
Institute of Software Technology
Software Engineering

University of Stuttgart
Universitätsstraße 38

70569 Stuttgart

Master Thesis

Property-based Testing:
Evaluating its

Applicability and Effectiveness
for AUTOSAR Basic Software

Aparna Bose

Course of Study: INFOTECH

Examiner: Prof. Dr. Stefan Wagner

Supervisor: M.Sc. Jonas Fritzsch

Dipl.-Inf. Hans-Jörg Reichle

Commenced: August 14, 2019

Completed: February 21, 2020

Abstract

Previous work has shown that Property-based Testing (PBT) can be successfully applied
to testing synchronous software. For example, it has been demonstrated that PBT can be
applied to testing cloud services, web services and telecoms software. But less research has
been carried out to evaluate this approach to testing asynchronous code as in automotive
software. In the work presented in this Master thesis, the data generation feature of PBT is
exploited to test the functionality of a software module based on the AUTOSAR Adaptive
Platform.

Properties are defined considering the system as a black-box targeting its functionality on
an abstract level. First, we apply stateless properties to test a single functionality and
thereby find the communication delay needed to incorporate in our testing at system level.
Later, we implement a test infrastructure based on stateful properties using the Python
tool Hypothesis for the demonstration of research based on PBT. The testing framework
is interfaced with the runtime environment to integrate the former with the system being
tested. The test inputs generated in this approach are evaluated for their effectiveness
and efficiency in testing the software module under test. Finally, experts in the testing
field have been interviewed to draw comparisons between PBT and traditional methods
of testing.

3

Acknowledgement

It gives me great pleasure in acknowledging the contributions of all those without whom
this thesis would not have been possible. First and foremost, I wish to thank Prof. Dr.
Stefan Wagner for giving me an opportunity to do my thesis in the Department of Software
Technology.

This work would not have been straightforward without the guidance of my supervisor
Mr. Jonas Fritzsch who has shown me, by his example what a good researcher should be
like. He has patiently corrected my writing and supported my research.

I would like to thank my supervisor at Vector Mr. Hans-Jörg Reichle, who took the time
out to hear my ideas and guided me on the right path throughout the thesis with his
knowledge and experience. I would also like to thank my manager at Vector Mr. Philipp
Kallenberg for sharing his valuable suggestions and remarks which helped me progress in
my work.

I am immensely grateful to Mr. Klaus Bergdolt, without whom this thesis would not have
been possible at the right time in my life.

I would like to thank my fiancé Dr. Deepak Bos und my family for their immense support
and encouragement throughout my thesis. Finally, my sincere thanks goes to my best
friends Meenu Saratchandran, Aniket Bhovad and Akshay Kulkarni who stood by me
during the low tides of my studies.

5

Contents

1 Introduction 15
1.1 Motivation . 16
1.2 Scope of Work . 16
1.3 Research Questions . 17
1.4 Research Methodology . 17
1.5 Thesis Outline . 18

2 Fundamentals 19
2.1 Testing . 19
2.2 Test Levels in the V-Model . 21
2.3 Property-based Testing (PBT) . 22

2.3.1 Hypothesis Framework . 23
2.3.2 Stateless Properties . 23
2.3.3 Stateful Properties . 24
2.3.4 Application of stateless and stateful properties 25

3 System Under Test 27
3.1 AUTOSAR . 27

3.1.1 AUTOSAR Classic . 27
3.1.2 AUTOSAR Adaptive . 27

3.2 Service-Oriented Architecture . 28
3.3 Architectural Overview of Adaptive Platform 29
3.4 Communication Management (ara::com) 32
3.5 Service Discovery . 34

3.5.1 Application View . 35
3.5.2 Bus View . 36

4 Specifications and Test Design 37
4.1 AUTOSAR Specifications for ara::com . 37
4.2 Comparison of Test Strategies . 37

4.2.1 Example-based Testing . 38
4.2.2 PBT . 38

4.3 Deriving Properties from Specifications . 39

5 Implementation 41
5.1 Block Diagram of SUT . 42
5.2 Integration of Hypothesis with the Adaptive Platform 43

7

Contents

5.3 Stateless Property . 44
5.4 Service Test Model . 45
5.5 State diagram of a Service . 46
5.6 Stateful Property . 47

6 Results and Evaluation 51
6.1 Effectiveness . 51

6.1.1 Issue found during testing . 51
6.1.2 Concurrency . 52
6.1.3 Statistics of Test Inputs . 53
6.1.4 Analysis of Test inputs . 54
6.1.5 Fault Injection . 55
6.1.6 Coverage . 55

6.2 Efficiency . 57
6.3 Interview Study . 58

7 Threats to Validity 61

8 Related Work 63

9 Conclusion 65

10 Future Scope 67

Bibliography 69

8

List of Figures

2.1 Manual and Automated testing [17] . 20
2.2 Optimal Software Testing [19] . 21
2.3 Test levels in the V-model [21] . 22
2.4 Regular unit tests for sum function . 24
2.5 Stateless property . 24
2.6 Example of a test run in Hypothesis . 25

3.1 Service-Oriented Communication [43] . 29
3.2 Adaptive Platform Architecture [9] . 30
3.3 SOC via Communication Management [49] 32
3.4 Communication on Adaptive Platform . 33
3.5 SOME/IP Protocol [54] . 34
3.6 Local and SOME/IP Service Discovery [51] 35

4.1 Example-based testing . 38

5.1 Block Diagram of the SUT . 41
5.2 Setup of the PBT test system for SD . 42
5.3 Renesas R-Car ECU running Adaptive Applications [61] 43
5.4 Stateless property to find the delay needed after an asynchronous API call 45
5.5 Test model representing a service. 46
5.6 Implemented model of service . 47
5.7 Stateful property for testing Service Discovery 48
5.8 An example test generated by Hypothesis for SD 50

6.1 Minimal example for the port mismatch error detected 51
6.2 Concurrency of service statemachine models 52
6.3 Number of test inputs generated by Hypothesis in 100 examples with step

count=50 . 53
6.4 An example generated by Hypothesis with an interface call without a Check() 54
6.5 Minimal example for an injected fault into StartOfferService(). 55
6.6 Transition Coverage of Service 1 in a test run of 100 examples 56
6.7 Transition Coverage of Service 2 in a test run of 100 examples 56
6.8 Transition Coverage of Service 3 in a test run of 100 examples 57

9

List of Tables

4.1 Test Specification for local and remote Service Discovery [11] 37

5.1 Boundary Values of time obtained with stateless property. 44

6.1 Combinations of states of services from a test run of 100 examples. 53
6.2 Statistics of test cases covered for all services in a run of 100 examples. . . 54
6.3 Execution and wait times in the test runs of SD. 58
6.4 Participant data. 58

11

List of Acronyms

AA Adaptive Application

AP Adaptive Platform

API Application Programming Interface

ARA AUTOSAR Runtime for Adaptive Applications

AUTOSAR Automotive Open System Architecture

BSW Basic Software

C Checked

CM Communication Management

ECU Electronic Control Unit

FSM Finite State Machine

ID Identifier

MLoC Million Lines of Code

NC Not Checked

NO Not Offered

O Offered

OEM Original Equipment Manufacturer

OTA Over-the-air

PBT Property-based Testing

SD Service Discovery

SOA Service-Oriented Architecture

SOC Service-Oriented Communication

SOME/IP Scalable service-Oriented MiddlewarE over IP

SUT System Under Test

13

1 Introduction

Ever since the first software has been introduced 30 years ago in automotive electronic
modules [1], the automotive industry has evolved into software-intensive applications from
mechanically intensive ones [2, 3]. A modern car has 80 to 120 embedded microcontrollers
with software running upon and these units are referred to as Electronic Control Units
(ECUs). It’s only a matter of time when an automobile can be rightly described as ‘a
computer on wheels’ [4].

More than 80% of the innovations in an automobile is contributed by software, making it
an integral part of the automobile industry [1]. The remark of the famous automotive en-
trepreneur Robert Bosch [4], “Without exception, our aim must be to improve the current
status; and instead of being satisfied with what has been achieved, we must always strive
to do our job even better”, has already been proven true with the industry growing into an
era of new-generation cars. With the vast expansion in the functionality of automobiles,
the complexity of software has also increased in the order of 100 Million Lines of Code
(MLoC). This number is huge as compared to that of the social media giant “Facebook”
which is only around 60 MLoC [2, 4, 5]. According to Haghighatkhah et al., one could
argue that modern cars run on code as much as on fuel [3].

The growing complexity of software in automobiles has led to the formation of AUTOSAR
(Automotive Open System Architecture) Consortium by a group of OEMs (Original Equip-
ment Manufacturers) and Tier 1 companies in 2003 [6]. The software used in Electronic
Control Units (ECUs) is thereby standardized to tackle the complexity of its architecture.
This has resulted in simplified development processes, modularity and reuse of software
components as well as the integration of ECUs from different suppliers into a single OEM
product [7]. Deeply embedded ECUs which do not need dynamic linking of services are
based on the AUTOSAR Classic Platform. The new standard released by AUTOSAR in
2017 is referred to as the Adaptive Platform. The aim of the Adaptive AUTOSAR is to
develop ECUs with high computing power and secure communication-based applications
such as driver assistance, autonomous driving, communication with cloud services, soft-
ware updates Over-the-air (OTA) etc. [8]. Neither of these platforms would replace one
another but instead would interact with each other and other external systems to form an
integrated system [9].

15

1 Introduction

1.1 Motivation

The specifications released by AUTOSAR for the Basic Software (BSW) modules are in-
terpreted by the suppliers to develop software components in the ECUs. The suppliers
test the developed ECUs to check if their software implementation satisfies their interpre-
tation of AUTOSAR specification [7]. The software components will be delivered by the
suppliers to the Tier 1 companies who would then develop applications on top of the basic
software modules. At each level of software component development and integration, these
are thoroughly verified and validated to ensure that the implementation meets functional
expectations. Testing is, therefore, an integral part of assessing the quality of the software
before it is delivered to the customer [10].

For testing at the system level, test specifications are released by AUTOSAR in the doc-
ument “System Tests of Adaptive Platform” [11]. These specifications aim mainly at
validating the requirement items mentioned in the requirement documents of each soft-
ware module [12]. The test specifications cannot deliver intensive testing of each software
module, rather can aid in extensive testing of all the modules of the Adaptive Platform.

Property-based Testing (PBT) is a new randomized approach of testing which became
popular after a tool named QuickCheck [10]. It involves representing the functional spec-
ification in the form of properties. These properties are then tested with a large number
of automatically generated test cases. At the end of testing, the test inputs for which the
properties do not hold are identified [13]. The failing test inputs are then simplified by the
property-based testing framework through a shrinking process. Not only do these shrunk
test sequences help debug the defective code faster, but also are these saved to ensure that
the problem has been successfully fixed during consecutive tests [7, 14].

PBT has been widely used in testing synchronous functions [P6]. However, PBT has not
been evaluated in the aspect of testing asynchronous software like automotive software.
Asynchronous software differs from synchronous software in that the former takes time to
output the response to the requests without blocking the caller and this factor attributes
to challenges in its testing [15].

This thesis aims to evaluate the effectiveness and efficiency of the property-based approach
for testing the Basic Software modules in ECUs. As a proof of concept, conventional and
property-based test approaches are compared for the “Communication Management” BSW
module of AUTOSAR. Communication Management is a significant functional cluster
of BSW which is responsible for the communication between different applications of
Adaptive Platform [16]. For this purpose, a test environment based on property-based
approach is designed and implemented.

1.2 Scope of Work

The main contribution of the thesis is the design of a test infrastructure based on property-
based approach and investigation whether this approach is feasible for verifying the func-

16

1.3 Research Questions

tionality of AUTOSAR Basic Software. For the study, one of the functional clusters of
ECU Basic Software based on Adaptive Platform, namely, Communication Management
(CM) is chosen. The property-based approach is evaluated for testing the software module
at a higher level, also referred to as system testing, where CM Modules of two ECUs are
involved.

1.3 Research Questions

This master-thesis addresses following key questions and tries to answer them:

RQ1: How can properties be derived from system specifications and requirements of the
AUTOSAR Basic Software?

RQ2: When can a module be regarded as “sufficiently” tested using property-based test-
ing? What are appropriate variables, metrics and values in this context?

RQ3: How effective is property-based testing for AUTOSAR software? When can it
extend or replace conventional testing methods and when is it inappropriate?

1.4 Research Methodology

The Thesis is carried out in the following steps to answer the corresponding research
questions:

How can properties be derived from system specifications and requirements of AUTOSAR
Basic Software? (RQ1)

1. Extensive research on literature is done to reveal projects wherein property-based
testing has already been used. This step gives a better understanding of the property-
based testing approach in general. Additionally, how properties have been derived in
these existing projects is analysed. Further, this serves as a guide to think in terms
of properties during the next step.

2. Examination of specification, requirement and other technical documents released
by AUTOSAR for the module “Communication Management” of Adaptive Platform
are done. This step is necessary to get familiar with the functionality of the module
to identify relevant properties for testing.

When can a module be regarded as “sufficiently” tested using property-based testing? What
are appropriate variables, metrics and values in this context? (RQ2)

3. Design and implementation of a property-based test infrastructure for the module
is performed for the qualitative analysis of the identified properties.

17

1 Introduction

4. Evaluation and visualisation of the test results along with in-depth research on the
existing adequacy criteria [5] for random and black-box testing aid in formulating a
test adequacy criterion for property-based test approach.

How effective is property-based testing for AUTOSAR software? When can it extend or
replace conventional testing methods and when is it inappropriate? (RQ3)

5. Assessment of response of the System under Test (SUT) to the test inputs helps
to figure out the “effectiveness” aspect of this testing approach. For outlining the
comparison to conventional testing, experts in the testing field are interviewed. This
step helps further to identify the metrics and variables of RQ2 that could be taken
into consideration. This step is also critical to understand the areas where PBT test
approach could leave a significant impact on testing along with those where there
are shortcomings.

1.5 Thesis Outline

This master thesis is structured as follows:

Chapter 1 - Introduction: The motivation of the thesis is explained with a basic intro-
duction to property-based testing and AUTOSAR. The research questions are formulated,
and the methodology of research has been outlined.

Chapter 2 - Fundamentals: The essential concepts and technologies that are necessary
to understand the thesis are discussed.

Chapter 3 - System Under Test: The system which is tested in this thesis is de-
scribed.

Chapter 4 - Specifications and Test Design: The existing test method is explained
with the available test specification. The design approach based on our approach is also
specified.

Chapter 5 - Implementation: The implementation of the design is discussed in this
chapter.

Chapter 6 - Results and Evaluation: The results of the test approach are explained
along with the interview study conducted during this work.

Chapter 7 - Threats to Validity: The potential threats to the findings and results of
this thesis are presented.

Chapter 8 - Related Work: The various research work related to property-based testing
and testing of AUTOSAR software modules has been identified.

Chapter 9 - Conclusion: A summary of the work with respect to the research questions
is presented in this chapter.

Chapter 10 - Future Scope: An outline for future work is discussed in this chapter.

18

2 Fundamentals

In this chapter, we discuss the various terms and technologies necessary to understand the
concepts introduced in this thesis, which are testing, the underlying V-model.

2.1 Testing

Any software, or rather any product must deliver what it promises. For embedded software
like automotive software, factors like timing and safety impose strict constraints in addition
to the correctness of the software. The inevitable task of ensuring these requirements is
through testing the software or the product thoroughly during its development or after it
has been implemented. Testing is the process of verifying whether the functionality of a
product or software conforms to its specifications. Testing software accounts for 50% of its
development [17]. There are three major steps in testing which are the following [17]:

1. Preparation of test specification - This step requires good knowledge of the
system being tested like the functionalities to be tested, expected reaction or outputs
etc. as it involves the design of the test process.

2. Implementation of test cases - The test cases are derived from test specifications
and comprise of test sequences which are applied on the system being tested.

3. Analysis of test results - This step involves test report generation and is essen-
tial to determine whether the test outputs correspond to those listed in the test
specification.

Depending on how the testing is performed, it can be manual and automatic. Manual
testing involves writing test cases and executing them one by one without using test
automation tools [17, 18]. On the other hand, automated testing includes an external tool
or software for test execution and test report generation [19], and is ideal when repetitions
of tests are needed for a system [17]. According to Meyer [20], manual tests and automatic
tests are good at depth and breadth respectively. Additionally, an effective testing process
comprises of both manual as well as automatic test cases [20].

According to Figure 2.1, the initial time required for creating and launching the automatic
tests is more in comparison to manual tests. The number of manual test runs increases
gradually with respect to time. If the software has to be tested only once, then it is better
to go for manual testing as it is not worth spending the initial efforts of setting up the
automated environment for a single test. But if the software development involves fast

19

2 Fundamentals

Number of
test runs

Cost of
testing

automated testing

manual testing

Figure 2.1: Manual and Automated testing [17]

changing versions each of which has to be tested separately, then automated testing is a
much better choice than manual testing [21].

Figure 2.2 illustrates the significance of depth of testing with respect to the software
quality. Severe reduction of tests can cause to miss many bugs and testing more than
required can lead to increased testing costs as well. It is beneficial to run an optimal
amount of tests which lead to effective testing with favourable costs [19].

There are different approaches to testing software. Some of these which are relevant for
this thesis are explained below:

Black box Testing - In this type of testing, knowledge of the implementation details
of the system being tested is not required. Test cases are created with reference to the
functionality derived from an abstract model of the system or its specification. Test
inputs are provided to the system and the outputs of testing are compared with those
corresponding to the system specification [17, 14].

White box Testing - The internal structure of the system is taken into consideration
for this type of testing. Test cases are produced in such a way so that all the statements,
functions or branches of the source code are executed [17]. In simpler terms, this means
that all the desired internal system states are covered atleast once [14].

Gray box Testing - This type of testing is the combination of black box and white
box tests [17]. Here, the system functionality as well as the logical path of the code is
considered during testing.

Model based Testing - A model is the functional behaviour of the system in an abstract
form [14]. Here, test cases are generated from the model and tested on the system [22].
Modelling languages like UML are used to define the test model and the model is traced

20

2.2 Test Levels in the V-Model

Quantity

Amount of testing

Optimal amount
of testing

Cost of testing

Over TestingUnder Testing

Number of
missed bugs

Figure 2.2: Optimal Software Testing [19]

back to the requirements to make sure that testing is performed in the right direction
[23].

Random Testing - In random testing, the test inputs are selected arbitrarily or at
random from the test input domain. This type of testing can be combined with other test
methods to find subtle errors and is cost-effective [22].

2.2 Test Levels in the V-Model

Based on the scope of testing, test levels are defined in the V-model [21, 24] which serves
as the reference model in the development and testing of automotive software [24]. The
various test levels [25, 14] are shown in Figure 2.3 and their description is as follows:

Unit Testing - A software comprises of small components or modules referred to as units.
Each individual unit of the software is hence tested against its specification in unit testing
[24].

Integration testing - This step follows unit testing of all the software modules. Here, a
group of units and its combined functionality involving their interactions are tested [26].

System Testing - In this step, the software system is tested as one single block after inte-
grating all the units [26] and the external functionality is checked against its specifications.
This is done prior to acceptance testing [24].

Acceptance testing - This is performed for the end-user or customer of the system where
it is verified whether the software behaves according to their requirements [26, 24]. After
this, the software is sent to production [14].

21

2 Fundamentals

Unit Testing

Integration
Testing

System
Testing

Acceptance
Testing

Figure 2.3: Test levels in the V-model [21]

2.3 Property-based Testing (PBT)

Conventional approaches of testing involves engineers writing test cases manually with test
inputs, executing them one by one and verifying the outputs against expected results. This
cumbersome, time consuming and repetitive act of manually writing tests for a system [27]
has opened the way for another testing approach which is all about the word “properties”. A
property is the abstract behaviour of a system which should always hold. It can simply be
the relationship between the inputs and outputs of a system [14], or invariants that should
satisfy universally for a System Under Test [28]. A property can also be an executable
formal specification of a software [29]. In PBT, we define properties and use a framework
to generate test inputs which will be executed on the SUT to see if the property fails for
any of the test inputs generated. Test inputs are created with the help of generators which
are part of any PBT framework. We specify the input data type, number of test inputs
and range of test data for the generators to create the test inputs for us [29]. With PBT,
we perform a formal verification or reasoning of the system being tested as compared to
the traditional methods of testing [30].

A PBT test tool reports test cases for which the property fails and these failing test cases
are minimized by the tool through a process called shrinking. This test input simplifies
debugging the cause of failure [14, 28] and is the smallest test input that continues to
fail [27]. Without the shrinking feature of PBT, it would be difficult to manually extract
information about a failing test case [14]. The failing test input is referred to as minimal
test case or falsifying example. These failing inputs are also saved in a database of the
tool and reused inorder to ensure that a previous failure has been successfully fixed and
not reported again [14].

22

2.3 Property-based Testing (PBT)

For testing a system via PBT, the first step is to write a property which serves as the
specification for the generation of a large number of test data using a PBT tool. In PBT,
the properties we write can be said to be powerful [28]. Also, it is assumed that the
functionality which is of test interest is captured into a property as only this is being
validated in testing [31]. Properties can be simple like algebraic functions or could also
be complex like state machine models [28, 13, 32]. There are two categories of properties
which are stateless and stateful properties which are discussed in the sections below.

PBT is a form of random testing [29, 13, 10, 33, 32, 14] which could often help to uncover
subtle corner cases that would be difficult to be found otherwise through manual testing
methods [29]. PBT can be seen to be derived from the general idea of model based testing
which uses models to generate large number of test data and sometimes these test data
can be directly executed on these models as well. Similarly, properties in PBT serves the
same functionality of models as these are the source of test data generation as well as test
oracle [28, 32].

2.3.1 Hypothesis Framework

Although PBT became popular with the tool QuickCheck which was developed for Haskell
programs, a number of PBT frameworks or tools have been developed for other program-
ming languages as well. Hypothesis is a modern framework or tool which is available for
PBT in the Python programming language. It provides an extensive set of libraries which
can be easily integrated into the existing testing workflow without needing to have any
familiarity with Haskell programming language [34]. For the reason that Hypothesis is a
stable, powerful and its easy integration into existing test suites, we choose Hypothesis for
testing the system in this thesis.

Each test input generated by Hypothesis is referred to as an example and we can set
the number of required examples during each test run with the help of a settings object.
By default, the number of examples is 100. This default value is carefully chosen by the
developers of the framework where the total running time of tests can be balanced against
the chance of missing a bug. Hypothesis provides constructs using which we can easily
define inputs required to test the System Under Test [34]. Hypothesis can also be easily
integrated into Pytest which is an existing test framework to write tests ranging from
small unit tests to complex functional tests [35]. We write the test cases on Hypothesis
which randomly generates the test inputs with the help of the pytest suite.

2.3.2 Stateless Properties

Stateless properties can be perceived as abstractions of regular unit tests which are
example-based inputs applied for testing. An example of unit test for testing a sum
function is given in Figure 2.4 which consists of multiple invokes of sum function with
different values of integer inputs. The outputs of the sum function are tested against the
expected results for each set of input values. Such a unit test case can be abstracted and

23

2 Fundamentals

def test_sum ():
assert sum(2, 5) == 7
assert sum(10 , 10) == 20
assert sum(-2, 2) == 0

Figure 2.4: Regular unit tests for sum function

defined as a stateless property as shown in Figure 2.5. Here, the datatypes of inputs for
the sum function are defined and these inputs are generated at random by the generator
of the PBT tool Hypothesis which is used in our work. The implementation of sum func-
tion is tested with these generated integer inputs against the expected results. A set of
10 examples generated by Hypothesis for testing the sum function is given in Figure 2.6.
Hypothesis also gives the statistics of the passing examples and run time of the test in the
end.

Stateless properties are used to model simple synchronous functions which do not involve
any change of states with the test inputs. These are ideal for testing algebraic and data
operations like sum, reverse, sort etc. where inputs can be easily generated at random by
the generators of the PBT tool.

from hypothesis.strategies import lists , integers

@settings(max_examples=10)
@given(integers (), integers ())

def test_sum(number1 , number2):
assert sum(number1 , number2) == number1 + number2

Figure 2.5: Stateless property

2.3.3 Stateful Properties

Stateful properties are properties used to write test cases when the SUT can be modelled
as a state machine. Unlike stateless properties, stateful properties consist a collection
of functions with each performing various operations needed for testing the SUT. These
functions and their respective functionalities are the following:

• Setup - This function in a stateful property sets up the SUT before each test run.
It is called once in the beginning of each test run. The initial state of the SUT can
be attained with the help of this function.

• Input Commands - Each stateful property has one or more commands which rep-
resent the transitions of the state machine being tested. These are the actual test

24

2.3 Property-based Testing (PBT)

Trying example: test_sum(number1=0, number2=0)
Trying example: test_sum(number1=732581178 , number_2=-29735)
Trying example: test_sum(number1=-22 , number2=6759)
Trying example: test_sum(number1=1806 , number2=72)
Trying example: test_sum(number1=-25 , number2=799656799)
Trying example: test_sum(number1=-10 , number2=99)
Trying example: test_sum(number1=20 , number2=-17241)
Trying example: test_sum(number1=64 , number2=-8532699149773325137)
Trying example: test_sum(number1=-12367 , number2=-33)
Trying example: test_sum(number1=-8055875548987401112 , number2=20872)
============================ Hypothesis Statistics ==================

sum.py::test_sum:

- 10 passing examples , 0 failing examples , 0 invalid examples
- Typical runtimes: < 1ms
- Fraction of time spent in data generation: ~ 0%
- Stopped because settings.max_examples=10

========================== 1 passed in 0.04 seconds =================

Figure 2.6: Example of a test run in Hypothesis

inputs which are randomly generated by the PBT tool. With these commands, the
SUT changes its state from the initial state to other states.

• Preconditions - Each stateful property can have preconditions. An input command
can trigger a transition to another state only when a particular condition is satisfied.

• Postconditions - Post conditions refer to functions which check the invariants that
should hold true for the SUT.

• Tear Down - This function is called at the end of each test run which involves a
cleanup.

In this thesis, stateful properties are used for testing the Service Discovery functionality
at system level. This is explained in detail in the next chapter.

2.3.4 Application of stateless and stateful properties

Depending on the test requirements, the choice of properties varies for each software
specification. At unit and component levels of testing, we validate single testable functions
and components that are isolated [36]. As such, stateless properties are a great fit for these
lower levels of testing, where test cases are required to generate a plethora of datatypes
and their combinations.

When we deal with integration and system tests, we consider two or more components
that are integrated and their functionality as a whole is tested. At these higher levels of
testing, the System Under Test need to be modelled as a Finite State Machine (FSM)

25

2 Fundamentals

with different inputs transitioning it into different states and outputs. As such, stateful
properties are more appropriate than stateless properties. PBT tools like Hypothesis offer
constructs to define stateful properties for testing the SUT in this case. Modelling the
SUT with stateful properties offer a great advantage over manually writing all possible
combinations of inputs and states which would be cumbersome [36].

Regardless of whether we define stateful or stateless properties, PBT tool helps us create
a vast number of test inputs which exercise majority of the source code of the SUT [36].

26

3 System Under Test

The object under consideration whose functionality is tested is usually referred to as
the System under Test (SUT) [37]. In this chapter, the underlying architecture of the
Adaptive Platform (AP) and system which is being tested in this thesis are explained. To
do so, we explain the concept of SOA and then discuss the Adaptive Platform by their
functional clusters followed by the Service Discovery functionality of the Communication
Management module.

3.1 AUTOSAR

AUTOSAR stands for Automotive Open System Architecture which is an automotive
standard formulated by a group of OEMs and Tier 1 Suppliers. To tackle the growing
software complexity in automobiles which could not be handled by traditional develop-
ment processes and enable reuse of software components between different platforms and
suppliers, software is abstracted from hardware with the introduction of the AUTOSAR
standard in 2003 [38].

3.1.1 AUTOSAR Classic

The first standard released by AUTOSAR in 2005 is now referred to as AUTOSAR Classic
[39]. This standard was developed for the deeply embedded ECUs which access the sensors
and actuators directly and have stringent real-time requirements [8]. AUTOSAR Classic
is based on signal-oriented communication.

3.1.2 AUTOSAR Adaptive

The second standard defined by AUTOSAR in 2017 is referred to as AUTOSAR Adap-
tive. This standard was released to address the requirements of high-performance ECUs
in future vehicles needed for advanced applications like autonomous driving [39]. With
this platform, vehicles which are perceived until now as closed systems get transformed
into systems networked with their environment [39]. The architecture of the Adaptive
Platform is designed in such a way that it is capable of processing large amounts of data
from all domains with low latency [8, 40]. For this reason, the Adaptive Platform is based

27

3 System Under Test

on Service-Oriented Communication (SOC) which provides a great flexibility to its de-
sign. SOC is explained in detail in Section 3.2. AUTOSAR Adaptive supports SOME/IP
(Scalable service-Oriented MiddlewarE over IP) as the middleware protocol [39]. Ethernet
is the communication medium chosen for the Adaptive Platform as it provides seamless
integration of IP-based protocols with the applications and back-end infrastructure [40,
39]. Additionally, the requirements of high bandwidth demanded by high payloads of data
is also met by the Ethernet [39].

Both AUTOSAR Classic and Adaptive Platforms are not meant to substitute one another,
rather they are complementary development platforms [39]. Deeply embedded systems like
power train and chassis will be realized by Classic ECUs, and applications requiring high
computing power will be based on Adaptive ECUs [41]. Future vehicles would consist of
ECUs belonging to both these platforms [8].

3.2 Service-Oriented Architecture

The software architecture of the Adaptive Platform is based on Service-Oriented Archi-
tecture (SOA) unlike the signal-based communication paradigm in the AUTOSAR Classic
Standard where signals are broadcasted between ECUs [8, 42]. As the Adaptive Platform
involves advanced applications like autonomous driving, with Ethernet as the communica-
tion medium, it calls for more sophisticated protocols capable of delivering higher payload
demands [41].

SOA implements Service-Oriented Communication (SOC) where services are exchanged
between multiple applications on the communication system [41]. SOC facilitates the scope
of new services independent of vendors, products or technologies without much change in
the underlying software architecture. As such, communication paths can be established
dynamically at run time as required by the Adaptive Platform [16]. The fundamental
blocks of SOA and their functionalities are as follows:

Service Provider refers to a server who offers or supplies the services.

Service Consumer refers to a client who utilizes the services provided by the Service
Providers.

Service Registry is also referred to as Service Broker and it enables the services to be
advertised, searched and discovered [43]. The Service Providers must register their services
at the Service Registry which can then be found by the Service Consumers. This process
by which the services are discoverable is called Service Discovery [44]. Service Registry
thereby links the Service Providers and the Service Consumers in SOC as depicted in
Figure 3.1.

28

3.3 Architectural Overview of Adaptive Platform

Service Provider Service Consumer

Register

Bind

Find

Service Registry

Figure 3.1: Service-Oriented Communication [43]

3.3 Architectural Overview of Adaptive Platform

The modules of the platform, also referred to as functional clusters, form the AUTOSAR
Runtime for Adaptive Applications (ARA). The functional clusters provide the interfaces
for Adaptive Applications and these are of two types; Adaptive Foundation and Adaptive
Services. Adaptive Foundation consists of APIs (Application Programming Interfaces)
which are the basic blocks providing the functionalities of the Adaptive Platform (AP).
Adaptive Services are the standard services of the AP [45, 46]. In Adaptive Platform,
ARA links the clients to the services dynamically at runtime.

Each Adaptive ECU contains a few instances of functional clusters belonging to Adaptive
Foundation. Adaptive Services can be distributed across the automotive network [6, 46].

Figure 3.2 shows the architectural structure of the Adaptive Platform. The significance of
each of the functional clusters belonging to Adaptive Foundation is as follows:

• Operating System Interface

Operating System Interface denotes the functionalities of the hosting operating sys-
tem (POSIX PSE51). It initialises the System on ECU startup and hands over the
control to the Execution Management. It manages resources, performs run-time
scheduling and inter-process communication for Adaptive Applications.

• Execution Management

Execution Management is responsible for the initialization of the Adaptive Plat-
form as well as the startup/shut down of the applications in ECUs. It manages
the resources necessary for running applications and works in conjunction with the
Operating System [45, 47].

• Communication Management

The functional clusters - Communication Management (CM) and REST are commu-
nication stacks that establish communication between Adaptive Applications (AAs).

29

3 System Under Test

User Applications

Communication
Management

REST

Core Types

Persistency Time
Synchronisation

Platform Health
Management

Execution
Management

Identity and
Access

Management

Logging and
TracingCryptography

Operating System Interface

State
Management

Diagnostics

Update and
Configuration
Management

Network
Management

Virtual Machine / Hardware

AUTOSAR Runtime for Adaptive Applications (ARA)

Adaptive Foundation Adaptive Services

Figure 3.2: Adaptive Platform Architecture [9]

CM offers Service-Oriented Communication for AAs and abstracts the underlying
network protocol (SOME/IP) or bus (Ethernet, CAN) used for communication [9,
48].

• REST

REST is a framework which originated from the web-based stateless APIs to build
RESTful APIs for Adaptive Applications. AAs can offer and request RESTful ser-
vices with the help of this functional cluster [9].

• Peristency

Persistency allows the other functional clusters to store information in the non-
volatile memory of an ECU. It also provides interfaces to access the stored data
later [9].

• Time Synchronization

Time Synchronization offers a mechanism through which events across the system are
correlated, tracked and triggered at an accurate point in time. It also offers interfaces
to AAs for retrieving timing information synchronised with other applications or
ECUs [9].

• Logging and Tracing

Logging and Tracing provides APIs for AAs to record or log events with severity
levels such as debugging, informative, warning, error etc. [48]. Logs are written to
a file on the system, or a serial console, or simply forwarded on the communication
bus [9].

30

3.3 Architectural Overview of Adaptive Platform

• Cryptography

Cryptography provides APIs for performing cryptographic operations and secure key
management [9].

• Identity and Access Management

Identity and Access Management manages permissions so that AAs can be granted
or denied access to the other functional clusters [48].

• Platform Health Management

Platform Health Management allows to supervise applications to be able to check
whether they are running frequently or rarely, within minimum and maximum time
limits etc. It also allows to configure certain recovery actions in cases of failure of
supervised applications [9].

• Diagnostics

Diagnostics offers APIs for communication and events with regard to in-vehicle or
remote diagnostics [9].

• Core Types

Core Types offers interfaces which provide certain functionalities which are accessed
by multiple functional clusters [9].

Following are the functional clusters belonging to Adaptive Services:

• State Management

State Management is responsible for handling the operational state of the Adaptive
Platform. It handles incoming events and prioritizes them to trigger Execution
Management to set the internal states [9].

• Update and Configuration Management

Update and Configuration Management provides the flexibility to the Adaptive
Platform to update the software components and configuration through over-the-
air (OTA) updates. It is responsible for installing, removing and keeping a record of
a software component on the Adaptive Platform [9].

• Network Management

Network Management deals with managing the state of the communication bus and
keeping the connected ECUs active with periodic messages [9].

31

3 System Under Test

3.4 Communication Management (ara::com)

One of the functional clusters of Adaptive Foundation - Communication Management,
also referred to as ara::com, is being tested in this thesis. Ara::com is the communication
middleware which realizes the Service-Oriented Communication of the Adaptive Platform.
It is responsible for communication between applications local to an ECU and remote
applications which reside in other ECUs. This also includes SOC with Adaptive Services
[42, 46].

Application

Communication API

Communication
Management

SOME/IP

Virtual Machine/Hardware

Adaptive Foundation

Service
Provider

Service
Consumer

Figure 3.3: SOC via Communication Management [49]

Adaptive Applications (AAs) consists of one or more processes with each process involv-
ing one or more threads [50]. Each Adaptive Application can provide services to other
Adaptive Applications. A service refers to a functionality offered by an Adaptive Ap-
plication which can be requested by other applications on the Adaptive Platform [42].
Services are independent of the underlying software platform (AUTOSAR Classic/Adap-
tive or non-AUTOSAR). Applications providing services are called Service Providers or
server applications and those requesting services are called Service Consumers or client
applications (see also Section 3.2). This is illustrated in Figure 3.3.

Client and server applications could be located in the same ECU or remotely in different
ECUs. Ara::com provides the interfaces for Service-Oriented Communication in both of
these cases. If the client and the server reside in the same machine, the communication
is said to be intra-machine. If the communication between client and server happens
remotely, it is inter-machine communication. These are shown in Figure 3.4. For intra-
machine communication, ara::com is the direct interface [9] whereas for inter-machine

32

3.4 Communication Management (ara::com)

Client
Application

Server
Application

ara::com

ECU

(a) intra-machine

Client
Application

ara::com

ECU 1

Server
Application

ara::com

ECU 2

Ethernet

(b) inter-machine

Figure 3.4: Communication on Adaptive Platform

communication, ara::com routes the data over an Ethernet network which is also referred
to as over the wire [51].

Each Adaptive Application providing services registers each of its services at the Service
Registry which is part of ara::com. Each client application can find the registered services
by querying the Service Registry. This mechanism to offer and find services, thereby
connecting the communication partner applications, is abstracted by ara::com. Ara::com
connects the clients and servers dynamically at runtime [40, 39].

SOC through ara::com is accomplished with the bus protocol SOME/IP [42, 8] (as shown in
Figure 3.5 for inter-machine). SOME/IP stands for Scalable service-Oriented MiddlewarE
over IP and is an automotive communication protocol based on client/server architecture
[46]. However, there is no dependency for SOC on any communication protocol [52].
SOME/IP network protocol could be implemented on different operating systems and
even on embedded systems without any operating system (like non-AUTOSAR platforms)
[53].

Service-Oriented Communication over SOME/IP consists of remote procedure calls and
event notifications. Serialization of the data is also handled by SOME/IP [53]. Unlike
the classical approach where all the data is broadcasted over the bus, clients request a
particular service only when it is needed. After requesting a service, a client can subscribe
to events and call methods on the server [16].

A service is a combination of zero or multiple events, methods, and fields [53]. Events
refer to data which is sent from servers to clients either cyclically or on an update, after
the client has subscribed to it. Methods are the remote procedure calls that can be made
by a client on the server application. Fields are a combination of events and methods.
Clients can set the value of a field on the server side as well as they can get the present
value of a field from the server. Further, clients get notified whenever the value of a field
changes after subscribing to it.

33

3 System Under Test

Application Application

Scalable service-Oriented MiddlewarE over IP
(SOME/IP)

Ethernet

Client Server

Figure 3.5: SOME/IP Protocol [54]

3.5 Service Discovery

Service Discovery (SD) as already mentioned in 3.2 is implemented by ara::com to enable
Service-Oriented Communication on the Adaptive Platform. The main task of SD is to
manage the availability of services on the network [55]. Service Registry is a part of
ara::com which acts as a brokering instance in SOC.

With Service Discovery, different applications on ECUs can offer services and find available
services within the vehicle network. An application can be simultaneously a client as well
as a server. When the application offers a service to other applications on the vehicle
network, it becomes a server of that service. When the application uses a service offered
by another application residing locally or remotely on the network, it becomes a client to
that service [55].

After the startup of the vehicle network from the initial powered down state, the applica-
tions are started by the Execution Management [56]. Service Discovery decides whether
the communication is established internally or externally [52]. This is dependent on the
location of the Service Provider on the network. Finding services is enabled through
SOME/IP Service Discovery and is divided into Local and Remote SD. Local SD occurs
for services running in the same ECU (intra-machine) and Remote SD is for the services
over the vehicle network (inter-machine) [57]. SD can be viewed at the application level
as well as the network or bus level which are explained in the sections below.

34

3.5 Service Discovery

Application Application

Service
Registry/local

Discovery

ara::com

ECU 1

Application Application

Service
Registry/local

Discovery

ara::com

ECU 2

SOME/IP SD

Ethernet

Figure 3.6: Local and SOME/IP Service Discovery [51]

3.5.1 Application View

Both local and remote SD are initiated by the interface calls implemented by ara::com at
the application level. These calls are made by the AAs to start the SOC. The functionality
of Service Discovery as seen by the applications is tested in this thesis. This is explained
in this section.

Each service is identified with a Service Identifier (Service ID) [58]. Ara::com provides the
interfaces so that the applications can offer and find services through Service Discovery [59].
Following are the interfaces implemented by ara::com which are used by the applications:

StartOfferService() - Any Adaptive Application (AA) can call this method when it wants
to provide a service to other applications [51]. After this method has been called on a
service by an application, the service can be requested by all other applications on the
network.

StopOfferService() - Any AA which wants to stop providing a service which has been
previously offered can call this method. After calling this method on a service by a server
application, the service can no longer be requested by the client applications.

StartFindService() - Any AA which is a Service Consumer calls this method once in an
attempt to query the availability of a certain service. This interface call registers a handler
in ara:::com which gets called upon detection of a matching service [52]. If the service has
been previously offered, it returns back a handle from the Service Registry of ara::com
with the status that the service is available along with the location of the Service Provider.
If the service has not been previously offered and the local Service Registry does not know
the current state of the requested service, the client sends a SOME/IP-SD FindService
message on the bus. This is necessary to notify the local Service Registry of the client
application as soon as the service is offered by any server application. After calling the
StartFindService once by the client, a handler is triggered each time the status of the
service changes, i.e. when it becomes available and unavailable, unless and until the client
calls the method StopFindService() on the same service.

StopFindService() - As mentioned before, to disable the triggering of callbacks as part of
monitoring the availability of a service with StartFindService(), this method is called by

35

3 System Under Test

the client application. As a result, the client is no longer notified of the changes in the
status of the service until it explicitly calls StartFindService() again.

3.5.2 Bus View

The interface calls at the application level need to be communicated at the bus level
whereby applications residing in different ECUs can be connected. This is done through
Service Discovery (SD) specified by the SOME/IP protocol. SOME/IP-SD enables the
mechanism by which the Service Registries of the remote applications are synchronized.

As soon as the ECUs have completed local SD, SOME/IP-SD messages are sent to all
other connected ECUs over the Ethernet which contain one or more FindService and
OfferService entries.

SOME/IP-SD OfferService messages are sent cyclically and contain information about the
services provided by server applications. Upon reception of this message by the Service
Registries of other machines, the client applications residing on these machines can request
these services. When a client triggers a StartFindService() for a service on the application
layer and the local Service Registry cannot resolve the state of the service, SOME/IP-SD
FindService messages are sent over the bus. Upon reception of these, the remote machines
check for a match if the service has been offered locally. If a match is found, the machine
sends a SOME/IP-SD OfferService message for the service over the bus [57].

After the startup of the SOME/IP-SD processes, the clients and servers pass through the
following three phases:

Initial Wait - This is the first phase the clients and the servers enter after the initial down
state. This phase is required so that the possibility that the system could be jammed by
initial bursts of data is reduced [56]. Additionally, this time could be utilised for the local
SD and the system can begin to send SOME/IP-SD messages on the network [57].

Repetition - After the initial wait phase, applications begin to send SOME/IP-SD mes-
sages with FindService and OfferService entries over the network. These messages are
sent in regular intervals [60].

Main - This phase starts after the Repetition phase during which SD stabilizes the sys-
tem by sending no more FindService entries, rather respond to the incoming FindService
messages. This is done by sending SOME/IP-SD messages cyclically with OfferService
entries containing the location of the Service Provider in regular intervals [57, 60].

In this chapter, we discussed the System Under Test in detail including its architecture
and functional view of SD at the application and bus levels. In the next chapter, we
describe the test specification for ara::com released by AUTOSAR and how conventional
methods of testing are carried out. Lastly, we mention how we derive properties for SD
to be used in our test approach.

36

4 Specifications and Test Design

In this chapter, we discuss the test specification released for ara::com by AUTOSAR
followed by existing methods of testing based on this specification. Then we describe how
we derive properties for our test infrastructure.

4.1 AUTOSAR Specifications for ara::com

AUTOSAR has released specification and requirement documents for ara::com module
which specify the functional requirements for the developers of ara::com module. For per-
forming tests at system level, AUTOSAR has released “System Tests of Adaptive Platform"
which consists of test specifications for each of the modules of the Adaptive Platform. An
excerpt from the test specification for local and remote SD consisting of steps of tests and
their corresponding pass criteria is shown in table 4.1.

Table 4.1: Test Specification for local and remote Service Discovery [11]

Number Test Step Pass Criteria

1 Offer service [SERVICE3]
2 Offer service [SERVICE1]
3 Request service [SERVICE3] Service 3 is available
4 Stop Offering service [SERVICE3] Service 3 is not available
5 Request service [SERVICE1] Service 1 is available

4.2 Comparison of Test Strategies

In this section, we would compare the conventional method of testing the ara::com module
based on the given test specification to that of our test approach.

37

4 Specifications and Test Design

4.2.1 Example-based Testing

Conventional methods of testing the ara::com module at system level involve testing it with
well-crafted inputs and verifying whether it behaves as expected. This form of testing is
referred to as example-based testing as the SUT is tested against the expected behaviour
with manually written examples.

Test case is written with reference to each step in the test specification as given in table
4.1 and the corresponding pass criteria are checked to determine if any of the test steps
failed. Figure 4.1 gives an idea of an example-based test for the above test specification
of ara::com. From figure, the methods are performed for the steps of the test specification
followed by assertions to check whether the corresponding pass criteria are obtained. In
example-based testing, the test generation is manual which means we write each individual
test case manually but the test execution can be automated.

StartOfferService(service=3)
StartOfferService(service=1)
StartFindService(service=3)
assert Service3.available () == True
StopOfferService(service=3)
assert Service3.available () == False
StartFindService(service=1)
assert Service1.available () == True

Figure 4.1: Example-based testing

4.2.2 PBT

As we discussed PBT in detail in 2.3, the initial effort of formulating the properties requires
a good understanding of the software. We define properties which refer to the abstract
behaviour of the system being tested. We input the properties to a PBT tool to generate
the test cases which are then used to test the SUT. A huge number of test cases are
generated randomly by the PBT tool which tries to falsify the defined property. If the
framework finds any failing test case, it shrinks the test case and outputs the same as a
minimal test case. This minimal test case can be used to debug the issue or failure which
has been found. PBT offers a test mechanism where we can generate extensive test cases
based on the properties that we define. Unlike example-based testing which consists of
test cases with each verifying a single functionality, PBT tool can generate a large number
of test inputs based on a single property. In PBT approach, the test generation and test
execution are both automated as the framework automatically generates the test inputs
from the defined property.

38

4.3 Deriving Properties from Specifications

4.3 Deriving Properties from Specifications

In order to formulate a property, we need to understand the functionality of the SUT.
After attaining the system knowledge, we need to find a feature in terms of the SUT’s
functionality such that it should always hold true. In our case, as we test Service Discovery,
we define the properties - A service is always available after it has been offered and a service
is unavailable after it has been stopped. This is universal for the services in SD and should
always hold true. As such, this feature of the services qualifies to be a property in our
PBT testing approach. The PBT framework Hypothesis would then try to violate this
property with the test inputs that it randomly generates. The test implementation details
for the property that we defined are described in section 5.6.

In comparison to example-based testing, we require more efforts in the beginning of our
test approach in understanding the system in terms of its abstract functionality. This is
inevitable as this step determines the property’s quality which would represent the SUT
and based on which the test inputs are generated.

In this chapter, we discussed how the traditional testing method differs from PBT approach
and how we derive properties for the SUT. In the next chapter, we describe how we
implement the test infrastructure based on PBT approach for the properties that we
defined.

39

5 Implementation

In this chapter, we describe our implementation of the test infrastructure based on PBT.
We start with the block diagram of the system being tested in this thesis and then describe
how we integrate the Hypothesis testing framework with the former. After that, we
explain how we apply stateless properties to determine the communication delay due to
the asynchronous behaviour of the API calls on the SUT. Later, we provide the state
diagrams of the test model of a service required for PBT test cases along with that of the
actual test implementation of a service. Finally, we describe how we use stateful properties
to carry out the test implementation of Service Discovery.

Application 3

Application 2

Application 1

Service 1 Service 2

Service 3

offer offer

offer

ECU1

ECU2

request request

request

Figure 5.1: Block Diagram of the SUT

41

5 Implementation

5.1 Block Diagram of SUT

We explained the theoretical aspect of Service Discovery and how it works on the applica-
tion level in Section 3.5.1. In this section, an overview of the system which is being tested
in our work is provided. As we already outlined in chapter 3.5.1, we test whether the
applications can offer and find services with the SD implemented by the ara::com mod-
ules. The system being tested in this thesis consists of two ECUs each having its ara::com
modules. ECU 1 hosts Application 1 which offers Service 3. ECU 2 hosts two applications
- Application 2 and Application 3. Application 2 offers Service 1 and Service 2. Service
3 is requested by Application 2 and Service 1 is requested by Application 1. Application
3 requests Service 2 and offers none. The block diagram of the SUT consisting of ECUs
with applications is shown in figure 5.1.

We trigger the applications to offer services with StartOfferService() and stop offering
them with StopOfferService(). The requesting applications can find the required services
with StartFindService(). An API call is made with the corresponding Service ID which
uniquely identifies each service.

In the next section, we explain how we integrate the framework Hypothesis which we use
for testing in this thesis with the SUT. This will route the communication from the test
cases that generated by the Hypothesis to the ECUs and vice-versa.

Hypothesis
Vector
CANoe

ECU 1 ECU 2

Ethernet

Ethernet

SUT

Service
Test

Model

Figure 5.2: Setup of the PBT test system for SD

42

5.2 Integration of Hypothesis with the Adaptive Platform

5.2 Integration of Hypothesis with the Adaptive
Platform

The PBT framework Hypothesis running on PC is connected to the Adaptive ECUs
through the Vector tool CANoe which acts as a runtime environment. An interface is
implemented for routing the inputs to the ECUs under test so that SD can be tested.
The test inputs generated by Hypothesis are communicated through CANoe by setting
variables on the latter which triggers the corresponding methods on the SUT through the
Ethernet. These test inputs are simulatenously run on the service test model as well, so
that the expected behaviour can be known for testing. The response from the SUT is sent
back to CANoe which sets variables on the latter. The CANoe variables are read in our
test cases on Hypothesis for comparing the outputs of the SUT with the expected results.
The integrated test setup is shown in Figure 5.2.

The Adaptive Applications are hosted on Renesas R-Car hardware as shown in figure 5.3
which serves as the ECU system being tested in our work. This hardware provides a

Figure 5.3: Renesas R-Car ECU running Adaptive Applications [61]

43

5 Implementation

higher computing performance required for applications on the Adaptive Platform. R-Car
series also conform to the functional safety standard ISO 26262 of the automotive industry
[61].

5.3 Stateless Property

In this section, we describe how we use stateless properties to determine the delay in
communication between the testing framework Hypothesis and the SUT. As we deal with
testing asynchronous software, the results will not be available to us immediately after
performing a test operation on the SUT. For testing, we need to know the minimum time
required to make sure that the result is available for verification after performing an API
call on the SUT. For this purpose, a stateless property is applied to generate test cases in
order to find this boundary value of time.

There is a non-determinism associated with real time systems which involves variances in
timing-related properties [62]. Therefore, we can find the minimum value range of waiting
time for which the output validation fails. The stateless property is shown in Figure 5.4.
The interface call StartFindService() for Service 1 is made in the beginning of the test
cases in the Setup method so that the event handler is triggered as soon as Service 1 is
offered. Consequently, Service 1 becomes available to Application 1 requesting it.

The test method contains an interface call StartOfferService() for Service 1. We want to
find the minimum value of time t that is required so that we can successfully assert that
Service 1 is available. The value of t is generated at random by the Hypothesis strategy,
the range of which is set using a minimum value and maximum value. The Hypothesis
strategy is set to start from a minimum value of 0 to 500ms. As it starts the test run from
0ms when the test run does not wait at all after calling StartOfferService(), the service
is not available and therefore assertion succeeds. Hypothesis would then input higher
values for t thereby trying to falsify the property i.e., to fail the assertion. For example,
suppose we wait for 500ms after performing StartOfferService(), there is sufficient time
for the communication to return the response value from the SUT back to Hypothesis and
therefore the service becomes available.

Table 5.1: Boundary Values of time obtained with stateless property.

Number of examples Maximum time for all examples (s) Minimal Value of t (ms)

13 37.23 272
73 110.33s 250
11 35.32 250
11 36.07 250

44

5.4 Service Test Model

class MyTest(unittest.TestCase):

@classmethod
def setUp(cls):

StartFindService(1)

@given(t= strategy.floats(minimum value=0, maximum value=0.5))
def test(self , t):

StartOfferService(1)
time.sleep(t)
try:

assert Service1.Available () == False
finally:

StopOfferService ()
time.sleep(1)

Figure 5.4: Stateless property to find the delay needed after an asynchronous API call

The results of the test run to determine the boundary value of time is shown in Table
6.3. From the table, the minimum value of time obtained after shrinking by Hypothesis is
272ms during the first test run and 250ms in the later runs. Even with these values, the
assertions passed in some examples and failed in others. From the test results, the average
waiting time that we need to include after an asynchronous operation is 255.5ms. In order
to ensure that we provide sufficient delay considering any timing variance that can arise
due to real-time behaviour of the SUT, we propose a waiting time of 300ms before we
check the output from the SUT following an API call on it.

5.4 Service Test Model

As we deal with black-box testing, we don’t have access to the source code of the SUT.
As such, we cannot know which state a service would be in, so that we can assert that
it is available or not available in our test case. For formulating expected results in our
testing, we propose to use a model for our testing. As we are testing the SD and the
outputs of the SUT which we test is related to the availability of services, the test model
represents a service as depicted in Figure 5.5. A service has two states “Not Offered"(NO)
and “Offered" (O) and two types of inputs (StartOffer(), StopOffer()) transitioning them
from one state to another. The test inputs generated using our PBT test cases will be
executed on this service test model so that it can be used as a reference for the expected
results in our test assertions.

45

5 Implementation

NOstart O

StopOffer

StartOffer

StopOffer

StartOffer

Figure 5.5: Test model representing a service.

5.5 State diagram of a Service

We discussed the service test model above where services have two states NO and O. When
a service is in Not Offered state, it is not available to the client application requesting it
and therefore its availability is asserted against False. When a service is in Offered state,
it becomes available to the client and therefore, its availability is asserted against True. In
this section, we describe the model of a service as implemented by our PBT test case.

In 5.3, we have seen that there is a minimum communication delay of 300ms involved
after a test input operation on the SUT and we can perform an assertion only after a
waiting period. These assertions testing the availability of the services are included in a
Check() operation in our test case. In our test case implementation, we have an additional
criterion to define the state of a service which is based on the Check() operation. This
criterion provides two other aspects to service states -“Not Checked” (NC) and “Checked”
(C). When a service is in NO state and its availability is verified with the Check() as
False, the service is in Not Offered/Checked (NO/C) state. Similarly, when a service is
in Offered state and its availability is verified with Check()s as True, then the service is
in Offered/Checked (O/C) state. These Check() are performed only after the minimum
delay of 300ms. The state diagram of the test implementation of a service is shown in
Figure 5.6.

Initially, a service is not offered and not checked as well and therefore is in Not Offered/Not
Checked (NO/NC) state. With StartOffer(), they can go to Offered/Not Checked (O/NC)
state and again after 300ms, a Check() can transition them to Offered/Checked (O/C)
state. A StopOffer() can make them go back to Not Offered/Not Checked (NO/NC) state
which is the initial state.

With the delay needed for the asynchronous operations in our testing, we have four states
for a service - NO/NC, NO/C, O/NC and O/C. In the next section, we describe how we
apply stateful property to model the service state machine for our test approach.

46

5.6 Stateful Property

NO/NCstart

NO/C

O/NC

O/C

StopOffer()

Check()

StartOffer()

StopOffer()

Check()

StartOffer()

StartOffer()

Check()
StopOffer()

Check()StopOffer()

StartOffer()

Figure 5.6: Implemented model of service

5.6 Stateful Property

PBT in its basic form fits in unit testing and can by means of stateful properties be
used in testing integrated components [30]. Testing the functionality of Service Discov-
ery involves dealing with services having two states - Not Offered (NO) and Offered (O),
which attributes to the characteristics of stateful systems. For testing such stateful sys-
tems, stateful properties are more appropriate and hence we prefer these over stateless
properties.

For performing PBT at the sytem level, we consider the ara::com modules in the two
ECUs as black box whose functionality of Service Discovery is viewed as if they were a
single component. The major challenge in testing our system is that we are dealing with
a system which has aynchronous behaviour. That means we have to wait some time until
the system sends back a response to our request. This is unlike any synchronous functions
which are single test functions like sort and reverse for lists where PBT is commonly
demonstrated. As discussed in 5.3, we have found the wait time to be atleast 300ms
before we can successfully validate the result of an operation.

We use the construct RuleBasedStateMachine offered by the Hypothesis framework for
stateful testing as shown in Figure 5.7. We can perform the startup of the application on
the ECUs at the beginning of the tests using an initialize operation. Initialize is generated
once at the beginning of each example by Hypothesis. In this initialisation operation itself,
we are triggering the applications to perform the StartFindService() for all the services once

47

5 Implementation

from hypothesis.stateful import RuleBasedStateMachine

class test_servicediscovery(RuleBasedStateMachine):

@initialize(target=None)
def initialize_ECU(self):

Starts up applications
Calls StartFindService () on SUT

@rule(service=st.integers(min_value=1, max_value=3))
def StartOffer(self , service):

Initiates StartOffer on service test model
Calls StartOfferService () on SUT

@rule(service=st.integers(min_value=1, max_value=3))
def StopOffer(self , service):

Initiates StopOffer on service test model
Calls StopOfferService () on SUT

@rule(t=st.floats(min_value=0.3, max_value=0.5))
def wait():

time.sleep(t)

def check(self):
assert service_status(SUT) == service_status(servicemodel)

def teardown(self):
Closes up applications

Figure 5.7: Stateful property for testing Service Discovery

in the beginning. This will trigger callbacks according to the changes in the availability
of services i.e., when offered and not offered. To test the SD functionality, we define two
operations StartOffer() and StopOffer() to trigger the corresponding StartOfferService()
and StopOfferService() on the SUT respectively. The operations are called with an integer
value corresponding to Service ID of the three Services 1, 2 and 3. The integer values are
generated by a construct called rule which passes these values to the StartOffer() and
StopOffer() functions. These two operations are generated at random by Hypothesis
which are the test stimuli of our testing.

In testing, functions to verify whether an operation has performed correctly are as impor-
tant as the test inputs. For this reason, we define the operation Check() which is performed
after each StartOffer() and StopOffer() command. A Check() after a Startoffer() will ver-
ify whether the service has become available and a Check() with the previous command
StopOffer() will verify whether the status of the service has become unavailable. To verify
that there is no dependency between the services, we perform the Check() operation for
all services after each command. This helps us to ensure that a command performed for
a service does not change the state of another service.

48

5.6 Stateful Property

For these verifications, the Check() operation contains assertions. The response from the
SUT has to be asserted against the expected results. The expected results for the Check()
will be obtained from the service test model as described in Section 5.4. Even though
the Check() is triggered after each command, sometimes the execution is faster, such that
300ms has not passed since the previous command so that we can successfully check the
results. To provide this delay which is needed for the Check(), we have implemented a
wait() rule for generating the waiting time required for our testing purpose. We define a
range of values from 300 to 500ms for this rule. This allows us to wait for the asynchronous
operations to respond and verify the results only after the communication delay.

In short, we have the property defined as “A service is available to a client after it has
been offered by a server application and a service is not available to a client after it
has been stopped by a server application”. This property should always hold true for
Service Discovery. Hypothesis will repeatedly throw various sequences of StartOffer() and
StopOffer() operations, until it finds that the property has been violated or a limit of
examples is reached without having the property violated. An example consisting of a set
of the stateful operations generated by Hypothesis for testing SD is shown in Figure 5.8.

To summarize, we discussed how we implemented the test setup for SD with stateful
properties and how we applied stateless property to determine the communication delay in
our approach. In the next chapter, we evaluate our approach to determine its effectiveness
and efficiency. Later, we discuss the findings of the interview study conducted to draw
comparisons between PBT and existing methods of testing.

49

5 Implementation

Trying example: run_state_machine(factory=test_servicediscovery)
state = test_servicediscovery ()
state.initialize_ECU ()
state.StopOffer(service=2)
state.wait(t=0.3216752675645543)
state.StopOffer(service=3)
state.StartOffer(service=2)
state.StopOffer(service=2)
state.StartOffer(service=1)
state.wait(t=0.24927510296699018)
state.StartOffer(service=1)
state.wait(t=0.07147243285476228)
state.wait(t=0.19881836315522916)
state.StopOffer(service=1)
state.StopOffer(service=2)
state.wait(t=0.24808102214860947)
state.wait(t=0.15580801691972143)
state.StartOffer(service=2)
state.StartOffer(service=2)
state.StartOffer(service=1)
state.StopOffer(service=2)
state.wait(t=0.3870595349351187)
state.wait(t=0.35939414379939355)
state.StartOffer(service=2)
state.wait(t=0.27149823194099937)
state.StopOffer(service=1)
state.wait(t=0.34343588454274887)
state.StartOffer(service=2)
state.wait(t=0.2822209382959738)
state.StopOffer(service=1)
state.StopOffer(service=3)
state.StopOffer(service=1)
state.wait(t=0.35138062760339156)
state.StopOffer(service=2)
state.StartOffer(service=1)
state.StartOffer(service=3)
state.wait(t=0.04939774471219347)
state.StopOffer(service=1)
state.wait(t=0.3328316037265298)
state.StopOffer(service=3)
state.StartOffer(service=1)
state.StopOffer(service=2)
state.wait(t=0.11377908760715622)
state.StopOffer(service=1)
state.StartOffer(service=2)
state.teardown ()

Figure 5.8: An example test generated by Hypothesis for SD

50

6 Results and Evaluation

In this chapter, we discuss the results gained during test executions of our implementation
for the Service Discovery of ara::com module. We evaluate the effectiveness and efficiency
of our approach. We mention the issue in configuration file identified, the method of fault
injection to evaluate the minimal example obtained during testing and then we analyse
the test inputs with respect to some of the test cases that we would otherwise perform
manual testing with. We describe the findings of the interview study conducted during
this thesis for comparing our approach to existing test methods.

6.1 Effectiveness

In this section, we describe how we evaluated the effectiveness of our approach for testing
Service Discovery. According to Eldh et al., effectiveness of a test suite can be described
in terms of coverage and the number of faults identified with the test approach [63]. First,
we describe an issue which was found and reported by the Hypothesis during our test run.
As the services are independent of one another, we determine whether we can evaluate the
concurrency of these services at any point during our test run. Then, we use the approach
of finding state and transition coverages of our test implementation for the three services.
Later, we analyse the test inputs generated by Hypothesis for our testing.

6.1.1 Issue found during testing

The PBT test run by the Hypothesis found an issue during the test run which was due
to a mismatch error in the port configuration files used for the applications in SD. The

Falsifying example: run_state_machine(factory=test_servicediscovery ,
data=data (...))

state = test_servicediscovery ()
state.initialize_ECU ()
state.StartOfferService(service=1)
state.StartOfferService(service=3)
state.StopOfferService(service=3)
state.wait(t=0.4)
state.teardown ()

Figure 6.1: Minimal example for the port mismatch error detected

51

6 Results and Evaluation

NO O

NO O

NO O

Service 1

Service 2

Service 3

Figure 6.2: Concurrency of service statemachine models

falsifying example obtained during the test is shown in figure 6.1. The Services 1 and 3
were initially available with the corresponding StartOfferService methods. Later, when the
Service 3 was stopped with a StopOfferService, Service 1 became unavailable along with
Service 3 which led to an assertion error. After investigating the error that Hypothesis
reported continuously during the test runs, it was found that the Service 1 and 3 used the
same TCP/IP ports for communication which led to this failure. This mismatch in the
configuration of applications were reported to the developers and rectified.

This shows that our approach not only detect errors but also outputs an easier minimal
example for the errors that it detects which helps us to debug them easier.

6.1.2 Concurrency

The services - Service 1, Service 2 and Service 3 are offered and requested independently
of one another. This implies that each service is a concurrently occurring state model
as in Figure 6.2. In a test run of 100 examples (default number of examples as set by
the Hypothesis Framework), all the possible combinations of the states (Not Offered,
Offered) have been achieved concurrently during the test run. From the results in Table
6.1 showing the tested combinations, it is evident that the services are concurrent and
therefore independent from each other.

With PBT, we can scale up to a large number of concurrently running services whose com-
binations of all the possible states are otherwise time-consuming to be written manually
for testing.

52

6.1 Effectiveness

Table 6.1: Combinations of states of services from a test run of 100 examples.

Service 1 Service 2 Service 3 Verified

Not Offered Not Offered Not Offered 3

Not Offered Not Offered Offered 3

Not Offered Offered Not Offered 3

Not Offered Offered Offered 3

Offered Not Offered Not Offered 3

Offered Not Offered Offered 3

Offered Offered Not Offered 3

Offered Offered Offered 3

6.1.3 Statistics of Test Inputs

In this section, we analyse the number of commands - StartOffer(), StopOffer() and
Check() generated by Hypothesis in a set of 100 examples as depicted in Figure 6.3.
During the run, the step count of the examples is set to an average of 50. Step count
is the number of steps in each example during the run [hypothesis site]. A higher step
count is important so that sufficient wait times are attained in the test examples so that
we receive the asynchronous response and Check() can be made. From Figure 6.4 which
shows an example generated by Hypothesis, StartOfferService() command for service 1
is generated but there is no Check() as there is no waiting made for the asynchronous
response. Although the statistics look promising, the large number of randomly generated

0

200

400

600

800

1000

1200

Service 1 Service 2 Service 3

N
u

m
b

e
r

o
f

co
m

m
a

n
d

s

Services

Statistics of test commands in a test run of 100 examples

StartOffer StopOffer Check

Figure 6.3: Number of test inputs generated by Hypothesis in 100
examples with step count=50

53

6 Results and Evaluation

commands should not give a false feeling of security after testing when the step count is
low and such small examples can exist without a Check(). For this reason, an analysis of
the randomly generated test inputs is needed to clarify whether these satisfy our testing
requirements.

state = test_servicediscovery ()
state.initialize_ECU ()
state.StartOfferService(service=1)
state.teardown ()

Figure 6.4: An example generated by Hypothesis with an interface call without a Check()

Finally, we checked how many times Hypothesis checks the availability of a service after
its next state changes from its previous one. In other words, we counted the statistics for
the verification made when a service transitioned from “Not Offered" to “Offered" state
and vice-versa. This count was found to be 52, 42 and 48 times for Services 1, 2 and 3
respectively in a test run of 100 examples generated by Hypothesis. This count ensures
that we performed checks each time when the services changed their states and not when
the services were in a same state (NO or O) throughout the test run.

6.1.4 Analysis of Test inputs

In this section, we analyse whether the test inputs generated by Hypothesis in a run of 100
examples cover some of the test cases derived from the AUTOSAR system test specification
[11] and other test cases which we have in mind. The four test cases considered are as
follows:

• T1 - A service which is not available can be offered.

• T2 - A service which is available can be stopped.

• T3 - Calling StartOffer() on an already offered service has no impact.

• T4 - Calling StopOffer() on an already stopped service has no impact.

Table 6.2: Statistics of test cases covered for all services in a run of 100 examples.

Test cases Transitions covered Service 1 Service 2 Service 3

T1 NO/NC→NO/C→O/NC→O/C 9 11 7
T2 O/NC→O/C→NO/NC →NO/C 5 8 3
T3 O/NC→O/C→O/NC→O/C 4 6 10
T4 NO/NC→NO/C→NO/NC→NO/C 2 8 7

54

6.1 Effectiveness

Falsifying example: run_state_machine(factory=test_servicediscovery ,
data=data (...))

state = test_servicediscovery ()
state.initialize_ECU ()
state.StartOfferService(service=1)
state.wait(t=0.4)
state.teardown ()

Figure 6.5: Minimal example for an injected fault into StartOfferService().

The number of hits corresponding to these test cases along with the transitions covered
in a test run of 100 examples generated by Hypothesis are given in table 6.2. All the test
cases which we have considered, have been covered during the test run which shows that
our approach is effective in testing SD.

Analysing the test inputs which are randomly generated is essential to understand the
quality of these tests and the property as well. This step would not then give us a
false sense of security after we generate thousands of test cases randomly using the PBT
framework.

6.1.5 Fault Injection

In order to confirm whether the shrinking feature of Hypothesis can produce the right
falsifying example, we injected a fault so that the StartOfferService() for service 1 is not
communicated to the SUT. As a result, the check fails during assertion of availability of
Service1. The error due to the injected fault is detected by Hypothesis after generating
a total of 42 examples including the ones that were shrunk. Our PBT framework has
rightly minimized the failing examples to the one listed in Figure 6.5. In the falsifying
example, Hypothesis has made a StartOfferService() call, waited for 400ms so that the
check could be successfully made before throwing an Assertion Error. The test data
with 42 examples took 133.09s to run until it stopped to give the falsifying example.

6.1.6 Coverage

We apply black-box testing methods like PBT when the source code of the SUT is not
available. As such, code coverage cannot be used as a criterion to measure the effectiveness
of testing. In white-box testing techniques, test cases are formulated with the goal of
executing all the statements, functions and branches of the code.

In state-transition testing which is another black-box testing method [64, 65], state and
transition coverages are used as coverage criteria. In this manner, it is ensured during
testing that all the critical points in the state-space of SUT are covered [66]. As we deal
with a stateful system in our work, it makes sense to verify whether we have exercised all
the transitions and states of our stateful system.

55

6 Results and Evaluation

NO/NCstart

NO/C

O/NC

O/C

StopOffer() 3%

Check() 8.7%

StartOffer() 3.5%

StopOffer() 5%

Check() 24.5%

StartOffer()
3.8%

StartOffer() 3.4%

Check() 9.1%
StopOffer()

3%

Check() 27%
StopOffer()

4.4%

StartOffer() 4.5%

Figure 6.6: Transition Coverage of Service 1 in a test run of 100 examples

NO/NCstart

NO/C

O/NC

O/C

StopOffer() 2.9%

Check() 6.7%

StartOffer() 3.4%

StopOffer() 3.8%

Check() 25.5%

StartOffer()
2.8%

StartOffer() 2.8%

Check() 8.5%
StopOffer()

2.3%

Check() 32.4%
StopOffer()

3.9%

StartOffer() 4.5%

Figure 6.7: Transition Coverage of Service 2 in a test run of 100 examples

56

6.2 Efficiency

NO/NCstart

NO/C

O/NC

O/C

StopOffer() 2.6%

Check() 8.2%

StartOffer() 2.1%

StopOffer() 4.1%

Check() 37.3%

StartOffer()
4%

StartOffer() 2.1%

Check() 6.6%
StopOffer()

2.1%

Check() 23.7%
StopOffer()

4%

StartOffer() 2.6%

Figure 6.8: Transition Coverage of Service 3 in a test run of 100 examples

For this purpose, we have measured all transition coverages in a test run of 100 examples for
Service 1, Service 2 and Service 3 in Figures 6.6, 6.7, and 6.8 respectively. We collected
the statistics by analysing the percentage of each transition to the total number of all
transitions. The transition coverage diagrams shows that all the states and transitions are
covered atleast once during testing. Check() transitions are the most frequent transitions,
accounting for atleast 30% when the services are in “Not Offered" and “Offered" states.
Analysing the state-space coverage help us to understand the degree of risk remaining after
testing [66]. Verifying with Check() whether the services are available when in “Offered"
state and not available when in “Not Offered" state reduces the risk substantially after
testing. Our results show that we have covered all the states and transitions for all the
services atleast once which are the requirements for such coverage criteria.

6.2 Efficiency

Efficiency refers to the practicality of a testing approach. According to Eldh et al., effi-
ciency should be calculated considering the time and effort spent for test creation along
with the aspect of test execution [63]. In this regard, effort involved in writing each test
case is high in manual testing whereas in the case of PBT, it is higher initially while
defining the properties. From table 6.3, 30% of the test execution time is attributed to
the waiting time due to the asynchronous behaviour of our software. This communication
delay is involved in any black-box testing method that we would perform at system level as

57

6 Results and Evaluation

Table 6.3: Execution and wait times in the test runs of SD.

Number of examples Total execution time (s) Wait time (s)

5 44.96 16.59
10 112.07 47.89
100 798.92 276.69
500 4054.03 1494.42

long as communication is asynchronous. The waiting time for our PBT test run increases
by a factor of 8 as the number of examples increases.

6.3 Interview Study

We conducted an interview study with 6 participants who are experts in testing field
and collected their feedback and opinions about our testing approach. We chose semi-
structured, open-ended, individual interviews with experts in testing field [67]. This format
allowed us to get a broad overview over their opinion about PBT. We further investigated
the factors for comparison of our testing method with traditional methods of testing from
the answers of the interviewees. The interview guide was designed based on the research
questions formulated earlier.

The participants were employees who have atleast 4 years of experience in an automotive
product-based organization with more than 2000 employees. The length of each inter-
view ranged from 45 to 60 minutes and the interviews were recorded and transcribed for
analysis.

Table 6.4: Participant data.

Participant ID Area of responsibility Experience in years

P1 Test Infrastructure >35
P2 Product test suite >4
P3 Product test suite >14
P4 Component test >12
P5 Component test >12

P1 argued that verifying the concurrency of services is an important factor to evaluate
the combined test cases generated by our approach more than the state and transtion
coverages for each service considered individually. P1 reported that test stimuli can be
generated arbitrarily using our approach compared to traditional testing method where
only a given functionality is tested with each test case. P1 talked about the possibility

58

6.3 Interview Study

of having extensive test cases generated using our approach although the timing factor of
asynchronous software could reduce the efficiency at the system level. According to P1,
although defining properties would be a tedious task, this step would help understand the
system better.

P2 had the opinion that a large number of tests can be generated easily with our approach
and the random factor seems useful in identifying issues that one might not have thought
of with static test cases. Nevertheless, P2 claimed that testers know the possibility of
types of bugs that could exist in certain test scenarios from their experience. As such, test
cases do not always demand for random factors present in our approach. P2 suggested
a method whereby we could analyse the statistics of the test cases generated using PBT
approach. According to P2, such an analysis could confirm whether the test cases in our
mind have been covered with PBT. A tool development based on this approach mentioned
by P2 is discussed in the previous work in section 8. We have performed the analysis
mentioned by P2 for our test cases in section 6.1.4. Additionally, P2 reported that the
test coverage criterion in our case would be a mathematical problem to find out whether
all the possible combinations of test inputs are covered using our approach. P2 made a
remark that this could make PBT a better fit in the area of product testing where easy
generation of more number of tests could be beneficial. P2 also claimed that a greater
amount testing is performed at the component level with the aim to fix as many bugs as
possible, than an the product level.

P3 reported that it is a difficult task to say when we have sufficiently tested, although state
and transition coverages are important metrics like we used in our approach. P3 suggested
that requirements should be the primary specifications for formulating properties and
pointed out that the first application of PBT requires good knowledge of the system. P3
also mentioned that our approach could be a good extension to conventional methods of
testing to find out how the systems respond to random scenarios other than well defined
ones.

P4 and P5 are experienced in development and testing at the unit or component level.
They described that they have used testing methods very similar to our approach to
generate various combinations of datatypes for functions. P4 argued that after the V-
model processes of requirements, design and unit tests, there would be a slight chance of
finding an error or bug even with our approach.

P4 and P5 stressed the factor of randomness in our approach that “why should testers
choose random testing methods over systematic ones?". They would have welcomed our
approach if there was a systematic method of defining properties. P4 mentioned that the
shrinking feature of PBT tool is exciting but claimed that finding an error or a bug would
be a mere coincidence. P4 and P5 suggested a possibility of generating parameters with
PBT tool which can be exported and used as inputs in existing static unit test cases.

P5 asked whether test cases like T3 and T4 which we discussed in section 6.1.4 have been
covered using our approach. An analysis of such test cases through which the existence of
known issues or bugs could be verified, helps us judge the quality of test inputs generated
by our approach. P5 mentioned that it would be an extra task to model the SUT like

59

6 Results and Evaluation

in our approach to get the expected results when we do not have access to the source
code in black-box testing methods. Additionally, P5 reported that traceability of the test
cases to the requirements is important for the customers. In our case, this would mean
that we should ensure that the test inputs which are generated randomly in our approach
correspond to the requirements.

None of the interviewees had the opinion that our approach has the potential to replace
the conventional methods of testing considering that the latter is more systematic and
not random. P4 and P5 added that our approach could be used in stress testing at the
product testing level.

From the interview study, we conclude that developing a systematic approach to testing
systems with PBT could convince test experts about its applicability to a great extent.
Inspite of the randomness involved in test methods like PBT, a qualitative analysis of the
test inputs generated with these approaches can help build reliability.

To summarize, we identified an issue in configuration of ports with our PBT approach
which shows the effectiveness in testing the functionality of SD. Although, time is needed
in the initial stage of understanding the SUT, the automatic generation along with the
shrinking features of PBT add up to efficiency of our test approach. Additionally, it is
beneficial to analyse the test inputs which are generated randomly so that we can judge
the quality of the properties that we define.

60

7 Threats to Validity

Here, we report the potential threats to the validity of our work. We have carried out
an experiment for the functionality of Service Discovery of Communication Management
module of the Adaptive Platform. The results presented in this paper are not applicable
to the other modules of the Adaptive Platform. The boundary value of time which we
obtained as 300ms was the result of around 10 repeated test runs on Hypothesis and this
could vary depending on the software implementation and runtime environment. For the
results, we have considered only a few test cases derived from the test specification to check
whether these are covered by our approach. This could be analysed for a wide variety of
test cases that we would otherwise perform system testing with. Regarding the interviews
conducted, it is possible that the experts interpreted the questions in a different way than
what was intended by the interviewer. The goal of this interview study was to obtain
an insight into the test experts’ opinion and viewpoints about our approach. Our study
involving 5 participants could limit the generalizability of the results obtained during our
work. For a more thorough research on the results, a larger sample of interviewees could
be considered [67].

61

8 Related Work

In this chapter, we discuss the research work that is already available which is relevant
to this thesis. We describe the work that has been previously carried out for testing
AUTOSAR with the QuickCheck PBT tool. Additionally, we mention other studies where
PBT has been applied for testing software.

AUTOSAR has released a set of requirements or specifications for each of the modules of
the Basic Software, which would then be interpreted by the suppliers who develop them [6].
These interpretations may not necessarily and precisely correspond to the specifications
released by AUTOSAR, as the latter tend to be more abstract. This may also be due to the
implementation freedom granted to the ECU vendors that the AUTOSAR specification
remains ambiguous [68].

Svensson et al. have discovered 227 defects in ECU vendor’s Basic software code through
a research on random testing of 20 modules of Classic Platform, of which 180 defects were
due to ambiguities and could be resolved by revisiting the AUTOSAR standard. Moreover,
it is interesting to note that they have also found a significant error in the AUTOSAR
standard specification itself. The specification stated that a function returns a pointer
whereas in the requirement document it was given that it copies a value to a memory
location, which has led to the conflict [7].

Hughes emphasize on the importance of testing as well as the fact that writing thousands of
test cases manually can be time-consuming and cumbersome. Hence, the author proposes
the idea “Don’t write tests, generate them” as an alternative solution [33].

With property-based testing using the QuickCheck tool we derive properties from formal
specifications which would lead to a better understanding of our project. This even helps
to point out errors, if there are any, in the specification [10]. Moreover, corner cases could
be figured out which may not otherwise be found by writing manual test cases [29].

Arts et al. have proved the efficiency of PBT on QuickCheck models in finding out software
defects in already well-tested software implementations of CAN modules. Additionally,
these models could also be represented by fewer lines of code as compared to the test cases
written in TTCN (Testing and Test Control Notation), which were defined by AUTOSAR
[7]. A large number of test sequences when randomly generated can help the testers
identify the areas not noted before. Additionally, the process of shrinking the failing test
input to a minimal one by the property-based testing tool makes it more comprehensible
enabling us to rework on the errors in lesser time and fewer efforts [7, 14].

According to Raina, property-based testing is a form of black-box testing where function-
ality is tested using the provision of inputs followed by evaluation of outputs. Here, the

63

8 Related Work

implementation of the functionality isn’t given a high importance and hence need not be
known to the testers [14].

Aichernig et al. discuss another PBT Tool FsCheck for web services by deriving properties
from XML based business specifications [32]. The benefit of generating more random test
cases with a PBT tool PropEr for an embedded application is known, where a set of 100
test cases pointed out a failure whereas a set of 10 test cases gave out none [14]. This fact
clearly states the advantage of PBT wherein a large number of test cases are automatically
generated to falsify a property [69] as compared to manually written test cases, where such
a huge number of test cases rely upon the testers’ patience, effort and time.

Schumi et al. argue that it is also important to confirm that the System Under Test (SUT)
corresponds to the specification, as programmers can later change the implementation code
without changing the business specification [32].

Arts discusses that Quviq QuickCheck has been used to test Project Fifo which is a
cloud management system [31] which gave rise to timing error due to an asynchronous
API call. This was also fixed by adding a wait before triggering the next operation
after the asynchronous operation. This timing aspect is similar to our work on stateless
property where we find the minimum waiting time required after an asynchronous software
operation.

Gerdes et al. have used to derive minimal examples from formal specifications of software
using QuickCheck so that the users can understand the behaviour of APIs better. They
conducted an experiment with students to evaluate these examples which showed that they
could understand the programs better. They argue that random examples are meaningless
considering their randomness but also admit the fact that this characteristic gives rise to
finding unexpected corner cases [70].

It is possible to integrate external generators for test cases with a PBT tool so that the
strategies of both can be combined [13]. It can give a better coverage of the test system
than with a single PBT tool although the computation times could be higher for the test
generation by the external generators.

Although PBT tool can easily generate thousands of test inputs within a short time,
analysing whether these inputs include a test case which we have in mind would be difficult.
Hughes et al. have developed a tool which take a property and a unit test as inputs to
check whether the latter could be generated by the defined property. They performed a
case study with six unit tests derived from acceptance test suite of AUTOSAR and their
corresponding QuickCheck models based on CAN stack. The results showed that five of
these unit tests could be generated by the property models with an error in the last unit
test itself. Such method or tools can help the testers to judge the property’s quality in
PBT [28].

Generality of an approach refers to the ability of any testing approach to handle diverse
language constructs and its use in other domains [67]. Considering the plethora of work
done previously for PBT, we find that the aspect of generality is good for our test ap-
proach.

64

9 Conclusion

In this master thesis, we proposed a black-box testing methodology based on PBT and
evaluated its applicability for AUTOSAR basic software. These findings are to some extent
transferable to other asynchronous embedded software.

Embedded systems comprise of state machines to a large extent and manually implement-
ing automated test cases for all the possible combinations of the states and transitions
is cumbersome. In this regard, stateful properties have the potential to generate a large
number of test inputs for independent and parallel instances of the same statemachine.
Our test infrastructure is based on stateful properties for the functionality of Service Dis-
covery with the application of stateless properties to determine the timing characteristic
of asynchronous software which answers RQ1.

In order to formulate a test adequacy criterion (RQ2), determining whether the generated
test cases cover all the states and transitions atleast once would be beneficial. Analysing
whether these include the test inputs which would otherwise be used to perform static test
cases helps judge the property’s quality. It has been inferred though from the interview
study that the test adequacy for customers means that the individual test cases trace
back to their requirements. In that case, with our random approach, it would be an extra
task to analyse the large number of test cases generated at random and link them to the
corresponding software requirements.

For PBT, the tremendous effort lies in abstracting the SUT into properties which demands
for system knowledge from the testing engineers. Our results show that PBT is effective
in testing Service Discovery and our approach can be scaled up easily to a higher number
of services. The results of our interview study conducted shows that the experts rely on
traditional methods of testing much more strongly than random testing methods like PBT
(RQ3). They find our approach relatively new with no prior experiences and are therefore
unable to assess its applicability. The “randomness" factor of PBT obtained from the
interview study coincides with the previous work done by Gerdes et al. [70], although it
can be beneficial in finding corner cases. Moreover, our approach demands for new skills
from the testing engineers for defining properties. Although PBT can aid in automating
test designs and test generation in comparison to manual test designs, it can potentially
give rise to acceptance problems among the testers for these reasons.

To summarize, PBT can be an ideal candidate for black-box testing of complex systems.
This approach can be used in addition to the traditional testing methods to reveal any
corner cases. Analysing the property’s quality using the generated test cases can build
trust among the testers to use this method to test their systems.

65

10 Future Scope

Our approach is effective in testing the functionality of Service Discovery of Commu-
nication Management module of the Adaptive Platform. However, our work is just an
elementary research on the application of PBT in testing software components based on
the AUTOSAR standard. The developed test system can be extended to other modules
of the Adaptive Platform exploring the possibilities of application of stateless and state-
ful properties. As pointed out during the interview study conducted during this work,
research can be carried out to check whether PBT can generate parameters which can
serve as inputs to static test cases. Another future work could be developing a systematic
process to assist testers in defining properties for their software.

67

Bibliography

[1] Manfred Broy, Ingolf H Kruger, Alexander Pretschner, and Christian Salzmann.
“Engineering automotive software”. In: Proceedings of the IEEE 95.2 (2007), pp. 356–
373.

[2] Lucia Lo Bello, Riccardo Mariani, Saad Mubeen, and Sergio Saponara. “Recent
advances and trends in on-board embedded and networked automotive systems”. In:
IEEE Transactions on Industrial Informatics 15.2 (2018), pp. 1038–1051.

[3] Alireza Haghighatkhah, Markku Oivo, Ahmad Banijamali, and Pasi Kuvaja. “Im-
proving the state of automotive software engineering”. In: IEEE Software 34.5 (2017),
pp. 82–86.

[4] Christof Ebert and John Favaro. “Automotive software”. In: IEEE Software 3 (2017),
pp. 33–39.

[5] David McCandless, Pearl Doughty-White, and Miriam Quick. Codebases Millions of
lines of code. https://informationisbeautiful.net/visualizations/million-
lines-of-code/. Accessed: 2019-12-04. 2015.

[6] AUTOSAR Consortium:Automotive Open System Architecture, standard documents.
https://autosar.org/. Accessed: 2019-12-04.

[7] Thomas Arts, John Hughes, Ulf Norell, and Hans Svensson. “Testing AUTOSAR
software with QuickCheck”. In: 2015 IEEE Eighth International Conference on Soft-
ware Testing, Verification and Validation Workshops (ICSTW). IEEE. 2015, pp. 1–
4.

[8] Tischer Mirko. The Computing Center in the Vehicle AUTOSAR Adaptive. https:
//assets.vector.com/cms/content/know-how/_technical-articles/AUTOSAR/
AUTOSAR_Adaptive_ElektronikAutomotive_201809_PressArticle_EN.pdf. Ac-
cessed: 2019-12-04.

[9] Explanation of Adaptive Platform Design, 2017, AUTOSAR Consortium, standard
documents. https://autosar.org/. Accessed: 2019-12-04.

[10] Koen Claessen and John Hughes. “QuickCheck: a lightweight tool for random testing
of Haskell programs”. In: Acm sigplan notices 46.4 (2011), pp. 53–64.

[11] System Tests of Adaptive Platform. https : / / www . autosar . org / standards /
adaptive-platform/adaptive-platform-1903/. Accessed: 2019-12-04. 2019.

[12] Requirements on Communication Management. https : / / www . autosar . org /
standards/adaptive-platform/adaptive-platform-1903/. Accessed: 2019-12-
04. 2019.

69

https://informationisbeautiful.net/visualizations/million-lines-of-code/
https://informationisbeautiful.net/visualizations/million-lines-of-code/
https:// autosar.org/
https://assets.vector.com/cms/content/know-how/_technical-articles/AUTOSAR/AUTOSAR_Adaptive_ElektronikAutomotive_201809_PressArticle_EN.pdf
https://assets.vector.com/cms/content/know-how/_technical-articles/AUTOSAR/AUTOSAR_Adaptive_ElektronikAutomotive_201809_PressArticle_EN.pdf
https://assets.vector.com/cms/content/know-how/_technical-articles/AUTOSAR/AUTOSAR_Adaptive_ElektronikAutomotive_201809_PressArticle_EN.pdf
https:// autosar.org/
https://www.autosar.org/standards/adaptive-platform/adaptive-platform-1903/
https://www.autosar.org/standards/adaptive-platform/adaptive-platform-1903/
https://www.autosar.org/standards/adaptive-platform/adaptive-platform-1903/
https://www.autosar.org/standards/adaptive-platform/adaptive-platform-1903/

Bibliography

[13] Bernhard K Aichernig, Silvio Marcovic, and Richard Schumi. “Property-based test-
ing with external test-case generators”. In: 2017 IEEE International Conference on
Software Testing, Verification and Validation Workshops (ICSTW). IEEE. 2017,
pp. 337–346.

[14] Shivani Raina. QuickCheck-Style Testing of Embedded Software using the PropEr
Framework. 2012.

[15] Percy Pari Salas and Padmanabhan Krishnan. “Automated software testing of asyn-
chronous systems”. In: Electronic notes in theoretical computer science 253.2 (2009),
pp. 3–19.

[16] Mostafa Massoud. “Evaluation of an Adaptive AUTOSAR System in Context of
Functional Safety Environments”. In: (2017).

[17] Marcin Bajer, Marek Szlagor, and Marek Wrzesniak. “Embedded software testing in
research environment. A practical guide for non-experts”. In: 2015 4th Mediterranean
Conference on Embedded Computing (MECO). IEEE. 2015, pp. 100–105.

[18] Sangeetha Yalamanchili and K Sitha Kumari. “Comparison of manual and auto-
matic testing using genetic algorithm for information handling system”. In: 2016
International Conference on Signal Processing, Communication, Power and Embed-
ded System (SCOPES). IEEE. 2016, pp. 1795–1799.

[19] Muhammad Abid Jamil, Muhammad Arif, Normi Sham Awang Abubakar, and
Akhlaq Ahmad. “Software testing techniques: A literature review”. In: 2016 6th
International Conference on Information and Communication Technology for The
Muslim World (ICT4M). IEEE. 2016, pp. 177–182.

[20] Bertrand Meyer. “Seven principles of software testing”. In: Computer 41.8 (2008),
pp. 99–101.

[21] Abel Marrero Perez and Stefan Kaiser. “Integrating test levels for embedded sys-
tems”. In: 2009 Testing: Academic and Industrial Conference-Practice and Research
Techniques. IEEE. 2009, pp. 184–193.

[22] Oskar Ingemarsson and Sebastian Weddmark Olsson. “Evaluation of validity of veri-
fication methods: Automating functional safety with QuickCheck”. MA thesis. 2015.

[23] Ina Schieferdecker. “Model-based testing”. In: IEEE software 1 (2012), pp. 14–18.
[24] Ali Mili and Fairouz Tchier. Software testing: Concepts and operations. John Wiley

& Sons, 2015.
[25] “ISO/IEC/IEEE International Standard - Software and systems engineering –

Software testing –Part 2:Test processes”. In: ISO/IEC/IEEE 29119-2:2013(E)
(2013), pp. 1–68. issn: null. doi: 10.1109/IEEESTD.2013.6588543.

[26] Hanmeet Kaur Brar and Puneet Jai Kaur. “Differentiating integration testing and
unit testing”. In: 2015 2nd International Conference on Computing for Sustainable
Global Development (INDIACom). IEEE. 2015, pp. 796–798.

[27] Joel Martin and David Levine. “Property-based testing of browser rendering en-
gines with a consensus oracle”. In: 2018 IEEE 42nd Annual Computer Software and
Applications Conference (COMPSAC). Vol. 2. IEEE. 2018, pp. 424–429.

70

https://doi.org/10.1109/IEEESTD.2013.6588543

Bibliography

[28] Alex Gerdes, John Hughes, Nick Smallbone, and Meng Wang. “Linking unit tests
and properties”. In: Proceedings of the 14th ACM SIGPLAN Workshop on Erlang.
2015, pp. 19–26.

[29] Yusuke Wada and Shigeru Kusakabe. “Performance evaluation of a testing frame-
work using QuickCheck and Hadoop”. In: Information and Media Technologies 7.2
(2012), pp. 694–700.

[30] André Santos, Alcino Cunha, and Nuno Macedo. “Property-based testing for the
robot operating system”. In: Proceedings of the 9th ACM SIGSOFT International
Workshop on Automating TEST Case Design, Selection, and Evaluation. 2018,
pp. 56–62.

[31] George Fink and Matt Bishop. “Property-based testing: a new approach to testing
for assurance”. In: ACM SIGSOFT Software Engineering Notes 22.4 (1997), pp. 74–
80.

[32] Bernhard K Aichernig and Richard Schumi. “Property-based testing with FsCheck
by deriving properties from business rule models”. In: 2016 IEEE Ninth International
Conference on Software Testing, Verification and Validation Workshops (ICSTW).
IEEE. 2016, pp. 219–228.

[33] John Hughes. “Experiences with QuickCheck: testing the hard stuff and staying
sane”. In: A List of Successes That Can Change the World. Springer, 2016, pp. 169–
186.

[34] Getting Started with Hypothesis. https://hypothesis.works/articles/getting-
started-with-hypothesis/. Accessed: 2020-02-05.

[35] Pytest Framework. https://docs.pytest.org/en/latest/. Accessed: 2020-02-10.

[36] Property-Based Testing with PropEr, Erlang, and Elixir: Find Bugs Before Your
Users Do. Pragmatic Bookshelf, 2019.

[37] ISTQB Glossary. https://glossary.istqb.org/en/search/. Accessed: 2020-10-
07.

[38] H Fennel, L Lundh, J Leflour, JL Maté, and K Nishikawa. “AUTOSAR–Challenges
and Achievements 2005”. In: ().

[39] Dr. Simon Frohn and Fabian Rees. From Signal to Service. https : / / assets .
vector.com/cms/content/know-how/_technical-articles/Ethernet_AUTOSAR_
Adaptive_Elektronik_Automotive_201803_PressArticle_EN.pdf. Accessed:
2020-01-07.

[40] Dr. Markus Oertel and Dr. Bastian Zimmer. E/E Architectures with AU-
TOSAR Adaptive. https : / / assets . vector . com / cms / content / know -
how / _technical - articles / AUTOSAR / AUTOSAR _ Adaptive _ Architecture _
ATZ_201905_PressArticle_EN.pdf. Accessed: 2020-01-07.

[41] Lorenz Slansky and AUTOSAR Chairman. AUTOSAR for Intelligent Vehicles.

71

https://hypothesis.works/articles/getting-started-with-hypothesis/
https://hypothesis.works/articles/getting-started-with-hypothesis/
https://docs.pytest.org/en/latest/
https://glossary.istqb.org/en/search/
https://assets.vector.com/cms/content/know-how/_technical-articles/Ethernet_AUTOSAR_Adaptive_Elektronik_Automotive_201803_PressArticle_EN.pdf
https://assets.vector.com/cms/content/know-how/_technical-articles/Ethernet_AUTOSAR_Adaptive_Elektronik_Automotive_201803_PressArticle_EN.pdf
https://assets.vector.com/cms/content/know-how/_technical-articles/Ethernet_AUTOSAR_Adaptive_Elektronik_Automotive_201803_PressArticle_EN.pdf
https://assets.vector.com/cms/content/know-how/_technical-articles/AUTOSAR/AUTOSAR_Adaptive_Architecture_ATZ_201905_PressArticle_EN.pdf
https://assets.vector.com/cms/content/know-how/_technical-articles/AUTOSAR/AUTOSAR_Adaptive_Architecture_ATZ_201905_PressArticle_EN.pdf
https://assets.vector.com/cms/content/know-how/_technical-articles/AUTOSAR/AUTOSAR_Adaptive_Architecture_ATZ_201905_PressArticle_EN.pdf

Bibliography

[42] Simon Fürst and Markus Bechter. “AUTOSAR for connected and autonomous ve-
hicles: The AUTOSAR adaptive platform”. In: 2016 46th Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks Workshop (DSN-W).
IEEE. 2016, pp. 215–217.

[43] Rahamatullah Khondoker, Bernd Reuther, Dennis Schwerdel, Abbas Siddiqui, and
Paul Müller. “Describing and selecting communication services in a service ori-
ented network architecture”. In: 2010 ITU-T Kaleidoscope: Beyond the Internet?-
Innovations for Future Networks and Services. IEEE. 2010, pp. 1–8.

[44] A Service Oriented Architecture for Ambient IntelligenceChoreography and Se-
cure Service Discovery. https : / / www . academia . edu / 27381202 / A _ Service _
Oriented _ Architecture _ for _ Ambient _ Intelligence _ Choreography _ and _
Secure_Service_Discovery. Accessed: 2020-01-16.

[45] Gaurav Singh, Narayan Kamath, and RK Sharma. “Implementing Adaptive AU-
TOSAR Diagnostic Manager with Classic Diagnostics as APIs”. In: 2018 Second
International Conference on Intelligent Computing and Control Systems (ICICCS).
IEEE. 2018, pp. 894–898.

[46] Jelena Jovičić, Mila Kotur, Milan Z Bjelica, and Ištvan Papp. “Visualizing Functional
Verification in Adaptive AUTOSAR”. In: 2018 IEEE 8th International Conference
on Consumer Electronics-Berlin (ICCE-Berlin). IEEE. 2018, pp. 1–4.

[47] Mia Stepanović, Jelena Jovičić, Goran Stupar, and Marko Kovačević. “Application
lifecycle management in automotive: Adaptive AUTOSAR example”. In: 2018 IEEE
8th International Conference on Consumer Electronics-Berlin (ICCE-Berlin). IEEE.
2018, pp. 1–4.

[48] Johannes Dorfner. AUTOSAR – Part 2: Adaptive Platform. https : / / www .
methodpark . de / blog / autosar - part - 2 - adaptive - platform/. Accessed:
2020-01-07.

[49] Dr.-Ing. Thomas Scharnhorst. AUTOSAR proofs to be THE automotive software
platform for intelligent mobility. https://www.autosar.org/fileadmin/user_
upload / 2017 _ ELIV _ AUTOSAR _ proofs _ to _ be _ THE _ automotive _ software _
platform_for_intelligent_mobility.pdf. Accessed: 2020-01-07.

[50] Holger Blasum and Sergey Tverdyshev. “Classic and Adaptive AUTOSAR in MILS
terms.” In: MILS@ DSN. 2018.

[51] Explanation of ara::com API. https : / / www . autosar . org / fileadmin / user _
upload/standards/adaptive/17-03/AUTOSAR_EXP_ARAComAPI.pdf. Accessed:
2020-01-20.

[52] Specification of Communication Management. https : / / www . autosar . org /
fileadmin / user _ upload / standards / adaptive / 17 - 03 / AUTOSAR _ SWS _
CommunicationManagement.pdf. Accessed: 2020-01-20.

[53] SOME/IP Protocol Specification. https://www.autosar.org/fileadmin/user_
upload/standards/foundation/1-0/AUTOSAR_PRS_SOMEIPProtocol.pdf. Ac-
cessed: 2020-01-08.

72

https://www.academia.edu/27381202/A_Service_Oriented_Architecture_for_Ambient_Intelligence_Choreography_and_Secure_Service_Discovery
https://www.academia.edu/27381202/A_Service_Oriented_Architecture_for_Ambient_Intelligence_Choreography_and_Secure_Service_Discovery
https://www.academia.edu/27381202/A_Service_Oriented_Architecture_for_Ambient_Intelligence_Choreography_and_Secure_Service_Discovery
https://www.methodpark.de/blog/autosar-part-2-adaptive-platform/
https://www.methodpark.de/blog/autosar-part-2-adaptive-platform/
https://www.autosar.org/fileadmin/user_upload/2017_ELIV_AUTOSAR_proofs_to_be_THE_automotive_software_platform_for_intelligent_mobility.pdf
https://www.autosar.org/fileadmin/user_upload/2017_ELIV_AUTOSAR_proofs_to_be_THE_automotive_software_platform_for_intelligent_mobility.pdf
https://www.autosar.org/fileadmin/user_upload/2017_ELIV_AUTOSAR_proofs_to_be_THE_automotive_software_platform_for_intelligent_mobility.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_EXP_ARAComAPI.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_EXP_ARAComAPI.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_SWS_CommunicationManagement.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_SWS_CommunicationManagement.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_SWS_CommunicationManagement.pdf
https://www.autosar.org/fileadmin/user_upload/standards/foundation/1-0/AUTOSAR_PRS_SOMEIPProtocol.pdf
https://www.autosar.org/fileadmin/user_upload/standards/foundation/1-0/AUTOSAR_PRS_SOMEIPProtocol.pdf

Bibliography

[54] Abhijith Ajith Kumar. “Analysis and Implementation of Various Interoperability
Techniques for ADAS Development”. Technische University of Chemnitz. MA thesis.
2018.

[55] Specification of Service Discovery. https://www.autosar.org/fileadmin/user_
upload/standards/classic/4- 2/AUTOSAR_SWS_ServiceDiscovery.pdf. Ac-
cessed: 2020-01-22.

[56] Jan R Seyler, Thilo Streichert, Michael Glaß, Nicolas Navet, and Jürgen Teich.
“Formal analysis of the startup delay of SOME/IP service discovery”. In: Proceedings
of the 2015 Design, Automation & Test in Europe Conference & Exhibition. EDA
Consortium. 2015, pp. 49–54.

[57] Jochen Kreissl. “Absicherung der SOME/IP Kommunikation bei Adaptive AU-
TOSAR”. MA thesis. 2017.

[58] Example for a Serialization Protocol (SOME/IP). http://some-ip.com/papers/
cache/AUTOSAR_TR_SomeIpExample_4.2.1.pdf. Accessed: 2020-01-20.

[59] Requirements on Communication Management. https : / / www . autosar . org /
fileadmin / user _ upload / standards / adaptive / 17 - 03 / AUTOSAR _ RS _
CommunicationManagement.pdf. Accessed: 2020-01-22.

[60] SOME/IP Service Discovery Protocol Specification. https : / / www . autosar .
org / fileadmin / user _ upload / standards / foundation / 1 - 2 / AUTOSAR _ PRS _
SOMEIPServiceDiscoveryProtocol.pdf. Accessed: 2020-01-22.

[61] R-Car. https://www.renesas.com/us/en/products/automotive/automotive-
lsis/r-car.html. Accessed: 2020-02-09.

[62] Muhammad Zohaib Iqbal, Andrea Arcuri, and Lionel Briand. Automated system test-
ing of real-time embedded systems based on environment models. Tech. rep. Technical
Report 2011-19, Simula Research Laboratory, 2011.

[63] Sigrid Eldh, Hans Hansson, Sasikumar Punnekkat, Anders Pettersson, and Daniel
Sundmark. “A framework for comparing efficiency, effectiveness and applicability of
software testing techniques”. In: Testing: Academic & Industrial Conference-Practice
And Research Techniques (TAIC PART’06). IEEE. 2006, pp. 159–170.

[64] Cassia de Souza Carvalho and Tatsuhiro Tsuchiya. “Coverage criteria for state tran-
sition testing and model checker-based test case generation”. In: 2014 Second Inter-
national Symposium on Computing and Networking. IEEE. 2014, pp. 596–598.

[65] “ISO/IEC/IEEE International Standard - Software and systems engineering–
Software testing–Part 4: Test techniques”. In: ISO/IEC/IEEE 29119-4:2015 (2015),
pp. 1–149. issn: null. doi: 10.1109/IEEESTD.2015.7346375.

[66] Itzel Dominguez Mendoza, D Richard Kuhn, Raghu N Kacker, and Yu Lei. “CCM:
A tool for measuring combinatorial coverage of system state space”. In: 2013
ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement. IEEE. 2013, pp. 291–291.

73

https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_SWS_ServiceDiscovery.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_SWS_ServiceDiscovery.pdf
http://some-ip.com/papers/cache/AUTOSAR_TR_SomeIpExample_4.2.1.pdf
http://some-ip.com/papers/cache/AUTOSAR_TR_SomeIpExample_4.2.1.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CommunicationManagement.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CommunicationManagement.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CommunicationManagement.pdf
https://www.autosar.org/fileadmin/user_upload/standards/foundation/1-2/AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol.pdf
https://www.autosar.org/fileadmin/user_upload/standards/foundation/1-2/AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol.pdf
https://www.autosar.org/fileadmin/user_upload/standards/foundation/1-2/AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol.pdf
https://www.renesas.com/us/en/products/automotive/automotive-lsis/r-car.html
https://www.renesas.com/us/en/products/automotive/automotive-lsis/r-car.html
https://doi.org/10.1109/IEEESTD.2015.7346375

Bibliography

[67] Dora Dzvonyar and Bernd Bruegge. “Team Composition and Team Factors in Soft-
ware Engineering: An Interview Study of Project-Based Organizations”. In: 2018
25th Asia-Pacific Software Engineering Conference (APSEC). IEEE. 2018, pp. 561–
570.

[68] Thomas Arts and Mohammad Reza Mousavi. “Automatic consequence analysis of
automotive standards (AUTO-CAAS)”. In: Proceedings of the First International
Workshop on Automotive Software Architecture. 2015, pp. 35–38.

[69] Bernhard K Aichernig and Richard Schumi. “Property-based testing of web services
by deriving properties from business-rule models”. In: Software & Systems Modeling
18.2 (2019), pp. 889–911.

[70] Alex Gerdes, John Hughes, Nicholas Smallbone, Stefan Hanenberg, Sebastian Ivars-
son, and Meng Wang. “Understanding formal specifications through good examples”.
In: Proceedings of the 17th ACM SIGPLAN International Workshop on Erlang. 2018,
pp. 13–24.

[71] Michael W Whalen, Ajitha Rajan, Mats PE Heimdahl, and Steven P Miller. “Cover-
age metrics for requirements-based testing”. In: Proceedings of the 2006 international
symposium on Software testing and analysis. 2006, pp. 25–36.

[72] Testing Asynchronous APIs with QuickCheck. http://www.erlang-factory.com/
static/upload/media/1461230674757746pbterlangfactorypptx.pdf. Accessed:
2020-02-05.

74

http://www.erlang-factory.com/static/upload/media/1461230674757746pbterlangfactorypptx.pdf
http://www.erlang-factory.com/static/upload/media/1461230674757746pbterlangfactorypptx.pdf

	Introduction
	Motivation
	Scope of Work
	Research Questions
	Research Methodology
	Thesis Outline

	Fundamentals
	Testing
	Test Levels in the V-Model
	Property-based Testing (PBT)
	Hypothesis Framework
	Stateless Properties
	Stateful Properties
	Application of stateless and stateful properties

	System Under Test
	AUTOSAR
	AUTOSAR Classic
	AUTOSAR Adaptive

	Service-Oriented Architecture
	Architectural Overview of Adaptive Platform
	Communication Management (ara::com)
	Service Discovery
	Application View
	Bus View

	Specifications and Test Design
	AUTOSAR Specifications for ara::com
	Comparison of Test Strategies
	Example-based Testing
	PBT

	Deriving Properties from Specifications

	Implementation
	Block Diagram of SUT
	Integration of Hypothesis with the Adaptive Platform
	Stateless Property
	Service Test Model
	State diagram of a Service
	Stateful Property

	Results and Evaluation
	Effectiveness
	Issue found during testing
	Concurrency
	Statistics of Test Inputs
	Analysis of Test inputs
	Fault Injection
	Coverage

	Efficiency
	Interview Study

	Threats to Validity
	Related Work
	Conclusion
	Future Scope
	Bibliography

