
Institute of Information Security

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelor Thesis

Enhancement of a Tool for
Comprehensive Security Scanning

Fabian Hauck

Course of Study: Informatics

Examiner: Prof. Dr. Ralf Küsters

Supervisor: Dr. Daniel Fett (yes.com AG),
Dipl.-Inf. Guido Schmitz

Commenced: October 23, 2019

Completed: May 27, 2020

Abstract

The demand for web applications is rapidly increasing worldwide. Since the world wide web
is accessible to everyone with a connection to the internet, web-based systems are especially
vulnerable to attacks. This is why cybersecurity is getting increased attention. While it is difficult
to defend a system from sophisticated attacks it is rather easy to find and fix insecure system
configurations. Since web applications and their infrastructure are rapidly changing, it is hard to
manually detect security breaches. Therefore advanced testing software is needed to detect security
leaks automatically.

The present work describes several extensions of an automated security scanning tool called yesses.
The yesses tool was originally designed to scan web servers for basic security properties like open
ports, insecure HTTP methods and missing cookie security features. The tool is accessible open-
source on GitHub [Fet20b]. Within the scope of this work, the yesses tool was extended by seven
modules. Hereby the following three main topics were investigated: Transportation Layer Security
(TLS), Domain Name System Security Extensions (DNSSEC) and information leakages. Within the
TLS topic, TLS scans of the TLS settings of a server are performed and the differences compared to
a Mozilla TLS profile were analyzed. Among other things this gives important insights into possible
insecure encryption algorithms. In the scope of DNSSEC, the DNSSEC configuration of a domain
name was scanned. Hereby the tool can detect possible misconfigurations, e.g. a missing signature
for a DNS resource record. Concerning information leakages, the yesses tool was extended in such
a way, that it detects sensitive data exposures which are very useful for potential adversaries. The
described extensions do not only make the yesses tool more powerful, they also enable it to detect
security leaks that could not have been detected beforehand.

3

Acknowledgement

First of all I would like to thank Prof. Ralf Küsters for the assignment of a bachelor thesis topic
in the field of web security. I have been interested in this topic for a long time. Thanks also to my
supervisor Guido Schmitz at the University of Stuttgart for his constructive feedback.

I am especially grateful to my supervisor Daniel Fett at the yes.com AG for always answering my
questions and for the interesting discussions. Furthermore I want to thank my family for supporting
me during the time of writing this thesis. Last but not least I want to show gratitude to Anke Schult
for correcting the language and grammar.

4

Contents

1 Introduction 11

2 The Yesses Project 13
2.1 Modules . 14
2.2 YAML Configuration . 16

3 Transportation Layer Security 21
3.1 TLS Handshake . 21
3.2 Mozilla TLS Profiles . 24
3.3 Attacks on TLS . 29
3.4 TLS Settings Module for yesses . 31

4 Domain Name System Security Extensions 35
4.1 Domain Name System . 35
4.2 Domain Name System Security Extensions . 36
4.3 DNSSEC Module for yesses . 41

5 Information Leakages 43
5.1 Types of Information Leakages . 43
5.2 Information Leakage Modules for yesses . 45

6 Test Environment 49

7 Summary and Outlook 51

Bibliography 53

A Web TLS Profiler 57

B Reflection on NSEC Authenticated Denial of Existence 59

C Contributions to Open-Source Projects 63
C.1 Issues . 63
C.2 Pull Requests . 64

D German Abstract 67

5

List of Figures

2.1 Overview of how yesses works. 13
2.2 Example YAML configuration file for the yesses tool. 18
2.3 Screenshot of the HTML page generated by yesses with the configuration file from

Figure 2.2. 19

3.1 Messages exchange during a TLS handshake [RD08]. 22
3.2 Left: CBC mode decryption in the Lucky 13 attack, Right: TLS CBC message [AP13]. 30

4.1 Simplified DNS tree with the example.com zone. 36
4.2 Simplified DNS tree with DNSSEC support. 37
4.3 NSEC resource records of a small example zone. 38
4.4 NSEC3 resource records and the Opt-Out flag. 40
4.5 Overview of the DNSSEC Scanner architecture. 42

5.1 Example of information leakages on a website. It shows the footer of a Gitea
installation [Git19a]. Here the exact version and duration of generating the page
are seen. 43

5.2 Example stack trace from the Laravel framework [Lar19] which leaks a lot of
information if not turned off in production. 44

5.3 Interaction of all modules to detect information leakages. 46
5.4 Example YAML configuration of the Information Leakage modules. 46

6.1 Test environment structure. 49

A.1 Screenshot of the Web TLS Profiler’s desktop site. 57

B.1 Simple NSEC example. 59
B.2 NSEC example where two NSEC records are needed. 60
B.3 NSEC example where the closest encloser is an empty non-terminal. 61
B.4 Example of an attack on the NSEC verification process. 62

7

List of Tables

3.1 Example TLS 1.2 cipher suites [RD08] [BBG+06]. 24
3.3 Overview of the Mozilla TLS profiles (Part 1) [Moz20a] [Moz20b]. 27
3.5 Overview of the Mozilla TLS profiles (Part 2) [Moz20a]. 28

9

1 Introduction

Today the internet is more popular than ever before, resulting from the fact that roughly sixty per cent
of the world’s population is connected with the internet [Cle20] and that each user on average spends
more than three hours on the internet every day [Cle19]. As everybody with an internet connection
has access to web applications these services are especially vulnerable to a lot of attacks.

The Open Web Application Security Project (OWASP) investigates attack types on web applications
every few years. The OWASP Foundation is a non-profit, open community obligated to provide
unbiased, practical information about application security. From all attacks found on the web, the
OWASP Foundation publishes the ten most frequently found attacks in the OWASP Top 10. These
ten attack types are a good starting point to check a web application for vulnerabilities [WWv+17].

While it is certainly difficult to protect web applications from sophisticated attacks, it is rather easy
to check the infrastructure for basic security properties and misconfigurations. The significance of
security misconfigurations becomes obvious as it is sixth on the OWASP Top 10 list. Since web
applications and their infrastructures are rapidly changing, it is hard to manually detect security
vulnerabilities. This leads to the necessity for advanced software solutions that can automatically
detect security breaches.

This thesis describes several enhancements for an automated security scanning tool called yesses.
The yesses tool is written in Python and is freely available as open-source software on GitHub.
The scanning tool was originally designed to scan web servers for basic security properties like
open ports, unsafe HTTP headers as well as insecure HTTP methods. A detailed description of the
software can be found in Chapter 2. In the context of this thesis, seven modules with important new
functionality were developed for the yesses tool. These modules cover the security-relevant topics:
Transportation Layer Security (TLS), Domain Name System Security Extensions (DNSSEC) as
well as information leakages. Furthermore, an automated testing environment was added to the
yesses tool.

The first topic examined in this thesis is Transportation Layer Security (TLS). TLS is used to secure
different protocols on the internet such as HTTP, VPNs, and emails. TLS has a long history with
a lot of different versions and encryption algorithms, but not all of them are still secure today.
Consequently, it is particularly important to select secure TLS settings for web servers. For this
reason, the Mozilla Foundation has published TLS profiles to provide a guideline for state-of-the-art
TLS settings by only enabling secure encryption algorithms. Within this topic, the already existing
TLS Settings module of yesses was extended to do a comprehensive comparison between the TLS
settings of a server and a Mozilla TLS profile. This topic is discussed in Chapter 3 as well as
Appendix A.

The second topic in this thesis covers the Domain Name System Security Extensions (DNSSEC).
The Domain Name System (DNS) is used to map domain names to IP addresses. Since the Domain
Name System does not provide data integrity DNSSEC was developed. DNSSEC adds digital

11

1 Introduction

signatures and public keys to the Domain Name System to verify the correctness of DNS data like
IP addresses, for example. As a result the setup of DNSSEC for a domain name is quite complex.
To help finding misconfigurations a newly developed module called Dnssec was added to the yesses
tool. The Dnssec module is a powerful tool to inspect the DNSSEC configuration of a domain
name and it warns of misconfigurations like missing public keys or invalid signatures. More about
DNSSEC and the Dnssec module can be found in Chapter 4 and Appendix B.

The third part of this thesis deals with information leakages in web applications and is described in
Chapter 5. Information leakages are application weaknesses that appear whenever a system reveals
sensitive data, for example, implementation details or user-specific data. In general, these data are
of high potential use for possible adversaries. Consequently it is important for the security of the
application and its users to find and fix information leakages. To detect information leakages five
new modules were added to the yesses tool.

In addition to the new modules, the yesses tool was also extended by an automated test environment.
The test environment uses Docker containers with different web servers which are particularly close
to a real server infrastructure. This allows extensive testing of the newly added modules. The test
environment is discussed in Chapter 6.

The yesses tool uses several third-party Python packages to scan for security properties. Considering
that those packages did not provide all the features needed for the new modules, several code
contributions were made to other open-source software. Additionally, multiple severe bugs were
found in open-source software while working on this thesis. These bugs were reported via GitHub
issues. More information about the contributions to the open-source community can be found in
Appendix C.

12

2 The Yesses Project

In order to guarantee the security of web applications it is crucial to scan them regularly for basic
security properties. This is especially important if there are new deployments every day. Existing
security compliance testing tools either scan for special vulnerabilities like Cross-Site Scripting and
SQL injection or they need an agent installed on the web server itself. Examples of such scanners are
SQL Map [DS20] for SQL injection and Burp Suite [Por20] for XSS vulnerabilities, SQL injections,
and other injection attacks. Another example using an agent to do a comprehensive security scan is
OpenVAS which performs a scan of several network protocols as well as web applications. It can
also be used to check local security properties [Bun].

But so far - without using an agent - there is no security scanner that can scan for security properties
on the network level, the TLS configuration, and the web application level. The focus hereby is not
on XSS vulnerabilities or SQL injection but more on HTTP header configurations and insecure
HTTP methods like TRACE. For these reasons, Daniel Fett developed the yesses tool [Fet20b] for
the yes.com AG. This tool is a lightweight scanner for basic security properties that creates alerts if
a vulnerability is found. An overview of how yesses works can be seen in Figure 2.1. The yesses
tool is available open-source under the GNU Affero General Public License v3.0. This chapter
introduces the yesses project and its modules that already existed before this thesis was started.

To use the yesses tool it is necessary to define a baseline for the tool’s findings and if the result
differs from the baseline an alert is reported. The baseline configuration is done with YAML files in
a way that even people who do not know the details of the software can understand which properties
the tool is scanning for. In Section 2.2 there is an in-depth explanation of how the configuration
works. With this setup, for example, the software can be scheduled as a weekly CRON job.

Security Specialist

alerts yesses tool

Server Infrastructure

Server

Service 1

Server

Service 2

Server

Service 3

security checks

Figure 2.1: Overview of how yesses works.

13

2 The Yesses Project

2.1 Modules

To be easily extensible the software uses modules to scan for security properties. The core of
the software only parses the YAML configuration, passes data from one module to another, and
schedules the execution of the modules. In the following, there is a description of the modules
that were already implemented. Up to this point there are scan and discovery modules. Discovery
modules, for example, are checking the server certificate or investigate if there are any web servers
on an IP address range. The scan modules, on the other hand, search for open ports or compare the
TLS settings of a web server with a Mozilla TLS profile [Fet20b].

2.1.1 Discover TLS Certificates

One of the problems with the public key infrastructure on the web is that it relies on the trustworthi-
ness of the certificate authorities (CA). However, history has shown that CAs do not always issue
correct certificates. For example, between 2009 and 2015 Symantec mis-issued 164 certificates
for 76 different domains. It was discovered by Google because one of the certificates was issued
for ’google.com’. For this reason, Certificate Transparency Logs (CTLs) were introduced. The
CTLs are lists that contain domain names and the associated certificates. Everybody can enter new
certificates and verify a given certificate. Certificates issued after October 2017 are only accepted
by Chrome if they are listed in a CTL [Küs19]. But these logs do not prevent malicious CAs from
issuing wrong certificates. Consequently the domain name owner has to query these logs and check
whether there are certificates not requested by him for his domain. This is exactly what the TLS

Certificates module does. It takes domain names as inputs and outputs all associated certificates.
In case that there is a new certificate, the yesses tool can be configured to create an alert [Fet20b].

2.1.2 Discover Domains And IPs

This module retrieves IP addresses from a DNS resolver based on given domain names. The
domain names can either be specified inside the configuration or they can be passed on from the
TLS Certificate's module which outputs the domain names listed in the found certificates. The
discovered IP addresses can then be compared to a whitelist of IP addresses. Additionally, the
module is expanding CNAMEs and is testing the existence of homoglyph domains provided by a
list. Homoglyph domains are domains that look similar to the original ones but they are spelled
slightly different, for example, example.com and 3xample.com. The module also tries to guess
expansions for wildcard domains by testing known subdomain names as wildcards. The idea is
that subdomains, for example, used for testing environments could also be used in production. The
module’s purpose is to detect DNS hijacking and creating an alert if a new IP address or domain
name has been found [Fet20b].

14

2.1 Modules

2.1.3 Discover Webservers

In an every-changing server configuration, it can always happen that a web server is misconfigured
or is running on a wrong IP-Port combination. To detect such problems this module combines a list
of IP addresses and ports with a list of domain names. Then it scans every combination to find a
running web server. Running web servers will be reported in the output of the module [Fet20b].

2.1.4 Scan Ports

This module uses the Nmap [Nmab] tool to scan IP addresses for open ports. Open ports will be
reported to the output. This is a useful feature because open ports are always the first thing an
adversary would try to exploit [Fet20b].

2.1.5 Scan TLS Settings

TLS is a protocol with a long history and a lot of different versions and ciphers. Not all of them
are secure anymore. That is the reason why it is important to use a strong TLS configuration.
Mozilla provides three TLS profiles for a different security need and client support. This module
takes domain names and the TLS profile name as an input and checks whether the server’s TLS
configuration matches the Mozilla TLS profile. It should prevent the TLS settings from being
misconfigured, which is part of the sixth OWASP Top 10 security risk (Security Misconfiguration).
This module already existed but it did only check the ciphers and protocol versions supported by
the server. As part of this thesis, a comprehensive check for all properties listed in the Mozilla TLS
profiles was implemented into this module. More about the Mozilla TLS profiles can be found in
Chapter 3. This module supersedes the TLS Settings Qualys module which uses Qualys SSL Labs
to assess the security of a server’s TLS configuration [Fet20b].

2.1.6 Scan Web Security Settings

This module scans the HTTP protocol for insecure configurations. On the one hand, it checks for
insecure HTTP methods like TRACE/TRACK and CONNECT. The TRACE/TRACK method can
be used to start Cross Site Tracing attacks because it echos back what the client sent to the server.
Whereas the CONNECT method can be exploited to use the server as a proxy [OWA20d]. On
the other hand, the Web Security Settings module checks missing redirections to HTTPS and
unwanted redirections from HTTPS to HTTP. Furthermore, the Web Security Settings module
looks at HTTP headers with the result to report an alert if the ’Access-Control-.*’ header is present
and if headers like ’Strict-Transport-Security’ or ’X-Frame-Options’ have wrong values or are
completely missing. The header and HTTP method check is not limited to the default values
because it can be configured through the YAML configuration file. The ’Access-Control-.*’ header
reports by default an alert because a wrong configuration could allow third party websites with
JavaScript to read sensitive information on this website. This would fall into the third OWASP Top
10 vulnerability (Sensitive Data Exposure). Insecure cookies are the last thing this module warns of.
Cookies are only considered secure if the ’HttpOnly’ attribute is set. Additionally, on HTTPS URIs

15

2 The Yesses Project

the name must start with ’__Host-’ or ’__Secure-’ and the ’secure’ and ’SameSite’ attribute must
be set [Fet20b]. These properties are a part of the sixth OWASP Top 10 security risks (Security
Misconfiguration).

2.2 YAML Configuration

YAML is a data serialization language that provides a human-readable format. Thus, the format is
especially suitable to create configuration files for computer programs. Figure 2.2 shows an example
of a YAML configuration file for the yesses tool. All yesses configuration files consist of three parts.
The first one is called ’data’ and contains all necessary information to scan like domain names and
DNS resolver IP addresses. In this part it is also possible to define a baseline for the findings.

The second part is called ’run’ and specifies the modules and their execution sequence for the scan.
Each module is specified by its unique module name and can have several inputs. An input can
be an array from the ’data’ section. The syntax for this is: use <variable name>. After this the
module’s outputs that should be used are specified with the keyword ’find’. These data fields are
then available for other modules so that it is possible to use them as inputs. Finally, the keyword
’expect’ defines what should happen with the module’s findings. There are several possibilities.
The first possibility is to write ’no Homoglyph-Matches, otherwise alert high’, which means that, if
there is a homoglyph domain in the array ’Homoglyph-Matches’, the tool will create an alert with
the level high. The second possibility is to configure an alert, by adding ’no new IPs, otherwise
alert medium’ which means if there are new items in an array the user should be warned. The tool
saves its findings in every run, to compare its results with the previous ones in the following run.
The last option is to create an alert if two arrays do not have the same content independent from
their order. For example, if the array ’Whitelist-IPs’ is defined in the ’data’ section the syntax would
be ’Whitelist-IPs equals IPs, otherwise alert high’. The severity level of the alert is specified at the
end and can either be ’informative’, ’medium’, ’high’ or ’very high’.

The last part of the configuration specifies how the findings should be reported. It is defined with
the keyword ’output’. Currently, it is possible to write the findings into an HTML file or send them
to a Slack channel. In the following, there is an overview of the most important keywords for the
configuration:

1. data: Contains all information needed for the scan.

2. run: Specifies the modules and their execution order for the scan.

3. use: Used to input a somewhere else defined array into the module.

4. as: Renames a variable. Useful if there are name conflicts in the global variable namespace.

5. find: Defines which findings should be used from the module.

6. expect: Creates alerts if the result differs from the baseline.

7. output: Specifies how the alerts should be saved. (e.g. HTML)

16

2.2 YAML Configuration

In the following, there is a high-level overview of the configuration file seen in Figure 2.2. This will
also show a use-case yesses was developed for. First, the module Domains and IPs is used to find
IP addresses for the given domain names. After this, the module is run again to find homoglyph
domains and create an alert if there are any homoglyph domains. Now the found IP addresses for
the domain names can be used to run a port scan with the Ports module to find open ports that
should be closed or closed ports that should be open. This information is used to find running web
servers with the Webservers module. The found web servers can be used again as an input for the
TLS Settings module that matches the web servers’ TLS configuration with a Mozilla TLS profile.
Finally, the Web Security Settings module uses the Webservers modules outputs as inputs to check
the HTTP protocol for insecurities. At the end of the run, the tool will create an HTML page with all
the alerts that were created during the run. A screenshot of this HTML page is shown in Figure 2.3.
As can be seen in this example the modules are designed to build upon each other.

1 data:

2 Domain-Seeds:

3 - domain: example.com

4 Homoglyph-Domains:

5 - domain: exampl3.com

6 DNS-Resolvers:

7 - ip: 1.1.1.1

8 - ip: 8.8.8.8

9 - ip: 9.9.9.9

10

11 run:

12 - discover Domains and IPs:

13 seeds: use Domain-Seeds

14 resolvers: use DNS-Resolvers

15 find:

16 - IPs

17 - Domains

18 - DNS-Entries

19 expect:

20 - no new IPs, otherwise alert medium

21 - no new Domains, otherwise alert medium

22 - no new DNS-Entries, otherwise alert high

23 - discover Domains and IPs:

24 seeds: use Homoglyph-Domains

25 resolvers: use DNS-Resolvers

26 find:

27 - Domains as Homoglyph-Matches

28 expect:

29 - no Homoglyph-Matches, otherwise alert high

30 - scan Ports:

31 protocols:

32 - tcp

33 ports: 80,443

34 ips: use IPs

35 find:

36 - Host-Ports

37 - HTTP-Ports

38 - HTTPS-Ports

17

2 The Yesses Project

39 expect:

40 - no new Host-Ports, otherwise alert very high

41 - discover Webservers:

42 ips: use HTTP-Ports and HTTPS-Ports

43 domains: use Domains

44 find:

45 - Insecure-Origins

46 - Secure-Origins

47 expect:

48 - no new Insecure-Origins, otherwise alert high

49 - scan TLS Settings:

50 domains: use Secure-Origins

51 tls_profile: intermediate

52 find:

53 - TLS-Profile-Mismatch-Domains

54 - TLS-Validation-Fail-Domains

55 - TLS-Vulnerability-Domains

56 - TLS-Okay-Domains

57 - TLS-Other-Error-Domains

58 expect:

59 - no TLS-Profile-Mismatch-Domains, otherwise alert medium

60 - no TLS-Validation-Fail-Domains, otherwise alert medium

61 - no TLS-Vulnerability-Domains, otherwise alert medium

62 - no TLS-Other-Error-Domains, otherwise alert medium

63 - scan Web Security Settings:

64 origins: use Secure-Origins and Insecure-Origins

65 find:

66 - Missing-HTTPS-Redirect-URLs

67 - Redirect-to-non-HTTPS-URLs

68 - Disallowed-Header-URLs

69 - Missing-Header-URLs

70 - Disallowed-Method-URLs

71 - Insecure-Cookie-URLs

72 expect:

73 - no Missing-HTTPS-Redirect-URLs, otherwise alert high

74 - no Redirect-to-non-HTTPS-URLs, otherwise alert high

75 - no Disallowed-Header-URLs, otherwise alert medium

76 - no Missing-Header-URLs, otherwise alert medium

77 - no Disallowed-Method-URLs, otherwise alert medium

78 - no Insecure-Cookie-URLs, otherwise alert medium

79

80 output:

81 - Template:

82 filename: report-example.html

83 template: templates/html/main.j2

Figure 2.2: Example YAML configuration file for the yesses tool.

18

2.2 YAML Configuration

Figure 2.3: Screenshot of the HTML page generated by yesses with the configuration file from
Figure 2.2.

19

3 Transportation Layer Security

With the increasing popularity of the web, communicating with web applications over plain HTTP
became insufficient due to the fact that everybody between client and server could read and change
the transferred data. In order to guarantee confidentiality and integrity of data sent over insecure
networks the Transportation Layer Security (TLS) protocol was developed to establish a secure
channel between clients and servers. Besides securing HTTP, the TLS protocol is also used in many
other protocols like STARTTLS for emails, SSL-VPNs and WPA-Enterprise for Wifi.

As vulnerabilities were discovered in the TLS protocol over the years, multiple versions had to be
developed. At the time of writing the versions SSL 1.0, SSL 2.0, SSL 3.0, TLS 1.0, TLS 1.1, TLS
1.2, TLS 1.3 existed. The Secure Socket Layer (SSL) protocol is the predecessor of TLS. Nowadays
all SSL versions have been deprecated due to severe vulnerabilities. Since not all TLS ciphers
provide sufficient protection anymore it is important to have a guideline for secure TLS settings.
For this reason, the Mozilla Foundation published a guideline with three different TLS profiles for
different security levels and different client support.

This chapter describes the extension of the TLS Settings module of the yesses tool. In this work the
TLS Settings module was extended to do a comprehensive comparison between the TLS settings
of a server and a Mozilla TLS profile. Till now the TLS Settings module did only check the TLS
versions and the supported ciphers, but for a comprehensive comparison it is also necessary to check
the key exchange mechanisms and the certificate properties. These properties are exchanged during
the TLS handshake.

3.1 TLS Handshake

During the TLS handshake, the TLS properties defined in the Mozilla TLS profiles are exchanged.
In this phase the client and server negotiate a symmetric cipher suite to encrypt the payload sent
between client and server, a shared premaster secret and other cryptographic parameters.

The premaster secret can be exchanged by using an asymmetric encryption scheme. To do this
the client encrypts the premaster secret with the server’s public key from the certificate. The
alternative is to compute the premaster secret with the Diffie-Hellman key exchange algorithm.
The Diffie-Hellman algorithm can either use finite fields or elliptic curves and can have static
parameters or ephemeral parameters. The advantage of ephemeral parameters over static parameters
is that it provides forward secrecy. Forward secrecy means that even if the private RSA key or
Diffie-Hellman parameters are compromised an adversary will not be able to decrypt TLS sessions
from the past [Kah16].

21

3 Transportation Layer Security

Client Server

ClientHello

cipher_suites: Listing of all symmetric
cipher suites supported by the client in
descending order. (RFC: 8446)

ServerHello
Certificate*

ServerKeyExchange*
CertificateRequest*
ServerHelloDone

cipher_suites: Symmetric cipher suite
choosen by the server. (RFC: 8446)

supported_groups: Listing of all
(EC)DHE groups supported by the client.
key_share: Contains (EC)DHE shares
for one or all groups specified by
supported_groups. (RFC: 8446)

key_share: The server selects if possible one
of the groups mentioned by the ClientHello
"key_share" extension and respond with his
own key shares. (RFC: 8446)

Certificate*
ClientKeyExchange

CertificateVerify*
[ChangeCipherSpec]

Finished

[ChangeCipherSpec]
Finished

Application Data

* Optional messages that are not always sent

Figure 3.1: Messages exchange during a TLS handshake [RD08].

Figure 3.1 shows the exchanged messages during a TLS handshake. The ClientHello message
contains several extensions. The most important ones are the ’supported_groups’ and ’key_share’
extension. The former specifies supported elliptic curves and finite fields for the Diffie-Hellman
key exchange; the latter contains (EC)DHE parameters for one or more groups specified by the
’supported_groups’ extension.

Furthermore, the client sends its supported cipher suites in descending order within the
’cipher_suites’ extension. In TLS 1.2 and older the cipher suites define the symmetric encryp-
tion scheme and the key exchange mechanism. The symmetric encryption scheme can either be
a stream cipher like RC4_128 or CHACHA20_POLY1305 or a block cipher like AES_128_CBC
or 3DES_EDE_CBC. CBC, at the end of the cipher string, describes the mode in which the block
cipher is used. This can also be the GCM or the CCM mode. Today’s most popular and in TLS 1.3
the only supported symmetric encryption schemes are CHACHA20 and AES. AES can use keys with
the size of 128-, 192- and 256-bits but in TLS only 128- and 256-bit keys are allowed. CHACHA20,
however, always uses 256-bit keys in TLS. Should future cryptoanalysis reveal vulnerabilities in AES,

22

3.1 TLS Handshake

CHACHA20 provides a secure alternative. With modern hardware support, AES encryption can be
done very fast. Nevertheless, CHACHA20 has the advantage that its software-only implementation
is about three times as fast as the one of AES making it more suitable for devices without special
hardware support [NL15].

To be able to use the symmetric encryption the client and the server have to share a key. This key
is calculated from the premaster secret. The problem with the key exchange is that an adversary
can still take over the connection by performing a Man-In-The-Middle attack. An adversary with
these capabilities could be, for example, a malicious network provider or someone who hacked a
router between the client and the server. To prevent this type of attacks, TLS can use a Public Key
Infrastructure with x509 v3 certificates to authenticate the server. A certificate confirms that a public
key really belongs to the server the client wants to talk to. To confirm the validity of a certificate it
must be digitally signed by a trusted Certificate Authority (CA) which checks that the public key
belongs to the server before signing the certificate. The advantage of this is that a client does not
have to save every certificate from every server it wants to talk to. Instead, it only has to save a few
trusted Certificate Authority certificates. If the server sends its certificate during the TLS handshake
the client can verify whether it was signed by a trusted CA or not. A successful validation guarantees
that the client is talking to the real server and not a Man-In-The-Middle attacker [CSF+08].

If RSA is used for the key exchange the client can simply use the public key from the certificate
knowing the key exchange is authenticated. If Diffie-Hellman is used the server signs the parameters
to authenticate them and the client can verify the signature with the server’s public key. Consequently,
with an RSA certificate, the server can do both key exchange mechanisms. The alternative to
RSA certificates is DSA or elliptic curve DSA (ECDSA) certificates. ECDSA certificates have
the advantage that they use smaller key sizes than RSA or DSA certificates. DSA and ECDSA
certificates can only sign messages and therefore have to be used with the Diffie-Hellman key
exchange mechanism [Por13].

A complete cipher suite string for TLS 1.2 can, for example, look like this ’TLS_DHE_RSA_WITH-
_AES_256_CBC_SHA256’. It means that it uses ephemeral finite field Diffie-Hellman with an
RSA certificate to authenticate the key exchange. For the symmetric encryption it uses AES with a
key length of 256 bits in CBC mode. The hash function SHA256 at the end is used as a message
authentication code (MAC) [RD08]. The Table 3.1 shows a few TLS 1.2 cipher suites.

TLS 1.3 works quite similarly but has a few differences in the key exchange and cipher suite options.
Only ephemeral finite field or elliptic curve Diffie-Hellman is allowed for key exchange and DSA
certificates were removed. As symmetric ciphers, only AES and CHACHA20 are permitted. The
cipher string also looks a bit different because it simply specifies the symmetric cipher suite and the
MAC. An example would be ’TLS_AES_256_GCM_SHA384’ [Res18].

For the sake of completeness, there is also the possibility of using pre-shared keys for a TLS
connection so that the client and server do not have to do public key operations. But this is mostly
used in pre-configured closed environments and because of this, it is not relevant for web servers on
the internet [ETB+05].

23

3 Transportation Layer Security

Cipher Suite Key Exchange Cipher Mac
TLS_RSA
_WITH_NULL
_MD5

Key exchange and server
authentication with the public
RSA key

No
encryption

MD5 hash for
message
authentication

TLS_RSA
_WITH_RC4_128
_SHA

Key exchange and server
authentication with the public
RSA key

RC4 stream
cipher with
128 bit keys

SHA hash for
message
authentication

TLS_DHE_RSA
_WITH_AES_128_CBC
_SHA256

Key exchange with ephemeral
Diffie-Hellman parameters
and server authentication
with a RSA certificate

AES block
cipher with
128 bit in
CBC mode

SHA256 hash
for message
authentication

TLS_DH_anon
_WITH_3DES_EDE_CBC
_SHA

Key exchange with static
Diffie-Hellman parameters
and neither of the parties is
authenticated

3DES EDE
block cipher
in CBC
mode

SHA hash for
message
authentication

TLS_ECDHE_ECDSA
_WITH_AES_256_CBC
_SHA

Key exchange with
ephemeral elliptic curve
Diffie-Hellman parameters
and server authentication
with an ECDSA certificate

AES block
cipher with
256 bit keys
in CBC
mode

SHA hash for
message
authentication

Table 3.1: Example TLS 1.2 cipher suites [RD08] [BBG+06].

3.2 Mozilla TLS Profiles

As seen in the previous section, TLS supports a lot of different cryptographic algorithms. Some of
them are not secure anymore or are not widely adopted. For example, there exists a ciphertext-only
attack on RC4 that simply needs many encrypted versions of the target plaintext [ABP+13]. Besides,
the cipher suite 3DES and Ed25519 certificates only have limited support from clients today.
Additionally, TLS can even be used without encryption if the configuration is wrong.

This presents server maintainers with the challenge of knowing which cipher suites, key exchange
mechanisms, and certificates offer good security and are also widely supported by clients. For this
reason, the Mozilla Foundation provides three different TLS profiles. They are called ’Modern’,
’Intermediate’ and ’Old’. These profiles are maintained by the Mozilla Operations Security and
Enterprise Information Security teams. However, they have a GitHub repository [Moz20c] for the
wiki site so that anyone can suggest changes to the profiles. In the Tables 3.3 and 3.5 a detailed
description of the TLS profiles is seen. To simplify the TLS setup for each profile, Mozilla provides
an ’SSL Configuration Generator’ [Moz20d] that automatically creates configuration files for
common web servers [Moz20a].

24

3.2 Mozilla TLS Profiles

3.2.1 Modern Profile

The Modern profile has the highest security level by just supporting TLS 1.3, but it is only compatible
with up-to-date clients. For example, Android 10 is needed to open a TLS 1.3 connection which
has not been supported widely yet.

All cipher suites provide very good security by being forward secret and authenticated. Because of
this, the client is allowed to choose the cipher suite according to his support for hardware-accelerated
AES encryption. If the client does not have hardware support it can choose the CHACHA20 cipher
which has a better software-only performance as mentioned earlier.

This profile only allows ECDSA certificates using the elliptic curve ’prime256v1’ or ’secp384r1’
[Moz20b]. Mozilla recommends the ’prime256v1’ curve because it has better performance due
to a smaller key size and the curve ’secp384r1’ provides only a negligible security improve-
ment. ’Ed25519’ certificates are not allowed in this profile because they are not supported widely
enough [Moz20a].

3.2.2 Intermediate Profile

The Intermediate profile is a mix of supporting a wide range of clients as well as providing a good
security level. It should be used for most services because it is supported by a vast majority of clients
released in the last five years at least. Only very old clients like Windows XP and old OpenSSL
versions do not support this setting.

The Intermediate profile permits the TLS protocols 1.2 and 1.3. Moreover, every cipher suite
provides forward secrecy and is authenticated. To achieve the forward secrecy only ECDHE and
DHE are provided as key exchange mechanisms and none of the cipher suites support the encryption
of the premaster secret with the server’s public key. Considering that, it is safe to let the client
choose the cipher suite according to its hardware acceleration.

ECDSA, as well as RSA certificates, are allowed to be used. However, ECDSA certificates are
preferred because of the support of the ECDHE key exchange with Windows 7 using Internet
Explorer 11 and IE11 on Windows Server 2008 R2. If ECDSA certificates are not available,
administrators can use the cipher suite ’TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA’ to
support IE11 clients on Windows Server 2008 R2. Mozilla intentionally did not include ciphers like
AIRA, Camellia, 3DES, and SEED as they have very little support by clients today [Moz20a].

3.2.3 Old Profile

The Old profile has the weakest security level but it has good support for legacy clients. It should
only be used as a last resort and for endpoints that really require it.

This profile supports most ciphers that do not have obvious vulnerabilities. Consequently, for-
ward secrecy is not guaranteed because the cipher suite ’TLS_RSA_WITH_AES_128_GCM-
_SHA256’ [Moz20b], for example, is allowed which uses the server’s public RSA key to encrypt
the premaster secret during the TLS handshake. For this reason, the order of the cipher suites in the

25

3 Transportation Layer Security

profile is very important. This implies that the server has to choose the cipher for its connection.
The protocol versions TLS 1.0, 1.1, 1.2, and 1.3 are activated and SSL 3 is completely disabled.
This means that clients with Windows XP SP2 are no longer supported [Moz20a].

26

3.2
M

ozilla
TLS

Profiles

Modern Intermediate Old
Protocols TLS 1.3 TLS 1.2, TLS 1.3 TLS 1.0, TLS 1.1, TLS 1.2, TLS 1.3
Certificate
type

ECDSA (P-256) ECDSA (P-256) (recommended) or
RSA (2048 bits)

RSA (2048 bits)

Certificate
signature

ecdsa-with-SHA256,
ecdsa-with-SHA384,
ecdsa-with-SHA512

sha256WithRSAEncryption,
ecdsa-with-SHA256,
ecdsa-with-SHA384,
ecdsa-with-SHA512

sha256WithRSAEncryption

OCSP
stapling

True True True

TLS curves X25519, prime256v1, secp384r1 X25519, prime256v1, secp384r1 X25519, prime256v1, secp384r1
HSTS max-age=63072000 (two years) max-age=63072000 (two years) max-age=63072000 (two years)
DH
parameter
size

- 2048 (ffdhe2048, RFC 7919) 1024 (generated with openssl dhparam
1024)

Maximum
certificate
lifespan

90 days 90 days (recommended) to 2 years 90 days (recommended) to 2 years

Cipher
preference

client chooses client chooses server chooses

Cipher suites
TLS 1.3

TLS_AES_128_GCM_SHA256,
TLS_AES_256_GCM_SHA384,
TLS_CHACHA20_POLY1305_SHA256

TLS_AES_128_GCM_SHA256,
TLS_AES_256_GCM_SHA384,
TLS_CHACHA20_POLY1305_SHA256

TLS_AES_128_GCM_SHA256,
TLS_AES_256_GCM_SHA384,
TLS_CHACHA20_POLY1305_SHA256

Table 3.3: Overview of the Mozilla TLS profiles (Part 1) [Moz20a] [Moz20b].

27

3
Transportation

LayerSecurity

Modern Intermediate Old
Cipher suites
TLS 1.2 and
older

- ECDHE-ECDSA-AES128-GCM-SHA256,
ECDHE-RSA-AES128-GCM-SHA256,
ECDHE-ECDSA-AES256-GCM-SHA384,
ECDHE-RSA-AES256-GCM-SHA384,
ECDHE-ECDSA-CHACHA20-POLY1305,
ECDHE-RSA-CHACHA20-POLY1305,
DHE-RSA-AES128-GCM-SHA256,
DHE-RSA-AES256-GCM-SHA384

ECDHE-ECDSA-AES128-GCM-SHA256,
ECDHE-RSA-AES128-GCM-SHA256,
ECDHE-ECDSA-AES256-GCM-SHA384,
ECDHE-RSA-AES256-GCM-SHA384,
ECDHE-ECDSA-CHACHA20-POLY1305,
ECDHE-RSA-CHACHA20-POLY1305,
DHE-RSA-AES128-GCM-SHA256,
DHE-RSA-AES256-GCM-SHA384,
DHE-RSA-CHACHA20-POLY1305,
ECDHE-ECDSA-AES128-SHA256,
ECDHE-RSA-AES128-SHA256,
ECDHE-ECDSA-AES128-SHA,
ECDHE-RSA-AES128-SHA,
ECDHE-ECDSA-AES256-SHA384,
ECDHE-RSA-AES256-SHA384
ECDHE-ECDSA-AES256-SHA,
ECDHE-RSA-AES256-SHA,
DHE-RSA-AES128-SHA256,
DHE-RSA-AES256-SHA256,
AES128-GCM-SHA256,
AES256-GCM-SHA384, AES128-SHA256,
AES256-SHA256, AES128-SHA,
AES256-SHA, DES-CBC3-SHA

Table 3.5: Overview of the Mozilla TLS profiles (Part 2) [Moz20a].

28

3.3 Attacks on TLS

3.3 Attacks on TLS

Due to vulnerabilities in the TLS protocol, several versions were developed as mentioned in the
introduction of this chapter. In this section, two selected attacks on the TLS protocol are explained
and it is discussed in which Mozilla TLS profile they are possible. These attacks show that the
Mozilla TLS profiles provide a good security level because of the wise selection of cipher suites.

3.3.1 Logjam Attack

The Logjam attack is an attack on the Diffie-Hellman key exchange in the TLS protocol. Diffie-
Hellman key exchange with ephemeral parameters is the most popular key exchange mechanism
today because it provides forward secrecy. Logjam takes advantage of the fact that a lot of servers
are using the same group and group generator for the Diffie-Hellman key exchange. To carry out
this attack the adversary must be able to eavesdrop on a secure connection.

The Diffie-Hellman key exchange works as follows. The server chooses a group G and a generator g
as well as a parameter b ∈ {0, ... , |G | − 1}. It computes gb and sents G, g and gb to the client. The
client chooses a ∈ {0, ... , |G | − 1}, computes ga and sents ga to the server. Now both can compute
ga ·b. The security hereby lies in the fact that solving the discrete logarithm x (y = gx mod p) with
current known algorithms is a hard problem [DH76].

The most efficient algorithm for the discrete logarithm is the number field sieve (NFS) algorithm.
This algorithm consists of four phases, but only the last one depends on y and g. The first three
phases only need the prime factor p. Consequently it is possible to pre-compute the first three phases
that require the most computational effort. This makes sense because many implementations are
using one of a few Diffie-Hellman groups. By using the pre-computed values the paper ’Imperfect
Forward Secrecy: How Diffie-Hellman Fails in Practice’ [ABD+15] shows that it is possible to
perform an effective Man-In-The-Middle attack on a TLS connection which uses the Diffie-Hellman
key exchange with a 512-bit prime.

This attack could easily be adapted to 1024-bit primes. Therefore, an attacker needs a lot more
computing power, however, for nation-state attackers the precomputation for a few 1024-bit primes
can feasible be committed. As mentioned before many web servers are using the same few groups.
The above mentioned paper analyzed that by precomputing ten 1024-bit groups, it is possible to
decrypt the traffic of 24% of the Alexa Top Million HTTPS sites [ABD+15].

This attack allows an adversary to decrypt a connection established with a Diffie-Hellman key
exchange by a server using the Old Mozilla TLS profile. This attack obviously requires the use
of a standardized 1024-bit prime number. For the Intermediate Mozilla TLS profile this attack
is infeasible because 2048-bit prime numbers are too big to perform the pre-computation steps.
The Modern Profile is also not susceptible to this attack because it only allows the elliptic curve
Diffie-Hellman key exchange.

29

3 Transportation Layer Security

DB

C3

Message before encryption:

HDR (5 B) ||
SQN (8 B) Plaintext MAC tag

(20 B)
Padding (e.g.
0x01||0x01)

Message after encryption:

HDR (5 B) ||
SQN (8 B)

IV
(16 B)

C1
(16 B)

C2
(16 B)

C3
(16 B)

C4
(16 B)

Input for the HMAC

Input for the encryption function

Lucky 13 attack:

X1 X2 X4

k

DB DB DB

IV c1 c2 C4

X3

Use an arbitrary
cipher block you
want to decrypt.

 In the second
 case the values
 are 0x01 || 0x01.

Change the last two
bytes for the attack.

Figure 3.2: Left: CBC mode decryption in the Lucky 13 attack, Right: TLS CBC message [AP13].

3.3.2 Lucky 13 Attack

The Lucky 13 attack is an attack on the CBC mode (Figure 3.2) used with MAC-then-Encrypt in
the TLS protocol similar to the Vaudenay’s attack [Vau02]. This attack can only be carried out
if an adversary is able to eavesdrop on the TLS connection and if he can inject packages into the
connection.

The MAC that is used for message authentication is an HMAC that uses the Merkle-Damg
◦ard

construction. The number of compression function evaluations depends on the message length. For
less than 55 bytes it takes 4 compression function evaluations and for 56 to 119 bytes it takes 5
compression function evaluations. This computational difference results in a timing difference that
can be used by an adversary.

Before encrypting the ciphertext, it must be padded to be a multiple of the block cipher block length
long. The padding consists of bytes that have the value of the padding length, for example, 0x00,
0x01| |0x01 or 0x02| |0x02| |0x02. There always has to be at least one byte of padding.

In order to describe the attack an example with a block cipher of length 16 bytes (AES) and a MAC
with a tag of length 20 bytes (HMAC-SHA-1) will be used. As seen in Figure 3.2 the message for
the hash function consists of the TLS header with a length of 13 bytes and the plaintext. By using
4 cipher blocks, the ciphertext has a length of 4 · 16 bytes = 64 bytes without the initialization
vector. To get the length of the message that will be used for the MAC function the subtraction
of the 20 bytes MAC tag and the addition of the 13 bytes TLS header is needed. Calculating
64 bytes − 20 bytes + 13 bytes leaves at most 57 bytes for the hash function. Now the last
two bytes of the initialization vector for C4 are changed and the result is sent to the server for
decryption.

30

3.4 TLS Settings Module for yesses

In the first case the padding of one byte (0x00) is assumed. That means the message length for the
hash function in total is 57 bytes − 1 byte = 56 bytes. The HMAC function needs 5 compression
function evaluations for this message.

In the second case the plaintext was padded with at least two bytes. This means the message for the
MAC function is 55 bytes or shorter which implies that the hash function only needs 4 compression
cycles.

In the third case the padding is incorrect. The RFCs for TLS 1.1 and TLS 1.2 state that here the
plaintext is interpreted without padding, which results in a message length of 57 bytes for the MAC
function (64 bytes − 20 bytes + 13 bytes = 57 bytes). This means that the hash function needs
5 compression function evaluations.

Concluding, it is possible to distinguish the second case from the two other cases by measuring the
response time. By trying every combination for the last two bytes and measuring the time it takes
for decryption it is possible to find a combination for the second case. If the second case is detected,
the padding is most likely 0x01| |0x01. With this knowledge the output of the AES block can be
recovered by computing the XOR between the found bytes and the plaintext (0x01| |0x01). As a
result the actual plaintext for the last two bytes can be calculated with the output of the AES block
and the real initialization vector.

By iterating this attack, similar to the corresponding step in the Vaudenay’s attack [Vau02], the
whole block can be calculated and by using every block as the last block the complete message can
be decrypted [AP13].

This attack even works in TLS 1.2 but not in the Intermediate Mozilla TLS profile despite the fact
that it supports TLS 1.2. This is due to the fact that Mozilla only included block cipher suites that
use the GCM mode in the Intermediate profile. The same goes for the Modern profile. However,
the Old Mozilla TLS profile is vulnerable to this attack because, for example, the cipher suite
’AES128-SHA’ is included which uses AES in CBC mode with the HMAC-SHA-1 for message
authentication. This is exactly the configuration discussed in the example above.

3.4 TLS Settings Module for yesses

To compare the TLS settings of a server with a Mozilla TLS profile the yesses tool has the
TLS Settings module. The module does not make the comparison itself. Instead, it uses the
TLS Profiler Python package created by Daniel Fett. The TLS Profiler is available as open-source
software on GitHub under the GNU Affero General Public License v3.0 [Fet20a]. The reason for
outsourcing the module was to simplify maintenance and to increase reusability.

The TLS Profiler Python package uses the popular SSLyze [Diq19b] Python package to scan the TLS
settings of a server. The SSLyze Python package uses the nassl [Diq19a] Python package to interact
with OpenSSL. OpenSSL is used to establish the actual TLS connection. The TLS properties for
each Mozilla TLS profile are read from a JSON file [Moz20b] provided by Mozilla. Consequently,
if Mozilla changes the properties of its TLS profiles, the TLS Profiler will just have to download a
new JSON file.

31

3 Transportation Layer Security

So far the TLS Profiler Python package had the following features: find illegal protocol versions,
find illegal ciphers, check the certificate’s validity and scan the TLS library for known vulnerabilities
like Heartbleed. As stated in Table 3.3 and Table 3.5 the Mozilla TLS profiles contain a lot more
properties. Until now there was no check for the key exchange mechanism and certificate properties,
two essential parts of the TLS protocol.

In order to get the server’s certificate the TLS Profiler uses the ’CertificateInfoPlugin’ of SSLyze.
With the certificate returned by SSLyze, it is possible to check the certificate type as well as the
public key’s elliptic curve or RSA key length. Additionally, the certificate’s signature as well as the
certificate’s lifespan can also be examined. Not required by the Mozilla TLS profiles but a useful
feature is the creation of an alert if the certificate expires soon. The default is to warn 15 days before
the certificate expires but this can be altered individually by the user. The ’CertificateInfoPlugin’ also
returns whether OCSP stapling is supported by the server. OCSP stands for ’online certificate status
protocol’. It means that a client can ask the certificate authority (CA) to confirm the validity of a
server’s certificate. The CA does this by sending a signed message with an expiration date [SMA+13].
To prevent the overhead of asking the CA for this message a server can send the signed OCSP
response during the TLS handshake. This is known as OCSP stapling and is currently required by
all Mozilla TLS profiles [Pet13].

To scan the properties used during the TLS handshake the TLS Profiler uses the ’OpenSslCipher-
SuitesPlugin’ of SSLyze. This plugin, however, did not provide all the information needed to draw
a comparison with a Mozilla TLS profile. It returned the ciphers and protocol versions supported
by the server but it did not return the cipher order and not the elliptic curve nor the finite field
parameters used during the Diffie-Hellman key exchange. Fortunately, there were forks of SSLyze
that returned the server’s cipher suite order and the Diffie-Hellman parameters used for the key
exchange. However, the cipher suite order fork had a minor bug and the Diffie-Hellman parameter
fork was not compatible with the latest version of the nassl master branch. In the scope of this thesis,
both bugs were fixed and a pull request was sent to the maintainer of SSLyze. Detailed information
about the pull requests can be found in the Appendix C.2. With these two forks it is possible to
check the finite field Diffie-Hellman parameters as well as the cipher suite order for the Old Mozilla
TLS profile. With knowledge of the server’s cipher suite order the program can check whether the
server or the client chooses the cipher suite. In case the client chooses the cipher suite order the
server does not have an order.

The last missing property of the Mozilla TLS profiles are the elliptic curves used throughout the
key exchange. It is possible to test whether a server supports an elliptic curve by setting only one
curve in the ’supported_groups’ extension in the ’ClientHello’ message. Additionally, a cipher suite
that uses elliptic curve Diffie-Hellman for the key exchange must be chosen. If the handshake is
successful, the server supports the elliptic curve or else it remains unsupported. Setting values
to the ’supported_groups’ extension requires direct access to OpenSSL’s ’SSL_set1_groups_list’
method. In order to make use of this method a Python binding for the ’SSL_set1_groups_list’
method was integrated into nassl. The actual test of the elliptic curves was then integrated into
the ’OpenSslCipherSuitesPlugin’ of SSLyze. These changes were also sent in a pull request to the
maintainer of SSLyze and nassl (See Appendix C.2).

32

3.4 TLS Settings Module for yesses

Furthermore, all Mozilla TLS profiles require a certain value for the HTTP Strict Transport Security
(HSTS) header. HSTS forces a browser to access a site only over HTTPS [HJB12]. A check for this
value was not directly requested by the yes.com AG but for the sake of completeness, it was also
integrated into the TLS Profiler Python package. The ’HttpHeadersPlugin’ of SSLyze is used to
query the value of the HSTS header.

This detailed information enables the TLS Profiler to draw a comprehensive comparison of the
server’s TLS settings with a Mozilla TLS profile. In case a TLS property differs from the Mozilla
TLS profile specification the TLS Profiler will respond with a detailed error message. With the TLS
Profiler, the TLS Settings module of yesses simply needs to call the TLS Profiler class for every
domain and then write the result into the output array.

To verify the correctness of the TLS Profiler a test environment with four Docker containers using
different web servers was built into the TLS Profiler Python package. One for each profile and one
that does not match any profile. The certificates for the test containers are always recreated before
the test starts to ensure that their lifespan is not expired yet. A similar test setup was made for the
yesses tool. More information is given in Chapter 6.

Before the TLS Profiler Python package was developed available software and web services were
evaluated that specifically check the TLS configuration of a server and compare them with a Mozilla
TLS profile. So far no software existed that can make this comparison. Since the TLS Profiler
project provides a Python package that does this task, a web interface for the TLS Profiler was being
written. (cf. Appendix A)

33

4 Domain Name System Security Extensions

Every computer connected to the internet can be reached by a unique IP address. Consequently, the
knowledge of the IP address is needed to access a specific computer. Today there are two IP address
formats in use. First, there is IPv4 where addresses look like this ’93.184.216.34’ and second there
is IPv6 where addresses look like this ’2606:2800:220:1:248:1893:25c8:1946’. It is really hard to
remember which IP address belongs to which service, especially if the service uses IPv6.

With the intention of simplifying the access of services on the internet, the Domain Name System
(DNS) was developed in the 1980s. It was first standardized in the RFC 1034 [Moc87a] and
RFC 1035 [Moc87b] by the Internet Engineering Task Force in 1987. The Domain Name System
maps domain names to IP addresses. Thus, it is only necessary to remember the human-readable
domain name and not the IP address to access the services. For example, the domain name
’example.com.’ is mapped by the Domain Name System to the address ’93.184.216.34’ from
above.

Due to the fact that the Domain Name System does not provide integrity, the Domain Name System
Security Extensions (DNSSEC) were developed. Since the DNSSEC setup for a domain name can
be quite complex the yesses tool needed a module to check the DNSSEC configuration of domain
names. As part of this thesis, the Dnssec module was developed for the yesses tool that verifies the
DNSSEC chain-of-trust from top to bottom.

4.1 Domain Name System

Each domain name is expressed as a sequence of labels. The labels are separated by dots and the
last label is always the null label. For example, the domain name ’www.example.com.’ consists of
the labels ’www’, ’example’, ’com’ as well as the null label [Moc87b].

The Domain Name System is organized in a tree structure where every node is called a zone. The
child nodes of a zone are called subzones. Figure 4.1 shows a simplified DNS three. Each zone is
managed by a set of authoritative nameservers, however, one nameserver can be authoritative for
several zones. The subzones of the root zone contain the top-level domains like com, de and eu.

To resolve a domain name a recursive DNS resolver asks the root zone where to find the name. For
’www.example.com.’ the root zone points the resolver to the com zone. The com zone again knows
where to find all domain names that end with ’com’. Consequently, the com zone points the resolver
to the example.com zone. In this zone the resolver finds the answer for ’www.example.com.’.

The answer can be almost any kind of information that can be stored inside a database. One row in
the DNS database is called a resource record and contains an owner name (domain name), the class
(e.g. internet), the type and the information associated with these properties. The type, for example,

35

4 Domain Name System Security Extensions

Nameserver for example.com.

Root nameserver

Nameserver for com. Nameserver for de. Nameserver for eu.

com. 172800 IN NS e.gtld-servers.net.
de. 172800 IN NS a.nic.de.
eu. 172800 IN NS y.dns.eu.

google.com. 234 IN A 172.217.22.46
amazon.com. 864 IN AAAA fe43:db8:10::1
www.example.com. 172 IN NS a.iana-servers.net.

www.example.com. 86400 IN A 93.184.216.56

amazon.de. 60 IN A 52.95.120.34
amazon.de. 60 IN A 176.32.108.185

europa.eu. 300 IN A 147.67.34.45
europa.eu. 300 IN MX 10 mxb.gslb.pphosted.com.

com. zone de. zone eu. zone

Records that are stored
inside a database.

. root zone

example.com. zone

Figure 4.1: Simplified DNS tree with the example.com zone.

can be IPv4 or IPv6 as well as NS which contains the domain name of another zone’s nameserver.
Another type is ’Start of Authority’ (SOA) which has to be at the beginning of a zone and contains
meta-information about the zone [Moc87a].

The Domain Name System was developed with scalability and availability [Moc87a] but not integrity
and confidentiality in mind. Thus it is vulnerable to Man-in-the-Middle attacks. An adversary,
for example, could change the IP address in the answer to redirect the client to a malicious side
controlled by the attacker. Furthermore, some states use the Domain Name System to censor the
internet by redirecting clients to a website that says ’This website is blocked!’ for certain sites. To
prevent tampering with DNS queries the Domain Name System Security Extensions (DNSSEC) were
introduced. DNSSEC satisfies two important requirements: First, by only introducing additional
record types, it does not break compatibility with legacy resolvers. Second, it is possible to query
domain names from zones that do not support DNSSEC. If a zone does not support DNSSEC there
is obviously no integrity for queries in that zone [AAL+05a] [AA04].

4.2 Domain Name System Security Extensions

The Domain Name System Security Extensions (DNSSEC) were developed to add integrity to the
Domain Name System. It does this by adding additional record types for signatures and public
keys. By doing this it does not break the compatibility with devices that do not support DNSSEC
because these devices can just ignore the additional records. Also, not every zone has to support
DNSSEC. Hence, there has to be proof that records do not exist. Otherwise, an adversary would
just remove the signatures from the DNS query to make the resolver believe that the zone does not
support DNSSEC [AAL+05b].

36

4.2 Domain Name System Security Extensions

example.com. zone

. root zone

com. zone de. zone eu. zone

signsKSKpriv

signs

signs

signs

ZSKpriv

KSKpub

ZSKpub

hash(KSKpub)

signs
KSKpriv

signs
ZSKpriv ZSKpub

KSKpub

 www.example.com. 213 IN A 93.184.216.34

signs
KSKpriv

ZSKpriv ZSKpub

KSKpub

hash(KSKpub)

signs
KSKpriv

ZSKpriv ZSKpub

KSKpub

hash(KSKpub)

Has to be hardcoded
inside the resolver.

The hash is saved inside
a record of type DS.

The keys are saved inside
a record of type DNSKEY.

The signature is saved inside
a record of type RRSIG.

The keys are saved inside
a record of type DNSKEY.

The signature is saved inside
a record of type RRSIG.

example.com. 213 IN A 93.184.216.34

signs
KSKpriv

signs
ZSKpriv

ZSKpub

KSKpub

hash(KSKpub)

Figure 4.2: Simplified DNS tree with DNSSEC support.

To verify a DNS answer DNSSEC uses a Public Key Infrastructure to build a chain-of-trust from
the DNS root zone to the zone that contains the answer to the query. Each zone has a Key Signing
Key Pair (KSK) and a Zone Signing Key Pair (ZSK). The KSK signs the public key of the ZSK
and the ZSK signs all the resource records in the zone as well as the hashes of the KSKs from the
subzones. Figure 4.2 presents the same DNS tree as Figure 4.1 but with the asymmetric key pairs
for each zone. By signing the hash of the subzone’s Key Signing Key a validating resolver only
needs to know the KSK of the DNS root zone. From there the resolver can build the chain-of-trust
because every zone signs the trusted KSKs of its subzones [AAL+05b] [KMM12].

The signature for each resource record is stored inside a record of type RRSIG. One RRSIG holds a
signature for all resource records that have the same owner name, class and type. Furthermore, it
has an expiration date [AAL+05c].

The ZSKs and the KSKs are stored inside resource records of type DNSKEY. A DNSKEY resource
record has to have the flag bit 7 set to be a Zone Key. The bit 15 is the Secure Entry Point (SEP)
flag. If this flag is set the key is a KSK otherwise it is a ZSK [MSP04]. Another important flag
is the revoke bit that is used to prevent the use of a compromised key. The revoke bit is the flag
bit 8 and if this flag is set the key has to be self-signed, or else an attacker could intentionally set the
revoke bit to break the chain-of-trust [StJ07].

37

4 Domain Name System Security Extensions

 example.com. 3522 IN NSEC c.example.com. A NS SOA MX TXT AAAA RRSIG NSEC DNSKEY

 www.example.com. 3057 IN NSEC example.com. A TXT AAAA RRSIG NSEC

c.example.com. 3057 IN NSEC www.example.com. A TXT AAAA RRSIG NSEC

Figure 4.3: NSEC resource records of a small example zone.

Another resource record introduced with DNSSEC is the DS record that holds a subzone’s Key
Signing Key hash and is signed by the zone’s Zone Signing Key. The last two new resource records
are the NSEC and NSEC3 resource records that are used to deny the existence of domain names or
resource record types [MM14] [AAL+05c].

4.2.1 Authenticated Denial of Existence

Until now the integrity of existing resource records and types with digital signatures have been
proven, but the Domain Name System can also respond with the status ’NXDOMAIN’, which means
that the domain name does not exist or with the status ’NODATA’, which means that the requested
resource record type does not exist. Since the DNS response is not authenticated the status in the
response cannot be trusted by a resolver. In the following, the process of authenticated denial of
existence is described as in RFC 7129 [MM14].

A simple solution would be that the nameserver signs the DNS response. But this would go
against the ’first sign, then load’ principle of DNSSEC. This principle was introduced because
nameservers have to process a lot of queries so that it is infeasible to sign requests on the fly. In
addition, the nameserver must have access to the private key so that it can create signatures. This,
however, is considered to be a security risk. For these reasons, the NSEC and NSEC3 records where
introduced.

Authenticated denial of existence with NSEC and NSEC3 resource records work in a similar way
but with NSEC3 it is a little bit more complicated. An NSEC record contains the next domain name
in the zone in canonical order as well as all record types that are available at the resource record’s
owner name. Figure 4.3 shows the NSEC records of a small zone that only contains the domain
names ’example.com.’, ’c.example.com.’ and ’www.example.com.’. By specifying the next existing
domain name in the zone, it is indirectly specified which domain names do not exist. Every domain
name between the owner name and the next existing name in canonical order does not exist.

If domain names in canonical order are compared it works by comparing each label starting with
the rightmost label. In case the rightmost labels are the same, it is necessary to continue with the
next one and so forth [AAL+05c]. If there is no label left in one of the domain names the name
with more labels is sorted after the one with fewer labels. In the example of Figure 4.3 the domain

38

4.2 Domain Name System Security Extensions

name ’a.example.com.’ would be between ’example.com.’ and ’c.example.com.’. This means that
the first NSEC record from Figure 4.3 covers the name ’a.example.com.’. If the NSEC record can
be verified with a signature the resolver can conclude that the domain name does not exist.

To show that there are actually no resource records for the domain name ’a.example.com.’ it is also
necessary to show that no wildcard expansion is possible. This is why a second NSEC record is
needed that covers the wildcard ’*.example.com.’. With one NSEC record covering the domain
name and one NSEC record covering the wildcard, it is proven that the status ’NXDOMAIN’ is
correct. Further considerations on authenticated denial of existence with NSEC records can be
found in Appendix B.

In case the DNS response comes back with the status ’NODATA’ it is necessary to check, if there
is an NSEC record where the owner name equals the queried name. If such a record is found the
type bitmap lists all types available for the queried name. If the asked type is not listed in the type
bitmap it is proven that the queried type does not exist for the queried name. As always the NSEC
record must be validated with a signature. With this method it is possible to show that a subzone
does not support DNSSEC. Because if there is no DS record for the subzone it will not be possible
to build a chain-of-trust.

Due to the nature of NSEC, it is possible to query every domain name in the zone by following the
next existing domain names in the NSEC records. It is also possible to detect the zone end because
the next domain name of the last NSEC record is the first domain name in the zone. Figure 4.3
shows this principle. Besides, NSEC requires an additional record plus signature for every name
in the zone. Especially in big zones, a lot more records cause extra costs which would potentially
prevent DNSSEC adoption. For these reasons, the NSEC3 records were developed.

NSEC3 basically works in the same way as NSEC, but every domain name is hashed. Instead of
structuring the zone according to the canonical order, the zone is ordered by the hash names. This
makes zone walking complicated because an attacker would have to brute-force every single hash.
Moreover, a salt and multiple hash function iterations is applied to the domain names to make
brute-force attacks more complicated. To reduce the zone size, NSEC3 has an Opt-Out flag. If
this flag is set there can be one or more insecure delegations between the owner name and the next
domain name of the NSEC3 record. Figure 4.4 shows a zone with NSEC3 records and the Opt-Out
flag. Insecure delegation means that these subzones do not support DNSSEC. Thus they need no
NSEC record because they are not secured, anyway. In a big zone, especially, with a lot of insecure
delegations like the com zone, this technique reduces the zone size.

Showing that a record type does not exist works exactly as with NSEC but showing that a domain
name does not exist is a bit more complicated with NSEC3. This is caused by losing the depth of
the zone by hashing the domain names. To compensate for the loss of information an additional
NSEC3 record is necessary.

The first NSEC3 record is needed for the closest encloser. The closest encloser is the longest suffix
of the queried name that exists in the zone. In the example of Figure 4.4 the closest encloser of
’a.b.example.com.’ would be ’example.com.’. The second NSEC3 record is needed to cover the
next closer name. The next closer name is the closest encloser with one additional label prefixed to
the closest encloser. In the example above, the next closer name would be ’b.example.com.’. Since
there is an NSEC3 record that covers the next closer name, the queried name cannot exist, either.

39

4 Domain Name System Security Extensions

 a1e3dfb45.example.com. 3522 IN NSEC3 1 0 0 - c1e3dfb45 A NS SOA MX TXT AAAA RRSIG NSEC DNSKEY

w1e3dfb45.example.com. 3057 IN NSEC3 1 0 0 - a1e3dfb45 A TXT AAAA RRSIG NSEC

c1e3dfb45.example.com. 3057 IN NSEC3 1 0 0 - w1e3dfb45 A TXT AAAA RRSIG NSEC

Hash of example.com.

Hash of c.example.com.

Hash of www.example.com.

Note: All hashes are made up and not generated by a real hash function.

 Hash of b.example.com: b1e3dfb45
 Hash of *.example.com: e1e3dfb45
 Hash of *.b.example.com: z1e3dfb45
 Hash of a.b.example.com: d1e3dfb45

b.example.com 3057 IN NS ns1.example.com

c.b.example.com 3057 IN NS ns2.example.com

Opt-Out flag set

Insecure
delegations

Figure 4.4: NSEC3 resource records and the Opt-Out flag.

This would already be sufficient to show that a delegation to a subzone does not support DNSSEC,
if the Opt-Out flag is set. The reason why there is no proof for wildcards needed is that wildcard
records should not own NS records [Lew06].

In order to prove the non-existence of a domain name it is also important to take wildcards into
account. That is why a third NSEC3 record is required. The only possible source of synthesis is
’*.<closest encloser>’ [Lew06]. In the example above, it would be ’*.example.com.’. With this it is
proven that the domain name does not exist and no wildcard expansion it possible. Like always,
every NSEC3 record must be validated with a valid signature.

As mentioned before the extra NSEC3 record for the closest encloser is needed due to losing the
depth of the zone. The result of this is that it is impossible to tell where a possible wildcard expansion
could be. This is why the closest encloser is needed. It is the only point where a wildcard expansion
could take place. But to really know what the closest encloser is, an additional NSEC3 record is
needed because of the hashed names.

The following attack uses the zone as seen Figure 4.4 but the wildcard ’*.example.com.’ exists.
Supposing that there is no NSEC3 record for the closest encloser and the query name is again
’a.b.example.com.’, the answer to this query should be the expanded wildcard. Without the closest
encloser an attacker could just calculate the hash for ’*.b.example.com.’ and search for an NSEC3
record that covers the hash. The hash of ’*.b.example.com.’ is ’z1e3dfb45’ which is covered by the
last NSEC3 record in Figure 4.4. The hash of ’a.b.example.com’ is ’d1e3dfb45’ which is covered
by the second NSEC3 record in Figure 4.4. The adversary just adds these two NSEC3 records to the

40

4.3 DNSSEC Module for yesses

reply and removes the wildcard expansion from the reply. If the resolver now looks at the answer,
it would conclude that the domain name does not exist because there is an NSEC3 record for the
queried name and the wildcard. That is why a third NSEC3 record is needed [MM14].

4.3 DNSSEC Module for yesses

The DNSSEC module for yesses has to give detailed information on the DNSSEC verification
process. After analyzing existing software no software was found that gives detailed error messages
and offers a good integration into a Python-based software. For example, the web services ’dnssec-
analyzer.verisignlabs.com’ and ’dnsviz.net’ deliver detailed information for the DNSSEC validation
steps but are hard to integrate into yesses. The already existing Python packages are very poorly
documented and do not give detailed information about the validation steps. To satisfy these
requirements the Dnssec module was developed for the yesses tool in the scope of this thesis.
Because of the size of the code base, the source code was outsourced into a separate Python
package called DNSSEC Scanner. This simplifies the maintenance and increases the reusability.
The DNSSEC Scanner can even be used directly from the command-line. The DNSSEC Scanner is
available open-source on GitHub [Hau20a] under the BSD 2-Clause “Simplified” License.

The DNSSEC Scanner uses the dnspython [Hal18] Python package to query nameservers and to
do basic DNSSEC operations. Dnspython cannot validate a DNSSEC chain-of-trust but offers
primitive operations for DNSSEC. Although there were a lot of DNSSEC operations there was no
function to compute an NSEC3 hash. To improve the dnspython project the NSEC3 hash function
for the DNSSEC Scanner was contributed to dnspython. More about the contribution can be found
in Appendix C.2.

The DNSSEC Scanner provides yesses with one of the three states ’secure’, ’insecure’ or ’bogus’
for each domain. Secure means it was possible to verify the domain name with a trusted signature.
Insecure means it was possible to show that the zone that contains the answer does not support
DNSSEC. Bogus means that the DNSSEC validation failed at some point. This can, for example,
mean that a signature could not be validated as well as that DNSKEY or DS records are missing.
The most important feature of the DNSSEC Scanner for yesses is that it returns detailed messages for
the verification process. These messages are returned either as logs, warnings or errors. Logs are all
messages that document a successful verification step. A warning would be returned, for example,
if one KSK could be validated and there is a DS record for another KSK, however, the hashes do
not match. Warnings are basically misconfigurations that do not break the chain-of-trust. Finally,
the error messages are problems in the configuration that break the chain-of-trust. In addition, the
DNSSEC Scanner returns all resource records it can find. These resource records are sorted into
the two categories ’secure’ and ’insecure’ based on whether a secure signature was found or not.

To simplify the maintenance of the DNSSEC Scanner the architecture is divided into several modules.
The main class called DNSSECScanner uses the dnspython Python package to query all the records
that are needed for the DNSSEC verification process from the nameservers. It starts at the DNS
root zone and from there recursively asks every zone for an SOA record for the given domain name.
If the SOA record was found it would try to find every resource record associated with the queried
name by asking the nameserver for the type ’ANY’. In case the ’ANY’ typed query does not return
any records the class searches for existing records with a list of common record types. Finally, it
tries to validate the found resource records. In every zone, the DNSSECScanner class first queries the

41

4 Domain Name System Security Extensions

dnssec_scanner package

calls for
DNSSEC
validation
operations

calls to log
messages

 DNSSECScanner class

entrypoint into the
program
queries all the DNS
records from the name
servers
obtains the secure anker
from iana.org

calls to log
messages

 DNSSEC Validator

validates the KSKs and ZSKs in
a zone with the DS RRs from
the parent zone
validates DS RRs with ZSKs
validates sets of RRs with ZSKs

NSEC package

 Entrypoint

provides a method
to check that either
a DS record or a
domain name does
not exist

 NSEC

proves non-existence
with NSEC records

calls for
proof of

non-existence

 NSEC3

proves non-existence
with NSEC3 records

 Message System

provides a Message
class to achieve a
uniform message layout

calls the
DNSSECScanner
class to run a scan

User

Figure 4.5: Overview of the DNSSEC Scanner architecture.

DNSKEY records and validates them. Then it requests the SOA record and if this cannot be found
it will query the IP address of the next name server. The last step is to retrieve the DS records for the
next zone from the nameserver and validate them. The DS record for the root zone is downloaded
from ’data.iana.org’.

The second module of the DNSSEC Scanner validates signatures of resource records, ZSKs and
DS records. The module does this by using the dnssec module of dnspython. Moreover, it also
validates KSKs with DS records from the parent zone. To document the DNSSEC verification
process with consistent messages there is a messaging system. It provides a Message class that takes
all the information and generates a string. The last module is the NSEC module which takes NSEC
or NSEC3 resource records and tries to prove the absence of a DS record or the non-existence of
a domain name. The NSEC module is divided into an NSEC and an NSEC3 module. These modules
exactly follow the steps explained in Section 4.2.1. An overview of the architecture can also be seen
in Figure 4.5.

To verify the correctness of the DNSSEC Scanner there are several Python unit tests with correct
configured DNSSEC domains, broken DNSSEC domains, and domains in zones that do not support
DNSSEC. Furthermore, there are also tests with domains that do not exist to examine the NSEC
and NSEC3 verification process.

42

5 Information Leakages

Information leakage is an application weakness that appears whenever a system reveals sensitive
data such as implementation details or user-specific data. These data are of high potential use for an
adversary because with this knowledge he can find vulnerabilities or specific exploits. Considering
that, it is important to find and fix information leakages to improve application security [The10]. In
this thesis, five new modules were developed for the yesses tool to automatically find information
leakages in web applications.

5.1 Types of Information Leakages

Websites regularly display error messages if something went wrong or if users gave an incorrect
input. These error messages may reveal too much information about software versions or the internal
workflow of the web application. An attacker can use this information to either retrieve private
data from the website or even perform a specific attack. An example of how private data could be
exposed is a login form that displays different error messages if the email address is not registered or
the password is wrong. With this information an attacker can get email addresses that are registered
on the web service by trying random email addresses [The10].

Moreover, a software version string displayed somewhere on the web page could be used for a
specific attack. Figure 5.1 shows the footer of a Gitea [Git19b] installation. It clearly shows the
version of the installation. This can be used to find specific exploits of the software [The10]. As seen
in Figure 5.1 the application displays the time it needed to process the request. Timing differences
are another example of information leakages. They can be used to retrace how an application
works [OWA20c].

Another source for information leakages are detailed error messages like stack traces or failed SQL
statements. Figure 5.2 gives an example stack trace from the Laravel framework in debugging mode.
Revealing a lot of information about internal paths and PHP code is useful throughout development
but it is also useful for potential attackers. Consequently, in production, these messages should
be removed from the application. During deployment, HTML and Script comments containing
sensitive information should also be deleted. This sensitive information can be internal IP addresses,
email addresses, passwords or paths [The10].

Figure 5.1: Example of information leakages on a website. It shows the footer of a Gitea installa-
tion [Git19a]. Here the exact version and duration of generating the page are seen.

43

5 Information Leakages

Figure 5.2: Example stack trace from the Laravel framework [Lar19] which leaks a lot of informa-
tion if not turned off in production.

Furthermore, unlinked pages or directories can also reveal information or knowledge on how the
application works. Hidden pages can be there because they were used during development or
because the link was deleted but the site itself was not. This does not mean that the pages cannot
be found. An attacker, for example, could search with a list of common directories, file names or
with a brute-force attack for unlinked pages and directories [OWA20a]. He could also look at the
robots.txt file that should prevent web spiders, robots and crawlers from scraping certain parts of
the application. Directories listed in this file can also disclose hidden pages or directories that are
useful to start an attack on the website [OWA20b].

Not only can the website itself reveal sensitive information but also the properties of the HTTP
protocol can leak. For example, there could be private data like usernames or access tokens as
GET parameters in the URI. If the connection is not encrypted with HTTPS anybody between the

44

5.2 Information Leakage Modules for yesses

client and the server can read this information. Even if the data is transmitted encrypted the GET
parameters are still saved in web logs, browser cache, browser history and are sent to other websites
via the ’Referer Header’ [Gil20].

The ’Referer Header’ is not the only HTTP Header that can leak too much data. The ’Server’ header
reveals the web server type, which is not necessarily a problem because this can also be found
out by the behavior of the server. In the standard configuration most web servers also display the
exact software version. On a Raspberry Pi, for example, the Apache web server with the standard
configuration responds together with the following header: ’Server: Apache/2.4.38 (Raspbian)’.
This does not only disclose the version number but also the operating system which the server
is running on. Further headers which should not be sent by the web server are ’X-Powered-By’
and ’X-AspNet-Version’. The first one gives information about the server’s scripting language like
’X-Powered-By: PHP/7.1.22’ and the second simply gives the version number of the ASP.NET
framework if it is used by this server [Sin18].

In addition to the web server, services on any port can also disclose useful hints for potential
adversaries. With the Nmap tool [Nmab], an attacker can find these services and sometimes also
the version of these services. This information can be used to exploit known vulnerabilities [Nmaa].
The occurrence of information leaks is not uncommon, which shows the rank of ’Sensitive Data
Exposure’ on the 3rd place of the OWASP top 10.

5.2 Information Leakage Modules for yesses

In the context of this thesis, five new modules were developed for the yesses tool to automatically
find information leakages. Since the occurrence of information leakages can be very different it
is difficult to detect them automatically. That is why the focus was on the header properties and
searching web pages with regular expressions for sensitive information. The former is realized by the
Header Leakage module whereas the latter is implemented in the Information Leakage module.

These modules do not communicate with the actual web server. Instead, they get their data from
the Linked Paths, Hidden Paths and Error Paths modules. Figure 5.3 describes the interaction
between these modules and Figure 5.4 gives an example configuration of how to use these modules.
Users have the option to use the ’origins’ as inputs that are found by the Webservers module.

5.2.1 Information Leakage Module

This module searches for strings that reveal too much information in HTML, JavaScript and CSS
comments as well as in the visible text of the web pages. The module does this by parsing the web
pages with the Python package BeautifulSoup [Ric20] and searching in the parsed text with regular
expressions. Currently, the following regular expressions are implemented:

1. E-Mail addresses: Searches for strings with a @ sign and a domain afterward.

2. IP addresses: Searches for four numbers separated by dots. If such a string is found a function
will check whether every number is smaller than 256.

45

5 Information Leakages

Linked PathsHidden Paths

Error PathsHeader Leakage

Information Leakage
Linked-PathsHidden-Pages

Error-Pages

Linked-Pages

Figure 5.3: Interaction of all modules to detect information leakages.

1 data:

2 Origins:

3 - url: http://example.com/

4 ip: 93.184.216.34

5 domain: example.com

6

7 run:

8 - discover Linked Paths:

9 origins: use Origins

10 find:

11 - Linked-Paths

12 - Linked-Pages

13 - discover Hidden Paths:

14 origins: use Origins

15 linked_paths: use Linked-Paths

16 find:

17 - Hidden-Paths

18 - Hidden-Pages

19 - discover Error Paths:

20 origins: use Origins

21 find:

22 - Error-Pages

23 - scan Information Leakage:

24 pages: use Linked-Pages and Hidden-Pages and Error-Pages

25 find:

26 - Leakages

27 - scan Header Leakage:

28 pages: use Linked-Pages and Hidden-Pages and Error-Pages

29 find:

30 - Leakages as Header-Leakages

Figure 5.4: Example YAML configuration of the Information Leakage modules.

46

5.2 Information Leakage Modules for yesses

3. Paths: Searches for strings that are separated by slashes. If such a string is found a function
will check whether it ends with a known file ending, whether the path has a depth greater
than three or if at least half of the strings of the path are in a list of common directory names.

4. Files: Searches for a string that can start with a slash and has a dot in it. If such a string is
found a function will check whether the file ending is in a list of known file endings.

5. Server-Info: Searches for a server information string. Such a string starts with letters followed
by a slash with a version number. At the end there can be the OS name. An example would
be ’Apache/2.4.38 (Raspbian)’.

6. Version-Info: Searches for a string that can start with a name then ’version: ’ and after this,
there is a version number. It can find web application version numbers like the one from Fig-
ure 5.1.

All these strings may begin at the first character of the search string or with a whitespace or an
opening bracket. At the end there is either the last character of the string or a whitespace or a closing
bracket. Only the IP address regular expression does not have these constraints at the beginning and
at the end. Because of the numbers an IP address can be spotted in a string. If wanting to search
for custom regular expressions it is possible to specify them in the YAML configuration of the
module.

5.2.2 Header Leakages Module

In the information leakage introduction, it was mentioned that certain header attributes reveal
sensitive information. A leakage alert will be created, if the ’Server’ header attribute contains a
version number or if the ’X-Powered-By’ or the ’X-Aspnet-Version’ header attribute exists. This
module checks the headers of all the pages because each page can have a different header.

5.2.3 Linked Paths Module

As described above the Header Leakage module and the Information Leakage module do not
communicate with the server. This module is responsible for scraping recursively all linked pages
including JavaScript and CSS files. It only follows links where the top- and the second-level domain
name is the same. Besides, there is a maximum recursion depth so that the runtime can be limited.
It scrapes the links in parallel with multiple threads. The module takes one or more origins as
inputs.

5.2.4 Hidden Paths Module

This module takes the Linked-Paths from the Linked Paths module and with its help it tries to
find possible folders. Then it searches these folders with a common directory and file name list for
hidden files and directories. The module takes multiple origins as inputs, but first of all it checks
whether the web server responds to a random path that should not exist with a 200 status. If this is
the case the origin has to be skipped because it is not possible to distinguish existing paths from not
existing ones. To guarantee its termination it also has a maximum recursion depth, and in order to
speed up the search it runs in multiple threads.

47

5 Information Leakages

5.2.5 Error Paths Module

The purpose of this module is to find paths that respond with an error. Currently, it only requests a
none existing path and returns the web server’s error page. In future works, this module could be
extended to provoke other error messages as well.

48

6 Test Environment

Ensuring the correctness of software is one of the most important or even the most important quality
attribute of an IT system. The best method to archive software correctness is to do comprehensive
testing. There are two different types of testing: manual ones done by a developer and automated
unit tests. Automated testing is especially useful to prevent regression errors. A regression error is
an error that appears in an already tested code caused by enhancing the software. It was required to
set up an automated unit test environment for the yesses tool in order to test the modules developed
in this thesis. In the following, there is a detailed description of this environment.

So far yesses has not had a testing environment but to guarantee the correctness of the modules it
was important to develop a test environment with Docker containers. Docker containers are used
because they allow the setup of an environment close to real server infrastructure. At the moment
there are two Docker containers running different web servers. One runs an Nginx web server with
several linked and unlinked pages and files. The other runs an Apache web server with the Laravel
Framework installed. For comprehensive testing two different frameworks and web servers were
used which made two Docker containers necessary. Altogether, the test environment contains three
Docker containers as shown in Figure 6.1. The third runs the test suite. Managing those containers
separately would be unnecessarily complex. That is why Docker Compose is used to start and stop
the containers as well as define the network topology between the three Docker containers. The test
cases themselves, are defined in YAML files that have the same syntax as the yesses configuration
files. This makes it possible to easily write test cases and understand what is tested in each test
case.

Docker Compose Environment

Nginx Docker
Container

Apache Docker
Container

Test Suite Docker
Container

Virtual Network
172.16.0.0/24

Figure 6.1: Test environment structure.

49

6 Test Environment

The first test cases developed in this thesis were for the Information Leakage modules. For each
module, there is one test case to test the module against a Docker container. Additionally, for each
of the two Docker containers there is a test case that validates the workflow with all the modules
together as shown in Section 5.2. As a result, the Apache container with Laravel is used to test the
detection of information leakages on a web site with a real framework, whereas the Nginx container
is used to test the website enumeration and finding of hidden files.

To test the TLS Settings module that uses the TLS Profiler, certificates were added and HTTPS was
installed for both web servers. The Apache container is configured with the ’Modern’ Mozilla TLS
profile were as the Nginx uses the ’Intermediate’ Mozilla TLS profile. In contrast to the Apache’s
certificate the Nginx’s certificate is created with a short lifespan of only 12 days. This is used to
test the ’Certificate Expiration Warning’ feature. For both Docker containers there is one test case
defined as a YAML file.

For the Dnssec module, there are no tests integrated into the yesses test environment because the
DNSSEC Scanner itself has a comprehensive test environment. Moreover, it would be complicated
to define tests with static results as done in the yesses test environment. The reason for this is that
the DNSSEC tests examine real domain names and the DNSSEC infrastructure is rapidly changing.
This would cause the test to fail every few days.

This test environment setup is especially suited to be enhanced in the future because it is easy to
define new test cases in YAML files as well as to add new Docker containers which are to simulate
various network services. This simplifies writing new test cases for upcoming modules.

50

7 Summary and Outlook

Within the scope of this thesis, an automated security scanning tool named yesses was extended
with the aim of covering several new security topics. The yesses tool which is written in Python was
originally designed to scan web servers for basic security properties e.g. open ports, insecure HTTP
methods and missing cookie security features. The tool and its newly developed features are available
open-source on Github. In this thesis, seven modules were added to the yesses tool or extended
covering three major security topics, including Transportation Layer Security (TLS), Domain
Name System Security Extensions (DNSSEC) and information leakages. Also, an automated test
environment was added to the yesses tool to check on the correct implementation of the newly
developed modules.

The first topic investigates the TLS protocol which is built upon the already existing TLS Settings

module as part of the yesses tool. The TLS Settings module compares the TLS settings of a web
server with the Mozilla TLS profiles. These Mozilla TLS profiles were chosen for comparison since
their security algorithms provide state-of-the-art security levels. However, the original TLS Settings

module was limited to check only a few TLS properties such as TLS versions and supported ciphers.
Therefore, within the scope of this work, the module was extended to now allowing it to compare all
the TLS properties of a web server based on the Mozilla TLS profiles. As a result, it states possible
differences within the TLS settings, therefore, allowing it to show compliance with a Mozilla TLS
profile.

The second topic covers DNSSEC and is integrated into the yesses tool as a newly developed module
called Dnssec. Since the Domain Name System (DNS) does not provide integrity, DNSSEC was
developed. With the use of DNSSEC, it is now possible to guarantee the correctness of DNS
data. The task of the Dnssec module is to check the correctness of the DNSSEC configuration
of domain names. In detail, it checks the DNSSEC chain-of-trust from the DNS root zone to the
subzone containing the domain name. Considering that DNSSEC adds additional complexity to
DNS this module provides extensive error messages for incorrect DNSSEC configurations. Hereby
it outperforms existing DNSSEC scanners already available as open-source Python packages.

The third topic deals with information leakages of web applications in general. In this context,
information leakage is understood as the exposure of sensitive data which is of high potential use
for possible adversaries. Within the scope of this work five new modules dealing with information
leakages were added to the yesses tool, three of these modules covering the task of either find linked
web pages, hidden web pages or web pages throwing error messages. The other two modules further
analyze the found pages. In detail, they investigate the pages for server software versions, internal IP
addresses as well as paths to files on the web server. The result of the five newly developed modules
is the output of possible information leaks. The hereby found leaked information is extremely
valuable when it comes to finding and fixing the underlying security bugs within the computer
system.

51

7 Summary and Outlook

Additionally, in the context of this thesis, an automated test environment for the yesses tool was
developed. The test environment uses Docker containers with different web servers which are
especially close to real server infrastructures. This allows comprehensive testing of the newly added
modules, thus it increases their software quality significantly.

The examination of the topics TLS, DNSSEC, and information leakages in this work does not only
extend the functionality of the yesses tool, but also makes it more powerful in general. Furthermore,
all newly implemented modules were examined within an extensive automated test environment
which was also developed in this thesis.

Outlook

Despite the fact that yesses is already a powerful tool, there are further enhancements possible.
For example, it would be interesting to integrate a scanner for SQL injections as well as Cross-Site
Scripting attacks. A suitable scanner for SQL injections would be sqlmap [DS20] because it is also
written in Python.

Furthermore, in the context of this thesis, the Dnssec module of yesses was developed to support most
of the standardized DNSSEC mechanisms. The ones, especially, used in practice are implemented
and well tested. However, the proof of the correctness of wildcard expansions has not yet been
implemented. Wildcard expansions will only be allowed, if the domain name does not exist. This
case must be verified with a suitable NSEC record.

Moreover, the Information Leakage modules were designed to work with distinct HTML pages
as it was requested by the yes.com AG. A further enhancement would be a support of single-page
applications. Therefore, a real browser is needed to execute the JavaScript code on the website. The
Selenium [Mut18] Python package would make this possible.

52

Bibliography

[AA04] D. Atkins, R. Austein. Threat Analysis of the Domain Name System (DNS). 2004.
url: https://tools.ietf.org/html/rfc3833 (cit. on p. 36).

[AAL+05a] R. Arends, R. Austein, M. Larson, D. Massey, S. Rose. DNS Security Introduction
and Requirements. 2005. url: https://tools.ietf.org/html/rfc4033 (cit. on p. 36).

[AAL+05b] R. Arends, R. Austein, M. Larson, D. Massey, S. Rose. Protocol Modifications for
the DNS Security Extensions. 2005. url: https://tools.ietf.org/html/rfc4035
(cit. on pp. 36, 37).

[AAL+05c] R. Arends, R. Austein, M. Larson, D. Massey, S. Rose. Resource Records for the
DNS Security Extensions. 2005. url: https://tools.ietf.org/html/rfc4034 (cit. on
pp. 37, 38, 59).

[ABD+15] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A. Halderman,
N. Heninger, D. Springall, E. Thomé, L. Valenta, B. VanderSloot, E. Wustrow,
S. Zanella-Béguelin, P. Zimmermann. “Imperfect Forward Secrecy: How Diffie-
Hellman Fails in Practice”. In: 22nd ACM Conference on Computer and Communi-
cations Security. Oct. 2015 (cit. on p. 29).

[ABP+13] N. AlFardan, D. J. Bernstein, K. G. Paterson, B. Poettering, J. C. N. Schuldt. “On the
Security of RC4 in TLS”. In: 22nd USENIX Security Symposium (USENIX Security
13). Washington, D.C.: USENIX Association, Aug. 2013, pp. 305–320. isbn: 978-
1-931971-03-4. url: https://www.usenix.org/conference/usenixsecurity13/
technical-sessions/paper/alFardan (cit. on p. 24).

[AP13] N. J. Al Fardan, K. G. Paterson. “Lucky Thirteen: Breaking the TLS and DTLS
Record Protocols”. In: 2013 IEEE Symposium on Security and Privacy. May 2013,
pp. 526–540. doi: 10.1109/SP.2013.42 (cit. on pp. 30, 31).

[BBG+06] S. Blake-Wilson, N. Bolyard, V. Gupta, C. Hawk, B. Moeller. Elliptic Curve Cryp-
tography (ECC) Cipher Suites for Transport Layer Security (TLS). 2006. url: https:
//tools.ietf.org/html/rfc4492 (cit. on p. 24).

[Boo20] Bootstrap team. Bootstrap. 2020. url: https://getbootstrap.com/ (cit. on p. 58).
[Bun] Bundesamt für Sicherheit in der Informationstechnik. Open Vulnerability Assessment

System (OpenVAS). url: https://www.bsi.bund.de/DE/Themen/Cyber-Sicherheit/
Tools/OpenVAS/OpenVAS.html (cit. on p. 13).

[Cel20] Celery. Celery. 2020. url: https://github.com/celery/celery (cit. on p. 58).
[Cle19] J. Clement. Daily time spent with the internet per capita worldwide from 2011 to

2021, by device. 2019. url: https://www.statista.com/statistics/319732/daily-
time-spent-online-device/ (cit. on p. 11).

53

https://tools.ietf.org/html/rfc3833
https://tools.ietf.org/html/rfc4033
https://tools.ietf.org/html/rfc4035
https://tools.ietf.org/html/rfc4034
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/alFardan
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/alFardan
https://doi.org/10.1109/SP.2013.42
https://tools.ietf.org/html/rfc4492
https://tools.ietf.org/html/rfc4492
https://getbootstrap.com/
https://www.bsi.bund.de/DE/Themen/Cyber-Sicherheit/Tools/OpenVAS/OpenVAS.html
https://www.bsi.bund.de/DE/Themen/Cyber-Sicherheit/Tools/OpenVAS/OpenVAS.html
https://github.com/celery/celery
https://www.statista.com/statistics/319732/daily-time-spent-online-device/
https://www.statista.com/statistics/319732/daily-time-spent-online-device/

Bibliography

[Cle20] J. Clement. Global digital population as of January 2020. 2020. url: https://www.
statista.com/statistics/617136/digital-population-worldwide/ (cit. on p. 11).

[CSF+08] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, T. Polk. Internet X.509
Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile.
2008. url: https://tools.ietf.org/html/rfc5280 (cit. on p. 23).

[DH76] W. Diffie, M. Hellman. “New directions in cryptography”. In: IEEE Transactions on
Information Theory 22.6 (Nov. 1976), pp. 644–654. issn: 1557-9654. doi: 10.1109/
TIT.1976.1055638 (cit. on p. 29).

[Diq19a] A. Diquet. nassl. 2019. url: https://github.com/nabla-c0d3/nassl (cit. on pp. 31,
63).

[Diq19b] A. Diquet. SSLyze. 2019. url: https://github.com/nabla-c0d3/sslyze (cit. on
p. 31).

[Dja20] Django Software Foundation. django. 2020. url: https://www.djangoproject.com/
(cit. on p. 57).

[DS20] B. Damele Assumpcao Guimaraes, M. Stampar. sqlmap. 2020. url: http://sqlmap.
org/ (cit. on pp. 13, 52).

[ETB+05] P. Eronen, H. Tschofenig, M. Badra, O. Cherkaoui, I. Hajjeh, A. Serhrouchni. Pre-
Shared Key Ciphersuites for Transport Layer Security (TLS). 2005. url: https:
//tools.ietf.org/html/rfc4279 (cit. on p. 23).

[Fet20a] D. Fett. TLS Profiler. 2020. url: https://github.com/danielfett/tlsprofiler
(cit. on p. 31).

[Fet20b] D. Fett. yesses. 2020. url: https://github.com/danielfett/yesses (cit. on pp. 3,
13–16, 67).

[Gil20] R. Gilbert. Information exposure through query strings in url. 2020. url: https:
//owasp.org/www-community/vulnerabilities/Information_exposure_through_

query_strings_in_url (cit. on p. 45).
[Git19a] Gitea. Gitea test instance. 2019. url: https://try.gitea.io/ (cit. on p. 43).
[Git19b] Gitea. Gitea website. 2019. url: https://gitea.io/en-us/ (cit. on p. 43).
[Goo20] Google. Material Design. 2020. url: https://material.io/develop/web/ (cit. on

p. 58).
[Hal18] B. Halley. dnspython Python package. 2018. url: http://www.dnspython.org/

(cit. on p. 41).
[Hau20a] F. Hauck. DNSSEC Scanner. 2020. url: https://github.com/fabian-hk/dnssec_

scanner (cit. on p. 41).
[Hau20b] F. Hauck. Web TLS Profiler. 2020. url: https://github.com/fabian-hk/WebTLSProf

iler (cit. on p. 57).
[HJB12] J. Hodges, C. Jackson, A. Barth. HTTP Strict Transport Security (HSTS). 2012. url:

https://tools.ietf.org/html/rfc6797 (cit. on p. 33).
[Kah16] D. Kahn Gillmor. Negotiated Finite Field Diffie-Hellman Ephemeral Parameters for

Transport Layer Security (TLS). 2016. url: https://tools.ietf.org/html/rfc7919
(cit. on p. 21).

54

https://www.statista.com/statistics/617136/digital-population-worldwide/
https://www.statista.com/statistics/617136/digital-population-worldwide/
https://tools.ietf.org/html/rfc5280
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://github.com/nabla-c0d3/nassl
https://github.com/nabla-c0d3/sslyze
https://www.djangoproject.com/
http://sqlmap.org/
http://sqlmap.org/
https://tools.ietf.org/html/rfc4279
https://tools.ietf.org/html/rfc4279
https://github.com/danielfett/tlsprofiler
https://github.com/danielfett/yesses
https://owasp.org/www-community/vulnerabilities/Information_exposure_through_query_strings_in_url
https://owasp.org/www-community/vulnerabilities/Information_exposure_through_query_strings_in_url
https://owasp.org/www-community/vulnerabilities/Information_exposure_through_query_strings_in_url
https://try.gitea.io/
https://gitea.io/en-us/
https://material.io/develop/web/
http://www.dnspython.org/
https://github.com/fabian-hk/dnssec_scanner
https://github.com/fabian-hk/dnssec_scanner
https://github.com/fabian-hk/WebTLSProfiler
https://github.com/fabian-hk/WebTLSProfiler
https://tools.ietf.org/html/rfc6797
https://tools.ietf.org/html/rfc7919

Bibliography

[KMM12] O. M. Kolkman, W. (Matthijs) Mekking, R. (Miek) Gieben. DNSSEC Operational
Practices, Version 2. 2012. url: https://tools.ietf.org/html/rfc6781 (cit. on
p. 37).

[Küs19] R. Küsters. Lecture Grundlagen der Informationssicherheit. 2018/2019 (cit. on p. 14).
[Lar19] Laravel. Laravel Framework. 2019. url: https://laravel.com/ (cit. on p. 44).
[Lew06] E. Lewis. The Role of Wildcards in the Domain Name System. 2006. url: https:

//tools.ietf.org/html/rfc4592 (cit. on pp. 40, 60, 61).
[MM14] R. (Miek) Gieben, W. (Matthijs) Mekking. Authenticated Denial of Existence in the

DNS. 2014. url: https://tools.ietf.org/html/rfc7129 (cit. on pp. 38, 41, 59–61).
[Moc87a] P. Mockapetris. DOMAIN NAMES - CONCEPTS AND FACILITIES. 1987. url:

https://tools.ietf.org/html/rfc1034 (cit. on pp. 35, 36).
[Moc87b] P. Mockapetris. DOMAIN NAMES - IMPLEMENTATION AND SPECIFICATION.

1987. url: https://tools.ietf.org/html/rfc1035 (cit. on p. 35).
[Moz20a] Mozilla Operations Security team, Mozilla Enterprise Information Security team.

Security/Server Side TLS. 2020. url: https://wiki.mozilla.org/Security/Server_
Side_TLS (cit. on pp. 24–28).

[Moz20b] Mozilla Operations Security team, Mozilla Enterprise Information Security team.
Security/Server Side TLS JSON. 2020. url: https://ssl-config.mozilla.org/
guidelines/5.4.json (cit. on pp. 25, 27, 31, 63).

[Moz20c] Mozilla Operations Security team, Mozilla Enterprise Information Security team.
Server Side TLS. 2020. url: https://github.com/mozilla/server-side-tls (cit. on
p. 24).

[Moz20d] Mozilla Operations Security team, Mozilla Enterprise Information Security team.
SSL Configuration Generator. 2020. url: https://ssl-config.mozilla.org/ (cit. on
p. 24).

[MSP04] O. M. Kolkman, J. Schlyter, E. P. Lewis. Domain Name System KEY (DNSKEY)
Resource Record (RR) Secure Entry Point (SEP) Flag. 2004. url: https://tools.
ietf.org/html/rfc3757 (cit. on p. 37).

[Mut18] B. Muthukadan. Selenium with Python. 2018. url: https://selenium-python.
readthedocs.io/ (cit. on p. 52).

[NL15] Y. Nir, A. Langley. ChaCha20 and Poly1305 for IETF Protocols. 2015. url: https:
//tools.ietf.org/html/rfc7539 (cit. on p. 23).

[Nmaa] Nmap. Chapter 15. Nmap Reference Guide. url: https://nmap.org/book/man.html
(cit. on p. 45).

[Nmab] Nmap. Nmap website. url: https://nmap.org/ (cit. on pp. 15, 45).
[OWA20a] OWASP. Review Old Backup and Unreferenced Files for Sensitive Information. 2020.

url: https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_
Application_Security_Testing/02-Configuration_and_Deployment_Management_

Testing / 04 - Review _ Old _ Backup _ and _ Unreferenced _ Files _ for _ Sensitive _

Information.html (cit. on p. 44).

55

https://tools.ietf.org/html/rfc6781
https://laravel.com/
https://tools.ietf.org/html/rfc4592
https://tools.ietf.org/html/rfc4592
https://tools.ietf.org/html/rfc7129
https://tools.ietf.org/html/rfc1034
https://tools.ietf.org/html/rfc1035
https://wiki.mozilla.org/Security/Server_Side_TLS
https://wiki.mozilla.org/Security/Server_Side_TLS
https://ssl-config.mozilla.org/guidelines/5.4.json
https://ssl-config.mozilla.org/guidelines/5.4.json
https://github.com/mozilla/server-side-tls
https://ssl-config.mozilla.org/
https://tools.ietf.org/html/rfc3757
https://tools.ietf.org/html/rfc3757
https://selenium-python.readthedocs.io/
https://selenium-python.readthedocs.io/
https://tools.ietf.org/html/rfc7539
https://tools.ietf.org/html/rfc7539
https://nmap.org/book/man.html
https://nmap.org/
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/02-Configuration_and_Deployment_Management_Testing/04-Review_Old_Backup_and_Unreferenced_Files_for_Sensitive_Information.html
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/02-Configuration_and_Deployment_Management_Testing/04-Review_Old_Backup_and_Unreferenced_Files_for_Sensitive_Information.html
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/02-Configuration_and_Deployment_Management_Testing/04-Review_Old_Backup_and_Unreferenced_Files_for_Sensitive_Information.html
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/02-Configuration_and_Deployment_Management_Testing/04-Review_Old_Backup_and_Unreferenced_Files_for_Sensitive_Information.html

Bibliography

[OWA20b] OWASP. Review Webserver Metafiles for Information Leakage. 2020. url: https:
/ / owasp . org / www - project - web - security - testing - guide / stable / 4 - Web _

Application_Security_Testing/01-Information_Gathering/03-Review_Webserver_

Metafiles_for_Information_Leakage.html (cit. on p. 44).
[OWA20c] OWASP. Test for Process Timing. 2020. url: https://owasp.org/www-project-

web-security-testing-guide/stable/4-Web_Application_Security_Testing/10-

Business_Logic_Testing/04-Test_for_Process_Timing.html (cit. on p. 43).
[OWA20d] OWASP. Test HTTP Methods. 2020. url: https://owasp.org/www-project-web-

security-testing-guide/stable/4-Web_Application_Security_Testing/02-

Configuration_and_Deployment_Management_Testing/06-Test_HTTP_Methods.html

(cit. on p. 15).
[Pet13] Y. N. Pettersen. The Transport Layer Security (TLS) Multiple Certificate Status Re-

quest Extension. 2013. url: https://tools.ietf.org/html/rfc6961 (cit. on p. 32).
[Por13] T. Pornin. Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic

Curve Digital Signature Algorithm (ECDSA). 2013. url: https://tools.ietf.org/
html/rfc6979 (cit. on p. 23).

[Por20] PortSwigger Ltd. Burp Suite. 2020. url: https://portswigger.net/burp (cit. on
p. 13).

[RD08] E. Rescorla, T. Dierks. The Transport Layer Security (TLS) Protocol Version 1.2.
2008. url: https://tools.ietf.org/html/rfc5246 (cit. on pp. 22–24).

[Res18] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. 2018. url:
https://tools.ietf.org/html/rfc8446 (cit. on p. 23).

[Ric20] L. Richardson. Beautiful Soup. 2020. url: https://www.crummy.com/software/
BeautifulSoup/ (cit. on p. 45).

[Sin18] S. Singh. Essential HTTP Headers for Securing Your Web Server. 2018. url: https:
//pentest-tools.com/blog/essential-http-security-headers/ (cit. on p. 45).

[SMA+13] S. Santesson, M. Myers, R. Ankney, A. Malpani, S. Galperin, C. Adams. X.509
Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP. 2013.
url: https://tools.ietf.org/html/rfc6960 (cit. on p. 32).

[StJ07] M. StJohns. Automated Updates of DNS Security (DNSSEC) Trust Anchors. 2007.
url: https://tools.ietf.org/html/rfc5011 (cit. on p. 37).

[The10] The Web Application Security Consortium. Information Leakage. 2010. url: http:
//projects.webappsec.org/w/page/13246936/Information%20Leakage (cit. on p. 43).

[Vau02] S. Vaudenay. “Security Flaws Induced by CBC Padding — Applications to SSL,
IPSEC, WTLS...” In: Advances in Cryptology — EUROCRYPT 2002. Ed. by
L. R. Knudsen. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 534–545.
isbn: 978-3-540-46035-0 (cit. on pp. 30, 31).

[WWv+17] D. Wichers, J. Williams, A. van der Stock, B. Glas, N. Smithline, T. Gigler. OWASP
Top 10 -2017. 2017. url: https://owasp.org/www-pdf-archive/OWASP_Top_10-
2017_%28en%29.pdf.pdf (cit. on p. 11).

All links were last followed on May 24, 2020.

56

https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/01-Information_Gathering/03-Review_Webserver_Metafiles_for_Information_Leakage.html
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/01-Information_Gathering/03-Review_Webserver_Metafiles_for_Information_Leakage.html
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/01-Information_Gathering/03-Review_Webserver_Metafiles_for_Information_Leakage.html
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/01-Information_Gathering/03-Review_Webserver_Metafiles_for_Information_Leakage.html
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/10-Business_Logic_Testing/04-Test_for_Process_Timing.html
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/10-Business_Logic_Testing/04-Test_for_Process_Timing.html
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/10-Business_Logic_Testing/04-Test_for_Process_Timing.html
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/02-Configuration_and_Deployment_Management_Testing/06-Test_HTTP_Methods.html
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/02-Configuration_and_Deployment_Management_Testing/06-Test_HTTP_Methods.html
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/02-Configuration_and_Deployment_Management_Testing/06-Test_HTTP_Methods.html
https://tools.ietf.org/html/rfc6961
https://tools.ietf.org/html/rfc6979
https://tools.ietf.org/html/rfc6979
https://portswigger.net/burp
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc8446
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://pentest-tools.com/blog/essential-http-security-headers/
https://pentest-tools.com/blog/essential-http-security-headers/
https://tools.ietf.org/html/rfc6960
https://tools.ietf.org/html/rfc5011
http://projects.webappsec.org/w/page/13246936/Information%20Leakage
http://projects.webappsec.org/w/page/13246936/Information%20Leakage
https://owasp.org/www-pdf-archive/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://owasp.org/www-pdf-archive/OWASP_Top_10-2017_%28en%29.pdf.pdf

A Web TLS Profiler

Web services analyzing the TLS configuration of a server are a quick and easy way to improve the
security of web applications. There are already some TLS scanner web services that produce a
grade for the server’s TLS settings like Qualys SSL Labs. But so far there has been no solution to
compare the TLS settings of a server with a Mozilla TLS profile. This is the reason why the Web
TLS Profiler was developed.

The Web TLS Profiler is a web interface for the TLS Profiler Python package that was developed in
the context of this thesis. The source code is available open-source on GitHub under the GNU Affero
General Public License v3.0 [Hau20b]. It is also written in Python and uses the django [Dja20]

Figure A.1: Screenshot of the Web TLS Profiler’s desktop site.

57

A Web TLS Profiler

framework to serve the website. One of the main features of the Web TLS Profiler is the scheduling
of the scan tasks. This prevents the run of too many scans in parallel which would use all the
server’s resources. To schedule the tasks the Celery [Cel20] Python package is used. Celery is an
asynchronous task queue that uses workers to process the tasks. This makes it possible to restrict
the number of parallel scans by specifying the number of workers Celery should use. While a scan
is running the frontend queries the backend with Ajax requests every two seconds whether the scan
has completed. If the scan has finished the page reloads and the results are shown.

In the frontend, the Web TLS Profiler uses Bootstrap [Boo20] for a responsive user interface and
Material Design [Goo20] for a modern look. Thanks to Bootstrap, the user interface also scales to
mobile devices. In Figure A.1 the desktop version of the Web TLS Profiler can be seen. This web
service is available under the domain name ’tlsprofiler.danielfett.de’ but a Docker container is also
freely available on Docker Hub.

58

B Reflection on NSEC Authenticated Denial of
Existence

The RFCs 7129 [MM14] and 4035 [AAL+05c] describe the authenticated denial of existence with
NSEC as well as NSEC3 records. While the description for NSEC3 is very detailed, the information
on NSEC is a bit vague. This chapter is an in-depth reflection on the NSEC authenticated denial
of existence process because it is not directly defined in the RFCs mentioned above. This will be
illustrated by multiple examples. The first three examples explain what the DNSSEC Scanner does
and the last example makes clear why it is important to verify the NSEC records correctly.

As mentioned before the verification process for NSEC3 is fully described in the standards. Firstly,
the resolver has to find the closest encloser. Secondly, it has to verify that the next closer name does
not exist. Finally, it has to prove that no wildcard expansion is possible. The verification process is
clear for NSEC3, whereas it is not clearly described for NSEC. The standard only mentions that
one NSEC record has to verify that the queried name does not exist and one NSEC has to verify
that no wildcard expansion is possible. In order to show that no wildcard expansion is possible
the resolver has to know what the closest encloser is. With NSEC3 it is easy to find the closest
encloser because there is an additional NSEC3 record for it. Since there is no extra NSEC record
for the closest encloser, the question of how to determine the closest encloser comes up. The closest
encloser must be one of the NSECs owner names or it must be a suffix of the owner names. In any
case, the queried name must be a subdomain of the closest encloser and the closest encloser must
exist in the domain name space tree. An example of such a tree can be seen in Figure B.1. Every

Zone:

example.com.
b.example.com.

Query:

x.y.a.example.com.

Answer:

example.com. NSEC b.example.com.

root

com

example

b

Domain name space tree:

red: empty non-terminals

green: names with records associated

Figure B.1: Simple NSEC example.

59

B Reflection on NSEC Authenticated Denial of Existence

leaf node has to have a resource record associated with the name, whereas the inner nodes do not
have to have this. These empty inner nodes are called empty non-terminals but they can also be the
closest encloser [Lew06]. It is important to know that empty non-terminals get an NSEC3 record
but no NSEC record [MM14]. The resolver can only be sure that the determined closest encloser
is correct if it can prove that every name that is closer to the queried name does not exist in the
zone. This is exactly what the DNSSEC Scanner does, which was developed in the scope of this
thesis. The following examples show how authenticated denial with NSEC records should work.
This is not directly described in the RFC standards. The examples omit the resource record types to
simplify the graphics.

The first example can be seen in Figure B.1. This is the simplest example since it requires only one
NSEC record. The queried name is a subdomain of the NSEC’s owner name. This means that it
could be the closest encloser. The resolver has to verify that the following names that are closer
to the queried name do not exist: ’a.example.com.’, ’y.a.example.com’ and ’x.y.a.example.com.’.
Considering that the NSEC record proves that all these records including the queried name do not
exist, the resolver can be sure that ’example.com.’ is the closest encloser and ’x.y.a.example.com.’
does definitely not exist. With the knowledge of the closest encloser, the resolver can verify that
there is no wildcard ’*.example.com.’. This can also be shown with the returned NSEC record.
With all this information the resolver is ensured that there are no records for ’x.y.a.example.com.’.

Zone:

example.com.
foo.example.com.
a.foo.example.com.
b.foo.example.com.
d.foo.example.com.

Query:

x.y.c.foo.example.com.

Answer:

foo.example.com. NSEC a.foo.example.com.
b.foo.example.com. NSEC d.foo.example.com.

root

com

example

foo

Domain name space tree:

a b d

red: empty non-terminals

green: names with records associated

Figure B.2: NSEC example where two NSEC records are needed.

The second example in Figure B.2 needs two NSEC records to verify the non-existence of the
queried domain name ’x.y.c.foo.example.com.’. In this case, the resolver has to check both NSECs
owner names if they could be the closest encloser. Since the queried name is only a subdomain of
the first NSEC record, the owner name of the second NSEC record cannot be the closest encloser.
With ’foo.example.com.’ as the closest encloser the resolver has to verify that ’c.foo.example.com.’,
’y.c.foo.example.com.’ and ’x.y.c.foo.example.com.’ do not exist. All these domain names are

60

covered by the second NSEC record. This means that ’foo.example.com.’ is the correct closest
encloser and that the domain name ’x.y.c.foo.example.com.’ is unavailable. With the closest encloser,
the resolver can verify with the first NSEC record that there is no wildcard ’*.foo.example.com.’.

Zone:

example.com.
x.a.foo.example.com.
y.c.foo.example.com.

Query:

x.y.b.foo.example.com.

Answer:

example.com. NSEC x.a.foo.example.com.
x.a.foo.example.com. NSEC y.c.foo.example.com.

root

com

example

foo

Domain name space tree:

a c

x y

red: empty non-terminals

green: names with records associated

Figure B.3: NSEC example where the closest encloser is an empty non-terminal.

The third example in Figure B.3 is the most complicated one since none of the NSECs owner names
is the closest encloser of the queried name. The problem in this example is that the closest encloser
is an empty non-terminal and therefore it does not have an NSEC record. Consequently, the resolver
has to compare the labels of the queried name with the NSECs owner names starting with the
rightmost label. The longest suffix of labels that the queried name shares with one of the NSEC
records owner names is the closest encloser. In this example, the closest encloser is the empty
non-terminal ’foo.example.com.’. To prove the determined closest encloser the resolver has to show
that ’b.foo.example.com.’, ’y.b.foo.example.com.’ and ’x.y.b.foo.example.com.’ do not exist. All
these domain names are covered by the second NSEC record. As there may be wildcards at empty
non-terminals, the wildcard ’*.foo.example.com.’ must also be denied [Lew06]. The resolver can
do this with the first NSEC record.

The last example in Figure B.4 shows what can happen if the resolver does not verify the closest
encloser correctly. The example zone can synthesize the name ’x.y.c.foo.example.com.’ from
the wildcard ’*.foo.example.com.’ but the attacker replaces the answer with the NSEC record
that proves that ’*.example.com.’ does not exist. This attack is similar to the one described in
RFC 7129 [MM14] Section 5.6 for NSEC3. Assuming the resolver would not correctly verify
the closest encloser, it would just verify with the second NSEC record that the queried name
’x.y.c.foo.example.com.’ does not exist. After this, the resolver determines ’example.com.’ as the
closest encloser and verifies with the first NSEC record that the wildcard ’*.example.com.’ is not
available. Consequently, the resolver would conclude that there are no records for the queried name.
Since this conclusion is wrong, it shows why it is important to correctly verify the closest encloser.
Because if the resolver checks that there is no record for ’foo.example.com.’, c.foo.example.com.’,

61

B Reflection on NSEC Authenticated Denial of Existence

Zone:

example.com.
a.example.com.
foo.example.com.
*.foo.example.com.
a.foo.example.com.
b.foo.example.com.
d.foo.example.com.

Query:

x.y.c.foo.example.com.

Nameserver answer:

x.y.c.foo.example.com. RECORD => synthesized wildcard
b.foo.example.com. NSEC d.foo.example.com.

root

com

example

foo

Domain name space tree:

a b d

red: empty non-terminals

green: names with records associated

*

Malicious answer:

example.com. NSEC a.example.com.
b.foo.example.com. NSEC d.foo.example.com.

a

Figure B.4: Example of an attack on the NSEC verification process.

’y.c.foo.example.com.’ and ’x.y.c.foo.example.com.’ it would detect that ’foo.example.com.’ might
exist. The reason for this is that ’foo.example.com.’ is not covered by one of the two NSEC records.
At this point, the resolver has detected that an adversary has manipulated the DNS answer.

62

C Contributions to Open-Source Projects

This chapter gives an overview of all the contributions that were made to the open-source community
in the context of this thesis. These contributions contain GitHub issues and pull requests. In the
following, there is a list with a description of each contribution.

C.1 Issues

1. nassl #56: While working on the TLS Settings module, a function was developed to find out
which elliptic curves were supported by a server. In the process, an enum in nassl [Diq19a]
was found that had a wrong string in it. It was fixed by the maintainer shortly after the issue
was opened.

2. Mozilla TLS profiles #265: The JSON description of the Mozilla TLS profiles was inconsistent
about naming elliptic curves for the Diffie-Hellman key exchange. The problem was that the
curve ’prime256v1’ was named ’prime256v1’ in the ’Modern’ profile and on the website but
in the ’Intermediate’ and ’Old’ profile it was defined as ’secp256r1’. The curves are the same
but the different naming made it difficult to write a clean implementation for the TLS Settings

module. An issue was opened and the curve name got changed to’prime256v1’.

3. Mozilla TLS profiles #267: This issue stated that in the ’Intermediate’ Mozilla TLS profile
ECDSA certificates are allowed but the variable ’certificate_curves’ was ’null’. As a conse-
quence, an error will be raised by the TLS Settings module, if an ECDSA certificate is used
and the server gets scanned with the ’Intermediate’ profile. A maintainer of the Mozilla TLS
profiler corrected this issue in the JSON file [Moz20b].

4. Mozilla TLS profiles generator #76: As mentioned in the TLS chapter Mozilla provides a
configurator to generate web server configuration files that match a specific Mozilla TLS
profile. While setting up the test environment for the TLS Profiler Python package it was
detected that the configuration files of the Mozilla configurator do not specify the elliptic
curves for the key exchange that are defined on the website. This implies that more curves
are accepted by the server than specified in the Mozilla TLS profiles. Unfortunately, the
maintainer did not want to include those curves because of inconsistent support from the web
servers.

5. Mozilla TLS profiles #269: On the Mozilla TLS profiles website, there are recommended
values for the certificate lifespan and the certificate type. To inform the user about these
recommended values the TLS Settings module would need those values in the Mozilla TLS
profiles JSON file [Moz20b]. Unfortunately, the maintainer has not include those values yet.

63

https://github.com/nabla-c0d3/nassl/issues/56
https://github.com/mozilla/server-side-tls/issues/265
https://github.com/mozilla/server-side-tls/issues/267
https://github.com/mozilla/ssl-config-generator/issues/76
https://github.com/mozilla/server-side-tls/issues/269

C Contributions to Open-Source Projects

6. Nextcloud documentation #2038: The Nextcloud documentation recommends using a Mozilla
TLS profile to harden the TLS settings of a web server. In this issue, it was proposed to link
the Web TLS Profiler in the Nextcloud documentation to simplify the debugging of a server’s
TLS configuration. The Nextcloud documentation pull request ’#2060’ adds the link to the
documentation page.

C.2 Pull Requests

1. SSLyze #409: This pull request was to restore the compatibility of the SSLyze ’dh_info’
branch by the GitHub user FWinterborn with the nassl master branch. The ’dh_info’ branch
adds DH and ECDH key exchange parameters to the ’OpenSslCipherSuitesPlugin’. This
changes needed the changes from the ’#57’ pull request for nassl. Later the maintainer of
SSLyze did a big refactoring of the SSLyze code and did not need the changes from this pull
request anymore.

2. SSLyze #410: So far SSLyze has no plugin to scan the elliptic curves which are supported
for key exchange. As part of the work on the TLS Settings module, a scan for elliptic curves
was integrated into the ’OpenSslCipherSuitesPlugin’ of SSLyze. This pull request needs the
changes from the ’#58’ pull request for nassl to function. At the time of writing the author of
SSLyze did not review this pull request.

3. nassl #57: This pull request is only a minor change to nassl to make the pull request ’#409’
for SSLyze work. As stated before, after a big refactor of SSLyze the maintainer did not need
those changes anymore.

4. nassl #58: In order to manually set the elliptic curves during a key exchange in OpenSSL, it is
necessary to have direct access to the OpenSSL’s ’SSL_set1_groups’ method. This function
is used by SSLyze to scan the elliptic curves which are supported by a server. To make this
work the C binding for the ’SSL_set1_groups’ method was added to nassl.

5. TLS Profiler #1: This pull request contains all scans and checks to compare the TLS settings
of a server with a Mozilla TLS profile. Furthermore, it contains a full testing environment
with Docker containers and certificates.

6. SSLyze #413: To test whether the client or the server chooses the cipher suite, SSLyze
establishes two handshakes with two cipher lists, where the first cipher is different. If the first
ciphers from the lists are chosen for both connections, the client will be allowed choose the
cipher. While testing the TLS Profiler, it was observed that, if the cipher suite ’CHACHA20’
is the first cipher in one of the lists, SSLyze will return a wrong answer. By looking further
into the issue, it was noticed that SSLyze has to use the modern OpenSSL library to make a
correct comparison, if the cipher suite ’CHACHA20’ is involved. In this pull request, the
issue was fixed and the pull request was merged by the maintainer.

7. TLS Profiler #3: To complete the TLS Profiler Python package the README file was
enhanced and a command-line interface was added. Additionally, the TLS Profiler was
improved by giving a certificate warning if the certificate expires soon.

64

https://github.com/nextcloud/documentation/issues/2038
https://github.com/nabla-c0d3/sslyze/pull/409
https://github.com/nabla-c0d3/sslyze/pull/410
https://github.com/nabla-c0d3/nassl/pull/57
https://github.com/nabla-c0d3/nassl/pull/58
https://github.com/danielfett/tlsprofiler/pull/1
https://github.com/nabla-c0d3/sslyze/pull/413
https://github.com/danielfett/tlsprofiler/pull/3

C.2 Pull Requests

8. TLS Profiler #4: After submitting an issue for the Mozilla TLS profile JSON file the file was
updated. This pull request makes the TLS Profiler Python package compatible with the new
JSON file. Furthermore, the test environment was improved by automatically creating the
certificates on the host before running the tests.

9. dnspython #433: The DNSSEC Scanner Python package uses the dnspython Python package
to query DNS records and do basic DNSSEC operations. The dnspython Python package has
most of the basic DNSSEC operations like resource record validation and DS resource record
creation. But so far there has been no method to calculate an NSEC3 hash. For the DNSSEC
Scanner Python package an NSEC3 hash function was already implemented in this thesis.
That is why the maintainers of dnspython were asked in this issue, if they were interested in
integrating it into their dnssec module. This pull request integrates the NSEC3 hash function
into dnspython. Additionally, tests for the hash function were also added to dnspython. The
pull request was merged shortly after it was submitted.

10. TLS Profiler #5: This pull request contains two minor changes to the TLS Profiler Python
package. First, it changes the TLSProfilerResult class to a Python dataclass. This was
necessary for the Web TLS Profiler to easily convert the TLS Profiler results into a dictionary
and then send them from the worker back to the web application. Second, a command-line
interface was added to call the TLS Profiler directly from a terminal. Finally, the string
representation of the TLSProfilerResult class was improved by printing the findings in tables.

11. Nextcloud documentation #2060: This pull request adds a link to the Web TLS Profiler to the
Nextcloud documentation.

65

https://github.com/danielfett/tlsprofiler/pull/4
https://github.com/rthalley/dnspython/pull/433
https://github.com/rthalley/dnspython/issues/414
https://github.com/danielfett/tlsprofiler/pull/5
https://github.com/nextcloud/documentation/pull/2060

D German Abstract

Die Nachfrage nach Webanwendungen ist in den letzten Jahren weltweit stark gestiegen. Da für den
Zugriff auf das World Wide Web lediglich ein Internetzugang erforderlich ist, sind Webanwendungen
durch eine Vielzahl von Angriffen besonders gefährdet. Während der Schutz von Computersystemen
vor ausgeklügelten Angriffen sehr schwierig ist, stellt das Finden und Beheben falscher Konfigura-
tionen ein vergleichsweise einfaches Unterfangen dar. Da sich Webanwendungen jedoch ständig
verändern, ist es sehr zeitaufwändig, die gesamte Infrastruktur regelmäßig manuell auf Sicherheits-
lücken zu überprüfen. Daher werden fortschrittliche Softwarelösungen zum automatischen Finden
von Sicherheitslücken benötigt.

Diese Arbeit beschreibt die Erweiterung der Sicherheits-Scanning Software yesses. Die yesses Soft-
ware wurde dafür entwickelt, eine Server Infrastruktur auf grundlegende Sicherheitseigenschaften
zu überprüfen, wie zum Beispiel auf offene Ports, unsichere HTTP-Methoden und fehlende Cookie-
Sicherheitsfunktionen. Die Software ist open-source verfügbar und kann von GitHub [Fet20b]
heruntergeladen werden. Im Rahmen dieser Arbeit wurden sieben Module für yesses neu entwickelt
oder erweitert. Dabei wurden die sicherheitsrelevanten Themen Transportation Layer Security
(TLS), Domain Name System Security Extensions (DNSSEC) und Information-Leakages untersucht.
Bei dem TLS-Thema ging es darum, die TLS-Einstellungen eines Servers zu ermitteln und mit
einem vorgegebenen Mozilla-TLS-Profil zu vergleichen. Dadurch lassen sich unsichere Verschlüs-
selungsalgorithmen finden. Im Rahmen von DNSSEC wurden die DNSSEC-Konfigurationen von
Domain-Namen gescannt und mögliche Fehler in diesen gemeldet. Die Software kann unter anderem
fehlerhafte oder fehlende Signaturen erkennen. Für das Information-Leakage Thema wurde yesses
so erweitert, dass es in einer Webanwendung die Offenlegung von sensiblen und für Angreifer sehr
nützlichen Daten erkennen kann. Die hier beschriebenen Erweiterungen machen yesses nicht nur
leistungsfähiger, sondern ermöglichen auch das Auffinden von Sicherheitslücken, die vorher nicht
erkannt werden konnten.

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part before.
The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	2 The Yesses Project
	2.1 Modules
	2.2 YAML Configuration

	3 Transportation Layer Security
	3.1 TLS Handshake
	3.2 Mozilla TLS Profiles
	3.3 Attacks on TLS
	3.4 TLS Settings Module for yesses

	4 Domain Name System Security Extensions
	4.1 Domain Name System
	4.2 Domain Name System Security Extensions
	4.3 DNSSEC Module for yesses

	5 Information Leakages
	5.1 Types of Information Leakages
	5.2 Information Leakage Modules for yesses

	6 Test Environment
	7 Summary and Outlook
	Bibliography
	A Web TLS Profiler
	B Reflection on NSEC Authenticated Denial of Existence
	C Contributions to Open-Source Projects
	C.1 Issues
	C.2 Pull Requests

	D German Abstract

