmann et al.2002, the right figure shows the thresholds
for the detection of sportive, normal and calm driving styfedrivers with average driving
experience. The threshold curves were the result of a paearseidy that optimized the
classification results.
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Figure 4.7.: Subjectively perceived lateral accelerat@miysubj

Driving Style Suppression

Sportive driving was observed to alert a driver for a certaime. This hypothesis was in-
directly confirmed by improved classification results. Tleeidion how long sportive driv-
ing is suppressed is calculated based on the model from é&wops Sec4.1.6 Using the
threshold from Fig4.8, a counterCsg4 is introduced that incremen®¢qycntincnear = 0.08
for every second while the acceleration magnitage is inside thenormal (orange) area
and Pgcntincrar = 0.12 outside (red). The maximum for the countelPigmax = 2.4s.
ares Is calculated according to Et.(L9 as the magnitude of perceived lateagkyysubj and
longitudinal acceleratioBy wh-

Gres = \/a)z/,stw,subj + ai,whl (4.19)

The counter counts down as longass is inside thecalm (green) area and sets thgving
style weighting WynamicDrivingstyle= 1. Parameters are a result of parameter optimization.

4.2. Overview of Features

In this section, an overview of features extracted in thisth is given. In general, one
extracts as many promising features as possible and s#tests with the best performance
by feature selectionr transformation(Ch.8). Inspired by own ideas and features in literature
(App. A.9), this section discusses the most essential features.
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Figure 4.8.: Different driving styles are displayed in a so called "GGgtam" of Longitudinal and
(perceived) lateral acceleration. Left: Experiencedeaswexploit physical tire limits bet-
ter than inexperienced drivers. Right: thresholds fromraipeter study for the detection
of sportive, normal and calm driving styles for drivers watherage driving experience.

4.2.1. Feature Matrix

All features are organized in f@ature matrix Fwith a structure shown in Tall.2 For
each drive, the first three columns are the KSS referencediffthrent interpolation methods.
The next ten columns contain meta information about theedallowing fast access for the
grouping, filtering and data analysis. The following coluontain the features with their
Feature-IDin the head row. Each row contains one sample of all featuréstiae features’
sampling rate 0.61z

4.2.2. Feature Classes

Features that are based on similar patterns are structiegroups depending on the pattern
or sensor type they are derived from. The cla&BIE describes whether they require camera-
based lane informatioPAA contains measures from tAG TENTION ASSISTSsystem STW
from the steering wheel angle, aGd\N when they are based on otf@AN-bus signals such
as lateral or longitudinal acceleration, wheel rotatian &he classeEYE andEEGare used
for evaluation in Ch3 and otherwise as additional reference.

4.2.3. List of Features

Tab.4.3lists the 48 most important features out of all 144 featustsd in App.A.9. Features
with superscript are better after baselining and supersctigte newly introduced.
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Table 4.2.:Elements of the feature matrix
ID | CLASS | Feature Name Description
15| LANE |LANEDEV?! Lane deviation
17|LANE |ZIGZAGS! Number of zig-zag events
19|LANE |LATMEAN? Lateral mean
29|LANE |LNMNSQ! Lane mean squared
32|LANE |LANEX! Lane exceeding
33|LANE |LNERRSG LANEX squared
34|LANE |ORA! Overrun area
35|LANE |TLCIMIN? Time-to-lane crossing
36|LANE |VIBPROF Lane departure warnings within 4 minutes
16 |LANE |LATPOSZCR?2 Lateral position ZCR
30|LANE |LNIQR12 IRQ of lateral position
31|LANE |LNCHGVEL2 Lane change velocity
37|LANE | DELTADUR2 Duration between inflection points
38| LANE |DELTALATPOS!? Lateral displacement
39|LANE |DELTALATVELMAX 12 | Maximum lateral velocity
14|LANE |LANEAPPROX2 Approximation to lane event rate
40| LANE |LANEAPPROXADP-? | LANEAPPROX with adaptive threshold
42| STW |ELLIPSE Steering angle and velocity magnitude
50/|STW |NMWRONG! Number of timesSTW s suddenly corrected
69(STW |NMRHOLD? Number of timesSTWis hold long
48|STW |AmpD2Theta Area betweerSTW and its meanBerglund 2007)
72|STW | VHAL? Ratio high vs. lowSTW velocities King et al, 1999
71|STW |MICROSTEERINGS Presence rate of micro-steering adjustments
18|STW |STWZCR:? Steering ZCR
25|STW | STWVELZCR!? Steering velocity ZCR
52|STW |STV25H2 Steering velocity 3 Quartile
53|STW |STV502 Steering velocity 24 Quartile
54|STW |STV75-2 Steering velocity 8 Quartile
44|CAN | ACTIVE? System active signaB(AScan)
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24| CAN | LNACTIVE? Lane signals activeS AS AnE)
41|CAN |VEHSPEED Vehicle speed [km/h]
47|CAN | DAYTIME Seconds since midnight
66 | CAN TOT Time-on-task
22| CAN DEGOINT? Degree of vehicle-driver interactioKkénstrup 2006
23| CAN REACTIM? Reaction time ir6TW to lateral acceleration
45/ CAN | CIRCADIAN?®2 Circadian daytime weighting
51|CAN |STWEVNT:2 Steering event rate as ATTENTION ASSIST
55|CAN | CROSSWIND2 Cross-wind / road warping intensity
58| CAN | DYNDRIVINGSTYLEY2| Dynamic driving style
59|CAN | MONOTONY?:2 Monotonous driving
61|CAN | OPERATION Vehicle lever and button operation
63| CAN ROADBUMPSZ Road bump condition
67| CAN TOTMONQ? Monotonous Time-on-Task (TOT)
68| CAN | TOTSPEED TOT around 130km/h
70| CAN | LIGHT? Light intensity (day/night)
26| CAN TRFCDENS Traffic density
27|CAN | TURNINDADVANCE?'? | Blinking time before lane change
28/CAN | TURNINDDUR!2 Turn indicator operation duration
EYE ... EVYE features are listed in TaB.8

Table 4.3.:Selection of features

4.3. Lane-Data based Features

In comparison to the "microscopic” steering control, thiedal lane position is a rather
"macroscopic” result of the smoothed reaction of the vehialthe steering signal and road
condition. The major additional information provided byelal lane data is the knowledge
of theabsoluteposition in the lane. Another benefit is that lane changedeatetected even

if the driver does not use the turn indicator.

According toKnipling and Wierwille (1994, "drowsiness can be detected with reasonable
accuracy using driving performance measures such as “dnift-jerk” steering and fluctu-
ations in vehicle lateral lane positién Wierwille and Ellsworth(1994 concluded that
lateral control measures are closely related to prolongeigidg and might therefore be used
to detect driver sleepinessBerglund(2007) summarized fronsiegmund et al(1996 "that
driver sleepiness is most likely indirectly measured eibhyethe steering wheel control input
or lane maintenance output, and that the lane maintenaneegigably the more complete
parametet.

A major problem during the offline development of featuremgisneasurement data is the
gap of transparency. The majority of influences could eittetrbe recorded or was difficult
to access in the large number of signals. For this reasonaldimee online and offline
vehicle "cockpit" was implemented (App.13.3 that brings both domains together: the
visualization of driving signals and the features. Gemgralwas observed that the features
are sensitive to what they have been designed for. Yet, there also other influences to
which the features were sensitive. With this visualizatiblese influences could be identified
and compensated.
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4.3.1. Lateral Lane Position Features

Observations from many situations during night studiesfegldrives tell that some drivers
tend to drive closer to the right lane border to clear spacevertaking vehicles or oncoming
traffic. The same principle holds for the overtaking vehidieat tend driving to left side.
The average lateral offset also depends on the driver'sfapddving style. Further, it was
observed that for very low traffic, there are drivers who aegthe lane markings and drive
in between lanes, to increase the clearance space to thdooadaries for a sloppy lane
keeping. LATMEAN is the average lateral lane position during system acti8ifS ane
within the last 1.4nin, calculated with theeEWMA proposed in Sect.1.2 LNMNSQis the
moving average (ndEWMA) of the squared lane position while the zero position is @efin
as the position where the center of the front axle is locatedhe road centerL NMNSQ
is used for comparison as reference for implementationgerature {ijerina et al, 1998
Wierwille and Ellsworth 1994 Kecklund and Akerste¢993.

Some other driver-specific features @tgRNI NDADVANCE, the duration between the utiliza-
tion of the turn indicator prior to a lane chande\NICHGVEL, the average lateral velocity of
lane changes antJURNI NDDUR, the duration of turn indicator activation. For these feasy
only lane changes are suppressed instead of Bi§ ane. These features are based on
the observation that different drivers have differentestydf lane changing and turn indicator
usage according which they can be distinguished. Knowingathese driver-specific prop-
erties does not necessarily allow a causal conclusion aheutriver type and state. This
factor will be analyzed later in Ci.4.

Some other base features are the average durBihTADUR between lane center cross-
ings, averaged over the last 15 events ugimgnaNand the zero crossing raté®TPOSZCR.
These two features correspond to the oscillation frequanaynd the individual lane center.
Further features that describe the lane keeping perforenareDEL TALATPGS, the ampli-
tude (cf. Fig.4.9) andDELTAVELMAX, the maximum velocity between the inflection points
of the lateral lane positiorZC). All these features are vehicle speed dependent and tlous ha
to be normalized.
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Figure 4.9.:Road markings and lane lateral offset to illustrate laneiadimn LANEDEV and

DELTALATPGCS for awakeanddrowsydriving. The red bars illustrate examples of the
largest lane deviations.
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4.3.2. Lane Deviation (LANEDEV, LNIQR)

There is a large number of features associated with the leéhdeviation in the lane, as it is
assumed that the driver-specific lane keeping becomes rapeyswith increasing fatigue
(Kircher et al, 2002 Pilutti and Ulsoy 1999 Bittner and Hana2000 and (seeAltmdller,
2007, Ch. 4.2.3). During the test drives, it was observed thatesamake drivers can also
have a bad lane keeping depending on their mood.

The most essential features are implemente®NEDEV measures the lane keeping deviation
using anEWVAR window of size 2nin, while theS AS ane is active. The often mentioned
SDLPfeature Tietze and Harguit2001, Hargutt 2001, Kircher et al, 2002 Thiffault and
Bergeron 2003 Altmdaller, 2007 Liu et al, 2009 Mets et al, 2017) is basically the same and,
thus, not implemented. The lateral mean was observed toiver-diependent and, thus, is
subtracted before the variance is calculated. SimplenariafLANEDEV are used aground
truth for distraction in many studies with driving simulator dé@reschner2011). In fact,

it is a simple measure for driving performance, but it carls@tompletely transfered from
simulator to real world driving. Figd.9 depicts an example of how the variance increases
with increasing fatigue.LANEDEVSQ and LANEDEV4 are obtained by taking the power
of two and four respectively, as proposed\hjerwille and Ellsworth(1994); Kircher et al.
(2002, to stronger weight large deviations from the driver'srage.LANEDEVBL is simply
the baselined version afANEDEYV, i.e. it is normalized by itsnaxvalue between theSi
and 20" minute. LNI QR is the interquartile range (IQR) of the lateral positionhiitthe
last two minutes. In comparison to the variance, the IQR doesake outliers into account
and thus focuses more on the degradation of the small laratdes. Again, the driver-
dependent lateral offset had to be compensated. Howevampger optimization has shown
that exponential weighting of the lateral position perfethbest. This allows the conclusion
that large lane deviation events are more significant signfafigue than small deviations.

4.3.3. Over-Run Area (ORA)

The Over Run AreaORA is another deviation measure that senses the averagedokesri
surface and is an alternative t&NEDEV. Details can be found in the thesis @ilabe 2008
and in literature l(6fgren, 2007 Wigh, 2007). Fig.4.10illustrates the ORA measure. For the

Figure 4.10.:Over Run AreaQRA) as measure for lane deviation

calculation, the lateral offset is subtracted and the aitsolalue is averaged over BwmaN
window of 3min, while S AS anE IS active.

4.3.4. Unintended Lane Approximation (LANEAPPROX, VEZ etc)

LANEAPPROX is a feature that describes the number of times any part ofrehéle is
entering a proximity-zone of the lane boundsANEAPPROXADAPT is basically the same,
however using an adaptive, driver dependent zone.
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Kozak and Poh(2006§ andWigh (2007, 2.1) defined in their thesegEZ as a zone which
focuses on a lane approaching pattern, illustrated in4igland comparable t6LC1M N.
The latter uses a driver adaptive zone size, which can bepieted as an ‘almost’ lane
departure. The advantage is that these departures occur moie often than real lane
departures and, thus, allow a higher temporal resolutionintdnded lane departures are
suppressed if the driver steers towards the lane or acel&tates $chmitz 2004). Different
weightings for curves and lane types have shown to be pahctlicwas observed that some
drivers almost never exit the lane boundaries, whereassttaee over 50 lane exits per hour.
Thus, it is proposed to adapt tAé.DW warning sensibility to the driver state.

Figure 4.11.:Unintended lane approaches with intensitynd duratiordt

4.3.5. Unintended Lane Exceeding (LANEX, LNERRSQ)

The heuristic of distinguishing intended and unintendetk laxceedances is discussed in
(Schmidt 2009 and also in the lane change detection (Set.5.

For some drivers, lane departure warnihg§NEX andVI BPROP have been observed to be
very helpful features during the onset of drowsinds&8NEX, LNERRSQandVI BPROP are
based on the intensity and frequency of lane departures cadaxits ierwille, 1996k
Mattsson 2007). Lane departures are defined as exceeding of a dashed rokidgnavhile
road exits describe the exceeding of solid road markingsERRSQ s the mean squared
difference between the outer vehicle dimensions that ektezlane marking. In contrast to
VI BPROP, LANEX takes the intensity into account as shown in Big.2 The warnings are
averaged by aBWMA filter with window sizePyippropEwmawinsize= 4 min.
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Figure 4.12.:Lane exceedances for intensityand duratiordt
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4.3.6. Zig-Zag Driving (ZIGZAGS)

Z1 GZAGS are based on single lurching patterns as illustrated in4&f3 The maximum

Figure 4.13.:Zig-Zag driving

lateral distance and velocity are calculated between albecutive zero-crossings of the
smoothed lateral distance. The lateral distance is filtbyea low-pass filter with cut-off fre-
quency of 0.6 Hz. A 2 order Butterworth filter was used insteadESVMA, since stronger
attenuation in the stop-band was desired for this cut-effjdiency. The lateral velocity is
obtained by differentiation with BISPOfilter (Sec.4.1.]). Criteria for detectingZ| GZAGS
events are at least two oscillations within the lane with amplgude within 0.4-1.2 me-
ters and a duration between 2.5-17.5 seconds. The reseNmgts are averaged with an
EWMA window of N = 4min. Only events are taken into account wH&AS anE iS active.
Z1 GZAGBL is the baselined version, normalized by the saturated mariof theZl GZAGS
value between thesland 26! minute. These parameters are obtained from parameter opti-
mization.

4.3.7. Time-to-Lane-Crossing (TLC)

Time-to-Lane-CrossingTLC) measures the estimated time remaining until any part of the
vehicle exceeds the lane boundaries, if no other drivingpads made Glaser and Mam-
mar, 2005 Mammarand et gl.2009. Fig 4.14 illustrates this principle. As described in

Figure 4.14.:Time-to-Lane-Crossing minima models

(Friedrichs and Yand2010h, there are again two models to calculate The time, referred

to asTLC model 1landTLC model 2 TLC model 1 is the simplest method calculated from
the lateral position and velocity. The more accurate modehrzd 2b take the road curva-
ture and vehicle track into account and therefore requiditiadal signals. These, however,
are not so robust as the road curvature signals are notleeli@be inclusion of the second
clothoid parametet, has not shown any improvement, and, thus, is not consid&rethils
can be found in the thesis @labe (2008 or in literature Batavig 1999 Schmitz 2004
Mammarand et al2008 Wigh, 2007).
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TLC Model 1

The TLC duration can simply be calculated from the lateratatice to the left or right lane
edgey;, and lateral velocity, by

TLcL= 2 (4.20)

YL

TLC Model 2

TLC Model 2 is the more detailed model that, however, requiresens@nals and, thus,
is less robust. There are several variants to implementbigel. However the definition
described in the theses Glabe(2008 andWigh (2007 is used.

This definition is based on two models: thehicle path modednd theroad model The vehi-
cle path model describes the future path of the vehicle iftb&on parameters as the current
yaw-angle would not change. The road model describes tlikawature ahead, based on
the road characteristics obtained by the lane tracking @mnidne intersection point of both
trajectories describes the distance at which the vehidlemiss the lane boundaries.

Vehicle Path Model: There are two models described Wigh, 2007, whereof the sec-
ond, more detailed model is used here. Taking the yaw akglbetween road and vehicle
(LaneYawAngfrom Tab.A.2) and the curvature of vehicle path = % into account, yields

Eq. @.27) for the vehicle path model, wheyg is the lateral distance,the angle against the
lane marking andl is the distance in driving direction:

1
Yven(d) = YO+9'd+§'KC-d2 (4.21)

The radiusRis obtained from Eq.§.3) of the single track model described in Gh3.

Eq. @.21) describes the center line of the future vehicle trajectdaking the vehicle width
Wy into account, the left and right vehicle edges are obtairyed b

1
Yeeni (d) = +% +Yo+0-d+ 5k d (4.22)

W, 1
y\/ehr(d) = _7V+y0+9d+§l<cd2

Road Model: Road sections can be modeled by clothoids. Using the matieahsim-
plifications from Wigh (2007, the driven distances and clothoid parametersy and c;
(LaneClothoidParafrom Tab.A.2), the center line of the road can be formulated in x- and
y-coordinates by:

x(d) = x+d (4.23)
1 1
y(d) = yo+§'C0'd2+é'C1'd3

Xo andyyg are the starting positions of the vehicle and can be set to zer
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Analogous to the vehicle path model, the lane widtflLaneWidthfrom Tab.A.2) must be
taken into account. Neglecting the small and noisy paransgtgields the left and right road

markingsyroad, andyroad,

x(d) = d
Yroad) (d) = %(+w+ Co- d2) (4.24)
Yroad,r(d) = %(—W"i‘ Co- dz) .

Intersection of both Models: The Distance-To-Lane Crossin@LC) is calculated as the
intersection of both model§LC = d subject to

Yvehi (d) = Yroad)(d) (4.25)
Yvehr (d) = Yroads(d) .

Only the minimum of the positive solutions for DLC is relevéuere:

DLC=d= 0+ 62— (Co— ke) (2W+ W, — 2y)

4.26
(G xo) (4.26)
In model 2, theTLC2 is obtained by using the vehicle spegg,from Ch.2.3.1
TLC2 = DLC . (4.27)
Vveh

Comparison of Model 1 and 2

Using TLC minima as indicator for fatigue detection, it is not relevamestimate the real
TLC time, since drivers mostly take action prior to excegdime lane. SmallLC values are
already a good indicator of sloppy driving.

Due to calibration problems of the lane tracking camera, ehidvas used in this thesis, as
it has shown more robust results. TReEC1M N feature is finally obtained as the number
of TLC minima below 10 seconds and averaged byeammaNfilter of the last 15 values.
Fig. 4.15shows the lateral offset of the vehicle bounds (blue), tlael roarkings (black) and
the related TLC minima.

4.4. Steering Wheel Angle based Features

In contrast to the lateral lane position, the steering wisegjle is directly related to the
driver’s control action. The steering signal contains kighequencies and a finer resolution
of the desiredvehicle track.

The idea of analyzing the velocity of the steering wheel amgles back to the expired Ford
Patent ofPlatt (1966 in 1962. Historically, older patterns like steering pasiaed fast cor-
rections have lead to a combination of steering correctioli@ewed by slow steering. This
again has lead to the detection of deadbands and the muchsoyhesticated definition of
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Figure 4.15.:TLC1M Nas TLC minima using the more robust model 1

steering events. Latest ideas focus on considering therdwivd vehicle as a control system
and evaluate the control parameters. So called "micreectbans” and the "degree of inter-
action" are simpler measures for the driver control perfortoe. Steering wheel angle and
velocity frequency domain analysis focus on the frequermypain.

The combination of lane and steering based patterns on aréekvel extends their dis-
criminatory property. For instance, steering correctitmvgards the lane center are the most
relevant for fatigue detection. The reaction time to Tirad-ane Crossing Minima is another
steering and lane mixed feature proposed in this thesis.

The steering wheel angle is measured with a 0.1 degree tiesoand needs to be unwrapped
and offset compensated for the lateral road tterid order not to flatten signal peaks, the
steering velocity is calculated with the Digital Polynoin&moothing- and Differentiation
Filter (DISPO), described in Sea.1.1

4.4.1. Variance Criterion (VARCRIT)

According to the Daimler Patents &ftolzmann et al(2002; Hentschel et al(2005, the
variance criteriondescribes the ratio of a long term and a short term slidiniamae window.
The goal is to measure the rate of detected patterns simil&drift-and-jerk”, where the
driver is out-of-the-loop for a short period and then sudigesalizes the mistake by reacting
with a quick steering correction. This is an improved deéteciethod for the patterns in the
expired Nissan PatentS¢ko and et. gl1986 lizuka and Obaral98§ for the detection of
driver drowsiness by an abrupt steering change and norsjemdvement following.

Some changes were made to the featt&CRI T such as using the DISPO filtered steering
wheel angle velocitys from Sec.4.1.1and taking the variance ratio to the poweikof

EWV ARnhor(Ss[n]) K

max 1, EWV ARyng(dsn = Puinsizeshott) )

VARCRI T = EWMA y (4.28)

1Roads usually have a lateral gradient of up to 3% for rain marin
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with the sliding variance window sizé%,ins izes hort= 0.5, PwinsizeLong= 2.0sand exponent
= 4 to stress peaks. Fig.16illustrates the principle of the sliding short and long term
variances. The longer steady phase represents the "dhe-dbop” absent driver activity and

(=]

& D

Steering wheel
velocity [°/s]

|
[*)

— Long term variance

- - -Short term variance AN ;
10H - - Long/Short sofrenneenneens TN S

' ~ [
- [y - M ¢ e '
L ey 1 -

! - T \
3548 3550 3552 3554 3556 3558 Time [s]
Figure 4.16.:FeatureVARCRI T: Variance criterion - short over long term variance.

[T T

furthermore makes sure that sudden hectic steerings agdtraotion sites, traffic density or
curvature changes do not lead to miss-detected peaks.

Similarly, a criterionl QRCRI T was investigated, where the variance is replaced by the in-
terquartile rangéQR? which neglects slow and fast outliers. However, the perforoe was
inferior to theEWVAR because the peak height of steering corrections is nedlecte

4.4.2. Local Driver Inactivity Event (DEADBAND)

The featurdDEADBAND proposed byAltmduller, 2007 describes very much the same pattern
as (Seko and et. 311984 lizuka and Obaral986 and theVARCRI T. Its name is motivated
by events when all driver control signals are steady, i.eerstg wheel angle, gas pedal,
lane drifting and all signals are "dead". This steady-omslyext of thdDEADBAND idea (and
the nature of its name) is further analyzed in relation tofédaureNVRHOLD in Sec.4.4.7.
The nameDEADBAND is slightly misleading because its proposed detectiorrigitrequire
the followed steering correction as well. According to omdfings, the correction is much
more significant than the intensity and duration of the rnieer$ng period. Furthermore, this
feature is only based on the steering wheel signal and no dtiver control signal. This
"dead" pattern is strongly related to microsleeps and bstad late for an application in the
vehicle, but still valuable if the early onset detectiondai

The Bosch PatenReichert 2008 explains the same pattern and detection principle. How-
ever, it is based on the steering whemlque as it is available for steer-by-wire. In [0021],
the patent describes that the driver-related measure eaimstance, be the steering torque
and the pattern detection in [0022] is described similarly.

2The moving IRQ had to be implemented in C++ (mex) as the iretlsorting is computationally expensive
with O(nlogn). An efficient online estimation of IQR and quantiles is prepo inA.8.
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Since the detection of the steering eve®ITSAEVNT was extensively investigated and focuses
on the same pattern &EADBAND, STWEVNT was used. Own findings show that some of
the here presented additional criteria show more robustioeseal-road drives.

4.4.3. Steering Events (STWEVENT)

As described in the Patent Gfalley et al (2006, the method to extract the featu8@ WEVNT
focuses on a steering inactivity phase and a subsequeringteetion. Therefore, the steer-
ing wheel velocity should not exceed a certain threshol@fminimum time and then exceed
a second threshold. The thresholds are adaptive to drivkdawving situations. Detected
events are weighted by their intensity and by a factor thaemses in monotonous situations
and a factor that is speed dependent with its maximum at 88.Kifle events are averaged
using anEWMA filter. As explained in Seel.1.3 various situations are detected to suppress
steering corrections due to short-term distraction. Ewtemfluences by cross-wind, road
warping, road bumps and curves are suppressed as well aalongrand sportive driving.

Driver-Adaptive Thresholds

STVmax ¢s max) is the maximum steering velocity between inflection po{ints zero cross-
ings) of the steering wheel velocifg while S A an is active. Parameter study yielded that
steering wheel anglés of steering events has to exceed 0.898 to neglect noise andke
sure that the steering amplitude is relevant and obseni@bthe driver. This is illustrated
in Fig. 4.17in which the inactive ) and activeds max (=) are averaged usinGwmaN as
described in Eq4.29that is only updated on events and hold otherwise. EhenaNis
initialized by STV50([0..4 = 10.5 /swith a window size ofNj,; = 5 that is increased by
one up toN = 110 for every steering. Figt.17further illustrates the estimation &TV25

20 4 STVmax )
18 ——  STVmax while Active
16 — STV25
_ - - - STV50
= 14 L STV75 )
<12 Al -
£ 10 e e repa———
o !
) i
6 —
A T L NN A1 | PO O [ 1 [
8300 8350 8400 8450 8500 Time [s]

Figure 4.17.:Estimation ofSTV50 as the mean afs max andSTV25 andSTV75 as the means of
the corrections slower and faster tHahv50.

and STV75 by Mean Splittingaccording to the calculation in E¢.31and Eq.4.31 with
STV75[0..§ = 7°/sandSTV75[0..5 = 13°/s. STV25 is the mean of the slow steering
corrections anéTV75 the mean for all fast steering corrections.

STV50 = EwmaNy (ds max) - (4.29)

The computation is only evaluated during steering wheelearayersals.
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STVTS — EwmaNN (dsmax) s max > STV50 (4.30)
hold otherwise

STV25 _ EWmaN N (5S,max) 6S'max S STVSO (431)
hold otherwise

This threshold estimation is motivated by th# dnd 39 quartiles of the steering velocities
that are, however, computationally too expensive. Usiegiv50 for the decision whether
the actual correction is faster or slower than the actualejaiakes the estimation very
sensitive to initialization and errors BTV50. Parameter optimization has shown that not
exactly the $and 3% quartiles are the best thresholds, but rather differertgmeiles. Further
repeated mean splitting would be necessary, which would#@se the sensitivity to errors
even more. For this reason, two weighting facteksr\ps andwsTys are introduced and
multiplied to both thresholds

Pevent: STV75 - WsTV7S - (433)

Fig. 4.18shows the distribution of thés max. The three vertical lines represent an approxi-
mation of the %, 29 and 39 quartiles.

L 1 ! STV max PDF
E 1 : ----- Estimate of 25% Percentile
o r 9 . === Mean as Estimate for Median
_? B L = = = Estimate of 75% Percentile
0.15 f‘i | B i 4 Inverse Gaussian PDF (p =8.73, A=47.12)
f; oy @ @ Lognormal PDF (p =2.08, 0=0.41)
0.1 -0 | q;:.
L | :I B
¢ i &
0.05} a o "'%
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VLT | oy,
0 L 000 g i e
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Figure 4.18.:Histogram over maximum steering velocities between infegboints.

The Probability Density FunctiofPDF)of 5s max fits best thdnverse GaussiaRDF.

A —A(x-p)?
IG(X,,L[,/l) = ﬁe 2u2x (434)

with u = 2.075 and shapg = 0.411 for the selected drive. The parameters are estimated
using theMaximum Likelihood Estimat@MLE). The asymmetric distribution explains why
the STVxx measures increase much quicker for fast steering cornacttmat are far above
the average than they decrease for slow steering velocitisely below the average. The
rare occurrence of fast steering corrections also causesht@STV75 are rarely updated,
especially if theSTV50 is high.
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Figure 4.19.:Criteria to detect steering events as@g(ley et al, 2006 lizuka and Obaral986).

Steering Event Detection Criteria

There are five criteria to detect the steering event pattieistriated in Fig4.19 The criteria

are implemented according to the PatenGaiiley et al.(2006 and similarly to the expired
Patent oflizuka and Obarg1986. The thresholds are also comparable to the Patent of
Reichert(2008 and the thesis oAltmuller (2007).

The five criteria are listed below. They are first combineddally (Galley et al, 2006
Claims 4,7,9) and finally improved by using fuzzy logic (Sé¢.4:

1. a minimum steering wheel angle has to be fulfibeghax > 1°/s

2. inactive (steady) steering pha&gmax < Pth,steady(?, Claim 15)

3. for at least the duratiofsteady> Psteadyr (?, Claims 6,14)

4. followed by the steering action 6§ max > Pthevent(?, Claims 14,16)
5. for the maximum duration OFeyent< Pevenst (?, Claim 14).

Peaks are further scaled according to their magnitude,tarfat how monotonous the situ-
ation is, and the vehicle speed. Peaks are saturated to mumnof 0.4 and a maximum of
3.0.

The featureSTWEVENTBL is baselined using the maximum within the first 14 minutes
active time:

STWEVENT
max STWEVENT, - SASanN)

STWEVENTBL = (4.35)

4.4.4. Steering Event Detection using Fuzzy Logic

As presented in the thesis BApe(2008), there are two reasons to usazzy Logido further
improve the previous detection:

e increase the robustness of the detector if one out of the fiteria is slightly not
fulfilled, but the remaining criteria are well satisfied.



—-03-—

e decrease the numerical error betwégad-pointandfloating-point arithmetics
(App. A.13.]) if the event detection criteria from Set4.3are fulfilled in fixed-point,
but not in floating-point and vice versa.

Fuzzy logic was a central goal of this thesis and the propoaedovements have increased
the recognition rate by several percent so that this alteratas first introduced to the series
ECU software of the 2009 E-Class. In practice, it means tlsat emall peaks are detected,
which improves the temporal resolution of tSEVWEVENT feature.

Theory of Fuzzy Logic

Fig. 4.20shows different threshold functions. The step functiofitrtiest) is equivalent to
the operator- in the classical logic which only has the output value 0 and 1.

0 0 0 0

Step function Linear threshold function Sigmoid of polyrials Sigmoidﬁf

Figure 4.20.:Different threshold functions.

Fig. 4.21and Fig.4.22illustrate the threshold functions used in this thesis ay o not
require a lookup table in fixed-point. Both threshold fuant can be described by a center

0 X< a-o
0.5 2 L(xac)={ X2 a-oc< x< a+to
X> a+o
(4.36)
0 o] o]
4 25 0 25 4

Figure 4.21.:Linear fuzzy logic threshold functiong = 0,0 = 2.5) (Pape(2008 page 10)).
pointa and a width 2-. Eqg. @.37) shows the polynomial threshold function from the class
of the sigmoid functions characterized by theghape.

As in classical logic, conjunctions are also defined in Fukzagic. A condition for the
negationis, for instance, holding:1 = 0 and-0 = 1. The simplest variant to fulfill this
condition in fuzzy logic is used here and defined by

~A=1-A. (4.38)

Theconjunctionin fuzzy logic that fulfills the classical definition can beagvated by

AAB=min(AB) or AAB=A-B (4.39)
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1
0 X< a—-o
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X—ato _

0> y S(xa0) = ( 20_) , a—oc< x< a
1-2(25t)" a< X< a+o
1 X> ato

: - - (4.37)

-4 -25 0 25 4

Figure 4.22.:Sigmoid polynomial fuzzy logic threshold functiom(= 0,0 = 2.5)
(Papeg(2008 page 11)).

while the simplest and here usdi$junctionis
AV B =max(A B). (4.40)

Application to STWEVENT Decision Criteria for Tolerance Increase

Using Fuzzy Logic, thdogical connectiveof the five criteria for the detection of steering
eventsSTWEVENT can be re-formulated from

PEAK = (Tsteady> I:)steadyT) A (A6s event> Peventstw) A

(Tevent< I:)eventT) A (5S,even1max > I:)evenIStv,max) (4.41)
to
PEAK = min( L( Tsteady PsteadyT, O steadyT )
L( A(Ss,evems I:)eventS tw O eveniStw ), ( 4 42)
1- L( Tevem IDeventT, T evenfT ), )
L( 5S,eventmax, I:)evenIS tw O eveniStymax ) .

The min()-function has shown the best results. Tald.shows the thresholds from Ed.41)
and the related fuzzy thresholds for E4.42).

Table 4.4.:Essential fields of a CAN message
Criterion | Threshold / Centera | Fuzzy width o

Tsteady 2.2s 5.0
ASs event 1.1° 0.4
Tevent 0.5s 0.4
5S,eventmax I:)event 0.01

Fuzzy Logic to Reduce Fixed-/Floating-point Errors

As illustrated in Fig.4.23 all signals suffer from precision loss in fixed-point anitétics.

This is a major problem when applying parameters and piiadite detection rate in online
fixed-point controller units. Controller in the vehicle rim fixed-point and need manual
laborious scaling of every signal and operation, whereagldpment and simulation are
easier in floating point. When decisions are made, for ingtdhe five criteria to detect a
steering events from the steering wheel angle and veldbigydifferences of the signals lead
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to missed detection of event in fixed point compared to thdeampntation in floating-point
or vice versa. The idea was to use fuzzy logic to soften thisides so that events are always
detected, but with slightly different amplitudes and, #i®f, to decrease errors.
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Figure 4.23.:Signal differences in median steering velocity from priecidoss in fixed-point scaling
arithmetics.

4.4.5. Steering Wheel Angle Area (Amp_D2_Theta)

Anp_D2_Thet a ("the amplitude duration squareit")3, is a time-based feature with a
weighting function to score variations. This feature is uledi as the area 6k and its mean
betweerzero crossingsnultiplied by the time for which the steering wheel angle tstbe
same side of its mean. This is another measure for the sgeeaiance that performed well
in (Berglund 2007 for simulator drives. EQq.4.43 shows the definition fromKing et al,
1999 and Fig.4.24illustrates the area@s‘jS and duration:t‘js between zero crossings.

J
Amp_D2_Theta = %) (A‘}t;?) (4.43)
=1
with
N ...number of samples in the window (scaling factor was negicte

J ...number of area blocks in the sliding windoMA or EWMA)
A} ...area of thej-th block undews - u(ds)
tf ...the duration of thg-th area block.

Optimization of the feature with the correlation coeffidigields a cut-off frequency

Ptcut stwAngleof fset= 2.79Hz for a 2'd order Butterworth low-pass filter for obtaining the
meands. The moving average of the la3t= 90 areas performs best fémp_D2 Thet a
andJ = 45sfor the EWMA of the event-rate featurnmpD2Thet aEwna.

4.4.6. Steering Wheel Angle and Velocity Phase (ELLIPSE)

According to King et al, 1999, there are three different ways to evaluate steering wheel
angleds and velocityds: time-based, frequency-based ithsebased, i.eds versuss.

3In (King et al, 1999 © is the name of the steering wheel angle, which explains tieenaf the feature
Anp_D2_Thet a. However, we usés, which is more common.
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Figure 4.24.:FeatureAnpD2Thet a: Area between steering wheel angle and its mean multiplied
by the duration for which the steering wheel angle is on thaesaide of the mean.
Removing the steering offset{) avoids the influence of curves and the vertical road
inclination.

TheELLI PSE feature King et al, 1999 Berglund 2007 is calculated as the offset-compen-
sated magnitude of steering wheel angle and velocity caitgithreshold ellipse during a
sliding window. Eq. 4.44) explains the calculation and is depicted in Fg5

5 5
S )24 s

2| > 1) (4.44)
Pés,radiusTh P{Ss,radiusTh

ELLI PSE = EWMA y( \/(

20 Awake (KSS<=5) Sleepy (KSS>=7)

15
10

0
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-20

-10 -5 0 5 10 -10 -5 0 5 10
Steering wheel angle J [°] Steering wheel angle J [°]

*Remark: points were sub-
sampled for better illustration

Steering wheel angle velocity SS [°/s]

Figure 4.25.:FeatureELL| PSE: Steering wheel anglés and velocityss versus their means outside
a threshold ellipse. Removing the meaWMA (6s) andEWMA (§s) is necessary to
compensate the influence of curves and the vertical road/decthe rainwater drain.

Optimization of this feature yields a cut-off frequerycut stwangleot tsee= 0.53Hzfor a 2d
order Butterworth low-pass filter for obtaining the stegroffset andPtcut stvangleot fset=
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0.1253Hz for 6. TheEWMA window size isN = 60s. The steering ratio, angle and velocity
are different for every vehicle, thus the optimal weightifagtors Ps ragiusth = 3° and
Pss radiusTh = 6°/ s are different than in literaturé<(ng et al, 1999.

4.4.7. Steering Inactivity (NRMHOLD)

NVRHOLDwas defined byWierwille and Ellsworth 1994 as the number of times for which
the steering wheel anglg is hold for longer than the threshold valBQ yrHoLpT = 400ms
According to Berglund 2007, the maximum threshold fdés| was set tPmaxLrw = 0.5°.
An EWMA filter with Peywmawinsize= Sminis applied after suppression of system inactivity
S ASan. Curves are removed similarly as ek LI PSE. Further, a second variant of the fea-
ture, based on the SG-differentiator filtered steeringaiglois implementedRVSTVHOLD
with the thresholPmay v = 6°/ s for |ds].

4.4.8. Small Steering Adjustments (MICROCORRECTIONS)

The idea oM CROCORRECT| ONS (discussed ifragerberg2004) is that an alert driver per-
manently makes small steering corrections to compensat®emental factors such as road
bumps and crosswinds. With increasing drowsiness, driveceme more sloppy and these
micro-corrections diminishRetit and Chaputl99Q Hartley, 1995. According toKircher

et al.(2002, the after-market device "Steering Attention MonitorA(8) monitors the pres-
ence of micro-steerings.

Extending this concept, the presence of many small micreections leads to low values
of this feature, whereas rare and larger corrections yigjtl feature values. The feature
extraction is updated for every steering wheel angle dorathange interval by:

M CROCORRECTI ONS =

EWMA (0) PstwrhMin < Adsevent< PsTwThMax
EWMA (1) SASan=1 . (4.45)
"hold" SASaN =0

For every interval, the magnitude between inflection poisitsalculated ad\ds evens Any-
time the steering amplitud®ds eventis betweerPs twrhmin = 0.8 andPstwrhmax = 2.5,

a microsteering is detected and 0 is fed into FWMA window with lengthN = 0.7min.
Otherwise, if the system is active but no microsteering ieded, the feature increases by
adding a 1 to th& WMA window. For an inactive system, the calculation is hold.

4.4.9. Fast Corrections (FASTCORRECT)

FASTCORRECT is a feature that is proposed here. It is focusing on a pattetrwas often

observed in night drives. The pattern is basically the sagie @aTVEVENT, however, focus-
ing more on single events and the steering correction plapecially taking into account
its rate intensity. A single strong event can indicate araaded fatigue level.
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Maximum Likelihood Parameter Estimation (MLE) of Steering Velocity PDF

The adaptive threshold calculation for steering eventdfiete in Sec4.4.3suffers from the
compound weakness thBtieadyandPeyventare raising within seconds for single fast events
while taking up to an hour to settle for slow steering coimetd. In this section, a superior,
model-based approach is proposed. In Get.3it was found that the STVmax distribution
can be described best by the Inverse GausBi2aRin Eq. @.34), which is defined by two
parameterg andA. Using theMLE in a floating window yields the estimated parameters
a[n] andA[n] of és max

Evaluating theCumulative Distribution Functio(CDF) of the Inverse Gaussia@DF (dy) =
Py, at the given poinPy, yields the new threshold for fast correctiofDF Geyentand the
baselind CDFIGsteady(both in[°/s]). TheCDF of the Inverse Gaussian is defined by

Viexrm | 1 [V

1
CDF(IG(Xu, 1)) = zerf|] ——— |+ zex erf , X>0. (4.46)
( - Vau
ThelnverseCDF (ICDF) is then computed for instance by evaluating a look-up table
ICDFIGsteady= ICDF (IG(Pin,steady)) (4.47)
ICDFIGevent= ICDF (IG(Pinevent) - (4.48)

Fig. 4.26shows a comparison betwebftean Splitting the here discussedoving ML PDF
fit andMoving Percentilesas proposed iA.8. It can be seen that the moving ML PDF fit and

450 Distribution-based estimation (— STVmax

401 raises and decreases fast! ICDFIGg g, py
z. 35 | — ICDFIGEVENT
o 3oL sTV75 But STV75 === = STV25-W1y»s
L0 kS f——- - decreases very;slowly | = = = =STV75-Wsryrs
Q‘z 5| Faises fast | g™ \ = = - Percentile30
= L J —-=Percentile95
2 201 1.1 y
%ﬁ 15p 3=l
=
£ 10 REEHII N ]
e mi
= UK

0

2200 2400 2600 2800 3000 3200 3400 3600 Time [s]
Figure 4.26.:Comparison betweemean splittingmoving ML PDF fittingandmoving percentiles

Moving Percentiles adapt faster to changed situations apéogally drop faster afterwards.
According to theMLE for the Inverse Gaussian parameters, the following prygdestds:

o ~ STV50 and, thus, the parameter estimationiotan be refined by thEWMA again.
Hence, this approach is also superior toMhaving Percentilesvith regards to computational
complexity. Further, this distribution model based applotakes every steering into account
while the percentiles leave 50% of the steerings out. Thipgnty makes the adaption of
moving ML PDF faster and much smoother. The PDF model apprisa@lso more accurate
as it accurately considers the driving style-related twapeetersneanandvariance rather
than just themeanin mean splitting.
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Feature Calculation using Fitted Sliding Window PDF as Adagive Thresholds

For peak detection, we use the moving threshd@BF |G sieagyand ICDF IGeyentobtained

by a sliding window of duratioN = 2.4min. The parameter for the steering correction
thresholdICDFIGeyentis set toPievent = 0.98 to detect outliers of fast steering correc-
tions that are above 98% of all regular steering reversalse Jarameter of the baseline
ICDFIGsteadyis found asPievent = 0.30 to represent the calm steering in the actual driv-
ing situation. The detected steering corrections are setlation to the steering baseline
ICDFIGsteadyin order to adapt to the current driving situation

saf’(ICDFIGsteady
hold SASan=0

FASTCORRECT =

EWMA\((M)PW) simax> ICDF Gevent 4 1o

The event rate including the peak intensity is averaged byal £EWMA window size of
N = 3min. Weighting the peak by the expond?, exp = % allows to non-linearly adjust the
influence of the peak intensity in comparison to its freqyenc

4.4.10. Degree of Driver-Vehicle Interaction (DEGOINT)

DEGO NT is originally defined as the degree of interaction betweévediand vehicle ac-
cording to the 2005 Patent by Eriksson and Bjorkman and k&g in Kanstrup 2006.
The idea behind this feature is that the vehicle motion ¢tajiy can be considered as a sys-
tem with low-pass characteristics which reacts to stearomgrol by the driver and to lateral
displacements by the road surface. Steering oscillatiattshigh frequency cannot be seen
in the vehicle trajectory. From steer-by-wire, it is knovimat the feedback from the road has
to be provided to the driver via an actuator to enable a respersteering control. High in-
teraction means quick and precise control that indicatgis diiiver vigilance and vice versa.
DEGO NT is a simpler method to measure control parameters of a drieelel discussed in
Sec.4.4.16 The original definition of Kanstrup 2006 is shown in Eq.4.50
, 1
DEGO NT |f s f o dtl) (4.50)

with f; as the surface under the steering wheel torque fgnohder the lateral acceleration
integrated over time. It has to be remarked that both arees diferent units and are not
motivated by an accurate physical model.

Since there was no steeribgrque sensor available in the series vehicles, a similar method
is proposed to obtaiDEGO NT based on the steering whemigleinstead. Therefore, the
measuredateral acceleration @ais compared to théateral accelerationa, calculated from
thesteering wheel anglé&_ using the single track model in Ed.8) in Ch.6.3 This way, the
steering and vehicle trajectory interaction can be medsimre physically accurate model.
The advantage of using the steering wheel torque, howevénat even when the steering
wheel angle is not changing, it can be measured how strongrther holds the steering
wheel against the feedback from the road.

a, andd, are smoothed by a2 order Butterworth low-pass filter with corner frequencies 1
and 2 Hz to compensate different sensor properties, reguittia, p andé&y, p. For synchro-
nization,ay,_p has to be delayed by = 280ms And in order to compensate the lateral road
inclination offset, the difference of
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Aay = ayLp—8y,Lp (4.51)

has to be highly low-pass filtered with &%rder Butterworth filter off, = 0.03Hz and then
subtracted from

ayLp = dyLp— AayLP - (4.52)

After the system inactivity suppression, the feature is thigtained by
DEGOI NT = EWMA\ (S AScan- (ayLp — &y1p)) (4.53)

with a window size olN = 50s. Fig.4.27illustrates the feature principle by the marked area.

1.0}-{ <=-- Lateral acceleration from single-track model h
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Figure 4.27.:Area representing the degree of interactibB@O NT) between driver and vehicle via
lateral acceleration from sensor and steering wheel anghe §ingle track model.

4.4.11. Reaction Time (REACTIM)

Reaction tests in various real-road and simulator studie Bhown that the reaction time
does not dramatically increase with fatigue, but the nunobstrongly delayed or even com-
plete missed reactions. For this reason, one approach ta fivay to estimate the driver’'s
reaction time. Equivalently, in a driving context, drive@nstantly have to react to compen-
sate small changes in road structure, gust of wind etc. Théollaws the active steering
of the driver after a short phase delay as reaction time. Tierdreacts to lateral vehicle
displacements in the same manner as the vehicle reacts doitke control. The drivers’ re-
action patterns need to be analyzed and compared. Thed&&HACTI Mis defined as the re-
action time of the steering wheel angle to lateral accetaragieaks as discussed iRgnstrup
2009. Fig.4.28shows how the reaction to lateral displacement is detected.

4.4.12. Steering Reaction Time to TLC Minimum (TLCREACTIM)

The featureTLCREACT| Mdescribes the reaction time 7@.C minima. The essential advan-
tage is that TLC minima occure more often than real lane alngs. For implementation
details, see the thesis dDfabg 2008.
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Figure 4.28.:FeatureREACTI M Steering reaction of driver to lateral displacements hyrenment.
4.4.13. High vs. Low Steering Velocities and Angles (WHAL, YAAL-Index)

According toBittner and Hang2000, the VHAL-Index is the ratio of high against low steer-
ing correction velocities and is assumed to diminish witthued vigilance Kircher et al,
2002. The feature is following the idea that fatigued drivers@e an easier driving strategy,
i.e. only compensate large lane deviations. £84explains the calculation

EWMA\ (SASan- FM)
VHAL =
ma)(0.00B,EW M Ay (S A&AN -S M))

(4.54)

with the EWMA window sizesN = 2min, FM as the number of fast movements &8l is
the number of slow movements. The threshold rangeS &te= 10(°/s)? < 5% <80(°/s)?
andMH = 80(°/s)? < 62 < 2000°/s)?.

WHAL is an altered version ofHAL, based on the amplitude of the steering wheadle
between two zero crossings. EWMA with window sike= 1min is used and only the
velocity and steering wheel angle criterion of 8\ an are used for suppression. The
threshold to distinguish small from large amplitude deisasés > 2°.

4.4.14. Yaw-Rate Jerk (YAWJERK)

While Desai and Haqué2006 are focusing on the spikiness indexf the jerk profile, the
idea of the proposed featuMAW ERK is to replace the extra-cost steering wheel sensor
by the available and sensitive yaw rate sensor (36c2. The extraction of the pattern is
basically the same as f®fARCRI T, but, with an exponent of jerk varian@ypshort = 1.3.

Comparison between Yaw-rate and Steering Wheel Angle

The finer steering wheel angle has a resolution of,Outhile the yaw rate has 0.005s,
which is 20 times lower. The signals can be compared sincerudéal conditions, a constant
yaw rate corresponds to a fixed steering wheel angle for agigkocity. Tab4.5shows the
standard deviation of the signal and noise for both signaftnd motorway drives. The
standard deviation of the steering wheel angle is four tiligher, which means that the
guantization of the yaw rate signal is five times finer. Howgsice the standard deviation

4They defined thepikiness indeas the local deviation of data from general trend, comparabiheEWVAR .
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of the signal-to-noise ratiocSNR) is about eight times better for the sensor of the steering
wheel angle, the latter is the slightly better signal.

Sensor | Resolution | O signal O noise T signal/ O noise | SNRyp
St.w. anglegs | 0.1° ~ 3.00 ~ 0.0 300 117db
Yaw rateys 0.005/s ~0.78/s ~0.02/s 37 79db
os 1y 20 4.05 0.5 8.1 38db

Table 4.5.:Signal qualities

Fig. 4.29 shows a comparison between the steering wheel angle vs.athand DISPO
smoothed yaw rate. Fig.30shows the derivatives of both signals.
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Figure 4.29.:Comparison between yaw rate and steering wheel angle. osithple comparison,
the yaw rate is fitted and shifted by 4.4/[n - 1.06s| + 0.87) at 120 km/h.
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Figure 4.30.:Comparison of yawlerk vs. steering wheel rate. This confirms that both signals are
roughly interchangeable when the speed is taken into atcdbe yaw jerk was fitted

at 120 km/h by 4.¢*- ([n - 0.5s +0.1%).

The yaw jerkysc measured by the sensor is very noisy, but also very sensitiege, we
can show only the signal from the DISPO differentiator using a polynomial order= 3
and filter tap size\ = 19. It can be seen that the signal remains noisier due to the fa
that the yaw rate sensor is connected to the vehicle bodyrarsdnore sensitive to external
influences and vehicle speed. Thus, especially bad roadtmmsdhave an impact on the
yaw rate signal, while the steering signal is less affectezltd the design of the steering unit.
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When further investigating the signal, many steering aivas that are clearly present in
the steering wheel rate, are not visible in the yaw jerk. &tather hand, some peaks in the
yaw jerk signal are not present in the steering pendant arsdl pnobably caused by external
influences. Thus, the signal of the steering wheel angle avitsolution of 0.1is better.

4.4.15. Spectral Steering Wheel Angle Analysis (STWZCR)

TheSTWZCRandSTWEL ZCRsimply measure theero-crossing-rat€ZCR) of the steering
wheel angle and velocity. It is a measure of how often a dié@nges his steering direction.
In a broader sense, tHECR can also be related to the frequencies in the steering signal
It provides several advantages over the Fourier-transésitine frequencies are very low. A
classification by different driving styles has also shovwat theSTWZCRIis very characteristic

for different drivers.

Looking at the frequencies of the signal of the steering Wwhegle using aSpectrogram
(Short-time Fast-Fourier TransforrfFFT) and Power-Spectrum-DensitPSD), as also dis-
cussed byAltmuller (see2007, Ch. 4.2.2), has not shown any useful results at all, which
confirms the negative results froKircher et al.(2002 Ch. 16) who used the Burg's and
MUSIC eigenvector methods. Various different parametegdréed and a practicable result
is obtained for the spectrogram Bt = 50Hz for a Hamming Windowsize of 64, small
overlap 2 and a 128-poiftFT. The ratio of the powers between different frequency ranges
were made but no useful results can be achieved as it is sholrig.i4.31 The steering fre-
guencies rather depend on the driving situation and indalidriving styles. A time-based
event detection appears more expedient since events varitghlarge sliding window.
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Figure 4.31.: Spectrogram of steering velocity

4.4.16. Driver Model Parameters

As discussed bfilutti and Ulsoy(1995 and othersAltmuller, 2007 Pilutti and Ulsoy 1999
Boyraz et al, 2007 Hermannstadter and Yang013ha), a promising approach is to reflect
on how an ideal lateral control system would adjust the dti@ne position in comparison
to a real awake or fatigued driveRilutti and Ulsoy(1995 use an auto-regressive model to
learn the driver parameters and to infer from the changimgmaters to fatigue.
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4.5. Parameter Optimization

There are over 320 parameters involved in the extractiomefdatures in this chapter and
171 parameters in thBATTENTION ASSIST series code that are relevant for the system per-
formance. The goal oparameter optimizations to find the parameter values for which
the features contribute the maximum amount of informatmideéentify the fatigue level of
drivers. More generally spoken, optimization pursues thieative to find the best set of
parameters for a system that minimize a giwest function The definition of a cost func-
tion that represents the system performance is the mosttegsand difficult task in the
present application. Physical parameters further hatgatesl boundary conditionshat can

be represented gminishment termm the cost function.

It is distinguished betweelocal or global optimization algorithms corresponding to their
ability weather to overcome local minima and find the globaimmum. Local algorithms
have the advantage to execute much faster by exploitingabe-gatured, "convex" property
of a system with only one local optimum. Thus, the algorithelestion mainly depends
on the cost function property of the system. Choosing gaiikl parameterscan severely
contribute to the performance and is either done empiyicalpart of the optimization.

This section will briefly summarize the application of paeder optimization to fatigue re-
lated feature extraction. For details refer to the thesi®@thim (2009.

4.5.1. Optimization of Parameters

The general optimization principle is shown in Fi§32 Choosing the new parameter set
determines the heuristic of the algorithm.

Load all

Check boundary

Initial values Parameters Feature

Start input data conditions and apply L Baselining
to memory punishment terms
(Up to 60GB RAM  New parameters A Boundary exceeded? Baselined feature
with tightest data types) A A 4

Choose
new

Calculate
cost
function

Stop condition Performance
reached?

parameters

[ J
End
Figure 4.32.:General block diagram of parameter optimization.

Not only the parameters, but also some implementation |dedaithe order of some signal
processing steps can be optimized automatically. Forrigstdat can be examed ifrmeanor
medianyields better results. Tunable parameters and procesangnts are for instance:

Thresholds, weighting factors, exponents, window sizes
Cut-off frequencies and tab-size of filters

Suppression times before and after events (e.g. turn iteditzver)
Baselining duration and method: max, mean and IQR

Moving average vsEWMA

Moving variance vs. moving percentiles \BWVAR

Low-pass and differentiation v&ISPOdifferentiator, etc.
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Run Level Charts: Due to limited resources, not all parameters could be apéich Some
parameters were identified to have no measurable influentieeoresult and thus could be
excluded. In afirst step, relevant parameters were ideshtifsingrun-level chartsas shown

in Fig. 4.33 Exemplarily, theEWMA window size is varied for the featuteANEAPPROX
for one single drive to identify its influenceEWMA parameters always have the effect to
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Figure 4.33.:Run-level chart that shows variation of one parameter foANEAPPROX to identify
its influence

flatten peaks as shown in the figure. Due to the low temporalutsn of theKSS, the
optimization favors larger window sizes. This, howevegugstionable since sleepiness was
observed to change faster than K®S.

Initial Values: Initial parameters were chosen empirically by this method were con-
firmed if they yielded good results for a few selected drives.

Cost Function: As cost function for the optimization of each feature, theerse of the
Spearman correlation coefficients (Sécl.l) and Fisher Linear Discriminant Metrid DA
(Sec.7.1.2 are used. The cost function is calculated as the differbet@een the feature
andKSSfatigue reference (see Chand3).

Boundary Conditions: As boundary conditions, negative times and frequencie® Ve
instance punished with high cost to prevent the optimipasilgorithm to chose such param-
eters. Furthermore, e.g. filter tab-sizes must be integabeus and thus were rounded.

4.5.2. Computational Complexity Reduction

Most optimization algorithms require many iterations andirrtime of maximally minutes
per iteration to converge within a practical time. Since $iraulation of ONEATTENTION
AssisTparameter set takes several hours for all valid drives, efferent algorithms would
take months to years. As the computation time was obvioaglyrtain limiting factor, several
measures were taken to speed up the processing:
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RAM instead of HDD: A major bottleneck is to load entire drives (including unessary
signals) sequentially from the hard drive during everyaitien. Read access from RAM is
about 70 times faster Thus, only the needed signals for one feature are load amchte
nated in RAM at once. 45GB to 80GB were necessary, dependirnefeatures, varied
parameters and dataset (ALDWvalidND or ALDWVvalid).

Precision-lossy data type compressionAs CAN-signals use 1 to 16 bit integers, using
64 bit double floating-point data types is another waste séueces. Thus, all signals are
compressed to the tightest data type with a maximum precleis of 1%.

Pre-computation and cachingResource consumption is often a trade-off between memory
and computation. The open-loop pre-processing operatb@AN-signals could be com-
puted in advance as they solely depend on the sensor si@reglending on the varied param-
eter, further derived signals could be cached if paramelidraot change or were calculated
before: e.g. the system active signals, external factadsespecially cross-wind detection.
The reset of every drive (for baselining) could be triggdvga drive-ID change.

Causalization: Online algorithms perform all real-time processing stegggigntially. Model-
based algorithms favor "causalized" software architestSimulink/TargetLink). Modern
arithmetic logic unit§ALU) (such as CPU, GPU and DSP) can process basic functiahmu
faster on vectors or matrices. However, this is only possiffline and if processing steps
do not depend on the closed loop output of a previous time step

Model-based porting to matrix operations: The completéATTENTION AssiSsTalgorithm
was ported bit-true from Simulink/TargetLink to MATLAB where processor-optimized
(MMX) matrix operation could be performed using LAPACK and.AS. Recursive algo-
rithms likeEWMA, EwmaN EWVAR , EWIQR etc. were implemented in MEX C++.

The total performance gain is on average factor 300-500stifagter in comparison to the
Simulink model. This speed up allowed to simulate a sma#égction of drives in seconds.
Optimization with up to six parameters became manageatsevy.

Only the most promising features and parameters could hega bptimized:LANEDEV,
VHAL, TLCIM N, ZI GZAGSBL, LANEAPPROXADAPT, YAW ERK and STEVENT. They
all depend on th&ATTENTION ASSISTpre-processing.

4.5.3. Application

The features described in this chapter were optimized iaraggtages:

Parameter Study. The ATTENTION AssISTseries algorithm was optimized independently
from the features, with the cost function based on the deteeind false alarm rate of fa-
tigue warnings. The detection rate is quantized due to tarete number of warnings, thus,
automatic parameter optimization is not possible here obtaining the 171 parameters, the
system understanding was part of the iteration loop, kndgdehat optimization algorithms
usually do not have. Iteratively, only five to ten parametdrene module were chosen in a
predefined grid and combination, similargad- andhierarchical searctwhile other parame-
ters were kept at the best known point. Still, the simulatistributed to several workstations
each with up to 16 cores required up to six weeks. The resudts #hen analyzed and the
understanding of parameters and effects lead to a refinectiggl of parameters.

Se.g. for DDR-3 1066 MHz, SATA 7.200 RPM, XEON server
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Empirical Parameter Selection Initial values were chosen empirically from physically
plausible values based on graphical assessment for a steaitien of drives (cf. Chr.2).

Automatic Local Optimization: While the previously described method ensured that the
algorithms perform as desired for every parameter set dietonderstanding of the system,
it is at the other hand very laborious and does not necegs$aud the global optimum. With
the fast implementation in Se¢.5.2 up to six parameters were varied. With this observation,
the Nelder-Mead simplex algorithras described ihagarias and Reed4996 was applied
and in fact further improved the feature performance.

Optimizing a combination of features In a second step, the best features were combined
by multiple regression resulting in a single fatigue meas#ior this measure, the Spearman
coefficients were again used as cost function.

Global Optimization: In the scope of the theseslafahim (2009 andOlabe(2008, global
optimization algorithms were implemented. The toolbox wasgering the optimization al-
gorithms: grid search, simplex, particle swarm, genetat @rolutionary algorithms, particle
swarm and simulated annealing. Due to the computationaptxity, only three features
could be investigated. For convex problems, they did notvsdmtditional benefit.

4.6. Conclusion

Features from literature, improvements thereof and neturfes were discussed. Many more
features (cf. AppA.9) have been studied, but did not show much potential. Therestil
more potential patterns that can be investigated. Difteegaproaches to optimize the in-
volved parameters and to overcome the computational cottypleere presented. The pa-
rameters described together with the features are the m#sarie of the optimization steps.

One problem was that the optimization sometimes convemedrtls implausible values or
very large window sized of over one hour. The later is mosbabty related to the fact that
fatigue and especially th€SS entries are changing very slowly. Some parameters had to
be set manually as the results of the optimization were iogiitde such as zero suppression
times. This can be explained by the observation, that there wot enough occurrences of
such events in the data to make a difference.

It would be better to optimize the combination of features,ifistance, by using the classifi-
cation error as cost function. However, this is not yet guesilue to the computation time.
Most of all, the major problem was that the optimization catyde as good as the cost
function in respect to the reference.
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Chapter 5.

External Factors and Driver Influences
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Figure 5.1.: External influences on the driving behavior that overlaggieess related patterns

The goal of feature extraction is to reduce the sensor irditiom to only depend on fatigue
and to be as independent as possible from other factorsattipe, driving performance fea-
tures also depend on environmental influences, drivewimhgal and situation based factors.
Fig. 5.1lillustrates the most important factors that affect theidgwstyle in real-road driving
situations Friedrichs and Yang2011). The simplest approach to cope with this problem
is to measure the influences and to provide the measures #ssifidr that is sophisticated
enough to automatically adapt to these conditions. Thigtigpnot discussed in literature
even though it is the key to transfer the results obtaineeuladboratory conditions to a real-
road application. The present chapter investigates timglseincing factors with the goal to
derive features from them and, if possible, already comgitem during the feature extrac-
tion.
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5.1. Methodology to Quantify and Incorporate
Non-Sleepiness-related Influences

In this thesis, new methods are presented to detect road humaffic density and cross-
wind. Specific test drives have been conducted at night §paly one isolated factor, while
keeping the others constant to identify the influence of glsifactor. When, for instance,
the factor vehicle speed was varied, it was assured thattkiee factors remained constant,
for instance, the driver condition, traffic density, ovkitey maneuvers, road curvature, road
bumps, vehicle parameters, cross-wind as well as pretguitand light conditions. The
detection methods have also been implemented in real-timesiuate the performance while
driving in different situations. In the offline analysis,etltorrelation between the varied
factors and features, extracted for this road section, walsiged. The driver’s daily mood
(e.g. economic or aggressive) is another factor, whichfiedit to classify and discussed in
Sec.5.4. The way that drivers hold the steering wheel (e.g. with artevo hands) also has a
significant influence on the steering behavior. Howeveritamiél sensors would be required
for its detection and, therefore, this factor is not congdenere. The results emphasize the
importance of considering driving influences in driver moring.

The goal of this work is to find a measure for most of the thirtesestors from Fig5.1 The
simplest factor is the vehicle velocity, which is alreadgresented by its speedometer signal.
However, measuring the curvature or road condition is neimaple. When we consider these
thirteen dimensions, it is obvious that it's impossible @card drives for every combination
of these factors. Thereby, we assume that superpositidieappe. factors overlay and the
combination can be approximated as linear. Fortunatetyptbbability of multiple factors
occuring at the same time is increasingly low. For instaiicis, not very probable that a
driver is driving on a construction-site that is curvy, dgrirain with cross-wind and road
bumps at the same time etc. In this example A& criteria for the system activity will set
the system to inactive anyway.

After finding these measures, the next step is to analyzedladianship of these factors
with the fatigue-related features. Usually and if possililés easier to compensate the raw
input signals rather than every feature individually. Giiave can, for instance, be removed
from the steering signal by a high-pass filter. The best budtrifficult way, however, is to
consider these influences during the extraction of evetyfea

5.1.1. Evaluation of Geo-position mapped Events and Sigral

Analysis of road bumps and the road surface would be a stfargfard task, if there was
a good reference to assess the quality of these signals. fipneagh to have a reference is
mapping road bumps to real world position where they occur.

Fig. 5.2 shows a method of how events of one or several drives can beeddp their
geo-coordinates on a map. This way, clusters of steeringctions and road bumps were
identified, that often occurred at the same place.

5.2. Influences from External Factors on the Driving Behavio

This section will explain the most relevant external fastoDetails of the detection are
provided and illustrations are given for important exaragaly.
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Figure 5.2.: Clustering of different events and assignment to geo-jposit
5.2.1. Influence of Distraction and Vehicle Operation

Usually, drivers accept distraction in situations whichytitonsider as safe enough to per-
form other tasks besides driving. Drivers can interrupirte@le-activities when a traffic
situation requires it. However, they cannot easily "swibti their sleepiness. The major
difference between fatigue and distraction is that fatigygermanently impairing the driving
style while distraction results in a strong and frequerdration between being very present
and accurately driving vs. being totally out of the loop farto several seconds when the
eyes are off the road. Thus, it is helpful to distinguish dsimess from acceptable short
term distraction (e.g. from vehicle operation) or longsetistraction such as phone calls or
discussions with the co-driver.

Distraction can consist of severiannels

visual the driver’s eyes are off the road, e.g. during looks to thedhénit or the outside
motoric the driver operates head-unit or adjusts the seat (not seggdooking there)
audio discussing or listening, which can also increase the cwegnitork-load
cognitive intensive thinking, e.g. calculation tasks increases tignitive work-load

Thework-loadresulting from these channels is limited to a certain extéitds means that

the driver can not look to two locations, listen to differanturces or touch different objects
at the same time. On the other hand, when a driver is busy yrigsomewhere, he can
additionally listen or talk at the same time, however withitations.

Also the operation of the levers close to the steering whetiemanual shifting can result
in steering errors. Distraction from vehicle control cardegected by the vehicle signals of
buttons and levers. Discussions on the phone can only betddiéf they are performed over
the hands-free head-unit. A measure for this kind of difsaavas already introduced using
CAN-signals. Other distractions cannot be measured djreet. To simplify matters, steer-
ing operations or lane exceedances during intensive shont-distractions were suppressed
from drowsiness detection.
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Several levers, such as the limiter or high beam levers haugpbe permanent states, but
only the instant of operating is of interest for these. Tfwee only the raising and falling
slopes of the signal have been considered.

5.2.2. Influences by Rain, Snow, Fog, Light Conditions and Tanels

It was observed that the driving behavior changes severgingl heavy rain or snow fall.
Usually, the steering becomes more hectic and the drivetdhasncentrate more. This
influence is refreshing at the beginning, but can become en@e exhausting after a while.
Rainfall and foggy weather usually require the driver tawsttown. As illustrated in Fig5.3,
rain can be detected well by the rain sensor and the levetigrosif the windshield wiper.
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Figure 5.3.: Lever position of the windshield wiper, Ilght sensor on tlmelte for rain, snow and
luminosity detection

It was observed that reduced vision due to dark light comatitialso affects the steering and

lane keeping performance for several persons even wheratkegwake.

These drivers need to concentrate more than during the daghwan be quite exhausting
after a while. The light level can again be measured well litiht sensor and light switch
(or automatic) as shown in Fi®.3 llluminated tunnels or other road sections provide a
certain degree afioveltyto the driver and usually improve the level of attention fatert
period. Tunnels can be detected well by looking for fast geanin the light sensor signal.
To simplifiy matters, sections with intensive rain, fog cosrare suppressed here and treated
as system inactivity.

5.2.3. Vehicle Speed Influence

The vehicle velocity has a big influence on the steering vidscand the necessary reaction
times to vehicle displacements. The time remaining to reaben heading towards the
lane markings at high speeds, is of course shorter than Verlepeeds. Thus, the vehicle
speed must be considered during the extraction of featMESsOCI TY is simply the vehicle
speed.
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Experiment for Data Acquisition

In order to evaluate the speed dependency, a number of avagsecorded where all factors
were held constant except for the vehicle speed. A 20 kmseoti a German autobahn was
driven multiple times by the same driver with a MercedesB8rClass at different speeds.
The speed was varied sequentially from 90, 110, 140 to 18@knihe drives took place
between 2 and 5 a.m. such that lane changes and interfereytedfic and trucks could be
kept at a minimum. With the low traffic, the speed could be ket constant without the
use of ACC. The drivers rested well for two days before theedrpent, so that they were
driving fully awake KSS< 5) at this nocturnal time. Furthermore, a specially traioegbilot
supervised the drives. The acceleration pedal, the tutinatat lever signal and the steering
wheel angle have been used to precisely detect the beginrahdfd¢he drive. Overtaking
maneuvers were suppressed in the same way.

Results of Speed Dependency Analysis

Steering velocities at 180km/h

Steering velocities at 90km/h

I I I
0 min 20 min 40 min Time [min]

Steering velocities’[s]
(e}

4

Figure 5.4.: Steering velocitieSTV50 for different vehicle speeds

After extracting the features for these drives as describé&zh. 4, some of the effects were
very clear to seeHriedrichs and Yang20100):

e The steering velocities increased almost proportionalthe vehicle speed. An exam-
ple of the steering velocities at different vehicle speeatsize seen in Fig.4.

e The steering amplitudes is also higher with increasingaoilo

e The number of overtaking meneuvers increased frgim& 90 km/h to over 84h at
180 km/h, even with low traffic.

e The maximum lane deviation amplitude remained approxilpdte same, only the
oscillation frequency increased.

e The variance of the accelerator pedal increased as more gagilired at higher speeds
to obtain the same acceleration.

e When driving with different speeds on the same road sectienfrequency of curva-
ture increases with higher velocity.

e Likewise, on similar road sections, the lateral acceleratbviously increased with
higher speeds.

Even when the amplitude of the lane deviation was quite emmsEig.5.5depicts the increas-
ing LANEDEYV feature with increasing speed, which is caused by the istrgdrequency and
since the moving average is based on a fixed time-window.
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Figure 5.5.: Lane deviation. ANEDEV for different vehicle speeds (80km/h, 110km/h and 140km/h)

Fig. 5.6 shows the steering event re8@\EVENT that is significantly larger for high speeds
(red) than for low speeds (green). The simplest approacbrtgpensate this influence is to
normalize the feature by the vehicle speed as shown in the rig
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Figure 5.6.: Vehicle speed dependency of the steering eventSTWEVENT (left) and the feature
normalized by the vehicle speed (right). The horizontakbine indicates that the nor-
malized feature is in average independent of the vehicledspe

5.2.4. Influence by Construction Sites and Narrow Lanes

Road construction sites are usually characterized by mamew lanes and, thus, accompa-
nied by more hectic steering. Lane exceedances are oftewnidahle. Even when the speed
limit is reasonably low, people in many countries tend to@faster than allowed. For this

reason, the following combination of criteria was used ttedieconstruction site passages:

Narrow roads: lane widtk thresholdPcgnsts iteLnwih

Vehicle speeck 85km/h

Bad lane quality signal from the lane tracking unit

Specific lane colors (In Germany, yellow lane markings iatkaconstruction sites)

Construction sites were not implemented as an individwatlfe, but were part of the system
active signalS A an andS AS ang, depending on the available signals. For the evaluation,
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the same drives were used as for road bumps explained onldageThe classification
of road construction sites was performed for all availabiges and then projected to the
coordinates, where they occurred. The match of drives ierawight experiments was,
in average, very good (over 90%) and it could clearly be verified that one construction
site was terminated from one day to the next. To simplify erattconstruction sites were
suppressed and treated as system inactivity.

5.2.5. Influence of Curvature

In order to evaluate the influence of the road curvatureedrfvom a straight (curvature ra-
diusr = 4 182m), medium ¢ = 2008n) and strongly curved road & 822m) section were
selected. 27 drives were taken from a night experiment withweerage speed of 130 km/h.
All drives were conducted at night with awake driveékSS < 5). In general, it was observed
that the transition from a straight road to a curve is oftéiofeed by steering adjustments that
are more intensive than necessary. Big.shows how the lateral lane deviation increases for
all drivers with increasing curvature. The correlationvizn the lateral lane deviation and
the curvature appears stronger than the correlation batthedane deviation and drowsiness.
This means that the external factors are stronger than tigeidarelated patterns.

£0.0¢ et

g O0 —

- .1 T

T
0.08---<- - BERRAN 4 -ug--: i o

0.020.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Lane Deviation (LANEDEV) [m]

Figure 5.7.: Curvature dependency of the lane deviatigkNEDEV

Fig. 5.8shows how the fast steering velocities (significantly) éased with raising curvature.
Since the steering velocities are very driver dependeny; were baselined by the mean of
the steering velocities of straight road sections for easledThe vertical line indicates the

mean in each class. The measureGoRVATURE is calculated by

CURVATURE = EW M A\ ([kpl) (5.1)

with « p as the low-pass filtered curvature from Bglin Ch.6.3and a EWMA window size
of N = 1min.

5.2.6. Road Condition Influences

The road condition is another severe influence on the drp@rfprmance and comprises the
three following aspects:

Pavement Condition irregularities of the road surface lead to permanent urme&n
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Figure 5.8.: Curvature dependency of the maximum steering velocity eetwinflection points. Es-
pecially the fast steering corrections increase.

Road Bumps short and stronger road bumps that usually affect both wsheel

Road warping and Cross-Wind occur when the road changes its lateral inclination caus-
ing the vehicle to roll around the longitudinal ax{Sross-windhas the same effect as
road warping. For the available sensors, it cannot be disished, whether the lateral
displacement is caused by an uneven road surface or a wihd gus

Road Pavement Condition

Usually, the vehicle slides calmer on a new pavement thannooldy very damaged road
surface. These irregularities are normally not immedyateblized by the driver, but still
result in small lateral displacements of the vehicle which driver has to correct after a
while. Estimating a measure for the road condition can be digndetecting a simultaneous
vibration in different sensors. As the sensors are mechlyiconnected road unevenness
and shocks can be observed by the following sensors:

Wheel rotation sensor

Longitudinal and lateral acceleration sensor
Yaw rate sensor

Vehicle level signals from every whéel

A combination of all sensors would make the detection evereraocurate, but is not neces-
sary. The principle proposed here for the wheel rotatiors@eoan also be applied to other
sensors, however with different parameters:

PAVENENT = EWV AR (WhIRPM: 1p) - EWVAR(WhIRPMgpp)  (5.2)

WhIRPM: yp andWhIRPMer wp are the high-pass filtered wheel rotation rate sensor sig-
nals with the cut-off frequencyl; = 0.5Hz evaluated in arEWVAR window of length

N = 1min. The variance of all sensors can then be combined by mughipdin to favor

a simultaneous vibration. After tHEWVAR calculation, the signals do not necessarily need
to be synchronous. This makes it less sensible to othertimarsasuch as the engine rotation.

Ivehicle level signals were available, if the vehicle wasipped with air suspension or active body control.
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The vehicle speed should also have an influence on all sertdorgever, it was not investi-
gated due to the lack of suitable measurements. Imbalaft¢essointroduce a frequency of
the wheel RPM and were filtered out by a notch filter with spadaptive frequency.

Fig. 5.9 shows an overlay of the road surface condition sigRAYEMENT for a selection
of drives on the A81 motorway over the driven distance frono@mon starting point. It is
very clear to see, that all vehicles detect the road comditi@a similar way.
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Figure 5.9.: Road surface condition meastPAVEMENT over driven distance from a common start-
ing point for drives on the same motorway

Road Bumps

The signals used to detect road bumps are the same as forathpawement detection. The
wheel rotation sensors have again shown the most seleetwdts, as they are closest to the
road. Inertial sensors also work well, but are strongly sstpd from the road by the vehicle
suspension that is designed to filter out road irregulatitRoad bump detection from noisy
signals becomes much more selective, when the front andettrenheel sensor detect the
road bump at the same location. PiglOdepicts how the motion of the vehicle can be used
to assign the signals to the ground. The time difference éatvihe front and rear wheel is
determined by the wheelbakand the vehicle speedn]:

r(n) = ﬁ (5.3)

For synchronization, a FIR filter is used that has an adapfisse delay[n] depending on
the current vehicle speed. E§.4 shows an FIR filter with adaptive coefficieragn| that
depend on the wheelbakand the vehicle speedn| in [T]. x[n] are the front wheel RPM
signalsWhIRP M| 4 r.

y[n] = aox[n] +aix[n—1] + ... + &k XN — [TmaxFs]] (5.4)

The filter has a higher delay for low vehicle speeds by settihgoefficientsa to zero
except the one corresponding to the vehicle speed. rffrvalues that are between two
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Figure 5.10.:Mapping the vehicle rotation signals to a position on thelrdaroad bump is detected
if the duration between the observed peak in the front andgaematches the vehicle
speed and wheel base.

fixed delay elements, linear interpolation is performed §img modulo operation (Euclidean
division):
mod(,1), for i = [7Fs]
a =1{ 1-mod(t,1), fori=|7Fs] . (5.5)
0, otherwise

All & and unit delayx(n - i] outside the speed interval 80-200 km/h can be removed, such
that onlyx[n — J:—:] to x[n— ﬁ] remain. In real-time implementation, it will savgax— 2
unit delays, if onry the detected peak value is hold in one delay and a counter fdr=
7[v] assuming that only one peak is detected at a time. The feRDABUMPS? is then

calculated by

ROADBUVPS2 = ( FIRyy (EWVAR(WhIRPM:-( 1ip) - EWVAR(WhIRPM-ip))
(5.6)
EWVAR((WhIRPM:( p) - EWV AR (WhIRPM:gp)) > P

All wheel rotation signals are pre-processed equally aBAMEMENT, however with a much
smallerEWMA window size ofN = 10samples Both front wheel rotation signals are
delayed and multiplied with the variance of the rear sensarhresholdPy, = 8 is used to
detect a road bump.

Fig. 5.11shows a histogram of the delay between steering correctiodsll road bumps at
t = 0. This proves that road bumps indeed have an influence omitlregdbehavior since the

distribution in the surrounding of road bumps would be umifatherwise. The time delay
obtained from this histogram was used for the suppressisoaof bumps during extraction.

Road Warping and Cross-wind

The CROSSW ND feature detects cross-wind and road warping. It also meadhe cross-
wind and road-warping intensity from the measured and tatled lateral acceleration. There-
fore, the measured lateral accelerat#®iis compared to the lateral acceleratigycalculated
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Figure 5.11.:Delay between steering corrections (STWEVENT) and roaddsfROADBUMP?2).

from the steering wheel angle using the single track modat. Hasic principle behind it is to
detect whether the vehicle moves first laterally and therdtiver corrects the displacement
or whether the driver first steers and the vehicle follows.

The parameter calibration must be done for every vehiclwithaally by driving with steer-
ing steps on the driving dynamics surfaces of a proving gideh Sec2).

5.3. Influences from Drowsiness Supporting Situations

It is much better to detect fatigue frooausalfeatures that are directly related to the driver
state than from a situation where the driver is probable tarogvsy. However, the best
performance is achieved in practice, when all availablgriori information are taken into
account. Known a-priori factors that increase the proligiof reduced alertness are

Driving time "Time-on-Task'(TOT),

Monotonyandvehicle spee@VONOTONYSPD),

Circadian rhythm(Cl RCADI AN),

Traffic density TRFCDENS) and

Light conditions(L1 GHT).

5.3.1. Driving Duration (Time-on-Task)

As already mentioned in Ch.2.3and shown in Figl.5, the driving performance diminishes
with increasing driving duration. Fi@.2has already illustrated that fatigue increases by two
KSS levels after 5 hours of driving. This is again confirmeéig. 5.12that shows the KSS
distribution over daytime and over driving duration for bataSet ALDWVvalid (AppA.2).
The featurel OT simply contains the driving duration.

5.3.2. Monotony and Vehicle Speed

According toThiffault and Bergeror§2003, sources of fatigue can ldogenousr exoge-
nousfactors depending on whether they belong to the initialairisondition or to driving
characteristics. They have shown in a simulator study tlmatatonous situations are exoge-
nous factors that can impair drivers in a way that they areersasceptible to passive fatigue
symptoms. Oron-Gilad et al(2007 state that drive characteristics like monotonous roads
(inherent boredom) can be a cause of fatigue. Monotonowggror "highway hypnosis”
are situations with a lack of novelty and external stimuditthre often paired with constant
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Figure 5.12.:Distribution of KSS over daytime and driving duration fohallid drives. The abscissa
shows the starting point of the drive and are not wrappeddero display entire drives
without cut.

speed as well as empty and long, straight ro&tgschne(2011, 3.3) summarizes that also
darkness, monotonous environments, constant noise kwelso or a sleeping co-passenger
can make the driver more vulnerable to fatigue. From the maxats in Sec5.2.3 it can

be concluded that low vehicle speeds also favor sleepirediseaaccident risk is reduced,
slower reaction is sufficient and the adrenalin level sinks.

The featureMONOTONYSPD increases for calm driving. It is weighted with a vehicle exppe
factor that is at maximum at 80 km/h.

5.3.3. Traffic Density

Traffic density is an exogenous factor that supports fatigdeced by monotony. Itis another
practical way to detect monotonous situations. It was ofeskthat the lower the activation,
the higher the probability of becoming sleepy. The presefother vehicles in the proximity
leads to more frequent acceleration, braking, steeringoaadaking.

TRFCDENS measures the traffic density using the accelerometer, nidiodtor and gas/brak-
ing pedal according to the following criteria within theti&minutes EWMA):

Rate of turn indicator lever use

 Magnitude of longitudinal acceleration0.43

e Variance of the gas and brake pedal

¢ If available: lane changes from the lane tracker

Furthermore, the radar information could be taken into aoto However, a radar sensor
is not a standard equipment in today’s vehicles and was tbuamalyzed. In comparison,
the driver activityDRACTI VI TY measures how dynamic or sporty the drive is by using the
lateral acceleration.

5.3.4. Circadian Rhythm and Light

According to numerous publication&ifipling and Wang 1994 Horne and Reynerl995
Lenne et al.1998 Mara, 1999, the crash probability is at maximum after midnight betwee
3 and 6 a.m., which is mostly caused by the endogewoaadian rhythm(lat.: circa dies=
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about one day). The circadian rhythm also produces an akstdip in the early afternoon
around 2 and 4:00 pm, during which people are sleepilem, 1991). This is supported by
the crash statistic in Figp.13and5.14
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Figure 5.13.:Sleepiness tendency by daytime (SourZeilley, 1995

Daylight is the pacemaker of the internal biological clogkchronized to day and nighZ (I-
ley, 2006 through the production of the hormoneelatonin Light exposure to the retina in
the eyes regulates the suppression of melatddingess et al.2002 Greschner2011). Af-
ter several days, the sleep-wake cycle is intrinsic andtiaigle rather than voluntaryMara,
1999.

Fig. 5.14 shows that young drivers, especially males (cf. CR.3, are particularly endan-
gered at night, while the crash probability shifts to theafbon with increasing age. Thus,
age and gender could further be considered to improve tigriéatietection as soon as such
driver details are available in vehicles.
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Figure 5.14.:Time of occurrence of crash for commercial drivers with elifint ages, published by
theNHTSA for the years 1990 to 1992. (Sourcktara 1999 Fig. 3)
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Knipling and Wang(1994) found out that the driving duration (Time-on-task) and tdag
correlate with fatigue and could be used for its detectiorotited by these findings, the
Cl RCADI ANfeature is defined as in Fi§.15

Weighting [

0:00 5:00  10:00  15:00 20:00 24:00
Time-of-day [hh:mm]
Figure 5.15.:CI RCADI ANweighting factor of daytime.

Fig. 5.12 shows the distribution dKSSentries for the DataSe&8LDWvalid This also con-
firms the a-priori daytime and driving duration influencetie tecorded data.

Instead of using the circadian rhythm, the light sensorgeer$ in a similar way in Figs.16

It was clearly observed that the low or bad vision conditians more straining and impair
the driving style significantly. Drivers subjectively feelore awake while driving during
daylight. The advantage &fi GHT is that it is more adaptive to the actual vision conditions
whereas the&i r cadi an does not change from day to day. The light sensor is used in the
ESPto detect a wrong clock settings resulting in a false Cirgadactor. Circadian is a
rather endogenous factor while the light conditions aregerous and thus more adaptive to

the driving situation.
Feature: CIRCADIAN (ID: 45)

2 3 4 5 6 7 KSS[ T 2 3 4 5 6 7 KSSL|

Figure 5.16.:LI GHT sensor to measure illumination as alternative @mRCADI AN. The Error-
bars (cf. Ch7.2.2 of all drivers individually (colored) and their combinatti (red) are
shown.

Fig. 7.13in Ch. 7.5 shows the strong influence of driving duration and circadiea ROG
curve. These two a-priori features (as wellldsGHT) have the strongest contribution to
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the classification result which is not desired as they areseositive to the individual driver
state.

5.4. Influences from Inter-individual Driving Styles

Theinter-individual driving style is another major topic with significant impact the detec-
tion of fatigue-related patterns. Different drivers priihadiffer in their steering and lane
keeping behaviors, but also numerous other dimensionsldaance distance to surround-
ing vehicle, speed limit exceedances, blinkind behavior eig.5.17shows the large variety
of the maximum steering velocities (STVmax) for the Data8ebWvalid Both degrees of
freedom of thdnverse GaussiaDF (cf. Sec.4.4.3 are necessary to adapt to the different
drivers.

...........

2 4 6 8 10 12 14 16 STV max [°s]
Figure 5.17.:PDF of STVmax while the system is active and drivers are aveslee drives marked
by drivelD from DataSeALDWvalid

There are alsintra-individual differences, i.e. a driver changes his driving style depend
on time pressure, mood or with increasing driving expegenithese effects mostly change
slowly and since drivers cannot yet be identified after emgastarts, the driver has to be
considered as unknown.

There are several approaches to overcome these varialitiesmost common approach is
baselining i.e. normalization to a period of normal driving at the legng of a drive. A
second way is thadaption of thresholdo the driver such that different patterns occur with
the same frequency. In most cases, this is helpful but néitmuft to solve the problem.

A third, new approach proposed in the following section isdzhon the hypothesis that there
aredriver groupsthat can be adapted. For instance, it was observed that dherdrivers
who almost never make fast steering corrections. J:i8compares the 2D histogram of the
efficient percentile calculatioof maximum steering velocities (cf. App.8) of a driver with
virtually no high frequencies and of an average driver. Hfiiect was observed to be repro-
ducible over several hundred drives, over several yearsvghdut notable exception. At the
other hand, the low level of steering control reciprocaéiflected in sloppy lane keeping.

Another group of drivers had bad vision at night. They wersepbed to make more hectic
steering corrections. While the eyesight can sometimespeoved by changing glasses, the
vision at night can usually not be improved. This hypothésisivestigated in more details
in the thesis of5artner(2009.
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Figure 5.18.:2D histogram (heatmap) of the efficient percentile caldoabf maximum steering
velocities for two mostly awake drivers. The left with martgexing corrections, the
right without any high frequency components.

The DataSetalidTopDriversdesigned for this study including only the top 15 driverdhwiit
fatigue was described in CA.2.

In the first step, single drivers where classified. Thengdéfit driving styles were grouped
by unsupervised clustering with themeansalgorithm. In the last step, the driving style
groups were classified in order to use different featuredeatify their fatigue level.

5.4.1. Normalization by Baselining

Baseliningis a common, powerful method for the normalization and a@dapbdf human
processes. There are several possibilities for its imphéatien. A certain time frame at the
beginning of a drive (e.g. the first 15 minutes) is considevbén the system is active and
the driving conditions are normal. Different statisticatasures can then be calculated for
this baseline period:

e Mean or median
e Maximum, 90% percentile or final value of the baseline period
e Variance or IQR

Themaximunhas shown the best performance, followed by the final valdleedbaseline pe-
riod. The feature is then normalized by division througis thaseline value. THézero-mean
unit-variance™ normalizationalso calledz-transforn) in this context was more suitable for
some features and is most commonly used in psychdBmgynleitne(20129). It further takes
the variance of the baseline period into account and is lzdknlifor a feature by:

Fraw — /J(Tlsmin)
0'<7:15min)

Since all features need some time to initialize, the first tonfive minutes are omitted, de-
pending on the features and especially their averagingawiridngth.

FeL = (5.7)

Baselining also has two major drawbacks. First, it is bagethe assumption that the driver
is relatively alert at the beginning of a drive, which is netassarily the case and second, the
ability of the system to detect fatigue is delayed during tharning phase.
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Every feature in Tabt.2that is marked by is baselined. Parameter-optimization has shown
the best results when using theaximum The optimization tends to favor window size of
up to 40 minutes because tK&Sreference also changes so slowly. Thus, not more than 20
minutes active time were used to preserve high feature digsaamd because the baseline
period otherwise takes much too long for low system activel&S AS..

5.4.2. Driver-specific Features

While some of the features in Chare suitable for driver group classification, also addaion
features were used that were not suitable for fatigue detecThe following features were
investigated for the classification of driver groups:

e Ratio of lane changes with and without turn indicator USEIRNI NDM SS: ratio
averaged by thEwmaNof the last 10 lane changes)

e Lateral lane change velocity (LNCHGVEL: EwmaNof the last 10 lane changes)

e Duration between turn indicator use and lane chaid@#RNl NDADVANCE: duration
differences between lever operation and lane change iWEloseconds, averaged by
the EwmaNof the last 10 lane changes)

e Duration of turn indicator useT(URNI NDDUR EwmaNof the last 10 lane changes)

e Lateral lane deviation and meabANEDEV: as described in Ch.3.2 LATMEAN is
the average lateral driver offset as described in428.J)

e Maximum steering velocities (regular feature from @tand Fig.5.18

e Maximum longitudinal and lateral acceleration at specifieexis and curvature8CC75
regular features from Ci4)

e Rate of ALDW warnings (regular features from Gh.

5.4.3. Driver Group Clustering and Classification

Fig. 5.19 shows the classification of twelve drivers by their drivirtgles. Details can be
found in the thesis ofGartner 2009.

Detected Class (Driver-ID)
5 2p 5‘9 1:"53 1?2 1§5 34}0 4$4 697 6Q9 6!1 7$3

5 0 002 0 0 [0.03| 0 0.09 0 00 0 1

20 0.2 0 [0.02/0.01| 0 0 1005/ 0 00 0 1
~ 59F0 | 0 [0:62 0 |024]0.04/0.03] 0 0 10.02| 0 |0.051
E. 133(0.14/0.01| 0.1 [0.38/0.01| 0.1 | 0.2 |0.04/0.01| 0 |0.02| O
_E 1520.08 | 0.06 |0.370.03|0.11 {0.28 | 0.01| 0 0 0 10.01]0.051
é165 F0.05/ 03 | 0 0 (023, 0 |01 O 0 03| 0 |0.021
2340*0.01 0 [0.06/0.62| 0 0.16/0.05| 0 0 01| 0 0 1
O 484[0.14|0.03 | 0.05|0.01[0.010.02| 0 0 010 0 1
5607* 010 0 0 10.01/0.02 0.02’-0.01 0.08|0.134
= 609F 0 | 0 |0.02/0.01| 0 |0.08| 0.1 |0.05|0.030.530.08/0.111
611 0 | 0 0 0 010 0 0 1005/ 0 0 1
830 10 0 0 010 0 10241027 0.18H0.32

Figure 5.19.:Confusion matrix for drivers usinGMM classifier (Courtesy ofsartner 2009

Drivers that were often mixed up during classification (adristance driver-ID 133 and 340)
could be combined to one group. Fi§20shows the classification result for the features
STV25, STV50, STV75, LATMEAN, LANEDEV, LNI QRandACC75 and a reduced number
of driving style groups:
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e A: Very calm steering, sloppy lane keeping (Driver-IDs 5, 284)
e B: Calm steering and lane keeping, sportive acceleratidré(9, 783)
e C: Calm steering, lane keeping and acceleration (ID 59, 183, 165, 340, 607)
e D: Hectic steering, precise lane keeping (ID 611)
Detected Class (Group)
A B C

= Al 0 0.17

5% B[ 0.06 0.16 0.03

é Cr 0.09 0.23 0.65 0.04

= D 0 0 0

Figure 5.20.:Confusion matrix using@ayesclassifier and four driving style groups (Courtesy of:
Gartner 2009

The results show that classification of at least two main ggaoaf driving style is quite fea-
sible. As the example in Fig.18shows, the fatigue level of hectic drivers can be detected
better by their steering behavior, while the other grougphaitalm steering style has a more
sloppy lane keeping. Thus, for the different groups, it isenappropriate to use different
features for the classification of their fatigue level. ledhy, the more appropriate method-
ology would be to train the classifier in a single step. Howgtgs did not work due to the
larger amount of involved features that require more trgjrdata than there were available
here (see CI8.4).

5.5. Conclusion

In this chapter, it was shown that there are at least theedrirexternal factors from Fi§.1
that have a strong impact on the driving behavior. The facipe in many situations more
dominant than the sleepiness patterns. Further, the &-faadors daytime, driving duration,
monotony, novelty and light have the largest effect. Mostheim can easily be measured,
however are not directly sensitive to the driver state. @&rimonitoring does not work under
real-road conditions without taking external factors iatzount.

For the most important factors, specific drives were reabedel evaluated, i.e. vehicle speed
and curvature. For the factors road condition, light, raid driving style, appropriate drives
were filtered from the database. In order to consequentlyafirelevant parameters for their
precise compensation, a matrix of hundreds of specific siiu@uld be necessary for varying
only one external factor at a time while keeping all othetdes constant.

For most external factors, methods were proposed to incatg@ahem. Ideally, for impor-
tant features, the normalization was already part of theeitieaction. The system active
signals suppress events resulting from external factorgecific features were designed
for the purpose of explicitly identifying external factaach asPAVEMENT, CURVATURE,
ROADBUMPS2, CROSSW ND and the a-priori factor§OT, CI RCADI AN, MONOTONYSPD,
TRFCDENS andL| GHT. For the fusion of features on the classifier level, theswifeavere
provided for classification and feature selection in &h.

Baselining was presented as the predominant method to ecmafeeindividual driving styles
during the extraction of features. A driving style classifion has shown that different groups
of drivers can be identified for a two-stage classification.
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Chapter 6.

Approximation of Lane-based Features from
Inertial Sensors

The major drawback of the utilization of lane data basedufesatfrom Sec4.3is that the
ALDW camera is only available as special equipment and, thugetinio the vehicles that
have it installed. Furthermore, the lane data signals dem @fffected by missing road mark-
ings, bad sight etc. In comparison, inertial sensors arelata equipment and available for
all vehicles.

Some lane-based features suchLANEDEYV or ZI GZAGS do not require thebsolutedis-
tance to the lane markings, but only depend on the laterahtiew within the lane. The
idea of this chapter is to use odometric vehicle data onlyv(yate, steering wheel angle
and vehicle speed) to approximate the classical lane-bi@s¢dres without the need of a
lane-tracking camera.

The basic assumption behind this approach is that the ecwevaf the road can be estimated
from the odometric data. As described i@ldyton 2006, there is a minimum curvature
radius for every speed limit. For instance, the minimum ature radius at 120km/h is 750
meters. Thus, when speed limits are obeyed and if the velimléd ideally follow the lane
center, the road curvature never exceeds this low frequigmdly The vehicle trajectory is
thus a combination of the road curvature and the lane kedythgeen lane markings. Thus,
the deviation within the lane contains much higher freqiesnthan the road curvature and
can be extracted by a high-pass filter. To estimate the \eetr@jectory, an extended Kalman
filter and a vehicle motion model are applied to the availaelesors.

Since fatigue changes slowly, its detection may be delayedpbto several minutes, so
signals can be analyzed retrospectively. A second hypetigethat the lateral mean of the
lane keeping does not vary too much for one drive, so thattikelate lateral position can be
assumed to be constant. In this case, also the time-toela@ssing and lane approximation
features likeTLC1M Nor LANEAPPROXADAPT can be approximated.

In addition to yaw rate and vehicle speed, the vehicle’s G&ipn is also included in an
extended Kalman filter model in order to create a referencevaéduate the system perfor-
mance.

Using odometricCAN data such as yaw rate, steering wheel angle, and wheebiotathly
improves the knowledge about the absolute position of theclee Many other aspects in re-
gards to drowsiness detection profit from this improved elehposition. Short lane-tracking
gaps can be filled and road-condition analysis benefits flesimproved spatial resolution.
The correlation between features based on lane data andetdioiiata as well as their rela-
tionship with sleepiness will be compared.
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6.1. Literature review

There are many approaches for vehicle tracking with ineviicle data. Hasberg and
Hensel(2009 uses splines and a Kalman filter for online estimation ohtiacks.Buehren
(2008 investigates the tracking of vehicle target lists by radfsieiss(2011) uses a Kalman
filter to match radar, lidar and map data for highly accurgie-eehicle position estimation.
Miksch (2010 andGuan(2008 use a vehicle motion model to estimate the ego-motion for
motion compensation of camera data.

Forsman and Vilag2012 uses a transfer function of steering wheel angle motivated
cardiovascular regulation analysis Baul and Bergerl991) to approximate the lateral lane
position. They test their approach with a simulator studghwiventy-nine subjects. Using
a transfer function on the steering wheel angle is less ateim comparison to additionally
using inertial sensors and vehicle tracking with a KalmaarfiLundquist and Sch6(2010
uses the single-track model and a Kalman filter for road géiyra@d curvature estimation of
the ego-vehicle. However, no literature was found thatyaeal the estimation of lane-based
features from inertial vehicle data.

6.2. Sensor Signals and Synchronization

The yaw rate sensor has a high resolution of 00G5and a sampling frequency & =
1/T ~ 50Hz. The GPS signals are available with a sampling ratesof 1Hz and not
always valid. Every second, when new GPS data is availalfglman iteration is called
to update the position according to the GPS data. This wayK#iman filter takes over the
weighting between inertial data and GPS data.

Tab. 6.1 shows a matrix of the required lane signals for the diffetane feature groups
and the system active sign@lAS ane to suppress special events. From this table, it can be
derived, which features require the distance to the lanewaridh only focus on lurching
within the lane and thus are suitable best for inertial fiestu For odometry-based features,
the lane signal qualityaneDataQualis not needed since the signals are always valid. As
well, lane changes (LaneChg_Stat) can be detected frorhaheLtrIDist The odometry-
based features are the ones (margeekr) that have no other dependency than yaw rate or
LaneLtrIDist, with the limitation that not the absolute s#t is available.

6.3. Single-Track Vehicle Model

In order to estimate the ego-motion of a vehicle from inéstigsor data, different mathemati-
cal models are availabl@omotor and Klinkne(1987) consider inertia torques of the vehicle
and tire models for the description of slip effects. Otheprapches require additional sen-
sors like vehicle mass sensors to determine the mass digtnkin a vehicle (Veiss 2011).
Carlson and Gerdg2002 propose a method for the determination and applicatioriref t
models, that, however, require vehicle specific paramdterthe vehicle’s inertia torque
which again depends on the actual mass (occupied seats ggaded distribution.

These specific sensors and parameters are not availableFwmréhese reasons, several as-
sumptions are made for simplification in practidditcchke and Wallentowitz2004 Ch.
C.18). Under these assumptions, #iirggle-track mode{or Bicycle Model can be used with
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Features
Lane changeS AS ANE) X X | (X)
Overtakings (e.gS AS ANE) X | x
Lane deviatior{e.g.LANEDEV, ORA) | x | (x) | x
Lateral offset (e.gLATMVEAN) x | (X) X
ZigZags(e.g.Zl ZAGS) x [ (X)) | x
Lane oscillation(e.g.LATPOSZCR) X | (X) | x
Yaw eventqe.g.YAW ERK) X
Lane approx. (e.d.ANEAPPROX) X | (X) X | %
TLC (e.g.TLCIM N )] x x[x[X]X] KX

Table 6.1.:Signals needed for lane-based feature types, whgradicates that these features are not
absolutely necessary. Lane changes can also be detectiee blnking lever.

good approximation. It is the simplest mathematical mooleitfe stationary and instationary
lateral dynamic of a four-wheel vehicl®igkert and Schungkl94Q P. 210-224). Fig6.1

E—— —
'CG \Veenh~ consi Model |
' —_—> —
. %}

J

Figure 6.1.: Left Single-track modedimplification by combining the two wheels of one axi&ight
steering wheel angl&, and vehicle speed,c, are the model input and lateral accelera-
tion ay andsideslip anglgs the outputsg is described in the following.

The vehicle dynamics model is mostly linear with good appr@ation on dry roads and
for lateral accelerations undem4#s®> . The appearing angles are then small and can be
approximated by sifw) ~ a . According to Gchindler 2007, Ch. 4) and $chramm and
Hiller, 2014 Ch. 10), further assumptions are made: the vehicle is as$umbe a rigid
mass withinertia torque J and itscenter of gravityCG) on the ground. Only the front axle

is steerable and the vehicle spegghis considered to be stationary, so that only two degrees
of freedom remain: yaw rotatiog and thesideslip angles (also calledbodyslip anglg g

is illustrated in Fig6.2 It describes the angle between the longitudinal vehicle taxvards
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the direction in which the vehicle is actually travelingsu#ing from the direction in which
the wheel is pointing. The lateral accelerati#nin which we are interested is implied. This
means that wheel load differences and related roll, pitch\amtical motion are neglected.
The model is illustrated in Figs.2 and introduces the notation for the following equations.

r

€x
Figure 6.2.: lllustration of the single-track model

Instant Center of Rotation (ICR): As mentioned in AppA.4, every point of the rotating
vehicle experiences a different velocity aroundrstant Center of RotatioilCR). ThelCR

is located at the point where all orthogonal lines to all eéles are crossing and describes
thecurvature radius Ror curvaturex with

== (6.1)

1
R=>=2Y
K

Steering Ratio The Ackerman steering angl®, of the wheel is obtained by th&eering
transmission ratio S Rnd thesteering wheel anglés measured in the steering column:

opn=0s-SR (6.2)
Wheel and Sideslip Angles Assuming that thevheel slip anglesire zero and the wheels
roll along their axis, the vehicle speednd lateral acceleraticay, yield the driving radius:

2
R— ‘é . (6.3)

Thesideslip anglgs in Fig. 6.2is defined as the angle between the vehicle motion o€iGe
and the longitudinal vehicle axis.
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Self Steering Gradient Theself-steering gradient S G defined in DIN 70000 as the differ-
ence between the steering angle gradient and the Ackerngéaa@rer the lateral acceleration

G= 1 dos _ doa (6.4)

(6.5)

wherevq, andl are vehicle specific properties that are available for thecles.

Characteristic Velocity: It is the vehicle speed, at which under-steering vehickS £ 0)
have the maximum of their yaw intensification

I
=4\=- 6.6
Vch SG (6.6)
By Schramm and Hille2014), it is also described by, is the velocity for which the vehicle
reacts most sensitively to steering inputs. Typical varesbetween 65 and 100 krii/h

An SG > 0 means that the vehicle is under-steering (front wheesgl®G = 0 means
neutral andS G < 0 means, that the vehicle is over-steering (rear wheel)slipsr safety
reasons, today’s vehicles are designed to under-steecthvusheasier to handle. This means
that the vehicle tends to turn to the curve outside insteazbsérving additional rotation by
the tail "drifting" out of the curve. All vehicles in this te&s are under-steering.

Yaw intensification: The yaw intensificatioris the ratio of stationary yaw rate and steering
wheel angle for stationary steering wheel angles

oy = SR (lRJrSG-ay) (6.7)
Lateral Acceleration: The lateral acceleration obtained by the steering whegleade-
scribes the vehicle trajectory more precisely than thelammmeter value which is affected
by the road inclination towards the road sigedirection). For this reason, trengle-track
modelis used. Théateral acceleratiorsy is obtained by theelocity y thesteering ratio SR
the steering angles, and theself-steering gradient S.G

V28,

¥ iTsev (6.8)

6.4. State Space Model

For the mapping of inertial sensor signals to real-worldrdowates, a motion model is re-
quired that describes the trajectory in every calculatiep.sA description of the motion can
be approximated either by thime segment modeir the arc segment mod€lGuan 2008

Ch. 3.2.2-3). He stated that in conjunction with the Kalm#erfithe linear-segment model
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Figure 6.3.: Line segment motion model

performs far better than the arc-segment model. Eigillustrates the line segment model.

The vehicle motion is modeled in analogy Buehren(2008; Miksch (2010 and Weiss
(2017). Thestate vectox|k|] € R" describes the position and motion state at time indtant

by:

sx[k]) x-position im]
sy[k|] | y-position [l
wlk] | yaw angle it
X[k = &M yaw rate £/l (6.9)
vk | longitudinal velocity /9

alk] | longitudinal acceleration nf/*]

For linear systems, the system model with stegte transition matribA (nx n) describes the
state change of between two consecutive instants. Here, the system istinear and the
state transition matriXA is replaced by atate transition functiori(x) (cf. Eq. 6.17)):

x[k+ 1] = f(x[K]). (6.10)

The second part of the system model is the measurement @qtizdit maps the system state
to themeasurement vectaik| € R™ using themeasurement matrid = (O I) (mxn):

[w[k]]
zlk+ 1) =Hx[k+1], z[k] =]|v]k (6.11)
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According Fig.6.3 the non-linear movement of the vehicle is given by

sck+ 1]\ (sx[K) | .+ cos(y™
(Sy[k+ 1]) B (Sy[k])+V [k]TS[sin((W))]' (552

with vt = v[K] +ak] %, ¢* = ¢ + ¢ % and thecycle time T.

6.5. Kalman Filter

The Kalman filter is an optimal state estimation algorithm lfoear systems to estimate
the system state vectarfk]. For optimality, it requires that the measurement and E®ce
noise have zero mean, white, uncorrelated and normallyildistd additive noiseWelch
and Bishop2006. After initialization, the iterative algorithm consist$ a predictionand an
innovation(or correction) step for each iteratiok. The prediction step derives from the pre-
vious iterationk — 1 updated state variables and uncertainties under thedssaton of the
motion model. The current measurement is included undesideration of its uncertainties
form the innovation step. The Kalman Gain is a feedback theglats the influence of the
model or measurement based on their covariances.

6.5.1. Optimal State Estimation using the Kalman filter

The state transition and measurement equation in@EfjQ(and Eqg. 6.11) are expanded by
the model noisew[k|] and themeasurement noisgk]| (with processandmeasurement noise
covariance matrice® andR):

X[k + 1] = Ax[K] + Bulk] +wlk], (6.13)
z[k+ 1] = Hx[k+ 1] + v[k+ 1] (6.14)
The influence of input parameterss can be included by thén x ) input matrixB, which is

not relevant herew (k] andv[k] were found to be additive normally distributed white noise
with zero mean:

Ewnw' K] = Wénk
EMVTK] = V 6u
p(w) « N(0,Q), p(v) « N(OR)
Elwlk]] = E[v[K] = o.

Details for the Kalman filter and the validity of its requirents for the yaw rate, vehicle
speed and acceleration sensors can be reatVaich and Bishop2006§ Buehren 2008
Weiss 2011). Thepredictionandcorrectionsteps of the linear Kalman filter state estimation
are illustrated in the following:



~134—

/\ Measurement Update (‘Correct’)

Time Update (‘Predict)) (1) Compute Kalman Gain Factor

(1) Project the state aheao Kk = PgHT (HP, HT + R)™?

R =A% q +BUa (2) Update estimate

(2) Project the error with measuremert
covariance ahead Rk = K + Ky (zx — Hxk)

Py = AP AT +Q

! N

| Initial estimate forkx_1 andPy_1 |

(3) Update the error covariance
Py = (| - KkH)PE

6.5.2. The Extended Kalman Filter

TheExtended Kalman filter (EKF}p necessary, if the state transition is non-linear, as in ou
case. Now the system is described by the non-linear, diffetgle functiond andh:

x[k+1] = f(x[k],u[k},w[k]) (6.15)
zlk+1] = h(x[k+ 1], vk + 1]) (6.16)

In our case, the measurement equation stays & 14)( The Extended Kalman filter state
estimation is again computed in two steppsedictionandcorrection but now with the lin-

earized function.
/\ Measurement Update (‘Correct’)

. . 5 1) Compute Kalman Gain Factor
Time Update (‘Predict’) 1) P 1
(1) Project the state ahead Kk = PEHI(HkF’;HI + VkRkV-Ik-)
R = F(% 1 U1, 0) (2) Update estimate
(2) Project the error with measuremerg

covariance ahead _
P = APICIAT + WiQu g W] Rie= Ry K"(Zk - h(x"’o))

(3) Update the error covariance

T \_/ Pk = (I - KkHk)Pg

Initial estimate fork_1 andPy_1 |

As the yaw rate in Eq.6.12 changes very slowly within the cycle tinfTg = 20ms we use
the first ordefTaylor series approximatigrsin(a) ~ @ andcog«) ~ 1 fora < n/2, we can
linearize the trigeonometric functions to the dimensionkdg.6.9 as follows:

sx[K] + V" K| Tscos(y ")

s[K + V" [ Tssin(y ")

f(x,q) = ylk| +yTs . (6.17)
"IN

vlk] + a[K|Ts
alk]
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The system is still non-linear so that tB&F is required. Thus, we need to linearize the non-
linear, differentiable functiofi in each working point, which is the current system siqte.
For linearization, thelacobi-Matrix of the differentiable functiorf: R" — RR™ is needed.

i ; of(x.9)
Finally, we obtain for—

1 0 —sin(yt)viTs — sin(uﬁ)v*%g'2 cog(y)Ts COS(LW)T—QZZ

0 1 coqu V', oty v 3 SIn(y)Ts sin(g*)T—;
S

0 0 0 1 0 0

00 0 0 0 0

00 0 0 1 Ts

0 0 0 0 0 1

Then, the measurement matkiis (0 I).

When a new GPS sample is available, the measurement nthtard vectorz[k| are ex-
tended:

1 Ue[k + 1]

: Unlk + 1]

H=]|0 0 Loz = gk + 1]
vk + 1]
' ak+ 1]

= O

whereU, andU,, are theeastingandnorthing positions where the vehicle is located in UTM
coordinates (cf. Ch6.6). The process and measurement noise covariance mafyiaesR
of the EKF algorithm are chosen by using the measurements.

6.5.3. Estimation of the Lateral Distance

As illustrated in Fig6.3, the yaw anglep[k] between the vehicle and the lane must be known
in order to calculate the lateral distari¢k]. The lane is estimated by the low-pass filtered
vehicle trajectory using a"d-order Butterworth filter with cut-off frequency 0.05Hz. &h
relative lateral displacememttl related to the lane mean is calculated for every sampling
periodTs. The lateral distance is then obtained by updating the astidnlateral position in
each sampling period:

Ik + 1] = 1[k] + Al (6.18)

with the initial conditionl(0) = 0. The lateral distance signal obtained from the vehicle
model is again high-pass filtered to remove accumulating éfeors. Furthermore, it was
low-pass filtered to remove noise and road influences witi-@&ler Butterworth filter with
the cut-off frequency 0.1 Hz.

6.6. GPS Data in UTM Coordinates

A standard GPS sensor was used for all recorded drives, tiagecorded CAN-signal from
the head unit was map-matched and thus disturbed by disconi$ gaps. Its temporal sensor
resolution with 1Hz is not very high. Also the absolute gositis not very accurate. There
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are often invalid sections from tunnels, synchronizatioobfems, insufficient signal quality
or too few satellites. Furthermore, there are severe osiiliethe signal. All these influences
had to be suppressed by post-processing describ&dupalla(2007).

The UTM representation (cHasberg and Hensél009 LVGB, 2009 of GPS has the advan-
tage that the units use a metric world-coordinate systeniagito the information obtained
by the vehicle data. Maps fro@penStreetMaps.on@020 were used for visualization.

In order to convert global GPS longitude and latitude cowatiis tox, y positions in meters,
the following equations can be used:

d = 60-1.852. 120, arccogsin(e1) - sin(¢z) + cog(¢1) - cos(p2) - c0gA2 - 11)) (6.19)
T

N—
Earth radius

with d being the distance between two GPS positions (latitygdengitudest;).

The Universal Transverse MercatqUTM) system splits the world in tiles of six degree
in vertical direction (from 80 south to 84 north) (Weiss 2011). The transversal Mercator

projection flattens the zone and defines a Cartesian cotedgatem for every tile. Germany
is zone U 32 for instance. App\.10 shows an illustration of this principle. The converted
GPS coordinates to meters in relation to the zone coordsyatem allows the calculation

with metric scales.

6.7. Inertial Feature Extraction
An overview of analyzed lane data based features and theoneto extract them, are de-

scribed in Friedrichs and Yang0109. This section explains the features that are selected
and for which the odometric data are sufficient.

6.7.1. Inertial Features

Tab. 6.2 lists the selected features which have been investigaterd hene data based and
odometric features are calculated with the same algoritbotdifferent input data.

ID | Feature Name | Description

15 | LANEDEV Lane deviation

17 | ZIGZAGS Number of zig-zag events

29 | LNMNSQ Lane mean squared

34 | ORA Overrun area

16 | LATPOSZCR Lateral position ZCR

30 | LNIQR IRQ of lateral position

37 | DELTADUR Duration between inflection points
38 | DELTALATPOS Mean lateral amplitude

39 | DELTALATVELMAX | Max lateral velocity

Table 6.2.:Selection of lane-based features
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6.7.2. System Active Signal

As the lane changes are not detected by the camera anymerteythindicator lever signal
was used to suppress lane changes. Three seconds befoemamtdonds after lever opera-
tion have been suppressed. Yaw raies 3°/s have been neglected as well. Furthermore,
the system was defined to be active only at velocities ovem@b k

6.8. Results

This section describes the comparison between lane dataemtidl-data based signals. The
correlation of lane-based and odometric features is shasmiell as the correlation between
odometric features and th€SS drowsiness reference using the Spearman correlation coeffi
cient.

6.8.1. Comparison of Lane Data and Inertial Data

Fig. 6.4 shows the lateral deviation ("distance") signal obtainfidraemoving the offset.
However, the mean deviation between the two signals is 38drich indicates that there are
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Figure 6.4.: Lateral position from lane-based (blue, solid) and odoimetnsors (red, dotted)

certain different influences in the signal. The Pearson gr&h®nan correlation coefficients
between the features derived from the yaw rate and the atigine-based features are shown
in Tab.6.3

D | FeatureName| pp | ps

15 LANEDEV | 0.241 | 0.367
17 ZIGZAGS | 0.512 | 0.634
29 LNMNSQ | 0.051 | 0.394
34 ORA | 0.338| 0.414
16 LATPOSZCR | 0.908 | 0.350
30 LNIQR | 0.286 | 0.505
37 DELTADUR | 0.768 | 0.540
38 DELTALATPOS | 0.239 | 0.467
39 | DELTALATVELMAX 0.634 | 0.633

Table 6.3.:Correlation coefficients between lane-data and odomedtatufes
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6.8.2. Feature Evaluation

Features were assessed and optimized in multiple ways. gderi®an correlation coefficient
between th&KSSand the features derived from yaw rate and the original kmased features
are compared in Talb.4.

Feature Name | ps Lane vs. KSS| ps Odom. vs. KSS

LANEDEV 0.240 0.064
ZIGZAGS 0.318 0.103

LNMNSQ 0.268 0.080

ORA 0.325 0.105

LATPOSZCR 0.223 0.328

LNIQR 0.187 0.105

DELTADUR 0.281 0.117
DELTALATPOS 0.295 0.079
DELTALATVELMAX 0.266 0.106

Table 6.4.:Spearman Correlation coefficients between lane data antibirfeatures vs. KSS

Even if some features (ZIGZAGS and LATPOSZCR, zero-crassatte) correlate very well
with the lane-based pendant, they do not perform as goodjards to drowsiness detection.
Only the feature LATPOSZCR performs better.

6.9. Conclusions

The basic motivation of the presented work is to estimatectassical lane-based features
solely from inertial sensors instead from camera-basee d@ta. In this thesis, we present
a comparison of these two methods. This has the benefit tlmmhettic data is available
in almost every vehicle nowadays. In contrast, lane trackemeras are special equipment
and, thus, still rarely available in today’s fleets. Anoth&ajor advantage of inertial data is
its independence from weather, camera calibration andri@ar&ing quality. This property
highly increases the operability of the system. A motion eiddr inertial sensor signals
using theEKF was presented to derive the lateral lane deviation from edeendata. For a
comparison and visualization of lane data and data derirged fnertial sensors, GPS was
additionally used. As the GPS signal is only available ewegond, whereas the CAN data
has a cycle time of 20 ms, a method to include the GPS measunteime the motion model
was proposed. Inertial and GPS data have been converte@ téTiil coordinate system
to have the same metric representation. This study showdhbdeatures extracted from
odometric data correlate well with the lane-based featukdarge set of data was compared.
However, there are relevant differences in the signal wiialke the exact estimation of the
lane deviation impossible. The major problem remains tharsdion between road curvature
and vehicle lurching between the lane markings. The ninee“lzased" features estimated
by inertial data have been analyzed for their performancgetect impaired driving. The
correlation of the features with tH€SS reference is comparable but inferior to the perfor-
mance of real lane data based features. Generally speadntg lane-based features can
be approximated very well by odometric data whereas othemsat. OnlyLATPOSZCR
performs better, because of the continuous system avditadtfithe inertial sensors.
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Chapter 7.
Assessment of Features

After the features have been extracted (@hunder the consideration of external and driver
influences (Ch5) and with a new alternative approach to estimate lane featwom inertial
sensors (Che), they are assessed in this chapter. The features are edbsexs optimized

in multiple ways. The focus is to assess the performancengiesifeatures but also their
combinations according to different references in €h.

In the first step, quantitative metrics for the correlatioalgisis and their results are presented.
The metrics were used in CA.5as cost function for parameter optimization. Visual evalu-
ations like boxplots, class histograms, correlation coieffit histograms or scatter plots lead
to a higher transparency of features to identify their ctimréstics. The metrics from the first
part of the chapter are the basis for these visual methodscdinelations and visualizations
suffer from the discrete interval scale of tK6&S Thus, theKSSvalues were interpolated
and smoothed as described in GI8.6 Linear and multiple regression is used to assess the
correlations by fitting linear functions by least mean sqaa6tatistical tests like t-test, F-test
or MANOVA are powerful methods to identify whether diffexs are significant. Finally,

a visual user-interfaceGUI) combines all the methods at once and allows filtering of the
data and reference. The results motivate several impravisnrethe feature extraction. Sub-
jective, rather qualitative and empirical observatiormsfmight drives are also summarized.
A proposal for potential features is given that comprisesvidirious assessment aspects and
knowledge of the nature and potential of features. Featinasare highly correlated and
based on the same patterns are reduced to the best of them.

7.1. Feature Assessment by Metrics

The goal of this section is to evaluate different measurasdhbscribe the relation between
two signals best. There are various potential metrics saatoaelation coefficients or the
Fisher metric to assess the correlation and variance betieaéures and reference. The co-
variance, correlation and scatter matrices describe théae between features. The Spear-
man correlation coefficient, for instance, has also beed fgarameter optimization.

7.1.1. Correlation Coefficients

The correlation describes the linear (or monoton) relatiim between two measurse ¥
andY € {¥,KSS EEG EYE}. The metric is desired to be high when high and low sample
values of the one measuxeoccur at the same time as for the other mea3urg&his can be
illustrated by the scatter plot (cf. Set2.]) of the two measured andY in Fig. 7.1
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Figure 7.1.: Scatter plot to illustrate correlation: positive, no andatéve correlation.

This relationship can be quantitatively captured bydbeelation coefficientsfter Bravais-
Pearsorp, for linear andSpearmarps for monoton relationship. The range of values of both
coefficients lies in-1 < py, < 1. In casep > 0, the measures are positively correlated and
vice versa. The-value of correlation indicates the probability with whittie same result
could be achieved randomly. With other words, it indicatesreliability of the result and is
relevant only for fewer test samples.

Pearson Correlation Coefficient

The empiric(Bravais-)Pearson Correlation Coefficie(ffahrmeir et al.2003 measures the
linear relationship between two measupés= [xg,..,xn]" andY = [y1,..,yn]7 (with = as
the average):

pp(X,Y) = - SMX.Y) (7.1)

\/IN gl g — WVar(X) - Var(Y)

Spearman Correlation Coefficient

The Spearman correlation coefficiept; describes how well the relationship between two
measures can be described byanotonicfunction. It is calculated in the same way as the
Pearson coefficient, only thatrank function rd-) converts the valueX andY to a sorted
rank order. For instance, the highest value is mapped telsdbond highest value becomes
2 and so on. If samples occur multiple times, they will begrssil to mean rank values. The
calculation is defined (séeahrmeir et a].2003 by:

N _ __
Z1906) =000 ~TI)) o oy

n — WNar(rg(X))-Var(rg(Y))
V& r000 10007 B gy -ravye SO

i=1
(7.2)
with the rank meangg(X) (andrg(Y)) given by

LN
X)) =y ng(xi) =— (7.3)

Even though theéKSS scale is defined to be linear from a psychological perspectivis
known that the scale is not interpreted and used linearlis iSlone reason why the Spearman
correlation coefficient has shown to be more meaningfulimdpplication.
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7.1.2. Fisher Linear Discriminant Metric

TheFisher Linear Discriminant Metriés motivated by the fitness function of the Fish&A
(Welling, 2005 and closely related to regression analysis. It sets thgesdzetween classes
in relation to the scatters within each class.

Multi-dimensional case TheMultiple Discriminant Analysi$MDA) is defined as explained
in (Yang 2018 Uhlich, 2006 Duda et al,2001) by the quotient of the matrix determinants:

1Sgl
MDA (X — 7.4
(X) Sul (7.4)
whereSg is the scatter matriketweerthe c classes
C
Ss = D m(mi—m)(m—m)T (7.5)

i=1

wheren; is the number of patterns in clasgn is the average over all classes andare the
averages of each classSy is the scattewithin classes:

s,v:is- with § = > (x=m)(x—m;)T, (7.6)
i=1

XeX|

the scatter matridg of the patternsX; in classi. The advantage dfIDA is that multiple
features can be assessed by one scalar measure. This mesaswagant to a linear transfor-
mation, i.e. no normalization is required in advance.

Fig. 7.2illustrates the strengths and weaknesses oMBé by four examples with three bi-
variate Gaussian distributed clusters and serves as trafidaf the implementation. Another
weakness of the measure is that when one cluster is rotatedenter of all classes and, thus,
the metric is not changed much, even when the two classelapvapre.

In the two-dimensional case and especially for more thandiasses, the correlation coef-
ficients are more meaningful since they describe the ordiimadrity. Further, it has to be
noted that th&KSScannot be used for thdDA, since it is only defined for classes.

7.1.3. Results

Tab. 7.1 lists all metrics from this section, the correlation coedfits, the one-dimensional
MDA metric for 9 classes and thJC (Ch. 7.5). The ending 'BL’ indicates that a feature
is baselined. Only the best out of all redundant featuresised for the comparison with the
KSS External influences are only relevant after the fusion afufees. It can be seen that
most a-priori features perform best, but on the same leviiieamajorATTENTION ASSIST
feature GGGLWF. Further, the TLC-based and lane approximation features she best
results underneath the causal features.

ID Feature Name Op ps | MDA (9 classes) AUC
45 Cl RCADI AN 0.4911| 0.4880 84.824554| 0.80057
68 TOTSPEED 0.3825| 0.4088 12.859585| 0.52957
122 GCELWF 0.3644 | 0.3541 11.141940| 0.74449
66 TOT 0.2579 | 0.2656 10.385206| 0.67326
156 DI STRACTI ON 0.2266 | 0.2590 22.924826

160 NVRSTVHOLD 0.2501| 0.2415 10.857038
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ID Feature Name Op ps | MDA (9 classes) AUC
175 TURNI NDM SS 0.1866 | 0.2295 6.906748
59 MONOTONY 0.2190| 0.2202 2.173279| 0.54915
121 STWEVENTBL 0.1695| 0.1910 3.540389| 0.64316
155 TLC1M NBL 0.1795| 0.1838 13.077203| 0.63736
159 AmpD2Thet aBEwra 0.1555| 0.1620 5.025147
161 TLCREACTI M 0.1392| 0.1485 14.907812
14 LANEAPPROX 0.1391| 0.1464 9.264948
151 L ANEAPPROXBL 0.1400| 0.1420 8.597869| 0.50169
171 MONOTONYSPD 0.1353| 0.1344 3.060937
67 TOTMONO 0.1353| 0.1344 3.060937| 0.52957
69 NVRHOLD 0.1473| 0.1313 2.796519| 0.60884
167 NVRHOL DBL 0.1472| 0.1313 2.792206| 0.61344
38 DELTALATPOS 0.1414| 0.1299 4.858002| 0.56556
158 AmpD2Thet aBL 0.0576| 0.1197 6.671112
51 STVEVENT 0.0988| 0.1138 3.120092
32 LANEX 0.0917| 0.1103 5.736944
39 DEL TALATVELMAX 0.1148| 0.1101 5.302499
65 DRACTI VI TY 0.0438| 0.1067 0.419859
48 AmpD2Thet a 0.1126| 0.1045 4915033
17 ZI GZAGS 0.1158 | 0.1024 6.153849
139 ZI GZAGSBL 0.1158 | 0.1024 6.153849
33 LNERRSQ 0.0504| 0.1014 57.698357
168 M CROCORRECTI ONS2 | 0.0339| 0.1007 0.479821
15 LANEDEV 0.0938| 0.0965 2.961627
137 LANEDEVBL 0.0938| 0.0965 2.961627
146 LANEDEVSQ 0.0699 | 0.0946 1.821851
30 LN QR 0.0903| 0.0885 1.995599
36 VI BPROP 0.0777| 0.0845 4.479706
34 ORA 0.0917| 0.0806 2.368282
72 VHAL 0.0799 | 0.0800 1.389162
27 TURNI NDADVANCE 0.0573| 0.0528 2.102021
145 LANEDEV4 0.0444| 0.0504 10.567072
71 M CROCORRECTI ONS 0.0337| 0.0430 5.809846
22 DEGO NT 0.0698 | 0.0375 1.024265
147 M CROCORRECTI ONSW | 0.0168 | 0.0346 5.174747
152 LRVFAST -0.0021 | 0.0248 1.019020
29 LNWNSQ 0.0290| 0.0108 0.439556
170 FASTCORRECT -0.0545| 0.0104 0.892245
40 L ANEAPPROXADAPT 0.0248| 0.0070 2.263082
18 STWZCR 0.0028 | -0.0124 2.697696
154 LRVVERYFAST -0.0379 | -0.0128 1.250960
37 DEL TADUR -0.0352 | -0.0311 1.197629
25 STW/ELZCR -0.0430 | -0.0319 3.105123
150 LANEAPPROXAD -0.0267 | -0.0333 0.286441
16 LATPOSZCR -0.0216 | -0.0437 0.342992
169 YAW ERK -0.0703 | -0.0719 1.805102
28 TURNI NDDUR -0.0647 | -0.0744 2.632143
42 ELLI PSE -0.0524 | -0.0757 7.906066
19 LATMEAN -0.0534 | -0.0771 1.344164
142 VARCRI T -0.0179 | -0.0936 8.110901
153 LRVPERCHI GH -0.1894 | -0.1933 4.820714
31 LNCHGVEL -0.1238 | -0.1998 2.224121
165 STV50 -0.2646 | -0.2697 10.243395
26 TRFCDENS -0.2535| -0.2913 23.574284
164 STV25 -0.2966 | -0.2990 15.787481
166 STV75 -0.3149 | -0.3255 18.138641
70 LI GHT -0.4353 | -0.4354 116.210213

Table 7.1.:Correlation coefficients anIDA measure for selected features sortedoby That all
values are significant is indicated by the< 0.001 due to the high number of samples.
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Figure 7.2.: Fisher MDA to measure the scatter between classes in relation to thterseathin
classes. The left and right means are similar. Class Ibihas a larger spread than
in lawhich allows better discrimination, decently reflected iy MDA. Class 1 irRbis

rotated and overlaps which causes worse discriminatioichws reflected by the slightly
lower MDA.

7.2. Visual Feature Assessment

Visual assessment of features gives much more transpatbaoya quantitative measure.
This section shows the most practical visualizations inadelected examples.

7.2.1. Scatter Plots

The most transparent method to compare the combined direlaetween two or three

features is thecatter plot A scatter plot for three features with marked classes is/ahn
Fig.7.3

7.2.2. Boxplots and Error Bars

Boxplots(or Box-Whisker-Plofsserve to visually illustrate the median, scatter, rangg an
outliers of class distributions. For every class, the med@R and thewhiskersare marked,

as illustrated in Fig.7.4. The latter are defined ag/’hisker = 1.5-IQR and define the
limit for outliers. TheNotchesdisplay the variability of the median between the classes
(MathWorks 2007). The notches of classes, that do not overlap, have diffenedians at the
5% significance level assuming the samples to be normaltyilised, which, is, however,
also reasonably robust for other distributions. This meétban be compared to a visual
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Figure 7.3.: Scatterplot for selected featur€s RCADI AN, TLC1M NBL andSTWEVENTBL for the
three classeawake(e), acceptabld«) anddrowsy(e).

hypothesis test analogous to the t-test for means. Thusisiexample, it can be seen that the
featureNMRSTVHOLD increases with increasingSS with significant differences between
classes.
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Figure 7.4.:lllustration of Boxplot for feature NMRSTVHOLD.

The Boxplots in Fig7.5show the relationship between different other featurestb@lSS.
All plots show that the median of the classes significantifedi but are still overlapping
which pose difficulties for the drowsiness classificatiohefie are very few drives witkSS
below 2, so these levels should be neglected.

Error bars show the confidence level of data or the deviation along aecvath\Works
2007. In our case, the variance is used as displayed in F#. In this example, the dif-
ference between mean/median and varid@e/can be seen due to the influence of outliers
that can be essential for some features.
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Figure 7.5.:Boxplot of selected features

7.2.3. Class Histograms

Class histograms were also used to get a visual impressithre d¢atures. The STV50 class
histogram can be found in Fig.6 as an example. It can be seen that the steering velocities
decrease with increasing vigilance.

7.2.4. Histogram of Correlation Coefficients

Another method of correlation analysis proposed3tiyion(2012) is to cluster the features
by drives (or drivers) and calculate the Spearman (or Pearsarrelation coefficients be-
tween features angSSreference. A histogram of the coefficients then indicates hbw
many drives this feature correlates well with fatigue. Iegortion of the drives correlates
negatively and the other portion positively, it is a conitiidg statement and does not speak
for an useful feature. It has to be considered that a longedrdntributes as much as a short
drive. However, in AppA.11 the limits of this metric are discussed. Even if all corrielat
coefficients are one, the overall correlation can be very Widh other words, this metric
would work sufficiently, if the online-adaption of everydgiby baselining was optimal.

Fig. 7.7 shows other examples of the causal featwABIEX, ORA and NMRHOLD. It can
be seen that there is a tendency towards the right, thatatedic that most drives are posi-
tively correlated with drowsiness. Further, it can be séeat, the last feature, with the best
overall Spearman coefficient, performs worst from the lgisin’s perspective. We can con-
clude, from these three examples, th&NEX profits most from driver (drive) adaption, i.e.
baselining.
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Figure 7.6.: The class histogram of featu®TV50 split up by classeawake questionableand
drowsy(ID: 53; pp = —0.30;ps = —0.33(bothp= 0.0); MDA = 16.9)

7.3. Assessment of Correlation between Features

If two features correlate well with fatigue, this does notaméhat their combination performs
better. Generally, features based on different patterdsansors have the tendency to be less
correlated. The correlatiopetweerfeatures is subject of this section.

7.3.1. Scatter Plot Matrix

Fig. 7.8 shows the scatter plot matrix that give transparency of hometated features are.
It is a matrix of scatter plots between all features. Idedlyth features are uncorrelated,
but correlate with the reference, so that the values ar¢esedtand the classes can be dis-
tinguished well. It shows that lane based and steering biz@eddres are more uncorrelated,
such ad. ANEDEV and YAWI ERK. No correlation between features is desired (except with
KSS).

7.3.2. Correlation Matrix
Correlation Matrix consists of the pairwise correlation coefficients betwédenrheasures

¥Fi € M"in their column and row. It indicates how strong the featuaes correlated with
each other:

p(F1,F1) - p(F1.%n)
C(F) : : : (7.7)

p(Fun 1) o p(Fon o)

wherep can be calculated after Pearggnand Spearmaps respectively.
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Figure 7.7.: Histogram ofps coefficient of KSS and featuréANEX, ORA andNVRHOL D grouped by
drives

0

Fig. 7.9 shows an example of the matrix. Baselined features are ofieelated. The road
condition features and allANEDEYV derivates are correlated, but also wiRA, LANEI QR
andTLC1M N Cl RCADI ANare negatively correlated withl GHT.

7.4. Linear and Multiple Regression Analysis

Regression Analysis a method of statistical analysis that pursues the goaliamtitatively
determine the relationship between a dependent varisdgeeésanyland one or several in-
dependent variablesegressor(s). In our case, th&SSreference is the regressand and the
regressor(s) is (are) the feature(s). Regression anddysiiver state detection was already
used byKnipling and Wang(1994); Wierwille and Ellsworth(1994); Wierwille (1996D);
Belz (2000 and (Mattsson 2007 Berglund 2007, Both Sec. 2.5) for identifying the most po-
tential features. When features are normalized, the caafficindicate, which contribution

a feature makes for the final result and which features anendght. Linear and Multiple
Regressiorare closely related tbDA and classification. Hence, the other application of this
method is prediction or classification, discussed in&h.
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Figure 7.8.: Scatter plot matrices for some selected features to showottnelation between features.
Their combined discriminative performance can be seergsitasses are marked indi-
vidually: « for awake,x for questionable and- for drowsy. The diagonal shows the
distribution of the features.

7.4.1. Multiple Regression Analysis

In multiple regression analysis, every feature is combiimeghrly (or by any other function)
to obtain a combined measure. The regression equation ctorrbalated mathematically,
in our case, for the one dimensional version as follows:

KSS= f(Fo) + ¢ (7.8)
and for the N-dimensional case:
KSS= f(Fo,F1,...,Fn-1) + & (7.9)

with the features from the feature matrix € F ande as theresidual error that is to be
minimized. The residual also indicates, how strong theetation is. In the next sted,(-)
can be expanded by using tregression coefficienys:

KSS = Bo-Fo+B1-F1+...+8n-1+¢ (710)

The last coefficienBy allows the adaption of an offset through the vedtoFor instance, in
our application, this yields:
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Figure 7.9.: Correlation matrix of selected features (Correlation:aieg (blue), no (green), positive

(red))
ZI GZAGSBL 95.2, )
NMARONG 6.9,
NMARONGBL 0.0,
LANEDEV 1.8,
LANEAPPROX 234.5,
LI GHT —-0.074,
KSS=B-F = oG | 0.081, (7.11)
ELLI PSE —-0.034,
DEGO NT 1.18,
LANEAPPROXADAPT -411.2,
AATOT 0.000061
Cl RCADI AN 1.5,
1 2.9
The regression coefficiensare obtained by minimizing theISE of the residuum:
e = > [KSs-g-F] (7.12)

patterns

The solution of this least-squares minimization problemwedl known. Fig.7.10shows the
KSSreference and the resulting sign&l#o, #1,...,#n-1). The trend is correct, but not
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very precise, probably due to fact that 8Sis not a simple linear scale.

Reference / Regression result [-]
— N W A L O N O

0:00 0:33 1:06 1:40 22:22 27:46 Time [samples]

Figure 7.10.:KSS reference and the resulting linear combination sigeahfthe multiple regression
for concatenated drives.

Fig. 7.11shows the resulting scatter plot bf-) with the improved total correlatign; = 0.68
andp, = 0.66. Still, the detection of the fatigued instances is minoal.

or

e W (o) 3 e o]
T T T T

Regression result (Regressor)

W
T

2

1 2 3 4 5 6 7 8 KSS
Figure 7.11.:Scatter plot of the multiple regression result

7.5. Receiver-Operating-Characteristics (ROC)-Analys and
Area Under Curve (AUC)

The performance of a feature or a binary classifier can beddésta graphical illustration, the
Receiver-Operating-Characteristi¢ROC) (cf. Fawcett 2004). It allows choosing a working
point as a trade-off between sensitivity (detection rate) specificity (false alarms). There-
fore, the classifier needs to allow that this trade-off isatla by either weighting the cost
function or in the simplest case by variation of a threshotarf the feature range minimum
to the maximum. For the Bayes classifier, the a-priory digtidon of classes can also be
varied in order to obtain the ROC. However, this would beteglao a loss of performance,
due to the neglection of valuable training data.
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In case that botPDFs are known (sensitivity and specificity), the ROC curvebsained by
plotting theCDF of the detection probability in the ordinate vs. 88F of the false alarm
probability in the abscissa.

Fig. 7.12depicts an example ROC curve for the featG@3_WF based on a two-class classi-
fication. Thesensitivity(True-Positive-Rate) is displayed on the ordinate ardspecificity
(False-Positive-Rate) as abscissa. The target area isthagkwell as the region in which
the classification result should be.
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Figure 7.12.:ROC explanation exemplarily cBGGLWF based on a two-class classification

TheArea Under Curvéd AUC) measures the area under the curve, which is a measure for the
general classification performance, but makes no stateatentt the shape on which end it
performs better. Values near 1.0 indicate an ideal claasific result, while 0.5 means the

worst possible random result. A tendency towards 0.0 egpeea miss-interpretation of the
classes.

Tab.7.1shows theAUC for some selected features. F&y5in Ch.8 shows some ROC curves
of the classification results of different classifiers. FHdl3 shows the strong influence of
driving duration and circadian as explained in GI8.4

7.6. Conclusion

This section has shown useful methods to assess featurestbgsmand visually in regards to
different perspectives. Primarily, in addition to the gjh forward metrics, visual methods
pursue the goal to provide more transparency over the deaistics of features. For rea-
sons of space, only a selection of the results could have sfeman exemplarily. The focus
of this chapter was to assess and optimize the amount ofis¢sspassociative information
of features. However, the scope here was limited to singleufe ranking rather than their
combination. With correlation coefficients, only lineadamonotonous functional relation-
ships between single features and reference could be edseBkis was motivated by the
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Figure 7.13.:ROC curve for Time-on-TaskOT andCl RCADI AN

fact that sleepiness is an ordinal scale rather than a maltial phenomenon. In contrast
to Pearson correlation coefficients, the Spearman coefticire more suitable to describe
the single feature correlation for the development of atzguiy. To determine and optimize
the discriminative property of classes, the other measaneslso valuable for transparency.
While the correlation is of central interest, also the rathmty in between features was in-
vestigated. The nonlinear combination of this informatiigrnClassificationis subject to the
next chapter.

The presented methods show that there are good featuresringroup. It is obvious that the
a-priori features perform best, as they detect the timaimsh driving studies, when subjects
become tired. Sleepiness occurs much more often during exgleriments compared to real
field drives. Thus, this systematic factor is consideredssply and taken into account for
the final classifier based on a dataset that has an a-pridribdison that is representative
for the real field scenario (DataSeteeDrive3. The system performance profits most from
these features, even when they are not causal, i.e. sertsitilie driver.

The most potential pattern appears to be the steering ¢iomegc especially followed by a
steering pause. This pattern is highly analyzed and isduithproved in various ways in
this thesis.

The lane features based on lane approximation and excegelifa@rmed best among the lane
features. For a few drivers, the ALDW warning worked reallgivand prevented them from

drifting out of the lanes. Zig-zag events and its odometrgeldavariant also appear to have
high potential, especially in regards to robustness whernvision conditions are impaired.

Features that are based on the same pattern as lane defoaiitstance are highly correlated

and only one of them could be used.
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Chapter 8.
Classification of Features

As already stated bitnipling and Wang(1994 P. 9), nosinglefeature is capable to detect
fatigue. Thus, multiple features must be used in a combin@an@r. The purpose of classifi-
cation is tofusemultiple features to a single measure (e.g.KlisSscale) or to assign patterns
to classes (e.g. whether to issue a warning to the driver ®r trotheory, the decision in a
higher dimensional features space is always better thamnfsingle feature, presuming that
each feature contains information that is not completefijunelant and that enough training
data are available. In Set.3, the correlations between features were analyzed. Thigcha
ter will discuss the reduction of feature dimensions andsification of fatigue and show
results.

8.1. Fusion of Features

The combination of different features can be done on sefiesan levels

e On Decision Level A decision can be made for every feature and then be combined
by a majority voting. There is always a majority for odd numsbef decisions. This
is motivated by the fact that different features work fofetiént drivers and situations.
The fusion on decision level is the simplest, however, withsa of accuracy, since it
is not considered that one very certain decision could aleseveral other uncertain
decisions. For instance, if a threshold is applied, therinfdion is lost in how far the
threshold is exceeded.

¢ On Classification Level The combination of features can be completely done by a
classification algorithm. In comparison to the decisioreldusion, the certainties of
decisions are taken into account. Classification is mostaigpt when little is known
about the problem or when itis too complex to manually undexsand model it. The
feature extraction is also a lossy compression of inforomatiEven if the classifier
finds the optimal solution for a given set of features, themback will be that its
underlaying model is not further adapted to the problem dedfeature extraction
algorithms remain untouched.

e On Feature Level Similar to feature extraction, classification is also deimation
reduction process to get rid of the entire clutter that islé@vant for the decision. This
has the drawback that also valuable information is omittelétnce, the most diffi-
cult method for the fusion of patterns is to understand thaetging processes and to
model the fusion directly during feature extraction. Fatamce, if one feature extracts
the number of steady-state steering events and anotherdeadgnotes the number of
corrections per minute, and if the essential crux is thatstkady event must occur
directly before the correction, this can only be detectedhduthe feature extraction,
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since no conclusion about the temporal relation of the twents/would be possible
after the sliding averaging. Completely understandingptedlem is often very dif-
ficult and laborious in practice, but this is sometimes thly @aray when the patterns
are weak and difficult to separate from noise.

Deep Learnings an "end-to-end learning"-approach that comprisesaiijes at once through
very sophisticated network structures. This alternatigéctwill be discussed in CI8.6.

In the present application, fatigue-related patterndyarecur. They are relatively vague and
vanish in other influences. For this reason, it is necessacpnduct the fusion on an early
feature level. Classification is, however, useful to idgnpiotential patterns, combinations
and to better understand the underlying mechanisms.

8.2. Pattern Recognition System Design

I
. ! p I
Training | |
Database | — > —>| sunmnn

.1
I 11

Extraction Feature Classifier Trained
L _of_Fe_atErgs_ B S_elgct_iog _ Irgin_ing _ | Parameters
Training (offline)

I
% ——+— Decision

—~
g5
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v

Extraction Classification

of Features
e e e e e e e e e e e e e

Evaluation (offline) / Application (online)
Figure 8.1.: Block diagram of classifier training, evaluation and apgtiien (Friedrichs 2006

The development of a pattern recognition system commonlgws the steps illustrated in
the block diagram in Fig8.1 The following steps are always involved:

1. Features AcquisitionEven the best classifiers will fail, if the underlaying featsido
not contain enough information about the desired clasddabde feature extraction
is the core of any pattern recognition system and compnispteimentation and verifi-
cation of hypotheses about fatigue-related patternsjaifiextraction algorithms that
are capable of real-time online processing, normalizatioother influencing factors
and optimization of parameters. Chaptér$ and6 describe these main issues in de-
tail. It is usually necessary to evaluate features indizilyuand optimize the involved
parameters before proceeding with the next pattern rettogrétep. The goal is to
extract as many ideas for features as possible and thenly@zanahich correlate best
with the desired classes. This was described inCh.

2. Feature Dimension ReductionDue to thecurse-of-dimensionalitySec.8.4), it is
important to reduce the high number of features gathereleiptecedent step to the
best combinatiorf features that are provided to the classifier. Selectiegdp fea-
tures that perform best individually does not mean that tidsw combination leads to
the best performance, because other combinations may bettglement each other.
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The ideal number of features depends on the amount of alailedining data and
is limited by processing resources. There are two dimen&duaction techniques to
tackle this problem: selection of the most significant fesguand feature transforma-
tion. Both are discussed and applied in S®4.

3. Classifier Comparison and Selectionn literature, there is a large number of classifi-
cation algorithms of different typestatisticalandnon-statisticalas well agparamet-
ric andnon-parametric This topic will be intensified in Se®.2.1and8.5.

4. Classifier Training Most classifiers involve parameters that need to be traédle
it is distinguished betweamsupervisedndsupervised learninghe latter is the most
prevalent in our application, since offline training datéhA@beled class references are
available. The training topic is subject to S82.2

5. Validation To make a reliable statement about the performance and ajadion
potential of a trained classifier, it is essential to permusning and test data ap-
propriately. Repeateki-fold cross-validation yields an average training errad #re
variance of the iterations allows a meaningful statementiathe generalization per-
formance. If the trained classifier performs bad with tesa dat in the field despite a
low training error, it isoverfittedand the previous steps have to be repeated until the
desired result is obtained.

6. Classifier DeploymentThe trained classifier parameters obtained from the trginin
can then be used for a real-time implementation. The feaxtraction and classifier
evaluation must be implemented, so that it fulfills the téak condition.

8.2.1. Classifier Comparison and Selection

Class-conditional

densities
Known Unknown
Bayes decision Supervised Unsupervised
theory learning learning
. . Cluster
Parametric Nonparametric .
analysis
Bayes plug-inrule |{Density estimation;i| Decision boundary Template || Nonmetric ;
construction matching | methods
Gaussian Model |} Parzen Windows Linear discriminant func. | | Nearest neighbours |: Decision trees '
GMM kn nearest neighbours Neural networks, SVMs Nearest mean |!
Density-based approaches

Figure 8.2.: Overview over classification algorithms (Sourc&ang and Uhlich(2013; Uhlich
(20006)
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A large number of classifiers are known in literature and tlwstnimportant can be found
in (Duda et al, 2007). The different approaches for pattern recognition canthesired as
shown in Fig.8.2

Unsupervisedilgorithms, for which no class labels are available lagependent Component
Analysis(ICA) (Sec.3.5.7), Principal Components Analys{®CA) or clustering algorithms
like the K-Means algorithmQuda et al, 2001). The K-Means algorithm is used here to
identify clusters of driver types.

Supervisedlassification algorithms to predict categorical labels ba grouped iparamet-
ric or non-parametrianethods. Parametric methods make assumptions about keawtrd
distribution shape for each class, such as the Gaussiae.shapear and quadratic dis-
criminant analysisare examples for parametric methods. Non-parametric itigos make
no assumption about the features’ distribution shapeslpss and estimate the distribution
from the features.Decision treesk-Nearest-Neighbo(k-NN), the Naive Bayes classifier
Neural Networkgmulti-layer perceptrons)NN) andSupport Vector MachingsSVM) are

a few examples.

The available classification algorithms have differeneérsgths, pitfalls and properties. The
selection of the method is determined by feature propestiesconditions like computation
resources. Then it has to be evaluated by trial-and-errompanison of the different clas-
sifiers, which one performs best after adequate adjustnmfeparameters. Th&-Nearest
Neigbour(k-NN), Linear Discriminant AnalysigLDA), Bayesclassifier,Gaussian Mixture
Models (GMM), and Artificial Neural Networks(ANN) are evaluated for this application.
Practical considerations like normalization, paramateing and classification results can
be found in Sec3.5.

Hidden Markov Model§HMM) is a general parametric algorithm for predicting arbityar
structured labels of categorical sequences, such as arsegoéphonemesn speech (i.e.
vowels, consonants and sibilant$)MM s can be trained supervised or unsupervised. The
hypothesis that fatigue might be characterized by a tenhgerguence of different patterns
and states, further motivates the evaluatiotHMM in the thesis ofFuersich(2009. The
evaluation oBayesian NetworkéN) in the scope of this thesis is also motivated by the idea
to use and model expert knowledge and temporal aspects detign of the network.

Support Vector MachineSVM), Boosting Bootstrap aggregating'Bagging) and Parzen
Window estimatiorare evaluated for the application of fatigue detection ia thesis of
de Mattos Pimenté2011, Ch. 2.2.1).

Categorical Classification vs. Ordinal Regression

Two goals are pursued in this application: to issue a warktinthe driver and to show a
bar-graph of the driver’s fatigue level. As soon as more tiwamclasses are involved, their
ordinal rank plays a role. This means that mis-decision&&8Slevels are worse the further
they differ. Categorical(or nomina) classifiers suffer from the problem to sometimes vote
for instance for a high probability afwakeanddrowsyand a low probability ohcceptable
which is contradicting for the ordinal classes. Especiallthis application, is not acceptable
or transparent to show a jumping bargraph or toggle warniags from one instant to the
other. Thus, smooth transitions are highly desir€slitierrez(2016 has shown that it is
generally better to take this ordering information into@aaat.
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Most of the previously mentioned classifiers perform catiegbdecisions by default. For a
categoricalANN classifier, the last layer has one neuron for each classKB&represents

a discrete quantization of a continuous-valued quantity.déscribed in Ci3.3.6 theKSS
entries can be considered as sample points and missingsvalbetween were interpolated.
This represents aordinal regressiorproblem that can be performed by a single neuron in
the last layer of a\NN, that retains the ordinality and punishes large deviat{ohgCosta
2005 Gutierrez 2016). The single neuron represents a linear combination ofeighted
inputs (and the bias that is present in every layer). Firthltysub-intervals are mapped to
three classes or the bar-graph levels. In the present afiplic this speaks for classifiers that
take rank information into account.

8.2.2. Classifier Training

After selection of the potential classifiers their unknovemgmeters must be trained by val-
idated features. The heuristic of the classification atboriconsists of estimating good or
optimal parameters that minimize the training error. Tlaéntng of most classifiers is com-
putationally intensive while the classification in onliapplication is generally much faster.
One distinguishes between three kinds of training:

e Supervised learningmeans that the data used for training contain referencdslabe
that define the class membership of a set of feature valuesirlapplication, the class
membership of features is defined by #veTENTION LEVEL, that is represented by
the KSSinterval scale or the reduced class@gke acceptableor drowsy

e Unsupervised learningmeans that no labels are available for the training and the
features have to be clustered into natural groups accotdisgme similarity measures.
In this thesis, unsupervised learning was only used toiiyedriver classes in Se&.4
by a clustering analysiuda et al. 2001).

e Reinforcement learning means that training parameters are updated online in the
vehicle based on feedback about the correctness of degisidnis is difficult in this
application since there is no reliable way to confirm if a dieei was correct and
a much higher demand of resources is needed. An conceivabtnavould be to
adjust the sensitivity of hyperparameters of a classifiebaard as false warning if
drivers continue to drive after they received a warning. véns that make a brake
after a long drive without warning and without refuelingharging could indicate a
missing warning. Often, only few different drivers share §ame car and, since it was
shown in Secb.4that a small group of drivers can be identified well by theividg
style, the reinforced training parameters could be loadeena driver was identified
after some time of driving.

In the training, a trade-off between training error reduttand remainingyeneralization
capabilities must be foundDver-fitting of the data leads to low training errors, whereas the
generalization capability suffers.

8.2.3. Unbalanced A-priori Class Distribution

A-priori information also covers the proportion of time tHaver is drowsy and the time

drivers are awake. When a classifier is trained, the didtdbwof the classes is considered.
Knowledge of the a-priori ratio is, thus, advantageous. ubke extensive night studies, the
proportion of drives that contain fatigue is much highertiis tdatabase than it is expected
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in the field. The proportion of time with KS$ 8 in the dataseALDWvalidNDis 5% and,
thus, not very representative. It has to be noted that draWisyng is usually quite rare,
but still much more frequent than crashes occur. The dakRsktDrives(Sec.A.2) based

on "free drives" and "Customer Near Driving" (KNFE) in EuepJSA, South Africa and
Japan contains regular all-day drives. This dataset carobgidered as representative for
real traffic in every-day life and here, the proportion oigae is only 1.9%. The a-priori
distribution of the datasdireeDrivesis taken into account by weighting the number of class
samples during the creation of the series code.

Vehicle speed, daytime and driving duration are not indllideghe classifier training as these
features suffer from over-fitting of the data, i.e. the nighives are all conducted at about
the same time and at a mean speed of 130km/h.

8.2.4. Metrics for Assessment of Classification Results

The assessment of a trained classifier is essential to makeimgéul statements about its
generalizatiorcapabilities to classify unknown data or on-board in théaleh The classifier-
independent assessment of results also allows the cormparslifferent classifiers.

If the same data were used for the training as for assessthentraining error would be
reduced to its minimum, but strong adaption to the trainiagadvould lead taver-fitting
which does not allow a realistic assessment. To avoid thesavailable samples are parti-
tioned into disjunct subsets, tliaining, validation andtesting set The classifier model is
selected and trained by using the training and validatio® aed the generalization is tested
by the testing set. The estimation error of the validationiséiased since it is used for
the model selection while the test set is more represeatédgivthe true estimation accuracy
as it is not taken into account for the model tuning (e.g. nemds hidden layers). Ratios
of 80% for training, 10% for validation of the hyper-paraerstand 10% for testing of the
generalization are used. The more data are used for traithiadetter the classifier, but the
more inaccurate the prediction of the real generalizatroor decomes.

In the present application, it is of utter importance tiavesand especiallydrivers of the
testing set are unknown during the training set to obtaiialvkd results. If parts of a drive
and especially random samples from the test data are usadifong, it will be much easier
for the classifier than it will be in practice. Hence, testitada are always selected bptire
drivesandunknown drivers

A proven method for the splitting of data @soss-validation The classification results can
then be assessed bycanfusion matrixand derived measures lilsensitivity specificity re-
call, precision accuracy andFg-Score All principles are used in the following sections.

K-fold and Leave-One-Out Cross-validation

Cross-Validatioris a validation technique to assess how the training of aifiaswill be gen-
eralizable to unknown samples. The data are partitionedcomplementary, permuted sets
and the training error is averaged over multiple rounds adsification to reduce variability.
It is distinguished between théfold and theLeave-One-Out Cross-Validation

In K-fold Cross-Validation, the originally availabléN samples are randomly segmented into
k < N preferably equally sized subséfs, ..., 7x. Overi = 1...krounds, the subséf; is
used for testing and the— 1 subset$77, ..., Tk} \{7i} for training. The total training error is
averaged over therounds and its variance indicates the stability of the te3iile advantage
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is that each of th& subsets is used exactly once for validation &ndl times for training
purposesk = 10 repetitions are often used in literature stratified k-fold cross-validation,
the folds are selected such that theubsets have about the same a-priori distributions of
class labels to reduce the variance between the differents

The Leave-One-Out Cross-Validationis a special case of the K-fold cross-validation with
k = N. Since stratification is not possible here, the results meayiong under certain
circumstances. Another drawback is the augmented procgssie.

In our application, subsets are randomly selected acapitditthe desired a-priori class dis-
tribution ratio.

For series-deployment of the algorithm, we suggest to traerclasifier with and without the
test set and compare the classifier parameters. If the pteesvage not severely different, it
can be assumed that the generalization potential is betten all available samples are used
for training. The test set contains also valuable infororatio improve the model. Under
most circumstances, using all available data for trainiflgperform better in the field with
the drawback that the actual generalization performanneti&nown exactly.

Confusion Matrix

The Confusion Matrixrepresents the result of a classification, as shown in §db. The
columns describe the true reference and the rows show thsifidation result. The results
are converted in % by normalization of all samples in onesclal® our application, the
distribution of the classemwakeanddrowsycan vary, so the assessment of the classification
should be made together with the measuresdikesitivityandspecificity

True
Detected Alert (N) Drowsy (P) Accuracy
True Negative False Negative | Negative Predictive Value
Al deiegiEe ) (TN) (FN) NPV = TN/(FN+ TN)
False Positive True Positive Positive Predictive Value
Dl 2R () (FP) (TP) PPV = TP/(TP+ FP)
Total Specificity Sensitivity Accuracy
TN TP TP+TN
TN+ FP TP+ FN TP+TN+FP+FEN

Table 8.1.:Confusion matrix or contingency table

The Confusion Matrixrepresents the result of a multidimensional classificatimotess as
shown, for instance, in Fi¢.19

Sensitivity/Recall: or aTrue Positive Rat€TPR) means that all fatigue drivers are warned
correctly or get the righATTENTION LEVEL shown. We can also refer to it as "detection
rate” of fatigue drivers. In drowsiness detection, it is artant to achieve a high sensitivity
value, since it was found out that drivers do accept falseniwgs, but not missing warnings.
It is defined as the probability that a driver was detectedetavakeunder the condition that
he wasawake

TP

itivity= Recall= P(D D —_—
Sensitivity= Reca (DrowsyDrowsy) or TPIFEN

%.  (8.1)
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Specificity: or aTrue Negative RatéTNR) of 100% means that not one awake driver got a
wrong warning or, with other words, this is the false alarmera

o _IN
Specificity= P(AwakéAwake or TNTFP (%] (8.2)
TheFalse Positive RatéFPR) or false alarm rate is defined as:
FP
B i kP
1 - Specificity= P(DrowsyAwake or TNTEP (%] (8.3)

Precision: is also referred to gsositive predictive valugPPV). On the other hand, precision
or positive predictive value is defined as the proportionreé fpositives against all positive
results (both true positives and false positives)

- rP
p ——  [% A
recision TP+ FP [ 0] (8 )

Accuracy: (ACC) is the proportion of true results (both true positieesl true negatives) in
the entire population. An accuracy of 100% means that adisdfi@d values are exactly the
same as the reference classes.

TP+TN

A =
Uy = TP TN+ FPLFN

%) (8.5)

8.2.5. The kg Score

Fs-score is a measure for the overall performance of a classifta a single indicator and
defined by
Fs = (1+ ) (precision: recall) /(8% - precision+ recall), (8.6)

whereg is a parameter to differently punish precision vs. recahe F1i-score is a special
case:
F1 = 2(precision- recall) / ( precision+ recall) . (8.7)

B is adapted according to the desired design goals as iltedtia Fig.8.5andg = 1.2 is
used in this context. It is used as a combined measure.

8.3. Warning Strategy Assessment

8.3.1. Conversion of Classification Results into Warning

The characteristic of a warning strategy and concept inXTTEENTION ASSISTIs to issue
a warning at the onset of fatigue. The driver can acknowlatigevarning by pressing the
OK steering wheel button. If the drive is continued, the vimgrwill repeatedly be issued
again after 15 minutes of driving in a state classified@asvsyin order to remind him having
a pause. If the warning is not confirmed, it will be assumed ttia driver has not seen the
warning and will be issued again after 5 minutes. The warcgug only be triggered by a
corrective event that the driver notices.

Now, for the offline evaluation, we assume that the driveragisvconfirms the warning. To
convert the classification result into a warning, the firsagke for which the clasdrowsyis
classified is set as the first warning. Then, the next warrsrnigsued after at least 15 min, as
soon as drowsy is classified again.
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8.3.2. Warning Assessment with Temporal Tolerance

Warnings can be assessed for an entire drive or by segmatriirgs into time slots of 15
minutes. In the scope of th&fTTENTION ASSIST series introduction, the system warnings
were assessed according to the definition below. A tempaolexiaince was introduced for the
assessment of warnings as drivers accept warnings dunghidise of their fatigue onset.

An entire drive can be evaluated in relation to tdesired warning levelcf. Ch.3.3.3 by
the following tolerance criteria:

TN  No warning necessary No warning was issued and the maximul8S < DWL

FN  Missing warning No warning received, but maximukKSS > DWL

TP  Correctly warned Warning received an&SS > DWL-1 during first warning
or within 5 min afterwards. (The first correct warning is
essential as the driver is supposed to stop the drive then).

TPE Warned too early Warning received within 5-15 min befoSS> DWL-1

TPL Warned too late Warning received over 15 min after necessd§5> DWL

FP False alarm (otherwise) Warning received whikkSS < DWL-1 and at
least 15 min befor&SS> DWL-1

These modified classification results can be combined asibdeddelow. The number of
warnings in relation to drowsy intervals or first warnings:

TP+TPE
TPR"TP+TPE+TPL+|:N (8.8)

Everyone, who did not get a warning in time vs. everyone, wéeded a warning:

FN+TPL

Missing Warning Rate= TP+ TPE+ TPL+ EN

(8.9)

Everyone who got a warning much too early or if no warning wasessary in relation to
everyone who was awake

FP
False Al R . A
alse Alarm Rate= P+ TN (8.10)
The correct decisions in total vs. all outcomes is then:
TP+TPE+TN
Correct Total= (8.11)

TP+ TPE+ TPL+ FP + FN + TN

15 min time slots: This principle can now be evaluated for all 15 minute timdssldn this
concept, we will categorize a warning again as wrong, if is@ied in a period, in which
the driver is awake for at least 15 minutes before and aften d fatigue has been involved
during the beginning of the drive. TaB.2 shows this criteria for a selection of features. At
first, only one feature is used for classification as this érttain evaluation method used
to develop theATTENTION ASSIST. The improvedATTENTION AsSSIST feature performs
better for this criteria, however, it was not allowed to bélzhed.
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15twarning 15 min interval
Feature TPR[PPV]FPR]ACC ]| Fg | TPR] PPV ] FPR ] ACC | Fg
STWZCR 95% | 28% | 83% | 36% | 48% | 45% | 43% | 16% | 76% | 44%
LRVFAST 70% | 37% | 56% | 52% | 51% | 22% | 42% | 7% | 81% | 28%
STWELZCR 77% | 31% | 63% | 47% | 48% | 30% | 40% | 10% | 79% | 34%
LRWERYFAST 79% | 33% | 70% | 44% | 51% | 26% | 39% | 9% | 80% | 30%
LNCHGVEL 96% | 26% | 88% | 33% | 46% | 42% | 41% | 17% | 75% | 42%
M CROCORRECTI ONSW || 81% | 33% | 59% | 51% | 50% | 29% | 42% | 9% | 80% | 34%
STVEVENT 67% | 45% | 38% | 64% | 56% | 25% | 49% | 6% | 83% | 31%
TURNI NDDUR 96% | 27% | 85% | 34% | 46% | 41% | 42% | 14% | 77% | 41%
DEGO NT 93% | 29% | 83% | 38% | 49% | 35% | 40% | 13% | 78% | 37%
DYNDRI VI NGSTYLE 97% | 25% | 88% | 32% | 45% | 47% | 42% | 18% | 74% | 45%
REACTI M 91% | 28% | 85% | 35% | 47% | 34% | 38% | 13% | 77% | 36%
LRVPERCHI CH 94% | 27% | 85% | 35% | 47% | 42% | 40% | 16% | 75% | 41%
LATPOSZCR 79% | 34% | 62% | 50% | 52% | 21% | 40% | 7% | 81% | 26%
DELTALATVELNAX 89% | 33% | 78% | 42% | 52% | 32% | 42% | 10% | 79% | 35%
ZI GZAGS 86% | 36% | 70% | 47% | 55% | 30% | 44% | 9% | 80% | 35%
ELLI PSE 94% | 27% | 85% | 34% | 46% | 46% | 43% | 17% | 75% | 45%
DELTADUR 97% | 25% | 88% | 32% | 45% | 47% | 42% | 18% | 74% | 45%
VI BPROP 68% | 35% | 58% | 50% | 49% | 23% | 43% | 7% | 81% | 29%
LNERRSQ 99% | 29% | 87% | 36% | 50% | 47% | 44% | 16% | 76% | 46%
TURNI NDADVANCE 97% | 25% | 89% | 31% | 45% | 47% | 43% | 18% | 75% | 45%
LNMNSQ 96% | 27% | 87% | 34% | 47% | 41% | 42% | 15% | 77% | 41%
LANEX 99% | 29% | 87% | 36% | 50% | 47% | 44% | 16% | 76% | 46%
LATVEAN 92% | 30% | 82% | 39% | 50% | 41% | 46% | 13% | 78% | 43%
L ANEAPPROX 79% | 32% | 70% | 44% | 50% | 29% | 43% | 9% | 80% | 34%
LANEAPPROXAD 83% | 39% | 62% | 52% | 57% | 25% | 46% | 7% | 81% | 31%
L ANEAPPROXADAPT 83% | 34% | 65% | 49% | 52% | 26% | 41% | 8% | 80% | 30%
DELTALATPCS 81% | 34% | 70% | 46% | 52% | 31% | 46% | 8% | 81% | 36%
LANEDEVSQ 66% | 36% | 58% | 50% | 49% | 19% | 44% | 5% | 82% | 25%
NVRHOLD 73% | 37% | 50% | 57% | 52% | 29% | 51% | 6% | 82% | 35%
LANEDEV 85% | 32% | 76% | 42% | 51% | 35% | 45% | 10% | 79% | 39%
ORA 96% | 28% | 87% | 34% | 48% | 45% | 44% | 16% | 76% | 45%
LNl QR 93% | 31% | 80% | 40% | 51% | 36% | 44% | 11% | 79% | 39%

Table 8.2.:Warning assessment of single feature classification se@uithout a-priori features), for
which Fg is maximal forg = 1.2. All features are baselined byaxof the first active 1 to
20 min.

8.3.3. False Alarms by Driving Duration

Up to this point, we have not considered that the warning@tecee is much higher at night,
in monotonous situations and after several hours of drivi@gr studies show that drivers
accept false warnings, but not missing warnings. Howevenappr concern is that drivers
get "spammed" by too many false alarms. Our study shows h#adtivers accept wrong
warnings after longer driving duration more than warningtha beginning of a drive. For
this reason, Fig8.3 shows the false alarm rate by driving duration. Within 2h o¥idg,
there are still under 1.4% false alarms.

8.4. Feature Dimension Reduction

Theoretically, the more uncorrelated the features aretigu, the better the classification.
But if the number of features gets too high, the need of maiaitrg data cannot be fulfilled
any more due to th€urse-of-Dimensionalitproblem. For instance, if #0samples are
enough to accurately describe the distribution of an onsedsional random number, 20
observations will be needed to obtain the same accurackite¥8-dimensional space.
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First false alarm accumulated by driving duration (end of drive): 1962 valid drives (FreeDrives)
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Figure 8.3.: False-alarms accumulated by driving duration.

The curse of dimensionality can be tackled by the reductfdeature dimension or selection
techniques that focus on the most relevant features. Ferdaison, dimension reduction
techniques are applied?rincipal Component Analysi&®CA) and Fisher transform(LDA)
are methods to transform a given feature space to a lowerndiowal one Duda et al.
2002).

The Sequential Floating Forward Selectid®FFg algorithm was first introduced byudil

et al.(19944ab). In the forward stepSFFSsequentially adds the most significant new feature
to the set until a given number of features is reached. Inrdodevoid going straight to a local
optimum, conditional exclusion steps (backward steps)epeated until an improvement
of the performance is achieved or the performance start®toedse. It is assumed that
a new added feature can contain redundant information shalréady inside the selected
subset. This way, redundancy can be reduced while not lgdsim much discrimination
performance.

PCAdoes not yield any useful results, since the preconditianttie variance of the signal is
larger than of noise, is not fulfilled. AldoDA has shown poor results compared to 8-S
The advantage @FFSis its high transparency as the selected features remairanged and
only these features need to be extract8&FSis applied here to select the most promising
features for a classifier.

Tab. 3.9 shows the frequently selecté&l E features from th&FFSselection of the features
listed in Tab4.2

A statistic is made of how often features are selected affgrated runs of the non-determin-
istic SFFS It was often observed that related features were selecar@ugdifferent iterations
(e.g. LANEAPPROX andLANEAPPROXADAPT). Thus, we can assume that such features can
be used interchangeably and all features of a family woutghravide any performance gain.
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For this reason, only the best feature out of its family isdygbe one that was selected
most often. Tab8.3 lists a statistic of the most frequently selected featufeess 80 SFFS
repetitions in combination with thBayesclassifier. It can be seen that correlation coeffi-
cients of individual features are not necessarily relatetthé performance of the features in
combination.

ID || Feature Name | Selections| pp |  ps
45 CIRCADIAN 30 0.49 | 0.51
43 || TOT 30 0.26 | 0.27
22 DEGOINT 30 -0.19 | -0.22
29 LNMNSQ 30 -0.03| 0.01
51 STWEVNT 29 0.16 | 0.17
52 || STV25 29 -0.30 | -0.34
54 || STV75 29 -0.32 | -0.36
38 DELTALATPOS 19 0.14 | 0.13
39 DELTALATVELMAX 18 0.11| 0.11
17 || ZIGZAGS 17 0.12 | 0.10
34 || ORA 14 0.09 | 0.08
40 LANEAPPROXADP 14 0.02 | 0.01
53 STV50 14 -0.27 | -0.32
33 LNERRSQ 13 0.05| 0.10
35 || TLCIMIN 11 0.18 | 0.18
30 LNIQR 9 0.09 | 0.09
14 LANEAPPROX 6 0.14 | 0.15
19 LATMEAN 5 -0.10 | -0.11
36 || VIBPROP 5 0.08 | 0.08
26 || TRFCDENS 4 -0.33 | -0.40
31 LNCHGVEL 3 -0.12 | -0.20

Table 8.3.:Correlation coefficients of frequently selected features

8.5. Classification Results

For classification, features in the matexfrom Sec4.2.1are cleared foNaN andc values
and filtered for time instants, for whiAS an andS AS ane are active F is downsampled
toFs = 0.5Hzto speed up processing time, based on the assumptions frofrti@t fatigue
changes slowly. All features are used with baselining fran.5.4.1

Different classifiers, such dsnearest neighbor, linear discriminant analy$ibA4), Bayes
classifier, Gaussian mixture mode{SNIM), support vector machineSYM) and artificial
neural networksANN). Results are obtained by cross-validation with a trainiregdation
and test set ratio of 80:10:10 percent KN and 80 to 20 percent for all others. The
results were averaged over ten permutations of the trdiestgng set to obtain a more stable
result.

Since the classification does not take into account the kigstory (except HMM), the
classification result is smoothed based on a majority detigiwards adjacent classification
results. A majority weighting is applied by a median filtemngstheN = 7 adjacent values to
obtain a more stable result. Details can be found in thedtudsie Mattos Pimenté20117).

A comparison of test errors for different classifiers is giwe Tab.8.4. The best results are
achieved with the best 11 features that have been select8&®B$in combination with the
Bayes classifier.
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Classifier H Test Error [%] AUC
k-NN (k=5) 44.0

GMM (3. Modes) 43.3

Linear discriminant 324

Bayes classifier + SFFS 36.6

SVM (C = 272,y = 27/, RBF kernel) 27.9 0.76539
ANN 16.6

Table 8.4.:Test error for three fatigue classes with a training/tgstatio 80:20 (80:10:10 for ANN)
and 10-fold cross-validation

Tab. 8.5 presents the confusion matrix for Bayes with a full covas@matrix andGMM
with two Gaussian mixture modessMM performs better in predicting fatigue, however,
with more false alarms.

Correct
Awake Acceptable Drowsy
% Awake || 63.2 % 25.9 % 3.7%
kS § Acceptable|| 32.1% 62.8% 62.1 %%
28 Drowsy|| 47% 11.3% 342%
% Awake || 64.4 % 34.5 % 6.1%
E = Acceptable|| 27.8 % 47.8% 51.6 %%
B2 Drowsy| 7.8% 17.7%  423%

Table 8.5.:Confusion matrix for Bayes with full covariance matrix ant®@ with three modes

8.5.1. Neural Network Classification Results

The best results are obtained by a neural network with trerpotatedKSS, as it allows
the modeling of more complex structures. The detailed afumatrix in Tab8.6 stems
from a feed-forward neural network with three hidden layeesch with 30 neurons trained
by backpropagation.

Correct KSS

1 2 3 4 5 6 7 8 9

1| 00 00 00 00 00 00 00 00 00

2|/ 1000 613 01 00 00 00 00 00 00

2 3 00 387 756 21 00 00 00 00 00
X 4|l 00 00 202 96 54 01 00 00 0.0
£ 5|| 00 00 37 73 9.8 56 06 06 06
% 6| 00 00 04 00 38914 68 24 06
w 7| 00 00 00 00 00 28913 285 7.2
8| 00 00 00 00 00 00 14684 46.1

9| 00 00 00 00 00 00 00 00456

Table 8.6.:Confusion matrix for ANN classification results in percent
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Application of theANN with the same parameters to the classsakeanddrowsy(including
acceptablgyields:

| Awake Drowsy
Awake | 96.4% 10.7 %
Drowsy| 3.6% 89.3%

Fig. 8.4 shows a scatter plot with regression line of the classificatesult compared to the
true KSS The classification result for evel/SSlevel has a scatter cfl level. It can be
seen that th&SSlevel 9 is sometimes mixed up with more awake classes. ltésésting
to see that akKSSlevel three, almost eveSSlevel is estimated by th&ANN. A plausible
reason for this is, that drives with missikgS entries are filled with the defaukSSlevel
three during the plausibility check without really knowitige real driver state. It shows that
the ANN is able to interpolate missingSSvalues better than using default values.

Classification vs. KSS Reference (Train error: 4.6%)
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Figure 8.4.: Scatter plot and regression line ANN classification results plotted against and trained
by the nine interpolateSSlevels

Fig. 8.5 shows theROC curves of different feature groups and classifier combomati The
selection of the best lane and steering features (bluejifitsss by the Bayes classifier per-
form better than the single featu88 VEVENT from the (black). The baselinedTTENTION
AssisTseries featur€GGELWF (black) that includes the time-on-ta3kOT andCl RCADI AN

just reaches the target area specified by the project. Thalcgulue) features set in combina-
tion with TOT andCl RCADI AN perform about 6% better in the target area and much better
for high detection rates at the cost of unacceptable falensl The combination of causal
features (blue) and the improved steering event &téEVENT vyield the best results. For
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the ANN result, only the point with the minimum test error was ava#sand was included
for comparison. It shows by far the best results inside tleeifipd project target, however at
a much lower false alarm rate.

It can be seen, that thH&NN lies much better in the target area than the other methods.
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Figure 8.5.: Comparison of ROC curves of different feature groups

8.6. Deep Learning

Deep Learning(DL) is a subset oMachine Learning(ML) that has grown exponentially
within the last decadeQoodfellow et al. 2017. For instanceConvolutional Neural Net-
works (CNN) (Patterson and Gibsp2017 reached a brakethrough in image segmentation
(Krizhevsky et al. 2012. Natural language processing (NLP) or hand writing redamm
often times surpass the level of human accuracy Rifiturrent Neural Network@RNN)

or more specificalljLong Short-Term Memorf STM) networks. In contrast to traditional
machine learningDeep Neural Network€ONN) can learn from raw signals and laborious
manual feature engineering is not required, however tramldy higher computational de-
mands. Tab8.7 shows a comparison between conventidvial andDL.

Conventional Machine Learning (ML ) ‘ Deep Learning (DL) ‘

+ Fast training of models — Expensive training

+ Good performance with small amount of data- Vast amount of data required

— Manual feature engineering + Learns features and network
parameters automatically

Table 8.7.:Comparison between traditional Machine Learning (ML) arep Learning (DL)
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In CNNs, feature extraction can be represented through coreplutith trained kernels
moving with a given step size (stride) over the raw input algnThe convolution takes place
in the neurons of convolutional layers that can representygre of spatial or temporal filter
to smooth, differentiate, integrate or match patterns. détevork structures can consist of
a few or up to over hundred cascaded layers (e.g. VGG, ResMetactivation functions
of neurons, sigmoidal functions can limit large values. Ret.Ufunction (simplified diode
equation) became very popular, since it significantly spaguthe learning rate (gradient
descent) and non-linearity is introduced. One or sevenalalational layers are generally
followed by pooling to condense information to save computational cost andcesduer-
fitting. Averageor max poolingare commonly used, since the largest value represents the
highest activation. The last layers generally consist afgital neurons (often dense, i.e.
fully connected) that represent the classification and his@titput of convolutional neurons
as features. In case of a classification problem, the Sofiinaxnormalization converts the
outputs to probabilities in order to make a decision.

For time-series application®2NNs are frequently used, where neurons additionally have
a feedback memory that can learn sequential informatieitérson and Gibspr2017).
However,RNNs particularly suffer from numerical problems during tiagn("vanishing/ex-
ploding gradient problem")LSTM networks (introduced b¥dochreiter(1991) respectively
Hochreiter and Schmidhub€l997) do not suffer from this problem and appeared most
appropriate in the present application in conjunction wihvolutional elements.

For some applications (e.g. WaveNétqrd et al, 201§), aCNN with a large enough recep-
tive field (i.e. the kernel size) can successfully be usetbatsof arRNN, with other words:
a purely feed-forward filterRIR) instead of a recursive filtetIR).

For training ofDNNs, theback propagatioralgorithm is used in analogy to tradition&aNNs.
In order to reduce the computational complexity for largeuwoeks and amounts of data, the
processing obatchesallows to use only representative subsets of the data fioirica

8.6.1. Application of Deep Learning to CAN-Signals

Firstly, the simplest approach to uB& to solve the present problem is to U3BINS on the
manually designed features. Using improved algorithmmsaadito use more features concur-
rently and suffers less from the curse-of-dimensionalitybfem. This is an alternative for
dimension reduction witlsFFSor PCA. Recursive (such @&&NN andLSTM) or convolu-
tional network structure in conjunction with pooling agggéon, dropout and processing of
batches allow to train with a sequence of featureMN can be used foordinal regression
(cf. Ch.8.2.7) and exploits the rank information of interpolat&&sS levels (cf. Ch.3.3.6,
which generally improves the performancgotta 2005 Gutierrez 201§. However, infor-
mation that is lost during the feature extraction cannotdoevered and poses limitations to
the achievable accuracy.

Concepts for Automatic Feature Extraction: As mentioned in Sed.1, anend-to-end
DNN can automatically learn features from raw data. Pringjp@lDNN is able to model
all signal processing steps of traditional feature engingesuch as smoothing, differentia-
tion, pattern matching etc. Structures and parametersaradd automatically at the cost
of computational complexity. Reducing the computatioméélience cost (i.e. the network
complexity) is still a manual process. No literature on gddt on CAN-signals was found
that would have been useful for this application.
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CNNs have shown their strength in detecting patterns in 2D is\dne lately also in 1D time-
series applications (e.@onvLSTM, ALSTM-FCN, cf. (Cui, 2018 Gehring 2017 Karim

et al, 2018 Janos 2018). LSTMs have shown their strength in long time-span sequence
applications, especially for high sampling rates wherepiamal CNNs would require to store

a huge amount of the input data.

In the previous chapters, we found that the causal infoonatbout fatigue is expected to be
in events and sliding windows in the steering and lane sigmalstly. For instance, in order
to detect steering patterns that usually take up to five skcamtemporal convolution can
be performed on the steering velocity. For the inference ©N&, this requires to store 250
samples of the input sequence. However, the event itself dokeyet correlate with fatigue
and theirfrequencyover a time-span over at least 20 min is required. The sampadeh
convolution would be able to find lane-based patterns suaigagag events, lane deviation
or approximations. For lane data, the time-spans are egiehand last up to one hour (180k
samples per signal). The detection of single events is lplessith aCNN, but especially for
the inference, the memory demand for a large perceptivetbieletain event rate information
cannot be met. For such long time-spdnSTM structures are much more promising.

Recent publicationsShi, 2015 Cui, 2016 Wang et al, 2016 Karim et al, 2018 show, that

a combination of convolutional and recurr&@TM networks can outperform solitary struc-
tures. Thus, the most promising approach would be a combinat CNN layers, followed
by LSTM layers for the stage of feature extraction.

As input, the steering wheel angle velocity, absolute &teane position and width, vertical
and lateral acceleration, accelerator pedal position ameelrotation speed are suggested
to be used. To remove useless noaise, it is proposed to udel8rOfilter for smoothing
and differentiation, suggested in Chl.1 Inputs shall be standardized to zero-mean and
unit-variance.

Patterns that are induced by external events, such as &mera inactivity, lane changes,
overtaking, cross-wind, road warping, curves, constoucsites etc. are not related to fatigue.
These useless patterns that stem from such situations canuteel by removing samples
when thesystem-active-signas passive (cf. Ch4.1.3.

Dense layers take over the classification of these featuréghe last neuron of thBNN
shall be an ordinal regression neuron. As target refereéheanterpolated nine levélSSen-
tries are most suitable for the regression. The predicteskek finally have to be mapped to
the bar-graph levels or the warning strategy. Finally,rigrthe network structure and hyper-
parameters is one of the most challenging tagkgoML approaches gained high popularity
and can perforniNeural Architecture SearciNAS (Hutter et al, 2019 where the structure
of the network and involved parameters can be searcheddiegdio predefined strategies
and restrictions, however at the cost of additional comipiex

Challenges: As already argued in CH, due to on-board inference cost and intransparency,
DNNSs are not the first choice for deployment on automoE¥&Us. For off-board training,
processing of big data ar@PUin liaison with cluster/cloud computing would be necessary
and were not available for this thesis.

A-priori factors such aglaytime time-on-taskvehicle speedcurvature monotongndlight

shall also be included. These signals need no pre-progessidirectly correlate with fa-
tigue. As a consequence of the very unbalanced class distrib classifiers strongly tend to
detect night experiment situations in which fatigue is moare prevalent than in real road
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drives. These driving situations are not causal indicdirsatigue. Based on the a-priori
distribution of free drives, random oversampling the mityofsleepy) or undersampling the
majority (awake) is a common approach (eSynthetic minority Over-sampling TEchnique
(SMOTE) usingk-NN). This would either loose information or blow up the amouintrain-
ing data by magnitudes. At the other hand, continuous-dadéix¢ernal factors such as speed,
traffic density, curvature and road condition have a strofigénce on features as shown in
Ch.5.2 Features need to be independent of these factors. It appleaienging to design a
DNN that is able to distinguish between normalization and tgkiire a-priori distribution of
free drives into account. When removing samples to mutetsyére timing and event rate
information is lost and cannot be learned by the classifigrraare. The reaction time to
external events, such as the steering correction afterboanps is also no longer contained
in the inputs. Adaption to new vehicles types and differemintries is a major issue and
only works if all dozens relevant vehicle variants were ka@é prior to production to record
training data, e.g. for transfer learning.

Another challenge is certainly the adaption to the driveamalogy to baselining. In order
to adapt to individual driving styles, the result of the featextraction layers from the be-
ginning of the drive would have to be stored, aggregated by poaling (in analogy to max
baselining) and later fed into the decision stage of the otw

Due to the large spectrum of external factors and drivergypat overlay the weak fatigue
patterns, a lot more data and situations would be requiredchito aDNN. This could only
be achieved by the oncoming over-the-&TQ) infrastructure where sensor signals are per-
manently preprocessed on-board and transferred to thedwatkFor supervised learning, a
ground truth reference is mandatory. Using real field datg fillahe lack of data and solve
the unknown a-priori distribution problems, however wédlge an even bigger problem: cus-
tomers will not estimate their fatigue level every few misinor will they weaEEGEOG
electrodes. Transfer of driver-camera video data for aflabeling would require a driver
camera and is not possible over 40 E+) or even 5G since the produced traffic would be
way too expensive. Centrally storing driver videos woukbabe very critical for data protec-
tion and crash liability reasons. If a camera would be alsbelat would make more sense to
investigate eye-tracking based approaches.

Reinforced learning would require to interpret the reactio warnings as reference, as de-
scribed inreinforcement learningn Ch.8.2.2 However, this is even much less reliable than
theKSSand lacks temporal resolution and fatigue levels. An optioild be to incentivize
customers to rate their warnings and thereby "entertagrhtivith an experiencable car that
is self-learning.

8.6.2. Application of Deep Learning to Driver Camera

Especially eye-tracking camera-based driver state @leestibn can potentially profit from
DL. Parkhi et al.(2015; Mukherjee and Robertsaf2015 andHan et al.(2018 have con-
firmed, that classification with multiple stages work bestdge-blinking detection. At first,
the face is detected in consecutive driver-video images GYB. After initialization, the
search region-of-interest (ROI) can be reduced by trackikgyface model reference, exist-
ing databases can be used or manually labeled for this stage. models of known drivers
can be stored to accelerate initialization.
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In the second stage, the eyes, pupils and eye-blinks cantbetel in the again narrowed
down, but higher-resolution&®Ol. The EOG signals from Ch3.4 can be used as reference
for eye-blinks in this stage.

In the last fatigue classification stage, RNN or LSTM can be used for deriving the sleepi-
ness level from the eye-blinks. As shown in Gt6.11 a video frame rate of at least 100 fps
is required to reliably detect eye-opening and -closuredpés reference, thi€SSentered
by the driver can again be used. Video recordings even allavajarity voting of experts,
which is actually considered to be the most accurate mettfo€l.3.3.7). By training these
stages independently, the eye-blink signal is free fromu@nrftes in the video image that
could lead to over-fitting to the training data. For instagredull end-to-end approach that
works on the raw data could exploit that fatigue is more dewaduring night experiments,
i.e. low light conditions. Fatigue also occurs most oftenirty low traffic, which results in
fewer shoulder checks, i.e. horizontal head rotations. él@w these relationships are only
valid for the training data with artificial night experimerdnd no causal indicators for fatigue
during real road drives. It is desired to be independent of situation based a-priori fac-
tors, since the amount of fatigue during night and day ofitrdensity is unknown. Training
an end-to-endCNN for facial expressions (e.g. yawning or head-nodding) is@ditional
option.

8.6.3. Conclusion on Deep Learning for Fatigue Detection

Even ifDL is superior in many applications, the fatigue patterns are gveak and obscured
by other factors in th€ AN data. In summary, straightforward deployment @M&N will be
inferior to theML approach in which expert knowledge is explicitly modeledty feature
engineering.

In comparisonPL approaches based on driver-camera are expected to be rasislideand
promising. The gained features are causal and can be mod#peéndent from the a-priori
distribution or external influences. The missing groundhtrproblem also remains here.
However, for this thesis, the amount of representativeesithe-art camera-data with high
frame-rate and witiKSS reference were not available. The focus was explicitly angus
CAN-signals, since there was no camera on the market that wag fiagproduction.
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Chapter 9.

Conclusion

9.1. Summary

Fig. 9.1shows a "graphical abstract” of the entire system and dpnedat process.
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Figure 9.1.: Visual abstract: overview of the entire system

Pursuing the goal of developing an assistance system, ¢atdibie driver sleepiness state,
many steps were necessary that have been refined over miatipits.

Starting with only one feature that detects steering ctimes by a driver adaptive threshold,
it soon became clear that more effort is needed to relialtiyatleriver fatigue.
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A major restriction during the optimization of the systemsvilae lack of a reliable "ground-
truth" reference. For this reasoBEG EOG and camera-based features were evaluated.
Although the results in literature are often reported to bey\good, the use of real-road
drives did not show satisfying results. Direct camera-8ddimking features have shown the
most promising results. However, a camera system was nawadble at that time that
was robust enough to cope with realistic driving conditioRarther, a large amount of data
were only recorded by using tiSSreference. For this reason, tk&Swas found to be the
most practical reference. Numerous features were anahggaading their correlation with
the KSS drowsiness reference. Many of them correlated relativadyt, vespecially a-priori
features, such as time of day, time-on-task, monotony affictidensity. However, a-priori
features need to be treated carefully as they are not sentitthe real driver condition.

For the series introduction of th®TTENTION ASSIST 2.0 with theATTENTION LEVEL, a
bar graph was implemented based on several features witimgous output. An extensive
night study with a real-time implementation of tAe@ TENTION LEVEL was conducted to
verify its acceptance. Plausible levels were shown modifitne, but it was observed that
a system active / passive detection was introduced whidbates to the driver, whether the
system is passive and unable to detectAmMEENTION LEVEL.

The lane based features have shown results comparable sbettréng based features. An

important requirement of our application, however, is te ssnsors from series equipment
instead of using a special equipment lane-tracking cantiesd,is not available for the ma-

jority of vehicles in the field. For this reason, the idea wagstimate the same lane-based
features from inertial sensors and vehicle tracking. Nl ¢hie same, but still good accuracy,
some lane-based patterns could be used in this way.

In the last iteration, another major impact on features vaakesssed, the influence of unde-
sired factors like external influences and inter-individiraving styles. Especially under real
world conditions, the suppression of external influences asfaption to the driver is very
important. It was observed that there are different typedrivers, those who accurately
keep the lane by lots of steering corrections and those whmtlbastily correct the lateral
position and have a rather loose lane keeping. Specific merasats have been recorded to
guantify and compensate for their effects as good as pessibl

Based on the extracted features and a feature selectiondiffepent classifiers have been
compared. In general, lane based features were often estlictombination with steering
based features, as they provided complementary informaieural networks, LDA and the
Bayes classifier, in combination with SFFS feature selacti@rformed best for the difficult
features. Especially neural networks have shown to enhtfreceystem performance. But
even with a large set of new and improved steering and laredifaatures, the classification
performance was not as good as the results reported intliteraising a smaller amount of
data from a simulator or using drives under testing conatitio

9.2. Future Work and Outlook

An optimally operating fatigue detection system can onhdbeeloped by jointly taking all
the factors mentioned in this thesis into account. Invastg on the following approaches
could further improve the results:

¢ Installation of a steering whe#brque sensor in order to measure reaction times, as
described in Ch4.4.12
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e Merging EEG eye-signals (e.g PERCLOS84tistg 2007)) and a distraction measure
in addition to theKSSfor a better temporal resolution of the reference

e Further analyze multi-level classification to use drivityges specific features

e Further investigate Hidden Markov-Models and Bayes ndta/do model temporal
aspects and expert knowledge

e Derive driver-model control system parameters, as destiito Ch.4.4.16

e Using unsupervised learning to incorporate the drivertreacwhether he is following
the proposed warning or not, to update classification Jeitgit

e Applying more extensive parameter optimization, not orflgingle features but with
the classification performance of selected features aduosion

e |nvestigate Deep Learning methods and its ability to leaatures automatically from
source signals. Convolutional and recurrent/LSTM neusivork structures appeared
to be most appropriate.

e Using existing over-the-air and cloud infrastructure finforcement off-board learn-
ing and adaption to known drivers, environments and velpiciperties.

Driving in a driving simulator and under supervised comli§ has a big influence on the
driver's behavior. It was observed that many awake driveitsalso drive sloppy, if the
motorway is empty or if they are distracted by talking or othetions. The driving behavior
in these situations is the same as for drowsiness and, taosptbe distinguished. For this
reason, a good strategy would be to provide feedback to ikierdtbout his/her objective
driving performance over thATTENTION LEVEL bargraph. In the actual system, only one
feature is used instead of tHeNN result in Ch.8.5.1 Usually, drivers tend to drive more
aware, if they get a feedback on their driving performance.

The temporal unavailability of the lane-tracking has alsebeen considered during the fea-
ture extraction. The block diagram in CH2 shows how to cope with the case that lane data
are temporarily unavailable due to bad vision, mis-catibra missing lane markings or in
case the ALDW is not installed or damaged. If ttene DataQuaindicate unavailability, the
training parameters and classification input featuresldhmeiswitched.

In the big picture, after decades of research, one has tpuatitat the driving parameters
contain only a limited information about the driver statel &y magnitudes lower than other
external influences. Indirect fatigue monitoring througividg parameters will still be rele-
vant for at least two decades as manual driving will stilydarole until 2040 even in level 5
driverless vehicles and vehicles in lower segments.

In any casecamera-basedeye blinking detection was shown in this thesis to be most sui
able as a reference and for on-board implementation inssefplication. Especially under
the viewpoint of a future autonomous driving, a driver caangfows not only direct driver
state estimation by eye-tracking, but also a broad variettrer applications such as driver
distraction detection ("‘eyes-on-road™), driver iddid@ation, driver vitality (heart rate), ges-
ture, emotion and facial expression detection. This dineethod also works for automated
driving and is less affected by external influences and mygigtyles. For partial automated
driving it must be assured that drivers remain alert to h&edoperation over to the driver
in situations the car can't handle. The driver camera habdubenefits such as drivers can
also be identified to continuously learn their driving styldne latest over-the-air and cloud
computing infrastructure are enablers with the highesemal for improved performance.
ADAS warning thresholds can be lowered if the driver's eyes dgoatt towards a braking
vehicle.






—-177—-

Appendix A.
Appendix:

A.1l. Proving ground Papenburg and Idiada

Fig. A.1 shows a map of the commonly used proving grounds Papenbdrideada. The
longest oval course has a length of 12 km.

Daimler Papenburg

"

Endurance dnw course south (DLK-Siid) ’\\‘

Figure A.1.: Proving ground Papenburg (above) and Idiada (below). (@sur&TP Papenburg
2012 and (diadg 2012)

A.2. Datasets

Different datasetswere defined that were dedicated to specific evaluationsselatasets
are criteria to select drives with certain patterns impletee asSQL queries. The resulting
fixed set of drives serves to compare the results. Using alenddta set speeds up the



~178-

simulations. The results can then be refined and validateal larger or full dataset. The
most important datasets used in this thesis are descriltéé fiollowing section.

For faster processing, the datagetDWvalidNDwas a smaller set of drives that contained
a large portion of fatigue. It excluded all free and KNFE devin which fatigue was rare
and the driving situations varied too much. After filteritg full database, 82 269km of real
drives with 781 hours remained:

e 323 drives (141 night drives; 124 free drives; the rest wgoeiesions)
e 10 vehicles (Six E- and four S-Class)
e 103 drivers (26% by women)

The criteria for drives in this data set were:

Drives werevalid according to the validation criteria in Se%.7.3

KSSself-rating was valid and plausible

At least oneKSSentry was made

The driven distance was at least 30 km

Lane-tracking data had to be valid and without measurenrenitse

No driver switch (otherwise the drive would have to be cut ugrg time)

Only E- and S-class vehicles (excluding vehicleID=69 duéstmiscalibrated camera)
Availability of plausible and valid ALDW data for over 50% tfe time

ALDWvalid was defined equally to ALDWvalMD, just that additional drives from all
experiments with ALDW were included (32 of 91 experimen&¥pecially Customer Near
Driving (KNFE) and free drives were added. The quality of these drivesasioespecially
with regards to the KSS self-estimation. From 25 vehicle642 drives with over 2.722
hours of driving, and 265.469 km remained. Here, the peagendf women was only 14.3%.
The lane data quality and active time of drives in Sweden taig Wwere sometimes very bad
due to bad road conditions.

FieldDrives was a good representation of customer drives in the field lagakfiore cov-
ered only free drives and customer near driving (KNFE). TH82 drives from 425 drivers
covered 299.170 km of driven distance during 3.174 hounspibly 12.5% women.

validTopDrivers  For the classification of drivers and clustering of drivitges in Ch.5.4,
the DataSevalidTopDrivershad to be defined. The filter criteria were the same a#\kdp-
Wvalid, except with the additional filter criteria:

e Only the top 15 drivers with the highest number of drives wsakected:driverID e
20,152,609, 607, 133,59, 5, 340, 753, 165, 483, 485, 484810,

e Only drives with maxKS S) < 7 were selected.

e Only excursion experiments and free drives, no night studie

233 drives with 542 hours and 57.835 km of driven distanceaieed and 27% of them were
made by women.
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A.3. CAN Signals

Tab. A.1 lists the names and abbreviations of the essential CAN lsigrszd in this thesis.
The signals are grouped by the sensors they originate frenthie steering wheel angle sen-
sor (STW), accelerometer (ACCEL), Yaw rate sensor (YAWgyederator pedal (ACCPDL),
switches and buttons (SW), levers (LEVER), rain and lighisse (LIGHT), clock (CLK),
wheel rotation rate sensors (WHLRPM), control system ECtivedCTRLECU), global
positioning system (GPS) and lane tracking camera (ALDW).

Tab.A.2 lists the available signals for the system fr&uabert Bosch GmbH
A.3.1. Synchronization of CAN-Bus Signals

In this thesis, a novel interface for communication with thedhicle CAN-bus was imple-
mented for real-time visualization, measurement and daitsegsion. The Controller Area
Network (CAN)-bus is an asynchronous, serial messagedidase protocol designed for au-
tomotive application.

Every CAN message ID originates from one dedicated deviceshich multiple bus mem-
bers can listen. Message IDs must be unique on a single CANThesmessage ID is used
as a priority to achieve a bus load of up to 80%. The lower theh® more important the
message. The 11-Bit ID Base frame format in CAN 2.0A allow$ap048 different message
IDs while the Extended frame format in CAN 2.0B allow® 2Ds. Carrier Sense Multiple
Access / Collision Resolution (CSMA/CR) is used for arhiitia to avoid collisions. Every
bus member is listening bitwise and submitting its ID. If tiplé units try to submit at the
same time, the dominant bit of the member with the lowest IDvisrwriting the recessive
bits of the other units which, then, stop submitting. Fos tl@ason and with the present high
bus load, the transmission time instant cannot be assured.

A CAN frame is composed as described in TAIB. In addition, the measurement hardware
stores the message counter and the timestamp of the messagéan.

Messages can be transmitted with different rates, depgrafinthe sampling frequency of
the contained signals. Mostly, high-speed CAN with bitsadé up to 1 Mbit/s are used at
network lengths below 40 meters. There are also low-spedd With a maximum bitrate of
125 kbit/s.

Every CAN signal is defined according to the structural prtgee listed in TabA.4. The
payload of a CAN-signal cannot be interpreted without thesatling information. These
definitions of all signals of a CAN bus is stored in a DBC-filéofey with signal descrip-
tions). Depending on this definition, every payload of oneNdAessage is composed of one
or several signals. Signals with more than 32 Bit have to btiduted on multiple CAN
messages. The interpretation of the data bits is only pessiith this definition (DBC file),
as it defines every signal.

Tab.A.4 shows the header and payload definition bits of a CAN-mesasigefined in DBC-
files.

Signal Synchronization

Another challenge is the synchronization of different CAignals and sensors that work
with different asynchronous sampling times. The CAN-busas deterministic. Hence, a
message can arrive delayed and lead to gaps and jitter inghals Fig.A.2 illustrates
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| ID [ Abbreviation | Description | Class |
1] s Steering wheel angle sensor with high-precision STW
2 | dsEsc Steering wheel angle sensor fr@sC STW
3 | ds,0ffset Steering wheel angle sensor offset STW
4| ax Longitudinal acceleration from accelerometer ACCEL
5 | &xoffset Est. ay offset (correct mounting tolerance, cf. S8c3.2 | ACCEL
6| & Lateral acceleration from accelerometer ACCEL
7 | 8yoffset Est. ay offset (mounting, road inclination, cf. Sez.3.2 | ACCEL
8|y Yaw rate YAW
9|y Yaw acceleration from sensor YAW
10 | AccelPdIPosn Accelerator pedal ACCPDL
11 | AccelPdIPosnRaw | Accelerator pedal before manipulation by ACC/limiterj ACCPDL
12 | TurnindLvrStat Turn indicator SW
13 | TImSwPsd Telemetry switch pressed SW
14 | StWSwPsd Steering wheel switches 0 to 15 pressed SW
15 | HrnSwPsd Horn pressed SW
16 | DTRDistRq Distronic distance state SW
17 | Phcall Act Phonecall active SW
18 | AirConSw Air conditioner switches SW
19 | SeatAdjSw Seat adjustment switches SW
20 | MirrorSw Mirror adjustment switches SW
21 | CLUTCH Clutch SW
22 | DrRLtchFRS tat Driver door state SW
23 | BckiIswD Driver sear buckled up SW
24 | S pdCtrlLvrStat Speed control lever state LEVER
25 | HiBmLvrStat High beam light lever state LEVER
26 | WprWwashRS wPosh Windshield wiper position LEVER
27 | LgtSens Light and rain sensor LIGHT
28 | TIMEnR Time of day in hours CLK
29 | TIMEuN Time of day in minutes CLK
30 | WhIRPMgL Wheel rotation rate front left WHLRPM
31 | WhIRPMR Wheel rotation rate front right WHLRPM
32 | WhIRPM:L Wheel rotation rate rear left WHLRPM
33 | WhIRPMkRr Wheel rotation rate rear right WHLRPM
34 | AS Ry Traction Control System active CTRLECU
35| ES Ry Electronic Stability Control active CTRLECU
36 | ABS: Anti-lock Braking System active CTRLECU
37 | HBAG Hydraulic Brake Assist active (e.g. BAS, BAS+) CTRLECU
38 | GPSon GPS longitude GPS
39 | GPSat GPS latitude GPS
40 | GPShead GPS heading GPS
41 | GPSspeed GPS speed over ground GPS
42 | GPSyt GPS altitude GPS
43 | GPSyajig GPS valid GPS
44 | MMgt map matched latitude from head-unit GPS
45 | MMign map matched longitude from head-unit GPS

Table A.1.: The simplified list of major CAN sensor signals

how the timing is disturbed by the CAN-bus transmission amngdtrbe recovered to the fixed
sampling rate. Itis important to map the samples not to tbeive-time but according to their

order. In the real-time ECU system, this works only with agi¢hat is larger than the longest
delay. This delay can be compensated to zero for offline ctatipn. Samples that have not
arrived within the timeout, must be filled by holding the sdqenpWhere needed (e.g. for
cross-wind detection), different signals have to be symaized with individual delays that

are practically measured for every vehicle "electricfetatc” (EE) environment. Therefore,
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ID | Abbreviation | Description | Class |
39 | LaneClothoidPara | lane clothoid parameter ALDW
40 | LaneHrztCrv lane horizontal curvature at vehicle position ALDW
41 | LaneMark Lt_Stat | lane marking left state ALDW
42 | LaneMark Rt Stat | lane marking right state ALDW
43 | LaneMarkCol Lt lane marking color left ALDW
44 | LaneMarkCol Rt lane marking color right ALDW
45 | LaneMarkTypelLt | lane marking type left ALDW
46 | LaneMarkTypeRt | lane marking type right ALDW
47 | LaneSiteDtctStat | lane site detection state ALDW
48 | VehPitchAngl vehicle pitch angle ALDW
49 | LaneChgStat lane change state ALDW
50 | LaneDataQual lane data quality ALDW
51 | LanelLtrIDisty. lateral lane position, lane center to vehicle middI&LDW
52 | LaneNum lane number ALDW
53 | LaneTrckTm lane tracking time ALDW
54 | LaneWidth lane width (typically 3.2 meters) ALDW
55 | LaneYawAngl| yaw angle of longitudinal axis to tangential lane ALDW
56 | NumLane number of lanes ALDW
57 | RoadEXxitStat road exit state ALDW
58 | RoadType road type ALDW
59 | IndLmp On Rq indication lamp on request ALDW
60 | LaneMarkWidthLt | lane marking width left ALDW
61 | LaneMarkWidthRt | lane marking width right ALDW
62 | Menu Enbl Rq menu enable request ALDW
63 | MsgDisp Rqg message display request ALDW
64 | OnCal Stat online calibration state ALDW
65 | OnCalExecDist online calibration execution distance ALDW
66 | Viblnsty Rq vibration intensity request ALDW
67 | Warn Rq warning request ALDW

Table A.2.: List of measured and used lane departure input signals fBosc

a special driving maneuver was performed in this thesisMenecar on the driving dynamics
ground. In order to synchronize the lateral acceleratiba,driving maneuver represents a
step function of the steering wheel angle from@ 10 and back at different speeds between
60 and 180 km/h.

>
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t1 t2 t3 t4 t5 th
Received *I T1 »_’Fz—l T31 T4 ] _]
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Reconstructed ! Ts ! Ts ! Ts ! Ts ! .. |
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Figure A.2.: Recovering sampling rate after CAN-bus transmission

A.4. Accelerometer Mounting Transform to Center of Gravity

Fig. A.3 illustrates the yaw rotation and acceleration dimensiores ground measured at
9 to each other directly onboard in tE&SC
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Field | Length [Bits] | Description

Identifier field 11 ID that describes the message
(0...2047)

Identifier extension bit 1 Bit that indicates whether the message
type is extended

Extended identifier field 18 The longer ID for more than 2048 mes-
sages

Data Length Code (DLC 4 Lenght of the payload

Data 0...64 Payload

CRC checksum 15 Cyclic Redundancy Checksum

Table A.3.: Essential fields of a CAN message

Property | Description

start-bit Index of the startbit (0...63)

signal length| Length of signal in bits

offset Offset of the signal

guantization | Size of smallest (least significant) bit (LSB)
sign Signed or unsigned

byte-order | Wheter first startbit is LSB or MSB

signal type | motorolaor intel byte order

Table A.4.: CAN signal definition (DBC)

Figure A.3.: Dimensions measured by gyroscope and accelerometersoimaiesl to the vehicle’s
center of gravity CG Correction transform of accelerometer values to vehietger of
gravity CG.

As mentioned in Ch2.3.2and Schindler 2007, Ch. 3.2.2), the yaw rat# sensor position is
invariant to the mounting position whereas the vehicle dpeég different in every position of
the vehicle if rotation is involved. Thus, also the measaeckleratioréi, anda, are different
and need to be transformed to the vehicle’s center of gr&@@yWith other words, if a steady
object rotates around it8€G with i # 0° / sor experiences a torque wigh# 0°/ <%, no force
can be measured in ti@&G point. At any other poing CG, acentrifugal acceleration @can

be measured fop # 0°/s. In addition, as illustrated in FigA.3, if the object experiences
atorque § # 0°/<%), a force component iw or y direction can be observed at every point
# CG.

With the known sensor mounting positiag andy,, and the rotation radiug, the centrifugal
acceleratiora. = v?/R = y°R s obtained according to EqrA(l). Its decomposition ix—
andy—components is then given by Eqi.2) and @A.3).
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a =% D&+ YA (A1)
Bcx = U2+ \XG + V- cos(arctani—:) (A.2)
Ay = U2 A%+ Vi sin(arctany%m) (A.3)

For an applied torque witli # 0°/s?, the undesirec— andy—components of the measured
acceleration are calculated by EgA.4) and A.5).

L y

Aay = 7 cos(% + arctany%m) 2+ X+ VA cos% (A.4)
. N

Aay = 7 sm(% + arctani—:) 23X+ Y4 COS% (A.5)

With Egn. A.2) to (A.5), the compensated signals of interagtanday in the vehicle'sCG
from the measured, andéy is then given by EQn.A.6) and A.7).

Ay = 8y — Aay — ax (A.6)
dy =8 — Ay —acy (A.7)

According to Schindler 2007, Eqn. 3.5), this can be simplified to

& = ax — Ymi — Xm¢2 (A.8)
&y = & + Yl — ymi® (A.9)

To cope with mounting tolerances and road inclination, #reser offsetsyy o tsetandéy of set
with the rangetZ.SGsm2 are estimated online by assuming that the vehicle is on geetdving
straight ahead without road inclination and elevation.SEfeur CAN signals are transferred
as unsigned values and the offsets are subtracted accaodigy (A.10) and A.11).

m m
ay = ay— 4 -2.56—= -10.24— A.10
X X x,0f fset 2 2 ( )

m {10.245—”2‘ for Robert Bosch ESC

ay = 8 — &yof fset 1255683  for Continental ESC (A1)

2

A.5. Steering Wheel Angle Sensor Principles and Unwrapping

Optical sensors have two code-slotted discs that are sgdnynghoto interrupters. One disc

is for the absolute angle and an auxiliary disc is connected@gearing to turn faster and ob-
tain the high resolution. The sensor from Kostal provide-oontact, absolute measurement
ranging from -420 to +420(cf. (Kostal 2012).

Magnetical principles always rely on hall sensors. As dbsdrin the Patent{elphi, 2009,
Delphi introduced an auxiliary plate connected by a gearibgdo achieve the 0°1preci-
sion. Beyond théermanentmagnetic Linear Contactless DisplacenfehCD) technology,
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the Tyco ElectronicsTyco, 20100 sensor uses a 3D-Hall sensors array triggered by a 360-
degree moving magnet. Fi§.4 shows this slim sensor package and illustrates the opgratin
principle. This sensor works in an ambient temperature ffé@¢C to +85C and has a mi-
croprocessor for signal evaluation, linearization, anegrated failure diagnostics. However,
the Tyco sensor does not provide an absolute angle and fiexedtfresolutions in different
angular sections. A proposed algorithm to unwrap the sigreplained in AppA.5.

5 %
N X = =

Figure A.4.: Tyco 3D-Hall sensors array (Sourcdyco, 20103 and operating principle of way and
angle registration (Sourcevunzig, 2009

Micro-Electro-Mechanical Systems (MEMS) The high resolution gyroscope and accelerom-
eter are so calletMicro-Electro-Mechanical SystenfMEMS) as discussed in_L{u, 2005.
Conceptually, an accelerometer behaves as a damped prasfattached to springs.i(,
2005 Dietmayer 2008. Depending on the sensor manufacturer, the spring deftectin

be measured by capacitive, piezoelectric or piezoresigsilicon semiconductors) princi-
ples. For instance, a movable plate is mounted with spriegsden two fixed plated_{u,
2005 Schnabel2012. Applied forces result in displacement of the inert plateich can

be measured as a capacity change. Ubiquitously, maddEmS accelerometers consist of a
cantilever beam with a proof mass (so called "seismic malsat)oscillates in resonance. An
applied force to the cantilever shifts the resonance frequéhat can precisely be measured
using heterodyne techniquelBIEMS gyroscopes work according to the same measurement
principles, but use a Foucault pendulum as vibrating elémen

Steering Wheel Signal Unwrapping

Due to technical reasons, the magnetically coded disc fffesatit encoding resolution quan-
tizations for different angle ranges (lower quantizatiatsae+35°). The absolute angle is

not known and thus the current section must be unwrappedcddie disc is also accompa-
nied by non-linearities.

The sensor for 216 and 221 vehicles has a sensor from Tychdsaamodulo "overflow"-
behavior Furthermore, different quantizations resolutions aedusr different areas. This
makes the absolute steering wheel angle position ambigiauthermore, a mounting offset
of several degrees has to be considered.

For certain recorded data, there are intermediate valuegeba the modulo "overflow"-
jumps. This behavior can be seen in FAg5.

Fig. A.6 shows the histogram of the recovered sensor signal. It caedrethat the quantiza-
tion changes from linear to logarithmic in different sen8oFig.A.7 shows the intermediate
values that appear for a measurements recorded in 2008. i3¢retd histogram calcula-
tion has proven to be valuable the analysis of such fixedtmignals. The wrapped and
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Figure A.5.: Tyco steering wheel angle sensor ambiguities

unwrapped signals are shown in Fg8. Fig. A.9 shows that also the yaw rate sensor has
blind spots.

A.6. Measurement Equipment

Over 1.000 selected CAN signals were recorded for everyedrM| data communications
in the vehicle work ove€AN, LIN, FLEXRAY or Automotive Etherndiuses. Two automo-
tive computers are used in every vehicle, one with linux &al4#time measurement and one
with Miscrosoft Windows for configuration and operation. B&pe from VECTOR Yector,
20132 is running on the windows operation computer. The measemn¢rromputer features
three high- and one low-spe&@AN. The CAN Calibration ProtocolCCP) is supported to
read ECU internal signals over aneasurement technique adap{® TA). Custom device
drivers were written to measure touchscreen inputs and glesapntary USB GPS device.
Measurements are stored on an internal hard drive and hde ¢opied by a Samba share
to an external USB drive.

A.7. Data Conversion

The data conversion is the most complex process step in tire &wol chain. Reasons for
that are discussed in Se&&.7.2. The quality of the database is one of the most importansbasi
of this thesis and also for series-production readinesas,Téver half a year of development,
over 16.000 lines of MATLAB code and one internship were itahle to create a solid basis
for credible results. There are several tasks for the coier
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Figure A.9.: Also the yaw rate sensor has blind spots

e convert the wireshark data stream to MATLAB

e read the driver profile and store the questionnaire answeéltwetdatabase

e check whether the driver names are spelled correctly ansdistently use the fuzzy
levenshteirstring distance

e make various plausibility checks on missing signals, wromgasurement configura-

tions, and wrong touch screen entries

manipulate or fix wrong signals

store event markings when the driver has presseght

map varyingCAN signal names to a unique name

synchronize input data with individual sampling rates toiadjstant timestamps using

linear interpolationfor "physical” signals andearest neighbofor discrete signals

e store all relevant information and metrics (such as drivistadce, number of warn-
ings, etc.) to th&sQL database

A.7.1. SQL Database and Entity Relationship-Diagram

Introducing aSQL database (SQLite) with MATLAB interface allowed to accessas and
features according to application specific filter and grogpiriteria. Basically, the database
is structured using the tablesives drivers vehicles experiment measuremenand ques-
tionnaire

A.7.2. Plausibility Check

Every step in the tool chain, from the sensors, over the nmeamnt, conversion, validation,
to the classification results, can contain errors. Theestistem highly depends on the qual-
ity and correctness of the input data. Impaired data irtyegéan, for instance, be indebted by
the malfunction of sensor prototypes, communication hardywor measurement equipment
due to vibrations, dirt, humidity, and temperature vaoiasi. The ongoing development of
the numerous prototype vehicles and software releaseegédet also causes of problems as
well as improvements and changes of interfaces and measaot@wonfiguration.

Similarly to sensor errors in Se2.3.3 systematic errors in the input data can drastically
corrupt simulation results. For this reason, the conveaigd validated input data were au-
tomatically checked after the conversion using physicdunglancy and knowledge about
signal properties. All important input signals were chetkg their valid range, distribution,
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magnitude etc. Only samples at a vehicle speed over 10 krd/staaring wheel angles below
+10° were taken into account. In order to verify the correctndghe sign and magnitude
of the most important signals, a physical model was used tohrthe signals within a confi-
dence tolerance. In our case, it was sufficient to usesitihgle track mode{see Sec6.3) to
compare yaw-ratey, wheel rotatiorlWhIRPM: /rr/rL/rr accelerations,,, and steering
wheel angles,. Themean squared error (MSE9nd cross-correlationfunction were used
as metrics. The conversion process must be reliable en@ugieét quality requirements
of the series production. Further on, error memory recasdsh asESCerrors or sensor
errors were considered. Vehicle parameters and discretaded bit-signals were tested by
the validity of values. Pressing a button too long has beégctir and suppressed.

Verification of input data does not yet cover mistakes in fhrutation or evaluation environ-
ment. For instance, a mistake in the evaluation can coniplietisify the results. This could
only be resolved by systematic software reviews and pldingibhecks of results and calcu-
lations. The simulation result plots and evaluation metoceach drive also helped to unveil
implausibilities. The visual plots have the advantage tinvay reveal much more errors than
automatic testing for a limited number of predefined errérot of test drives for develop-
ment purposes could be removed as the driving behavior wasalal. The combination of
all methods has shown to be very effective. This way, all irfata could have been verified,
corrected, or set tnot valid

A.7.3. Data Validation

The data conversion process is followed by a manual vatidairocedure. Data that contain
mistakes could not be used for classification training, setaf&hard and soft criteria were
defined:

KSSentries and other user inputs must be valid and plausible

A desired warning level of less tha¢SS6 is an indicator of careless entries

The highest reachadSSis consistent with the number of desired warnings

The number of desired warnings is implausible

The received number of warnings does not match the obtaimedber of warnings
Automatic check for signal errors, measurement gaps, @-$lyifts successful
Check of the signal runs and other abnormalities successful

Drives shorter than 30 km for experiments and 10 km for fréeedwere set to invalid
Drives inside the plant, on testing tracks, and test driveganerally invalid

In most cases, the decision was very clear as the hard araeplied. In the few difficult
cases, several experts had to agree to avoid systematierinfls. During the validation pro-
cess, all new drives of one driver were grouped by this dtiveuickly point out unreliable
drivers. An automatic rating was given for each driver on hieliably he entered hiKSS
level and questionnaire to easier sort out drivers that wereliable. Moreover, an indicator
for inconsistency is, when the driver indicates a differdgdired warning level for each drive.
For instance, some drivers rated their fatigue levéd$56 even when they already had lane
exceedances. Other drivers, in comparison, rated thé0$89® without any signs of fatigue.
These drives have been neglected. If not a siK&entry was made, a separate field in the
databasanoKSSwas set for a drive and the drive was set to "not valid". Dependn the
error, different consequences had to be drawn:

e Drives withoutKSSentry can not be used for simulation
e Drives without driver profile can be simulated anyway
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e The algorithm must be tolerant to minor measurement gapsstakes
e Drives with severe errors cannot be used for simulation

For the verification step, a separate MATLAB GUI was impletadrnthat automatically de-
tects specific implausibilities and highlights them red.

A.8. Efficient Online-Histogram and Percentile Approximation
using EWMAs

Histogram or online quartile calculation is extremely exgiee in regards to computational
complexity as the entire window length must be sored andegahe sorted. The sorting
result can be stored and every new sample sorted into thisMigch still requires a lot of
memory, especially for large window sizBis For this reason, we propose an approximation
usingl EWMA filters wherel is the number of required delay elements which only depends
on the desired quartile, independent of the window 8izé bins are defined for thgy, =
min(x[n]) and xmax = max(x[n]) ¥n. Fork(i,n) = i(Xmax— Xmin) /! < X[N] < i(Xmax—
Xmin) /1 Vi = 1...1, the EWMA for this bin is updated:

wi[n] = pifn—1] + 4, (6(k(i,n)) = u[n-1]) . (A.12)
Thei/l-100% percentile is then the valuegfn]. Values in between can also be interpolated
to save memory.

A.9. List of all Features

Tab.A.5 list all 144 features implemented in this thesis.

Num. ID CLASS | Feature Name Description

1 43 AA AATOT Time-on-task

2 44 AA ACTI VE System Active

3 45 AA Cl RCADI AN Circadian rhythm

4 55 AA CROSSW ND Road warping and cross-wind intensity

5 56 AA CROSSW NDSUPPRESS| ON | Cross-wind suppression

6 57 AA CUVESUPPRESSI ON Curve suppression

7 58 AA DYNDRI VI NGSTYLE Driving style suppression

8 120 AA [eee] AA fatigue measure including all weightings (GGG)

9 122 AA GGGLWF GGG baselined (division by baseline)

10 59 AA MONOTONY Monotonous driving style

11 60 AA MUEDESTATUS AA drowsy (warning threshold exceeded)

12 61 AA OPERATI ON Vehicle operation

13 62 AA PEAKS Steering correction event (unweighted)

14 63 AA ROADBUMPS Road bumps

15 164 AA STV25 Mean of slow steering wheel ratés

16 165 AA STV50 Mean steering wheel ratés

17 166 AA STV75 Mean of fast steering wheel ratés

18 51 AA STWEVENT AA weighted fatigue measure from steering corrections
(GGG)

19 121 AA STWEVENTBL GG baselined (division by baseline)

20 64 AA WARNRQ AA warnings

21 22 ACC DEGO NT Degree of interaction from steering wheel angle and veloc-
ity

22 171 ACC MONOTONYSPD A-priori factor increasing for monotonoous situations and
at speeds around 130 kmih

23 23 ACC REACTI M Reaction time of steering corrections to lateral displace-
ments

24 169 ACC YAW ERK Yaw rate jerks used to identify drift-and-jerk pattefns
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Num. ID CLASS | Feature Name Description

25 156 CAN DI STRACTI ON Distraction based on CAN signals (vehicle operation)

26 65 CAN DRACTI VI TY Driving style (monotonous or dynamic)

27 70 CAN LI GHT Environment luminosity

28 149 CAN ODOZI GZAGS ZIGZAG feature but based on odometry from inertial sen-
sors

29 66 CAN TOT Time-on-task

30 67 CAN TOTMONO Time-on-task of monotonous driving

31 68 CAN TOTSPEED Time-on-task weighted with vehicle speed (max. |at
100km/h)

32 26 CAN TRFCDENS Traffic density

33 27 CAN TURNI NDADVANCE Duration between turn indicator and lane change

34 28 CAN TURNI NDDUR Duration of turn indicator activation (driver dependent)

35 116 EEG EEG300 EEG alpha-spindle rate with 300 second MA

36 117 EEG EEG300BL EEG300 baselined

37 118 EEG EEG60 EEG alpha-spindle rate with 60 second MA

38 123 EEG EEGOFF300

39 124 EEG EEGOFF300BL

40 143 EEG EEGOFF300Z EOG off with 5 min MA using z-transformation

41 101 EOG EOGAECS AECS but using EOG (Average eye closure speed)

42 113 EOG EOGAECSBL EOGAECS baselined

43 102 EOG EOCGAPCV APCYV but using EOG (Eye-lid amplitude/velocity ratio)

44 103 EOG EOGBLI NKAMP BLINKAMP but using EOG (Eye-lid blink amplitude)

45 104 EOG EOGBLI NKDUR BLINKDUR but using EOG (Eye-lid blink duration)

46 114 EOG EOGBL| NKDURBL EOGBLINKDUR baselined

47 105 EOG EOGBLI NKFREQ BLINKFREQ but using EOG (Eye-lid blink frequency)

48 115 EOG EOGBL| NKFREQBL EOGBLINKFREQ baselined

49 106 EOG EOGENERGY EC but using EOG (Energy of eye-blinks)

50 107 EOG EOGEYEMEAS EYEMEAS but using EOG (Mean square eye closure)

51 112 EOG EOGEYEMEASBL EOGEYEMEAS baselined

52 108 EOG EOGM CROSLEEP Microsleep events rate with eye-lid closed0.5 s but
based on EOG

53 125 EOG EOGOFFAECS

54 126 EOG EOGOFFAECSBL

55 127 EOG EOGOFFAPCV

56 128 EOG EOGOFFBLI NKAMP

57 129 EOG EOGOFFBLI NKDUR

58 130 EOG EOGOFFBLI NKDURBL

59 131 EOG EOGOFFBLI NKFREQ

60 132 EOG EOGOFFBLI NKFREQBL

61 133 EOG EOGOFFENERGY

62 134 EOG EOGOFFM CROSLEEP

63 135 EOG EOGOFFPERCL(CS80

64 136 EOG EOGOFFPERCLOS80BL

65 109 EOG EOGPERCL(S80 Proportion of time eye-lid is~80% closed but based op
EOG

66 111 EOG EOGPERCLOS80BL EOGPERCCLOSB80 baselined

67 74 EYE AECS Average eye closure speed

68 75 EYE APCV Eye-lid amplitude/velocity ratio

69 92 EYE APCVBL APCYV baselined

70 76 EYE BLI NKAVP Eye-lid blink amplitude

71 77 EYE BLI NKDUR Eye-lid blink duration

72 95 EYE BLI NKDURBL BLINKDUR baselined

73 78 EYE BLI NKFREQ Eye-lid blink frequency

74 79 EYE CLOSI NGVEL Eye-lid closing velocity

75 80 EYE EC Energy of eye-blinks

76 98 EYE ECBL EC baselined

77 91 EYE EYEACTI VE Eye-tracking system active

78 81 EYE EYEMEAS Mean square eye closure

79 82 EYE EYESOFF Inattention, proportion of time the drivers eyes off thedop
(3 min interval) Belz 2000

80 83 EYE EYETRANS Inattention, number of eye transitions made by the driyer
(3 min interval) Belz, 2000

81 90 EYE HEADNOD Head nodding

82 84 EYE MEANCLOS Mean eye closure amplitud&ferwille, 1996k

83 85 EYE M CROSLEEP Microsleep events rate with eye-lid closed.5 s

84 94 EYE M CROSLEEP1S Microsleep events rate with eye-lid closed..0 s

85 86 EYE OPENI NGDUR Eye opening duration

86 87 EYE OPENI NGLVL Eye-lid amplitude level when opened between blinks

87 88 EYE PERCLOS70 Proportion of time eye-lid is70% closed

88 99 EYE PERCLOS70BL PERCLOS70 baselined

89 89 EYE PERCL(OS80 Proportion of time eye-lid is-80% closed
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Num. ID CLASS | Feature Name Description

90 93 EYE PERCLOSS80EVWA PERCLOSB80 however with EWMA instead MA

91 100 EYE PERCL 0S80 EVWWABL PERCLOS80EWMA baselined

92 37 LANE DELTADUR Duration between lateral inflection points

93 38 LANE DELTALATPOS Delta between lateral displacement

94 39 LANE DELTALATVELMAX Delta maximum lateral velocity

95 14 LANE LANEAPPROX Approximation to Lane proximity

96 150 | LANE LANEAPPROXAD Road marking approximation with driver-adaptive thre
old

97 40 LANE LANEAPPROXADAPT Approximation to driver adaptive warning range

98 151 | LANE LANEAPPROXBL LANEAPPROX baselined

99 15 LANE LANEDEV Deviation in the Lane

100 145 | LANE LANEDEV4 LANEDEYV but to the power of 4, stronger punishing
large deviations

101 | 137 | LANE LANEDEVBL LANEDEYV baselined

102 146 | LANE LANEDEVSQ LANEDEYV but squared, stronger punishing of large deyv
ations

103 32 LANE LANEX Lane exceeding

104 19 LANE LATMEAN Mean lateral position

105 16 LANE LATPOSZCR Zero-crossing rate lateral position

106 24 LANE LNACTI VE Lane active signal

107 31 LANE LNCHGVEL Lane change velocity

108 33 LANE LNERRSQ Lane error squared

109 30 LANE LN QR IQR of lateral position

110 29 LANE LNWNSQ Mean squared lane deviation

111 34 LANE ORA Over run area

112 35 LANE TLCIM N Time-to-Lane Crossing

113 155 | LANE TLC1IM NBL TLC using model 1 baselined

114 161 | LANE TLCREACTI M Reaction time of steering corrections to TLC 1 minima

115 36 LANE VI BPROP Warning rate of lane exceedings

116 17 LANE Z| GZAGS Zig-Zag Event

117 | 139 | LANE Z| GZAGSBL ZIGZAG baselined

118 47 META DAYTI ME Time of day

119 119 | META DESWARNKSS Desired warning level (DWL)

120 144 | META DI STRACTI ONTASKS Distraction task reference

121 | 140 | META LAT GPS latitude

122 | 141 | META LON GPS longitude

123 41 META VEHSPEED Vehicle speed

124 148 | META WARNACCEPT Warning acceptance question

125 48 STW AnpD2Thet a Lane amplitude duration squared Theta

126 158 STW AnpD2Thet aBL AmpD2Theta baselined by max between 3 and 10 miny
active time, saturated by 0.5 and 2.0

127 159 STW AnpD2Thet aEwra AmpD2Theta using EWMA rate (time-based) instead M

128 42 STW ELLI PSE Magnitude of steering wheel angle and velocity (ellipse

129 170 STW FASTCORRECT Focusing on few fast steering corrections in calm sit
tions using moving fitted Inverse Gaussian PDF model
threshold determinatioh

130 163 STW IQRCRIT Like VARCRI T however using IQR insted varianée

131 152 STW LRVFAST Fast streering wheel velocity corrections

132 153 STW LRVPERCHI GH Upper percentile of streering wheel velocities

133 154 STW LRWERYFAST Very fast steering wheel velocity corrections

134 71 STW M CROCORRECTI ONS Small steering corrections

135 168 STW M CROCORRECT| ONS2 Absense of small micro-steering corrections indicate
tigue, using own improved implementatioRd(it and Cha-|
put, 1990

136 147 STW M CROCORRECTI ONSW Rate of small steering wheel angle corrections

137 69 STW NVRHOLD Steady steering event rate below 0.5 degree

138 | 167 STW NVRHOL DBL NMRHOLD baselined

139 160 STW NVRSTVHOLD Number of steering wheel velocities below threshbld

140 25 STW STWELZCR Steering wheel angle velocity zero corssing rate

141 18 STW STWZCR Steering wheel angle zero corssing rate

142 142 STW VARCRI T Variance criterion

143 72 STW VHAL Ratio of fast over slow steering velocitieKicher et al,
2002 Bittner and Hana2000

144 162 STW WHAL Largelsteering wheel angle amplitudes vs. small am
tudes

=
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Table A.5.: List of all potential features, including the sources ifittage based on features in litera-
ture. Features marked wiftare own proposals.
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A.10. UTM Zones

In order to match intertial data with GPS data, the longitadd latitude were mapped to
real-wold positions in the UTM system such that they alscehiére unit meters. FigA.10
shows the UTM zones and illustrates the principle used mttiesis.

Figure A.10.: UTM Zones

A.11. Histogram of Correlation Coefficients for Single Drives

In order to further illustrate the Metrielistogram of Correlation Coefficienis Ch. 7.2.4

Fig. A.11 shows an artificiaKSSreference signal for 20 consecutively concatenated drives
Further, an artificial feature with some random noise is shatvat is comparable to the
Time-on-TaskKTOT, but for each drive with different inclination. This incéition describes
the different sensitivity of features for different drigeor drives respectively. The temporal
order of the samples is irrelevant for the correlation.

Artificial feature [-]
=

Artificial KSS-like reference [-]

N A N 0 B B

| | | | | | |
0 200 400 600 800 1000 1400 1600 Time [min]

Figure A.11.: Artificial reference (comparable to KSS) from level 1 to 9 anuisy feature with vary-
ing inclination to illustrate Spearman histogram. Theltotarelation of all drives is
not as good as for every drive separately. This represeatsdiformance of a feature
for which baselining would be ideal.



—-193-

Fig. A.12 shows at the left a scatter plot and correlation coefficiahtutated for all drives
at once. The Spearman correlation coefficient of all dritesae is onlyps = 0.811 while
almost all coefficients in the Spearman histogram, groupedtives, argog ~ 1.

25 p=0.634 (p=0.000) Zg mean(p,)=0.811
20 40
2 i —35
215 RN
l i 525
£ 10 | 520
h= g 215
= i o
< 5 g 10
|
234567809 YU 0.5 0 0.5 1
Artificial KSS-like reference [-] Spearman Correlation Coefficients [-]

Figure A.12.: Scatter plot over all drives and Spearman histogram of aiefiis grouped by drives

As a conclusion, we can see that this method of correlatialyais method serves to evaluate
a feature independently from the drive or driver-specifisdiiae or sensitivity. With other
words, the same result would be achieved, if the onlinelivéisg would be ideal. We have
to consider that this can unfortunately not be achievedactpre.

Another aspect is, that the€SS should be most accurate at the moment when it is entered.
For this reason, alternatively only the instants of k&S entries are used for evaluation and
the feature was used at this time instant or aggregated tadjacent values.

A.12. Feature Analysis and Evaluation GUI

Fig. A.13 shows an evaluation GUI to analyze single features. Allldisgd information

is contained in the feature matrfk. This makes it possible to select different features and
filters for references, vehicles, experiments, drivers@mgks. Scatter plots, error bar plots,
and correlation measures are updated according to theisalethis allows a combination

of qualitative and quantitative assessment of features fifure provides a good impression,
that the featurd’ERCLOS80 performs very well for this driver. The signal plot showsttha
the feature matches better the h&I8S (green) than the linear interpolated signal due to the
delay of the smoothing.

A.13. Real-time System

The majority of the transparency about driving situatioagr®t be captured by the mea-
surements. For this reason, it is very valuable to test th@eimented features online in
the vehicle to relate signals and events to situations amel parameters. Th&TTENTION
AssisTalgorithm was developed and tested in Fixed-point Targétdirectly running on a
programmable develop&SP This is much to laborious and limited in resources to imple-
ment sophisticated algorithms. In comparison to the Misubebox MAB Il from DSPACE

or Vector CANoe CAPL, an alternative, own implementatiorMATLAB, Mex C++ and

C# was chosen for several reasons. A Vector CAN Card and CANscaere available, but
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Figure A.13.: Evaluation GUI to analyze correlation of features

no own expensive Vector or DSPACE hardware were availabite own cost-free CAN in-
terface MEX C++ implementation allowed much more flexigjliallowed using the same
MATLAB GUI ( MathWorks 2007 for offline and online evaluation of features that were
already implemented in MATLAB. The Vector or DSPACE solusowvould have required to
port everything in SIMULINK and eventually TargetLink.

This section will explain some basics about the CAN bus, th&TMAB GUI, the CAN-
Interface, the DBC can signal database parser and the ciowerf raw CAN messages.

A.13.1. Fixed-Point Arithmetic

In digital signal processing, there are different ways fmesent real numbers. Due to mem-
ory and word-size limitations on processor units, numbeegslienited to a fixed with. In
floating-point arithmetics, a number is defined by ttegned fixed-lengthsignificand qor
coefficientor Mantissg for a givenbase b(or radix) and theexponent ghat modifies the
magnitude of the number. The length of the significand defimegprecision while the radix
point is usually defined to be directly after the most sigaifiic(leftmost) digit. For instance
1.2345 10°° is represented in

X~ sx b® (A.13)
by the significands = 1.2345, the base-10= 10 and exponerg = —5.

In fixed-point arithmetics, however, only integer numbers are used where the posifion o
the point is fixed by thd_east-Significant Bi{LSB). Optionally, anoffset oand asigned

u property can be used to better exploit the value range uséideimpplication. In this
representation

X~Uu-n-LSB+o0 (A.14)

the precision ofx when processing only thateger number ns then defined by the word
length, i.e. the number of Bits. For instance, a signed 8 &iblber can represent the values
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-128 to 127 where one Bit for the sign. If it is scaled by$B=2"% and an offseb = 10.0,
the precision (or resolution) is 0.0625 and the fixed-poépresentation allows to cover the
range[2...17.937% (-128- LS B+ oto 127- LS B-0).

The computation in fixed-point is many times faster since ghsition of the radix point
does not need to be considered. As is can be seen inAElg. using an offset increases
precision but slows down the computation time. Also, anteabj LSB is more precise but
less performant than using a dual bag&B. Divisions or multiplications with a dual factor
2¢with k € IN can be computed very fast by logical shift of the binary numbehe right or
to the left.

LSB=2* LSB=arbitrary LSB=2 LSB =arbitraryj
offset=0 [&—» offset=0 [«—»| Offset=arbitraryle—»| offset=arbitrary

More precision

.
>

A

Faster

Figure A.14.: Scaling performance vs. accuracy

Representation of a floating point number in fixed-point glvieads to a loss of precision
and thus an error on a 16 bit architecture. A multiplicatiétvmep 16 bit numbers requires a
32 Bit intermediate result, even if the final result is resdati 16 bit again. Such operations
can be performed with two 16 bit numbers that require howevere resources and are
thus not expedient. Depending on the signal processingatipes, systematic errors lead
to accumulated errors in integrators for instance. An eégdihus more severe the earlier it
occurs in the signal processing chain.

For this reason, especially the filters of the input signald to be scaled manually and as
good as possible. This is exemplarily shown in @hl5. The ATTENTION ASSIST ist
running on the controller unis of the ESP.

A.13.2. Fixed-point Low-pass Filter

Especially the Butterworth filter of*® order of the lateral accelerati@ has been identified
as a major cause for fixed- / floating-point errors that aremecdated in the feature extraction.
App. A.13.1explains this problem in more detail. For this reson, therfilias to be optimally
scaled as shown in Fig\.15.

A.13.3. Offline and Online Real-Time Attention Assist Vehite Track Viewer

Fig. A.16 shows the GUI of the offline- and real-time onlidgtention Assist PluSystem
(AAP). It allows online visualization of vehicles signals andtiges as well as offline play-
back of measurements.
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Figure A.15.: Fixed-point scaling ofIR-filter (seeYang, 2011, DSP lecture) of ® order on input
signalay,s c to obtainay,scp to minimize propagated and accumulated error.
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Figure A.16.: Offline- and real-time onlinATTENTION AssisTvehicle track viewer



—-197-

Bibliography

AAA, 2013: Foundation for Traffic Safety AAA 2013 How to Avoid Drowsy Driving,
https://exchange.aaa.com/safety/driving-advice/dyodriving/
(last visited: May 11, 2020)

Akerstedt, 1980 T. Akerstedt and M. Gillberg 1980 Subjective and objective sleepiness in the
active individual, International Journal of Neuroscience, Volume: 52: pp.329—

Akin, 2007: Ozgiir Akin 2007 Mudigkeitserkennung mit dem Driver State Sensor (DSS) aftKr
fahrzeugenMaster’s thesis, Fachhochschule Giessen-Friedberg.

Altmueller, 2007: Tobias Altmuller 2007 Driver Monitoring and Drowsiness Detection by Steering
Signal AnalysisPhD thesis Universitaet der Bundeswehr Minchen.

Andreassi, 2000 J. Andreassi 2000 Psychophysiology: Human behavior and physiological re-
sponselondin: Lawrence Erlbaum Associates.

Angermann, 201t Roman Matthias Angermann 2011 Die Entwicklung der Aktiven Sicherheit
von ihren Anfangen bis zum Jahr 2000 - Unter besonderer Bsicittigung der Daimler-Benz AG,
Number 978-3-8348-1543-9 Vieweg & Teubner
https://www.buchhandel.de/buch/Die-Entwicklung-détiven- Sicherheit-v-9783834815439
(last visited: May 11, 2020)

Anund et al., 2008 Anna Anund, Géran Kecklund, Bjérn Peters and Torbjorn Aker stedt2008
Driver sleepiness and individual differences in prefeesfor countermeasureslournal of Sleep
Research 17, Issue 1:16-22.

auto.de, 2009 auto.de 20091AA 2009 Rundgang: Mercedes-Benz SLS AMG Flugeltirer
http://www.auto.de/magazin/IAA-2009-Rundgang-Memresdenz-SLS-AMG-Fluegeltuerer
(last visited: May 11, 2020)

Autokiste.de, 2007 Autokiste.de 2007 Volvo Driver Alert: Zeit fir eine Pause
http://www.autokiste.de/psg/index/show.htm?id=66Bd8=5
(last visited: May 11, 2020)

Brown et al., 2006 Malcolm Brown, Michael Marmor Vaegan, Eberhard Zrenner, M itchell
Brigell and Michael Bach 2006 ISCEV Standard for Clinical Electro-oculography (EOG) BC
Standard for Clinical Electro-oculography (EOGPoc Ophthalmol, Volume: 113: pp. 205-212.

Baranski, 2007 Joseph V. Baranski2007 Fatigue, sleep loss and confidence in judgmelatyirnal
of Experimental Psychology, Volume: 13(4): pp. 182—-196.

Barényi, 1951 Béla Barényi 1952, Patent number: (DBP 854 1Mptor vehicles especially for the
transportation of people
https://www.mercedes-benz.com/de/mercedes-bengiclbsla-barenyi-der-lebensretter/

(last visited: May 11, 2020)

Barr and Howarth, 2006: Lawrence Barr and Heidi Howarth 2006 A Review And Evaluation of
Emerging Driver Fatigue Detection Measures and Technasgi

Batavia, 1999 Parag Batavia1999 Driver-Adaptive Lane Departure Warning SystemBD thesis
The Robotics Institute Carnegie Mellon University Pittgfiy Pennsylvania, 15213.


https://exchange.aaa.com/safety/driving-advice/drowsy-driving/
https://www.buchhandel.de/buch/Die-Entwicklung-der-Aktiven-Sicherheit-v-9783834815439
http://www.auto.de/magazin/IAA-2009-Rundgang-Mercedes-Benz-SLS-AMG-Fluegeltuerer
http://www.autokiste.de/psg/index/show.htm?id=6679&bild=5
https://www.mercedes-benz.com/de/mercedes-benz/classic/bela-barenyi-der-lebensretter/

—-198-

Batista, 2007 Jorge Batista 2007 A Drowsiness and Point of Attention Monitoring System for
Driver Vigilance, Proceedings of the IEEE Intelligent Transportation Syst&uonference, Vol-
ume: 4(4): pp. 702-708.

Becker, 2008 Ruth Becker 2008 Interindividuelle Auswirkungen von SchlafentzughD thesis
Fachbereich Erziehungswissenschaft und PsychologieelenfUniversitat Berlin.

Belz et al., 2004 S. M. Belz, G.S. Robinson and J.G. Casalk004 Temporal Separation and
Self-rating of Alertness as Indicators of Driver Fatigue@ommercial Motor Vehicle Operators,
Human Factors, Volume: 46 (1): pp. 154-69.

Belz, 2000 Steven Mark Belz 2000 An On-road Investigation of Self-rating of Alertness and
Temporal Separation as Indicators of Driver Fatigue in Coencral Motor Vehicle Operators?hD
thesis Doctor of Philosophy in Industrial and Systems Eegiimg.

Benz & Co, 1886 Benz & Co 1886, Patent number: (DE 3743B3ahrzeug mit Gasmotorantrieb
http://upload.wikimedia.org/wikipedia/commons/3B@tentschrift_37435_Benz_Patent-Motorwagen.pdf
(last visited: May 11, 2020)

Berger and Rumpe, 2008 Christian Berger and Bernhard Rumpe 2008 Autonomes Fahren -
Erkenntnisse aus der Darpa Challengi, Volume: 4: pp. 258—-264.

Berglund, 2007 Jens Berglund 2007 In-Vehicle Prediction of Truck Driver Sleepiness - Stegrin
Related VariablesMaster’s thesis, Lulea University of Technology.

Berka et al., 2005 Chris Berka, Daniel J. Levendowski and Philip Westbrook2005 Implemen-
tation of a Closed-Loop Real-Time EEG-Based Drowsinessdiien System: Effects of Feedback
Alarms on Performance in a Driving SimulatoiProceedings of the International Conference on
Human Computer Interaction, July 2005, Las Vegas, Nevada.

Bittner and Hana, 2000 Roman Bittner and Karel Hana 2000 Detecting of Fatigue States of a
Car Driver.

Blanco and Bocanegra, 2009 Myra Blanco and Joseph L. Bocanegra2009 Assessment of a
Drowsy Driver Warning System for Heavy-Vehicle DriverBgchnical report National Highway
Traffic Administration.

Bleich, 2009 Nils Bleich 2009 Deutsche Automobilzulieferer in China: Chancen und Risiter
ErschlieBung des Chinesischen Automobilmarkbéslomica Verlag Hamburg.

Bleymdller and Gehlert, 2012 Josef Bleymiller and Giinther Gehlert 2012 Statistik far
Wirtschaftswissenschaftlamlume: 16 Franz Vahlen Minchen.

BMW, 2011: Media Information BMW 2011 The future of intelligent networking: The BMW
Vision ConnectedDrive.

Bohlin, 1959 Nils Ivar Bohlin 1961, Patent number: (DE 1101987ayicherheitsgurt fuer
Fahrzeuge insbesondere Kraftfahrzeuge
https://www.dpma.de/english/our_office/publicationgéstones/60jahredreipunktegurt/index.html
(last visited: May 11, 2020)

Boyraz et al., 2007 Pinar Boyraz, Memis Acar and David Kerr 2007 Signal Modelling and
Hidden Markov Models for Driving Manoeuvre Recognition dbdver Fault Diagnosis in an
urban road scenario, Proceedings of the 2007 IEEE Intelligent Vehicles SymposiRages: 13—
15.

Brainard and Hanifin, 2001: G. C. Brainard and J. P. Hanifin 2001Action spectrum for melatonin
regulation in humans: evidence for a novel circadian phetaptor, The Journal of Neuroscience:
the official journal of the Society for Neuroscience, Volur@#: pp. 6405—6412.


http://upload.wikimedia.org/wikipedia/commons/3/37/Patentschrift_37435_Benz_Patent-Motorwagen.pdf
https://www.dpma.de/english/our_office/publications/milestones/60jahredreipunktegurt/index.html

-199-

Brown, 1994 Ivan D. Brown 1994 Driver Fatigue, Human Factors: The Journal of the Human
Factors and Ergonomics Society, Volume: 36(2): pp. 298814

Buehren, 2008 Markus Buehren 2008 Simulation und Verarbeitung von Radartiellisten im Auto-
mobil, PhD thesis Chair of System Theory and Signal Processing.

BGH, 1969 Bundesgerichtshof1969 Court decision from 18.11.1969: Perceptibility of fatigue
signs by the driver ("Zur Wahrnehmbarkeit der Ermidunggemi durch einen Kraftfahrer') AZ
4 StR 66/69.

BGH, 2002 Bundesgerichtshof2002 Court decision from 04.12.2002, Stend&#Z.: 23 O 67/02.

Burgess et al., 2002 Helen Burgess, Katie Sharkey and Charmane Eastma2002 Bright light,
dark and Melatonin can promote circadian adaptation in riighift workers, Sleep Medicine
Reviews 6(5):407—-420.

Carlson and Gerdes, 2002 Christopher R. Carlson and Christian Gerdes 2002 Identifying
tire pressure variation by nonlinear estimation of longitoal stiffness and effective radiudn
Proceedings of AVEC 2002 6th International Symposium oéAced Vehicle Contral,

Chawla et al., 2008 M. P. Chawla, H. K. Verma and V. Kumar 2008 Artifacts and noise removal
in electrocardiograms using independent component aisglysternational Journal on Cardiology,
Volume: 129(2): pp. 278-281.

Clayton, 20068 Clayton 2006 Klothoide
http://ww3.cad.de/foren/ubb/uploads/Clayton/KlotteiFormeln.pdf
(last visited: May 11, 2020)

Comon, 1994 P. Comon1994independent componentanalysis, a new concepignal Processing
Volume: 36(3):287-314.

Costa, 2005 Joaquim Costa and Jaime Cardoso2005 Classification of Ordinal Data Using
Neural Networks, Machine Learning: 16th European Conference on Machinerliegi(ECML),
Porto, Portugal, Proceedings 10:690-697.

Cui, 2016 Zhicheng Cui, Wenlin Chen and Yixin Chen 2016 Multi-Scale Convolutional
Neural Networks for Time Series Classification, CoRR, DBLP Computer Science \ol-
ume: abs/1603.06995.

Czupalla, 2007 Stephan Czupalla2007 Messfahrtenauswertung zur Erkennung von positions-
und tageszeitabhangigen Ereignishaufungen fir die Optimig eines Fahrerzustandsbeobachters,
Master's thesis, Berufsakademie Horb.

Daimler, 2008 Daimler HighTech Report 2/2008 - Feature Attention Assist
http://www.worldcat.org/title/daimler-hightech-rem@clc/769131108
(last visited: May 11, 2020)

Daimler COM/M, 2009: Daimler COM/M Meilensteine der Fahrzeugsicherheit. Die Vision vom
unfallfreien Fahren.
https://docplayer.org/5414305-Meilensteine-der-Zahgsicherheit-die-vision-vom-unfallfreien-fahremh
(last visited: May 11, 2020)

de Mattos Pimenta, 2011 Pedro A. de Mattos Pimenta2011 Driver Drowsiness Classification
Based on Lane and Steering BehaviMaster’s thesis, University of Stuttgart, Chair of System
Theory and Signal Processing.

Delphi, 2006 Delphi 2006, Patent number: (US 7,021,16Gear Bearing for a Steering Wheel
Position Sensor.

Desai and Haque, 2006 A.V. Desai and M.A. Haque 2006 Vigilance monitoring for operator
safety: A simulation study on highway drivingpurnal of Safety Research 37:139-147.


http://ww3.cad.de/foren/ubb/uploads/Clayton/Klothoide-Formeln.pdf
http://www.worldcat.org/title/daimler-hightech-report/oclc/769131108
https://docplayer.org/5414305-Meilensteine-der-fahrzeugsicherheit-die-vision-vom-unfallfreien-fahren.html

—200-

DESTATIS, 2011a Statistisches Bundesamt DESTATIS2011aUnfallentwicklung auf deutschen
Strassen 2010

DESTATIS, 2011k Statistisches Bundesamt DESTATIS2011b Verkehrsunfalle Zahlenreihen
2010

DESTATIS, 2013k Statistisches Bundesamt DESTATIS2013aUnfallentwicklung auf deutschen
Strassen 201Begleitmaterial zur Pressekonferenz am 10. Juli 2013 ifiBer

DESTATIS, 2013k Statistisches Bundesamt DESTATIS2013b Verkehrsunfélle - Unfalle unter
dem Einfluss von Alkohol oder anderen berauschenden MitteBtrassenverkehr

Die Welt.de, 2008 Die Welt.de 2010 fahren weltweit eine Milliarde Autos
http://www.welt.de/welt_print/article1561636/2018hfen-weltweit-eine-Milliarde- Autos.html
(last visited: May 11, 20203.

Dietmayer, 2008 Klaus C.J. Dietmayer 2008 Lecture Script for the Lecture Messtechnik Uni-
versity of UIm.

Dietsche and Jager, 2003 Karl-Heinz Dietsche and Thomas Jager2003 Kraftfahrtechnisches
Taschenbuchyolume 25 ofISBN 3-528-23876-3Friedrich Vieweg & Sohn Verlag, Wiesbaden.

Dinges et al., 1987 David F. Dinges, M. T. Orne, W. G. Whitehouse and E. C. OrneTemporal
Placement of a Nap for Alertness: Contributions of CircadRhase and Prior WakefulnesS|eep,
Volume: August 10(4): pp. 313-29
http://www.ncbi.nlm.nih.gov/pubmed/3659730
(last visited: May 11, 2020)

Doppelklicker, 2011: Doppelklicker 2011 Kfz-Versicherung: Beifahrer erhalten keinen Schadener-
satz, wenn Mudigkeit des Fahrers bekanntwar

Drory, 1985: Amos Drory 1985 Effects of Rest and Secondary Task on Simulated Truckegrivi
Task PerformanceHuman Factors, Volume: 27(7): pp. 201-207.

Duda et al., 2001 Richard O. Duda, Peter E. Hart and David G. Stork 2001 Pattern Classifica-
tion, Wiley-Interscience.

Duncker, 2007 Gernot I. W. Duncker 2007 Jeder vierte Autofahrer sitzt Gbermiidet am Steuer,
Technical report Deutsche Ophthalmologische Gesellsehdf

Anthony Best Dynamics, 2012 Anthony Best Dynamics2012 Steering robots SP6020 Outline
specification2012.

Elango, 2002 Vetri Venthan Elango 2002 Safety Evaluation of Centerline Rumble Stripgster’s
thesis, University of Massachusetts.

Eskandarian and Mortazavi, 2007 Azim Eskandarian and Ali Mortazavi 2007 Evaluation of
a Smart Algorithm for Commercial Vehicle Driver Drowsindstection, In Proceedings of the
IEEE Intelligent Vehicles Symposium, Istanbul, Turkey

Fagerberg, 2004 Kalle Fagerberg 2004 Vehicle-Based Detection of Inattentive Driving for Inte-
gratin in an Adaptive Lane Departure Warning System - Droess Detection Master’s thesis,
KTH Vetenskap Och Konst.

Fahrmeir et al. 2003 Ludwig Fahrmeir, Rita Kunstler, Iris Pigeot and Gerhard Tu tz 2003
Statistik. Der Weg zur Datenanalysgpringer.

Fairbanks et al. 1995 Rollin J. Fairbanks, Sarah E. Fahey and Walter W. Wierwille 1995
Research on Vehicle-Based Driver Status/Performancetdigng: Seventh Semi-Annual Research
Report, Technical report National Highway Traffic Safety Adminégton.


http://www.welt.de/welt_print/article1561636/2010-fahren-weltweit-eine-Milliarde-Autos.html
http://www.ncbi.nlm.nih.gov/pubmed/3659730

—-201-

Fawcett, 2004 Tom Fawcett 2004 ROC Graphs: Notes and Practical Considerations for Re-
searchers, Pattern Recognition Letters, Volume: 27(8): pp. 882—891.

Fertner, 2009 Maria-Luise Fertner 2009 Sekundenschlaf & Ablenkunechnical report OAMTC
- Der Osterreichische Automobil-, Motorrad- und Touringikl

FHWA, 2012: Federal Highway Administration FHWA 2012 Roadway Departure Safety - Pave-
ment Safety - Rumble Strips and Stripes - Effectiveness
http://safety.fhwa.dot.gov/roadway_dept/pavementbie_strips/effectiveness/

(last visited: May 11, 2020)

Forsman and Vilaa, 2012 Pia M. Forsman and Bryan J. Vilaa 2012 Efficient driver drowsiness
detection at moderate levels of drowsines#ccident Analysis and Prevention, Volume: May:
pp. 10.

Friedrichs, 2006 Fabian Friedrichs 2006 Schéatzung von prosodischen Features zur Emotionsde-
tektion, Master’s thesis, University of Stuttgart, Chair of Systehe®ry and Signal Processing.

Friedrichs et al. 2012 Fabian Friedrichs, Werner Bernzen, Frauke Driewer and Wiebke
Miiller 2012, Patent number: (DE 201,110,012,96/thod for identifying or issuance of travel
time of driver, involves determining travel time of drivethere travel time is continuously identi-
fied and optionally displayed during ignition of barrel ofhiele.
http://www.google.com/patents/DE102011012967A1%tl=e
(last visited: May 11, 2020)

Friedrichs and Yang, 2010a Fabian Friedrichs and Bin Yang 2010 Camera-based Drowsiness
Reference for Driver State Classification under Real Dgvonditions, IEEE Intelligent Vehicles
Symposium.

Friedrichs and Yang, 2010b Fabian Friedrichs and Bin Yang 2010 Drowsiness Monitoring by
Steering and Lane Data based Features under Real Drivingd@ions, EUSIPCO.

Friedrichs and Yang, 2011 Fabian Friedrichs and Bin Yang 2011 Consideration of Influences
on Driver State Classification from External FactorsDriver Distraction and Inattention (DDI)
Conference.

Fuersich, 2009 Alexander Fuersich 2009 Driver State Classification using Expert Knowledge in
Hiddden Markov Models and Bayes Networkdaster’s thesis, University of Stuttgart, Chair of
System Theory and Signal Processing.

Furtwangler, 2013 Sara Furtwangler 2013 Bewdahrungsstrafe nach todlichem Unfall auf A81,
Heilbronner Stimme
https://www.saechsische.de/bewaehrungsstrafe- retiichem-unfall-3842144.html
(last visited: May 11, 2020)

Gallay and Schleicher, 2002 N. Gallay and R. Schleicher2002 Fatigue indicators from Elec-
troencephalogram - A Reasearch Report

Galley et al., 2005 Lars Galley, Elisabeth Hentschel, Klaus-Peter Kuhn and Wdfgang Stolz-
mann 2006, Patent number: (WO 2006131254 AMethod and Control Device Recognising,
Specific to a Driver, Inattentiveness of a Driver of a Vehicle

Gartner, 2009 Christiane Gartner 2009 Driving Style Classification for DriverMonitoringVlas-
ter’s thesis, University of Stuttgart, Chair of System Tihyesnd Signal Processing.

Gartner, 2017 Jonas Gehring, Michael Auli, David Grangier, Denis Yaratsand Yann N.
Dauphin 2017 Convolutional Sequence to Sequence LearniPigMR, Proceedings of the 34th
International Conference on Machine Learning, Volume0O®e{1)(7): pp. 1243-1252.


http://safety.fhwa.dot.gov/roadway_dept/pavement/rumble_strips/effectiveness/
http://www.google.com/patents/DE102011012967A1?cl=en
https://www.saechsische.de/bewaehrungsstrafe-nach-toedlichem-unfall-3842144.html

—-202-

Gutierrez, 2016 P.A. Gutiérrez and M. Pérez-Ortiz and J. Sanchez-Monederoand F.
Fernandez-Navarro and C. Hervas-Martinez2016 Ordinal regression methods: survey and ex-
perimental studyyfEEE Transactions on Knowledge and Data Engineering, Vell#8(1): pp. 127—
146.

Gillberg et al., 1996 Mats Gillberg, Géran Kecklund, John Axxelsson and Torbjoérn Akerstedt
1996 The Effects of a Short Daytime Nap After Restricted NightsleSleep, Volume: 19(7):
pp. 570-575.

Glaser and Mammar, 2005 Sebastien Glaser and Said MammaR2005 Experimental Time to
Line Crossing Validation, IEEE Conference on Intelligent Transportation Systemsurve: 8:
pp. 791-796.

Goodfellow et al., 2017 lan Goodfellow, Yoshua Bengio and Aaron Courville2017 Deep Learn-
ing (Adaptive Computation and Machine Learninghe MIT Press, Massachusetts
https://www.deeplearningbook.org/

(last visited: May 11, 2020)

Government of India, 2011 Government of India 2011 Road Accidents in India 2011
http://www.indiaenvironmentportal.org.in/files/filead%20accidents%20in%20India%202017 .pdf
(last visited: May 11, 2020)

Grace, 2001 Richard Grace and Sonya Steward2001 Drowsy Driver Monitor and Warning
System,First International Driving Symposium on Human Factors nivEr Assessment, Training
and Vehicle Design page 5.

Greschner, 2011 Uwe Markus Greschner 2011 Experimentelle Untersuchung von Mafnahmen
gegen Schlafrigkeit beim Flhren von Kraftfahrzeudeinl) thesis Von der Fakultat Konstruktions-,
Produktions- und Fahrzeugtechnik der Universitat Stuttga

Guan, 2008 Tianyi Guan 2008 Modellierung der Fahrzeugdynamik zur Einschétzung des|iek-
tivenanderung einer Kamera anhand von CAN Bus Daldaister’s thesis, Universitat Stuttgart.

Han et al., 2017 Young-Joo Han, Wooseong Kim and Joon-Sang Parlkk017 Eye-tracking
on smartphones using regression-based predictiorlindawi, Mobile Information Systems,
Pages: 990-992.

Han et al., 2018 Young-Joo Han, Wooseong Kim and Joon-Sang Parkk018 Efficient Eye-
Blinking Detection on Smartphones: A Hybrid Approach Basedeep Learning, Hindawi,
Mobile Information Systems, Volume: 2018: pp. 1-8.

Hargutt, 2001: Volker Hargutt 2001 Das Liedschlussverhalten als Indikator fiir Aufmerksaskei
und Mudigkeitsprozesse bei Arbeitshandlundem) thesis University of Wirzburg.

Hargutt and Kriger, 2000: Volker Hargutt and H.-P. Kriger 2000 Eyelid movements and their
predictive value for fatigue stageslnternational Conference of Traffic and Transport Psycipplo
(ICTTP).

Hargutt et al., 2005 Volker Hargutt, H. Tietze and Hans-Peter Kriiger 2005 Auto an Fahrer:
"Sie sind mide!" - Wirkung verschiedener Strategien zukRigtdung des Fahrerzustand¥,DI-
Gesellschaft Fahrzeug- und Verkehrstechnik (Hrsg.), éfailm 21. Jahrhundert. Der Mensch als
Fahrer und seine Interaktion mit dem Fahrzeug (Tagung Bchweig), Pages: 95-101.

Hartley, 1995. Laurence Hartley 1995 Fatigue & Driving: driver Impairment, driver fatigue and
driving simulation,Taylor&Francis.

Hasberg and Hensel, 2009Carsten Hasberg and Stefan Hense2009 Online-Estimation of Road
Map Elements using Spline Curve$2th International Conference on Information Fusion.


https://www.deeplearningbook.org/
http://www.indiaenvironmentportal.org.in/files/file/road%20accidents%20in%20India%202017.pdf

—203-

HeiRing, 2011 Bernd HeilRing 2011 Chassis HandboolSpringer
http://books.google.de/books?id=NSISJtEy-NIC&q=aati%20braking%20system
(last visited: May 11, 2020)

Hell, 2001 W. Hell 2001 Verkannte UnfallursacheKolloquium des DVR 2001.

Hell, 2010 Wolfram Hell Fahrzeuginsassen richtig sicherADAC e.V. and Ludwig-Maximilians-
Universitat Mlnchen, Institut fiir Rechtsmedizin, Medigah-Biomechanische Unfallanalyse.

Hentschel et al., 2005 Elisabeth Hentschel, Dietmar Neumerkel, Lars Galley and Haus-Peter
Kuhn 2005, Patent number: (DE 103 55 221 ABrfahren und Computerprogramm zum Erkennen
von Unaufmerksamkeiten des Fahrers eines Fahrzeugs.

Hermannstadter and Yang, 2013a Peter Hermannstadter and Bin Yang 2013 Driver Distrac-
tion Assessment Using Driver ModelingProceedings of the IEEE International Conference on
Systems, Man, and Cybernetics, Volume: October: pp. 13—a6ddester, UK.

Hermannstéadter and Yang, 2013b Peter Hermannstadter and Bin Yang2013Erkennung veran-
derten Fahrerverhaltens mit einem Fahrermodell mit Vosohsiu und Motorikkomponent&/DI-
Bericht 4. Berliner Fachtagung Fahrermodellierung. BeBermany, 13./14. Juni.

Herslund and Jorgensen, 2003 M.-B. Herslund and N. O. Jorgensen2003 Looked-but-failed-to-
see-errors in traffic, Accident Analysis & Prevention. Volume: 35(6): pp. 885-891

Heuer, 2013 Steffan Heuer 2013 Autonomous driving - The triumph of the assistance systems.

Hochreiter, 1991 Josef Hochreiter 1991 Untersuchungen zu dynamischen neuronalen Netzen,
Master’s thesis, Institut fiir Informatik, Technische Uarisitat Minchen.

Hochreiter and Schmidhuber, 1997 Sepp Hochreiter and Jirgen Schmidhuber1997 Long
Short-term Memory,Neural Computation, Volume: 9(8): pp. 1735-80.

Horne and Reyner, 1995 J. A. Horne and L. A. Reyner 1995 Sleep related vehicle accidents,
BMJ, Volume: 310: pp. 565-567.

Horne and Baulk, 2004 James A. Horne and Stuart D. Baulk 2004 Awareness of sleepiness
when driving, Psychophysiology, Volume: 41(1): pp. 161-165.

Horne and Reyner, 1999 Jim Horne and Louise Reyner1999 Vehicle accidents related to sleep:
a review, Occup Environ Med, Volume: 56: pp. 289-294.

Houben et al., 1982 H. Houben, T. Thien, G. Wijnands and A. Van t Laar 1982 Effects of
cold exposure on blood pressure, heart rate and forearmdftmw in normotensives during se-
lective and non-selective beta-adrenoceptor blocka8eitish Journal of Clinical Pharmacology,
\Volume: 14(6): pp. 867-870.

Hutter et al., 2019 Frank Hutter, Lars Kotthoff and Joaquin Vanschoren 2019 Automated
Machine Learning - Methods, Systems, Challeng8pringer Series on Challenges in Machine-
Learning (Open).

Hyvarinen and Oja, 2000 Aapo Hyvérinen and Erkki Oja 2000Independent Component Analy-
sis: Algorithms and ApplicationsNeural Networks, Volume: 13(4-5): pp. 411-430.

Ibrahim, 2009: Mohamed Abolfadl Ibrahim 2009 Global Parameter Optimization of Driver State
Monitoring SystemMaster’s thesis, University of Stuttgart, ISS.

Idiada, 2012 Idiada Vehicle proving ground test track, Spain,
http://www.idiada.es
(last visited: May 11, 2020)


http://books.google.de/books?id=NSlSJtEy-NIC&q=antilock%20braking%20system
http://www.idiada.es

—204-

lizuka and Obara, 1986 Haruhiko lizuka and Hideo Obara 1986, Patent number: (4,594,583)
Method and system for detection of driver drowsiness by anmisteering change following no
steering movement.

Janos, 2018 Nathan Janos and Jeff Roach 1D Convolutional Neural Networks for Time Series
Modeling,2018
https://pydata.org/la2018/schedule/presentation/14/
(last visited: May 11, 2020)

Jap2009 Budi Thomas Jap, Sara Lal, Peter Fischer and Evangelos Be&ris 2009 Using EEG
spectral components to assess algorithms for detectimguiat Expert Systems with Applications,
\Volume: 36: pp. 2352-2359.

Jellentrup et al., 2009 Nina Jellentrup, Klaus-Peter Kuhn, Katja Nagel and Siegfried Rothe
2009, Patent number: (DE 102008035217 ANorrichtung in einem Kraftfahrzeug zur Er-
moglichung eines leistungsférdernden Kurzschlafes.
http://www.patent-de.com/20090402/DE1020080352 1 Fikil.

(last visited: May 11, 2020)

Jellentrup and Rothe, 2009 Nina Jellentrup and Siegfried Rothe 2009, Patent number: (DE
102009009468 Al)orrichtung zur Erzeugung eines Warn- oder Wecksignalsifign Fahrer.
http://www.patent-de.com/20091029/DE10200900946B4ul.

(last visited: May 11, 2020)

Jung and Makeig, 2000 T. P. Jung and S. Makeig2000 Removing electroencephalographic
artifacts by blind source separatiorRsychophysiology, Volume: 37(2): pp. 163-178.

Kanstrup, 2006; Lena Kanstrup 2006 Method for detection of sleepiness - Measurement of inter-
action between driver and vehicl®aster’s thesis, University of Linkdping.

Karim et al., 2018 F. Karim and S. Majumdar and H. Darabi and S. Chen 2018 LSTM Fully
Convolutional Networks for Time Series ClassificatidBEE Access, Volume: 6: pp. 1662—-1669.

Katz et al., 2004 Egon Katz, Klaus-Peter Kuhn, Jurgen Schrader and Wolfram Shréder 2004,
Patent number: (DE 1192061 BWerfahren zur fahrdynamischen Adaption der Kérperabsiidz
einer Sitzenden in einem Fahrzeugsitz und Fahrzeugsitzthie

Kecklund and Akerstedt, 1993 Géran Kecklund and Torbj 6rn Akerstedt 1993 Sleepiness
In Long Distance Druck Driving: an Ambulatory EEG Study ofjhi Driving, Ergonomics,
Volume: 36.9: pp. 1007-1017.

King et al., 1992 David J. King, David K. Mumford, and Gunter P. Siegmund 1999 An Algo-
rithm for Detecting Heavy-Truck Driver Fatigue from StewyiWheel Motion, National Highway
Traffic Safety Administration (NHTSA).

Kircher et al., 2002: Albert Kircher, Marcus Uddmann and Jesper Sandin 2002 Vehicle Control
and Drowsiness,Swedisch National Road Transport Research Institute.

Kirschstein, 2008 Timo Kirchstein 2008 How is the EEG generated?Neurophysiologie-Labor,
\Volume: 30: pp. 29-37.

Knipling, 1998: Ron Knipling 1998PERCLOS: A Valid Psychophysiological Measure of Alertness
As Assessed by Psychomotor Vigilanbeghnical report Federal Highway Administration.

Knipling and Wang, 1994: Ronald R. Knipling and Jing-Shiam Wang 1994 Crashes and Fa-
talities Related to Driver Drowsiness/Fatigu@echnical report National Highway Traffic Safety
Administration.


https://pydata.org/la2018/schedule/presentation/14/
http://www.patent-de.com/20090402/DE102008035217A1.html
http://www.patent-de.com/20091029/DE102009009468A1.html

—205-

Knipling1995: Ronald R. Knipling and Jing Shiam Wang 1995 Revised Estimates of the U.S.
Drowsy Driver Crash Problem Size Based on General Estim8ietem Case Reviews39th
Annual Proc., Association for the Adv. of Automotive Mediiej Chicago October.

Knipling and Wierwille, 1994: Ronald R. Knipling and Walter W. Wierwille 1994Vehicle-Based
Drowsy Driver Detection: Current Status and Future Proggec

Kostal, 2012 Leopold Kostal 2012 Steering Column Modules,
https://www.kostal-automobil-elektrik.com/en-gb/gukte/mechatronik-module/lenksaeulenmodule
(last visited: May 11, 2020)ast accessed: 27 November, 2012.

Kozak and Pohl, 2006 Ksenia Kozak and Jochen Pohl2006 Evaluation of Lane Departure
Warnings for Drowsy Driversin Proceedings of the Human Factors And Ergonomics Society 50t
Annual MeetingPage: 5.

Krizhevsky et al., 2012 Alex Krizhevsky, llya Sutskever and Geoffrey E Hinton 2012ImageNet
Classification with Deep Convolutional Neural NetworRages: 1097-1105
http://papers.nips.cc/paper/4824-imagenet-clastiitavith-deep-convolutional-neural-networks. pdf
(last visited: May 11, 2020)

Kuhn and Heidinger, 1997 Klaus-Peter Kuhn and A. Heidinger 1997 On-line driver type classi-
fication, International journal of vehicle design, Volume: 18(6): pf6—625.

Kinzel, 2008 Daniela Kiinzel 2008 Die Rolle von Ablenkung und Mudigkeit bei Verkehrsunféllen
Nationale und internationale Statistikeuratorium fiir Verkehrssicherheit 2008.

Lagarias and Reeds, 1996 Jeffrey C. Lagarias and James A. Reed4996 Convergence Prop-
erties of the Nelder-Mead Simplex Method in Low Dimensio&$AM Journal of Optimization,
Volume: 9: pp. 112-147.

Lal and Craig, 2002 Sarkoj K. L. Lal and Ashley Craig 2002Driver fatigue: Electroencephalog-
raphy and psychological assessmeRsychophysiology, Volume: 39: pp. 313-321.

Lenne et al., 1998 Michael G. Lenne, Thomas J. Triggs and Jennifer R. Redmari998 Interac-
tive Effects of Sleep Deprivation, Time of Day and Drivingp&kence on a Driving Task Sleep,
Volume: 21(1): pp. 38—44.

Leveau, 1903 Gustave-Désiré Leveaul903, Patent number: (FR 33192B)etelles protectrices
pour voitures automobiles et autres.

Liu, 2005: Chang Liu 2005 Foundations of MEMS|linois ECE Series.

Liu et al., 2009 Charles C. Liu, Simon G. Hosking and Michael G. Lenne2009 Predicting
driver drowsiness using vehicle measures: Recent insigihdsfuture challenges, Journal of
Safety Research, Volume: 40: pp. 239-245.

Lofgren, 2007 Par Lofgren 2007 Identification of Driver Unawareness based on User Intdmact
Master’s thesis, Institutionen for Systemteknik, Depanirof Electrical Engineering.

Lundquist and Schén, 2010 Christian Lundquist and Thomas B. Schén2010 Joint Ego-Motion
and Road Geometry Estimatiotnformation Fusion, Pages: 253-263.

LVGB, 2009: LVGB 2009 UTM - Abbildung und UTM - Koordinatenl.andesamt flir Vermessung
und Geoinformation Bayern.

Lyznicki et al., 1998 J. M. Lyznicki, T. C. Doege, R. M. Davis and M. A Williams 1998 Sleepi-
ness, driving and motor vehicle crashedAMA: Journal of the American Medical Association,
Volume: 279 (23): pp. 1908-1913.

Mahler, 2005 Michael Norbert Mahler 2005 Radar-basierte Sensorkonzepte fur den Kfz-
Innenraum,Cuvillier Verlag Géttingen.


https://www.kostal-automobil-elektrik.com/en-gb/produkte/mechatronik-module/lenksaeulenmodule
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

—206—-

Mammarand et al., 2006 Said Mammarand, Sébastien Glaser and Mariana Nett®006 Time
to Line Crossing for Lane Departure Avoidance: A Theordt®taidy and an Experimental Setting,
IEEE Transactions on Intelligent Transportation Systevogyme: 7 No. 2, June: pp. 226-241.

Mara, 1999 Joy Mara 1999 Drowsy Driving and Automobile Crashe$\ational Highway Traffic
Safety Administration (NHTSC).

Martin, 2006: Elly Martin 2006 Breakthrough Research on Real-World Driver Behavior Redela
National Highway Traffic Safety Administration

MathWorks, 2007: MathWorks 2007 MATLAB Documentation Center - Version 7.5.0.342
(R2007b),The MathWorks Inc. Natick, Massachusetts.

Mattsson, 2007 Kristina Mattsson 2007 In-vehicle prediction of truck driver sleepiness: lane
position variablesMaster’s thesis, Lulea University of Technology.

Mercedes-Benz MBRSA, 2013 Mercedes-Benz MBRSA2013 S-Class Sedan Attention Assist
Manual

Mercedes-Benz, 2012Mercedes-Ben22012 Techcenter Kneebag,
http://m.mercedes-benz.de/techcenter/kneebag/detalil
(last visited: May 11, 2020)

Mercedes-Benz, 2008 E. Philips Mercedes-Benz2008 Mercedes-Benz To Introduce Attention
Assist Into Series Production In Spring 2009

Mercedes-Benz USA, 2012Mercedes-Benz USA2012 mbrace
http://www.mbusa.com/mercedes/mbrace
(last visited: May 11, 2020)

Mets et al., 2011 Monique A. J. Mets, Sander Ketzer and Camilla Blom2011 Positive effects of
Red Bull(R) Energy Drink on driving performance during mmoged driving, Psychopharmacol-
ogy, Volume: 214 pp. 737-745.

Miksch, 2010 Michael Miksch 2010 Motion Compensation for Obstacle Detection based on Ho-
mography and Odometric Data with Virtual Camera PerspasjvProceedings of the IEEE Con-
ference on Intelligent Vehicles Volume: 4: pp. 1152-1158.

Mitschke and Wallentowitz, 2004 Manfred Mitschke and Henning Wallentowitz 2004Dynamik
der KraftfahrzeugeSpringer DE.

Mitsubishi, 2002 Mitsubishi 2012 Driver’s Attention Monitoring System MDAS
http://www.jsae.or.jp/autotech/data_e/13-5e.html
(last visited: May 11, 2020)

Mitsubishi-Fuso, 2012 Mitsubishi-Fuso 2012 Mitsubishi’s Driver's Attention monitoring system
(MDAS-III)
https://www.mitsubishi-fuso.com/oa/en/press/121221211.html
(last visited: May 11, 2020)

Monk, 1991 Timothy H. Monk 1991 Circadian aspects of subjective sleepiness: A behavioral
messengerSleep, sleepiness and performance, Pages: 39-63.

Moussa, 2009 Wafik Moussa 2009 Designing a Driver Vigilance Monitoring Device: Applicati
Driven Development of an FPGA Based Multiprocessor Syst&®, Lambert Academic Publish-

ing.
Mukherjee and Robertson, 2015 Sankha Subhra Mukherjee and Neil Robertson2015 Deep

Head Pose: Gaze-Direction Estimation in Multimodal VideliEEE Transactions on Multimedia,
Volume: 17(11): pp. 2094-2107


http://m.mercedes-benz.de/techcenter/kneebag/detail.html
http://www.mbusa.com/mercedes/mbrace
http://www.jsae.or.jp/autotech/data_e/13-5e.html
https://www.mitsubishi-fuso.com/oa/en/press/121211/121211.html

—-207-

Munzig, 2008 Thorsten Munzig 2008 Positionserfassung mit PLCD-Sensoren - Beruhrungslose
Weg- und Winkelemessung im Antriebsstrang und Chassis
http://www.elektronikpraxis.vogel.de/hardwareentdimg/articles/140953/

(last visited: May 11, 2020)ast accessed: 27 November, 2012.

Nodine, 2008 Emily Nodine 2008 The Detection of Drowsy Drivers Through Driver Performance
Indicators, PhD thesis TUFTS.

Nordbakke and Sagberg, 2007 S. Nordbakke and F. Sagberg2007 Sleepy at the wheel: Knowl-
edge, symptoms and behaviour among car drivefsansportation Research Part F: Traffic Psy-
chology and Behaviour, Volume: 10, Issue 1: pp. 1-10.

NOVA, 2002 Australian Academy of Science NOVA2002 Driver fatigue - an accident waiting to
happen

NPC China, 2010 National People’'s Congress NPC Chin&2010 Six years, the National Traffic
Police sacrifice 435 thousand vehicles mortality decredse316
http://npc.people.com.cn/GB/11474924 .html
(last visited: May 11, 2020)

Oberman, 2006 Lawrence Taylor and Steven Oberman2006 Drunk driving defens, Aspen
Publishers.

Olabe, 2008 Irati Markuerkiaga Olabe 2008 Driver-Fatigue Detection Based on Lane Data,
Master’s thesis, University of Stuttgart, Chair of Systehe®dry and Signal Processing.

onstar.com, 2013 onstar.com2013 mbrace
https://www.onstar.com
(last visited: May 11, 2020)

Oord et al., 2016 Aéaron van den Oord, Sander Dieleman and Heiga Zer2016 WaveNet: A
Generative Model for Raw Audio

OpenStreetMaps.org, 2020 OpenStreetMaps The Free Wiki World Map
https://www.openstreetmap.org
(last visited: May 11, 2020)

Orfanidis, 1995. J. Orfanidis 1995 Introduction to Signal Processingrentice-Hall.

Oron-Gilad et al., 2007 Tal Oron-Gilad, Adi Ronen and David Shinar 2007 Alertness maintain-
ing tasks (AMTSs) while drivingAccident Analysis and Prevention, Volume: 3: pp. 851-860.

Pal and Chuang, 2008 Nikhil R. Pal and Chien-Yao Chuang 2008 EEG-Based Subject- and
Session-independent Drowsiness Detection: An Unsugehdipproach, EURASIP Journal on
Advances in Signal Processing, 519480:11.

Pander et al., 2008 Tomasz Pander, Tomasz Przybyla and Robert Czabansk008 An Applica-
tion of Detection Function for the Eye Blinking DetectioHSI.

Pape, 2008 Michael Pape 2008 Erkennung von Lenkereignissen anhand Fusion softer ung-ada
tiver Schwellwertfunktionen und Fuzzy-Lodikaster’s thesis, Berufsakademie Stuttgart Horb.

ATP Papenburg, 2012 ATP Papenburg
http://www.atp-papenburg.de
(last visited: May 11, 2020)

Park et al., 2018 Seonwook Park, Adrian Spurr and Otmar Hilliges 2018 Deep Pictorial Gaze
Estimation


http://www.elektronikpraxis.vogel.de/hardwareentwicklung/articles/140953/
http://npc.people.com.cn/GB/11474924.html
https://www.onstar.com
https://www.openstreetmap.org
http://www.atp-papenburg.de

—208-

Parkhi et al., 2015 Omkar M. Parkhi, Andrea Vedaldi and Andrew Zisserman 2015Deep Face
RecognitionPages: 41.1-41.12
https://dx.doi.org/10.5244/C.29.41
(last visited: May 11, 2020)

Patterson and Gibson, 2017 Josh Patterson and Adam Gibsor2017 Deep Learning: A Practi-
tioner's ApproachO’Reilly, Beijing, ISBN 978-1-4919-1425-0.

Petit and Chaput, 1990 Claire Petit and D. Chaput 1990 Research to prevent the driver from
falling asleep behind the wheelProceedings: Association for the Advancement of Autongotiv
Medicine Annual Conference, Volume: 34: pp. 505-522.

Philip and Sagaspe, 2005 Pierre Philip and Patricia Sagaspe2005 Fatigue, Sleepiness and
Performance in Simulated Versus Real Driving ConditioB8 EEP, Volume: 28, No. 12: pp. 1511—
1516.

Philip and Taillard, 2006: Pierre Philip and J. Taillard 2006 The effects of coffee and napping
on nighttime highway driving: a randomized trial, Annals of Internal Medicine, Volume: 144
pp. (785-91):11.

Picot, 2010 Antoine Picot 2010 Drowsiness detection based on visual signs: blinking asialy
based on high frame rate video,International Instrumentation and Measurement Technpolog
Conference, Volume: 1:hal-00449307.

Pilutti and Ulsoy, 1999 Tom Pilutti and A. Galip Ulsoy 1999 Identification of Driver State for
Lane-Keeping TaskslEEE Transactions on Systems, Man and Cybernetics - Parygte®s and
Humans 29(5):486.

Pilutti and Ulsoy, 1995 Tom Pilutti and Galip Ulsoy 1995 On-Line Identification of Driver State
for Lane-Keeping Tasks,Proceedings of the American Control Conference Seattleshifigton
June 1995.

Platt, 1962 Fletcher N. Platt 1966, Patent number: (3227998)tomobile Driver Attention Indica-
tor.

Poh and McDuff, 201Q Ming-Zher Poh and Daniel J. McDuff 2010 Non-contact, automated
cardiac pulse measurements using video imaging and blincteseparation OPTICS EXPRESS,
Volume: 18, No. 10.

Pudil et al., 1994 P. Pudil, F. J. Ferrii, J. Novovicova and J. Kittler 1994a Floating Search
Methods for Feature Selection with Nonmonotonic Criterfamctions, In Proceedings of the
Twelveth International Conference on Pattern Recogniti®BR. Conference B: Computer Vision
& Image Processing, Volume: 2: pp. 279-283.

Pudil et al., 1994 P. Pudil, J. Novovicova and J. Kittler 1994b Floating Search Methods for
Feature SelectionPattern Recognition Letters 15(11):1119-1125
http://dx.doi.org/10.1016/0167-8655(94)90127-9
(last visited: May 11, 2020)

Reichert, 2008 Andreas Reichert2008, Patent number: (DE 10 2007 001 362 A&yfahren und
Vorrichtung zur Fahrerermidungserkennung mittels Drehmantsensorik.

Reyner and Horne, 2000 Louise Reyner and James Horn€000Early morning driver sleepiness
Effectiveness of 200 mg caffeinBsychophysiology, Volume: 37: pp. 251-256.

Reyner and Horne, 1998 Louise A. Reyner and J. A. Horne1998 Evaluation "in-car" counter-
measures to sleepiness: cold air and radiBleep, Volume: 21(1): pp. 46-50.


https://dx.doi.org/10.5244/C.29.41
http://dx.doi.org/10.1016/0167-8655(94)90127-9

—-209-

Reyner, 2005 P. R. Barrett, J. A. Horne and Louise A. Reyner 2005 Early evening low al-
cohol intake also worsens sleepiness-related driving impent, Human psychopharmacology,
Volume: 20(4): pp. 287-90.

Rieckmann, 2010 Tanja Rieckmann 2010 Unfallschwerpunkt Autobahn: Rutteln fir mehr Sicher-
heit
http://www.spiegel.de/auto/aktuell/0,1518,722490hadl
(last visited: May 11, 2020)

Riekert and Schunck, 1940 P. Riekert and T. E. Schunck 1940 Zur Fahrmechanik des gum-
mibereiften Kraftfahrzeugdngenieur-Archiv.

Ritter, 2007: Hanno S. Ritter 2007 Volvo Driver Alert: Zeit fur eine Pause
http://www.autokiste.de/psg/archiv/a.htm?id=6679
(last visited: May 11, 2020)

Sagaspe et al., 20Q7Patricia Sagaspe, Jacques Taillard and Guillaume Chaume2007 Aging
and Nocturnal Driving: Better with Coffee or a Nap? A Randped Study, Sleep, Volume: 30
(1808-1813): pp. 12.

Saul and Berger, 1991 J. Saul and R. Berger1991 Transfer function analysis of the circula-
tion: unique insights into cardiovascular regulatiomrdmerican Journal of Physiology-Heart and
Circulatory Physiology, Volume: 261(4):H1231-H1245.

Savitzky and Golay, 1964 Abraham Savitzky and Marcel J. E. Golay 1964 Smoothing and
Differentiation of Data by Simplified LS Procedurénal. Chemistry, Volume: 36: pp. 1627.

Sayed, 2001 R. Sayed and A. Eskandarian2001 Unobtrusive drowsiness detection by neural
network learning of driver steeringiProceeding Institution of Mechanical Engineers, Volunis 2
D: pp. 969-975.

Schafer, 2011 Ronald W. Schafer2011What is a Savitzky-Golay FilterAEEE Signal Processing
Magazine, Volume: July: pp. 111-117.

Schindler, 2007 Erich Schindler 2007 Fahrdynamik - Grundlagen des Lenkverhaltens und ihre
Anwendung fur FahrzeugreglersysterAE Expert Verlag
https://books.google.de/books?id=N418btNjDI14C
(last visited: May 11, 2020)

Schmidt, 2009 Eike Schmidt 2009 Drivers Misjudgement Of Vigilance State During Prolonged
Monotonous Daytime Driving Accident Analysis & Prevention, Volume: 41(5): pp. 1087930

Schmidt, 2010 Eike Schmidt 2010 Die objektive Erfassung von Muedigkeit waehrend monotoner
Tagfahrten und deren verbale Selbsteinschaetzung dunchdierer, PhD thesis Mathematisch-
Naturwissenschaftliche Fakultéat, Heinrich-Heine-Unsigit Dusseldorf.

Schmitz, 2004 Carsten Helmut Schmitz 2004  Adaptiver Spurverlassenswarner mit
Fahrerabsichts- und fahrerzustandsabhéangiger Warnegiat PhD thesis University Karlsruhe.

Schnabel, 2012 Patrick Schnabel 2012 Elektronik Fibel Kompendium: MEMS - Micro-Electro-
Mechanical Systems,
http://www.elektronik-kompendium.de/sites/bau/150Bbtm
(last visited: May 11, 2020)

Schneider2006 Kristina Schneider 2006SPECTARIS: Mudigkeit ist Hauptursache fir Verkehrsun-
falle .

Schramm and Hiller, 2014 Dieter Schramm and Manfred Hiller 2014 Vehicle Dynamics,
Springer.


http://www.spiegel.de/auto/aktuell/0,1518,722490,00.html
http://www.autokiste.de/psg/archiv/a.htm?id=6679
https://books.google.de/books?id=N4I8btNjDI4C
http://www.elektronik-kompendium.de/sites/bau/1503041.htm

—-210-

Scott, 2009 Joanna Scott2009 Coffee and Safer Driving;Technical report International Coffee
Organization.

SeeingMachines, 2007 SeeingMachines2007 Driver State Sensor - User Manual 2.(Geeing
Machines.

Seko and et. al., 1986 Yokohama Yasutoshi Seko and Takayuki Huruhiko lizuka et. d. 1986,
Patent number: (4,611,19%Rlarm System and Method for Sensing a Stand-by State in @&Driv
Drowsiness Detection System.

Sherry, 200Q Patrick Sherry 2000 Fatigue Countermeasures in the Railroad Industry: Past and
Current Development$hD thesis Intermodal Transportation Institute, Univgrsf Denver.

Shi, 2015 Xingjian Shi, Zhourong, Chen, Hao Wang, Dit-Yan Yeung, WaiKin Wong and
Wang-chun Wo002015 Convolutional LSTM Network: A Machine Learning ApproachReecip-
itation Nowcasting, CoRR, DBLP Computer Science, Volume: abs/1506.04214.

Siegmund, 1996 G. P. Siegmund, D. J. King and D. K. Mumford 1996 Correlation of Heavy-
Truck Driver Fatique with Vehicle-Based Control Measur&AE Report 952594 ISSN 0148-7191.

Simon, 2012 Michael Simon 2012 EEG measures as indicators of driver fatigu®hD thesis
University of Ulm.

Simon and Schmidt, 2011 Michael Simon and Eike A. Schmidt2011 EEG alpha spindle mea-
sures as indicators of driver fatigue under real traffic caimhs, Clinical Neurophysiology, Vol-
ume: 112(6): pp. 1168-1178.

Sonnleitner, 2012 Andreas Sonnleitner2012 Die physiologische Erfassung des Fahrerzustandes:
Der Einfluss von Unaufmerksamkeit des Fahrers auf EEG Paemuad VerhaltensdatenPhD
thesis Heinrich-Heine Universitat Disseldorf.

Sonnleitner and Simon, 2012 Andreas Sonnleitner and Michael Simon2012 Alpha spindles as
neurophysiological correlates indicating attentionaifsin a simulated driving task]nternational
Journal of Psychophysiology, Volume: 83: pp. 110-118.

Stolzmann et al., 2002 Wolfgang Stolzmann, Dietmar Neumerkel, Patrick Rammelt,Dirk Re-
ichardt, and Axel Vogler 2002 Fahrermodelle - Ein Schlissel fur Unfallfreies Fahren®Kuen-
stliche Intelligenz, Volume: 03: pp. 34-36.

Svensson, 2004 Ulrika Svensson2004 Blinking Behaviour based drowsiness detection - method
development and validatioMaster’s thesis, Linkdping University.

Tyco, 2010a Tyco MISCs TE 2010 Multi Coil Resolver
https://www.te.com/usa-en/product-CAT-ATS0024.html
(last visited: May 11, 2020)

Tyco, 2010b Tyco MISCs TE 2010 Steering Position Sensor for Driver Attention Assistance
http://www.te.com/aboutus/news/prodinnov.aspx?idH18
(last visited: May 11, 2020)

Teofilov, 2009 Angel Teofilov 2009 Kamerabasierte Midigkeits- und Ablenkungserkenntiegh-
nical report University of Stuttgart.

Thiffault and Bergeron, 2003; Pierre Thiffault and Jacques Bergeron2003Monotony of road en-
vironment and driver fatigue: A simulator studfgccident Analysis and Prevention, Volume: 35(3):
pp. 381-391.

Thorslund, 2003 Birgitta Thorslund 2003 Electrooculogram Analysis and Development of a
System for Defining Stages of Drowsinddsister’s thesis, Linkdping University.


https://www.te.com/usa-en/product-CAT-ATS0024.html
http://www.te.com/aboutus/news/prodinnov.aspx?id=1841

-211-

Tietze and Hargutt, 2001 Heiko Tietze and Volker Hargutt 2001 Zweidimensionale Analyse zur
Beurteilung des Verlaufs von ErmUdunfgchnical report Interdisziplinares Zentrum fir Verkehr-
swissenschaften an der Universitat Wirzburg.

Tijerina et al., 1998 Louis Tijerina, Walter W. Wierwille, Michael J. Goodman, S . Johnston,
D. Stoltzfus and M. Gleckler 1998 A Preliminary Assessment of Algorithms for Drowsy and
Inattentive Driver Detection on the Roadlechnical report U.S. Department of Transportation,
National Highway Safety Administration.

TRUEcar, 2010 TRUEcar 2010 Spotlight on Safety: Drowsy Driving Just as Risky as Drunk
Driving
http://blog.truecar.com/2010/12/22/spotlight-onesgfdrowsy-driving-just-as-risky-as-drunk-driving
(last visited: May 11, 2020)

Ueno et al., 1994 Hiroshi Ueno, Masayuki Kaneda and Masataki Tsukino1994 Development of
drowsiness detection systenvehicle Navigation and Information Systems Conferencec@ed-
ings.

Uhlich, 2006 Stefan Uhlich 2006 Emotion recognition of speech signaldaster’s thesis, Univer-
sity of Stuttgart, Chair of System Theory and Signal Praocgss

van Wees et al., 2004 Kiliaan van Wees, Karel Brookhuis and D. De Waard2004 Recommenda-
tions to Authorities and the Industrg)04 Awake EU Project.

Vector, 2012 Vector 2012 CANape 11.0 Measuring, Calibrating, Diagnosing and FlashiECUs,
http://www.vector.com/vi_canape_de.html
(last visited: May 11, 2020)

Volvo Cars, 2007a Volvo Cars 2007 Blind Spot Information System BLIS
http://www.volvocars.com/de/sales-services/sergjgedialsales/Pages/techniklexikon-b.aspx
(last visited: May 11, 2020)

Volvo Cars, 2007b Volvo Cars 2007 Volvo Cars introduces new systems for alerting tired and
distracted drivers
https://www.media.volvocars.com/at/de-at/media/pht04608/blind-spot-information-blis-mit-lenkagsisgt
(last visited: May 11, 2020)

Volvo Cars, 2012 Volvo Cars 2012 Driver Alert
https://www.volvocars.com/de/support/manuals/s60@2@hrerunterstutzung/driver-alert-control/
driver-alert-control
(last visited: May 11, 2020)

von Jan et al.,, 2010 T. von Jan, T. Karnahl, K. Seifert, J. Hilgenstock and R. Zobel 2005
Don't sleep and drive - VW's fatigue detection technologyational Highway Traffic Safety
Administration (NHTSA) ESV 19
http://www-nrd.nhtsa.dot.gov/pdf/esv/esv19/Othan®62007.pdf
(last visited: May 11, 2020)

Wagoner, 2008 Rick Wagoner 2008 CES 2008: Wagoner expected to announce driverless cars
within a decade,CNN Money/Autos
http://www.autoblog.com/2008/01/07/ces-2008-wagesected-to-announce-driverless-cars-within-a/
(last visited: May 11, 2020)

Wang and Knipling, 1996: J. S. Wang and R. R. Knipling 1996 The role of driver inattention in
crashes: New statistics from the 1995 Crashworthiness Ba&stem, 40th An. Proc. Assoc. for
the Adv. of Automotive Med. Volume: IA: pp. 377-392.


http://blog.truecar.com/2010/12/22/spotlight-on-safety-drowsy-driving-just-as-risky-as-drunk-driving
http://www.vector.com/vi_canape_de.html
http://www.volvocars.com/de/sales-services/service/specialsales/Pages/techniklexikon-b.aspx
https://www.media.volvocars.com/at/de-at/media/photos/204608/blind-spot-information-blis-mit-lenkassistent
https://www.volvocars.com/de/support/manuals/s60/2019/fahrerunterstutzung/driver-alert-control/driver-alert-control
https://www.volvocars.com/de/support/manuals/s60/2019/fahrerunterstutzung/driver-alert-control/driver-alert-control
http://www-nrd.nhtsa.dot.gov/pdf/esv/esv19/Other/Print%2007.pdf
http://www.autoblog.com/2008/01/07/ces-2008-wagoner-expected-to-announce-driverless-cars-within-a/

-212-

Wang et al., 2016 Xingyou Wang, Weijie Jiang and Zhiyong Luo 2016 Combination of Con-
volutional and Recurrent Neural Network for Sentiment Asisl of Short Texts,Proceedings of
COLING 2016, the 26th International Conference on Comjmutat Linguistics: Technical Papers,
Osaka, Japan, Volume: 16: pp. 2428-2437.

Weiss, 2011 Thorsten-Tobias Weiss2011Hochgenaue Positionierung und Kartographie mit Laser-
scannern fur FahrerassistenzsysterRaD thesis University of Ulm.

Welch and Bishop, 2006 Greg Welch and Gary Bishop 2006 An Introduction to the Kalman
Filter, University of North Carolina at Chapel Hill, Department adi@puter Science.

Welling, 2005 Max Welling 2005Fisher Linear Discriminant Analysig,echnical report University
of Toronto, Department of Computer Science.

Wierwille, 1996a: Walter W. Wierwille 1996Research of vehicle-based driver Status/Performance
monitoring - Part |, Technical report.

Wierwille, 1996b: Walter W. Wierwille 1996Research of vehicle-based driver Status/Performance
monitoring - Part Ill, Technical report.

Wierwille and Ellsworth 1994: Walter W. Wierwille and Lynne A. Ellsworth 1994 Research on
Vehicle-Based Driver Status/Performance Monitoring; Blepment, Validation and Refinement of
Algorithms For Detection of Driver Drowsines3gechnical report U.S. Department of Transporta-
tion National Highway Traffic Safety Administration.

Wierwille et al. 1996. Walter W. Wierwille, Rollin J. Fairbanks, I. Mark G. Lewin a nd
L. Mark G. Lewin 1996 Research of vehicle-based driver Status/Performancetorarg - Part
Il, Technical report.

Wigh, 2007: Frederik Wigh 2007 Detection of Driver Unawareness Based on Long- and Short-
Therm Analysis of Driver Lane Keepinlglaster’s thesis, Linkdpings Universitet.

Yang, 2011 Bin Yang 2011 Digital Signal Processing,University of Stuttgart, Chair of System
Theory and Signal Processing.

Yang, 2013 Bin Yang and Stefan Uhlich 2013 Pattern Recognition and Detectiotlniversity of
Stuttgart, Chair of System Theory and Signal Processing.

Yang, 2018 Bin Yang 2018 Lectur Detection and Pattern RecognitiofJniversity of Stuttgart,
Institute of Signal Processing and System Theory.

Yeo, 2009 Mervyn V. M. Yeo, Xiaoping Li, Kaiquan Shen and Einar P. V. Wi lder-Smith 2009
Can SVM be used for automatic EEG detection of drowsinessglaar driving?, Safety Science,
Volume: 47: pp. 115-124.

Zomotor, 1987 Adam Zomotor and Walter Klinkner 1987 Fahrwerktechnik: Fahrverhalten,
Vogel Buchverlag, Wirzburg.

Zulley, 1995 Jirgen Zulley 1995 Chronobiologie, Bedeutung der biologischen Rhythmen,
WeilRbuch Schlafmedizin, Pages: 41-43.

Zulley, 2006 Jurgen Zulley 2006 Der Schlaf: Notwendig oder Zeitverschwenduridpiversity of
Regensburg.



—-213-

Index

z-transform 55

AAA Foundation for Traffic Safetyy, 9

Active Body Control (ABC),19

Active Braking System (ABSY

Active Safety,3

Advanced Driver Assistance Systems (ADAS),
7

Advanced Lane Departure Warning (ALDW),
8,10, 19, 25, 28,152 175

Advanced Lane Departure Warning Assist (ALDW) Exponentially Weighted Moving Average (EWMA),

4

Airbag,4

Area Under Curve (AUC)141, 142 151

Artificial Neural Networks (ANN)60, 67, 164,
166,167,175

Attention Assist,ix—xiii, 4, 8, 12-17, 22, 36—
38, 79, 80, 104-106, 141, 160, 161,
166,174,193 195 196

Attention Level,ix—xii, 8, 15, 157, 159, 174,
175

Baselining,19, 55
Blind Source Separation (BSSH0
Body Slip Angle, 130

CAN Calibration Protocol (CCP}85

Center of Gravity (CG)182

Controller Area Network (CAN)179

Convolutional Neural Networks (CNNJL67

Cross-correlatior 88

Crumple Zone3

Cumulative Distribution Function (CDFY8,
151

Customer Near Driving (KNFER2

DataSet ALDWvalid 178

DataSet ALDWvalidND178

DataSet FieldDrivesl 78

Deep Neural Networks (DNN)L67

Desired Warning Level (DWL)37, 161

Digital Polynomial Smoothing and Differenti-
ation Filter (DISPQO)54, 69

Driver State Sensor (DS$?2

Electrocardiogram (ECGX.2

Electroencephalogram (EEG3, 11, 33, 34,
3943, 45, 48-50, 53, 57, 62, 65,
139,174,175

Electroencephalography (EE@R

Electromyogram (EMG}2

Electronic Controller Unit (ECU)18, 25

Electronic Stability Control (ESCY, 13, 18,
20

Electrooculogram (EOG¥, 33,34, 42,43, 45,
51-53, 55, 62, 63, 65,174

72

Exponentially Weighted Moving Variance (EW-
VAR), 72

Extended Kalman filter (EKF)1.34

Fast-Fourier Transform (FFT)03
Fisher transform (LDA)163
Fuzzy Logic,92

Gaussian Mixture Models (GMM),64, 165
Ground Truth12, 31, 41, 48, 83

Head Unit,53
Hidden Markov Models (HMM)20
Human Machine Interface (HMIB

Independent Component Analysis (ICA)5,
50

Instant Center of Rotation (ICR)30

Instrument Cluster (IC%H3

Interquartile Range (IQRXxxii, 73, 89, 143
144

Inverse Gaussian Distributiofi], 98, 123

Karolinska Sleepiness Scale (KSSXxi, 33—
41, 48, 50, 53, 57, 59-61, 63-65,
105 125 137141, 144-150 156
157, 161, 165 166, 168-171, 174
175,192 193

Lane Departure Protection (LD, 28

Least-Significant Bit (LSB)194

Linear Discriminant Analysis (LDA)141, 147,
163 164

Long Short-Term Memory Recurrent Neural
Networks (LSTM),167



—214—

Look-up Table98

Maximum Likelihood Estimate (MLE)91

Mean Splitting,90

Mean Squared Error (MSEXxii, 149, 188

Micro-Electro-Mechanical System (MEM 36,
184

Multiple Discriminant Analysis (MDA) xxii,
141-143 146

National Highway Traffic Safety Administra-
tion (NHTSA),4, 9
Neural Architecture Search (NAS)69

Passive Safety

Patent-Motorwagor®,

Permanentmagnetic Linear Contactless Displace-
ment (PLCD),183

Principal Component Analysis (PCA)63, 168

Probability Density Function (PDFR1, 98,
123

Probability Distribution Function (PDF},51

Receiver Operating Characteristics (ROT)0,
166

Recurrent Neural Networks (RNN)67

Regression coefficient$48

Reinforced learningl 70

Rigid passenger celB

Rumple Strips9

Sensor cluster (SC26

Sequential Floating Forward Selection (SFFS),
163 164, 168

Sideslip angle4

Signal-to-Noise Ratio (SNR),02

Spectrogram] 03

Spikiness Index] 01

Stanford Sleepiness Scale (SS$),

Steer-by-wire89

Steering ratio (SR}1.30

Steering Wheel Angle Sensor (STV2gh

Structured Query Language (SQL),

Support Vector Machines (SVM164

Time-on-Task6

Time-To-Collision (TTC) 8
Time-to-Lane-Crossing (TLCB5
Tiredness Symptoms Scale (TSS4,

Vigilance,1, 7, 8, 11-13, 18, 21
Weibull-distribution,56

Zero-crossing-rate (ZCR),03
Zero-mean and unit-varianck§9
Zero-mean unit-variance normalizatidsh



	Abstract
	Zusammenfassung
	Acknowledgement
	List of Tables
	List of Figures
	Symbols and Abbreviations
	Introduction
	Chapter Overview
	Motivation
	History of Safety
	Safety Systems
	Drowsiness related Accidents
	Perspective of Mobility and Safety Systems

	Driver State Warning Systems and their Human Machine Interface (HMI)
	Countermeasures against Sleepiness behind the Wheel
	Approaches to Detect Drowsiness in the Vehicle
	Drowsiness Detection Systems on the Market
	State-of-the Art and Literature Review
	Goals of this Thesis
	New Contributions of this Thesis
	Challenges of in-vehicle Fatigue Detection

	Sensors and Data Acquisition
	Driving Experiments
	Database
	Touchscreen and Questionnaire

	Sensors
	Vehicle Speed from Wheel Rotation Rate Sensor
	Inertial Sensors
	Steering Wheel Angle Sensor (STW)
	Advanced Lane Departure Warning (ALDW) Assistance Systems
	Global Positioning System (GPS) Sensor
	Rain and Light Sensor

	Co-passenger Observations during Night Experiments

	Evaluation of Driver State References
	Terminology and Physiology of Fatigue
	Phases of Fatigue
	Drowsiness Reference
	Subjective Self-ratings and Expert-ratings
	Karolinska Sleepiness Scale (KSS)
	Desired Warning Level (DWL)
	Warning Acceptance and Warning Assessment
	Definition of Classes awake, acceptable and drowsy
	Interpolation of KSS Entries
	Temporal Smoothing Delay of Features and KSS

	Electrophysiological Measures
	Evaluation of EEG and EOG as Drowsiness References
	Assessment of Electrophysiological-based Fatigue References

	Heart Rate Tracking from Driver Camera
	Independent Component Analysis (ICA)

	Eye Blinking based Fatigue Reference and Features
	Evaluation of Eye-Tracking Camera Systems
	Literature on Camera-based Driver Monitoring
	Driving Simulator Experiment
	Database with Eye-tracking Data
	Eye-tracking Hard-/Software
	Processing of Eye Signals
	Eye Feature Extraction
	Eye Feature Evaluation
	Classification of Eye Features
	Classification Results for Eye Features
	Discussion of Camera-Based Results

	Comparison of Eye-Tracker and EOG
	Discussion and Conclusions on Fatigue References

	Extraction of Driver State Features
	Pre-Processing
	Digital Polynomial Smoothing- and Differentiation Filter
	Exponentially Weighted Moving Average and Variance
	System-Active Signals
	Driver Switch and Pause Detection
	Lane Change Detection
	Subjectively Perceived Lateral Acceleration
	Driving Style Model

	Overview of Features
	Feature Matrix
	Feature Classes
	List of Features

	Lane-Data based Features
	Lateral Lane Position Features
	Lane Deviation (LANEDEV, LNIQR)
	Over-Run Area (ORA)
	Unintended Lane Approximation (LANEAPPROX)
	Unintended Lane Exceeding (LANEX, LNERRSQ)
	Zig-Zag Driving (ZIGZAGS)
	Time-to-Lane-Crossing (TLC)

	Steering Wheel Angle based Features
	Variance Criterion (VARCRIT)
	Local Driver Inactivity Event (DEADBAND)
	Steering Events (STWEVENT)
	Steering Event Detection using Fuzzy Logic
	Steering Wheel Angle Area (Amp_D2_Theta)
	Steering Wheel Angle and Velocity Phase (ELLIPSE)
	Steering Inactivity (NRMHOLD)
	Small Steering Adjustments (MICROCORRECTIONS)
	Fast Corrections (FASTCORRECT)
	Degree of Driver-Vehicle Interaction (DEGOINT)
	Reaction Time (REACTIM)
	Steering Reaction Time to TLC Minimum (TLCREACTIM)
	High vs. Low Steering Velocities and Angles (WHAL, VHAL-Index)
	Yaw-Rate Jerk (YAWJERK)
	Spectral Steering Wheel Angle Analysis (STWZCR)
	Driver Model Parameters

	Parameter Optimization
	Optimization of Parameters
	Computational Complexity Reduction
	Application

	Conclusion

	External Factors and Driver Influences
	Methodology to Quantify and Incorporate Non-Sleepiness-related Influences
	Evaluation of Geo-position mapped Events and Signals

	Influences from External Factors on the Driving Behavior
	Influence of Distraction and Vehicle Operation
	Influences by Rain, Snow, Fog, Light Conditions and Tunnels
	Vehicle Speed Influence
	Influence by Construction Sites and Narrow Lanes
	Influence of Curvature
	Road Condition Influences

	Influences from Drowsiness Supporting Situations
	Driving Duration (Time-on-Task)
	Monotony and Vehicle Speed
	Traffic Density
	Circadian Rhythm and Light

	Influences from Inter-individual Driving Styles
	Normalization by Baselining
	Driver-specific Features
	Driver Group Clustering and Classification

	Conclusion

	Approximation of Lane-based Features from Inertial Sensors
	Literature review
	Sensor Signals and Synchronization
	Single-Track Vehicle Model
	State Space Model
	Kalman Filter
	Optimal State Estimation using the Kalman filter
	The Extended Kalman Filter
	Estimation of the Lateral Distance

	GPS Data in UTM Coordinates
	Inertial Feature Extraction
	Inertial Features
	System Active Signal

	Results
	Comparison of Lane Data and Inertial Data
	Feature Evaluation

	Conclusions

	Assessment of Features
	Feature Assessment by Metrics
	Correlation Coefficients
	Fisher Linear Discriminant Metric
	Results

	Visual Feature Assessment
	Scatter Plots
	Boxplots and Error Bars
	Class Histograms
	Histogram of Correlation Coefficients

	Assessment of Correlation between Features
	Scatter Plot Matrix
	Correlation Matrix

	Linear and Multiple Regression Analysis
	Multiple Regression Analysis

	Receiver-Operating-Characteristics Analysis and Area Under Curve
	Conclusion

	Classification of Features
	Fusion of Features
	Pattern Recognition System Design
	Classifier Comparison and Selection
	Classifier Training
	Unbalanced A-priori Class Distribution
	Metrics for Assessment of Classification Results
	The F Score

	Warning Strategy Assessment
	Conversion of Classification Results into Warning
	Warning Assessment with Temporal Tolerance
	False Alarms by Driving Duration

	Feature Dimension Reduction
	Classification Results
	Neural Network Classification Results

	Deep Learning
	Application of Deep Learning to CAN-Signals
	Application of Deep Learning to Driver Camera
	Conclusion on Deep Learning for Fatigue Detection


	Conclusion
	Summary
	Future Work and Outlook

	Appendix:
	Proving ground Papenburg and Idiada
	Datasets
	CAN Signals
	Synchronization of CAN-Bus Signals

	Accelerometer Mounting Transform to Center of Gravity
	Steering Wheel Angle Sensor Principles and Unwrapping
	Measurement Equipment
	Data Conversion
	SQL Database and Entity Relationship-Diagram
	Plausibility Check
	Data Validation

	Efficient Online-Histogram and Percentile Approximation
	List of all Features
	UTM Zones
	Histogram of Correlation Coefficients for Single Drives
	Feature Analysis and Evaluation GUI
	Real-time System
	Fixed-Point Arithmetic
	Fixed-point Low-pass Filter
	Offline and Online Real-Time Attention Assist Vehicle Track Viewer


	References

