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Summary

Searching textual spatial data is a task done everyday for many people. Finding
the next supermarket, listing all petrol stations along a journey route or getting an
overview of all waterfalls in a given area are just three of many usages of a textual
spatial search engine. There are the proprietary search engines from Google, Bing
and Yahoo as well as some open source engines like Apache Solr or Nominatim.
The later powers the search capabilities of the OpenStreetMap website, a crowd-
sourcing effort to create free map data. This dissertation describes OSCAR, an
advanced search engine for OpenStreetMap data. It enables a user to combine
textual queries with powerful spatial queries while scaling from mobile phones to
servers. In our data model we distinguish between regions and items where regions
are larger two-dimensional surfaces like countries, cities or suburbs and items are
smaller objects like buildings and streets. The line segments of the regions induce
an arrangement of cells which is backed by a triangulation. For a cell we have the
property that each of its items is covered by the same set of regions. We use these
cells as basis for our text search part which has a special emphasis on queries for
regions. The combination of the triangulation, an explicit representation of the
neighborhood graph of the cells and a hierarchy of the regions allows us to extend
the text search part with powerful spatial query operators.

However the geospatial data introduces some problems at various stages of our
processing pipeline which we wanted to solve by projecting all points onto the unit
sphere. Unfortunately floating-point numbers can only provide trivial solutions
to the sphere equation in R2 and R3. It is therefore necessary to use rational
numbers as an approximation to the real value x ∈ R3 obtained from spherical
coordinates. We show how to compute an ε-approximation with denominators of
at most 10(d−1)/ε2 for any given ε ∈

(
0, 1

8

]
, improving on a previous result. Based

on this method we adapted the CGAL Delaunay triangulation implementation to
compute triangulations on the unit sphere S2.

We conducted extensive benchmarks to show the performance and viability of
our approaches on mobile phones and servers. We also compare the effect of
our special cell arrangement with more regular spatial subdivisions and find that
neither variant dominates with regard to completion timings. We conclude with
a comparison of our approach with other state of the art text search engines to
show its superiority in the special setting that we examined.
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Zusammenfassung

Die Suche in textuell augmentierten räumlichen Daten ist für viele Menschen eine
tägliche Angelegenheit. Den nächsten Supermarkt finden, alle Tankstellen entlang
einer Reiseroute auflisten oder eine Übersicht über alle Wasserfälle in einer vom
Benutzer vorgegebenen Region zu finden sind nur drei Beispiele für die Anwendung
von Geo-Text-Suchmaschinen. Neben den großen kommerziellen Suchmaschinen
wie Google, Bing und Yahoo existieren auch einige quelloffene Suchmaschinen wie
Apache Solr und Nominatim. Letztere bildet die Basis für die Suchfähigkeiten der
Webseite des OpenStreetMap Projekts. Diese Dissertation beschreibt OSCAR,
eine Suchmaschine für OpenStreetMap-Daten. Sie ermöglicht Nutzern die Suche
nach Text mit leistungsfähigen räumlichen Anfragen zu kombinieren. OSCAR
kann hierbei sowohl auf einem Mobiltelefon als auch auf einem Server betrieben
werden.

Unser Datenmodell unterscheidet zwischen größeren zwei-dimensionalen Regio-
nen und anderen Einzeleinheiten. Beispiele für eine Region sind Deutschland,
Stuttgart oder der Stadtteil Stuttgart-Mitte. Innerhalb dieser Regionen existieren
die Einzeleinheiten wie z.B. eine Straße oder ein Gebäude. Die Regionen werden
durch Polygone dargestellt deren Liniensegmente ein Arrangement von Zellen in-
duzieren welches wir mit Hilfe einer Triangulierung speichern. Für eine Zelle des
Arrangement gilt nun, dass jede Einzeleinheit von der gleichen Menge an Regio-
nen überdeckt wird. Auf Basis dieser Zellen entwickeln wir eine Datenstruktur für
Textsuchanfragen mit einem Schwerpunkt auf Regionen-Anfragen. In Verbindung
mit der Triangulierung, einer explizit Darstellung der Zellnachbarschaft und einer
Hierarchie der Regionen ist es uns möglich die Textsuche um leistungsfähige räum-
liche Operationen zu erweitern.

Leider ergeben sich durch die räumlichen Daten einige Probleme innerhalb un-
serer Verarbeitungskette. Diese wollen wir lösen, indem wir die Punkte unserer
Geodaten auf die Einheitssphäre projezieren und sämtliche Operationen im drei-
dimensionalen Raum ausführen.

Hierbei hat sich herausgestellt, dass Fließkommazahlen nur triviale Lösungen
der Sphärengleichung im drei-dimensionalen darstellen können. Um dennoch die
sphärischen Koordinaten unserer Eingabedaten verarbeiten zu können müssen wir
rationale Zahlen als Näherung derselben nutzen. Hierfür haben wir eine Methode
gefunden mit welcher wir für einen gegebenen Punkt x ∈ Rd und einer Genauigkeit
ε ∈

(
0, 1

8

]
eine Näherung mit Nennern mit einer maximalen Größe von 10(d−1)/ε2

berechnen können. Auf Basis dieser Methode haben wir die Implementierung des
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Delaunay-Triangulierungs-Algorithmus des CGAL Projekts erweitert um selbige
auf der Einheitssphäre S2 zu berechnen.

OSCAR besitzt viele Konfigurationsparameter um die Datenstrukturen für einen
gegeben Einsatz zu optimieren. In ausgiebigen Benchmarks zeigen wir die Auswirkung
dieser Parameter auf die Ausführungszeit und den Platzverbrauch. Diese führen
wir sowohl auf einem leistungsstarken Server als auch auf einem älteren Mo-
biltelefon aus. Ein Vergleich unseres speziellen Zellarrangement mit reguläreren
Raumunterteilungen zeigt, dass keine der untersuchten Varianten in allen Fällen
besser ist. Abschließend vergleichen wir unsere Textsuche mit aktuellen Textsuch-
maschinen wobei sich herausstellt, dass diese für unsere speziellen Daten signifikant
langsamer sind.
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1 Introduction

Location-based services are omnipresent in our daily life especially in mobile
phones but also widely used on desktop computers. They entail consumer appli-
cations like (car) routing, map search and user tracking. There are routing appli-
cations not only for cars but also for bicycles, pedestrians, public transportation
and many more. These are often combined with a map search facility to locate the
current user, provide means to search the destination or simply explore a region
of interest. In conjunction with user tracking this allows an integrated system to
guide users to places of interest for example to meet your friends or the cab that
you just ordered. Geographical Information Systems provide specialized tools for
many professions among them road engineering, architecture but also agriculture
and ecosystems research. A more playful usage is geocaching – a modern variant
of scavenger hunt. Most applications have in common that a powerful map search
engine is either a necessity or a helpful addition. The quality of a map search en-
gine heavily depends on the underlying data set. Additionally the type of data
also influences the architecture and possible capabilities of the system. One of the
largest free geospatial data set is provided by the OpenStreetMap project which
saw the day of the light in 2004 and set out to conquer humankind’s geographical
knowledge in a crowd-sourced mapping effort. As a community project the map
quality available from OpenStreetMap heavily depends on its user base. In west-
ern countries the data is very detailed containing even single trees. Making this
vast data source available to users is the main goal of this dissertation. There are
of course other map search engines based on the OpenStreetMap data set among
them the projects’ official search engine called Nominatim. In comparison to the
other available systems we strive to provide means to explore the data set hence
the subtitle of this thesis. Let us briefly clarify what we mean by this and what
the possible benefits are. Traditionally one enters a search query and the system
decides which data items are the best match for the query. The user then gets a
list of the data items, possibly with a map pin for each entry. There is no indica-
tion how large the result is or how it is distributed. Nor are there any hints for
possible improvements of the result – a task also called faceted search. See figures
1.1, 1.2 and 1.3 for an example query where we want to locate waterfalls in order
to plan a nice hiking trip.
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1 Introduction

Figure 1.1: Results of trying to find all waterfalls in Germany. Top: Google Maps
lists some waterfalls in Germany together with nice pictures. Middle:
Bing maps simply zooms to a place named “Wasserfall”. The same
happens if we try to get an overview of the restaurants in Germany.
Bottom: Nominatim also zooms to a single waterfall but also has a list
of other possible candidates. However the list is rather small and it is
not possible to visualize the result on the map.
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Figure 1.2: Results of trying to find all waterfalls in Germany. Top: Frankenplace,
being an exploratory search engine, has a nice visualization using a
heatmap which gives a user a good overview in an instant. However
no result list is available. Middle: Overpass-Turbo has the ability to
list and display all waterfalls. The query is rather slow and the result
is simply dumped onto the map. OSCAR: Our system shows clusters
with approximate item counts. The result list is displayed on a lower
zoom level. Faceted search is provided by [77].
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1 Introduction

Figure 1.3: Our system allows the user to also explore the result set using a textual
hierarchy which we call Inclusion-DAG. The top picture shows a par-
tially explored Inclusion-DAG of the query “Bavaria @waterway:wa-
terfall”. The bottom picture shows a close-up of the lowest level where
we can still refine the node labeled “Hörnergruppe”. The visualization
of the Inclusion-DAG has been added as part of [9].
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OSCAR tries to fill this gap by enabling a user to search the whole textual
data of the OpenStreetMap data set while also adding context-dependent spa-
tial queries. The input to our system is represented by an abstract syntax tree
consisting of predicates and boolean operations thereof. As a result we expect all
elements in the data set matching the query. The supported predicates encom-
pass substring text content match, polygon intersection tests, and context aware
complex spatial relations. We distinguish between two different entities, namely
regions and items. The regions are those objects that form large two-dimensional
surfaces like a country or a city. Items on the other hand are all other entities
like streets, point of interests or smaller areas like a market square. The regions
play an important part in our hierarchical result presentation which gives upper
bounds for the number of items in each region thus allowing a user the means to
explore the result of a query. The semantic data of an object is given by tags as
key value pairs. Some of these describe the type of the object, i.e. if it is a recy-
cling bin for clothes, others give a description or a name.

So far we have only discussed aspects of the visualization part of the result.
However equally important are the possible types of queries a user can enter. The
example mentioned above and displayed in figures 1.1 and 1.2 is a rather simple
query: First locate all waterfalls, then remove all that are not in Germany. A very
simple implementation using an inverted index may intersect the list of waterfall
items with the list of items in Germany without using any kind of geometric
information. For many interesting queries it may however be useful to include the
geometry as well. In the following we would like to consider a rather advanced
usage scenarios that our system should be able to answer. We are interested in
a hiking trip and are looking for a nice place to go. We would like to see some
tourist attractions while staying at a hotel. We also like to have some restaurants
nearby in order to have some culinary variety. A supermarket close by is another
welcoming addition in order to resupply for our day trips. Since we don’t want to
hear any kind of loud noises from driving cars we are interested in a place that is
at least 10 kilometers away from any autobahn or trunk road. A further constraint
is that we want the place to be somewhere south of Munich. It is a non-trivial task
to translate this to a query that we can answer with the search engines displayed in
figures 1.1 and 1.2. OSCAR on the other hand is able to calculate the desired place
with a single query ∗ in under two seconds. After issuing the query to OSCAR we
will find that the result is empty. We either have to travel farther, say south of
Bavaria to Tirol, or remove the constraint that we don’t want a trunk road nearby
since there are just too many in the south. Note that OSCAR is able to handle
this type of query on global scale by removing the constraint that we only want to

∗“:south-of #”Munich” (@tourism:attraction %2%%@tourism:hotel %2%%@shop:supermar-
ket %2%%@amenity:restaurant) - (%10%%(@highway:motorway))”

13



1 Introduction

see results in the south of Munich. Our implementation actually does this since
we do not have a query optimizer yet and hence the aforementioned constraint is
only applied after retrieving all valid tourist attractions world wide. See figure 1.4
for a visualization of our query.

During the journey to our destination we would like to eat something and get
some supplies. This is also possible with OSCAR, albeit with the limitation that we
do not have a shortest path calculation yet. Instead the user has to explicitly give
a path along which the requested restaurants and supermarkets are to be found.
See section 3.4.5 for an extension to OSCAR based on contraction hierarchies to
efficiently answer such a query.

Our LGPLv2 licensed source code can be obtained at code.oscar-web.de. Sample
data sets are available at data.oscar-web.de.

14
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Figure 1.4: Results of our request to display all tourist attractions that are close
to a supermarket, restaurant, hotel, are about 10 km away from any
motorway and are south of Munich (top) or anywhere on earth (bot-
tom).

15



1 Introduction

1.1 Contribution

In order to be able to answer such complicated queries we first need so solve sev-
eral problems. We need data structures to efficiently search the large planet data
set of the OpenStreetMap project. The results obtained from these structures
are used as a starting point for the visualization. The processing step to com-
pute this visualization has to be fast as well in order to interactively explore the
result. We therefore chose to develop a data structure that can be used for query-
ing and visualization. Probably the most important aspect of OSCAR is that it
distinguished between two different entities: regions and items. Regions are two-
dimensional surfaces used to represent regional objects like a country, city, suburb
or national park. Items on the other hand are all other objects. Regions and items
relate to each other in that items are located inside possibly many different re-
gions. If an item is enclosed by a region then we say that this region is a parent
of the item. An item may have many parents since multiple regions can cover
an item. All items with the same set of parents define a cell. We can now base
our text search structures on these cells as follows: We first distinguish between
a full-match cell and a partial-match cell. A full-match cell is a cell whose defin-
ing items all match the given query whereas a partial-match cell only has some
matching items. A single query statement like “Waterfall” now returns all the
cells containing a matching item which are mostly partial-match cells. If we are
interested in waterfalls that are only in Germany then we can query for all cells
covered by Germany and intersect this set of cells with the former one. Since the
cells of the “Germany” query are full-match cells we have that each cell also con-
tains all of the waterfalls. Hence after the intersection of the two sets we know
that we now only have the items inside Germany. The crucial point is that there
are far less cells than items which speeds-up the computation of the intersection
compared to the simple inverted index variant where we would intersect the list
of waterfalls with the list of items in Germany. In our comparison with state of
the art text indexes, Lucene [1] and MG4J [24], this data structure fared very well
with our sample queries gathered from our web-based demonstrator. Additionally
we can use this structure to compute our hierarchical visualization: The regions of
a data set form a hierarchical structure defined by the inclusion relation. A region
ri includes a region rj if the set of cells of ri is a superset of the cells of rj. This es-
sentially means that ri completely covers rj. The regions of a data set thus induce
an Inclusion-DAG where we have a node for each region and an edge from nodes
ri to rj if and only if ri covers rj and there is no other region rk that covers rj and
is covered by ri. Regions without an incoming edge are connected to a super node.
We can now add the cells to this DAG as well using the same inclusion relation:
There is an edge from region ri to cellj if and only if ri covers cell cj and no re-
gion rk exists that covers cj and ri. Finally the items are added to the respective
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1.1 Contribution

cells. We use this DAG to visualize our result and provide the user a means to
interactively explore this DAG. To further improve the exploration we can give for
each region an upper bound of the number of matching items that are covered by
it. The details are given in section 3.6. Our web based demonstrator, described
in section 4.5, uses these counts to draw the cluster markers seen in figures 1.2
and 1.4. A more advanced visualization could use these counts together with the
hierarchical information of the Inclusion-DAG to produce a hierarchical heatmap
or alternatively a heatmap solely based on the cells. Though for the latter a hi-
erarchy based on a more regular cell structure would be a faster alternative, see
section 5.8 for a short description with benchmarks. The text search capabilities
together with rudimentary spatial queries have been published in [14]. This work
was based on a predecessor of OSCAR, described in [10], where we introduced a
storage library which we use to support efficient out-of-memory data structures.

Additional changes to our data structure are necessary to efficiently support
complex spatial queries which we introduced in [15]. The regions of our data
sets are defined using polygons, usually just one, but multiple polygons defining
the interior and exterior are possible as well. Consider for example the mainland
of Germany which does not only consist of the large landmass in the middle of
Europe but also of a lot of small islands in the North Sea. They are modeled as
separate polygons that are also part of the region Germany. Sometimes a polygon
is necessary to define an exterior, for example to model an exclave. The arrange-
ment of regions is formed by overlaying all segments of the polygons of the regions
of the data set while cutting segments at intersection points. A region of space
bounded by segments is called a cell. The set of cells induced by the segments of
the regions is a refinement of the set of cells mentioned previously. To easily navi-
gate the cells we compute a triangulation for each cell and merge all triangulations
of all cells to form one large triangulation. We can now explore the neighborhood
of a cell by “walking” in this triangulation. Using this information we can already
compute the result of the query for restaurants along a journey if we thread the
polygonal line of the journey through the triangulation and gather all cells that
we encounter. Additionally we store the direct neighbors of each cell yielding the
cell graph. Together with the Inclusion-DAG, which we can interpret as an R-
tree, these structures allow us to answer the complicated spatial relation queries.
However in order to compute the answer to such a spatial query one first has to
define its meaning. Consider for example the two queries “supermarkets north of
Stuttgart” and “supermarkets north of the Königstraße in Stuttgart”. Clearly the
first query should return supermarkets farther away from Stuttgart than in the
second query where we expect results to be close to the Königstraße. We define
this context dependence for various complex spatial relations in section 3.3.

Note that in practice we do not calculate the arrangement of segments first but
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1 Introduction

compute a constraint Delaunay triangulation thereof which gives us the merged
triangulation without intermediate steps. One important aspect is that the in-
put of the triangulation are points on the WGS84 [83] geoid. Hence in reality
these are actually located in a 3-dimensional space. Our implementation uses a
very simple projection to calculate the triangulation in 2 dimensions, see section
4.3.2. This however produces a triangulation that is not Delaunay when mapped
back to the geoid. Furthermore intersection points are calculated incorrectly since
line segments are Great Circle segments on the geoid. A first steps towards a
solution to this problem could be the computation of this triangulation for the
points mapped on the unit sphere. However in section 6.2.1 we prove that it is
not possible to represent the projected input points using floating-point numbers
alone. Instead one has to use rational numbers in order to represent points that
are directly on the unit sphere. One may wonder if such great measures have to
be taken in order to compute a triangulation of input points that are the result
of error-prone measurements. The unfortunate answer is that algorithms may re-
turn false results or even crash if the used predicates are evaluated incorrectly
due to the test points not being exactly on the sphere. Since the input points
result in irrational numbers but we are constraint to rational numbers we can
only compute an approximation of the real triangulation based on rational ap-
proximations of the real three-dimensional coordinates. A method to compute
such an approximation was described in [101]. However an implementation of the
algorithm is rather difficult and likely far from efficient. We introduced the idea
for a simpler algorithm in [13] with a full description and analysis in higher di-
mensions in [17, 16] which we reproduce in part in chapter 6. We show how the
use of rotation symmetry and approximations with fixed-point numbers suffice to
improve on the main theorem of [101]. With our method it is possible to derive
rational points exactly on Sd−1 with denominators of at most 10(d− 1)/ε2 for any
ε ∈

(
0, 1

8

]
. Moreover, it is possible to compute even smaller denominators based

on algorithms for simultaneous Diophantine approximations, though a potentially
weaker form of approximation would suffice. Our approach allows for inexact but
ε-stable geometric constructions – e.g. the aforementioned intersections of Great
Circle segments. The practicability of our algorithm is demonstrated in an exten-
sive experimental evaluation on a planet scale data set.

18



1.1 Contribution

Prior Publication We introduced our serialization library together with an early
version of OSCAR in [10]. OSCAR itself has seen its light in [14] where we describe
the general text search idea with support for simple rectangular spatial constraints.
We extended OSCAR with complex relational queries in [15] based on a triangu-
lation and an improved web-based demonstrator. The work on rational points on
the unit sphere began in [13] where we described our construction algorithm. A
first analysis together with an extension to general dimensions was published in
[17] with an improved analysis in [16]. We explicitly state for respective sections,
subsections, paragraphs or figures if they have been published before.
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1 Introduction

1.2 Related Work

Textual-Spatial search is a well researched field with many different applications.
Since a data structure tailored to a specific problem is almost always better than
a generic variant one will find many possible solutions for the many different ap-
plications. In order to be able to classify OSCAR we first like to give a simplified
overview of this vast research field categorized by query type and result presenta-
tion. In its simplest form we are only interested in text search or spatial search.

1.2.1 Text Search

In text search one is usually interested in matching an input string, the pattern,
against another string, a set of strings or sets of strings. Suffix search data struc-
tures for single strings are especially useful in genome analysis. One of its simplest
form is the suffix array [78] allowing substring search. Its space usage grows linear
in the size of the original string with each entry taking log 2(n) bits. Since genomes
have a rather small alphabet this may result in quite a large data structure com-
pared to the input data where a character occupies only 2 bits. To alleviate this
various compressed variants where proposed [52, 99, 53] with the FM-Index [40, 41]
being one of the first to open the field of compressed self-indexes. These are text in-
dexes that need space close to the entropy of the input text while also storing the
text itself. Further research focused on finding compressed variants of the suffix
trie [100] which allows a user to efficiently navigate the trie of suffixes compared to
the simple suffix array which is just a sorted array of the suffixes. Matching mul-
tiple strings is also possible by concatenation of the input strings with a special
delimiter for each string [40].

Document Retrieval However taking this even further to support finding ob-
jects by their set of strings while supporting boolean queries is out of scope. We
will refer to this special type of query as document retrieval with the objects being
documents of a larger document collection. A document usually consists of mul-
tiple fields among them a title and the body. The text of the fields is then split
into chunks, usually at word boundaries, also called tokens. The search structure
is built based on these tokens. Its simplest form is the inverted index where we
store for each token the set of documents containing that token. These sets are
also called posting lists and usually reference the documents by a unique number.
More advanced solutions combine entries to support faster boolean queries [21],
or support more advanced queries like phrase queries or proximity queries where
we want multiple query strings to be close together in the documents text [24].
Ranking the result of a query is an important task which may also rely on extra
information stored in our indexing structure. Ranking functions may take into ac-
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1.2 Related Work

count the importance of words, the quality of the match or the aforementioned
complex queries like the order of the words. The way the posting list is stored
has a tremendous impact on the performance of these data structures which is
why there is extensive research on how to store, retrieve and operator on com-
pressed variants of the posting lists. Depending on the nature of the list various
optimizations are possible some of which we will introduce in section 2.4. There
exist numerous full-featured frameworks among them ATIRE [106], Galago [71],
Lucene [1] and MG4J [24] that support the whole process of storing and retriev-
ing documents of a collection. Most systems employ compression techniques like
variable byte encoding after delta-compression - MG4J being one of the few using
a quasi-succinct index to store posting lists [109]. Seven open-source text retrieval
frameworks were compared in [75] using various text collections where MG4J used
the least amount of storage while having competitive query times.

Approximate String Matching So far we have only introduced data structures
allowing prefix or substring matching. However it may also be of interest to ap-
proximately match the pattern with the text, that is we want to allow errors in
spelling. Most practically relevant algorithms employ suffix tries or q-gram based
data structures in one way or another. In its simplest form one uses backtrack-
ing to explore the suffix trie. [84] classify various practically working approaches
based on the search approach, if errors are in the text or the pattern and the data
structure it is based upon.

1.2.2 Spatial Search

Spatial search with regards to OSCAR is interested in finding spatial objects in-
tersecting a given region of interest. Additionally one may also be interested in
the k nearest neighbors of a given object or the top-k objects subjected to some
user-define measure and intersecting the query region. In its simplest form we
have a set of points and are interested in all points with a non-empty intersection
with an axis aligned bounding box. Solutions to this problem include the range
tree, kd-tree or other binary space partitioning schemes. For line segments one
can use the segment tree. However some of these data structures have a storage
need of O(n log n) for two-dimensional data sets. Additionally integrating objects
of different types is a non-trivial extension. Hence in practice one usually finds
space partitioning schemes that are either object-oriented like the R-tree [55] or
space oriented like a quadtree [42]. The R-tree comes in many flavors that differ
in the used construction algorithm [22, 63], combinations with other search struc-
tures or other changes in one of the many parameters. In some variants it is even
allowed to put objects into multiple leaf nodes [102]. Yet they all share the same
underlying structure: the objects are recursively grouped together forming a tree
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structure. The query performance heavily depends on the data set and the query
[59].

Quadtrees are an incarnation of hierarchical space portioning schemes. Among
them is also Kirckpatrick’s hierarchy [64], which is based on a triangulation or the
HTM index which we cover in short in section 2.3.1. With regards to geospatial
data the OGC Discrete Global Grid System core standard [94] is of great interest
since it demands among other things that cells in the same level of the hierarchy
should be of equal area and form.

1.2.3 Textual Spatial Search

In Textual Spatial Search we are interested in the combination of the aforemen-
tioned search capabilities. To be precise we would like to retrieve all items of a
data base subject to a textual match and a spatial match. The commonly used
approaches to solve this problem either use separate indexes, a spatial index as
primary structure, a text index as primary structure or interleave text and spatial
search structures.

Separate Indexes The separate index approach, for example as in [107], uses
any of the aforementioned textual and spatial indexes separately and intersects
the results returned by the two search data structures.

Spatial Primary Indexes The spatial structure first approaches combine a spatial
search data structure as primary data structure with a text search structure as
secondary search structure. A simple variant would be a grid where each cell
has an inverted index for the items intersecting the grid cell (e.g. [107]). More
elaborate variants combine a quadtree or an R-tree with an inverted index [114].

Text Primary Indexes The text structure first approaches on the other hand do
the reverse and use a text search structure as primary data structure. As before a
simple variant would be an inverted index where each entry stores a grid containing
the items of the entry’s posting list. Improved variants may use a quadtree (e.g.
[113]) or an R-tree (e.g. [114]) as secondary search structure.

Interleaved Indexes A natural third approach would be a data structure inter-
leaving a text search and spatial search structures. Variants based on R-trees are
described in [58, 74, 39, 33] which are based on the idea of pruning subtrees not
containing items matching the query string while obeying the spatial constraint
using the information provided by the R-tree structure. To this end they store in-
formation about the textual content in the inner nodes of the R-tree. Additionally
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some variants store information needed for ranking the result thus pruning even
more subtrees if only the top-k items are of interest.

[73] propose the so-called MHR-tree that allows to retrieve all items within a
given query rectangle and (approximately) matching a set of given strings. Their
data structure is a mixture of an R-tree and a q-gram based text index. Each node
of the R-tree stores a min-wise signature of the q-grams of the strings of the items
that are part of the subtree of the node. Given a query string and such a min-
wise signature it is possible to estimate whether there are hits in a subtree of the
respective node. This information is then used to prune nodes that do not contain
items relevant to the query. However it is unclear how well their scheme works on
the data set handled by OSCAR given that their benchmarks only consider single
states in the US. Additionally items likely only store a small number of strings.
Thus one would need to increase the size of the signatures in order to keep the
pruning capabilities of the system at the same quality when adding more strings
to the items.

As an alternative to R-trees one may also use a quadtree as spatial search
structure as proposed in [110].

A more in-depth overview of recent advances in textual spatial indexing can be
found in [95].

Unfortunately almost none of the aforementioned works provide a publicly avail-
able implementation which is why we cannot compare them with OSCAR on the
same large data set without implementing them ourselves. Additionally the largest
data sets used in benchmarks are up to two magnitudes smaller than what OSCAR
needs to handle.

1.2.4 Directional relations 1

Directional relations are frequently used to select data in spatial databases and
are fundamental to spatial data queries, analysis and reasoning [6, 50]. Directional
relations are not only used widely in geographic information systems, but also
in areas like artificial intelligence [66], computer vision [80], and multimedia [112].
Consequently there has been a significant amount of effort to determine directional
relations automatically.

A commonly used indicator for the directional relation between two regions is
the direction between their centroids [88], possibly snapped to one of the 8 compass
directions. As an advantage, this indicator is symmetric and once the centroids are
(pre)computed, efficient to evaluate for a pair of regions. Yet, sometimes asymmet-
ric answers make more sense. The popular direction-relation matrix model [49]
allows for such asymmetric answers. It subdivides the space around the bound-
ing box of the reference region into nine direction tiles and classifies other regions
according to the cell of the subdivision they lie in. [27] introduce a splitting line
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model to decide on the relation of two geometric entities. The goal of all these ap-
proaches is to compute a directional indicator between two given regions, whereas
for our concrete application we want to determine regions fulfilling a certain di-
rectional relation. In particular we also need to derive the extent of a region for
the matches, not only a direction.

1.2.5 Result Presentation

So far we have only introduced data structures and algorithms that return elements
matching a given query. However equally important is an efficient and effective
visualization of the result. Efficient in the sense that it is cheap to compute and
effective in the sense that it helps a user in understanding the result. The proba-
bly most widely used visualization scheme is based on a result list in conjunction
with icons for each item in the list as displayed in figures 1.1 and 1.2. If the result
set is too large then only a number of items is displayed and further items can
be loaded on user request which happens either implicitly (continuous scroll) or
explicitly (pagination, button to load more). [67] evaluate the impact of the visual-
ization on user satisfaction in the context of multi-criteria local search. Specifically
they compare a standard icon-based approach with a heatmap-based approach
and find that the two perform equally well. However ten out of the fifteen par-
ticipants stated that a mixed visualization that uses heatmaps to get an overview
and icons for a closer more detailed look were preferable. Figure 1.5 shows the
system described in [8] which is a powerful web-based data analysis tools support-
ing various visualizations among them heatmaps and choropleth maps with many
user configurable parameters. The system allows a user to upload data which is
then analyzed on a server and send back for visualization. The visualization itself
is mostly written in JavaScript with the back end written in R. Unfortunately the
authors do not publish any performance analysis which is why we cannot assess
whether the system could handle the large query results that OSCAR may pro-
duce. The example files on their website are rather small hence we assume that
their system likely does not cope very well with very large data sets.

[7], shown in figure 1.2 describe an exploratory search engine for thematic map-
ping which has many similarities to OSCAR. They also distinguish between re-
gional entities and smaller items. Their data structure is mainly based on a hi-
erarchical discrete global grid. Each regional entity and item is assigned to the
grid cells it intersects. A document in their system may then reference regional
entities and items with a weight assigned to the reference. The set of documents
referencing a grid cell then forms a grid document which is indexed using stan-
dard inverted indexes. On query time the system retrieves the grid cells match-
ing the query string as well as the spatial constraint. The level of the retrieved
grid cells depends on the zoom level of the user. The result is displayed using a
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Figure 1.5: Heatmapper’s example visualizations. The top shows a choropleth map
whereas the bottom shows a heatmap with contour lines. On the left
sides are the controls with which the user can change the parameters
of the visualization.
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heatmap with colors based on the importance of the cells which is calculated using
the weights assigned to the individual documents. Together with the zoom level
depended grid level selection this has the nice property that on higher zoom levels
entities with a larger extend are more important than very small ones and thus
giving a good overview of a result. A user can then click on a cell and view the
top-k results of that cell. Compared to OSCAR the system lacks the explicit se-
mantic hierarchy with information about the number of matched results and the
complex relational queries. Additionally the performance of their system is un-
clear since they do not report any data regarding the size of the index or the speed
of the retrieval process.

1.2.6 Classifying OSCAR

The previous sections introduced various classifying schemes among different as-
pects of an information retrieval system. Regarding the search structures OSCAR
uses a text first approach with an suffix array as text index and a triangulation as
secondary spatial search structure. However we do not store the secondary search
structure explicitly but rather partition the posting lists of the text index ac-
cording to the spatial index. Approximate spatial constraints are then computed
separately using another data structure with which we select the appropriate grid
cells. Thus most computations are based on simple integer set operations. Ad-
ditionally complex operations like the dilation operator are easy to implemented.
Our result presentation is a mixture between choropleth maps and item based vi-
sualization. We augment the choropleth maps with cluster icons for higher zoom
levels in order to get an overview of the result data and switch to an icon based
variant on lower zoom levels letting a user inspect the result in more detail.

1.2.7 Rational Points on the Unit Sphere 2

Studies on spherical Delaunay triangulations (SDT), using great-circle segments
on the sphere S2, provide common ways to avoid and deal with the point-on-sphere
problem in computational geometry.

The fragile approaches [90, 61, 96] ignore that the input may not be on S2 and
succeed if the results of all predicate evaluations happen to be correct. Input
point arrangements with close proximity or unfortunate locations bring these al-
gorithms to crash, loop or produce erroneous output. The quasi-robust approaches
[26, 20] weaken the objective and calculate a Delaunay tessellation in d-Simplexes.
Lifting to a d + 1 convex hull problem is achieved by augmenting a rational co-
ordinate from a quadratic form – The augmented point exactly meets the (ellip-
tic) paraboloid equation. However, the output only identifies a SDT if all input
points are already on the sphere, otherwise the objectives are distinct. Equally
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unclear is how to address spherical predicates and spherical constructions. The
robust approaches [98] use the circle preserving stereographic projection from S2

to the plane. The perturbation to input, for which the output is correct, can be
very large as the projection does not preserve distances. Furthermore, achieving
additional predicates and constructions remains unclear. The stable approaches
provide geometric predicates and constructions for points on S2 by explicitly stor-
ing an algebraic number, originating from scaling an ordinary rational approxima-
tion to unit length[34]. Algebraic number arithmetics can be avoided for S2, but
exact evaluation relies on specifically tailored predicates [30], leaving the imple-
mentation of new constructions and predicates open.

Kleinbock and Merrill provide methods to quantify the density of rational points
on Sd [65], that extend to other manifolds as well. Recently, Schmutz[101] provided
an divide-&-conquer approach on the sphere equation, using Diophantine approxi-
mation by continued fractions, to derive points in Qd ∩ Sd−1 for a point on the unit
sphere Sd−1. The main theorem bounds the denominators in ε-approximations,
under the ‖ ‖∞ norm, with (

√
32dlog2 de/ε)2dlog2 de. Based on this, rational ap-

proximations in the orthogonal group O(n,R) and in the unitary matrix group
U(n,C) are found. This is of particular interest for sweep-line algorithms: [29]
studies finding a rotation matrix with small rationals for a given rational rotation
angle of an 2D arrangement.

1.3 Outline

We first introduce some basic data structures and algorithms on which OSCAR
is based upon in chapter 2. A formal definition of OSCAR’s data structure and
its supported query types follows in chapter 3. Chapter 4 deals with the concrete
implementation of these data structures. An extensive experimental evaluation in
chapter 5 shows OSCAR’s efficiency. We also compare our approach with state of
the art text indexes and show how the chosen cell arrangement impacts the storage
consumption and query times. In chapter 6 we give our method to compute rational
approximations of points on the unit sphere. We conclude with a short summary
of our work and an outlook on future improvements in chapter 7.
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In this chapter we would like to introduce the reader to some basic data structures
needed to understand the inner workings of OSCAR. We start with an introduction
to OpenStreetMap and its data model. We then proceed to discuss some possible
data structures for text and spatial search. We also give short description of
commonly used compression schemes for lists of integers. Finally we give the
basics necessary to understand our approximation method to compute rational
points on the unit sphere.

2.1 OpenStreetMap

OpenStreetMap [2] is a collaborative crowd-sourced mapping effort to produce a
free map of the world. It provides very detailed data in most developed countries
with thousands of daily users [4]. OpenStreetMap’s data model distinguishes three
different data types: nodes, ways and relations. A node references a point on the
WGS84 reference ellipsoid. Ways are defined by an ordered list of nodes whereas
relations consist of nodes, ways and relations. A node is usually used to represent a
point of interest or objects of small size. Ways are used to model polygonal chains
like streets or simple polygons like buildings. Relations are used in many different
scenarios such as modeling the border of a nation state, combining several ways to
represent hiking routes or to define the street a building is associated with. Tags
in the form of key-value pairs are used to define the semantic of an element (see
figure 2.2 for some examples). Tags may be of direct use to a user, like a name of
an entity, or only indirectly like the building key (compare with figure 2.1). In
the following we will refer to those tags whose value are directly interpretable as
the important tags. Among them are the values of the name key or the values of
the addr key.

We furthermore treat specific regional entities like nation states and national
parks in a special way. In the following we will call these entities regions whereas
all other entities are called items. Examples of these are depicted in figure 2.3.

Data The data of the OpenStreetMap project is stored in a SQL database. It is
exported either as hourly difference files or as weekly complete database dumps.
This data set is usually referred to as the ”planet” data set. There are also subsets
of this data available for example from [5]. There are generally two different data
formats in wide spread use: An XML format that is easy to read and parse and
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a binary format based on the Google Protocol Buffers format specification[3]. As
of 2017 the XML format takes about 900 GB of storage space whereas the binary
format only needs 40 GB.

There is a rich ecosystem of tools centered around the processing of Open-
StreetMap data files. We use the library osmpbf [54] to parse the binary files.

key value
addr:city Stuttgart
addr:country DE
addr:housenumber 5
addr:postcode 70173
addr:street Schulstraße
amenity fast_food
brand McDonald’s
cuisine burger
email mgr60327@store.de.mcd.com
internet_access wlan
internet_access:fee no
internet_access:operator Telekom
name McDonald’s
phone +49 711 292370
smoking no
website http://www.mcdonalds.de
wheelchair no

Figure 2.1: Complex example of a McDonald’s in Stuttgart as described in Open-
StreetMap.
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type attribute
doctor’s office node amenity=doctors
pharmacy node amenity=pharmacy
autobahn way highway=motorway
building way area=yes

building=yes
hiking route relation type=route,

route=hiking
country border relation type=boundary,

boundary=administrative

Figure 2.2: Example tags in OpenStreetMap
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<node id=”3671613521”
la t=”48.7748479”
lon=”9.1779891”>

<tag k=” descr ipt ion :en ”
v=”Unusual contiuous loop e l e v a t o r : \

hop on hop o f f . ”/>
<tag k=” indoor ”

v=”yes”/>
<tag k=”name”

v=”Rathaus Paternoster ”/>
<tag k=”tourism”

v=” attract ion ”/>
<tag k=” wheelchair ”

v=”no”/>
</node>

<way id=”3933618”>
<nd r e f=”2141764850”/>
. . .

<nd r e f=”2141764850”/>
<tag k=”alt_name” v=” Schloßplatz ”/>
<tag k=” internet_access ” v=”wlan”/>
<tag k=”name” v=” Schlossplatz ”/>
<tag k=” place ” v=”square”/>
<tag k=” t o i l e t s : w h e e l c h a i r ” v=”no”/>
<tag k=”tourism” v=” attract ion ”/>
<tag k=” ur l ”

v=” http: // stuttgart . de/
item/show/305802/1/dept/108937?”/>

<tag k=” wheelchair ” v=” l imited ”/>
<tag k=”wikidata” v=”Q242067”/>
<tag k=” wikipedia ”

v=” de :Sch lossp latz ( Stuttgart ) ”/>
</way>

<re la t i on id=”1107850””>
<member type=”way” r e f=”330743395”

ro l e=” outer ”/>
. . .

<member type=”way” r e f=”70547264”
ro l e=” outer ”/>

<tag k=”admin_level” v=”9”/>
<tag k=”boundary” v=” administrat ive ”/>
<tag k=”name” v=” Stuttgart−Mitte”/>
<tag k=” name:prefix ” v=” Stadtbezirk ”/>
<tag k=”type” v=”boundary”/>
<tag k=”wikidata” v=”Q727750”/>

</re lat ion>

Figure 2.3: Items and regions, their associated data in XML format and the way
they are rendered by the OpenStreetMap website. At the top is the
Paternoster in the town hall in Stuttgart modeled as a node. The
middle picture shows the Schlossplatz modeled as a closed way which
we may store as either an item or a region and finally at the bottom we
see the city district Stuttgart-Mitte of Stuttgart. Both the Paternoster
and the Schlossplatz are covered by this region. If the Schlossplatz is
defined to be a region as well then it would be a child of Stuttgart-
Mitte.
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2.2 Text Search

In text search one has as input the text to be searched and a pattern that we
are looking for. Usually the text is fixed but the pattern may change. Hence we
are interested in data structures that support fast pattern matching for a given
text. Additionally we may be interested to search multiple texts for the same
pattern. This problem is also called document retrieval where we have a collection
of documents and a pattern and we would like to get a list of documents matching
that pattern. Usually a document is split into fields like the title and its content.
A field is again split into tokens which is the data that we want our pattern to
match against. One simple data structure to find all matching documents is the
inverted index. An inverted index is a sorted array of the tokens where each
entry has a list of documents containing that token. Searching for a prefix is
easily accomplished with a simple binary search. If we are interested in suffixes
or substring matches then we can build an inverted index for all suffixes of the
input tokens. Again a simple binary search suffices to answer a query. If we did
a prefix search on this structure then we would answer a substring query. As of
now a prefix search would return a range of matching entries. It may however be
beneficial to only return a single entry. We can achieve this by constructing the
array based on all possible substrings. This array will be really large but allows us
to answer substring queries in an instant. We can compress this array by merging
neighboring entries if they point to the same set of source documents and one is a
prefix of the other. We simply keep the longer entry and discard the shorter one.
What we then get is the suffix tree, which is a trie of the suffixes, encoded in the
array with explicit internal nodes. The entries of this structure likely have many
equal document sets which we can store in an extra data structure and simply
point to them. See figure 2.4 for an example.
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Documents
Id Content
0 berghof
1 feldbergen
2 mittelberg

Posting lists
Id Documents
0 0
1 0, 1
2 0, 1, 2
3 1
4 1, 2
5 2

Invertex Index
String Length Documents Posting list
berg 4 0, 1, 2 2

bergen 6 1 3
berghof 7 0 0
dbergen 7 1 3

e 1 0, 1, 2 2
el 2 1, 2 4

elberg 6 2 5
eldbergen 9 1 3

en 2 1 3
erg 3 0, 1, 2 2

ergen 5 1 3
erghof 6 0 0

f 1 0, 1 1
feldbergen 10 1 3

g 1 0, 1, 2 2
gen 3 1 3
ghof 4 0 0
hof 3 0 0

ittelberg 9 2 5
l 1 1, 2 4

lberg 5 2 5
ldbergen 8 1 3

mittelberg 10 2 5
n 1 1 3
of 2 0 0
rg 2 0, 1, 2 2

rgen 4 1 3
rghof 5 0 0

telberg 7 2 5
ttelberg 8 2 5

Figure 2.4: An inverted index supporting substring search. Posting lists are stored
with ascending document ids.
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2.3 Geometry Search

2.3.1 Space partitioning

A space partitioning is a division of space into disjoint subsets. The simplest form
being a grid where one divides the space into equal sized rectangular cells. An
improvement to this are quad-trees where we recursively divide a cell of the grid
into smaller cells using a smaller grid. This is usually done by splitting the cells
into 4 smaller cells – hence the name quad-tree. Another approach are Binary
space partitioning schemes where the space is divided by a single hyperplane. The
hyperplanes may be positioned arbitrarily (BSP-Tree) or along the coordinate axis
(Kd-Tree).

Discrete Global Grid Systems provide a hierarchical subdivision of the unit
sphere into cells. One possible implementation is the aforementioned quad-tree.
However this produces cells that are not equal in size or form in each level. A
variant based on triangles with the property that cells within the same level are
approximately equal size and form was introduced in [104]. Many other variants
are possible as well, for example one based on hexagons implemented by [60]. The
Open Geospatial Consortium defines an abstract standard [93] for discrete global
grid systems. The standard defines operations and properties that grid systems
should provide. We are especially interested in point location, neighborhood ex-
ploration and cell addressing.

Triangulations

Triangulations partition the space using only simplexes – in our case only triangles.
Assuming non-degeneracy the Delaunay triangulation of a set of points is uniquely
defined. For a given triangle its circumcircle is the circle passing through its 3
vertexes. In a Delaunay triangulation we have that the circumcircle of each triangle
only contains the 3 vertexes of its defining triangle and no other vertex of the
triangulation. Furthermore this maximizes the minimum angle of all triangles and
thus produces ”nice” looking triangulations. We can extend this triangulation to
also support constraints. These are edges that have to be part of the triangulation.
This type of triangulation is also called constrained Delaunay triangulation and
is a triangulation that is as close to a Delaunay triangulation as possible while
containing the aforementioned set of constrained edges. See figure 2.6 for an
example. We can transform a given triangulation to a Delaunay triangulation as
follows:

1. Find a quadrilateral based on two adjacent triangles not adhering to the
circumcircle property
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Figure 2.5: Left: A quadrilateral with a point violating the circumcircle property.
Middle: Flipping the edge shared by the two triangles produces a valid
quadrilateral. Right: Constrained edges are not allowed to be flipped,
thus producing triangles with points violating the circumcircle prop-
erty.

Figure 2.6: A Delaunay triangulation of a set of points. We then add a constraint
edge (red) and get a constrained Delaunay triangulation.

2. Flip the edge which the two triangles share if it is not a constrained edge

We are finished if we do not find any violating quadrilateral anymore with an edge
that can be flipped See figure 2.5 for an example.

2.3.2 Bounding volumes

A bounding volume is a simple geometric object used to approximate the region of
space of a given set of shapes. For example axis-aligned bounding boxes represent
the set by a single rectangle. Depending on the form of the shapes a sphere like
the minimum enclosing ball may be a better approximation. Another option is
to use the convex hull of the shapes which is the smallest region of space such
that every line segment with endpoints on any of the shapes is inside that region.
See figure 2.7 for examples. We may use multiple bounding volumes per object to
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Figure 2.7: A shape (black) with bounding volumes (red) from left to right: sphere,
convex hull and rectangular bounding box

further speed up geometric predicates like the intersection test. For rather large
sets of objects it is advisable to split the set into multiple subsets where each is
approximated with a bounding volume. We get a bounding volume hierarchy if we
do this recursively. Depending on the choice of bounding volumes and the way we
group objects we may for example get an R-Tree. The R-Tree uses a rectangle as
bounding volume and objects are grouped according to multiple strategies. One
simple heuristic is to group nearby objects together with a predefined minimum
and maximum number per group. See figure 2.8 for an example.
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Figure 2.8: A bounding volume hierarchy with 5 shapes and rectangles as bounding
volumes essentially forming an R-tree.
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2.4 Compression techniques

There is a vast body of work on compression techniques which we cannot cover in
any meaningful detail which is why we refer the reader to the respective literature.
However we would like to present some techniques to compress sequences of integers
since these will be used in many places in our system.

Delta and run-length encoding Delta encoding is probably the first improve-
ment to encode monotone sequences of integers. Instead of storing each integer we
can store the difference to the previous entry. If there are a lot of equal numbers
then a run-length encoding may reduce the storage need by encoding these runs
of multiple numbers in only two numbers. This is especially useful in conjunction
with the aforementioned delta encoding. See table 2.1 for an example.

So far we have not talked about how to store the numbers mentioned before.
If we know an upper bound U to the sequence then we can encode each entry in
log2 U bits.

Universal codes If no upper bound is known beforehand then we have to fall
back to universal codes like Elias codes [37]. The simplest version being the Elias
gamma code where one first encodes the magnitude of the number in unary and
then appends the number in binary. If we apply this transformation to the unary
part then we get the Elias delta code. The Elias omega code recursively applies this
transformation to further reduce the amount of storage needed to encode really
large numbers.

However in the context of this work we may assume that no number is larger
than 264 – in our implementation we assume an even lower upper bound of 232.
Hence let us consider how to store these bounded integer sequences.

VByte encoding One simple solution is variable byte-length encoding where we
split the number into chunks of 7 bits. Each chunk is stored in a byte where the
8th bit is used to indicate if another byte follows that is part of the number.

Raw 0 23 23 42 42 42 43 44 45 46 47 48 49 50
Delta 0 23 0 19 0 0 1 1 1 1 1 1 1 1

Run-length 0 2 · 23 3 · 42 43 44 45 46 47 48 49 50
Run-length Delta 0 23 0 19 2 · 0 8 · 1

Table 2.1: Example of delta and run-length encoding applied to monotone se-
quence of integers
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Varint encoding In the Varint-GB scheme [35] we encode blocks of 4 Integers
with a control byte in front which indicates for each of the four numbers how
many bytes that number needs. An improved version called Varint-G8IU [103]
can be decoded with SIMD instructions. In this scheme the size of a block is
fixed to 9 bytes and we encode 1 to 8 numbers per block. Again the first byte is
the control byte which defines the structure of the following 8 bytes. See [69] for
a nice explanation of these schemes together with an improved encoding scheme
called Stream VByte based on the Varint-GB scheme: Control bytes are stored
at a different memory location and thus have predictable addresses which is more
SIMD friendly.

Frame of Reference encoding Taking this a step further by increasing the block
size will lead us to Frame of Reference (FoR) coding. We can encode the elements of
a block in relation to the minimum elementm and maximum elementM within the
block. To this end we store m explicitly and all other elements as difference to the
minimum element using only log2M −m+ 1 bits per entry. A block encoded like
this is called a frame of reference [47]. Consider the block of length 1024 consisting
of 1020 ones and 4 twos. Clearly using 2 bits per entry is worse than using 1
bit per entry while storing the twos explicitly somewhere else. We essentially
patch the frame of reference to not include the 4 bad entries – hence the name
Patched Frame of Reference (PFoR) [115]. There is a multitude of options to store
these outliers with different trade offs regarding compression speed, decompression
speed and compression ratio. Various (P)FoR compression schemes were compared
in [31] where simple FoR was among the best performing compression schemes
regarding the time space trade-off.

2.5 Spherical Geometry 3

2.5.1 From Spherical Coordinates to Cartesian Coordinates

When working with spherical coordinates it is often necessary to convert them
into Cartesian coordinates. We can assume that the input is given in degrees and
hence as multiples of π with two coordinates θ and φ where θ is the polar angle
and φ the azimuthal angle. The Cartesian coordinates are then given by:x

y
z

 =

sin(θ) · cos(φ)
sin(θ) · sin(φ)

cos(θ)

 (2.1)
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2.5 Spherical Geometry

Algebraic representations The 2nd Chebyshev polynomials Un of degree n are
in Z[X], given their recursive definition:

U0(x) = 1 U1(x) = 2x

Un+1(x) = 2xUn(x)− Un−1(x) .

It is well known [97], that the n roots of Un are exactly the values

{ cos (πk/ (n+ 1)) : k = 1, . . . , n }

. Hence the polynomials Un give rise to algebraic representations for cosine values
of rational multiplies of π.

2.5.2 Stereographic Projection

Let p = (0, . . . , 0, 1) ∈ Rd be the fixed point for the projection τ , mapping all
points of a ray from p to the intersection with the hyperplane xd = 0.

τ : Rd \ (Rd−1 × {1}) → Rd−1

x 7→
( x1

1− xd

, . . . ,
xd−1

1− xd

)
The surjective mapping τ is injective as well, when restricted to the domain
Sd−1 \ {p}. We further define the mapping σ, which is

σ : Rd−1 → Rd \ {p}

x 7→
( 2x1

1 + S2
, . . . ,

2xd−1

1 + S2
,
−1 + S2

1 + S2

)
where S2 =

∑d−1
j=1 x

2
j . We have img σ ⊆ Sd−1, since

‖σ(x)‖22 =
(−1 + S2)2 +

∑d−1
i=1 (2xi)

2

(1 + S2)2
= 1 .

Furthermore, x = τ ◦ σ(x) for all x ∈ Rd−1, since

(τ ◦ σ)i (x) =
2xi

1+S2

1− −1+S2

1+S2

=
2xi

1 + S2 + 1− S2
= xi

holds for all 1 ≤ i < d. Hence, σ and τ are inverse mappings. Note that images of
rational points remain rational in both mappings, establishing a bijection between
rational points in Rd−1 and Sd−1.
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2.5.3 Diophantine Approximation

The field of Diophantine approximations studies how well a given real number can
be represented by a rational number. In this context a good approximation is one
with a small denominator. We want to give two important results which we will
need later.

Theorem 1 (Liouville’s Lower Bound). For any algebraic α ∈ R of degree n ≥ 2,
there is a positive constant c(α) > 0 such that∣∣∣α− p

q

∣∣∣ ≥ c(α)

qn

for any p ∈ Z and q ∈ N.

Apart from this lower bound on rational approximations, there is another im-
portant folklore result on the existence of simultaneous Diophantine approxima-
tions. Such approximations have surprisingly small errors, despite their rather
small common denominator.

Theorem 2 (Dirichlet’s Upper Bound). Let N ∈ N and α ∈ Rd with 0 ≤ αi ≤ 1.
There are integers p ∈ Zd, q ∈ Z with 1 ≤ q ≤ N and∣∣∣αi − pi

q

∣∣∣ ≤ 1

q d
√
N

.

For d = 1, the continued fraction (equivalently the Euclidean) algorithm is
famous [57] for finding approximations with |α− p/q| ≤ 1/2q2. This spurred the
field of number theory to study generalizations of the continued fraction algorithm
that come close to Dirichlet’s upper bound, but avoid brute-force calculations..

2.5.4 Reductions of Spherical Predicates to Cartesian Orientation
Predicates

During the construction of a Delaunay triangulation in R2 one often has to answer
the question whether a point q lies left/on/right of the ray r starting in p1 and
passing through p2. We call an oracle able to answer such a question a predicate. In
higher dimensions we can formulate it as whether the point qRn is ”left”/on/”right”
of the hyperplane P . On the sphere this translates to the questions whether the
point q is left/on/right of the great circle defined by the two points p1 and p2.

Lemma 1 (Great Circle Orientation Predicate). Let p1, p2 ∈ S2 with p1 6= p2 and
P the plane containing p1, p2 and the origin (0, 0, 0) and C be the Great Circle
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2.6 Miscellaneous

through p1 and p2. For q ∈ S2 we have

q left-of P ⇐⇒ q left-of C
q ∈ P ⇐⇒ q ∈ C

q right-of P ⇐⇒ q right-of C

Another used predicate is the in-circle predicate which tells whether a point
q ∈ R2 is inside/on/outside a circle defined by three points pi ∈ R2, i = 1 . . . 3.
The same questions arises while computing a Delaunay triangulation on the sphere
which we can also answer using a simple point-plane orientation predicate.

Lemma 2 (Circumsphere Predicate). Let P denote the plane through non-identical
points p1, p2, p3 ∈ S2 and the half space containing the origin (0, 0, 0) is called
‘below P ’. We further call S123 ⊆ R3 the closed volume of the sphere with p1, p2, p3
and the origin on its surface. For a point q ∈ S2 we have

q above P ⇐⇒ q ∈ S123 \ ∂S123

q ∈ P ⇐⇒ q ∈ ∂S123

q below P ⇐⇒ q /∈ S123

See [16] for a proof.

2.6 Miscellaneous

2.6.1 Cumulative Distribution Function

We are extensively using cumulative distribution functions in our experimental
evaluation. For a one dimensional random variable X with probability P its cu-
mulative distribution function (cdf) is FX(x) = P (X ≤ x). In our case we often
have as input a set S of strings and for each string a measurements m like the time
it took to process the string. We are interested in the cdf of P (m) = 1

|S| which
gives us the percentage of strings that can be processed in less than a given time
M . See figure 2.9 for an example.
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0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Figure 2.9: Blue: Probability distribution P of a random variable X ∈ [0 . . . 5] and
its cumulative distribution function FX(x) = P (X ≤ x) in red.
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3 The OSCAR Search Engine

In the following sections we would like to introduce the building blocks of OSCAR.
We start by giving a definition of the cell arrangement that is at the heart of
OSCAR’s processing capabilities. We then introduce the various context aware
spatial relation operators. Finally we show how these can be answered using
the cell arrangement and how text and spatial queries can be used together for
complex textual-spatial queries.

3.1 Map Tessellations and Cell Arrangements 4

Maps of geospatial data are often stored and accessed through tessellations of the
input data. Most notably regular tessellations using rectangles are used to access
the data. An example of such a tessellation of the Baden-Württemberg data set
from the OpenStreetMap projected is depicted in figure 3.1. Our data structure
used to solve the problems defined in 3.3 is based on a specially crafted tiling which
we will define in the following section.
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3 The OSCAR Search Engine

Figure 3.1: Decomposition of a map into tiles with some tiles marked in blue con-
taining items represented by red dots.5

3.2 OSM Cell Arrangement 6

The key concept behind OSCAR is a so-called cell arrangement of OSM regions.
Consider a set of polygons R, each corresponding to an OSM region. Each single
polygon r ∈ R divides the plane into two regions, the interior of the polygon
and the exterior. The set R naturally induces a subdivision of the plane into
cells, see Figure 3.2, for an example, we call this the cell arrangement C = C (R)
of R. All points contained in a single cell c ∈ C have the property that they
behave identically with respect to containment in the set of polygons, in particular
inheriting the same information associated with respective OSM regions. Note that
a region may consist of multiple simple polygons describing the outer boundary
together with a set of simple polygons describing inner boundaries thus introducing
holes. A consequence of this is that cells are not connected, may have holes
filled with other cells and be of different size on a broad scale. If textual search
is our only interest then this does not pose any problem. However using the cell
arrangement to implement spatial queries is a difficult task. Consider for example a
query where we want to get all the cells intersecting a polygonal chain. If we could
navigate the cell arrangement then we could simply walk along the segments and
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Figure 3.2: Left: A cell arrangement induced by 8 regions creating 12 different cells.
Right: A cell arrangement of the regions in Munich. Neighboring cells
have different colors. There are about 800 cells in Munich.

gather all the cells that we encounter. We therefore refine the cell arrangement to
get nicer cells that are easier to work with. To this end we compute a constrained
Delaunay triangulation of the input regions. See section 2.3.1 for the properties
of this special type of triangulation. A cell then covers a set of triangles which
we use to represent its geometry. A simple way to refine a cell is to partition
the set of its reference triangles such that a given quality measure is fulfilled.
Depending on the triangulation it may however not be possible to fulfill the quality
measure – consider for example a measure setting a maximum diameter of the
cell and a triangle that is larger than this threshold. We therefore also refine
the triangulation depending on the chosen quality measure. See figure 3.3 for a
conceptual illustration. Figure 3.4 on the other hand depicts the difference of an
unrefined and a refined cell near the village Alfdorf in Germany. We will cover the
details in the following section.

Refined Cell Arrangement

In order to compute the refined arrangement we can use a top-down approach
where we split cells or a bottom up approach where we define the triangles to
be cells and merge cells to form new cells. We use the splitting approach and
start by splitting each cell into its connected components and continue splitting
the connected components until the given quality measure is fulfilled. To this end
consider the graph GN induced by the neighborhood relation of the triangles of the
underlying triangulation of the cell. In order to split this graph into k sub-graphs
we first find two nodes, the generators, that are furthest apart from each other with
respect to hop-distance in the graph. These nodes define the diameter of the graph
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3 The OSCAR Search Engine

Figure 3.3: Schematic of the refinement process. Left: Original Cell Arrangement.
Center: Constrained Delaunay Triangulation thereof. Right: Sets of
triangles forming the refined cell arrangement where red edges were
not part of the original arrangement.7

Figure 3.4: A cell before and after refinement.8
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3.2 OSM Cell Arrangement

and are representatives for the two new cells. We compute these nodes exactly for
small graphs and approximately for large graphs. We then assign each node of the
graph the cell id of the closest generator with respect to hop distance. We add
more generators that are furthest apart from every other generator as long as the
cell is below the defined quality threshold. In the following we would like to give
a short description of possible measures to produce the refined cells.

Refine by Size of the Cell The first measure that comes to mind is to split a cell
as long as its diameter is larger than a given threshold. This way one can influence
the approximation quality of all spatial operators that rely on the cell’s geometric
size, most notably the neighborhood query. Using 1.5 kilometers, about 1 square
kilometer, as an upper bound would result in a very good approximation but also
produce about 150 Million cells with many cells containing no items at all.

Refine by Item Density Refining cells by the number of items covered may also
be helpful for the approximate neighborhood query. The neighborhood in a densely
populated region is often subjectively smaller than in a sparsely populated area.
Consider for example the locations of supermarkets of which there are many more
in cities than on the countryside and thus reducing the distance needed to travel
to buy food. Hence a user living in a city has a different notion of “nearby” than
someone living on the countryside.

Refine by Number of Triangles If the size distribution of the triangles is more
or less homogeneous one can easily compute well-shaped cells by only considering
the number of triangles the cell is made up of. We furthermore observed that
densely populated areas are covered by more unrefined cells as well as smaller
triangles. Considering the aforementioned observation and depending on the in-
tended semantic of the neighborhood query it may even be counter productive
to ensure homogeneous size distributions. Instead if we refine the cells according
to the number of triangles results in smaller cells in densely populated areas and
larger cells in sparsely populated areas.

Triangulation Refinement Some cell refinement criteria need to have a refined
triangulation as well. Consider for example the cell diagonal criterion which cannot
be fulfilled if the triangles are too large. Hence we also refine the triangulation
beforehand. There are many options to create ”nice” triangulations. We can
compute a conforming Delaunay triangulation by adding vertexes such that every
constrained edge is also a Delaunay edge – hence a Delaunay triangulation. We
get a conforming Gabriel triangulation if we impose the stronger condition that
for each edge the smallest enclosing circle shall not contain any vertexes of the
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C1

C3

C2

C4
name:Mariposa
place:city name:Vernal Falls

waterway:waterfall

Mariposa
County Yosemite

NP

California

C1C2
C3

C4

Figure 3.5: The hierarchy induced by the three regions “California”, “Mariposa
County” and “Yosemite National Park” forming the cells C1 through
C4 with items “Mariposa city” and “Vernal Falls”

triangulation. Other quality measures may be based on the maximum edge length,
edge-length ratio or diameter of the circumscribed circle of a triangle. Refinement
may also be based on the neighborhood of a triangle such that a given quality
measure does not dramatically change in the vicinity of a triangle.

3.2.1 Inclusion-DAG

The inclusion-relation of the regions R defined in the data set induces a directed
acyclic graph which we refer to as the Inclusion-DAG or inclusion hierarchy. Each
region is represented by a node. There exists an edge from node p to c if and only if
the region of c is covered by p and there is no other region that is covered by p that
also covers c. We furthermore add the cells of the arrangement to the hierarchy by
introducing a cell node for each cell. There is an edge from a region to a cell node
if and only if the region covers that cell. Finally all items are also added as item
nodes to the hierarchy with edges from cell nodes to item nodes if the cell has a
non-empty intersection with the item. See figure 3.5 for a conceptual visualization.
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3.3 Semantics of Spatial Relations

3.3 Semantics of Spatial Relations 9

The cell arrangement allows for an easy implementation of various spatial relation
operators. To be precise we are interested in the following spatial relations:

• neighborhood (near X)
• cardinal directions (north-of X, south-of X,…)
• betweenness (between X and Y )
• path corridors (along route X)

However the first 3 relations depend on the context, namely on the object X.
Clearly the region defined by north-of ”Germany” should be different in size com-
pared to north-of ”Hauptbahnhof Stuttgart”. In the following we would like to
give context sensitive definitions for these spatial relation operators.

3.3.1 Neighborhood

The probably most natural spatial relation is about proximity, but there are con-
siderable differences in terms of semantics depending on the objects referenced.
For example, when asking for a ’restaurant near the Eiffel Tower’, one would prob-
ably refer to locations at most 500m away from the Eiffel Tower. On the other
hand, a ’hotel near Paris’ might refer to locations up to 20km away from the city
of Paris, ’a motel near the Rocky Mountains’ to an area with an extent of several
thousand kilometers.

In the above examples we used common sense to determine up to what distance
we are interested in matches (500m in case of the Eiffel Tower, ≈ 20km in case of
the city of Paris). How could a search engine simulate this common sense? The
extent of the reference object (the Eiffel Tower or the city of Paris) typically also
determines the extent of the region of interest. To keep things simple, we compute
a minimum enclosing rectangle for the reference object and let d be the extent
of the smaller dimension (breadth or width). Then we define as neighborhood of
a reference object all locations which have distance at most max(d, 500m) to the
reference object. We use the maximum of d and 500m to also define neighborhoods
of 0- or 1-dimensional entities (e.g., a mailbox is typically not considered to have
any real ’extent’). See Figure 3.6 for an example.

3.3.2 Cardinal Directions

Things are quite similar for cardinal directions. What would a user expect when
issuing a query like “hotels north of the Empire State Building”? Probably ac-
commodations within a distance of 500m north of the Empire State Building. For
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500 m d

d

Figure 3.6: Examples for neighborhood determination of a 0-dimensional and a 2-
dimensional object.

larger entities, a larger region is of interest. For example, asking for “hotels north
of Paris” probably refers to a region up to a distance of 20km north of Paris.

Trying to formalize this common sense, we determine the extent of the region of
interest as follows, restricting to the “north-of” relation (north-east, east, …work
likewise).

For 0-dimensional reference objects a simple triangle in the cardinal direction is
used. In fact in this case we cannot infer the size of the region of interest from the
extent of the reference object and use a triangle of height 500m. See Figure 3.7.
If additional context information is available, the size of this triangle can easily be
adjusted.

For 1-dimensional reference objects, we first determine the northernmost point
of the polygonal line as well as the midpoint of the bounding box. We then use the
point cardinal direction function to create an intermediate triangle based on the
northernmost point and the mid point of height twice the width of the bounding
box. The region of interest is then the convex hull of this triangle together with
the polygonal line. See Figure 3.7. For 2-dimensional reference objects we first
create a bounding box and an isosceles trapezoid of height twice the height of the
bounding box, base equal to the horizontal axis of symmetry of the bounding box
and a parallel opposing side of double the length of the base. See Figure 3.7 for a
schematic drawing.

3.3.3 Betweenness

For a query “hotels between Frankfurt and Cologne” we would expect hotels in
a corridor of maybe 10–20km width between the German cities of Frankfurt and
Cologne (around 170km apart). On the other hand, a query “restaurants between
Golden Gate Bridge and Moscone Center” in San Francisco should have the re-
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Figure 3.7: Regions of interest for 0-, 1- and 2-dimensional reference objects (red,
dashed) for the ’north of’ relation. The yellow triangle is the interme-
diate triangle used to create the polygon.

Figure 3.8: Regions of interest for 0-, 1- and 2-dimensional reference objects (red,
dashed) for the ’between’ relation.

sults restricted to a much smaller area of few square kilometers. As for cardinal
directions, the region referred to by a ’between’ relation depends on the reference
regions and in particular their distance from each other.

To actually compute polygons bounding the region of interest for the between-
ness relation we again distinguish between the dimension of the reference objects.
If we are after the region between two 0-dimensional reference objects, we con-
struct a diamond shape with the corners being the two reference objects. In all
other cases we construct the convex hull of the bounding boxes of both reference
objects. We use the area of the convex hull without the bounding boxes as region
of interest, as well the part of the bounding boxes that is formed by connecting
the convex hull edges between the bounding boxes to the next nodes of the refer-
ence object on the bounding box border in the respective direction (which must
be well-defined). See Figure 3.8 for an illustration.

3.3.4 Path Corridors

When looking for ’hotels along the route from Stuttgart to Berlin’ one typically
refers to a much smaller area than in ’hotels between Stuttgart and Berlin’. So
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given a (precomputed) path we define as the area of interest as all locations with
distance of at most 1 kilometer from the route.

We want to note, though, that for all discussed relations other toolboxes than
the ones described here (or with different parameter choices) could be plugged in
our system as well.

3.4 Textual Spatial Queries Based on OSM Cell Arrangements

In the following section we describe how text matching, geometric matching and
complex spatial relations can be implemented based on the aforementioned cell
arrangement.

3.4.1 Result Representation

The result of every query statement are two sets: The set of full-match cells and
the set of partial-match cells. A full-match cell is a cell where all covered items are
a match for the query. The partial-match cells on the other hand have at least one
item, but not all, matching the query. For reasons of simplicity we may assume
that each cell in the partial-match cells set also explicitly stores the matching
items. Additionally each cell and item has a unique identifier i ∈ N. In short we
have:

Cf (q) ⊂ N

Cp(q) ⊂ N× P(N)

3.4.2 Set Operations

Set operations such as intersection, union, difference and symmetric-difference can
be computed based on the full-match and partial-match cells. For an intersection
it can be computed as follows:

Cf (q1 u q2) = Cf (q1) ∩ Cf (q2)
Cp(q1 u q2) = (Cp(q1) ∩ Cf (q2)) ∪ (Cp(q2) ∩ Cf (q1)) ∪ (Cp(q1) ∩ Cp(q2))

= {(c, I) ∈ Cp(q1) : c ∈ Cf (q2)}
∪ {(c, I) ∈ Cp(q2) : c ∈ Cf (q1)}
∪ {(c, I1 ∪ I2) ∈ N× P(N) : (c, I1) ∈ Cp(q1) ∧ (c, I2) ∈ Cp(q2)}

All other set operations can be computed analogously. See figure 3.9 for a graphical
visualization.
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Figure 3.9: Graphical visualization of set operations based on cells. Stripped or
dotted cells are partial-match cells whereas filled cells are full-match
cells.

3.4.3 Text Matching

For the text matching we distinguish between items and regions. Querying for
items with a text query q returns the smallest set of cells covering all matching
items. Querying for regions on the other hand returns the set of cells that are
covered by all regions matching the query. By default OSCAR returns the union
of these queries and only returns the item or region query result on request by the
user.

3.4.4 Polygon Intersection

Retrieving the cells or items intersecting a given polygon can be answered with the
Inclusion-DAG, the cell arrangement or the triangulation. Polygon queries that
intersect only a small amount of cells can be answered by locating the polygon in
the cell arrangement and explicitly checking nearby cells. For larger polygons
the Inclusion-DAG can be interpreted as an R-tree to retrieve all intersecting
cells. The accuracy of the polygon intersection test can be varied from exact
to very approximate. For an exact result a post-processing step is necessary to
only include items intersecting the polygon. This step can either be done using
the exact geometry of the items, their bounding box, the exact geometry of the
polygon or its bounding box. The same can be done analogously for polygon-cell
and polygon-region intersections. Hence the exact extreme is the intersection of
the geometry of items and the polygon. On the other end is the intersection of the
bounding box of the polygon with the intersection of the bounding box of regions
while traversing the Inclusion-DAG.
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3.4.5 Along Path

Computing the cells along a given path can easily be achieved by traversing the
triangulation of the cell arrangement and marking all encountered cells. See figure
3.10. This could be improved if the path is constructed from a shortest-path query:
Store for each edge all intersecting cells and collect these cells from the given path.
Further improvements can be made by using contraction hierarchies [45] where an
edge may represent a longer chain of edges and hence stores the union of their cells.

3.4.6 Nearby

The simplest method to compute the nearby relation is to construct a polygon
around a given object and pass it to the polygon intersection operator. However
this is only efficient for a single object. Computing the approximate nearby relation
of a large set of objects can be achieved based on the cell arrangement. For a
given set of cells we simply mark all nearby cells as containing nearby elements.
In image manipulation this operation is called dilation — henceforth we will refer
to this operation as a dilation operation as well. The dilation operator may expect
an additional parameter in the form of a distance to decide if a cell is near the
input cell set. See figure 3.11 for a illustration.

3.4.7 Cardinal Direction

The cardinal direction operator can be computed in two ways as well. We can either
use the polygon defined in 3.3.2 or use a cell dilation operator with a cardinal
direction parameter. To be precise we are given a set of input cells, a distance
parameter k and a cardinal direction parameter d. We now mark all cells that
have a distance of at most k and a cardinal direction d to at least one cell of the
input set (see figure 3.12)

3.4.8 Betweenness

Answering a between operator is based on the polygon outlined in section 3.3.3.
This polygon is then passed to the polygon intersection operator. A schematic
visualization is shown in figure 3.13.

3.4.9 Putting It All Together

All operations mentioned before can be used together in a single query. Some
query statements need additional information to work. These are the Cardinal
direction operator and the betweenness operator that both need a reference object
to start with. We extract these objects from the sub-queries that are inputs to the
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Figure 3.10: Top: Marked cells of a along-path query.10 Bottom: Cells intersected
by a path from Stuttgart to Ulm along the B10.
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Figure 3.11: Top: Marked cells of two (red, green) Nearby queries us-
ing a ranged cell dilation operator.11 Mid: Cells of the query
“@amenity:kindergarten #”Stuttgart””. Bottom: Cells of the query
“ %2% (@amenity:kindergarten #”Stuttgart”)” dilating the former
query by 2 kilometers.
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Figure 3.12: Top: Marked cells of a NorthOf query.12 Bottom: Cells of the query
“:north-of #”Stuttgart””.
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Figure 3.13: Top: Schematic result of cells marked of a Between query.13 Bottom:
Cells of the query “#”Stuttgart” <-> #”Ulm””.
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spatial operators. Let us consider the query mentioned in the introduction which
OSCAR may parse into the following operation tree:

\

dilate by 10 km

@highway:motorway

∩

dilate by 2 km

@amenity:restaurant

dilate by 2 km

@shop:supermarket

dilate by 2 km

@tourism:hotel

@tourism:attractionsouth-of

#”Munich”

We can compute the result of these operations using the previously introduced
search operations as follows: We first compute the result of the text queries which
is a simple look-up in our text search data structure. We construct an appropriate
polygon for the “south-of #”Munich”” query and use the polygon intersection
query to retrieve the matching cells. We use the dilation operation to retrieve
the cells for the 4 dilation queries. The intersection operation returns all the
tourist attractions south of Munich that have a hotel, supermarket and restaurant
nearby. We then remove all those that have a highway up to 10 km away by
dilating all matching highways by 10 km and removing all those cells from our
previous result. The result then only contains those cells that are more than 10
km away from a highway and contains at least one tourist attraction near a hotel,
supermarket and restaurant.

3.5 Theoretical Performance

OSCAR relies on the fact that there are more cells than items and hence cells
contain a large number of items. The more cells there are compared to the number
of items, the longer a computation of a query result takes. If we only consider
point-like items then the we have that there cannot be more cells than items
since we can simply omit cells containing no items. Hence computing a result for
a query where every cell contains only a single point-like item should result in a
performance within a constant factor of a simple inverted index. Note that items
consisting of lines or polygons may span multiple cells. In the worst-case a single
item may span all cells and thus produce results containing all cells compared to
just the single item. However in practice this is of no concern since items only
span a very small number of cells.
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3.6 Result Presentation

A natural presentation of a query result is the subgraph of the Inclusion-DAG
defined by all regions, cells and items that are either part of the result or have a
descendant that is part of the result. This graph can also be used to present aggre-
gated information like the number of items in a particular region. The subgraph
can be computed based on the full-match and partial-match cells obtained from
the query. For each cell in the result we simply mark each ancestor and cumulate
the number of items of the cell. Note that this is different from a simple aggre-
gation using clustering algorithms or quad-trees in that the regions can be seen
as a form of semantic clustering providing the user meaningful aggregate informa-
tion. We have implemented a web based demonstrator to explore the usability of
this approach. Higher zoom levels use the Inclusion-DAG to draw cluster icons
with approximate item counts. On lower zoom levels the items are drawn using
a marker icon. Clicking on an item draws its spatial data and presents its associ-
ated tags. In the following we would like to give the reader a glimpse of OSCAR’s
visualization based on the query “@waterway:waterfall”.
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3.6 Result Presentation

We begin with an overview of the world with all waterfalls of the data set:
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We then zoom in to Europe:
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And further to Bavaria and the Allgäu near Oberstdorf.
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On a low zoom level item markers are drawn and we click on the item representing
the waterfall “Stuibenfall”.
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4 Data Structures and their Implementation

In the following sections we will describe some of the data structures that are
especially important to the workings of OSCAR. We start with a discussion of our
serialization library where we present some important design choices. We then give
a detailed introduction of the data structures used to represent cell-based queries
and efficient implementations of the various cell operations described in former
chapters. We then describe the architecture of OSCAR and all of its components
needed to create and query our search data structure.

Notation The storage layout of a data structure often has a great impact on
its serialization and usage speed and also influences the provided functionality.
Consider for example a list of integers that we want to store on disk. Having
random access to these integers greatly reduces our options on how to store them.
If on the other hand linear access is needed then many compression schemes may
be applied to the list. The exact data layout in memory and on disk is therefore
an important information for an implementer. We give short layout descriptions
for most data structures introduced in this chapter. We use a language similar
to the C++ programming language which hopefully is self-explanatory. Table 4.1
gives an overview of the basic building blocks.
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uint<n> Unsigned integer with n bits
sint<n> Signed integer with n bits
vuint<n> Variable length integer storing up to n bits
vsint<n> Variable length integer storing up to n bits
[...] Array of Objects

struct NAME {...}; Structure named NAME grouping multiple objects
consecutively

union NAME {...}; Structure named NAME interpreting the same
data in different ways

TYPE NAME; Variable of type TYPE named NAME
TYPE{VALUE} Initialize type Type with value VALUE
VARIABLE = VALUE Assign variable VARIABLE the value VALUE
_? A place holder for a variable argument

Table 4.1: Basic building blocks for storage layout descriptions

4.1 The Serialization Library

The data that we want to process is a lot larger than the available system mem-
ory. We therefore need a way to efficiently store data out of memory on a hard
drive. In order to achieve this goal we developed our serialization library called
sserialize. We chose to develop our own library in order to be able to tailor it to
our needs. We are especially interested in the ability to use different storage back
ends, do copy-free decoding and encoding as well as use memory mapped files as
our main storage system. Development of sserialize started in mid 2011 whereas
other libraries supporting copy-free decoding and encoding were released after-
wards. Cap’n proto [38] in 2013 and FlatBuffers [108] in 2014. At its core is
the class UByteArrayAdapter which provides an interface to access different kind
of storage back ends. It has numerous convenience functions to help a user store
complex data structures on disk. One important aspect is how the system decides
which parts of a file should be loaded into memory. The simplest way is to ex-
plicitly tell the library which parts need to be loaded. This usually means that
users of the library would need to take care of memory management themselves
which is quite tedious. Instead it is better to let the storage back end do the mem-
ory management. We have implemented multiple storage back ends with varied
characteristics. Most importantly is the file access using memory mapping. In
this back end we do not take care of the memory management ourself. Instead we
let the operating system do that task. Files are then loaded in chunks of system
pages into memory. The advantage is that all the available system memory can be
used if possible while not interfering with other processes. The operating system
can simply remove parts of the file from memory to free space if another process
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4.1 The Serialization Library

requested more memory. Furthermore the operating system tracks the usage of
the pages which should result in good page eviction decisions.

4.1.1 Posting Lists

At the heart of an information retrieval system one usually finds so-called posting
lists as a part of other data structures like an inverted index. These are usually
represented by lists of integers which may be stored in ascending order. The class
ItemIndex is an interface for such a sorted list of unique unsigned integers. There
are various compression schemes available which we will describe in short below.
One important aspect of the implementation is that the compression scheme of
the result of a set operation is the same as the scheme of the inputs. This can
actually lead to a smaller memory footprint if the result compresses better than
the input.

Approximation with Low-order Polynomial A rather simple approach to com-
press the data is to approximate the set using a low-order polynomial. One only
has to store the difference to the polynomial for each entry. This can be further
improved by using splines instead of polynomials. This essentially partitions the
input data set into smaller sub sets and applies the polynomial approximation on
these smaller sets. The downside of this approach is that compression rates may
be rather small. On the other hand one does not loose the random access capabil-
ities of the naive solution.

Run-length Encoded Bit Vector The Run-length Encoded Bit Vector encoding
is an efficient storage scheme for bit vectors. It is based on the “Word Aligned
Hybrid Index” described in [111] which is based on the observation that CPUs
need the same amount of time to process data smaller or equal to the word size
of the processor. As a first step the bit vector is cut into chunks of 31 bits. Then
a simple run-length encoding scheme is applied on these chunks. Each word of
the compressed data then stores whether it encodes a run of zeros or ones or if
it encodes a chunk of the original data. Compared to [111] we store this marker
bit in the least significant bit of a word. The advantage is that a variable length
integer encoding can be applied on top of the bit encoding. See 4.1 for a description
of the storage layout. To compute an intersection of two encoded lists one may
simply decode each word on the fly or use the run-length information to speed up
the computation.

Run-length Delta Encoded Integer Vector In the run-length delta encoding
scheme we first compute the gap between successive entries of an integer list.
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1 union Entry {
2 struct TypeInfo {
3 uint<1> type ;
4 uint<31> dummy
5 } type ;
6 struct FullWord {
7 uint<1> dummy; // == 0
8 uint<31> data ;
9 } fu l l_word ;

10 struct RleWord {
11 uint<1> dummy; // == 1
12 uint<1> type ;
13 uint<30> amount ;
14 } rle_word ;
15 } ;

16 struct WAH {
17 uint<32> s i z e ;
18 [ Entry ] e n t r i e s ;
19 } ;

Code Listing 4.1: Storage layout of a word-aligned hybrid index. A single entry is
32 bits wide.

Then a run-length encoding scheme is applied on these gaps: The least significant
bit acts as marker bit to indicate whether the next code word encodes multiple
source entries or a single entry. Runs of gaps of the same value are encoded in two
code words. First the length of the run, then the value of the gaps. See 4.2 for a
description of the storage layout. A variable length integer encoding scheme may
be applied on top as well. It’s possible to speed-up the decoding phase using SIMD
operations as described in [89]. Another faster alternative surpassing the patented
encoding scheme VARINT-G8IU introduced in [103] is described in [69]. However
the latter format needs to know the number of integers to encode beforehand since
they store control information – the number of bytes a number needs – and the
data in separate positions.

Elias-Fano Encoding The Elias-Fano representation introduced in [36] splits
the entries l of a list L into k =

⌊
log2

max(L)
|L|

⌋
lower bits and the remaining

{lu = log2 (l)− k} upper bits. For the upper bits gaps are computed and the
result is stored using unary coding. The lower bits are stored explicitly using k
bits per entry. An entry can now be computed by adding up the gaps of the upper
bits together with the entry of the lower bits array. The exact storage layout is
shown in listing 4.3. [109] extended this encoding scheme with skip pointers in
order to find the smallest entry i such that xi ≥ b for a given bound b. This is
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1 union Entry {
2 struct TypeInfo {
3 uint<1> type ;
4 uint<31> dummy;
5 } ;
6 struct Delta {
7 uint<1> dummy; // == 0
8 uint<31> va lue ;
9 } ;

10 struct RunLength {
11 uint<1> dummy; // == 1
12 uint<31> leng th ;
13 } ;
14 struct RunLengthDelta {
15 uint<32> de l t a ;
16 } ;
17 } ;

Code Listing 4.2: Storage layout of a run-length delta encoded integer vector

especially helpful to do list intersection for large lists. The impact of this enhance-
ment to OSCAR’s list processing is likely very small since most posting lists store
less than 1000 elements.

(Patched) Frame of Reference Encoding See section 2.4 for an introduction of
(Patched) Frame of Reference encoding. In short we store the integers in blocks
of fixed size, each block with a fixed number of bits per entry. Numbers that
don’t fit in the fixed amount of bits are stored somewhere else. We implemented
a simple version with a focus on good compression ratio. Note that in our case
the input data is a sorted list of unique integers and hence the difference between
two consecutive elements is always larger than 0. We therefore only store the
gaps of the list. We also do not store the minimum or maximum of a block since
these can be computed from the previous block and the explicitly given bit length.
Outliers are encoded using a variable byte length encoding. The presence of such
an encoding is indicated by a 0 within the fixed bit width part. An input posting
list is partitioned into equally sized blocks each having their own bit width. The
compression ratio mainly depends on the chosen block size as well as the bit width
within the blocks. We define 32 possible block sizes and compute in O(n) the
optimal parameters for a given input list.
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1 struct unary_int<n> {
2 [ uint<1>{0}] number ; //n times a 0
3 uint<1> stop = 1 ; //the end of the number
4 } ;
5 struct Index {
6 [ uint<n>] lower ; //n=1..31
7 [ unary_int<_?>] upper ;
8 } ;

Code Listing 4.3: Storage layout of a run-length delta encoded integer vector

1 struct Block {
2 [ uint<n>] f i x e d ; // n=1..32
3 vuint<32> o u t l i e r s ;
4 } ;
5 struct Index {
6 uint<32> s i z e ;
7 uint<5> b l o c k s i z e ;
8 [ uint<5>] b l o c k b i t s ;
9 [ Block ] b l o ck s ;

10 } ;

Code Listing 4.4: Storage layout of the Patched Frame of Reference compression
scheme
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4.1.2 Reducing Storage Space

We can further decrease the total storage space by automatically selecting the best
compressing index type for a given posting list resulting in an index with mixed
types. Another option available is to use a storage back end with transparent
compression support.

4.2 Cell Based Query Representation

OSCAR’s main ingredient is the usage of a cell arrangement to efficiently compute
a result for a given query. A fast representation of a subset of a cell arrangement
is therefore a necessity. We use two different representations to answer a query.
The class CellQueryResult represents a fully defined subset of a cell arrangement
which means that each cell of a result is either full-match or partial-match and all
partial match indexes are available. Its in-memory storage layout is described in
listing 4.5. It is used together with an index containing all the necessary posting
lists and the cell arrangement of which it is a subset. A set operation of two
CellQueryResults can easily be computed linear in the number of cells if no
partial-matched cells need to be processed. Processing a set operation between two
partial-matched cells is linear in the number of matched elements of the involved
cells.

However this may incur a pointless overhead for complex queries. Consider
for example the query “(@building @highway) #Germany” which computes all
highways that are also buildings in Germany. A simple implementation would first
execute the query “(@building @highway)” which has rather large input operands
each having mostly partial-matched cells. Delaying these partial-matched cell
operations until the end would greatly speed up the processing since it would then
be possible to eliminate all cells that are not in Germany before processing the
partial-matched cells.

The DCQR class implements such a delayed set operation scheme. In this scheme
each cell has the full set operation history. In essence this means that each cell has
a tree resembling the operations computed on a CellQueryResult. Its in-memory
storage layout is described in listing 4.6. The trees are stored in a single array
where each node is represented by a single 64 bit integer. The exact semantics
of this integer are defined by the FlatNode class. The operation tree of a cell is
stored consecutively in this array providing a cache-efficient access pattern.

Since the cells are stored with increasing ids a simple merge algorithm can be
used to compute the set operation of two DCQR. In the following we will only
give a description of the intersection operation. Other set operation types can
be computed analogously. For the intersection operation it is enough to compute
results for the cells that are in both operands. If both cells are full-match, then
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we store this information in the cell description array. If one is full-match and
the other is not, then we copy the information from the other operand. If both
operands are defined by an operation tree a new operation tree needs to be created
with a new intersection node as the root node. The trees of both operands are
then copied as subtrees to the result. Thus a set operation can be computed with a
single linear read of the cell descriptions and cell trees arrays. Finally all operation
trees have to be applied in order to retrieve the result. We can compute this in
parallel since all trees are independent of each other. See figure 4.1 for a graphical
visualization.
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Figure 4.1: Intersection operation on a DCQR: We compute in a single linear sweep
the relevant cells together with their operation trees. The top row
shows the possible types of the first operand, the middle row shows
the types of the second operand and the bottom row shows the result
of the intersection between the two operands. An F indicates a full-
match cell, a P indicates a partial-match cell, ∗ and ? indicate any
kind operation.

Partial-Match Posting Lists Posting lists of partial matches may refer directly
to the items using their id or indirectly through the cell’s item list. We refer to the
first scheme as global (item) ids and the latter as (cell-) local (item) ids. In the
case of local ids one has to map them back to global ids before retrieving an item.
The benefit on the other hand are posting lists with smaller gaps, numbers and
fewer differing posting lists resulting in less storage space and faster processing
speeds for queries with large intermediate operands and rather small results. For
the planet data set with substring search this results in posting list data size of
51.6 GiB for global ids versus 31.7 GiB for local ids. This is especially useful for
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1 struct Ce l lD e s c r i p t i o n {
2 uint<1> fu l lMatch ;
3 uint<1> f e t ch ed ;
4 uint<30> c e l l I d ;
5 union I ndexDes c r i p t i on {
6 ItemIndex idx ;
7 uint<32> idxId ;
8 }
9 }

10 struct Cel lQueryResu l t {
11 [ C e l lD e s c r i p t i o n ] c e l l s ;
12 }

Code Listing 4.5: In-memory storage layout of the CellQueryResult data struc-
ture used to represent a subset of a cell arrangement

our web-based demonstrator which usually fetches only a small subset of all items
in the result set and hence the processing time of the mapping step from local ids
to global ids is negligible.
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1 union FlatNode {
2 uint<64> raw ;
3 struct Common {
4 uint<4> type ;
5 uint<60> dummy;
6 } common ;
7 struct OperatioNode {
8 uint<4> type ;
9 uint<60> chi ldB ;

10 } opNode ;
11 struct PartialMatchNode {
12 uint<4> type ;
13 uint<28> c e l l I d ;
14 uint<32> pmIdxId ;
15 } pmNode ;
16 struct FullMatchNode {
17 uint<4> type ;
18 uint<28> c e l l I d ;
19 uint<32> padding ;
20 } fmNode ;
21 struct FetchedIndexNode {
22 uint<4> type ;
23 uint<60> i n t e r n a l I d x I d ;
24 } fetchedNode ;
25 } ;

26 struct Ce l lD e s c r i p t i o n {
27 uint<1> fu l lMatch ;
28 uint<1> hasFetchedNode ;
29 uint<28> c e l l I d ;
30 uint<32> pmIdxId ;
31 uint<2> dummy;
32 uint<32> tr e eBeg in ;
33 uint<32> treeEnd ;
34 } ;
35

36 struct DCQR {
37 [ C e l lD e s c r i p t i o n ] c e l l s ;
38 [ FlatNode ] t r e e s ;
39 [ ItemIndex ] idx ;
40 } ;

Code Listing 4.6: In-memory storage layout of the DCQR data structure used to
represent a subset of a cell arrangement
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4.3 From Query to Cells

The input to OSCAR is usually a string describing a query in a more or less human
readable form. See appendix 8.2 for the full definition of OSCAR’s query language.
This is parsed into an abstract syntax tree without any further modifications like
stemming, normalization, or even complex natural language processing facilities.
The advantage is that “you get what you request” since it is obvious for the user
what the system computes based on a given query string. The downside is that the
query language is difficult to understand for non-technical users. To compute the
cells of the query we simply execute the processing statements of the as described in
figure 4.2. The following sections will describe the individual processing statements
in detail.

4.3.1 Textual Queries

Textual queries can be answered using a data structure that maps strings to arbi-
trary data. We use a simple generalized suffix tree-like scheme as describe in section
2.2 that stores for each entry all matching cells and items. Using a compressing
text index would only slightly reduce the storage space since textual data itself
only accounts for less than 5% of the total search structure storage space including
the posting list. To answer a query we simply do a search in this data structure
and return the set of cells matching the item. In the case of a region query we
return a list of full-match cells, a item query returns a list of partial-match cells
with points to item lists and a query for both return the list of full-match cells
and the list of partial-match cells with the pointers to the appropriate item lists.
This is exactly the data needed to initialize a CellQueryResult object.

4.3.2 Spatial Queries

Compared to textual queries computing the result of a spatial query is more in-
volved. We use three different data structures to represent the spatial data. At the
lowest level we use a Delaunay Triangulation to represent the cell arrangement.
This triangulation is used for path and point location queries. The cell graph is
one layer above and represents cells of the cell arrangement. It is mainly used for
the cell dilation query. Another level above resides an explicit representation of
the Inclusion-DAG which is used to answer all polygon queries by interpreting it
as an R-tree. See figure 4.3 for a graphical visualization.

Precision Issues

Our on-disk representation uses fixed precision numbers to store all spatial data.
This however introduces a problem when the input data produces spatial data
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1. Parse query into Abstract Syntax Tree

2. Execute leaf node operations:
Text query Use cell based suffix array
Polygon Use the Inclusion-DAG
Point, Path Use the Cell Arrangement and Cell Graph

3. Execute inner node operations:
• Set operation:

CQR Compute result immediately
DCQR Delay computation, add operation to cell operation trees

• Complex spatial operation:
a) Execute delayed operations
b) Execute complex spatial operation:

Between, Cardinal Direction Construct polygon for polygon in-
tersection test

Nearby Use the Cell Graph

4. Finalize result:
a) Execute delayed set operations
b) Remove empty cells
c) Map local item ids to global item ids

5. Compute subgraph

6. Compute union of cells to retrieve items within selected cells

Figure 4.2: Full execution pipeline of OSCAR from input query to output sub-
graph.
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Inclusion-DAG
Polygon queries created by
the user or complex spatial
relation queries

Cells
Cell dilation queries

Triangulation
Point location and path
queries

Items
High accuracy spatial rela-
tions

Figure 4.3: Data structures used for the various spatial relation queries.
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with higher precision. One example are intersection points of polygonal line seg-
ments. The endpoints of the segments may very well be representable with our
defined precision - the intersection however is not. To keep the fixed precision
number, we have to snap the intersection points in a way that they are repre-
sentable and do not alter the geometry too much. If we don’t snap the points,
but simply store points with the lower precision then the resulting static triangu-
lation has a geometry that does not match the topology. Even worse it very likely
is not a triangulation anymore. We can remedy this by changing the algorithms
working with the triangulation. This is especially the case for the triangulation
walking algorithm. One possible solution is to switch to the topology if the al-
gorithm behaves strange to get out of a region where the geometry is incorrect.
This however slows down the straight line walking algorithm and is cumbersome
to implement. Additionally we may visit triangles of cells that do not intersect the
path or miss intersected cells. As an alternative – which is the default in OSCAR
– we try to snap the points in-memory while trying to keep the topology the same.
CGAL already provides an implementation of the (iterated) snap rounding algo-
rithm described in [56, 48]. The absolute resolution of our static representation is
below 1 cm and thus inaccuracies introduced by snapping the points are not rel-
evant for our data set considering that the input data has an accuracy of around
3 m and constraint edges are relatively short. Hence in practice the simpler algo-
rithm shown in code listing 4.7 is good enough. Note that input points are already
snapped by definition which is why only intersection points of constrained edges
need to be snapped. For the planet data set this algorithm runs in 20 seconds.

Projection Issues

Our input data is stored as two floating point numbers representing coordinates in
the WGS84 coordinate system. Our current implementation directly builds a 2-
dimensional triangulation based on these coordinates – in essence a equirectangular
projection. In theory this may introduce problems due to incorrect intersection
points of polygonal line segments. Fortunately most regions of our input data is
densely sampled and hence the introduced error is negligible. Furthermore the
resulting triangulation is not a Delaunay triangulation on the sphere which is a
property that we do not necessarily need. In the future we will integrate our library
from chapter 6 to produce accurate triangulations on the sphere. Additionally this
would also solve the precision problems discussed in 4.3.2.

4.3.3 Quality of Results

The quality of a result depends on the directives used in the query. The text search
part of OSCAR returns an exact result containing only matching items.
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1 Tr i angu l a t i on t r ; // the t r i a n g u l a t i o n
2 Queue q ; // Edges , s o r t e d by l e n g t h
3 Edge e , xe ; // Constra ined edges
4 while ( q . s i z e ( ) && q . top ( ) . l eng th > th r e sho l d ) {
5 e = q . pop ( ) ;
6 xe = f i r s t I n t e r s e c t e dC o n s t r a i n t ( tr , e ) ;
7 i f xe {
8 p = snap ( i n t e r s e c t i o nP o i n t ( xe , e ) )
9 t r . remove ( xe )
10 q . i n s e r t ( { ( p , e . beg in ) , (p , e . end ) ,
11 (p , xe . beg in ) , (p , xe . end ) })
12 }
13 else {
14 t r . i n s e r t ( e )
15 }
16 }

Code Listing 4.7: “Snapping” algorithm used to create a fixed-precision triangula-
tion which can be stored on-disk.

Spatial queries on the other hand return approximate results. Queries like the
betweenness and cardinal direction query construct a polygon to answer the re-
quest. The size of this polygon directly influences the quality of the approximation.
Very small polygons return an exact result regarding polygon-item intersection.
For very large polygons only the bounding-box of the polygon and the bounding-
box of the cell is taken into account. The thresholds for the accuracy can of course
be changed at any time.

The approximation quality of queries using the cell arrangement like the cell
dilation or path corridor operator depend on the size of cells and the type of the
cell arrangement. If cells in the vicinity of a path or dilated cells are rather small
then the result is quite accurate. This however may increase the processing time
of a query since more cells are involved.

4.3.4 From Cells to Items

For most usage scenarios it is enough to provide the matching items partitioned
by the cells together with the subgraph of the Inclusion-DAG. However we may
also be interested in all items of a result. To achieve this we have to unite the
posting lists of each cell. Our implementation currently does not take the size
of the cell indexes into account which may produce a bad merging order if for
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example we constantly merge a large index with a small one. [82] proposed an
algorithm to efficiently and practically compute such a good merging order. They
compared their implementation with other state-of-the art sorting algorithms and
found that a nearly-optimal merging order resulted in a speed-up of 20% to 100%.
This is of course only useful for a sparse result. For results that are made up
of a large fraction of all items we use a bit vector to represent it. To this end
each implemented index compression scheme supports a specially crafted decoding
function to put its content into a special bit vector class. We can then recreate a
compressed index from this bit vector – again using optimized functions depending
on the compression scheme.

4.4 OpenStreetMap Data to OSCAR

In order to query an OpenStreetMap data set we first have to convert it to our
own format. As a first step we transform the input data into our own storage
formats and data structures. We then compute various search structures based on
this representation. The following sections cover the whole preprocessing pipeline
with an overview shown in figure 4.4.

Data Base Creation We first extract all relevant items and regions and store
this data in our own data format on disk. To this end we employ a library [3] to
read the binary format of OpenStreetMap data dumps. Reading the whole data of
a planet dump into main memory is prohibitive which is why we process the data
in multiple rounds. Furthermore we extensively use offset arrays to keep memory
fragmentation on a low level. We start by collecting all relevant regions and
construct a quad-tree like data structure to support fast point-in-polygon queries.
In contrast to a quad-tree we can use different branching factors per node with the
root node ranging between 1002 and 30002. Subsequent levels are usually split into
22 children. We refine a tree node if its diameter is smaller than a given threshold
(default of 10 km) and if it contains or intersects any regions. Each internal node
stores a set of regions that fully cover the nodes’ associated bounding box whereas
leaf nodes store intersecting regions. The tree itself is stored in an offset like data
structure. For the planet data set this boils down to about 215 MiB memory
constructed in 472 seconds. We use this tree for some data cleaning purposes but
also to assign a triangle of the cell arrangement its covering regions and hence its
cell. Among many things the data cleaning involves removing regions that do not
contain relevant items for which we have to find for each relevant item all covering
regions. We construct the final cell arrangement using the constrained Delaunay
triangulation data structures with a lazy exact predicates and exact constructions
kernel from CGAL [91]. Note that the use of the exact constructions kernel results
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Figure 4.4: Stages of preprocessing and query processing.

in a higher processing time and larger memory usage. However our application
consistently crashed using the in-exact constructions kernel while processing the
planet data set. See section 7 for a possible solution. Depending on the selected
options we then refine the resulting triangulation and the cell arrangement. Finally
we process the input data in multiple rounds to extract all relevant items and their
relation to the regions and their place within the cell arrangement.

Cell-based Text Index The second phase builds user specified indexes based on
the data base of the first phase. OSCAR supports cell-based text query data
structures, grids, R-trees and simple inverted indexes. All indexes are constructed
in-memory with the exception of the cell-based text index which can also be created
out-of-memory:

We first compute a generalized suffix tree stored in an array containing all
relevant strings. In the second phase the mapping of strings to items and cells
is stored in a file on disk. This file is sorted in the third phase. The last phase
computes in a single linear sweep a compressed version using our own static out-
of-memory data structures.

4.5 User Interfaces

Apart from our web-based demonstrator we also implemented a command-line
client and a Qt-based desktop application. All applications use the C++ library
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liboscar to access OSCAR’s data structures. We also implemented a small wrap-
per library for Java applications which is used in the comparison with Lucene and
MG4J. Additionally a Python interface is available with which one can interac-
tively work with some of OSCAR’s data structures. In the following we would
like to give a short description of the architecture of our web-based demonstrator
which is what most users interact with.

Web-based Demonstrator Our web-based demonstrator consists of a client run-
ning in a browser and a back end running on a server. The back end uses the
C++ framework CppCMS [23] to provide a stateless API to the client. The client
is implemented as a single page application which dynamically loads all content
using JavaScript. Data is usually transferred using JSON [25] as encoding for
structures. We also experimented with binary transfer of search results. In par-
ticular the indexes of a cell can be transferred without decoding on the back end
server but instead on the client. This is of advantage if a user wants to explore
the whole data set since then only the cell indexes are fetched on demand whereas
the subgraph of the Inclusion-DAG is available at once. This however transfers
more data than necessary if only small parts of the result are of interest to the
user. Thus our public facing demonstrator does not use the binary transfer mode
but instead dynamically loads and caches the parts requested by the user. The
downside is more load on the server since we do not cache search results yet and
latency on the client side while browsing through the data. One important aspect
of this mode of operation is that it emphasizes on fast cell computation instead of
retrieving all items of a result. Items are fetched for a rather small subset of the
result based on the interaction with the user.
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We conducted extensive benchmarks to underline the performance of OSCAR. Our
benchmark setup is introduced in section 5.1 which hopefully gives the reader the
means to replicate our results.

We start with a discussion of some performance aspects of our serialization
library in section 5.2 where we show the impact of the storage abstraction layer.
With the basics set we turn our focus to OSCAR beginning in section 5.3. We first
analyze the performance of the preprocessing step to produce the data sets used
for querying. The following sections discuss the query performance with respect
to the used cell refinement (5.6.2), delayed cell computation (5.6.3), query type
(5.6.1), number of processing threads (5.6.3) and index compression scheme (5.5).
We also conducted some benchmarks on a mobile phone to show OSCAR’s ability
to work in resource restricted environments. Furthermore section 5.8 shows the
impact on storage space and query performance for more regular cell arrangements.
We conclude with a comparison of OSCAR to Lucene and MG4J in section 5.9
where we show the competitiveness of our approach compared to these two fast
text indexes.

5.1 Setup

In the following we describe our experimental setup in case the reader is interested
in reproducing our results.

5.1.1 Hardware

Preprocessing and server query performance were measured on a powerful server.
We also used a mobile device to show OSCAR’s ability to cope with resource con-
strained environments. The detailed hardware specifications of our test environ-
ments are listed in table 5.1.

5.1.2 Software

Our benchmarks are based on 4 different projects bundled in a single umbrella
project which can be obtained from [12]. The umbrella project is organized as
follows: the folder progs contains all programs needed to run the benchmarks
and the analysis whereas the folder data is a git submodule containing the data
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Mobilephone Server
Model Sony Xperia V Transtec custom built
CPU Qualcomm MSM8960 2 x Intel Xeon

Snapdragon S4 Plus E5-2650v4
Cores physical/logical 2/2× 1.5 GHz 2× 12/24× 2.2 GHz
RAM 1 GiB 768 GiB
SSD Class 10 SD card 2× 960 GB Samsung

MZ7KM960HAHP
single in raid0

HDD 3× 4 TB HGST
HDN724040ALE640
in raid0

Operating System Android 4.4 Ubuntu 17.10

Table 5.1: Specifications of our test environments

generated by OSCAR and the subsequent data analysis. Within the data folder is
a submodule named private which contains the used queries. Note that we cannot
publish the queries since these may contain sensitive information which a user may
have accidentally entered in our search engine. Interested readers may contact
us in order to obtain a copy of this data. However we publish [11] the resulting
benchmark data which is used in our analysis.

Set Up The folder progs contains a script setup.sh to build all necessary li-
braries and programs. By default it compiles OSCAR with 3 different compiler
options. The debug build has no optimizations enabled at all and is only used for
debugging purposes. The lto and ultra builds on the other hand use processor
specific compiler optimizations together with link time optimization. The link time
optimization is especially useful since sserialize and OSCAR make extensive use
of the private implementation pattern. During the link time optimization phase
the compiler has access to the whole program code and is able to eliminate many
indirections caused by this pattern. The difference between the lto build and the
ultra build are the build parameters passed to OSCAR and sserialize. The ultra
build dynamically disables reference counters of some heavily used data structures
to reduce the synchronization overhead in environments with many threads. Ad-
ditionally the support for non-contiguous storage back ends is disabled to reduce
its abstraction overhead.
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5.1 Setup

Switch Argument Values Description
-t store, oscar, lucene,

mg4j, queries, in-
dexes, oscar-bench,
index-bench, …

Selects what should be created

-s Source name Base name of input data set i.e. planet
for planet.osm.pbf

-c disconnected,nocell-
split,cellsplit1k,cell-
diag5k

Name of the cell refinement configura-
tion

-b debug, lto, ultra Name of the build configuration
-ot prefix, substring,

substring-celllocalids
Selects the type of search that OSCAR
supports and if posting lists refer to cell
local ids (cf. 4.2)

Table 5.2: Program options of the creation script

Benchmarks All our benchmarks are available through the single script create.sh.
See table 5.2 for a description of the command line parameters. The script thesis-
create.sh executes all relevant benchmarks. It first creates the stores, search
structures and text indexes. These are then used to execute the benchmarks. In
order to replicate all results one needs at least 512 GiB of system memory and 30
TiB of storage space.

Analysis Most of the tables shown in this chapter are produced by the script
analyze.sh. Additionally it also post-processes the raw data of our benchmark
runs such that it is possible to produce nice looking graphs solely using TEX’s tikz
package.

5.1.3 Measurement Methodology

We used the GNU time program [46] to measure the total execution time, peak
memory usage and CPU utilization. CPU utilization may be larger than one
which indicates that more than one CPU was used during the computation. Peak
memory usage does not reflect the used memory in reality but rather the memory
requested from the system. The standard memory allocator uses the libc allocator
which manages its own memory pool. If a program releases memory back to the
allocator then the memory region is put back into the memory pool. It is possible
to force the allocator to release freed memory back to the system using malloc_-
trim. We did not use this since it is not clear when to call this function and
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calling it too often would likely degrade the performance. An unfortunate result
are slightly different memory usages between multiple runs.

5.2 Storage Library

In the following we compare the overhead of using our storage library sserialize
with simple C structures or even just integers. We furthermore explore the impact
of the storage back end abstraction and compare our integer packing implementa-
tion with another state-of-the art implementation.

5.2.1 Abstraction Overhead

sserialize uses a simple encoding scheme to store integers and strings on disk.
Fixed-length integers are stored in little-endian order which is the endianness of
most modern CPUs. Variable length integers are stored using 7 bits per byte for
the data and 1 bit to indicate if another byte follows. There are of course other
more complex data structures to support integers of variable bit sizes, Huffman-
Codes or transparent compression. Support for multiple storage back ends is
implemented using C++ virtual functions resulting in a virtual function dispatch
for each data access.

We compare the performance of our implementation with a simple array and a
std::vector using bounds checking. To that end we first store 109 numbers and
then read them back again. We repeat this 100 times and take the mean of all
runs. We refer the reader to table 5.3 which we will discuss in the following. The
random column shows the timings for numbers chosen uniformly at random in the
range of the given data type. The sequence column shows the timings for the
sequence sn := sn−1 + 1. We also compare two different build configurations.
Both builds are compiled with link time optimization enabled. The lto build
supports all back ends available in sserialize. The ultra build only supports back
ends with contiguous storage. This limitation makes it possible to eliminate the
virtual function dispatch needed when fetching data.

If we compare the machine code generated by the compiler then we will find
the following code executing for each entry: The unchecked array compiles to a
single mov instruction taking about a cycle [43]. The pack vuint is inlined in the
loop. The UBA uint variant compiles to an inlined bounds check and a single mov
operation. The other operations compile to function calls.

Comparing rows UBA uint and pack uint in column ultra we can see that
the bounds checking reduces the throughput by about 40%. The virtual function
dispatch is barely visible as can be seen when comparing column lto to column
ultra in row UBA uint and UBA vuint. Variable byte length encoding on the
other hand reduces the throughput by a factor of 8 to 10.
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5.2 Storage Library

1 std : : vector<uint32_t> input ;
2 uint32_t sum = 0 ;
3 for ( s td : : s i z e_t i ( 0 ) ; i < te s tLength ; ++i ) {
4 put ( input [ i ] ) ;
5 }
6 for ( s td : : s i z e_t i ( 0 ) ; i < te s tLength ; ++i ) {
7 sum += get ( i ) ;
8 }

Code Listing 5.1: Code to benchmark encoding and abstraction overhead. put()
and get() are storage specific functions.

random sequence
Container Bits lto

[
M
s

]
ultra

[
M
s

]
lto

[
M
s

]
ultra

[
M
s

]
pack uint 32 879.1 850.1 848.1 843.5

pack vuint 32 152.3 153.7 193.1 191.8
UBA uint 32 501.2 508.3 507.7 505.4

UBA vuint 32 103.7 105.2 121.9 121.7
std::array 32 872.3 876.3 878.7 880.9

std::vector 32 332.0 320.6 321.0 319.9
pack uint 64 440.2 433.1 432.9 432.9

pack vuint 64 59.3 60.3 177.2 177.2
UBA uint 64 393.3 394.2 395.7 395.1

UBA vuint 64 44.8 45.6 112.6 112.6
std::array 64 437.6 442.2 441.5 441.5

std::vector 64 204.6 199.6 199.1 199.3

Table 5.3: Encoding and abstraction overhead of our storage abstraction compared
to a plain std::array with unchecked access and a std::vector with
checked access. See paragraph 5.2.1 for an in-depth discussion.
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5.2.2 Integer Packing

Integer packing and unpacking is heavily used in the FoR and PFoR index com-
pression schemes where we need to code a set of integers with b bits into an array
of bytes. The performance of this packing is heavily influenced by the implementa-
tion, compiler and processor. Comparison of different implementations is difficult
without access to the code base. Fortunately some researches publish their code
such that it is possible to do some comparisons. Specifically we compare the un-
aligned integer packing implementation from [68] with our variant (see table 5.4).
Note that we store integers in big endian while our test platform is a little-endian
system which is why we need to do a byte swap to retrieve our integer. Our im-
plementation is based on the idea that loading a machine word has the same cost
as loading a single byte. Additionally we can do the byte swapping using a single
movbe instruction. The code from [68] on the other hand extracts all relevant bits
from each byte using shifts and masks. The data is stored in blocks of 16 integers
with a special function for each bit width. The advantage of this is an improved
instruction parallelism due to static data dependencies. Our implementation has
a static data dependency within a block as well but the throughput of the movbe
instruction is lower than a simple mov or load [43, p. 216]. As a result our packing
code is slower than theirs by a factor of 1.2 to 1.7. The unpacking function on the
other hand is either faster or only slightly slower.
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Bits pack
[
M
s

]
unpack

[
M
s

]
sserialize fastpfor sserialize fastpfor

1 2071 2427 2292 1637
2 2036 2367 2238 2244
3 1679 2340 2155 2120
4 2008 2384 2197 2181
5 1578 2284 2108 2145
6 1500 2222 2083 2108
7 1535 2182 2040 2074
8 2005 2287 2089 2062
9 1200 1989 2009 1953
10 1235 1998 1988 1993
11 1190 1922 1953 1878
12 1215 2049 1884 1949
13 1168 1885 1839 1776
14 1141 1866 1888 1885
15 1150 1796 1857 1773
16 1637 2196 1852 1847
17 1108 1732 1738 1776
18 1084 1723 1730 1759
19 1072 1650 1701 1676
20 1080 1625 1661 1736
21 1059 1571 1599 1633
22 1031 1553 1665 1623
23 1048 1469 1639 1547
24 1091 1541 1649 1651
25 1003 1402 1609 1527
26 1023 1421 1598 1568
27 984.3 1363 1583 1478
28 999.9 1358 1497 1507
29 966.9 1294 1549 1448
30 974.1 1275 1538 1473
31 941.4 1239 1510 1384
32 1202 1527 1528 1543

Table 5.4: Packing and unpacking integers of various bit widths into
an array of bytes. We compare sserialize against the
fastunalignedpackwithoutmask_16 function from [68]
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5.3 Source Data Sets and their Transformation

In order to query a OpenStreetMap data set we first have to transform it into the
storage format of OSCAR. This transformation is split into two phases: data base
creation and search structure creation. We use different extracts of the planet data
set as source data. Specifically these are Baden-Württemberg, Germany, Europe
and the whole Planet which we downloaded from [5] on the 18th of February
2018. We created 4 data bases for each data set with different options regarding
the cell refinement step: no refinement, one with connected cells, one with cells
with up to 1000 triangles and one with cells smaller than 5000 m in diameter.
For the query benchmark we created two search data structures with global ids
and local ids. The data structure obtained without any refinement and global ids
essentially reflects the one introduced in [14]. There are of course some additional
data structures available like the triangulation of the cells or the cell graph. If we
enable the triangle refinement step with global ids then we get the data structures
mentioned in [15]. The following sections give a more detailed description of the
two preprocessing steps.

5.3.1 Data Base

The first phase produces the data base on which all search data structures are
based upon. Various settings influence later phases like the selection of regions
or the type of the cell arrangement. The statistics for our 4 used data sets are
depicted in table 5.5. In general we can say, that the size of the database for the
planet data set is around 70 GiB apart from the variant with small cells. The later
introduces many new triangles and cells which increases the spatial data structures
quite a bit. Processing time is always below 17 hours except for the small cells
variant which has a gigantic processing time of almost 120 hours. This is solely
caused by the slow and unoptimized triangle refinement and cell refinement steps.
The effect can also be seen in the CPU utilization row where we normally have
a utilization of 2.9 compared to more than 15 for all other refinement variants.
Due to the larger triangulation data structure the memory usage also increases by
more than 20 GiB of main memory. The number of cells also goes up by a factor
of about 32 compared to a factor of at most 2 for all other refinement variants.

5.3.2 Search Data Structure

OSCAR has a multitude of options to configure the search data structures as
well as the usage of computing resources. We used the settings listed in table
5.6. Case-insensitivity is achieved by converting all input strings to lower-case
before indexing. This slightly reduces storage space since some entries of items are
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Ba-Wü Germany Europe Planet
Source size [GiB] 0.4 4.2 20.6 39.7

Items [106] 8.0 55.9 324.4 593.6
Regions [103] 17.7 148.3 898.0 1, 486.1

Keys [103] 7.8 20.5 47.3 69.2
Values [103] 675.0 4, 121.3 41, 547.6 77, 390.7

Disconnected Cell Arrangement
Cells [103] 21.1 177.6 1031.7 1684.4
Time [h:m] 0:06 0:53 6:45 12:50

Memory [GiB] 6.0 20.6 121.2 243.3
CPU utilization [1] 11.0 14.6 31.8 13.7

DB Size [GiB] 0.7 5.4 36.0 69.5
Index Size [MiB] 9 71 401 691

Connected Cell Arrangement
Cells [103] 21.1 177.6 1031.9 1684.4
Time [h:m] 0:06 0:57 7:38 15:16

Memory [GiB] 6.0 20.5 116.3 231.7
CPU utilization [1] 12.9 15.7 16.3 15.4

DB Size [GiB] 0.7 5.4 36.0 69.5
Index Size [MiB] 9 73 395 691

Maximal 1000 triangles per cell
Cells [103] 34.0 288.7 1680.3 3134.3
Time [h:m] 0:06 1:04 7:56 16:03

Memory [GiB] 6.0 20.4 119.0 238.3
CPU utilization [1] 12.5 17.4 16.2 15.4

DB Size [GiB] 0.7 5.4 36.2 69.7
Index Size [MiB] 10 75 428 781

Cell diagonal < 5000 meter
Cells [103] 62.3 564.7 11362.6 50239.9
Time [h:m] 0:09 1:55 20:57 119:07

Memory [GiB] 6.0 21.2 125.1 266.3
CPU utilization [1] 5.2 4.3 3.9 2.9

DB Size [GiB] 0.7 5.5 38.4 80.7
Index Size [MiB] 11 88 659 1511

Table 5.5: Statistics of the four data sets used in our benchmarks. The index uses
the Run-length Delta index format. Time and maximum memory usage
were measured using the time utility.

93



5 Experimental Evaluation

Case-sensitive no
Diacritic sensitive no
Substring search important values
Prefix search all
Out-of-memory buffer 64 GiB
Threads 48

Table 5.6: Important settings set during the computation of the search data struc-
tures.

the same after this mapping. We furthermore add all strings with their diacritics
removed. Substring search is enabled on the set of the important tags, all other
tags only have prefix search enabled. Note that substring search entails exact,
prefix, suffix and substring match whereas prefix match only entails exact and
prefix match. The size of the resulting data structures are shown in table 5.8. The
creation phase of OSCAR is mostly bound by the physical storage back end – in
our case 3 cheap 4 TB hard disk drives. See table 5.7 for the resource usage of
the search creation for various data sets and cell refinements. In order to process
the planet data set in a reasonable amount of time one needs about 160 GiB of
memory on our 48 threads machine. Note however the low CPU utilization of only
4 meaning that in average the equivalent of 4 CPU cores were fully used. However
this does not mean, that using only 4 threads would achieve the same processing
time since some steps in our preprocessing pipeline utilize all 48 threads. In order
to further reduce the processing time one has to speed-up the storage back end for
example by using a bunch NVMe SSDs. Our 3 drive back end can read and write
data at a rate of about 350MiB

s . Compare this to 2700MiB
s of a single Samsung SSD

970 Pro which is almost 8 times faster. In theory a 4 drive SSD raid0 configuration
could achieve close to 10GiB

s which is more than 30 times faster than our storage
back end. If we use the SSDs of our server we can already achieve a construction
time of 1 hour 25 minutes for the Germany data set while reducing the memory
usage from 70 GiB down to 18 GiB and the number of threads from 48 to 8.
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Ids Ba-Wü Germany Europe Planet
Disconnected Cell Arrangement

Time [h:m] Global 0:11 1:08 8:39 16:03
Local 0:11 1:03 8:26 14:36

Memory [GiB] Global 36.5 69.8 99.6 154.1
Local 36.6 70.6 104.2 155.9

CPU utilization [1] Global 4.3 5.1 4.1 4.0
Local 4.4 5.3 4.0 4.3

Connected Cell Arrangement

Time [h:m] Global 0:11 1:05 9:11 15:28
Local 0:11 1:03 7:51 14:22

Memory [GiB] Global 37.4 71.6 101.6 161.3
Local 37.5 72.4 106.7 156.1

CPU utilization [1] Global 4.4 5.1 3.9 4.0
Local 3.6 5.3 4.3 4.3

Maximal 1000 triangles per cell

Time [h:m] Global 0:12 1:22 10:42 21:15
Local 0:11 1:10 8:54 18:16

Memory [GiB] Global 37.8 71.5 101.7 157.6
Local 37.9 72.4 106.8 160.1

CPU utilization [1] Global 4.3 4.4 3.4 3.3
Local 4.5 5.0 4.0 3.6

Cell diagonal < 5000 m

Time [h:m] Global 0:12 1:43 24:25 −
Local 0:11 1:30 23:17 −

Memory [GiB] Global 37.7 70.8 108.0 −
Local 37.9 71.6 106.6 −

CPU utilization [1] Global 4.0 3.7 2.1 −
Local 4.2 4.4 2.2 −

Table 5.7: Preprocessing resources needed to compute a text search structure ca-
pable of substring search of the important values and prefix search on
all key-value-pairs. The Id-column denotes the type of item ids used,
see section 4.2. The index uses the Run-length Delta index format. We
could not compute the text search structures for the planet data set
using the maximum cell diagonal refinement since our system did not
have enough storage space for the out of memory data structures.
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Ids Ba-Wü Germany Europe Planet
Disconnected Cell Arrangement

Text Search [GiB] Global 0.3 2.6 17.8 33.0
Local 0.3 2.4 16.0 32.2

Index [GiB] Global 0.5 4.0 23.4 43.4
Local 0.3 2.1 12.9 24.3

Connected Cell Arrangement

Text Search [GiB] Global 0.3 2.4 15.7 33.1
Local 0.3 2.4 15.7 32.4

Index [GiB] Global 0.5 3.8 23.3 43.1
Local 0.3 2.4 12.8 24.2

Maximal 1000 triangles per cell

Text Search [GiB] Global 0.4 2.8 18.9 35.9
Local 0.4 2.7 17.7 33.3

Index [GiB] Global 0.4 4.1 26.4 51.6
Local 0.3 2.3 15.6 31.7

Cell diagonal < 5000 m

Text Search [GiB] Global 0.4 3.3 27.2 −
Local 0.4 3.2 23.4 −

Index [GiB] Global 0.5 4.4 34.0 −
Local 0.3 2.4 22.2 −

Table 5.8: Statistics of our data sets for a text search structure capable of substring
search of the important values and prefix search on all key-value-pairs.
The Id-column denotes the type of item ids used, see section 4.2. The
table also shows the effect of the refined cell arrangement. The index
uses the Run-length Delta index format. We could not compute the
text search structures for the planet data set using the maximum cell
diagonal refinement since our system did not have enough storage space
for the out of memory data structures.
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5.4 Query Data Set

Typical information retrieval data sets like the TREC [86] data sets consist of
documents, queries and respective answers. Unfortunately in the case of Open-
StreetMap data this is not the case. The projects main search engine likely does
not even store the queries due to user privacy concerns. We therefore rely on our
own data set for which we stored all requests to our website demonstrator. We
remove queries that were likely generated by scripts, had an empty result or were
duplicates. We classified the queries into text-only and spatial queries and whether
they contain set operations or not. Table 5.1 shows the resulting number of queries
for each data set and query type. Spatial queries are a recent feature and their syn-
tax is not intuitive resulting in a lower usage count. Additionally they are not
needed that often since OSCAR’s visualization allows for an easy inspection of
large results.
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Ba-Wü Germany Europe Planet
Total

Text queries
Total 3670 4897 5734 6462
Exact 299 375 435 541
Prefix 40 72 87 118
Suffix 4 8 14 16
Substring 3633 4850 5687 6411

Spatial queries
Total 206 249 280 321
Path 10 10 10 10
Polygon 13 17 18 39
Rectangle 185 223 253 273

Complex spatial queries
Total 54 80 97 105
Nearby 14 20 22 24
Cell Dilation 24 28 31 28
Betweenness 0 7 6 6
Cardinal direction 18 26 40 49

Set operations
Intersection 2310 3304 3934 4583
Union 154 202 235 284
Difference 76 96 96 93

Figure 5.1: Characteristics of our input data set taken from the logs of our web-
based demonstrator. Each entry gives the number of queries containing
at least one of the query statements of the given row. We only use
queries with a non-empty result.
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5.5 Index Compression Benchmarks

OSCAR supports various index compression schemes described in section 4.1.1.
Additionally posting lists of cells may refer to absolute item ids or cell local item
ids. We use the planet data set with up to 1000 triangles per cell to compare these
two options. In order to only benchmark the data structures and algorithms all
data has been loaded into memory. Note that keeping the index in memory is
always preferable over having to load the data from disk. If memory is tight one
would therefore always choose the index with the lowest amount of storage space
regardless of its processing speed.

We would like to refer the reader to table 5.9 which depicts the size of the
planet data set index for the various index compression schemes. Interestingly
the simple Patched Frame of Reference scheme has the best compression ratio.
However decoding and encoding has a high overhead and hence the bad timings in
the items column. Using a cell local index drastically reduces the storage amount
while increasing query processing times only a bit. Which index compression
scheme to select heavily depends on the nature of the expected queries. If we
are always interested in all items of a query then the run-length bit vector scheme
may be a clear winner.

Let us take a look at the cdfs shown in figure 5.2. For a given interval on the
x-axis we can determine the percentage of queries that were answered in a time
within our predefined interval. The run-length bit vector scheme is the orange
line whereas the simple integer array is the black line. We can see that for about
95 percent of all queries the simple integer array beats all compression schemes.
At the end however are the queries with an extremely large result and hence the
compression and data representation of the run-length bit vector pays off. If we
are only interested in the 95 percent then other options may be of interest. The
best compression scheme only needs 25 GiB and is still very close. This however
comes at a cost at run-time since it produces an uncompressed index as a result if
a set operation involves indexes of different compression types. The regression line
index is also close but compresses poorly and still needs 87 GiB of storage space.
If we are interested in a good compression ratio for storage and runtime then the
FoR index is a good candidate.

If the upper 5 percent of the queries are important as well then the run-length
delta index is the best choice. It also features the best cell-computation time
of all schemes while having a memory footprint close to the best variant. We
use this index type as our default compression scheme due to its balanced trade-
offs. Additionally, at least in the case of our web based demonstrator, retrieving
all items of a result is not of great interest. Instead only small parts of a result
are needed and often involve multiple cell operations.

Note that if we were interested in ranking the result then we could do so in
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Size [GiB] Cells [s] Ids [s] Items [s]
Global Local Global Local Local Global Local

Array 170.9 158.0 329 365 65 1588 1497
Regression line 127.1 87.4 481 525 79 3527 3497
Rl bit vector 100.1 57.5 663 716 139 1180 1142
Rl delta 51.6 31.7 281 314 84 2183 2448
EliasFano 69.7 32.5 596 643 130 4590 4565
FoR 51.3 29.8 519 556 171 2532 2511
Patched FoR 44.2 25.5 590 691 226 3813 3737
Best 43.5 24.6 411 473 264 3943 3920

Table 5.9: Comparison of completion performance and index sizes for various index
formats based on the web text queries. The “Cells” column lists the total
time to compute the list of cells containing items. The “Id” column
shows the time to convert local ids to global ids. Finally the “Items”
column lists the time to compute all items of the given queries. All data
is loaded completely into memory prior querying the data base. See
section 5.5 for an in-depth discussion.

parallel for each cell and merge the result later. Incidentally this is what happens
in our demonstrator on a lower zoom level where the top-k items of a set of cells
is determined by considering only the top-k items of each cell.
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Figure 5.2: Cumulative distribution function of cell (top) and items (bottom) com-
putation times of the website queries for all supported list encoding
schemes for the Planet data set. Local denotes an index with cell local
ids. See section 5.5 for an in-depth discussion.
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5 Experimental Evaluation

5.6 Query Performance on Servers

In this section we would like to show the performance of OSCAR on powerful
servers. We first describe how the size of the data influences the query timings.
We then analyze the impact of the various cell refinement options. Finally we
show how the delayed cell operation computation improves the query times both
by optimizing cell operations and by the usage of multiple threads.

5.6.1 Performance scaling

Tables 5.10 and 5.11 show the mean and median time to compute the result of all
textual queries of our test data set. Tables 5.12 and 5.13 almost look the same but
this time only text queries containing at least one set operation were considered.
If we compare these values with the characteristics of the respective data sets then
we find that the query times increase linearly with the number of cells and items
as we can also infer from figure 5.3. This matches with our expectation since most
query operations are linear in the number of cells and items.

5.6.2 Impact of Cell Arrangement Refinements

In order to analyze the impact of the refinement and the cell arrangement in
general we have to turn to tables 5.10, 5.12 and 5.14. The naive solution is a
plain inverted index which always returns all matching items. Its strength are
single query statement queries without a set operation and of course the request
to return all matching items. If no set operation is involved then this instantly
returns the result, hence the better completion times in table 5.10. However as
soon as at least one set operation needs to be computed things change and mean
and median times are worse than our cell arrangement based index as can be
seen in table 5.12. Spatial queries are of course out of scope as well as efficient
computation of the Inclusion-DAG.

What about the impact of the refinement? In theory we should get worse com-
pletion times for a cell arrangement with more cells. This is exactly what we can
see in the tables mentioned before. The effect is especially pronounced for spatial
queries (table 5.14): The connected cell arrangement has a mean cell completion
time of 858 ms whereas the triangle refined one takes 2165 ms, more than twice
the time. However the accuracy of some spatial queries like the ranged cell dila-
tion operation increases. The time to compute the subgraph of the Inclusion-DAG
and all items is not that much affected (also see figures 5.5, 5.6, 5.8 and 5.9).

Finally consider the cumulative distribution function of the cell completion time
shown in figures 5.4 and 5.7. Here we can see that the effect of the refinement is
evenly distributed among the queries. Interestingly the disconnected cell arrange-
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Figure 5.3: Mean cell completion times of the website text queries over the number
of cells for various cell refinement types. st: single threaded, mt: multi-
threaded with delayed cell computation.
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5 Experimental Evaluation

Ids Ba-Wü Germany Europe Planet
Naive

Items (µ/m) [ms] Global 4/0 21/2 95/5 173/9
Disconnected Cell Arrangement

Cells (µ/m) [ms] Global 1/0 6/1 23/4 34/6
Local 1/0 8/2 27/5 38/6

Id Mapping (µ/m) [ms] Local 2/2 4/2 10/2 14/2

Subgraph (µ/m) [ms] Global 2/0 14/0 58/0 83/0
Local 2/0 13/0 56/0 78/0

Items (µ/m) [ms] Global 10/1 50/1 220/2 356/2
Local 10/1 49/1 216/2 348/2

Connected Cell Arrangement

Cells (µ/m) [ms] Global 1/0 6/1 18/3 27/4
Local 1/0 7/2 22/4 32/5

Id Mapping (µ/m) [ms] Local 2/2 4/2 10/2 15/2

Subgraph (µ/m) [ms] Global 2/0 13/0 55/0 77/0
Local 2/0 13/0 54/0 77/0

Items (µ/m) [ms] Global 8/1 43/2 190/2 312/2
Local 8/1 44/1 187/2 301/2

Max 1000 triangles per cell

Cells (µ/m) [ms] Global 1/0 10/2 33/5 53/7
Local 2/1 11/2 36/5 57/8

Id Mapping (µ/m) [ms] Local 2/2 5/2 11/2 15/2

Subgraph (µ/m) [ms] Global 2/0 16/0 70/0 97/0
Local 2/0 16/0 67/0 99/0

Items (µ/m) [ms] Global 11/1 50/2 227/2 369/2
Local 10/1 49/2 222/2 365/2

Max 5000m cell diagonal

Cells (µ/m) [ms] Global 2/0 12/2 103/5 −/−
Local 2/0 14/2 112/6 −/−

Id Mapping (µ/m) [ms] Local 2/2 5/2 29/2 −/−

Subgraph (µ/m) [ms] Global 3/0 20/0 125/0 −/−
Local 2/0 19/0 123/0 −/−

Items (µ/m) [ms] Global 9/1 44/2 256/2 −/−
Local 8/1 43/1 243/2 −/−

Table 5.10: Mean and median times to compute the result of queries for the website
text queries using multiple threads. The Cells row gives the time to
compute all relevant cells of a query. The Subgraph row gives the time
to compute the subgraph of the Inclusion-Dag. The Map row has the
time to map local ids to global ids. Finally the Items row lists the
time to compute all items of a result. See section 5.6.1 for an in-depth
discussion.
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5.6 Query Performance on Servers

Ids Ba-Wü Germany Europe Planet
Naive

Items (µ/m) [ms] Global 4/0 21/2 95/5 173/9
Disconnected Cell Arrangement

Cells (µ/m) [ms] Global 1/0 4/1 18/1 28/2
Local 1/0 4/1 14/2 22/2

Id Mapping (µ/m) [ms] Local 5/0 24/0 82/1 135/1

Subgraph (µ/m) [ms] Global 1/0 9/0 49/0 70/0
Local 1/0 9/0 48/0 70/0

Items (µ/m) [ms] Global 10/0 104/0 642/0 989/0
Local 10/0 101/0 627/0 993/0

Connected Cell Arrangement

Cells (µ/m) [ms] Global 1/0 5/0 20/1 32/2
Local 1/0 4/1 16/2 25/2

Id Mapping (µ/m) [ms] Local 5/0 25/0 84/1 137/1

Subgraph (µ/m) [ms] Global 1/0 9/0 47/0 69/0
Local 1/0 9/0 49/0 69/0

Items (µ/m) [ms] Global 10/0 101/0 609/0 948/0
Local 10/0 100/0 608/0 930/0

Max 1000 triangles per cell

Cells (µ/m) [ms] Global 1/0 5/1 21/2 36/3
Local 1/0 5/1 19/2 30/3

Id Mapping (µ/m) [ms] Local 4/0 24/0 79/0 123/0

Subgraph (µ/m) [ms] Global 1/0 11/0 58/0 87/0
Local 1/0 12/0 59/0 86/0

Items (µ/m) [ms] Global 12/0 119/0 711/0 1115/0
Local 12/0 118/0 726/0 1099/0

Max 5000m cell diagonal

Cells (µ/m) [ms] Global 1/0 9/1 65/3 −/−
Local 1/0 9/1 67/3 −/−

Id Mapping (µ/m) [ms] Local 5/0 26/0 103/0 −/−

Subgraph (µ/m) [ms] Global 1/0 14/0 115/0 −/−
Local 1/0 15/0 113/0 −/−

Items (µ/m) [ms] Global 13/0 127/0 1114/0 −/−
Local 13/0 125/0 1100/0 −/−

Table 5.11: Mean and median times to compute the result of queries for the website
text queries using a single thread. The Cells row gives the time to
compute all relevant cells of a query. The Subgraph row gives the
time to compute the subgraph of the Inclusion-Dag. The Map row has
the time to map local ids to global ids. Finally the Items row lists the
time to compute all items of a result. See section 5.6.1 for an in-depth
discussion.
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Ids Ba-Wü Germany Europe Planet
Naive

Items (µ/m) [ms] Global 7/3 34/12 150/43 265/48
Disconnected Cell Arrangement

Cells (µ/m) [ms] Global 1/0 5/1 20/5 29/7
Local 1/0 7/2 22/5 31/8

Id Mapping (µ/m) [ms] Local 2/1 3/2 5/2 6/2

Subgraph (µ/m) [ms] Global 1/0 5/0 16/0 21/0
Local 1/0 5/0 16/0 20/0

Items (µ/m) [ms] Global 4/0 18/1 62/1 88/1
Local 4/0 18/1 60/1 86/1

Connected Cell Arrangement

Cells (µ/m) [ms] Global 1/0 6/1 19/4 28/5
Local 1/0 7/1 20/4 29/5

Id Mapping (µ/m) [ms] Local 2/1 3/2 5/2 6/2

Subgraph (µ/m) [ms] Global 1/0 5/0 16/0 21/0
Local 1/0 5/0 15/0 20/0

Items (µ/m) [ms] Global 3/0 17/1 55/1 80/1
Local 3/0 16/1 57/1 78/1

Max 1000 triangles per cell

Cells (µ/m) [ms] Global 1/1 9/2 27/6 43/9
Local 1/1 9/2 30/7 46/10

Id Mapping (µ/m) [ms] Local 2/1 3/2 5/2 6/2

Subgraph (µ/m) [ms] Global 1/0 6/0 19/0 25/0
Local 1/0 6/0 18/0 25/0

Items (µ/m) [ms] Global 4/0 18/1 64/1 92/1
Local 4/0 18/1 62/1 91/1

Max 5000m cell diagonal

Cells (µ/m) [ms] Global 2/1 13/2 92/7 −/−
Local 2/1 14/2 96/8 −/−

Id Mapping (µ/m) [ms] Local 2/1 3/2 10/2 −/−

Subgraph (µ/m) [ms] Global 1/0 7/0 32/0 −/−
Local 1/0 7/0 32/0 −/−

Items (µ/m) [ms] Global 3/0 16/1 70/1 −/−
Local 3/0 16/1 71/1 −/−

Table 5.12: Mean and median times to compute the result of queries for the web-
site text queries containing at least one set operation using multiple
threads. The Cells row gives the time to compute all relevant cells of
a query. The Subgraph row gives the time to compute the subgraph
of the Inclusion-Dag. The Map row has the time to map local ids to
global ids. Finally the Items row lists the time to compute all items of
a result. See section 5.6.1 for an in-depth discussion.
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Ids Ba-Wü Germany Europe Planet
Naive

Items (µ/m) [ms] Global 7/3 34/12 150/43 265/48
Disconnected Cell Arrangement

Cells (µ/m) [ms] Global 1/0 6/1 25/3 37/4
Local 1/0 5/1 17/3 26/4

Id Mapping (µ/m) [ms] Local 2/0 14/0 34/0 52/0

Subgraph (µ/m) [ms] Global 0/0 3/0 14/0 18/0
Local 0/0 3/0 13/0 18/0

Items (µ/m) [ms] Global 4/0 40/0 221/0 278/0
Local 4/0 39/0 218/0 275/0

Connected Cell Arrangement

Cells (µ/m) [ms] Global 1/0 7/1 27/3 43/4
Local 1/0 6/1 21/3 31/4

Id Mapping (µ/m) [ms] Local 2/0 14/0 35/0 52/0

Subgraph (µ/m) [ms] Global 0/0 3/0 13/0 18/0
Local 0/0 3/0 14/0 18/0

Items (µ/m) [ms] Global 4/0 40/0 212/0 268/0
Local 4/0 40/0 212/0 268/0

Max 1000 triangles per cell

Cells (µ/m) [ms] Global 1/0 7/1 29/3 47/5
Local 1/0 6/1 22/3 36/5

Id Mapping (µ/m) [ms] Local 2/0 13/0 33/0 48/0

Subgraph (µ/m) [ms] Global 0/0 4/0 16/0 22/0
Local 0/0 4/0 16/0 22/0

Items (µ/m) [ms] Global 4/0 46/0 249/0 325/0
Local 4/0 44/0 251/0 325/0

Max 5000m cell diagonal

Cells (µ/m) [ms] Global 2/0 13/1 78/5 −/−
Local 1/0 11/1 72/5 −/−

Id Mapping (µ/m) [ms] Local 2/0 15/0 39/0 −/−

Subgraph (µ/m) [ms] Global 1/0 5/0 30/0 −/−
Local 1/0 5/0 29/0 −/−

Items (µ/m) [ms] Global 5/0 48/0 352/0 −/−
Local 5/0 47/0 349/0 −/−

Table 5.13: Mean and median times to compute the result of queries for the website
text queries containing at least one set operation using a single thread.
The Cells row gives the time to compute all relevant cells of a query.
The Subgraph row gives the time to compute the subgraph of the
Inclusion-Dag. The Map row has the time to map local ids to global
ids. Finally the Items row lists the time to compute all items of a
result. See section 5.6.1 for an in-depth discussion.
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Ids Ba-Wü Germany Europe Planet
Disconnected Cell Arrangement

Cells (µ/m) [ms] Global 26/3 304/9 1228/23 1342/35
Local 10/2 179/6 905/10 806/15

Id Mapping (µ/m) [ms] Local 2/2 2/2 4/2 4/2

Subgraph (µ/m) [ms] Global 1/0 5/0 16/0 21/0
Local 1/0 5/0 15/0 20/0

Items (µ/m) [ms] Global 11/1 29/1 71/1 100/1
Local 10/1 27/1 64/1 90/1

Connected Cell Arrangement

Cells (µ/m) [ms] Global 10/3 173/5 836/9 858/12
Local 10/2 179/6 834/10 806/15

Id Mapping (µ/m) [ms] Local 2/2 2/2 4/2 4/2

Subgraph (µ/m) [ms] Global 1/0 5/0 15/0 20/0
Local 1/0 5/0 16/0 20/0

Items (µ/m) [ms] Global 10/1 27/1 61/1 90/1
Local 10/1 27/1 62/1 88/1

Max 1000 triangles per cell

Cells (µ/m) [ms] Global 25/4 496/8 2223/17 2165/25
Local 17/3 458/7 2089/11 2138/19

Id Mapping (µ/m) [ms] Local 2/2 3/2 4/2 5/2

Subgraph (µ/m) [ms] Global 2/0 7/0 19/0 25/0
Local 2/0 6/0 18/0 24/0

Items (µ/m) [ms] Global 11/1 29/1 71/1 104/1
Local 10/1 27/1 63/1 96/1

Max 5000m cell diagonal

Cells (µ/m) [ms] Global 36/4 1271/7 11224/16 −/−
Local 35/3 1280/8 11189/19 −/−

Id Mapping (µ/m) [ms] Local 2/2 3/2 12/2 −/−

Subgraph (µ/m) [ms] Global 2/0 8/0 31/0 −/−
Local 2/0 7/0 30/0 −/−

Items (µ/m) [ms] Global 10/1 29/1 72/1 −/−
Local 10/1 28/1 68/1 −/−

Table 5.14: Mean and median times to compute the result of queries for the website
spatial queries using multiple threads. The Cells row gives the time
to compute all relevant cells of a query. The Subgraph row gives the
time to compute the subgraph of the Inclusion-Dag. The Map row has
the time to map local ids to global ids. Finally the Items row lists
the time to compute all items of a result. The cell computation time
is rather high since the spatial predicates are not fully optimized yet.
See section 5.6.1 for an in-depth discussion.
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Ids Ba-Wü Germany Europe Planet
Disconnected Cell Arrangement

Cells (µ/m) [ms] Global 83/1 2542/4 14544/8 13532/12
Local 79/1 2387/3 14068/7 12846/10

Id Mapping (µ/m) [ms] Local 1/0 6/0 17/0 22/0

Subgraph (µ/m) [ms] Global 1/0 3/0 13/0 18/0
Local 1/0 3/0 13/0 17/0

Items (µ/m) [ms] Global 18/0 77/0 238/0 311/0
Local 17/0 73/0 219/0 301/0

Connected Cell Arrangement

Cells (µ/m) [ms] Global 75/1 2436/3 13743/7 13010/10
Local 76/1 2430/3 13561/7 13103/10

Id Mapping (µ/m) [ms] Local 1/0 6/0 17/0 21/0

Subgraph (µ/m) [ms] Global 1/0 3/0 13/0 18/0
Local 1/0 3/0 13/0 17/0

Items (µ/m) [ms] Global 17/0 75/0 217/0 289/0
Local 17/0 74/0 217/0 288/0

Max 1000 triangles per cell

Cells (µ/m) [ms] Global 212/2 7570/5 40486/9 40419/14
Local 199/1 7129/4 38232/8 38297/13

Id Mapping (µ/m) [ms] Local 1/0 6/0 15/0 19/0

Subgraph (µ/m) [ms] Global 1/0 4/0 16/0 22/0
Local 1/0 4/0 14/0 21/0

Items (µ/m) [ms] Global 19/0 95/0 263/0 345/0
Local 17/0 89/0 235/0 324/0

Max 5000m cell diagonal

Cells (µ/m) [ms] Global 542/1 24728/4 270452/12 −/−
Local 529/1 25233/4 268144/12 −/−

Id Mapping (µ/m) [ms] Local 1/0 6/0 17/0 −/−

Subgraph (µ/m) [ms] Global 1/0 5/0 28/0 −/−
Local 1/0 5/0 28/0 −/−

Items (µ/m) [ms] Global 19/0 119/0 283/0 −/−
Local 19/0 119/0 278/0 −/−

Table 5.15: Mean and median times to compute the result of queries for the website
spatial queries using a single thread. The Cells row gives the time
to compute all relevant cells of a query. The Subgraph row gives the
time to compute the subgraph of the Inclusion-Dag. The Map row has
the time to map local ids to global ids. Finally the Items row lists
the time to compute all items of a result. The cell computation time
is rather high since the spatial predicates are not fully optimized yet.
See section 5.6.1 for an in-depth discussion.

109



5 Experimental Evaluation

100 101 102 103 104

40

60

80

100

Time [ms]

%
of

qu
er
ie
s
q
:
C
el
lT

im
e(
q)

≤
T
im

e 1k triangles (global, mt)
1k triangles (local, mt)
1k triangles (global, st)
1k triangles (local, st)
connected (global, mt)
connected (local, mt)
connected (global, st)
connected (local, st)

disconnected (global, mt)
disconnected (local, mt)
disconnected (global, st)
disconnected (local, st)

100 101 102 103 104
0

20

40

60

80

100

Time [ms]

%
of

qu
er
ie
s
q
:
C
el
lT

im
e(
q)

≤
T
im

e 1k triangles (global, mt)
1k triangles (local, mt)
1k triangles (global, st)
1k triangles (local, st)
connected (global, mt)
connected (local, st)
connected (global, st)
connected (local, st)

Figure 5.4: Cumulative distribution function to compute the cells of a query show-
ing the impact of cell refinement and local vs. global item ids for the
Planet data set. The pictures at the top show the cdf for the textual
website queries whereas the pictures at the bottom show the cdf for
the spatial website queries.
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Figure 5.5: Cumulative distribution function to compute the subgraph of a query
showing the impact of cell refinement and local vs. global item ids
for the Planet data set. The pictures at the top show the cdf for the
textual website queries whereas the pictures at the bottom show the
cdf for the spatial website queries.
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Figure 5.6: Cumulative distribution function to compute all items of a query show-
ing the impact of cell refinement and local vs. global item ids for the
Planet data set. The pictures at the top show the cdf for the textual
website queries whereas the pictures at the bottom show the cdf for
the spatial website queries.
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Figure 5.7: Cumulative distribution function to compute the cells of a query show-
ing the impact of cell refinement and local vs. global item ids for the
Europe data set. The pictures at the top show the cdf for the textual
website queries whereas the pictures at the bottom show the cdf for
the spatial website queries.

113



5 Experimental Evaluation

100 101 102 103 104

70

80

90

100

Time [ms]

%
of

qu
er
ie
s
q
:
D
A
G
T
im

e(
q)

≤
T
im

e 1k triangles (global, mt)
1k triangles (local, mt)
1k triangles (global, st)
1k triangles (local, st)

5 km diagonal (global, mt)
5 km diagonal (local, mt)
5 km diagonal (global, st)
5 km diagonal (local, st)
connected (global, mt)
connected (local, mt)
connected (global, st)
connected (local, st)

disconnected (global, mt)
disconnected (local, mt)
disconnected (global, st)
disconnected (local, st)

100 101 102 103 104

85

90

95

100

Time [ms]

%
of

qu
er
ie
s
q
:
D
A
G
T
im

e(
q)

≤
T
im

e 1k triangles (global, mt)
1k triangles (local, mt)
1k triangles (global, st)
1k triangles (local, st)

5 km diagonal (global, mt)
5 km diagonal (local, mt)
5 km diagonal (global, st)
5 km diagonal (local, st)
connected (global, mt)
connected (local, st)
connected (global, st)
connected (local, st)

Figure 5.8: Cumulative distribution function to compute the subgraph of a query
showing the impact of cell refinement and local vs. global item ids
for the Europe data set. The pictures at the top show the cdf for the
textual website queries whereas the pictures at the bottom show the
cdf for the spatial website queries.
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Figure 5.9: Cumulative distribution function to compute all items of a query show-
ing the impact of cell refinement and local vs. global item ids for the
Europe data set. The pictures at the top show the cdf for the textual
website queries whereas the pictures at the bottom show the cdf for
the spatial website queries.
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Threads [1] 1 2 4 8 12 24 48
Set Operations [ms] 2850 1550 800 460 330 185 150

Speed-up 1 1.8 3.5 6.1 8.6 15.4 19
Efficiency 1 0.9 0.9 0.8 0.7 0.6 0.4

Table 5.16: Efficiency ratios for the query “@highway @building @amenity” using
multiple threads. Note that our benchmark system is a dual-socket
machine with 12 real cores per CPU. This likely contributes to the
drop in efficiency with increasing thread count due to synchronization
of global locks.

ment is slower than connected cell arrangement. This should come as a surprise
since it has almost the same number of cells. It however contains larger cells that
likely contribute to higher completion times.

5.6.3 Delayed Computation

The main difference between the CellQueryResult and the DCQR is the execution
of set operations. Using the DCQR these operations are delayed until the user ex-
plicitly decides to execute these. If a query removes many cells like the “@highway
@amenity @building #“Stuttgart”” query then delaying the execution of the cell
set operations drastically improves the computation time since almost all intersec-
tions can be decided on the cell level by the last token (CQR: 3100 ms, DCQR 300
ms). On the other hand the CellQueryResult is more efficient in computing the
result of the query “@highway @amenity @building” since now all partial-partial-
match set operations need to be executed and almost none can be decided on the
cell level (CQR: 3100 ms, DCQR 3200 ms).

Additionally the delayed computation scheme allows set operations to be com-
puted in parallel to further improve the query times. Our implementation paral-
lelizes the execution of the set operations and some parts of the reduction phase
where we have to unite the results of each cell to retrieve all items. Computing
the set operations should in theory scale linearly in the number of processors with
a speed-up of 1. In practice we get an efficiency ratio of 0.4 to 0.9 for this query as
depicted in table 5.16. The lower efficiency ratio in a high thread count setting is
likely attributable to the fact that our machine has 24 real cores with a total of 48
logical cores. In the case of 48 worker threads this results in two threads sharing
a single physical core thus reducing the efficiency of the parallelization.

It may come as a surprise that the significantly lower processing times achievable
do not translate to lower processing times of our benchmark query data set as can
be seen in figures 5.4 and 5.7. This is likely caused by the fact that queries with
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cell counts below a hundred thousand cells do not benefit very much from multi-
threading. To some degree this is the fault of our implementation: we currently
do not have a central thread manager to keep threads alive. Instead we spawn
and kill threads in each parallelized step of our execution pipeline. On our server
with 48 threads this boils down to at least one millisecond per step. This has a
considerable impact on the cell computation time especially if the query is rather
small and the first thread likely computes the result on its own. Additionally the
delayed computation scheme is only useful if it can prune many cells due to a
region constraint. If a query has many partial-match set operations then these
have to be computed in any case but additionally the operation trees have to
be created as well. In case of the planet data set only a small number of queries
benefit from multiple threads in conjunction with the delayed processing scheme
as we can infer from figures 5.10 and 5.11. The item computations on the other
hand benefit from multiple threads.
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Figure 5.10: Cumulative distribution function of the difference between the sin-
gle threaded (CQR) and the multi-threaded delayed computation
scheme (DCQ). In short we compute cdf (CQRt(q)−DCQRt(q)) over
all queries q. Depicted are the website text queries containing set
operations with the cell time at the top and item time at the bot-
tom. The left row shows the planet data set, the right row shows the
Europe data set.
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multi-threaded delayed computation scheme. Depicted are the web-
site text queries containing set operations with the cell time at the
top and item time at the bottom. The left row shows the planet data
set, the right row shows the Europe data set.
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5.7 Mobile Phone Benchmarks

We conducted some benchmarks on a Sony Xperia V running Android 4.4 to show
OSCAR’s capabilities to cope with low performance environments. Its specifica-
tions are listed in table 5.1.

Setup We installed a Debian Stretch chroot environment on the internal storage
which allowed us to compile and run OSCAR on the mobile phone inside the
chroot. Another option would be to compile CGAL and all of its dependencies
with the Android NDK toolchain. This however is a very cumbersome task to do
[92].

Results We used the Baden-Württemberg and Germany data since the Europe
and Planet data set are too large to fit on a 32 GB SD card. Our mobile platform
has only 1 GiB of memory of which about 200MiB are used by the graphics system.
It is therefore impossible to keep the whole index in memory. Instead most of the
data is loaded on demand from the SD card. For the Baden-Württemberg data set
it is still possible to use a memory mapped storage back end. The Germany data
set however is too large to fit into a 32 bit address space. Instead we have to use
a back end that loads data on request from the files without using memory maps.
The file system buffer of the operating system is involved as well, but the access is
not as efficient as the memory mapped variant. We also compare the impact of the
file system cache by dropping all cached data before a query string is processed. In
order to do this we write a 1 to /proc/sys/vm/drop_caches which drops the page
cache. We use a single thread to process the requests with the CellQueryResult
class. Figure 5.12 shows the cdf of the text queries with set operations and the
cdf of the spatial queries. For the Baden-Württemberg data set most queries can
be answered in less than a second even in the case of non-cached data. For the
Germany data set this is only true if the data is already in memory. If all data has
to be loaded then only about 80% of all queries are under the one second mark.
There are even some queries, like “@highway @amenity @building”, taking more
than 60 seconds, though these are highly unlikely to appear on a mobile system.

Spatial queries on the other hand take longer with only 80 % under the one
second mark.

Non-cached data has a pronounced impact on the query times at least for all
regular queries. Hence being able to keep more data in memory is a very important
feature of the compressed variants. The amount of data that needs to be fetched
does not seem to play such an important role since the local item id index is always
very close to the global item id index. This is likely caused by the file system cache
which always loads about 128 KiB of data. The deduplication used to store the
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posting lists results in a more random access pattern reducing the usefulness of
the prefetching by the operating system. However reducing the prefetching amount
does not improve the query timings but rather increases them indicating its benefit.

121



5 Experimental Evaluation

100 101 102 103 104

0

20

40

60

80

100

Time [ms]

%
of

qu
er
ie
s
q
:
C
el
lT

im
e(
q)

≤
T
im

e Hot cache
Hot cache (Local)

Cold cache
Cold cache (Local)
DE: Hot cache

DE: Hot cache (Local)
DE: Cold cache

DE: Cold cache (Local)

100 101 102 103 104

0

20

40

60

80

100

Time [ms]

%
of

qu
er
ie
s
q
:
C
el
lT

im
e(
q)

≤
T
im

e Hot cache
Hot cache (Local)

Cold cache
Cold cache (Local)
DE: Hot cache

DE: Hot cache (Local)
DE: Cold cache

DE: Cold cache (Local)

Figure 5.12: Cumulative distribution functions for global and local item ids and
hot and cold caches measured on our mobile platform. The top picture
shows the text queries containing at least one set operation. The
bottom picture shows the spatial queries.
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5.8 Alternative Map Tesselations

OSCAR uses a special kind of map tessellation induced by the regions of the data
set with some additional refinement steps. This however produces cells that are
unequal in size and form, hence the refinement steps. Unfortunately these do not
result in a tessellation with cells of equal size, rather cells are somewhat similar.

There are however also many advantages to this representation. First of all it
is easy to compute the subgraph of the Inclusion-DAG for a given set of cells.
Secondly the cells returned for a given query exactly match the given query, no
additional filtering is needed. Thirdly region queries always return full-match cells
and item queries usually return partial match cells. This allows us to store the
result for region and item queries in a single data stream. Depending on the used
query we can either only return the full-match cells, the partial-match cells or
combine both which is a fast operation.

We can get rid of the downsides by using more regular tessellations for example
by using the discrete global grids (DGG) introduced in section 2.3.1. In turn we
lose the aforementioned advantages, especially the semantic information of the
subgraph of the Inclusion-DAG or its easy computation. If we are only interested
in some kind of hierarchical representation then we can simply use the hierarchy
provided by the spatial grid which we can again compute easily from a given result.

In the following we would like to show the effect of different spatial grids on the
query times and storage space. To this end we implemented the text search part
of OSCAR based on an abstract notion of a spatial grid. We first compute for
each grid cell all of its covered items. We then transform all entries of our text
search structures such that they are valid for our new map tessellation. Again we
can use the notion of full-match and partial-match cells though we cannot assume
that region queries only result in full-match cells. We therefore cannot store the
necessary data as efficiently as possible with our original tessellation. Instead we
store the entries for region, item and mixed queries in separate locations. In order
to save space while increasing the query times we can opt to only store entries for
region and item queries and compute the result of the mixed queries during query
computation. This however is not as fast as in our original variant since region
queries do not necessarily return only full-match cells.

5.8.1 Results

All of our tested grids are hierarchical in nature allowing a user to choose a level
of accuracy. We chose the level of accuracy such that the cells of the induced
cell arrangement have a size of about 40 square kilometers. See table 5.17 for an
overview of various characteristics of the resulting data structures for the planet
data set. Compared to the triangulation based cell arrangement the storage space
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increases by a factor of less than two. Compared to the variant with small cells
the difference is not that pronounced. Yet if we chose to produce smaller cells using
the next refinement level the storage overhead increases from about 70 GiB for
the H3 index to more than 240 GiB. Note the high maximum cell area of the
triangulation based cell arrangement. This is mostly due to the fact that we
don’t refine triangles that are not covered by any region. Additionally our simple
snapping algorithm may degrade the triangle refinement properties in some areas.
For the arrangement with a cell diagonal constraint this results in cells being made
up of only a single triangle. The other refinement types contain cells that are
rather large. The impact of these large cells is likely very low since they account
for less than 0.4 percent of all cells containing less than 2 percent of all items.

Cell area Cells Index Size Search Size
min/mean/max

[km2] [103] [GiB] [GiB]
HTM 40/46/60 5536.4 87.5 80.4
H3 36/36/36 2709.0 74.1 69.4
Grid 0/35/47 2829.9 70.5 68.6

OSCAR
disconnected 0/303/18M 1684.4 23.4 17.8
connected 0/303/18M 1684.4 43.1 33.1
max 1000 triangles 0/117/6M 3134.3 51.6 35.9
cell diagonal < 5 km 0/1.3/140k 50239.9 ≈ 70 ≈ 55

Table 5.17: Characteristics of the cell arrangement induced by alternative map
tessellations of the planet data set. We could not compute the search
structures for the planet data set and relied on an approximation based
on the Europe data set which is always within a factor of two for other
refinement settings. The high maximum cell area is in part caused by
our snapping procedure (see section 4.3.2) and because we chose to not
refine cells and triangles not covered by any region.

Figures 5.13 and 5.14 show the completion performance for the planet and Eu-
rope data set. On the planet data set all cell arrangements are very close together
with no clear winner. This is not true anymore for the Europe data set where the
H3 index and the simple grid dominate the other arrangements if we are only in-
terested in cells. Item computation on the other hand is close together as well.

We can further analyze the difference between the arrangements using figures
5.15 and 5.16 which show the difference of the completion times of each query
for every grid type. To be precise for cell arrangements A and B and query q
we compute At(q) − Bt(q) where Xt(q) indicates the time it takes to process the
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query q using arrangement X. We then plot the cumulative distribution function
of these values.

We again find that there is no clear winner which dominates every other ar-
rangement type. In general we can say that in about a third of the queries one
arrangement is faster than the other and in about a third they are on par. Table
5.18 lists the number of queries for each grid type where the respective grid com-
puted the query result in the least amount of time. In all data sets we find that
the HTM index is the slowest of all variants. The simple grid and the H3 index
are almost on par, with the H3 index being slightly faster. The performance of
the triangulation based cell arrangement heavily depends on the used refinement
type. Naturally the arrangement with the most number of cells looses to all other
arrangements. Overall the H3 index seems to be the most promising candidate
for an alternative map tessellation. Compared to the HTM index and the simple
grid the H3 index has the disadvantage that its hierarchy does not allow a refine-
ment of cells, but rather each level has its own cell arrangement. This may pose a
problem for the hierarchical variant proposed in section 7.
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Figure 5.13: Cumulative distribution function of the time it takes to compute the
result of the textual website queries containing at least one set oper-
ation using various cell arrangements.
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Figure 5.14: Cumulative distribution function of the time it takes to compute the
result of the textual website queries containing at least one set oper-
ation using various cell arrangements based on the Europe data set.
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OSCAR refinement OSCAR HTM H3 Grid
Planet

All 1923 131 898 773
Disconnected 1842 140 936 807

Connected 1847 145 925 808
Maximal 1 k triangles 1134 201 1270 1120

Europe
All 979 204 1515 465

Disconnected 943 215 1530 475
Connected 944 222 1522 475

max 1000 triangles 726 299 1618 520
cell diagonal < 5 km 431 441 1731 560

Germany
All 1064 306 558 654

Disconnected 1047 316 558 661
Connected 1044 316 560 662

max 1000 triangles 804 460 574 744
cell diagonal < 5 km 606 587 590 799

Baden-Württemberg
All 1038 192 394 230

Disconnected 1014 202 403 235
Connected 1022 198 399 235

max 1000 triangles 923 271 411 249
cell diagonal < 5 km 805 349 436 264

Table 5.18: Number of queries for which the given cell arrangement is the fastest.
The column labeled OSCAR show the possibly combined number of
queries where a triangulation based arrangement was faster. The rows
give the cell refinement types considered for comparison.
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Figure 5.15: Cumulative distribution function of the difference between completion
times of the website text queries containing set operations for vari-
ous cell arrangements based on (refined) triangulations and Discrete
Global Grids. Top left: DGG compared to OSCAR with disconnected
cells. Top right: DGG compared to OSCAR with connected cells.
Bottom left: DGG compared to OSCAR with up to 1000 triangles
per cell. Bottom right: DGG compared among themselves. Note
that the completion timings of the h3 index and the simple grid are
so close together that they overlap for large parts. See section 5.8.1
for an in-depth discussion.
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Figure 5.16: Cumulative distribution function of the difference between completion
times of the website text queries containing set operations for vari-
ous cell arrangements based on (refined) triangulations and Discrete
Global Grids. Top left: DGG compared to OSCAR with disconnected
cells. Top right: DGG compared to OSCAR with connected cells.
Bottom left: DGG compared to OSCAR with up to 1000 triangles
per cell. Bottom right: DGG compared among themselves. Note
that the completion timings of the h3 index and the simple grid are
so close together that they overlap for large parts. See section 5.8.1
for an in-depth discussion.
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5.9 Comparison to Text-only Search Engines

There exist numerous full-featured frameworks among them ATIRE [106], Galago
[71], Lucene [1] and MG4J [24]. Most systems employ compression techniques like
variable byte encoding after delta-compression - MG4J being one of the few using
a quasi-succinct index to store posting lists [109]. Seven open-source text retrieval
framworks were compared in [75] using various text collections where MG4J used
the least amount of storage while having competitive query times. In the following
we compare the text search capabilities of OSCAR with these two frameworks.

5.9.1 Data Mapping

Lucene as well as MG4J both have the notion of a collection of documents in
which one can search. A document is split into fields containing the textual data.
Usually a document has at least two fields: a title and a content field. The content
of a field is split into tokens, for example into single words or at word boundaries.
At query-time one can select the fields which should match a given query. One
way to map OpenStreetMap data to documents is to define every item and region
as a document and its key-value pairs as fields. For every key there would be one
field. Unfortunately this would create a lot of fields. Furthermore this complicates
the prefix-search on keys and would likely result in different results compared
to OSCAR. Hence we use the following scheme: We have a total of 6 fields per
document (c.f. table 5.19). The tokens of a field are then the important values
and tags of items and regions together with information inherited from enclosing
regions. Additionally we have two fields that are the union of item and region
information. This scheme allows us to support almost all text queries available in
OSCAR.

Field Content
1 item values for substring search
2 item tags for prefix search
3 values inherited from enclosing regions
4 tags inherited from enclosing regions
5 union of 1 and 3
6 union of 2 and 4

Table 5.19: Fields of a document for the comparison to Lucene and MG4J.
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5.9.2 Implementation

Both Lucene and MG4J are implemented in Java and are available as Java libraries.
We used Lucene 6.2.0 and MG4J 5.4.3. OSCAR on the other hand is implemented
in C++. To allow for an easy comparison we implemented a small wrapper library
using the Java Native Interface to access OSCAR’s data structures directly from a
Java program. A multi-threaded implementation of the indexing process of Lucene
was quite easy since only the call to addDocument had to be parallelized. The
solution for MG4J on the other hand is more involved. We first create a subindex
per thread which indexes a subset of the documents. These subindexes are then
merged in a final phase. Merging indexes is part of the normal index creation of
MG4J and is therefore quite efficient. Both Lucene and MG4J support advanced
text queries and ranking functions which are not available in OSCAR. We therefore
removed information like word frequencies, counts and positions keeping only the
inverted index and the document pointers. We furthermore disabled OSCAR’s
support for diacritic in-sensitive search.

5.9.3 Queries

We used the text-only queries from our web-based demonstrator to benchmark
Lucene and MG4J. Note that MG4J does not support substring search whereas
Lucene does. The storage space of OSCAR could further be reduced if we dropped
that capability as well. We removed all spatial queries since Lucene and MG4J
do not support these. Additionally MG4J does not support the difference set
operations if the index is created without word positions.

5.9.4 Pre-processing

Table 5.20 exhibits the resource usage of OSCAR, Lucene and MG4J to preprocess
the data sets. Both Lucene and MG4J need more time compared to OSCAR
but are able to index the data set with less memory. Note that MG4J is able to
index the data set using less memory in more time as well. Reducing the memory
footprint of OSCAR is also possible at the cost of a higher preprocessing time
(c.f. 5.3.2) MG4J and Lucene have a rather high CPU utilization indicating a low
dependence on disk IO whereas OSCAR is mostly bound by disk IO resulting in
a rather low CPU utilization. The final result of both Lucene and MG4J is larger
than OSCAR’s structures. This would even be true if we only indexed fields 5 and
6.

132



5.9 Comparison to Text-only Search Engines

Ba-Wü Germany Europe Planet
OSCAR Global Ids

Time [h:m] 0:11 1:02 8:22 14:28
Memory [GiB] 35.7 69.8 98.7 146.3

CPU utilization [1] 2.8 3.9 2.8 3.3
Storage size [GiB] 0.8 6.2 38.2 71.4

OSCAR Local Ids
Time [h:m] 0:11 0:59 7:26 13:11

Memory [GiB] 36.7 72.4 106.2 159.2
CPU utilization [1] 3.6 3.9 3.0 3.3
Storage size [GiB] 0.6 4.1 26.0 52.3

Lucene
Time [h:m] 0:04 12:22 57:41 94:27

Memory [GiB] 53.2 57.2 92.0 123.1
CPU utilization [1] 6.8 43.5 44.0 42.4
Storage size [GiB] 1.1 25.2 367.6 733.1

MG4J
Time [h:m] 0:41 3:31 22:05 45:14

Memory [GiB] 50.3 78.2 370.7 416.2
CPU utilization [1] 29.8 30.6 29.5 30.7
Storage size [GiB] 0.9 23.2 312.4 627.0

Table 5.20: Resource usage during construction and final result size for OSCAR,
Lucene and MG4J. OSCAR is heavily bound by disk IO as indicated
by the low overall CPU-utilization.
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Ba-Wü Germany Europe
OSCAR Global Ids

Prefix search [s] 23 294 2654
Substring search [s] 41 500 3647

OSCAR Local Ids
Prefix search [s] 34 360 3864

Substring search [s] 53 579 2899
Lucene

Prefix search [s] 487 10524 -
Substring search [s] 1133 19650 -

MG4J
Prefix search [s] 25310 - -

Substring search [s] - - -

Table 5.21: Time to compute all items of all queries of the textual website queries
using a single thread. Note that MG4J does not support substring
search. The query times of the Germany data set already exhibits
query times suggesting that the Europe and Planet benchmarks would
take weeks to compute. For MG4J this is already the case for the
Germany data set.

5.9.5 Query processing

Table 5.21 exhibits the timing statistics of the textual queries. Although OSCAR
needs less space than Lucene and MG4J it is way faster than these two solutions on
the OpenStreetMap data set. The reason for this is in part the efficient handling of
regional queries. Consider for example the query “@amenity:restaurant Stuttgart
Germany”. Both Lucene and MG4J produce very large intermediate results that
are then intersected whereas OSCAR mostly stays on the cell level which reduces
the processing time. Compare this with the cdfs shown in figure 5.17 where we can
see that both Lucene and MG4J are kind of competitive with OSCAR for about
90 % of the queries.
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6 Digression: Rational Points on the Unit Sphere

Currently OSCAR uses a very simple triangulation to represent the cell arrange-
ment. We already mentioned some problems that arise with this representation in
sections 4.3.2 and 4.3.2. As possible solution we proposed to compute the trian-
gulation on the unit sphere for which we will lay the foundation in the following
sections. This chapter is a reproduction of our publication [16] with an improved
analysis compared to [17]. We first sketched our algorithm in [13] in order to com-
pute a dynamic Delaunay triangulation on the unit sphere.

Figure 6.1: Spherical Delaunay triangulation (gray) constrained to contain all line
segments (black) of streets in Ecuador and the intersection points of
constraints (red).

6.1 Introduction

Many mathematical sciences use trigonometric functions in symbolic coordinate
transformations to simplify fundamental equations of physics or mathematical
systems. However, rational numbers are dominating in computer processing as
they allow for simple storage as well as fast exact and inexact arithmetics (e.g.
GMP[51], IEEE Float, MPFR[44]). Therefore problems on spherical surfaces of-
ten require to scale a point vector, as in choosing a point uniform at random[79],
or to evaluate a trigonometric function for a rational angle argument, as in dealing
with Geo-referenced data.
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A classical theoretical barrier is Niven’s theorem[85], which states that the sole
rational values of sine for rational multiplies of π are 0,±1/2 and ±1. The well
known Chebyshev polynomials have roots at these values, hence give rise to rep-
resentations for these algebraic numbers. However, arithmetics in a full algebraic
number field might well be too demanding for many applications. For products
of sine and cosine, working with Euler’s formula on the complex unit circle and
Chebyshev polynomials would suffice though.

This manifests in problems of exact geometrical computations, since standard
methodology relies on Cartesian input[72]. Spheres and ellipsoids are common
geometric objects and rational solutions to their defining quadratic polynomials
are closely related to Diophantine equations of degree 2. The famous Pythagorean
Triples are known to identify the rational points on the circle S1. Moreover, the unit
sphere has a dense set of rational points and so do ellipsoids with rational half-axes
through scaling. Spherical coordinates are convenient to reference such Cartesians
with angle coordinates and georeferenced data denotes points with rational angles.
Standard approximations of Cartesians do not necessarily fulfill these equations,
therefore subsequent algorithmic results can suffer greatly.

This paper focuses on finding rational points exactly on the unit sphere Sd−1 ={
x ∈ Rd :

∑
i x

2
i = 1

}
with bounded distance to the point x/‖x‖2 – its closest

point on Sd−1. In this work, x ∈ Rd can be given by any finite means that
allow to compute a rational approximation to it with arbitrary target precision.
Using rational Cartesian approximations for spherical coordinates, as derived from
MPFR, is just one example of such a black-box model. Moreover, we are interested
in calculating rational points on Sd with small denominators.

6.1.1 Lower Bounds and Instances for Geo-referenced Data on Sd

It is well known in Diophantine approximation that rational numbers have alge-
braic degree 1 and are hard (in the following qualitative sense) to approximate
with other rational numbers. The following folklore observation is an analog to
Liouville’s lower bound.

Observation 1. For rational numbers a
b
6= p

q
, we have∣∣∣∣ab − p

q

∣∣∣∣ = ∣∣∣∣aq − bp

bq

∣∣∣∣ ≥ 1

bq

If q < b, we have a lower bound of 1/q2 for rational approximations to a
b
with

denominators up to q. Pythagorean triples (x, y, z) ∈ N3 provide such rational
points on S1, since (x/z)2 + (y/z)2 = 1. We have a lower bound of 1/z2 for
approximations with denominators q < z. See Section 6.2.4 for rational points on
Sd with the same denominator property.
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The situation might look different when dealing with Geo-referenced data (ratio-
nal angle arguments) only. However, using Chebyshev’s polynomials in conjunction
with Liouville’s lower bound (c.f. Theorem 1) allows to derive explicit constants
for Diophantine approximations of cos (108◦).

Given spherical coordinates, the first coordinate of a point on Sd might well have
algebraic values of ri = cos( i

5
π) for i ∈ {1, 2, 3, 4}.

(r1, r2, r3, r4) =

(
1 +

√
5

4
,
−1 +

√
5

4
,
1−

√
5

4
,
−1−

√
5

4

)
≈ (+0.8090,+0.3090,−0.3090,−0.8090)

Over Z[X], the polynomial U4(x) = 16x4 − 12x2 + 1 has the irreducible factors

U4(x) = (4x2 − 2x+ 1)︸ ︷︷ ︸
=:f(x)

(4x2 + 2x− 1)

Since r1 and r3 are the roots of the polynomial f , they have algebraic degree n = 2.
Using Liouville’s lower bound for r3, we have for all p

q
∈ Q

∣∣∣r3 − p

q

∣∣∣ ≥ min{c2, 1
c1
}

qn
,

with constants c1 and c2 according to the proof of Liouville’s Theorem[76]. The
constants c1, c2 > 0 exist, since the polynomial division of f with the linear factor
(x− r3) results in the continuous function g(x) = (x− r1). For c2 = 1/2 <

√
5/2,

the interval I := [r3− c2, r3+ c2] ⊆ R is sufficiently small to exclude different roots
of f and the inequality

max
x∈I

∣∣g(x)∣∣ = max
x∈I

∣∣x− r1
∣∣ < c1

is met with a generous choice of c1 = 2. This leads to an explicit lower bound on
the approximation error to r3 with denominators q of∣∣∣∣cos (108◦)− p

q

∣∣∣∣ ≥ 1

2 · q2
.

6.2 Results

Apart from integers, contemporary computing hardware heavily relies on floating
point numbers. These are triplets (s,m, e) with s ∈ {0, 1}, m ∈ {0, . . . , 2l−1} and
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6 Digression: Rational Points on the Unit Sphere

e ∈ {−2k−1 +1, . . . , 2k−1 − 1}. The IEEE standard for Float is (l, k) = (23, 8) and
(52, 11) for Double. The rational number described by such a triplet is

val(s,m, e) = (−1)s ·



2l +m

2l
2e e > 0

2l +m

2l
1

2|e|
e < 0

0 +m

2l
1

22k−1−2
e = 0

where the latter case describes ‘denormalized’ numbers. In each case, the un-
canceled rational value has some power of 2 as the denominator. Since powers
of two are the sole divisors of a 2i, the denominator of the canceled rational has
to be a power of two, too. Hence, rational values representable by floating point
numbers are a subset of the following set P and fixed-point binary numbers are a
subset of Pi:

img val ⊆
{ z

2i
: i ∈ N, z ∈ Z, z odd

}
=P{ z

2i
: z ∈ Z

}
= Pi ⊆P .

6.2.1 Floating Point Numbers are Insufficient

Fix-point and floating-point arithmetics of modern CPUs work within a subset of
rational numbers, in which the denominator is some power of two and the result
of each arithmetic operation is ‘rounded’.
Theorem 3. There are only 4 floating point numbers on S1 and 6 on S2.
Proof. We show Sd−1 ∩ P d * {−1, 0, 1}d implies d ≥ 4. Suppose there is a non-
trivial p ∈ Sd−1∩P d with d minimal. Let xi/2

ei denote the canceled fraction of its
i-th coordinate. We have that all xi 6= 0, xi are odd numbers and all ei > 0 (since
p is not one of the 2d poles and d is minimal).

W.l.o.g. e1 ≤ e2 ≤ . . . ≤ ed. We rewrite the sphere equation 1 =
∑d

j=1(xi/2
ei)2

to

x2
1 = 4e1 −

d∑
j=2

4e1−ejx2
j .

For an odd integer y, we have y2 = (2k + 1)2 = 4(k2 + k) + 1, leading to the
congruence

1 ≡ 0−
d∑

j=2

χe1(ej) mod 4 .
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Where the characteristic function χe1(ej) is 1 for e1 = ej and 0 otherwise. For d ∈
{2, 3} the right hand side can only have values of 0,−1 or −2, a contradiction.

Note that theorem 3 translates to spheres with other radii through scaling.
Suppose a sphere in R3 of radius 2j has a non-trivial solution y ∈ P 3, then y/2j ∈
P 3 and would be on S2, too.

6.2.2 Snapping to Rational Points

We now describe how to compute a good rational approximation exactly on the
unit sphere Sd−1. The input point x ∈ Rd can be given by any finite means
that allows to compute rational approximations of arbitrary target precision – e.g.
rational approximations of Cartesians for spherical coordinates. For the input x,
we denote its closest point on Sd−1 with x/‖x‖2. The stereographic projection τ and
its inverse mapping σ provide σ (τ (x/‖x‖2)) = x/‖x‖2, since the argument is on
Sd−1. Instead of determining the value of τ exactly, we calculate an approximation
y ∈ Qd and finally evaluate σ(y) under exact, rational arithmetics. Hence, the
result σ(y) is exactly on Sd−1. See figure 6.2 for an illustration.

x

x/‖x‖2
σ(y)

(0, 1)

τ (x/‖x‖2) y

Figure 6.2: Stereographic projection in two dimensions for a point x/‖x‖2 and its
rational approximation σ(y)

The stereographic projection does not preserve distances, leaving it open to
bound the approximation error and the size of the resulting denominators. We use
the rotation symmetry of the sphere to limit the stretching of σ (c.f. Lemma 4):
For a non-zero point x ∈ Rd we can assume that i = d maximizes |xi| and xd < 0,
otherwise we change the standard orthonormal basis by swapping dimension i and
d and using a negative sign for dimension d. Note that such rotations do not
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6 Digression: Rational Points on the Unit Sphere

change the actual coordinate values. To keep the size of denominators in σ(y)
small, we use fixed-point arithmetics to determine y ∈ Qd−1 (c.f. Lemma 5).

Algorithm 1 PointToSphere

In: x ∈ Rd, ε ∈
(
0, 1

8

]
1. Assert xd = mini−|xi|

2. Choose y ∈ Qd−1 with |yi − τi (x/‖x‖2) | ≤ ε
2
√
d−1

3. Return σ(y) ∈ Qd.

See Algorithm 1 for a precise description. Note that the rational point y in state-
ment 2 solely needs to meet the target approximation in the individual coordinates
for

τi(x/‖x‖2) =
xi

‖x‖2 − xd

.

Generally, this can be determined with methods of ‘approximate expression eval-
uation’ to our target precision[72]. If x is an approximation to a georeferenced
point, this denominator is well conditioned for calculations with multi-precision
floating-point arithmetics[28, 44]. Using exact rational arithmetics for statement
3, we obtain a rational Cartesian coordinates on the unit sphere.

Observation 2. For d > 1 and x ∈ Sd−1 with xd = mini −|xi|, we have

‖τ(x)‖2 ≤

√√
d− 1√
d+ 1

< 1 .

Proof. Using xd = mini −|xi| and
∑

i x
2
i = 1, we have the bounds 1/d ≤ x2

d ≤ 1
and

‖τ(x)‖22 =
∑d−1

i=1 x
2
i

(1− xd)2
=

1− x2
d

(1− xd)2
=

1 + xd

1− xd

≤ 1− 1/
√
d

1 + 1/
√
d
.

Where the latter term is in (0, 1) for any d.

Hence the (d− 1)-ball Bd−1
1 = {x ∈ Rd : ‖x‖2 ≤ 1} contains τ(x).
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6.2.3 Approximation Quality

See [17] for an earlier version of this paper with a weaker, but elementary, analysis.
We consider the problem in the 2D hyperplane Hpyy′ , defined by two points

y = σ(x), y′ = σ(x′) on Sd−1 and the projection pole p ∈ Rd. Given the rotation
step in Algorithm 1, the projection plane H0 = {x ∈ Rd : xd = 0} separates p and
y, y′ in Rd and in Hpyy′ . Since each q ∈ H0 ∩ Sd−1 has ‖q − p‖2 =

√
2 (consider

pq in H0pq), the circumcircle C of p, y and y′ contains exactly two of these points.
Hence, the line of Hpyy′ ∩H0 is orthogonal to the circumcircle’s diameter through
p. Moreover, the circles diameter is in [

√
2, 2]. We denote with x the point that

is closer to p in Hpyy′ , meaning ‖x‖2 ≤ ‖x′‖2. Note that x′ and x can be on the
same or opposite circumcircle halves.

p

y′

y

m

H0x′ x

b a

=
√
2 =

√
2

γ

In this section we denote with B = bx the perpendicular from x on py′,E = xx′,
L = yy′ and Lx = xa its triangle scaled version meeting x. Note that B and Lx

are above H0, hence above E.

Lemma 3. For x, x′ ∈ Bd−1
1 with ‖x‖2 ≤ ‖x′‖2, we have

‖p− x‖2
‖p− σ(x)‖2

‖σ(x)− σ(x′)‖2 ≤ ‖x− x′‖2 .

Proof. We show Lx ≤ E by proofing α ≤ β for the two angles

β := ]bxx′

α := ]axb .

The inner angle sum of 4xab with a supplementary angle argument and triangle
scaling provide ]py′y = 90◦ + α. Let m denote the center of C. Since pm is
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6 Digression: Rational Points on the Unit Sphere

orthogonal on H0 and ]bx′x = 90◦ − β, we have ]mpx′ = β. In the isosceles
triangle 4py′m, the central angle γ = 180◦ − 2β. Fixing arc py′ on C for the
inscribed angle theorem provides ]y′yp = γ/2.

Now, suppose α > β. The inner angle sum of 4pyy′ states

0 ≤ ]y′py = 180◦ − ]y′yp− ]py′y

= 180◦ − ]y′yp− (90◦ + α)

= 180◦ − γ/2− (90◦ + α)

= −α + β

a contradiction.

Lemma 4. For x, x′ ∈ Bd−1
1 , we have∥∥∥σ(x)− σ(x′)

∥∥∥
2
≤ 2 ‖x− x′‖2.

Proof. Using Lemma 3, we have Lx ≤ E and the statement follows via triangle
scaling:

L = Lx py / px ≤ 2Lx ≤ 2E ,

since px ≥ 1 and py ≤ 2.

This statement is tight, considering the two points x = 0 and
x′ =

(
ε/
√
d− 1, . . . , ε/

√
d− 1

)
. We have ‖x − x′‖2 = ε and

‖σ(x)− σ(x′)‖2 = 2 1√
1+ε2

ε.

Theorem 4. Algorithm 1 calculates an ε-approximation exactly on the unit sphere.

Proof. Let x∗ = x/‖x‖2 and σ(y) denote the result. Given the rotation, x∗ holds
for Observation 2. Hence, we can use Lemma 4 to derive

‖σ(y)− x∗‖∞ = ‖σ(y)− σ(τ(x∗))‖∞
≤ ‖σ(y)− σ(τ(x∗))‖2
≤ 2‖y − τ(x∗)‖2

≤ 2

√
(d− 1)

ε2

4(d− 1)
= ε

as upper bound on the approximation error.

This analysis is rather tight, as demonstrated by the red curve and points in
Figure 6.3.
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6.2.4 Denominator Sizes

We now describe a relation between rational images of σ and the lowest common
multiple of denominators of its rational preimages. This leads to several strategies
for achieving small denominators in the results of Algorithm 1.

Lemma 5 (Size of images under σ). Let x ∈ Qd−1 ∩Bd−1
1 with xi = pi/qi and

Q = lcm(q1, . . . , qd−1) be the lowest common multiple, then

σk (x) =
nk

m

with integers ni,m ∈ {−2Q2, . . . , 2Q2} for all 1 ≤ k ≤ d.

Proof. Let q′i ∈ {1, . . . , Q} such that q′i · qi = Q for all i. Since the formula of σ
is similar in all but the last dimension, we describe the following two cases. For
k = d, we have

σk (x) =
−1 +

∑d−1
i=1 p

2
i /q

2
i

1 +
∑d−1

i=1 p
2
i /q

2
i

=
−Q2 +

∑d−1
i=1 q

′
i
2p2i

Q2 +
∑d−1

i=1 q
′
i
2p2i

=:
nk

m

Using the bound x ∈ Bd−1
1 , we have 0 ≤

∑d−1
i=1 q

′
i
2p2i ≤ Q2 and we derive for nk

and m

|nk| =
∣∣∣−Q2 +

d−1∑
i=1

q′i
2
p2i

∣∣∣ ≤ Q2

m = Q2 +
d−1∑
i=1

q′i
2
p2i ≤ 2Q2

For k < d, we have

σk (x) =
2pk/qk

1 +
∑d−1

i=1 p
2
i /q

2
i

=
Q2 · 2pk/qk

Q2 +
∑d−1

i=1 q
′
i
2p2i

=
Qq′k · 2pk

Q2 +
∑d−1

i=1 q
′
i
2p2i

=:
nk

m

Using the bound x ∈ Bd−1
1 , we have that each |pi| ≤ qi and this bounds |nk| =

Qq′k · 2|pk| ≤ 2Q2. We already discussed the bound on m in the first case.

Note that we apply this lemma in practice with fixed-point binary numbers
pi/qi ∈ Ps. Meaning all qi = 2s = Q for some significant size s.
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6 Digression: Rational Points on the Unit Sphere

Theorem 5. Denominators in ε-approximations of Algorithm 1 are at most

10(d− 1)

ε2
.

Proof. Using standard multi-precision floating point arithmetics allows to derive
rational values y, with denominators that are Q = d2

√
d−1
ε

e. Using ε ≤ 1/8 and
Lemma 5 bounds the size of the denominators in images σ with

2Q2 ≤ 2

(
1 +

2
√
d− 1

ε

)2

=
2

ε2

ε2 + ε4
√
d− 1︸ ︷︷ ︸

≤(d−1)

+4(d− 1)

 .

For certain dimensions and in practice(c.f. Section 6.4.1), we can improve on
the simple usage of fixed-point binary numbers. For S1 we can rely on the con-
tinued fraction algorithm to derive rational approximations of α = τ(x/‖x‖2)
with |α− p/q| ≤ 1/2q2. Using this in Algorithm 1 leads to approximations with
ε = 1/q2 on the circle S1 with denominators of at most 2q2.

Note that for Sd with d ≥ 2 one can rely on algorithms for simultaneous Dio-
phantine approximations (c.f. Theorem 2) to keep the lowest common multiple Q
in Lemma 5 small. Note that it might well be simpler to find Diophantine approx-
imations with small Q.

There have been many approaches to find generalizations of the continued frac-
tion algorithm for d > 1. One of the first approaches is the Jacobi-Perron algo-
rithm, which is rather simple to implement[105](c.f. Section 6.4.1). More advanced
approaches [87] rely on the LLL-algorithm for lattice basis reduction[70]. For
d = 2 there is an algorithm to compute all Dirichlet Approximations[62], which we
find hard to oversee given its extensive presentation. Moreover, their experimental
comparison shows that the Jacobi-Perron algorithm is practically well suited for
d = 2.

We close this section with a transfer result of Theorem 2 with our Theorem 4
and Lemma 5.

Corollary 1. Let x ∈ Sd−1 and N ∈ N. There is p ∈ Zd−1 and q ∈ {1, . . . , N}
with ∥∥∥∥x− σ

(
1

q
p

)∥∥∥∥
∞

≤ 2
√
d− 1

q d−1
√
N

and all denominators of σ
(

1
q
p
)

are at most 2q2.
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6.3 Implementation

This existence statement allows for brute-force computations. However, we just
use it for comparisons in Section 6.4.1.

6.3 Implementation

Apart from [30] for S2, most implementations of spherical Delaunay triangulations
are not ‘stable’. Approaches based on d-dimensional convex hull algorithms pro-
duce only a tessellation for input not exactly on Sd−1. (c.f. Section 1.2.7)

Few available implementations allow dynamic point or constraint insertion and
deletion – not even in the planar case of R2. The ‘Computational Geometry
Algorithms Library’ (CGAL [91]) is, to our knowledge, the sole implementation
providing dynamic insertions/deletions of points and constraint line segments in
R2.

With [19], we provide open-source implementations of Algorithm 1 for Sd. In
[18], we provide an implementation for spherical Delaunay triangulations on S2

with ε-stable constructions of intersection points of constraint line-segments (c.f.
Section 6.3.2).

6.3.1 RATional Sphere Snapping for Sd

Libratss is a C++ library which implements Algorithm 1, based on the open-source
GMP library for exact rational arithmetics [51] and the GNU ‘Multiple Precision
Floating-Point Reliably’(MPFR) library[44]. The implementation allows both, in-
put of Cartesian coordinates of arbitrary dimension and spherical coordinates of
S2. Note that this implementation allows geometric algorithms, as for d-dimen-
sional convex hull, to rely on rational input points that are exactly on Sd−1. In
light of the discussion on the denominator sizes in Section 6.2.4, we provide two
additional strategies to fixed-point snapping, as analyzed in Theorem 4. We im-
plemented the Continued Fraction Algorithm to derive rational ε-approximations
with small denominators and the Jacobi-Perron algorithm for S2. The library in-
terface also allows to automatically chose the approximation method which results
in smaller denominators, approximation errors or other objectives, like byte-size.

6.3.2 Incremental Constrained Delaunay Triangulation on S2

Libdts2 implements an adapter for the dynamic constraint Delaunay triangulation
in the Euclidean plane R2 of CGAL. Since this implementation requires an initial
outer face, we introduce an small triangle, that only contains the north-pole, to
allow subsequent insertions of points and constraints. For points exactly on the
unit sphere, the predicate ‘is A in the circumcircle of B,C and D’ reduces to
the well studied predicate ‘is A above the plane through B,C and D’. The

147

http://www.github.com/fmi-alg/libratss
http://www.github.com/fmi-alg/libdts2


6 Digression: Rational Points on the Unit Sphere

implementation overloads all predicate functions accordingly and uses Algorithm
1 for the construction of rational points on the sphere for intersections of Great
Circle segments.

ε-stable geometric constructions

Any means of geometric construction that allows to approximate a certain point,
can be used as input for Algorithm 1 – e.g. the intersection of Great Circle
segments. Consider two intersecting segments of rational points on S2. The two
planes, containing the segments and the origin as a third point, intersect in a
straight line. Each (rational) point on this line can be used as input for our method,
as they identify the two intersection points on the sphere. Using such input for
Algorithm 1 allows simple schemes to derive stable geometric constructions of
rational points on Sd within a distance of ε to the target point.

6.4 Experiments

We used real world and synthetic data for our experiments. Geo-referenced data
was sampled from regional extracts from the OpenStreetMap project[2], as of Jan-
uary 26th, 2017. Random Cartesian coordinates of points on Sd were created with
the uniform generator 2 of [79]. All benchmarks were conducted on a single core
of an Intel Xeon E5-2650v4. Peak memory usage and time were measured using
the time utility.

6.4.1 Approximation Quality and Size

We experimentally analyze the actual approximation error in results of Algorithm
1 for several levels of ε using the MPFR library. In this section e denotes the
significands required in statement 2 of Algorithm 1 for the required result precision
ε. This is

e =

⌈
− log2

(
ε

2
√
d− 1

)⌉
.

We simply setup the MPFR data types with significand sizes up to 1024 bits, and
conducted our experiments on much lower levels of e. This allows us to derive
some ‘measure’ of the actual approximation errors of our method.

We analyzed the approximation errors δ and denominator bit-sizes q for 100
random points on S2. Figure 6.3 compares the results of our algorithm under
several levels of target precision e and strategies for statement 2 in our method.
The magenta line indicates the quality and size of the approach in [101]. The red
line indicates the bounds of our Theorems 4 and 5 on the fixed-point strategy,
while the yellow line indicates the bound of Corollary 1. Note that results using
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6.4 Experiments

Figure 6.3: Approximation quality and denominator size of 100 random points on
S2 for various levels of target precision e and approximation strategies
(red, blue) of Algorithm 1. Theoretic bounds are indicated with lines.
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6 Digression: Rational Points on the Unit Sphere

the Jacobi-Perron strategy (blue dots) allows our method to further improve on
the fixed-point strategy (red dots). Note that we use Liouville’s lower bound as
statement on the approximability of a worst-case point. There might well be points
of higher algebraic degree that allow better approximations (c.f. Section 6.1.1).

Table 6.1 exhibits average approximation errors δ, denominator bit-sizes q and
the computation time t of our method for millions of points. Synthetic data sets
have several dimensions, while the real world data sets have dimension 3. For S2, we
provide comparison of the fixed-point strategy (fx) with the Jacobi-Perron strategy
(jp) of our method. Using e = 31 is sufficient to obtain results exactly on S2 with
a δ of less than 1cm, relative to a sphere with radius of the earth. This is enough
for most applications dealing with spatial data and allows storage within the word
size of contemporary computing hardware. This allows practical applications on
S2 to store 4 integer long values for the 3 numerators and the common denominator
(c.f. Lemma 5) occupying 32 bytes. Note that storing 3 double values occupies 24
bytes but cannot represent Cartesian coordinates exactly on the sphere.

6.4.2 Constrained Delaunay Triangulation with Intersection Constructions

A Constrained Delaunay Triangulation of a point set contains required line-segments
as edges, but is as close to the Delaunay triangulation as possible [32]. We used
very large street networks of several regions from the OpenStreetMap project for
points and constraint edges – e.g. each line-segment of a street is an edge in the
result triangulation. Since ∼ 0.5% of the line-segments in these data sets inter-
sect, we approximated the intersection points using e = 31 for Algorithm 1. Table
6.2 exhibits total running time, peak memory usage and the result sizes of our
libdts2 implementation. Small data sets like Saarland and Germany allow quick
calculation on a recent workstation computer. See Figure 6.1 for the Ecuador data
set. Note that the current implementation has a storage overhead for each point,
as we keep the results of the GMP library rather than truncating to integers of
architectures word size. Computing the triangulation for the planet data set was
only possible on rather powerful hardware with at least 768 Gigabytes of memory
taking less than a quarter of a day.
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Germany Planet u.a.r S2 u.a.r S9 u.a.r S99
dimension 3 3 3 10 100
size [103] 2,579.6 3,702.4 1,000.0 1,000.0 100.0

e=23

fx
δ[m] 0.7 0.7 0.7 1.0 3.2
q [1] 46.0 46.0 46.0 46.0 46.0

t [µs] 17 16 16 117 546

jp
δ[m] 0.4 0.4 0.5 - -
q [1] 33.6 34.2 34.1 - -

t [µs] 63 57 58 - -
e=31

fx
δ[m] 2.7e-3 2.6e-3 2.8e-3 4.0e-3 12.6e-3
q [1] 62.0 62.0 62.0 62.0 62.0

t [µs] 17 16 17 118 554

jp
δ[m] 1.7e-3 1.7e-3 1.8e-3 - -
q [1] 45.2 45.8 45.8 - -

t [µs] 77 72 73 - -
e=53

fx
δ[m] 6.3e-10 6.2e-10 6.6e-10 9.6e-10 30.1e-10
q [1] 106.0 106.0 106.0 106.0 106.0

t [µs] 16 16 17 118 548

jp
δ[m] 3.9e-10 3.9e-10 4.3e-10 - -
q [1] 77.2 77.8 77.7 - -

t [µs] 118 111 112 - -
e=113

fx
δ[m] 5.5e-28 5.4e-28 5.7e-28 8.3e-28 26.1e-28
q [1] 226.0 226.0 226.0 226.0 226.0

t [µs] 19 19 19 126 617

jp
δ[m] 3.4e-28 3.4e-28 3.7e-28 - -
q [1] 164.5 165.1 165.1 - -

t [µs] 219 218 220 - -

Table 6.1: Mean-values of approximation error δ [m], denominator bit-size q [1]
and computation time t [µs] for synthetic and real-world point sets for
various dimensions and levels of target precision e. The Jacobi-Perron
strategy is denoted by ‘jp’ and the fixed-point strategy by ‘fx’.
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6 Digression: Rational Points on the Unit Sphere

Saarland Germany Europe Planet
Input

Segments [106] 0.32 25.75 222.92 668.61
Output

Vertexes [106] 0.29 24.45 213.01 634.42
Edges [106] 0.87 73.37 639.04 1, 903.27
Faces [106] 0.58 48.91 426.03 1, 268.84

Resource usage
Time [h:m] < 0:01 0:05 0:49 5:08

Memory [GiB ] < 0.4 27.7 243.2 724.1

Table 6.2: Time and memory usage to compute spherical Delaunay triangulations
for OpenStreetMap data sets.
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7 Open Problems

In the following we would like to discuss some future extensions and research
directions.

Distributed Computing The cell based approach should allow for a distributed
computation variant with high efficiency both for the creation of the data struc-
tures as well as for the query. For the creation all that is needed is an implemen-
tation of constrained Delaunay triangulation for distributed computation. Unfor-
tunately we are not aware of any available implementation. One possible solution
would be to partition the data set according to the countries of the world. The
problem with this approach is that there are a lot of regions like “The Alps” in-
tersecting multiple countries.

Updates Another important aspect are dynamic updates. Our current data
structure implementation uses many compression techniques to reduce the storage
footprint. This however makes it extremely difficult to update the data without
rewriting large parts. Changing the storage layout to allow for fast incremental
updates is therefore mandatory. Since this would increase the storage footprint a
distributed variant would be advisable — which was not the primary goal of our
implementation.

Hierarchical Cell Arrangement A hierarchical approach may further improve
processing speeds for some queries. Consider for example the query “#”Germany”
@highway @amenity @building”. The delayed processing scheme already reduces
the processing time by removing all cells outside of Germany. However if we take a
look at the Inclusion-DAG then we see that Germany is just a single node covering
thousands of cells. A simple variant would be to use a subset of the Inclusion-
DAG that is a tree and do the set operation based on this tree. Each query
statement would then return a subset of that tree which allows us to compute the
set operations in a recursive manner. In the case of the aforementioned intersection
the tree of the “#”Germany”” query would prune most nodes of the other query
statements high up in the hierarchy. However there certainly are queries that
would benefit from other subsets of the Inclusion-DAG. A tree independent of the
Inclusion-DAG is another option, for example based on the spatial grids introduced
in 2.3.1.
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7 Open Problems

Cell Arrangement Complexity So far we only control for the size or number of
triangles of a cell. This however may unnecessarily add more vertexes to the
triangulation. It may instead be of interest to reduce the number of vertexes
which also reduces the number of triangles. To accomplish this task we need to
simplify the borders of the cells while keeping the topology of the cell arrangement.
One important additional constraint is that the items them-selves are part of the
topology and hence we need to compute a topology preserving simplification of
millions of polygonal line segments while obeying billions of additional topology
constraints introduced in the form of points by the items. One possible solution
may be the algorithm introduced in [81] which provides a solution for our problem
hopefully in a reasonable amount of time.

Alternative Textual Spatial Indexes OSCAR is designed to support different
kinds of indexing structures. Unfortunately most of the alternative textual spatial
indexes introduced in section 1.2.3 do not publish any kind of source code. We
are therefore interested in implementing the basic building blocks like R-trees,
quadtrees, inverted index etc. using generic programming. Based on this library it
should be fairly easy to implement the alternative indexing schemes. Additionally
a standardized set of benchmarks should be part of the library thus enabling other
researchers to compare their new structures with existing ones using the same
benchmark methodology.

Spherical Geometry in OSCAR From a practical point of view, it is of great
interest to bound the storage size of denominators to a maximum of 64 bits – the
word size of current computing architectures. Preliminary research suggests the
viability of this approach with a reduction from 545 GiB down to 109 GiB for the
planet test data set listed in table 6.2. We can take this a step further by storing
points on the projection plane using only three 32 bit numbers instead of four 64
bit numbers. Predicates involving points in the same projection plane can then
be calculated in the two-dimensional space of the projection plane. These points
could easily be stored in our static out-of-memory data structures while increas-
ing the storage size only slightly. Further reductions in storage space or increases
in approximation accuracy may be possible by using advanced algorithms for si-
multaneous approximation, like the LLL-algorithm or the Dirichlet approximation
algorithm for S2.

For the theoretical part, we are interested if finding simultaneous rational ap-
proximations with small lowest common multiple of the denominators is simpler
than finding Dirichlet approximations. We are also interested in generalizing the
method to provide rational approximations with small absolute errors on ellipsoids
with rational semi-principal axes – e.g. the geographic WGS84 ellipsoid.
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8 Appendix

8.1 Sample Queries used in the Introduction
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8 Appendix

/∗
This has been genera t ed by the overpass−t u r bo wizard .
The o r i g i n a l s earch was : “
waterway=w a t e r f a l l in ”Germany
∗/
[ out : j s on ] [ t imeout : 2 5 ] ;
// f e t c h area “”Germany to search in
{{ geocodeArea : Germany}}−>. searchArea ;
// ga t h e r r e s u l t s
(
// query par t f o r : “waterway=”w a t e r f a l l
node [ ”waterway”=” wa t e r f a l l ” ] ( a rea . searchArea ) ;
way [ ”waterway”=” w a t e r f a l l ” ] ( a rea . searchArea ) ;
r e l a t i o n [ ”waterway”=” w a t e r f a l l ” ] ( a rea . searchArea ) ;
) ;
// p r i n t r e s u l t s
out body ;
>;
out s k e l qt ;

Code Listing 8.1: The query used produce the result for overpass-turbo depicted
in figure 1.2

156



8.2 Query Language

8.2 Query Language

The following grammar shows the language supported by OSCAR.

〈Query〉 ::= 〈Unary-Op〉 ’ ’ 〈Query〉
| 〈Query〉 ’ ’ 〈Binary-Op〉 ’ ’ 〈Query〉
| ’(’ 〈Query〉 ’)’
| 〈Spatial-Query〉
| 〈Text-Query〉

〈Unary-Op〉 ::= 〈Full-Match-Conversion〉
| 〈Dilation〉
| 〈Compass〉

〈Binary-Op〉 ::= 〈Between〉 | 〈Set-Op〉

〈Full-Match-Conversion〉 ::= ’%’

〈Dilation〉 ::= ’%’ 〈Number〉 ’%’

〈Compass〉 ::= ’:^’ | ’:north-of’
| ’:>’ | ’:east-of’
| ’:v’ | ’:south-of’
| ’:<’ | ’:west-of’

〈Between〉 ::= ’<->’

〈Set-Op〉 ::= 〈Intersection〉
| 〈Union〉
| 〈Difference〉

〈Intersection〉 ::= ’ ’ | /’

〈Union〉 := ’+’

〈Difference〉 ::= ’-’

〈Spatial-Query〉 ::= 〈Rectangle〉
| 〈Polygon〉
| 〈Path〉
| 〈Point〉
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8 Appendix

〈Text-Query〉 ::= 〈Region+Item-Query〉
| 〈Region-Query〉
| 〈Item-Query〉

〈Rectangle〉 ::= ’$rect:’ 〈Coordinate〉 ’,’ 〈Coordinate〉

〈Polygon〉 ::= ’$poly:’ 〈Coordinate〉 [’,’ 〈Coordinate〉 ]

〈Path〉 ::= ’$path:’ 〈Coordinate〉 ,’ 〈Coordinate〉 ]

〈Point〉 ::= ’$point:’ 〈Coordinate〉

〈Region+Item-Query〉 ::= 〈String-Query〉

〈Region-Query〉 ::= ’#’ 〈String-Query〉

〈Item-Query〉 ::= ’!’ 〈String-Query〉

〈String-Query〉 ::= ’"’ 〈String〉 ’"’
| 〈String〉 ’?’
| ’?’ 〈String〉 ’?’
| ’?’ 〈String〉
| 〈String〉

〈Coordinate〉 ::= 〈Latitude〉 ’,’ 〈Longitude〉

8.3 Experiments

The following pages show the query timings for all data sets not listed in the
experiments chapter.
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Figure 8.1: Cumulative distribution function to compute the cells of a query, stan-
dardized to the number of cells of the result, showing the impact of
cell refinement and local vs. global item ids. The pictures at the top
show the cdf for the textual website queries whereas the pictures at
the bottom show the cdf for the spatial website queries.
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Figure 8.2: Cumulative distribution function to compute the subgraph of a query,
standardized to the number of cells of the result, showing the impact
of cell refinement and local vs. global item ids. The pictures at the
top show the cdf for the textual website queries whereas the pictures
at the bottom show the cdf for the spatial website queries.
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Figure 8.3: Cumulative distribution function to compute all items of a query, stan-
dardized to the number of cells of the result, showing the impact of cell
refinement and local vs. global item ids. The pictures at the top show
the cdf for the textual website queries whereas the pictures at the bot-
tom show the cdf for the spatial website queries.
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Figure 8.4: Cumulative distribution function to compute the cells of a query, stan-
dardized to the number of items of the result, showing the impact of
cell refinement and local vs. global item ids. The pictures at the top
show the cdf for the textual website queries whereas the pictures at
the bottom show the cdf for the spatial website queries.
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Figure 8.5: Cumulative distribution function to compute the subgraph of a query,
standardized to the number of items of the result, showing the impact
of cell refinement and local vs. global item ids. The pictures at the
top show the cdf for the textual website queries whereas the pictures
at the bottom show the cdf for the spatial website queries.
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Figure 8.6: Cumulative distribution function to compute all items of a query, stan-
dardized to the number of items of the result, showing the impact
of cell refinement and local vs. global item ids. The pictures at the
top show the cdf for the textual website queries whereas the pictures
at the bottom show the cdf for the spatial website queries.
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Figure 8.7: Cumulative distribution function to compute the cells of a query show-
ing the impact of cell refinement and local vs. global item ids for the
Baden-Württemberg data set using multiple threads. The pictures at
the top show the cdf for the textual website queries whereas the pic-
tures at the bottom show the cdf for the spatial website queries.
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Figure 8.8: Cumulative distribution function to compute the subgraph of a query
showing the impact of cell refinement and local vs. global item ids for
the Baden-Württemberg data set using multiple threads. The pictures
at the top show the cdf for the textual website queries whereas the
pictures at the bottom show the cdf for the spatial website queries.
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Figure 8.9: Cumulative distribution function to compute all items of a query show-
ing the impact of cell refinement and local vs. global item ids for the
Baden-Württemberg data set using multiple threads. The pictures at
the top show the cdf for the textual website queries whereas the pic-
tures at the bottom show the cdf for the spatial website queries.
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Figure 8.10: Cumulative distribution function to compute the cells of a query show-
ing the impact of cell refinement and local vs. global item ids for
the Germany data set. The pictures at the top show the cdf for the
textual website queries whereas the pictures at the bottom show the
cdf for the spatial website queries.
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Figure 8.11: Cumulative distribution function to compute the subgraph of a query
showing the impact of cell refinement and local vs. global item ids for
the Germany data set. The pictures at the top show the cdf for the
textual website queries whereas the pictures at the bottom show the
cdf for the spatial website queries.
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Figure 8.12: Cumulative distribution function to compute all items of a query
showing the impact of cell refinement and local vs. global item ids for
the Germany data set. The pictures at the top show the cdf for the
textual website queries whereas the pictures at the bottom show the
cdf for the spatial website queries.
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Notes

1. From our paper [15]

2. From our paper [16]

3. Based on our paper [16]

4. Derived from our paper [15]

5. Figure is part of our paper [15]

6. Derived from our paper [15]

7. Figure is part of our paper [15]

8. Figure is part of our paper [15]

9. Section derived from our paper [15]

10. Figure is part of our paper [15]

11. Figure is part of our paper [15]

12. Figure is part of our paper [15]

13. Image is part of our paper [15]
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