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Abstract

An E-voting system is end-to-end verifiable if arbitrary external parties can check whether the result
of the election is correct or not. It is tally-hiding if it does not disclose the full election result but
rather only the relevant information, such as e.g. the winner of the election.

In this thesis we pursue the goal of constructing an end-to-end verifiable tally-hiding E-voting
system using fully homomorphic encryption. First we construct an alteration of the GSW levelled
fully homomorphic encryption scheme based on the learning with errors over rings assumption. We
utilize a key homomorphic property of this scheme in order to augment the scheme by a distributed
key generation and distributed decryption. This leads to a passively secure 4-round multi-party
computation protocol in the common random string model that can evaluate arithmetic circuits of
arbitrary size. The complexity of this protocol is quasi-linear in the number of parties, polynomial in
the security parameter and polynomial in the size of the circuit. By using Fiat-Shamir-transformed
discrete-log-based zero-knowledge proofs we achieve security against active adversaries in the
random oracle model while preserving the number of 4 rounds. Based on this actively secure
protocol we construct an end-to-end verifiable tally-hiding E-voting system that has quasi-linear
time complexity in the number of voters.
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1 Introduction

In an E-voting system each voter creates an electronic ballot that contains the voter’s choice in
encrypted or encoded form and the ballots are tallied by computers. This has several advantages
over tallying by humans. In classical voting where the tallying is done by hamans, those humans
will always learn the full result of the election including the number of votes each candidate got.
Learning the full result however might allow somebody to infer information about the individual
choices of the voters, especially if the number of voters is small. If some candidate got no votes,
then it is obvious that no voter chose that candidate. E-voting systems on the other hand can use
sophisticated cryptography in order to ensure that only certain information such as the answer to
“Who is the winner?” or “What is the order of the candidates?” is disclosed. This property is called
tally-hiding. A further desired property is end-to-end verifiability which intuitively means that an
arbitrary external party can check whether the result of the tallying is correct or not. E-voting has
several other advantages for which we refer to [Mül19].

In modern E-voting systems the tallying might be done by shuffling the ballots using mix-nets and
then decrypting them. This way it is kept secret which choice belongs to which voter. However,
when using this approach it will typically still be public which candidate got how many votes,
so everybody learns the full result of the election. Another possibility is to use homomorphic
encryption. A homomorphic encryption scheme is an encryption scheme where we can perform
computations on encrypted data. Suppose we have some function from the tuple of voters’ choices
to some result space. Such a function is called a result function and might for example output the
winner of the election. If each voter’s ballot is a homomorphic encryption of the voter’s choice,
then we can evaluate that function on the ballots (i.e. on the encrypted choices). If we decrypt
the resulting ciphertext we obtain the same result as if we evaluated the function on the plaintext
choices instead, but all intermediate values of the evaluation are kept secret.

There are different variants of homomorphic encryption such as fully homomorphic encryption
(FHE) or levelled FHE. For the introduction of those terms we refer to [ABC+15].

In this work we construct a levelled FHE scheme based on the learning with errors over rings
(Ring-LWE) assumption [LPR12]. Our levelled FHE scheme is the Ring-LWE analogue to the
GSW FHE scheme [GSW13] which is based on the learning with errors (LWE) assumption [Reg05].
The GSW scheme and our scheme have the property that the sum of two key pairs is again a valid
key pair. This key homomorphic property makes a distributed key generation possible, where each
participating party obtains the public key and a share of the private key. Then everybody can encrypt
ciphertexts but the parties can decrypt ciphertexts only collaboratively. The same thing was already
done in [AJW11] for the BGV FHE scheme [BGV11]. Using this we construct a passively secure
4-round Multi-Party Computation (MPC) protocol in the common random string model [FF00].

We augment the protocol by short zero-knowledge proofs from [PLS19] in order to achieve security
even against active adversaries. The zero-knowledge proofs are performed non-interactively using
the Fiat-Shamir transform [FS86] so that all parties can verify the proof and the number of rounds
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1 Introduction

does not increase. This way we have an actively secure 4-round MPC protocol in the random oracle
model (ROM) [BR93]. As those zero-knowledge proofs are discrete-log-based, it follows that our
actively secure MPC protocol’s security depends (additionally to the Ring-LWE assumption) on the
discrete-log assumption, too. However, if discrete-log is broken in the future by e.g. practicable
quantum computers, the privacy of past protocol executions is still preserved. That is, an adversary
needs to take part in the protocol and have access to a quantum computer during the protocol
execution in order to perform a successful discrete-log-based attack using a quantum computer.

Based on our MPC protocol we subsequently construct an end-to-end verifiable E-voting system (in
the ROM) which can be instantiated with any result function that can be evaluated using the MPC
protocol. In theory every result function is possible, because our MPC protocol works with arbitrary
arithmetic circuits (of a certain type which does not constrain generality). However, in practice
the parameters for the underlying levelled FHE scheme become quite large for deep circuits. For
three families of tally-hiding result functions we construct the corresponding families of arithmetic
circuits and analyze the asymptotic complexity of the resulting end-to-end verifiable tally-hiding
E-voting system. Notably, for fixed security parameter we obtain time complexity in Θ̃

(
#

)
where

# is the number of voters. This is optimal up to a polylogarithmic factor.

An experimental implementation of our actively secure MPC protocol which also supports the
E-voting use case will be available at [Has20].

1.1 Roadmap

Chapter 2 briefly recalls the necessary cryptographic preliminaries, such as definitions of schemes
and the corresponding security definitions. In Chapter 3 we construct our levelled FHE scheme
and the passively secure version of our MPC protocol. We also analyze its asymptotic complexity
depending on the security parameter, the number of parties and the depth of the evaluated arithmetic
circuit. In Chapter 4 we describe the usage of non-interactive zero-knowledge proofs of knowledge in
order to provide security against active adversaries, and we analyze how this changes the asymptotic
complexity. Chapter 5 deals with verifiable tally-hiding E-voting based on our actively secure MPC
protocol. Lastly, Chapter 6 concludes the thesis and provides an outlook on possible future work.
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2 Preliminaries

In this chapter we briefly go over the necessary cryptographic preliminaries. Throughout this thesis
we denote column vectors by bold lower case letters (v) and matrices by bold upper case letters (M).
In this work the logarithm is always to the base 2. For any natural number = we denote by [=] the
set [=] := {1, . . . , =}.

2.1 Computational Model

Multi-party protocols are formalized as tuples of interactive Turing machines (ITMs), often called
parties. In this work, multiple connected ITMs are always connected via a secure broadcast channel
and secure point-to-point channels. The broadcaster or sender of a message is always known to the
recipient(s). Our protocols don’t use the point-to-point channels, but adversaries might use them in
order to collude. Therefore the protocols constructed in this work can be implemented even if only
a broadcast channel is available. How to construct secure broadcast channels is not in the scope
of this work. We always assume that the parties have access to a single secure broadcast channel,
while in practice a decentralized solution to implement the broadcast channel might be used.

We will construct our passively secure MPC protocol in the common random string model [FF00].
The common random string model is a special case of the common reference string (CRS) model
where the reference string consists of independent and uniformly distributed bits. The actively
secure version will then be in the ROM [BR93].

The ROM is more powerful than the common random string model in the sense that every protocol
that can be defined in the common random string model can also be defined in the ROM. This is
because the ROM can be interpreted as that the parties have random access to an infinitely long
tape of randomness. Therefore, when defining a protocol in the ROM, we can run sub-protocols
that were initially defined in the common random string model. This common random string
can be implemented as taking the randomness from the infinite sequence � (0)� (1)� (2) . . . or
alternatively using a trusted setup.

2.2 Probability Spaces

When working with probability spaces, we denote by Pr[·] the probability distribution and by exp ·
the expected value.
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2 Preliminaries

Definition 2.2.1 (Probability space of a machine). Let A be an arbitrary probabilistic Turing
machine with runtime bound C ( ·) , let G be an input and let A ∈ {0, 1}C ( |G | ) . Then we denote
by AA (G) the result of executing A on input G with random coins A. We call

(
Ω, 2Ω,Pr

)
with

Ω = {0, 1}C ( G) and uniform probability distribution Pr the probability space of A(G) . Over this
probability space A(G) is a random variable defined by A(G) (A) := AA (G) .

2.3 Indistinguishable Families of Random Variables

In order to define indistinguishability, we first provide some necessary definitions which can for
example be found in textbooks [Vad12].

Definition 2.3.1 (negligible). Let 5 : N→ R be a function. 5 is negligible if and only if (iff.) for
every polynomial ? there exists =0 ∈ N such that∀= ≥ =0 : 5 (=) ≤ 1/?(=) .

We often use a security parameter _. If we say that some term C (_) (i.e. a term that depends on _)
is negligible, then we mean that the function _ ↦→ C (_) is negligible.

Definition 2.3.2 (Statistical difference [Vad12]). Let - and . be two random variables with range
*. The statistical difference between - and . is defined as

Δ(-,. ) :=
1
2

∑
D∈*
|Pr[- = D] − Pr[. = D] | .

Definition 2.3.3 (Y-close random variables [Vad12]). Let - and . be two random variables with
range*. We define that - and . are Y-close, denoted by - ≈Y . , iff. Δ(-,. ) ≤ Y.

Definition 2.3.4 (Statistical indistinguishability). Let - = {-_}_∈N and . = {._}_∈N be two
families of random variables on finite domains. - and . are statistically indistinguishable, denoted
by - ≡B . , if there exists a negligible function Y( ·) such that for for all _ ∈ N it holds true that
-_ ≈Y (_) ._.

Definition 2.3.5 (Computational indistinguishability). Let - = {-_}_∈N and . = {._}_∈N be two
families of random variables on finite domains. - and . are computationally indistinguishable,
denoted by - ≡2 . , if for all probabilistic and polynomial-time (ppt) Turing machines* with output
range {0, 1} the advantage

��Exp
[
*

(
1_, -_

) ]
− Exp

[
*

(
1_, ._

) ] �� is negligible.

The proof to the following lemma can be found in textbooks such as [KW11].

Lemma 2.3.1. If - ≡B . , then - ≡2 . .
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2.4 Arithmetic Circuits

2.4 Arithmetic Circuits

In this work, an arithmetic circuit is a directed acyclic graph consisting of input, addition, multipli-
cation, negation and output gates. Input gates have no predecessors. Addition and multiplication
gates have two predecessors. Negation and output gates have one predecessor. And output gates
have no successors while other gates can have arbitrarily many successors. The function computed
by an arithmetic circuit is defined in the usual way. If the arithmetic circuit is obvious from the
context, then we denote by #inputs its number of input gates and by #outputs its number of output
gates.

Definition 2.4.1 (1-bounded arithmetic circuit). An arithmetic circuit is 1-bounded if on input from
{0, 1}#inputs all intermediate values and output values are in {0, 1}.

2.5 Cryptographic Primitives and their Security

In this section we give scheme definitions and security definitions for the cryptographic primitives
used in this thesis.

Definition 2.5.1 (Commitment scheme). A commitment scheme is a tuple (Gen,Com) of ppt
algorithms of the following form.

• Gen
(
1_

)
takes the security parameter _ and outputs public parameters params, including the

domain of Com(params, ·) .

• Com(params, E) outputs a commitment for input E.

Alice can commit to some value E as follows. She computes 2 = ComA (params, E) , where A are the
random coins drawn during that computation. Then she sends 2 to Bob. Note that Com is a ppt
algorithm and therefore committing to the same value E multiple times typically results in distinct
commitments. When Alice likes to open the commitment, she sends (E, A) to Bob. Bob then verifies
that 2 is indeed a commitment to E by checking whether 2 = ComA (params, E) .

Definition 2.5.2 (Perfectly hiding). A commitment scheme (Gen,Com) is perfectly hiding if for all
_ ∈ N, for all params← Gen

(
1_

)
and for all E0, E1 in the corresponding domain it holds true that

Com(params, E0) ≡ Com(params, E1) .

Definition 2.5.3 (Computationally binding). Let K = (Gen,Com) be a commitment scheme. K
is computationally binding if every ppt adversary A has negligible advantage Advbinding

A,K where

Advbinding
A,K (_) := Exp

[
E

binding
A,K

(
1_

) ]
is defined using the security game Ebinding

A,K presented in Algo-
rithm 2.1

For our actively secure MPC protocol we will need the additional property that the used commitment
scheme is non-malleable. For the definition of non-malleable we refer to [BGR+15]. Non-interactive
non-malleable commitments are not possible in the standard model [GPR15] but they are possible
in the ROM [BGR+15].
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2 Preliminaries

Algorithm 2.1 Security for computationally binding commitment schemes

procedure Ebinding
A,K (1_)

params← Gen
(
1_

)
(E0, A0, E1, A1) ← A

(
1_, params

)
if E0 ≠ E1 and ComA0 (params, E0) = ComA1 (params, E1) then

return 1
else

return 0
end if

end procedure

Definition 2.5.4 (Interactive Turing machine). An ITM is a probabilistic Turing machine that can
send and receive messages. We denote the execution of two ITMs "1 and "2 on joint input G by
〈"1, "2〉 (G) . During a run, the ITM that received the last message is always executing while the
other ITM is blocked waiting for the next message. We define the probability space of 〈"1, "2〉 (G)
analogously to Definition 2.2.1 using a pair of random coins.

Definition 2.5.5 (Interactive proof system). Let %,+ be a pair of ITMs where % has bounded
runtime, + has polynomial runtime and + has output in {0, 1}. Let 〈%,+〉 (G) denote the local
output of + on joint input G. (%,+) is an interactive proof system (IPS) for a language ! if there
exist 2, B ∈ [0, 1] such that:

• B < 2.

• Completeness: ∀G ∈ ! : Pr[〈%,+〉 (G) = 1] ≥ 2.

• Soundness: For all bounded-runtime ITMs %∗ it holds true that∀G ∉ ! : Pr[〈%,+〉 (G) = 1] ≤
B.

Definition 2.5.6 (Perfect Zero-Knowledge). Let (%,+) be an IPS for a language !. (%,+) is called
perfect zero-knowledge if for all ppt ITMs +∗ there exists a ppt Turing machine "∗ such that

• Pr["∗(G) = ⊥] ≤ 1
2 ,

• ∀G, H : Pr[〈%,+〉 (G) = H] = Pr["∗(G) = H | "∗(G) ≠ ⊥] .

Definition 2.5.7 (Proof of Knowledge). Let ' ⊆ {0, 1}∗ × {0, 1}∗ be a binary relation that
is decidable in polynomial time — i.e. ' ∈ P — and let (%,+) be an IPS for !' :=
{G | ∃H : |H | ≤ 5 ( |G | ) and (G, H) ∈ '} where 5 is some polynomial. For any prover %∗, let %∗A ,G (<)
denote the message sent by %∗A — i.e. %∗ using random coins A — on joint input G after past com-
munication <. (That is, we can use %∗A ,G as an oracle in order to have rewindable black box access to
%∗A .) Let ^ : N→ [0, 1[ be a function. (%,+) is called proof of knowledge (PoK) with knowledge
error ^ if:

• Non-triviality: ∀G ∈ !' : Pr[〈%,+〉 (G) = 1] = 1.

• Validity: There exists a polynomial @ and an oracle ITM � such that for all G ∈ !', for all
bounded-runtime ITMs %∗ — let C be the runtime bound of %∗ — and for all A ∈ {0, 1}C ( |G | )
with ?(A, G) := Pr[〈%∗A , +〉 (G) = 1] > ^( |G | ) it holds true that:

14



2.5 Cryptographic Primitives and their Security

–
(
G, �%

∗
A,G (G)

)
∈ '.

– The expected runtime of �%∗A,G (G) is less than @ ( |G | )
? (A ,G) −^ ( |G | ) .

Note that the prover in an IPS has bounded runtime but does not necessarily run in polynomial time.
For example, there is no known ppt prover for any NP-complete !' as the contrary would imply
BPP ⊆ NP. Typically in a PoK used in cryptography the prover first computes the witness and then
the remaining computation of the prover runs in polynomial time. Such a prover can be used as
a building block in protocols that need to run in polynomial time. Thereby the prover is slightly
modified such that it takes the witness as an auxiliary input and hence skips the computation of the
witness.

By ZKPoK we designate an IPS that is perfect zero-knowledge and PoK.

Definition 2.5.8 (Public-key encryption scheme). A public-key encryption scheme is a tuple S =

(-,Gen,Enc,Dec) where the following holds true.

• Gen
(
1_

)
is a ppt algorithm that outputs a key pair (pk, sk) . We denote the range of Gen by

 S and define  pub
S := {pk | (pk, sk) ∈  S} and  sec

S := {sk | (pk, sk) ∈  S}.

• - =
(
-pk

)
pk∈ pub

S
is a family of (plaintext) sets.

• Enc
(
pk :  pub

S , G : {0, 1}∗
)

: {0, 1}∗ is a ppt (encryption) algorithm.

• Dec
(
sk :  sec

S , H : {0, 1}∗
)

: {0, 1}∗ is a deterministic polynomial-time (decryption) algo-
rithm.

• For all (pk, sk) ∈  S and all G ∈ -pk it holds true that Pr[Dec(sk,Enc(pk, G) ) = G] = 1.

As a building block for proving the security of our MPC protocol, we will prove that the underlying
encryption scheme satisfies the following security definition.

Definition 2.5.9 (Pseudo-random ciphertexts). Let S = (-,Gen,Enc,Dec) be a public-key encryp-
tion scheme and for any public key pk ∈  pub

S denote by .pk the corresponding ciphertext space, i.e.
the range of Enc(pk, ·) . that has a fixed ciphertext space . independent of the public key. S has
pseudo-random ciphertexts if every ppt adversary A = (AF ,AG) where AG outputs V′ ∈ {0, 1}
has negligible advantage

���AdvPRC
A,S

��� where AdvPRC
A,S (_) := 1 − 2Exp

[
EPRC
A,S

(
1_

) ]
is defined using the

security game EPRC
A,S presented in Algorithm 2.2.

This notion of pseudo-random ciphertexts is also called real-or-random in the literature [KW11]. The
reader might be more familiar with the so-called IND-CPA security which is defined as follows.

Definition 2.5.10 (IND-CPA). A public-key encryption scheme S = (-,Gen,Enc,Dec) pro-
vides indistinguishability under chosen plaintext attack (IND-CPA security) if every ppt ad-
versary A = (AF ,AG) , where AF

(
1_, pk

)
outputs ( (I0, I1) , U) with I0, I1 ∈ -pk and

|I0 | = |I1 | and AG
(
1_, U, H

)
outputs V′ ∈ {0, 1}, has negligible advantage

���AdvIND-CPA
A,S

��� where

AdvIND-CPA
A,S (_) := 1 − 2Exp

[
EIND-CPA
A,S

(
1_

) ]
is defined using the security game EIND-CPA

A,S presented
in Algorithm 2.3.
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2 Preliminaries

Algorithm 2.2 Security game for pseudo-random ciphertexts

procedure EPRC
A,S(1_)

(pk, sk) ← Gen
(
1_

)
(I, U) ← AF

(
1_, pk

)
V $← {0, 1}
if V = 1 then

H ← Enc(pk, I)
else

H $← .pk
end if
V′← AG

(
1_, U, H

)
return 1V=V′

end procedure

Algorithm 2.3 Security game for chosen plaintext attack

procedure EIND-CPA
A,S (1_)

(pk, sk) ← Gen
(
1_

)
( (I0, I1) , U) ← AF

(
1_, pk

)
V $← {0, 1}
H ← Enc

(
pk, IV

)
V′← AG

(
1_, U, H

)
return 1V=V′

end procedure

The proof to the following lemma can be found in [KTV10] where pseudo-random ciphertexts
is called real-or-random. In this work we will only use the fact that our encryption scheme has
pseudo-random ciphertexts, so Lemma 2.5.1 is formally not needed.

Lemma 2.5.1. If a public-key encryption scheme has pseudo-random ciphertexts, then it provides
IND-CPA security.

2.6 Multi-Party Computation

In this section we define MPC and also the notion of a threshold levelled FHE scheme, because we
will construct our MPC protocol from such a scheme.

Definition 2.6.1 (Threshold C-evaluation scheme). Let #parties ∈ N and let C be a family of
1-bounded arithmetic circuits. A threshold C-evaluation scheme for #parties parties is a tuple
S = (-,Gen,Enc,Eval,Dec) where the following holds true.

• Gen is a tuple of #parties connected ppt ITMs. We denote by Gen
(
1_

)
the execution of those

ITMs on joint input 1_. For : ∈
[
#parties

]
we associate the : th ITM in that tuple with the

party %: . When running Gen
(
1_

)
, each party %: — : ∈

[
#parties

]
— has a local output

(pk, sk: , evk) . We require the pk and evk in the local outputs to match. This way we can use

16



2.6 Multi-Party Computation

the notation (pk, sk, evk) ← Gen
(
1_

)
where sk = (sk:) :∈ [#parties

] . Just as in Definition 2.5.8
we denote the range of Gen

(
1_

)
by  S and define  pub

S := {pk | (pk, sk, evk) ∈  S},  sec
S :=

{sk | (pk, sk, evk) ∈  S}. and  eval
S := {evk | (pk, sk, evk) ∈  S}.

• - =
(
-pk

)
pk∈ pub

S
is a family of (plaintext) sets.

• Enc
(
pk :  pub

S , G : {0, 1}∗
)

: {0, 1}∗ is a ppt (encryption) algorithm.

• Eval
(
evk :  eval

S , 5 : C, G : {0, 1}∗
)

: {0, 1}∗ is a deterministic polynomial-time (evaluation)
algorithm.

• Dec is a tuple of #parties connected ppt ITMs. We denote by

G ′← Dec
(
sk = (sk:) :∈ [#parties

] :  sec
, H : {0, 1}∗

)
the execution of those ITMs on joint input H where each party %: — : ∈

[
#parties

]
— has the

additional local input sk: . When running Dec
(
sk = (sk:) :∈ [#parties

] :  sec
, H : {0, 1}∗

)
each

party has a local output G ′ and we require those local outputs to match.

• For all (pk, sk, evk) ∈  S , 5 ∈ C and G =

(
G1, . . . , G#inputs

)
∈ -#inputs

pk where #inputs is the
number of input gates of 5 , it holds true that

Pr
[
Dec

(
sk,Eval

(
evk, 5 , (Enc(pk, G8) ) 8∈ [#inputs

] ) ) = 5 (G)
]
= 1.

It is possible to apply Definition 2.6.1 in various communication models. For our purposes, multiple
connected ITMs are always connected via a secure broadcast channel and secure point-to-point
channels, as described in Section 2.1.

Similarly to the definition of levelled FHE in the work of Armknecht et al. [ABC+15], we define
the threshold levelled FHE scheme as a C-evaluation scheme with an additional depth parameter.

Definition 2.6.2 (Threshold levelled FHE scheme). A threshold levelled FHE scheme is a tuple
S = (-,Gen,Enc,Eval,Dec) where the following holds true.

• Gen differs from Definition 2.6.1 only in that it takes a depth parameter dpth as an additional
joint input.

• For every dpth ∈ N it holds true that (-,Gen( ·, dpth) ,Enc,Eval,Dec) is a threshold Cdpth-
evaluation scheme where Cdpth is the class of 1-bounded arithmetic circuits of depth at most
dpth.

Definition 2.6.3 (MPC protocol). Let #parties ∈ N. An MPC protocol P for #parties parties is a
tuple (%1, . . . , %#parties) of ITMs, called parties. (H:) :∈[#parties ] ← P

(
1_, (G:) :∈[#parties ]

)
denotes a

protocol execution where each party %: — : ∈ [#parties]— takes input
(
1_, G:

)
and outputs H: . If all

parties produce equal output H := H1 = · · · = H#parties , then we also write H ← P
(
1_, (G:) :∈[#parties ]

)
.

We define the probability space of P
(
1_, (G:) :∈[#parties ]

)
analogously to Definition 2.2.1 using an

#parties-tuple of random coins.
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In the context of multi-party protocols, a passive adversary is an adversary that does not deviate
from the protocol description. However, a passive adversary might choose its random coins in
an adversarial fashion and multiple passive adversaries might collude in order to combine their
information. An active adversary is simply an arbitrary ppt Turing machine.

Definition 2.6.4. Let # ∈ N and � ⊆ [#]. Define the projection c� (H1, . . . , H# ) := (H8) 8∈� .
Hereby the 8 ∈ � are sorted in ascending order.

Definition 2.6.5 (Correctness in the presence of passive adversaries). Let P be an MPC protocol
for #parties parties and 5 :

(
{0, 1}∗

) #parties → {0, 1}∗. P provides correctness in the presence of
passive adversaries with respect to 5 iff. for all _ ∈ N and for all input tuples G it holds true that
Pr

[
P

(
1_, G

)
∈ { 5 (G) ,⊥}

]
is overwhelming in _ over the probability space of P

(
1_, G

)
. That is,

either all parties abort (denoted by the local output ⊥) or all parties have the (correct) local output
5 (G) .

One might wonder why in the latter definition we don’t account for passive adversaries. This is
because any output of the honest parties in an execution of the protocol with passive adversaries might
also occur in an honest execution. Therefore, if the above equality holds in all honest executions,
then only the outputs of the adversaries can deviate in executions with passive adversaries. This is
also why in the definition of correctness (Definition 2.6.7) we will only require correctness of the
honest parties’ local outputs.

Definition 2.6.6 (Computational privacy in the presence of passive adversaries). Let P =(
%1, . . . , %#parties

)
be an MPC protocol that provides correctness in the presence of passive ad-

versaries with respect to a function 5 . P provides computational privacy in the presence of passive
adversaries iff. for all  ⊆ [#parties] and for all tuples of ppt passive adversaries

(
%∗
:

)
:∈ there

exists a ppt simulator S such that for all input tuples G{
S

(
1_, (G:) :∈ , 5 (G)

) }
_∈N
≡2

{
c 

(
P∗

(
1_, (G:) :∈[#parties ]

) ) }
_∈N

.

Hereby, P∗ is the MPC protocol derived from P by replacing %: by %∗
:

for each : ∈  .

Note that for any MPC protocol P there can be at most one function 5 such that P provides
correctness (in the presence of passive adversaries) with respect to 5 . Therefore perfect privacy (in
the presence of passive adversaries) is well-defined, as it does not depend on the choice of 5 .

Definition 2.6.7 (Correctness). Let P be an MPC protocol for #parties parties and 5 :(
{0, 1}∗

) #parties → {0, 1}∗. P provides correctness with respect to 5 iff. for all _ ∈ N, for all
input tuples G, for all  ⊆

[
#parties

]
— let � :=

[
#parties

]
\ — and for all tuples of ppt adversaries(

%∗
:

)
:∈ it holds true that Pr

[
c�

(
P∗

(
1_, G

) )
∈

{
( 5 (G) ) |� | , (⊥) |� |

} ]
is overwhelming in _ over

the probability space of P∗
(
1_, G

)
. Hereby, P∗ is the MPC protocol derived from P by replacing

%: by %∗
:

for each : ∈  . That is, either all honest parties abort or all honest parties have (correct)
local output 5 (G) .

Definition 2.6.8 (Computational privacy). An MPC protocol provides computational privacy if it
satisfies Definition 2.6.6 but quantifying over all ppt adversaries instead of only the passive ones.
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2.7 Number Theoretical Background

Before we state the Ring-LWE assumption, we need some preliminaries from algebraic number
theory. For a Ring ' and integer modulus @ ∈ Z, the quotient ring is denoted by '@ := '/@'
throughout this work.

Let 3 be a power of two. Then Φ23 (-) = -3 + 1 ∈ Z[-] is the so-called 23th cyclotomic
polynomial. For a number 0 over some group, if 03 = −1, then 0 is a primitive 23th root of unity.
Therefore the roots of -3 + 1 are primitive 23th roots of unity. Consider a prime modulus @ with
@ ≡ 1 mod 23. Let Z∗@ be the multiplicative group of units of Z@. Z∗@ is a cyclic group of order
@ − 1. Because 23 divides @ − 1, there is an element U ∈ Z∗@ of order 23. Fix this element. For
8 ∈ [3] , let U8 = U28−1. We have gcd(23, 28 − 1) = 1 and hence the U8 all have order 23. So, over
Z@ , we just found 3 roots of -3 + 1 and therefore -3 + 1 factors into linear polynomials modulo @.
Specifically, -3 + 1 =

∏3
8=1(- − U8) in Z@ [-] .

For 8 ∈ [3] consider the ideals p8 = 〈- − U8〉 of Z@ [-] . As the - − U8 are irreducible, they
are pairwise coprime and Bézout’s identity yields that, for 81, 82 ∈ [3] and 81 ≠ 82, there exists
6, ℎ ∈ Z@ [-] such that 6 ·

(
- − U81

)
+ ℎ ·

(
- − U82

)
= 1 ∈ p81 + p82 . It follows that the p8 are

pairwise coprime and therefore the Chinese remainder theorem applys, stating that we have the
isomorphism

Z@ [-] /
〈
-3 + 1

〉
→ Z@ [-] /p1 × · · · × Z@ [-] /p3

5 +
〈
-3 + 1

〉
↦→ ( 5 + p1, . . . , 5 + p3) .

Given 5 +
〈
-3 + 1

〉
, how can we compute a representation of 5 + p8? It turns out that - + p8 =

- + p8 − (- − U8) = U8 + p8 and inductively - : + p8 = U:8 + p8 for : ∈ N. Hence every coset 5 + p8
can be represented as 5 + p8 = 5 (U8) + p8 where 5 (U8) ∈ Z@ is 5 evaluated at U8 . This also implies
that 0 + p8 , . . . , (@ − 1) + p8 is an exhausting list of elements of Z@ [-] /p8. Those @ cosets of p8
partition Z@ [-] /

〈
-3 + 1

〉
.

Definition 2.7.1 (Chinese remainder embedding). We define the Chinese remainder embedding of
Z@ [-] /

〈
-3 + 1

〉
into Z@ by

W : Z@ [-] /
〈
-3 + 1

〉
→ Z3@

5 +
〈
-3 + 1

〉
↦→ ( 5 (U1) , . . . , 5 (U3) ) .

The advantage of this embedding W over the naive coefficient embedding is that in the range of W both
addition and multiplication are coordinate-wise [LPR13]. Algorithms are thus often more efficient
when implemented using the Chinese remainder embedding instead of the coefficient embedding.

With this one might wonder why we even started with the interpretation as a polynomial ring. This is
because the Ring-LWE problem which we formalize in Definition 2.8.1 needs an error distribution
j. It is only useful if the elements sampled from j are small; that is, they have a small norm with
respect to some embedding. Under the assumption that certain lattice problems are hard in the
worst-case, Lyubashevsky et al. [LPR12] proved that Ring-LWE is hard for an error distribution
that is a multivariate Gaussian distribution with respect to the canonical embedding, which we
will define below. However, Ring-LWE is not hard when using the Chinese remainder embedding
instead.
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2 Preliminaries

The Chinese remainder embedding is still useful as an optimization of computations over the ring.

Definition 2.7.2 (Canonical embedding). For 8 ∈ [3] , let l8 ∈ C be the 8th complex root of -3 + 1
in some fixed order and let f8 : Z[-] /

〈
-3 + 1

〉
→ C be the injective ring homomorphism defined

by - ↦→ l8 . Then the canonical embedding of Z[-] /
〈
-3 + 1

〉
to C3 is defined by

f : Z[-] /
〈
-3 + 1

〉
→ C3

5 +
〈
-3 + 1

〉
↦→ ( 5 (l1) , . . . , 5 (l3) ) .

As the f8 are ring homomorphisms it follows that addition and multiplication are component-wise
in the canonical embedding, too. Observe that a single component of f( 5 ) is sufficient in or-
der to uniquely define (and reconstruct) 5 , because the f8 are injective. But on the other hand
a single component of f( 5 ) needs the same amount of storage space as a ring element in the
coefficient embedding or Chinese remainder embedding. We preserve the convention of Lyuba-
shevsky et al. [LPR12] and use the full canonical embedding (instead of just a single component) in
our analysis. For implementing computations over the ring, the Chinese remainder embedding is
more efficient.

Definition 2.7.3. Let @ ∈ N. We define the infinity norm

| | ·| |∞ : Z<×=@ → {0, . . . , b@/2c }(
08, 9

)
8∈[<], 9∈[=] ↦→ max

8∈[<], 9∈[=]
|08, 9 |

whereby each entry 08, 9 ∈ {−b@/2c , . . . , b@/2c }. Let Φ(-) ∈ Z[-] be a polynomial and ' :=
Z[-] /〈Φ(-) 〉 . We extend | | ·| |∞ to ring elements and matrices over '@ as follows.

| | ·| |∞ : '<×=@ → {0, . . . , b@/2c }(
08, 9

)
8∈[<], 9∈[=] ↦→ max

8∈[<], 9∈[=]

����f (
08, 9

) ����
∞

Note that the infinity norm of ring elements is in Definition 2.7.3 defined with respect to the canonical
embedding. We refer to [LPR13] for the properties of this infinity norm.

Definition 2.7.4. Let Φ(-) ∈ Z[-] be a polynomial of degree 3 and ' := Z[-] /〈Φ(-) 〉 . For
elements A = 20-

0 + · · · + 23−1-
3−1 ∈ ' we define

coefficents(A) := (20, . . . , 23−1) .

For any interval �, we denote by '� the set '� :=
{
G ∈ '

�� coefficents(G) ∈ �3
}
; that is, the set of

elements of '@ that have coordinates in � with respect to the coefficient embedding.
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2.8 The Learning with Errors over Rings Assumption

The security of our levelled FHE scheme is based on the Ring-LWE assumption which was introduced
in [LPR12].

Definition 2.8.1 (Ring-LWE assumption). For security parameter _, let 3 (_) ∈ N and let ' =

Z[-] /
〈
-3 + 1

〉
. Let @(_) be an integer modulus. Let j(_) be a probability distribution over '@.

Let AdvRLWE
A,3,@,j,<(_) := 1− 2Exp

[
ERLWE
A,3,@,j,<

(
1_

) ]
be defined using the security game ERLWE

A,3,@,j,<
presented in Algorithm 2.4. The RLWE3,@,j assumption states that for any ppt adversary A and
< ∈ poly(_) the advantage

���AdvRLWE
A,3,@,j,<

��� is negligible.

Algorithm 2.4 Security game for Ring-LWE

procedure ERLWE
A,3,@,j,<(1_)

a $← '<@
V $← {0, 1}
if V = 1 then

A $← j; e← j<; b := a · A + e
else

b $← '<@
end if
V′← A(1_, a, b)
return 1V=V′

end procedure

In the original definition in [LPR12] A was drawn uniformly at random from '@ . But Ring-LWE is
equally hard when drawing A from the error distribution instead [LPR12], analogously to standard
LWE [ACPS09].

Ring-LWE is useful because, similarly to standard LWE, the security of Ring-LWE-based cryptogra-
phy can be based on the worst-case hardness of certain lattice problems. When Lyubashevsky et al.
introduced Ring-LWE [LPR12], they provided a reduction from the shortest independent vectors
problem (SIVP) over rings to Ring-LWE. They first reduced the SIVP to the the search version of
Ring-LWE via a quantum reduction and then reduced the search version to the decision version.
(A ppt algorithm A solves the decision version of Ring-LWE if it has non-negligible advantage
AdvRLWE

A,3,@,j,<(_) .) By transitivity those two reductions lead to the following theorem.

Definition 2.8.2 (�-bounded distribution). Let �, 3 ∈ N and let ' := Z[-] /
〈
-3 + 1

〉
. A distribu-

tion j over '@ is called �-bounded if for all values A
j
← '@ sampled according to j it holds true

that | |A | |∞ < �. We also write A ← j instead of A
j
← '@.

Theorem 2.8.1. Let 3 (_) be a power of two, let ' := Z[-] /
〈
-3 + 1

〉
be the 23th cyclotomic

polynomial, let @(_) ≡ 1 mod 3 be a prime modulus and let �(_) ∈ l
(√

log 3
)

with � ≤
√
3 log 3.

Then there is an efficiently sampleable �-bounded distribution j(_) such that if the RLWE3,@,j
assumption does not hold true, then there exists a ppt quantum algorithm for the Õ

(
@/�
√
3
)
-

approximate SIVP on ideal lattices over '.
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Note that this reduction can take arbitrary ideal lattices over ' and therefore the security of Ring-
LWE based cryptography is based on the worst-case hardness. The SIVP on ideal lattices over ' is
assumed to be hard if 3 ∈ Ω

(
_ log(@/�)

)
[BGV11].
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In this chapter we construct our levelled FHE scheme and the passively secure version of our MPC
protocol. Afterwards in Section 3.6 we analyze its asymptotic complexity depending on the security
parameter, the number of parties and the depth of the evaluated arithmetic circuit.

The GSW scheme by Gentry et al. [GSW13] makes use of bit decomposition of vectors and of a
gadget matrix that is the inverse of bit decomposition. For our ring variant of the GSW scheme we use
the analogues over the polynomial ring. We adopt notation by Alperin-Sherrif and Peikert [AP14].

Definition 3.0.1. Let 3 ∈ N be a power of two and let ' = Z[-] /
〈
-3 + 1

〉
. Let @, < ∈ N. Let

g :=
(
20, . . . , 2 blog @c

))
. We define the gadget matrix

G :=
[
g

g

]
∈ '2( blog @c+1) ×2

@ .

The empty cells are filled with zeros. Furthermore, for any ring element A ∈ '@ , let BitDecomp(A) ∈
'
blog @c+1
[0,1] denote the bit decomposition of A. That is, we have 〈BitDecomp(A) , g〉 = A. We define

the function

(3.1)

G−1 : '<×2
@ → '

<×2( blog @c+1)
[0,1]©«

01,1 01,2
...

...

0<,1 0<,2

ª®®¬ ↦→

BitDecomp

(
01,1

)) BitDecomp
(
01,2

))
...

...

BitDecomp
(
0<,1

)) BitDecomp
(
0<,2

))
 .

Note that G−1 (which performs bit decomposition on matrices) itself is not a matrix but an efficiently
computable function. The parameters 3, @, < are always obvious from the context when we use G
or G−1,

Lemma 3.0.1. Let ', @ and < be as in Definition 3.0.1 and let M ∈ '<×2
@ . Then G−1(M)G = M.

Proof. Let

M =:
©«
01,1 01,2
...

...

0<,1 0<,2

ª®®¬.

For any 8 ∈ {1, . . . , <} the 8th row of G−1(M)G equals[
BitDecomp

(
08,1

)) BitDecomp
(
08,2

)) ]
G

=
(〈

BitDecomp
(
08,1

)
, g

〉
,
〈
BitDecomp

(
08,2

)
, g

〉)
=

(
08,1, 08,2

)
which is the 8th row of M.
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3.1 The Ring-GSW Homomorphic Encryption Scheme

In this section we lay the foundation by constructing our levelled FHE scheme and proving that it
has pseudo-random ciphertexts.

The GSW scheme can be transformed into a Ring-LWE variant with only one conceptual difference
on which we elaborate further below. In [GSW13] the authors did not formulate the Ring-LWE
variant, because at the time there were already better known Ring-LWE based levelled FHE schemes
such as the BGV scheme [BGV11]. However, we do not want to use the BGV scheme because it is
much more complicated due to the modulus reduction and nesting of keys. The GSW scheme is
much easier to implement.

We now describe the resulting scheme. In our description the usage of G and G−1 is as proposed by
Alperin-Sherrif and Peikert and differs from the original description by Gentry et al. [GSW13]. As
a result, the ciphertexts also have a different form than in the original description. However, this is
an entirely syntactic difference [AP14]. Ciphertexts of both variants can be converted losslessly
into each other without knowing the secret key.

Definition 3.1.1 (Ring-GSW public-key encryption scheme). For security parameter _, let 3, ', @, j
be as in Definition 2.8.1. Set < = <(_) := 2( blog @c + 1) . The Ring-GSW3,@,j public-key
encryption scheme is the tuple S = (-,Gen,Enc,Dec) defined as follows. Thereby all algorithms
are implicity parameterized on 3, ', @, j.

• - =
(
-pk

)
pk∈ pub

S
: For every public key pk ∈  pub

S the plaintext space is -pk = {0, 1}.

• Gen
(
1_

)
: Sample A $← j and set the secret key s := (1,−A)) . Sample a $← '<@ ; e← j<,

set b := a · A + e and set the public key A :=
[
b a

]
. Return (pk = A, sk = s).

• Enc
(
pk = A : '<×2

@ , ` : {0, 1}
)

: Sample C ← j; F← j<×2 and return C := CA + F + `G.

• Dec
(
sk = s : '2

@, C : '<×2
@

)
: With 8 := blog @c , let C[8] be the 8th row (starting at 1) of C

and compute the pre-plaintext pp := 〈C[8], s〉. Return `′ :=
⌊
| |pp| |∞/28−1⌉.

While the original GSW scheme used Regev encryptions [Reg05] of zero in order to hide the term `G
in a ciphertext, we can not use them, because the application of the leftover hash lemma [HILL99;
ILL89] in Regev’s security proof does not generalize to Ring-LWE. Therefore we use LPR encryp-
tions [LPR12] of zero instead: Observe that each row of CA + F is an LPR encryption of zero. This
is the only conceptual difference between the original GSW scheme and Ring-GSW. We did not
come up with this idea, but rather it was already mentioned in the appendix of [GSW13].

First we give an intuition, why decryption is correct, i.e. for all ` ∈ {0, 1} it always holds true that
Dec(s,Enc(A, `) ) = ` where (s,A) ← Gen

(
1_

)
. Observe that As = b − a · A = e ≈ 0 and that

Fs ≈ 0. Hence for a ciphertext C we obtain

Cs = CAs + Fs + `Gs = Ce + Fs + `Gs ≈ `
[

g
−g · A

]
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3.1 The Ring-GSW Homomorphic Encryption Scheme

with g = (20, 21, . . . , 28)) . Taking the 8th row of that (approximate) equation yields pp ≈ `28−1. If
this held true with equality, then would pp ∈ {0, 28−1} and thus ` = `′. Consequently decryption is
correct if the error in this approximation is not too large. We also call this error noise and quantify
it via the following definition.

Definition 3.1.2 (Noise vector). For a Ring-GSW-ciphertext C that encrypts ` under secret key s,
we define noises,` (C) := (C − `G) s ∈ '<@ to be the noise vector of C. We also write noise(C) if
s and ` are obvious from the context.

We refer to the infinity norm of the noise as the noise level of the ciphertext.

Lemma 3.1.1. If
����noises,` (C)

����
∞ < 2 blog @c−2, then Ring-GSW3,@,j decryption is correct, i.e.

Dec(s, �) = `.

Proof. Let 8 = blog @c . Observe
����pp − `28−1

����
∞ ≤ | |Cs − `Gs| |∞ = | |noise(C) | |∞ < 28−2. For

` = 0 it follows that | |pp| |∞/28−1 < 1
2 . For ` = 1, using the rearranged triangle inequality | |pp| |∞ ≥����28−1

����
∞−

����28−1 − pp
����
∞, it follows that | |pp| |∞/28−1 ≥

(����28−1
����
∞ −

����pp − 28−1
����
∞

)
/28−1 > 1− 1

2 = 1
2 .

Hence `′ =
⌊
| |pp| |∞/28−1⌉ = `.

For a fresh ciphertext C = CA + F + `G, the noise is (CA + F) s = Ce + Fs, where e is the error vector
used during key generation and C,F are the errors used during encryption. These errors as well as
the secret key s are sampled from the error distribution j, so decryption is correct if the polynomials
sampled from j are not too large.

In terms of security we will prove that under certain assumptions Ring-GSW has pseudo-random
ciphertexts.

Theorem 3.1.1. If the RLWE3,@,j assumption holds true, then Ring-GSW3,@,j has pseudo-random
ciphertexts (as defined in Definition 2.5.9).

Proof. In this proof we use the conditional expectation which is for a random variable+ and an event
� defined by Exp[+ | �] :=

∑
l∈� + (l) /|� | . Let S = (-,Gen,Enc,Dec) := Ring-GSW3,@,j

and let A = (AF ,AG) be an arbitrary ppt adversary under the constraints of Definition 2.5.9.
Observe that over the probability space of EPRC

A,S
(
1_

)
it holds true that

(3.2)

AdvPRC
A,S (_) = 1 − 2Exp

[
EPRC
A,S

(
1_

) ]
= 1 − 2Pr

[
EPRC
A,S

(
1_

)
= 1

]
= 1 − 2(Pr[V′ = V = 0] + Pr[V′ = V = 1] )
= 1 − 2(Pr[V′ = 0 | V = 0] · Pr[V = 0]︸      ︷︷      ︸

= 1/2

+ Pr[V′ = 1 | V = 1] · Pr[V = 1]︸      ︷︷      ︸
= 1/2

)

= 1 − (Pr[V′ = 0 | V = 0] + Pr[V′ = 1 | V = 1] )
= (1 − Pr[V′ = 0 | V = 0] ) − Pr[V′ = 1 | V = 1]
= Pr[V′ = 1 | V = 0] − Pr[V′ = 1 | V = 1]
= Exp[V′ | V = 0] − Exp[V′ | V = 1] .
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Thus it suffices to prove that |Exp[V′ | V = 0] − Exp[V′ | V = 1] | is negligible in _. To do so we
give a sequence of games where the first has expected value Exp[V′ | V = 0] , the last has expected
value Exp[V′ | V = 1] and the difference between the expected values of consecutive games is
negligible.

Game1 is presented in Algorithm 3.1. On input 1_ it simulates EPRC
A,S 〈V = 0〉

(
1_

)
and outputs V′.

Therefore

Exp
[
Game1

(
1_

) ]
= Exp[V′ | V = 0]

where V, V′ are the corresponding random variables over the probability space of EPRC
A,S

(
1_

)
.

Algorithm 3.1 Game1 for Ring-GSW

procedure Game1(1_)
(A, s) ← Gen

(
1_

)
(`, U) ← AF

(
1_,A

)
V = 0
if V = 1 then

C← Enc(A, `)
else

C $← '<×2
@

end if
V′← AG

(
1_, U,C

)
return V′

end procedure

Game2 (see Algorithm 3.2) is a purely syntactic modification of Game1. The subprocedure Gen
(
1_

)
was inlined and the if-condition was optimized away. s was omitted, too, because it’s not used after
assignment. Obviously Exp

[
Game1

(
1_

) ]
= Exp

[
Game2

(
1_

) ]
.

Algorithm 3.2 Game2 for Ring-GSW

procedure Game2(1_)
a $← '<@
A ← j

e← j<

b := a · A + e
A :=

[
b a

]
(`, U) ← AF

(
1_,A

)
C $← '<×2

@

V′← AG
(
1_, U,C

)
return V′

end procedure

LetA ′ be the ppt algorithm that, on input
(
1_, ã, b̃

)
, computes Game2

〈
a = ã, b = b̃

〉 (
1_

)
. Observe

that Game2 on input 1_ simulates the Ring-LWE security game ERLWE
A′,3,@,j,<〈V = 1〉

(
1_

)
, as defined

in Algorithm 2.4, and outputs the V′ of that game. That is,

Exp
[
Game2

(
1_

) ]
= Exp[V′ | V = 1]
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where V, V′ are now the corresponding random variables over the probability space of
ERLWE
A′,3,@,j,<

(
1_

)
. By a calculation analogous to Equation (3.2), the RLWE3,@,j assumption states

that |Exp[V′ | V = 0] − Exp[V′ | V = 1] | is negligible in _. Analogously, Game3 is a game with

Exp
[
Game3

(
1_

) ]
= Exp[V′ | V = 0]

and hence we infer that
��Exp

[
Game3

(
1_

) ]
− Exp

[
Game2

(
1_

) ] �� is negligible.

Algorithm 3.3 Game3 for Ring-GSW

procedure Game3(1_)
a $← '<@
b $← '<@

A :=
[
b a

]
(`, U) ← AF

(
1_,A

)
C $← '<×2

@

V′← AG
(
1_, U,C

)
return V′

end procedure

In Game4 presented in Algorithm 3.4, instead of drawing the two columns of A separately, we draw A
uniformly at random from '<×2

@ in one syntactic statement. Furthermore, we add `G to C, but as C′
is distributed uniformly at random, C′ + `G is still distributed uniformly at random. Therefore, both
of these are purely syntactic changes of Game3 and thus Exp

[
Game3

(
1_

) ]
= Exp

[
Game4

(
1_

) ]
.

Algorithm 3.4 Game4 for Ring-GSW

procedure Game4(1_)
A $← '<×2

@

C′ $← '<×2
@

(`, U) ← AF
(
1_,A

)
C := C′ + `G
V′← AG

(
1_, U,C

)
return V′

end procedure

In Game4, interpret A and C′ as column vectors in '2<
@ . Analogously to the next-to-last step, we

can now replace C′ by a vector A · C + F of Ring-LWE samples. This way we obtain Game5 shown
in Algorithm 3.5, with negligible

��Exp
[
Game5

(
1_

) ]
− Exp

[
Game4

(
1_

) ] ��.
Game6 is presented in Algorithm 3.6. Recall that Enc(A, `) = CA + F + `G, so the step from
Game5 to Game6 is again a purely syntactic change; i.e. Exp

[
Game5

(
1_

) ]
= Exp

[
Game6

(
1_

) ]
.

From Game6 to Game7 (see Algorithm 3.7) we performed the modifications from Game1 to Game3
in reverse. Analogous to those steps we can argue that

��Exp
[
Game6

(
1_

) ]
− Exp

[
Game7

(
1_

) ] �� is
negligible.

Game7
(
1_

)
simulates EPRC

A,S 〈V = 1〉
(
1_

)
and outputs V′. We conclude that

Game7

(
1_

)
= Exp[V′ | V = 1]
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Algorithm 3.5 Game5 for Ring-GSW

procedure Game5(1_)
A $← '<×2

@

C ← j

F← j<×2

C′ := A · C + F
(`, U) ← AF

(
1_,A

)
C := C′ + `G
V′← AG

(
1_, U,C

)
return V′

end procedure

Algorithm 3.6 Game6 for Ring-GSW

procedure Game6(1_)
a $← '<@
b $← '<@

A :=
[
b a

]
(`, U) ← AF

(
1_,A

)
C← Enc(A, `)
V′← AG

(
1_, U,C

)
return V′

end procedure

Algorithm 3.7 Game7 for Ring-GSW

procedure Game7(1_)
(A, s) ← Gen

(
1_

)
(`, U) ← AF

(
1_,A

)
V = 1
if V = 1 then

C← Enc(A, `)
else

C $← '<×2
@

end if
V′← AG

(
1_, U,C

)
return V′

end procedure

where V, V′ are the corresponding random variables over the probability space of EPRC
A,S

(
1_

)
. Alto-

gether we proved that Exp[V′ | V = 0] − Exp[V′ | V = 1] is negligible in _.

3.2 Homomorphic Operations for Ring-GSW

The Ring-GSW encryption scheme allows to perform homomorphic operations on the ciphertexts.
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• Mult(C1,C2) : For Ring-GSW-ciphertexts C1,C2, we define Mult(C1,C2) := G−1(C1)C2.
Observe that

Mult(C1,C2) s = G−1(C1)C2s
= G−1(C1) (`2Gs + noise(C2) )
= `2G−1(C1)Gs +G−1(C1)noise(C2)
= `2C1s +G−1(C1)noise(C2)
= `2(`1Gs + noise(C1) ) +G−1(C1)noise(C2)
= `1`2Gs + `2noise(C1) +G−1(C1)noise(C2)

and therefore

(3.3) noise(Mult(C1,C2) ) = `2noise(C1) +G−1(C1)noise(C2) .

• Add(C1,C2) : For Ring-GSW-ciphertexts C1,C2, we define Add(C1,C2) := C1 + C2. Ob-
serve that

Add(C1,C2) s = (`1Gs + noise(C1) )) + (`1Gs + noise(C2) )
= (`1 + `2)Gs + noise(C1) ) + noise(C2) )

and therefore

(3.4) noise(Add(C1,C2) ) = noise(C1) + noise(C2) .

• Neg(C) : For a Ring-GSW-ciphertext C, we define Neg(C) := −C. Observe that

Neg(C) s = −(`Gs + noise(C) ) = (−`)Gs − noise(C)

and therefore

(3.5) noise(Neg(C) ) = −noise(C) .

Using these operations, we could define an Eval function and hence extend the Ring-GSW public-key
encryption scheme to a levelled FHE scheme. However, we don’t formally define the resulting
scheme. Instead we will go one step further and construct a threshold levelled FHE scheme based
on Ring-GSW in Section 3.3.

3.3 Construction of Threshold Levelled Fully Homomorphic Encryption

This section describes our threshold levelled FHE scheme. Asharov et al. [AJW11] already con-
structed a threshold levelled FHE scheme based on the BGV FHE scheme by Brakerski et al. [BGV11].
Their main tool was the property that BGV key pairs are additively homomorphic. This way key pairs
of different parties can be combined into a single shared key pair. Since BGV and Ring-GSW use
conceptually equal key pairs, this observation applies to Ring-GSW, too: Let #parties be the number
of parties. We require that each party uses the same vector a in their public key. For : ∈ [#parties],
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3 Passively Secure Multi-Party Computation

let (A: , s:) =
( [

b: a
]
, (1,−A:))

)
be the key pair of party %: , constructed via b: = a · A: + e: .

Then (A, s) defined by

A =

[ ∑
:∈[#parties ]

b: a
]

s = ©«1,−
∑

:∈[#parties ]
A:

ª®¬
)

again fulfills the properties of a Ring-GSW key pair; namely that the first component of the secret
key is 1 and that

As = ©«
∑

:∈[#parties ]
b:

ª®¬ − a
∑

:∈[#parties ]
A: =

∑
:∈[#parties ]

(b: − a · A:) =
∑

:∈[#parties ]
e:

is small. In the security proof we’ll see that it is sufficient if at least one of the e: is chosen honestly
from j. In order to apply the leftover hash lemma in the security proof, a needs to be distributed
uniformly at random. It can be taken from the CRS.

This makes a distributed key generation protocol possible: Each party %: generates its key pair
(A: , s:) and broadcasts the public key A: . The parties then locally compute the shared public key.
Together they hold a full threshold sharing of the secret key.

Let C be a GSW-ciphertext that decrypts to ` under the secret key s. The parties can collaboratively
decrypt C as follows. With 8 := blog @c , let C[8] be the 8th row of C. Each party %: computes and
broadcasts pp: := � [8, 2] ·A: . They locally compute the pre-plaintext pp := C[8, 1]−∑:∈[#parties ] pp:
and proceed as in the Ring-GSW decryption. This is correct because

pp = C[8, 1] −
∑

:∈[#parties ]
C[8, 2] · A: =

〈
C[8], ©«1,−

∑
:∈[#parties ]

A:
ª®¬
) 〉

= 〈C[8], s〉

just as in the Ring-GSW decryption. However it is not secure, as the pre-plaintext pp = 〈C[8], s〉
leaks information about s, because s =

(
1,C[8, 2]−1(C[8, 1] − pp)

))
(if C[8, 2] has a multiplicative

inverse). Just as Asharov et al. [AJW11], we circumvent this problem by adding large noise to pp,
such that we can apply the so-called smudging lemma (Lemma 3.3.1).

Lemma 3.3.1 (Smudging lemma [AJW11]). For security parameter _, let �1 = �1(_) ∈ N
and �2 = �2(_) ∈ N such that �1/�2 is negligible. Let 41 ∈ [−�1, �1 [ be a constant and
42 $← [−�2, �2 [. Then {41 + 42}_∈N ≡B {42}_∈N.

For the proof of the smudging lemma we refer to [AJW11]. The idea is to add a large
noise element smdg when computing pp, such that pp can not be distinguished from pp′ :=
pp + C[8, 2] ∑:∈

[
#parties

] A: . Observe that pp′ = 〈C[8] , s〉 + smdg + C[8, 2] ∑:∈
[
#parties

] A: =

C[8, 1] + smdg does not leak anything about s.

Definition 3.3.1 (Our threshold levelled FHE scheme). Let K = (GenK ,ComK) be a commitment
scheme. For security parameter _ and depth parameter dpth, let 3 ∈ N be a power of two and
let ' = Z[-] /

〈
-3 + 1

〉
. Let @ = @(_, dpth) be an integer modulus. Let j = j(_, dpth) be

a probability distribution over '@. Set < = <(_, dpth) := 2( blog @c + 1) . Let �smdg ∈ N.
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3.3 Construction of Threshold Levelled Fully Homomorphic Encryption

Furthermore, let C be the class of 1-bounded arithmetic circuits. In the common random string model,
we define the threshold C-evaluation scheme TFHEK ,3,@,j,�smdg,#parties = (-,Gen,Enc,Eval,Dec)
for #parties parties as follows.

• - =
(
-pk

)
pk∈ pub

S
: For every public key pk ∈  pub

S the plaintext space is -pk = {0, 1}.

• Gen
(
1_, dpth

)
: Each party %: — : ∈ [#parties] — does the following. Using random coins

from the CRS, compute paramsK ← GenK
(
1_

)
. Take a from the CRS, sample A: ← j;

e: ← j< and set b: := a · A: + e: . Sample the randomness U: $← {0, 1}C (where C is large
enaugh) in order to commit 2: := ComU:

K
(
paramsK , b:

)
and broadcast 2: . Upon receiving 2 9

from all other parties % 9 , 9 ∈ [#parties], broadcast (b: , U:). If there exists 9 ∈ [#parties] such
that 2 9 ≠ ComU9

K
(
paramsK , b 9

)
, then abort. Locally compute A :=

[∑
:∈[#parties ] b: a

]
and

output
(
pk = A, sk = (A:) :∈[#parties ]

)
.

• Enc
(
pk = A : '<×2

@ , ` : {0, 1}
)

: Sample C ← j; F← j<×2 and return C := CA + F + `G.
(This is the same as Ring-GSW encryption.)

• Eval
(
evk = ⊥, 5 : C,

(
C1, . . . ,C#inputs

)
:
(
'<×2
@

) #inputs
)

: Note that, as per Definition 2.6.1,

#inputs is the number of input gates of 5 . For each 8 ∈ [#inputs], let in8 be the 8th input gate and
set Cin8 := C8 . Process all other gates in topological order as follows. When processing an

– addition gate 6 with incoming wires from 61 and 62, set C6 := Add
(
C61 ,C62

)
;

– multiplication gate 6 with incoming wires from 61 and 62, set C6 := Mult
(
C61 ,C62

)
;

– negation gate 6 with incoming wire from 61, set C6 := Neg
(
C61

)
;

– output gate 6 with incoming wire from 61, set C6 := C61 .

For each 8 ∈ [#outputs], let out8 be the 8th output gate. Return
(
Cout1 , . . . ,Cout#outputs

)
.

• Dec
(
sk = (A:) :∈[#parties ] : '#parties

@ ,C : '<×2
@

)
: With 8 := blog @c , let C[8] be the 8th row of C.

Each party %: samples smdg: $← ' [
−�smdg,�smdg

[ and broadcasts pp: := C[8, 2] · A: + smdg: .
They locally compute pp := C[8, 1]−∑:∈[#parties ] pp: and proceed as in Ring-GSW decryption.

Correct decryption can only be guaranteed if the noise does not grow too large. One can choose
the parameters 3 (_, dpth) , @(_, dpth) and j(_, dpth) such that correct evaluation is guaranteed for
any 1-bounded arithmetic circuit 5 of depth at most dpth, hence obtaining a threshold levelled FHE
scheme (Definition 2.6.2). As a step towards choosing the right parameters, we prove the following
more low-level lemma. Compared to Ring-GSW public-key encryption, the smudging requires us
to lower the bound on the noise the ciphertext is allowed to contain in order to still maintain correct
decryption.

Lemma 3.3.2. Let s :=
(
1,−∑

:∈
[
#parties

] A: )) . If����noises,` (C)
����
∞ + #parties�smdg < 2 blog @c−2

then TFHEK ,3,@,j,�smdg,#parties decryption is correct, i.e. Dec(sk, �) = `.
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3 Passively Secure Multi-Party Computation

Proof. Let 8 = blog @c . First observe that

pp = C[8, 1] −
∑

:∈
[
#parties

] pp:

= C[8, 1] −
∑

:∈
[
#parties

] (C[8, 2] · A: + smdg:)

= C[8, 1] −
∑

:∈
[
#parties

] (C[8, 2] · A:) −
∑

:∈
[
#parties

] smdg:

=

〈
C[8] , ©«1,

∑
:∈

[
#parties

] A:ª®¬
〉
−

∑
:∈

[
#parties

] smdg:

= 〈C[8] , s〉 −
∑

:∈
[
#parties

] smdg: .

It follows that����pp − `28−1����
∞ ≤

����〈C[8] , s〉 − `28−1����
∞ +

∑
:∈

[
#parties

] | |smdg: | |∞

≤ | |Cs − `Gs| |∞ + #parties�smdg

=
����noises,` (C)

����
∞ + #parties�smdg

< 28−2.

We can proceed analogously to the proof of Lemma 3.1.1.

According to this lemma, we can choose a feasible @ if we have an upper bound on the noise of
ciphertexts that shall be decrypted. Those are the ciphertexts that are returned by Eval.

Lemma 3.3.3. Let s :=
(
1,−∑

:∈
[
#parties

] A: )) . Let �j ∈ N such that j is �j-bounded. Let 5 be an
arithmetic circuit of depth at most dpth and let #inputs be the number of input gates of 5 . Without loss
of generality, 5 has only a single output. For 8 ∈ [#inputs], let `8 ∈ {0, 1} and C8 ← Enc(pk, `8) .
Set ` := 5 (`1, . . . , `#inputs) and C← Eval

(
⊥, 5 ,

(
C1, . . . ,C#inputs

) )
. Then����noises,` (C)

����
∞ ≤

(
#parties + 1

)
�2
j · (< + 1) dpth.

Proof. Recall that in the computation of C← Eval
(
⊥, 5 ,

(
C1, . . . ,C#inputs

) )
each gate 6 of 5 gets

an assigned ciphertext C6. Furthermore, let `6 be the “correct” plaintext for that gate; that is, the
value of that gate when (non-homomorphically) evaluating 5 (`1, . . . , `#inputs). We define

layer(6) =


0 if 6 is an input gate,
1 + layer(61) if 6 has one incoming wire from 61,
1 +max{layer(61) , layer(62) } if 6 has two incoming wires from 61, 62.

By induction over ; ∈ {0, . . . , dpth} we first prove that for each non-output gate 6 of 5 with
layer(6) = ; it holds true that

����noises,`6
(
C6

) ����
∞ ≤

(
#parties + 1

)
�2
j · (< + 1) ;.
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• Let ; = 0. Then C6 is a fresh ciphertext with

noises,`6
(
C6

)
=

(
C6 − `6G

)
s = (CA + F) s = CAs = Fs

= C

[∑
:∈

[
#parties

] b: a
]
s + Fs

= C

[∑
:∈

[
#parties

] (a · A: + e:) a
] (

1
−∑

:∈
[
#parties

] A:
)
+ Fs

= C
∑

:∈
[
#parties

] e: + Fs =
∑

:∈
[
#parties

] Ce: + Fs.

All of the polynomials in the latter term are sampled from the error distribution j, and hence����noises,`6
(
C6

) ����
∞ ≤ #parties�

2
j + �2

j =
(
#parties + 1

)
�2
j.

• Let ; ∈ {1, . . . , dpth} where 6 is a multiplication gate with incoming wires from 61 and 62.
By Equation (3.3) we have C6 = `62noise

(
C61

)
+G−1 (C61

)
noise

(
C62

)
. Using `62 ∈ {0, 1},

G−1 (C61

)
∈ '<×<[−1,1] by Equation (3.1) and����noise

(
C61

) ����
∞,

����noise
(
C62

) ����
∞ ≤

(
#parties + 1

)
�2
j · (< + 1) ;−1

by induction, we obtain����C6����∞ ≤ (
#parties + 1

)
�2
j · (< + 1) ;−1 + <

(
#parties + 1

)
�2
j · (< + 1) ;−1

=
(
#parties + 1

)
�2
j · (< + 1) ;.

• Let ; ∈ {1, . . . , dpth} where 6 is an addition gate with incoming wires from 61 and 62. By
Equation (3.4) we have C6 = noise

(
C61

)
+ noise

(
C62

)
and hence we obtain����C6����∞ ≤ 2

(
#parties + 1

)
�2
j · (< + 1) ;−1 <

(
#parties + 1

)
�2
j · (< + 1) ;.

• Let ; ∈ {1, . . . , dpth} where 6 is a negation gate with incoming wire from 61. By Equa-
tion (3.5) we have C6 = −noise

(
C61

)
and hence we obtain����C6����∞ =

(
#parties + 1

)
�2
j · (< + 1) ;−1 <

(
#parties + 1

)
�2
j · (< + 1) ;.

At the end of the computation, the output C is taken from an output gate (which doesn’t count
towards the depth). Let 6 be the predecessor of that output gate. Then C = C6. Since the depth of
5 is at most dpth, it follows ; := layer(6) ≤ dpth. We conclude����noises,` (C)

����
∞ =

����noises,`6
(
C6

) ����
∞ ≤ #parties

(
#parties + 1

)
�2
j · (< + 1) ;.

Theorem 3.3.1. Let �j ∈ N such that j is �j-bounded. If for all _, dpth ∈ N it holds true that

(3.6) @ > 8
( (
#parties + 1

)
�2
j · (< + 1) dpth + #parties�smdg

)
then TFHEK ,3,@,j,�smdg,#parties is a threshold levelled FHE scheme (as defined in Definition 2.6.2).
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Proof. Let dpth ∈ N. We have to prove that S′ := (-,Gen( ·, dpth) ,Enc,Eval,Dec) is a threshold
Cdpth-evaluation scheme (as defined in Definition 2.6.1) where Cdpth is the class of 1-bounded
arithmetic circuits of depth at most dpth. To do so it is left to prove that S′ fulfills the correctness
property. That is, for all (pk, sk, evk) ∈  S′, 5 ∈ Cdpth and ` = (`8) 8∈ [#inputs

] ∈ -#inputs
pk it shall

hold true that

Pr
[
Dec

(
sk,Eval

(
evk, 5 ,Enc(pk, `8) 8∈ [#inputs

] ) ) = 5 (`)
]
= 1.

Note that evk = ⊥ in our case. Let C ← Eval(⊥, 5 ,Enc(pk, `) ) . By Lemma 3.3.3 we have that����noises, 5 (`) (C)
����
∞ ≤

(
#parties + 1

)
�2
j · (< + 1) dpth where s :=

(
1,−∑

:∈
[
#parties

] A: )) . Conse-
quently����noises, 5 (`) (C)

����
∞ + #parties�smdg ≤

(
#parties + 1

)
�2
j · (< + 1) dpth + #parties�smdg

< @/8 = 2log @−3 < 2 blog @c−2.

That is the premise of Lemma 3.3.2 which yields that Dec(sk,C) = 5 (`) .

In Equation (3.6) the term
(
#parties + 1

)
�2
j · (< + 1) dpth bounds the noise which the resulting

ciphertext after evaluation is allowed to have. As we saw in the proof, the term is chosen because
every ciphertext that results from an evaluation of depth at most dpth satisfies that bound. However,
there might be a better bound for certain classes of arithmetic circuits and in those cases we might
be able to evaluate circuits of a greater depth, i.e. a depth dpth that does not satisfy Equation (3.6).
Specifically, we can evaluate a circuit if we can prove that the resulting ciphertext’s noise has an
upper bound �noise < @/8 − #parties�smdg.

3.4 Our Passively Secure MPC Protocol

In this section we define our passively secure MPC protocol and prove that it provides correctness
and computational privacy in the presence of passive adversaries.

Our passively secure MPC protocol uses a commitment schemeK . Later we will prove the protocol’s
security under certain requirements. One of those requirements will be that K is perfectly hiding
and computationally binding.

Definition 3.4.1 (Our passively secure MPC protocol). Let K = (GenK ,ComK) be a commitment
scheme. Let 5 be a 1-bounded arithmetic circuit over '@ . Let #inputs be the number of input gates
and dpth be the depth of 5 . For security parameter _ and depth parameter dpth as specified above,
let 3, ', @, j, �smdg be as in Definition 3.3.1. Furthermore, there are #parties parties %1, . . . , %#parties

and q : [#inputs] → [#parties] assigns each input gate to a party. For each party %: , the protocol
input has the form x: := (`8) 8∈q−1 (:) . In the common random string model, our passively secure
MPC protocol PassiveMPCK ,3,@,j,�smdg, 5 ,q

(
1_, (x:) :∈ [#parties

] ) is defined as follows, utilizing
(Gen,Enc,Eval,Dec) = TFHEK ,3,@,j,�smdg,#parties from Definition 3.3.1.

Round I. The parties run the first round of the key generation protocol Gen
(
1_, dpth

)
.
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Round II. The parties run the second round of the key generation protocol, such that every party
obtains the public key pk and their share of the secret key sk.

Round III. For each 8 ∈ [#inputs]: Let in8 be the 8th input gate. Party %q (8) computes C8 ←
Enc(pk, `8) and broadcasts (8,C8) .

Round IV. The parties compute
(
Cout1 , . . . ,Cout#outputs

)
← Eval

(
⊥, 5 ,

(
Cin1 , . . . ,Cin#inputs

) )
. In

parallel for each 8 ∈
[
#outputs

]
they perform the one-round decryption protocol `′

8
←

Dec
(
sk,Cout8

)
. They return

(
`′1, . . . , `

′
#outputs

)
.

Theorem 3.4.1. Let P = PassiveMPCK ,3,@,j,�smdg, 5 ,q and �j ∈ N such that j is �j-bounded.
If for all _ ∈ N, for all circuit inputs ` = (`8) 8∈ [#inputs

] and for all output ciphertexts Cout8 ,
8 ∈

[
#outputs

]
, it holds true that

Pr
[����noises, 5 (`)Cout8

����
∞ < @/8 − #parties�smdg

]
= 1

over the probability space of P
(
1_, (x:) :∈ [#parties

] ) , then P provides correctness in the presence of
passive adversaries (as defined in Definition 2.6.5) with respect to (x:) :∈ [#parties

] ↦→ 5 (`) .

Proof. Let P = PassiveMPCK ,3,@,j,�smdg, 5 ,q. We have to prove that for all runs of the protocol
H ← P

(
1_, (x:) :∈ [#parties

] ) (with honest parties) it holds true that H ∈ { 5 (`) ,⊥} Because the
parties never abort, we will prove that H = 5 (`) . Let (pk, sk, evk) be the output of Gen

(
1_, dpth

)
in the considered run. By Theorem 3.3.1, TFHEK ,3,@,j,�smdg,#parties is a threshold levelled FHE
scheme (Definition 2.6.2), so in particular, (-,Gen( ·, dpth) ,Enc,Eval,Dec) is a Cdpth-evaluation
scheme (Definition 2.6.1) where Cdpth is the class of 1-bounded arithmetic circuits of depth at
most dpth. Since dpth is the depth of 5 and thus 5 ∈ Cdpth, we can use the correctness property of
Definition 2.6.1 which states that

Pr
[
Dec

(
sk,Eval

(
evk, (Enc(pk, `8) ) 8∈ [#inputs

] ) ) = 5 (`)
]
= 1.

As H is drawn from Dec
(
sk,Eval

(
evk, 5 , (Enc(pk, `8) ) 8∈ [#inputs

] ) ) , this concludes the proof.

Theorem 3.4.2. If

• K is perfectly hiding and computationally binding,

• the RLWE3,@,j assumption holds true and

• �smdg/�j is negligible,

then PassiveMPCK ,3,@,j,�smdg, 5 ,q provides computational privacy in the presence of passive ad-
versaries (as defined in Definition 2.6.6).

Proof. Let P := PassiveMPCK ,3,@,j,�smdg, 5 ,q. Consider a tuple of ppt adversaries
(
%∗
:

)
:∈ for

some  ⊆
[
#parties

]
. If  =

[
#parties

]
, i.e. every party is an adversary, then we can trivially use

the simulator S
(
1_, G, H

)
:= P∗

(
1_, G

)
. Therefore from now on we assume that  ≠

[
#parties

]
.

Without loss of generality let 1 ∉  . Define the simulator S as in Algorithm 3.8. We give a
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sequence of games such that — for all input vectors G =

(
x1, . . . , x#parties

)
∈ ({0, 1}∗) #parties —

the first game equals S
(
1_, (x:) :∈ , H

)
, the last game equals c 

(
P∗

(
1_, (x:) :∈ [#parties

] ) ) and
consecutive games are computationally indistinguishable. Let Game1 = S.

Algorithm 3.8 Simulator for PassiveMPC

procedure S(1_, (x:) :∈ , H =
(
`′
9

)
9∈

[
#outputs

] )

for : ∈
[
#parties

]
do

x̃: :=

{
x: : ∈  
0
��q−1 (:)

�� else
end for
Simulate the first three rounds of P∗

(
1_, ( x̃:) :∈ [#parties

] ) .
8 := blog @c
for 9 ∈

[
#outputs

]
do

smdg $← ' [
−�smdg,�smdg

[
pp( 9)1 := −`′

9
28−1 + smdg + Cout 9 [8, 1] − Cout 9 [8, 2] ·

#parties∑
:=2

A:

Modify %1 such that in the subprotocol Dec
(
sk,Cout 9

)
it sends pp( 9)1 instead of pp1.

end for
Simulate the forth round of P∗

(
1_, ( x̃:) :∈ [#parties

] ) , obtaining output I.
return c (I)

end procedure

Game2 is presented in abbreviated form in Algorithm 3.9. It is the same as Game1 expect that ã
and b̃1 are precomputed right at the beginning. This is a purely syntactic change.

Algorithm 3.9 Game2 for PassiveMPC

procedure Game2(1_, (x:) :∈ , H =
(
`′
9

)
9∈

[
#outputs

] )

ã $← '<@
Ã1 ← j

ẽ1 ← j<

b̃1 := a · A1 + e1
P∗ := P∗

〈
a = ã, b1 = b̃1

〉
for : ∈

[
#parties

]
do

x̃: :=

{
x: : ∈  
0
��q−1 (:)

�� else
end for
Simulate the first three rounds of P∗

(
1_, ( x̃:) :∈ [#parties

] )
...

end procedure
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Observe how Game2 is similar to the V = 1 case of an Ring-LWE security game. We obtain
Game3 (see Algorithm 3.10) from Game2 by replacing A1 ← j; e1 ← j<; b1 := a · A1 + e1 by
b1 $← '<@ . Note that this replacement is possible because A1 and e1 aren’t used anywhere else
in the simulation. Let * be a distinguisher for �1 := {Game1

(
1_, (x:) :∈ , H

)
}_∈N and �2 :=

{Game2
(
1_, (x:) :∈ , H

)
}_∈N. We define the ??C adversary A as follows. On input

(
1_, ã, b̃

)
, A

simulates Game2
(
1_, (x:) :∈ , H

)
from line P∗ := P∗

〈
a = ã, b1 = b̃1

〉
onwards and runs* on the

simulation output. We observe that Edist
*,�1,�2

(
1_

)
≡ ERLWE

A,3,@,j,<
(
1_

)
and therefore���Advdist

*,�1,�2
(_)

��� = ���1 − 2Exp
[
Edist
*,�1,�2

(
1_

) ] ���
=

���1 − 2Exp
[
ERLWE
A,3,@,j,<

(
1_

) ] ���
=

���AdvRLWE
A,3,@,j,<(_)

���
= negl(_)

where the latter is negligible by the RLWE3,@,j assumption.

Algorithm 3.10 Game3 for PassiveMPC

procedure Game3(1_, (x:) :∈ , H =
(
`′
9

)
9∈

[
#outputs

] )

ã $← '<@

b̃1 $← '<@

P∗ := P∗
〈
a = ã, b1 = b̃1

〉
for : ∈

[
#parties

]
do

x̃: :=

{
x: : ∈  
0
��q−1 (:)

�� else
end for
Simulate the first three rounds of P∗

(
1_, ( x̃:) :∈ [#parties

] )
...

end procedure

Game4 (see Algorithm 3.11) is the same as Game3 except that the ciphertexts of the honest parties
are precomputed before the third round of the simulation. This is again a purely syntactic change.

Observe that in Game4 we have A :=
[∑

:∈
[
#parties

] b: a
]

with a, b1 $← '<@ . Because of the
perfectly hiding property of the commitment scheme, the initially committed values of b: for : ≠ 1
(Note that even the adversaries know such values because they are only passive adversaries.) are
independent of b1. Furthermore, because of the computational binding property of the commitment
scheme, there is a negligible probability that the opened values of b: do not equal the initialy
committed values. When excluding this error event of negligible probability, b :=

∑
:∈

[
#parties

] b:
is consequently still distributed uniformly at random. It follows that A is distributed uniformly
at random over '<×2

@ . Therefore we can proceed analogous to the proof of Theorem 3.1.1 and
replace Enc(A, 0) by uniformly chosen ciphertexts. That way we obtain Game5 as presented in
Algorithm 3.12 which is computationally indistinguishable from Game4.

We obtain Game6 (see Algorithm 3.13) by performing the previous step in reverse, replacing the
uniformly chosen ciphertexts in Game5 by encryptions of the “correct” input values.
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Algorithm 3.11 Game4 for PassiveMPC

procedure Game4(1_, (x:) :∈ , H =
(
`′
9

)
9∈

[
#outputs

] )

ã $← '<@

b̃1 $← '<@

P∗ := P∗
〈
a = ã, b1 = b̃1

〉
for : ∈

[
#parties

]
do

x̃: :=

{
x: : ∈  
0
��q−1 (:)

�� else
end for
Simulate the first two rounds of P∗

(
1_, ( x̃:) :∈ [#parties

] )
for 9 ∈

[
#inputs

]
do

if q( 9) ∉  then
C̃← Enc(A, 0)
P∗ := P∗

〈
Cin 9

= C̃
〉

end if
end for
Simulate the third round of P∗

(
1_, ( x̃:) :∈ [#parties

] )
...

end procedure

Algorithm 3.12 Game5 for PassiveMPC

procedure Game5(1_, (x:) :∈ , H =
(
`′
9

)
9∈

[
#outputs

] )

ã $← '<@

b̃1 $← '<@

P∗ := P∗
〈
a = ã, b1 = b̃1

〉
for : ∈

[
#parties

]
do

x̃: :=

{
x: : ∈  
0
��q−1 (:)

�� else
end for
Simulate the first two rounds of P∗

(
1_, ( x̃:) :∈ [#parties

] )
for 9 ∈

[
#inputs

]
do

if q( 9) ∉  then
C̃ $← '<×2

@

P∗ := P∗
〈
Cin 9

= C̃
〉

end if
end for
Simulate the third round of P∗

(
1_, ( x̃:) :∈ [#parties

] )
...

end procedure
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Algorithm 3.13 Game6 for PassiveMPC

procedure Game6(1_, (x:) :∈ [#parties
] , H = (

`′
9

)
9∈

[
#outputs

] )

ã $← '<@

b̃1 $← '<@

P∗ := P∗
〈
a = ã, b1 = b̃1

〉
for : ∈

[
#parties

]
do

x̃: :=

{
x: : ∈  
0
��q−1 (:)

�� else
end for
Simulate the first two rounds of P∗

(
1_, ( x̃:) :∈ [#parties

] )
for 9 ∈

[
#inputs

]
do

if q( 9) ∉  then
C̃← Enc

(
A, ` 9

)
P∗ := P∗

〈
Cin 9

= C̃
〉

end if
end for
Simulate the third round of P∗

(
1_, ( x̃:) :∈ [#parties

] )
...

end procedure

Observe that Game6 runs a simulation of the first three rounds of the protocol on the “correct” input
values (x:) :∈ [#parties

] , up to some syntactic differences. We obtain Game7 (see Algorithm 3.14 by
eliminating those syntactic differences, which is a purely syntactic change.

Algorithm 3.14 Game7 for PassiveMPC

procedure Game7(1_, (x:) :∈ [#parties
] , H = (

`′
9

)
9∈

[
#outputs

] )

ã $← '<@

b̃1 $← '<@

P∗ := P∗
〈
a = ã, b1 = b̃1

〉
Simulate the first three rounds of P∗

(
1_, (x:) :∈ [#parties

] )
...

end procedure

Going from Game7 to Game8 (see Algorithm 3.15) we perform the steps we did from Game1 to
Game3 in reverse.

The next step needs some preparation. Let s :=
(
1,−∑

:∈
[
#parties

] A: )) . By Definition 3.1.2 we

have Cout 9 s = `′9Gs + noises,`′
9

(
Cout 9

)
. Taking the 8th row of that equation yields

Cout 9 [8, 1] − Cout 9 [8, 2] ·
#parties∑
:=1

A: = `
′
92
8−1 + [8
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Algorithm 3.15 Game8 for PassiveMPC

procedure Game8(1_, (x:) :∈ [#parties
] , H = (

`′
9

)
9∈

[
#outputs

] )

Simulate the first three rounds of P∗
(
1_, (x:) :∈ [#parties

] )
8 := blog @c
for 9 ∈

[
#outputs

]
do

smdg $← ' [
−�smdg,�smdg

[
pp( 9)1 := −`′

9
28−1 + smdg + Cout 9 [8, 1] − Cout 9 [8, 2] ·

#parties∑
:=2

A:

Modify %1 such that in the subprotocol Dec
(
sk,Cout 9

)
it sends pp( 9)1 instead of pp1.

end for
Simulate the forth round of P∗

(
1_, ( x̃:) :∈ [#parties

] ) , obtaining output I.
return c (I)

end procedure

where [8 is the 8th component of noises,`′
9

(
Cout 9

)
. Stated differently this is

−`′928−1 + Cout 9 [8, 1] − Cout 9 [8, 2] ·
#parties∑
:=2

A: = Cout 9 [8, 2] · A1 + [8 .

In the context of Game8 it follows that

pp( 9)1 = Cout 9 [8, 2] · A1 + [8 + smdg.

Going from Game8 to Game9 we essentially replaced [8 + smdg by smdg. Lemma 3.3.3 states that
| |[8 | |∞ ≤

������noises,`′
9

(
Cout 9

) ������
∞

is bounded by some polynomial ?
(
�j

)
. As �j (_) /�smdg(_) is

negligible, ?
(
�j (_)

)
/�smdg(_) is still negligible. Therefore we can apply Lemma 3.3.1 stating

that [8 + smdg is indistinguishable from smdg.

Algorithm 3.16 Game9 for PassiveMPC

procedure Game9(1_, (x:) :∈ [#parties
] , H = (

`′
9

)
9∈

[
#outputs

] )

Simulate the first three rounds of P∗
(
1_, (x:) :∈ [#parties

] ) .
8 := blog @c
for 9 ∈

[
#outputs

]
do

smdg $← ' [
−�smdg,�smdg

[
pp( 9)1 := Cout 9 [8, 2] ] · A1 + smdg

Modify %∗ such that in the subprotocol Dec
(
sk,Cout 9

)
%1 sends pp( 9)1 instead of pp1.

end for
Simulate the forth round of P∗

(
1_, ( x̃:) :∈ [#parties

] ) , obtaining output I.
return c (I)

end procedure
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In Game9, observe that the modifications done to P∗ don’t actually change any values. All values
they set are already in effect. We obtain Game10 by eliminating those modifications, which is a purely
syntactic change. It’s easy to see that Game10

(
1_, (x:) :∈ [#parties

] ) ≡ c (
P∗

(
1_, (x:) :∈ [#parties

] ) ) .

Algorithm 3.17 Game10 for PassiveMPC

procedure Game10(1_, (x:) :∈ [#parties
] )

I ← P∗
(
1_, (x:) :∈ [#parties

] ) .
return c (I)

end procedure

3.5 Parameter Choices

In order to base the security of our MPC protocol on the reduction from SIVP to Ring-LWE
(see Theorem 2.8.1), we need to choose the parameters such that the approximate SIVP problem
from the reduction is assumed to be hard. This is the case for 3 ∈ Ω

(
_ log

(
@/�j

) )
[BGV11].

We use 3 = _
⌈
log

(
@/�j

)
/2

⌉
. For fixed depth we have log

(
@/�j

)
∈ Θ

(
_
)
, so our choice of 3

is the analogue of = = _2 used by [AJW11] for the standard LWE dimension =. We must use
the error distribution j from the reduction which is a multivariate Gaussian distribution with
�j ∈ l

(√
log 3

)
. Concretely we use �j ≈ log 3 rounding to the next power of two. Observe that

we need to know 3 in order to choose �j, but we need to know @ and �j in order to choose 3.
This is a circular definition. In practice we solve this using an iterative approach, starting with
the approximation �j ≈ log

(
_2) = 2 log_ (rounding to the next power of two). With this we

describe below how to compute the parameters �smdg and @. Then we can compute 3 as stated in
this paragraph and afterwards we check if �j is large enaugh. If not, we increase it and start over.

�smdg must be chosen such that �smdg/�j is negligible in the security parameter. This implies that
�smdg and notably @ are superpolynomial in the security parameter. Without smudging @ could
be much smaller and the protocol thus much more efficient. While in the threshold levelled FHE
scheme from [AJW11] there was smudging in three places, leading to even higher parameters, we
already managed to eliminate the smudging in two of those three places by using commitments and
by basing on the GSW scheme [GSW13] instead of BGV [BGV11]. We leave it as an open question
whether it is possible to eliminate smudging entirely from the protocol.

The proof of the smudging lemma in [AJW11] states that the statistical difference between the
two relevant distributions is bounded by �/�smdg where � is in our case an upper bound for the
noise level. This yields log

(
�smdg/�

)
bits of security for the smudging itself. In order to achieve

roughly _ bits, we can use �smdg = 2_�. Even though the noise term
(
#parties + 1

)
�2
j (< + 1) dpth

from Equation (3.6) is polynomial in �j for fixed dpth, in practice we should not ignore this
polynomial factor. Therefore we first need to compute a bound � on the noise and then choose
�smdg = 2_�. Note that � depends on the depth of the circuit. For the last parameter @ (Recall
that < = 2( blog @c + 1) is fixed.), we need @ ≡ 1 mod 23 by Theorem 2.8.1 and additionally
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_ 3 @ �j �smdg max dpth pk size
128 24320 2384 − 1081343 16 2368 22 ≈ 1.67 GiB
256 65024 2512 − 3014655 16 2496 21 ≈ 7.94 GiB

Table 3.1: Example parameters for #parties = 4096 and _ ∈ {128, 256}.

Equation (3.6) must hold true where dpth is the depth of the arithmetic circuit that we wish to
evaluate. Because of the large �smdg relative to the noise term, Equation (3.6) essentially becomes
@ > (8#parties + Y)�smdg.

If the depth of the circuit is not predetermined, one can do it the other way around: First choose @,
then choose �smdg such that @ > (8#parties+Y)�smdg, then set � = �smdg/2_ and finally compute the
largest dpth such that the noise term does not exceed �; that is,

(
#parties + 1

)
�2
j · (< + 1) dpth ≤ �.

See Table 3.1 for two example parameter sets chosen following this policy. Note that the column
showing the maximum dpth is based on our worst-case noise term. We may evaluate every 1-
bounded arithmetic circuit of that depth, but does not mean that every circuit of higher depth must
not be evaluated. For specific circuits of higher depth, one can often find a better upper bound �noise
for the noise level of the outputs by performing an analysis that is not merely based on the depth of
the circuit. The circuit is eligible if �noise ≤ �smdg/2_.

If the circuit to evaluate has a depth greater than allowed by these parameters (and one does not want
to perform a circuit-specific analysis), then a larger @ has to be chosen (which might subsequently
impact the choice of 3 and �j slightly). When fixing the security parameter, then the lower bound
for log @ grows at most linear in dpth log dpth, i.e. we can choose log @ ∈ O

(
dpth log dpth

)
. This

means that @ increases exponentially in dpth, which is the main problem in practice. Alternatively,
when fixing dpth, then log @ ∈ O

(
_
)
.

3.6 Asymptotic Complexity

In this section we analyze the asymptotic complexity of PassiveMPC dependent on the security
parameter _, on #parties, on log @, and on the size of the evaluated arithmetic circuit | 5 | . The size is
measured as the number of gates.

We ignore the space and time complexity of the used commitment scheme K. Note that any
commitment scheme that needs space and time linear in the space of the commited value would not
contribute to the asymptotic complexity anyway.

First we analyze the space complexity per party. Observe that the private key needs less space than
a public key share and a public key share needs as much space as a ciphertext. The matrix G−1( ·)
used during homomorphic evaluation does not have to be computed in one piece, but rather its rows
can be computed lazily. Therefore it suffices to consider the public key shares and ciphertexts in
order to obtain the asymptotic space complexity. Each ciphertext (or public key share) consists
of 2< ∈ O

(
log @

)
ring elements, each of which needs space 3 log @ ∈ O

(
_ log2 @

)
. Therefore the

space complexity of the whole protocol is in O
( (
#parties + | 5 |

)
_ log3 @

)
. For a fixed circuit this is

in O
(
#parties_

4) .
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For the analysis of the time complexity (per party) we assume the worst-case which is that every
gate of 5 is a multiplication gate. For each multiplication G−1(C1)C2 we have G−1(C1) ∈ '<×<[0,1]
and C2 ∈ '<×2

@ . That amounts to 2<2 ∈ O
(
log2 @

)
multiplications in '@. We would like to do

multiplications in '@ in the Chinese remainder embedding. However, G−1(C1) can not simply
be computed in the Chinese remainder embedding, because it performs a bit decomposition with
respect to the coefficient embedding. Therefore, assuming the ciphertexts are present in the Chinese
remainder embedding, we have to perform a change of basis into the coefficient embedding, then
compute G−1(C1) and then revert the change of basis. A change of basis of a single ring element
comes at the cost of O

(
32) = O

(
_2 log2 @

)
⊆ O

(
_ log3 @

)
time. (Optimizations of the change

of basis are possible and certainly relevant in practice, but are not relevant for the asymptotic
time complexity, as we will see.) The time for changing the basis of a whole ciphertext is thus in
O

(
_ log4 @

)
. When computing the multiplications in the Chinese remainder embedding, then each

multiplication in '@ needs time in O
(
3 log2 @

)
= O

(
_ log3 @

)
when using classical multiplication

or O
(
_ log2 @ · log log @ · log log log @

)
when using the Schönhage–Strassen algorithm [SS71].

Going forward we abbreviate this by O
(
_ log2+Y @

)
, so each homomorphic multiplication needs

time in O
(
_ log4+Y @

)
. Here we see that the change of basis is not relevant for the asymptotic time

complexity. The whole evaluation needs time in O
(
| 5 |_ log4+Y @

)
. The reception and addition

of (the commitments of) the #parties public key shares in round I and II needs time linear in their
space, i.e. O

(
#parties_ log3 @

)
, and everything not mentioned here needs less time. Altogether the

asymptotic time complexity is in O
( (
#parties + | 5 | log1+Y @

)
_ log3 @

)
. For a fixed circuit this is in

O
( (
#parties + log1+Y @

)
_ log3 @

)
.

Lastly we analyze the communication. Each party broadcasts exactly 4 messages. The public key
shares need space in O

(
#parties_ log3 @

)
, the input ciphertexts need space in O

(
#inputs_ log3 @

)
and the output pre-plaintexts need space in O

(
#parties#outputs_ log2 @

)
. This amounts to a total

communication complexity in

(3.7) O
( (
#parties + #inputs

)
_ log3 @ + #parties#outputs_ log2 @

)
.

Note that there is no difference between the total communication complexity and the communication
complexity per party, because the communication is through a broadcast channel, so every party
receives every message (except for adversarial messages which are not considered in this analysis).
For a fixed circuit the communication complexity is in O

(
#parties_

4) .

Table 3.2 displays a summary of this section.

Fixed circuit Variable circuit
Space per party #parties_

4 (
#parties + | 5 |

)
_ log3 @

Time
(
#parties + _1+Y )_4 (

#parties + | 5 | log1+Y @
)
_ log3 @

Communication #parties_
4 See Equation (3.7)

Table 3.2: Asymptotic complexity of PassiveMPC; O
(
·
)

omitted
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4 From Passive to Active Security

This chapter describes the measures that can be taken in order to transform our MPC protocol into
an actively secure version. Afterwards in Section 4.5 we analyze how this changes the asymptotic
complexity.

In order to achieve security against active adversaries, i.e. adversaries that deviate from the protocol
arbitrarily, the parties have to prove in each round that they followed the protocol correctly. We use
non-interactive ZKPoKs in order to still preserve privacy. A party %: can deviate from the protocol
by choosing a malformed contribution b: to the public key, by inputting a malformed ciphertext,
or by broadcasting a malformed share pp: . It turns out that choosing a malformed b: does not
undermine privacy because our commitment strategy ensures that the resulting “public key” is still
distributed uniformly at random. Therefore we can postpone proving the correctness of b: to round
IV where that can be proven together with the correctness of pp: in a single proof.

All required proofs can be reduced to proofs for the inhomogeneous short integer solution (ISIS)
problem [GPV07].

Definition 4.0.1 (The ISIS problem). For security parameter _, let = = =(_), < = <(_), V = V(_) ∈
N. The search variant of the ISIS?

=,<,@,V
problem is as follows. Given a uniformly chosen matrix

M ∈ Z=×<@ and uniformly chosen vector y ∈ Z=@, find a witness x ∈ Z<@ such that | |x| | ? ≤ V and
Mx = y. We overload notation by defining the corresponding relation

ISIS?
=,<,@,V

:=
{
( (M, y) , x) ∈ Z=×<@ × Z=@ × Z<@

�� | |x| | ? ≤ V ∧ Mx = y
}
.

There is also a Ring variant of the ISIS problem [LPR12] which we call Ring-ISIS and where M, y
and x have entries from '@ instead of Z@. However, in our use cases sometimes we require that
certain entries of the witness x are from Z@ . To our knowledge this can not be reduced to Ring-ISIS
without blowing up the matrix M by essentially reducing to ISIS and then interpreting the ISIS
instance as a Ring-ISIS instance. Therefore we have two options. Either we reduce all required
proofs to ISIS and use a proof therefor, or we use a proof for Ring-ISIS that supports our additional
requirements.

Fortunately the latter exists. Our additional requirements are as follows. The secret vector x can have
different bounds for different entries. Furthermore, some of the entries of x are required to be in Z@
rather than '@ . The proof by del Pino et al. [PLS19] is a ZKPoK for Ring-ISIS that supports these
requirements, as long as all of the bounds are intervals of the form

[
−21−1, 21−1 [. This is because

in said proof, the coefficients of the ring elements in x are represented using two’s complement
binary representation and their range is implied by the number of bits. For this reason we require
that �smdg and �j are powers of two. See Section 4.2 for elaboration on why we chose the proof by
del Pino et al. to instantiate our protocol with.

Now we show that the actual statements which the parties have to prove are of the correct form.
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4 From Passive to Active Security

Firstly, a ciphertext C inputted by a party %: is correct if %: knows C ∈ ' [
−�j ,�j

[, F ∈ '<×2[
−�j ,�j

[
and ` ∈ {0, 1} such that C = CA + F + `G. Observe that

(4.1)

C = CA + F + `G

⇐⇒
[
C[·, 1]
C[·, 2]

]
=

[
A[·, 1]
A[·, 2]

]
· C +

[
F[·, 1]
F[·, 2]

]
+

[
G[·, 1]
G[·, 2]

]
· `

⇐⇒
[
C[·, 1]
C[·, 2]

]
=

[
A[·, 1] �< G[·, 1]
A[·, 2] �< G[·, 2]

] 
C

F[·, 1]
F[·, 2]
`


Hereby we have varying bounds for the coefficients of the ring elements in the secret vector, but the
bounds are powers of two as mentioned above.

Secondly, if a party %: broadcasts its share pp: , then %: has to prove that pp: = C[8, 2] · A: +smdg:
was computed correctly and also that the secret A: therein is the same secret as in b: = a · A: + e: .
Observe that

pp: = C[8, 2] · A: + smdg: =
[
C[8, 2] 1

] (
A:

smdg:

)
and that

b: = a · A: + e: =
[
a �<

] [
A:

e:

]
.

Hence it suffices for %: to prove that

(4.2)
[
pp:
b:

]
=

[
C[8, 2] 1

a �<

] 
A:

smdg:
e:

 .

Again we have varying bounds for the coefficients in the secret vector
[
A: smdg: e)

:

] ) ; that
is, smdg: must have coefficients in

[
−�smdg, �smdg

[
and A: as well as entries of e: must have

coefficients in
[
−�j, �j

[
.

4.1 Reductions to Canonical Ring-ISIS

In Chapter 4 we argued that a party has to prove that they know a vector x ∈ '<@ that satisfies
some linear equation where the coefficients of the ring elements in x are bounded by (potentially
different) intervals of the form

[
−21−1, 21−1 [. Additionally, some of the entries of x are required to

be in Z@ rather than '@. We will now reduce these instances to instances in the canonical form of
ISIS as defined in Definition 4.0.1. This is just in case anybody wants to instantiate our protocol
with another ZKPoK for canonical ISIS, should for example a more efficient ZKPoK for ISIS be
discovered in the future. The reduction is not relevant for our instantiation of the protocol using the
proof by del Pino et al. [PLS19].
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4.1 Reductions to Canonical Ring-ISIS

We perform the reduction in three steps. After the first reduction, all entries of x are over Z@ instead
of '@ and the bounds are preserved. The second reduction does the same to M and y. After the
third reduction, x has only entries from {−1, 0, 1}. This yields an instance of ISIS∞ with V = 1. In
the first two reductions we imply the bounds for the sake of brevity; it’s easy to see that they are
preserved.

Lemma 4.1.1. Let M1 ∈ Z=×<1
@ , M2 ∈ '=×<2

@ , y ∈ '=@ and define

M′ :=
[
M1

(
M2 ⊗

(
-0, . . . , -3−1) ) ] ∈ '=×(<1+<23)

@ .

Then

∃(x1, x2) ∈ Z<1
@ × '<2

@ :
[
M1 M2

] [
x1
x2

]
= y ⇐⇒ ∃x′ ∈ Z<1+<23

@ : M′x′ = y

and given (x1, x2) or x′ one can efficiently compute such x′ or (x1, x2) , respectively.

Proof. Given x1 and x2, write x2 =:
(
I1, . . . , I<2

)) and define

x′ :=
[
x1 coefficents(I1) . . . coefficents

(
I<2

) ] ) ∈ Z<1+<23 .

For the other direction do the same in reverse.

Lemma 4.1.2. Let M ∈ '=×<@ and y ∈ '=@. Decompose M :=
∑3−1
8=0 M8-

8 with M8 ∈ Z=×<@ and
y :=

∑3−1
8=0 y8- 8 with y8 ∈ Z=@. Define

M′ :=


M0
...

M3−1

 , y′ :=


y0
...

y3−1

 .

Then for all x ∈ Z<@ it holds true that

Mx = y ⇐⇒ M′x = y′.

Proof. Observe that

Mx = y ⇐⇒
3−1∑
8=0

M8x- 8 =
3−1∑
8=0

y8- 8

⇐⇒ ∀8 ∈ {0, . . . , 3 − 1} : M8x = y8
⇐⇒ M′x = y′.

Thereby the second equivalence is obtained by comparison of coefficients.
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4 From Passive to Active Security

Lemma 4.1.3. Let M ∈ Z=×<@ and y ∈ Z=@. For all 9 ∈ [<] let lengths 1 9 ∈ N be given. Define
<′ :=

∑<
9=0 1 9 and

M′ :=
[
M[8, 9] ·

(
20, . . . , 21 9−1

) ]
8∈[=], 9∈[<]

=
[ (

M[∗, 1] ⊗
(
20, . . . , 211−1) ) · · ·

(
M[∗, <] ⊗

(
20, . . . , 21<−1) ) ]

∈ Z=×<′@ .

Then

∃x = (I1, . . . , I<)) ∈ Z<@ :
(
Mx = y ∧ ∀ 9 : I 9 ∈

]
−21 9 , 21 9

[)
⇐⇒ ∃x′ ∈ {−1, 0, 1}<′ : M′x′ = y

and given x or x′ one can efficiently compute such x′ or x, respectively.

Proof. Given x, for all 9 ∈ [<], perform a bit decomposition I 9 =: 20I 9 ,0 + · · · + 21 9−1I 9 ,1 9−1 with
I 9 ,4 ∈ {−1, 0, 1}. Define x′ :=

[ (
I 9 ,0, . . . , I 9 ,1 9−1

) ]
9∈[<]

. For the other direction do the same in
reverse.

4.2 Discrete-Log-Based Zero-Knowledge Proof of Knowledge

The ZKPoK by del Pino et al. [PLS19], which we subsequently call the PLS proof, fits our require-
ments stated in this chapter. There exist other proofs that also support these requirements [BCK+14]
or can be used after our reduction from Section 4.1 [LNSW12]. We will now explain why we chose
the PLS proof over those others.

In Section 4.1 we reduced the proofs required for our protocol to proofs for the ISIS problem.
However, the first two steps of the reduction each blow up the matrix by a factor of 3. Even after
considering that the resulting matrix is no longer over '@ but rather over Z@, this is still in total a
blowup by a factor of 3. Such a blowup is undesirable because the complexity of a proof typically
depends on the size of the matrix [BCK+14; LNSW12; PLS19]. The PLS proof circumvents the
blowup by evaluating the equation Mx = y at a random point U $← Z@ and proving the resulting
equation

(4.3) M(U)x = y(U)

instead. This essentially replaces the second step of our reduction from Section 4.1 as in Equa-
tion (4.3) M(U) and y(U) are over Z@. Observe that in Equation (4.3) the blowup does not occur.
Soundness is preserved by the Schwartz-Zippel lemma [Sch80; Zip79] which states that if Equa-
tion (4.3) holds true for a random U $← Z@ , then Mx = y holds true with probability ≥ 1−2(3 − 1) /@.
In the PLS proof this circumvention of the blowup leads to a significantly reduced time complexity
for creating and verifying proofs.

The main reason why we chose the PLS proof is its small proof size. Firstly, one PLS proof has size
only logarithmic in the size of x and y; i.e. the proof size is in Θ

(
log( |� | ) log( (< + =) 3 log @)

)
for x ∈ '<@ and y ∈ '=@ . Hereby |� | is a cyclic group where the discrete-log assumption holds true.
Secondly, the knowledge error is rather small at 1/3 and hence the proof only needs to be repeated
in the magnitude of a dozen times [PLS19].
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4.3 Non-Interactive Zero-Knowledge

The PLS proof is statistical zero-knowledge. Its validity however is based on the discrete-log
assumption in some large enaugh cyclic group �. Thereby |� | can be much larger than @, so the
usage of PLS proofs does not force us to use a larger @ than in the passively secure MPC protocol.

4.3 Non-Interactive Zero-Knowledge

Formally, the IPS constructed by del Pino et al. [PLS19] is a PoK but not yet perfect zero-knowledge.
This is expected because it only has the special honest verifier zero-knowledge property which
intuitively means that an honest verifier learns nothing about the secret. A dishonest verifier on the
other hand could undermine privacy by drawing its challenges from some distribution violating the
PLS protocol. There are standard approaches to transform a special honest verifier zero-knowledge
PoK into a ZKPoK. One such approach is the Fiat-Shamir transform [FS86] which yields a non-
interactive ZKPoK in the ROM [PS96]. In practice the random oracle is replaced by a hash function
and therefore the Fiat-Shamir transform is also called Fiat-Shamir heuristic.

The prover in the Fiat-Shamir transform of a ZKPoK the prover simulates an execution of that
ZKPoK and then sends a single message consisting of the transcript. Each time it’s the verifiers
turn in the simulation, the random oracle is accessed with the transcript so far and the obtained
randomness is used as random coins for the continuation of the simulated verifier. Given such
a non-interactive ZKPoK, anybody can verify it by rerunning the simulation taking the prover’s
messages from the transcript. The verification is successful if the reran transcript matches the
original and the verifier in the simulation accepted the proof.

The random coins used by the verifier to compute a challenge are always immediately available to
the prover in the Fiat-Shamir transform. In order to preserve validity it’s important that the original
protocol already had the property that the coins of the verifier are immediately disclosed. This is
the case in the PLS proof. Therein for each challenge the verifier draws the challenge uniformly at
random and sends it to the prover.

4.4 Our Actively Secure MPC Protocol

In this section we define the actively secure version of our MPC protocol.

When working with a non-interactive IPS I = (&,+) , we don’t formalize &,+ as ITMs. Instead
we expect & to output what would otherwise be its only message and we give that output as an
auxiliary input to + . In our case ? ← &( (M, y) , x) outputs a “proof” ? certifying that Mx = y
(where x is a short secret) and 1 ← + ( (M, y) , ?) outputs a bit 1 ∈ {0, 1}.

Definition 4.4.1 (Our actively secure MPC protocol). Let _ be the security parameter. Let I =

(&,+) be a non-interactive IPS for Ring-ISIS∞ or an appropriate variation thereof as described
in the beginning of this chapter. Let K = (GenK ,ComK) be a commitment scheme. Let 5 be an
1-bounded arithmetic circuit over '@ . Let #inputs be the number of input gates and dpth be the depth
of 5 . For _, dpth as specified above, let 3, ', @, j, �smdg be as in Definition 3.3.1. Furthermore,
there are #parties parties %1, . . . , %#parties and q : [#inputs] → [#parties] assigns each input gate
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4 From Passive to Active Security

to a party. For each party %: , the protocol input has the form x: := (`8) 8∈q−1 (:) . In the ROM,
our activley secure MPC protocol ActiveMPCI,K ,3,@,j,�smdg, 5 ,q

(
1_, (x:) :∈ [#parties

] ) is defined as
follows, utilizing (Gen,Enc,Eval,Dec) = TFHEK ,3,@,j,�smdg,#parties from Definition 3.3.1.

Round I. The parties run the first round of the key generation protocol Gen
(
1_, dpth

)
. (This is the

same as in the passively secure version.)

Round II. The parties run the second round of the key generation protocol, such that every party
obtains the public key pk and their share of the secret key sk. (This is also the same as in the
passively secure version.)

Round III. For each 8 ∈ [#inputs]: Let in8 be the 8th input gate. Party %q (8) computes C8 ←
Enc(pk, `8) , utilizes & to compute a proof ?8 certifying that Equation (4.1) holds true (for
C = C8) and broadcasts (8,C8 , ?8) . Each party then verifies the proofs; that is: If there exists
9 ∈

[
#inputs

]
such that + on input the corresponding matrix, vector and ? 9 outputs 0, then

abort.

Round IV. The parties compute
(
Cout1 , . . . ,Cout#outputs

)
← Eval

(
⊥, 5 ,

(
Cin1 , . . . ,Cin#inputs

) )
. In

parallel for each 8 ∈
[
#outputs

]
they perform the one-round decryption protocol `′

8
←

Dec
(
sk,Cout8

)
and for each decryption they utilize & to compute and broadcast a proof

?′
8

certifying that Equation (4.2) holds true for their decryption share. Note that all of the
messages of this round are sent at once, so this is indeed only a single round. Each party then
verifies the proofs ?′

9
, 9 ∈

[
#outputs

]
, analogously to round III. Parties which did not abort

return
(
`′1, . . . , `

′
#outputs

)
.

We give the following two theorems without proof. They follow intuitively because the ZKPoKs
prevent active adversaries from deviating from the protocol (or otherwise the honest parties abort),
so the security is the same as in the presence of only passive adversaries.

Theorem 4.4.1. Let �j ∈ N such that j is �j-bounded. If I is a PoK with negligible knowledge
error and for all _ ∈ N Equation (3.6) holds true, then ActiveMPCI,K ,3,@,j,�smdg, 5 ,q provides
correctness with respect to 5 (as defined in Definition 2.6.7).

Theorem 4.4.2. If

• I is a ZKPoK with negligible knowledge error,

• K is perfectly hiding, computationally binding and non-malleable,

• the RLWE3,@,j assumption holds true and

• �smdg/�j is negligible,

then ActiveMPCI,K ,3,@,j,�smdg, 5 ,q provides computational privacy (as defined in Definition 2.6.8).
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4.5 Asymptotic Complexity of the Proofs

We will now analyze how the asymptotic complexity of ActiveMPC when instantiated with the PLS
proof differs from the asymptotic complexity of PassiveMPC.

An assessment of the PLS proof [PLS19] yields that the prover and the verifier in a proof of Mx = y
with M ∈ 'ℎ×F@ compute at most O

(
1+ℎ3 log @

)
exponentiations where 1 is the number of bits used

to encode x. Hereby each coefficient can have a different number of bits, depending on its (power
of two) bound. (This way it is ensured that a coefficient does not exceed its bound.) As described
in Section 3.5, we have 3 ∈ O

(
_ log @

)
and _ ∈ O

(
log @

)
, so the number of exponentiations is

simplified to O
(
1 + ℎ_ log2 @

)
. The PLS proofs in round III have ℎ = 2< and F = 2< + 2. The

PLS proofs in round IV have ℎ = < + 1 and F = < + 2. In either case we have ℎ, F ∈ O
(
log @

)
.

x consists of F ring elements, so we have 1 ≤ F3 log @ ∈ O
(
_ log3 @

)
. Consequently the number

of exponentiations (per proof or verification) can be further simplified to O
(
_ log3 @

)
. Each party

creates 1 + #outputs of such PLS proofs and verifies the
(
#parties − 1

) (
1 + #outputs

)
PLS proofs of

the other parties. That amounts to a total of O
(
#parties#outputs_ log3 @

)
exponentiations.

Those exponentiations take a group element to the power of some element from {0, . . . , @ − 1}.
Using the fast exponentiation algorithm, each exponentiation takes O

(
log @

)
group operations.

The time needed for each group operation depends on the group. One must use a group where the
discrete-log assumption holds true [PLS19].

Let 6(@) be the time needed for a group operation in the group used for the PLS proof. Then the
time complexity of the creation and verification of PLS proofs in the ActiveMPC protocol is

(4.4) O
(
#parties#outputs6(@)_ log4 @

)
.

Clearly it holds true that 6(@) ∈ Ω(log @) , because the algorithm computing the group operation
has to read the whole encoding of the operands and the group must be at least of cardinality @.
Comparing Equation (4.4) to Table 3.2, we follow that for a fixed circuit the time complexity for the
PLS proofs is simultaneously the time complexity for the whole protocol.

The space and communication complexity of the ActiveMPC protocol is the same as of the
PassiveMPC protocol, because the PLS proofs are quite small. Table 4.1 displays the space, time
and communication complexity of the ActiveMPC protocol.

Fixed circuit Variable circuit
Space per party #parties_

4 (
#parties + | 5 |

)
_ log3 @

Time #parties#outputs6(@)_5 (
#parties#outputs6(@) + | 5 | logY @

)
_ log4 @

Communication #parties_
4 See Equation (3.7)

Table 4.1: Asymptotic complexity of ActiveMPC; O
(
·
)

omitted
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5 Verifiable Tally-Hiding E-Voting

In this chapter we introduce E-voting in general as well as the two concepts of verifiable and
tally-hiding E-voting. In Section 5.3 we then present our E-voting protocol based on ActiveMPC.

An E-voting system is essentially an MPC protocol that typically proceeds as follows. There is a
subset of the parties called voters. Each voter computes and then broadcasts a ballot which contains
the voter’s choice (in encrypted form). Another disjoint subset of the parties, called the trustees or
voting authorities, then tally the ballots. In the formalization from [Mül19] the voter might use some
voter supporting device (VSD) in order to compute his ballot. We don’t consider VSDs because
we simply consider a voter and its VSD to be a single ppt ITM. In modern E-voting systems the
tallying might be done by shuffling the ballots using mix-nets and only then decrypting them. This
way it stays secret which choice belongs to which voter. However, when using this approach it
will typically be public which candidate got how many votes. Another possibility is to combine
the encrypted ballots using homomorphic encryption and to decrypt the result. The homomorphic
evaluation corresponds to the evaluation of a function (called result function) on the (plaintext)
choices where only the output of that function is made public. Many different result functions are
possible and sensible. Our E-voting system follows this homomorphic encryption approach. After
tallying, the trustees broadcast the tallying result.

Following [Mül19], we say that there are #voters voters denoted by +1, . . . , +#voters and #trustees
trustees denoted by )1, . . . , )#trustees . There is a set Ch of possible choices and each voter +: takes
her choice ch: ∈ Ch as input. At the end of the protocol execution all parties output a result res
which belongs to the so-called result space Res. The flow of the protocol can vary between different
E-voting systems. As depicted above, typically the voters run some voting procedure, broadcast
their ballots, and afterwards the trustees run some tallying procedure.

5.1 Verifiability

Many E-voting systems have vulnerabilities that make it possible for an adversary to manipulate the
election result [Mül19]. In this section we define the modern security property called end-to-end
verifiability. See [Mül19] for a more in-depth description of this concept as we go over the definition
relatively quickly. Intuitively an E-voting system is end-to-end verifiable if an arbitrary (possibly
external) party can check whether the result of the tallying is correct or at least not too incorrect.
We formalize this by adding a judge � to the protocol which runs a judging procedure and has local
output from Res ∪ {reject}. � is neither a voter nor a trustee. Her task is to judge whether or not
the current protocol run achieves some goal W. Thereby W is formalized as a set of allowed protocol
transcripts. She must do so provided only public information; that is, she sends no messages and can
only receive messages from the broadcast channel. The output reject means that the judge rejects
the run. We denote by “� : reject” or “� : accept” the events that � outputs = reject or ≠ reject,
respectively.
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5 Verifiable Tally-Hiding E-Voting

Over the probability space of a protocol A(G) we use the random variable transcript that maps to
the transcript of the protocol run. Our verifiability definition is from [KTV10], simplified to match
our computational model such that we do not have to introduce their KTV framework.

Definition 5.1.1 (Verifiability). Let P =

(
%1, . . . , %#parties

)
be an MPC protocol and let � = % 9 be

one of its parties which can not send messages and can only receive messages from the broadcast
channel. Let W be a goal (i.e. a set of protocol transcripts) and let X ∈ [0, 1] . We define that P
is (W, X) -verifiable by the judge � iff. for all  ⊆

[
#parties

]
with 9 ∉  and for all tuples of ppt

adversaries
(
%∗
:

)
:∈ , there exists =0 ∈ N such that for all input tuples G and _ ≥ =0 it holds true that

Pr[transcript ∉ W ∧ � : accept] ≤ X

over the probability space of P∗
(
1_, G

)
. Hereby, P∗ is the MPC protocol derived from P by

replacing %: by %∗
:

for each : ∈  .

Note that any MPC protocol with a judge that always rejected would suffice for this definition.
Therefore one usually wants a completeness property in addition to verifiability.

Using the general definition of verifiablity one can define many different kinds of verifiability. One
kind is end-to-end verifiability of which several different definitions in different computational
models exist [Mül19]. We use the definition from [Mül19] and adapt it to our notation. End-to-end
verifiability is parameterized by a boolean formula i : 2

[
#parties

]
→ {0, 1} over the parties that

defines which combinations of parties can be dishonest. The trust assumption is that i( ) = 1 for
the set  ⊆

[
#parties

]
of dishonest parties’ indices.

Definition 5.1.2 (End-to-end verifiability). Let P =

(
%1, . . . , %#parties

)
be an MPC protocol and let

5 :
(
{0, 1}∗

) #parties → {0, 1}∗ be a function. Let i : 2
[
#parties

]
→ {0, 1} be a boolean formula over

the parties. For any transcript C, let

Γ(C) :=
{
 ⊆

[
#parties

] ��� ∃ tuple of ppt adversaries
(
%∗:

)
:∈ 

and Pr[transcript = C] > 0 over the probability space of P∗
(
1_, G

) }
where G is the input tuple (which is encoded in C). Observe that Γ(C) is closed under intersection.
Let  (C) be the minimal element of Γ(C) . (Intuitively  (C) contains the indices of parties that
actually behaved dishonestly.) We construct the transcript set W as follows. A transcript C is in W iff.
one of the following holds true.

• i( (C) ) = 0.

• Or there exists an input tuple G ′ such that c [
#parties

]
\ ( C) (G) = c [

#parties
]
\ ( C) (G ′) (That is,

replacing G by G ′ does not change any honest party’s choice.) and in C all honest parties %: ,
: ∉  (C) , have output 5 (G ′) .

For any X ∈ [0, 1] , we define that P is (i, X) -end-to-end verifiable with respect to 5 iff. P is
(W, X) -verifiable.
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5.1 Verifiability

Observe that we do not demand that the honest parties actually output the correct result. Instead,
the judge can check whether the honest parties did output the correct result. Consider a protocol
run of a (i, 0) -end-to-end verifiable protocol. If the judge accepts it follows (for sufficiently large
security parameter) that transcript ∈ W. Since transcript is the transcript of the considered protocol
run, we have  ∈ Γ( transcript) for the set  of dishonest parties’ indices. This means that either
the trust assumption is violated (q( ) = 0) or the honest parties have correct output. In short: For
X = 0 and sufficiently large security parameter, if the trust assumption is not violated and the judge
accepts, then the honest parties have correct output. But the judge might also reject meaning that
the honest parties might or might not not have correct output. In practice one can often not achieve
X = 0. For small X > 0 there is a small probability for deviation from the above statement.

The following theorem states that any correct MPC protocol is can trivially be made end-to-end
verifiable for the trust assumption that there is an honest majority.

Theorem 5.1.1. Let P =

(
%1, . . . , %#parties

)
be an MPC protocol that is correct (as defined in

Definition 2.6.7) with respect to some function 5 . For 8 ∈
[
#parties

]
, let %′

8
be a party that runs %8

and at the end broadcasts her output. Let � be a judge that outputs the H that is the output of more
than other #parties/2 parties or ⊥ if no such H exists. Set

i : 2
[
#parties

]
+1 → {0, 1}
 ↦→ 1 | |<#parties/2.

Then
(
%′1, . . . , %

′
#parties

, �

)
is (i, 0) -end-to-end verifiable with respect to 5 .

This already implies that we can trivially make our actively secure MPC protocol end-to-end
verifiable for an honest majority. However, we will not prove Theorem 5.1.1, because we will instead
use the following more significant result.

Theorem 5.1.2. Let P = ActiveMPCI,K ,3,@,j,�smdg, 5 ,q for any parameter set allowed by Defini-
tion 4.4.1 and let #parties be the number of parties of P. If P provides correctness with respect to 5

and I is a PoK with negligible knowledge error ^, then there exists a judge � such that for all X > 0
and tautology i( ·) = 1, P ′ :=

(
%1, . . . , %#parties , �

)
is (i, X) -end-to-end verifiable with respect to

5 . Furthermore, if there is besides � at least one other honest party that does not abort, then � does
not reject.

Proof idea. � waits for the other parties to finish their computation. If at least one other party aborts,
then � returns reject. (Notice that with the abort of any party, all honest parties except for � also
abort.) Otherwise � proceeds as follows. She computes the public key from the messages that have
been broadcast in round II. Then she verifies the non-interactive PoKs for all of the input ciphertexts
broadcast in round III. From those ciphertexts she computes the output ciphertexts. Afterwards she
verifies the non-interactive PoKs broadcast in round IV. If any verification failed, then she returns
reject. Otherwise she computes the protocol output from the decryption shares broadcast in round
IV and returns the output.
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5 Verifiable Tally-Hiding E-Voting

The tautology i( ·) = 1 means that there is no trust assumption at all. In other words, E-voting
systems based on ActiveMPC are, under the assumption stated in Theorem 5.1.2, end-to-end verifiable
even if there is not a single honest party besides the judge. And the judge performs her computation
only based on publicly available information, as she neither sends any messages nor interacts directly
with any other party, so anybody could compute the judging procedure.

5.2 Tally-Hiding E-Voting

In an E-voting system where the choices are simply mixed and then decrypted it becomes public
how often which candidate was chosen. The same is the case for a system where same choices
are added up, for example using homomorphic encryption, and then decrypted. This might be
undesired, especially if #voters is small. In small (e.g. boardroom) votes it happens regularly that
one candidate gets zero votes. If this information is made public, it reveals that every single voter
did not vote for that candidate. Often times it is sufficient to know which candidate got the most
votes or what the order of candidates sorted by the number of votes is. An E-voting system that has
a result function, which does not reveal the tallies, is called tally-hiding. Such result functions can
obviously be computed using our MPC protocol. In the next section we describe how to employ
this in order to construct an end-to-end verifiable and tally-hiding E-voting system.

5.3 Our Verifiable Tally-Hiding E-Voting System

In this section we finally define our E-voting system. Subsequently we argue how it can be made
end-to-end verifiable.

Definition 5.3.1. Let 5 : Ch#voters → Res be a result function given as 1-bounded arithmetic
circuit and let ActiveMPC be some instantiation of our actively secure MPC protocol from Defini-
tion 4.4.1 with circuit 5 . Then in our E-voting system EV 5 =

(
+1, . . . , +#voters , )1, . . . , )#trustees

)
a

run EV
(
1_, G

)
proceeds as follows.

The parties )1, . . . , )#trustees run ActiveMPC
(
1_

)
with the following change. The inputs and non-

interactive PoKs in round III are not provided by the trustees, but instead by the voters. We have
#inputs = #voters and each voter +8, 8 ∈ [#voters] provides the input (8,C8 , ?8) where C8 is the
ciphertext of ch8 and ?8 is the PoK. The voters compute the protocol output from the decryption
shares broadcast in round IV and return the output. (This corresponds to the output computation
of the judging procedure defined in the proof idea to Theorem 5.1.2.)

For brevity, in Definition 4.4.1 we did not distinguish between trustees (i.e. parties that participate
in key generation and decryption) and parties that provide inputs. When making this distinction, the
computational privacy analysis works analogously for the case where at least one trustee is honest.
If no trustee is honest, then there is no computational privacy. Furthermore, in the correctness
analysis we now have to consider whether the voters (and not only the trustees) have correct output.
It turns out that this is not guaranteed at all, because any dishonest trustee can deliver a malformed
decryption share in round IV. Therefore EV 5 is not a correct (as defined in Definition 2.6.7) MPC
protocol. However, if the voters were to run the full judging procedure (instead of only the output
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5.3 Our Verifiable Tally-Hiding E-Voting System

computation), defined in the proof idea to Theorem 5.1.2, and abort if the judging procedure rejects,
then EV 5 would — under the assumptions stated in Theorem 4.4.1 — provide correctness even if
an arbitrary number of trustees and/or voters are dishonest.

Note that the #parties parameter used in the analysis of ActiveMPC is always the number of trustees.
It does not matter how many different parties provide input.

Theorem 5.3.1. Let EV 5 =
(
+1, . . . , +#voters , )1, . . . , )#trustees

)
as defined in Definition 5.3.1 and let

EV′
5

:=
(
+1, . . . , +#voters , )1, . . . , )#trustees , �

)
using the judge � from the proof idea to Theorem 5.1.2.

If for the used instantiation of ActiveMPC the assumptions stated in Theorem 4.4.1 hold true, then
EV′

5
is (i, X) -end-to-end verifiable with respect to 5 for all X > 0 and tautology i( ·) = 1.

Proof idea. Let X > 0, i( ·) = 1 and let ẼV 5 be the variation of EV 5 where the voters run the
full judging procedure and abort if the judging procedure rejects. ẼV 5 provides correctness, so
the protocol ẼV′5 =

(
+̃1, . . . , +̃#voters , )1, . . . , )#trustees , �

)
obtained from ẼV 5 by adding the judge

� is (i, X/2) -end-to-end verifiable with respect to 5 . Observe that we obtain EV′
5

from ẼV′5 by
reverting the replacements of the voters; that is, we replace the voters by the original voters which
do not run the full judging procedure and instead perform only the output computation. We now
prove that this EV′

5
is (i, X) -end-to-end verifiable with respect to 5 .

Let W, W̃ be the corresponding transcript sets from Definition 5.1.2 for EV′
5
, ẼV′5 , respectively. We

take  ( ·) ,  ̃ ( ·) from Definition 5.1.2 likewise. ẼV′5 is (W, X/2) -verifiable and we have to prove
that EV′

5
is ( W̃, X) -verifiable. Let  ′ ⊆ [#voters + #trustees] and let

(
%∗
:

)
:∈ ′ be a tuple of ppt

adversaries. Let P∗ (resp. P̃∗) be the protocol obtained from EV′
5

(resp. ẼV′5 ) by replacing +:
(resp. +̃:) by %: for each : ∈ [#voters] and ): by %:+#voters for each : ∈ #voters + [#trustees] . By
Definition 5.1.1 there exists =0 ∈ N such that for all input tuples G and for _ ≥ =0 it holds true that
Pr[transcript ∉ W̃ ∧ � : accept] ≤ X over the probability space of P̃∗

(
1_, G

)
Let G be an input tuple

and _ ≥ max{=0, =1} for =1 to be specified later. We will now prove that

(5.1) Pr
P∗

(
1_,G

) [transcript︸    ︷︷    ︸
=: )

∉ W ∧ � : accept︸      ︷︷      ︸
=: ��

]

≤ Pr
P̃∗

(
1_,G

) [ ( transcript︸    ︷︷    ︸
=: )̃

∉ W̃ ∨ ∃8 ∈ [#voters] \  ′ : ¬�̃+̃8
)
∧ � : accept︸      ︷︷      ︸

=: �̃�

]
where the event �̃+̃8 describes that the judging procedure ran by the (honest) voter +̃8 accepted.

Let A be random coins such that the left-hand event occurs; that is, ) (A) ∉ W and A ∈ �� . In order
for Inequality 5.1 to hold true it suffices to prove that with the same random coins the right-hand
event occurs, that is, at least one of the following statements is true.

• A ∈ �̃� .

• If for all 8 ∈ [#voters] \  ′ it holds true that A ∈ �̃+̃8 , then )̃ (A) ∈ W̃.

Recall that the only difference between P∗ and P̃∗ are the honest voters and this difference is only in
their behaviour after they sent their ballot. Therefore � does exactly the same in both protocol runs.
In particular he accepts and thus A ∈ �̃� . Now assume that for all 8 ∈ [#voters] \ ′ it holds true that
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5 Verifiable Tally-Hiding E-Voting

A ∈ �̃+̃8 . That is, all of the judging procedures ran by the honest voters +̃8 in P̃∗ accept. An accepting
judging procedure does not change the behaviour of +̃8 relative to +8 and hence ) (A) = )̃ (A) and
 ( (A) ) =  ̃

(
)̃ (A)

)
. With those two equalities the definitions of ) (A) ∈ W and )̃ (A) ∈ W̃ coincide

and therefore we conclude that )̃ (A) ∉ W̃.

We just concluded the proof of Inequality 5.1. With negligible knowledge error there’s a negligible
probability that the judging procedure has distinct outputs when ran by � and +̃8 . It follows that

Pr[) ∉ W ∧ �� ] ≤ Pr
[ (
)̃ ∉ W ∨ ∃8 ∈ [#voters] \  ′ : ¬�̃+̃8

)
∧ �̃�

]
= Pr

[ (
)̃ ∉ W ∧ �̃�

)
∨

(
∃8 ∈ [#voters] \  ′ : ¬�̃+̃8 ∧ �̃�

) ]
≤ Pr

[ (
)̃ ∉ W ∧ �̃�

) ]
+ Pr

[ (
∃8 ∈ [#voters] \  ′ : ¬�̃+̃8 ∧ �̃�

) ]
≤ X

2
+ negl(_)

≤ X

if we choose =1 large enaugh.

5.4 Suitable Result Functions

Our E-voting system EV 5 is of course only tally-hiding if the result function 5 is considered to be
tally-hiding. In this section we construct suitable result functions. Recall that the function must be
given as a 1 bounded arithmetic circuit, because it is evaluated homomorphically. For now, assume
that there are only two candidates and that the result function is a threshold function with threshold
C ∈ [#voters] . That is,

(5.2)

51 : {0, 1}#voters → {0, 1}(
ch1, . . . , ch#voters

)
↦→

{
0 if

∑#voters
8=1 ch8 < C

1 if
∑#voters
8=1 ch8 ≥ C.

This result function allows us to directly use the voter’s choices as inputs to the circuit. The circuit
itself can be implemented as follows. Each vote is interpreted as a 1-bit binary number. The votes
are then added using carry ripple adders. This summation is done in a dovetailed fashion in order to
keep the depth of the circuit small. There are dlog #voterse levels of carry ripple adders. At each level
the number of bits increases by 1, so the result is a dlog #voterse + 1 bit binary number. We extend
this to a dlog #voterse + 2 bit two’s complement binary number by prepending the sign bit 0. In order
to subtract C, a virtual vote is assembled which is the dlog #voterse + 2 bit two’s complement of the
binary representation of C. This virtual vote is added to the previous result and the output then is one
minus the sign bit of the overall sum. Let ; := dlog #voterse + 1. The depth of this circuit is in Θ

(
;2

)
,

leading to an Ring-GSW modulus @ with log @ ∈ O
(
;2 log ;

)
= O

(
log2 #voters log log #voters

)
for

fixed security parameter. The circuit has size | 51 | ∈ Θ
(
#voters log #voters

)
. Substituting this into the

time complexity for variable circuits from Table 4.1, we conclude that the time complexity is in
Θ̃

(
#voters

)
, as Θ̃

(
·
)

absorbs the logarithmic terms. Note that this is the time complexity for trustees
and judges. Voters have quasi-constant (i.e. Θ̃

(
1
)
) time complexity in the number of voters.
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5.4 Suitable Result Functions

A careful analysis yields a better bound for the exponent of the polylogarithmic factor than above
analysis which is merely based on the circuit’s depth. We can implement a full adder as

{0, 1}3 ↦→ {0, 1}2©«
0

1

2in

ª®®¬ ↦→
[

B = (1 − 2ℎ) · 0 + ℎ
2out = 2in · (0 + 1) + (1 − 22in) · 01

]
with ℎ = (1 − 22in) · 1 + 2in.

Let A,B,Cin, S,Cout be corresponding ciphertexts. When computing the noise of S and Cout we
obtain

(5.3)

| |noise(S) | |∞ ≤ | | (1 − 2(0 ⊕ 1))noise(Cin) | |∞
+ < | |noise(A) | |∞ + < | | (1 − 20)noise(B) | |∞

| |noise(Cout) | |∞ ≤ | | (0 ⊕ 1)noise(Cin) | |∞
+ < | | (1 + 1)noise(A) | |∞ +

(
<2 + <

)
| |noise(B) | |∞.

Observe that 1 − 2(0 ⊕ 1) , 1 − 20 ∈ {−1, 1}, so these factors can be dropped. Let #A,B :=
max{| |noise(A) | |∞, | |noise(B) | |∞}. It follows

| |noise(S) | |∞ ≤ | |noise(Cin) | |∞ + 2<#A,B

| |noise(Cout) | |∞ ≤ | |noise(Cin) | |∞ +
(
<2 + 3<

)
#A,B.

Interestingly, when computing 2out this way, then the noise level of Cout does only depend on the
noise level Cin by a factor of 1. Therefore the noise level of the output of a carry ripple adder is
only linear in the number of bits, while with any factor > 1, this noise level would be exponential in
the number of bits.

In order to analyze the dovetailed sum we need some notation. Let C0,0 = S0,0 be the input
ciphertext with maximum noise level. For 8 ∈ {1, . . . , dlog #voterse + 1} and 9 ∈ {0, . . . , 8}, let
S8, 9 be the maximum noise level ciphertext corresponding to a 2 9 sum bit in the 8th layer of carry
ripple adders. And let C8, 9 be the maximum noise level ciphertext corresponding to a 2 9 carry-in or
equivalently a 2 9−1 carry-out bit in the 8th layer of carry ripple adders. Note that C8,8 = S8,8 because
the last carry-out bit is at the same time the last sum bit. Then we obtain the system of recurrence
inequalities����noise

(
S8, 9

) ����
∞ ≤

����noise
(
C8, 9

) ����
∞ + 2<

����noise
(
S8−1, 9

) ����
∞ ∀8 > 9 ≥ 0����noise

(
C8,0

) ����
∞ = 0 ∀8 > 0����noise

(
C8, 9

) ����
∞ ≤

����noise
(
C8, 9−1

) ����
∞ +

(
<2 + 3<

) ����noise
(
S8−1, 9−1

) ����
∞ ∀8 ≥ 9 > 0.

Define �0 :=
����noise

(
C0,0

) ����
∞ and recall that ; = dlog #voterse + 1. By induction it can be proven

that ����noise
(
S8, 9−1

) ����
∞,

����noise
(
C8, 9

) ����
∞ ≤ (8 − 1)! 9 ·

(
<2 + 3<

) 8
�0 ∀8 ≥ 9 > 0.

Of all ciphertexts, the most loose bound is obtained for C;,; = S;,;.
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5 Verifiable Tally-Hiding E-Voting

We did not yet take account of the virtual vote which is the two’s complement of C. The virtual vote
itself has no noise as it’s based solely on public information. Therefore, when adding the virtual vote
using another carry ripple adder, one of the terms from Equation (5.3) vanishes and consequently
the noise increases only by an additional factor of <;.

For the final noise level, hereafter denoted by �noise, we obtain

log �noise ≤ log
(
<; · ;! ·

(
<2 + 3<

) ;
�0

)
∈ O

(
; log ;

)
for constant <. However, < = 2( blog @c + 1) is not constant but rather depends on the
Ring-GSW modulus @ which itself must be chosen in the order of @ ∈ Ω

(
�noise

)
. Taking this

into account does not change the result of log �noise ∈ O
(
; log ;

)
. Therefore we can choose

log @ ∈ O
(
; log ;

)
= O

(
log #voters log log #voters

)
for fixed security parameter. We still have time

complexity in Θ̃
(
#voters

)
, but the exponent of the polylogarithmic term is now only about half as

large as with our previous result that was merely based on the depth of the circuit.

Often there are more than two candidates. Let’s consider any candidate set Ch = [�] with � ∈ N.
We will now implement the ordinary majority result function

(5.4)

52 : [�] #voters → [�] ∪ {⊥}(
ch1, . . . , ch#voters

)
↦→

{
2 if | {8 ∈ [#voters] | ch8 = 2}| > #voters/2
⊥ else

as a 1-bounded arithmetic circuit. Elements of Ch = [�] can not be used as an input to the circuit.
Therefore the voters have to perform some preprocessing. The most simple and straightforward
way is to give the binary representation of ch8 as an input to the circuit. Let’s assume for brevity
that � is a power of two, although other integers are possible via a simple modification. The binary
representation of ch8 has log|Ch| bits. In the circuit the representation is then converted to unary by
computing a conjunction (product) of log|Ch| literals for each unary bit. The asymmetry of

noise(Mult(C1,C2) ) = `2noise(C1) +G−1(C1)noise(C2) ,

from Equation (3.3) implies that, in the left associative multiplication of several ciphertexts, the
noise grows only linearly rather than exponentially in the number of multiplications. The conversion
from binary to unary increases the noise level by a factor of at most < log|Ch| . Each bit of the unary
representation corresponds to one candidate. Subsequently for each candidate 2 ∈ Ch a copy of the
circuit which computes Equation (5.2) with C = b#voters/2c +1 is run on the bits corresponding to that
candidate. The output of 52 are the (in total) |� | output bits of the |� | sub-circuits. Notice that at most
one of these bits can be 1 because there can not be multiple candidates that have the ordinary majority.
The conversion from binary to unary where the noise level increases by a factor of up to < log|Ch|
changes our asymptotic result slightly to log @ ∈ O

(
log #voters log log #voters

)
+ O

(
log log|Ch|

)
.

The last result function which we mention here is for the case where one wants to order the candidates
by their number of votes. We do so by outputting for each pair (2 9 , 2:) of candidates whether 2 9
got less, equal or more votes than 2: . Define

(5.5)
53 : [�] #voters → {−1, 0, 1}�×�(

ch1, . . . , ch#voters

)
↦→

(
1 9 ,:

)
9 ,:∈[� ]
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Circuit Maximum #voters using parameters from Table 3.1
51 256
52 (assuming |Ch| ≤ #voters) 128
53 (assuming |Ch| ≤ #voters) 128

Table 5.1: Comparison of maximum #voters, assuming #trustees ≤ 4096

Circuit Number of gates
51 Θ

(
#voters log #voters

)
52 Θ

(
|Ch| log|Ch| + |Ch|#voters log #voters

)
53 Θ

(
|Ch|2 + |Ch|#voters log #voters

)
Table 5.2: Circuit complexity comparison

with

1 9 ,: = sign
(��{8 ∈ [#voters]

�� ch8 = 2 9
} �� − |{8 ∈ [#voters] | ch8 = 2: }|

)
.

We can implement this by first computing the number of votes for each candidate as before. After-
wards, for each pair 2 9 , 2: compute the difference (using two’s complement) and denote the sign bit
of the difference by B 9 ,: . Then 1 9 ,: = B:, 9 − B 9 ,: .

In Table 5.1 we list the maximum values for #voters when homomorphically evaluating one of the
constructed circuits using one of our parameter sets from Table 3.1. Note that it does not matter
which of two parameter sets is used because they both have the same ratio @/2_ which is the
maximum allowed noise level. The choice of the parameter set is a choice merely concerning the
level of security. The table assumes |Ch| ≤ #voters which was an arbitrary assumption in order
to compute the bounds. Of course there can be more choices than voters, but then the maximum
number of voters (using the same parameter set) might be slightly lower. The same goes for the
assumption #trustees ≤ 4096.

Table 5.2 shows the asymptotic number of gates for the circuits we constructed. Each gate corre-
sponds to a homomorphic operation and each homomorphic operation takes time polynomial in ;
and thus polylogarithmic in #voters. Hence the overall runtime of the homomorphic evaluation is
the same as the number of gates up to a polylogarithmic factor.

5.5 Result Function Computation over the Symmetric Group

In Section 3.1 we outlined that the Ring-GSW homomorphic encryption scheme has acceptable noise
growth when evaluating an arbitrary 1-bounded arithmetic circuit. Every efficiently computable
function can — for given input size — be transformed into such an arithmetic circuit. However,
for specific functions there might be an algebraic (and thus maybe conceptually simpler or more
natural) implementation. We give such an implementation for functions that use only additions and
range checks over Z= (for some = ∈ N).
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5 Verifiable Tally-Hiding E-Voting

In order to analyze noise growth, we have already made use of the fact that in a left associative
product the noise grows only linear in the number of multiplications. The same follows for the
product of several permutation matrices [AP14; BV13]. This motivates to perform computations in
the symmetric group (= (for = to be specified later).

Let i(1) := ( 9 ↦→ 9 + 1 mod =) . We define the homomorphism i : Z= → (= by i(8) = i(1) 8
for 8 ∈ Z=. It is easy to see that i is injective. We represent each element c ∈ (= as permutation
matrix c =

(
18=c ( 9)

)
8, 9∈Z= . In such a permutation matrix, each column and each row has exactly

one 1-entry. Observe that, for 8 ∈ Z=, i(8) is the permutation matrix that has a 1 in the 8th row of
the first column and where every further column is the previous column rotated by one. Hence an
admissible permutation matrix is sufficiently specified by its first column. If a voter +8 wants to
input a value 8 ∈ Z=, then +8 instead inputs the first column of i(8) in encrypted form. If that input
is restricted to some values from Z=, then +8 only provides the corresponding entries of the first
column.

An addition 8 + 9 in Z= can be performed by instead multiplying the permutation matrices
i(8)i( 9) = i(8 + 9) . Furthermore, for any subset � ⊆ Z=, we can check whether 8 ∈ � by
adding the corresponding entries in the first column of i(8) . Formally that is

8 ∈ � ⇐⇒
∑
9∈�

i(8) [1, 9 + 1] = 1.

In order to maintain security against active adversaries, a voter +8 that inputs a column of a permu-
tation matrix in encrypted form has to prove that the column contains exactly one 1. The ZKPoK
that already certifies correct encryption can be adapted in order to account for this. Alternatively,
one can consider a result function where +8 inputs only a single entry of the permutation matrix and
hence cannot cheat. The function 51 from Equation (5.2) is such a case.

Computing 51 in (= works as follows. We use = := #voters+1 in order to prevent a wrap-around. Each
voter +8 with choice ch8 ∈ {0, 1} inputs i(ch8) . Note that +8 actually only has to input the top left
entry i(8) [1, 1] (representing a 0), the subjacent entry is computed as i(8) [2, 1] = 1 − i(8) [1, 1]
and all other entries of the first column are filled by zeros. When each voter has input her permutation
matrix, then these are multiplied in order to obtain P :=

∏
8 i(ch8) = i(

∑
8 ch8 mod =) . The result

is then obtained from a range check∑
8

ch8 ≥ C ⇐⇒
#voters∑
9=C

P[1, 9 + 1] .

As we mentioned above, the noise grows only linear in : when multiplying : permutation matrices.
Specifically, the noise level increases by a factor of :<# where # is the width of the permutation
matrix. In our cases : = # = #voters, so that’s a factor of <#voters

2. Together with the subsequent
sum, the total noise growth of <#voters

3 is still cubic and leads to an Ring-GSW modulus @ ∈
O

(
#voters

3) . This is in contrast to the superpolynomial (in #voters) noise growth when computing 51
using carry ripple adders. Let ; := dlog #voterse + 1 as before. In terms of ;, it follows that we can
choose log @ ∈ O

(
log

(
#voters

3) ) = O
(
log

(
23; ) ) = O

(
;
)
. This is in contrast to our previous results

where log @ ∈ O
(
; log ;

)
was only quasi-linear in ;. It comes at the cost that we have to do a lot of

matrix operations. Since we only need the first column of a permutation matrix, each matrix-matrix
product can be reduced to a matrix-vector product. Nevertheless we need Θ

(
#voters

3) homomorphic
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operations for #voters such products. Each homomorphic operation takes time polylogarithmic in
#voters, so the overall runtime is in Θ̃

(
#voters

3) . This is worse than our previous result of Θ̃
(
#voters

)
(in Section 5.4) and thus we deem the computation using carry ripple adders better, both practically
and asymptotically.
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6 Conclusion and Outlook

We constructed a levelled FHE scheme based on the Ring-LWE assumption. This scheme is the
Ring-LWE analogous to the GSW FHE scheme which is based on standard LWE. Using the key
homomorphic property of the scheme, we extended it to a threshold levelled FHE scheme by
augmenting a distributed key generation and distributed encryption. This followed the example
set in [AJW11] where the BGV scheme was used instead. Our threshold scheme led to a passively
secure 4-round MPC protocol in the common random string model.

By augmenting Fiat-Shamir transformed PLS proofs by del Pino et al. [PLS19], we obtained an
actively secure 4-round MPC protocol. The security of this protocol is based on the additional
assumption that the discrete-log problem in the used group is hard. Even if discrete-log will be
broken in the future (by e.g. practicable quantum computers), the privacy of past protocol executions
is still preserved. The space, time and communication complexity of both of our protocols are
polynomial in the number of parties, in the security parameter and in the depth of the arithmetic
circuit. However, the constant exponents are quite large except in the dependence on the number of
parties.

Based on our MPC protocol we finally constructed an end-to-end verifiable E-voting system in the
ROM which can be instantiated with arbitrary result functions. For three families of tally-hiding
result functions we constructed the corresponding families of arithmetic circuits and analyzed the
asymptotic complexity of the resulting tally-hiding E-voting system. Interestingly we obtained time
complexity in Θ̃

(
#voters

)
which is optimal up to a polylogarithmic factor.

An experimental implementation of ActiveMPC which also supports usage as an E-voting system
as described in Section 5.3 will be available at [Has20]. We conclude the thesis by providing an
outlook on possible future work.

6.1 Threshold Levelled FHE without Smudging

In Section 3.5 when choosing @ we had to multiply a factor of 2_ in order for the smudging to be
secure. In practice this has an effect that is not to be underestimated: If the factor of 2_ in @ was not
necessary, then our public key in Table 3.1 for _ = 128 (resp. _ = 256) would have size ≈ 528 MiB
instead of ≈ 1.67 GiB (resp. ≈ 3.59 GiB instead of ≈ 7.94 GiB). As stated in Section 3.5 we leave
it as an open question whether it is possible to eliminate smudging from the protocol.
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