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Abstract

Trends as miniaturization and more data-intensive applications cause System-
on-Chip (SoC) design to become increasingly complex and far frommanagea-
ble without automated design methods. A central aspect in the corresponding
field of Electronic Design Automation (EDA) is optimization, where especi-
ally the memory subsystem is of growing interest as the above trend allows to
integrate more and more memory on-chip.

Optimization potential of Static Random-Access Memory (SRAM), the
most prominent storage technology for on-chip use, is twofold. On the one
hand, the memory size is highly decisive. This is due to the fact that dynamic
energy from read and write operations turns out to be consumed in the me-
mory periphery to a large degree. As larger SRAM blocks logically require
more switching logic in the periphery, using small SRAM resources for fre-
quently used program code and data turns out to be highly energy-efficient.
Steady reduction of the feature size in chip fabrication, on the other hand, leads
to considerably increasing leakage currents and thus higher static power con-
sumption. Saving potential in this regard is promised by the targeted activation
of memory low-power modes. Spin-Transfer Torque Random-Access Memo-
ry (STT-RAM), an emerging memory technology, promises the same benefits
as SRAM in terms of access performance at lower on-chip area footprint and
without being volatile. Optimization potential in terms of energy consumption
in this storage technology is particularly found in the costly write operation
that allows for an energy/latency trade-off.

This thesis contributes to the field of System-on-Chip design in general and
to on-chip memory optimization in particular as follows. At large, a complete
workflow for the application-specific optimization of memory subsystems at
system design-time is proposed. This involves the automated and transparent
connection of software simulation and memory access profiling, optimization
of the memory subsystem, and finally the implementation of obtained results,
ideally on the software-level. While minor contributions to Instruction Set
Simulation (ISS) and code generation round off this workflow, main focus
is on the optimization methods for SRAM- and STT-RAM-based memory
subsystems that are at the core of this workflow.

Inspired by embedded system synthesis theory, every proposed on-chip
memory optimization method is categorized and formally defined as com-
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bination of memory allocation, application binding, and memory operation
mode scheduling. Each mathematical problem formulation is further imple-
mented by means of mixed-integer linear or quadratic programming, or using
a heuristic. Following this uniform structure, this work introduces four dif-
ferent optimization concepts. This includes, at first, a method for dynamic
energy minimization in SRAM-based memory subsystems through combined
allocation and binding. Next, and with focus on static power consumption in
SRAM, a combined solution for allocation, binding, and memory operation
mode scheduling. Third, previous aspects are re-considered in the context of
multi-core designs, i.e., targeting Multi-Processor System-on-Chip (MPSoC)
design. The last optimization method deals with STT-RAM memories and
presents a way for the combined determination of memory allocation and
application binding while further exploiting the above mentioned trade-off.

Thorough experimental evaluation proves the general functionality and
scalability of all optimization methods. Beyond that, high application-specific
saving potential can be reported. Concerning dynamic energy consumption, an
optimized split memory configuration yields savings of partly over 90%when
compared to a baseline configuration with only one, typically large memory.
In terms of static energy, percentage savings of over 60% can be achieved in
selected cases through the utilization ofmemory low-powermodes. Additional
impact through different write modes in STT-RAM instead turns out to be
dominated by dynamic energy consumption, i.e., similar to SRAMmemories,
high reductions are most and foremost possible through a split memory setup.

All in all, integrated into the complete flow of simulation, optimization, and
code generation, the proposed memory optimization methods show promising
results. Due to the sole availability of simulation-based memory figures, fu-
ture investigation of presented concepts with memory figures from industrial
environments for single- and multi-core SoC design is the next logical step.



vii

Kurzfassung

Zunehmende Miniaturisierung und datenintensive Anwendungen bewirken
mit Blick auf den System-on-Chip (SoC) Entwurf eine erhöhte Komplexi-
tät, die ohne automatisierte Entwurfsmethoden nicht zu bewältigen ist. Ein
zentraler Aspekt im Bereich der Entwurfsautomatisierung stellt hierbei die
Optimierung dar. Besonders das Speichersubsystem ist in diesem Zusammen-
hang von großem Interesse, da die genannten Entwicklungen zu einer stetigen
Zunahme von Speicherblöcken auf dem Chip führen.

Für SRAM-Speicher, die derzeit meist genutzte On-Chip Speichertechno-
logie, sind besonders zwei Optimierungsaspekte von Interesse. Zum einen der
dynamische Energiebedarf, der sich durch Lese- und Schreibzugriffe ergibt.
Hier zeigt sich, dass besonders die Speichergröße aufgrund der Zunahme an
Logik in der Speicherperipherie hinsichtlich des Energiebedarfs von Bedeu-
tung ist. Daraus folgt, dass die Nutzung eines kleinen Speichers deutlich effi-
zienter ist als die eines großen Blocks. Zum anderen ergibt sich durch immer
kleinere Strukturen bei der Chipherstellung eine deutliche Zunahme der stati-
schen Leistungsaufnahme durch Leckströme. Dieser Entwicklung kann durch
den Einsatz von Low-Power Modi begegnet werden kann. Magnetoresistive
RAM-Speicher wie z.B. STT-RAM bezeichnen eine neue nichtflüchtige Spei-
chertechnologie, die ähnliche Performanz wie SRAM bei deutlich geringerem
Platzbedarf ermöglicht. Optimierungspotential ergibt sich hier vor allem durch
einen Trade-Off zwischen Energiebedarf und Dauer eines Schreibzugriffs.

Unter diesen Gesichtspunkten trägt die vorliegende Arbeit zur Weiterent-
wicklung der Methodik im System-on-Chip Entwurf bei. Konkret wird der
Fokus hierbei auf die Optimierung des On-Chip Speichersubsystems gelegt.
Der vorgestellte Workflow ermöglicht eine anwendungsspezifische Optimie-
rung zur Entwurfszeit und umfasst folgende Schritte: Softwaresimulation in-
klusive dem Anlegen von Speicherzugriffsprofilen, tatsächliche Optimierung
des Speichersubsystems sowie die abschließende Umsetzung der Optimie-
rungsergebnisse, idealerweise auf Softwareebene. Während einzelne kleinere
Beiträge der Arbeit in den Bereichen Instruktionssatzsimulation und Code-
Generierung diesen Workflow abrunden, so besteht der Hauptbeitrag in den
vorgestellten Optimierungsmethoden für SRAM und STT-RAM Speicher.

In Anlehnung an die Theorie aus dem Bereich Synthese Eingebetteter
Systeme werden die einzelnen Optimierungsverfahren kategorisiert und for-
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mal als Kombination von Speicherallokation, Applikationsbindung und hin-
sichtlich der Ablaufplanung von Speicher-Betriebsmodi definiert. Die ma-
thematischen Beschreibungen der Einzelprobleme werden je entweder als
gemischt-ganzzahliges lineares bzw. quadratisches Programm oder mit Hilfe
einer Heuristik implementiert. Insgesamt werden vier Optimierungsansätze
vorgestellt. Die erste Methode optimiert den dynamischen Energiebedarf von
SRAM-basierten Speichersystemen durch gezielte Allokation von Speicherre-
sourcen undAbbildung der Anwendung auf diese Speicher durch die Bindung.
Der zweite Ansatz stellt die statische Leistungsaufnahme in den Vordergrund
und liefert eine optimierte Lösung für Allokation, Bindung sowie Ablaufpla-
nung der Speicher-Betriebsmodi. Die Übertragung sowie Anpassung dieser
Optimierungskonzepte auf Multi-Core Systeme wird nachfolgend separat be-
trachtet. Zuletzt wird ein Konzept für die optimierte Nutzung von STT-RAM
vorgestellt, welches neben der Bestimmung von Allokation und Bindung eine
Möglichkeit bietet, den zuvor beschriebenen Trade-Off auszunutzen.

Die experimentelle Auswertung belegt zum einen die Funktionalität und
Skalierbarkeit der Optimierungsverfahren und zeigt zum anderen deutliches
Einsparungspotential beim Energiebedarf des Speichersubsystems auf. Hin-
sichtlich des dynamischen Energiebedarfs ergeben sich im Vergleich zu einem
Basissystem mit nur einem, typischerweise großen Speicherblock, deutliche
Einsparungen von teilweise über 90% durch die optimierte heterogene Spei-
cherarchitektur. Für den statischen Energiebedarf ergeben sich durch gezielten
Einsatz vonLow-PowerModi der Speicher prozentuale Einsparungen von über
60% in ausgewählten Fällen. Einsparungen durch verschiedene Modi beim
Schreiben eines STT-RAM Speichers werden in den Experimenten hingegen
durch dynamische Anteile dominiert. So ist hier, ähnlich wie bei SRAM Spei-
chern, die größte Einsparung durch die Unterteilung des Speichersubsystems
in mehrere, kleine Blöcke zu erzielen.

Integriert in denAblauf vonSimulation,Optimierung undCode-Generierung,
liefern die vorgestellten Optimierungsverfahren insgesamt vielversprechende
Ergebnisse. Aufgrund der ausschließlichen Verfügbarkeit von simulations-
basierten Speicherwerten lässt sich die weitere Untersuchung vorgestellter
Verfahren, mit Speicherwerten aus dem industriellen Umfeld beim Entwurf
von Single- und Multi-Core SoCs, als nächster Schritt identifizieren.
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Chapter 1
Introduction

In a universal form, embedded systems can be defined as „computers [that
are] lodged in other devices where the presence of the computers is not
immediately obvious“ [45]. A further refinement of this definition classifies
embedded devices as computer systems of limited complexity that are not able
to run external, third-party software. This clearly separates them from desktop
computers and servers. Still, the variety of embedded systems is huge, for
example reflected by the price range of utilizedmicroprocessors in this domain
that varies between 0.01 $ and 100 $ [45]. Driven by the corresponding wide
range of target applications, the embedded field represents the fastest growing
portion of the computer market. The application in mobile devices, Internet
of Things (IoT), natural language processing, cloud technologies, multimedia,
robotics, autonomous driving, health service, or renewable and smart energy
systems for example make embedded systems and micro electronics in general
to become a key factor to progress [34].

Despite this great variety, embedded computing problems are commonly
solved in one of the following three ways. Hennessy et al. [45] specify:

1. A hardware/software solution consisting of custom hardware in combina-
tion with one or multiple embedded processors plus corresponding soft-
ware (often realized on a single chip as System-on-Chip (SoC) or Multi-
Processor System-on-Chip (MPSoC)).

2. Off-the-shelf hardware in combination with a custom software solution.
3. A Digital Signal Processor (DSP) with customized software.

Regardless, which of those concepts is chosen, there are several critical is-
sues that apply to embedded system design in common. Most and foremost,
minimization of memory and power consumption can be named in this re-
gard. Other factors are robustness, system security, and energy efficiency.
High market pressure further makes it difficult to develop new and innova-
tive embedded products with increasing complexity in short periods and at
a reasonable price. In mobile devices, consumers expect more functionality
and better performance at constant or even reduced energy budgets. Batteries,
however, do not improve at the same pace and the usual procedure of lowering
the system supply voltage is hampered and already close to reaching a pre-
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dicted strict limit of 0.6V [54]. Challenges that go beyond scaling according
to Moore’s law are increasingly relevant. In its 2015 More Moore report, the
ITRS consortium discusses the Power Performance Area Cost (PPAC) value
as representative figure for future technology progress. Instant data generation
and related applications in the fields big data, cloud, IoT, or edge computing
dictate the needs, named to be >30% performance and >50% power improve-
ment at >50% area reduction and 35-40% less die cost between subsequent
technology nodes, corresponding to a period of 2-3 years.

To cope with these challenges, new methods for automated embedded sys-
tem design and optimization with respect to performance, power, and area are
highly required as central pillar for innovation and continuous development.

1.1 Motivation

For several reasons, especially the embedded memory subsystem is a highly
promising target for optimization in SoC design. Continuous integration and
technology scaling facilitate on-chip solutions with Static Random-Access
Memory (SRAM) as dominant storage technology. Key advantages of SRAM
are robustness, high speed, low power consumption, and compatibility with
standard CMOS process when compared to other mature memory technolo-
gies, e.g., Dynamic Random-Access Memory (DRAM). Driven by increas-
ingly data-intensive applications, meanwhile 50% to 90% of the total transis-
tor count is attributed to on-chip SRAM [110]. Logically, memory accounts for
the largest part of total system power consumption with a share of about 60%
[84]. Concerning the energy consumption in SoC devices, shares of 50% up
to 75% [88] are stated for the memory subsystem in literature. Beyond the dy-
namic energy consumption that results frommemory access, SRAM volatility
requires the cells to remain constantly powered on in order to hold the data.
The resulting static power consumption, mainly due to leakage, increasingly
dominates the total dissipation. This fact is further accelerated by constant
cell size reduction and projected to exceed 50% of the overall circuit power
consumption in CMOS technologies [88].

Evolving non-volatile memories tackle the leakage problem of SRAM.
Especially the Spin-Transfer Torque Random-Access Memory (STT-RAM)
technology can be named as promising candidate in this regard. It satisfies
CMOS compatibility and scalability demands and furthermore, meets speed
and endurance requirements of increasingly data-centric and instant-on appli-
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cations [146]. However, the STT-RAM technology still matures and especially
the mitigation of the costly write operation in terms of energy and latency is
subject to active research [115].

Owing to mostly custom software solutions, embedded systems usually
perform known and further, often restricted tasks. This fact enables targeted
and application-specific optimization without compromise. Focusing on-chip
SRAM memory, a break-down analysis shows that 90% of the energy is
consumed by components as pre-charge unit, sense amplifiers, or address
transition detection [29]. In short, it is not the memory array but its periphery
that accounts for the largest dynamic energy consumption part. Savings are
consequently facilitated by splitting SRAM memory into possibly small sub-
blocks or banks while respecting access statistics and keeping an eye on
the area overhead. Also the efficient utilization of a memory hierarchy with
software-programmable memories, so-called scratchpads, as replacement for
common caches promises savings in terms of energy, power, and performance.
The static power issue can be tackled by low-power modes. In STT-RAM it
is the write performance versus energy trade-off that encourages for closer
investigation. Altogether, this work is motivated by the objective of finding
the best possible embedded system design in general and, the automated
optimization of the on-chip memory subsystem in particular.

1.2 Summary of Contributions

Targeting SoC and MPSoC embedded devices, this thesis presents a complete
workflow for the application-specific on-chip memory subsystem optimiza-
tion from different viewpoints. Similar properties to system synthesis theory
are formulated and used as to develop a unique formal notation scheme for al-
location α, binding β, and schedule γ in the context of memory optimization.
On this basis, the different methods can be described, including:

• Amemory optimizationmethod for hardware/software co-design of energy-
efficient SoCs with area constraints [126].

• A combined solution for the efficient handling of (1) memory instance allo-
cation, (2) application to memory binding, and (3) scheduling of memory
low-power modes [113] [129] [132].

• The adaption and extension of the previous concept to MPSoC embedded
multi-core platforms [127] [131].
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• A solution for optimized memory allocation and application binding when
STT-RAM is included as on-chip memory.

Additionally, two minor contributions are made in the form of tools that
complement the workflow in direction of full automation. This includes:

• A tool for fast yet accurate Instruction Set Simulation (ISS) and memory
access profiling [113] [128].

• A compiler extension for the implementation of obtained optimization re-
sults into embedded software at hand by means of targeted code generation
and insertions [130].

1.3 Document Structure

This dissertation is organized as follows. Chapter 2 conveys the basics for
the following chapters. It covers fundamentals of embedded system synthesis
and properly introduces its main aspects, allocation, binding, and scheduling.
Besides that, SRAM and STT-RAM memory characteristics are presented
while aspects with optimization potential are highlighted. Also, a short primer
on instruction set simulation and profiling is given due to its relevance for the
generation of important input data. State-of-the-art in the field of embedded
system memory optimization is presented and discussed in Chapter 3. The
individual optimization concepts and thus the main contributions of this work
are detailed in Chapter 4. This includes the mathematical description of each
optimization problem as well as implementation details where applicable. All
optimization methods are either realized using a heuristic or implemented as
Mixed-Integer Linear Program (MILP) respectively Mixed-Integer Quadratic
Program (MIQP).Chapter 5 describes the code generation tool as implemented
on the basis of LLVM [77], which is used for the automated implementation
of optimization results. Thorough evaluation as presented in Chapter 6 proves
the functionality of the optimization workflow and all presented optimization
methods. Potential savings with respect to energy, execution time, and area are
presented and discussed along with general trends. Besides that, comparison
with other optimization approaches and memory architectures is included
as well as the performance evaluation of presented tools and optimization
methods. Chapter 7 concludes the thesis.
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Chapter 2
Background

This chapter provides the necessary background information as relevant in the
further course of this thesis. In Section 2.1, memory subsystem optimization
is described and classified as part of synthesis in embedded system design.
Next, the formal model that represents the basis for all following memory
optimization concepts is discussed. A short introduction to instruction set
simulation as required tool for the generation of memory access statistics
is given in Section 2.2 and followed by a description of relevant memory
technologies and their characteristics in Section 2.3. These two sections teach
the basics for the two main inputs to optimization and conclude the chapter at
the same time.

2.1 Embedded System Synthesis

Synthesis in general is defined as: „The combination of components or ele-
ments to form a connected whole“ [107]. Applied to embedded system de-
sign, synthesis describes the fully automated transformation of a given system
specification to a corresponding implementation by means of hardware and
software. A specification, i.e., a behavioral model or description in combi-
nation with specified requirements serves as basis for design decisions and
gradual refinement thereof in the synthesis step as illustrated in Figure 2.1.
The finally synthesized structure implements the desired quality features and
ideally matches with the previously specified requirements.

ImplementationSpecification

Behavior

Synthesis

Requirements

Structure

Quality 
features

Design 
decisions

Refinement

Figure 2.1 Synthesis in embedded system design (based on [44], Figure 1.12)
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Hardware

System level

Software Source code
Target binary

Architecture
Gate level

Figure 2.2 Embedded system design flow abstraction levels (based on [138], Figure 1.7)

In order to copewith the high complexity in present-day embedded designs,
the basic concept of synthesis as automated transformation process is applied
to different abstraction levels as illustrated in Figure 2.2. When following a
top-down design flow, a step-wise refinement from high to low abstraction
levels takes places. System synthesis starts on the highest abstraction level,
dealing for example with basic questions of hardware/software co-design, i.e.,
which part of the system to implement in hardware and which part bymeans of
software. This involves high-level analysis and optimization steps, for example
with respect to expenses, area, or power consumption. Also the consideration
of constraints can be included. For the hardware part, high-level synthesis
on the architectural level involves the derivation of integrated circuits from
graph-based control/data path models. Gate level synthesis further brings
the resulting description, for example in form of Verilog or VHDL code,
down to the gate respectively transistor level. If the target platform is already
given by some off-the-shelf product, the hardware synthesis part is dropped.
Synthesis steps for the part of the embedded software, however, apply in
any case. Starting from an architectural software perspective, for example
using Unified Modeling Language (UML), target-independent source code is
partly generated automatically from this representation. Additional, manually
programmed code further complements the generated code base. Compiler
tools finally carry out the transformation from source code to target-specific
representation, i.e., to assembly code and finally target binary on the last level.

Despite the different abstraction levels and logically highly varying forms
of specification and resulting implementation, Teich and Haubelt [138] iden-
tify three common sub-problems in synthesis named allocation, binding, and
scheduling. On system level for example, allocation includes the identification
and selection of different resource types for a given embedded computing
problem. Binding involves the mapping of individual tasks to the set of al-
located resources. Scheduling defines the chronological order, i.e., when to
execute which task. Other abstraction levels include similar steps, what allows
for a general categorization into allocation, binding, and scheduling problems.
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Memory optimization as discussed in this thesis can be considered as part
of system level synthesis. It is conducted at system design-time and moreover
has some interesting similarities with synthesis in general. In fact, the central
objectives inmemory optimization can also be classified as allocation, binding,
or scheduling problems. Now, in order to address differences and similarities
but also to give a formal foundation for the remainder of this thesis, the
following sections provide a formal model for these synthesis sub-problems
on the basis of [138] and adapt it to the context of memory optimization.

2.1.1 Basic Modeling

In fundamental embedded system synthesis as defined by Teich and Haubelt
[138], the problem statements for allocation of resources, binding of tasks to
resources, and scheduling of tasks are based on two types of graphs. On the
one hand, a problem graph that models the individual tasks of the embedded
computing problem. On the other hand, a resource graph that contains the set
of available resources and their relation to the nodes of the problem graph.
The combination of these graphs is referred to as specification. Unfortunately,
this classic synthesis model can not be applied out-of-the-box to the memory
subsystem and its optimization. In short, tasks in their original sense are not
relevant for a consideration of the memory subsystem and a problem graph is
thus not required at all. Instead, individual data blocks need to be distinguished,
including control and data dependencies. Also, number and type of relevant
resources is limited to memory components. Processing elements or other
computational components are not of interest. Still, parts of the modeling
scheme in [138] apply, which leads to the following adapted model.

The embedded software application is modeled by clearly separable units,
referred to as application profiles (cf. Definition 2.1). A profile describes a
single function, in terms of program code, or a static variable for the part of
application data. Dynamic memory sections as heap and stack are considered
as monolithic blocks and therefore modeled as a single data profile each.

Definition 2.1 (Application Profile)

The set of application profiles P describes the embedded application. Every
profile p ∈ P represents a unique address range and is characterized by a set
of parameters, including:
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Parameter Description Domain Unit

t Profile type (code or data) {c, d }

sp The profile’s memory requirements Z>0 byte
nr Number of read accesses Z≥0

pr Normalized read probability of this profile [0, 1]
nw Number of write accesses Z≥0

pw Normalized write probability of this profile [0, 1]
d The profile’s normalized duty cycle [0, 1]

Please note that read/write figures and duty cycle are application-specific
and strongly connected to the application period T . That is the execution time
of one iteration in case of a periodic application or simply the investigated time
frame, for example of one representative execution run. The duty cycle (d) is
provided in normalized form and describes a profile’s individual share of the
period T , i.e., the time share, this particular profile is active. Read and write
numbers (nr and nw) count the accesses to the address range of the profile.
Read and write probability (pr and pw) instead yield the normalized memory
access quantities with respect to the period T . The example in Figure 2.3
illustrates these profile characteristics. Each bar in diagram (a) represents
reading (light gray) or writing activity (dark gray). Grouping of individual
memory accesses leads to diagram (b), which explains the relation between
memory access probabilities, duty cycle, and application period.

Read probability Write probability

(a)

(b)

Duty cycle
Period

Duty cycle
Period

Idle Idle

Duty cycle
Period

Duty cycle
Period

Idle Idle

Figure 2.3 Exemplary application profile with period, duty cycle, and r/w probabilities
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Next, the relationship between the individual application profiles in P can
be modeled as dependency graph according to the following definition:

Definition 2.2 (Dependency Graph)

A dependency graph GD (P, ED ) is a directed graph that consists of node set
P and edge set ED . Each node p ∈ P represents an application profile. Each
edge e = (p, q) ∈ ED models the control or data dependency between two
profiles. The weight function w : ED → Z≥0 assigns each edge in ED the
number of transitions if (tp = c) ∧ (tq = c) or the number of data accesses if
(tp = c) ∧ (tq = d).

An exemplary dependency graph of a periodic application is illustrated in
Figure 2.4, showing control flow transitions between code profiles as solid
lines and data dependencies, resulting from data accesses between related
code and data profiles as dashed lines. The fact that control flow and data
dependencies are modeled in this type of graph enables an investigation of the
connectivity degree between individual memory address ranges as modeled
at the granularity of profiles.

Example

P Code profiles Data profiles

p2

p3

p8

p7

p6

p5

p1

p4

(p1,p2) = 1

(p3,p2) = 5

(p2,p3) = 10

(p3,p4) = 5

(p3,p6) = 1

(p2,p7) = 10

(p4,p6) = 7

(p5,p8) = 2(p4,p2) = 4

(p4,p5) = 1

*
*

Figure 2.4 Exemplary dependency graph

While application profiles and dependency graph describe the memory
content, the on-chip memory subsystem is modeled by memory resources
according to the following definition:

Definition 2.3 (Memory Resource)

The set M describes the memory resources that are available for the memory
subsystem. Every element m ∈ M is characterized by:
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Parameter Description Domain Unit

sm Memory size Z>0 byte
Am Memory on-chip area footprint R>0 mm2

Er Dynamic energy consumption per read R>0 J
tr The latency of a read operation R>0 s
Ew Dynamic energy consumption per write R>0 J
tw The latency of a write operation R>0 s
Ps The memory’s static power consumption R>0 W

Every memory that provides one or multiple low-power modes is further
characterized by a set of operationmodesO, which describes static power con-
sumption as well as activation and deactivation behavior through the following
parameters:

Parameter Description Domain Unit

Ps Static power consumption of this operation mode R>0 W
Ea Energy penalty on mode activation R≥0 J
ta Activation time of this mode R≥0 s
Ed Energy penalty on mode deactivation R≥0 J
td Deactivation time of this mode R≥0 s

A specification in this memory optimization model is altogether described
by the combination of application profile set P and dependency graph GD , in
conjunction with the set of available memory resources M . Building on the
above definitions, the individual optimization problems allocation, binding,
and scheduling can now be formulated.

2.1.2 Allocation

Allocation in the context of memory optimization describes the selection of
memory instances from the specified set ofmemory resources M . In embedded
system projects, where the hardware part is modifiable and subject to design
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Example
M

m1 m2 m3 m4 m5

!(m1) = 1
!(m2) = 1
!(m3) = 0

!(m4) = 1
!(m5) = 0

Figure 2.5 Memory allocation example

(cf. Chapter 1), this step defines the architecture of the memory subsystem. If
predetermined hardware is used instead, the memory allocation is given.

Definition 2.4 (Allocation)

The allocation of a memory subsystem is a binary function α : M → {0, 1}. It
indicates for every memory resource m ∈ M whether it is part of the memory
subsystem or not.

After allocation, as for example illustrated in Figure 2.5, the design space
can possibly be pruned from all unallocated memories. The resulting set of
allocated memories is denoted Mα ⊂ M .

2.1.3 Binding

Binding in memory optimization stands for the question, which application
profile shall be mapped to which memory resource. This step is based on
the result of allocation. Nevertheless, both problems are strongly related and
a joint solving step through combination of allocation and binding is often
indicated and useful. If allocation is available as input to binding, Mα can be
used. Otherwise, a more general definition of β on the basis of all memory
resources M is possible as follows:

Definition 2.5 (Binding)

Binding is defined as function β : P → M that assigns every application
profile to one memory resource m ∈ M .
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Example
P

p2 p3 p8p7p6p5p1 p4 !(p1) = m1

!(p3) = m1

!(p2) = m2

!(p4) = m4

!(p6) = m4

!(p5) = m2

!(p7) = m2

!(p8) = m4

M
m1 m2 m3 m4 m5

Figure 2.6 Exemplary application profile to memory resource binding

In a directed bipartite graph with vertices P ∪ M , β can be described as
activation function for a subset of edges as illustrated in Figure 2.6. It should
be noted that binding typically involves various feasibility checks. The most
obvious example is a memory size criterion that ensures a memory block
is large enough in order to accommodate all profiles that are mapped to this
resource.When solving the described binding problem, it can also be important
to consider transition information as encoded in the dependency graph GD .
Especially when multiple low-power operation modes are supported, locality
aspects as resulting from the binding impact the scheduling. This step is
described next.

2.1.4 Scheduling

Scheduling for the memory subsystem differs from the typically associated
meaning of this term, i.e., a chronological organization of tasks. In the context
of this work instead, a schedule describes a relation between application
profiles (cf. Definition 2.1) and memory operation modes (cf. Definition 2.3).
That means, every profile in the set P is assigned an operational state of the
memory subsystem as described by means of a configuration vector:

Definition 2.6 (Configuration Vector)

A memory configuration vector c ∈ C is composed of one operation mode
per memory resource m ∈ Mα . The set of all possible configuration vectors
is denoted C ≡ O |M

α | .
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On this basis, the temporal causality between control flow of the appli-
cation (cf. Definition 2.2) and activation/deactivation of memory operation
modes becomes visible as a transition from one application profile to another
possibly triggers a memory configuration change. A schedule for the memory
subsystem consequently describes the relation between application profiles
and configuration vectors according to the following definition:

Definition 2.7 (Schedule)

A schedule is defined as function γ : P → C that assigns every profile p ∈ P
to a memory configuration vector from the set C.

In order to give an example, let every memory type m ∈ Mα be equipped
with support for two operation modes, i.e., O = {ACT, LP}. While read and
write access is possible in active mode (ACT ), memory access in the low-
power mode (LP) is not possible. Applied to the above memory subsystem
and previously discussed exemplary solutions for allocation (cf. Figure 2.5)
and binding (cf. Figure 2.6), one possible configuration schedule is depicted
in Figure 2.7.

Example
P

p3

p8

p7

p6

p1 p4

p5p2 !(p1) = (ACT, LP, LP)

!(p2,p5,p7,p8) = (LP, ACT, ACT)

!(p3,p4,p6) = (ACT, LP, ACT)

*

*

Figure 2.7 A possible memory configuration schedule

2.1.5 Implementation

Similar to general embedded system synthesis, there are certain dependen-
cies between allocation, binding, and scheduling that dictate a specific order
of execution. Allocation and binding are tightly connected, i.e., it highly de-
pends on the optimization objective whether to carry out the sub-problems
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subsequently with allocation first, or both at once. Memory operation mode
scheduling instead depends on the outcome of allocation and binding and is
therefore executed last. Still, feedback loops with repetitive step-wise refine-
ment of allocation, binding, and scheduling are possible.

Altogether, it is the triple of (α, β, γ) that constitutes an implementation,
i.e., an optimized application-specific System-on-Chip memory subsystem.
Large design spaces in realistic use cases, however, make memory subsystem
design a non-trivial task that is tackled in the later course of this thesis on the
basis of the above definitions.

2.2 Instruction Set Simulation and Profiling

Instruction Set Simulation (ISS) describes the simulation of a target system
based on a model of the embedded processor respectively its instruction set
architecture. This task is executed on a simulation host platform, which is
commonly different from the target platform that is subject to simulation.

Due to several reasons, ISS plays an important role in embedded system
design. It enables, first of all, a decoupling of hardware and software devel-
opment and consequently increases productivity in system design. Further,
it is an important tool for system analysis and thus supports critical early
design decisions. Beyond that, accurate profiling of bus access behavior or
memory utilization is possible on the basis of ISS. Especially the latter is of
interest in this work, as relevant for the generation of application profiles and
dependencies according to Definitions 2.1 and 2.2. With focus on memory
access profiling, the following section gives an overview on instruction set
simulation in general and further introduces the two most known simulation
concepts along with advances in the respective fields.

2.2.1 Basics

Central building block of any instruction set simulator is a behavioral model
of the target processor that, at minimum, represents the Instruction Set Ar-
chitecture (ISA) of this platform. Figure 2.8 depicts this general structure and
illustrates the typical input data flow, including embedded software, cross-
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        n++;
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Figure 2.8 General ISS structure and input data flow (based on [128], Figure 1 and Figure 2)

compilation, and finally, the target platform binary that serves as main input
to simulation.

When used for memory access profiling, especially the connection be-
tween processor core and memory model is of interest. That means, tracing
on this interface during simulation allows to collect access statistics for differ-
ent address ranges and memory blocks. Together with information from the
application binary, application profiles and memory accesses can further be
related to each other. While many other analysis possibilities are enabled by
ISS, it is this type of application-specific memory access information that is
relevant for optimizations as discussed in the later course of this work.

The two most common simulation concepts for this task are interpretive
ISS and host-compiled simulation. Both are introduced below.

2.2.2 Interpretive Simulation

Interpretive simulation is the classic way of instruction set simulation. It
comprises an implementation of a complete processor model and pipeline, the
individual pipeline stages are simulated iteratively within a main simulation
loop. During simulation, the instructions of the target binary are interpreted
one after the other as they pass the pipeline of the modeled target architecture
(cf. Figure 2.9). This accurate imitation of fetch, decode, execute, and write
back stages for example allows for fine-grained memory access traces that
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Instruction Set Simulator

Target binary Memory access trace

Simulation host platform

Decode ExecuteFetch Write 
back

Instruction interpretation loop

Figure 2.9 Abstract workflow of interpretive ISS

can directly be collected on the interface between load/store unit and memory
model (cf. Figure 2.8).

It is important to note that this approach is linked to elaborate modeling
and typically sequential execution, which causes a trade-off between accuracy
of simulation results and performance. In other words, interpretive simulators
are able to provide simulation results with high degree of detail but they are
also characterized as slow in terms of execution time. An exemplary concept
that addresses this performance problem is the interpretive ISS method with
caching mechanism for already decoded instructions as proposed by Cmelik
et al. [27]. Another point that affects this trade-off is the degree of detail
of the processor model. Cycle-accurate simulators provide the most accurate
simulation results but come at the cost of high modeling effort and poor
performance. If simulation results on a per-cycle resolution are not mandatory,
so-called instruction-accurate simulation can be applied. According to this
concept, individual instructions are used as smallest unit, which allows to
reduce the modeling effort. This way, performance is improved in exchange
for a less accurate resolution of obtained simulation results.

2.2.3 Host-Compiled Simulation

Host-compiled simulation as originating from Mills et al. [89] mainly aims
at improving simulation performance. Instead of costly and step-wise decod-
ing and interpretation of instructions, the target application is brought to an
intermediate representation in a first step; then enriched or annotated with
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Figure 2.10 Abstract workflow of host-compiled simulation

behavioral descriptions of the target architecture; and finally compiled for
the simulation host platform. During execution of the resulting executable on
the simulation host machine, the annotated behavioral information mimics
the target system and thus enables the generation of target-specific analysis
figures.

An abstract depiction of the workflow in compiled simulation is given in
Figure 2.10. The two types of input data, i.e., target binary and application
software, represent two possible approaches to distinguish. On the one hand,
there are methods that start from a target binary, which is brought to a higher
abstraction level using binary analysis or decompilation. Afterwards, behav-
ioral models of individual instructions are applied on this representation level
as to imitate the target system. On the other hand, there are software-based
annotation schemes that start with high-level software and either annotate the
source code [80] [123] or work on a target-independent intermediate code
representation [18] [63].

Even though host-compiled simulation already provides good performance,
some research has been conducted on further improvements in this direction
through more efficient utilization of host resources [108] [150] or by means of
abstraction [111]. Also retargetability has been researched and solutions using
virtualization [150] or abstract modeling [19] have been proposed. Regarding
memory access profiling, however, abstraction reduces the possible result
accuracy. Further, execution of the embedded application on a simulation host
platform with different addressing scheme and address space as compared to
the target architecture needs to be considered. This fact again complicates the
situation and makes compiled simulation only partially suitable for memory
access tracing as for example shown in [26].
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2.2.4 Conclusion

In conclusion, interpretive simulation can be seen as most accurate but slow
solution, host-compiled simulation instead provides high performance but
lacks the modeled level of detail that is required for a determination of precise
memory access statistics. Hence, host-compiled simulation is rather a suitable
tool for early system design stages where fast estimation of system run-time
or power consumption figures is important. These opposing pros and cons
of the above simulation concepts finally lead to hybrid solutions for the task
of memory access profiling. That is, computationally intensive tasks of inter-
pretive simulation as instruction decoding for example are pre-computed and
combined with an accurate but reduced simulation model at run-time. This
way, a reasonable degree of memory access trace accuracy and simulation
speed can be achieved. One such hybrid simulation concept [128] with its
included memory profiler [113] is also a minor contribution of this thesis.

2.3 Memory Technologies

Memory resources (cf. Definition 2.3) are a central part of the specification
in the above basic model. The information that characterizes the memory
depends on the selected or, in case of some pre-defined hardware platform,
implemented memory technology. As described in the introduction, SRAM as
state-of-the-art and STT-RAM as emerging memory technology are of main
interest in this thesis due to on-chip utilization and CMOS-compatibility.
Below, both technologies are introduced from a general perspective but also
from the viewpoint of their optimization potential.

2.3.1 Static Random-Access Memory (SRAM)

According to the authors of [110], „embedded SRAM is definitely the
workhorse for on-chip data storage owing to its robust operation, high speed,
and low power consumption relative to other options“. Also the possibility
of direct integration with other logic as based on the CMOS production pro-
cess makes it, at least at present, the technology of first choice in embedded
memory subsystems.
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With respect to memory optimization, it is very much the application but
also the position of some memory in the system hierarchy that specifies the
performance needs and available power budgets. Before introducing different
energy respectively power saving approaches andmemory hierarchy concepts,
the following paragraph shortly describes the most important SRAM basics.

Basics

The base component in SRAM is a storage cell that consists of six transistors,
interconnected as depicted in Figure 2.11. The tasks of this so-called 6T cell
include, on the one hand, to store (hold) one bit of data and, on the other
hand, to enable access to its content by means of read or write. For hold, the
wordline is set to W L = 0; bitlines do not care (BLs = X). In case of a write
access, W L = 1; the bitlines are driven with the new data value. Reading
also includes a wordline select (W L = 1); the bitlines are first pre-charged (to
VDD) and left floating afterwards. Memory arrays up to a size of 256KB are
constructed from the two-dimensional combination of this basic cell. Storage
arrays larger than that are set up from multiple memory array building blocks
[110]. Other logic that is required for driving the data into the cells (write) or
onto a data bus (read) includes decoders, drivers, and control logic.

M1 M2

M3 M4

M5 M6

BL BLVDD

GND

WL

Figure 2.11 Basic 6T SRAM memory cell (based on [110], Slide 7.8)
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Dynamic Energy Consumption

Dynamic energy consumption in memories essentially results from reading
and writing data. Besides the plain memory cell as described above, some
more circuitry is necessary in SRAM for this task. This includes logic for
memory control, addressing, but also amplification and driving of access
lines. Figure 2.12 depicts a macroscopic view on a SRAM block, illustrating
the involved blocks and circuitry. On access, the correct row, column, and
block need to be selected based on the applied address. Other circuits drive
the data into the cells for write or onto the data bus for read. The combination
of all these circuits, including decoders, drivers, and address logic, is referred
to as memory periphery.

According to SRAM memory analysis figures in literature, it is especially
the peripheral logic and not the memory cell array that accounts for the largest
dynamic energy consumption share. In this regard, some references name an
energy ratio of about 90% that can be attributed to the memory periphery
[29]. Facing this, especially the well-thought partitioning of the memory
subsystem has turned out to be an efficient way to tackle this problem on
the architectural level and without sophisticated tuning of electronic or even
physical parameters. More detailed, frequently used content is possibly kept
in comparatively small memory instances as to reduce the dynamic energy
dissipation. Rarely used content instead is mapped to larger memory blocks.

Block 
selector

Global 
amplifier/driver

Control 
circuitry

Block 0 Block N-1

Global data bus

I/O

Row 
address

Column 
address

Block 
address

Figure 2.12 SRAM memory block structure (based on [110], Slide 7.5)
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Figure 2.13 Dynamic energy consumption trend for 32-bit single-banked SRAMmemories
of varying size in 45 nm node (generated with CACTI [95])

Figure 2.13 illustrates this aspect. The given log-log plot depicts the dy-
namic energy consumption trend in SRAM with increasing memory size on
the example of the 45 nm technology node. In the considered range from 64B
to 64MiB, a steady energy consumption increase can be observed when dou-
bling the memory size between one measuring point and its successor. For
both, read and write access, however, the steps are highly variable and range
from as few as a 3% increase between 2MiB and 4MiB to more than a dou-
bled dynamic energy consumption when stepping from 512KiB to a 1MiB
memory instance. This fact further complicates the above defined memory
optimization question of finding a suitable memory allocation and application
binding (cf. Sections 2.1.2 and 2.1.3).

Static Power Consumption and Low-Power Modes

Besides dynamic power consumption, which accumulates in form of energy
portions on memory access activity as just described, there are also static
aspects that need to be considered. Still, until recently, most and foremost dy-
namic parts mattered in terms of power consumption. Regarding optimization
of dynamic power, it is particularly effective to reduce the supply voltage levels
[65]. Ideally, this approach perfectly aligns with steady technology shrinking,
where, according to Moore’s law, voltage lowering is allowed or even re-
quired. With power consumption being proportional to the square of supply
voltage, the resulting reductions from miniaturization thus were enough to
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Figure 2.14 Leakage currents in a CMOS transistor (based on [21], Figure 1)

maintain adequate power consumption for a long time. As feature sizes are
shrinking below 100 nm, however, leakage currents and resulting static power
consumption increasingly gain in importance [67].

In CMOS, leakage describes currents that flow, even though transistors
are not switching. According to the authors of [97], this effect is becoming
serious as static power is possibly exceeding dynamic power consumption for
technology nodes below 90 nm. Figure 2.14 illustrates the two main types of
leakage, sub-threshold (Isubth) and gate leakage (Igate = Igs + Igb + Igd).
The former is described as „weak inversion current across the device“; the
latter as „tunneling current that flows through the gate oxide insulation“ [67].

In literature, various low-power methodologies for SoC design have been
presented. While not all concepts apply to memory, a selection of established
and mature low-power solutions for SRAM memory subsystems is presented
below, ranging from gate- or cell-level solutions to architectural approaches.

A sleep mode with short wake-up periods, further referred to as light
sleep (LS), can be realized through biasing techniques. More precisely, the
application of a source biasing scheme results in a raised virtual ground
potential that is applied to the complete cell array of a memory bank or
instance. Zhang et al. [148] describe this method on the basis of a single
SRAM cell as illustrated in Figure 2.15. Two additional transistors (M7, M8)
are inserted between the 6T cell and ground (GN D) to form a so-called
clamping unit. During active operation, M7 is turned on and the source line
of the memory cell (VSL) is basically acting as real ground, i.e., conventional
operation is possible. If light sleep is enabled though, M7 is turned off and
the source line is raised to a virtual ground level. Consequently, sub-threshold
and gate leakage are reduced. M8 is turned on in this situation, what clamps
VSL to a fixed potential and thus avoids floating and in addition ensures
data retention. To sum it up, source biasing describes a method with short
reaction times that allows for significant static power reductions of up to 50%
[85]. Memory content is maintained and output lines are kept stable during
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Figure 2.15 Source biasing using a clamping unit (M7,M8) (based on [148], Figure 1)

activation. A complementary low-power mode is adding additional switching
logic between VDD and memory cell or array. That means, instead of raising
the ground level, supply voltage is lowered to a retention voltage level, e.g.,
presented in [65] or [141]. Depending on the position of the added sleep mode
switch, i.e., source biasing or VDD retention mode, Mohammad et al. [91] talk
of head or foot switch.

Another low-power methodology that has established in connection with
SRAM memories is power gating [20]. As the memory periphery mainly
consists of CMOS logic, it matters not only for dynamic power consumption
but also considerably attributes to the static power consumption of thememory
subsystem. Separated power gating of this part is therefore a worthwhile
option. The memory array is kept active and powered on in this deep sleep
(DS)mode (cf. Figure 2.16). Data is consequently retained; thememory output
lines are reset. Compared to the normal active operation mode, static power
can be reduced by up to 70% [90] with this low-power mode.Wake-up periods
instead are higher as compared to the above light sleep modes on the basis of
biasing techniques.

As indicated in Figure 2.16, it is also possible to shut down (SD) the
memory array in addition to the memory periphery. However, stored data is
lost in this configuration and possible extra effort needs to be considered on
re-activation due to possible restoration of memory content from persistent
storage. Following the argumentation of [78], this overhead due to a refill on
re-activation from such a non-retention power-down mode is considered to be
not practicable for embedded devices. There might be use cases, for example
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Figure 2.16 SRAM memory with integrated power gating (based on [85], Figure 2 and 4)

when dealing with temporary data that does not need to be restored. For the
further course of this work, however, shut down is of no further relevance.

Memory Hierarchies

Especially in data-intensive applications, memory access is considered a cen-
tral performance bottleneck. Extended access delays not only affect the system
performance but also increase the power consumption. Hence, efficient mem-
ory design matters and, the most common approach to address this bottleneck
is the utilization of a memory hierarchy. Different levels of memory are ac-
cordingly used between CPU and main memory. In general, small but fast
memories are kept close to the CPU. Down the memory hierarchy in turn,
memory instances become larger and slower. In terms of energy consumption,
energy efficiency decreases with increasing memory size as previously dis-
cussed. Figure 2.17 illustrates four different memory hierarchy schemes that
are commonly found in embedded and SoC devices with SRAM memory.

Low-end devices mostly implement a flat memory organization (a). Main
reason is a higher importance of low power consumption as opposed to good
performance. Main memory in this case is typically represented by SRAM in
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Figure 2.17 Common memory organization alternatives (based on [137], Figure 1)

combination with a non-volatile Read-Only Memory (ROM). With increasing
performance demands, different memory hierarchy concepts come into play.
Hardware-controlled caches (b) exploit temporal and spatial locality effects
of the application and mirror content of the main memory. Positive effects
of this concept can, according to Bathen and Dutt [12], for example be re-
ported for database applications. Software-controlled caches (c), referred to
as Scratchpad Memory (SPM) instead are said to work well in applications
with predictable memory access behavior, e.g., media applications [12]. In
scratchpads, the core-local memory content has to be specified by the user,
i.e., system designer or programmer respectively. The content of the SPM is,
depending on the application, either static and thus determined once at sys-
tem design-time, or, changed dynamically during operation. The last memory
organization (d), a combination of both previous concepts, is increasingly
implemented by high-end embedded devices. It should be noted that in all
presented alternatives (b,c,d), both, caches and scratchpads are typically sub-
divided into separate instruction and data parts respectively.

Summary

Finally, the architectural characteristics and technological performance of
SRAM are once again summarized in Figure 2.18 from different viewpoints.
Dark gray boxes highlight critical points, including the large cell size that
results from the footprint of six required transistors per base cell. DRAM in
comparison allows cell sizes of 6 to 10 F2, where F describes the technology
node, e.g., in nanometers. Consequently, on-chip area consumption is an im-



26 2 Background

Non-volatile Cell size (F  ) Read time (ns) Write/Erase 
time (ns)

Endurance 
(# cycles) Write power Other power 

consumption
High voltage 

required

No 50-120 1-100 1-100

10 Low Leakage 
current No

2

16

Figure 2.18 SRAM performance chart (based on [146], Table 2)

portant subject to optimization. Also volatility brings certain disadvantages
as SRAM is sensitive to data loss when the voltage drops below the retention
voltage level. In addition, extra non-volatile memory needs to be added to
the memory hierarchy for permanent storage and extra overhead is incurred,
for example at startup from loading relevant content into the fast operational
SRAM memory. Beyond that, leakage increasingly becomes a serious prob-
lem as technology nodes are shrinking. Nevertheless, possible solutions for
dynamic energy and static power consumption optimization exist.

All in all, SRAM is the central on-chip memory technology in embedded
and SoC design. Due to increasing area and power consumption shares, effi-
cient optimization of those aspects is of high interest. With focus on energy
and power consumption, especiallymemory partitioning, for the dynamic part,
and application of low-power modes, for the static part, are highly promising
concepts in this regard. Still, area footprint and memory access performance
are strongly connected parameters that can not be ignored.

2.3.2 Spin-Transfer Torque RAM (STT-RAM)

STT-RAM,more preciselyMagnetoresistiveRandom-AccessMemory (MRAM)
with spin-transfer torque switching, is an evolving Non-Volatile Memory
(NVM) technology. Its benefits are numerous and include low power consump-
tion, especially in terms of leakage, high density, and unlimited endurance
[120]. This combination makes it a highly interesting storage technology,
which is, according to the authors of [66], the most promising candidate for
commercialization among evolving memory technologies at present. Com-
pared to already mature memory types, STT-RAM provides the density of
DRAM, the speed of SRAM, as well as the non-volatility property of flash
memory. In this section and beyond, STT-RAM is essentially considered as



2.3 Memory Technologies 27

replacement for SRAM in the context of SoC design. Below, a short introduc-
tion to the underlying technology is followed by details on some optimization
aspect that is based on characteristics of the STT-RAM write operation.

Basics

The basic storage element in STT-RAM is called Magnetic Tunnel Junction
(MTJ). This sub-100 nm magnetic element typically consists of three layers
as depicted in Figure 2.19. That is, two ferromagnetic layers, separated by
a thin insulating oxide layer (of magnesium oxide (MgO) for example). The
bottom layer with stable magnetic orientation is named reference layer. On
the opposite side, a so-called free layer with variable magnetic orientation
is used to represent the information that is stored in the cell. Both layers
having the same orientation is referred to as parallel state (P) and representing
logic state 0. Reverse orientation and thus logic state 1 is named anti-parallel
magnetization (AP). Access to this type of storage cell is implemented using
an extra NMOS transistor as illustrated on the right hand side of Figure 2.19.
When reading the current state of the cell, a small current is flowing through
the bit cell in order to sense its resistance state. Writing instead requires a
much higher current to flow for the duration of a given write pulse. This write
current, referred to as Iw , has to be large enough as to change the magnetic
orientation of the MTJ. The direction of the current allows to control the final
magnetic orientation of the cell as illustrated in Figure 2.19.

MgOTunneling oxide

Free layer

Reference layer

MgO

Logic state 0 Logic state 1

Parallel state (P) Anti-parallel state (AP)
Source line

Word line

Bit line

W
rite parallel state

W
rite anti-parallel state

Figure 2.19 STT-RAM bit cell structure (based on [4], Figure 1 and [115], Figure 1)
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Figure 2.20 STT-RAM performance chart (based on [146], Table 2)

Asummary on the technological performance of STT-RAMas described by
Wolf et al. [146] is given in the following Figure 2.20. In direct comparison to
the above SRAM characteristics (cf. Figure 2.18), the essential shortcomings
of SRAM with respect to volatility, cell size, and leakage are resolved in
STT-RAM. Yet, there is another aspect that needs further attention. Especially
the write operation matters in this technology and intensive research on its
optimization,mainly on lowphysical and gate levels is and has been conducted.
First concepts and memory cell designs with reasonable write power and write
time have already been presented, e.g., by Kishi et al. [68]. Still, there is a
direct trade-off between these two values, which is an interesting aspect for
high-level optimization as discussed in this thesis and thus worth a closer
investigation.

Write Energy/Latency Trade-off

The write operation is, according to Sayed et al. [115] the main bottleneck in
STT-RAM concerning performance, energy, and reliability. In this regard, the
following two parameters play an important role:

• The thermal stability factor ∆ describes the energy barrier that must be
overcome in order to flip the magnetic orientation of the bit-cell. This
physical parameter is directly related to the retention characteristics of the
memory, i.e., the time, the memory cell is able to preserve stored data. In
short, lower retention time means lower energy barrier.

• The Write Error Rate (WER) characterizes the memory in describing
the write operation’s quality. It is due to the stochastic behavior of the
MTJ when changing its magnetic orientation. This involves that writing
in STT-RAM is not symmetric, i.e., switching of the free magnetic layer
to anti-parallel state (AP) takes significantly longer than switching to the
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parallel state (P). At system level, however, write time must be set to a
fixed value that guarantees an acceptable error rate as to be able to speak
of a reliable memory.

In [94], the authors present a model that relates the above parameters to write
current and write latency. Using this, Sayed et al. [115] show that with fixed
values for ∆ and WER, an increasing write current (and thus write energy
consumption) leads to a write latency reduction. It can be concluded that once
the low-level parameters of the memory are specified, the necessary energy
to write the cell depends on the trade-off between writing speed and required
writing current level. In other words, writing with high current is fast, reducing
the current level prolongs the operation’s delay instead. This relation finally
allows for the definition of different working points with different performance
to energy consumption ratio.

Summary

In the presence of restricted energy budgets, for example, this aspect is highly
interesting for system-level memory optimization because static or even dy-
namic assignment of different working points might help to meet specified
constraints. Sayed et al. [115] propose to use additional circuitry for online
write current adjustments. However, also voltage scaling techniques allow
for equal adjustments and are further considered to be more common in
low-power SoC design. Figure 2.21 illustrates this trade-off in showing how
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Figure 2.21 Write energy/latency trade-off for a STT-RAM memory of 4MiB in 45 nm
node (generated with STT-CACTI [4] [5])
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different operation voltage levels lead to increasing write energy consumption.
Simultaneously, write latency goes down when keeping the thermal stability
∆ and the error rate constant.

Altogether, STT-RAM is an evolving memory technology with hardly any
disadvantages. While already close to commercialization, most improvements
in recent literature discuss gate-level or even physical aspects with no use for
system-level optimization. Yet, especially the trade-off between memory write
latency and energy consumption is very interesting for optimization also on
higher abstraction levels.
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Chapter 3
Related Work

In the field of embedded system and SoC design, the memory subsystem and
its optimization have been and still are subject to intensive research. For that
reason and due to the high variety of system types and requirements in the
embedded domain, there is a significant amount of related literature.

With focus on SRAM memory, this chapter gives an overview of exist-
ing work and contributions to the state-of-the-art in this research domain.
Considered related work covers solutions and optimization techniques for the
efficient handling of previously discussed memory organizations according
to Figure 2.17. This includes flat memory structures as well as hierarchical
memory architectures with caches and or scratchpad memories. Presented
work deals, amongst others, with design space exploration or the optimiza-
tion of energy consumption, on-chip area, or performance. Also combined
considerations of some of these aspects can be found in literature.

Inspired by the definition of sub-problems in memory optimization as allo-
cation, binding, and scheduling tasks according to Section 2.1, the taxonomy
in Figure 3.1 allows for a rough classification of this research field. First, and
starting at the bottom left in this diagram, state-of-the-art in hardware-based
concepts is introduced in Section 3.1. This includes work that affects the hard-
ware design through memory allocation, partitioning, or required additional
circuitry for the implementation of a specific binding for example. Methods

Hardware Software

Allocation (!)
Static

Dynamic
Scheduling (")

Binding (#)

Figure 3.1 Related work classification for memory optimization in embedded systems



32 3 Related Work

that are part of hardware synthesis or based on hardware description languages
also belong to this group. In general, respective solutions are typically of static
type, i.e., applied and implemented at system design-time. Next, section 3.2
discusses software solutions, i.e., approaches that work without modifications
of the embedded hardware. Such concepts are dealingwith binding or schedul-
ing problems and often implemented as compiler extension. While solutions
that affect the hardware level in any form are rather of static nature and mostly
applied at system design-time, utilization of software allows more dynamic
approaches and solutions with run-time adaptions. The remaining sections
of this chapter on related work discuss dedicated optimization methods for
multi-core systems (Section 3.3) and memory subsystems with STT-RAM
(Section 3.4). Finally, Section 3.5 concludes this literature overview and sum-
marizes the most relevant aspects in relation to the contributions of this thesis.

3.1 Hardware-Based Concepts

All work as discussed in this section is either evaluating hardware aspects,
affecting the memory architecture through allocation steps, or implementing a
determined binding or memory operationmode schedule in terms of dedicated
circuitry, e.g., as address decoder.

Design Space Exploration

Design Space Exploration (DSE) is typically applied in early design stages.
Figure 3.2 schematically illustrates the basic concept and main intention,
which is to facilitate design decisions through combined consideration of
different system characteristics and constraints. In the context of memory
architectures, the following contributions to the state-of-the-art can be named.

Panda et al. [102] propose a design space exploration strategy for the
performance evaluation based on application analysis. This includes the con-
sideration of arrays and loops; potential memory components are on-chip
scratchpads or data caches as well as (off-chip) main memory. The authors
of [71] investigatemulti-bankedmemory architectures for mobile and portable
embedded devices. With focus on energy consumption, they present a math-
ematical energy/cost model for the analysis of relevant parameters and the
system design space. This includes, most and foremost, memory bank parti-



3.1 Hardware-Based Concepts 33

Area

Performance
Valid system

configurations

Figure 3.2 Exemplary system design space with constraints

tioning and the consideration of waiting states. Periods where the memory
is holding garbage as well as power state transitions with resulting penalties
are respected in this context. Another solution for memory DSE is proposed
in [47]. The authors aim at finding the best memory hierarchy on the ba-
sis of application-specific profiling information. This step is intended as part
of a hardware design flow and considers address ranges, number, size, and
type of on-chip caches. Down the memory hierarchy, SRAM, DRAM, and
non-volatile memories, e.g., EPROM are supported.

Altogether, these approaches aim at the rather general evaluation and com-
parison of different system setups, for example with respect to system perfor-
mance and on-chip area as depicted in Figure 3.2. Methods as proposed in
this thesis put the focus on a single metric and its optimization instead. This
allows, in contrast to the above references, to determine an ideally optimal
system configuration, for example in terms of energy consumption.

Methods for Digital Signal Processors

Digital signal processors are widely adopted for highly data-intensive appli-
cations and in most cases realized based on the Harvard architecture with
separated memory and bus for program code and data. This makes separate
optimization feasible, while especially the data memory part is of interest.
The following collection of related work mainly addresses this fact through
special optimization of data flow and memory architectures in Digital Signal
Processor (DSP) designs. Work in this thesis, however, is targeting systems
that implement the von Neumann architecture. Direct comparison is therefore
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limited as program code and data are not separated in these type of systems
but share the same memory and pathways.

Zhuge et al. [151] present a graph-based solution to exploit the design
space with multiple memories. Using a DFG representation, the authors iden-
tify memory access patterns, which allow for the definition of a partitioning
problem that results in an optimized memory subsystem architecture. On top,
data parallelism between individual variables is considered. Another solu-
tion that works on a Data Flow Graph (DFG) representation and thus suited
for application at higher abstraction levels is given in [92]. A heuristic for
application-specific memory partitioning based on profiling data under a con-
straint that limits the number of banks is presented in [84]. The authors of [144]
take instruction-level parallelism in DSP platforms into account. That means,
on top of a graph model and iterative solution to memory partitioning, in-
struction scheduling is added to the equation. While respecting performance
constraints, energy savings are set as optimization goal by maximizing idle
intervals and thus the low-power mode time of individual memory blocks.
In [109], an ILP-based solution for the performance versus energy consump-
tion problem in memories is presented. It is again based on a data flow graph
and includes different optimization aspects with data-to-memory assignment,
DSP instruction scheduling, as well as the handling of different memory op-
eration mode settings. A hybrid memory system consisting of DRAM and
Phase-ChangeMemory (PRAM) is considered in [76]. The application for the
digital signal processor is required in form of a graph. The presented ILP-based
optimization enables the evaluation of trade-offs, caused bywrite operations to
the PRAMmemory. These are beneficial in terms of power consumption but in
turn, have a negative impact on the system performance. Balasa et al. [9] [10]
focus on signal processing in real-time and data-intensive multimedia appli-
cations. The proposed Electronic Design Automation (EDA) solution deals
with high-level design of hierarchical memory architectures using a formal
model and further bases on a behavioral specification of the application. Again
working with a behavioral specification, follow-up work of these authors adds
scratchpads and low-power memory states to the consideration [8].

Scratchpad Partitioning

The work of Benini et al. [13] [14] is one of the first to consider on-chip
SRAM memory partitioning. The proposed optimal recursive partitioning al-
gorithm works with execution profiles and is applied for the determination
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of an application-specific optimal scratchpad partitioning into banks [14].
The maximum number of banks is a constraint; the optimization objective
is energy consumption reduction. The hardware-based implementation of the
obtained optimization result is realized using an dedicated address decoder
as illustrated in Figure 3.3. This circuitry implements the resolution of mem-
ory accesses, determination of address ranges, and redirection to the correct
memory bank [13]. Later work by Angiolini et al. [3] deals with scratch-
pad mapping, which is in fact a binding problem. The proposed solution
is based on memory access traces; dynamic programming is used to real-
ize the optimization model for the identification of frequently used memory
content that shall be mapped to the SPM. This way, a compromise in terms
of energy consumption, die area, and system performance can be identified.
The proposed integration of obtained results into a system design at hand is
again following the scheme in Figure 3.3. In [122], combined partitioning of
bus and memory architecture is discussed. The presented solution is again
application-specific and based on a genetic algorithm. It considers memory
aspects but also includes additional wiring for the interconnect when memory
is partitioned in multiple segments. Other work that is motivated by image
processing applications deals with automatic memory partitioning as part of a
behavioral synthesis flow [28]. The presented optimized arrangement of data
arrays in combination with memory partitioning allows for savings in terms
of throughput and energy consumption.

In contrast to these solutions for allocation and binding, presented methods
in this thesis not only focus on partitioning but allow for the optimal identifi-
cation of α and β in such and even more heterogeneous memory subsystems.
Proposed software-based concepts for the realization of obtained optimization
results further allow to avoid overhead from dedicated address decoders.

Hardware-Based Low-Power Mode Scheduling

The following publications deal with memory low-power modes. Obtained
schedules are, in any case, realized on the hardware level.
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For hybrid memory subsystems with caches and scratchpad, Wen et
al. [145] discuss the impact of low-power modes for cache lines. Depend-
ing on the idle time of a cache line, a power mode for either short or long
intervals is chosen. Lin et al. [75] propose a hardware extension that aims
at reducing the energy consumption through an address-aware memory state
predictor, which is based on lookup tables and hardware counters that keep
track of thememory access pattern. Using this, inter-access times are predicted
and used for a controlled activation and deactivation of low-power modes in
DRAMmemories. This way, overhead from resynchronization in DRAM can
be reduced and presented experiments prove the suitability of this method for
multimedia applications. In [147], video coding applications are considered
as use case. The proposed memory optimization method comprises the evalu-
ation and cost-function-based determination of a multi-banked memory archi-
tecture in combination with an application-specific power mode management.
Multiple memory sleep modes are available in the search space and mapped to
idle memory blocks while considering wake-up overheads. Another, statistical
method for video coding applications is presented in [114]. This management
of scratchpad memory power states is based on application-specific informa-
tion as available at system design-time. Adjustment of memory sleep states for
individual memory blocks is further possible based on online predictions. The
required SPM access management unit is implemented in hardware. Loghi
et al. [78] present a leakage-aware memory partitioning method, which in-
cludes the consideration of memory sleep states that are implemented using
voltage scaling. Temporal locality effects are extracted from input memory
traces; address decoders are used to realize the optimized scratchpad par-
titioning. The proposed optimization method is based on exhaustive search
and also considers introduced penalties from additional wiring and the SPM
decoder overhead. Solutions are proven to be optimal with respect to the pro-
vided memory traces. Follow-up work of Steinfeld et al. [124] also deals with
banked SRAM memory subsystems that support low-leakage sleep modes.
Their focus is on event-driven applications that possibly come with long idle
periods. The proposed optimization method is based on a greatly simplified
energymodel. Memory blocks are all of equal size. The impact of sleep modes
is evaluated on the basis of two hardware-based power management concepts.
First, a greedy solution that puts memories directly in a low-power mode when
becoming inactive. Second, a fixed time-out policy.

In contrast to Loghi et al. [78] and Steinfeld et al. [124], this thesis proposes
a method that not only considers operation mode scheduling but allows for
the combined determination of allocation, binding, and scheduling. Further
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demarcation is given by the consideration of peak power, which is not part
of any of the above concepts. Further, it should be noted that with more and
more projects in the embedded field being software-dominated, the hardware
platform is often pre-defined or simply chosen off-the-shelf. The solutions in
this thesis are, if possible and thus except for results from allocation steps, all
software-based. Therefore and in contrast to above presented work, no extra
hardware as for example decoders is needed. This point directly transfers to the
next section, where software-based related work is discussed in more detail.

3.2 Software-Based Concepts

With respect to the above given general classification in Figure 3.1, opti-
mization concepts as presented in this section cover binding and scheduling
problems; proposed methods range from static to dynamic. In general, static
software-based solutions are based on design-time optimization steps that are
typically applied at compile-time, e.g., through a compiler extension. Dynamic
solutions instead are for example realized as run-time library that completely
works online. The following overview starts with binding concepts while mov-
ing from dynamic to static solutions. Subsequently, scheduling methods for
the handling of SRAM low-power modes are discussed.

Dynamic Binding and Run-Time Memory Management

The following collection of memory management methods is divided in two
parts. First, fully dynamic solutions with online evaluation and application of
measures are discussed. Second, partly dynamic solutions are presented. That
is, rules for memory modifications are statically pre-computed at design-time
and then applied at run-time.

Luz et al. [81] propose an online data migrator for multi-banked memory
subsystems. The run-time library that implements this migration scheme de-
pends on temporal access information that is collected during execution. The
sampled data set is stored in decision tables and used to adjust the trade-off
between power consumption and resynchronization cost in DRAMmemories.
Possible activities includememory-to-memory copies or the activation of low-
power modes. Main application fields are data-intensive and array-dominated
applications as common in image or video processing. The authors of [62]
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and [118] present a dynamic SPM management solution for stack data only.
It is exclusively applied at run-time and implemented as so-called scratchpad
manager that is added to the software at hand. Whether energy and perfor-
mance savings are possible with this method highly depends on the application
as code overhead from the SPM manager needs to be considered on top. The
solution of [93] also works completely without compiler assistance, profiling
information, or hardware support. Instead, the efficiency of the proposed run-
time management for SPMs depends on the programmer’s knowledge of the
application. Annotations on source code level are used accordingly to select
the most appropriate scratchpad content. Chen et al. [25] present a solution for
dynamic binding of code and data to the system’s scratchpad. Starting point in
this approach is a code repositioning step that aims at improving the memory
access locality of the executed program. The proposed online management is
implemented as interrupt service routine that takes care of data swapping to
and from the scratchpad.

Partly dynamic run-time management is for example investigated by Kan-
demir et al. [56] [60]. They present an on-chip scratchpad memory manage-
ment scheme on the basis of loop and data transformations. The main focus
is on embedded image and video processing applications, where handling of
array-based data structures is dominating. Their SPM scheme is pre-computed
but applied at run-time, i.e., data transfers are carried out online. How to max-
imize the reuse factor, i.e., how to minimize the data transfers between main
memory and scratchpad is discussed in [58]. Targeting multimedia applica-
tions, the work in [1] deals with the optimization of irregular memory accesses
and indirectly-accessed array data structures. The proposed method is based
on spatial and temporal locality access patterns as collected at compile-time.
Using this, a cost model is used to determine the trade-off between array size
and resulting cost for moving a block into the SPM. Benefits from data reuse
are also considered in this model. Inserted code finally implements this partly
dynamic scratchpad management scheme into the application. A fully auto-
mated SPM code management on the basis of profiling information and binary
analysis is presented in [32]. The proposed solution is tailored for systemswith
instruction scratchpad. AMixed-Integer Quadratic Program (MIQP) formula-
tion is used at design-time to select static scratchpad content and dynamic parts
that are loaded and unloaded to and from the SPM at run-time. Hu et al. [48]
discuss the possibilities with hybrid scratchpads that consist of SRAM, on the
one hand, and an ultra-low leakage non-volatile memory, on the other hand.
The presented dynamic data mapping algorithm is based on input from simu-
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lation and respects the differing characteristics of both memory technologies
for access time, dynamic energy, and leakage power reductions.

In sum, all of the above methods propose a solution for the dynamic
application or modification of application to memory binding. In comparison,
all methods in this thesis that involve a binding step can be classified as static,
which is why there is no basis for comparison here.

Optimization in Real-Time Scenarios

Further related work for partly dynamic scratchpad binding with additional
consideration of real-time constraints is discussed next.

The work in [133] considers real-time systems with strict timing lim-
its.Worst-Case Response Time (WCRT), multi-tasking, and scratchpads that
are shared among different tasks are defined as outer conditions. This, however,
requires the application to be modeled as Message Sequence Chart (MSC),
which allows predictable analysis. Scratchpad loading and especially reload-
ing at run-time is scheduled at pre-defined execution points. In [139], the
authors present a scratchpad handling scheme that satisfies real-time require-
ments. Through compiler-inserted code at specific points, predictability is
maintained. The presented binding scheme comes with low overhead, yet
provides a possibility for run-time adjustments. Comparable to previously
discussed solutions, most frequently used global and stack data is mapped to
the scratchpad. Also coupling with a Direct Memory Access (DMA) unit for
better performance is discussed in this work. The authors of [136] propose a
scratchpad management scheme for priority-based preemptive multi-tasking
systems. Their solution targets applications with Real-Time Operating Sys-
tem (RTOS) and comprises different ILP formulations for different memory
access patterns, including temporal, spatial, andmixed locality. The scratchpad
is subdivided among the individual tasks; the SPM content can be swapped us-
ing the operating system and with help of a DMA controller depending on the
pre-computed ILP results. Another SPM management solution that includes
DMA in order to reduce the performance overhead from online data migra-
tion is proposed in [37]. An evaluation of data scratchpads as alternative for
data caches in real-time applications with predictability requirements is given
in [61]. In this work, the authors propose a heuristic for data to scratchpad
binding that aims at performance optimization in the context of preemptive
real-time systems.
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While the methods in thesis also provide highly predictable optimization
results, typical real-time constraints in terms of execution time are out of the
scope of this work. Instead, restrictions in terms of on-chip area and peak
power consumption are considered.

Static Binding Methods

Static methods for optimized application mapping as presented below can be
distinguished inmethods with focus on program code only, others that perform
data placement only, and lastly solutions that consider the combined binding
of both, program code and data.

The authors of [117] focus on code only and present a function block
to memory mapping heuristic for problem settings, where the application is
available as control flow graph. Also here, execution trace information of the
application is required as input.

Considering data-onlymapping, early work in the field of compiler-assisted
memory optimization was conducted by Panda et al. [101]. This includes the
distribution of scalar and array variables into scratchpad and main mem-
ory using a sorting-based heuristic. According to this approach, variables
that cause the most cache conflicts are statically mapped to the scratchpad.
Handling of recursive data access in the context of scratchpads is discussed
in [30], where based on a fixed stack frame size, data to scratchpad mapping
is executed at compile-time. In [7], heterogeneous memory architectures are
considered, which includes scratchpads, internal and external DRAM, and
ROM. The proposed automated compiler extension optimizes the distribution
of global data as well as heap and stack using an ILP. The obtained solution
is optimal, relative to the profiling data that is used as input. Integration of
the computed data placement into the embedded software binary is statically
implemented using the linker. In [42], a polynomial-time data placement algo-
rithm for scratchpads is presented. In minimizing the memory access cost, this
dynamic programming solution mainly targets system performance. A static
solution for data to scratchpad mapping with compiler support is presented
in [11]. This work evaluates scratchpads as alternatives to traditional caches in
compute-centric applications and puts special attention to trade-offs in terms
of area and performance.

While the abovemethods either consider code only [117] or exclusively deal
with data [7] [30] [42] [101], the authors of [125] present another compiler-
integrated solution that allows for an automated selection of program and data
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parts and their placement in the SPM of the system. The approach is based
on application analysis; the optimization step is realized as ILP. The scratch-
pad content is statically assigned at design-time, hence, no dynamic content
loading takes place in this method. In fact, most frequently used content is
identified on the basic block level and selected for a placement in the system’s
scratchpad. Verma et al. [140] further extend this concept through partition-
ing of arrays. A code and data to scratchpad mapping solution that allows
uncertainties about the actual memory sizes is presented in [99]. The method
is based on pre-processing and analysis at compile-time. Most frequently used
elements including code, global variables, and stack data are considered for
a placement in the scratchpad. Implementation of the actual data placement
step into the system’s bootloader increases the portability of this solution.
The work in [142] evaluates the differences of dynamic (overlay) and static
(non-overlay) scratchpad mapping methods, showing a better performance
of non-overlay SPM utilization, at least for the widely used set of MiBench
embedded benchmark applications [43]. In [149], hybrid memory systems
with cache and SPM are considered. Memory access profiling information is
used as input for an ILP solution that aims at cache miss reduction and op-
timized scratchpad mapping for either performance or energy improvements.
Modified linker scripts are utilized in a recompilation step to implement the
optimization result on the software level.

While different solutions for the determination of a static binding are also
discussed in this thesis, none of them considers binding as stand-alone prob-
lem. That means, in comparison to the above solutions, either allocation of
memory instances or allocation plus scheduling of memory operation modes
is considered on top and evenmore important, in combination with the binding
problem. This is highly important as α, β, and γ are tightly connected.

Dynamic Power-Down Concepts

Beyond binding, several software-based solutions have been proposed for the
determination of an optimized scheduling. This handling ofmemory operation
modes is partly pre-computed but always dynamically applied at run-time. The
set of SRAM operation modes as previously introduced in Section 2.3 is once
again summarized in Figure 3.4, along with corresponding characteristics in
terms of optimization potential or impact respectively.

Regarding power-down concepts, the authors of [82] put their focus on
applications that frequently allocate and deallocate data on the heap. Es-
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sentially, they propose an alternative implementation of malloc and free
function that can be automatically inserted by the compiler. This allows for
an energy-efficient dynamic data migration scheme that aims at occupying a
small number of memory banks. The remaining banks are completely shut
down for energy savings. Chen et al. [41] present an integer linear program
that allows for a trade-off evaluation between loading content into a SPM bank
or turning it off while keeping the corresponding data in the main memory
instead. The authors of [88] turn the idea back and propose a trace-based op-
timization method that aims at maximizing the power-down time of the main
memory while temporarily operating from the scratchpad only. The focus is
on code and constant data; flash is used as part of the memory subsystem as
to avoid data loss; the optimization model is formulated as ILP.

It is important to note that shut down in SRAM is not content preserving,
i.e., leading to data loss (cf. Figure 3.4). Due to the obviously high overhead
from re-loading complete memory blocks from non-volatile off-chip memory,
this thesis only considers content preserving low-power modes.

Software-Based Low-Power Mode Scheduling

Instead of completely shutting down individual memory blocks (cf. [41] [82]
[88]), the following publications deal with low-power modes and correspond-
ing activation schemes.

A compiler-directed solution for variables to memory bank assignment
and determination of memory bank operation modes is presented in [83].
The heuristic solution works with DRAM memory and takes four different
memory operation modes into consideration. This includes active, standby,
nap, and power-down. In order to apply this approach, however, the problem
has to be modeled as graph. A compiler-based leakage reduction scheme
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for instruction scratchpads is presented in [52]. Idle scratchpad memory is
accordingly put into a low-power mode using a special instruction. Same
holds for the reactivation step, which has to be executed in time as to keep
the performance impact low. The work of Kandemir et al. [57] deals with
the reduction of static power from leakage currents in SPMs. The proposed
compiler-based solution assumes thememory to be divided into banks. In order
to reduce the static power consumption from leakage, scratchpad content is
dynamically changed at run-time as to maximize the idle times of individual
memory banks. That way, the impact of low-power mode activations can be
maximized. When and what data to map to memory and individual banks is
determined statically at compile-time using a linear algebra framework. As
this framework works on an intermediate code representation, low-level and
library code is not supported.

The method for low-power mode handling as proposed in this thesis is,
compared to [57], less dynamic and therefore more deterministic, considering
memory allocation on top and thus a larger design space, supporting peak
power constraints, and further able to support low-level and library code.

3.3 Memory Optimization for Multi-Core Systems

With multi-core designs being more and more common in the embedded
field, memory optimization experiences a renaissance. Previous work that
was originally designed for single-core systems is ported, newly combined,
and evaluated on recent multi-core platforms. Furthermore, new methods and
ideas are presented as follows.

Graph-Based Optimization

The work of [104] investigates co-synthesis of memory and communication
architecture in MPSoCs on the basis of graph-based modeling. The proposed
solution is application-specific and aims at minimizing the number of busses
while respecting area and performance constraints. A second optimization goal
is the reduction of memory area; experiments are presented for applications
from the networking domain. The handling of stream-processing applications
on multi-core architectures with SPM is discussed in [24]. This work is again
based on graph-based modeling and expects an architecture graph for the
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platform and a Synchronous Data Flow (SDF) graph representation for the
part of the application. Optimization objective is maximizing the streaming
throughput bymeans of re-timing andwith respect tomemory constraints. The
ILP and alternative heuristic solution in [40] deal with simultaneous task-to-
core and data-to-scratchpad assignment. Scratchpads are multi-port, meaning
each core is able to access its local as well as remote scratchpads of other
cores. Required input is a Directed Acyclic Graph (DAG) model and a data
access table that reflects the memory access behavior of individual tasks in
the system. Main optimization goal in this work is performance, visible in the
obtained schedule length.

Multi-core memory optimization in this thesis does, in contrast to these
publications, not depend from any specific graph-based model of memory
architecture or application and is therefore more generally applicable.

Dynamic Concepts

Alvarez et al. [2] propose a dynamic method that completely works at run-
time. Main target are multi-core systems with hybrid memory subsystem, i.e.,
caches and scratchpads. The proposed dynamic solution consists of a run-time
system that collects required information on-the-fly and using that, manages
the scratchpad transparently to the user. Compared to a system with caches
only, this setup is experimentally proven to be faster at less power consump-
tion. Another run-time SPM mapping concept with focus on performance
improvements is the work in [135]. The proposed workload-aware scratchpad
pool manager depends on partly pre-computed input from a heuristic algo-
rithm as based on profiled data. A SPM supervisor that aims at improving
the handling of local and remote SPMs in a multi-core system is proposed
in [23]. The method is inspired by traditional caches and involves the online
recording of the memory access behavior, based on which data is moved at the
granularity of complete pages. The work of Paul et al. [105] is based on hints
of the programmer, on the one hand, and the source code of a multi-threaded
application, on the other hand. Using this information, the run-time system
is instructed in what to load to the core-local scratchpad memories. Mainly
targeted application field of this paper is audio and video processing. In [103],
a dynamic scratchpad mapping scheme assisted by a Memory Management
Unit (MMU) is proposed. With focus on dynamic stack management and
implemented using the exception handlers of the MMU, this method can be
realized on top of other optimization steps.
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Similar to the above presented dynamic concepts for single-core embedded
systems, these concepts are mainly applied at run-time and thus not compara-
ble to the mostly static optimization concepts as presented in this work.

Static Concepts

In [59], Kandemir et al. extend their compiler-based scratchpad management
strategy [58] to multi-processor systems. Again, array-dominated embedded
applications are the main use case. Central concept for energy and latency
improvements is data reuse, e.g., when multiple processors work on the same
array or data set. The authors of [86] present research for multi-core SoCs
with shared memory architecture and shift the optimization objectives to-
wards minimizing access cost, memory area, and access time. The proposed
model for an optimal but application-specific shared memory block alloca-
tion and shared data binding is realized as Integer Linear Program (ILP). The
results of this step are finally provided as architecture-level description for
further use in an existing MPSoC design flow. In [100], a twofold MPSoC
memory optimization method is presented. This includes a compiler-based
application analysis for the detection of inter-core relations in a first step. Af-
terwards, an ILP formulation is used for the determination of on-chip memory
sizes, sharing policy among the cores, and data binding. A straight-forward
scratchpad mapping heuristic that statically selects the most frequently used
elements is presented and evaluated for MPSoC architectures in [51].

In comparison to these static binding methods, this thesis contributes with
an optimal solution for the binding of application to MPSoC memory subsys-
tem. Beyond that, scheduling in memory operation modes is considered, an
aspect that is not found in any previous work for multi-core platforms.

Hybrid Memory Subsystems

Multi-core devices with hybrid memory architecture are considered in [49].
This includes fast access SRAM, global DRAM, and ultra-low leakage NVM
with high density. The proposed heuristic algorithm for data to memory bind-
ing exploits the pros and cons of the different memory technologies for mem-
ory access time and energy consumption reductions. The proposed solution is
application-specific and solves in polynomial time. Wang et al. [143] evalu-
ate the possibilities of hybrid scratchpad memories, consisting of SRAM and
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NVM. The presented algorithms for scratchpad binding allow either a fully
energy-optimized solution, or, a balanced one that works under constraints and
has an eye on energy consumption and system performance. This is handled
through the controlled utilization of write operations to the NVM.

The consideration of memory optimization in multi-core systems in this
thesis is limited to on-chip SRAM. With STT-RAM, however, one prominent
emerging non-volatile memory is separately considered as follows next.

3.4 STT-RAM Optimization

Besides research on the costly write operation in this technology, which en-
ables certain optimization potential (cf. Section 2.3.2), some other concepts
have been subject to investigation as summarized below.

Low-Level Optimization Concepts

The fact that STT-RAM is still subject to ongoing development can be seen
from related research. In fact, many publications on this topic are dealing with
low-level optimization of the memory cells on gate or even physical level.
This includes Smullen et al. [120], who propose to adjust certain parameters
of the memory cell in order to relax non-volatility in exchange for better
dynamic energy consumption and memory access performance. The work
in [33] proposes an error rate reduction method on the circuit level. The
authors of [55] contribute with the identification of critical parameters in
STT-RAM development regarding the design goals: higher density, lower
power consumption, and shorter latency. Bishnoi et al. [16] instead propose a
circuit-level technique that avoids unnecessary write operations.

System-Level Optimization Concepts

Existing solutions on the system level that consider STT-RAM as given mem-
ory block with given characteristics includes [134]. The presented garbage
collection scheme for object-oriented languages is based on varying the reten-
tion time. Key idea is to categorize allocated objects based on their lifetime
and assign them to different memory regions with different retention time. A
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compiler-based memory mapping scheme for STT-RAM scratchpads that also
uses varying retention times in different memory regions is presented in [112].
Lifetime aspects are used as indicator, further supplemented by data locality
information and iteration bounds of investigated applications. In [70], a dy-
namic retention time scheme is evaluated for caches.With multiple STT-RAM
instances of different retention time characteristics each, a dynamic refresh
scheme can be realizedwhile saving energy and gaining performance. Sayed et
al. [115] present a hardware-based technique that makes use of additional cir-
cuitry for the run-time adjustment of write currents. This way, the STT-RAM
can be operated in different energy-performance trade-off states, which allows
a well-suited and analysis-based reaction to different workload scenarios.

In extension to the STT-RAM write operation trade-off as exploited
in [115], this thesis contributes to memory optimization in STT-RAM by
the additional consideration of allocation and binding.

3.5 Summary

Benini et al. [15] state: „Contemporary system design focuses on the trade-
off between performance and energy consumption in processing and storage
units, as well as in their interconnections.“ With main focus on storage units
and partly interconnects, this sentence precisely summarizes the motivation
for most of the above presented related work. This also holds for the contribu-
tions of this thesis, which go most and foremost into the direction of energy
consumption reduction. With respect to the above presented state-of-the-art,
these individual contributions are now finally classified and differentiated
from other work as follows.

This thesis provides a solution for four different problem settings that all
have certain aspects in common. With respect to Figure 3.1, all methods are
static and of application-specific type as based on profiling information. Thus,
all steps are completely applied at design- or compilation-time respectively.
This setup is perfectly suited for devices and scenarios of deterministic type,
with for example repeating tasks, high reliability, or strict constraints in terms
of energy consumption. As a consequence, there is no need for a compari-
son with highly dynamic run-time-only methods or non-application-specific
solutions. Beyond that, no specific, for example graph-based input format
(cf. [104] [117]) is required. Instead, the application software represents the
most important input. Impact on the hardware design, however, partly ex-
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ists. This includes memory partitioning, certain required memory low-power
mode features, or control registers. For that reason, a categorization of this
work in partly hardware-based and mostly software-based is the most appro-
priate one. In sum, especially hardware/software co-design projects are the
ideal environment for the application of presented methods.

The first method [126] provides a combined solution for optimal memory
partitioning and application code and data to memory binding on the basis of
profiling data. While presented hardware-based methods (cf. Section 3.1) lack
the binding part, software-based solutions (cf. Section 3.2) typically assume
a pre-defined memory architecture or scratchpad.

The two-stage optimization method in [129] [132] extends the above idea.
Instead of putting the optimization focus on dynamic energy consumption from
memory accesses only, this contribution additionally considers static energy
as mainly caused from leakage currents in SRAM. Compared to state-of-the-
art, no hardware-based activation scheme is required as in the work of Loghi
et al. [78] or Steinfeld et al. [124]. Software-based techniques instead leave
the optimization potential from memory partitioning out (e.g. [52] or [57]).
Another distinguishing point is the possibility to define peak power constraints,
which is supported by this method but not found in related work at all.

In the multi-core context [131], the above observations hold too. Beyond
that, a trend towards software-only solutions can be observed. More compu-
tational power from multiple cores further encourages for run-time methods
that, however, are typically not suited for highly constrained and restricted
devices as investigated in this thesis.

The proposed STT-RAM optimization method in this thesis can be, if any,
put into relation with [115]. Besides the common motivation of exploiting the
write operation for different energy-performance trade-offs, however, the dif-
ferences prevail. Instead of a heuristic write-rate analysis, this thesis presents
a mathematical optimization model, implemented as quadratic program. Fur-
ther, Sayed at al. [115] use additional circuitry for write current modifications
as opposed to voltage scaling techniques in this work.

Beyond that, it is the way of implementing obtained optimization results on
the software level that distinguishes this work from others. Instead of special
hardware solutions (e.g. [13] [78]) or modified linker scripts (e.g. [149]), a
modified compiler backend is used in this work [130]. This automated solution
is transparent to the user and further enables direct integration into existing
hardware/software design flows.
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Chapter 4
Memory Optimization

The following chapter is on the SoC memory optimization methods that rep-
resent the main contribution of this thesis. All below sections are structured
the same way and describe one approach each: First, a general optimization
context and problem statement is given. In accordance with Chapter 2, all
investigated optimization problems are further characterized as allocation,
binding, or scheduling problem. This is followed by a mathematical formula-
tion of the corresponding memory and optimization model. At last, details of
either integer linear program or heuristic implementation are provided.

The first Section 4.1 covers a general optimization workflow that applies to
all following sections in this chapter. Section 4.2 then starts with the discus-
sion of an optimization method, which aims at dynamic energy consumption
reduction of the memory subsystem while respecting area constraints. The
following Section 4.3 is attributed to work that shifts the focus towards static
power consumption reduction as enabled by the utilization of memory low-
power modes. While the solutions in Sections 4.2 and 4.3 target single-core
systems, Section 4.4 considers multi-core platforms and corresponding mem-
ory optimization concepts. In general, the focus is put on SRAM memory,
except for Section 4.5, which describes an optimizationmethod for STT-RAM.

4.1 Optimization Workflow

An important commonality of all presented optimization concepts is the
design-time workflow that can be generalized as depicted in Figure 4.1. The
listed inputs include memory characteristics, i.e., general information about
the memory architecture of the target platform, which is reflected by the set of
memory resources M (cf. Section 2.1). Besides that, some of the below pre-
sented optimizationmodels allow the definition of user-defined constraints, for
example an upper bound on the number of memory resources. According to
the illustrated flow of information, optimization further depends on results of
instruction set simulation. Corresponding information includes system statis-
tics, as for example the application’s execution period, or the results from
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Figure 4.1 Design-time memory optimization workflow

memory access profiling that are relevant for the specification of application
profile set P and the dependency graph GD . As a consequence, determined
optimization results are application-specific, i.e., highly tailored to the given
target application and investigated use case.

4.2 Dynamic Energy Optimization (SRAM)

Following the explanations on SRAM memories in Section 2.3, dynamic
energy consumption in this storage technology highly depends on the memory
size and the associated extent of the memory periphery. One can make use of
this aspect to reduce the dynamic energy consumption by splitting memory
into multiple instances such that frequently accessed segments of the address
space reside in separate small memory instances. However, splitting memory
into multiple units requires an interconnect, e.g., a bus or a custom fabric,
that forwards read and write requests to the individual memory instances.
Obviously, this interconnect consumes on-chip area and energy itself and may
offset the benefits of the split memories. Furthermore, using multiple small
memories instead of a single large one implies an increase of area requirements
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and thus can become prohibitive. To achieve the highest possible energy
consumption savings, it is also necessary to reorganize the logical address
space such that the most frequently accessed segments are grouped together
and can be mapped to the same physical memory instance. For example,
if the most frequently accessed memory addresses are uniformly distributed
over the application’s address space, frequent and infrequent addresses will
inevitably be mapped to the same memory instances voiding any benefit of a
split memory architecture. Finding an optimal memory configuration in this
context is therefore a non-trivial task. The below explanation of a solution to
this problem is based on the contribution in [126].

4.2.1 Context

The focus in this optimization method is on single-core SoC platforms with
support for multiple on-chip memories. An abstract system architecture of
this target platform is depicted in Figure 4.2. With respect to Section 2.3,
this corresponds to a flat memory organization. If applicable, some of the
split memories can also be considered as scratchpad memories. Memory low-
power modes are not considered. Other components that for example manage
the communication with the environment of the system are abstracted as
input/output interface but of no further relevance for the optimization.
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Figure 4.2 Abstract target system architecture

Targeting this system architecture, an energy-efficient on-chip memory
subsystem shall be determined at design-time according to the following
problem formulation:
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Definition 4.1 (Problem Statement)

Find an allocation α of memory instances and a binding β that assigns each
application profile p ∈ P to exactly one memory resource m ∈ M such that
α and β yield the lowest energy consumption of all possible allocations and
mappings while satisfying area and user-defined constraints.

4.2.2 Optimization Model

In accordance with the basic optimization model in Section 2.1.1 and the
general workflow in Figure 4.1, all relevant input parameters for the following
optimization model are shortly summarized in Table 4.1. This comprises
activity and memory access statistics of application profiles, memory energy
and power characteristics, and lastly, some global system-related figures.

Parameter Description Unit

p
r
o
f
il
e sp Size of the profile byte

pr Application profile read probability
pw Application profile write probability
d Profile duty cycle

m
e
m
o
r
y

sm Memory storage capacity byte
Am Memory on-chip area footprint mm2

Er Dynamic energy consumption per read access J
tr Read operation access time s
Ew Dynamic energy consumption per write access J
tw Write operation access time s
Ps Static memory power consumption W

s
y
s
te

m

P f Power consumption of the interconnect W
A f On-chip area footprint of the interconnect mm2

V Memory supply voltage V
f System and memory operation frequency Hz
T The application period s

Table 4.1 Relevant input parameters for dynamic energy optimization
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With these parameters, a step-by-step definition of all factors that impact
the energy consumption of the memory subsystem is given first. From the
perspective of an application profile and for a given memory instance, the
required energy per profile due to read and write Ep is formulated as follows:

Ep = Eread + Ewrite (4.1)

Considering one application period, the two dynamic energy consumption
components Eread and Ewrite are defined as follows:

Eread = d · pr · Ir ( f ) · V · T (4.2)
Ewrite = d · pw · Iw ( f ) · V · T (4.3)

Read current Ir and write current Iw are either defined by the technology
library or derived from read/write energy consumption and corresponding
access times (cf. Table 4.1). Explained on the example of Ir and with respect
to the system operation frequency f , the following relation holds:

Ir ( f ) =
Er · f

V · dtr · f e
(4.4)

The formulation dtr · f e yields a factor ∈ Z>0 that represents the number of
clock cycles per memory access. Ir ( f ) accordingly describes the frequency-
dependent read current per clock cycle.Adjusted accordingly, the same relation
holds for Iw .

Next, the total dynamic energy consumption of an application, denoted
Edyn can be formulated as sum of overall read and write energy:

Edyn =

|P |∑
i=1

Eread
i + Ewrite

i (4.5)

By substituting Eread and Ewrite with Equation 4.2 and Equation 4.3, we
obtain:

Edyn = T · V ·
|P |∑
i=1

di · (pri · I
r ( f ) + pw

i · I
w ( f )) (4.6)

Static energy Estat does not depend on memory access and is consumed
independently of any application profile. Instead, it is related to the static
current I s according to Equation 4.7.
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Estat = T · V · I s (4.7)

The average power consumption of one application period is defined ac-
cording to Equation 4.8:

Pavg =
Edyn + Estat

T
(4.8)

Substituting Edyn (cf. Equation 4.6) and Estat (cf. Equation 4.7) gives
Equation 4.9:

Pavg =
T ·

(
(V · I s ) +

(
V ·

∑ |P |
i=1 di ·

(
pri · I

r ( f ) + pw
i · I

w ( f )
)))

T
(4.9)

From the optimization perspective, there is no difference whether to min-
imize the total energy consumption per application period or simply average
power. For that reason, this step is useful as it increases readability through
elimination of application run-time T . Further, (V · I s ) can be substituted as it
directly corresponds to the static power consumption Ps as given in Table 4.1.

Pavg = Ps +
*.
,
V ·

|P |∑
i=1

di ·
(
pri · I

r ( f ) + pw
i · I

w ( f )
)+/

-
(4.10)

As discussed above, a complete model of the whole memory architec-
ture should not only consider the individual memory instances but also the
interconnect fabric. As the fabric grows in complexity with the number of
connected memories, its power consumption and area requirements grow. To
capture this effect, both power and area requirements of the interconnect fab-
ric are described as piecewise linear function of the number of connected
memories. Let P f : Z≥0 → R and Af : Z≥0 → R denote the functions for the
interconnect fabric’s power consumption and area requirements, respectively.

On this basis, the next section discusses an integer linear program that
equally respects memory subsystem and interconnect fabric in terms of energy
respectively average power and on-chip area consumption.
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4.2.3 Combined Allocation and Binding MIQP

The belowMixed-Integer Quadratic Program (MIQP) formulation enables the
simultaneous determination of memory allocation and application binding.
Please note that the utilization of integer and floating point values and at least
one quadratic constraint causes an ILP to become aMIQP. The general feature
of integer linear programming, to provide an optimal solution, also holds in
this case, however, optimality is considered to be relative to the investigated
application or rather its simulation and the resulting input parameters.

Memory Allocation

One part of this optimization method is finding an allocation α. In the model,
the allocation variable is modeled as binary vector α ∈ {0, 1} |M | with the set
of available memory resources M . It holds:

∀ j ∈ [1, |M |] : α j =



1, if Mj is allocated
0, otherwise

(4.11)

Using the allocation α and a user-defined constraint memsmax allows to
limit the maximum number of memory instances:

|M |∑
j=1

α j ≤ memsmax (4.12)

With areamax , a similar user-defined constraint can be specified for the
total area available for all memory instances and the interconnect. The area
requirement permemory resource is denoted Am ; the piecewise linear function
Af describes the area consumption of the interconnect (cf. Table 4.1):

|M |∑
j=1

α j · Am
j + Af *.

,

|M |∑
j=1

α j
+/
-
≤ areamax (4.13)

Application Binding

For each application, the binding variable is represented as binary matrix
β ∈ {0, 1} |P |× |M | , with the elements βi, j indicatingwhether application profile
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i is mapped to memory resource j:

∀i ∈ [1, |P |] : ∀ j ∈ [1, |M |] : βi, j =



1, if Pi is mapped to Mj

0, otherwise
(4.14)

To ensure a correct solution, each application profile shall be bound to
exactly one memory resource:

∀i ∈ [1, |P |] :
|M |∑
j=1

βi, j = 1 (4.15)

Furthermore, every allocated memory instance shall be large enough in
order to accommodate all application profiles that are mapped to it. This
memory requirements constraint is defined as follows:

∀ j ∈ [1, |M |] :
|P |∑
i=1

βi, j · s
p
i ≤ αi · smj (4.16)

Optimization Goal

According to Section 4.2.2, the average power consumption does not depend on
the application run-time. Here, it should be noted that application run-time T
is assumed to be independent of the memory selection and thus to be constant.
This is justified by the assumption that splitting of memory into multiple
instances maintains the timing characteristics. Also the utilized interconnect
is expected to barely affect the critical path of a memory access. A timing
penalty with effect on the system frequency f is therefore not considered.
Based on Equation 4.10, the average power consumption per memory resource
can be derived as follows:

∀ j ∈ [1, |M |] : Pavg
j = α j

*.
,
Ps
j +

|P |∑
i=1

βi, j · di ·
(
pri · I

r
j ( f ) + pw

i · I
w
j ( f )

)
· V +/

-
(4.17)

Furthermore, combining the quadratic constraint in Equation 4.17 and the
interconnect fabric’s power consumption P f allows to postulate the overall
average power consumption Pavg to be minimized by the MIQP solver by
choosing suitable variable assignments for allocation α and binding β.
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Pavg = P f (
|M |∑
j=1

α j ) +
|M |∑
j=1

Pavg
j (4.18)

The optimization objective is consequently: minimize(Pavg ). The com-
plete formulation of this optimization method in AMPL syntax is provided in
Appendix A.

4.2.4 MIQP Variations

On the basis of the above optimization model and corresponding MIQP for-
mulation, several variations are possible as described in the following. Please
note that resulting AMPL code from these variations is not separately listed
in the appendix as the differences to the above described combined allocation
and binding formulation are limited.

Area Consumption Minimization

A big advantage of ILP formulations in general comes with the easy exchange-
ability of optimization objective and constraints. On the example of the above
optimization, few modifications allow to change the objective function from
minimization of average power to the minimization of area consumption. In
detail, this requires two steps. Equation 4.18 becomes a constraint, which
allows to restrict the maximum power consumption powermax :

P f (
|M |∑
j=1

α j ) +
|M |∑
j=1

Pavg
j ≤ powermax (4.19)

At the same time, the former area constraint in Equation 4.13 is transformed
and becomes the new objective function minimize(Atotal ), with Atotal de-
scribing the total area consumption of memory resources and interconnect:

Atotal =

|M |∑
j=1

α j · Am
j + Af *.

,

|M |∑
j=1

α j
+/
-

(4.20)
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The original average power minimization with respect to an area constraint
consequently becomes an area consumptionminimization problemwith possi-
bility to restrict average power. Using both models side by side further enables
multi-objective optimization and pareto analysis of the design space. For this,
both minimization problems are first executed without a constraint in terms of
area or average power respectively. The resulting two configurations mark the
energy- and area-optimal limits of the design space. Subsequent optimization
runs with iteratively modified constraints within those limits facilitates the
identification of a suitable trade-off configuration, e.g., for system designs
with restrictions in both dimensions.

Optimization for Multitasking Systems

In the above model, the complete system run-time is attributed to one ap-
plication. That means, all memory accesses as profiled during simulation are
combined into a single set of application profiles. For SoC devices that execute
a static schedule of individual and clearly separable algorithms though, this
model only fits conditionally. Considering the application to consist of several
tasks instead allows a more detailed analysis. The set A denotes a complete
multitasking application. Every contained element describes one task, which
is assumed to be characterized by its own set of application profiles. The indi-
vidual share of total execution time per task is further described by the vector
θ ∈ [0, 1] |A | of weighting factors with:

|A |∑
a=1

θa = 1 (4.21)

Transferred to the above MIQP, all considerations that affect the binding β
need to be adjusted in order to reflect this weighted consideration of multiple
tasks. That is to say, βi, j becomes βa, i, j and Equation 4.14 accordingly:

∀a ∈ [1, |A|] :∀i ∈ [1, |Pa |] :∀ j ∈ [1, |M |] : βa, i, j =



1, if Pa, i is mapped to Mj

0, otherwise
(4.22)

Applying the same modification to Equation 4.15 yields:
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∀a ∈ [1, |A|] : ∀i ∈ [1, |Pa |] :
|M |∑
j=1

βa, i, j = 1 (4.23)

As all profiles of all tasks need to fit into the provided memory space,
Equation 4.16 becomes:

∀ j ∈ [1, |M |] :
|A |∑
a=1

|Pa |∑
i=1

βa, i, j · s
p
a, i ≤ αi · smj (4.24)

Applied to the optimization goal, the vector of run-time shares θ needs to
be considered as described below:

Pavg = P f (
|M |∑
j=1

α j ) +
|A |∑
a=1

|M |∑
j=1

θa · P
avg
a, j (4.25)

4.3 Static Power Optimization (SRAM)

While the optimization model in Section 4.2 is designed to minimize the dy-
namic energy consumption of a memory subsystem, this section describes a
concept that additionally reduces static power. Optimization potential in this
regard is delivered by SRAM low-power operation modes as described in Sec-
tion 2.3. Main input for the determination of a guided power mode activation
schedule γ is the application dependency graph GD (cf. Definition 2.2). It
contains memory access frequencies but also encodes locality of reference
patterns for and between code and data profiles. A good implementation in
terms of static power reduction is considered tomaximize the low-powermode
time of individual memory blocks, on the one hand, and further, is expected to
minimize the number of mode changes, on the other hand. From the viewpoint
of memory allocation α, this implies amemory subsystemwithmultiple mem-
ory blocks, each with support for individual configurability of the operation
mode. Further, concerning the binding β of the embedded software, applica-
tion profiles that are connected by any principle of locality should possibly be
mapped to the same memory instance. This is important for the realization of
an efficient schedule γ. In other words, highly related code and data profiles
shall ideally be in the same memory block and either assigned the same or at
least a similar memory configuration vector c ∈ C. The number of operation
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mode activations and deactivations with the implied penalty in terms of time
and energy consumption might otherwise cancel out the savings that result
from low-power mode operation time. The explanation of the below solution
to this problem is based on the contribution in [132]; a concept for the inte-
gration of memory operation mode changes into the system implementation
is presented in the subsequent Chapter 5.

4.3.1 Context

This optimization method again targets single-core SoC devices with multiple
on-chip memories according to the abstract system architecture as depicted
in Figure 4.3. Yet, in comparison to the system architecture for dynamic
energy optimization in Figure 4.2, two aspects extend the system model for
the consideration of static power optimization. First and motivated by the
existence of any type of co-processor, it may be necessary to bound the power
consumption level to a certain peak value. This holds especially for mixed-
signal designs with supplementary units that are highly sensitive to power
peaks. The resulting valid operation range is referred to as power corridor
in the following. The second aspect is additional support for memory low-
power modes. At any point in time, every memory resource in the system
is accordingly operated in one operation mode of the set O as defined for
every memory (cf. Definition 2.3) or, in a transition between two of these
states (see also [87]). Figure 4.4 illustrates possible SRAM power states and
transitions for the operation modes as described in Section 2.3. This includes
active (ACT ), light sleep (LS), and deep sleep (DS).

System-on-Chip

CPU
1

2

In
te

rc
on

ne
ct MEM1

MEM2 MEM3
Address space

Bank1

Bank2

I/O Interface

Figure 4.3 Extended abstract target system architecture
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ACT

LS DS

Figure 4.4 Low-power mode transition graph

For this SoC architecture and with respect to the given low-power operation
mode alternatives, a dynamic energy- and static power-efficient on-chip mem-
ory subsystem shall be determined at design-time according to the following
problem statement:

Definition 4.2 (Problem Statement)

Find an allocation α of memory instances and determine a binding β of all
application code and data profiles onto the set of allocated memories. Identify
an operation mode schedule γ that specifies, which allocated memory shall
be operated in which power mode at any point in time within the period T.
At the same time, satisfy user-defined corridor constraints for peak power and
maximum period.

4.3.2 Optimization Model

Following the basic model in Section 2.1.1, an operation mode schedule γ is
defined on the basis of the set of memory configurations C (cf. Definitions 2.6
and 2.7). Accordingly, each configuration c ∈ C is represented by a vector
of length |Mα |. Iterating over this vector with index j, every element cj ∈ O
defines the operation mode per allocated memory m j ∈ Mα . Using this
definition of amemory configuration vector, the state of thememory subsystem
can be clearly defined at different points in time within the period T . A power
mode schedule γ in turn can be specified as sequence of memory configuration
vectors. However, it is simply impracticable to realize such a schedule at the
granularity of single time units or cycles, i.e., by specifying the memory
configuration for any point in time. This is due to the fact that already the
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set of possible memory configurations C, which is defined as n-ary cartesian
power of O, i.e., C ≡ On with n = |Mα |, becomes considerably large, even
for small numbers of allocated memories. When further combining C with
all time units t ∈ [0,T ), the design space for γ is no longer manageable.
Beyond that, an implementation of such a schedule in hard- or software seems
simply not practicable, let alone meaningful. However, when decreasing the
granularity from individual cycles to application profiles instead, the situation
changes. That is, each profile p ∈ P is assigned one c ∈ C and always executed
in this and only this memory power mode configuration.

This direct link between profiles and memory subsystem configurations
allows the size of C, and thus of the design space, to be reduced. The reason
is, each code profile requires at least the memory block that contains its
instructions to be in active operation mode (ACT ) and thus to be accessible.
Configurations that do not satisfy the condition of at least one active memory
can consequently be removed from the design space in advance, which leads
to the set C∗ ⊂ C with:

∀c ∈ C∗ : ∃i ∈ [1, |c |] : ci = ACT (4.26)

When looking at data profiles in this context of profile-based configuration
assignment, it can be observed that every data profile is connected to one
or multiple code profiles in form of data dependencies. Such relations, as
encoded in the dependency graph GD , imply that from the perspective of a
function (code profile), all variables and data structures (data profiles) that
are under use in this function can not be operated in a low-power mode with
restricted accessibility. Illustrated on the example in Figure 4.5, assume that
variable X and Y are accessed from within function A. Consequently, MEM1

Function A
Function B

Variable X Variable Y

MEM1
Address space

MEM2

Figure 4.5 Memory configuration example
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but also MEM2 need to be operated in activemode in order to not impede the
access of variable Y.

In short, an individual assignment of memory configurations to variables
and data structures (data profiles) provides no additional benefit. Instead,
it rather allows for another design space reduction that results from the sole
consideration of code profiles in the scheduling process. The set of application
profiles is therefore divided into the subset of code profiles Pc and the subset
of data profiles Pd according to Equation 4.27:

P = Pc ∪ Pd (4.27)

For the duty cycle of all code profiles p ∈ Pc it applies:

|Pc |∑
i=1

di = 1 (4.28)

For all data profiles p ∈ Pd instead, the duty cycle stems from the ac-
cumulated activity of all code profiles that access data block p as given in
Equation 4.29:

∀h ∈ [1, |Pd |] : dh =

|Pc |∑
i=1




di, if Pc
i depends on Pd

h

0, otherwise
(4.29)

A complete list of all parameters that are relevant for the following opti-
mization model is given in Table 4.2. Please note that in contrast to the average
power approach as used in the previously discussed dynamic energy optimiza-
tion model (cf. Section 4.2), this model works with energy consumption per
access (dynamic) or cycle (static) instead. Therefore, read and write quantities
are used instead of probabilities. Not listed in the table but also relevant is the
dependency graph GD (P, ED ), including its weighted edge function w (cf.
Definition 2.2).

The total amount of energy that is consumed per investigated period T is
denoted ET . According to Equation 4.30, this central optimization variable,
which is later subject to minimization, is subdivided into three components.

ET = Edyn + Estat + Emode (4.30)

The dynamic part Edyn originates from memory accesses and depends on
memory characteristics, on the one hand, and profile access statistics, on the
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Parameter Description Unit
p
r
o
f
il
e sp Size of the profile byte

nr Number of reads to this profile in period T
nw Number of writes to this profile in period T
d Profile duty cycle

m
e
m
o
r
y

sm Memory storage capacity byte
Er Dynamic energy consumption per read access J
tr Read operation access time s
Ew Dynamic energy consumption per write access J
tw Write operation access time s

o
p
m
o
d
e

Ps Static power consumption of operation mode W
Ea Energy penalty on mode activation J
ta Operation mode activation time s
Ed Energy penalty on mode deactivation J
td Operation mode deactivation time s

s
y
s
te

m f System and memory operation frequency Hz

T The application period s

Table 4.2 Relevant input parameters for static power optimization

other hand. This includes the read and write quantities nr and nw according to
Table 4.2 but also the optimization variables allocation α (cf. Definition 2.4)
and binding β (cf. Definition 2.5). In Equation 4.31, βi describes the memory
instance from the set of allocated memories Mα that is assigned to profile Pi .

Edyn =

|P |∑
i=1

nr
i · E

r (βi ) + nw
i · E

w (βi ) (4.31)

Estat results from static power consumption in dependence on the operation
mode. In SRAM memories, this part is mainly due to leakage currents. It
depends, on the one hand, on the normalized duty cycle per code profile di . In
Equation 4.32, the product of T and di accordingly yields the active time per
code profile Pc

i . On the other hand, the static power consumption per memory
and operation mode (Ps) as defined by the configuration vector schedule γ
is relevant for the description of the static energy consumption. Please note
that according to Definition 2.7, γ assigns a profile to a vector of memory
operation modes from the set C∗.
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Estat = T ·
|Pc |∑
i=1

di ·

|Mα |∑
j=1

Ps
j (γi, j ) (4.32)

The third and last component is denoted Emode and attributed to the energy
penalty fromoperationmode changes. This information is encoded in the set of
weighted edges in the dependency graph. Depending on the static connection
of application profiles and operation modes as given by γ, each edge between
two code profiles possibly leads to a new memory subsystem configuration
c ∈ C∗. In other words, the function w denotes the number of transitions
between two functions in the control flow, which in turn describes the number
of mode changes that happen during the period T . If any mode change occurs
for one or multiple memory instances in the set of allocated memories Mα ,
it is considered in terms of activation and deactivation energy penalty. The
complete formulation of Emode is given in Equation 4.33.

Emode =

|Pc |∑
h=1

|Pc |∑
i=1

wh, i ·

|Mα |∑
j=1




Ed
j (γh, j ) + Ea

j (γi, j ) if γh, j , γi, j
0 otherwise

(4.33)

A power corridor, denoted powermax , can for example be given by a
highly sensitive system component, e.g., an analog co-processor. It defines the
power level that shall not be exceeded at any point in time within the period
T . Accordingly, it bounds the maximum power consumption of the memory
subsystem (Pmax ), which consists of two parts for each memory instance in
Mα . That is, on the one hand, the maximum value of either memory access
energy in dependence on the system frequency f , or, the powermode transition
energy over the corresponding switching time. This part is denoted Pdyn/mode

and defined for every configuration vector c ∈ C∗ according to Equation 4.34.

∀c ∈ C∗ : Pdyn/mode (c) = max |M
α |

j=1




dyn︷                 ︸︸                 ︷
Er
j · f

dtrj · f e
,

Ew
j · f

dtwj · f e︸                ︷︷                ︸
if c j=ACT , 0 otherwise

,

mode︷              ︸︸              ︷
Ea
j (cj )

taj (cj )
,

Ed
j (cj )

tdj (cj )




(4.34)
On the other hand, the total static power consumption of all memories

m ∈ Mα needs to be considered in dependence on the scheduled memory
configuration as described in Equation 4.35.
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∀c ∈ C∗ : Pstat (c) =
|Mα |∑
j=1

Ps
j (cj ) (4.35)

Combined and evaluated for the set of occurring mode changes, the peak
power consumption Pmax can finally be defined as follows:

Pmax = max |P
c |

i=1

{
Pdyn/mode (γi ) + Pstat (γi ) : di > 0

}
(4.36)

The peak power corridor constraint is consequently denoted by:

Pmax ≤ powermax (4.37)

A similar consideration for the system period leads to the definition of an
upper bound timemax , further referred to as time corridor (cf. Equation 4.38).
As defined above, T denotes the period of the embedded application.

T ≤ timemax (4.38)

Since every power mode change possibly entails a delay (cf. Table 4.2),
there is a trade-off between energy and time in this regard that needs to be
considered. That is to say, frequent power mode switching might be beneficial
in terms of energy consumption, however, disadvantageous due to the increas-
ing time penalty. Nevertheless, whenever timemax > T , the resulting slack
time can be used for optimizations, as long as the condition in Equation 4.39
is respected. It states that the sum of all time penalties due to mode switching
has to be less than or equal to the slack time.

timemax − T ≥
|Pc |∑
h=1

|Pc |∑
i=1

wh, i ·

|Mα |∑
j=1




tdj (γh, j ) + taj (γi, j ) if γh, j , γi, j
0 otherwise

(4.39)

4.3.3 Implementation Considerations

With regard to the above model and for an optimization goal that, with the
help of Equation 4.30, is described as minimize(ET ), the following starting
points for an overall reduction of ET are conceivable:
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1. Directly reduce the number of memory accesses, i.e., nr and nw in Equa-
tion 4.31 respectively. This can be either achieved through direct modifi-
cation of the application code or through the utilization of a hierarchical
memory design, e.g., in using scratchpads.

2. Make use of a heterogeneous memory subsystem and put frequently ac-
cessed elements into small memories; rarely used address ranges to larger
instances instead. This way, Er and Ew in Equation 4.31 are accounting
for possible savings.

3. Maximize the time, allocated memories are operated in a low-power mode
through effects from duty cycle d and γ (cf. Equation 4.32).

4. Minimize the number of mode changes between different power modes.
That is to say, keep the number of control flow edges that involve a power
mode configuration change, and thus the impact of energy penalties for
activation Ea and deactivation Ed in Equation 4.33, as small as possible.

Alternatives (1) and (2) in this enumeration put the focus on Edyn solely.
Aspect (2) can be tackled with the above presented dynamic energy optimiza-
tion method (cf. Section 4.2). The focus in this section, however, is on static
aspects and the following optimization concept combines saving potential
from (2), (3), and (4) into one, novel optimization method as outlined below.

Due to the fact that the simultaneous consideration of α, β, and γ spans an
extremely large design space, a single-step realization could not be realized,
wherefore the implementation is split in two subsequent parts. The first part is
the allocation of up to memsmax memories from the set of available memories
M and binding of all application profiles to one of the allocated memory
instances m ∈ Mα . The second, subsequent part deals with the determination
of an energy-optimal configuration c ∈ C∗ for each code profile p ∈ Pc . This
way, the design space size issue can be handled and a likewise consideration of
Edyn , Estat , and Emode in terms of energy minimization becomes possible.

Using the dependency graphGD in combinationwith further characteristics
from Table 4.2, the designed two-stage workflow can be described as follows:

1. Identification of α and β by means of clustering
Find clusters of related application profiles in the dependency graph, while
minimizing the inter-cluster dependency, i.e., the weight of all edges that
connect profiles in different clusters. Each identified cluster finally contains
a set of application profiles. Taking each cluster as a memory instance
automatically defines the allocation α as well as the binding function β.

2. Identification of γ based on the result of stage (1) by an ILP
Determine an optimal assignment between application profiles andmemory
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configuration vectors on the basis of the dependency graph and concrete
power and energy figures for the memories in Mα . This step yields an
optimal solution for γ, relative to the quality of the results from software
simulation and optimization stage (1). Beyond that, stage (2) allows the
definition of corridor constraints.

This implementation concept enables energy savings in multiple ways:

• With each cluster that is identified in stage (1) of the optimization flow,
memory subsystem heterogeneity increases along with its positive effects
on the dynamic energy consumption Edyn .

• Another co-product from clustering is the grouping of highly related pro-
files. That means, strongly linked application code is likely to be bound to
the same memory instance. This increase of locality favors the expansion
of inactivity periods and thus the possibility for longer low-power mode
phases of individual memory instances. Hence, a further decreases of the
static energy part Estat becomes possible.

• Minimizing the edge weight between clusters in stage (1) directly affects
the number of operation mode changes and thus Emode .

• On top of that, stage (2) ensures an optimal operation mode schedule (for
a given allocation and binding) and takes its optimization potential from
Estat and Emode .

As summarizing illustration, the complete workflow of this two-stage im-
plementation is depicted in Figure 4.6. Other than presented solutions in
literature, it is able to consider saving potential from dynamic and static en-
ergy consumption. In using a heuristic clustering method in stage (1), followed
by a Mixed-Integer Quadratic Program (MIQP) formulation in stage (2), large
design spaces are reduced in size and thus can be handled.

Memory optimization

Stage 2

Stage 1

MIQP

Clustering
Memory 
allocation ! Profile 

binding "

Low-power 
mode scheduling

#

Figure 4.6 Two-stage workflow for static energy minimization
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Following the flow in Figure 4.6, different implementation alternatives for
stage (1) are outlined in Section 4.3.4 at first. The MIQP realization of stage
(2) is then described in Section 4.3.5.

4.3.4 Allocation and Binding Heuristics

Every clustering algorithm and thus heuristic solution that is described in the
following section is applied for the purpose of allocation and binding. Similar
to the combined allocation and bindingMIQP in Section 4.2.3, several general
constraints hold here as well.

Concerning the allocation step, a user-defined upper bound for the number
of allocated memories memsmax shall be respected (cf. Equation 4.12). The
storage capacity of every allocated memory m ∈ Mα shall further be large
enough in order to accommodate all profiles that are mapped to it:

∀ j ∈ [1, |Mα |] : smj ≥
|P |∑
i=1

spi : βi = Mj (4.40)

With respect to application binding, each profile shall be mapped to one
and only one memory instance:

∀i ∈ [1, |P |] : ∃! j ∈ [1, |Mα |] : βi = Mj (4.41)

Graph Partitioning

One possibility for the clustering of a given graph into a set of independent
groups with minimum inter-dependency is graph partitioning (compare for
example [69]). The following approach is realized as integer linear program.

Set/Parameter Description

V Set of nodes in targeted graph G

N Number of clusters to be determined
DM Dependency matrix of size |V | × |V | according to edge weights

Table 4.3 Graph partitioning ILP dataset and parameters
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It operates on the dataset V , which describes the nodes of the targeted graph
G(V, E). This dataset and other required parameters for the below formulation
are summarized in Table 4.3.

Besides these parameters, two variables named ρ and φ are defined in the
ILP. ρ is specified in Equation 4.42 and realized as binary matrix over the set
of nodes V , on the one hand, and the range of clusters 1..N , on the other hand.

∀i ∈ [1, |V |] : ∀n ∈ [1, N] : ρi,n =



1, if node Vi is mapped to cluster n
0, otherwise

(4.42)
The variable φ represents a vector of size N . Every entry in this vector

describes the accumulated dependency cost between a particular node and all
other nodes that are mapped to a different cluster. That means:

∀1 ≤ n ≤ N : ∀1 ≤ m ≤ N : n , m =⇒ φn ≥

|V |∑
h=1

|V |∑
i=1

ρh,n · ρi,m · DMh, i

(4.43)
Other constraints define that each node is assigned to one and only one

cluster (cf. Equation 4.44) and that empty clusters are not allowed (cf. Equa-
tion 4.45).

∀i ∈ [1, |V |] : ∃!n ∈ N : ρi,n = 1 (4.44)

∀n ∈ [1, N] :
|V |∑
i=1

ρi,n ≥ 1 (4.45)

The final optimization goal is denoted by:

minimize *
,

N∑
n=1

φn+
-

(4.46)

To be exact, Equation 4.43 causes the integer linear program to become
an integer quadratic program. This is due to the multiplication of two vari-
ables, here ρ. Nevertheless, the formulation remainsmanageablewith common
solvers, most and foremost because ρ is of binary type and the corresponding
formula is no equality constraint (≥).

In the context of this work, the partitioning approach is applied to the
dependency graph GD (P, ED ). Accordingly, the set of nodes V is represented
by the set of application profiles P; the value of N corresponds to memsmax ;
DM is equal to a matrix representation of the weight function w. With varying
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N , the design space for memory allocation and application binding can be
explored throughmultiple runs. Each identified cluster represents onememory
and thus yields α and β as requested from a stage (1) implementation.

Min-Cut Clustering

An alternative to graph partitioning and thus a different approach to allocation
and binding in workflow stage (1) is graph clustering. One such algorithm
is min-cut graph clustering as proposed by Flake et al. [35]. The algorithm
works on a graph G(V, E) and is described by the following steps:

1. Add an additional node t to the graph G
2. Connect t with every other node in G by an edge with weight a
3. Compute the min-cut tree of the resulting graph
4. Remove t from the graph again
5. The remaining connected elements represent the final clustering

For more details about this heuristic, the reader is kindly referred to, either,
the original work [35], or, to the author of [39] (Section 4.4), who gives a
thorough introduction to the algorithm. It is important to note that in contrast
to graph partitioning, a clustering algorithm in general provides no ability to
specify the number N of clusters to be identified. As the result of the min-
cut algorithm varies with the edge weight a of the artificial node t, a binary
search-like approach is applied to a series of experiments, starting with an
initial weight:

a0 =
max |E |

i=1{weighti }

2
(4.47)

Subsequently, two solutions with ai+1,1 = ai − ai/2 and ai+1,2 = ai + ai/2
are determined repeatedly. In every iteration, the better of the two solutions is
marked as next ai , as long as the inter-cluster dependency cost according to
Equation 4.43 decreases.

In the problematic case, where memsmax is less than the number of iden-
tified clusters and thus memories, graph partitioning can be used as fallback
algorithm. Alternatively, the min-cut binary search quality function can be
configured to iterate until N ≤ memsmax holds, instead of minimizing φ
according to Equation 4.46.
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Modularity Clustering

A third, alternative algorithm for stage (1) clustering is based on the measure
modularity [98], a „[...] measure that closely agrees with intuition on a wide
range of real-world graphs [...]“ [39] (p. 26). For detailed information about
the algorithm as well as a corresponding ILP formulation of this clustering
method, the reader is kindly referred to [39] (Sections 1.2 and 2.2).

Please note that modularity is again a clustering algorithm that does not
allow to specify the number of searched clusters N . As a consequence, in case
of N > memsmax , min-cut or graph partitioning can be used as fallback solu-
tion in order to determine a valid clustering and thus a solution for allocation
α and binding β.

4.3.5 Operation Mode Scheduling MIQP

Once, allocation and binding are determined, the second stage of the optimiza-
tion workflow in Figure 4.6 can be executed. It is realized as Mixed-Integer
Quadratic Program (MIQP), meaning, only a part of the parameters and vari-
ables in the linear program formulation are integer types. Further, at least one
constraint contains a quadratic element, i.e., from a multiplication of two vari-
ables. In any case, this method provides an optimal and thus energy-minimal
solution for the given set of input data. Based on the result from allocation and
binding, but also with respect to the given input parameters as listed in Ta-
ble 4.2, all datasets and parameters that are used in the following optimization
formulation are summarized in Tables 4.4 and 4.5. The constraint parameters
powermax and timemax denote user-defined upper bounds for peak power
(power corridor) and time corridor respectively.

Please note that the activity matrix AM directly encodes a determined
binding β but reduced to the set of code profiles. Nevertheless, any dependency
between code and data profiles as previously illustrated on the example in
Figure 4.5 is included in this parameter.

Set Description

Pc Set of all code profiles
Mα Set of allocated memory instances
C∗ Set of all possible memory operation mode configuration vectors

Table 4.4 Operation mode scheduling MIQP datasets
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Parameter Size Description

d |Pc | Duty cycle per code profile
DM |Pc | × |Pc | Dependency matrix as based on GD (P, ED )
AM |Pc | × |Mα | Required (accessible) memories per code profile (binary)
Ec |C∗ | Passive energy consumption per configuration and cycle
Pp |C∗ | Peak power consumption per configuration c ∈ C∗

CM |C∗ | × |Mα | Memories in ACT mode per configuration (binary)
PME |C∗ | × |C∗ | Penalty matrix for energy per configuration change
PMT |C∗ | × |C∗ | Extra time on configuration change

Table 4.5 Operation mode scheduling MIQP parameters

The equation for the computation of the individual peak power consump-
tion per configuration Pp is depicted in Equation 4.48. This formulation is
considered to be pessimistic as there is no guarantee that the value that results
from the max statement is attributed to an actually occurring event for the
considered combination of memory instance and configuration vector. If for
example the peak power level of the write operation dominates for a config-
uration that is assigned to read-only profiles exclusively, the value for Pp is
higher than actually needed in this case and therefore pessimistic.

∀c ∈ C∗: Pp (c)=max |M
α |

j=1




Er
j · f

dtrj · f e
,

Ew
j · f

dtwj · f e︸                ︷︷                ︸
if c j=ACT , 0 otherwise

,
Ea
j (cj )

taj (cj )
,
Ed
j (cj )

tdj (cj )


︸                                                         ︷︷                                                         ︸

dyn/mode

+

|Mα |∑
j=1

Ps
j (cj )︸       ︷︷       ︸

stat

(4.48)
Table 4.6 lists the set of required variables. Main goal of workflow stage

(2) is the determination of an operation mode schedule γ. In the following
MIQP, this information is encoded into a binary matrix, denoted Γ.

Variable Size Description

Γ |Pc | × |C∗ | Binary matrix for the profile to configuration mapping
E stat |Pc | Static energy consumption per code profile
Emode |Pc | Energy consumption per profile due to power mode changes
Tmode |Pc | Time penalty per profile due to power mode changes

Table 4.6 Operation mode scheduling MIQP variables
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On this basis, the optimization goal can be stated as follows:

minimize *.
,

|Pc |∑
i=1

Estat
i + Emode

i
+/
-

(4.49)

The following two constraints ensure the feasibility of a potential solution.
According to Equation 4.50, each code profile shall only be assigned to one
and only one configuration.

∀i ∈ [1, |Pc |] :
|C∗ |∑
k=1
Γi,k = 1 (4.50)

The formulation in Equation 4.51 ensures that each profile is only assigned to
a configuration, in which required memories according to the activity matrix
AM are in active (ACT ) operation mode, as indicated by the configuration
matrix CM (cf. Table 4.5).

∀i ∈ [1, |Pc |] : ∀ j ∈ [1, |Mα |] : AMi, j = 1 =⇒
|C∗ |∑
k=1
Γi,k ·CMk, j = 1 (4.51)

Equations 4.52 and 4.53 specify constraints for the energy consumption
variables Estat and Emode on the basis of passive energy consumption Ec ,
dependency matrix DM , and energy penalty PME .

∀i ∈ [1, |Pc |] : Estat
i = di · T · f ·

|C∗ |∑
k=1
Γi,k · Ec

k (4.52)

∀h ∈ [1, |Pc |] : ∀k ∈ [1, |C∗ |] : Emode
h ≥

|Pc |∑
i=1

DMh, i ·

|C∗ |∑
l=1
Γh,k · Γi,l · PME

k,l

(4.53)
Accordingly, Equation 4.54 details the corresponding constraint for Tmode

using the time penalty PMT .

∀h ∈ [1, |Pc |] : ∀k ∈ [1, |C∗ |] : Tmode
h ≥

|Pc |∑
i=1

DMh, i ·

|C∗ |∑
l=1
Γh,k · Γi,l · PMT

k,l

(4.54)
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Please note that the quadratic constraints inEquations 4.53 and 4.54 are defined
as non-equality constraints. This is necessary to get solvability. Finally, period
and peak power corridor constraint are given in Equations 4.55 and 4.56
respectively on the basis of Equations 4.36 to 4.39.

T +
|Pc |∑
i=1

Tmode
i ≤ timemax (4.55)

∀i ∈ [1, |Pc |] :
|C∗ |∑
k=1
Γi,k · P

p
k
≤ powermax (4.56)

The completeMIQP implementation of this optimizationmethod in AMPL
syntax is given in Appendix B. To the extent that first-order logic has been
used in above constraint formulations, they have been transformed into pure
MIQP notation using standard methods [50].

4.4 Memory Optimization in Multi-Core Systems (SRAM)

Above discussed optimization concepts focus on single-core SoC devices.
With increasingly complex and consequently more compute- and data-
intensive applications, however, the demand for multi-core devices, also in
the embedded sector, has been steadily increasing in recent years. Unfortu-
nately, multi-core paradigms that are valid in ubiquitous computing are typ-
ically not applicable in embedded system development. Limitations in terms
of energy and power consumption but also system predictability or given
real-time constraints as specially given in the low-power domain, simply re-
quire different design approaches. As a consequence, automated concepts
for constraint-aware Multi-Processor System-on-Chip (MPSoC) design are
increasingly important and in demand. In this context, again the memory sub-
system is an interesting target for optimization with respect to performance,
energy consumption, or power characteristics as closer investigated below.

Concerning the memory architecture, it can be observed that many multi-
core platforms comewithout traditional caches, i.e., without a cache coherence
protocol implemented in hardware. Instead, software-programmable caches
alias scratchpad memories are used. As it is the choice of the system designer
what tomap to these core-localmemories, automated concepts are unavoidable
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in order to evaluate power-performance trade-offs. Besides that, solutions for
single-core devices, as discussed in Chapter 3 or given above in Sections 4.2
and 4.3, are not applicable out-of-the-box.Most and foremost, this is due to the
fact that, other than for single-core, the memory subsystem is shared among
multiple processing units in a multi-core system. Parallel access and possible
congestion because of limited memory ports is the consequence. In the worst
case, this can heavily impact the system performance with negative effects on
the overall energy consumption.

The following memory subsystem optimization concept is based on the
contribution in [131]. It takes characteristics of multi-core systems into ac-
count, presents a solution for application to memory binding β, and discusses
the handling and scheduling γ of memory low-power modes.

4.4.1 Context

The targeted system architecture in this section is, on the one hand, inspired
by commercially availableMulti-Processor System-on-Chip (MPSoC) devices
for industrial use cases [53], and, on the other hand, in line with platforms as
considered in other academic work for embedded multi-core and scratchpad-
based architectures, e.g., in [22] or [40]. According to Figure 4.7, it consists of
a set of processing units, each equipped with a core-local scratchpad memory.
On the global level, a sharedmemory instance is available. The building blocks
of the system are further considered to belong to different frequency domains

Multi-Processor System-on-Chip

CPU CPU1 2

Interconnect

SPM

Shared memory

I/O Interface

SPM

CPU3

SPM

CPU4

SPM

Frequency domain (B)

Frequency 
domain (A)

Figure 4.7 Abstract multi-core target system architecture



4.4 Memory Optimization in Multi-Core Systems (SRAM) 77

as exemplified in the diagram. All memories of the system are accessible by
all processing units. That is, all cores have access to their local SPM and
the global shared memory, but also to the remote scratchpads of other cores.
The number of simultaneous accesses to one memory block is limited by the
number of access ports. Access delays and energy consumption logically vary
with increasing distance and in dependence of assigned frequency domains. In
any case, however, core-local memory access is faster than remote scratchpad
access, which again is faster than global memory access. Every memory is
further expected to support the previously discussed set of operation and
low-power modes as illustrated in Figure 4.4.

When working with a pre-defined hardware platform as in this case, the
allocation α of the memory subsystem is predetermined and consequently
given as input to the optimization flow. The corresponding problem statement
for the above stated setup can be described as follows:

Definition 4.3 (Problem Statement)

Assuming a given MPSoC architecture and memory allocation α, find an
application to memory binding β such that the overall dynamic energy con-
sumption from memory accesses is minimized while user-defined constraints
are met. Further, determine a memory operation mode schedule γ that speci-
fies when to enable/disable which memory operation mode such that the static
power consumption of the memory subsystem is additionally optimized.

4.4.2 Optimization Model

The memory optimization model for multi-core is directly based on the so-
lution for static power consumption optimization as presented in Section 4.3.
This fact implies two things as follows. On the one hand and in relation to
Figure 4.6, the optimization flow is again divided into a first stage for the
determination of β, followed by a second, subsequent step for the identifica-
tion of γ. On the other hand, the list of relevant input parameters as given in
Table 4.2 also holds here. Additional modeling instead is necessary for the
consideration of multiple processing units in a multi-core system. The set of
processing units is therefore added to the plan and denotedU in the following.
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Altogether, previously introduced models for dynamic and static energy
consumption of the memory subsystem also hold in this section. Differences
instead result from the consideration of parallelism, which is mainly visible in
terms of multiple, possibly simultaneous memory accessing units u ∈ U. The
pre-defined system architecture further changes the task of optimization stage
(1) to the determination of β only. This step directly leads to the following
paragraph, where a solution for this mapping problem is presented as ILP.

4.4.3 Binding MILP

The first optimization stage aims at finding an optimal binding of application
profiles to available memories in the givenMPSoC architecture. This includes
both, core-local and global memories. The corresponding formulation is based
on the datasets in Table 4.7 and parameters as listed in Table 4.8. Due to partly
non-integer types it is defined as Mixed-Integer Linear Program (MILP).

Set Description

U Set of processing units
P Set of application profiles
Mα Set of allocated memory instances according to system architecture

Table 4.7 Binding MILP datasets

Parameter Size Description

sp |P | Profile size (required memory space)
nr |P | × |U | Number of read accesses per profile and core
nw |P | × |U | Number of write accesses per profile and core
d |P | Duty cycle of every profile
DM |P | × |P | Dependency matrix of size |P | × |P |
sm |Mα | Memory storage capacity
Er |U | × |Mα | Dynamic read energy per access
tr |U | × |Mα | Memory read access delay per core
Ew |U | × |Mα | Dynamic write energy per access
tr |U | × |Mα | Memory read access delay per core
Ps |Mα | Static memory power consumption

Table 4.8 Binding MILP parameters
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Variable Size Description

β |P | × |Mα | Binary matrix for the profile to memory mapping
E sum |U | Dynamic memory subsystem energy consumption per core
T sum |U | Active time per processing unit

Table 4.9 Binding MILP variables

The set of variables in this optimization model, including the application
binding β, are listed in Table 4.9.

Using these definitions, the following optimization constraints can be de-
fined. Please note that the central optimization variable β is of binary type
according to Equation 4.57.

∀i ∈ [1, |P |] : ∀ j ∈ [1, |Mα |] : βi, j =



1, if Pi bound to Mα
j

0, otherwise
(4.57)

The constraint Equation 4.58 specifies that the footprint of all profiles that
are mapped to a memory instance shall be less than or equal to its storage
capacity.

∀ j ∈ [1, |Mα |] :
|P |∑
i=1

βi, j · s
p
i <= smj (4.58)

Further, each function alias code profile p ∈ Pc with t(p) = c shall be
assigned to at least one memory component (cf. Equation 4.59).

∀i ∈ [1, |Pc |] :
|Mα |∑
j=1

βi, j >= 1 (4.59)

To ensure data coherency, each data profile (r/w data) p ∈ Pd with t(p) = d
shall be mapped to one and only one memory instance (cf. Equation 4.60).

∀i ∈ [1, |Pd |] :
|Mα |∑
j=1

βi, j = 1 (4.60)

The following two constraints define the rules for the computation of con-
sumed energy (cf. Equation 4.61) and time (cf. Equation 4.62) per processing
unit as resulting from interaction with the memory subsystem.
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∀k ∈ [1, |U |] : Esum
k >=

|P |∑
i=1

|Mα |∑
j=1

βi, j ·
(
(nr

i,k · E
r
k, j ) + (nw

i,k · E
w
k, j )

)
(4.61)

∀k ∈ [1, |U |] : T sum
k >=

|P |∑
i=1

|Mα |∑
j=1

βi, j ·
(
(nr

i,k · t
r
k, j ) + (nw

i,k · t
w
k, j )

)
(4.62)

The final optimization goal is formulated according to Equation 4.63.

minimize *.
,

|U |∑
k=1

Esum
k

+/
-

(4.63)

Alternatively, this optimization model can also be used to optimize the
memory access performance by replacing Esum withTsum in Equation 4.63. In
any case, implemented and solved as integer linear program, this optimization
model provides an application-specific optimal solution for β. The complete
formulation of this optimization in AMPL syntax is given in Appendix C.

4.4.4 Operation Mode Scheduling

The second optimization stage for MPSoC deals, similar to the single-core
case as described in Section 4.3.5, with the scheduling of memory operation
modes. The main difference in a multi-core system, the existence of multiple
processing units u ∈ U , however, is basically irrelevant for the determination
of γ. This is due to the fact that this optimization step deals with the set of
code profiles Pc , on the one hand, and the set of allocated memory instances
Mα , on the other hand. Combined with the above introduced MPSoC system
architecture (cf. Figure 4.7), where all cores of the system are able to access all
memories, there is no impact on the optimization model from having multiple
processing units. The set of allocated memory instances is predetermined and
the complete address range is visible to all processing units. The set Pc simply
contains all code profiles of the investigated multi-core application. Hence,
the assignment of configuration vectors to code profiles can be regarded as
independent from set and number of processing units. Altogether, power mode
scheduling and corresponding MIQP formulation for single-core SoC devices
(cf. Section 4.3.5) can be applied unchanged to MPSoC platforms as well.
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4.5 Dynamic Energy Optimization (STT-RAM)

The last section in this chapter is attributed to an optimization concept for
memory subsystems that consist of STT-RAMblocks. The proposedmethod is
built on optimization potential as provided by the following two characteristics
that can be observed for this memory technology. First, the STT-RAM write
operation energy/latency trade-off according to Section 2.3.2 is an important
aspect to consider. Second, and similar to SRAMmemories, the impact of re-
quired memory access logic leads to increasing dynamic energy consumption
with increasing memory size. A corresponding optimization method that ex-
ploits this fact in SRAMmemory subsystems is described in Section 4.2. The
determination of an energy-optimal set of STT-RAM memories, in any case,
involves aspects that again can be classified as allocation and binding problem.
That is to say, an allocation of memory blocks with different size matters in
terms of read and write energy consumption, especially when combined with
application segment binding and the consideration of varying memory access
frequencies. The assignment of different operation voltage levels to individual
memory blocks is another aspect that affects operation frequency of the mem-
ory subsystem and thus the performance of the overall system. That means, a
higher system operation frequency can be traded in for a less energy-efficient
design, depending on the specified system constraints. On the example of the
write energy/latency trade-off diagram as depicted in Figure 2.21 for a 4MiB
STT-RAMmemory in 45 nm node, the maximum operation frequency ranges
from 48MHz to 57MHz depending on the operation mode. Analysis of this
write operation impact for other memory sizes further reveals an even wider
range of design possibilities that extend from frequencies around 40MHz for
megabyte memories to over 100MHz for smaller memories with a storage

System-on-Chip

CPU

In
te

rc
on

ne
ct STT-MEM1

STT-MEM2
STT-MEM3

Address space

I/O Interface

Figure 4.8 Abstract target system architecture
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capacity of some kilobyte. Logically, energy consumption varies at the same
time, which explains, why the determination of a good or even optimal solu-
tion in this design space is not trivial. The below optimization method deals
with both, the impact of memory size but also the effects of different operation
voltage levels in STT-RAM memories and describes a possible solution for
the simultaneous consideration of those aspects.

4.5.1 Context

Again focusing on single-core SoC platforms, this optimization methods eval-
uates the design space that is spanned by memory subsystems with multiple
STT-RAMmemory blocks. The considered system architecture in this section
is depicted in Figure 4.8. Similar to the targeted architecture in Section 4.2,
memory organization is flat. Distinct memory operation modes with different
write characteristics are characterized in terms of an operation voltage level
and statically determined. That is to say, every memory block is assigned one
and only one operation mode, i.e., a run-time adjustment of voltage levels is
not part of the following optimization model.

Targeting this system architecture, an on-chip STT-RAM memory subsys-
tem shall be determined at design-time according to the following problem
statement:

Definition 4.4 (Problem Statement)

Find an allocation α of memory instances with a specific operation voltage
level each and further, determine a binding β that assigns every application
profile p ∈ P to exactly one memory resource m ∈ M such that α and β yield
the lowest energy consumption of all possible allocations and mappings while
meeting operation frequency and user-defined constraints.

4.5.2 Optimization Model

A complete list of all parameters that are relevant for the following opti-
mization model is given in Table 4.10. Despite common information about
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Parameter Description Unit

p
r
o
f
il
e sp Size of the application profile byte

nr Number of reads to this profile in period T
nw Number of writes to this profile in period T

m
e
m
o
r
y sm Memory storage capacity byte

Er Dynamic energy consumption per read access J
Ps Static memory power consumption W

o
p
m
o
d
e V Memory supply voltage in this mode V

Ew Dynamic energy per write and mode J
tw Write operation latency per mode s
f max Corresponding maximum operation frequency Hz

s
y
s
te

m N The application period in number of cycles

Table 4.10 Relevant input parameters for dynamic energy optimization in STT-RAM

memory access statistics and application profiles as also used for previously
discussed SRAM optimization models, special attention is to be paid to the
operation mode row. In contrast to the low-power operation modes in SRAM,
an operation mode in STT-RAM describes an operation voltage level. Every
mode is characterized by varying write energy consumption and write oper-
ation latency per access. The maximum operation frequency parameter per
memory resource and mode is directly related to the latency tw and computed
according to Equation 4.64.

f w =
⌊
1

tw

⌋
(4.64)

The system period T consequently depends on the determined memory allo-
cation and operation mode selection as the memory instance with the lowest
value for f w bounds the memory subsystem operation frequency. For that
reason, the application period is given as N in number of cycles, whereas the
actual period in a unit of time is only computable after optimization.

As mentioned above, operation modes are statically assigned to memory
instances, i.e., every memory is always operated at one and only one voltage
level V , which is either implemented in hardware or adjusted by software
at system startup. This way, dedicated handling of operation modes can be
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avoided in the optimization model. Instead, the question of which mode to
apply to which memory can be captured as part of the allocation problem
by replicating every memory m ∈ M by the number of supported operation
modes. This obviously enlarges the size of M and thus the number of design
choices, however, keeps the optimization problem practicable as shown below.

The total energy consumption of the memory subsystem in period T is
modeled by a static and a dynamic part according to Equation 4.65.

ET = Edyn + Estat (4.65)

The static part Estat is defined in Equation 4.67. It depends on the set of
allocated memories Mα . Please note again that every element m ∈ Mα is
not only characterized by its size, read energy, and static power consumption
but also by an operation mode or voltage level respectively with its connected
write energy/latency and operation frequency. The STT-RAM instance in the
set of allocated memories with the lowest maximum operation frequency
is considered as limiting factor in this regard. The period T is accordingly
computed as given in Equation 4.66.

T = N · min |M
α |

j=1




1
f wj




(4.66)

Estat = T ·
|Mα |∑
j=1

Ps
j (4.67)

The dynamic part Edyn is given in Equation 4.68. It depends on the binding
β, which links the set of allocated memories Mα with all application profiles.
As mentioned above, the dynamic energy consumption per write depends on
memory instance and voltage operation mode.

Edyn =

|P |∑
i=1

nr
i · E

r (βi ) + nw
i · E

w (βi ) (4.68)

4.5.3 Combined Allocation and Binding MIQP

The following MIQP is based on two datasets. That is, on the one hand, the
set of application profiles P. On the other hand, the set of all combinations
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Parameter Size Description

sp |P | Profile size (required memory space)
nr |P | Number of read accesses per profile
nw |P | Number of write accesses per profile
sm |M | Memory storage capacity
Er |M | Dynamic read energy per access
Ew |M | Dynamic write energy per access (in this mode)
Ps |M | Static memory power consumption
f max |M | Maximum supported memory operation frequency

Table 4.11 STT-RAM allocation and binding MIQP parameters

between memory types and corresponding write operation modes, captured
by M . That is, every element m ∈ M describes a memory resource that is
operated at a specific operation voltage level.

The collection of all required parameters that characterize the elements
in these datasets are listed in Table 4.11. Besides those parameters, the total
number of cycles per period N according to Table 4.10 is needed as input.
User-defined constraints include memsmax , denoting the maximum allowed
number of allocated memories. The constraint f reqmin describes the mini-
mum acceptable memory subsystem operation frequency. The variables in the
following MIQP formulation are listed in Table 4.12.

For the set of constraints, there are several similarities with the combined al-
location and bindingMIQP for SRAMmemories as discussed in Section 4.2.3:

• Allocation α and binding β are of binary type. That means, multiple
instances of the same memory type need to be provided as part of the input
data set for allocation.

• memsmax represents a user-defined upper bound for the maximum number
of allowed memory instances (cf. Equation 4.12).

Variable Size Description

α |M | Allocated memory instances (binary vector)
β |P | × |M | Binary matrix for the profile to memory mapping
E sum |M | Total memory subsystem energy consumption in period T

Table 4.12 STT-RAM allocation and binding MIQP variables
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• For the binding β, every profile shall be bound to one and only one memory
instance (cf. Equation 4.15).

• Every allocated memory instance shall be large enough in order to accom-
modate all profiles that are mapped it (cf. Equation 4.16).

Beyond that and with respect to the user-defined frequency constraint
f reqmin , Equation 4.69 shall hold.

∀i ∈ [1, |P |] :
|M |∑
j=1

βi, j · f max
j ≥ f reqmin (4.69)

The individual energy consumption per memory resource as based on
allocation and binding is computed according to Equation 4.70.

∀ j ∈ [1, |M |] : Esum
j ≥ α j · *

,

Ps
j

f max
j

· N+
-
+

|P |∑
i=1

βi, j ·
(
(nr

i · E
r
j ) + (nw

i · E
w
j )

)
(4.70)

The optimization goal defines the minimization of the total energy con-
sumption as specified in Equation 4.71.

minimize *.
,

|M |∑
j=1

Esum
j

+/
-

(4.71)

The complete formulation of this optimization method in AMPL syntax is
given in Appendix D.
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Chapter 5
Code Modification and Generation

After successful optimization of the memory subsystem, e.g., by using one of
the above presentedmethods (cf. Chapter 4), one step remains for theworkflow
to be complete. That is, the integration of an obtained implementation (α, β, γ)
(cf. Section 2.1.5) into the System-on-Chip (SoC) design at hand.

Recalling the discussion of related work in Chapter 3, hardware- and
software-based solutions can be distinguished for this purpose. As to pro-
vide a way that enables transparent integration, general applicability, and
support for all presented memory optimization methods, the proposed solu-
tion in this chapter is based on code modification and generation steps. This
software-centric approach is the preferred way because only the allocation of
memory instances α actually affects the hardware design directly. Binding of
application to memory β instead can be perfectly realized on the software
level only. Same holds for the handling of memory operation modes γ, as long
as the memory architecture provides an interface for the software-based con-
figuration of operation modes for example. This way, access to the hardware
design is not necessarily needed; modifications and expensive application-
specific hardware extensions can be avoided at all. Using code generation
further allows some of the obtained optimization concepts even to be applied
to commercially available off-the-shelf embedded devices, which is definitely
the way to go with increasing complexity of hardware in general and a trend
towards multi-core devices in particular.

Starting from target application andmemory optimization result, Figure 5.1
depicts the workflow of the proposed post-optimization code modification
and generation tool. It connects directly to the optimization flow according
to Figure 4.1 and finally generates an application binary that contains all
modifications as specified by the optimization step. The presented solution
is designed as extension to the compiler backend of LLVM, a modular and
open-source compiler framework [72] [73]. This makes it, according to the
terminology of Angiolini et al. [3] a compiler-assisted technique.

Next, the basic concept of the backend tool is introduced, followed by the
discussion of different use cases, each of which describes the application of
the tool to one of the memory optimization methods as presented in Chapter 4.
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5.1 Basic Concept

Code generation or insertion in general can be applied at different stages
of a cross-compilation flow. Depending on this decision, a different code
representation is targeted, which goes along with certain pros and cons in
each case. Figure 5.2 depicts a typical cross-compilation flow.

The first option to do code modifications is to work directly on the target
application source code. One benefit of this approach is human readability
of the source code, typically written in C. Further, applied changes on this
level are platform-independent as only afterwards the target-specific cross-
compilation tool chain is selected and applied. While passing the compilation
pipeline, the source code runs through various representations. First, most
compilers transform the input to an Intermediate Representation (IR). On this
level, readability is still given but already decreased; platform-independency
is mostly maintained, e.g., in case of the LLVM IR (cf. [79], p. 105 ff.). This
changes after the application of compiler optimizations and the emission of
the assembly code. The assembler stage then transforms the assembler code to
a machine-readable object file format. With additional linker information and
possibly further pre-compiled code in form of libraries, the generated object
file is finally linked to the application binary.

At first glance, it seems reasonable to apply any form of code generation or
modification respectively to the earliest possible stage and code representation
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Figure 5.2 Typical cross-compilation tool flow

form. However, there are some pitfalls that need to be considered. Due to the
fact that embedded devices are often highly constrained, processing hardware
is often kept minimal, i.e., hardware support for a large set of operations is not
given and therefore emulated bymeans of software. For that reason, embedded
software is highly dependent on library code, e.g., for otherwise unsupported
arithmetic instructions. This library code can, depending on the application,
make up for a large share of the overall system execution time and consequently
matters in terms of system andmemory optimization respectively. However, as
illustrated in Figure 5.2, libraries are commonly not available in source code
format and added to the compilation flow as input to the linker. This raises the
question of how to enable code generation that covers both, application code
as defined by the user, but also library code that is part of the tool chain or
provided by some other supplier.

In order to address this problem, the following solution is likewise able
to deal with user and library code. Due to the fact that libraries are typically
not available in a general-purpose language but specific to the target instruc-
tion set, the implementation of the proposed tool is automatically bound to
a target-specific code representation of limited human-readable form for the
application of modifications. Technically, the functionality for the implemen-
tation of memory optimization results on the software level is added as specif-
ically designed extension to the LLVMbackend, more detailed to the so-called
low-level compiler tool llc. Following the proposed workflow as depicted in
Figure 5.1, the application binary, which initially served as input for system
simulation and optimization, is parsed based on symbol table and object dump
in a first step. This includes reversing themachine code back to a target-specific
LLVM-internal code representation. This representation consists of several hi-
erarchical classes including MachineFunction, MachineBasicBlock, and
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MachineInstr [77]. After this step, code modifications and insertions can
be applied, depending on the input from the previously executed optimization
stage. Finally, existing functionality of llc is used to emit an assembly file
that contains user and library code as well as all applied modifications and
inserted code snippets. Next, each step of this three-stage code generation
concept is explained in detail. Please note that except for the last stage, the
assembly emission, all steps and related functionality is completely based on
own implementations that is added to llc in form of passes.

5.1.1 Binary Parsing

With respect to the compilation flow as depicted in Figure 5.2, the LLVM
backend constitutes the last part of the compiler block that finally emits the
application assembly code. Its pipeline structure is illustrated in Figure 5.3.

Expected input to the backend is a LLVM intermediate representation file
as usually provided by the frontend of the compiler. In the original flow,
this file is parsed and afterwards passed along the depicted pipeline. The
different phases of the backend are highlighted in gray. Between these stages,
so-called passes are executed on the current representation of the compilation
data. Every pass stage contains pre-defined optimizations but also allows for
the integration of own functionality into the backend flow. That is to say,
by implementing a set of backend passes that follow the modular design of
LLVM, the intended functionality for target-specific binary parsing or code
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Figure 5.3 LLVM backend pipeline (based on [79], p.134)
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modification and insertion can be hooked into the compilation backend in a
straightforward way.

Following the above reasoning, the llc tool is re-executed, however, not
working with input as usually provided by the LLVM frontend but using an
existing application binary as input instead. For this, llc is invoked with a
dummy IR file. Besides that, the added code generation pass is activated,
taking the file path of the original application binary as parameter. In fact,
this pass is divided into several sub-passes that are hooked into the pipeline
at different positions. All following steps are specifically designed extensions
and next explained in more detail, sorted by their order of appearance.

CodeGenInitPass

This step is added to pass stage (1) (cf. Figure 5.3). It is responsible for reading
the given application binary ELF file into an internal class-based structure
of the LLVM backend. This task is subdivided in five steps or functions
respectively as shown in Listing 5.1.

Listing 5.1 Code generation initialization pass

/ / pa r s e t h e symbol t a b l e o f t h e g i v e n ELF f i l e
parseSymTable ( e l f F i l e ) ;
/ / pa r s e t h e comp l e t e ELF f i l e ( as −D dump )
p a r s e E l f F i l e ( e l f F i l e ) ;
/ / f i n d and i d e n t i f y a l l c o n s t a n t e l emen t s
i d e n t i f yC o n s tD a t a ( ) ;
/ / check da ta b l o c k s f o r p o i n t e r s
i d e n t i f y P t r B l o c k s ( ) ;
/ / f i n a l hand l i n g and a s s i gnmen t t o c o n s t b l o c k
f i n a l i z e C o n s t D a t a ( ) ;

Parsing the symbol table is based on the output of an object dump tool.
In case of the ARMv6-M system architecture [6], which is used as the run-
ning example in the following, this is calling arm-none-eabi-objdump -t
binary-file. From this header section data, all relevant symbols for func-
tions, global data, heap, and stack, are collected in a first step by terms of
name, address range, and type.

Afterwards, a complete disassembly is generated, for example by calling:
arm-none-eabi-objdump -D binary-file. This dump is parsed accord-
ing to the hierarchical structure of functions that contain basic blocks, which in
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turn contain individual instructions. This step completes the raw structure of
the application as previously extracted from the symbol table. Further, every
kind of direct branch instruction is filed by means of source and destination.
Global static data blocks are also parsed in this step.

The third stage in this initialization pass explicitly searches for constant
data as located within code sections. For the exemplarily targeted ARMv6-M
architecture, this includes constants, static loop bounds, blocks thereof, branch
symbols, branch offsets, or jump tables.

Some of these constants and data blocks further represent a possible pointer
block or might contain pointers that need to be identified. For this, potential
pointer targets, i.e., functions, basic blocks and static data are matched ac-
cordingly, based on their previously determined address. In this connection, it
is important to note that the reconstruction of various, especially indirect ad-
dressing modes is only possible through detailed analysis of the target-specific
LLVMbackend implementation. In other words, detailed investigation of code
conversion steps for different pointer-based expressions facilitates their correct
interpretation during the binary parsing step. As a consequence, only binaries
that originate from the LLVM tool chain can be safely processed in this re-
construction step. Experiments with binaries as generated by a cross-compiler
from the GNU Compiler Collection (GCC) confirm this point. Particularly
expressions with pointer-based addressing and offsets lead to different assem-
bly code in GCC as compared to the output of LLVM. For example in case of
pointer-based function calls, LLVM makes use of jump tables. Even though
functionally equivalent, GCC uses hard-coded offsets instead, which can not
be properly identified by the above presented binary parsing.

The last step in binary parsing deals with a final inspection of constant
data blocks and orders them into the hierarchical data structure. Pointers are
re-checked and assigned to their corresponding LLVM backend data structure.

CodeGenFctPass

This pass is also hooked into pass stage (1) (cf. Figure 5.3) and directly
follows the previously discussed initialization pass. It is implemented as so-
called ModulePass and therefore executed on a compilation module, the
LLVM data structure that encapsulates everything related to one backend
run. Once parsed, the content of the application binary needs to be properly
inserted into this compilation module as to allow its further processing along
the workflow of the backend pipeline. As mentioned before, the invocation
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of llc includes a dummy intermediate representation file. Besides some target
specific information, this file contains nothing but a single function stub. For
all identified functions of the parsed embedded application, the function stub
is duplicated, renamed accordingly, and finally, after handling of all functions,
the dummy function is removed from the function list. At this point in the
pipeline, however, no content is added to any created MachineFunction in
form of basic blocks or even instructions yet. This is different for global data
blocks and function pointer tables. Corresponding blocks are instantiated,
inserted into the Module and directly filled with raw content in case of data
blocks or function labels in case of a function pointer tables.

With this basic but, for the part of functions, empty data set, the backend
pipeline is passed until pass stage (4). Please note that all main phases and
passes in stage (2) and (3) as illustrated in Figure 5.3 work on an empty set.
This, however, is OK as the complete code as parsed from the application
binary has passed this pipeline before and therefore reflects all treatments and
modifications of these steps already.

CodeGenBlockPass

At the end of pass stage (4), the insertion the remaining content, consist-
ing of basic blocks, instructions, and constant data is started. In form of a
MachineFunctionPass, this step iterates over all previously created func-
tion stubs. Doing this, the set of MachineBasicBlock instances is added to
the corresponding function in correct order. This also includes bidirectional
linking of blocks as predecessor and successor respectively but also in case
of a connection via direct branch. Please note that the identification of basic
blocks and their relation to each other is based on a complete list of branch
and jump targets and already determined in the binary parsing step.

CodeGenInstrPass

In this last step of the binary parsing phase, the remaining content is added to
the Module and its sub-components. Targeting the ARMv6-M instruction set,
this includes the following data:

• Constant data (blocks)
• Symbols (labels)
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• Symbol offsets
• Inline jump tables
• Absolute jump tables

Finally, the still missing instructions are inserted one by one as MachineInstr
instances. This includes instantiation, appending the instruction to the corre-
sponding MachineBasicBlock, parameterization with the right set of regis-
ters and condition codes, and if applicable, linking to one of the above listed
data instances.

This point marks a state at which the complete application is loaded into the
llc data structures, just as in an ordinary cross-compilation run (cf. Figure 5.2).
The main difference, however, is the fact that this time also library contents
are included. On this basis, the code generation flow can be further executed
as follows.

At this point, thank you to Julius Hiller, who has contributed to the im-
plementation of this binary parsing step [46].

5.1.2 Code Insertion

In order to modify the application code, additional passes can now be
added to pass stage (4). For this, either a MachineFunctionPass or a
MachineInstrPass can be used. The former exemplarily allows the insertion
of code snippets or even complete MachineBasicBlocks into a function. The
latter enables the fine-grained modification of single instructions. This can for
instance be used to filter out certain branches in order to apply a redirect. Also
class attributes can be used for the implementation of modifications. This
allows for example to alter the label of a MachineFunction.

5.1.3 Assembly Code Emission

As last step, the modified code is lowered once again to the target assembly
level and finally emitted. Due to the neat integration of this tool with the LLVM
backend flow, the assembly code generation can completely and without fur-
ther modifications be reused. Nevertheless, if needed, some late modifications
can also be added for consideration in this stage, e.g., the adjustment of labels.
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The assembly code as provided by llc can then be further processed to
object code by an assembler. Subsequent linking yields a binary that eventually
reflects all applied changes as based on the memory optimization results.

5.2 Automated Code and Data Placement

The first use case in this section discusses the implementation of a result from
the dynamic energy optimizationmethod in Section 4.2 into an embedded soft-
ware application at hand. This includes the implementation of a determined
application-specific memory allocation α and the associated application pro-
file to memory instance binding β. As the allocation part affects the memory
architecture, this memory optimization method is only applicable in a hard-
ware/software co-design environment. The allocation α accordingly triggers
hardware modifications, for the binding β instead, the proposed backend tool
can be used as follows.

While the actual placement of code and data to address ranges is performed
by the linker, most assembly dialects provide some directive that enables the
guided adjustment thereof. In case of the running example ARM platform,
this directive is named .section. Prepending individual function or data
blocks in the assembly code with a corresponding line enables the desired
fine-grained placement of address ranges to memory instances.

From the implementation perspective, this feature is realized asModulePass
and appended to pass stage (1), directly following the CodeGenFctPass (cf.
Section 5.1.1). In first place, the memory optimization result is parsed, which
reflects the binding and thus the placement of address ranges to memory
sections. Afterwards, the LLVM setSectionPrefix() function is used for
every Function instance; the LLVM addAttribute() interface for every
GlobalVariable and read-only data instance as tomake a note for the section
prefix. This prefix attribute is respected by the backend later on and finally
printed in the assembly emission stage. On the example of the ARMv6-M ar-
chitecture and its libc helper function for a signed (integer) division __divsi3,
binding of this code profile to memory section .text2 results in the emitted
assembly code as depicted in Listing 5.2. Subsequent processing of this target-
specific assembly code in combination with a matching linker script ensures
that all functions with prefix .text2 are finally placed in the second memory
instance. Same holds for data blocks that use the prefix .data in combina-
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tion with the number of the assigned memory block. This way, the obtained
application binary finally implements the correct code and data placement.

Listing 5.2 Assembly code after section placement pass

. s e c t i o n . t e x t 2 , " ax " ,% p r o g b i t s

. weak _ _ d i v s i 3

. p 2 a l i g n 1

. t yp e __d i v s i 3 ,% f u n c t i o n

. code 16

. thumb_func
_ _ d i v s i 3 :

. f n s t a r t
@ %bb . 0 :

. . .

5.3 Operation Mode Schedule Integration

The second use case as described in this section discusses the transparent in-
tegration of a memory operation mode schedule γ or the handling of memory
operation modes by means of software respectively. For the part of allocation
and binding that are also provided by the corresponding two-stage memory
optimization method in Section 4.3, the previously discussed concept in Sec-
tion 5.2 can be applied.

In order to implement a memory operation mode switching schedule in
software, the memory subsystem necessarily has to provide a suitable inter-
face. One possibility for that is using a so-called configuration register, a

MEM1
MEM2

MEM3
Memory subsystem

Bank1

Bank2

MCR 1 1 1 0 1 0 0... 1
0123456731 30 29 28

Figure 5.4 Exemplary memory subsystem with configuration register
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commonly adopted concept in SoC devices for the configuration of hardware
components at system startup, for example the setup of timers, prescalers,
or clock dividers. Applied to the memory subsystem and the set of opera-
tion modes O = {ACT, LS, DS} (cf. Figure 4.4), two bits per memory are
sufficient for a binary encoding of this information. In the exemplary ARM
platform, a 32-bit architecture, one register allows accordingly to manage the
configuration of up to 16 memory blocks, which is considered a sufficiently
large number. The corresponding memory architecture with Memory Config-
uration Register (MCR) is illustrated in Figure 5.4. With ACT = 00, LS = 01,
and DS = 11, the depicted example represents the memory configuration
vector c ∈ C∗ = (ACT, LS, DS, DS) for the memory blocks MEM1, MEM2,
MEM31, and MEM32.

Now, to realize an operation mode schedule γ as provided at the granu-
larity of functions, the prologue of every function is prepended by a short
code snippet, which handles the operation mode switching. Instead of directly
modifying the individual functions for that purpose, a duplicate stub is in-
serted for every function during the execution of the CodeGenFctPass (cf.
Section 5.1.1). This duplicate is appended with a short label, for example
_impl. An additional MachineFunctionPass that is added to pass stage (4)
is then used to insert the operation mode switching code snippets into the du-
plicate functions. To ensure that this code is executed as additional prologue
in front of the original function code, the assembly code emission stage of
LLVM is slightly modified as to exchange duplicate (e.g. __divsi3_impl)
and original function labels (e.g. __divsi3) during assembly code printing
(cf. Figure 5.5). That way, every function call (e.g. to __divsi3) lands on the
label of the inserted code snippet.

__divsi3
  prologue
  ...

__divsi3_impl
  prologue
  ...

__divsi3
  
  inserted
  code

main
  
  branch
  ...

main
  
  branch
  ...

Figure 5.5 Function call example - plain (left), modified (right)
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Ahuge benefit of this solution originates from the fact that while passing the
stages of llc, direct recursion can be detected and properly handled by skipping
the inserted code snippet, i.e., in directly jumping to labelntbl_bitcnt_impl
as illustrated by the short excerpt for this case in Listing 5.3. Same holds for
jumps between functions that share the same configuration vector. This allows
to reduce the introduced code overhead and its negative effect on system
execution time to the minimum.

Listing 5.3 Efficient handling of direct recursion

n t b l _ b i t c n t _ i m p l :
. f n s t a r t

@ %bb . 0 :
push { r4 , r6 , r7 , l r }
. . .
beq . LBB23_2

@ %bb . 1 :
b l n t b l _ b i t c n t _ i m p l
. . .

Concerning the actual inserted code that is added to the duplicate functions
for operation mode switching, it is important to note that SRAMmemories are
not accessible when operated in a low-power mode (e.g. light sleep (LS) or
deep sleep (DS)). As a consequence and in terms of a required re-activation
from one of those low-power modes, it is problematic if corresponding code is
located in the same, possibly still sleeping memory block.With this restriction
in mind, two conceivable solutions are presented next. The first concept in
Section 5.3.1 requires partial hardware support, the second proposed solution
in Section 5.3.2 instead is purely software-based.

5.3.1 Memory Activation-on-Access

Activation-on-access describes a hardware feature that automatically triggers
a change to the active operation mode (ACT ), whenever a read or write takes
place during a low-power mode period. This can for example be realized
through extra circuitry and based on the detection of an edge on a read-
or write-enable signal. Accordingly, every access to a still sleeping memory
block is served without exception due to this automatic activation scheme.
The default configuration scheme, however, remains software-based via the
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Memory Configuration Register (MCR). Exemplary operation mode switch-
ing code for this purpose and on the example of the ARMv6-M architecture
is depicted for the function __divsi3 in Listing 5.4.

Listing 5.4 Inserted operation mode switching code for the activation-on-access case

_ _ d i v s i 3 :
. f n s t a r t

@ %bb . 0 :
push { r5 , r6 }
l d r r5 , . LCPI14_0 @ Load a d d r e s s o f MCR
l d r r6 , . LCPI14_1 @ Load memory c o n f i g u r a t i o n v e c t o r
s t r r6 , [ r5 ]
pop { r5 , r6 }
b __d i v s i 3 _ imp l @ To o r i g i n a l f u n c t i o n

First, the configuration vector as specific to that function is loaded from
label .LCPI14_1 and stored into the memory-mapped configuration register
(address stored at label .LCPI14_0). Afterwards a direct branch to the original
function (now labeled __divsi3_impl) is executed. This way, a determined
memory operation mode schedule γ can be integrated on the software level.

The activation-on-access feature becomes relevant as both, activation code
(duplicate function) as well as original function are located in the same mem-
ory block. This is problematic whenever a change of thememory configuration
register is indicated, e.g., due to a function call or return, but thememory block
of the targeted code profile is still operated in a low-power mode. In short, any
transition to a sleeping memory makes the above described hardware feature
necessary as fallback plan. It ensures the availability of the required memory
block in time, however, causes a temporal deviation of configuration register
and actual memory configuration. In case of a function call, the operation
mode switching code in Listing 5.4 is executed directly afterwards, which
causes the prompt correction of the MCR. On the return path, e.g., via the
link register, the inserted function prologue and thus the adjustment of the
configuration register is not re-executed, which will cause a longer deviation
of configuration register and actual memory configuration. Still, the effect
from this is expected to be low as highly related code profiles, i.e., functions
with frequent mutual branches, are most likely grouped together and assigned
the same or at least a similar memory configuration vector (cf. Section 4.3).
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5.3.2 Memory Configuration Handling via Stack

If an automated activation-on-access feature is not available or supported by
the memory subsystem, the responsibility of keeping the MCR correct and all
required memory blocks in active operation mode at any time must be handled
in software.

The proposed solution is realized via the stack, similar to register context
saving and restoring and based on two pillars. First, an always-on memory in-
stance that contains all duplicate functions is added to the memory subsystem.
This way, all operation mode switching code is constantly accessible, how-
ever, at the cost of an extra, albeit small memory. The inserted code snippet
per function in this case is illustrated in Listing 5.5, again on the example of
__divsi3. In contrast to the above solution (cf. Listing 5.4), only memory
configuration vector and the target address of the original function need to be
loaded, similar to the access of a lookup table.

Listing 5.5 Inserted operation mode switching code for the stack-based case

_ _ d i v s i 3 :
. f n s t a r t

@ %bb . 0 :
push { r5 , r6 , l r }
l d r r5 , . LCPI14_0 @ Load memory c o n f i g u r a t i o n v e c t o r
l d r r6 , . LCPI14_1 @ Load a d d r e s s o f o r i g i n a l f u n c t i o n
b l lpmJump @ To jump h a n d l e r

The second pillar is an extra introduced jump handler function. That means,
besides the already discussed duplicate functions, one additional function is
inserted to the compilation module via the backend tool. As illustrated in
Listing 5.4, any branch or jump instruction that leads to the address range of
another function is redirected via this jump handler. Here, the correct handling
of the MCR is implemented in software by setting and restoring its correct
value. An exemplary implementation of this function, again for the ARMv6-
M architecture, is given in Listing 5.6, where the address of the MCR is
stored at label .LCPI115_0. Content of registers r5 and r6 depends on the
previously executed code snippet, which ensures the correct parameterization
of lpmJump. Please note that on function return the jump handler is passed
again, what allows to restore the MCR via the stack to its earlier content.
Hence, the state of memory subsystem is always in line with the operation
mode schedule γ.
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Listing 5.6 Branch and jump handler function

lpmJump :
. f n s t a r t

@ %bb . 0 :
push { r0 , r1 } @ S t o r e c o n t e n t o f working r e g i s t e r s
l d r r0 , . LCPI115_0 @ Load a d d r e s s o f MCR
l d r r1 , [ r0 ] @ Load c u r r e n t MCR v e c t o r
s t r r5 , [ r0 ] @ Se t ( new ) v e c t o r o f t a r g e t f u n c t i o n
mov r5 , r1 @ Move o ld MCR va l u e
pop { r0 , r1 } @ Re s t o r e working r e g i s t e r s
push { r5 } @ Push o ld MCR va l u e t o t h e s t a c k
b lx r6 @ Execu te jump / b r anch . . .
pop { r5 } @ Get o l d MCR va l u e from s t a c k
l d r r6 , . LCPI115_0 @ Load a d d r e s s o f MCR
s t r r5 , [ r6 ] @ Re s t o r e c o n t e n t o f MCR
pop { r5 , r6 , pc } @ Retu rn

5.4 Adjustments for Multi-Core Systems

With respect to the memory optimization concept for multi-core according
to Section 4.4, allocation and binding can be implemented the same way as
described for the single-core case (cf. Section 5.2). For a software-controlled
memory operation mode control mechanism instead, multiple processing ele-
mentsmake a difference that needs to be considered. One possible solution that
extends the Memory Configuration Register (MCR) concept in Section 5.3 is
illustrated in Figure 5.6. Each processing unit is accordingly equipped with
a core-local MCR. This register contains the individual configuration of the

PU #1

PU #2

MCR

MCR
Memory subsystem

MCR&
PU #N

MCR

.

..

Figure 5.6 Memory subsystem configuration register concept for multi-core
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memory subsystem as required by every core. Since the memory subsystem is
shared among multiple processing units, a simple bit-wise AND is used as to
determine the global memory subsystem configuration. Active is considered
dominant in this regard and again encoded by ACT = 00 (cf. Figure 5.4).
Light and deep sleep are accordingly defined by LS = 01, and DS = 11.

5.5 Write Mode Handling in STT-RAM

The different write operation modes in STT-RAM as provided by the opti-
mization step (cf. Section 4.5) are completely static and therefore not adjusted
at run-time. For that reason, a fixed implementation of the voltage level per
memory block can either be realized on the hardware level if applicable. Or,
corresponding configuration code can be added to the system startup code if
a matching interface, e.g., a MCR is available for that purpose. Code modifi-
cation or generation steps are not required in this case.
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Chapter 6
Evaluation

This chapter discusses the systematic experimental evaluation of all memory
optimization concepts as presented in Chapter 4 of this thesis. It is structured
as follows. First, Section 6.1 lists general information about utilized platforms
and tools. Next, Sections 6.2 and 6.3 discuss experimental results for the
presented dynamic energy and static power optimization methods and their
variations. Memory optimization results for multi-core systems are provided
in Section 6.4. Optimization results for STT-RAMare discussed in Section 6.5.
Which optimization method from Chapter 4 applies in each case is stated in
the introduction of the individual sections.

6.1 Experimental Setup and Tools

Platforms

The simulation and optimization host machine runs Gentoo Linux, is equipped
with a x86_64 Intel Xeon CPU E5-2660 v2 (10 cores @ 2.20 GHz), and has
128 GB of RAM as well as 256 GB of SSD swap space.

Main target evaluation platform is the ARMv6-M architecture [6] as com-
monly implemented by ARM Cortex-M0, ARM Cortex-M0+, and ARM
Cortex-M1 processors.

Benchmark Applications

Test software for all experiments is taken from representative and well-
established embedded benchmark collections. This includes the EEMBC
benchmark suite [31] and the MiBench benchmark suite [43]. The evalu-
ated use cases cover applications from the most relevant embedded comput-
ing fields, including automotive and industrial control, telecommunication,
network, and security. The individual examples are characterized by varying
memory access behavior as to enable a meaningful evaluation.
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Memory Simulation

Unfortunately, intellectual property protectionmakes it difficult to get industrial-
grade memory figures. Black box modeling of memory properties using non-
linear regression [116] is one alternative to cope with this lack of available
numbers. The tool CACTI, originally published by HP, however, has over the
years become a defacto-standard for memory simulation in scientific work. It
is based on technology models according to the ITRS roadmap, publicly avail-
able, and further supports simulation of SRAM [95] and STT-RAM [4] [5]
memories. All memory characteristics that are used in the experimental evalu-
ation as presented in this chapter are, for that reason, generated from memory
simulation with either version of CACTI.

Instruction Set Simulators

Memory access traces for selected benchmarks on the targeted ARM architec-
ture are generated by means of Instruction Set Simulation (ISS). Utilized sim-
ulators include the SystemC-based simulation framework SoCLib [106] [121]
as well as a specially for this purpose developed in-house simulator [128] that
is written in C++. A specially developed memory power state machine that
works on the basis of CACTI figures is implemented as library [113] and used
with both simulation environments. Using this setup, highly accurate memory
performance, energy, and power figures can be determined through simulation
before and after optimization. This enables meaningful comparative experi-
mental figures that also capture overheads from extra code, e.g., as inserted for
the implementation of a memory operation mode schedule γ (cf. Section 5.3).

Software and Tools

Any sort of linear or quadratic program is implemented in AMPL syntax [36],
solved by AMPL frontend version 20111121, and using the Gurobi Optimizer
in version 8.1.0.

C++ code for heuristics or simulators is compiled using GNU g++ (GCC)
version 5.4.1 for execution on the host platform. Automation of data parsing,
generation, and evaluation is realized as Python or Bash script.

Target application code is cross-compiled using the LLVM framework
in version 7.0.0. The code generation tool according to Chapter 5 is also
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integrated into the LLVM framework version 7.0.0. Assembler, linker, and
object dump tools are from GNU Binutils version 2.27.51.

6.2 Combined SRAM Allocation and Binding Results

This section evaluates savings in terms of energy and on-chip area consump-
tion as well as the solving performance of the dynamic energy optimization
method and its variations as presented in Section 4.2. The applied memory
design space for the following experiments consists of 54 different SRAM
memory resource types as generated with CACTI in 45 nm technology node
and using the low standby-power cell type (LSTP). The individual memories
differ in terms of storage capacity and banking. All considered memories are
of size 2x with x ∈ [8, 25]. This corresponds to a range from 256B to 32MiB.
For every memory size in this set, a memory resource with either one, two, or
four memory banks is available. Power and area figures for the interconnect
are based on power simulations for a parameterized, multiplexer-based VHDL
model that was synthesized using theNanGate 45 nmOpenCell Library [119].
The investigated range for memsmax , that constrains the maximum number
of allowed memories is [1, 8]. Please note that the interconnect prolongs the
critical path for memory access, however, all setups in the considered range for
up to 8 allowed memory instances are still able to run at clock frequencies of
up to 800MHz. For that reason and assuming a system operation frequency of
f = 100MHz, the timing impact of the interconnect is considered uncritical.
The system operation voltage is assumed to be 1.0V.

The remainder of this section is structured as follows. For the MIQP ac-
cording to Section 4.2.3 and Appendix A respectively, Section 6.2.1 first eval-
uates achieved energy savings and the associated impact on the on-chip area
consumption. Next, Section 6.2.2 discusses the solving performance of this
optimization for the above listed parameters, experimental setup of platforms,
and benchmark applications. The impact of the interconnect fabric is dis-
cussed in Section 6.2.3. Subsequently, the MIQP variations according to Sec-
tion 4.2.4 are evaluated. Section 6.2.4 presents results from area consumption
minimization experiments. The combination of energy and area minimization
MIQPs further allows for multi-objective optimization and pareto analysis as
discussed in Section 6.2.5. Results for a multitasking setup in Section 6.2.6
conclude this section on experiments for dynamic energy optimization.
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6.2.1 Dynamic Energy Minimization

The obtained results from dynamic energy minimization experiments for 16
benchmark applications are depicted in Figure 6.1 in terms of normalized
average power consumption. The given figures include dynamic energy and
static power consumption of all memory resources plus the overhead from
the interconnect. The baseline configuration, which is marked by 1 (allowed
memory instance) and thus memsmax = 1, describes the optimal memory
configuration that uses a single memory block only. The following cases with
2-8 allowed memory instances vary the value for the memsmax constraint and
are compared to this baseline.

It should be noted that a separate consideration of program code and data
profiles is possible with this optimization method. However, as the example
ARM platform follows the von Neumann architecture with a shared memory
subsystem, a separate optimization is not applicable here. In other words,
below experiments consider all profiles together for the determination of a
combined memory subsystem for program code and data.
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Figure 6.1 Normalized average power consumption with varying memsmax constraint
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Mems Num Size Banks P [mW] Accesses [%] Profiles [#]

1 1 4M 1 48.1044 100 135

5 - - - 1.2895 - -
1 256B 1 0.2370 90.88 4
1 2K 2 0.0170 3.38 14
1 8K 2 0.0134 1.42 32
1 1M 4 0.0933 0.51 1
1 2M 4 0.8482 3.81 88

Interconnect 0.0806

Table 6.1 Power consumption details for ipres (IP reassembly) benchmark

When looking at the plots in Figure 6.1, it is striking that already the
utilization of two memories leads to considerable savings of over 82% on
average. Allowing a thirdmemory yields 86% savings andwithmemsmax = 8
the average improvement is over 88%. This shows, that for most applications a
consideration of up to three memory resources is sufficient in order to exploit
the optimization potential of this method. Only highly compute-intensive
applications, e.g., basicmath, fft, or susan, represent an exception.

In order to better understand, where these average power savings of close
or partly over 90% are coming from, Table 6.1 gives a detailed listing of
memory blocks, application profiles, and their relationship in terms of power
consumption on the example of the IP reassembly benchmark.

Compared to the first row, which describes the baseline case with a single
memory of 4MiB, the given dynamic energy-optimized configuration uses 5
memory resources instead. When looking at the share of memory accesses,
it can be observed that only 4 out of 135 total application code and data
profiles make up for over 90% of all memory accesses. A binding of those
address ranges to an extremely small block of 256B consequently enables the
observed average power reduction of 97% in this example.

Obviously, the uncompromising optimization of dynamic energy has some
impact on the on-chip area consumption. Surprisingly, energy minimization
does not exclude a reduction of on-chip area consumption as can be seen
from the experiments that show an average area reduction of over 12% for
memsmax >= 3 (cf. Figure 6.2). Nevertheless, some benchmarks also show
a, though little, degradation in this regard. Again, the compute-intensive ap-
plications fft and susan can be named here.
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Figure 6.2 Normalized on-chip area consumption after energy minimization

6.2.2 MIQP Solving Performance and Scalability

It is important to note that the presented experimental results not only require
the value of memsmax to be varied but also make the replication of the above
introduced 54 memory resources necessary. This is due to the fact that the
allocation α is binary function (cf. Definition 2.4) and every memory type can
possibly be allocated memsmax times. That means, the number of available
resources considerably increases with every increment of memsmax , i.e., with
memsmax = 1 there are 54 available memories, then 108, 162, and so on.
This has a quite severe impact on the size of the design space, which in turn
negatively affects the solving performance as illustrated in Table 6.2.

As the design space of the investigated optimization problem is basically
spanned by the set of application profiles, on the one hand, and the set of
memory resources, on the other hand, it is not surprising that every duplication
of the provided memory resources leads to increasing solving times. Some
cases with > 100 application profiles and for memsmax = 8, i.e., 432 provided
memory resources, even exceed the defined solving time limit of two hours.
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1 0.11 0.09 0.08 0.07 0.07 0.12 0.15 0.13
2 1.64 1.4 0.83 0.39 2.74 0.72 3.48 2.45
3 3.6 4.31 2.28 0.55 2.49 2.01 29.63 5.59
4 10.03 7.12 1.57 0.76 2.6 4.1 22.37 17.28
5 65.65 14.61 3.64 2.24 4.53 13.36 10.24 15.69
6 2538.51 24.29 5.63 1.04 8.35 4.93 29.19 13.47
7 1979.8 76.24 5.35 4.06 11.91 1991.82 38.93 187.86
8 7200 134.78 7.56 6.03 39.68 7200 7200 7200
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Lines of code 3788 2656 1085 782 1757 975 2520 5506
Profiles [#] 135 106 65 55 78 58 126 216
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x

1 0.13 0.1 0.07 0.07 0.09 0.07 0.15 0.18
2 2.74 1.25 0.6 0.62 1.39 0.87 2.66 3.28
3 15.85 4.9 1.12 2.18 2.16 1.36 2.03 13.26
4 7.84 6.74 0.98 2.19 4.3 0.71 8.15 44.04
5 49.29 4.4 1.74 3.45 1.69 1.21 108.18 39.29
6 57.39 51.07 2.69 5.64 4.4 3.27 324.11 63.2
7 357.95 77.13 138.84 7.79 5.47 4.7 4108.49 333.92
8 7200 7200 7200 9.94 5.11 5.61 7200 7200

Stopped after a time limit of 2 h (feasible solution only)

Table 6.2 Overview on benchmark extent and MIQP solving time for varying memsmax

In these gray-marked cases, a feasible (not guaranteed optimal) solution is
returned. As these results turn out to be equal to or even better than the
previously determined optimal solution with memsmax = 7, there is no need
to withdraw the resulting memory configurations, which are therefore also
part of the depicted plots in Figure 6.1 and 6.2.
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The following details show further that it is quite unlikely that, for example
in case ofmemsmax = 8, an optimal allocation consists of 8memory resources
of exactly the same type. As shown on the example of the IP reassembly bench-
mark in Table 6.1, it is rather the combination of small memory blocks for
frequently used profiles and large memory resources for hardly used code
and data blocks, which provides the observed high saving potential. Another
conducted set of experiments, with memsmax = 8 and varying replication fac-
tor in the range of [1, 8] and therefore |M | ∈ {54, 108, 162, ..., 432} provided
memory resources, confirms this assumption. Even without replicating any
resource, i.e., for the scenario with up to 8 allowed memories and a replication
factor of 1 and thus only 54 unique memory resources, the average deviation
(over all 16 benchmarks) from the optimization result with all resources repli-
cated 8 times is below 0.5%. With every increment of the replication factor,
the deviation further vanishes to zero, the latest at factor 4. Altogether, it can
be stated that using this switch, the solving performance of the optimization
model can be tuned in exchange for an extremely small deviation from the op-
timal and most energy-efficient solution. Still, the other way round, the overall
optimal solution can be determined at a greater amount of time.

6.2.3 Interconnect Impact

With increasing number of instances in the memory subsystem, the impact
of the interconnect is expected to grow. Table 6.3 lists both, area and power
consumption figures for memory blocks and the required bus as taken from
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|Mα | 8 4 5 4 5 8 8 8

Memory area [%] 98.84 98.87 99.93 99.96 99.89 99.77 99.95 99.96
Bus area [%] 1.16 1.13 0.07 0.04 0.11 0.23 0.05 0.04

Memory power [%] 84.36 82.30 87.34 94.26 86.97 84.29 81.87 88.93
Bus power [%] 15.64 17.70 12.66 5.74 13.03 15.71 18.13 11.07
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|Mα | 8 8 8 4 8 4 8 8

Memory area [%] 99.99 99.96 99.96 99.93 99.93 99.97 99.53 99.97
Bus area [%] 0.01 0.04 0.04 0.07 0.07 0.03 0.47 0.03

Memory power [%] 93.15 93.43 88.41 95.11 85.11 91.82 81.38 92.84
Bus power [%] 6.85 6.57 11.59 4.89 14.89 8.18 18.62 7.16

Table 6.3 Number of allocated memories |Mα | and impact of the interconnect in terms of
area and power consumption for memsmax = 8

an experimental series with memsmax = 8. Figures for the interconnect are
based on simulation of a multiplexer-based VHDLmodel as introduced above.

The first interesting finding in Table 6.3 is that a constraint ofmemsmax = 8
not necessarily leads to an allocation of |Mα | = 8memories. In terms of power
consumption it can be observed that with 12% on average, the impact of the
interconnect definitely matters. A closer investigation of these figures shows
further that, contrary to expectation, there is no relation between number
of allocated memories and impact of the interconnect. In contrast to that,
the on-chip area consumption of the interconnect, with an average share of
0.22%, turns out to be negligible. This is due to the severe on-chip footprint
of memory blocks that clearly dominates the impact of the interconnect. This
holds especially for benchmarks with high memory consumption. The ipres
benchmark for example requires over 2MiB of storage capacity. In comparison
to memory blocks of that size, the footprint of the bus simply does not matter.

6.2.4 Area Consumption Minimization

According to Section 4.2.4, fewmodifications allow the optimization model to
minimize the on-chip area consumption instead of average power. Figure 6.3
depicts the results from this experiment, again in relation to the baseline
configuration, which is given by the case with one allowed memory instance,
i.e., memsmax = 1. The plotted results can, on the one hand, be divided
into benchmark applications that do not benefit from this optimization step
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Figure 6.3 Normalized on-chip area consumption with varying memsmax constraint

in terms of on-chip area consumption at all. Some examples, on the other
hand, benefit from the consideration of two memory blocks instead of one.
Additional savings for memsmax > 2 can only be reported in three cases,
basicmath, huffde, and susan.

The corresponding average power figures are given in Figure 6.4. All
applications that do not benefit from the area optimization step obviously do
not show any change in terms of power consumption as well. For all other
cases, connected average power savings highly vary and range from a few per
cent in case of ipres to an improvement of over 90% in case of ippktcheck or
md5. A deterioration in contrast to the baseline does not occur in any case.

It can be concluded that similar to on-chip area consumption in the above
discussed energy minimization case (cf. Figure 6.2), also no clear trend can
be observed for average power when minimizing area. However, this does not
mean that a simultaneous consideration of on-chip area and energy consump-
tion is not of interest. A possible approach for the optimization with respect to
multiple objective functions is therefore presented in the following section.
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Figure 6.4 Normalized average power consumption after area minimization

6.2.5 Multi-Objective Optimization and Pareto Analysis

When facing system designs with both, energy and area restrictions, the sole
minimization of onemetric is not effective. The reason is, instead of an energy-
optimal solution with probably bad area consumption and vice versa, rather
a trade-off solution with acceptable performance on both metrics is wanted.
This, however, requires the co-consideration of two objective functions. Fol-
lowing the above presented evaluation steps, dynamic energy minimization
with area constraint as well as on-chip area minimization with energy con-
straint are possible with this optimization model. Using both variations side
by side enables the desired design space exploration as follows.

In a first step, energy- and area-optimal configuration are determined with-
out any constraint for on-chip area (areamax ) or average power (powermax ).
Those two solutions span the design space of interest and bound one dimen-
sion each. In a set of subsequent experiments, either the value of areamax

in dynamic energy minimization or the value of powermax in on-chip area
minimization is iteratively altered within the previously determined design
space limits. Doing this, the number of resulting trade-off configurations can
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be influenced by varying the constraint interval. Also a combination of results
fromboth, energy and area optimization experiments according to this iterative
procedure is effective in order to increase the coverage of possible solutions in
the design space. All pareto-optimal, i.e., dominant configurations are finally
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Figure 6.5 Multi-objective optimization results and pareto curve for Susan benchmark
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Figure 6.6 Multi-objective optimization results and pareto curve for fft benchmark
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connected to a curve that is referred to as pareto front. The best trade-off
configuration can then be chosen from this pareto front in dependence on the
limitations as given by the system design.

Figure 6.5 illustrates design space, resulting configurations, and pareto
curve for the susan benchmark application. Notable in this example is the
fact that all obtained configurations do not or only slightly deviate from the
energy- and area-optimal design space limits. The best trade-off configurations
are therefore easily identifiable in this example.

This is different for the fft benchmark example as depicted in Figure 6.6.
Here, the individual configurations differ more from each other, which leads to
a pareto curve with a rounder shape. In any case, both examples clearly show
thatmulti-objective optimization enablesmore informed design decisions than
the isolated optimization of one objective function only.

6.2.6 Results for Multitasking Systems

Another variation of the optimizationmodel enables the handling ofmultitask-
ing scenarios that follow a pre-defined static schedule (cf. Section 4.2.4). The
following experiments evaluate possible energy savings and resulting on-chip
area consumption on the example of four use cases as listed in Table 6.4.

All use cases can be seen as periodic stream or data processing examples.
A given static schedule specifies the number of task activations per period
as used for this evaluation series. θa accordingly specifies the resulting share
of total execution time per task. In caseA, the exemplary system comprises a
decryption step (blowfish), some processing of the packet content (bitcount),
and finally the encryption of the determined result for example (rijndael).
IP communication with Huffman coding and MD5 checksum is represented

Task set Task duty cycle

caseA A = {blowfish, bitcount, rijndael} θa = {
1
5 ,

3
5 ,

1
5 }

caseB A = {ipres, ippktcheck, md5, huffde} θa = {
1
7 ,

4
7 ,

1
7 ,

1
7 }

caseC A = {patricia, qsort, susan, tcp} θa = {
1
6 ,

1
3 ,

1
6 ,

1
3 }

caseD A = {basicmath, dijkstra, fft, crc32, sha} θa = {
1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5 }

Table 6.4 Overview on the set of experimental multitasking use cases
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Figure 6.7 Average power consumption for multitasking with varying memsmax

by caseB. The example in caseC combines kernels from automotive and
industrial applications (qsort and susan) with others from the networking
domain (patricia and tcp). The last caseD intends to mimic a multitasking
setup that combines compute-intensive mathematical operations.

The resulting figures fromdynamic energyminimization for all investigated
use cases are illustrated in terms of normalized average power in Figure 6.7.
Compared to the above presented results for individual benchmarks (cf. Fig-
ure 6.1), the effect from utilizing a second memory block is even more visible
in this plot. In total and with up to 8 allowed memory instances, average
savings of over 96% can be reported. Main explanation for this improvement
is the higher memory footprint of the above listed multitasking examples as
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Figure 6.8 On-chip area consumption for multitasking after energy optimization
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compared to individual benchmarks alone. This fact favours dynamic energy
savings as in most cases only few application profiles make up for the major
part of memory accesses (cf. Table 6.1).

In terms of on-chip area consumption as illustrated in Figure 6.8, it once
again depends on the use case whether the optimization results in an improve-
ment or a slight degradation.

6.3 SRAM Operation Mode Scheduling Results

The following experiments evaluate the static power optimization method as
presented in Section 4.3. The design space again comprises CACTI-based
memories for an assumed system operation frequency of 100MHz. More
detailed, 21 single-banked memories are considered with low-standby-power
cell type and a storage capacity of 2x and x ∈ [6, 26], i.e., covering the range
from 64B to 64MiB.

Below, an investigation of the general saving potential as provided by
memory low-power modes is provided in Section 6.3.1 at first. Next, details
on experimental results for all variations of the two-stage static power opti-
mization concept are presented in Section 6.3.2. After that, Section 6.3.3 puts
the focus on solving performance and scalability of this optimization method.
Possible overhead as resulting from code insertions and modifications is in-
vestigated in Section 6.3.4. The application of this optimization method to a
sensor hub system is presented as use case in Section 6.3.5. Last, the definition
of corridor constraints is analyzed in more detail in Section 6.3.6.

6.3.1 Break-Even Point Analysis

The following general evaluation is based on a metric that is referred to as
break-even point. It describes the minimum number of cycles that a memory
instance at least has to be operated in a specific low-power mode such that the
activation of this mode pays off. In other words, the break-even point specifies
the minimum number of low-power mode active cycles that are needed in
order to equalize the energy penalty due to activation and deactivation. The
comparison covers the technology nodes 65 nm, 45 nm, and 32 nm and uses
the values for memory energy and power consumption according to Table 6.5.
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Variable Description

Er Total dynamic read energy per access
Ew Total dynamic write energy per access
Ps (ACT ) Total static power of a bank
Ps (LS) According to the author of [90] set to: 0.58 · Ps (ACT )
Ps (DS) According to the author of [90] set to: 0.3 · Ps (ACT )
Ea/d (ACT → LS) Set configuration register, extra cycle
Ea/d (ACT → DS) Set configuration register, extra cycle
Ea/d (LS → DS) Set configuration register, extra cycle
Ea/d (LS → ACT ) Set register, two extra cycles, reverse biasing [90]
Ea/d (DS → ACT ) Set register, three extra cycles, reverse biasing and power gating
Ea/d (DS → LS) Set register, three extra cycles, reverse periphery power gating

Table 6.5 Experimental memory energy and power figures

The values for Er , Ew , and Ps (ACT ) are provided by CACTI. Same
holds for the energy penalty on deep sleep mode deactivation Ed (DS), which
denotes the energy consumption for the deactivation of memory periphery
power gating. This includes the energy figures for the activation of the data
array plus the value for pre-charging. Other penalties result from extra energy
consumption due to setting of a memory-mapped configuration register and
resulting additional execution cycles. The set of instructions as needed for
the implementation of a completely software-based operation mode switching
(cf. Chapter 5) is excluded from this evaluation step, which aims to show
a general trend. Please note that all parameters to optimization method and
tool workflow as used in this and following evaluation steps aim to model a
realistic setting but can easily be replaced if other memory characteristics are
available, as for example given in an industrial environment.

The conducted experiments evaluate the break-even point for light (LS) and
deep sleep (DS) low-power mode. In both cases, activation and deactivation
is expected from and to active operation mode (ACT). The result of this
investigation as depicted in the log-log plot in Figure 6.9 allows for three
general observations:

1. The break-even point considerably decreases with increasing memory size.
2. The slope of the log-log plot is not affected by the technology node.
3. The number of measured break-even cycles decreases by 1

3 to
1
2 with every

technology step.
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Figure 6.9 Break-even point analysis (log-log plot)

This leads to the conclusion that the impact of low-power modes considerably
increases with advancing miniaturization and that higher saving potential can
be expected from applications with large data footprints and a demand for
appropriate memories.

6.3.2 Static Power Minimization

The following section presents the experimental results for the two-stage static
power optimization method according to Section 4.3.2. The conducted evalu-
ation on the example of 11 benchmark applications covers all combinations of
first and second optimization stage. That is, either graph partitioning, min-cut
clustering, or modularity clustering are used for the determination of memory
allocation α and application binding β. Similar to experiments in Section 6.2,
the allocation constraint for the maximum number of allowed memories is
set to memsmax = 8. Subsequently, the MIQP formulation according to Ap-
pendix B is applied for the scheduling of memory operation modes γ. In a
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last step, the code generation tool (cf. Chapter 5) is used for the implemen-
tation of α, β, and γ on the software level. Operation mode handling in this
experimental setup is realized using the stack-based solution according to Sec-
tion 5.3.2. Due to the adjustments of memory operation modes at run-time
and the accordingly inserted code for the implementation of γ, all experimen-
tal figures as presented and discussed in this section result from Instruction
Set Simulation (ISS) with activated memory power state machine. This en-
ables detailed comparative figures for energy and power consumption of the
memory subsystem before and after optimization, while respecting different
memory states and possible overhead from inserted code.

Recall that optimization stage 1 and resulting allocation and binding aim
at a reduction of the dynamic energy consumption. At the same time, locality
in terms of memory accesses is respected in this step as to create a basis for
optimization step 2, where static power is reduced on top. This is achieved
by minimizing static energy due to leakage as well as the energy overhead
that results from switching between active operation and memory low-power
modes. Figure 6.10 depicts the experimental results in terms of energy con-
sumption of thememory subsystem after both optimization steps for amemory
subsystem in 32 nm technology node. The baseline configuration that is used
for comparison consists of a single memory block only. That means, for every
benchmark application, the smallest but large enough memory resource from
the above mentioned set of 21 memories is chosen for this basic setup.

The investigation of Figure 6.10 allows for several observations. In general,
obtained energy savings from this optimization method highly vary from one
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Figure 6.10 Normalized total energy consumption of the memory subsystem after two-
stage static power optimization compared to the baseline (technology node: 32 nm)
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application to the other. The optimization flowwith graph partitioning applied
in stage 1 yields a solution for all 11 benchmarks, however, only reaches
an average reduction of 11%. Min-cut clustering turns out to be extremely
memory-intensive for applications with close to or above 100 application
profiles, i.e., basicmath, fft, or susan (cf. Table 6.2). The demand in these
cases even exceeds the memory limit of the host platform, which leads to a
termination of the heuristic without result (cf. Figure 6.10 and Table 6.6). For
the applications rijndael and sha, the utilized memory limit of memsmax = 8
is violated by the min-cut solution, thus there is no result there as well. The
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65nm
Base 22.65 1.48 16.58 1.60 23.56 25.55 25.83 1.29 43.65 10.19 18.05
GP 21.33 0.86 13.93 1.60 23.51 23.93 24.77 1.20 38.61 8.70 16.18
MC x 0.72 13.93 1.60 23.49 x 5.03 1.20 x x x
MO 10.81 0.71 0.95 1.60 5.97 8.49 4.80 1.20 3.11 1.50 x
45nm
Base 12.45 0.80 9.65 0.93 13.71 14.61 17.10 0.72 25.37 5.92 10.12
GP 11.73 0.44 8.10 0.93 13.68 13.69 16.34 0.68 22.46 5.06 9.08
MC x 0.36 8.10 0.93 13.67 x 3.26 0.68 x x x
MO 5.77 0.36 0.52 0.93 3.37 4.72 3.10 0.68 1.71 0.86 x
32nm
Base 6.84 0.43 3.54 0.34 5.02 8.48 6.33 0.43 9.34 2.18 5.66
GP 6.45 0.22 2.98 0.34 5.01 7.95 6.04 0.40 8.24 1.87 5.08
MC x 0.18 2.98 0.34 5.00 x 1.28 0.40 x x x
MO 3.09 0.18 0.25 0.34 1.95 2.72 1.22 0.40 0.83 0.34 x

Base − Baseline configuration without low-power modes and one memory block only
GP − Result with graph partitioning used in optimization stage 1
MC − Result with min-cut clustering used optimization stage 1
MO − Result with modularity clustering used in optimization stage 1

Solution exceeds maximum number of allowed memory instances memsmax = 8
Exceeded memory limit of host platform or time limit of 2 h

Table 6.6 Total energy consumption after two-stage static power optimization for different
stage 1 clustering methods and compared to non-optimized baseline
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remaining, successful experiments that use min-cut clustering as optimization
step 1, result in an average energy reduction of 26%. By far the best results in
terms of energy savings, however, are possible when allocation and binding
are computed with modularity clustering. In the depicted set of experiments,
this setup yields average savings of 60%. Only the solution for the benchmark
susan exceeds the memsmax constraint. Therefore, it is not forwarded to the
second optimization stage, i.e., excluded from further consideration.

Table 6.6 lists the absolute energy consumption numbers for all conducted
experiments. The given figures show, on the one hand, that the total energy
consumption almost halves with every technology step towards a smaller
structure size, i.e., whenmoving from 65 nm over 45 nm to 32 nm.On the other
hand, irrespective of the chosen technology node, the experiments show the
same pattern concerning examples that exceed hostmemory limit ormemsmax

constraint. Most notable, however, is the observation of percentage savings
that appear to be equal in all cases and thus independent of the technology
node. Figure 6.11 visualizes this aspect by illustrating the normalized total
energy consumption for different technology nodes after optimization. Here,
absolutely no trend is visible, which is particularly striking as the above
discussed break-even point analysis (cf. Section 6.3.1) suggests higher savings
for static energy with increasing miniaturization.

To further investigate this finding, Table 6.7 provides a breakdown analysis
of dynamic and static energy consumption before and after optimization in
32 nm. The table shows that already in the baseline configuration with only
one memory block, the static energy consumption Estat amounts to a share
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Figure 6.11 Normalized total energy consumption of the memory subsystem after two-
stage static power optimization in different technology nodes (stage 1: modularity)
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Base [mJ] Edyn 6.793 0.430 3.482 0.334 4.940 8.405 6.243 0.423 9.187 2.148
E stat 0.043 0.003 0.056 0.005 0.079 0.074 0.092 0.004 0.151 0.036

Opt. [mJ] Edyn 3.048 0.176 0.232 0.334 1.897 2.662 1.178 0.392 0.774 0.329
E stat 0.034 0.002 0.020 0.005 0.050 0.047 0.042 0.006 0.057 0.015

Sav. [%]
Edyn 55.13 59.10 93.34 0.02 61.60 68.32 81.13 7.21 91.57 84.67
E stat 13.49 39.47 62.87 -1.25 36.81 19.94 52.93 -48.67 61.52 57.14
Total 54.87 58.98 92.85 0.00 61.21 67.90 80.72 6.68 91.09 84.22

Base − Baseline configuration without low-power modes and one memory block only
Opt. − Optimized case after modularity clustering (stage 1) and MIQP (stage 2)
Sav. − Savings after optimization compared to the baseline

Table 6.7 Energy consumption breakdown before and after optimization (stage 1: modu-
larity, technology node: 32 nm)

of only 1.24% on average for the set of investigated benchmark applications.
The remainder with over 98% on average instead is attributed to dynamic
energy consumption Edyn as resulting from read and write activity. This is
strange as for example Kim et al. [67] write of low-power design challenges
through leakage with feature sizes below 100 nm and even cite projections
of the static power consumption share through leakage in caches of 70% in
70 nm technology. A closer investigation of related work in the field of static
power optimization further reveals certain workarounds. Kandemir et al. [57]
for example work with dynamic energy figures from CACTI but skip its static
power values and assume leakage energy instead to be equal to the dynamic
energy consumption of a memory access. Similar assumptions are used in
[64] and [74]. Later work by Loghi et al. [78] even completely avoids memory
simulation-based values as for example provided by CACTI. This work uses
different imaginary dynamic-static energy ratios instead for the purpose of
evaluation. In conclusion, the simulation-based values for static power as
provided by CACTI [95] are not realistic. For that reason, further evaluation
in terms of dynamic and especially static energy savings is presented with
focus on percentage and not in terms of absolute reduction.
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A closer investigation of Table 6.7 reveals that Edyn , which is affected
by optimization stage 1 only, can be reduced by 60% on average through
allocation and binding as determined by the modularity clustering heuristic.
Minimization of Estat is covered by optimization stage 2 and amounts to a
reduction of 29% on average for this set of experiments. A notable deteri-
oration for Estat in case of the qsort benchmark in contrast to considerable
savings for blowfish, however, suggest an even more application-specific char-
acter of stage 2 as compared to the dynamic energy optimization part in stage
1. Please note that these figures already contain energy penalties that result
from memory operation mode switches as well as the additionally inserted
instructions that implement this functionality in software. A closer evaluation
of this aspect is given in the subsequent Section 6.3.4.

All in all it can be stated that the proposed static power optimization
method including code insertions works. Achieved savings turn out to be
highly application-specific but dynamic energy savings of partly over 90%
and relative static energy reductions of more than 60% in selected cases are
a promising result. Unfortunately, unrealistically low static power figures as
provided by CACTI avoid a more detailed analysis of absolute savings as well
as the impact of the technology node.

6.3.3 Solving Performance and Scalability

The measured solving times of all two-stage static power optimization flows
are summarized in Table 6.8. Graph partitioning, which is highly flexible as the
number of wanted partitions or clusters is configurable, performs extremely
fast, however, provides only poor dynamic energy savings as discussed above.
Min-cut clustering suffers from extremely high memory consumption and
solving times as compared to the other stage 1 heuristic solutions, which
makes it a quite unreliable choice. Modularity clustering, which provides by
far the best results in terms of dynamic energy consumption reduction yields
an excellent performance with an average solving time below 2 s. This makes
it a good heuristic alternative for dynamic energy minimization.

Operation mode scheduling as performed by the MIQP in optimization
stage 2 performs fast and within acceptable time for memory configurations
of less than 8 memories. Beyond that limit, solvability worsens drastically.
That is, with |Mα | = 8, an optimal solution is only found for benchmark
examples with only few code profiles. In the case of basicmath and |Pc | > 50,
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GP 0.25 0.27 0.47 0.04 2.39 0.26 5.28 0.07 0.54 0.15 0.34
|Mα | 4 5 7 6 8 4 8 6 7 7 4
MIQP 0.06 0.05 1.62 0.07 16.30 0.05 39.40 0.21 0.15 3.18 0.05
MC x 22.03 0.03 0.01 848.47 x 606.15 0.01 23.66 0.09 x
|Mα | - 9 8 8 8 - 8 7 12 9 -
MIQP - 13.67 19.39 0.87 81.29 - 192.8 1.66 x x -
MO 13.16 0.16 0.05 0.02 0.40 3.04 0.32 0.03 0.24 0.06 4.22
|Mα | 8 7 6 4 5 7 6 4 5 5 10
MIQP 7200 4.28 0.59 0.03 0.06 267.25 1.12 0.03 0.1 0.06 x

|Pc | − Number of active code profiles as considered in optimization stage 2
GP − Graph partitioning (optimization stage 1)
MC − Min-cut clustering (optimization stage 1)
MO − Modularity clustering (optimization stage 1)
|Mα | − Number of allocated memories after optimization stage 1
MIQP − Operation mode MIQP (optimization stage 2)

Stopped after a time limit of 2 h (feasible solution only)
Stopped after a time limit of 2 h (no solution)

Table 6.8 Static power optimization solving times (average over all experiments)

only a feasible solution is possible within the set time limit of 2 h. For cases
with |Mα | > 8, a successful solution within a reasonable time becomes quite
unlikely. This is due to the fact that the size of the solution space considerably
grows with every additional memory resource (cf. Section 4.3.2).

6.3.4 Code Modification and Generation Overhead

Besides static energy savings from the second optimization stage, the question
remains, what overhead is caused by the inserted code snippets in terms of
additional execution time.
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In Section 6.3.2 and Table 6.7, the deterioration of almost 50% for the
static energy consumption in case of the qsort application already attracted
attention. The experimental figures for the application execution time after
optimization and code modification as depicted in Figure 6.12 now yield the
explanation.With an over 40% higher application execution time as compared
to the baseline system, the impact of inserted code seems unproportionately
high in this case. Same holds for the benchmark application bitcount. This
impression is reinforced as the simulation of these optimized binaries yields
that just 48 penalty cycles in case of bitcount and only 5 extra cycles for
qsort are actually used for memory operation mode changes. In comparison
to several million total cycles, this penalty is not visible at all and definitely
no explanation for the reported increase in execution time and static energy
consumption. A closer investigation of application sources and optimized
assembly code finally delivers the answer. Both benchmarks make heavy use
of pointer-based function calls. As these jumps are executed indirectly via a
register, the code generation tool is not able to detect themautomatically,which
leads to a redirect via the software-based operation mode handler lpmJump
(cf. Section 5.3.2) in each case, even though no operation mode change is
indicated. This effect sums up to the observed increase of close to or even
above 40%. Manual correction, however, is possible in this situation, what
allows to reduce the overhead to the above mentioned penalty cycles. All other
investigated examples instead show an average increase in execution time of
1.82%, which is considered acceptable.
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Figure 6.12 Normalized application execution time after optimization and code generation
step for different technology nodes (stage 1: modularity)
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6.3.5 Evaluation of a Sensor Hub System

While the above examples on the basis of benchmarks are well-suited for a
basic evaluation, they are still only able to mimic a real system. In order to
fill that gap, further experiments with a virtual system prototype of a single-
core sensor hub as inspired by the Bosch Sensortec BMF055 device [17] are
presented below. This common ARM-based demonstration platform resulted
from a cooperation with the University of Rostock and the University of
Tübingen in the research project CONFIRM [38].

For this platform, in combination with a firmware that implements the de-
tection of a tap gesture, the results from static power optimization as presented
in Table 6.9 can be given.

Unit Baseline Optimized Savings

Allocated memories |Mα | 1 5

Dynamic energy Edyn nJ 188097.38 61134.83 67.50%
Static energy E stat nJ 340.22 205.39 39.63%
Peak power Pp mW 0.967 0.536 44.57%

Execution cycles 19489757 19495554 −0.03%

Table 6.9 Static power optimization results from experiments with a gesture detection
firmware on a virtual system prototype of a sensor hub (technology node: 45 nm)

Altogether, also in this sensor hub use case, the proposed static power
optimization method works well and above findings from experiments with
benchmarks are confirmed. Besides considerable relative savings for dynamic
and static energy at an ignorable increase of execution time, also peak power
is positively affected in this example. However, please note that again CACTI-
based memory figures are used for evaluation. That means, absolute static
energy values as well as peak power consumption and related saving ratio are
expected to be different in a real fabricated system.

6.3.6 Corridor Constraints

Finally, this section discusses the corridor constraint feature of the operation
mode scheduling MIQP. This part of the optimization model allows for the
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Figure 6.13 Normalized peak power after two-stage static power optimization for different
technology nodes (stage 1: modularity)

definition of acceptable time and peak power ranges and by that, to trade
a reduction of the maximum power consumption level for an increase in
execution time. Unfortunately, the evaluation of this constraint pair is again
restricted by the imperfect memory figures. In fact and due to the above
discussed small static power share in CACTI-simulated SRAMmemories (cf.
Table 6.7), peak power is dominated by read and write accesses and resulting
dynamic energy consumption. That means, the largest memory resource with
highest dynamic energy consumption on access always dominates the peak
power metric. In consequence, these memory figures leave no margin for the
variation of peak power in the second optimization stage.

Nevertheless, the experimental peak power results as depicted in Fig-
ure 6.13 allow for one finding that is related to the above mentioned impact
of large memory instances in terms of dynamic energy consumption. While
most benchmarks show no effect in Figure 6.13, a considerable peak power
reduction is given for the examples basicmath, bitcount, and dijkstra. Closer
investigation of these cases turns out that the optimized memory allocation
contains exclusively smaller memory blocks as compared to the baseline.
Same holds for the above discussed sensor use case (cf. Section 6.3.5). In con-
sequence, a peak power reduction of the memory subsystem can be achieved
by a strictly split memory configuration, i.e., by means of allocation.
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6.4 Multi-Core Memory Optimization Results

The experiments in this section evaluate the presented memory optimization
method for Multi-Processor System-on-Chip (MPSoC) platforms according
to Section 4.4. This includes the binding of application profiles to memory
and the scheduling of operation modes. The used experimental platform (cf.
Figure 4.7) is equipped with four processor cores and inspired by the Infi-
neon Aurix architecture [53]. Memory allocation is pre-defined by the chosen
platform and exemplarily set to scratchpad memories of 64KiB and a global
shared memory of 8MiB. Frequency domain (A), which includes processor
cores and scratchpads, is operated at 250MHz, frequency domain (B) and
thus the shared memory runs at 50MHz. All memory resources are modeled
as two-port instances in 32 nm technology node. Code generation for the im-
plementation of a determined memory operation mode schedule γ follows the
activation-on-access scheme according to Section 5.3.1 and further uses the
adaptation for multi-core systems as discussed in Section 5.4.

Section 6.4.1 at first presents a general evaluation of the two-stage opti-
mization method for multi-core as introduced in Section 4.4.2 . This includes
both, savings in terms of dynamic energy from application binding β as well
as static power reduction through an optimized operation mode scheduling γ.
Section 6.4.2 separately evaluates and compares cache- and scratchpad-based
memory subsystems in multi-core SoC designs.

6.4.1 Dynamic Energy and Static Power Minimization

Dynamic power management through clock or power gating is widely used in
low-power SoC design (cf. for example [96]). Especially in multi-core envi-
ronments, where inter-core dependencies and varying system load rarely cause
all cores of the system to be fully occupied, dynamic activation of sleep modes
is a widely adopted technique to keep the overall power consumption of these
MPSoC devices manageable and within a tolerable range. For deterministic
multi-core setups with periodic schedule, where individual tasks are com-
puted by different processing units (PU) and inter-core communication only
takes place in between subsequent cycles, two different operation schemes
can be distinguished. This stems from the fact that always the most time con-
suming task determines the maximum iteration frequency or minimum period
respectively. Figure 6.14 schematically illustrates the corresponding operation
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Figure 6.14 Run-to-idle (1) and run-to-sleep (2) multi-core system operation scheme

modes, run-to-idle and run-to-sleep. In run-to-idle, on the one hand, inactive
processor time is spent in an active idle state, what entails ongoing instruction
fetches. Run-to-sleep, on the other hand, schedules a sleep mode activation
for all processing units that finish early. Thus, no further memory accesses of
these PUs take place in this time frame.

Considering thisMPSoC system setup, the following evaluation is based on
ten experiments according to Table 6.10. All use cases are built from individual
benchmarks of theMiBench suite. For this set of examples, Figure 6.15 depicts
the results with processing units operated in run-to-idle configuration.

The baseline in this experimental series is referred to as β Heuristic and
describes a reference implementation of theMPSoC scratchpadmapping algo-
rithm as proposed in [51]. βMILPmarks the energy consumption after the first
memory optimization stage for multi-core, i.e., with an optimal application-
specific binding (cf. Section 4.4.3). The figures as represented by the last bar

PU #1 PU #2 PU #3 PU #4

case1 basicmath qsort sha susan_corners
case2 bitcount crc32 rijndael_enc susan_smooth
case3 blowfish_enc dijkstra rijndael_dec susan_edges
case4 blowfish_dec qsort sha susan_corners
case5 bitcount crc32 qsort sha
case6 blowfish_enc blowfish_dec rijndael_enc rijndael_dec
case7 fft susan_smooth susan_edges susan_corners
case8 rijndael_enc blowfish_dec dijkstra bitcount
case9 basicmath fft patricia susan_smooth
case10 patricia dijkstra rijndael_dec fft

Table 6.10 Overview on the set of experimental multi-core optimization use cases
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Figure 6.15 Total memory subsystem energy consumption in run-to-idle configuration

(β and γ MILP/MIQP) include the second optimization step, i.e., operation
mode scheduling on top.

The direct comparison of both binding methods in Figures 6.15 and 6.16
shows that the heuristic solution essentially performs equally good as the lin-
ear program. This is striking as β MILP is characterized to deliver an optimal
solution. β Heuristic instead implements a simple algorithm that assigns most
frequently used objects in descending order of access frequency to the scratch-
pads and as long as core-local memory space is available. Consequently, it can
be concluded that a good mapping can be reduced to this simple algorithm.

Concerning the static power minimization MIQP in optimization stage 2,
there is no difference in terms of findings as compared to the evaluation for
single-core systems according to Section 6.3.2. Processor cores are not part
of the MIQP formulation and further, from the perspective of the memory
subsystem, cause nothing but a different memory access pattern. As still
bound to memory figures from CACTI, with unrealistically low static power
consumption values, absolute savings are not visible in these experimental
figures. Possible relative savings, a breakdown analysis of dynamic and static
energy consumption, and resulting conclusions are already given in Table 6.7
respectively Section 6.3.2 and therefore not discussed again. The time overhead
through extra code snippets for memory operation mode changes plus further
delay from congestion due to the limited number of memory ports amounts to
4% on average in this setup, which is considered to be acceptable.

Yet, the direct comparison of experimental results for the second opti-
mization stage in Figure 6.15 and Figure 6.16 exposes one interesting finding
that is related to dynamic energy from memory accesses. At first glance, it
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Figure 6.16 Total memory subsystem energy consumption in run-to-sleep configuration

appears that in run-to-idle (cf. Figure 6.15), the application of an operation
mode schedule allows for considerable savings of 70% on average, compared
to results from optimized binding only. A direct comparison of given absolute
energy values for β and γ MILP/MIQP with figures that result from experi-
ments in run-to-sleep configuration, however, reveals basically no difference.
In Figure 6.16, further no difference between binding only in optimization
stage 1 and the additional application of optimization stage 2 can be observed,
which is due to the CACTI-based memory figures. This leads to the conclu-
sion that active idle time in run-to-idle mode, with resulting extra instruction
fetches as well as delays through congestion at memory ports, causes the
already mentioned 70% difference on average, which in sum is avoidable
overhead. All in all, coupling of processor and memory low-power modes in
MPSoC devices turns out to be extremely relevant.

In terms of performance and scalability, all above discussed optimization
experiments successfully terminated in less than 100 s. A separate study of this
aspect for the above investigated optimization methods is therefore considered
to be of no further relevance.

6.4.2 Comparison of Scratchpads and Caches

As many recent MPSoC architectures come with both, traditional caches and
scratchpad memories, this section aims at evaluating the differences between
these two types of core-local memory. For comparison, a direct mapped cache
architecturewith 64KiB cachememory per core and a cache-linewidth of 32B
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Figure 6.17 Comparison of direct mapped caches and optimized scratchpad-basedmemory
subsystem in run-to-sleep configuration

is used. As introduced above, scratchpads in the used experimental multi-core
architecture are of equal size, again 64KiB per core. The optimized application
binding for the scratchpad-based setup is determined by theMILP formulation
according to Section 4.4.3 or Appendix C respectively.

As illustrated in Figure 6.17, the performance of both core-local memory
concepts is more or less balanced. Still, two observations can be made. First,
in terms of energy consumption, scratchpads are slightly ahead. This can be
explained by the highly deterministic nature of the investigated use cases,
a setup that is commonly known to be beneficial for this type of memory
subsystem. Second and in terms of time consumption, however, several use
cases show better performance for the cache-based architecture. This can be
explained by the ability of traditional hardware-based caches to change content
at run-time and in dependence on the memory access pattern. The content of
the scratchpads instead is, at least in this set of experiments, static and thus
not adjusted during execution. All in all, having both core-local memory types
side-by-side seems to be the right way as it allows to combine the benefits of
both concepts depending on the application. In addition, unneeded memory
blocks can always be switched off.
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6.5 STT-RAM Allocation and Binding Results

This section evaluates the memory optimization method for STT-RAMmem-
ories according to Section 4.5. The memory design space in the presented set
of experiments comprises 19 different memory sizes with storage capacities
of 2x and x ∈ [7, 25]. This corresponds to a range from 128B to 32MiB. Per
memory size, 6 memory types with different operation voltage are provided.
The supported voltage level range is from 1.3V to 1.8V in steps of 0.1V.
This amounts to a total number of 114 different STT-RAMmemories with ac-
cess transistor and memory periphery modeled in 32 nm node. Corresponding
memory characteristics are based on simulation with STT-CACTI [4].

The following experimental evaluation covers two aspects. Section 6.5.1
starts with an investigation of energy reduction potential and possible impact
on memory operation frequency as resulting from this optimization method.
Second, the solving performance of the STT-RAM allocation and binding
MIQP formulation according to Appendix D is discussed in Section 6.5.2.

6.5.1 Dynamic Energy Minimization

The resulting figures for 16 benchmark applications in terms of total energy
consumption of the memory subsystem are depicted in Figure 6.18. Compared
to the baseline configuration with one memory block only, the most significant
reduction in all cases is already achieved with two allowed memory instances,
i.e., memsmax = 2. Additional savings with a further increment of this con-
straint are possible but turn out to depend on the application. The measured
energy savings for memsmax = 8 in this experimental series amount to 81%
on average.

In a way, this result reminds of presented figures for the dynamic energy
minimization of SRAM memories in Section 6.2.1. That is to say, besides
savings in terms of dynamic energy from varying the operation voltage level in
STT-RAM, remaining CMOS parts in thememory periphery still cause a quite
notable effect from splitting memory blocks into smaller units. A general trend
on howmuch savings result from different write modes in STT-RAM andwhat
share is due to a split memory configuration, however, is difficult to quantify.
A conducted additional experimental series with a fixed operation voltage
level of 1.5V for all memory resources, though, allows for the identification
of a trend in this regard. These results are not depicted separately as the
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Figure 6.18 Normalized total energy consumption with varying memsmax constraint

average energy reduction in this experimental series is again over 80%. The
resulting plot consequently does not visibly differ from Figure 6.18. In total,
this evaluation leads to the conclusion that STT-RAM-specific savings from
the observed write energy/latency trade-off as adjusted by varying operation
voltages have a negligible effect.

The memory access time and thus the maximum supported operation fre-
quency in STT-RAM depends on two things, the memory size and the applied
operation voltage level. As both characteristics are modeled as part of the
design space and, for that reason, considered a variable in the optimization
model, it is further of interest, whether the above discussed energy minimiza-
tion affects the access performance of the memory subsystem. Figure 6.19
illustrates this aspect in terms of maximum operation frequency of the mem-
ory subsystem. In most cases, at least one step towards a higher frequency
level can be observed. However, no general trend is emerging as for example
in case of the benchmark application tcp, the maximum supported frequency
even decreases. This effect of a simultaneous reduction for the part of energy
consumption and delay, however, is not related to the STT-RAM operation
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Figure 6.19 Maximum memory operation frequency with varying memsmax constraint

voltage but results from varying memory allocation, i.e., the utilization of
smaller memory blocks with less access delay.

Compared to the trade-off between dynamic energy and on-chip area con-
sumption as given in case of SRAM memories, the trend of energy and
frequency in this optimization model is rather contrary. In other words, de-
creasing energy consumption in STT-RAM is likely to be accompanied by
an operation frequency increase. In consequence, the expected trade-off rela-
tionship between these two units is simply overruled by other factors as for
example memory size. A separate investigation of frequency minimization as
well as pareto analysis is therefore considered to provide no extra information.

Still it should be noted that it remains unclear, whether the utilized memory
figures as provided by STT-CACTI are able to accurately model STT-RAM-
specific features. The corresponding publication by Arcaro et al. [4] at least is
not able to prove the accuracy of this simulation tool as no comparison with
actual STT-RAM hardware is documented.
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6.5.2 MIQP Performance and Scalability

The performance of the STT-RAM allocation and binding MIQP in terms
of solving time is summarized in Table 6.11. Also in this allocation and
binding problem, the memory allocation variable α is of binary type in order
to enable an unambiguous binding β. Each of the 114 available memory types
with varying size and operation voltage level needs therefore to be duplicated
memsmax times for the respective experiment as to provide enough resources
for possible multiple selections of the same memory type. Therefore, any
increase of memsmax directly causes a growth of the design space.
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3 3.34 14.01 3.76 0.82 6.64 4.90 309.20 31.08
4 3.95 32.14 6.36 2.68 12.23 10.30 263.81 107.91
5 7.47 16.48 3.78 1.86 9.36 21.03 54.15 274.96
6 61.36 40.02 2.02 2.31 7.73 54.89 292.70 2355.79
7 1278.23 61.63 2.53 2.13 5.07 7200 468.83 95.49
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1 0.24 0.20 0.13 0.11 0.16 0.12 0.26 0.40
2 17.31 6.78 2.29 2.07 1.68 2.48 4.14 12.75
3 125.22 12.48 4.16 4.38 4.86 2.18 10.85 93.38
4 38.30 31.43 10.83 1.73 6.38 2.42 7.77 60.14
5 75.42 19.55 17.73 1.61 16.12 1.78 12.33 7200
6 284.86 34.52 223.04 2.49 7.31 1.57 201.41 94.21
7 1360.60 69.95 138.92 3.07 115.62 2.50 916.73 242.36
8 1744.25 18.44 629.50 4.08 19.22 2.84 47.10 1036.22

Stopped after a time limit of 2 h (feasible solution only)

Table 6.11 Overview on STT-RAM MIQP solving time for varying memsmax
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The general trend in Table 6.11 confirms the expected increase in solving
time with increasing number of allowed memories. Only three examples ex-
ceed the set time limit of 2 h. Still, an acceptable feasible solution is returned
in these cases for fft and tcp benchmark applications. Please note that similar
to the related SRAM MIQP (cf. Section 6.2.2), it is quite unlikely that for
example in case of memsmax = 8, exactly 8 memories of the same type, i.e.,
with equivalent size and operation voltage level, mark the optimal solution.
Accordingly, also in this case, a decrease of duplicated memory instances to
a factor of 4 allows to considerably improve the solving performance of the
quadratic program without loss in terms of energy reduction.
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Chapter 7
Conclusions

This thesis presents design-time optimization methods that allow for the auto-
mated identification of an ideally optimal on-chip memory subsystem in terms
of energy and power consumption.

Chapter 2 gives a general introduction to memory optimization in System-
on-Chip design and shows that theoretical formulations fromembedded system
synthesis apply to particular problems in memory optimization. Accordingly,
adapted definitions of allocation, binding, and scheduling are presented as to
provide a formal basis for the remainder of the thesis. The introduction to
on-chip memory technologies helps in clarifying the optimization potential
in SRAM and STT-RAM memories, which exists in several ways. Instruction
Set Simulation (ISS) and minor contributions to this field are briefly cut as
all presented optimization methods are of application-specific type and thus
based on input from simulation.

As outlined in Chapter 3, the central distinctive feature of all optimization
methods in this work is given by the taken software-centric approach. That is,
compared to the state-of-the-art, optimization steps are, if possible, designed
in a way that makes an implementation on the software level and without
modification of hardware parts possible. This consistent approach is, in con-
clusion, considered highly relevant as it makes proposed methods applicable
to most, if not all system types, no matter if the hardware platform is chosen
off-the-shelf or whether it is developed or at least adjusted in-house.

The four memory optimization methods according to Chapter 4 are the
main contribution of this thesis. In combination with the corresponding ex-
perimental results in Chapter 6, the following conclusions can be drawn.

The firstmethod enables application-specific dynamic energyminimization
in SRAM memory subsystems through combined optimization of memory
allocation and application binding. Determined results are optimal and show
reductions of over 80%on averagewhen compared to the utilization of a single
memory block only. Split SRAM memory subsystem configurations, finally,
turn out to be a highly efficient switch in low-power System-on-Chip design.
The most significant improvement in this regard is achieved when using two
instead of only one memory block. The allocation of further memories, on the
other hand, turns out to result in only little extra energy savings.
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The second optimization concept shifts the focus towards the minimization
of static power from leakage currents in SRAM memories. As simulation-
based memory figures from CACTI turn out to model leakage aspects in an
insufficient way, conclusions about absolute savings and possible impact from
peak power constraints can not be drawn at this point. However, on the ex-
ample of a use case for a sensor hub system, percentage savings over 60%
for dynamic energy and almost 40% for static energy consumption prove
the functionality and high efficiency of this method. Conducted experiments
with benchmark applications provide partially even better results. The lack of
availability of industrial-grade memory characteristics leaves further evalua-
tion with hardware-based memory figures as future work.

The evaluation of proposed optimizationmethods forMPSoC design shows
that optimal application-to-scratchpad binding is reducible to an algorithm that
assigns most frequently used elements to core-local scratchpads. Concerning
caches and scratchpads in themulti-core context, conducted experiments prove
benefits for either concept. Combination of both types of core-local memory,
as already common practice in recent MPSoC architectures, therefore turns
out to be the right way to go.

The last optimization method specifically targets STT-RAMmemories and
combines the determination of allocation and binding with the selection of
an operation mode per memory block. Conducted experiments show that the
observed energy/latency trade-off that characterizes the write operation in this
storage technology is dominated by dynamic energy as caused by peripheral
and access circuitry. Similar to SRAM, future work into the direction of more
detailed evaluation with memory figures that are based on real hardware is
also indicated here and might change the picture.

Concerning the solving performance of presented optimization methods,
large design spaces as even spanned by investigated benchmark applications
cause every proposed mixed-integer linear or quadratic problem formulation
to reach the limit of solvability, at least when a reasonable time limit is set. In
case of the static power optimization problem, the solution flow is moreover
already divided in two steps as to keep the problem manageable. In turn,
obtained solutions are not guaranteed to be optimal any more. Also, certain
workarounds, as for example constraint variations, are partially needed in
order to get a result in time. Future work could therefore go into the direction
of new solving methods with probably better scalability. This might allow, for
example, to solve the static power minimization problem (cf. Section 4.3) in a
single step and with optimal result.
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The proposed concept for code modification and generation according to
Chapter 5 enables the implementation of above mentioned memory optimiza-
tion results on the software level in an automated way. The prototype imple-
mentation of this tool for the ARMv6-M instruction set reveals, however, that
most and foremost the involved binary parsing step, which is required for the
support of frequently used library code, is not trivial and extremely costly in
terms of development time. This point impedes a simple porting of the tool to
other platforms with different instruction set architecture and therefore marks
another, more practical aspect for future work.

To sum it up, all parts for the application-specific optimization of memory
subsystems in System-on-Chip design are covered in this work. The presented
optimization methods allow for highly considerable dynamic energy and static
power savings and wait for further evaluation in industrial environments.
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Appendix

A Combined SRAM Allocation and Binding MIQP

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# App l i c a t i o n p r o f i l e s and r e l a t e d p a r ame t e r s
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
s e t PROFILE_SET ;

# P r o f i l e s i z e p a r ame t e r
param P_MEM_SIZE {PROFILE_SET} >= 0 ;

# Duty c y c l e
param P_DUTY_CYC {PROFILE_SET} >= 0 , <= 1 ;

# Read p r o b a b i l i t y
param P_READ_PROB {PROFILE_SET} >= 0 , <= 1 ;

# Wr i t e p r o b a b i l i t y
param P_WRITE_PROB {PROFILE_SET} >= 0 , <= 1 ;

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Memory r e s o u r c e s and t h e i r c h a r a c t e r i s t i c s
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
s e t MEM_SET;

# Memory s i z e p a r ame t e r
param M_SIZE {MEM_SET} >= 0 ;

# Memory on−ch i p a r e a consumpt ion f o o t p r i n t
param M_AREA {MEM_SET} >= 0 ;

# Read c u r r e n t pe r c y c l e
param M_READ_CURR {MEM_SET} >= 0 ;

# Wr i t e c u r r e n t pe r c y c l e
param M_WRITE_CURR {MEM_SET} >= 0 ;

# S t a t i c power consumpt ion
param M_STAT_POW {MEM_SET} >= 0 ;

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# User−d e f i n e d l i m i t i n g c o n s t r a i n t s
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Supply v o l t a g e
param V > 0 d e f a u l t 1 ;

# Maximum number o f memories
param MEMS_MAX i n t e g e r >= 0 d e f a u l t 8 ;

# Upper on−ch i p a r e a consumpt ion l i m i t
param AREA_MAX >= 0 d e f a u l t 0 ;
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# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Bus p a r ame t e r s ( modeled as p i e c ew i s e l i n e a r f u n c t i o n )
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Power consumpt ion
param B_POW { 1 . .MEMS_MAX} ;

# Area f o o t p r i n t
param B_AREA { 1 . .MEMS_MAX} ;

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Memory a l l o c a t i o n
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
va r MEM_ALLOC {MEM_SET} b i n a r y d e f a u l t 0 ;

v a r MEM_ALLOC_SUM i n t e g e r >= 1 ;
s u b j e c t t o MemAllocSum :
MEM_ALLOC_SUM = sum { j i n MEM_SET} MEM_ALLOC[ j ] ;

# Con s t r a i n t h e maximum number o f i n s t a n t i a t e d memories
# I f MEMS_MAX = 0 , t h e number o f memories i s u n c o n s t r a i n e d
s u b j e c t t o MaxIns t ance s { i f MEMS_MAX > 0} :

sum { j i n MEM_SET} MEM_ALLOC[ j ] <= MEMS_MAX;

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# App l i c a t i o n b i n d i n g
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
va r MEM_MAP {PROFILE_SET , MEM_SET} b i n a r y d e f a u l t 0 ;

# Every a p p l i c a t i o n p r o f i l e must be mapped t o e x a c t l y one memory
s u b j e c t t o P ro f i l eMapped { i i n PROFILE_SET } :

sum { j i n MEM_SET} MEM_MAP[ i , j ] = 1 ;

# Memory s i z e f e a s i b i l i t y c o n s t r a i n t
s u b j e c t t o MemSize { j i n MEM_SET} :

sum { i i n PROFILE_SET} MEM_MAP[ i , j ] ∗ P_MEM_SIZE[ i ] <=
M_SIZE [ j ] ∗ MEM_ALLOC[ j ] ;

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Power consumpt ion model
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
va r MEM_POWER {MEM_SET} ;
s u b j e c t t o MemPower { j i n MEM_SET} :
MEM_POWER[ j ] = MEM_ALLOC[ j ] ∗ M_STAT_POW[ j ] +

sum { i i n PROFILE_SET} V ∗ MEM_MAP[ i , j ] ∗ P_DUTY_CYC[ i ] ∗
(P_READ_PROB[ i ] ∗ M_READ_CURR[ j ] + P_WRITE_PROB[ i ] ∗ M_WRITE_CURR[ j ] ) ;

v a r BUS_POWER >= 0 ;
s u b j e c t t o BusPower :
BUS_POWER = <<{ j i n 1 . .MEMS_MAX−1} j ;

{k i n 1 . .MEMS_MAX} B_POW[ k]>> MEM_ALLOC_SUM;

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Area consumpt ion model
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
va r MEM_AREA {MEM_SET} ;
s u b j e c t t o MemArea { j i n MEM_SET} :
MEM_AREA[ j ] = MEM_ALLOC[ j ] ∗ M_AREA[ j ] ;
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va r BUS_AREA >= 0 ;
s u b j e c t t o BusArea :
BUS_AREA = <<{ j i n 1 . .MEMS_MAX−1} j ;

{k i n 1 . .MEMS_MAX} B_AREA[ k]>> MEM_ALLOC_SUM;

# Con s t r a i n t h e maximum a r e a consumed by memory and bus
# I f AREA_MAX = 0 , no a r e a l i m i t i s s e t
s u b j e c t t o A r e aCon s t r a i n t { i f AREA_MAX > 0} :
BUS_AREA + sum { j i n MEM_SET} MEM_AREA[ j ] <= AREA_MAX;

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Op t im i z a t i o n goa l : Minimize t h e dynamic ene rgy consumpt ion
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
minimize AveragePower :

BUS_POWER + sum { j i n MEM_SET} MEM_POWER[ j ] ;
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B SRAM Operation Mode Scheduling MIQP

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# App l i c a t i o n p r o f i l e s and r e l a t e d p a r ame t e r s ( f u n c t i o n s on ly ! )
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
s e t FCT_SET ;

# Execu t i on t ime i n c y c l e s ( h e r e # i n s t r u c t i o n s )
param F_EXEC_TIME {FCT_SET} i n t e g e r >= 0 ;

# Dependency ma t r i x between f u n c t i o n s
param F_DEPS {FCT_SET , FCT_SET} i n t e g e r >= 0 d e f a u l t 0 ;

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Av a i l a b l e memories − as s p e c i f i e d by t h e a l l o c a t i o n
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
s e t MEM_SET;

# Bina ry ma t r i x i n d i c a t i n g , which f u n c t i o n needs which memory t o be a c t i v e
# i n o r d e r t o be ex e cu t e d p r o p e r l y . . . i n c l u d e s d ep enden c i e s t o d a t a p r o f i l e s
param F_M_MAP {FCT_SET , MEM_SET} b i n a r y d e f a u l t 0 ;

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Memory subsys t em c o n f i g u r a t i o n and r e l a t e d c h a r a c t e r i s t i c s
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
s e t CFG_SET ;

# Energy consumpt ion pe r c o n f i g u r a t i o n and c y c l e
param E_IDLE {CFG_SET} >= 0 ;

# Peak power ( p e s s i m i s t i c ) => C_PWR + Max(R /W)
param P_PEAK {CFG_SET} >= 0 ;

# B ina ry ma t r i x r e p r e s e n t i n g t h e a c t i v e memories pe r c o n f i g u r a t i o n
param C_M_ACT {CFG_SET , MEM_SET} b i n a r y d e f a u l t 0 ;

# Energy p e n a l t y on c o n f i g u r a t i o n change
param E_PENALTY {CFG_SET , CFG_SET} >= 0 d e f a u l t 0 ;

# Co r r e spond i ng t im i ng p e n a l t y
param T_PENALTY {CFG_SET , CFG_SET} i n t e g e r >= 0 d e f a u l t 0 ;

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Co r r i d o r c o n s t r a i n t l i m i t v a l u e s
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Time c o r r i d o r
param T_MAX i n t e g e r >= 0 ;

# Power c o r r i d o r
param P_MAX >= 0 ;

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Va r i a b l e s
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# C e n t r a l v a r i a b l e f o r mapping between code p r o f i l e s and c o n f i g u r a t i o n
va r F_C_MAP {FCT_SET , CFG_SET} b i n a r y d e f a u l t 0 ;
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# Energy consumpt ion pe r f u n c t i o n ( i d l e )
va r E_IDLE_SUM {FCT_SET} >= 0 ;

# Energy p e n a l t y due t o mode sw i t c h i n g
va r E_MODE {FCT_SET , CFG_SET} >= 0 ;

# Ov e r a l l ene rgy p e n a l t y pe r f u n c t i o n
va r E_MODE_SUM {FCT_SET} >= 0 ;

# Timing p e n a l t y due t o mode sw i t c h i n g
va r T_MODE {FCT_SET , CFG_SET} i n t e g e r >= 0 ;

# Ov e r a l l t im i ng p e n a l t y ( needed i f T_MAX i s s e t )
v a r T_MODE_SUM {FCT_SET} i n t e g e r >= 0 ;

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# C o n s t r a i n t s − f e a s i b i l i t y
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Each f u n c t i o n s h a l l on ly be a s s i g n e d t o one and on ly one c o n f i g u r a t i o n
s u b j e c t t o OneCfgPerFct { f i n FCT_SET} :

sum {c i n CFG_SET} F_C_MAP[ f , c ] = 1 ;

# Ass ign each f u n c t i o n a c o n f i g u r a t i o n where r e q u i r e d memories a r e a c t i v e
s u b j e c t t o Va l i dCfgB ind ing { f i n FCT_SET , m i n MEM_SET : F_M_MAP[ f ,m] } :

sum {c i n CFG_SET} F_C_MAP[ f , c ] ∗ C_M_ACT[ c ,m] = 1 ;

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# C o n s t r a i n t s − r e l a t e d t o ene rgy consumpt ion
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Ac t i v e i d l e p a r t
s u b j e c t t o Ene r gy I d l e { f i n FCT_SET} :

E_IDLE_SUM[ f ] =
F_EXEC_TIME[ f ] ∗ ( sum {c i n CFG_SET} (F_C_MAP[ f , c ] ∗ E_IDLE [ c ] ) ) ;

# Th i s v e c t o r c o n t a i n s t h e ( ene rgy ) p e n a l t i e s f o r each f u n c t i o n
# i n c o n f i g u r a t i o n c1 t o any c o n f i g u r a t i o n c2 i n CFG_SET
s u b j e c t t o Ene r gyPena l t y { f i n FCT_SET , c2 i n CFG_SET} :
E_MODE[ f , c2 ] = sum {c1 i n CFG_SET} (F_C_MAP[ f , c1 ] ∗ E_PENALTY[ c1 , c2 ] ) ;

# Sum up t h e ene rgy p e n a l t y
s u b j e c t t o EnergyPenal tySum { f1 i n FCT_SET} :
E_MODE_SUM[ f1 ] >= sum { f2 i n FCT_SET}

(F_DEPS [ f1 , f2 ] ∗ sum {c i n CFG_SET} (E_MODE[ f1 , c ] ∗ F_C_MAP[ f2 , c ] ) ) ;

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# C o n s t r a i n t s − t im i ng and t ime c o r r i d o r
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Model t h e t im i ng p e n a l t i e s due t o mode changes . Th i s v e c t o r c o n t a i n s
# t h e ( t im i ng ) p e n a l t i e s f o r each f i n c1 t o any c2 i n CFG_SET
s u b j e c t t o T im ingPena l t y { f i n FCT_SET , c2 i n CFG_SET} :
T_MODE[ f , c2 ] = sum {c1 i n CFG_SET} (F_C_MAP[ f , c1 ] ∗ T_PENALTY[ c1 , c2 ] ) ;

# Sum up t h e t im i ng p e n a l t y − on ly i f T_MAX i s s e t !
s u b j e c t t o TimingPenal tySum { f1 i n FCT_SET} :
T_MODE_SUM[ f1 ] >= sum { f2 i n FCT_SET}

(F_DEPS [ f1 , f2 ] ∗ sum {c i n CFG_SET} (T_MODE[ f1 , c ] ∗ F_C_MAP[ f2 , c ] ) ) ;
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# Ensure t h a t p e r i o d T i s w i t h i n t h e t ime c o r r i d o r
# I f T_MAX = 0 , no t ime c o r r i d o r i s s e t
s u b j e c t t o T imeCor r i do r { i f T_MAX > 0} :

sum { f i n FCT_SET} (F_EXEC_TIME[ f ] + T_MODE_SUM[ f ] ) <= T_MAX;

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# C o n s t r a i n t − power c o r r i d o r
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Ensure peak of a l l a c t i v e c o n f i g u r a t i o n s i s w i t h i n c o r r i d o r
s u b j e c t t o PowerCor r i do r { f i n FCT_SET} :

sum {c i n CFG_SET} F_C_MAP[ f , c ] ∗ P_PEAK[ c ] <= P_MAX;

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Op t im i z a t i o n goa l : Minimize t h e t o t a l ene rgy consumpt ion
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
minimize To t a lEne rgy :

sum { f i n FCT_SET} (E_IDLE_SUM[ f ] + E_MODE_SUM[ f ] ) ;
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# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Se t o f p r o c e s s i n g u n i t s
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
s e t PU_SET ;

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# App l i c a t i o n p r o f i l e s and r e l a t e d p a r ame t e r s
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
s e t PROFILE_SET ;

# code p r o f i l e s
param PR_CODE {PROFILE_SET} b i n a r y d e f a u l t 0 ;

# d a t a p r o f i l e s
param PR_DATA {PROFILE_SET} b i n a r y d e f a u l t 0 ;

# Memory f o o t p r i n t
param PR_SIZE {PROFILE_SET} i n t e g e r >= 0 ;

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Av a i l a b l e memories − as s p e c i f i e d by t h e a l l o c a t i o n
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
s e t MEM_SET;

# Memory s i z e p a r ame t e r
param M_SIZE {MEM_SET} >= 0 ;

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# R e l a t i o n s between p r o c e s s i n g u n i t s and p r o f i l e s
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Number o f r e ad a c c e s s e s pe r p r o f i l e and pu
param PR_PU_READS {PROFILE_SET , PU_SET} i n t e g e r >= 0 ;

# Number o f w r i t e a c c e s s e s pe r p r o f i l e and pu
param PR_PU_WRITES {PROFILE_SET , PU_SET} i n t e g e r >= 0 ;

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# R e l a t i o n s between p r o c e s s i n g u n i t s and memories
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Consumed ene rgy i n c a s e o f a r e ad
param PU_M_READ {PU_SET , MEM_SET} >= 0 ;

# Same f o r w r i t e a c c e s s
param PU_M_WRITE {PU_SET , MEM_SET} >= 0 ;

# Access t ime pu −> mem
param PU_M_TIME {PU_SET , MEM_SET} >= 0 ;

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# User−d e f i n e d l i m i t i n g c o n s t r a i n t s
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Maximum pe r i o d ( o f one i t e r a t i o n )
param T_MAX i n t e g e r >= 0 ;
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# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Va r i a b l e s
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Bind ing o f p r o f i l e s t o memories
va r M_PR_MAP {MEM_SET, PROFILE_SET} b i n a r y d e f a u l t 0 ;

# Energy consumpt ion pe r pu
va r E_SUM {PU_SET} >= 0 ;

# Time consumed pe r pu ( i n one i t e r a t i o n )
va r T_SUM {PU_SET} >= 0 ;

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# C o n s t r a i n t s − f e a s i b i l i t y
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Ensure memory i n s t a n c e s t o r a g e c a p a c i t y i s l a r g e enough
s u b j e c t t o MemorySizeLimit {m i n MEM_SET} :

sum { pr i n PROFILE_SET} M_PR_MAP[m, p r ] ∗ PR_SIZE [ p r ] <= M_SIZE [m] ;

# A l l code p r o f i l e s have t o be mapped t o >> a t l e a s t one << memory
s u b j e c t t o BindingCode { pr i n PROFILE_SET : PR_CODE[ pr ] > 0} :

sum {m in MEM_SET} M_PR_MAP[m, p r ] >= 1 ;

# Each d a t a p r o f i l e s h a l l be mapped t o >>one and on ly one << memory
s u b j e c t t o B ind ingDa ta { p r i n PROFILE_SET : PR_DATA[ pr ] > 0} :

sum {m in MEM_SET} M_PR_MAP[m, p r ] = 1 ;

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# C o n s t r a i n t s − r e l a t e d t o ene rgy and t ime consumpt ion
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Sum up ene rgy consumpt ion f o r a l l p r o f i l e s . . .
s u b j e c t t o Ac t i veEne rgy {pu i n PU_SET} :
E_SUM[ pu ] >= sum { pr i n PROFILE_SET} sum {m in MEM_SET}

M_PR_MAP[m, p r ] ∗ ( ( PR_PU_READS[ pr , pu ] ∗ PU_M_READ[ pu ,m] ) +
(PR_PU_WRITES[ pr , pu ] ∗ PU_M_WRITE[ pu ,m] ) ) ;

# Sum up consumed t ime of a l l p r o f i l e s . . .
s u b j e c t t o To ta lT ime {pu i n PU_SET} :
T_SUM[ pu ] >= sum { pr i n PROFILE_SET} sum {m in MEM_SET} M_PR_MAP[m, p r ] ∗

(PU_M_TIME[ pu ,m] ∗ (PR_PU_READS[ pr , pu ] + PR_PU_WRITES[ pr , pu ] ) ) ;

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Co r r i d o r c o n s t r a i n t s
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Time c o r r i d o r − t h e p e r i o d o f each PU has t o be l e s s o r e qu a l t h an T_MAX
# I f T_MAX = 0 , no t ime c o r r i d o r i s s e t
s u b j e c t t o T imeCor r i do r {pu i n PU_SET : T_MAX > 0} :
T_SUM[ pu ] <= T_MAX;

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Op t im i z a t i o n goa l : Minimize t h e t o t a l ene rgy consumpt ion
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
minimize AccessEnergy :

sum {pu i n PU_SET} E_SUM[ pu ] ;
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# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# App l i c a t i o n p r o f i l e s and r e l a t e d p a r ame t e r s
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
s e t PROFILE_SET ;

# P r o f i l e s i z e p a r ame t e r
param P_SIZE {PROFILE_SET} i n t e g e r >= 0 ;

# Number o f r e ad a c c e s s e s
param P_NUM_READ {PROFILE_SET} i n t e g e r >= 0 ;

# Number o f w r i t e a c c e s s e s
param P_NUM_WRITE {PROFILE_SET} i n t e g e r >= 0 ;

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Av a i l a b l e memories and t h e i r c h a r a c t e r i s t i c s
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
s e t MEM_SET;

# Memory s i z e p a r ame t e r
param M_SIZE {MEM_SET} i n t e g e r > 0 ;

# Energy consumpt ion pe r r e ad a c c e s s
param M_E_READ {MEM_SET} > 0 ;

# Energy consumpt ion pe r w r i t e a c c e s s
param M_E_WRITE {MEM_SET} > 0 ;

# S t a t i c power consumpt ion
param M_P_STAT {MEM_SET} > 0 ;

# Maximum suppo r t e d o p e r a t i o n f r e qu en cy
param M_FREQ_MAX {MEM_SET} > 0 ;

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# System pa r ame t e r s and use r −d e f i n e d l i m i t i n g c o n s t r a i n t s
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Pe r i o d o f t h e a p p l i c a t i o n ( i n c y c l e s )
param N i n t e g e r > 0 ;

# Maximum number o f a l l o c a t e d memories
param MEMS_MAX i n t e g e r > 0 ;

# Minimum o p e r a t i o n f r e qu en cy of t h e memory subsys t em
param FREQ_MIN >= 0 ;

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Va r i a b l e s
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# A l l o c a t i o n v a r i a b l e
va r M_ALLOC {MEM_SET} b i n a r y d e f a u l t 0 ;

# Bind ing v a r i a b l e
va r P_M_BIND {PROFILE_SET , MEM_SET} b i n a r y d e f a u l t 0 ;
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# Energy consumpt ion pe r memory
va r E_SUM {MEM_SET} >= 0 ;

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# C o n s t r a i n t s
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Number o f a l l o c a t e d memories s h a l l r e s p e c t t h e uppe r bound
s u b j e c t t o MaxMems :

sum {m in MEM_SET} M_ALLOC[m] <= MEMS_MAX;

# Ensure t h e i n d i v i d u a l f r e q u e n c i e s a r e i n t h e c o n s t r a i n e d r ange
s u b j e c t t o MaxFreq {p i n PROFILE_SET } :

sum {m in MEM_SET} M_FREQ_MAX[m] ∗ P_M_BIND[ p ,m] >= FREQ_MIN ;

# A l l o c a t e d memory space s h a l l be l a r g e enough f o r a l l p r o f i l e s
s u b j e c t t o Va l i dB ind i ng {m in MEM_SET} :

sum {p i n PROFILE_SET} P_M_BIND[ p ,m] ∗ P_SIZE [ p ] <= M_ALLOC[m] ∗ M_SIZE [m] ;

# Map eve ry p r o f i l e t o one and on ly one memory
s u b j e c t t o BindOnlyOne {p i n PROFILE_SET } :

sum {m in MEM_SET} P_M_BIND[ p ,m] = 1 ;

# Compute t h e t o t a l ene rgy consumpt ion pe r memory
s u b j e c t t o EnergySum {m in MEM_SET} :
E_SUM[m] >= ( M_ALLOC[m] ∗ ( (M_P_STAT[m] /M_FREQ_MAX[m] ) ∗ N) ) +

( sum {p i n PROFILE_SET} P_M_BIND[ p ,m] ∗
( (P_NUM_READ[ p ] ∗ M_E_READ[m] ) + (P_NUM_WRITE[ p ] ∗ M_E_WRITE[m] ) ) ) ;

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Op t im i z a t i o n goa l : Minimize t h e t o t a l ene rgy consumpt ion
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
minimize To t a lEne rgy :

sum {m in MEM_SET} E_SUM[m] ;
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Abbreviations

IoT Internet of Things
SoC System-on-Chip
MPSoC Multi-Processor System-on-Chip
DSP Digital Signal Processor
PPAC Power Performance Area Cost
SRAM Static Random-Access Memory
DRAM Dynamic Random-Access Memory
CMOS Complementary Metal-Oxide-Semiconductor
STT-RAM Spin-Transfer Torque Random-Access Memory
ILP Integer Linear Program
MILP Mixed-Integer Linear Program
MIQP Mixed-Integer Quadratic Program
ISS Instruction Set Simulation
UML Unified Modeling Language
ROM Read-Only Memory
SPM Scratchpad Memory
MRAM Magnetoresistive Random-Access Memory
NVM Non-Volatile Memory
MTJ Magnetic Tunnel Junction
WER Write Error Rate
ISA Instruction Set Architecture
DFG Data Flow Graph
DSE Design Space Exploration
EPROM Erasable Programmable Read-Only Memory
RTOS Real-Time Operating System
DMA Direct Memory Access
PRAM Phase-Change Memory
EDA Electronic Design Automation
WCRT Worst-Case Response Time
MSC Message Sequence Chart
SDF Synchronous Data Flow
DAG Directed Acyclic Graph
MMU Memory Management Unit
IR Intermediate Representation
MCR Memory Configuration Register
GCC GNU Compiler Collection
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