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Abstract

The emergence of IoT has introduced a huge amount of applications that generate massive
amounts of data at a high rate. This data stream needs intelligent data processing and
analysis. The evolution of Smart cities and Smart industries has resulted into an ocean
of data from millions of sensors and devices. Surveillance systems, telecommunication
systems, smart devices, and smart cars are some examples of such systems. However, this
data itself does not provide any information unless it is analyzed. This results into a need
of analytics tools and frameworks which can efficiently analyze this data and provide with
useful information. Analytics is all about inspection, transformation and modelling of data
to achieve information that further suggests and assists in decision making. In a world of
IoT, analytics has a crucial role to play to improve life and better manage the infrastructure
in a secure, sustainable and cost effective manner. The smart sensor network serves as
the base for IoT. In this context, one of the major tasks is to develop advanced analytics
frameworks for the interpretation of data provided by the sensors. MBP is a platform for
managing IoT environments. Sensors and devices can be registered to this platform and the
status of sensors can be viewed and modified from the platform. This platform is used to
collect data from the sensors and devices connected to the platform. There are two types
of mining that can be performed on raw data, one technique analyzes the data on the fly
as it is received (Data Stream Mining) and the other can be performed on demand on the
data collected for a longer period of time (Batch Processing). Both types of analysis has
its own advantages. Lambda architecture is a data analytics architecture which allows us
to perform both stream analysis and batch processing on the same data. This architecture
defines some practical and well versed principles of handling big data. The pattern allows
us to deal with both real time and historical data, but the analysis is performed separately
and does not affect each other. In this thesis, we will create an analytics framework for the
MBP IoT platform based on the lambda architecture.
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1 Introduction

IoT is at the cornerstone of the digital transformation journey for most of the fields [TAG+17].
It enables users to collect useful data from the connected devices. However, connecting
devices and ingesting and storing data is just the first step. Being connected is not enough,
beyond that, the general objects in IoT should have the capabilities to learn, think and
understand the devices, which surround them. The whole point of collecting this data is to
extract actionable insights, which can trigger some sort of action that will result in business
value.

In the next few decades, many traditional cities will be turned to smart cities [AB18], in
order to make them greener, smarter, and more efficient. One key challenge for developing
smart cities is integrating different application domains. This transformation is supported
by the fast spread of Internet of Things (IoT) and big data analysis. ICT (Information and
Communication Technology) is becoming increasingly pervasive to urban environments,
providing the necessary basis for sustainability and resilience of smart future cities. Sensors
are by no means a new phenomenon, the first sensor was invented way back in the 19th
century. The revolutionary aspect of IoT lies in its recent adoption on an unprecedented scale,
fuelled by economic factors, such as dramatic drop in prices of sensors, network bandwidth,
and processing. Moreover, IoT allows data to be captured and ingested autonomously,
avoiding the human data entry bottleneck. The number of connected devices is increasing
exponentially. Just to give an idea, the number of connected IoT devices in 2015 was around
15 billion, currently in 2019, it is 27 billion and is expected to grow to about 75 billion till
2025 [Ali15]. IoT data will arguably become the biggest Big Data.

The question that arises is, how to make effective use of this vast ocean of data? The future
IoT will be highly populated by a large number of heterogeneous networked devices, which
will generate massive amounts of data. This pool of data would be useless if we do not
extract insights out of it. This requires developing a systematic analytics framework for
IoT. A key challenge in smart city applications is aggregation and processing of streaming
information from various domains. A large amount of valuable data remains unused or
limited to specific application domains due to a large number of specific technologies and
formats, and effective adaptive steam processing of data is still a hard task. The real value
of data is gained by new knowledge acquired by performing data analytics using various
data mining, machine learning, or statistical methods [DWW13].

Extracting insights from IoT data is essentially a big data analytics problem. It is about
analyzing lots of data, coming in fast from a lot of different sources and possibly in different
formats. This stream of data from IoT devices has its own set of challenges:
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1 Introduction

• Data comes from “things”, therefore, data collection has its own challenges, like
establishing reliable, performant, and secure connection with the device, overcoming
latency issues etc.

• IoT data is almost real time, streamed time series data coming in at different frequen-
cies.

• IoT data often requires real time decisions on data, which often requires some
processing to be done on or near to the source to avoid delay of sending data and
waiting for a response.

• In practical IoT applications, the obtained massive sensor data can be of mixed
characteristics, which is challenging to process.

1.1 Importance of data mining in IoT:

Data mining is the process of gaining insights from data [Han98]. The nature of IoT
applications demands real time responses. For example, in the traffic domain, one might
want to plan a travel route according to the current traffic conditions, and in smart homes
one might want to receive timely alerts about unusual patterns of electricity consumption
[TBA+14]. Therefore, real time analysis is of high importance. This brings the requirement
of data stream mining were data is analyzed on the fly as it is collected from the devices.
There are a set of challenges, which are posed by the high-velocity data streams in the IoT.
However, the importance of collecting and analyzing historical IoT data is less immediately
apparent. In addition, because of the size of data, this analysis is costly. Furthermore,
analysis of long-term data (batch processing) has its own importance. Batch processing is
essential in order to reach intelligent decisions, it helps in understanding the context of real
time data. For example, one can get the current traffic condition from real time analysis,
but does the traffic condition represent normal condition, or an extreme traffic congestion?
Does a sudden increase in home energy consumption result from heating in cold weather,
or a faulty device? Answers like these can be obtained by the analysis of historical sensor
data.

Now, we know the importance of both data stream analysis and batch processing of IoT
data. In this thesis, we will use the Lambda architecture for development of an analytics
framework for the MBP IoT platform. MBP is a platform for managing IoT devices. Sensors
and devices can be registered to this platform and the status of sensors can be viewed and
modified from the platform. Lambda architecture is a data processing design pattern to
handle massive amounts of data and integrate batch processing and stream processing of
data into a single framework, which makes the combined data available for downstream
analysis or viewing on a service layer. The MBP platform and Lambda architecture will be
discussed in detail in the upcoming sections. Following are the goals of the thesis:
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1.1 Importance of data mining in IoT:

• Design an analytics framework for the MBP IoT platform. This design will be based
on the lambda architecture. Hence, provisioning for both continuous stream mining
and on demand batch processing of data should be done. Live data from devices
should be fed directly for stream processing and should also be stored for batch
processing.

• Develop the framework by using open-source tools, such as Apache Spark and Flink
for data analysis and integrating it to the MBP platform. The detailed description of
these tools and implementation will be covered in later sections.

• Demonstrate the feasibility and use of the framework by presenting real world use
cases of analytics in IoT and perform analysis on datasets to show the results.
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2 Fundamentals

The goal of this thesis is to create an analytics framework for the IoT platform MBP. The
framework will be based on the Lambda architecture for data analytics. The advantage of
using a Lambda Architecture is enabling both real time analysis (data stream processing)
and on demand analysis of long-term data (batch processing) based on the same data source.
We will be discussing these topics in detail in this section.

2.1 Batch processing of data:

Batch processing (also known as data mining) is a useful decision support technique, which
can be used to find trend and regularities in data. It aims as discovery of useful patterns and
trends in large sets of data [Han06]. We are observing evolution of data mining systems
from specialized tools to multi-purpose data mining systems offering a wide range of
integration of data management systems. From a user’s point of view, data mining can be
viewed as advanced querying of data. The basic motivating stimulus behind data mining is
that the large databases contain information, which is of value to the database owner, but
the information is concealed within the mass of uninteresting data and has to be discovered.
The user seeks surprising, unexpected or valuable information and data mining aims to
extract this information. Perhaps the main economic driver to the development of data
mining tools and techniques has come from the commercial world: the promise of money
to be made from data analytics. Furthermore, commercial databases are growing rapidly in
size as well as number. Data is produced in IoT at an unimaginable speed. Data mining
is a rapidly evolving technology and an increasing number of datasets are now collected
with the specific objective of trawling through them and seeking interesting and unusual
information. Batch processing is where the processing happens over a block of data stored
over a period of time. For example, processing all the transactions that have been performed
by a firm in a week. Batch processing usually takes a large amount of time and lots of
computing resources. Batch processing works well in situations where one does not need
real time analytics results and when it is more important to process data in large volume
to get more detailed insights than it is to get fast analytics results. If real time processing
of data is required, e.g. in the IoT, data stream processing is more suitable than batch
processing.
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2 Fundamentals

2.2 Data Stream mining:

Data stream processing is the answer analytics results should be computed in real time.
Data stream mining is the process of extracting interesting patterns and trends from a
sequence of elements that arrive continuously in a rapid speed. Stream processing allows
us to process data in real time as they arrive and quickly detect conditions within a small
time period from the point of receiving data. Stream processing allows to feed data into
analytics framework as soon as they are generated and get instant analytics results. Stream
processing is useful in tasks like anomaly detection, alert filtering and fraud detection
[Bif10]. In the IoT, a huge number of devices generate massive streams of data, which
need intelligent data processing and online analysis. The storage, querying and mining
of such datasets are highly computationally challenging tasks. Mining data streams is
concerned with extracting knowledge structures represented in models and patterns in a
non-stop stream of data. The research in data stream mining has gained a high attraction
due to importance of its application in increasing generation of streaming information
(IoT). Recently, the data generation rates have become faster than ever. We are surrounded
by millions of devices, which generate data at a high frequency. This rapid generation
of continuous streams of data has challenged storage, computation and communication
capabilities in computing systems. Motivation to study data streams comes from a variety
of areas: sensor networks may have a lot of nodes, each taking readings at a high rate. This
data must be processed and analyzed.

2.3 Lambda Architecture:

Lambda Architecture [KMM+15] is a data processing design pattern to handle massive
quantities of data and integrate batch processing and real time stream analysis within a
single framework. It is a very generic pattern that tries to cater common requirements
raised by most big data applications. It defines a set of patterns and guidelines for big data
applications. It deals with both historical (batch) and real time data. It is technologically
agnostic and generic in nature and it does not depend on any specific technologies. When
processing large amounts of data, there is usually a delay between the point when data is
collected and its availability in reports and dashboards. Often the delay results from the
need to validate or at least identify granular data. However, in some cases, being able to
react immediately to new data is more important than being sure of data’s validity. The
Lambda architecture is an approach that mixes both batch and stream processing and makes
the combined data available on the serving layer. It is divided into three layers: the batch
layer, serving layer and speed layer.
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2.3 Lambda Architecture:

Figure 2.1: Lambda Architecture

• Data Ingestion: The data ingestion step comprises data ingestion in both speed and
batch layer. For the batch layer, historical data can be ingested on demand at any
desired interval. For the speed layer, the fast moving data must be captured as it is
produced and streamed for analysis. The data is time tagged or time ordered. Some
examples of high velocity data include log collection, website clickstream and IoT
device event data.

• Batch layer: The batch layer is made for batch processing of the data. The batch
layer aims at perfect accuracy as it processes all the available data when processing
data. This layer is responsible for batch processing of stored data.

• Speed layer: The speed layer, also known as the real time layer is made for stream
processing of data. It caters the real time analysis requirements. This layer performs
on the fly analysis of data as it arrives. Since the batch layer deals with a large amount
of data, processing of the batch layer usually takes time and the business cannot wait
for this lag in processing of batch layer. So, for achieving near real-time data analysis,
data is incremented to the low latency speed layer.

• Serving layer: The core task of the serving layer is to present the results created
by both the batch and stream layer. Apart from this, there is a good amount of
orchestration work which needs to be done by this layer. A query to the serving layer
can be made to retrieve results from speed or the batch layer.
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2 Fundamentals

2.4 MBP Platform:

MBP is a platform which enables automatic provisioning and configuration of devices
in the Internet of Things (IoT). In the emerging world of IoT, the integration of devices,
sensors, and actuators has become more and more important. IoT benefits from data
coming from a huge number of connected devices, which helps in creation of so-called
smart environments.

Figure 2.2: MBP Dashboard showing list of connected devices

MBP enables easy modeling of sensors, actuators, devices and their attributes. It also
monitors devices in regards to changes or faults. Through the integration of sensor data, high
level information can be derived that can lead to huge benefits. The integration of physical
actuators controlling the real world IoT devices not only enables the self-organization of
devices, but also allows IoT applications to control the smart environment themselves.
Appropriate device adapters have to be manually created and deployed for each sensor to
connect sensors and actuators to IoT middleware. Deploying these adapters manually is
error prone and can take a lot of time. Hence, only automated registration, configuration and
binding of devices enables efficient monitoring [HBS+16]. The MBP platform helps in this
by reducing the amount of manual intervention required in setting up an IoT environment
with sensors, actuators and devices.
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2.4 MBP Platform:

Figure 2.3: MBP Dashboard showing historical data values from sensors

The MBP platform collects data from the devices and sensors it manages. Live data from
sensors can be fetched by subscribing to the sensors managed by MBP platform. This
platform also provides REST APIs for fetching historic data.
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3 Related Work

Previously, research on Internet of Things (IoT) mainly focused on enabling general objects
to see, hear and listen to surrounding objects and make them connected to share observations.
However, later we understood that only being connected is not enough. Beyond that, these
objects should have the capabilities to learn, think and understand each other. These
connected objects generate massive amounts of big data in an explosive fashion. This raw
data by itself does not have much value, but once analyzed, it can give information, which
is otherwise not trivial to find. The future of IoT will be highly populated by a large number
of heterogeneous networked embedded devices. To give an approximated idea, there would
be 75 billion devices till year 2025, and most of these devices would be IoT devices. The
share of IoT devices is growing exponentially in the recent years. The image below gives
an idea about it:

Figure 3.1: Increase in number of Connected Devices [Ali15]

The data collected from these devices may not have much value unless we analyze, interpret,
understand and properly exploit it. In recent years, there have been a lot of work in the field
of data analytics in the IoT. We will be discussing some of them in this section.
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3 Related Work

3.1 Lambda architecture in Amazon Web Services (AWS):

When processing large amounts of semi-structured data, there is a delay between the point
of data collection and its availability in reports and dashboards. Often, the delay results
from the need to validate or at least identify granular data. There are many AWS services
available to analyze large volumes of data. For ingesting and processing stream or real-time
data, AWS services, like Amazon Kinesis Data Streams, Amazon Kinesis Data Firehose,
Spark Streaming and Spark SQL on top of an Amazon EMR cluster are widely used.
Amazon Simple Storage Service (Amazon S3) forms the backbone of such architectures
providing the persistent object storage layer for the AWS compute service. The image
below shows how an AWS Lambda architecture implementation looks:

Figure 3.2: Implementation of Lambda Architecture in AWS [Raj18]

This Lambda architecture provides the building blocks of a unified architectural pattern
that unifies stream and batch processing within a single code base. In long term, this
architecture will reduce the maintenance overhead. It will also reduce the risk for errors
resulting from duplicate code bases.

3.2 Microsoft Azure IoT analytics:

A large number of devices are part of a larger IoT solution in which devices send their
data to the cloud for storage and analysis. At a higher level, IoT solutions can be broken
down into core essentials of device connectivity and data processing and analysis. Device
connectivity means simply devices that generate and collect data, which is sent to a cloud
gateway. Think about how devices are being used today. Sensors have been connected to
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3.2 Microsoft Azure IoT analytics:

cows, cars and spaceships. Your phone, step counter and smartwatch are all data generating
devices. So, when dealing with device connectivity, the challenge is to figure out the best
and most effective method and approach for providing not only secure, but also reliable
connections. IoT devices are not like other typical client devices. Most of the IoT devices
are not sitting at a place, like a desktop PC. These devices are out there in the world,
continuously moving and, hence, have challenges, like slow or unreliable connections or
limited power resources.

To overcome the innate challenges of IoT solutions, Microsoft introduced Azure IoT hub, a
fully managed communications service that provides highly secure, scalable and dependable
messaging between IoT devices and solutions. It supports both hardware and software
scenarios, such as wide collection of devices, environments and scenarios which fits
perfectly in the IoT ecosystem. It also supports millions of simultaneous connected devices.
This solves the problem of connecting, fetching and storage of data. The next step is data
processing and analysis. At this point, the data from devices is sitting in Azure IoT hub
waiting to be picked up by another service for processing. IoT hub is only a temporary
holding place for incoming data. The next step is to pick up that data and do something
with it, whether it is immediate analysis of data or storing it for long term. Here, the Azure
Stream Analytics (ASA) comes into picture. It is a real-time event processing engine that
provides analytical capabilities on streaming data from devices, applications and sensors.
It is a fully managed, highly scalable Azure service focused on making access to deep data
insights powerful, inexpensive and easy to use.

Figure 3.3: Microsoft Azure Stream Analytics framework [Kle17]

Azure Stream Analytics is a really powerful and efficient tool. In the following, we name
some of its benefits and capabilities:

• With thousands of devices sending vast amounts of data, ASA is designed and built to
handle millions of events per second, up to 1GB/second. The partitioning capabilities
of event hubs makes this possible.
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• Data loss prevention and business continuity, two key facets of Stream Analytics,
are provided via built-in recovery features and the ability to maintain state. Hence,
Stream analytics is able to achieve events and reapply processing.

• ASA allows connections to a lot of different sources and destinations.

• Not only creating inputs and outputs is extremely simple, but ASA also makes
data transformation simple and supports a variant of SQL languages called Stream
Analytics Query Language.

• As with other Azure cloud services, Stream analytics is designed to provide a high-
value, real-time analysis solution for a low cost.

3.3 Analytics in Industrial Internet of Things (IIoT):

Ever since the Industrial Revolution, increasing the efficiency in the field of manufacturing
has been a constant endeavor. The manufacturing industry has subsequently experienced
the power of digitalization and power electronics. However, much of the data collected
was only used for direct feedback control. Recently, the manufacturing industry has
embarked upon yet another transformation, sparked by connectivity and advanced analytics.
This is also known as advanced manufacturing in North America and Industry 4.0 in
Europe. The data collected brings transparency about the machines’ operations, the raw
materials utilized, the facility logistics and even human operations. This transparency
is brought about by the application of data analytics and machine learning to discover
distinct patterns and characteristics in data. The overarching goal of using analytics in
manufacturing is to improve productivity by reducing costs without compromising quality.
This in turn makes the whole manufacturing more efficient. Advances in the field of big data
analysis and machine learning offers a wide range of tools that can potentially be applied
in manufacturing analytics. Analytics helps in improving quality, reducing warranty cost,
improving overall yield and performing predictive maintenance.
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3.4 Energy Management in Smart Homes using IoT Analytics:

Figure 3.4: Analytics in Industrial IoT [LGS17]

Once data is collected from different devices and stored, a framework for data analysis is
needed which is shown in the Figure above. The data first goes through an ETL (Extraction,
Transformation and Loading) process and is then loaded into a distributed file system,
such as HDFS (Hadoop distributed file system) or a NoSQL database. After this, machine
learning and analytics tools perform predictive modeling or descriptive analysis. The big
data software stack can be a mixture of open source, commercial and proprietary tools.

3.4 Energy Management in Smart Homes using IoT Analytics:

Increasing costs and demand of electricity has led many organizations to find smart ways
to monitor, control and save energy. A smart EMS (Energy management system) can
contribute towards cutting the costs while still meeting demands. The emerging IoT envi-
ronment and big data analytics techniques can be used to better manage energy consumption
in residential, commercial and industrial sectors. In a smart home, each connected device
transmits data to a centralized server. This big data can be utilized using analytics tech-
niques to get insights and help into achieving more efficient energy consumption. Such a
system has following system requirements:

• Energy consumption data from devices should be gathered and sent to centralized
server.

• The stored data should be used by the analytics engine to process it and generate
reports, charts, etc.

• Clients should be able to view the generated graphs through a cross platform appli-
cation.
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• Depending on user privileges, the application should render different services to
each user, such as viewing reports, status of devices, remote control of devices, etc.

Figure 3.5: Sequence diagram for collection and processing of data [AZR+17]

This kind of a system is set to open new avenues for smart energy management on IoT
platforms. The system uses data analytics and scalable storage for building a smart Energy
management system to aid different stakeholders with their respective privileges. This kind
of system also empowers users to remotely control and monitor the devices.

All these above mentioned systems/architectures are a great inspiration and give a deep
insight of data analytics in IoT. They all have their own pros and cons. The goal of this
thesis is to take useful points from these systems and build an analytics framework for the
IoT platform MBP. MBP is the management platform and, hence, all the devices and sensors
are managed by this platform. Data collected from the devices and sensors and stored by
the MBP, and can be easily retrieved. Historic data can be retrieved on-demand using the
REST APIs and live sensor data can be retrieved by subscribing to the relevant sensor topic
for messages. Also, most of the analytics systems focus on either data stream mining or
batch processing of data. In this thesis, the goal is to perform both stream mining and batch
processing on data from same devices. In this way, we can use the benefits of both stream
and batch processing. This is a big advantage of using the Lambda Architecture. Many
interesting use cases of data analytics in IoT can also be derived from the above mentioned
scenarios. We will be implementing some of the use cases and present the results later in
this thesis.
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4 Technologies Used

The analytics framework we intend to create for the IoT platform MBP, will be a combination
of technologies that help us in performing various small tasks in the framework. As we all
know that a big, well-functioning machine is a combination of various small parts which
make it function in an expected way, in the same way the analytics framework would be
a combination of various small parts combined to enable the intended functionalities. If
broken down, the major tasks of the framework would be to collect data from IoT framework,
perform batch and stream processing on it and store the results. All these should be enabled
by a GUI, so all these functionalities would also be accessible by making REST API calls
from the frontend. We took into consideration some open-source tools and picked up few
of them based on their advantages and disadvantages. We discuss them further in this
section.

4.1 Apache Spark (Batch Processing engine)

The growth of data volumes in industry and research poses tremendous opportunities as
well as tremendous computational challenges. In the Apache open source stack, systems
like Impala and Storm are also specialized. Even the relational database is moving away
from “one-size-fits-all” systems. Apache Spark [ZXW+16] has a programming model
similar to Map-Reduce but extends it with data sharing abstraction called “Resilient Dis-
tributed Datasets” or RDDs. Using this simple extension, Spark can capture a wide range
of processing workloads that previously needed separate processing engines. Spark’s
generality has several important benefits. Applications are easier to develop because they
use a unified API and also, it is more efficient to combine processing tasks. Spark can
run diverse functions over same data, often in memory. A powerful analogy for the value
of unification would be to compare smartphones to separate portable devices that existed
before them (cameras, cellphones, GPS gadgets, etc.). As parallel data processing becomes
common, the composability of processing functions will be one of the most important
concerns for usability and performance. The key programming abstraction in Spark are
RDDs, which are fault-tolerant collections of objects partitioned across a cluster that can
be manipulated in parallel. Spark exposes RDDs through functional programming APIs in
Python, Java, Scala and R. Users can simply pass local functions to run on the cluster.
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4 Technologies Used

4.1.1 Capabilities and performance of Spark:

Spark’s most common applications are for batch processing of large datasets, including
ETL (Extract-Transform-Load) processes and offline training of machine learning models.
The largest published use case of Spark is an 8000-node cluster at the Chinese social
media ‘Tencent’ that ingests 1PB of data per day. Spark provides a machine learning
library (MLib), which implements more than 50 algorithms for distributed model training.
For example, it includes common distributed algorithms for decision trees (PLANET), K-
means clustering and Alternating Least Square matrix factorization. Also, implementing the
optimizations on RDDs, Spark can often match the performance of specialized processing
engines. The figure below shows the performance of Spark versus other processing engines
on three different tasks: a SQL query, a streaming word count and Alternating least Square
factorization. While the results vary for varying workloads, performance of Spark is
generally comparable to specialized engines. Even on highly competitive benchmark tests,
Spark achieves state of the art performance.

Figure 4.1: Performance of Spark compared to other tools [ZXW+16]

4.2 Scikit-Multiflow (Stream Processing engine)

Scikit-multiflow [MRBA18] is a framework for learning from data streams and multi-
output learning in Python. It provides many state-of-the-art data generators, learning
models and evaluators for different stream learning problems including single or multiple
output and multi-label. Recent years have witnessed the emergence of Free and Open-
Source software in the research community.Especially in the field of machine learning,
researchers have benefited from the availability of different frameworks that provide tools
for faster and easier development, allow reproducibility and replicability of results and
promote collaboration. Scikit-multiflow was developed based on this principle. It is
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a Python framework to implement algorithms and perform experiments in the field of
Machine learning and evolving data streams. Scikit-multiflow is inspired by the popular
frameworks scikit-learn, MEKA [RRPH16] and MOA [BGHP18].

Scikit-learn features various classification, regression and clustering algorithms including
random forest, gradient boosting, support vector machines, k-means and DBSCAN, and is
designed to operate well with existing Python numerical and scientific packages NumPy
and SciPy. As a multi-output streaming framework, scikit-multiflow serves as a bridge
between research communities that have flourished around the above mentioned popular
frameworks, providing a common ground where they can thrive. Scikit-multiflow helps
with the democratization of Stream learning by bringing this research field closer to machine
learning community. It is important to notice that scikit-multiflow complements scikit-
learn, whose primary objective is batch processing of data, expanding the set of free and
open source tools for stream learning. Special focus in the design of scikit-multiflow is to
make it friendly to new users and familiar of experienced ones. Scikit-multiflow contains
leaning methods, stream generators, evaluation methods and change detectors. The base
class in scikit-multiflow is StreamModel which contains the following abstract methods for
the subclass to implement:

• fit: Trains a model in batch processing fashion. Works as an interface to batch
methods that implements a fit function, like in scikit-learn methods.

• partial_fit: Incrementally trains a stream model.

• predict: Predict the target value in supervised learning methods.

• predict_proba: Calculates per class probability in classification problems.

StreamModel object interacts with two other objects: a Stream object and a StreamEvaluator
object. The Stream object provides a continuous flow of data on request. The StreamEvalu-
ator performs various tasks: queries the stream of data for new data, trains and tests the
model on incoming data and continuously tracks the performance of the model. There are
also various ways to create a stream of data. A stream of data can be created either from
a data source (Apache Kafka) or from a file source (txt, csv, etc.). Kafka is an extensive
framework to handle data streams (as messages). Kafka [Gar13] has the capability of
merging streams from different sources and combining it into a single stream of data. The
data in the stream is also aligned to the time of arrival to Kafka, and hence, even in the
combined stream, the messages will be processed in FIFO manner. Kafka can also be
used to break down a data stream into multiple streams to be processed by multiple stream
processing engines. On the other hand, a file source is much simpler and operates on very
basic functionalities. A message subscriber waits for messages from the device. When it
receives a message, it reads it and appends it to a file. A ‘FileWatcher’ is implemented to
look for new data in the file and when it finds new data, it reads it and sends it to the stream
processing engine for analysis. In our thesis, we will be using the file source to create data
streams as it is easier and less complicated to implement and fulfils our requirements.
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4.3 Python Flask (enabling REST APIs):

Flask [Gri18] stands out from other web development frameworks because it lets developers
have full control of their applications. The key to this freedom is that from the very start
Flask was designed to be extended. It comes with a robust core that includes the basic
functionality that all web applications need. Flask is a small framework by most standards,
small enough to be called a “micro-framework”. This quality of Flask makes the source code
readable and understandable. But being small does not mean that it lacks functionalities.
Flask has three main dependencies. The routing, debugging and Web Server Gateway
Interface (WSGI) subsystems come from Werkzeug; the template support is provided by
Jinja; and the command line integration comes from Click. The best part about Flask it that
it is really easy and simple to create and deploy web applications without any other server,
like Apache Tomcat. Flask was designed to be easy to use and extend. The idea behind
Flask is to enable developers to build a solid foundation for web applications of different
scales. Developers are free to plug in any extensions needed for the application. One is
also free to build own modules which makes Flask great for all kinds of projects. Flask is
one of the most polished and feature rich frameworks available for web development.

All Flask applications must create an application instance of an object of class ‘Flask’. The
web server passes all the requests it receives from clients to this object for handling. Clients,
such as web browsers, send requests to the web server, which in turn sends them to the
Flask instance. The Flask application should understand what code it needs to execute for
the URL requested, so it keeps a mapping of URLs to Python functions. The association
between a URL and the function that handles it is called a route. For the thesis, we will be
creating these routes based on our requirements using a Flask application.

4.4 MQTT (Message Protocol):

Wireless sensor networks (WSNs) pose novel challenges compared to traditional networks.
To cope up with such challenges, a new communication paradigm has emerged. Compared
to other variants, publish/subscribe systems are common and wide-spread in distributed
computing. MQTT [HTS08] is also based on the publish/subscribe paradigm. It is designed
in such a way that it can run on low-end and battery operated sensors, actuators and devices
and operate over networks with constrained bandwidth. These WSNs are the base for IoT
devices. Millions of devices communicate with each other and share data. Within a WSN,
a large number of battery-operated devices with limited amount of storage and processing
capabilities, collect information about the environment and send them to gateways for further
processing. Hence, for this type of communication, we require a protocol which uses a lot
less bandwidth and is also energy efficient. MQTT provides the solution to this. MQTT uses
the data-centric communication approach, in which the data collected is delivered to the
consumers not based on the network addresses, but rather as a function of their contents and
interests. Publish/Subscribe messaging systems are well-known examples of data centric
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communication. These features are achieved by decoupling the various communicating
components from each other such that it is easy to add new data sources/consumers or
to replace existing modules. MQTT is designed especially for operation on low-cost and
low-power devices running over bandwidth-constrained wireless networks.

Figure 4.2: Architecture of MQTT [HTS08]

The figure above shows the MQTT architecture. There are two types of components: MQTT
clients and MQTT gateways. The clients are on the wireless network side and enable the
devices to access the pub/sub services of the MQTT broker located on the traditional
network. They connect to the gateway using the MQTT protocol and the gateway connects
to the broker. One of the weaknesses of wireless networks is their high link failure rates.
Links between the device and gateway can fail at any given time, thus, disconnecting the
device from the broker. Hence, it is highly desirable that a device can connect to multiple
gateways so that if the connection to one gateway fails, it can connect to the broker via
another gateway. Another reason for requiring presence of multiple gateways is the low
transmission capacity of the wireless links. Links in the proximity of gateways could become
congested if large number of devices exchange messages with a gateway. Hence, having
more than one gateway helps remedy that situation because it provides load balancing.
MQTT allows clients to connect to multiple gateways and use it to their advantage. As
mentioned before, MQTT is based on the publish/subscribe paradigm of communication.
The process of registering an interest and getting data from a particular device is called
subscription, and the interested party is called subscriber. Components which want to
produce certain information do so by publishing their information, these components are
called publishers. A so-called broker ensures that the data gets from the publishers to
the subscribers. As explained before, MBP is the platform to manage IoT devices. These
devices send their data to MBP. To access this data, a subscriber of a particular device
could be created and whenever this device produces new data, the subscriber can receive it.
For the thesis, the analytics framework will be using a MQTT subscriber to get live data
from sensors and use it for creating streams of data for analysis as explained before. The
MBP platform provides topics to which a subscriber can subscribe to. MBP uses the sensor

29



4 Technologies Used

ID as the topic name and publishes new messages on this topic. The MQTT subscriber
implements a callback function which is invoked whenever a new message arrives. The
implementation of an ‘onMessage’ function registers a handler for incoming messages.
Whenever a subscriber receives a new message, this method is invoked. As a developer, one
can further process this message in the implementation of this ‘onMessage’ function.
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In the last chapter, we discussed the technologies which are used to create the framework.
In this section, we discuss the high-level design of the analytics framework. The framework
accepts requests from the client and performs the required action based on the request
type. The request generally contains what algorithm is to be applied and on which device
the analysis is to be performed. The analytics framework can be deployed on the same
machine as the MBP, or any other machine. The only requirement to run the framework
is that Python should be installed on the machine. A MBP admin, who has the access to
the MBP platform, is able to send requests to the analytics framework from the same user
interface. The framework performs the desired analysis (stream or batch processing) on the
requested device. The framework creates analysis models and stores it on the file system.
These models can also be later retrieved and used. In the following sections, we discuss
the architecture of the framework and how it communicates with the MBP platform.

5.1 Basic Blocks of the System:

The image below shows the basic blocks of the analytics framework:

Figure 5.1: Basic blocks of the analytics framework
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Flask helps in creating micro-services in Python to handle requests and provide appropriate
responses to it. This communication is done using the REST API. After flask gets a request
from the MBP, based on the request parameters, it either initiates a stream processing
engine or the batch processing engine. Users can also view the models already created and
stored on the File system. Users can view the statistics about the model and also use the
model further. As the name suggests, the batch processing engine is used for on-demand
batch processing of data. It uses Apache Spark as a base for creating machine-learning
models. This engine creates models and saves them for later use. The stream mining engine
is used for data stream mining. It reads the stream of data from the device, updates the
model according to new data and then saves the model periodically on the file system. The
current status of the stream model can also be retrieved and viewed on the user interface.

5.2 Technologies and Communication with MBP:

The figure below shows the technologies used in different parts of the MBP and the analytics
framework, and also how the communication happens between these two systems:

Figure 5.2: Technologies used in MBP and the analytics framework

There is no separate user interface for the analytics framework. The current user interface
of the MBP is being extended with more functionalities to access the analytics framework.
As one can see in the image, the frontend uses Angular and HTML codes. MBP has its
own backend which is based on Java. The MBP uses this backend to manage devices and
sensors and store data from them into the database. When a user requests for an analysis
model, an https request from the MBP is sent to the analytics framework. This request is
made using a REST API call. After receiving the request, the controller on the analytics
framework maps the request to the respective engine for processing. Flask is used to create
these request handlers (controllers) and the processing engines are created in Python. MBP
also provides REST APIs for fetching historical data from devices. Therefore, when the
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5.3 Sequence Diagram:

batch-processing engine gets a request to create an analytics model, it makes a REST API
call to the MBP for fetching the historical data for that device. The communication between
the two systems is mainly supported by REST calls. When MBP receives data from the
sensors/devices connected to it, it publishes the data to a MQTT topic. Therefore, to get
the live data from sensors, a MQTT subscriber can be created which will subscribe to the
relevant sensor topic and get the live data. This mechanism is used for stream mining of
live data from the sensor.

5.3 Sequence Diagram:

A sequence diagram depicts the interaction between objects and also the sequence of
activities performed by the objects. The sequence diagram describes how and in what order
the objects in the system function.

Figure 5.3: Sequence diagram showing sequence of commands execution

The image above shows the sequence diagram for interaction between the MBP and the
analytics framework. Looking at the image, one can see how the interaction takes place
between the two systems. Users can send a request to create a model for a particular sensor.
The MBP gets this request from the user interface and sends it to the analytics framework.
If it is a batch processing request, the analytics framework sends a request back to the
MBP for getting the historical data of that particular device. The MBP sends the data back
to the analytics framework for the relevant device and the data is used to create a model.
The analytics framework creates the requested model and stores it into the file system. If
the user makes a request for stream processing, the analytics framework creates a stream
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mining object for that device. The stream mining object consists of a message subscriber to
that device and a mining model. The message subscriber fetches live data and the mining
model is updated based on the data received. This mining model is periodically stored on
the file system. Users also have the option to view the models already created on the user
interface. Users send a request to get the models that are already created and stored on the
file system. The MBP forwards this request to the analytics framework and the analytics
framework fetches the list of models and sends it back. Users can then select any model
from the list and view the statistics about the model. Users also have the ability to use this
model for further use as just creating and storing the models will not be beneficial. The
details of how users can create, fetch and use the models from the user interface is covered
in detail later in the Implementation chapter of the thesis.
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In the previous chapter, we discussed the high-level system architecture of the analytics
framework. In this chapter, we discuss the implementation of the analytics framework.
Topics include how a model can be created, how to access the statistics of a particular
model and how to use it. The existing MBP framework frontend was extended to access
the analytics framework and provide the functionalities listed before. The MBP platform is
used to send requests to the analytics framework and also for viewing results. The analytics
framework provides REST APIs which are used to implement the functionalities we aim
for. Examples of REST calls to the analytics framework from the MBP platform will be
provided in this chapter. We will now discuss the functionalities provided by analytics
framework and how they are presented in the MBP user interface.

6.1 Implementation of functionalities on MBP user interface:

1. Showing all the existing models in the MBP user interface.

Figure 6.1: New Analytics menu item on MBP user interface
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A new menu item “Analytics” has been introduced on the MBP user interface. Clicking
this menu item sends a REST call to the analytics server. The analytics server returns a
JSON message containing a list of all the models, their type, the algorithm used to create
the model and the time of creation of the model. These statistics are presented in a tabular
form in the user interface.

2. Creating a Batch processing model.

The ‘+’ button on the top right corner of the User interface can be used for creating a model.
Clicking on the button opens a form and the user needs to provide the input values for the
model. The following image shows the input fields of the form.

Figure 6.2: Form to create analytics model

Users must provide the name of the model to be created, a small description of what the
model does, choose the type of model to be created (batch or stream), select an algorithm
from the list of available algorithms and select a sensor from the list of available sensors.
Clicking the “Create Model” button will send a REST request to the analytics server to
create the requested model. The following image shows a sample form with filled values
for creating a batch processing model.
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Figure 6.3: Sample input to create a batch processing model

For example, the REST request sent to the analytics server could look like:

http://localhost:5000/createmodel?algorithm=Classification&sensorid=5e26cb10016d0404ec39ebea&
name=Status Predictor&description=The model will predict the status of machine based
on temperature and current data

3. Creating a Stream processing model.

For creating a Stream Processing model, the same form can be used. Users will have to
select “Stream Mining” as the type of model. To create a stream mining model, users will
have to provide an extra input, which is the “Time (in days)”. This specifies how long the
algorithm would run on a given data stream. The analytics framework is by default designed
to store a snapshot of the stream mining model every 30 minutes. This is a property which
can be configured while setting up the analytics framework. The following image shows a
sample form with filled values for creating a stream mining model.
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Figure 6.4: Sample input to create a stream mining model

For example, the REST request sent to the analytics server could look like:

http://localhost:5000/createmodel?algorithm=Stream KMeans Clustering&sensorid=
5e26cb10016d0404ec39ebea&name=Clustering efficiency and temperature&time=2&de-
scription=Model will create clusters based on reported temperature and efficiency of
machine

4. Viewing statistics of a particular model.

To access the statistics about an existing model, user needs to click on the name of the
model. The name is highlighted to indicate that it is a clickable link.
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Figure 6.5: Access an existing model

Clicking the link opens a new window which shows the statistics of the model.

Figure 6.6: View Statistics of selected model

For example, the REST request sent to the analytics server could look like:
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http://localhost:5000/getstatistics?model_name=Electricity Predictor

5. Using a model to make predictions.

If a model is created based on an algorithm which can be used to make a prediction
(Regression, Classification), then the model can be used to make predictions based on input
values. The user will see the “Use model to make prediction” button only when a model
has the capability to make predictions.

Clicking the button would show a field where users can enter the values to make a prediction.
The following image shows the input field.

Figure 6.7: Form to sent value to make prediction

Users have to enter comma separated values to make a prediction. For example, this model
predicts electricity consumption based on the size of a house and number of power points
in the house. So, for a house of size 90 square meters and having 10 power points, a sample
input would be “90,10”. Clicking the “Predict Value” button will send a request to the
analytics server to predict the result. The following image shows the predicted result value
based on the inputs.
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Figure 6.8: Predicted result based on input values

So, according to the selected model, a house of size 90 square meters and having 10 power
points will consume 42.085 units of electricity.

In this example, the REST request sent to the analytics server looks like:

http://localhost:5000/getprediction?model_name=Electricity Predictor&value=90,10

6. Deleting a model

A user may want to delete a previously created model. This may be due to the number of
models, or the performance of models. Users may not like the statistics of a model and may
wish to delete it as it would serve no purpose to store it longer. Especially in case of Stream
Mining models, there will be a model generated every 30 minutes. So, at the end of 5 days
there will be 240 models. Not all models will be useful and hence, users may want to keep
a few out of them and delete the rest after viewing their performance and statistics.
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Figure 6.9: Delete button to delete the model

There is a “Delete” button provided next to every model which can be used to delete the
particular model. Clicking on the button shows a confirmation dialog box to confirm the
deletion of model.

Figure 6.10: Confirmation box to delete the selected model

Clicking on “Delete” will confirm the deletion and will send a request to the analytics
server to delete the model.

The REST request for deletion sent to the analytics server looks like:

http://localhost:5000/deletemodel?model_name=Regression
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6.2 Implementation of functionalities on the analytics server:

A Python Flask application is used to implement the functionalities on the analytics server.
A Flask application must implement an application file which acts as an entry point for all
the requests made to the server.

This file contains all the routes which are exposed by the REST API to serve different
requests. The routes provided by the analytics server are:

• @app.route(/createmodel”, methods = [’POST’]) parameters: name, description,
algorithm, sensorid, time

• @app.route(/getstatistics”) parameters: model_name

• @app.route(/getprediction”) parameters: model_name, value

• @app.route(/getstreamalgorithms”)

• @app.route(/getbatchalgorithms”)

• @app.route(/getmodels”)

• @app.route(/deletemodel”, methods = [’DELETE’]) parameters: model_name

Note that name of all the routes and parameters are in lower case letters. It is a good
practice as REST routes and parameters are case-sensitive. So, to avoid any confusion, it is
recommended to use all lower case characters for naming REST API routes and parameters.
Also, the request method type is only defined for “createmodel” and “deletemodel” routes.
As the default request method type is “GET”, we do not need to specify the method type
for GET requests. The request method type should only be defined for types other than
GET.

6.3 Algorithms available on the analytics framework:

There are a numerous number of machine learning algorithms one can use to create and
store models. For the thesis, we have chosen four batch processing algorithms and three
stream mining algorithms. The algorithms were chosen based on their variety in types of
machine learning algorithms. The algorithms supported by the analytics framework are
listed below:
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6.3.1 Batch Processing:

Linear Regression

Regression [Gan18] is a method of modelling a target value based on predictors. This
method is generally used for forecasting and finding out cause and effect relations between
various variables. Regression techniques mostly differ based on the number of independent
variables and type of relationship between the variables. Linear regression is a type of
regression in which the number of independent variables is one and there is a linear
relationship between independent (x) and dependent (y) variable. Based on the data points,
a line is plotted that models the points the best. Linear regression is based on supervised
learning. The line can be modelled based on the linear equation below:

Y = a0 + a1*x

The motive of linear regression algorithm is to find the best values for a0 and a1. The cost
function helps us to figure out best possible values for a0 and a1 which would provide the
best fit line for the data points. Since we want the best values, we convert this problem into
a minimization problem where the goal is to minimize the error between the predicted and
actual value.

Figure 6.11: Minimization and Cost function

The difference between predicted values and ground truth measures the error difference.
The error difference over all data points in squared and summed and then divided by the
total number of points. Therefore, this cost function is also known as Mean Square Error
(MSE). Using the MSE value the values of a0 and a1 are adjusted so that the minimum
value of MSE is obtained.
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Decision tree Classification

Decision tree algorithm [Cha19] belongs to family of supervised learning algorithms.
Unlike other supervised algorithms, decision tree can be used to solve regression and
classification problems. The goal of using a Decision tree is to create a training model that
can use to predict the class or value of the target variable by learning simple decision rules
inferred from the training data. In decision trees, traversing starts from the root node for
predicting a class label. The values of the root attributes are compared with the record’s
attribute. On the basis of comparison, the corresponding branch to the value is followed.
Each node in the tree acts as a test case for some attribute and each edge descending from
the node corresponds to the possible answers to the test case. This process is recursive and
is repeated for every subtree rooted at the new node.

There are some assumptions made while creating a decision tree. In the beginning, the
complete set of data is considered as the root. Feature values are preferred to be categorical.
If the values are continuous then they are discretized prior to building the decision tree.
Records are distributed recursively on the basis of attribute values. Order to placing
attributes as root or internal node of the tree is done by using some statistical methods. The
decision of making splits heavily affects the tree’s accuracy. Decision trees use multiple
algorithms to decide to split a node into two or more sub-nodes. If a dataset consists of
N attributes then deciding which attribute to place at the root or at different levels of the
tree as internal nodes is a complicated step. Random selection of node to be root is not a
solution as it may negatively affect the accuracy of tree. Use of some criteria like Entropy,
Information gain, Gini index, Gain ratio, Reduction in variance and Chi-square can help
solving the problem. These criterions will calculate values for every attribute. The values
are then sorted and the attribute with a higher value is placed at the root.

K Means Clustering

Clustering [LVV03] is one of the most common exploratory data analysis technique used
to get an intuition about the structure of the data. It can be seen as the task of identifying
subgroups in the dataset such that data in the same subgroup are similar while data in
other subgroups are different. These subgroups are called clusters. The decision of which
similarity measure to use is application specific. Clustering is considered an unsupervised
learning method as we do not have the ground truth to compare the output of clustering
algorithms to evaluate its performance. We only try to investigate the structure of the
dataset by grouping data points into distinct clusters.

K Means clustering is an iterative algorithm that tries to partition the data into K distinct
clusters where each point belongs to only one group. It tries to make the inter-cluster data
points as similar as possible and also keeps the clusters as far as possible. It assigns data
points to a cluster such that the sum of squared distance between the data points and the
cluster’s center is minimum. This algorithm initializes the centers by shuffling the dataset
and then randomly choosing K data points as cluster centers. Then, it keeps iterating until
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there is no change in the cluster centers. When new data points are added to the cluster,
the center is recalculated by taking the average of all the data points in that cluster. Since
K means clustering use distance based measurements to determine the similarity, it is
recommended to standardize the data to have a mean of zero and standard deviation of one
since mostly the features in a dataset would have different units of measurement. K Means
clustering algorithm is very popular and is used in a variety of applications like market
segmentation, image segmentation, document clustering, etc.

FP growth (Frequent Pattern Mining)

FP-growth algorithm [Bor05] is one of the fastest algorithms for frequent pattern mining.
It is based on a prefix tree representation of the dataset called a frequent pattern tree or FP
tree, which saves considerable amount of memory for storing the transactions. This tree
structure will maintain the association between the itemsets. The database is split using one
frequent item. This fragmented part is known as “pattern fragment”. The items of these
fragmented pattern are analyzed. Thus with this method, the search for frequent items in
comparatively reduced. Similar to other algorithms for frequent pattern mining, FP growth
preprocesses the database as: an initial scan of frequencies of the items (support). All items
with a lower support than the user-defined minimum support as discarded, since they can
never be part of a frequent itemset. The next step is to construct the FP tree. The root of the
tree is represented as null. The next step is to scan the database. The item with maximum
count is taken at the top, the next item with lower count and so on. The branches of the tree
is constructed with items in descending order of count. Although the algorithm does not
depend on this order, various experiments have shown that it leads to slower execution time
than a random order. An ascending order of items leads to the worst execution time. Since
FP tree is built top down, the parent is already know when the children are created. Thus,
it can be passed down in the recursion where the parent pointers of children are set directly.
As a consequence, the nodes of the FP tree can be kept very small. The nodes contains
only fields for item identifier, counter, pointer to parent node and pointer to child node.

After obtaining the FP tree, additional pruning needs to be carried out to simplify the tree
which speeds up the projections. Pruning is achieved by traversing the levels of the FP tree
from top to bottom. The processing starts at the level following the first level that has a
support less than minimum support. This level and the following ones are traversed and
for each node the first ancestor with an item having sufficient support is determined. The
parent pointer is updated to this ancestor, removing the nodes corresponding to infrequent
items. If neighboring nodes receive the same parent, they are merged. There are many
advantages of the FP growth algorithm over the Apriori algorithm for mining frequent
patterns. FP growth needs to scan the dataset only twice. Also, pairing of items is not
done in this algorithm which makes it faster. However, it requires high computing power as
it stores the tree in main memory. When the dataset is large, FP tree requires huge main
memory.
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6.3.2 Stream Mining:

K Means Clustering

Clustering of streaming data [AHWP07] has been one of the most studied data mining
technique, significantly the K means method. The objective is minimizing the average
distance from data points to the center of the cluster they belong to. The proposed algorithm
performs a single scan of the data and uses small spaces. It requires O(nk) time where k
is the number of centers and n is the number of data points. The algorithms starts with
clustering the dataset into 2k according to the memory available, and then on the second
level it clusters the 2k clusters into k clusters. Data Streams require online mining, where
data mining should be performed in a continuous way. Further, the system should also
have the capability to perform offline analysis based on user requirements. The clusters are
stored at particular moments in time known as snapshots.

When a new data point arrives, it is either absorbed by an existing cluster, or a new cluster
of its own is created. The first preference is to absorb the data point into currently existing
clusters. However, in cases where the point is an outlier, or beginning of a new cluster due
to evolution of the stream, it does not belong to any of the existing clusters. In these cases,
a new cluster is created. For making this decision, the cluster feature vector is evaluated to
see if the point lies outside the maximum boundary of the cluster. However, the number of
clusters is fixed, so to create a new cluster the number of existing clusters must be reduced
to create space in memory. This can be done by either deleting a cluster, or merging two
clusters. The algorithm first analyzes whether it is safe to delete any of the current clusters
as outliers, if not then the two clusters are merged. Sometimes it might be tempting to
delete the cluster with the least number of data points in it. However, this might often lead
to wrong and misleading results. In many cases, especially in the cases of concept drift, a
given cluster would be a point of interest in the past history of the stream, but no longer be
an active cluster in the current stream.

An ideal goal would be to estimate the average timestamps of the last m points arriving
in each micro cluster. However, this increases the memory requirement by a factor of m.
Such an implementation would result in a decrease in the number of clusters stored as the
space available for them would be less. Hence, effectiveness of the algorithm would be
reduced. The average timestamp can be calculated by using data about the timestamps of
points stored in a cluster M. We note that the timestamp data allows the calculation of the
mean and standard deviation of the arrival time of data points in M. When the smallest
such timestamp of a micro-cluster is below the user defined threshold, this shows that the
cluster was not updated with new data points for a long time and hence, it can be eliminated
and a new cluster with unique id with the new point can be formed. In some cases, no one
of the micro clusters can be readily deleted. This happens when the relevancy timestamp
of all clusters are sufficiently recent and above the defined threshold. In such cases, the
clusters closest to each other are merged with no longer has an id, but and id list with ids of
the merged clusters. Thus, merged clusters can be identified later if needed.
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KNN Classification

KNN stands for K nearest neighbors. The KNN classification [RC18] selects K nearest
training data samples and then predicts the test sample with the major class among k
nearest training samples. Data streams are assumed to be potentially infinite, with instances
arriving in some order and in rapid succession. Because of this, a classifier has a limited
amount of time in which to process each instance and will never have access to all instances
simultaneously. KNN stream classification updates and adapts a short term memory so it
contains only the current concept, while also retaining a record of all past concepts in a
long term memory. New data points are added to the short term memory, which reduces
the size whenever there is a concept drift. This is done by evaluating multiple window
sizes and retaining the one with minimum test-train error. Both the short term and long
term memory induce a classifier. The final prediction is made by the memory with higher
current average accuracy. The classifiers are ranked by their Hamming score, the final
prediction is made by the classifier with the highest. Using two memories, KNN classifier
takes advantage of the short term sliding window to react quickly to abrupt drift while
also having the option to fall back to long term memory in cases of recurring drifts. KNN
classifier adopts a lazy learning approach that is it incrementally updates the model with
addition of each new instance.

Hoeffding Tree Classification

A decision tree is a directed acyclic graph in which each node is either a decision node with
two or more successors or a leaf node. Therefore, a decision node has some condition based
on attribute values, and the leaf nodes are labeled with a class label. Learning decision trees
from data streams is one of the most difficult problems in the data mining community. The
basic idea of the Hoeffding tree system comes from the observation that a small number of
examples are sufficient enough to select the correct splitting test and split a leaf. Hoeffding
tree algorithms can manage a huge amount of data using less computational resources with
a performance similar to a batch decision tree, given enough examples.

In Hoeffding tree classification [Gam10], a decision tree is learned by replacing leaf nodes
with decision nodes recursively. Each leaf stores sufficient statistics about the attributes.
The sufficient statistics are those needed by the heuristic evaluation function that evaluates
the merit of split tests based on the attribute values. When a data point is available, it
traverses the current tree from root to leaf, evaluating the appropriate attribute at each node
and following the relevant branch corresponding to the attribute values in the data point.
When the data reaches the leaf, the required statistics are updated. Then, each possible
value based on the attribute-value is evaluated. If there is enough support in favor of one of
the tests over all the others, the leaf is transformed to a decision node. The new decision
node will have as many descendent leaf nodes as the number of possible values of the test
chosen previously. The decision nodes only store the information about the split test at that
node. Hoeffding bound is used for deciding sample size to observe before converting any

48



6.4 Storing Analytics Models:

leaf node into a decision node. The evaluation of Hoeffding bound for every data sample
would be very costly. Hence, it is not efficient to compute it every time a new data point
arrives. The algorithm computes the attribute evaluation function only when a minimum
number of examples has been observed since the last evaluation. This minimum number of
examples is a user-configurable parameter.

6.4 Storing Analytics Models:

After a model is created, it needs to be stored as a file for further usage. There are many
ways to store a model and every way has its own advantages and disadvantages. In this
thesis, we will be using PMML and Pickle files to store the machine learning models.

6.4.1 PMML (Predictive Model Markup Language):

PMML [GZLW+09] package is used to export a variety of predictive and descriptive models
to a file. PMML is an XML-based language and has become the standard to represent not
only predictive and descriptive machine learning models, but also the data pre and post
processing. It allows for the interchange of machine learning models among different tools
and environments, avoiding proprietary issues and incompatibilities. PMML provides users
with an open standard representing data mining models. This enables users to share saved
models between different applications and environments. Not only PMML can represent a
wide range of statistical techniques, but it can also represent the input data as well as the
transformations necessary to transform the data. PMML follows a very intuitive structure
to describe a data mining model.

The overall structure of PMML can be described by the following elements:

• Header: The header element contains the general information about the PMML
document, such as description, copyright information, name and version. It also
contains an attribute for a timestamp which can be used to specify the date of creation
of the model.

• Data Dictionary: The data dictionary element contains a definition of all the data
fields used by the model. It is in the data dictionary that a field is defined as categorical,
continuous or ordinal. The data dictionary is also used for describing a list of missing,
valid and invalid values relating to the input data.

• Data Transformation: Transformation allows for the mapping of user data into a
more appropriate form to be used by the data mining model. PMML defines several
kinds of data transformations like Normalization, Value mapping, Aggregation etc.
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• Model: The Model element contains the definition of the data mining model used.
Models usually have a model name, function name (regression, classification) and
technique-specific attributes. Model representation begins with a mining schema
and continues with the actual representation of model. The actual representation of
a model contains Mining schema, targets and Model specifics.

6.4.2 Pickle File:

The one major drawback of PMML files is that not every type of model can be saved as a
PMML file. Moreover, a user may want to save more statistics about a model than a PMML
file saves. For cases like this, using a “Pickle” file is ideal. The Python pickle module
[Fou20] is used for serializing and de-serializing an object structure in Python. The concept
of serialization is simple. Users have a data structure in memory that they want to save,
reuse or send to another application. In situations like these, use of pickle files makes the
storage of files easy. Pickle serializes the object to be stored before writing it to a file. The
pickle module implements binary protocols for serializing and de-serializing. Pickling is a
way to convert objects into a byte stream. The idea behind pickling is that this byte stream
contains all the information necessary for the reconstruction (unpickling) of the object.

A pickle file can be used to store practically anything:

• All native datatypes like Boolean, Integers, Strings, Floating point numbers etc.

• List, tuples and sets containing any combination of native datatypes.

• Functions, classes and instances of classes.

Usage of pickle files help us to eliminate the limitations of PMML files. Any machine
learning model of choice can be stored, with any desired statistics and metadata about the
model. The biggest advantage of using a pickle file is that it is highly customizable and
space-efficient.
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In the previous chapter, we discussed the implementation details of the analytics framework.
We saw how users can view existing models, create a new model and use models to make
predictions. We also saw, what kinds of models are offered by the analytics framework and
what algorithms are available to create models. In this chapter, we will be discussing some
real world scenarios to show the use of analytics in IoT and how this analytics framework
with MBP enables achieving these real world goals. Smart cities use IoT devices, such
as connected sensors, lights and meters to analyze data. Data analytics on this data can
be then used to improve infrastructure, utilities, services and more. Industrial IoT is used
across several industries, such as manufacturing (Industry 4.0), logistics, oil, aviation,
transportation and other industrial sectors and the use cases which are typical for these
industries. As of now, be it batch or stream processing, an analysis can only be performed
on a single sensor data. Data merging from multiple sensors, or collecting different statistics
about same machine from different sensors in not supported.

7.1 Modeling energy usage in Smart Cities:

Migration from rural to urban areas leads to the emergence of urbanization and sustainability
problems. Management and monitoring of resources and infrastructures are getting more
important today in cities. Energy consumption is increasing with the growing population in
cities and this results into high energy demands. Therefore, energy efficiency and planning
is becoming a challenge in bigger cities. Smart cities and smart systems aims at improving
city life and making it more efficient. We present an idea how IoT analytics can be used to
predict electricity usage and help in planning and modeling of electricity usage. This is a
great example of how batch processing can be used in smart cities by collecting the data
from different houses.

In a Smart City, every house can be equipped with a sensor which reports the electricity
usage of that house. Also, metadata about the house, like size of house, number of power
outlets, number of stories, age of house, etc. can be stored. Each sensor has a SensorID
which is used to identify which house the sensor belongs to. This data can be used to create
a predictive model which can be further used to predict the amount of energy used by a
particular house. This model can also be used to predict the energy requirements of any
new house to be constructed based on the parameters of that house. This idea would help in
better planning and modeling of energy usage in Smart cities. To show the implementation
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of this model, a simulation of data was created and then, based on that, a Regression model
based on size of house and number of power outlets in the house. So, according to the data
collected and the model created, a house of size 90 square meters and having 10 power
points will consume 42.085 units of electricity.

Figure 7.1: Predicted Electricity consumption value

Based on the model, energy consumption plans can be made, houses can be reported
whether their energy usage in normal, above or below the average energy usage. House
owners can be made aware about what should be their energy consumption and what the
actual consumption is. Efficiency ratings can be given to buildings. Connecting more home
devices will help, e.g., functions like dimming of lights or switching them off or modifying
multiple settings will be possible. Every house can mark some devices as “important” or
“critical”, which guarantees power supply at all times. Power supply to other devices can
be stopped if needed. Hence, a complete blackout can be avoided in cases of power failure
or any other problem. So, we can see here that merely collecting power consumption data
and predicting usage can lead to many benefits in planning and modeling energy usage in
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smart cities. This is just the tip of the iceberg, there are many other use cases which can
be implemented in smart cities to model energy usage in a better way and will result in
numerous benefits for both the house owners and the energy providers.

7.2 Predictive maintenance in Smart Industries:

Predictive maintenance [LS19] relies on real time monitoring and diagnosis of system
components, production chains and processes. Predictive maintenance is a classic case of
the use of stream mining in IIoT (Industrial IoT). The primary strategy is to take action
when some parts or items show certain behavior that usually results in machine failure,
downtrend in quality or degraded performance. Initially, predictive maintenance was
motivated by the execution of system checks at predefined intervals to analyze the health
of equipment. But, during recent years, the emergence of data stream mining provides
the capability of analyzing data as it is generated and eliminates the chances of missing
an anomaly in machine behavior which was very common missed in periodic analysis.
This makes predictive maintenance easier and more effective. In this sense, it became an
essential component of Industry 4.0 applications and environment. The goal of predictive
maintenance in all kinds is to recognize untypical system behavior or undesired trends at
an early stage. Wear and tear of any equipment is unavoidable, predictive maintenance
helps in predicting at an early stage the date of failure or date when the performance goes
below the required quality standards. This helps in planning of maintenance and outages
by a company. The impact of random outages can be really costly for a company, predictive
maintenance helps in reducing the amount of unplanned outages by a considerable amount.
This helps companies perform their business in a better and smoother way.

Sensors on different machines and equipment needs to be installed to collect statistics (ex:
Temperature, performance, current, intensity of vibration, efficiency, etc.). Using these
statistics, models can be created which can detect anomalies and predict the point in time
when these machines require a maintenance before the performance goes below an expected
level of quality. A regular fault detection problem is a binary classification problem which
aims to predict whether a system state (statistics at a particular point in time) corresponds
to faulty or a fault-free state. The analytics framework provides the option to create a
stream classification algorithm (Stream K-nearest neighbors) which can be used for this
purpose. This classification can also be implemented as a scale of system state (from good
to critical) to predict the health of a machine based on various statistics collected from it. In
the example below, we used a KNN prediction model to predict the state of an equipment.
We used the parameters current, temperature and efficiency to make predictions about the
state of the equipment. Using the model, we can predict the state of the equipment (on a
scale Good (1) to Critical (5)). So, according to the model, the equipment with 23 units
of current, temperature of 34 degree Celsius and efficiency of 65% is in a good (status:1)
condition.
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Figure 7.2: Predicted Status of the device

7.3 Descriptive analysis of components in Smart Industries:

Descriptive analysis is a basic form of analytic insight, but is useful in many scenarios.
They allow users to describe and aggregate incoming data. Even calculations as simple as
mean and standard deviation for a large data set can make sense. In a connected factory
use case, descriptive analytics might be used to answer many questions. Finding frequent
patterns between different parameters, like temperature, flow rate, RPM, current etc. can
help answering the question “What scenario leads to what result?”. Using sensor data
reporting temperature, current and efficiency of a machine, we created a frequent pattern
mining model using the analytics framework.
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Figure 7.3: Finding frequent patterns between different parameters

The results show the association rules between “t_med and c_med” with a confidence of
0.5 and “c_med and t_med” with confidence of 0.51. These results clearly show that there
is a strong relation between the current and temperature of the equipment. This analysis
will be helpful in analyzing the problems caused by high temperatures in the equipment.

As we saw above, there are many real world use cases of analytics in IoT. The above
presented scenarios are just few of the many possibilities of using analytics in IoT. IoT data
opens the door for numerous opportunities for making better changes in smart environments.
Data management, modeling and analytics tools are the core enablers of these opportunities.
IoT itself is making the life in smart cities, industries and other field far better than what it
used to be. Using analytics with IoT can unlock many possibilities and usages which we
have never imagined. Analytics dramatically increase the visibility and understanding of
usage and behavior in smart environments. We have now entered the age where the everyday
objects and home appliances communicate with and control each other. Analyzing the data
generated and understanding the behavior has become really important. A wide range of
sensors, machine and devices generate massive amounts of data, requiring a whole new
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level of data modeling and analysis. The above use cases represent some of the scenarios
where integration of MBP with the analytics framework will help producing models which
will turn out to be useful in many scenarios.
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8 Conclusion

In this thesis, we have created an analytics framework for the MBP IoT platform. MBP
is a platform which enables automatic provisioning and configuration of devices in the
Internet of Things (IoT). In the emerging so-called “smart” world of IoT, the integration
of devices, sensors, and actuators has become more and more important. IoT benefits
from data coming from a huge number of connected devices, which helps in creation of
these smart environments. MBP itself makes the collection and management of huge data
from different sensors and devices easier. After adding data analytics capabilities to this
platform, the possibilities are limitless. Moreover, the development of analytics frameworks
for different IoT applications is urgently needed. We envision that this thesis is offered as a
mere baby step in a potentially fruitful direction. In this thesis, we showed how analytics
can be used in IoT and how can one build a framework which works seamlessly with
the IoT management platform MBP. We also showed some real-world application of the
framework to show how one can use the results of analytics for creating smart environments.
For example, applications of the analytics results on data acquired can include activity
recognition to identify health problems, identify energy consumption patterns and energy
saving planning and predicting equipment maintenance to avoid unplanned outages and
expensive repairs and ensure efficient operations of various industries.

In general, the analytics framework can aid effective and in-time decision-making for
individual applications by creating and using models based on the data generated by the
devices. Creating machine learning models is a complex process that requires continuous
fetching of data from the devices which have easy access to data. The problem of fetching
and integrating data from devices and sensors is solved by the MBP platform and then this
data is used by the analytics platform to create both batch processing and stream mining
models.
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Figure 8.1: Total number of connected devices with share of IoT devices [Lue20]

As we can see in the image above, the share of IoT devices is increasing rapidly among
all the connected devices around the world. These devices create data at a never imagined
speed. GBs of data is being generated by a single device per hour. Storing and managing
this amount of data is really hard. A huge amount of storage is needed to store the data
from devices. However, the raw data is useless for a user until we can derive insights from
it. This is where analytics comes into the picture. Data can be stored for a shorter period of
time (few days to a week) and a batch processing model can be created using the data. In
cases where data is too much to handle, stream mining can be used where data would be
analyzed on the fly and then the user may or may not choose to store the complete data.
That is one of the many benefits of stream data mining. The analytics platform provides a
lambda architecture, enabling both batch and stream processing capabilities which gives
users the choice of mining models they would prefer to make for different sensors and
devices. Also, users can make both batch and stream mining models for the same sensor
and then also compare the results. This will assist the users to choose which method to
choose in which scenario.

With the number of increasing devices resulting into a huge amount of data, it is clear that
the importance of data mining in IoT environments will be increasing. However, more
devices and more data also bring more challenges and difficulties in data mining. As
the world is evolving into a digitally smarter connected platform, the challenges in data
mining will also be increasing. However, these challenges can be addressed using better
methodologies, better data cleaning tools and better processing resources. In this thesis,
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the use of lambda architecture helps us in reaping the benefits of both batch processing
and stream mining of data which gives users the flexibility of choosing what kind of data
mining model they want. The analytics framework provides the functionalities of creating
a model, viewing statistics about a model, using a model to make predictions and deleting
a model. All the functionalities integrated in the existing MBP user interface enables
the existing MBP user to access the analytics framework and use the functionalities as
desired. As IoT becomes more integrated into our daily life, data analytics has become
really important in helping users draw key insights without having to do any of the heavy
lifting. Data analytics is no longer an add-one, but an integral part of any IoT solution. The
full capability of IoT in the real-world use lies in applying analytics to the data generated
and using the knowledge to create a smarter, better and more efficient world.
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9 Future Work

In this thesis, we presented how analytics can be used with the MBP IoT platform to create
models and derive insights from raw sensor data. However, the analytics framework is just
a prototype showing the implementation and use of analytics in IoT. The IoT and the new
world of smart systems are ushering into an era where people, devices, machines, sensors
and businesses are all connected and able to interact with each other. Data management and
analytics tools are the core enablers of these new opportunities. Without analytics, users
can just scratch the surface of the real value of the huge data created by the IoT devices.
We created an analytics framework for the MBP platform with basic functionalities in this
thesis, but many different adaptations, tests and scenarios have been left for the future. In
this chapter, we will discuss and present some of the ideas which can be worked on in the
future.

In this thesis, we used Apache Spark as a Batch processing engine. It uses a query opti-
mizer to achieve high performance. In this thesis, we have included four machine learning
algorithms. However, Apache Spark provides a lot of other algorithms with easy implemen-
tations, which can be used to create various different kinds of models. Also for stream data
mining, new algorithms and models can be integrated in the analytics framework. There
are no limitations to the framework, so new analytics engines can also be integrated into
the same analytics framework to provide more options to the user for creating models. In
the thesis, we created models with minimal parameter tuning. Machine learning models
are as good as their accuracy. A model which is not accurate enough cannot be trusted
to make business decisions and hence, would not be of great use. So, more focus on the
accuracy of models can be put to ensure high quality modeling. This can be done by tuning
the various parameters used by the models. Also, more options on the user interface can
be given to the user for creating models. Making options like number of clusters to be
created for clustering, minimum support and minimum confidence for finding frequent
patterns configurable, would help users to create personalized models according to their
needs. There are many parameters which every algorithm uses for creating models. These
parameters are user-configurable and would make the models more accurate and also user
centric. To do this, the user interface would need to be extended and adapted for different
algorithms to provide input fields for various parameters. Adding these functionalities
would make the analytics framework more useful and ready for the real world.

In addition to the statistics collected about the models by the analytics framework, more
statistical parameters can be added to the models for better understanding and benchmarking.
For any system, benchmarking plays a very important role. Benchmarking is a sensible
exercise to establish baselines, define best practices and identify improvement opportunities.
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It helps in gaining an independent perspective about how well the system performs. Some
statistics like data size or execution time are already recorded by the analytics framework
for every model. More parameters like CPU utilization or memory requirements can also be
added to the set of statistics which would help in benchmarking of models under different
circumstances.

In addition to creating models, integrating an alert system in the analytics framework
would also be very useful. Reporting of events is always a good idea. Various events on
the analytics framework like finishing model creation, model successfully created, model
creation failed etc. can be reported to the relevant user. Also, events like an anomaly
detection could also be reported to the user. Alerts can be sent to users in various forms.
Alerts can be published to a topic which users can subscribe to, an alert board can be created
on the user interface where all the alerts are posted, emails can be sent to the relevant user
in case of an event or a push notification to the user can also be sent. Reporting enables the
user to know what is going on in the system.

Currently, the analytics server supports only data from one particular sensor. When creating
a model, only one sensor deployed on MBP can be selected. This limits the usage of the
analytics server. Sensors are commonly used stand-alone or in device to collect data and
detect changes in the environments. If you happen to be using any king of smart device
like a phone or a watch, you have likely seen how the sensors can be useful in providing
valuable insights about your day to day life. Sensors generate data at all times, so it is really
important to have an efficient integration system in place to ensure that the data is more
useful in deriving insights. The IoT is the future of technology that helps in deriving insights
to regulate and understand the things in a considerably stronger way. There are various
open-source tools available to join and merge data from different sensors. Integrating such
a tool to the analytics framework could be helpful in integrating the data. Apache Kafka is
a nice example of such tools. Kafka is really efficient in building real-time data pipelines
that reliably get data between systems or applications. It can also be used to perform
transformations on the data if required. Also, creating such a tool which merges data from
different sources is not a very difficult task. So, some extra code can be written to handle
data from different sensors and merge them before sending them for analysis. Another idea
could be creating a database for merged data. A subscriber can be created which listens
to all the sensors reporting different parameters like temperature, current, pressure of a
particular device. When new data is received, it can merge it and store it into a database
which contains tables for all connected devices. The columns of the table would be the
parameters reported by the device. This way we will have a relational database containing
data from different sensors for particular devices. This database can directly be used by
the analytics server to create models. Hence, there can be various approaches to joining
and merging sensor data which can be adopted, but using them would be really helpful in
creating multi-dimensional models, which would help deriving useful insights.

The analytics framework created in this thesis can have a numerous number of use cases. It
would serve as a base for more advanced analytics environments. Adapting the analytics
framework to IoT systems would help in creating smart environments. The analytics
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framework provides REST APIs for interaction to other systems which makes it loosely
coupled to other systems. This also makes extending and adapting to the analytics framework
easier. As REST is used, one huge analytics server can be used for providing analytics
services to many different IoT platforms. There can be a huge number of changes and
improvements that can be made to the framework. Above, we listed some of the features
which are not very complicated and can be implemented in the future.
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