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Abstract

To build fast parallel applications, multiple programming models have been developed over the past
years. In particular, the Partitioned Global Address Space (PGAS) model has emerged from the
traditional shared memory and distributed memory models. The PGAS model offers decoupled
synchronization and communication between processes. Recent approaches combine the PGAS
model with task parallelism, e.g. DASH, UPC++ and X10. Tools are needed to verify the correctness
and analyze the performance of parallel applications. To use such tools, an interface is needed to
enable communication between the the underlying runtime and the tool itself. In this thesis, the
design of a tools interface for the DASH C++ PGAS Framework is explored and evaluated. A
modular plugin-based interface infrastructure is developed and implemented to connect external
analysis tools. Plugins are used as a wrapper for external analysis tools, which do not offer native
support for the developed tools interface. To show the functionality of the interface and the
corresponding infrastructure, two analysis tools, namely Temanejo and Extrae are connected to the
interface infrastructure. Finally, the interface infrastrucuture and the plugin to connect the Extrae
performance analysis tool are evaluated by using both real-world and microbenchmarks to determine
a possible overhead. For the infrastructure, no significant overhead can be measured with both
real-world and microbenchmarks. However, with microbenchmarks, a significant overhead can be
measured for the Extrae plugin. As the real-world benchmark reveals, the overhead is not relevant
in practice, since no significant overhead can be measured here.
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Kurzfassung

Um schnelle parallele Anwendungen zu entwickeln, wurden über die letzten Jahre verschiedene
Programmiermodelle entwickelt. Besonders hervorzuheben ist hier das Partitioned Global Address
Space (PGAS) Modell, welches sich aus dem Shared Memory und dem Distributed Memory Modell
herauskristalisiert hat. Das PGAS-Modell entkoppelt die Synchronisation und die Kommunikation
zwischen Prozessen. Neuere Ansätze kombininieren das PGAS-Modell mit Task-Parallelität, wie
z.B. DASH, UPC++ und X10. Externe Tools werden benötigt, um die Korrektheit paralleler Anwen-
dungen zu überprüfen sowie deren Performance zu analysieren. Um diese Tools zu benutzen, wird
eine Schnittstelle benötigt, damit diese Tools mit der zugrundeliegenden Runtime kommunizieren
können. In dieser Arbeit wird das Design einer Tool-Schittstelle für das DASH PGAS C++ Framwork
entwickelt. Eine modulare Plugin-basierende Infrastruktur wird für diese Schnittstelle entwickelt,
um externe Tools verbinden zu können. Diese Plugins fungieren als Zwischenschicht, um auch
Tools verbinden zu können, die keine native Unterstützung für die entwickelte Tool-Schnittstelle
bieten. Um die Funktionalität der entwickelten Schnittstelle zu zeigen, werden zwei verschiedene
externe Tools, namentlich Temanejo und Extrae, mit der Infrastruktur der Schnittstelle verbunden.
Zu guterletzt wird der Overhead der gesamten Infrastruktur sowie der Overhead des Plugins, welches
benötigt wird um Extrae zu verbinden, mit Anwendungs- und Mikro-Benchmarks gemessen. Die
Infrastruktur weist keinen signifikanten Overhead auf, jedoch kann ein signifikanter Overhead für
das Extrae-Plugin mittels Micro-Benchmarks ermittelt werden. Jedoch zeigt der Anwendungsbench-
mark, dass der gemessene Overhead nicht praxisrelevant ist, da hier kein signifikanter Overhead
messbar ist.
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1 Introduction

The development of parallel applications has become mandatory in order to use all the resources that
modern hardware offers. Researchers developed multiple programming models that form the basis
for builing fast parallel applications. In recent years, the Partitioned Global Address Space (PGAS)
model has emerged from the traditional shared memory and distributed memory models. It combines
the convenience of writing applications for shared memory systems with the scalability of distributed
memory systems. The PGAS model offers decoupled synchronization and communication between
processes, which offers potential to reduce communication overhead. Schuchart and Gracia [SG19]
combined the PGAS model with the approach of task-based programming. This enables to mitigate
the coarse-granularity of PGAS with the use of “fine-grained task synchronization across process
boundaries” [SG19]. This approach has been implemented in the DASH C++ PGAS Framework.

More traditional programming models like OpenMP, XcalableMP or MPI offer tool interfaces
(OMPT [EMS+14], XMPT [PTM+17], PMPI [Mes15]) to extract valuable information developers
may need to write correct and fast applications. With those tools interfaces, developers are able to
connect external analysis tools to verify the correctness and measure performance of their applica-
tions. Since none of those programming models cover the semantics of the DASH programming
model, none of their tools interface mentioned above can be used for DASH. The goal of this thesis
is to implement a tools interface for DASH that is loosely following the concepts of existing tool
interfaces of more traditional programming models.

1.1 Motivation

As of today, a parallel programming approach is required in order to make full use of computational
resources that modern systems offer. However, developing parallel applications is more demanding
than developing sequential applications. Tools are needed to verify the correctness and to measure
the performance of a parallel application. To use such tools, an interface is needed in order to enable
communication between the application and the tool itself. Especially for new, hybrid programming
models such as the Partitioned Global Address Space (PGAS) model combined with multiple classic
approaches for parallel programming, e.g., tasking, there are no tools interfaces available.

To change this, this thesis explores and evaluates the design of a tools interface for a task-based PGAS
runtime. This interface can be used to debug and analyze the performance of parallel applications.
In former times, both use cases were strictly separated. Nowadays, it is a flaw when an application
is not optimized for parallel systems. Hence, the performance of an application is as important as
its correctness.

Already existing tools interfaces like OMPT [EMS+14], XMPT [PTM+17], PMPI [Mes15] are
made for other, more traditional programming models (OpenMP, XcalableMP, MPI). They are
not compatible with the DASH C++ PGAS Framework used in this thesis, since this framework
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1 Introduction

implements its own programming model called the Global Task Data Dependencies Model and is
not compatible with other programming models. Although DART uses MPI as a backend, it would
be possible to use a MPI tools interface with DASH. However, the obtained information would
solely cover MPI function calls. Since MPI only operates as a backend, the obtained information
does not contain valueable information considering the overlying DASH tasking model. In fact, all
MPI function calls would be instrumented, also including internal calls from the scheduler that are
not supposed to be instrumented.

For this reason, a tailor-made tools interface is designed for this framework. The tools interface
should serve as a bridge between the DASH Runtime (DART) and an external analysis tool. Therefore
it is possible to connect basically every tool to the interface infrastructure.

Outline

This thesis is structured as follows.

Chapter 2 - Background introduces fundamental models for parallel applications and presents
the DASH C++ PGAS Framework.

Chapter 3 - Related Work puts this thesis in context with the work of other researchers in this
particular topic by introducing similiar existing tools interfaces for more traditional programming
models.

Chapter 4 - The Design of the DASH Tools Interface describes the design objectives of the tool
interface and the resulting architecture.

Chapter 5 - Implementation gives a more detailed view on the tools interface and how the
prototypical implementation is done.

Chapter 6 - Evaluation evaluates the interface with an emphasis on the resulting performance
overhead.

Chapter 7 - Conclusion and Outlook concludes this thesis and gives suggestions for further
work in this field.
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2 Background

This chapter gives an overview over different parallel programming models and their underlying
architectures used nowadays. In addition, the approach of task-based parallelization is introduced
and compared with the data parallelism approach. Finally, the previously mentioned DASH C++
PGAS Framework will be presented and the underlying Global Task Dependencies Model will be
explained in detail.

2.1 Parallel programming models

The most popular parallel programming models used today can be divided into three different
categories. The first category consists of the shared memory models offering a global address
space for all connected processes. Second, the distributed memory models differ from the shared
memory by having a local address space for each process. The third category consists of the
Partitioned Global Address Space (PGAS) model which is a hybrid of the first two categories. It
combines the convenience of the shared memory programming model as well as the locality and
performance control of the distributed memory programming model. The following subsection
gives an overview of the different parallel programming models with their underlying architectures
and representatives.

2.1.1 Shared memory model

The shared memory programming model is suited for shared memory architectures. In shared
memory architectures, all processes are connected and have access to memory modeled as a global
address space. Both communication and synchronization are handled by manipulating common
variables residing in common shared memory. To implement the shared memory model, either
so-called “heavy-weight” processes or “light-weight” processes can be used [Bar10]. Figure 2.1
shows a diagram of a shared memory architecture using threads.

A single “heavy-weight” process provides all resources which are needed to execute a pro-
gram [Mic19], including its own virtual address space, the executable code itself, a unique process
identifier, a security context, environment variables and at least one thread of execution.

A thread “is the entity within a process that can be scheduled for execution” [Mic19]. A process
consists of at least one thread. All threads of a single process share its virtual address space
and system resources. Additionally, each thread maintains its own thread identifier, exception
handler, a scheduling priority and a set of structures to save the context of the thread until it is
scheduled. POSIX threads (Pthreads) on Linux save the capabilities and the CPU affinity per thread
as well [Lin19].
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Thread n Thread n + 1 Thread n + 2 Thread n + 3

Communicate information

Memory

Figure 2.1: The shared memory model, used in e.g., OpenMP.

When using the shared memory model with processes, all processes share a common global address
space, to which they can both read and write asynchronously. To ensure correctness for asynchronous
access to common data, various well-known approaches like lock-mechanisms, semaphores or
monitors can be used to implement mutual exclusion [AKH03].

The advantage of the shared memory model is its simplicity from the programmer’s point of view.
The model does not define a notion of data-ownership for the programmer, which means that the
programmer does not have to explicitly handle the communication between processes, since all
processes have equal access to the shared memory global address space [Bar10; HDT+15]. The
resulting disadvantage is the increased difficulty to understand and manage data locality between
multiple processes. Since data has no explicit owner, it can be difficult to keep data local to a single
process in order to avoid unnecessary cache refreshes and bus traffic.

Implementation

The shared memory programming model is typically implemented using a multi-threaded pro-
gramming model [Bar10]. POSIX Threads (Pthreads) and OpenMP are popular examples for this
approach.

Pthreads is a C/C++ threading library [Lin19], whereas OpenMP is a directive-based shared memory
API [DM98] with C/C++ and Fortran implementations are available.

In contrast to OpenMP, Pthreads requires significantly more attention to detail from the developer,
since its definition of parallelism is very explicit [Bar10]. Pthreads can be used as a foundation for
other implementations. The DASH C++ PGAS Framework uses Pthreads to bind a task to a thread
in order to execute a task.
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Memory

Process n

Memory

Process n + 1

Memory

Process n + 2

Memory

Process n + 3

Network

Figure 2.2: The distributed memory model, used in e.g., MPI. Figure adapted from [ST98].

2.1.2 Distributed memory model

The counterpart of the shared memory model is the distributed memory model. It is suited for
distributed memory architectures, where each process has its own private local memory. Distributed
memory architectures differ from shared memory architectures in the way, that processes do not
communicate via common variables. Instead, processes communicate by exchanging messages
over a network, to which all processes are connected. Unlike the shared memory model, processes
in the distributed memory model do not have access to a global memory space. In order to do
computation with multiple processes, programmers have to implement explicit communication. By
sending and receiving messages, data can be transferred between multiple processes. This usually
requires cooperate communication, i.e. a send operation has to match a receive operation [Bar10].
As a consequence, synchronization and data transfer are coupled.

Implementation

Since the 1980s, a variety of message passing libraries were developed, e.g. the Parallel Virtual
Machine (PVM), which is compareable with the Message Passing Interface (MPI) [GL02]. MPI is
the “de-facto” standard for using message passing with the distributed memory model [KLL15]. The
first standard was published in 1994 [CGH94], the second version in 1996 [CGH94] and the third
version in 2012 [Gro12]. The current MPI standard 3.1 was introduced in 2015 [Mes15]. MPI-2
introduced one-sided-communication, which will be explained in the following subsection.

One-sided communication

The standard MPI is based on a two-sided communication and collective communication model
[Mes15]. In this model, both, the sender and receiver of a message are actively involved in the
message exchange. As a consequence, the sending process has to wait for the receiving process to
start receiving. By using the one-sided communication model introduced in MPI-2, only a single
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process is involved in the message exchange. The underlying technique is called Remote Memory
Access (RMA). Extended support by hardware acceleration is provided, if the system supports
Remote Direct Memory Access (RDMA). The CPU of the remote process is not involved in the data
transfer process, instead the network interface directly handles the transport of the transfered data
when using RDMA [YBC+07]. With this technique, data transfer and inter-process synchronization
is decoupled.

In the past couple years, research was done to combine shared memory approach with the distributed
memory approach. As a result, the Partitioned Global Address Space model (PGAS) has emerged.

2.1.3 Partitioned Global Address Space (PGAS) model

The PGAS model consists of a set of processes. Each process has local memory attached, just
like in the distributed memory model. The difference to the distributed memory model is that a
process may share its local memory with other remote processes. Nowadays this memory sharing is
implemented by either using a network device with software support or trough hardware shared
memory with cache coherence [GBH18]. Nowadays, memory sharing is implemented via Remote
Direct Memory Access (RDMA) [Alm11].

The PGAS model is a promising approach for programming applications running on current petascale
and upcoming exascale computers [GPH+15]. It offers the programming convenience of the shared
memory programming model and the locality and performance control of the distributed memory
programming model. Especially when dealing with dynamic and irregular communication patterns,
like in graph analytics or other data intensive fields, the PGAS approach is more suitable than the
common two-sided-communication approach as used in MPI without the RMA extension [FFK16;
GPH+15].

To ensure greater performance, PGAS languages rely on one-sided communication [YBC+07].
Schuchart and Gracia [SG19] point out that systems without RDMA capabilities show poor perfor-
mance when using MPI-RMA operations instead.

2.2 The tasking approach

In order to exploit the power of modern computer architectures, the use of parallelism is key. Two
popular forms of parallelization exist, data parallelism and task parallelism.

The use of data parallelism applies the same operation on multiple data values in parallel. A popular
implementation of data parallelism on the instruction set level of modern processors are the so
called Single Instruction Multiple Data (SIMD) extensions, e.g., SSE and AVX. With AVX for
example, two double precision floats (64 bit) can be added per cycle. Another popular example for
data parallelism is the OpenMP worksharing construct [Ope18]. Data parallelism works well on
structured data structures, where such extensions can be applied.

Irregular data structures do not fit the data parallelism model. Here, task parallelism can be used.
Task parallelism is an approach to to run multiple independent tasks in parallel, which leads to the
definition of a task from [Cra14].
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2.2 The tasking approach

Definition 2.2.1 (Task)
“A unit of computation that can/should execute in parallel with other tasks.”

A task consists of a set of instructions to be executed and a list of dependencies, which determine
the execution order of the tasks.

In general, two types of dependencies exist. The first type is the input dependency. A task having
an input dependency reads a variable. A task having an output dependency writes to a variable.

These dependencies determine at which point in time a task can be executed. Formally, dependencies
describe a binary ordering between two tasks. If a task t1 is dependent on a task t0, t1 can only be
executed, if t0 has successfully finished its execution.

In order to schedule tasks, i.e. to determine the order of the tasks to be executed, a scheduler has to
create a task graph. The following definitions introduce the concept of cyclic graphs, which lead to
the definition of a task graph.

Definition 2.2.2 (Directed graph)
A directed graph G = (V, E) consists of two sets V and E , where V is a set of vertices and E ⊆ V ×V
is a set of tuples describing the edges.

Definition 2.2.3 (Cyclic graph)
A graph G = (V, E) is cyclic if there is a path (v1, v2, . . . , vn) with vi ∈ N for i = 1, . . . n with
v1 = vn.

The definition of a task graph should now be intuitive.

Definition 2.2.4 (Task graph)
A task graph is a directed acyclic graph, where the nodes represent the tasks itself and the edges
represent the dependencies between two tasks. A task t is dependent on a task s, if there is an
directed edge (s, t) ∈ E . If a task t has no incoming edges then this task can be executed at any time.

Figure 2.3 shows an example task graph based on the code in listing 2.1. Formally, the task graph
can be described as follows.

V = {t0, t1, t2, t3} with (2.1)
E = {(t0, t1), (t0, t2), (t1, t3), (t2, t3)}. (2.2)
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t0

t1 t2

t3

va
r0

var0

var1 va
r2

Figure 2.3: The task graph for the DASH application in Listing 2.1.

1 #include <stdio.h>

2 #include <libdash.h>

3

4 int main(int argc, char **argv) {

5 dash::init(&argc, &argv);

6 int var0 = 42;

7 int var1; int var2; int var3;

8 namespace dt = dash::tasks;

9

10 dt::async("TASK0",

11 [&]() { var0 = 42; printf("TASK0: var_0 = %d\n", var0); },

12 dt::out(var0));

13

14 dt::async("TASK1",

15 [&]() { var1 = var0 + 10; printf("TASK1: var_1 = %d\n", var1); },

16 dt::in(var0), dt::out(var1));

17

18 dt::async("TASK2",

19 [&]() { var2 = var0 - 10; printf("TASK2: var_2 = %d\n", var2); },

20 dt::in(var0), dt::out(var2));

21

22 dt::async("TASK3",

23 [&]() { var3 = (var1 + var2)/2; printf("TASK3: var_3 = %d\n", var3); }

24 dt::in(var1), dt::in(var2), dt::out(var3));

25 dt::complete();

26 dash::finalize();

27 return 0;

28 }

Listing 2.1: An example of an DASH application with four tasks.
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Task t0 does not have incoming edges in the task graph. Hence, t0 is not dependent on any other task,
which means it can be executed at any time. Both, t1 and t2 are dependent on t1, since they both
require the updated value of var0. When the executing of t0 is finished, t1 and t2 can be executed.
If the number of resources is sufficient, they both can be executed in parallel. To execute t3, the
updated values of var1 and var2 are required. Therefore t3 can only be executed, if and only if t1
and t2 have finished their execution.

2.3 The DASH PGAS Framework

DASH [FFK16] is a C++ 14 template library offering static and dynamic distributed data structures
and parallel algorithms implementing a Partitioned Global Address Space (PGAS) approach. It
realizes the PGAS model purely as a C++ template library, such that no additional compiler
infrastructure is needed. This makes it easier to integrate DASH into already existing code bases.
It also offers global-view data structures, inter-operability with the C++ standard template library
(STL) algorithms and existing MPI applications.

2.3.1 DART as a part of DASH

The template library DASH is built on top of the DASH RunTime (DART). DART is a lightweight
C implementation of the PGAS approach offering basic functionality for global memory allocation
and global memory addressing using 128-bit pointers. It abstracts from a variety of one-sided
communication backends such as GASPI and MPI-3 RMA [FFK16]. The tasking approach uses
Pthreads as a backend to bind tasks to a thread in order to execute the task.

DASH follows the Single Program Multiple Data (SPMD) approach with hierarchical additions,
i.e. there is a virtual root task creating all tasks. The individual participants in a DASH application
are called units. These units can be grouped in teams, which form the basis for all collective
synchronization, communication and memory allocation operations [FFK16]. Throughout this
thesis these units will be called DASH units. DASH units are implemented as “heavy-weight”
processes. Listing 2.1 shows a simple DASH application with four tasks including dependencies.

2.3.2 Global Task Data Dependencies Model

The global tasking model presented by Schuchart and Gracia [SG19] is a part of DASH. In this model,
the main threads of each process execute the application’s main routine. Tasks are dynamically
created by the main threads of each process and executed by a set of worker threads and the main
threads itself. Hence, there are no explicit parallel regions like e.g., in OpenMP. In contrast to other
tasking models, there is a virtual root task which is used as a parent task for tasks created in the
main thread of execution. Tasks are able to create tasks themselves. When all dependencies for a
single task have been released, it is added to the pool of runnable tasks. Dependencies are only
synchronized between tasks that have the same parent task.

In the global tasking model in DASH, a task consists of an action and a set of dependency defi-
nitions. The action equals the function that shall be computed. A data dependency definition in
DASH consists of a reference to the dependency itself either in local or global memory and the
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associated dependency type. The global tasking model distinguishes between input, output and
copyin dependencies. Copyin dependencies extend an input dependency by copying the referenced
memory range into an user-provided buffer. This is especially helpful on systems, which do not
support Remote Direct Memory Access (RDMA).

Creating and executing the Global Task Graph

Since no process has a global view on the task graph, individual scheduler instances exchange
information on remote dependencies across process borders. These remote dependencies will
be matched with either local or other remote tasks. Each process is responsible for handling
dependencies referencing their own local memory.

While the main application threads of each process creates tasks, the scheduler populates the local
task graph and communicates any remote dependencies to the scheduler instance which owns the
referenced memory location. Tasks can be executed immediately if they are not dependent on any
other task. The execution of a task is deferred, until their dependencies have been handled by the
corresponding scheduler instance.
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This chapter builds on the foundations of the previous chapter. First, an overview of available
performance analysis methods is given, which are used by analysis tools presented subsequently.
Finally, existing tools interface for traditional programming models including OpenMP, XcalableMP
and MPI are discussed in detail.

3.1 Performance analysis methods

This section is based on the work of Ilsche et al. [ISSH15]. Performance analysis is a process
consisting of three consecutive steps. First, relevant performance information of the application
during execution is obtained in the data acquisition step. After the data acquisition step, the data is
stored in memory or disk in the data recording step. The last step is the data presentation step. This
step defines how the obtained information is presented to the user in order to create further insight
for more detailed optimization of the application.

Every step of the performance analysis process has its own terminology and techniques used, which
will be presented in the following subsections.

3.1.1 Data acquisition

The first step of the performance analysis process is the collection of data. This can either be done
via event-based instrumentation or sampling.

Event-based instrumentation refers to a technique modifying the source code of an application to
insert further code to record data about intrinsic events. During run time, the data recording code is
triggered by the measurement environment. Events can for example mark the entry and exit point of
functions in order to count the number of function calls of a specific function. More sophisticated
events regarding communication or I/O analysis are also possible.

Sampling in the context of performance analysis refers to a technique where an application is
periodically interrupted while its state is inspected. To realize the interruption, timers like setitimer

or overflow triggers of hardware counters, e.g, PAPI_overflow from PAPI are used. The most
interesting part of the application state inspection are hardware counters and the call-path. The
call-path provides information about all functions that are currently being executed. This information
roughly corresponds to the function entry and exit point marking in the event-based instrumentation
technique.

Compared with event-based instrumentation, the overhead of sampling is more predictable. The
overhead of sampling mainly depends on the user-defined sampling rate, i.e. how many times per
second the application is interrupted and inspected, rather than on the frequency of events. Hence,
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the user can specify the trade-off between measurement accuracy and performance overhead by
adjusting the sampling rate. Since sampling only obtains information at pre-defined time points, the
data recording is not continuous, implying uncertainty. This is because it is unknown what happens
between two subsequent time points. Hence, the recorded data from sampling can serve as a data
basis for statistical analysis.

3.1.2 Data recording

The second step of the performance analysis process is the recording of gathered data. Two ways
are common to save the gathered data, Logging and Summarization.

According to Ilsche et al. [ISSH15], “Logging is the most elaborate technique for recording per-
formance data”. With Logging, all information from the data acquisition step is maintained and
additional timestamps are added to the data. It can be applied to both event-based instrumentation
and sampling techniques. Logging creates lots of data, therefore it may cause a notable overhead
due to heavy use I/O operations for writing log files to persistent media. The term tracing is often
used as a synonym for logging, since the data created by logging is a trace of events.

By applying Summarization, the data from the data acquisition step is reduced by removing the
temporal context of the data in order to minimize the overhead of the data recording step. Summa-
rization of event-based instrumentation introduces recording of values like event count (e.g, how
many function were called during run time), event time (e.g, what is the duration of an iteration?) or
communication overhead. Summarization of sampling introduces similar values such as counting
how many times a particular function was found on the call-path.

3.1.3 Data presentation

The third step of the performance analysis process is the presentation of the recorded data. The
most common approaches to present performance data are either as a timeline or as a profile.

A timeline lets the user display the execution of an application over time. It does represent the
relationships between previous events. This gives a view how the application runs on a particular
machine. Especially idle times can easily be identified. Figure 3.2 shows a timeline drawn by
Paraver. The x-axis represents the execution time whereas the y-axis represents the threads running
in parallel. In order to display such a timeline, Logging has to be used as a technique for data
recording, since the temporal information is mandatory for displaying a timeline.

A profile presents the performance data as a summary. In general, these profiles are grouped by
“a factor such as the name of the function” [ISSH15]. Multiple types of profiles exist, such as flat
or call graph ones. The GNU GCC compiler allows to create these using the GNU gprof tool. In
contrast to a timeline, summarized data is sufficient to create profiles.
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Figure 3.1: Screenshot of Temanejo debugging the DASH example shown in Listing 2.1.

3.2 External analysis tools

External tools can support users by giving insight such that the behavior of applications can be
understood, evaluate and optimized later. Furthermore, performance bottlenecks can be identified
and fixed. Every analysis tool gives developers a different view on the applications behavior. In this
section, three different analysis tools are presented. Each analysis tool suits different purposes for
application analysis.

3.2.1 Temanejo

Temanejo is a Task-Debugger developed at the HLRS by Stefan Brinkmann et al. [BGN13]. It
offers a new debugging approach which acts on the task level and not on a thread level. With the
lightweight ayudame library it is possible to give the user access to the task graph during run time.
The library is used as a communication backend for the Temanejo front end, which visualizes the
dependency graph and gives the user the possibility to control the execution of the underlying
application. Additionally, Temanejo is capable of displaying the execution time of a task. However,
Temanejo does not allow further performance analysis of applications and therefore does not count
as a performance analysis tool.

Figure 3.1 shows a screenshot of the graphical frontend of Temanejo. The properties of the tasks
are displayed on the left side of the Temanejo window. Every individual task gets its own node
color, which can represent

• the function the task represents.

• the thread on which the task is running.

• the task status.
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• the source through which Temanejo received information about the task.

• the distance to another marked task (in number of tasks).

• the task duration (in nanoseconds).

A task in the Temanejo task model can be in one of five states.

1. not queued

2. queued

3. running

4. finished

5. failed

The execution control of Temanejo can be used using the Play and Forward symbol buttons in the
control bar above the displayed task graph. Inside the options menu, the user can determine how
many steps are executed when pressing the Forward button. The default value is 10. The play button
does always execute the next operation of the application, i.e. the next task.

3.2.2 Extrae and Paraver

Extrae [BSC19a] is a performance analysis tool developed by the Barcelona Supercomputing Center.
Its main feature is the instrumentation of parallel applications using the shared memory model or
the distributed memory model. Extrae is capable of generating traces, which are saved as files on
disk, that later can be visualized and analyzed with Paraver.

Paraver [BSC19b] is a visualization and analysis tool also developed by the Barcelona Supercom-
puting Center, giving the user a global view on the behavior of parallel applications during run time.
Figure 3.2 shows a trace analyzed with Paraver. Extrae intermediate trace files are merged with the
Paraver Merger to three distinct files such that the created trace can be analyzed with Paraver.

3.2.3 Score-P

Score-P is a tool suite for profiling, event tracing and online analysis of HPC applications. It offers
support for many analysis tools like Periscope, Scalasca, Vampir and Tau [KRM+12]. As explained
by Knüpfer et al. [KRM+12], Score-P consists of an instrumentation framework, which allows
users to insert additional code for measurement purposes into C/C++ and Fortran codes that collect
performance measurement data during run time. In order to achieve this, one of many provided
shared library plugins have to be linked against the application. Score-P provides libraries for serial
execution, OpenMP, MPI or hybrid combinations. The collected data can be stored the Open Trace
Format in Version 2 (OTF2), CUBE4 or TAU snapshot format or either be queried via an online
access interface.

Unfortuantely, it was not possible to use Score-P with DASH, since Score-P only offers support for
the MPI_THREAD_FUNNELED thread level, i.e. only one thread is able to execute MPI function calls,
whereas DASH requires support for the MPI_THREAD_MULTIPLE thread level, i.e. multiple threads are
able to execute MPI function calls.
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Figure 3.2: Screenshot of Paraver displaying a trace created by Extrae for a Cholesky decomposition.

3.3 Existing Instrumentation interfaces

In this section, existing tools interfaces for more traditional programming models including OpenMP,
MPI and XcalableMP are presented.

3.3.1 OpenMP tools interface (OMPT)

The OMPT interface is an interface for first-party tools, thus for tools that are linked statically or
dynamically to the application itself. In contrast to a third-party tool, which runs as a seperate
process, a first-party tool “runs within the address space of an application process” [EMS+14].
The OMPT interface is build upon an event-based callback system to make internal performance
information visible to external analysis tools.

As stated in the second technical report [EMS+14], the main design objectives of the OMPT interface
were to support instrumentation-based tool approaches and sampling-based approaches. In detail, the
tools interface should provide an interface for external sampling-based tools and another interface for
instrumentation-based tools. Both interfaces should have a neglible performance overhead within the
application and the OpenMP runtime system. Furthermore, adding the interfaces inside the OpenMP
runtime and a compatible external tool should not put unreasonable burden on implementers.

Several steps are needed to extract information from the OpenMP runtime. First, the OMPT interface
has to be initialized. In order to use the OMPT interface, an external tool has to implement the
omp_start_tool function as shown below.
ompt_start_tool_result_t *ompt_start_tool(

unsigned int omp_version,

const char *runtime_version

);
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First party tool
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1) Call ompt_start_tool
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3) Callback on OpenMP event

4) Querying further runtime information

Figure 3.3: OpenMP Tools Interface (OMPT) architecture, adapted from the presentation held by
Protze [Pro17].

Where omp_version is the value that is associated with the OpenMP API implementation used. This
value identifies which version of the OpenMP API is supported by the OpenMP implementation.
This also specifies which version of the OMPT interface it supports. Every OpenMP implementation
provides an unique runtime_version argument that is used to identify which OpenMP implementa-
tion is used.

If a tool returns a non-null pointer to a ompt_start_tool_result_t structure the OpenMP imple-
mentation will initialize the tool interface. If a tool returns a null pointer, the interface will not be
initialized. The definition of a ompt_start_tool_result_t structure can be found below.
typedef struct ompt_start_tool_result_t {

ompt_initialize_t initialize;

ompt_finalize_t finalize;

ompt_data_t tool_data;

} ompt_start_tool_result_t;
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This structure contains pointers to the initialization and finalization function inside the external
tool and a pointer to the user data that can be provided additionally. Hence, an external tool has to
implement an initialization and a finalization function according to the specificed signature. The
initialization is invoked prior to any OpenMP event. The ompt_initialize_t structure is defined as
shown below.
typedef int (*ompt_initialize_t) (

ompt_function_lookup_t lookup,

int initial_device_num,

ompt_data_t *tool_data);

Where the lookup argument must provide a pointer to each runtime entry point in the OMPT interface.
The initial_device_num argument maintains the value of the omp_get_initial_device() function.
The tool_data argument is a pointer to the tool_data field in the ompt_start_tool_result_t struc-
ture returned by the ompt_start_tool structure.

The ompt_finalize_t structure is defined below.
typedef void (*ompt_finalize_t) (

ompt_data_t *tool_data

);

Similiar to the ompt_initialize_t structure above, ompt_finalize_t contains a pointer to the
tool_data field in the ompt_start_tool_result_t structure returned by the ompt_start_tool struc-
ture.

In order to use callbacks, the callback function has to be registered first. This is done by using the
ompt_set_callback entry point defined below.
typedef ompt_set_result_t (*ompt_set_callback_t) (

ompt_callbacks_t event,

ompt_callback_t callback);

The event argument indicates a specific event, e.g., when a parallel region begins, for which the
callback is registered. The callback argument is a pointer to a function inside the external tool. If
the pointer is NULL, then callbacks associated to the event are disabled.

An excerpt of the available callbacks are shown below.
typedef enum ompt_callbacks_t {

ompt_callback_thread_begin = 1,

ompt_callback_thread_end = 2,

ompt_callback_parallel_begin = 3,

ompt_callback_parallel_end = 4,

ompt_callback_task_create = 5,

...

ompt_callback_dependences = 18,

ompt_callback_task_dependence = 19,

...

ompt_callback_cancel = 30,

} ompt_callbacks_t;

If the event occurs, the corresponding callback function inside the external tool is called.

More details can be found in the current OpenMP standard [Ope18].
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User MPI_Init PMPI_Init

MPI_Init

calls

calls
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calls
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Figure 3.4: Visualization of the PMPI interface showing the disabled instrumentation above and
the enabled instrumentation below. When the instrumentation is disabled, i.e. no
external tool is linked between the MPI application and the MPI library, the user calls
the MPI_Init function inside the MPI library, which resolves as PMPI_Init at link time.
The PMPI_Init function contains the actual implementation of the initialization function.
Below, the user has enabled instrumentation. Now, the user calls the MPI_Init function
inside the tool. This function contains additional code for the instrumentation. Inside
this function, the PMPI_Init function is called, which contains the actual implementation
of the initialization function.

3.3.2 MPI tools interfaces (PMPI, PnMPI, MPI_T, QMPI)

The current MPI standard [Mes15] offers two different tool interfaces. The first one is PMPI, which
was introduced in MPI-1 in 1994 [CGH94]. MPI-3 standardized another tool interface, MPI_T. Both
follow different approaches. PMPI “supports the interception and inspection of MPI calls” [Mes15],
whereas the MPI_T “supports the inspection and manipulation of MPI control and performance
variables” [Mes15].

Thus, PMPI can be used for instrumenting application, whereas MPI_T can be used to read and
modify performance variables inside the MPI library.
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PMPI The MPI profiling interface (PMPI) allows developers to replace the standard implementation
of MPI routines like MPI_Send by own implementations using weak symbols. Weak symbols operate
at link time. For each MPI function, there is a similiar PMPI function. The only difference between
both functions is the prefix. A tool has to redefine the function to be intercepted, e.g., MPI_Send
with an own definition. Figure 3.4 visualizes the concept of PMPI.

The current MPI standard [Mes15] offers an example for using PMPI, which is shown in Listing
3.1 below. In this example, a tool is able to accumulate the total time needed for the MPI_Send call
by defining global variables and measuring the time with the MPI_Wtime function. The PMPI_Send

function is called in Line 9. PMPI_Send is pointing to the actual implementation of the MPI_Send

function inside the MPI library as shown in Figure 3.4.

1 static int totalBytes = 0;

2 static double totalTime = 0.0;

3

4 int MPI_Send(const void* buffer, int count, MPI_Datatype datatype,

5 int dest, int tag, MPI_Comm comm)

6 {

7 double tstart = MPI_Wtime(); /* Pass on all arguments */

8 int size;

9 int result = PMPI_Send(buffer,count,datatype,dest,tag,comm);

10

11 totalTime += MPI_Wtime() - tstart; /* and time */

12

13 MPI_Type_size(datatype, &size); /* Compute size */

14 totalBytes += count*size;

15

16 return result;

17 }

Listing 3.1: Example of a profiler instrumenting the MPI_Send call. Example taken from [Mes15],
Chapter 14.

PMPI has three major drawbacks according to [SD06].

First, by using weak symbols, only a single strong attributed function can replace a corresponding
weak attributed function at link time. This means that only a single tool can be linked between the
MPI application and the MPI library.

Second, if a user wants to run an application with multiple tools linked, every tool has to be relinked
and the application has to be run again, which can be complex in large projects. Since multiple tools
analyze different applications runs, the application has to have a “highly deterministic application
execution” [SD06] to obtain comparable results.

The third disadvantage is a consequence of the first one. According to Schulz and De Supinski
[SD06], many tools require similar functionality like logging, handle replacement or piggyback
messaging. Since PMPI does not provide this particular functionality, the tools have to implement
these features themselves. As PMPI only allows a single tool to be linked between the MPI
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application and the MPI library, it is not possible to implement such features as modules which
serve as independent tools. Therefore all functionality has to be integrated into a single tool, which
makes the design of a tool for PMPI more complex.

PnMPI To eliminate the major disadvantages, PnMPI was developed by Schulz and De Supinski
[SD07]. PnMPI consists of three components. The first component is the stub, which is linked
between the MPI application and the MPI library in order to intercept the MPI calls of the MPI
application. The second component is the core component, which creates and executes the tool
stacks. The last component is the configuration and loader component, which initializes the tool
stacks by reading the user-defined configuration file.

To make use of PnMPI, the user specifies a configuration file, defining which PnMPI tools to launch.
The core component then creates a tool stack of all PnMPI tools the user defined. Finally, the stub
component activates the tool stack by wrapping all MPI calls to at least one loaded tool on the
stack.

MPI_T The MPI Tool Information interface MPI_T provides mechanisms to expose variables,
which represent a particular property, a setting or a specific performance measurement, e.g., time,
inside the MPI library. The interface is split in two parts. The first part provides information about
control variables, whereas the second part provides access to performance variables that can provide
insight into performance internals of the MPI implementation used. The interface itself can be used
independently from the MPI communication, since it can be called before the call to the function
MPI_Init occurs and it can be still used, even after MPI_Finalize was called. This is possible, as
MPI_T uses its own initialization and finalization routines.

Listing 3.2 shows an example of reading the value of a control variable using the MPI_T interface. In
order to read to the the control variable val with the a given index, an handle has to be allocated.
This is done in Line 8. After the handle was successfully allocated, the control variable at the index
bound to the handle can be read. This is done in line 14. Finally, the handle is freed in line 17.
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1 int getValue_int_comm(int index, MPI_Comm comm, int *val) {

2 int err,count;

3 MPI_T_cvar_handle handle;

4

5 /* This example assumes that the variable index */

6 /* can be bound to a communicator */

7

8 err=MPI_T_cvar_handle_alloc(index,&comm,&handle,&count);

9 if (err!=MPI_SUCCESS) return err;

10

11 /* The following assumes that the variable is */

12 /* represented by a single integer */

13

14 err=MPI_T_cvar_read(handle,val);

15 if (err!=MPI_SUCCESS) return err;

16

17 err=MPI_T_cvar_handle_free(&handle);

18 return err;

19 }

Listing 3.2: Example of reading the value of a control variable. Example taken from [Mes15],
Chapter 14.

MPI_T is described in detail in Section 14.3 in the current MPI standard [Mes15]. The idea of PMPI
is closer to the idea of the DASH tools interface than MPI_T. This is due to the fact that we want to
instrument applications and not inspect or manipulate any variables inside the source code.

QMPI In September this year, Elis et al. [EYS19] presented a possible successor for PMPI, called
QMPI. In contrast to PMPI, QMPI does not just a fixed name interface for the next layer of possible
MPI functions to be called. Instead, QMPI adds “a set of a dynamically assigned set of function
pointers cointaining the specific call information for the particular layer” [EYS19]. A layer is a part
in the wrapping hierarchy, in order to enable tool nesting, i.e. the use of multiple tools at the same
time. Conceptually, each tool exposes a complete MPI implementation to the next outer layer.

3.3.3 XcalableMP tools interface (XMPT)

Since the XMPT interface is not yet contained in the current XcalableMP (XMP) standard from
2018 [Xca18], there is only little information about the actual XMPT implementation. The OMPT
interface serves as a model for the upcoming XMPT interface. Based on the draft presented by
Protze et al. [PTM+17], the basic working principle of the XMPT does not differ from the OMPT
interface.

The XMP runtime is looking for a tool at initialization time. This tool has to implement the XMPT
initialization function. After that, the tool is able to register callbacks at the XMP runtime for events
of interest. During the execution of the application, the XMP runtime calls the registered callback
function that was coupled with an event of interest, if that particular event takes place.
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In order to use external analysis tools, an interface is required such that those tools can receive
information about the internal application state. In this thesis, a concept for a tool interface for the
DASH RunTime (DART) is explored and implemented. Users should gather sufficiently valuable
information directly from DART such that external tools may process this information to give users
insight into their applications. This chapter is structured as follows.

Section 4.1 presents requirements for external tools that will be used to communicate with an
application via an interface from a user’s point of view. Section 4.2 describes the design objectives,
which stand as a basis for the development of this interface. The next Section 4.3 presents the design
of the interface infrastructure. In Section 4.4, the main design decisions that lead to the design
of the DASH tools interface are presented. After that, Section 4.5 gives an overview of all events
supported by the DASH tools interface.

4.1 Requirements

Before designing an analysis tool or the corresponding interface for communication, the requirements
have to be made clear. This section explores the requirements of tools and the tools interface for
debugging and performance analysis from a user’s point of view. The requirements are divided into
functional requirements and non-functional requirements, i.e. qualitative requirements.

4.1.1 Requirements for debuggers

A debugger has to fulfill the following functional requirements.

Correctness An application should run inside the debugging environment without changes.

Interception of application flow Users should be able to set breakpoints and pause the execution.
This is enabled by implementing a step-by-step execution.

Display execution information The debugger should be able to print out information about the
current step of the program, e.g. which function or task is currently processed.

A debugger may implement the manipulation of variables during debugging. This serves as a
qualitative requirement.

A delay between the interface used for communication between the debugger and the application is
negligible, if it does not affect the user experience while debugging applications.
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4.1.2 Requirements for performance analysis tools

Minimal performance impact The performance tool should distort the results by a minimum.

Measuring performance metrics For example, the run time of function or task, the idle time of
particular threads or the memory consumption of a particular part of the application.

Reproducible results If the environment does not change, the results should not change.

In contrast to the debugger, performance information has to be delivered as fast as possible to the
corresponding performance analysis tool.

4.2 Design objectives of the DASH tools interface

The design objectives for the DASH tool interface are similar to those presented for the OpenMP
tools interface (OMPT) [EMS+13] and the MPI profiling interface (PMPI) [Mes15].

The Application Programming Interface (API) should enable external tools to obtain sufficiently
valuable information about an application running on the DASH RunTime (DART).

1. The API should provide information about the task graph of the application during run time.
This includes information about state changes in the task graph as well as information on
local and remote dependencies.

2. An external tool using the API should receive the requested information instantly, i.e. with
no delay.

3. The interface infrastructure should be modular such that external tools can be connected,
even if they do not provide native support for DASH applications.

4. The performance overhead when using the API should be minimal.

5. The API should be easy to understand for external tool developers and should be extendable
in the future.

The functionality of the resulting implementation of the interface and its infrastructure is demon-
strated by connecting the task-debugger Temanejo presented in Section 3.2.1 to the interface
infrastructure. Since Temanejo is not capable of displaying advanced performance information,
Extrae, presented in Section 3.2.2, will be used to demonstrate the functionality of the interface for
performance analysis.

4.3 Interface infrastructure design

The infrastructure design is crucial for the design of the interface, since it determines how information
is transferred to external analysis tools. The DASH tools interface infrastructure ensures the
communication between the DASH RunTime (DART) and an external analysis tool.
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Figure 4.1: The infrastructure of the DASH tools interface allows external tools to connect to the
DASH tools interface in two ways. If the external tool offers native support for DASH,
it is able to connect directly to the DASH tools interface implemented inside DART,
which is shown at the top. Tools without native DASH support need a tailor-made
wrapper plugin that processes and forwards information from the DASH tools interface
to the external tool. This is shown at the bottom.

The interface implemented inside DART is visible to external analysis tools residing in the same
namespace as the DASH application. From the interface’s view, each external tool is a consumer
obtaining information during run time. Figure 4.1 depicts the two possibilities of using the DASH
tools interface.

The first possibility is to use a tool with native support for DART. In this case, an external tool is
able to connect directly to the DASH tools interface if it is residing in the same namespace as the
DASH application running on DART. However, as of now, no such tool does exist.

The second possibility enables to use already existing external analysis tools, since the communi-
cation between DART and the external analysis tool is handled by a wrapper plugin. A wrapper
plugin receives information from the DASH tools interface, processes and forwards the information
to the external analysis tool, according to the capabilities of the tool. The external analysis tool
determines which wrapper plugin is used. Metaphorically speaking, a wrapper plugin serves as a
bridge between DART and the external analysis tool.

By using wrapper plugins, external analysis tools without native DASH support can be connected
to the DASH tools interface. This ensures the third design objective set in Section 4.2.
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Technically, all wrapper plugins are implemented as shared libraries, which makes them exchange-
able. As of now, every external analysis tool needs a wrapper plugin in order to operate with the
DASH tools interface. In the future, native tools may be available that do not need a wrapper plugin
between DART and the tool itself.

The DASH tools interface does not distinguish between a wrapper plugin or a full external analysis
tool, therefore both are consumers extracting information from the interface. Furthermore, the
wrapper plugins are referenced as shared library plugins throughout this thesis, in order to emphasize
their implementation as shared libraries.

Depending on which external analysis tool is used, the user signals DART which corresponding
plugin to load by setting the environment variable DART_TOOL_PATH before launching a DASH
application. The user sets the value of the environment variable to the path of the corresponding
shared object (*.so) file of the desired plugin.

For example, if the user wants to use Extrae as the external analysis tool, the shared library plugin
libpextrae has to be used. In order to to use this plugin, the value of the environment variable has
to be set in bash like this.
$ export DART_TOOL_PATH=$HOME/opt/lib/libpextrae.so

If the environment variable DART_TOOL_PATH is set, DART tries to open this shared library and
execute the initialization function of the plugin. The name of this initialization function is known in
advance, since it is hard-coded in DART. This is done to make versioning possible. Every future
version of the interface will have its own initialization function name to ensure that the loaded
plugin is compatible with this particular version.

4.4 Design of the interface

The design of the DASH tools interface has to meet the objectives set in Section 4.2. This subsection
explains the fundamental design decisions which led to the interface design.

Internally, DART does not save the task graph explicitly as a task-dependency graph as defined in
Section 2.2. The task graph is saved in a dependency-oriented manner inside a hash map to speed
up the performance of DART. In particular, every dependency holds pointers to all dependent tasks.
Therefore there is no human-readable task-oriented graph maintained inside DART. To get a human-
readable task-oriented graph, information on dependencies has to be gathered and transformed at
multiple positions inside the DART source code, which would result in severe disadvantages. A
more sophisticated approach is needed.

A more practicable solution is to extract information concerning the task graph while it is build and
when parts of it change. To make this approach practicable, the information the task graph offers
has to be categorized. The interface distinguishes between information on the task state, i.e. in
which particular state a task currently resides and the dependencies between tasks.

Events are introduced to categorize the data that is send to a consumer by DART. An event can
be described as a “significant state change” [CCC07]. Every time a task changes its state inside
DART, e.g., it starts to run, a notification is created. The consumer shall immediately receive this
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notification function

Consumer

DART

Event dispatcher Scheduler

2) 3)

1) 4)

register
function

registry Events

Figure 4.2: A simple diagram of the event-based callback architecture used in the DASH tools
interface. First, a consumer of the interface, which may be an external tool or a shared
library plugin, implements a notification for a particular event. This notification function
is registered at the event dispatcher (1) and its reference is saved in a registry inside the
event dispatcher (2). If this particular event occurs (3), the event dispatcher receives
the event information and finally calls the previously registered notification function.

notification with no further delay such that the time of receiving the notification inside the external
shared library corresponds to the time the event has taken place. The consumer shall be able to
decide for which events a notification should be received.

To implement this concept, an event-based callback interface similar to the OpenMP Tools Interface
(OMPT) fits these requirements the best. A simple diagram of the architecture used is depicted in
Figure 4.2. This consumer has to implement a notification function, also known as callback function,
for a particular event. A consumer might be an external tool or a shared library plugin. This function
is called when the particular event takes place. First, this notification function registered at the event
dispatcher inside DART by calling the register function for the particular event and passing the
reference of the notification function. Internally, the event dispatcher saves this reference linked to
the particular event. When the event takes place, the scheduler passes this information to the event
dispatcher. The event dispatcher calls the notification function that was registered previously with
that particular event.

When the event takes place, the event dispatcher immediately receives information about the event
from the scheduler and directly calls the notification function inside the consumer with no further
delay. A notification function for a particular event is only called, if and only if it is registered before
the event takes place. This ensures the second design objective set in Section 4.2.
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The alternative to the event-based callback interface is to use an interface based on weak symbols,
like it is used in PMPI [Mes15]. This approach is not feasible for the DASH tools interface for two
reasons. Due to the nature of weak symbols, only a single weak attributed function can be replaced
with a single strong attributed function. This makes it impossible to attach multiple external analysis
simultaneously, since this requires at least two separate functions for communication, resulting in a
loss of flexibility.

Another reason for not using weak symbols is that they operate at link time. This stands in contrast
to the callback approach that makes it possible to change the program flow at run time, e.g., by
using environment variables. PnMPI and QMPI presented in Section 3.3.2 eliminate that particular
disadvantage from PMPI allowing to connect multiple tools at the same time.

In contrast to the OMPT interface, the DASH tools interface implements own register- and callback
functions for every event. This is done for two reasons. First, to ensure type safety by having
tailor-made function signatures for every event. Second, to improve readability of the source code by
explicitly stating all parameters and the corresponding types for every event. The single disadvantage
of this approach is the increased code line count inside the event dispatcher.

Similar to the OMPT interface, a consumer has to implement an initialization function. In order to
provide versioning, the name of this initialization function is hard-coded, to match the capabilities
of the consumer with the DASH tools interface.

4.5 Event design

The goal of the DASH tools interface is to provide information about the task graph. This includes
the current state of each task including dependencies between tasks. Since the scheduler inside
DART operates as a state machine, it is possible to track state changes of all tasks. This can be done
by creating events. Currently, the DASH tools interface implements ten different events, of which
seven track task state changes. These are explained further in the next subsection.

4.5.1 Task state changes

Every task inside DART lives trough a cycle. Figure 4.3 visualizes this task lifecycle as a state
machine. The nodes represent the states, the edges represent a possible transition between states.
An existing edge label refers to a particular event with the same name. For edges without a label, a
corresponding event does not exist. Initially, a task does not exist in memory (NULL). After a task is
created (Created), it either can be put into a task queue (Queued) if all dependencies are released
or it can be deferred if not all dependencies are released (Deferred). If a task is added into the
task queue, its state is set to Queued and it is marked as runnable and is waiting for computational
resources in order to be executed. A task in the state Deferred is not yet ready to run, since it is
waiting for dependencies to be released. When all dependencies of a particular task are released,
the state of the task is set to Running and the task is executed. If the task ends its work without a
cancellation request, its state is set to Finished. Otherwise its state is set to Cancelled. If the task is
yielded during execution, its state is set to Suspended. In this state the task is waiting to be requeued
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in order to continue its work. Similar to that, the state of a task can be set to Blocked, if a task is
waiting for a handle to continue its execution. Tasks in the states Cancelled or Finished will be
destroyed by scheduler after some time.

The focus while designing the following events was to extract data with a minimum of required
computation effort on the runtime side. Therefore, variables which already exist within the runtime
should directly be provided through the interface. Every task state transition has its own event if it
is relevant from a users’ point of view. In particular, no internal scheduling information shall be
provided through the interface. For example, DART creates so-called dummy dependencies, if a
particular task does not yet exist in order to continue building the task graph. Once this particular
task exists, the dummy dependency will be matched with the actual dependency. Since this is
an implementation detail of the scheduler, information about dummy dependencies are not part
of the interface. The information about the Blocked and the Deferred state are also part of the
implementation of the scheduler and therefore do not have a corresponding event.

task_create This event occurs every time a task is created inside DART. When a task is created,
the following information is available through the interface.

• The reference of the task, which is unique for each DASH unit.

• The priority of the task.

• The name of the task.

The reference of the task will be used to identify a task locally, since it is persistent throughout the
whole task lifecycle. DASH enables developers to give tasks a name, which can be used to identify
the function the task computes. This information is useful to group tasks by the computed function,
which can be done in e.g., Temanejo. At this point, the information on which particular thread a
task runs is not yet available.

task_add_to_queue This event occurs every time a task is added to a task queue in order to be
run. When a task is enqueued, it is marked as runnable. Hence, the task is waiting for resources in
order to be run. All dependencies are satisfied. The following information is available through the
interface.

• The reference of the task itself, which is unique for each DASH unit.

• The thread that executes the task.

The thread adding a task into a queue, which either can be a thread-private or a global queue, is
not necessarily the thread that will execute the task. The time between the adding into the queue
and the beginning of a task is interesting for performance analysis, as this is the time lost due to
insufficient resources.
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Figure 4.3: A simplified version of the task lifecycle of a task inside DART. Every node represents
a state, whereas an edges represents a possible transition between two states. Labeled
edges have a corresponding event available in the DASH tools interface.
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task_begin This event occurs every time a task is being executed. This event marks the point in
time, where the task gets executed by a thread. The following information is available through the
interface, analogue to the task_add_to_queue event.

• The reference of the task, which is unique for each DASH unit.

• The thread that executes the task.

At this point, the thread on which the task runs is determined. The reference of a task is the same as
it was when this task was created. Therefore, the reference enables the tracking of the task during
the whole task life cycle.

task_end This event occurs every time a task has finished its execution. This event marks the
time the task has finished its execution. The time when this event occurs subtracted the time when
the task began, i.e. the event task_begin occurred, is the actual run time of the task. However,
this is only valid if the task was not yielded. The following information is available through the
interface.

• The reference of the task itself, which is unique for each DASH unit.

• The thread that executes the task.

task_cancel This event occurs every time a task is canceled. A task can be canceled by the user
using commands inside the DASH application, e.g., to cancel a loop. Similar to the task_end event
above, the task_cancel event can be used to determine the run time of a task with the task_begin

event. The following information is available through the interface.

• The reference of the task itself, which is unique for each DASH unit.

• The thread that executes the task.

task_yield_leave This event occurs every time a task is yielded. If a task is yielded, its execution
is interrupted and its thread executes another task. The following information is available through
the interface.

• The reference of the task itself, which is unique for each DASH unit.

• The thread that executes the task.

task_yield_resume This event occurs every time a task resumes its work after it was yielded. To
identify the task which resumes its work, the reference of the task itself and the reference of the
thread are made available through the interface. The following information is available through the
interface.

• The reference of the task itself, which is unique for each DASH unit.

• The thread that executes the task.
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task_finalize This event occurs, if a DASH unit completed all scheduled tasks. This event is used
to determine the end of the application. If all DASH units complete all scheduled tasks, DART
will finalize the execution of the application. No further information is made available through the
interface.

4.5.2 Dependencies between tasks

A dependency describes the control and the expected data flow between two tasks. Formally, a
dependency can be described as a binary ordering. As explained by Schuchart and Gracia [SG19],
dependencies determine the relative execution order of multiple tasks. Assume a task t1 defines
a dependency d1 and a task t2 defines a dependency d2. If d1 matches d2, the execution of t2 can
begin if and only if t1 has successfully finished its execution. Hence, dependencies have to be added
to the task graph in order to gather information about the execution order between multiple tasks.

Since DART uses the Global Task Data Dependencies model presented in Section 2.3.2, it dis-
tinguishes between local and remote dependencies. A local dependency between two different
tasks occurs if both run on the same DASH unit, whereas remote dependencies are communicated
between different scheduler instances running on different DASH units. To keep the semantics of
the DASH Global Task Data Dependencies Model throughout the tools interface, two distinct events
for gathering dependencies were created to distinguish between local and remote dependencies.

local_dep This event occurs when a local dependency is found. A local dependency is a depen-
dency between two tasks running on the same DASH unit. In order to define a local dependency,
the following information has to be made available through the interface.

• The reference of the first task.

• The reference of the second task.

Both references are used as an identifier for both tasks. This information enables to draw an edge
in the task graph. Since this is only very basic information, it would be helpful to gather more
information about the actual dependency. Hence, it is possible to acquire more information about
the local dependency, which is the following.

• The data hazard case, which determines whether the dependency is a Read-After-Write (RAW),
Write-after-Write (WAW) or Write-After-Read (WAR) dependency.

• The referenced memory location of the dependency.

Especially the data hazard case can be a very helpful information for developers to get a feeling
where which case occurs in order to optimize the code of their DASH applications. References are
unique throughout run time.

44



4.5 Event design

remote_dep This event occurs when a remote dependency is found. A remote dependency is
a dependency between two tasks running on different DASH units. In order to define a remote
dependency, the following information has to be made available through the interface.

• The reference of the first task.

• The reference of the second task.

• The unit ID of the first task.

• The unit ID of the second task.

Like within local dependencies, all tasks involved in remote dependencies need to be identified
globally. In order to identify tasks globally, a unique identifier is required for each task. Since
references are only unique within DASH units, they cannot serve solely as an unique identifier. This
is due to the implementation of DASH units.

DASH units are implemented as “heavy weight” processes. Processes have their own virtual address
space. It is possible that two processes have a variable with the same virtual memory address,
which does not imply that this virtual memory address points to the same physical memory address.
References paired with the unit ID serve as an unique identifier, since the unit ID is unique among
all DASH units. Within DASH units, references serve as a unique identifiers. Therefore both, the
reference and the DASH unit ID are required to create a global unique identifier for tasks inside
DART.
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This chapter discusses details about the actual implementation of the interface. First, Section 5.1
gives an overview over the techniques used for this particular implementation of the DASH tools
interface. Next, Section 5.2 describes the initialization process of the tools interface. In Section 5.3,
the supported events of the DASH tools interface are presented. After that, Section 5.4 the connection
of Temanejo and Extrae along with challenges coped on the way are explained. Finally, in Section 5.5
changes to Temanejo and the Ayudame interface are proposed to make full use of the semantics
used in DART and other future massive parallel processing frameworks.

5.1 Overview

All shared library plugins are written in C++ 17 and compiled with the current GNU GCC 7.3.0. To
avoid name mangling, the callback functions have the extern "C" keyword in front of the function
signature. DASH applications have to be compiled with the rdynamic option in order to operate with
the tools interface. This option instructs the linker to add support for loading shared libraries during
run time by adding all symbols and not just the used ones to the dynamic symbols table [Fre19].

In this thesis, two shared library plugins and the interface infrastructure are implemented.

5.2 Initialization process

The DASH tools interface is initialized inside the dart__tasking__init_tools_interface func-
tion.

The initialization of the tools interface is handled as follows. First, the value of the environment
variable DART_TOOL_PATH is obtained via the getenv() function. This particular environment variable
is set by the user in advance, since it determines which particular shared library plugin or external
tool is loaded during run time. This environment variable contains the path to the shared object file
to be opened.

If the environment variable is set, the shared library is opened using the dlopen() function. If the
environment variable is not set or it is empty, no shared library is loaded, i.e. the tool interface will
be disabled during run time. Hence, no external analysis tool can be attached.

The dlopen() function returns a void* handle. If this handle is not null, the address of the ini-
tialization function inside the consumer is obtained via the dlsym function. The name of the
initialization function is known in advance and it is hard-coded inside DART in the variable
DART__TOOLS_TOOL_INIT_FUNCTION_NAME in order to enable versioning.
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DART passes the number of threads used, the number of DASH units and the current DASH unit
ID of the instance to the initialization function of the consumer. A shared library plugin has to
implement the following initialization function.
int init_ext_tool(int num_threads, int num_units, int32_t myguid) {}

num_threads contains the number of threads used per DASH unit. The num_units parameter contains
the total number of DASH units, whereas myguid contains the global unit ID of the current DASH
unit.

The initialization function returns an signed integer. After successful initialization, the initialization
function of the tool must return zero.

5.3 Event implementation

The DASH tools interface provides function signatures representing every event as defined in Section
4.5. Listing A.1 shows all functions signatures for the task state change event, whereas Listing A.2
shows all functions signatures for the dependencies. A compatible consumer must implement at
least one notification function with a correct signature in order to receive notifications from DART.
This function will be called if the corresponding event occurs.

The edge_type parameter provides the information about the occurring data hazards. In partic-
ular, the value of this variable determines if a local dependency is a Read-after-Write (RAW), a
Write-after-Read (WAR) or a Write-after-Write (WAW) dependency. For remote dependencies,
the value edge_type gives insight of which particular type a dependency is. In detail, a remote
dependency can either be a copyin, input or output dependency. Paired with the local_dep_type

and remote_dep_type, the data hazard case can be obtained.

5.4 Connection of external analysis tools

In order to demonstrate the functionality of the DASH tools interface, two already existing analysis
tools were connected to the interface infrastructure. First, the Temanejo task-debugger was connected
to the infrastructure allowing users to step through the global task graph of a DASH application.
Second, the Extrae performance analysis tool was connected to the infrastructure allowing users to
create traces of DASH applications and to analyze them using Paraver.

5.4.1 Connection of Temanejo

The task-debugger Temanejo is used to display the global task graph and control the execution of an
application by using step-by-step execution including the placement of breakpoints.

By connecting Temanejo to the DASH tools interface, those features can use be used to check the
correctness of an application as well as debugging it if it is not running correctly.
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The Ayudame shared library serves as the backend for Temanejo. Ayudame offers an interface
for debugging task parallel applications. To communicate with Temanejo, Ayudame opens a TCP
socket and waits for a client to connect, which in this case is Temanejo. Ayudame offers a C interface
defined in the header file ayu_events.h, giving users the possibility to send data in form of events
to the front-end Temanejo.

The shared library plugin libayudame was developed to enable the communication of Ayudame with
DART. The libayudame plugin obtains and processes information from the DASH tools interface
and sends it to the Ayudame interface.

DART

DASH
Application

libpayudame Ayudame

Temanejo

runs on TCP

Figure 5.1: The architecture of the DASH tools interface infrastructure when the Temanejo task-
debugger is used. The libpayudame plugin obtains information from DART through
the tools interface and processes it such that the information can be sent directly to the
Ayudame interface. After that, Ayudame sends the information to Temanejo, which
displays the task graph. Ayudame and Temanejo communicate by using TCP sockets.

Since Temanejo was originally developed for StarsS task parallel applications, the task model
of Temanejo does not fit exactly the Global Task Data Dependencies Model of DASH [BGN13].
Especially the lack of distinction between local and remote dependencies results in a loss of
information, since local and remote dependencies are treated as generic dependencies between two
tasks. This section discusses details and solutions designed solely to connect Temanejo to the tools
interface infrastructure introduced in Chapter 4.

Connection to Ayudame

To enable the libpayudame plugin, it has to be loaded into the namespace of the application. In
practice, this is done by setting the environment variable by either statically or dynamically linking
the Ayudame shared library to the application.

Since Ayudame and Temanejo communicate via TCP sockets, both parties have to agree on a
common port number. On startup, Temanejo and Ayudame read the environment variable AYU_PORT,
which specifies the port used for communication. This is easy, when only a single unit of an DASH
application communicates with Ayudame. In that case, the environment variable is set before
the application launch. Ports for multiple instances can also be set using a comma between the
individual port number. If multiple units want to connect to Ayudame, the environment variable
has to be set in advance for every unit. Since is is not useful to hard-code the port number into
the shared library plugin, the AYU_PORT environment variable needs to be exported dynamically for
every unit based on unique information of every unit.
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Since DASH Units are implemented as processes, the system’s Process ID (PID) can be used as
a port number, which is obtained by calling getpid() on every libpayudame instance. The PID is
suited for the use as the port number for the following reasons.

• The PID is unique among all running processes on the system.

• The Linux kernel assigns PIDs to processes in a sequential manner.

• Typically, the maximum PID is 32768 on most systems. This can be verified by typing
cat /proc/sys/kernel/pid_max into a terminal.

Port numbers less than 1024 are called the system ports [CET+11]. These ports may not be used
without admin rights on most systems. Hence, the shared library will not use port numbers smaller
than 1024.

A gather function provided by DART similar to MPI is used to fill a buffer in unit 0 with all the
PIDs of each DASH unit. The libpayudame plugin on DASH unit 0 outputs the port numbers in
a comma separated string on the stdout. The user copies this comma separated string and starts
Temanejo by typing
$ Temanejo -c :12340,12341

into a terminal for the port numbers 12340 and 12341 in this example. By pressing the Connect

button inside the connection dialogue, Temanejo automatically connects to the application via
Ayudame. If multiple nodes on a cluster are used, the port numbers are printed on the node that
executed the DASH unit 0.

Figure 5.2: Screenshot of Temanejo debugging a Cholesky decomposition of a 200 × 200 matrix a
block size of 20 × 20, resulting in 100 blocks. The application was run using 4 DASH
units.
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Unique identifier for tasks

The Ayudame interface requires a unique 64 bit unsigned integer to identify a task globally. Memory
addresses are not feasible, since they may not be unique when running multiple instances of the
same application. This is because the pointer to the task itself is a virtual memory address, which
is translated to a physical memory address in the Memory Management Unit (MMU) inside the
CPU.

Although current x86-64 architectures have a register width of 64 bit, virtual memory addresses
only use the lower 48 bit instead of the full 64 bit. As of today no x86-64 architecture uses more
than 48 bit for memory addressing, although the upcoming Ice Lake processor generation from
Intel is said to support a technique called 5-Level Paging [Int17] in order to support 57 bit memory
addresses. This extension is already implemented in the Linux kernel [Ker19]. Even with 48 bit
memory addressing, 248 bytes ≈ 256 TB can be addressed.

Hence, a possible solution to have a global identifier for a task is to take the 48 bit memory address,
which is cast to a 64 bit unsigned integer and add a unique identifier to the remaining upper 16 bit.
The format of the 64 bit unsigned integer is shown in Figure 5.3. This gives the possibility to assign

Unique
identifier

48 bit memory address

2 bytes 6 bytes

Unsigned 64 bit integer (8 bytes)

Figure 5.3: The structure of the 64 bit unsigned integer used to identify tasks globally. The first 6
bytes contain the 48 bit memory address referenced by the task, whereas the upper 2
bytes are assigned an global identifier.

each task an unique 64 bit identifier for up to 216 = 65536 instances of the application if memory
addresses with 48 bit length are used.

5.4.2 Connection to Extrae

The performance analysis tool Extrae is used to create traces for DASH applications. These traces
are loaded into Paraver for further analysis.

By connecting Extrae to the DASH tools interface, users are offered an in-depth view of an application
running on a particular machine on a timeline such that the distribution of computational time can
be understood. Especially the idle time of computing resources becomes easily viewable.

Extrae offers users to create single timestamped events. Timestamped events are used to mark
the beginning and the end for every task execution, such that the user is able to view the duration
of a particular task. Human-readable information can be appended for those timestamped events,
which will later appear in the graphical user interface of Paraver. Events are displayed as a form
of electronic signals. An event has an associated value for the time it is valid. If no event occurs,
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this vale is set to zero. This makes events displayed per default as rectangles filled with color. The
additional human-readable information will be used to display the name of the corresponding task
when the user uses a mouse to hover it over the rectangular event area.

As a result, the connection to Extrae enables users to analyze the following coherences.

• Users are able to understand, how their application is scheduled. This includes the ability to
view on which DASH unit a particular task is executed.

• Users are able to compare multiple task durations which correspond to a specific function
inside the code, e.g., the duration of multiple iterations inside a loop.

• Users are directly able to see at which point in time and on which DASH unit idle time occurs.

• Users may be able to spot the consequences of dependencies between multiple tasks.

In order to use Extrae, it has to be linked dynamically to the application. To send events to Extrae, the
the path to the corresponding libpextrae shared library plugin has to be set in the DART_TOOL_PATH

variable in advance. This shared library plugin handles the creation and the transfer of events to
Extrae.

DART

DASH
Application

libpextrae Extrae

Paraver

runs on read files

Figure 5.4: The architecture of the DASH tools interface infrastructure when the Extrae performance
analysis tool is used. The libpextrae plugin obtains information from DART through
the tools interface and processes it such that the information can be send directly to the
Extrae interface. Extrae saves the resulting trace files on disk. To analyze the traces,
these files are opened in Paraver. This results in asynchronous communication between
Extrae and Paraver. Hence, the line connection both is dashed.

The communication between the DASH tools interface and the Extrae library is synchronous,
however the resulting traces are saved in multiple files in the working directory. After Extrae has
finished saving these files, the *.prv file can be opened in Paraver to analyze the traces. This makes
the connection between Extrae and Paraver asynchronous. To support Extrae, the shared library
plugin libpextrae was developed. Extrae is capable of writing traces, which later can be viewed
and analyzed with Paraver. DASH uses MPI and Pthreads as backends, therefore the Extrae library
libptmpitrace will be used, since it supports tracing of MPI and Pthreads simultaneously.

To create a trace with custom events, the event routines defined in $EXTRAE_HOME/include/extrae.h

have to be used. In particular, the Extrae_event routine
void Extrae_event (extrae_type_t type, extrae_value_t value)

is mandatory to create traces with custom events.

The Extrae_define_event_type routine
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void Extrae_define_event_type (extrae_type_t *type, char *description, unsigned *nvalues, extrae_value_t

*values, char **description_values)↪→

is used when human readable information for custom events is necessary. Here, the Extrae_event

routine is used to add a single custom timestamped event into the timeline. This can be used to
either identify the iteration of a loop or to identify task or routines at any point in the application.
for (int i = 0; i < N; ++i) {

Extrae_event(50000, i);

/* do something */

Extrae_event(50000, 0);

}

The first call of Extrae_event sets the type to 50000 and the value to i itself. To mark the end of
the loop, the second call of Extrae_event sets the value to 0. As shown in the example, a unique
value for the loop is set to identify this particular loop later in the trace.
void task1 (void) {

Extrae_event(50001, 1);

/* do something */

Extrae_event(50001, 1);

}

void task2 (void) {

Extrae_event(50001, 2);

/* do something */

Extrae_event(50001, 2);

}

Similarly, Extrae can be used to identify tasks or routines at any point in the application.

To give the events an expressive, human readable description, the Extrae_define_event_type routine
is used. For the example above, the Extrae_define_event_type routine is called with the following
parameters.
static extrae_type_t extrae_t = 5001;

static extrae_value_t extrae_values[] = {0, 1, 2};

static char *extrae_names[] = {"NONE", "TASK1", "TASK2"};

Extrae_define_event_type (&extrae_t, "Tasks", 3 , &extrae_values , extrae_names);

The shared library plugin libpextrae for Extrae does all this automatically.

In detail, the libpextrae plugin uses an std::unordered_map to save the task ID as an uint64_t

and the task name as a std::string every time a task is created. A std::string to save the task
name is used to have a copy of the name, since a char* may vanish over run time. As mentioned
above, Extrae needs a unique value for each task or routine to identify it throughout the trace. This
unique value is generated for every task by computing the hash of its name using the std::hash

function. This hash along with the task ID is saved in another std::unordered_map. The hash will
be displayed in the Paraver user interface along with the corresponding task names.

Every time a task is executed or resumes its work after it was yielded, the plugin checks which
corresponding hash value is linked to the current task ID. This hash value is then sent to Extrae by
calling the Extrae_event routine with the hash value as the second parameter. Every time a task has
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finished, is canceled or yields the Extrae_event routine is called with an event value of 0. When the
plugin receives the finalization notification of the current DASH unit, the unit sends its information
about the events to Extrae by using the Extrae_define_event_type routine.

The libpextrae plugin is thread-safe to ensure correct results when using multiple threads. For criti-
cal sections, e.g., writing to data to an std::unordered_map, the std::shared_mutex implementation
of C++17 is used. The std::shared_mutex is an implementation of a readers-writer-lock included
in C++17 [Sta19]. According to the official C++ documentation, it offers two levels of access.

• shared - multiple threads can share the ownership of the same mutex

• exclusive - only one thread can own the mutex

This speeds up the case when multiple threads need to own a mutex solely for reading data in
contrast to the classic mutex, where only a single thread is able to read or write at the same time.

5.5 Proposed changes in Temanejo

During the integration of Temanejo, semantic differences between the task model of DART and
the task model of Temanejo were encountered. Both Ayudame and Temanejo were initially not
designed to work with the task model used in DART, instead it was originally developed to support
the StarSs and OmpSs task programming models [BGN13]. To enable Temanejo making full use of
the semantics of the task model used in DASH, this thesis proposes changes in the Temanejo front
end and the Ayudame interface.

5.5.1 Temanejo front-end

First, Temanejo does not distinguish between multiple types of dependencies between tasks. As a
result, Temanejo displays local and remote dependencies coming from DART with the same type of
line. This leads to two problems. The first problem is the loss of information, since the user cannot
distinguish if a specific dependency drawn in Temanejo is a local or remote dependency. The second
problem is related to the internal handling of drawing the task graph. Temanejo uses the networkx

module available for Python 2 for graph operations. It tries to keep partitions of the graph in order
to make it easier for the user to see patterns in the task graph. If an application with multiple (e.g.,
4) DASH units connects to Temanejo with remote dependencies disabled, the observed graph is
a disconnected graph with multiple (e.g., 4) subgraphs. In this view, the user can easily observe
patterns in the task graph. If the users enables the instrumentation of remote dependencies, the
graph loses its disconnectivity.

As a consequence, networkx draws the task graph without any observable subgraphs. This makes it
hard for users to observe patterns in the task graph.

One possibility to fix this issue is to exclude remote dependencies from making changes to the
graph layout. Remote dependencies may be inserted after the graph layout with its partitions is
determined, such that no changes are made to the graph layout. Temanejo has to distinguish between
local and remote dependencies to implement that. How this can be achieved, will be addressed in
the next subsection.
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Temanejo was originally not designed to work with multiple processes, i.e. DASH units, at the
same time. Therefore it does not distinguish which task was received from which DASH unit,
respectively port. From a user’s perspective, it would be desirable to know on which DASH unit a
task is running. Since every DASH unit connects through an unique port number, Temanejo does
know which DASH unit is behind a particular port number. Hence, an option to distinguish various
DASH units with multiple colors could be implemented easily. This issue has been fixed during the
work on this thesis.

Due to the fact that Temanejo was not originally designed to operate with the Global Task Dependen-
cies Model of DART, it only expects a single call of the ayu_finalize function in order to determine
the end of the execution of the application. As the libpayudame instances operate independently,
every instance calls ayu_finalize once when the corresponding DASH unit has finished executing
its part of the application. Since Temanejo is aware of how many DASH units are connected, it
should only accept the last call of ayu_finalize and ignore every former call of this function. This
issue has been fixed during the work on this thesis.

The original version of Temanejo displayed the 64 bit long task ID inside the nodes. Since this was
not visually appealing from a user’s perspective, node labels now display the transmitted task name.
If the developer does not set a name for a particular task, DART sets its name to <UnknownName>.

5.5.2 Ayudame interface

The original Ayudame interface defines function signatures for its interface in the file ayu_events.h.
The content of this file is shown in Listing A.3. To make Ayudame aware of Massive Parallel
Processing (MPP) frameworks like DASH, new functions shall be added to the Ayudame interface.
First a brief introduction on the original Ayudame interface is given. The libpextrae plugin uses
the interface functions offered by Ayudame to send information to Temanejo.

To initialize Ayudame, both ayu_event_preinit and ayu_event_init have to be called. When a task
is created inside DART, the ayu_event_registerfunction is called to register the function the task
computes at Ayudame. Here, the func_id parameter is the hash of the task name computed by the
std::hash function. To ensure that a particular task is only registered once, all incoming task names
are saved and compared to the current.

Every time a task is being executed, the ayu_event_preruntask function and the ayu_event_runtask

function is called. Analogical, the ayu_event_postruntask function and the ayu_event_removetask

are called when the task has finished its execution.

For dependencies, only the ayu_event_adddependency function exists. After a DASH unit has
finished, the ayu_event_finalize function is called.

Since this interface does not match the requirements of the Global Task Data Dependencies Model
that DASH uses, the following changes are proposed.

Initialization A new initialization function ayu_event_init_mpp is added to support the character-
istics of DASH, including the use of multiple units.
void ayu_event_init_mpp(uint64_t unit_id, uint64_t nthreads);
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In particular, Ayudame shall receive the unit ID through the initialization function to make it directly
aware of the number of active units. Ayudame shall save the unit ID after initializing such that it
has to be transferred only once.

Registration of functions and strings In Ayudame, functions have to be registered. For DASH,
a function is a task, which computes a specific function. This task is registered along with its
name by calling the ayu_event_registerfunction. The old ayu_event_registerfunction function
is extended by an integer that contains the length of the function name, i.e. task name, since a char*

does not contain any length information.
void ayu_event_registerfunction(uint64_t func_id, const char *name, uint32_t length);

A new function called void ayu_event_registerstring gives the user the possibility to register
strings that may later serve as edge labels. To register a string, a user provided string ID stored as
an uint64_t, a string stored as a char* and its length stored as a uint32_t are required.
void ayu_event_registerstring(uint64_t string_id, const char *string, uint32_t length);

Dependencies To support remote dependencies, the ayu_event_adddependency_mpp function is
added. Since remote dependencies are dependencies across unit borders, Ayudame needs to know
from and to which DASH unit the dependency occurs. Hence, two parameters from_unit_id and
to_unit_id are added respectively. Local dependencies are added via the ayu_event_adddependency

function, however the ability to pass the memory addresses of the dependencies is removed. This
was useful in in the StarsS programming model, however the benefit using it with DASH is limited.
The dep_id parameter determines the data hazard case for both local and remote dependencies.
void ayu_event_adddependency_mpp(uint64_t dep_id, uint64_t to_id, uint64_t from_id, uint64_t to_unit_id,

uint64_t from_unit_id);↪→

void ayu_event_adddependency(uint64_t dep_id, uint64_t to_id, uint64_t from_id);
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The prototypical implementation presented in the previous chapter will be evaluated in this chap-
ter. First, benchmarks are performed to measure a possible interface overhead. These overhead
measurements are conducted using a disabled interface, a minimal shared library plugin, and the
libpextrae shared library plugin. Next, the results are discussed.

6.1 Benchmark Methodology

All benchmarks were performed on a single node on the vulcan cluster at HLRS. The underlying
hardware has the following specifications.

• Processors: 2 Intel Xeon Gold 6138 @ 2.0GHz (Codename Skylake) with 20 cores each.

• Memory: 192 GB DDR4 @ 2666MHz (Hexa-Channel)

A single node was used to minimize the communication overhead and to showcase the overhead of
the DASH tools interface with minimal external performance overhead. By using multiple nodes,
the inter-node communication would add more unnecessary communicated overhead to the baseline
measurements. The cluster was chosen in order to retrieve reproducible and reliable results, since
these systems are designed to have minimal background activities. All codes were compiled with
the GNU Compiler 7.3.0 and linked against Open MPI 3.1.2, which also was compiled with the
GNU Compiler 7.3.0. The DASH framework was build in Release mode. All threads were pinned
to their respective core by DASH which is using the hwloc library. The pinning offered by Open
MPI was disabled using the --bind-to none option. Unless stated otherwise, all benchmarks are
performed using all 40 cores and 80 threads of the node.

6.1.1 Selection of benchmarks

To conduct various measurements, multiple categories of benchmarks are used. The benchmarks
can be divided in two distinct categories: Microbenchmarks and real-world benchmarks.

Microbenchmarks aim at measuring only specific features of a system [SGC93]. Usually, mi-
crobenchmarks only consist of a small amount of code, whereas real-world benchmarks tend to
have a much larger codebase.

Real-world benchmarks originate from applications, which are commonly used in practice. In
contrary, microbenchmaks are written to solely fit the purpose of measuring specific features
of the system, which makes them not represent real-world performance. To measure real-world
performance in applications, microbenchmarks are not optimal. Bershad et al. [BDF92] mention
cache effects that may affect the quality of the results when using microbenchmarks.
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Taskbench The first microbenchmark, referred as taskbench, creates a fixed number of empty
tasks n, of which 1 ≤ m ≤ n tasks belong to the same class of tasks. An empty task does not contain
any instructions. Both n and m are passed as parameters to the benchmark application. A task class
only contains tasks with the same assigned task name.

For example, the following call of taskbench
./taskbench 10000 10

creates 10000 empty tasks with 10 unique task classes.

The elapsed time is measured internally by the benchmark application itself. Only the part of the
task creation is measured by taking a time stamp directly before and directly after the benchmark
routine call. Afterwards, the elapsed time is calculated by subtracting the time before the call from
the time after the call.

Depbench The second microbenchmark, referred as depbench, creates a fixed number of empty
tasks n with m = 1, i.e. there is only a single task class. In addition to that, every task is assigned d
local dependencies. For example, the following call of depbench
./depbench 10000 16

creates 10000 empty tasks of which every task has 16 local dependencies. Analogous to the
taskbench, only the creation of the tasks with their corresponding dependencies is measured.

Cholesky decomposition benchmark The real-world performance is represented by a DASH
application performing a Cholesky decomposition of a square matrix. The benchmark measures
the time it takes to compute this decomposition as well as the Floating Point Operations per
Second (FLOPS). The benchmark offers to specify the dimension of the matrix and the block
size as command line parameters. All measurements of this benchmark were conducted using
a 20000 × 20000 matrix with blocks of size 500 × 500 resulting in 40 × 40 blocks, if not stated
otherwise. The Intel Math Kernel library was used in version 2019.2. The benchmark creates 11480
tasks in this configuration to compute the decomposition. This is sufficient to keep all threads
busy.

If a CPU core on modern CPUs is idling, its clock speed is lower than under load. When load
occurs, the cores need a small amount of time to increase their clock speed. Therefore a warm-up
phase is placed before the actual benchmark, in order to minimize the effect of the CPU governor on
the CPU clock speed. Here, the warm-up phase consists of creating n = 104 empty tasks of which
all belong to a single task class.

All benchmarks are repeated 50 times, if not stated otherwise.

6.1.2 Zero-tool-test

Since one of the requirements presented in Section 4.2 is to minimize the overhead of the interface,
it needs to be verified if the overhead actually is minimal. Various benchmarks are conducted to
measure a possible overhead.
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Setup

The shared library plugin libpdummy.so is used to solely measure the overhead caused by the plugin
infrastructure. This plugin offers empty notification functions for all available events the DASH
tools interface provides, which means that all notification functions contain zero instructions. Hence,
once a notification function is called it returns immediately.

The initialization function of the plugin saves the global unit ID into a variable and registers all
notification functions at the event dispatcher inside DART. This shared library plugin provides a
minimal version of a plugin in order to use all events of the DASH tools interface, however no
external tool can be attached.

The taskbench and the depbench are run in multiple configurations, in order to measure a difference
under a higher artificial load compares to less artificial load. The taskbench was performed with
n ∈ {105, 106, 107} tasks with m = 1 classes. The depbench was performed with a fixed number of
tasks n = 105 and a various number of dependencies d ∈ {0, 2, 4, 8, 16}. All benchmark runs were
once conducted with a disabled interface and once conducted with the libpdummy.so shared library
plugin loaded. The benchmark duration was measured for every benchmark run. All benchmark
runs were conducted using only a single thread in order to remove the communication overhead
between threads.

Results

The results of the three runs of the taskbench are depicted in Table 6.1. The average duration
to create n = 105 tasks with disabled interface amounts to 0.188s with a standard deviation of
σ = 0.002. Compared to the average duration to create the same number of tasks with a minimal
plugin attached (0.188s with σ = 0.0006) the duration is equal within the measurement accuracy.
Therefore, no statistical significant overhead can be obtained for the n = 105 run. By having more
tasks to create, the number of function calls to the notification functions inside the shared library
plugin inreases. This should cause a higher overhead, if present. However, for n = 106 and n = 107,
the duration also only differs within the measurement accuracy. Therefore, no statistical significant
overhead can be obtained for all three runs conducted with the taskbench.

The results of the five runs of the depbench are depicted in Figure 6.1. The x-axis shows the duration
of the depbench in seconds, whereas the y-axis shows the number of local dependencies per task.
The blue bars show the duration when the tools interface is disabled, whereas the red bars show
the duration when the libpdummy plugin is used. However, no significant interface overhead can be
obtained in all four benchmark runs, since the variance of the results is still within the measurement
inaccuracy.

The results of the Cholesky decomposition benchmark are depicted in Figure 6.2. Additionally, in
this figure the libpextrae is also measured, however this particular benchmark run will be discussed
in the next subsection.

With a disabled tools interface, the decomposition took 2.761s (σ = 0.02) on average, whereas the
decomposition with the libpdummy plugin took 2.763s (σ = 0.03). The measured FLOPs show the
same behavior. With a disabled tools interface, 965 GFLOPs (σ = 7) were measured, whereas
964 GFLOPs (σ = 10) were measured with the libpdummy plugin. The standard deviation σ is
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Interface state n = 105 n = 106 n = 107

Disabled 0.188 (σ = 0.002) 1.766 (σ = 0.01) 17.593 (σ = 0.04)

Enabled 0.188 (σ = 0.0006) 1.768 (σ = 0.00) 17.634 (σ = 0.09)

Table 6.1: The run time of the taskbench in seconds for creating n tasks with a single task class
(m = 1) for a disabled tool interface and a minimal shared library plugin (libpdummy) to
enable the interface.

higher in both cases, however both averages differ within the measurement accuracy, therefore no
significant overhead can be obtained. However, counting the number of instructions used for the
taskbench for n = 106, the libpdummy plugin requires ≈ 1.3% more instructions to complete the
benchmark. For a run of the Cholesky decomposition of a 20000 × 20000 matrix with a block size
of 500 × 500, only ≈ 0.03% more instructions are required to complete the benchmark. Hence, the
overhead caused by the interface infrastructure is minimal.
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Figure 6.1: The duration of the depbench for creating n = 105 tasks with an increasing number of
dependencies. The blue bars show the duration when the tool interface is disabled. The
red bars show the duration when the libpdummy plugin is used. Only a single thread
was used for this benchmark.
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Figure 6.2: Showing the duration and the GFLOPs for the Cholesky decomposition of a 20000 ×
20000 matrix using a 500 × 500 block size. Both plots on the right give further insight,
since the differences between the measurements are small.

6.1.3 Extrae

To solely evaluate the overhead caused by the libpextrae shared library plugin without the internal
overhead of Extrae and the overhead caused by saving the gathered traces on disk, the calls to Extrae
(Extrae_event and Extrae_define_event_type) are commented out inside the code. Apart from
that, the code remains identical.

Setup

The taskbench revealed that the overhead caused by the former libpextrae plugin is not satisfying.
With the definition of the DASH tools interface as it is, it is not be possible to decrease the overhead
of the libpextrae plugin without extensive optimization of the hash maps used by implementing
custom hash maps.

To achieve a better performance, the definition of the interface is slightly changed. For testing
purposes, the task_begin and task_end events include a parameter for the name of a task, just like
the task_create event already had included before. This enables a more simpler architecture of the
libpextrae plugin. Every time a task is created, its name and the hash of its name is stored inside
a std::unordered_map. This is required to hand over two arrays to Extrae, of which one contains
the name of the tasks and the other one contains their corresponding values. When a task is being
executed, the hash of the task name is computed and send directly to Extrae with an Extrae_event

routine call. This is implemented in the alternative libpextrae plugin.

Inside the original libpexatre plugin, without the change of the interface definition, a second
std::unordered_map saves the mapping between task ID and the hash of the task name. Every time
a task was created, it is necessary to lookup the hash for the current task ID. Inside the alternative
libpexatre plugin, with the slightly change of the interface, it is possible to compute the hash of
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the task name every time a task is being executed. The computation of a hash mainly consists of
arithmetic operations, whereas the use of an std::unordered_map mainly consists of creating and
copying objects in memory with additional hash computation.

Impact of increasing the number of task classes

In theory, it is computationally more expensive if more unique task classes are created when using
the libpextrae shared library plugin, since it requires insert operations to the std::unordered_map

and additional hash computations. In fact, every new occurring task class requires a single insert
operation with thread synchronization. The alternative libpextrae plugin reduces the number of
std::unordered_map from 2 to 1. However it requires more hashes to be computed. In fact, a hash
is always computed when a task is executed.

To measure the overhead of having a large number of task classes, the duration of the taskbench

was measured with an increasing number of task classes m for n = 106 tasks created.

Results The results are depicted in Figure 6.3. The x-axis shows the number of task classes
starting with m = 100 = 1 with every step increasing the number by multiplying the previous value
with 10. The y-axis shows the duration of the taskbench in seconds. The plot indicates how much
time is required to create 106 tasks with an incremented number of task classes. The blue line shows
the time required if the tool interface is disabled, i.e. no instrumentation is done during run time.
The brown line shows the time required if the alternative version of the libpextrae plugin with a
slightly change of the interface definition is used. Finally, the red line shows the time required for
the libpextrae plugin with no further interface changes.

As expected, the number of task classes has no impact on the duration when the interface is disabled,
since DART does no computationally expensive processing associated to the task name.

As expected, both libraries show a higher benchmark duration when the number of task classes is
incremented, since the computation of the hash for every task class is computationally expensive.
However, the alternative version of the library requires overall significantly less time to finish the
benchmark compared to the old version of the library. In detail, for m < 105, the alternative version
is ≈ 2.6 times faster than the old library. For m = 106 it is still ≈ 2.1 times faster. The reason for
the duration decrease is the omission of one std::unordered_map container in the alternative version
that saves the relation between the task ID and the hash of the task name. As a consequence, the
writer-lock is only established if a new task class occurs. Otherwise it is not needed, since no write
operations are made to global data structures.
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Figure 6.3: The duration of the taskbench for n = 106 for a disabled interface and both libpextrae

plugin versions on the y-axis for an incremented number of task classes m on the x-axis.
If the tool interface is disabled, i.e. no instrumentation is done, the number of task
classes does not have an impact on the duration of the benchmark. Both libpextrae

plugins require significantly more time to finish the benchmark. However the alternative
version requires significantly less time then the standard version.
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Figure 6.4: The average overhead of both libpextrae versions in percent compared to the disabled
tools interface shown in Figure 6.3.

Impact of increasing thread count

To gather insight into the scalability of the libpextrae plugin, the duration of the taskbench for
n = 106 was measured with an increasing number of threads per run. The number of threads was
increased by the power of two in every step. In addition to that, the number of task classes m was
varied twice. The best case is represented by setting m = 1, whereas m = 106 represents the worst
case in terms of performance. At m = 106, every task has a different task class, which is more
computationally expensive, compared to m = 1.

Results The results are depicted in Figure 6.5. The x-axis shows the number of threads the
benchmark was running on, whereas the y-axis shows the duration of the taskbench in seconds. It
can be observed that all six curves have a parabolic form. First, only the blue and red dashed curves
are considered. Both represent the case when the tools interface is disabled. Hence, both curves
represent the baseline.
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As expected, both curves have an identical path within the measurement accuracy. This is due
DART does not have computationally expensive processing associated to the task name. Hence, the
number of task classes is not relevant for the taskbench duration.

The duration of the taskbench decreases when using more than 2 threads up to 8 threads. With 16
threads, the duration increases by ≈ 10% compared to 8 threads. By using more threads, the slope
of both curves gets steeper, resulting in a ≈ 75% (32 threads) and a ≈ 262% (64 threads) increase of
duration compared to 8 threads. The taskbench has the shortest duration when using 8 threads.

By investigating this phenomenon with the Linux performance analysis tool perf, multiple possible
reasons were found. First the function inside DART responsible for taking the tasks from the queue
has an overhead of ≈ 3% when using 8 threads. This function checks if the task queue is empty,
otherwise a mutex is locked and the task from the top of the queue is popped. After that, the mutex
is released. With 16 threads, the overhead caused by this function increases (≈ 20%), increasing
further for 32 (≈ 70%) and 64 threads (≈ 79%) and causing congestion in DART. In particular,
when using 64 threads, this function requires ≈ 79% of the computation time.

To give possible explanations for this increase in synchronization overhead, the underlying hardware
has to be looked closer at. A single Skylake node of the vulcan cluster, consists of of a dual-socket
mainboard with two 20 core CPUs installed. Since SMT is enabled, in total 80 threads are available.
The threads are pinned in a way, such that the second CPU is only used, when an application uses
more than 20 threads. Similarly, the threads offered by the SMT are used only if an application used
more than 40 threads. Assuming this, using more than 20 threads results in additional overhead
caused by inter-CPU communication. When using more than 40 threads, CPU internal resources of
a single core are shared between two threads on this particular system. Hence, two threads may
have to resolve additional data conflicts caused by SMT. Additionally, the number of tasks created
by every thread decreases with an increasing number of threads used. Therefore the synchronization
overhead is larger than the actual computational overhead caused by creating empty tasks. This has
to be taken into account.

If a libpextrae plugin is used, the taskbench duration is higher than without the plugin. The blue
and the brown curves represent the unmodified libpextrae plugin, whereas the red and black curves
represent the modified libpextrae plugin. As expected, the modified libpextrae plugin results
in a smaller duration of the taskbench. The best case (m = 1) of the modified libpextrae plugin
shows only a minimal overhead compared to the disabled interface. If more task classes are created
(m = 106), the overhead caused by the plugin is significantly higher.

This is due to the increasing synchronization costs, since every new task class introduces a writer-lock
for writing data into data structures.

Both curves representing the unmodified libpextrae plugin show a significantly higher overhead.
This can be explained by the additional write-lock if a specific task class was not already processed
combined with saving the mapping between the task ID and the hash of the task name.
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Figure 6.5: The duration of the taskbench for multiple versions of the libpextrae plugin for an
increasing number of threads on a single node. The alternative version of the libpextrae

plugin requires significantly less time than the unmodified version of the same plugin.
However, the alternative version requires a slightly modified tools interface.

Impact of increasing the number of nodes

To gather insight into the scalability of the libpextrae plugin when using more than one node, the
problem size of the Cholesky decomposition is increased proportional to the number of nodes used.
The block size (320 × 320) is constant over all runs. For a single node, the size of the matrix is
(20 · 1024 × 20 · 1024) = (20480 × 20480). For more than one node, the size of the matrix is
increased by multiplying each dimension by the square root of the number of nodes used. Thus, the
problem size is constant per node and increasing proportional to the number of nodes used. The
benchmark is run ten times for each number of nodes.
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Results The results are depicted in Figure 6.6. The x-axis shows the number of nodes the
benchmark was running on, whereas the y-axis shows the duration of the Cholesky decomposition
benchmark in seconds. No significant overhead of the libpextrae plugin can be obtained, since all
results only vary within the measurement accuracy. However, when using more than 16 nodes, the
variance of the individual runs increases, resulting in larger error bars. All measurements shown in
Figure 6.6 were obtained on the same day, with the same configuration on the cluster. To ensure
that no external load on the cluster distorted the measurements, all benchmarks were repeated twice.
Nevertheless, the results are reproducible.

Unfortunately, no time was left to inspect the behavior of the benchmark on more than 16 nodes
in detail. A possible explanation may be the topology of the network. The cluster has 24 nodes
connected to a single switch. Ideally, using less than 24 nodes should result in using a single switch
only. However, this is not guaranteed. When using more than 24 nodes, at least two switches
are used to connect all nodes. This results in a higher communication overhead, since other jobs
running on the cluster may use additional bandwidth. However, this particular explanation has to be
analyzed further to draw a final conclusion.
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Figure 6.6: The duration of the Cholesky decomposition benchmark when using a fixed problem
size per node.
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6.2 Discussion

The evaluation does only contain measurements concerning the overhead of the interface infra-
structure and the libpextrae plugin for Extrae, in order to enable performance analysis of DASH
applications. The libpayudame plugin for Temanejo and Ayudame is not measured, since the perfor-
mance overhead is negligible for debugging applications as long as the tools interface sends the
data instantly to the debugger, which it does in this case.

No significant overhead for the interface infrastructure could be measured. Although, more instruc-
tions need to be processed if the interface is enabled, though the overhead caused by the additional
instructions cannot be measured effectively, since the results vary within the measurement accuracy.
This is true for both, real-world and microbenchmarks.

However the total number of instructions used for an application run can be obtained via the Linux
performance analysis tool perf using the instructions event. For the taskbench with n = 106 and
m = 1, the overhead caused by the interface infrastructure amounts to ≈ 1.3% more instructions
compared to a disabled tools interface. For the Cholesky decomposition benchmark using a
20000 × 20000 matrix with a block size of 500 × 500, it is even lower, amounting to ≈ 0.03% more
instructions compared to a disabled tools interface. Therefore the overhead caused by the interface
is minimal.

A significant overhead can be measured for the libpextrae plugin with the taskbench microbench-
mark. Both versions of the plugin produce an additional overhead of approx. 8.5% up to approx.
102% per task on the particular system. However, the alternative version of the libpextrae plugin
is significantly faster. This can be seen in Figure 6.3.

In practice, this is not relevant as the results depicted in Figure 6.2 show. The duration of the
Cholesky decomposition benchmark is not affected by the libpextrae plugin within measurement
accuracy.
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7 Conclusion and Outlook

This thesis explored and evaluated the design of a tools interface for the DASH C++ PGAS Frame-
work. DASH combines the tasking approach with distributed data structures by using the Partitioned
Global Address Space (PGAS) model.

The tools interface enables users to connect various external analysis tools to the DASH Runtime
(DART) in order to extract data that is needed for correctness checking, debugging, and performance
analysis of DASH applications at run time. This data consists of events, which model task-state
changes as well as local and remote dependencies.

A prototypical implementation is provided based on the proposed design that fulfills the presented
design goals. In particular, the interface provides information about the task graph of a DASH
application during run time. The provided interface infrastructure allows the user to connect
external analysis tools. Two external analysis tools, namely Temanejo and Extrae, were integrated
into the interface infrastructure. The prototypical implementation offers plugins that provide the
infrastructure to connect both tools. From a user’s perspective, Temanejo can be used for correctness
checking and debugging of DASH applications. Extrae offers the possibility to create traces of
DASH applications. These traces give an in-depth view of the application’s behavior during run
time, allowing performance analysis of DASH applications.

Benchmarks were conducted to measure the overhead of the interface infrastructure and the plugin
that provides the infrastructure to connect Extrae. The interface infrastructure does not produce a
significant overhead compared to a disabled tools interface in both real-world and microbenchmarks.
However, with microbencmarks, a significant overhead can be measured for the Extrae plugin. As
the real-world benchmark reveals, the overhead is not relevant in practice, since no significant
overhead can be measured here.

Outlook

Since the interface still only offers basic functionality for DASH applications, which are using the
tasking functions that DASH provides, it can be extended in the future by offering more information,
e.g., information about the current memory usage.

Besides that, the interface currently only supports two external analysis tools. Support for more
tools can be added in the future, e.g., a native profiler.

In addition to that, the proposed changes for Temanejo and Ayudame discussed in Section 5.5
should be implemented in order to improve the support of DASH for Temanejo. This includes the
distinction between local and remote dependencies together with displaying user-defined strings as
edge labels, e.g., to display the data hazard case for a particular dependency. Additionally, Temanejo
should display the DASH unit on which a particular task run on the GUI.
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A Appendix

typedef void (*dart_tool_task_create_cb_t) (

uint64_t task,

dart_task_prio_t prio,

const char *name,

void *userdata

);

typedef void (*dart_tool_task_add_to_queue_cb_t) (

uint64_t task,

uint64_t thread,

void *userdata

);

typedef void (*dart_tool_task_begin_cb_t) (

uint64_t task,

uint64_t thread,

void *userdata

);

typedef void (*dart_tool_task_end_cb_t) (

uint64_t task,

uint64_t thread,

void *userdata

);

typedef void (*dart_tool_task_cancel_cb_t) (

uint64_t task,

uint64_t thread,

void *userdata

);

typedef void (*dart_tool_task_yield_leave_cb_t) (

uint64_t task,

uint64_t thread,

void *userdata

);

typedef void (*dart_tool_task_yield_resume_cb_t) (

uint64_t task,

uint64_t thread,

void *userdata

);

typedef void (*dart_tool_task_finalize_cb_t) (

void *userdata

);

Listing A.1: The template definitions of the task state change notification functions available in the
DASH Tools interface.



typedef void (*dart_tool_local_dep_cb_t) (

uint64_t task1,

uint64_t task2,

uint64_t memaddr,

int32_t task1_unitid,

int32_t task2_unitid,

int edge_type,

void *userdata

);

typedef void (*dart_tool_local_dep_cb_t) (

uint64_t task1,

uint64_t task2,

uint64_t memaddr,

int32_t task1_unitid,

int32_t task2_unitid,

int edge_type,

void *userdata

);

Listing A.2: The template definitions of the dependency notification functions available in the
DASH Tools interface.

void ayu_event_preinit(uint64_t rt);

void ayu_event_init(uint64_t nthreads);

void ayu_event_addtask(uint64_t task_id, uint64_t func_id, uint64_t priority, uint64_t scope_id);

void ayu_event_registerfunction(uint64_t func_id, const char *name);

void ayu_event_adddependency(uint64_t to_id, uint64_t from_id, uint64_t memaddr, uint64_t orig_memaddr);

void ayu_event_addtasktoqueue(uint64_t task_id, uint64_t thread_id);

void ayu_event_preruntask(uint64_t task_id, uint64_t thread_id);

void ayu_event_runtask(uint64_t task_id);

void ayu_event_postruntask(uint64_t task_id);

void ayu_event_removetask(uint64_t task_id);

void ayu_event_barrier();

void ayu_event_waiton(uint64_t task_id);

void ayu_event_finish();

Listing A.3: The original Ayudame interface.
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