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Zusammenfassung

Molekulare Simulationen haben sich als wissenschaftliches Gebiet etabliert, das eine Lücke

zwischen Experiment und Theorie schließt. Sie spielen eine wertvolle Rolle, wenn es

darum geht exakte Ergebnisse für Probleme der statistischen Mechanik zu liefern, die an-

dernfalls nur mit approximierenden Methoden lösbar oder möglicherweise sogar unlösbar

wären. Alle in dieser Arbeit durchgeführten Simulationen basieren auf einer klassischen

Beschreibung von Wechselwirkungen innerhalb der Moleküle sowie des Einflusses von

umgebenden Molekülen. In der vorliegenden Arbeit wurden zwei Aspekte von Moleku-

larsimulationen untersucht, zum einen die Verbindung zwischen Modell und theoretis-

cher Vorhersage und zum anderen die Verbindung zwischen Modell und experimentellen

Daten. Die untersuchten Systeme sind für die Materialwissenschaften, die Biotechnologie

sowie für das Chemieingenieurwesen relevant. Die in Kapitel 2 dieser Arbeit vorgestellten

Ergebnisse beleuchten das Assoziationsverhalten von supramolekularen Komplexen in un-

terschiedlichen Lösungsmittelumgebungen. Kapitel 3 befasst sich mit der Vorhersage von

Eigenschaften wässriger Lösungen des stark eutektischen Lösungsmittels Glycelin unter

Verwendung robuster Methoden und Software. Die Kapitel 4 und 5 befassen sich sowohl

mit der Entwicklung von Kraftfeldern als auch mit der Vorhersage von Eigenschaften am

Beispiel von n-Alkoholen.

Summary

Molecular simulation is an established scientific field that bridges the gap between ex-

periment and theory. It plays a valuable role in providing essentially exact results for

problems in statistical mechanics which could otherwise only be handled by approximate

methods, or be even intractable. All simulations performed in this work are based on

a framework, called force field, made of equations and parameters describing different

interactions within single molecules as well as the influence of other molecules. In the

present work the dual role of simulation as a bridge between models and theoretical pre-

dictions on the one hand and between models and experimental results on the other was

explored for systems of varying complexity with relevance in materials science, biotech-

nology and chemical engineering. The results presented in chapter 2 of this work aims to

explain the association behaviour of supramolecular complexes in mixed solvent environ-

ments. Chapter 3 is concerned with property prediction for mixtures of the deep eutectic

solvent glyceline with water using robust methods and software. The chapters 4 and 5

are concerned with both, development of force fields as well as property prediction using

n-alcohols as example.

13



14



Journal Publications

This thesis led to the following publications:

� Chapter 2: J. Baz and N. Hansen: Thermodynamic Characterization of the Dimer-

ization of an Anionic Perylene Bisimide Dye Using Molecular Simulation, The Jour-

nal of Physical Chemistry C, 123, 8027-8036, 2019.

� Chapter 3: J. Baz, C. Held, J. Pleiss and N. Hansen: Thermophysical Properties of

Glyceline-Water Mixtures Investigated by Molecular Modelling, Physical Chemistry

Chemical Physics, 21, 6467-6476, 2019.

� Chapter 4: J. Baz, N. Hansen and J. Gross: On the use of transport properties

to discriminate Mie-type molecular models for 1-propanol optimized against VLE

data, The European Physical Journal Special Topics, 227, 1529-1545, 2019.

� Chapter 5: J. Baz, N. Hansen and J. Gross: Transferable Anisotropic Mie-Potential

Force Field for n-Alcohols: Static and Dynamic Fluid Properties of Pure Substances

and Binary Mixtures, Industrial & Engineering Chemistry Research, 59, 919-929,

2020.

The chapters 2 to 5 present literal quotes of the published work. Any addition with

respect to the published work is marked. Any deletion is indicated with square brackets

as ,[...]’. Cross-references between chapters of this thesis, which are added to the published

version of the text to increase readability, are marked by square brackets. The Supporting

Informations to the single chapters are presented in the Appendix of this thesis.

15



16



Acknowledgements

Throughout working on this dissertation I have received a lot of support and assistance.

I would first and foremost like to thank my supervisor Niels Hansen, whose expertise was

invaluable in many cases. I really acknowledge your encouragement and guidance during

my work on this thesis. In many informative discussions I learned a lot and you gave me

a deeper understanding of the scientific work.

I would also like to thank all my colleagues at the ITT which were creating a helpful and

kind atmosphere leading to many fruitful discussions.

Finally, I would like to thank my family and friends, especially my wife Alexandra for their

support in deliberating over the problems and findings of this thesis as well as providing

happy distractions to rest my mind outside of my research.

17



18



Chapter 1

Introduction

1.1 Molecular Simulations for Condensed Phase Sys-

tems

Molecular simulations are powerful methods that allow fundamental understanding of

molecular processes and structures linked with corresponding macroscopic properties. The

first simulations describing the properties of aqueous systems were reported in the 1960s

using a Monte Carlo (MC) algorithm [1]. Molecular dynamics (MD) simulations for water

[2] were conducted in the 1970s followed by studies of electrolyte solutions [3] and later

for soluted dipeptides in aqueous surroundings [4]. These research results lead to the pos-

sibility to investigate effects in gas and liquid phases as well as solute-solvent interaction

mechanisms on a molecular level of understanding [5]. Phase equilibrium calculations as

another method of molecular simulations play an important role in the access to physical

properties of fluids with industrial relevance that are difficult or impossible to measure

experimentally. Important steps in the development of phase equilibria calculations have

been the introduction of the Gibbs ensemble technique [6], the configurational-bias Monte

Carlo method [7] as well as grand canonical Monte Carlo (GCMC) simulations [8] together

with transition matrix Monte Carlo [9, 10]. A short summary of considerable achieve-

ments concerning molecular dynamics simulations over the years between 1957 and 2016

is shown in table 1.1 together with the reachable simulation time scales at that time and

the corresponding literature references.

Due to the continuous development and improvement of molecular simulations they are

nowadays used in industrial frameworks for example in pharmaceutical [22–24] or chemical

applications. Current research fields are still the analysis of Lennard-Jones fluids [25–29]

where fundamental theories are drawn and examined while simulating cell environments

using complex solutions [30, 31] shows how versatile applicable simulations have become.
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Table 1.1: Historical overview over molecular dynamics simulations from 1957 to 2016.

Year Molecular system Time scale / s Ref.

1957 First MD simulation (hard discs, two dimensions) [11]
1964 atomic liquid (argon) 1 · 10−11 [12]
1971 molecular liquid (water) 5 · 10−12 [2]
1975 simple small protein 1 · 10−11 [13]
1976 protein without solvent 2 · 10−11 [14]
1983 protein in water 2 · 10−11 [15]
1986 DNA in aqueous solution 1 · 10−10 [16]
1989 protein-DNA complex in water 1 · 10−10 [17]
1998 polypeptide folding in solvent 1 · 10−8 [18]
2001 micelle formation 1 · 10−7 [19]
2010 folding of a small protein 5 · 10−6 [20]
2016 ubiquitin dynamics 5 · 10−3 [21]

The broad range of applications holds also a broad range of accuracy concerning the sim-

ulation results. While pure component properties could be, depending on the systems

complexity, predicted within a few promille deviation to experimental data, the new in-

sights into effects and processes in a complex cell system on an atomistic-level is in most

cases more relevant than the actual numerical result. Nevertheless also in these cases the

used models should be in agreement with the fundamental physics and should be free of

artifacts that could be included in the method itself [32–35] regardless of the precision of

the implemented potential energy function.

The activities in molecular simulations can be divided into two main groups, namely into

discovery-driven research areas and data-driven research areas [36]. An overview of this

two groups with a categorization of activities, examples and the associated tools and users

is shown in table 1.2. The area of discovery driven activities includes the prediction of new

phenomena, the investigation of observed phenomena to obtain a deeper understanding

or get explanations as well as the development of force fields and new simulation methods.

With the aid of molecular simulations the vaporization process of ionic liquids could be

described [37], new zeolite materials have been discerned [38], increased transport prop-

erties of gases through smooth carbon nanotube pores have been predicted [39] as well as

for metal organic framework materials negative thermal expansion coefficients have been

discovered [40]. While these studies all try to explain unknown phenomena the following

works offer a deeper understanding of known phenomena. Starting from the description of

hydrophobicity [41] to explanations about crystallization initiated by shear strains [42], to

a detailed depiction of the amyloid formation processes [43] and estimations about ionic

systems at critical conditions [44]. Section 3 of the discovery-driven area encompasses the

20



development and improvement of new force fields as well as new methods including better

sampling methods for Monte Carlo simulations [6, 45, 46], molecular dynamic methods

using non-equilibrium theories [47] but also transferable force fields for the prediction of

different properties [48, 49].

In contrast to the discovery-driven research area where often qualitative results are the

outcome of molecular simulation, data-driven projects aim the high accuracy prediction

of properties without or with less input from experimental data. Molecular simulations in

this field can be used to interpolate between given experiments or extrapolate to conditions

where no experimental data are available but also can be used to predict missing properties

or compounds. Applications are for example the calculation of viscosities for alkanes

[50], prediction of phase diagrams for binary mixtures [51] as well as gas absorption

isotherms [52]. In the second section of the data-driven simulations theories and models,

like the SAFT equation of state [53], are developed, validated and improved by molecular

simulations. Also the development of models describing transport and adsorption in

porous media [54] and other local composition models [55] are supported by molecular

simulations.

The validation of costly and complex experiments can also be provided by molecular simu-

lations as well as the support in cases where experimental results are hard to interpret. In

data-driven works it is recommended to use widely accepted and validated code together

with accurate force fields.

With regard to table 1.2 a brief overview of physical properties which can be obtained

by molecular simulation and which effort must be made is shown in table 1.3. On the

abscissa the properties are listed by their molecular simulation relevance. That means

the higher the advantage of using molecular simulations compared to experiments the

higher is the relevance. As advantage in this case is not only the accuracy but also the

expenditure which is necessary to obtain a certain property either by molecular simulation

or by experiments. The ordinate classifies the importance of the specific property for their

significance in chemical process design and development.

Calculating a density with molecular simulations is often very easy but the importance

for chemical process design is also low. Nevertheless the effort for obtaining a density is

much lower using molecular simulations compared to experiments which leads to a high

molecular simulation relevance.

The properties shown in the top right of table 1.3 are those where molecular simula-

tions have a big advantage compared to experiments and also those properties are highly

relevant for chemical process design. For this reason it is most likely that molecular

simulations used in this area have an effect on the development of chemical processes.
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Table 1.2: Molecular simulation activities divided into discovery-driven and data-driven
activities. Adopted from Maginn [56].

Type of activity Examples Tools and Users

D
is

co
ve

ry

1. Search for new phenomena � Simulations of new materials � General or custom software
(nanotubes, metal organic � Standard or tailored force fields
frameworks, ionic liquids) � New methods often required

� Nanoscale phenomena � Mainly academic users

2. Explanation of phenomena � Nature of hydrophobicity � General or custom software
� Phase transition � Standard or tailored force fields
� Anomalous behaviour of water � Academic or industrial users
� Protein folding � May be associated with

experimental projects

3. Development and validation � New free energy methods � Rapid, flexible prototyping software
of methods and force fields � Histogram reweighting � Automated force field

� Accelerated dynamics development tools
� General force fields that can � Mainly academic users

reproduce pV T and � Several methods required if
transport properties validating against many properties

D
at

a

1. Prediction of properties � High pressure, temperature � Robust methods and software
properties of materials � Accurate and transferable force fields

� Activity coefficients, Henry’s � Validated methods
Law constants, isotherms � Easy to use software

� Enthalpies of mixing � Database of force fields, properties
� Heat capacities � Industrial and some academic users

2. Test theories and models � Ideal absorbed solution � Standard force fields
� Stefan-Maxwell � Mainly academic,
� Regular solutions some industrial users
� SAFT � Specialized codes (wide range
� Critical scaling of phenomena)

3. Validation of difficult � Crystal structure refinement � Accurate force fields
experiments � STM, AFM studies � Industrial and academic users

� Complex mixtures � Specialized codes (wide range
� Extreme conditions of phenomena)

Table 1.3: Physical properties which can be calculated by molecular simulations sorted
by importance and relevance. Adopted from Maginn [56].

Im
p

or
ta

n
ce

h
ig

h

complementary direct advantage

� Vapour pressure � Gas solubility
� Boiling Point � Viscosity
� Phase equilibria � Liquid thermal conductivity
� Critical properties � Heat capacity
� Heat of vaporization � Henry’s constant

(dilute aqueous organics)

lo
w

� Density

molecular simulation relevance
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1.2 Force Fields

All simulations performed in this work are based on a framework made of equations and

parameters describing different interactions within single molecules as well as the influence

of other molecules. This framework which describes all interactions in a simulated system

is called a force field.

The empirical functional form of classical force fields, using fixed charges, was developed

in 1969 by Levitt and Lifson [57] and is used in nearly the same expression in todays

molecular force fields.

Epot(~r) = Ebond(~r) + Eangle(~r) + Etorsion(~r) + Eimproper(~r)︸ ︷︷ ︸
covalent interactions

+ Eelectrostatic(~r) + EvdW(~r)︸ ︷︷ ︸
non-covalent interactions

(1.1)

In equation 1.1 the potential energy function is shown with its individual contributions.

It includes the description of every atom in a molecule as a point in space with mass,

partial charge and van der Waals parameters. The interactions between those interaction

sites are defined by potential energy functions using the atomic coordinates ~r. Ebond,

Eangle, Etorsion and Eimproper are covalent terms or intramolecular interactions considering

covalent bonds, bond-angle bending, dihedral-angle torsion and improper dihedral-angle

bending. These interactions are occurring within a considered molecule. Eelectrostatic and

EvdW are so called non-covalent terms describing Coulomb (electrostatic) and van der

Waals interactions. Since explicit electrons are not part of this consideration, a system in

the electronic ground state is implied [58].

Equation 1.2 shows a more explicit form of equation 1.1 with formulated terms for each

interaction contribution [59, 60].
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Epot(~r) =
∑
bonds

1

2
kbij
(
rij − r0

ij

)2

︸ ︷︷ ︸
bonded interaction

+
∑

angles

1

2
kΘ
ijk

(
Θijk −Θ0

ijk

)2

︸ ︷︷ ︸
angle beding interaction

+
∑

prop. dih.

kφijkl(1 + cos(nijklφijkl − φ0
ijkl))︸ ︷︷ ︸

proper dihedral interaction

+
∑

imp. dih.

1

2
kξijkl

(
ξijkl − ξ0

ijkl

)2

︸ ︷︷ ︸
improper dihedral interaction

+
∑

pairs i,j

qiqj
4πε0︸ ︷︷ ︸

electrostatic interaction

+
∑

pairs i,j

4εij

[(
σij
rij

)n
−
(
σij
rij

)m]
︸ ︷︷ ︸

van der Waals interaction

(1.2)

In this equation the bonded interactions are represented as harmonic potential with a

force constant kbij, an equilibrium distance r0
ij and the actual distance between atom i and

atom j, rij. The angle bending interactions are also represented by a harmonic potential

with a force constant kΘ
ijk, an equilibrium angle Θ0

ijk and the actual angle included by

the atoms i, j and k, Θijk. Proper dihedral interactions are represented by a function

using a force constant kφijkl, a phase shift φ0
ijkl, a multiplicity nijkl and an actual torsional

angle φijkl. Improper dihedral interactions are instead represented as harmonic potential

with a force constant kξijkl, an equilibrium angle ξ0
ijkl and the actual torsional angle ξ0

ijkl.

Electrostatic interactions are represented by two partial charges qi and qj divided by the

dielectric constant in vacuum ε0 and π. Van der Waals interactions are represented by

Lennard-Jones or Mie-potentials with a potential energy parameter εij, an atom radius

parameter σij and the actual distance between the atoms i and j, rij.

In fact quantum mechanical calculations are the most precise method for describing in-

tramolecular interactions but in most cases only few molecules in vacuum or implicit

solvents are considered while the computational expenditure is comparable to molecular

simulations. Moreover, condensed phase thermodynamic properties are often not very

sensitive to the details of the covalent interactions. Equations of state and semi-empirical

approaches are popular tools for the prediction of less complex systems because they show

high accuracy together with fast calculations and thus very low computational costs. But

these methods also fail with increasing complexity of the solute molecules as it is shown

exemplary in chapter 3 where the results of the PC-SAFT equation of state are directly

compared to those of molecular simulations.
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This classical force fields include the assumption of fixed partial charges during the simu-

lation. The response to the electrostatic surrounding of the considered single atom is not

taken into account explicitly. This simplification arised in those days the force fields were

invented from insufficient computational capabilities accompanied by polarization effects

[61].

Since each term in equation 1.2 includes a sum over terms taking one to four atoms and

thus several parameters into account it is easily imaginable that a system of 1000 atoms

would lead to the definition of a multiple of 1000 parameters. Another simplification

included in the force fields to address this problem is the assumption of transferable force

field parameters which are fitted to experimental data or higher-level quantum-mechanical

(QM) calculations [58].

Despite these assumptions which are reducing the number of parameters drastically the

determination of force field parameters is still a strongly under determined problem. This

fact is leading to multiple parameter combinations which are all in the same quality con-

cerning the underlying objective function.

Although the developed fixed-charge force fields have been advanced over the past decades

and are able to give insights into (bio)-molecular processes which are not accessible by ex-

periments there are still recent research topics to improve and develop classical force fields.

Fixed-charge force fields can be improved by using anistropic approaches which delo-

cate the charge site from the van der Waals site to take charge distributions caused by

ionic pairs into account [58, 62–65]. Another option using fixed-charge force fields is the

representation of multivalent ions by multi-interaction sites to enhance the ion-water, ion-

nucleic acids or ion-protein interactions[66–69].

In most cases current force fields for small molecules in the condensed phase are param-

eterized against several thermodynamic quantities. However, the investigation of larger

biomolecules becomes possible due to the increasing computational power and the focus

on macroscopic characteristics and kinetic behaviour of those molecules is drastically in-

creasing in actual research projects. Working on such scientific questions requires a force

field which is able to predict kinetics and therefore should be validated against recent

experimental data. Todays possibility to perform molecular dynamic simulations in the

millisecond range offers the opportunity to calculate kinetics of molecular systems and

thus validate or even parameterize them in this working field [70–74].
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The problem with fitting force field parameters that multiple sets of parameters are ob-

tained all leading to the same error in the underlying objective function can be accounted

by using Bayesian methods [75–78]. Similar to other estimation methods the Bayesian

methods also do estimate a parameter set which fits best to the associated training set

but further more information about uncertainties or variabilities of all qualified parameter

sets are provided and can be used for further selections [79].

In most of the classical fixed-charge force fields specific atom types are used together

with a method called indirect perception. With this method atom types are defined

including identifiers which provide all information to parameterize a molecular system

by looking up the corresponding parameters, e.g. bond-streching, angle-bending, torsion

and Lennard-Jones, in parameter tables [80]. The chemical surrounding of the considered

atom is accounted by introducing different atom types for the same chemical element. This

procedure is often leading to many different atom types with mostly identical parameters

which results in confusing parameter tables including multiple identical parameters stored

for different atom types. Note that parameterization of new large molecules, such as

proteins or biomolecules, is often not possible in a systematic and consistent way and

needs human expertise to choose suitable atom types in specific cases.

A possible approach to counteract this challenge is called direct chemical perception de-

veloped by Mobley et al. [80] which is reducing the number of identical parameters

drastically. In this method the chemical surrounding of the considered atom is taken into

account and force field parameters are assigned due the neighbouring atoms. The nec-

essary information about the neighbouring atoms and thus the chemical surrounding are

provided by SMARTS patterns [81] written in the SMIRKS chemical query language [82]

which is a flexible programming language for the definition of molecular structures. The

resulting new force field format is called SMIRKS Native Open Force Field (SMIRNOFF)

with a corresponding minimalistic general force field named SMIRNOFF99Frosst [80]. A

promising possibility of this method is a flexible, systematic and consistent assignment of

force field parameters to large (bio)-molecules under the elimination of human choices.

Another option which may could improve the results of molecular simulations is to use

machine learning algorithms and thus change the functional form of the force field. The

underlying equations in classical force fields describing different atomistic interactions are

physically motivated. The situation is different if machine learning algorithms are used

to predict interaction energies or forces where no explicit functional form is specified.

The machine learning approach was already successfully used to compute pair interaction

energies in the same quality as the QM calculations which were used as training set [83,

84]. Also the application of these potentials to molecular dynamics simulations of relative

simple systems led to promising results [79, 84, 85].
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1.3 Validation

Molecular simulations whether molecular dynamics or Monte Carlo simulations are based

on a framework of mathematical expressions consisting of equations which are trying to

represent the physical behaviour of molecules in different conditions. In a case where the

physical world is simulated there are always approximations, compromises and uncertain-

ties no matter which methods are utilized [86–88]. With the software packages and the

hardware performance available today it is much easier to perform simulations and ob-

tain results compared to those days when molecular simulations were invented. Precisely

because it has become easier to produce data using molecular simulations it is of absolute

importance to make sure that results are valid and the used models are consistent and

implemented correctly [89, 90]. Additionally every simulation result is strongly depending

on the validity of the physical model and the corresponding assumptions made [91].

In this section a series of arising challenges setting up molecular simulations is presented

together with possible approaches to reduce errors and by that doubtful simulation results.

Not only deficiency in physical validity of the underlying model but also the treatment

of interactions and simulation parameters can lead to very different results. For example

the folding of biomolecules in reaction-field simulations are depending on the handling of

non-bonded interaction cut-offs [92] while the ordering of lipid bilayers as well as the area

per lipid is strongly affected by truncating the electrostatic interactions [93, 94]. It is as-

sumed that using the charge-group cut-off scheme together with a faulty buffer generating

pairlists is leading to simulation results promising a water flow through nanotubes [95].

As it can be seen simulation results are not only depending on the underlying physical

model but also on the parameter adjustment which is necessary to set up simulations. In

an attempt to reduce such misleading results, different validation approaches and meth-

ods at different stages of molecular simulations have been developed over the last years

ranging from correct implementation to error estimation of results as well as comparison

to experimental data.

Validating the molecular model includes to make sure the basic equations and connec-

tions are implemented correctly on a fundamental level. Because molecular simulations

are based on large software codes including about 100000 lines they are harbouring great

potential for errors. Studies estimate an error expectation rate between 2 and 7 errors in

1000 lines of professional and well maintained software code [96, 97], leading to a number

of errors between 200 and 1000 within a molecular simulation code. The estimated error

rate is increasing for codes written in small academic groups without good maintenance

and not provided to a broad range of users. Note that not every bug in the software has

immediately lead to an error in the results of the simulation and are thus hard to find.
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But those programming errors which are propagating through to simulation results can

be detected by automated tests. Most of those tests are focusing on the correctness of

code including the reproduction of reliable results to validate new versions before releas-

ing it [89]. A very extensive testing environment was presented by Merz and Shirts in

2018 which is additionally validating physical assumptions, kinetic and potential energy,

mean values and standard deviation, discontinuities in potentials and forces as well as

temperature and pressure control algorithms [98].

Even if the used simulation code is validated in a way mentioned above there are several

pitfalls which can cause strong influence on simulation results. It is noteworthy that also

experienced users of molecular simulation software are often trapped by making mistakes

mentioned below [34, 97, 99].

Since molecular simulations are sampling a part of a 3N - (MC) or 6N -dimensional (MD)

phase space of the given system, the simulation period is one component which can

strongly affect the obtained results. Because the convergence is depending on the system

composition and size there is no fixed rule how long simulations have to run for a suffi-

cient sampling of the phase space. For this reason determining the required number of

simulation steps is not a trivial decision [100, 101].

Directly connected to this issue is the choice of the equilibration period. Before generating

samples evaluated to simulation results it is necessary to equilibrate the molecular system

to compensate possible artifacts arised from setting up the system. Often observables like

potential or kinetic energy as well as restrained properties like temperature or pressure

are used to decide whether the system is equilibrated or not. It is important to make sure

that a possible non-physical behaviour, as it could occur during the equilibration, is not

included in the evaluated production samples.

Another aspect which should be considered setting up molecular simulations is the eval-

uation of interactions. Due to the infinitely computational costs necessary to evaluate

all interactions in a molecular system in entirety it is required to make simplifications

in order to reduce the computational effort. The cut-off for van der Waals interactions

as well as electrostatic interactions, corrections for interactions beyond this cut-of, the

selected cut-off scheme as well as the treatment of covalent bonds are parameters strongly

affecting the behaviour of molecular simulations [91, 97]. Note that the cut-off radii are

a parameter of the force field and thus are depending on the parameterization. That

means changing the value of the cut-off radius to a significant other value compared to

that used during the parameterization could lead to artifacts [91]. A classical approx-

imation to represent covalent bonds is the usage of rigid bonds. Due to the fact that
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high frequency bond vibrations are primarily in their ground state at ambient conditions

fixed bond lengths are an appropriate way for representation [102]. However, assuming

constant bond lengths between two atoms instead of classical harmonic oscillators can

lead to effects which are not physical because of the quantum nature of the bonds and

thus can affect the simulation results [103].

The van der Waals and electrostatic corrections accounting for interactions beyond the

cut-off radii are usually analytical expression to correct average values of multiple proper-

ties evaluated of from simulation. The configurations used for these evaluations however

are generated using truncated interactions schemes and thus using wrong forces. The uti-

lization of such evaluated properties to validate the molecular simulation is very limited

for this reason unless long-range corrections are applied in each step during the simulation

run [104].

The system size is another parameter which should be chosen with care. It may be obvious

to select a small system size in order to reduce computational effort, but the smaller the

system the stronger are the finite size effects and the stronger are the influence of the

selected boundary conditions [33].

Almost always periodic boundary conditions together with the nearest image conventions

are applied to molecular simulations. For this the simulated system is surrounded by

identical copies of itself pretending an infinitely large system. However, also this artificial

recurrence raises distortion effects [105, 106].

The last issue within the set up of molecular simulations is the choice of the ensemble.

Coupling a system to a temperature or pressure bath offers the opportunity to set ther-

modynamic boundary conditions and thus set a corresponding thermodynamic ensemble

[60]. Even though the selected thermodynamic ensemble should not affect the emerging

simulation results as a matter of fact it still makes a difference [107, 108]. To impose a

temperature or a pressure to a molecular system the four different methods are available,

stochastic, first-order weak-coupling, constraints or extended Lagrangian techniques. The

advantages and disadvantages of each method have been discussed by van Gunsteren and

Berendsen in 1990 [60].

It can easily be seen that apart from errors occurring in the software code there are several

settings and parameters which choice is affecting the behaviour of the molecular simu-

lation and thus is influencing the results. Even if the simulation was set up with great

care and the used methods were validated meticulously it is still necessary to validate

the methods of evaluating the simulation results. Often the underlying trajectories are

correct within the framework of the force field assumptions but the evaluation method

provides misleading results. Since the trajectories of molecular simulations are correlated
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to a certain amount and correlated data do not contain completely new information it

is necessary to only use decorelated data to obtain meaningful results [109–111]. The

accuracy of the evaluated properties are often stated with the statistical error of the cor-

responding time series or with an error obtained using the block averaging method [112].

Since there is no best principle to calculate errors the only important thing is to provide

a description how properties and errors are calculated from trajectories as exactly as pos-

sible.

At the end in most cases simulation results are compared with experimental data and often

such comparisons are used to validate the employed simulation method. In such a case it

is important that the force field is evaluated against as many observables, properties and

different molecules as possible. The validation properties should be distributed over the

categories thermodynamic properties such as heat of vaporization, density or free energy

of solvation, dielectric properties like dielectric permittivity, structural properties such as

radial distribution functions or degree of hydrogen bonding and dynamic properties like

diffusion or viscosity.

Note that not only simulation results are afflicted by uncertainties but also experimental

data are. Collecting experimental data including error estimations from the literature can

be strenuous because often there are no estimations given or it is not clearly stated how the

given errors are obtained. Alternatively it is possible to use mean values and deviations

for a property of interest from different sources. Thereby high deviations between different

sources can occur leading to high standard deviations [113]. For comparing simulation

and experimental data it is therefore not only important to validate the simulation part

but also take care of the accuracy of the experimental data.

1.4 Purpose of this Work

With regard to table 1.1 the work presented in chapter 2 aims at explaining the association

behaviour of supramolecular complexes in mixed solvent environments. Chapter 3 is

concerned with property prediction for mixtures of the deep eutectic solvent glyceline

with water using robust methods and software. The chapters 4 and 5 are concerned

with both, development of force fields as well as property prediction using n-alcohols as

example. In the following a brief introduction into the three topics is provided and the

main research questions are highlighted.
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1.4.1 Supramolecular Complexes

In chapter 2 a system known for constructing supramolecular complexes in aqueous solu-

tions based on perylene bisimide (PBI) dyes is investigated.

Supramolecular complexes formed by amphiphilic macromolecules especially in aqueous

solutions provide a broad range of applications and new opportunities in the field of

advanced materials and nanotechnology [114–119]. For this reason especially experimen-

tally driven studies using ultraviolet-visible (UV-vis), fluorescence and nuclear magnetic

resonance (NMR) spectroscopy were carried out to understand dye-dye interactions and

the impact of single molecules on larger aggregates held together by π-stacking [120].

Commonly aromatic π-π interactions [121–123] are the most prominent non-covalent in-

teractions forming supramolecular complexes and thus have a high impact on structure

and macroscopic properties of such assemblies. While Syamakumari et al. established

the first self-assembled PBI dimer [124], thermodynamics of self-assembly were studies

less intensive and mainly with the focus on Gibbs energy of aggregation [125–127] but

not on enthalpic or entropic contributions. However experimental results indicate that

there is a complex connection between solvent composition and the thermodynamic sig-

nature of the monomeric PBI molecule [125]. It is also known that shape and strength

of the supramolecular complex and thus the macroscopic behaviour is strongly depending

on solvent, solvent composition, temperature and the structure of the single molecule

[128]. With this, the variety of possibilities to influence the behaviour of the supramolec-

ular complexes are infinitely. Atomistic molecular simulations in explicit solvent are a

promising tool for designing monomeric structures for individual applications with the

advantage that simulations offer information on energetic processes on time and length

scales which are experimentally not accessible. Moreover it is easy to simulate precise

aggregate conditions such as dimers, trimers or higher oligomers which is still challenging

in experimental works [120]. Recent studies on complexation provide a theoretical basis

which can be used to describe the thermodynamic signature of complex systems [129–131].

The basic PBI dye cores can be substituted at different positions and in different ways to

optimize or at least modify the single molecules for different applications. A schematic

structure of a PBI molecule with possible positions for substituents are shown in figure

1.1. Substituents placed at the ortho-position can influence the optical and electronic

properties while the planarity of the PBI core is not affected [132]. By modifying these

substituents applications in organic photovoltaic (OPV) devices [133–139], field-effect

transistors [140], light emitting diodes [141–145], nonlinear optical materials [146–150]

or light harvesting in general [151, 152] are becoming feasible. In addition to the struc-

ture of the single PBI molecules also the organization of assimilated components on the

nanometer scale show a significant influence on the optical attributes [153]. The influence
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Figure 1.1: Schematic structure of a PBI core with tunable functional sites.

of temperature, solvent and solvent composition on optical attributes of π-stacking PBI

molecules is part of recent studies [124, 128, 154–158].

Modifications in the bay-region lead to a twist of the two naphthalene rings and thus to

changes in the spectroscopy properties. Substituents at this position can also influence

the redshift drastically in the absorption maximum with an increased Stokes shift.

The production of hydrogels based on supramolecular complexes made of PBI molecules

for applications in drug delivery [159], tissue engineering [160] or biosensing [161, 162]

often takes place in organic solvents while luminescent hydrogels are produced with

melamine in aqueous solution [163]. For this reason the solubility of PBI molecules in

various solvents is an important aspect which can be tuned by selective rest groups sub-

stituted at the imide-position. The fact that optical or electronic properties are hardly

affected by substituents at the imide-position is another advantage of supramolecular

complexes based on PBI molecules [164].

The solvent plays another important role regarding the formation and behaviour of

supramolecular complexes and can be adjusted for specific applications of self-assembled

components [165]. Changing the polarity of solvents e.g. leads to various nanostructures

of amphiphilic PBI molecules and also to changing surface properties [166].

The work presented in chapter 2 includes functionalized PBI molecules where the rest

(shown as R in figure 1.1) is -CH2COO−. Until now only model systems of supramolecular

complexes in absence of electrostatic interactions have been studied due to their binding

affinity and the corresponding thermodynamics. The investigation of a real supramolecu-

lar system including a detailed thermodynamic analysis of the monomer molecules as well
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as the initial binding process of dimers is discussed in chapter 2. The decomposition of the

binding free energy into entropic and enthalpic contributions as well as the discrimination

of the potential of mean force into solute-solvent and solvent-solvent interactions offer

novel insights into molecular processes on a level which is experimentally not accessible.

The experimentally observed behaviour of the supramolecular complex in different sol-

vents was reproduced by the simulations including atomistic information giving a deeper

understanding of the procedures.

Using a model, based on a perturbation theory of first order, allows to predict the tempera-

ture behaviour of the binding free energy profile requiring only few explicit MD simulation

data. This method is reducing the computational costs and provides the opportunity to

investigate a coarse-grained potential for aspherical molecules for studying the behaviour

of supramolecular complexes at realistic solute concentrations.

1.4.2 Deep Eutectic Solvents

Ionic liquids (IL) haven been extensively investigated in the past 20 years and are applied

in fields of catalytic processes [167–169], material science [170, 171], electrochemistry [172,

173], extraction solvents [174, 175] and biomedical applications [176]. First investigation

on IL have concentrated on mixing metal salts, especially zinc, aluminium, tin and iron

chlorides with quaternary ammonium salts [177]. The great interest on IL is due to their

physicochemical properties, like density, viscosity, hydrophilicity which can be modified

and optimized for specific uses by different combinations of cations and anions [178, 179].

However, IL have the disadvantage that they are poor biodegradable, environmentally

harmful and not sustainable [180]. A promising alternative to ILs are deep eutectic sol-

vents (DES) which produce no waste within the process, do not need to be purified and

are cheaper in preparation [181]. DES have been seriously investigated since the begin-

ning of this century.

Only a few manuscripts about eutectic mixtures have been reported in the 1990s. Gill

and Vulfson used eutectic mixtures as substrates for enzymatic reactions in 1994 [182,

183]. Four years later Eberdinger et al. worked on enzymatic synthesis under the usage of

heterogeneous eutectic mixtures with a mass recovery of up to 80 %. This work strongly

affected novel industrial developments especially on large systems [184]. A work published

in 1995 in Nature uses eutectic mixtures for emulsion crystallization as a cheaper alter-

native for separating and purifying molecular mixtures [185]. The first time developing

drug delivery devices, especially for transdermal medication was introduced by Stott et

al. in 1998 [186].
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The expression deep eutectic solvents was first introduced by Andrew Abbott [187, 188]

who proposed the concept of combining two solid organic compounds to obtain a fluid

mixture possessing a melting temperature far below the melting temperatures of the indi-

vidual parts [188–191]. DES are made of mixtures of two or more Lewis acids and bases

which act as hydrogen bond acceptor (HBA) or Brønsted-Lowry acids and bases which act

as hydrogen bond donor (HBD). Both components may include several kinds of anionic

and or cationic species [189]. In contrast ILs are commonly made of one discrete anion

compound and a discrete cation compound while DES are normally prepared by combin-

ing non-ionic ingredients like molecular components or salts [177]. The proportion of the

hydrogen bond donor to hydrogen bond acceptor is guessed to define the melting point of

the deep eutectic mixture. This assumption is evidenced by the fact that increased hydro-

gen bond interactions with anionic groups lead to decreased interactions between anionic

and cationic groups. This interaction reduction between anionic and cationic groups as

well as the charge delocalization arising from the hydrogen bonds between HBA and HBD

results in a low lattice energy and thus in a reduced melting point [192–194].

The principal behaviour of DES is shown in figure 1.2. It can be seen that the melting

temperatures of the pure components (Tm,A and Tm,B) are much higher than the melting

point of the mixture at a certain composition (Tm,DES(xB)). Above the melting tem-

peratures of the pure components the system is a homogenous liquid while below these

temperatures a solid system is present. The two miscibility gaps contain solid as well as

liquid phases and are marked with S + L.

xBA B

T p = const.

solid

S + L
S + L

liquid
Tm,A

Tm,B

Tm,DES

Figure 1.2: Schematic phase diagram of the melting temperature Tm of a DES system.

A subgroup of DES are natural deep eutectic solvents (NADES) which are in contrast to

DES exclusively based on natural components, especially metabolites and bio-renewable

ingredients like organic acids, sugars, sugar alcohols or amino acids [195, 196]. Although
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the physical characteristics of DES and NADES compared to ILs are very similar their

chemical properties offer applications in very different fields. DES as well as NADES have

been investigated and developed for several fields of applications established mainly in

biotechnology [197–200], organic synthesis [189, 201, 202], electrochemistry [203], biodiesel

preparation [204] and polymer synthesis [194, 205]. In these applications DES are replac-

ing volatile and hazardous organic solvents [189, 192, 206–208]. DES also have a low

saturation vapor pressure, remain as liquid in biocatalytic processes due to their low

melting temperature and are slightly or not toxic. Additionally DES shown a good sol-

ubility for various materials including drugs, metal oxides and carbon dioxide [187, 188,

209, 210]. Furthermore pharmaceutical ingredients, like phenyl acetic acid, acetyl salicylic

acid and benzoic acid are efficiently dissoluted in DES due to the included hydrogen bond

acceptor [211]. DNA structures are better soluble and less degraded if solved in DES

compared to IL [211–213].

The thermophysical properties of DES like density, self-diffusion coefficient, surface ten-

sion, viscosity and thermal conductivity are strongly depending on their structure and

thereby on the starting ingredients [188–190, 193, 214, 215]. The work of Andrew Abbot

et al. showed that DES including choline chloride as ammonium salt lead to the lowest

melting point (between 23 ◦C and 25 ◦C) [190].

Compared to IL or other molecular solvents, DES commonly show greater viscosities and

lower thermal conductivities [189]. A very strong hydrogen-bonding network between the

different components within a DES ensure that the mobility of the molecules is heavily

restricted which is leading to such high viscosities. This impact of hydrogen bonds on

a specific process is often an aspect of interest [216]. While hydrogen bonds are easy

extracted from simulation results in a post processing method, great effort is needed in

experiments to obtain less exact results. Alternative theoretical methods are often faster

but also have limitations due to the shape of molecules or solvent behaviour. Other in-

teractions like van der Waals or electrostatic interactions are also very distinctive in DES

and could contribute to this behaviour [177]. While the high viscosities of pure DES are

leading to a strongly reduced mass transfer what is often preventing their use in industrial

applications, the addition of water or the change of the start ingredients is a degree of

freedom to customize DES for specific uses and surmount this obstacle [208, 217].

The surface tension of DES is also higher compared to other conventional solvents. In

most cases the surface tension of DES is in the same order of magnitude with molten salts

and imidazolium-based IL [218].

35



As it can be seen the field of applications of DES is wide and there are numerous degrees

of freedom for optimizing solvents to specific uses. Especially the multiple combinations

of starting ingredients forming DES is one degree of freedom which is evident for the

characteristics of the resulting DES. In this context molecular dynamics simulations are

a promising tool for a rational design of DES.

Since the framework for predicting thermophysical properties of DES using molecular dy-

namics simulations is established and works well it is conceivable that starting ingredients

and solvent composition of DES are determined, with respect to the conditions of specific

applications, by predictions obtained from molecular dynamics simulations. The most

noted and best examined DES contains choline chloride with urea, glycerol or ethylene

glycol, mostly in a molar ratio of 1:2.

In chapter 3 various thermophysical properties of a DES based on choline chloride, glycerol

and water are predicted with the aim to validate the used force fields on their usability

for predictions of such systems. This work is among the first works in this field focusing

on the solvent optimization including mixtures of DES and water. Further more it was

shown that force fields calibrated to thermodynamic properties excluding water as present

component are able to predict the behaviour of mixtures including water. An intensive

comparison between molecular simulations, advanced equations of state (PC-SAFT) and

experimental data is shown for a broad range of thermodynamic properties like density,

diffusion, viscosity and activity coefficients of water.

1.4.3 Transferable Force Fields for n-Alcohols

The Mie potential was first introduced by Gustav Mie in 1903 when he was working on

the kinetic theory of single atomic bodies. Today this work is the fundamental basis for

many interaction theories [219]. Mie suspected that the attractive as well as the repulsive

interactions between two particles are inversely proportional to the distance ρ between

those particles. His first sketch of a potential energy was

φ =
b

ρn
− a

ρm
(1.3)

where the term including a constitutes the attractive part and the term including b rep-

resents the repulsive part of the interaction potential.

While Mie has only taken single atomic gases into account, Grüneisen [220] extended this

first draft of an interaction potential (equation 1.3) in 1912 to solid phases which lead to

an equation which is used in the same style until today (equation 1.4).
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)m]
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It is noteworthy that at this time both authors were not interested in the origin of the

forces. The differentiation of the van der Waals interactions into Pauli repulsion [221] and

London dispersion forces [222] were first introduced in 1925 and 1930, respectively. Fürth

first published experimental results for the coefficients m and n in 1944 [223].

A today more famous form of the Mie potential was introduced by Sir John Edward

Lennard-Jones in 1924 [224–226] in which the exponents m and n are set to fixed values

of 12 and 6 (equation 1.5).

φ = 4ε

[(σ
r

)12

−
(σ
r

)6
]

(1.5)

This description of pair interactions from Lennard-Jones was again modified by Richard

A. Buckingham in 1938 [227] which is shown in equation 1.6.

φ = A exp (−Br)− C

r6
(1.6)

which is simultaneously a special case of the Lennard-Jones-(exp, 6) potential shown in

equation 1.7 [228].

φ =
ε

1− 6
α

〈
6

α
exp

[
α
(

1− r

σ

)]
−
(σ
r

)6
〉

(1.7)

Nowadays almost exclusively Lennard-Jones (LJ) potentials are used in molecular sim-

ulations, equations of state or statistical mechanics in general to describe the van der

Waals interactions within the considered system. Since most properties considered in the

specific systems are described in a good manner LJ potentials are used together with

force fields based on this potential function. Another point is that force field optimiza-

tion using the LJ potential is easier because the parameters m and n are not part of the

objective function and thus the degrees of freedom are reduced. However in some cases

the LJ potential shows weaknesses as it can be seen in chapter 4 and 5 where the force

field based on the LJ potential function leads to systematical deviations in liquid density

and saturation vapour pressure while the force field based on the Mie potential describes

these properties in high agreement to experimental data.

Since 2015 a force field based on the Mie potential partly using anisotropic modifications

is developed at the Institute of Thermodynamics and Thermal Process Engineering. First

parameters for different components of n-alkanes and n-olefins have been optimized [229],

followed by ethers [230], aldehydes, ketones, small cyclic alkanes [231, 232] as well as for

mixtures of n-alkanes with nitrogen [233].

37



Alcohols have not been considered so far, although they are an important group of sub-

stances with various applications in scientific, medical and commercial fields. Their at-

tribute of associative liquids leads to the usage as excellent solvents for chemical reactions

as well as promising alternative energy sources [234]. For the reasons mentioned above a

force field describing properties of the group of alcohols very precisely is necessary.

Therefore a force field for n-alcohols between 1-propanol and 1-octanol is developed and

validated in chapter 4 and 5 of this thesis.

The problem of force field parameter degeneracy is a well known challenge when devel-

oping force fields. Due to the high correlation between the parameters the evaluation

of static thermodynamic properties, like vapour pressure or liquid density, do not offer

sufficient information for the determination of one best parameter set. Instead a selec-

tion of parameter combinations all leading to the same error in the objective function

is obtained. With the inclusion of dynamic properties, such as viscosity or self-diffusion

coefficients, into the parameter optimization the problem of parameter degeneracy was

hoped to be eliminated. Until now the approach to include dynamic properties in the

force field parameterization was less studied and is thus examined in this work. How-

ever, it was observed that parameter degeneracy is still present for static as well as for

dynamic properties even if several molecules within the homologous series of n-alcohols

are included in the optimization process.
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Chapter 2

Thermodynamic Characterization of

the Dimerization of an Anionic

Perylene Bisimide Dye Using

Molecular Simulation

The content of this chapter is a literal quote of the publication

J. Baz and N. Hansen, The Journal of Physical Chemistry C, 123, 8027-8036, 2019

Abstract

The thermodynamic signature of dimerization of an anionic di(glycyl) perylene bisimide

derivative in aqueous solution is characterized using molecular dynamics simulations in

explicit solvent, with the aim to unravel the impact of temperature, pressure, and solvent

composition on the free energy of aggregation and its enthalpic and entropic contributions.

The change in free energy varies only weakly with temperature independent of whether the

solvent consists of pure water, an aqueous ethanol/water mixture or an aqueous solution

of sodium chloride, respectively. In agreement with experimental findings, the addition

of ethanol weakens the interactions between the solute molecules while the addition of

sodium chloride leads to more stable aggregates. The temperature dependence of the

potential of mean force can be accurately described using a simple expression derived

from thermodynamic perturbation theory of first order. Molecular driving forces are

discussed in terms of solute-solute and solute-solvent interactions.
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2.1 Introduction

Self-assembly processes involving amphiphilic macromolecules provide unique and new

opportunities for designing advanced materials for emerging applications in nanotechnol-

ogy. The delicate balance of intermolecular interactions between the different hydrophobic

and hydrophilic domains causes a spatial organization into ordered morphologies on the

nanoscale with the production of interesting features relevant in numerous applications

in the area of e.g. separation processes, electronics and drug delivery [235–240]. Bola

amphiphiles refer to a class of molecules in which two hydrophilic groups are connected to

the ends of a hydrophobic domain. They are found to aggregate into spheres, small and

large cylinders, small and large discs and vesicles [241, 242]. Perylene bisimide derivatives

(PBIs) emerged as a prototype class of such molecules for the elucidation of the transi-

tion from monomeric to bulk materials via the supramolecular state. Their self-assembly

into complex structures is determined by size and shape of the monomeric unit, system

composition and thermodynamic boundary conditions [243, 244]. Consequently, much

attention was given to fundamental studies focussing on NMR, UV/Vis, and fluorescence

spectroscopy in order to get insight into the dye-dye interactions and how these interac-

tions impact the properties of larger π-π stacked aggregates [120, 245]. In contrast the

thermodynamics of self-assembly of PBIs was studied less extensive and, until recently

[125] mainly in terms of the free energy of aggregation [126, 127] but hardly with the focus

on the enthalpic and entropic contributions. Recent experimental work in this direction

points towards a complex dependence of the thermodynamic signature on the monomeric

architecture and solvent composition [125, 246]. The interplay of attraction (e.g. through

electrostatic interactions) and repulsion (e.g. between water and hydrophobic groups)

of the different parts of the molecule with the surrounding solvent leads to an associa-

tion that can be either entropy-driven or enthalpy-driven depending on the nature of the

molecules and the solvent [165, 247–251]. Given this diversity of factors which influence

the self-assembly and their complex interplay, studies on simplified model systems pro-

vide an important guidance for the design of monomeric building blocks [252] whereas a

molecular-level understanding of the driving forces for the concrete system under study is

considered to be an important step to understand the onset of the self-assembly process.

To gain such understanding molecular simulations are a promising approach [253]. Such

simulations are complementary to experimental studies because they provide information

at a level of spatial, temporal and energetic resolution that is experimentally elusive [254].

The theoretical framework needed to unravel the thermodynamic signature of complex-

ation is well developed [129–131] and relies on the calculation of the potential of mean

force as function of the intermolecular distance to obtain the free enthalpy of association

and on long unbiased molecular dynamics simulations of the associated and dissociated
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Figure 2.1: A typical dimer configuration of the investigated di(glycyl) derivative of
perylene-3,4,9,10-tetracarboxylic acid bisimide (referred to as PBI derivative in the present
work) along with intermolecular coordinates used to characterize the configurational vari-
ability. Color codes: oxygen (red), nitrogen (blue), carbon (cyan), hydrogen (white).

states to obtain the association enthalpy.

In the present work the core-unsubstituted anionic di(glycyl) PBI derivative shown in

figure 2.1 was investigated. Previous experimental work has shown by using UV/Vis

absorption and fluorescence spectroscopy that a monomer-dimer equilibrium in alkaline

aqueous solution exists with an association constant of K = 1.0 ·107 M−1 at 24.0 ◦C [255].

The spectroscopic measurements were interpreted in terms of exciton theory for parallel

oriented sandwich-type dimer. A considerable salt (NaCl) effect on the aggregation was

observed (increase of aggregation strength) which was discussed in terms of counterion

shielding of the electrostatic repulsion between the negatively charged PBI molecules. In

addition, a considerable effect of ethanol on the aggregation was observed (decrease of

aggregation strength) and discussed in terms of preferential binding of ethanol to the

hydrophobic parts of the PBI molecules and a depletion of water around them.

Here, we explore the feasibility of describing the thermodynamics of PBI self-assembly us-

ing a classical force field representation of the constituents. The influence of temperature,

pressure and solvent composition on the dimerization is investigated and issues regarding

the comparison to experimental data are discussed.

2.2 Computational Details

2.2.1 Force Field

Lennard-Jones parameters and bonded interaction terms were taken from the GROMOS

54A7 biomolecular force field [256]. The atomic partial charges were obtained from the

Automated Topology Builder (ATB) [257] followed by some manual adjustment in order
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Table 2.1: Different solvent compositions of all simulated systems in this work.

System conc.a NPBI NK+ NH2O NNa+ NCl− NEtOH 〈Lbox〉b

WM - 1 2 4000 0 0 0 4.9777
WD - 2 4 8000 0 0 0 6.2674
WUS - 2 4 7475 0 0 0 6.1295

E1M 25 1 2 1673 0 0 129 3.9896
E1D 25 2 4 3346 0 0 258 5.0261
E1US 25 2 4 6938 0 0 537 6.4063

E2M 50 1 2 1561 0 0 242 4.1336
E2D 50 2 4 3122 0 0 484 5.2078
E2US 50 2 4 6473 0 0 1002 6.6221

S1M 0.5 1 2 2477 23 23 0 4.2533
S1D 0.5 2 4 4954 46 46 0 5.3588
S1US 0.5 2 4 7406 69 69 0 6.1241

S2M
c 1.0 1 2 2453 47 47 0 4.2510

S2D
c 1.0 2 4 4906 94 94 0 5.3556

S2US
c 1.0 2 4 7334 141 141 0 6.1252

a The composition is given in vol% for the ethanol/water system and in molar concentra-
tion (mol l−1) for the aqueous NaCl solution. b The simulation box length is given in nm.
c For the S2 system additional simulations with twice the amount of solvent and sodium
chloride were conducted.

to ensure that the distribution of atomic partial charges reflects the symmetry of the

molecule. For a small set of building blocks occurring in the PBI entity (i.e. benzene,

pyridine, and 2,5-dimethylpyridine) the force field was validated based on a comparison

between calculated and experimental liquid phase properties [258]. A full specification of

the force field parameters used to model the PBI molecule is provided in the Supporting

Information of this article.

2.2.2 Simulated Systems

MD simulations of a single monomer (M) or a single dimer (D) were performed for 1µs

at constant pressure and temperature, either in pure SPC [259] water (W), in a binary

ethanol-water mixture (E) or an aqueous NaCl solution (S). In addition umbrella sampling

simulations were performed at all compositions. Table 2.1 specifies the compositions of

all systems studied in the present work. The negative net charge of -2e of the PBI

molecule was compensated by potassium ions [260]. Simulations at ambient pressure

were conducted at temperatures of 273.15, 285.15, 293.15, 298.15, 310.15, 323.15, 335.15,

348.15 and 360.15 K. Simulations at elevated pressures of 10 and 100 bar were only

performed at 298.15 K.
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2.2.3 Simulation Parameters

All simulations were performed under minimum image periodic boundary conditions based

on cubic computational boxes using the GROMACS 5.1.4 program package [261–263]

compiled in single precision and patched to the free-energy library PLUMED 2.3.0 [264],

which was used to control the umbrella sampling simulations. Equations of motion were

integrated using the leap frog scheme [265] with a time step of 2 fs. For all systems an

energy minimization, followed by a constant-volume equilibration simulation of 1 ns at

298.15 K and a successive constant-pressure equilibration of 1 ns at the desired target

temperature were conducted prior to the actual production simulation. All bond lengths

were kept fixed using either SETTLE [266] (for water) or LINCS [267, 268] (for the

solute and ethanol) with an order of 4. The number of iterations to correct for rotational

lengthening in LINCS was set to 2. The temperature was maintained close to its reference

value by application of the velocity-rescale thermostat [269], with a coupling constant of

τT = 0.2 ps. Solute and solvent were separately coupled to the heat bath. The pressure was

set close to its reference value using the Parrinello-Rahman barostat [270, 271] by isotropic

coupling with a coupling constant of τp = 2.0 ps and an isothermal compressibility of κT =

4.591× 10−5 bar−1. Short-range electrostatic and Lennard-Jones interactions were treated

with a Verlet-buffered neighbor list [272] with potentials shifted to zero at the cut-off of

1.4 nm. Analytical dispersion corrections were not included. Long-range electrostatics

was treated by the smooth particle-mesh Ewald (PME) summation [273, 274] with a

PME-order of 4.

Umbrella sampling [275] (US) simulations were performed using the distance between the

centers of mass (COM) of the two monomer molecules as reaction coordinate. A harmonic

umbrella potential with a force constant of 500 kJ mol−1 nm−2 that acts on the deviation

of the reaction coordinate from the reference position of the respective umbrella window

was applied. At each of the 11 equidistant windows, placed in the range from 0.3 nm

to 2.0 nm along the reaction coordinate, 10 independent US simulations were performed,

each lasting for 10 ns.

2.2.4 Trajectory Analysis

Free energy profiles, ∆Graw(r, T ), as well as the corresponding error estimations were ob-

tained using the Multistate Bennett Acceptance Ratio (MBAR) method with a bin width

of 0.034 nm (50 bins) using a freely available python implementation [276]. Uncertainties

equal one standard deviation and are obtained using the weighted asymptotic covariance

matrix [277]. The free energy of dimerization was then calculated by [278]
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∆G(T ) = −RT ln

4π (r3
u − r3

b)
∫ rb

0
exp

(
−∆Graw(r,T )

RT

)
dr

3V 0
∫ ru
rb

exp
(
−∆Graw(r,T )

RT

)
dr

 (2.1)

where ru is the upper integration limit (flat region of the potential of mean force) and rb

is the distance separating the bound complex from two individual monomer molecules.

The standard state volume of 1.661 nm3 is denoted by V 0, R is the ideal gas constant and

T the absolute temperature. Uncertainties for free energies equal a confidence intervall of

95 % and are obtained using bootstrapping with a number of bootstrap samples of 500.

Note that the choice of rb involves a certain level of arbitrariness [129] as discussed below.

The enthalpy of complex formation was calculated from the difference of the total poten-

tial energy of a computational box containing the solvated complex and twice the total

potential energy of the computational box containing the solvated monomer in half the

amount of solvent molecules [279],

∆H(T ) ≈ ∆U(T ) = 〈Udimer, 2N(T )〉 − 2 〈Umonomer, N(T )〉 (2.2)

Using the Gibbs equation the entropy −T∆S was then obtained from

−T∆S(T ) = ∆G(T )−∆H(T ) (2.3)

2.2.5 Modeling the Temperature Dependence of the Potential

of Mean Force

It was shown recently that by using thermodynamic perturbation theory [280, 281] of first

order for a Lennard-Jones system, a simple expression for the temperature dependence of

the potential of mean force can be obtained that does not require an assumption about

the actual decomposition of the target potential into the reference and perturbative part

[282]. The potential of mean force ∆GPMF(r, T ) which is obtained from the raw free energy

profile ∆Graw(r, T ) by adding the Jacobian correction 2RT ln(r) [283] can be expressed

as

∆GPMF(r, T ) = a(r)RT + b(r) (2.4)

where a(r) and b(r) can be calculated directly from simulations at two different temper-

atures

a(r) =
∆GPMF(r, T2)−∆GPMF(r, T1)

R(T2 − T1)
(2.5)
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Figure 2.2: (a) Time series and distribution of the center-of-mass distance for a PBI dimer
at 298.15 K in pure water. Maximum and minimum values are 0.82 nm and 0.33 nm, the
mean value is 0.44 nm. (b) Time series and distribution of the torsional angle Ω of a dimer
system at 298.15 K in pure water.

b(r) =
T1∆GPMF(r, T2)− T2∆GPMF(r, T1)

T1 − T2

(2.6)

Although developed and tested on a system involving only Lennard-Jones interactions

the description should also hold for a system possessing electrostatic interactions since a

perturbation expansion in a neutral system is zero in first order because of cancellation

of the orientational averages [284].

2.3 Results and Discussion

The dimerization of the PBI derivative was studied at different temperatures, pressures

and solvent environments to obtain a molecular interpretation of its thermodynamic driv-

ing force. First, the employed analysis is explained in detail for the case of pure water.

Second the effect of changing the solvent environment is discussed for ethanol/water mix-

tures and aqueous NaCl solutions.

2.3.1 Dimerization in Pure Water

The time series of the COM-COM distance in the complexed state at 298.15 K is shown

in figure 2.2a for a 1µs simulation along with the corresponding distribution. Figure 2.2b

shows the time series and distribution of the relative orientation of the two plate-like

PBI molecules. An Ω-angle of 0° corresponds to a parallel oriented sandwich-type dimer.

The most likely configuration is slightly skewed with Ω ≈ 14◦. While the complex shows

high mobility it remains stable in the time frame of the simulation. The largest COM-

COM distance sampled amounts to 0.82 nm. Several transitions beyond 90° into the

symmetrically equivalent configuration are observed for the Ω-angle.

When being in the complexed state and close to parallel the terminal CH2COO− groups
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Figure 2.3: Distribution function g(z) of water oxygen atoms. Water molecules that are
located in a cylinder with radius 0.1 nm positioned at the center of mass of the PBI
molecule and oriented perpendicular to the surface towards the solvent were considered
in the calculation of g(z). The two distribution functions obtained for each PBI molecule
(see figure S3) in the complexed state were averaged.

point away from each other as indicated in figure 2.1. The other state becomes populated

if the configuration becomes more skewed. The rotation around the dihedral angle ω is

not affected by the complex formation.

The normalized density profiles g(z) of water perpendicular to the hydrophobic part of

the molecular surface is shown in figure 2.3 and displays a typical layer structure with

two pronounced maxima and a third one of weaker magnitude which has been observed in

several simulation studies on solid-liquid interphases (hydrophobic and hydrophilic ones)

before [285–287].

Figure 2.4 shows the potentials of mean force in the temperature range from 273.15 K to

360.15 K.

The well depths slightly change with temperature from −60 kJ mol−1 at 273.15 K to

−55 kJ mol−1 at 360.15 K. The position of the minimum at around 0.4 nm is hardly

temperature dependent. The free enthalpy of binding or the corresponding equilibrium

constant can be obtained from integration according to equation 2.1. However, the nu-

merical result will somewhat depend on the definition of the distance rb separating the

complexed state from the two individual monomer states [129]. This definition of the

two states is not uniquely defined and may depend also on the type of experimental data

to compare with because spectroscopic signals of different methods may show a different

sensitivity to the separation distance.

Figure 2.5 shows that for distances larger than 1 nm the binding free enthalpy becomes
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Figure 2.4: Potential of mean force as function of the center-of-mass separation for differ-
ent temperatures in pure water. Errors are within the line width and correspond to one
standard deviation.

essentially distance independent as expected from equation 2.1. However, a reasonable

choice of rb could also be based on the maximum distance sampled in a long unbiased

MD simulation.

For the maximum distance of 0.82 nm a binding free enthalpy of −45 kJ mol−1 is obtained

compared to the maximum of −53 kJ mol−1 when integrating towards the flat region of

the PMF. However, since the focus of the present work is an analysis of the thermody-

namic signature of the dimerization process and not to obtain quantitative agreement

with experiment an upper bound of 1.4 nm has been used for all cases, corresponding to

the cut-off radius of the short range interactions.

Figure 2.6 shows the temperature dependence of the thermodynamic functions ∆G, ∆H

and −T∆S. While the free enthalpy is hardly temperature dependent the enthalpic and

entropic components show stronger dependencies, which compensate each other. The

slopes of the enthalpic and entropic components computed in the present work have the

same sign as in a purely hydrophobic model system consisting of two disc-like plates of

2.1 nm diameter composed of Lennard-Jones spheres [288], i.e. the association enthalpy

becomes stronger at elevated temperatures, while being smaller in magnitude. This ob-

servation is consistent with the explanation for the sign of the slope of ∆H/∆T proposed

previously [288]. With increasing temperature the ability of water molecules at the inter-

face of a hydrophobic solute molecule to maintain their hydrogen bond network decreases.

For the amphiphilic PBI molecules studied here this effect is also present but less pro-

nounced. A hydrogen bond analysis carried out at 278.15 K and 360.15 K showed an

increase in the total number of hydrogen bonds that are formed during complexation rel-

47



0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
rb / nm

55

50

45

40

35

30

25

20

G
 / 

kJ
 m

ol
1

Figure 2.5: Free enthalpy of association as function of the radius of integration rb (see
equation 2.1) at 298.15 K.

ative to the dissociated state of one and two hydrogen bonds for the lower and the higher

temperature, respectively, compared to five and nine in the study of Zangi and Berne[288].

These results are in line with other studies of amphiphilic molecules that show a change

in driving force when going from pure hydrophobic to amphiphilic monomers [289, 290].

To evaluate the thermodynamic consistency of the obtained results the van’t Hoff equation(
∂ (ln(K))

∂T

)
p

=
∆H

RT 2
(2.7)

was considered, where K = exp(−∆G/RT ) is the association constant and ∆H was

assumed to be linearly dependent on temperature, i.e. ∆H = α + βT ,[291, 292] leading

to

ln(K(T )) = − α

RT
+
β

R
ln(T ) + C (2.8)

where C is an integration constant.

Figure 2.7 displays the association constants calculated from simulation as function of the

inverse temperature by filled black symbols. When fitting equation 2.8 to the simulated

data using all three parameters α, β and C as degrees of freedom the line referred to as

fit1 is obtained corresponding to β̂fit = 109.9 J mol−1 K−1 which suggests an increase of

∆H with temperature. By fixing the parameter β to the slope of the linear fit through

the simulated ∆H values shown in figure 2.6, i.e. β̂fix = −242.35 J mol−1 K−1 while using

α and C as degrees of freedom the line referred to as fit 2 in figure 2.7 is obtained which

is also consistent with the association constants obtained from the umbrella sampling
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Figure 2.6: Association free enthalpy ∆G, enthalpy ∆H and entropy −T∆S as func-
tion of temperature in pure water. The error bars correspond to confidence inter-
vals of 95 %. Straight lines represent linear fits αi + βiT with αH = −4.18 kJ mol−1,
βH = −0.2424 kJ mol−1 K−1, αS = −65.91 kJ mol−1, βS = 0.2980 kJ mol−1 K−1.

simulations. This shows the difficulty of obtaining second derivative properties of the free

enthalpy such as the change in heat capacity directly from the temperature dependent

free enthalpy values, while first derivative properties such as an enthalpy change might

be obtained for smaller systems [293, 294].

We also note that comparatively long simulations are required to obtain reasonably con-

verged enthalpy values, a consequence of the need to subtract two large numbers while

the free enthalpy is usually much less affected by statistical noise due to the cancella-

tion of solvent-solvent contributions [295, 296]. Regarding quantitative comparison with

experimental data we note that the computed ∆G value of −53 kJ mol−1 at 298.15 K over-

estimates the magnitude of the experimentally reported value of −40 kJ mol−1 determined

from the changes in absorption properties upon dimerization [255]. We note, however,

that quantum yield data for the same system did not agree with the absorption results

[255], suggesting the possibility that the two methods differ in their underlying relation

between spectroscopic signal and molecular configuration. In addition to the uncertainty

introduced by the choice of the integration cut-off rb (see above) inaccuracies in the force

field are considered to be the second major source of uncertainty in the present case.

However, force field refinement, taking into account a larger sample of representative

monomeric building blocks was beyond the scope of the present study.

Finally we investigated whether a simple expression derived from thermodynamic pertur-

bation theory of first order is able to capture the temperature dependence of the potentials

of mean force.
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Figure 2.7: van’t Hoff plot of the temperature dependence of the equilibrium constant
for the dimerization in pure water. The curve labelled fit1 corresponds to an uncon-
strained optimization of the three parameters α, β and C (see equation 2.8) leading to
α1 = −35.566× 10−5 kJ mol−1, β1 = 10.985× 10−2 kJ mol−1 K−1 and C1 = 109.70. The
curve labelled fit 2 corresponds to an optimization of α2 and C2 only while fixing β2 to
−24.235× 10−2 kJ mol−1 K−1, leading to α2 = −14.716 kJ mol−1 and C2 = −91.531.
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Figure 2.8: Potentials of mean force as function of the center-of-mass separation for dif-
ferent temperatures in pure water. Symbols correspond to MD simulations, solid lines
represent the two reference PMFs and dashed lines the predictions according to equa-
tion 2.4. For better readability each PMF has been shifted by 5 kJ mol−1 relative to the
previous PMF at the next lower temperature.

The two functions a(r) and b(r) (see Eqns 2.5 and 2.6) were obtained from the PMFs

at 285.15 K and 348.15 K, respectively. Figure 2.8 shows that these functions encode the
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entire temperature dependence of the PMFs observed in the MD simulations demonstrat-

ing that a decomposition of the PMF into a repulsive and attractive part represented

by two temperature-independent functions, initially tested for capped gold nanoparticles

in vacuum [282] works also succesfully for the present system. This may have important

consequences for developing coarse graining potentials as is discussed below. We note that

the two PMFs required for obtaining a(r) and b(r) should correspond to a low and high

reference temperature in order to interpolate the remaining PMFs. When extrapolating

it has to be ensured that no phase transition occurs within the temperature boundaries

[282].

By performing additional simulations at 10 bar and 100 bar the influence of pressure on

the dimerization was studied. Figure S4 shows a slight increase of the magnitude of the

free enthalpy of association which is however not significant considering the overlapping

error bars.

2.3.2 Dimerization in an Ethanol/Water Mixture and in Aque-

ous NaCl Solution

Figure 2.9 shows the thermodynamic functions ∆G, ∆H and −T∆S in the temperature

range from 273.15 K to 360.15 K for two ethanol/water mixtures (25 vol% and 50 vol%,

respectively) and two aqueous NaCl solutions (0.5 M and 1.0 M, respectively). The cor-

responding free energy profiles are displayed in the Supporting Information. In all cases

the temperature dependence of ∆G remains weak as in the case of pure water. Relative

to pure water the addition of ethanol weakens the association strength between the two

plate-like molecules. For the 25 vol% mixture the association enthalpy slightly increases

while it is nearly temperature independent in the case of the 50 vol% mixture. In contrast

to pure water no additional hydrogen bonds are formed at higher temperature.

The addition of NaCl strengthens the binding relative to pure water altough the effect

is rather weak for the concentrations investigated. We note however, that the GROMOS

ion model underestimates the solubility of NaCl [297], which hampers a quantitative

comparison to experimental results. As for pure water the total number of hydrogen

bonds that are formed during complexation relative to the dissociated state increases

with increasing temperature from one hydrogen bond at 278.15 K to 1.5 hydrogen bonds

at 360.15 K leading to a negative slope of ∆H/∆T .

The same tests of thermodynamic consistency as for pure water were conducted and are

reported in the Supporting Information, showing that sufficient sampling was reached to

determine the slope of the temperature dependence of the enthalpy. However, compared

to the neat water system convergence in the 50 vol% ethanol system is more difficult to

achieve.
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Figure 2.9: Association free enthalpy ∆G, enthalpy ∆H and entropy −T∆S as function
of temperature in an ethanol/water mixture of 25 vol% (a) and 50 vol% (b), respectively
and in an aqueous NaCl solution of 0.5 M (c) and 1.0 M (d), respectively. The error bars
correspond to confidence intervals of 95 %. Straight lines represent linear fits αi + βiT
with fitting parameters provided in the Supporting Information.

The observed changes in the association strength in response to changes in the solvent

environment are in agreement with experimental data. For NaCl a slightly larger increase

in binding strength (∼ 5 kJ mol−1 in 1 M NaCl relative to pure water) was reported [255]

compared to the results obtained here while for ethanol no quantitative experimental

results were reported. The differences in the local solvent environments around the PBI

molecules are analysed in figure 2.10 by means of one-dimensional distribution functions

in the direction perpendicular to the molecular surface. The decrease in binding strength

due to ethanol can be rationalized due to preferential binding next to the surface and

depletion of water, leading to a lower peak compared to the pure water case. It should

be emphasized though that the ratio of peak heights between ethanol and water should

be interpreted in terms of local number densities, [298] i.e. scaled with the ratio of

NH2O/NEtOH leading us to conclude that close to the hydrophobic surface the number

density of ethanol is only slightly larger than the one of water. In the aqueous NaCl

solution the first layer next to the hydrophobic part of the surface is almost completely

void of ions accompanied by a slight increase in water density relative to the simulation
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in pure water. The second layer contains more cations than anions. This preferential

exclusion picture is in accordance with studies on a hydrophobic model system consisting

of two rigid disc-like molecules immersed in aqueous solution of different ionic strength

[299]. For complexation in 1 M aqueous NaCl solution the sensitivity of the results with

respect to the system size was evaluated. Figure S8 shows that the PMF is insensitive to

the system size as is the enthalpy change upon dimerization (data not shown).
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Figure 2.10: Distribution functions g(z) of water and ethanol in 25 vol% (a) and 50 vol%
(b) ethanol/water mixture and of water, Na+ and Cl− in 0.5 M (c) and 1.0 M (d) aqueous
NaCl solution at 298.15 K. Molecules that are located in a cylinder with radius 0.1 nm
positioned at the center of mass of one of the two PBI molecules and oriented perpen-
dicular to the surface towards the solvent were considered in the calculation of g(z). The
results were averaged over the two plate-like molecules in the complexed state.

Regarding the PBI configurational variability no significant differences between the differ-

ent solvent environments were found. While in the ethanol/water mixtures larger COM-

COM distances were found more frequently than in pure water the opposite was observed

in the aqueous NaCl solution (data not shown). Figure S9 of the Supporting Information

shows several transitions of the Ω-angle beyond 90° in the S1-system at 298.15 K suggest-

ing that the sampling time was sufficient to cover the conformational fluctuations in the

system.

Like for pure water the temperature dependence of the potentials of mean force can be
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Figure 2.11: (a) Potentials of mean force at 298.15 K for different solvent environments
obtained from equation 2.4. (b) Repulsive (a(r)RT , dashed lines) and attractive (b(r),
dotted lines) contributions of the PMFs.

accurately described using the simple expression derived from thermodynamic pertur-

bation theory. The corresponding figures are displayed in the Supporting Information.

Only in the case of the 50 vol% ethanol/water mixture some deviation between simula-

tions and model are observed which is attributed to the slower convergence in this system.

Figure 2.11 shows that compared to the pure water case the presence of ethanol hardly

changes the repulsive part of the PMF while the attractive part is stronlgy influenced.

In contrast NaCl changes both contributions. While the attractive part is slightly weak-

ened also the repulsion becomes less strong resulting in an overall stronger association

compared to the pure water case.

The weaker repulsion might be attributed to counterion shielding of the electrostatic

repulsion between the negatively charged dye molecules. Figure S10 shows the increased

density of sodium ions in proximity to the carboxylate oxygen atoms of the dimerized

PBI.

Finally, we would like to point out the similarity between the approach of modeling the

temperature dependence of the PMF according to equation 2.5 and 2.6 and the decompo-

sition of the potential of mean force into an enthalpic, ∆H, and entropic, ∆S, contribution

according to [300]

∆GPMF(r, T ) = ∆H(r)− T∆S(r) (2.9)

where the two contributions ∆H(r) and ∆S(r) are assumed to be temperature indepen-

dent. A molecular-scale picture of the underlying driving forces at a fixed temperature

can now be obtained, when considering the statistical-mechanical enthalpy-entropy com-

pensation leading to [300]

∆GPMF(r) = ∆HUV(r)− T∆SUV(r) (2.10)
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where the solvent-solvent contributions have cancelled out while the remaining terms in-

clude both solute-solute and solute-solvent contributions. Although in the present case the

particle-mesh Ewald energy cannot be decomposed into interactions between specific parts

of the system the analysis of the short-range interactions reveals that the gain in solute-

solute interactions upon complexation (e.g. ∼ −90 kJ mol−1 for the S2-system) is almost

compensated for by a change in solute-solvent interactions that disfavours association (e.g.

∼ 80 kJ mol−1 for the S2-system) which can be rationalized by the smaller solvent accessi-

ble area of the dimerized complex compared to the separated monomers. As a result the

total enthalpy change upon complexation contains significant (e.g. ∼ −58 kJ mol−1 for the

S2-system) contributions from solvent reorganization that blur the significant contribution

of solute-solvent entropy to the stability of the dimer for all systems studied.

2.4 Conclusion

Achieving an atomic-level description and mechanistic understanding of the onset of self-

assembly is an important prerequisite in the rational design of both solute and solvent

molecules. Atomistic simulations play an important role in these efforts. In the present

study the significance of a detailed thermodynamic analysis of the initial phase of self-

assembly of a perylene bisimide dye is discussed. A decomposition of the enthalpic and

entropic components of the potential of mean force into solute-solvent and solvent-solvent

interactions[300] provides a useful molecular-scale picture of the association process and

the underlying driving forces that are otherwise difficult to disentangle. Rather than

reaching quantitative agreement with experimental data the goal was to achieve con-

verged results for a realistic system that prove to be thermodynamically consistent within

a given force field. The experimentally observed dependence of the aggregation strength

on the solvent environment was reproduced by the simulations and a molecular-level

interpretation was obtained. This opens up the possibility to combine classical MD simu-

lations with quantum chemical calculations in more realistic solvent environments to aid

the molecular-level interpretation of absorption spectra that may depend strongly on the

relative orientation of the monomers [301, 302]. A further avenue to explore in future

work is the development of coarse-grained potentials for such building blocks using the

convenient description of the potentials of mean force by a rather generic thermodynamic

model based on a perturbation theory of fist order. This model allows to generate a large

set of PMFs from relatively few explicit MD simulations of the dimerization and possibly

the formation of larger aggregates. These PMFs can in turn be used to parametrize low-

dimensional effective interaction potentials for aspherical molecules [303] with the aim to

study aggregation behavior at realistic solute concentrations [126, 304].
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Abstract

The effect of water content on static and dynamic properties of the deep eutectic solvent

glyceline is studied using molecular dynamics (MD) simulations. Static properties are

additionally calculated using the PC-SAFT equation of state. Force fields calibrated on

water-free glyceline show predictive power for density and water activity over the entire

composition range. In contrast, the PC-SAFT approach by pseudo one-component or two-

component modelling strategies performed better for the density or the water activity,

respectively. The MD simulations show that at low water content the hydrogen-bond

network between glycerol molecules as well as between glycerol and the cholinium cation

is hardly affected by the water molecules while at higher water content glycerol-glycerol

hydrogen bonds are replaced by glycerol-water hydrogen bonds indicating the formation of

an aqueous solution accompanied by a strong decrease of the shear viscosity. At the same

time the thermodynamic activity of water increases such that the MD simulations are able

to guide the optimal composition with respect to requirements in biocatalytic applications

such as low viscosity and low water activity. The combined application of PC-SAFT to

efficiently predict static properties and molecular dynamics simulations to predict static

and dynamic properties offers a powerful framework in solvent design applications.

3.1 Introduction

Deep eutectic solvents (DES) are eutectic mixtures typically formed with a hydrogen bond

acceptor, for example choline chloride and a hydrogen bond donor, for example glycerol.

Due to their low vapour pressure, they are attractive non-aqueous solvents in chemical or

biochemical processes [305]. However, the high viscosity hampers the use as solvent for

e.g. biocatalytic applications. The addition of water results in a considerable decrease of

viscosity but may lead to undesired side effects such as the occurrence of water-dependent

side reactions. On the other hand, many enzymatic reactions require a certain amount

of water for the enzyme to function [306] making the thermodynamic activity of water

an important process parameter [307]. Thermophysical properties of DES-H2O binary

mixtures are difficult to predict as concluded from a recent comprehensive review [308]

due to a change of the microscopic structure of the fluid upon the addition of water [309].

Advanced equations of state have been applied to model thermodynamic properties and

gas solubility in DES [310–312]. Perturbed-Chain SAFT (PC-SAFT [313]) has been

turned out to be a promising equation of state. PC-SAFT characterizes DES as chains of

finite volume that exhibit dispersion and hydrogen bonding forces. However, equations

of state such as PC-SAFT have not yet been used to predict the water influence on ther-

mophysical properties of DES. Despite of their physical background, advanced equations
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of state do not account for the microscopic structure of systems.

To overcome this, atomistic simulations offer the missing link between microscopic struc-

ture and macroscopic properties given a suitable molecular model or force field, respec-

tively. Recent studies reported molecular dynamics simulations of common DESs such as

reline, ethaline, glyceline [314–316] and their mixtures with water [317–319], with a focus

on density, hydrogen bond patterns and pair-correlation functions while other important

properties such as water activity or transport coefficients were not considered. More-

over, the recent studies exhibit a considerable force-field dependence of the fluid structure

such that additional (thermophysical) properties are required for validating the molecular

models.

In the present work, the question is addressed of whether classical molecular dynamics

simulations using force fields validated against the pure DES can be used to predict prop-

erties of the binary DES-H2O mixture that are of relevance in biocatalytic applications,

namely shear viscosity and water activity. Using the example of the mixture of choline

chloride and glycerol in the 1:2 molar ratio (glyceline) it is investigated whether the com-

position of the aqueous mixture can be optimized with the target of low shear viscosity

and, at the same time, low thermodynamic activity of water.

3.2 Computational Details

3.2.1 Molecular Dynamics Simulations

3.2.1.1 Force Field

The choline chloride (ChCl) model is based on the GAFF force field [320] as described

in Refs [315, 321]. In agreement with previous work [315] the partial charges were scaled

by a factor of 0.9 to implicitly account for the effect of electronic polarization [322]. This

model was shown to represent successfully the density as function of temperature, the

heat capacity, as well as the self-diffusion coefficient of choline chloride in the water-free

1:2 mixture with glycerol (Gly), referred to as glyceline. We note that the choline chloride

model has also been used successfully by other authors to study ethaline, a mixture of

choline chloride and ethylene glycol [316]. For glycerol a molecular topology was obtained

from the FreeSolv database [323]. The atomic partial charges were adapted to the ones

reported in table S3 of Ref. [315] which were obtained using the restrained electrostatic

potential charge derivation method [324–326]. The molecular topologies were validated

by comparing densities and pair correlation functions calculated in the present work for

water-free glyceline to those reported by Perkins et al. [315] To represent water the

TIP4P/EW model was employed [327]. To assess the influence of the water model on

calculated properties selected simulations were also performed with the TIP4P [328] and
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System xspecies
W / mol/mol xW / mol/mol wW / wt-% NW 〈Lbox〉

C0 1.000 1.000 100.00 3000 4.498
C1 0.870 0.900 59.736 8000 7.210
C2 0.692 0.750 33.365 2700 5.990
C3 0.429 0.500 14.303 900 5.447
C4 0.200 0.250 5.270 300 5.247
C5 0.077 0.100 1.821 100 5.185
C6 0.000 0.000 0.000 0 5.413

Table 3.1: System compositions studied in this work. The number of cholinium cations,
chloride anions and glycerol molecules was fixed to 300, 300, and 600, respectively, while
the number of water molecules NW was adjusted to the desired composition. The sys-
tem C0 respresents pure water. The average simulation box length according to 50 ns
simulation time at 320.15 K is shown in the last column and given in nm.

the SPC/E [329, 330] model. For all molecules used in the present work a detailed descrip-

tion including Lennard-Jones parameters, atomic partial charges and bonded parameters

is presented in the Supporting Information along with an analysis of the subsystems

glycerol, glycerol-water and choline chloride-water.

3.2.1.2 Simulated Systems

Table 3.1 specifies the compositions of all systems (C0 to C6) studied in the present work

together with the corresponding water mass and mole fraction, wW and xW, respectively.

The former is unambiguously defined as

wW =
NWMW

NCh+MCh+ +NCl−MCl− +NGlyMGly +NWMW

(3.1)

where Mi denotes the molecular weight of species i, and Ni the number of molecules of

species i in the system. The water mole fraction is usually defined as

xW =
NW

NChCl +NGly +NW

(3.2)

to report experimental data [331, 332], although the DES components are often sub-

sumed into one pseudo component. In the context of molecular dynamics simulations, an

alternative definition is appropriate that considers the dissociated choline chloride,

xspecies
W =

NW

NCh+ +NCl− +NGly +NW

(3.3)
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3.2.1.3 Simulation Parameters

All simulations were performed under minimum image periodic boundary conditions based

on cubic computational boxes using the GROMACS 2016 program package [108, 261–263,

333–336] compiled in single precision. Equations of motion were integrated using the leap

frog scheme [265] with a time step of 2 fs. For all systems an energy minimization, followed

by a constant-volume equilibration simulation of 1 ns at 298.15 K and a successive constant

pressure equilibration of 1 ns at the desired target temperature were conducted prior to

the actual production simulation. All bond lengths were kept fixed using either SETTLE

[266] (for water) or LINCS [267, 268] respectively, with an order of 4. The number of

iterations to correct for rotational lengthening in LINCS was set to 2. The temperature

was maintained close to its reference value by application of the velocity-rescale thermostat

[269] with a relaxation of τT = 0.5 ps. The pressure was set cose to its reference value using

the Parrinello-Rahman barostat [270, 271] by isotropic coupling with a coupling constant

of τp = 2.0 ps and an isothermal compressibility of κT = 4.82× 10−5 bar−1. Short-range

electrostatics and Lennard-Jones interactions were treated with a Verlet-buffered neighbor

list [272] with potentials shifted to zero at the cut-off of 1.5 nm. Analytical dispersion

corrections were included for energy and pressure. Long-range electrostatics were treated

by the smooth particle-mesh Ewald (PME) summation [273, 274] with a PME-order of 4.

3.2.2 Trajectory Analysis

3.2.2.1 Shear Viscosity

The shear viscosity η was determined from the Green-Kubo expression [337, 338]

η =
V

kBT

∫ ∞
0

〈Pαβ(t) · Pαβ(0)〉 dt (3.4)

where V is the simulation box volume, T the temperature, kB the Boltzmann constant

and Pαβ(α, β ∈ x, y, z) are the pressure tensor components. Six independent shear com-

ponents 1/2 (Pxy + Pyx), 1/2 (Pyz + Pzy), 1/2 (Pxz + Pzx), 1/2 (Pxx − Pyy), 1/2 (Pyy − Pzz)
and 1/2 (Pxx − Pzz) are used to improve the statistics of each simulation. The three terms

including the diagonal pressure tensor entries (xx, yy and zz) are obtained by a 45° ro-

tation of the pressure tensor around all axis [339]. Correlation integrals
∫∞

0
〈...〉 dt are

calculated by a convolution in Fourier-space, according to Wiener-Khintchine theorem

[340, 341]. The Fast Fourier Transform algorithm used for this is reducing the computa-

tional complexity from ∝ N2
t to ∝ Nt/ ln(Nt) compared to the direct calculation [342].

Trajectories for viscosity calculation were obtained from constant-volume simulations with

5 ns production and a 1 ns preceding equilibration time. The predetermined volume was

obtained using the average density from a previous constant-pressure simulation at 1 bar
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and at the target temperature. The pressure tensor elements were stored in the energy

trajectory every 10 fs. To reduce statistical noise in the running integral of equation 3.4,

the viscosity calculation was averaged over a set of at least 100 independent simulations.

Subsequent a double exponential function ηfit(t) was fitted to the average of the time-

dependent running integral 〈η(t)〉 with four fitting parameters, namely η∞, α, τ1 and

τ2.

ηfit(t)

η∞
=
ατ1

(
1− e−t/τ1

)
+ (1− α) τ2

(
1− e−t/τ2

)
ατ1 + (1− α) τ2

(3.5)

For larger times the residuals 〈η(ti)− ηfit(ti)〉 of the objective function are still very noisy

and are thus damped by weighting to 1/tbi as described by Maginn et al [343]. In this

case the parameter b results from a previous power law fit to the standard deviation s(t)

which is time dependent. The first 2 ps of every individual run are not included in the

fitting process. The stationary plateau value of the double-exponential fit is defined as

η∞ and taken as zero shear rate viscosity η. The given errors equal the value of the time

dependent standard deviation s(t99) at the time t99 where the time dependent viscosity

ηfit(t) equals 99 % of the zero shear rate viscosity.

3.2.2.2 Self-Diffusion Coefficient

The self-diffusion coefficient Dself, was calculated from a constant-pressure simulation as

the slope of a linear fit to the mean-square displacement of the molecules in the long-time

limit using the Einstein relation [344, 345]

lim
t→∞

〈
(ri(τ + t)− ri(τ))2

〉
i,τ

= 6Dselft+ const. (3.6)

where ri is the current position of the center of mass of a molecule (following molecules

across periodic boundaries) and 〈...〉i,τ denotes averaging over all molecules i and time

origins τ . In this work, trajectory fragments of 5 ns were used for a least-square fitting

to obtain a series of 10 self-diffusion coefficients from which a mean value as well as the

corresponding standard deviation was calculated. The correlation coefficients of the least-

square fitting R2 were at least 0.99 in all cases. Finite size effects were accounted for by

extrapolating Dself to infinite box size using [346]

D∞self =
kBTξ

6πηL
+DMD

self (L) (3.7)

where D∞self is the self-diffusion coefficient in the thermodynamic limit, L is the side length

of the cubic simulation box and ξ is a dimensionless constant equal to 2.837297 for cubic

simulation boxes with periodic boundary conditions. Assuming a system-size independent

shear viscosity η [346] the simulated self-diffusion coefficient DMD
self evaluated at a particular
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box length were corrected based on the simulated η-values. In the results section only

corrected self-diffusion coefficients are reported while the uncorrected values are provided

in the Supporting Information.

3.2.2.3 Water Activity

The calculation of the solvation free energy ∆Gsolv (or excess chemical potential) relied

on a step-wise decoupling of the molecule from its surrounding using a scaling parameter

λ, while retaining the intramolecular interactions. First, the electrostatic interactions

were gradually deactivated using 11 equidistant λ-points followed by deactivation of the

Lennard-Jones interactions using 14 λ-points distributed as 0.075, 0.150, 0.225, 0.300,

0.375, 0.450, 0.525, 0.600, 0.675, 0.750, 0.825, 0.900, 0.950 and 1.000. Soft-core potentials

were used to avoid numerical problems close to the end states employing αsc = 0.5,

σsc = 0.3 and a power for the soft-core scaling function of 1. The multistate Bennett

acceptance ratio (MBAR) approach [347] was used as an estimator to obtain the free

energy from the differences in the Hamiltonians between all states. Activity coefficients

of water based on Rault’s law standard state can then be calculated using solvation free

energies of water in different compositions and system densities [348, 349]

γW(Ci) = exp

[
∆Gsolv(Ci)−∆Gsolv(C0)

RT

]
· ρ

m
Ci

ρmC0

(3.8)

where γW(Ci) is the activity coefficient of water at system composition Ci as described

in table 3.1, ∆Gsolv(Ci) is the solvation free energy of one water molecule in the system

with composition Ci and ∆Gsolv(C0) its self-solvation free energy (System C0 in table 3.1.

The ideal gas constant is denoted with R and the system temperature with T . The molar

density of system Ci is calculated as

ρmCi =

∑
iNi

〈VCi〉
(3.9)

where the index i runs over all individual species, i.e. cholinium cation and chloride anion

are counted as separate species and 〈VCi〉 is the average simulation box volume. The

molar density of the pure water system is obtained from the ratio of water molecules and

average simulation box volume in the pure water system,

ρmC0 =
NW

〈VC0〉
(3.10)

The activity of water is then obtained from

aW(Ci) = γW(Ci)xspecies
W (3.11)
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3.2.3 PC-SAFT Calculations

3.2.3.1 The Model

In this work classical PC-SAFT [313] was used to predict the influence of water on the

thermodynamic properties mixture density and water activity in systems DES + water.

Classical PC-SAFT describes the residual Helmholtz energy of a system ares based on

perturbation contributions adisp and aassoc to the energy contribution of a hard-chain

reference system ahard chain.

ares = ahard chain + adisp + aassoc (3.12)

PC-SAFT requires five pure-component parameters for each component, the segment

diameter σ, segment number mseg, dispersion-energy parameter u/kB, and the association

parameters εAiBi and κAiBi . Mixtures are described using Berthelot-Lorenz combining

rules for these parameters for the pairs of components i and j

σij =
1

2
(σi + σj) (3.13)

uij =
√
uiuj (1− kij) (3.14)

and Wolbach-Sandler mixing rules for the association parameters:

εAiBj =
1

2

(
εAiBi + εAjBj

)
(3.15)

κAiBj =
√
κAiBiκAjBj

( √
σiiσjj

1
2

(σii + σjj)

)3

(3.16)

It can be observed from Eqs. 3.13 to 3.16 that one binary parameter between components

i and j is introduced.

Thermodynamic properties are derived from equation 3.12 based on differentiation with

respect to volume and mole fraction. So-obtained water fugacity coefficients ϕW in the

mixture and in pure water ϕ0,W are then used to calculate activity coefficients

γW(T, xW) =
ϕW(T, xW)

ϕ0,W(T, xW = 1)
(3.17)
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3.2.3.2 PC-SAFT Parameters

For water, the 2B association model from Fuchs et al. [350] was used. Although this

model is less realistic than 4C models for water that contain four association sites, the

model from Fuchs et al. has turned out to be the best model for biological applications

at moderate temperatures and pressures.

For DES, two modeling strategies have been developed, the pseudo-one component strat-

egy and the individual-component strategy. In the former, a DES is considered as a

pseudo-pure compound, and its pure-component parameters were adjusted in a previous

work [312] using experimental density data of water-free pure DES as function of tem-

perature and pressure. The DES has an average molar mass calculated based on the

composition of the DES constituents. In the second strategy, the so-called individual-

component strategy, PC-SAFT accounts explicitly for the pure components the DES is

part of. The parameters of the pure components were obtained in previous works by fitting

to experimental data of aqueous solutions water + choline chloride [311] as choline chlo-

ride is a solid until 300 ◦C at atmospheric pressure. This procedure has been also applied

successfully to inorganic salts, amino acids, sugars and proteins [351–354]. For glycerol

[355] parameters were obtained by fitting to pure-component data, i.e. liquid-density

data and vapor-pressure data of pure glycerol. Hydrogen bonding is a key interaction for

modeling DES systems. Independent of the strategy, self-association among DES (or DES

constituents) was considered as well as cross-association between the individual DES con-

stituents or DES (or DES constituent) with water. The PC-SAFT parameters are given

in table 3.2. Binary parameters were also applied in this work. These kij parameters

are also listed in table 3.2. It is important to mention that they were not adjusted to

experimental data containing the DES. Thus, PC-SAFT does not require any calibration

and was applied in a fully predictive mode.

Component M / g mol−1 mseg σ / �A u/kB / K εAiBi/kB / K κAiBi kij to water Ref.

Water 18.015 1.2047 2.7927 353.95 2425.7 0.045 - [350]
Choline Chloride 139.62 13.020 2.386 228.07 8000.0 0.200 * [355]

Glycerol 92.094 2.0070 3.815 430.82 4633.47 0.002 -0.005 [355]
ChCl:Glycerol 1:2 107.95 7.7594 2.5699 275.00 5000.0 0.100 0 [312]

Table 3.2: Pure-component PC-SAFT parameters for water, the DES constituents
and the one-component DES. * temperature-dependent function kij = 0.001(T −
298.15 K)–0.05838.
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3.3 Results

3.3.1 Volumetric Properties and Liquid Structure

The liquid density of glyceline:water mixtures was modelled by molecular dynamics sim-

ulations at 280.15 K, 320.15 K, and 360.15 K (figure 3.1). At increasing water content,

the density decreases gradually from 1187.6 kg/m3 for pure glyceline (at 320.15 K) to

1166.7 kg/m3 at xW = 0.5. For higher water content, it steeply drops to the density of

pure water (985.99 kg/m3). While the densities of the pure components (xW = 0.0 and

xW = 1.0) are predicted in very good agreement with experimental data (deviation less

than 0.9 %), the densities of the mixture are slightly overestimated, with a maximum

deviation of 1 % at xW = 0.5. Note that temperature difference of 3 K between simulation

target temperature and experimental measured temperature lead to a density change of

roughly 0.3 % which is within the error of the statistical uncertainty of the simulations.

The pseudo-one component PC-SAFT evaluation slightly underestimates the experimen-

tal densities, while the two component PC-SAFT evaluation considerably overestimates

the experimental densities at xW < 0.5. The reason behind the latter observation is the

fact that PC-SAFT parameters for choline chloride were adjusted to experimental density

data of choline chloride:water solutions with xW > 0.6 [311]. As a consequence, at very

low xW values the deviation from experimental data increased to 2.6 %.
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Figure 3.1: Liquid density as function of xW for three different temperatures at atmo-
spheric pressure. Experimental data at (a) 283.15 K, (b) 323.15 K, and (c) 363.15 K are
shown as open symbols (Ref. [315] as squares; Ref [331] as circles, Ref. [356] as crosses
and mean of Refs. [331, 356–359] as triangle). Green closed symbols represent simula-
tion results and the two orange lines represent PC-SAFT calculations obtained at (a)
280.15 K, (b) 320.15 K and (c) 360.15 K. Statistical errors in the simulation results equal
one standard deviation and are within a maximum absolute value of 5 kg/m3 which equals
error bars within symbol size. The purple line shows the density profile in case of an ideal
mixture.

The densities of the real glyceline:water mixtures are higher than expected from ideal

mixtures, in agreement with the calculated negative excess molar volumes with a minimum

at xW = 0.5 (figure 3.2). Experimental data support the simulation results, though the
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simulation overestimates the non-ideality of mixing. Such an overestimation was also

observed in a recent MD study employing CHARMM-type molecular models [318] and is

indicative of strong interaction between water and glyceline.

Molecular dynamics simulations also slightly overestimate the liquid densities of glycerol-

water mixtures and pure glycerol at 280.15 K, but not at 360.15 K (figure S14) and of

aqueous ChCl solutions at 298.15 K (figure S16), indicative for a slight overestimation of

the interactions between water and glycerol as well as between water and choline chloride

by the used force field.
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Figure 3.2: Excess molar volume V E as function of xW as predicted by MD simulations
(filled symbols) and as obtained from experiment [318] (open symbols: 323.15 K as squares
and 363.15 K as diamonds).

Since the temperature dependence of the glycerol density depends considerably on the

force field details [360], a refinement of the glycerol model may be attempted in future

work.

Radial distribution functions at 320.15 K for seven pairs of atoms (chloride and oxygen

atoms of the choline cation, glycerol and water) at xW = 0.5 demonstrate a close contact

between chloride and the three oxygen atoms (peak at 0.322 nm). The water-water,

water-glycerol and water-cholinium cation radial distribution functions all show a peak

at 0.276 nm, while no peak is formed for the choline-choline oxygen atoms (figure 3.3).

The peak positions of all interaction pairs are not significantly affected by water content

and temperature (figure S18 to figure S25). These results are in good agreement with

recent work by Weng and Toner [318] using a CHARMM force field, except for the lack

of the peak at 0.276 nm in the choline-choline radial distribution function. In contrast,

Ahmadi et al. [317] observed phase separation.
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Figure 3.3: Radial distribution function g(r) at 320.15 K for the mixture with xW = 0.5
for different pairs of chloride (a) and oxygen atoms (b). Cl denotes chloride anions, OW

the water oxygens, OCh the oxygen atom of the cholinium cation and OGly the oxygen
atoms of glycerol.

Hydrogen bonds for different interaction pairs are shown as function of molar water frac-

tion xW in figure 3.4. Since the amount of choline chloride and glycerol molecules in the

different simulated compositions was kept constant (table 3.1), the figure shows how the

hydrogen bonds between glycerol molecules disappear in favour of hydrogen bonds be-

tween glycerol and water. At high water concentration, glycerol molecules form hydrogen

bonds with up to four water molecules.
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Figure 3.4: Number of hydrogen bonds as function of the water mole fraction xW at
320.15 K for different molecule pairs. Choline is abbreviated as Ch, glycerol as Gly and
water as W, respectively. Hydroxyl (OH) and primary amino groups (NH) are regarded
as hydrogen bond donors while oxygen and nitrogen atoms are hydrogen bond acceptors.
For identifying hydrogen bonds, a cut off angle of 30° together with a cut off radius of
0.35 nm was chosen. The number of hydrogen bonds between glycerol and water is divided
by three.
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The figure also shows that hydrogen bonds between choline and glycerol molecules are

replaced by hydrogen bonds between choline and water leading to an aqueous solution of

the DES components at higher water mole fractions. Signatures of phase separation, such

as the insensitivity of the amount of Gly-Gly hydrogen bonds with respect to the water

content, as observed recently [317] were not found in the present work. Instead the results

obtained in the present work are qualitatively similar to those reported by Zhekenov et

al. [319].

3.3.2 Shear Viscosity

The simulated shear viscosity at three different temperatures is in good agreement with

experimental value for viscosity values below 30 cP (figure 3.5). At 360.15 K it devi-

ates from experiment by less than 18 % over the entire composition range, but at lower

temperatures only the systems with higher water content could be reliably calculated

due to convergence problems with the equilibrium MD simulations for high viscosity.

While the viscosity of water decreased fourfold upon increasing the temperature by

80 K (η(280.15 K) = 1.16 cP, η(320.15 K) = 0.51 cP, η(360.15 K) = 0.30 cP), the vis-

cosity of pure glyceline was strongly temperature dependent, changing by a factor of 51

(η(283.15 K) = 1003.94 cP, η(363.15 K) = 19.59 cp). Similarly, glyceline-water mixtures

showed a decreasing temperature dependency upon increasing water content.
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Figure 3.5: Shear viscosity η as function of water fraction xW for different temperatures.
Experimental data are shown as open symbols and correspond to temperatures of 283.15 K
(Ref. [331], circles), 323.15 K (Ref. [331], squares; Ref. [361], triangles up) and 363.15 K
(Ref. [331], diamonds). Simulation results are shown as closed symbols with dotted lines
used as guide to the eye. Error bars equal one standard deviation. Inset shows the same
data but with higher resolution on the y-axis.
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3.3.3 Self-Diffusion Coefficient

The self-diffusion coefficient of water as a function of temperature for six different water

mole fractions xW was simulated at different box sizes. By accounting for finite size ef-

fects [346] and using the simulated shear-viscosity values from figure 3.5, the self-diffusion

coefficient was evaluated for infinite size boxes. Figure 3.6 shows the temperature depen-

dence of the self-diffusion coefficient of water at various water mole fractions. At lower

water mole fractions the increase of the self-diffusion coefficient with temperature is less

pronounced compared to mole fractions larger than xW = 0.5. As expected from previ-

ous studies of the TIP4P/EW model [327, 362], the self-diffusion of pure water can be

described successfully over the entire temperature range.
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Figure 3.6: Self-diffusion coefficient of water as function of temperature for different water
mole fractions xW. Simulation results are corrected for finite size effects according to ref.
[346]. Error bars are within symbol size and equal one standard deviation. Absolute errors
are within a maximum value of 8× 10−7 cm2/s. Simulation results are shown as closed
symbols with dotted lines used as guide to the eye. Different colors describe different
solvent compositions while experimental data are shown as open circles from ref. [363],
as open triangles from ref. [364], as open diamonds from ref. [365] for xW = 1.0 and as
plus symbol from ref. [366] at 293.15 K for xW = 0.1.

Figure 3.7 shows the self-diffusion coefficient as function of the water mole fraction xW.

Compared to pure water, the diffusion coefficient drops significantly upon addition of

glyceline. The inset in figure 3.7 demonstrates the good agreement between simulation

and experiment at low water content considering that the experimental data were reported

at 293.15 K, i.e. 13 K above the simulated temperature of 280.15 K.
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Figure 3.7: Self-diffusion coefficient of water as function of water fraction xW for different
temperatures. Simulation results are corrected for finite size effects according to ref.
[346]. Error bars equal one standard deviation and are within symbol size except for
the ones shown explicit in the inset. Absolute errors are within a maximum value of
8× 10−7 cm2/s. Simulation results are shown as closed symbols with dotted lines used as
guide to the eye. Experimental data for pure water are taken from ref. [363] (diamond,
circle and square), ref. [365] (triangle down, triangle right) and ref. [364] (plus, triangle
left, thin diamond) for 360.15 K, 320.15 K and 280.15 K respectively. Open up triangles
are representing experimental data from ref. [366]. Self-diffusion coefficient of TIP4P
water model is shown as star symbol at xW = 0.5 for 320.15 K.

3.3.4 Water Activity

The simulated activity coefficient at 320.15 K was less than 1 for all mixtures (figure 3.8),

in agreement with experiment. This negative deviation from Raoult’s law indicates a

stronger interaction of water in the mixture relative to pure water. The simulated water

activity at 320.15 K is in good agreement with the experimental data reported by Wu et

al. [332] obtained at 323.15 K, while Durand et al. [367] reported lower water activities

obtained at 333.15 K, demonstrating a significant deviation between the two experiment

datasets. The PC-SAFT results demonstrate that the two components choline chloride

and glycerol need to be modelled as separate species to obtain physically correct results

which are then in very good agreement with the experimental data from Wu et al. [332].

If the DES is modelled as one pseudo-component PC-SAFT predicts a positive deviation

from Raoult’s law, i.e. is qualitatively wrong.

At 360.15 K the simulated activities exhibit higher values in accordance with experiment

determined at 343.15 K, but deviate more strongly from the PC-SAFT results. Surpris-

ingly the PC-SAFT results predict lower activities although they were also evaluated at

360.15 K.
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Figure 3.8: Calculated water activity as function of water mole fraction xW at (left)
320.15 K and (right) 360.15 K. Simulation results are shown as closed symbols with dotted
lines used as guide to the eye. Error bars equal to a maximum error estimation. For this
estimation the sum of the absolute statistical error of ∆GC0 and ∆GCi was added to the
value of ∆∆G and evaluated with equation 3.8. PC-SAFT results are present as closed
and dashed lines, representing the pseudo-one component strategy (does not account for
interactions between choline chloride and glycerol) and the two-component strategy that
explicitly accounts for all molecules in the mixture. Experimental data are represented
as open symbols. The squares [367] correspond to 323.15 K (a) and 343.15 K (b) while
the circles [332] correspond to 333.15 K in both panels. Dash dotted bisecting line is
representing an ideal mixture.

It can be concluded that the two-component individual modelling strategy is much more

promising than the pseudo-one component modelling strategy. Specific interactions be-

tween choline chloride and water and between glycerol and water and between glycerol

and choline chloride are explicitly taken into account using the two-component individual

modelling strategy, which is essential for the quantitative prediction of water activities.

It should be noted that the application of possible binary interaction parameters between

DES and water in a pseudo-one component modelling strategy will improve the results,

and the failure of such predictions was expected, as binary parameters in binary mixtures

with water are generally required using SAFT-based models. However, the use of such

binary parameters was not in the focus of this work to keep the results in a predictive

mode. To avoid the appearance of multiple models for the same compound a recalibration

of model parameters should be based on a larger set of mixture data which was beyond

the scope of the present work.

3.4 Discussion

Properties such as the shear viscosity and the water activity are of particular importance

in biocatalytic process design. Therefore, the robustness of their calculation is discussed

in more detail in the following.
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The shear viscosity does not show significant finite size effects [346] and can be reliably

obtained by analyzing pressure fluctuations of an NV T simulation according to the Green-

Kubo approach. For a glyceline-water mixture at xW = 0.5 and 320.15 K, a shear viscosity

η = 19.06 cP was obtained. Alternatively, it can be obtained by analyzing the self-

diffusion coefficient for different box sizes [346]. This route has been recently tested for

Lennard-Jones particle systems, water, and an ionic liquid [368], and it is illustrated

in figure 3.9, showing the self-diffusion coefficient as function of the inverse box length

LBox for the system with xW = 0.5 at 320.15 K. The number of particles as shown in

table 3.1 were multiplied by 0.75, 1.25, and 2.0, respectively (see Supporting Information

for exact system compositions). A weighted linear fit, where the weights are inverse

standard deviations of the self-diffusion coefficients, through the simulation results lead

to the self-diffusion coefficient at infinite system size at 1/LBox = 0. When comparing

this self-diffusion coefficient for infinite system size to a self-diffusion coefficient corrected

with the analytical term by Yeh and Hummer [346], shown as black diamond, it can be

seen that both methods lead to almost the same system-size independent self-diffusion

coefficient. Calculating the shear viscosity from the slope of the linear fit leads to a

slightly increased value η = 23.4 cP. Such a deviation between the two methods was also

reported by Jamali et al. [368]. For systems with high viscosity this approach might

not be beneficious due to high computational costs for obtaining well-converged self-

diffusion coefficient. To assess sampling and convergence, the slopes of all components

of the mixtures were compared. The plots analogous to figure 3.9 for the cholinium

cation, chloride anion and glycerol are shown in the supporting information (figure S26

to S28). For the components cholinium cation and glycerol which show a five times

smaller diffusivity than water the corresponding viscosity was larger by 6 cP and 11 cP,

respectively. The slope of the chloride component results in a viscosity value of η = 10 cP.

Therefore, this indirect approach for viscosity calculation did not show advantages over

the direct approach due to different convergence rates of the self-diffusion coefficients of

the different mixture components.

In the high viscosity regime, one might resort to non-equilibrium MD simulations. The

viscosity can be calculated from the response of the system to an external shear field and

extrapolated to zero shear rate by means of the Carreau equation [369] or alternative

approaches [370].

The method of choice will therefore depend on the specific system to be studied and of the

level of accuracy with which the high viscosity regime needs to be treated [371]. In the

low viscosity regime the shear viscosity can be reliably calculated using the Green-Kubo

approach as outlined in Section 3.2.2.1.

The activity coefficient is composed by an ideal gas part as ratio of molar densities and

a residual part depending exponentially on the difference of two free energies of solvation
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Figure 3.9: Self-diffusion coefficient as function of the inverse box length for system C3.
Slope of the weighted linear fit equals −5.674× 10−20 m3/s. Self-diffusion coefficient for
infinite system size equals 2.4934× 10−5 cm2/s and is shown as dashed line. Error bars
equal one standard deviation.

(equation 3.8). For the system studied here, the ratios of molar densities are 1.33 and

3.48 at xW = 0.9 and 0.1, respectively. The densities are reliably determined by molecular

simulation. The exponential term is 0.76 and 0.11 at xW = 0.9 and 0.1, respectively. The

sensitivity of this term with respect to errors in ∆∆G is strong, such that small changes

in the free energy difference leads to large deviations in the resulting activity. While

the free energy of solvation can be reliably computed with a high degree of convergence,

the error in ∆∆G is mainly caused by the quality of the force field. In practice, errors

in the force field compensate, resulting in smaller errors of ∆∆G than the individual

free energies of solvation indicate (figure 3.10). For three water force fields (TIP4P/EW,

TIP4P and SPC/E), the solvation free energies ∆GSolv(C0) and ∆GSolv(C3) differ by

4 kJ mol−1. At 320.15 K the calculated numbers are: ∆GSolv(C0) = −28.32 kJ mol−1

and ∆GSolv(C3) = −26.42 kJ mol−1 for TIP4P/EW, ∆GSolv(C0) = −24.30 kJ mol−1

and ∆GSolv(C3) = −22.17 kJ mol−1 for TIP4P and ∆GSolv(C0) = −28.30 kJ mol−1 and

∆GSolv(C3) = −25.97 kJ mol−1 for SPC/E. The self-solvation free energy for the TIP4P

is in good agreement with the experimental value of −25.14 kJ mol−1 [372], while the

TIP4P/EW and the SPC/E water models deviate by 3 kJ mol−1. Despite this deviation,

the difference of the solvation free energies ∆∆G are similar for all three water mod-

els (1.90 kJ mol−1 for TIP4P/EW, 2.13 kJ mol−1 for TIP4P and 2.33 kJ mol−1 for SPC/E

respectively) due to error compensation. We therefore recommend to investigate the ro-

bustness of the activity coefficient for the actual system under study with respect to force

field changes. The results presented above suggest that in practice, activity coefficients

can be reliably obtained, in agreement with previous work [373].
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Figure 3.10: Sensitivity analysis of the water activity as function of the water mole fraction
at 320.15 K. Experimental data are taken from [367] at 323.15 K shown as open squares
and from [332] at 333.15 K shown as open circles. Water activity obtained using TIP4P
water model [328, 374, 375] is shown as filled diamond while water activity obtained using
SPC/E [329, 330] water model is shown as white star. Filled squares are representing
simulation results using TIP4PEW water model at 320.15 K and composition C3. Here,
colored areas are shown for different assumed errors in the free energy difference starting
from an error of 0.25 kJ mol−1 (orange area) up to an error of 2.5 kJ mol−1 which equals
the thermal energy at room temperature.

3.5 Conclusion

Atomistic simulations provide the link between the microscopic structure of DES-water

mixtures and the corresponding thermophysical properties. The latter are experimentally

easier to access compared to structural parameters and should therefore be considered

when validating molecular models. Here, force fields calibrated to static and dynamic

properties of water-free glyceline and the aqueous subsystems showed predictive power

regarding properties of glyceline-water mixtures such that the design objective of low

viscosity and low water activity can be handled by MD simulations. Equation of state

calculations offer a fast evaluation of static properties but showed less predictive capabili-

ties compared to the force field calculations. However, advanced models such as PC-SAFT

can be used to pre-screen a large number of mixtures to better target the use of com-

putationally demanding atomistic simulations. Such advanced models should account

explicitly for all mixtures constituents in order to achieve quantitative prediction results.
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Chapter 4

On the use of transport properties to

discriminate Mie-type molecular

models for 1-propanol optimized

against VLE data

The content of this chapter is a literal quote of the publication

J. Baz, N. Hansen and J. Gross, The European Physical Journal Special Topics, 227,

1529-1545, 2019

Abstract

Parameterization of classical force fields often suffers from highly correlated parameters.

In the present work the hypothesis that transport properties such as shear viscosity or

self-diffusion coefficient can be used to decouple force field parameters that were fitted to

static thermodynamic properties, such as saturation vapor pressure and liquid density is

investigated. Here 1-propanol was studied where united-atom sites are described through

Mie potentials and point charges. Four models were selected that gave about the same

level of agreement with experimental liquid densities and vapor pressures. Shear viscosity

and self-diffusion coefficients were evaluated with the aim to discriminate the models.

However, the degeneracy of force field parameters observed in the static properties was

also observed in the dynamic properties. We conclude that meaningful parameteriza-

tions for transferable force fields should simultaneously consider several molecules from a

homologous series in order to define a less degenerate optimization problem.
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4.1 Introduction

Transferable force fields allow predicting thermodynamic properties and phase equilibria

of pure substances and mixtures. A meaningful parameterization of force fields, how-

ever, is obscured by degeneracy of force field parameters when regarding typical physical

properties. Ketko and Potoff [376] studied dimethyl ether and showed that various com-

binations of Lennard-Jones parameters gave about equally good results for critical points

and phase equilibrium properties. Although for dimethyl ether in earlier work of our

group [230] we have seen an optimum in the parameterization for a slightly different

objective function, the optimum is shallow with highly correlated parameters. In this

work we consider 1-propanol and find even more correlated force field parameters. We

here study the hypothesis that transport properties are suitable to discriminate among

different parameter sets that reproduce static thermodynamic properties about equally

well.

Several force fields were proposed for thermodynamic properties and phase equilibria, such

as the Optimized Potential for Liquid Simulations (OPLS) [377–382] or the Transferable

Potentials for Phase Equilibria (TraPPE) [48, 383–388]. The OPLS model was parameter-

ized to experimental data of enthalpy of vaporization and liquid densities. The enthalpy of

vaporization, due to the Clausius relation, also ensures a reasonable description of vapor

pressures. The TraPPE model was parameterized to describe thermodynamic properties

and phase equilibria, with emphasis on projections of temperature and density or temper-

ature and composition. The TraPPE force field is based on the Lennard-Jones potential

for describing short-range repulsion and van der Waals attraction and uses fixed point

charges for modelling the electrostatic field of molecules.

The difficulty in representing both, phase equilibria in temperature projections and vapor

pressure led several groups to introduce additional degrees of freedom in the parame-

terization of transferable force fields. The Buckingham potential with three adjustable

parameters has been used instead of the Lennard-Jones model (that only offers 2 pa-

rameters per interaction site) with good agreement to experimental data [389]. Toxvaerd

[390, 391] suggested to move the interaction site of a CH3 group, say, away from the

position of the carbon atom to account for the presence of hydrogen atoms. The distance

of shifting a united-atom group away from the position of the large atom is an additional

adjustable parameter in the parameterization of a force field. Ferrando, Boutin, Ungerer

and coworkers developed the Anisotropic United Atom (AUA) force field based on this

concept [392–396].

Potoff and Brunel used the Mie potential instead of the Lennard-Jones potential. Their

work and subsequent studies with coworkers convincingly showed that relaxing the re-

pulsive exponent from the value of m = 12 (corresponding to Lennard-Jones model)
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allowed parameterizing a force field with very good agreement to static properties of pure

substances [397–400].

The Transferable Anisotropic Mie (TAMie) force field was developed in our group. The

model represents molecules as Mie interaction sites and partial point charges. The force

field parameters were developed based on a well-defined objective function that comprises

experimental data on vapor pressure and liquid density of several species simultaneously

[229–232].

This work presents a parameterization study for 1-propanol (shown in figure 4.1), where

highly correlated force field parameters are found for representing static thermodynamic

properties, such as vapor pressure and liquid density. We investigate the hypothesis that

transport properties can be used in force field optimization to discriminate various force

field parameter sets that otherwise lead to an about equal description of static properties.

Figure 4.1: Molecular structure of 1-propanol, illustrating site names and schematic po-
sitioning of Mie sites and coulombic sites. Sites with optimized force field parameters
are colored green, whereas sites with parameters from literature are shown grayshaded.
Coulombic sites are included in the force field optimization.

4.2 Force Field

4.2.1 Bonded Energy

Bonded energies are calculated using fixed bond lengths and harmonic potentials for de-

scribing angle bending while torsional angles are described through angle expansions, in

accordance to earlier work [229, 230]. For determining the appropriate force field pa-

rameters for 1-propanol, we performed quantum mechanical calculations using second

order Møller-Plesset perturbation theory [401, 402] (MP2) structure optimization using

a TZVPP basis set [403]. The calculations were conducted using the quantum chemistry
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program package TURBOMOLE [404]. The bond lengths between hydrogen, oxygen,

and the three carbon atoms were directly obtained from the structure optimization. An-

gle potentials and torsional potentials were determined by constraining angles to several

values.

4.2.2 Nonbonded Energy

The nonbonded potential energy between two interaction sites i and j located on different

molecules or located in the same molecule but separated by more than three bonds is

described by the Mie potential plus Coulombic interactions

uinter
ij = cijεij

[(
σij
rij

)nij
−
(
σij
rij

)mij]
+

qiqj
4πε0rij

(4.1)

where rij denotes the distance between the interaction sites, σij and εij are the size and

energy parameter characterizing the Mie interaction, and qi and ε0 are the partial atomic

charge and the vacuum permittivity, respectively. In the present work an interaction site

i can represent a united-atom group such as an aliphatic CH2 or CH3 group, respectively,

an oxygen atom or a hydrogen atom. The constant cij is chosen to enforce the minimum

of the Mie potential at a value of −εij. Depending on the choice of repulsive (nij) or

dispersive mij exponent the constant is defined as

cij =
nij

nij −mij

(
nij
mij

) mij
nij−mij

(4.2)

Throughout this work the dispersive exponent was set to mij = 6. The repulsive exponent

was earlier optimized to nii = 14 for both, aliphatic CH2 groups and for CH3 groups [229].

For oxygen, we here set the repulsive exponent to nii = 12. Note that the hydrogen atom

interacts exclusively through the Coulombic term as it is schematically shown in figure

4.1. Parameters for unlike interaction sites are determined using the Lorentz-Berthelot

combining rules [405, 406] for σij and εij and using an arithmetic mean for nij [397],

σij = (σii + σjj)/2 (4.3)

εij =
√
εiiεjj (4.4)

nij = (nii + njj)/2 (4.5)

Alternatively equation 4.1 can be expressed as

uinter
ij = A(σij, εij, nij)h(rij) + C(σij, εij,mij)g(rij) +

qiqj
4πε0

f(rij) (4.6)
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where h(rij) = r
−nij
ij , g(rij) = −r−mijij , and f(rij) = r−1

ij . The latter form of the interaction

potential energy is particularly convenient if used in the context of tabulated potentials.

4.2.3 Optimization of Force Field Parameters

The two parameters εii and σii defining the Mie potential of equation (4.1) are here defined

as effective pair potentials. These parameters should effectively correct for the simplicity

of the chosen molecular model (where the functional form of equation (4.1) is prescribed

and omitting higher-body interactions as well as static polarizability). The parameters εii

and σii are therefore commonly adjusted to experimental data. For 1-propanol, we adopt

the parameterization of the TAMie force field [229] for the Mie-sites of the CH2 group

(labeled C2 in figure 4.1) and for the CH3 group. The remaining force field parameters

are εii, σii, and qi for the hydrogen atom (label H1), the oxygen atom (label O2), and the

CH2 group (label C1) neighboring the alcohol-oxygen. In order to reduce the number of

degrees of freedom for optimizing force field parameters, we introduced two definitions:

first, the hydrogen atom is represented by a point charge only. The Mie potential of the

hydrogen atom is zero, by defining εH,H = 0. Secondly, the ratio of the point charge on the

alcohol-oxygen to the charge on the alcohol-hydrogen is set to qO/qH = −1.609. The value

is adopted from the OPLS force field [377–381]. The force field, as displayed in figure 4.1,

has three point charges. Defining the ratio qO/qH therefore also implicitly defines the ratio

qO/qCH2 for a molecule without net charge. Any value of qO then uniquely determines qH

and qCH2 so that the charges only contribute to a single degree of freedom.

Parameters σO,O, σCH2,CH2
, εO,O, εCH2,CH2

, and qO are degrees of freedom for the opti-

mization of the force field. The charge was varied along a grid of predefined values,

0.625 ≤ −qO ≤ 0.75 in steps of 0.025. Parameters εO,O and εCH2,CH2
are strongly corre-

lated and we optimized one of them in an automated algorithm, as detailed below, while

varying the other with fixed values of εO,O/εCH2,CH2
= 0.9, 1.0, 1.1, etc. Similarly param-

eters σO,O and σCH2,CH2
are highly correlated and we analyzed two fixed ratios between

them σO,O/σCH2,CH2
= 0.79 and 0.90, where the first value (0.79) was proposed for the

OPLS force field [377–381].

The optimization of εCH2,CH2
was automized. We use the analytic PC-SAFT equation

of state [313, 407] to approximate the results of molecular simulations, which allows

to approximate the objective function for varying force field parameters. Force field

parameters are mapped to molecular parameters defining the PC-SAFT model [408]. The

force field optimization with PC-SAFT only takes milliseconds of wall-clock time. Because

PC-SAFT can only approximate the true objective function, the procedure is iterative

requiring molecular simulations for a new evaluation of the actual objective function.

Convergence is achieved after few iterations. Hemmen and Gross slightly modified the

iterative procedure and showed that the converged result of this method are not altered
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by the analytic equation of state, i.e. the method converges to minimum of the actual

objective function [229].

The force field optimization minimizes the objective function

f(p) =
1

N exp

Nexp∑
n=1

(
Ωsim
n (p)− Ωexp

n

Ωexp
n

)2

(4.7)

with Ωsim
n and Ωexp

n as simulated and experimental observables, respectively, and with

N exp as the number of considered experimental data. Liquid density and vapor pressure

are used as observables, Ω ∈
{
ρL, psat

}
, with equal weight between them.

4.3 Computational Details

4.3.1 Monte Carlo Simulations

Monte Carlo simulations were performed in the grand canonical ensemble (GCMC) in

order to determine coexisting liquid densities and vapor pressures. The vapor-liquid phase

equilibrium properties are determined using histogram reweighting in a post-processing

step [409, 410]. In GCMC simulations the temperature T , volume V , and chemical

potential µ are defined, whereas the number of molecules fluctuates. We divide the

N -space into windows and trivially reject molecule insertions or removals outside the

assigned range of N -values in the considered window. The {T , µ}-conditions for each

window is chosen to approximately trace the vapor-liquid phase envelope, i.e. from vapor

phase conditions, via a condition close to the expected critical point towards liquid phase

conditions. We determine the {T , µ}-conditions using the analytic PC-SAFT equation

of state [230, 313]. A transition matrix sampling scheme [9, 10, 45, 411] is applied to

determine a bias potential on the fly, ensuring an approximately equal sampling of N

within each window. The simulations of all windows run independent from one another

(in parallel) and only require an N -overlap between two neighboring windows. Say, a

first window is defined for the N -range from 0 and 10, then the second window samples

between N = 10 and 20. Using the multiple ensemble technique [412] these windows

can be combined to a total histogram with well-sampled conditions close to the vapor-

liquid phase envelope. A detailed description of the simulation techniques can be found

in previous works [229, 230].

The volume of the simulation box was 40 000�A
3
, corresponding to about 330 molecules

for the highest densities. The probabilities for various Monte Carlo moves were defined as:

molecule insertion/deletion 40 %, translation and rotation 50 %, and particle reconfigura-

tion (regrowth) 10 %. The statistics of molecule insertion, deletion and reconfiguration is

improved by using a configurational biasing scheme [7, 413] with low number of configura-
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tional bias steps, nCBMC = 1, at low densities and nCBMC = 8 at high densities. The cut-off

radius is set to Rc = 14�A applying analytic tail corrections. The standard Ewald sum-

mation is used for the coulombic point charges, using a damping parameter α = 0.79/L

and the maximum number of k-vectors set to kmax = 9 in each direction. We conducted

GCMC simulations for N -windows of width ∆N = 10 at low densities and ∆N = 5 for

high densities. The simulation boxes are initially populated with molecules (with N as

the upper bound of the N -window) allowing only trial insertion moves and translation

and rotation moves. Subsequently, 6 million trial moves are conducted for equilibrating

the system. Sampling thermodynamic properties is done in 30 million production steps.

4.3.2 Molecular Dynamics Simulations

All MD simulations were performed under minimum image periodic boundary conditions

based on cubic computational boxes using the GROMACS 5.1.4 program package [108,

261, 263] with tabulated potentials [414] compiled in single precision. The equations of

motion were integrated using the leap frog scheme [265] with a time step of 2 fs. Short-

range electrostatic and Mie interactions were evaluated up to a cut-off radius rc. Because

GROMACS does not handle analytical tail corrections for interaction potentials with

mixed repulsive exponents a relatively large value of rc = 2.9 nm was chosen. This choice

was based on a comparison of the liquid density of 1-propanol at 298.15 K calculated with

rc = 2.9 nm and no tail correction to the density obtained with rc = 1.4 nm and the ap-

propriate tail correction as implemented in the DL-POLY code [415]. Both density values

agreed within 0.05 %. An additional comparison showed that self-diffusion coefficients for

rc = 2.9 nm are reaching an rc-independent value. In the present work the GROMACS

program package was selected due to availability of extensive analysis tools. Long-range

electrostatics were treated by the smooth particle-mesh Ewald (PME) summation [273,

274] with a PME-order of 4. All bond lengths were kept fixed using LINCS [267, 268] with

an order of 4. The number of iterations to correct for rotational lengthening in LINCS

was set to 6. The temperature was maintained close to its reference value by applica-

tion of the velocity-rescale thermostat [269], with a relaxation time of τT = 2.0 ps. The

pressure was kept close to its reference value of 1.0 bar using weak coupling [416] with a

relaxation time of τp = 2.0 ps and an isothermal compressibility of κT = 8.43× 10−5 bar−1

[417]. For all systems an energy minimization, followed by a constant-volume simulation

of 1 ns at the desired target temperature and a successive constant-pressure equilibration

of 1 ns at the desired target temperature were conducted prior to the actual production

simulation. The systems simulated in this work contain 1686 1-propanol molecules and

were either simulated in the NpT-ensemble or in the NVT-ensemble at 273.15 K, 293.15 K,

323.15 K and 360.15 K using starting configurations and average box volumes from the

NpT-ensemble production runs respectively, depending on the properties calculated.
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4.3.3 Trajectory Analysis

4.3.3.1 Shear Viscosity

The shear viscosity η was determined from the Green-Kubo expression [337, 338]

η =
V

kBT

∫ ∞
0

〈Pαβ(t)Pαβ(0)〉 dt (4.8)

where Pαβ(α, β ∈ x, y, z) are the pressure tensor components. Six independent shear com-

ponents 1/2 (Pxy + Pyx), 1/2 (Pyz + Pzy), 1/2 (Pxz + Pzx), 1/2 (Pxx − Pyy), 1/2 (Pyy − Pzz)
and 1/2 (Pxx − Pzz) are used to improve the statistics of each simulation. The three terms

including the diagonal pressure tensor entries (xx, yy and zz) are obtained by a 45° ro-

tation of the pressure tensor around all axis [339]. Correlation integrals
∫∞

0
〈...〉 dt are

calculated by a convolution in Fourier-space, according to Wiener-Khintchine theorem

[340, 341]. Trajectories for viscosity calculation were obtained from constant-volume sim-

ulations with 5 ns production and a 1 ns preceding equilibration time. The predetermined

volume was obtained using the average density from a previous constant-pressure simu-

lation at 1 bar and at the target temperature. The pressure tensor elements were stored

in the energy trajectory every 10 fs. To reduce statistical noise in the running integral of

equation 4.8, the viscosity calculation was averaged over a set of 100 independent sim-

ulations. Subsequently a double-exponential function ηfit(t) was fitted to the average of

the time-dependent running integral 〈η(t)〉 with four fitting parameters, namely η∞, α,

τ1 and τ2

ηfit(t)

η∞
=
ατ1

(
1− e−t/τ1

)
+ (1− α) τ2

(
1− e−t/τ2

)
ατ1 + (1− α) τ2

(4.9)

For larger times the residuals 〈η(ti)− ηfit(ti)〉 of the objective function are very noisy

and are thus damped by weighting to 1/tbi as described by Maginn et al [343]. In this

case the parameter b results from a previous power law fit to the standard deviation s(t)

which is time dependent. The first 2 ps of every individual run are not included in the

fitting process. The stationary plateau value of the double-exponential fit is defined as

η∞ and taken as zero shear rate viscosity η. The given errors equal the value of the time

dependent standard deviation s(t99) at the time t99 where the time dependent viscosity

ηfit(t) equals 99% of the zero shear rate viscosity.

4.3.3.2 Self-Diffusion Coefficients

The self-diffusion coefficient Dself, was calculated from a constant-pressure simulation as

the slope of a linear fit to the mean-square displacement of the molecules in the long-time

limit using the Einstein relation [344, 345]
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lim
t→∞

〈
(ri(τ + t)− ri(τ))2

〉
i,τ

= 6Dselft+ const. (4.10)

where ri is the current position of the center of mass of a molecule (following molecules

across periodic boundaries) and 〈...〉i,τ denotes averaging over all molecules i and time

origins τ . In this work, trajectory fragments of 5 ns were used for a least-squares fitting

to obtain a series of 10 diffusion coefficients from which a mean value as well as the

corresponding standard deviation was calculated. The correlation coefficients of the least-

square fitting R2 were at least 0.99 in all cases. Finite size effects were accounted for by

extrapolating Dself to infinite box size using the linear relation between Dself and the

inverse box length with the slope calculated from the shear viscosity, as proposed by Yeh

and Hummer [346]. In the results section of this work only corrected values are shown

while the uncorrected self-diffusion coefficients are listed in the supplementary material.

4.3.3.3 Solvation Free Energy

The calculation of the self-solvation free energy ∆Gsolv (or excess chemical potential)

relied on a step-wise decoupling of one 1-propanol molecule from its surrounding using

a scaling parameter λ, while retaining the intramolecular interactions. First, the elec-

trostatic interactions were gradually deactivated uing 8 equispaced λ-points, followed by

the deactivation of the Mie potential using 19 equispaced λ-points. The multistate Ben-

nett acceptance ratio (MBAR) approach [277] was used as an estimator to obtain the

free energy difference from the differences in the Hamiltonians between all states. The

self-solvation free energy can be connected to the saturated vapor pressure using [418]

psat = poML exp

(
∆Gsolv

RT

)
(4.11)

where po is the pressure of an ideal gas at 1 molar concentration (24.788 bar at 298.15 K),

ML is the molarity of the pure liquid, R is the ideal gas constant and T the temperature.

Assuming ideal gas behavior in the vapor phase this equation provides a convenient link

between a quantity easily accessible from Monte Carlo simulations (psat) and a quantity

easily accessible from molecular dynamics simulations (∆Gsolv). Especially if a direct com-

parison of the potential energy terms between different codes is ambiguous due to slightly

different implementation details, equation 4.11 can be used for validation in addition to

simple ensemble averages, such as liquid density in NpT-simulations.
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4.4 Results and Discussion

4.4.1 Force Field Optimization

The objective function for the optimization of force field parameters was based on static

properties, namely vapor pressure and liquid density according to equation (4.7), for tem-

peratures ranging from T/T c = 0.58 to 0.95, where T c denotes the experimental critical

temperature of 1-propanol. What motivated this study is the degeneracy of force field

parameters. Even after eliminating some degrees of freedom, the remaining parameters

σO,O, σCH2,CH2
, εO,O, εCH2,CH2

, and qO are correlated to an extent, that rather different

parameter combinations can all lead to very good results for the objective function. The

shallow optimum can be seen in figure 4.2 by varying σO,O (and thus σCH2,CH2
= σO,O/0.79)

and regarding the ratio of two Mie energy parameters as εO,O/εCH2,CH2
. Note that εO,O is

optimized for each point shown in figure 4.2. The digram illustrates that almost the same

absolute average deviations, with values well below 1%, can be obtained for varying values

of σO,O. Values of εO,O and εCH2,CH2
can thus compensate for varying σO,O-values, whereby

ratios εO,O/εCH2,CH2
greater than unity are found for one parametrization, whereas values

below unity are obtained for another parameterization. The observation in figure 4.2 also

implies that variations in εO,O/εCH2,CH2
can in turn be compensated by parameter σO,O.

For figure 4.3 we constrained the ratio εO,O/εCH2,CH2
to unity and varied qO. The other

parameters, σO,O, εO,O (and thus εCH2,CH2
) were optimized for each point. We defined the

size parameter of the CH2-group neighboring the hydroxyl oxygen one time as σCH2,CH2
=

σO,O/0.79, as proposed in the OPLS force field, and another time as σCH2,CH2
= σO,O/0.90.

Figure 4.3 shows that an optimal partial charge can rather clearly be identified, for each

of the two ratios σO,O/σCH2,CH2
. Regarding the ratio σO,O/σCH2,CH2

the objective function,

however, is shallow. For both values of this ratio one can find a suitable charge such that

the objective function has values well below 1 %. The charge takes on rather different

values, depending on the choice of σO,O/σCH2,CH2
.

atom set 1 set 2 set 3 set 4

H1 0.00000 0.00000 0.00000 0.00000
O1 0.30375 0.30250 0.32000 0.29500
C1 0.38450 0.38290 0.35560 0.37340
C2 0.40400 0.40400 0.40400 0.40400
C3 0.36034 0.36034 0.36034 0.36034

Table 4.1: Mie potential atom radius σi/nm for different parameter sets
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Figure 4.2: Absolute average deviation of molecular simulation results to quasi-
experimental data for vapor pressure data and liquid density [419] for three values of
σO,O and therewith σCH2,CH2

= σO,O/0.79.
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Figure 4.3: Absolute average deviation of molecular simulation results to quasi-
experimental data for vapor pressure data and liquid density [419] for a fixed ratio of
σO,O/σCH2,CH2

= 0.79 (solid circles) and for σO,O/σCH2,CH2
= 0.90 (open circles).

4.4.2 Force Field Assessment

In view of the shallow minimum of the objective function found in the previous section,

we studied four parameter sets for dynamic properties. The underlying hypothesis was

that transport properties might better discriminate between various force field param-

eterizations, that all lead to similar results for static properties. All four investigated

parameterizations lead to average errors below 1% AAD in vapor pressure and liquid den-
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atom set 1 set 2 set 3 set 4

H1 0.00 (0.0000) 0.00 (0.0000) 0.00 (0.0000) 0.00 (0.0000)
O1 680.84 (81.8860) 714.38 (85.9200) 654.87 (78.7620) 843.89 (101.4970)
C1 680.84 (81.8860) 649.44 (78.1090) 654.87 (78.7620) 649.15 (78.0750)
C2 439.95 (52.9133) 439.95 (52.9133) 439.95 (52.9133) 439.95 (52.9133)
C3 1133.41(136.3180) 1133.41 (136.3180) 1133.41 (136.3180) 1133.41 (136.3180)

Table 4.2: Mie potential depth εi/J mol−1 for different parameter sets, values in brackets
are in the unit of K.

atom set 1 set 2 set 3 set 4

H1 0.419 0.419 0.451 0.404
O1 -0.675 -0.675 -0.725 -0.650
C1 0.256 0.256 0.274 0.246
C2 0.000 0.000 0.000 0.000
C3 0.000 0.000 0.000 0.000

Table 4.3: Partial charges qi (given as factors of unit electron charge) for different param-
eter sets

sity data in the temperature range covered in the parameter optimization, see figure 4.4(a).

The chosen parameter sets are given in tables 4.1, 4.2, and 4.3.

In previous diagrams it was observed that the selected static properties are not sufficiently

sensitive to ratio εO,O/εCH2,CH2
(figure 4.2) or to ratio σO,O/σCH2,CH2

(figure 4.3). We

selected two pairs of parameterizations where these ratios differ. Parameter set 1 and

set 2 have different ratios εO,O/εCH2,CH2
, whereas set 1 and set 3 differ in σO,O/σCH2,CH2

.

Parameter set 1 and 3 correspond to the two points with lowest AAD-values in figure 4.3.

Because parameter sets 1 and 2 were selected with same charge, we chose another pair,

namely set 1 and set 4, with more difference in ratio εO,O/εCH2,CH2
leading also to different

charges.

These parameterizations are in the following analyzed for transport properties and for

extrapolations to liquid densities at temperature below the range covered by the training

data (in equation (4.7)).
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4.4.2.1 Liquid Density
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Figure 4.4: Liquid density ρL as function of temperature T for two different temperature
ranges. (a) ρL at VLE conditions obtained from GCMC simulations. Experimental data
are represented by the DIPPR correlation [419]. (b) ρL obtained from MD simulations
at 1 bar. Experimental data are from various sources [420–450]. Error bars are within
line-width and equal one standard deviation.

Figure 4.4 shows the liquid density ρL of all four parameter sets. In subfigure 4.4b, we

compare simulated densities to experimental values below 350.15 K, i.e. at temperatures

below the temperature range covered during parameter optimization. The results at lower

temperature were obtained from MD simulations. We note that GCMC simulations,

shown in figure 4.4a, lead to accurate values for vapor pressure, whereas liquid density

data is obtained with substantial uncertainty. The low temperatures reveal differences in

parameter set 4 from the other three sets, with much weaker agreement to experimental

data. Sets 1 and 2 are in equal agreement with experiment while set 3 shows somewhat

too large densities.
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4.4.2.2 Shear Viscosity

Figure 4.5 shows simulated and experimental [451–490] shear viscosities η in the temper-

ature range from 273.15 K to 350.15 K. All four parameter sets underestimate the shear

viscosity while parameter set 1 and 2 are not distinguishable and show the lowest deviation

to experiments. Set 3 has the highest deviations to experimental data and underestimates

viscosity by about 50 % at lower temperatures. These results show that parameter sets

leading to comparable densities can lead to very different behaviors in dynamic properties.

Furthermore it is possible that parameter sets with comparable dynamic properties lead

to different liquid densities, as shown in figure 4.4(b). Regarding quantitative agreement

with experimental data we note that beside non-optimal nonbonded Mie parameters and

partial atomic charges also degrees of freedom that are not accounted for in the present

model (hydrogen atoms in aliphatic groups and bond vibrations) might have an influence.

For water it was shown that fully flexible models cover the temperature dependence of

the viscosity better compared to rigid models [491, 492], while for alkanes improvements

could be achieved by an explicit description of hydrogen atoms [493].
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Figure 4.5: Shear viscosity η as function of temperature T . Error bars equal a confidence
interval of 99 %.
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4.4.2.3 Self-Diffusion Coefficient

Figure 4.6 shows simulated and experimental [363, 451, 494–498] self-diffusion coefficient

Dself in the temperature range from 273.15 K to 350.15 K. Consistent with the underes-

timation of the shear viscosity the self diffusion coefficient Dself is overestimated by all

force fields with set 1 and 2 being closest to the experimental data. The self-diffusion

coefficient is known to be rather sensitive to small changes in the distribution of atomic

partial charges [499]. It is therefore not surprising that set 3 shows a larger deviation

from sets 1 and 2 than set 4 because the partial charges of set 4 are closer to those from

set 1 and 2.
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Figure 4.6: Coefficient of self-diffusion Dself as function of temperature T . Error bars are
within symbol size.
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4.4.2.4 Solvation Free Energy

The free energies of self-solvation are reported in table 4.4. The small differences they

show are becoming more significant when translated to saturation vapor pressures via

equation 4.11. Here set 1 shows the best agreement with experiment while set 4 has the

highest deviation. As shown in figure 4.7 the Monte Carlos results for set 1 approach the

molecular dynamic results showing compatibility between the two simulation methods.

Note that precise values of psat need a very high accuracy in ∆Gsolv. For this reason we

do not recommend to optimize force fields based on psat determined from ∆Gsolv values.

∆Gsolv/kJ mol−1 psat/mbar

exp. data −23.22± 0.23 28.307 (27.897 +)
set 1 −23.38± 0.11 26.662
set 2 −23.57± 0.11 24.770
set 3 −23.68± 0.10 23.869
set 4 −23.97± 0.30 21.790

Table 4.4: Solvation free energy of solvation and saturation vapor pressure at 298.15 K for
four different parameter set. Vapour pressures are calculated from solvation free energies
according to equation 4.11. Experimental data are taken from [372]. Errors of simulation
results equal one standard deviation. +: Saturation vapor pressure interpolated from
DIPPR correlation [419].
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Figure 4.7: Deviation of calculated saturation vapor pressure from quasi-experimental
data [419]. Dots represent MC simulation results while square is representing MD simu-
lation results.

92



4.5 Conclusion

Parameters of classical force fields are known to be highly correlated for the description

of static thermodynamic properties, such as vapor pressure and liquid densities. We in-

vestigate the hypothesis that transport properties, like shear viscosity or self diffusion

coefficient, can be used to better decouple force field parameters. We adjusted force field

parameters for 1-propanol, where united-atom sites are described through Mie poten-

tials and point charges. Four models for were selected that gave about the same level

of agreement with experimental liquid densities and vapor pressures. Shear viscosity

and self-diffusion coefficients were evaluated with the aim to discriminate the models.

However, the degeneracy of force field parameters observed in the static properties was

also observed in the dynamic properties. We conclude that meaningful parameterizations

for transferable force fields should simultaneously consider several molecules from a ho-

mologous series in order to define a less degenerate optimization problem. Within this

optimization procedure it might be necessary to relax the fixed ratios of partial charges

and σ, used in this work, as a degree of freedom.
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Chapter 5

Transferable Anisotropic

Mie-Potential Force Field for

n-Alcohols: Static and Dynamic

Fluid Properties of Pure Substances

and Binary Mixtures

The content of this chapter is a literal quote of the publication

J. Baz, N. Hansen and J. Gross, Ind. Eng. Chem. Res, submitted September 24, 2019,

published in a slightly modified form (vol. 59, pp. 919-929, 2020)

Abstract

This study extends the Transferable Anisotropic Mie potential (TAMie) to 1-alcohols.

Force field parameters are adjusted by minimizing squared deviations of calculated vapor

pressures and liquid densities from experimental data of 1-propanol, 1-butanol, and 1-

pentanol. The force field leads to small average absolute deviations of 1 % in vapor

pressures and 0.6 % in liquid densities for temperature ranges of 0.58 ≤ T/TCexp ≤ 0.96,

relative to experimental critical temperatures. The force field is transferable to higher 1-

alcohols, as shown for 1-hexanol to 1-octanol. Individual parameter sets are provided for

methanol and ethanol, respectively. Dynamic properties, such as shear viscosity and self-

diffusion coefficients of pure substances are predicted with fair agreement to experimental

data, considering that no dynamic property has entered the parameterization. Further,

the phase behavior of binary mixtures of primary alcohols with alkanes is studied and

predictions of the TAMie model are found in very good agreement to experimental data.
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5.1 Introduction

Classical transferable force fields allow predicting thermodynamic properties of fluids in

engineering applications. The challenge in force field parametrization is to find a good

compromise between transferability of parameters and accuracy over a broad range of

thermodynamic state points.

Structural and thermophysical properties of short chain alcohols have been studied when

developing the optimized potential for liquid simulations (OPLS) force field, adjusting

parameters to experimental enthalpies of vaporization and liquid density data near ambi-

ent conditions [377–382, 500]. With the advent of phase equilibrium calculations, a rich

set of experimental data became accessible for force field optimization. Phase equilibria

are of particular interest in chemical engineering applications, because they are the ba-

sis to separation processes and they determine reaction systems and safety aspects. A

prominent force field for correlating and predicting vapor liquid equilibria is the transfer-

able potential for phase equilibria (TraPPE) which is parameterized for many chemical

groups including alcohols [48, 383, 385–388]. TraPPE employs the same functional form

as OPLS, i.e. Lennard-Jones pair potentials plus fixed point charges as well as fixed bond

lengths. Both force fields support all-atom and united-atom variants. A united-atom force

field does not assign Lennard-Jones interaction sites for non-polar hydrogen atoms, but

considers certain heavy atoms and their neighboring hydrogen atoms as a single Lennard-

Jones interaction site. An aliphatic methyl group, CH3, is a common example. TraPPE

was developed with emphasis placed on liquid densities and bubble point temperatures.

The model gives excellent results for T -ρ-projections with good results also for the critical

temperature, but it has weaknesses in describing vapor pressures [229, 389]. The NERD

force field is a united-atom model but includes bond stretching [501]. The homologous

series of primary alcohols from ethanol to 1-octanol was described with transferable pa-

rameters based on an optimization carried out for 1-pentanol [502]. In contrast to TraPPE

a separate set of parameters is used for methanol. The hydrogen atom of the hydroxyl

group in the NERD force field carries Lennard-Jones parameters, in contrast to TraPPE,

OPLS [380] and alcohol models from the groups of Vrabec and Hasse [503, 504].

With a united-atom model based on Lennard-Jones interactions, it is not possible to ob-

tain both, a good description of phase equilibria in temperature projections as well as

the vapor pressure [229, 384]. For good results for both projections, additional degrees

of freedom were introduced to increase the number of adjustable parameters. For the

Lennard-Jones potential the number of parameters per interaction site is two. The Buck-

ingham potential uses three parameters per interaction site and leads to good agreement

to experimental data [389]. Anisotropic models change the position of the interaction

site of aliphatic compounds to account for the included hydrogen atoms [390–396]. The
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distance, a united-atom interaction site is shifted from the position of the heavy atom is

an additional degree of freedom and thus an adjustable parameter.

Mie potentials, where the repulsive exponent (m = 12 for Lennard Jones potentials) is

treated as an adjustable parameter, were used by Potoff, Brunel and coworkers [397–400].

Their force-field gave excellent agreement to static properties of pure components. A

model describing molecules as Mie interaction sites together with partial point charges

combined with an anisotropic contribution was developed in our group. This Transferable

Anisotropic Mie (TAMie) force field was parameterized using a well-defined objective func-

tion which considers vapor pressure and liquid density of different species simultaneously

[229–232].

One of the main challenges when optimizing force field parameters is rigorously minimizing

a suitably chosen objective function, which is demanding because force field parameters

are highly correlated. Earlier studies concerning dimethyl ether [230, 376] have shown that

the optimum in the considered objective function is shallow, i.e. the force-field parameters

are correlated to an extent where they are almost degenerate. A preceding study to the

present work analyses whether transport properties can be used to discriminate different

sets of force field parameter that are all approximately equal concerning the objective

function (based on static phase equilibrium properties) [505]. For 1-propanol we showed

that the degeneracy in force field parameter seen for static properties, also persists for

dynamic properties.

This study proposes transferable force field parameters for primary alcohols as an exten-

sion to the TAMie force field. The parameter optimization is performed by minimizing an

objective function of squared deviations between vapor pressure data and coexisting liq-

uid densities towards experimental values. Three substances are thereby simultaneously

considered, namely 1-propanol, 1-butanol and 1-pentanol. The transferability of the force

field is then assessed by applying the model to phase equilibrium properties for the ho-

mologous series of n-alcohols up to 1-octanol. Individualized force field parameters are

proposed for methanol (MeOH) and for ethanol (EtOH). We evaluate dynamic properties

for all substances and compare results to experimental data and to results from other

force fields. Properties of binary mixtures containing n-alcohols together with alkanes are

regarded to assess the predictive power of the proposed force field.

5.2 Force Field

This study is based on a united-atom model, where hydrogen atoms are not individually

resolved as Lennard-Jones interaction sites, but are grouped with a neighboring larger

atoms as an effective interaction site. For hydrogen atoms with pronounced partial charge,

however, such as in a hydroxyl-group (-OH), the hydrogen may very well be considered
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as an individual interaction site. Figure 5.1 gives a schematic representation of van der

Waals (Mie) interaction sites and of the coulombic (fixed point charge) sites.

Figure 5.1: Molecular structure of n-alcohols, illustrating site names and schematic po-
sitioning of Mie sites and Coulombic sites. n = 1 equals the molecular structure of
1-propanol, while n = 6 describes 1-octanol. Sites with optimized force field parameters
are colored green, whereas sites with parameters from literature are shown gray-shaded.
Coulombic sites are included in the force field optimization.

5.2.1 Bonded Energy

The proposed force field uses fixed bond lengths between interaction sites and harmonic

potentials for describing bond angle bending as described in tables 5.1 and 5.2. The

parameters are based on quantum mechanical structure optimizations on the MP2 [401,

402] level of theory. The torsional potential is described by a cosine series as shown in

table 5.3.

5.2.2 Nonbonded Energy

The TAMie force field is based on the Mie potential plus fixed Coulombic interactions

to describe the nonbonded potential energy between two interaction sites i and j located

on different molecules or located in the same molecule but separated by more than three

bonds,

uinter
ij = cijεij

[(
σij
rij

)nij
−
(
σij
rij

)mij]
+

qiqj
4πε0rij

(5.1)

where rij denotes the distance between the interaction sites, σij and εij are the size and

energy parameter characterizing the Mie interaction, and qi and ε0 are the partial atomic

charge, expressed as a (negative) factor of an electron charge, and the vacuum permittivity,
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i j bond length / nm

methanol H Oalc. 0.0970
Oalc. CH3,alc. 0.1620

ethanol H Oalc. 0.0970
Oalc. CH2,alc. 0.1420
CH2,alc. CH3 0.1714

other H Oalc. 0.0945
n-alcohols Oalc. CH2,alc. 0.1420

CH2,alc. CH2 0.1514
CH2 CH2 0.1540
CH2 CH3 0.1714

Table 5.1: Bond lengths between atoms i and j.

i j k bond angle θ0ijk / ° force constant kθijk / kJ/mol/rad2

methanol H Oalc. CH3,alc. 107.40 382.13268

ethanol H Oalc. CH2,alc. 107.40 382.13268
Oalc. CH2,alc. CH3 113.50 517.57527

other H Oalc. CH2,alc. 107.40 382.13268
n-alcohols Oalc. CH2,alc. CH2 113.50 517.57527

CH2,alc. CH2 CH3 114.00 519.65388
CH2 CH2 CH3 114.00 519.65388

Table 5.2: Equilibrium bending angles θ0
ijk and force constants kθijk between atoms

i, j and k used to describe the angle bending potential according to Ubend(θijk) =
1
2
kθijk

(
θijk − θ0

ijk

)2
.

respectively. In the present work an interaction site i can represent a united-atom group

such as an aliphatic CH2 or CH3 group, respectively, an oxygen atom or a hydrogen atom.

By defining the constant cij as

cij =
nij

nij −mij

(
nij
mij

) mij
nij−mij

(5.2)

the minimum of the Mie potential is enforced at a value of −εij. In accordance to previous

work [505] the attractive exponent was set to mij = 6 for all interaction sites carrying

Mie parameters while the repulsive exponent was set to nii = 14 for the aliphatic CH2,

the alcoholic CH2, alc. and the CH3 groups and nii = 12 for oxygen. Parameters for unlike

interaction sites were determined using the Lorentz-Berthelot combining rules [405, 406]

for σij and εij and using an arithmetic mean for nij [397] according to
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i j k l φs / ° force constant kφ,C(i) / kJ mol−1 n

H Oalc. CH2,alc. CHx 0.00 -1.53809 0
H Oalc. CH2,alc. CHx 0.00 0.68179 1
H Oalc. CH2,alc. CHx 180.00 0.30672 2
H Oalc. CH2,alc. CHx 0.00 2.52635 3

Oalc. CH2,alc. CH2 CHx 0.00 0.00000 0
Oalc. CH2,alc. CH2 CHx 0.00 1.71652 1
Oalc. CH2,alc. CH2 CHx 180.00 -1.85047 2
Oalc. CH2,alc. CH2 CHx 0.0 9.02186 3

CH2,alc. CH2 CH2 CHx 0.00 0.00000 0
CH2,alc. CH2 CH2 CHx 0.00 1.71652 1
CH2,alc. CH2 CH2 CHx 180.00 -1.85047 2
CH2,alc. CH2 CH2 CHx 0.0 9.02186 3

Table 5.3: Phase shift φs, force constant kφ,C(i) and multiplicities n used to describe
the torsional potential energy between atoms i, j, k and l according to Utorsion(φijkl) =∑

C(i) kφ,C(i) (1 + cos(nφ− φs)). Index x is a generic symbol which can be 2 for CH2 or 3
for CH3-groups.

σij = (σii + σjj)/2 (5.3)

εij =
√
εiiεjj (5.4)

nij = (nii + njj)/2 (5.5)

The cut-off radius for the Mie potential is defined as rc = 1.4 nm and we apply analytic

tail corrections.

5.2.3 Optimization of Force Field Parameters

The TAMie force field is parameterized by minimizing a well-defined objective function.

The objective function is defined as squared deviations in calculated vapor pressure and

liquid densities to experimental data, according to

f(p) =
1

N exp

Nexp∑
n=1

(
Ωsim
n (p)− Ωexp

n

Ωexp
n

)2

(5.6)

with Ωsim
n and Ωexp

n as simulated and experimental properties, respectively, and N exp as

the overall number of experimental data points. Liquid densities and vapor pressures

are considered as properties in the objective function, Ω ∈
{
ρL, psat

}
, with equal weight

between them. Several substances are simultaneously considered in the objective function,
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namely 1-propanol, 1-butanol, and 1-pentanol, covering a temperature range of 0.58 ≤
T/T cexp ≤ 0.96 in ∆T -increments of 10 K, where T cexp denotes the experimental critical

temperature. Capturing several substances simultaneously in the optimization procedure,

ensures a balanced compromise in the resulting force field parameters.

The united-atom fixed point-charge model using a Mie potential has several degrees of

freedom: Mie parameters of the hydroxyl-hydrogen (εii, σii, nii for i = H(alc.)), of the

hydroxyl-oxygen (εii, σii, nii for i = O(alc.)), and of the CH2-group neighboring the

hydroxyl-group (εii, σii, nii for i = CH2(alc.)). We assume the hydroxyl-group does not

affect the (effective pair-wise) van der Waals potential of the CH2 or CH3 groups beyond

the first, neighboring CH2 group. Further, 1-alcohols are here defined through 3 point

charges, two of which are degrees of freedom (qi for i = H(alc.) and for i = O(alc.), whereas

the last charge (qi for i = CH2(alc.)) is obtained from enforcing charge neutrality.

In order to avoid too highly correlated parameters (and too high dimensionality of the

optimization problem), we eliminated some of these degrees of freedom through the fol-

lowing definitions: We defined εii = 0 for the hydroxyl-hydrogen (i = H(alc.)), as earlier

proposed for other united-atom force fields [48, 377, 506]. That makes parameters σii and

nii of the same Mie group obsolete and leads to the hydrogen atom defined only through

a positive fixed point charge. Further, we defined εO,O/εCH2CH2 = 1, i.e. the hydroxyl-

oxygen and the CH2-group neighboring the hydroxyl-group are assigned the same Mie

energy parameter. The ratio of Mie-size parameters is σOO/σCH2CH2 = 0.79 as suggested

for the OPLS-UA force field for ethanol [377–381]. For the hydroxyl-oxygen we define

nOO = 12. In an initial study we have used other values than 12 for the repulsive expo-

nent of this group and found no significant advantage. Lastly, the ratio of charges between

the hydroxyl-oxygen and the hydroxyl-hydrogen is defined as qO/qH = −1.609 following

OPLS-UA force field for ethanol.

These definitions leave three degrees of freedom for the parameter optimization: εii and

σii, qi of the hydroxyl-oxygen i = O(alc.). The two definitions (described in the preceding

paragraph), we felt most uncertain about, were the defined ratio εOO/εCH2,CH2 = 1 and

the ratio σOO/σCH2,CH2 = 0.79. In our earlier work regarding only 1-propanol [505], we

had varied both of these ratios and observed that after optimizing all other degrees of

freedom, the results were very close to the obtained results with the original ratios. The

similar results were found for the objective function as well as for predictions of transport

properties that were not used in the objective function [505].

Parameter εii of the hydroxyl-oxygen i = O(alc.) was optimized using the analytic PC-

SAFT equation of state [313, 407], whereas parameter σii and qi of the hydroxyl-oxygen i =

O(alc.) were varied along a grid of predefined values. The PC-SAFT model approximates

the objective function analytically and leads to swift convergence along the εii-parameter

[229, 408]. The PC-SAFT model is only approximate, which is why the procedure is
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iterative. At converged conditions, however, the approximate nature of the analytic model

does not alter the objective function so that the problem converges to the true minimum

[229].

Methanol has no CH2(alc.)-group, like all other 1-alcohols. Methanol is parametrized

individually in this work and we adjusted the Mie parameters of the hydroxyl oxygen as

well as the negative partial charge on the oxygen, qO. Mie parameters of the methyl-group

were taken from alkanes and the ratio of positive partial charge on the hydroxyl-hydrogen

to the charge on the oxygen, qH/qO, was taken from the OPLS force field. The methyl-

group carries the remaining charge-neutralizing positive partial charge.

# atom
σii,set 1-prop. / σii,TAMie / εii,set 1-prop. / εii,TAMie / qi qi nii

nm nm Jmol−1 Jmol−1 set 1-prop. TAMie

MeOH 1 HMeOH - 0.00000 - 0.00 (0.00) - 0.413 -
2 OMeOH - 0.30850 - 814.89 (98.01) - -0.664 12
3* CH3,MeOH - 0.36034 - 1133.41(136.318) - 0.251 14

EtOH 1 HEtOH - 0.00000 - 0.00 (0.00) - 0.413 -
2 OEtOH - 0.30800 - 631.95 (77.06) - -0.664 12
3 CH2,EtOH - 0.38990 - 631.95 (77.06) - 0.251 14
4* CH3 - 0.36034 - 1133.41(136.318) - 0.000 14

alcohols 1 Halc. 0.00000 0.00000 0.00 (0.000) 0.00 (0.000) 0.419 0.404 -
2 Oalc. 0.30375 0.30350 680.84 (81.886) 700.33 (84.230) -0.675 -0.650 12
3 CH2,alc. 0.38450 0.38420 680.84 (81.886) 700.33 (84.230) 0.256 0.246 14
4* CH2 0.40400 0.40400 439.95 (52.9133) 439.95 (52.9133) 0.000 0.000 14
5* CH3 0.36034 0.36034 1133.41(136.318) 1133.41 (136.318) 0.000 0.000 14

* The Mie parameters of these united-atom sites are taken from n-alkanes and thus are no degrees of freedom.

Table 5.4: Mie potential parameters σii, εii, nii as well as partial charges qi for different
parameter sets. Label ‘set 1-prop.’ indicates a parameter set that was obtained in a pre-
ceding study where the parameters were only adjusted to 1-propanol[505]. Label ‘TAMie’
describes the TAMie force field, optimized for three different 1-alcohols simultaneously.
Values given in brackets are energy parameters in the unit Kelvin.

5.3 Simulation Details

5.3.1 Monte Carlo Simulations

Phase equilibrium properties were determined from Monte Carlo simulations in the grand

canonical ensemble (GCMC) using the histogram reweighting technique [409, 410]. In

GCMC simulations the chemical potential µ, temperature T , and volume V are defined

quantities, whereas the system energy and the number of molecules N fluctuate. For pure

substances, we use a fixed value of V and define twelve value-pairs {µ, T} for conditions

that approximately trace the phase envelope, from vapor conditions, via a condition close

to the critical point, to liquid-phase conditions [230]. The {µ, T}-pairs are determined

from the analytic PC-SAFT equation of state [313]. For this simulation approach it is

sufficient to have good estimates for {µ, T}-pairs along the actual phase coexisting condi-

tions, because the chemical potential and temperature are varied in histogram reweighting

in a post-processing step to find the phase equilibrium points of the considered force-field.
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We divide the N -space into windows of ∆N = 10 at low and moderate densities, and

use ∆N = 5 at high density conditions. A GCMC-simulation is assigned to any of the

N -windows, and they can all run independent of one another in parallel[230]. If we con-

sider a simulation, say the GCMC-simulation assigned to the N -window 200 ≤ N ≤ 210,

then any MC trial-move for inserting a molecule at N = 210 or trial-move for deleting a

molecule at N = 200 will trivially be rejected [230, 507]. Further, within each window

we ensure even sampling of N -space by using transition-matrix sampling [9, 10, 45, 411],

building a bias-potential on the fly. All windows can be combined using the multiple

ensemble technique [412] for the post-processing histogram reweighting step. A detailed

description of the simulation technique is given in previous works [229, 230].

Simulations were conducted with volume 30 nm3 for methanol, 40 nm3 for ethanol, propanol,

and 1-butanol, 50 nm3 for 1-pentanol and 1-hexanol, 80 nm3 for 1-heptanol and 1-octanol.

For pure substances we used the following Monte Carlo trial moves: translation and rota-

tion 50 %, molecule insertion/deletion 40 %, and particle reconfiguration (regrowth) 10 %.

We apply the configurational biasing technique [7, 413] to increase the probabilities of

molecular insertion, deletion, and reconfiguration trial moves. The number of configura-

tional bias steps is defined as nCBMC = 1 for low densities, up to nCBMC = 8 for high

densities. The regular Ewald summation is applied for the Coulombic point charges, with

a damping parameter α = 0.79/L and with the maximum number of k-vectors set to

kmax = 9 in all directions. We conducted GCMC simulations for N -windows of width

∆N = 10 at low densities and ∆N = 5 for high densities. The simulation boxes are

initially populated with molecules (with N as the upper bound of the N -window) al-

lowing only trial insertion moves and translation and rotation moves. Subsequently, 8

million trial moves are conducted for equilibrating the system. Sampling thermodynamic

properties is done in 50 million production steps.

Because the hydrogen-atom is represented as a charge without a ‘protecting’ Mie po-

tential, one has to take measures to prevent unphysical configurations close to a charge

catastrophe. Such configurations can occur (mainly in Monte-Carlo simulations) when

a hydroxyl-oxygen is placed in very close vicinity to a hydroxyl-hydrogen. The oxygen-

oxygen Mie potential is for a very close approach of the charges not sufficiently repulsive,

making artificial (and highly stable) configurations possible. We use a criterion on the

Mie potential to avoid such configurations. When the Mie potential is more repulsive than

uMie
ij /(kBT ) > 200, we trivially reject the considered configuration. That is equivalent to

a hard-sphere interaction between oxygen-sites, with a hard-sphere repulsion at about

0.196 nm for T = 300K.
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5.3.2 Molecular Dynamics Simulations

All MD simulations were performed under minimum image periodic boundary conditions

based on cubic computational boxes using the GROMACS 2016 program package [108,

261–263, 333–336, 508] with tabulated potentials [414] compiled in single precision. Short-

range electrostatic and Mie interactions were evaluated up to a cut-off radius rc. Because

GROMACS does not handle analytical tail corrections for interaction potentials with

mixed repulsive exponents a relatively large value of rc = 2.9 nm was chosen for MD

simulations, as detailed in previous work [505]. Long-range electrostatic interactions were

treated by the smooth particle-mesh Ewald (PME) summation [273, 274] with a PME

order of 4. The equations of motion were integrated using the leap frog scheme [265]

with a time step of 1 fs. All bond lengths were kept fixed using LINCS [267, 268] with

an order of 4. The number of iterations to correct for rotational lengthening in LINCS

was set to 6. The temperature was maintained close to its reference value using the

velocity-rescale thermostat [269], with a relaxation time of τT = 2.0 ps. The pressure was

kept close to its reference value of 1 bar using weak coupling [416] with a relaxation time

of τp = 2.0 ps and an isothermal compressibility of κT = 8.43× 10−5 bar−1 [417]. For

all systems an energy minimization, followed by a constant-volume simulation of 1 ns at

the desired target temperature and a successive constant-pressure equilibration of 1 ns at

the desired target temperature were conducted prior to the actual production simulation.

The systems simulated in this work contain 1500 n-alcohol molecules and were either

simulated in the NpT -ensemble or in the NV T -ensemble at different temperatures using

starting configurations and average box volumes from the NpT -ensemble production runs

at a simulation time of 8 ns, depending on the properties calculated.

5.3.3 Trajectory Analysis

5.3.3.1 Shear Viscosiy

The shear viscosity η was determined from the Green-Kubo expression [337, 338]

η =
V

kBT

∫ ∞
0

〈Pαβ(t)Pαβ(0)〉 dt (5.7)

where t is time and Pαβ(α, β ∈ x, y, z) are elements of the pressure tensor. Six indepen-

dent shear components 1/2 (Pxy + Pyx), 1/2 (Pyz + Pzy), 1/2 (Pxz + Pyz), 1/2 (Pxx − Pyy),
1/2 (Pyy − Pzz) and 1/2 (Pxx − Pzz) are used to improve the statistics of each simula-

tion. The three terms including the diagonal pressure tensor entries (xx, yy and zz)

are obtained by a 45° rotation of the pressure tensor around all axis [339]. Correla-

tion integrals
∫∞

0
〈...〉 dt are calculated by a convolution in Fourier-space, according to

Wiener-Khintchine theorem [340, 341]. Trajectories for viscosity calculation were obtained
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from constant-volume simulations with 1 ns production and a 1 ns preceding equilibration

time. The predetermined volume was obtained using the average density from a previous

constant-pressure simulation at 1 bar and at the target temperature. The pressure tensor

elements were stored in the energy trajectory every 10 fs. To reduce statistical noise in the

running integral of equation 5.7, the viscosity calculation was averaged over a set of 100

independent simulations. Subsequently a double-exponential function ηfit(t) was fitted to

the average of the time-dependent running integral 〈η(t)〉 [343], as

ηfit(t)

η∞
=
ατ1

(
1− e−t/τ1

)
+ (1− α) τ2

(
1− e−t/τ2

)
ατ1 + (1− α) τ2

(5.8)

with η∞, α, τ1 and τ2 as adjustable parameters. For larger times the residuals 〈η(ti)− ηfit(ti)〉
of the target function are noisy and are thus assigned an increasingly low weight 1/tbi as

proposed by Maginn et al [343]. Parameter b of the weighting function is obtained from a

previous power-law fit to the standard deviation s(t) which is time dependent. The first

2 ps of every individual run are not included in the fitting process, because the double-

exponential function, equation (5.8), is only intended for the long-time correlation. The

stationary plateau value of the double-exponential fit is defined as η∞ and is interpreted

as zero shear rate viscosity η. The given errors equal the value of the time dependent

standard deviation s(t99) at the time t99 where the time dependent viscosity ηfit(t) equals

99% of the zero shear rate viscosity.

5.3.3.2 Self-Diffusion Coefficient

The self-diffusion coefficient Dself, was calculated from a constant-pressure simulation as

the slope of a linear fit to the mean-square displacement of the molecules in the long-time

limit using the Einstein relation [344, 345]

lim
t→∞

〈
(ri(τ + t)− ri(τ))2

〉
i,τ

= 6Dselft+ const. (5.9)

where ri is the current position of the center of mass of a molecule (following molecules

across periodic boundaries) and 〈...〉i,τ denotes averaging over all molecules i and time

origins τ . In this work, trajectory fragments of 5 ns were used for a least-squares fitting

to obtain a series of 10 diffusion coefficients from which a mean value as well as the

corresponding standard deviation was calculated. The correlation coefficients of the least-

square fitting R2 were at least 0.99 in all cases. Finite size effects were accounted for by

extrapolating Dself to infinite box size using the linear relation between Dself and the

inverse box length with the slope calculated from the shear viscosity, as proposed by Yeh

and Hummer [346]. In the results section of this work only corrected values are shown

while the uncorrected self-diffusion coefficients are listed in the supplementary material.
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5.4 Results and Discussion

This section presents results for vapor pressures psat and (coexisting) liquid densities ρL as

static thermodynamic properties as well as shear viscosities η and self-diffusion coefficients

Dself as dynamic properties of pure 1-alcohols. Results of MC and MD simulations are

compared to experimental data. Further, results for binary mixtures of alcohols with

alkanes are shown.

5.4.1 Static Pure Component Properties

Force field parameters for methanol and ethanol were individually optimized. The trans-

ferability of force field parameters to the lowest constituents of a homologous family is

often rather poor. Individualized force fields of course lead to rather good agreement to

experimental data of the objective function, which is desirable for methanol and ethanol

because of their importance in engineering applications.

The TAMie force field for methanol leads to mean absolute deviations of 0.3 % in vapor

pressure and 0.4 % in coexisting liquid density, in the temperature-range 0.66 ≤ T/TCexp ≤
0.98.

For ethanol, we adjusted the same type of force field parameters as for the other (higher)

alcohols. For ethanol we find mean absolute deviations of 0.9 % in vapor pressure and

0.4 % in coexisting liquid density in the temperature range 0.62 ≤ T/TCexp ≤ 0.97. Results

for coexisting densities of methanol and ethanol are illustrated in figure 5.2, with good

agreement of the simulation results to experimental data.
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Figure 5.2: Coexisting densities of methanol and ethanol. Ethanol is shifted upward by
200 kg m−3 for clarity. Comparison of correlation results from the TAMie force field to
quasi-experimental data [419, 509].
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Figure 5.3 (a) compares vapor-liquid coexisting densities of 1-pentanol as determined

from the developed force field to experimental data. 1-Pentanol was considered in the

objective function (within the set of three 1-alcohols) for the force field optimization. The

temperature range of the diagram corresponds approximately to the temperature range

used for the force field parameterization (0.58 ≤ T/T cexp ≤ 0.96). The critical point from

molecular simulations is not corrected for finite size effects. Results of the TAMie force

field are in good agreement with experimental data for the entire temperature range.

Experimental data shown in the following figures concerning phase equilibria conditions

are quasi-experimental data obtained from empirical correlations provided by DIPPR

[419]. For all substances considered in this work, we find deviations of calculated coexisting

densities from the TAMie force field compared to experimental data below 1 %. Figure 5.3

(b) shows liquid densities at p = 1 bar at temperature-values below the range used for

parameter optimization. These results were obtained from MD simulations. One observes

somewhat higher average deviations for these lower temperatures. Both diagrams, (a) and

(b), show that the force field previously optimized for 1-propanol [505] performs similar

to the optimized TAMie force field.

Figure 5.4 is analogous to figure 5.3 but now for 1-heptanol, as a substance that was

not part of the objective function for optimizing the TAMie force field. Results from

molecular simulations of 1-heptanol are in good agreement to experimental data with

average deviations that are comparable to the results earlier obtained for 1-pentanol.

The important observation related to figure 5.4 is, that the force field parameters are

well transferable to longer-chain 1-alcohols. This conclusion is also supported from other

members of the homologous n-alcohols, as reported in the supporting information to this

work.

The vapor pressure line psat(T ) of 1-octanol is shown in figure 5.5 for varying temperature.

1-octanol was not part of the objective function for the force field optimization. Results of

the TAMie force field are found in very good agreement to experimental data, suggesting

a robust transferability of the TAMie force field also for vapor pressure. The force field

parameterized only to 1-propanol is also in rather good agreement with experimental

vapor pressures of 1-octanol, supporting a benign transferability of parameters from 1-

propanol to 1-octanol. Vapor pressures of other members of the homologous 1-alcohol

series are provided in the supporting information to this work. For 1-alcohols ranging

from 1-propanol to 1-octanol we find average deviations of calculated vapor pressures to

experimental values of below 1 % (considering a temperature range 0.58 ≤ T/T cexp ≤ 1.0).

Vapor pressure is a rather sensitive quantity for force fields, as seen in figure 5.5 for the

TraPPE model. The TraPPE force field is based on an optimization procedure with less

emphasis on vapor pressure and shows average deviations for vapor pressure of 15 % for 1-

propanol to 50 % for 1-octanol. An overview of deviations between MC simulation results
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Figure 5.3: Liquid density ρL of 1-pentanol as function of temperature T for two different
temperature ranges. (a) ρL at VLE conditions obtained from GCMC simulations. Exper-
imental data are represented by the DIPPR correlation [419]. (b) ρL obtained from MD
simulations at 1 bar. Experimental data are from various sources [463, 467, 474, 475, 480,
485, 510–513]. Error bars equal one standard deviation.
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Figure 5.4: Liquid density ρL of 1-heptanol as function of temperature T for two different
temperature ranges. (a) ρL at VLE conditions obtained from GCMC simulations. Exper-
imental data are represented by the DIPPR correlation [419]. (b) ρL obtained from MD
simulations at 1 bar. Experimental data are from various sources [513–516]. Error bars
equal one standard deviation.

and quasi experimental data obtained from DIPPR correlations at phase equilibrium

conditions is shown in table 5.5. The table summarizes average absolute deviations in

vapor pressure and liquid density for the three different sets of force field parameters:

TAMie parameters from this work, set 1-propanol [505], and TraPPE [386].

5.4.2 Shear Viscosities of Pure Substance

Dynamic properties such as shear viscosities η were not considered in the objective func-

tion for the optimization of the TAMie force field. Figure 5.6 shows predicted viscosities
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Table 5.5: Deviations between MC simulation results and quasi experimental data ob-
tained from DIPPR correlations at phase equilibria conditions for different sets of force
field parameters: TAMie parameters from this work, set 1-propanol [505], and TraPPE
[386]

n-alcohol
AAD-% vapor pressure AAD-% liquid density

temperature range

TAMie set 1-propanol TraPPE TAMie set 1-propanol TraPPE

methanol 0.3 % - - 0.4 % - - 340 K - 500 K
ethanol 0.9 % - - 0.4 % - - 320 K - 500 K
1-propanol 1.0 % 0.3 % 15 % 0.3 % 0.5 % 2.3 % 320 K - 530 K
1-butanol 0.6 % 1.2 % 21 % 0.3 % 0.4 % 3.0 % 330 K - 540 K
1-pentanol 1.5 % 2.4 % 26 % 1.0 % 1.1 % 3.0 % 350 K - 570 K
1-hexanol 2.8 % 3.5 % 37 % 1.6 % 1.9 % 4.4 % 370 K - 590 K
1-heptanol 2.5 % 3.5 % 44 % 2.7 % 2.4 % 3.2 % 360 K - 610 K
1-octanol 3.4 % 5.0 % 50 % 0.7 % 0.5 % 2.8 % 380 K - 630 K
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Figure 5.5: Saturation vapor pressure psat of 1-octanol as function of temperature T .
Experimental data are represented by the DIPPR correlation [419].

for 1-pentanol and 1-heptanol for three temperatures, respectively. For all 1-alcohols con-

sidered in this work the predicted viscosities underestimate the experimental data. In

previous work focusing on 1-propanol, we observed highly correlated force field parame-

ters and a shallow minimum of the objective function, whereby the objective function also

captured deviations of the model from experimental vapor pressures and liquid densities

(i.e. static properties). Choosing different force field parameter sets, each close to mini-

mum of the objective function, showed that different parameters also lead to very similar

predictions for transport properties. It was therefore not a simple exercise to discriminate

between these parameter sets. The TAMie force field and the force field optimized for

1-propanol give approximately the same description of viscosities, within the statistical

uncertainty. Therefore, we now observe that adjusting the force field parameters to static

properties of several pure substances simultaneously, does not improve the prediction
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of transport properties significantly. However, the relatively large deviations observed

here are not only characteristic of the present parameter set but also apply to other Mie

and Lennard-Jones force fields and substances [517]. Viscosities of other 1-alcohols are

provided in the supporting information to this work.
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Figure 5.6: Viscosity η of 1-pentanol (a) and 1-heptanol (b) as function of temperature
T . Experimental data for subfigure (a) are from various sources [458, 463, 467, 474–476,
480, 485, 510–513, 518] while experimental data for subfigure (b) are taken from [476,
513–516, 518]. Error bars equal one standard deviation.

5.4.3 Self-Diffusion Coefficients of Pure Substance

Figures 5.7 shows the self-diffusion coefficient Dself for 1-pentanol and for 1-octanol for

various temperatures, respectively. Remaining results of the homologous n-alcohols are

shown in the supporting information to this work. Predictions of the TAMie force field

overestimate the self-diffusion coefficients as compared to the experimental values. That

corresponds with the observation that shear viscosities were underestimated by the TAMie

force field, as the Stokes-Einstein relation (applied to molecular fluids) suggests.

5.4.4 Mixture Properties

When adjusting a united-atom force-field with fixed (effective) point charges, one is faced

with highly correlated force field parameters. Taking the TAMie force field as a starting

point, we may for example factor all charges with a factor of 1.04. If the Mie energy

parameters are appropriately reduced one can obtain almost the same result for the ob-

jective function. That is how parameter set 1-propanol (see table 5.4), compares to the

TAMie force field and that is what we mean by saying the objective function is shallow

in parameter-space. The difficulty with shallow minima is that mixtures may strongly

discriminate one or the other force field. In particular cross-interactions of a 1-alcohol

in mixture with a non-polar solvent are entirely determined by Mie-potentials, where a
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Figure 5.7: Coefficient of self-diffusionDself of 1-pentanol (a) and 1-octanol (b) as function
of temperature T . Experimental data for subfigure (a) are from various sources [363, 519]
while experimental data for subfigure (b) are taken from [519–522] for series 1 and from
[523] for series 2. Corrections for finite size effects have been applied according to Yeh
and Hummer [346]. Error bars equal one standard deviation.

too high or too low value of Mie energy parameters can not be compensated by charges

scaled too low or too high, respectively. Mixtures with non-polar solvents are therefore a

meaningful test for 1-alcohols, and more so than mixtures of, say, 1-alcohol with another

1-alcohol.
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Figure 5.8: Vapor-liquid equilibrium for the mixture ethanol with n-pentane at 397.7 K
and 422.6 K. Comparison of predictions from the TAMie force field (lines) with experi-
mental data from Deák et al.[524] (open symbols).
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The vapor-liquid phase equilibrium of the binary mixture ethanol and n-pentane is shown

in figure 5.8. The mixture has azeotropic phase behavior. All cross-interactions of the

Mie potential were obtained from simple Berthelot-Lorentz combining rules and the arith-

metic mean for nij, according to eq. (5.5). Predictions of the TAMie model are in excellent

agreement to experimental data.

In figure 5.9 we regard the binary mixture of 1-butanol with n-butane at three tem-

peratures. Predictions of the TAMie model are found in very good agreement to the

experimental data for all three temperatures. Robust predictions for varying tempera-

tures suggests that the excess entropy and excess enthalpy are reliable, according to the

Gibbs-Helmholtz relation.
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Figure 5.9: Vapor-liquid equilibrium for the mixture 1-butanol with n-butane at three
temperatures T . Comparison of results from the TAMie force field (lines) with experi-
mental data from Deák et al.[524] (open symbols).
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5.5 Conclusion

As an extension of the TAMie model, a transferable force field is proposed for 1-alcohols

with at least 3 carbon atoms. The united-atom model is based on fixed point charges

and Mie interaction sites. The force field is parameterized by minimizing an objective

function covering squared deviations between vapor pressure data and coexisting liquid

densities towards experimental values of (simultaneously) 1-propanol, 1-butanol and 1-

pentanol. The model is transferable to other 1-alcohols, as shown for alcohols up to

1-octanol. The force field of methanol and ethanol was individually optimized in order

to ensure good agreement to experimental data. Transport properties, such as shear vis-

cosity or self-diffusion coefficients are described in reasonable agreement to experimental

data, considering transport properties were not regarded in the objective function for

parameterizing the model.
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Chapter 6

Conclusion

Molecular simulation is an established scientific field that bridges the gap between experi-

ment and theory. It plays a valuable role in providing essentially exact results for problems

in statistical mechanics which could otherwise only be handled by approximate methods,

or might be even intractable. The comparison of simulation results with experiment is a

test of the underlying model given that sufficient sampling has been achieved. In case of

a good model the simulation then offers microscopic details of a system with macroscopic

properties of experimental interest. In the present work the dual role of simulation as a

bridge between models and theoretical predictions on the one hand and between models

and experimental results on the other was explored for systems of varying complexity with

relevance in materials science, biotechnology and chemical engineering. In the following

the main findings for each of the studied systems are summarized and avenues for future

research are identified.

6.1 Supramolecular Complexes

Achieving an atomic-level description and mechanistic understanding of the onset of self-

assembly is an important prerequisite in the rational design of both solute and solvent

molecules. Atomistic simulations play an important role in these efforts. In this thesis

the significance of a detailed thermodynamic analysis of the initial phase of self-assembly

of a particular perylene bisimide (PBI) derivative is demonstrated. The results provide a

detailed understanding of the influence of the solvent environment on the thermodynamic

fingerprint of aggregation. Moreover, technical issues such as computational resources

required to achieve converged results as well as the computation of binding free energies

from the potential of mean force are provided. This sets the stage for a variety of pos-

sible research directions. First, force field refinement should be conducted by comparing

simulated binding free energies to experimental data [125, 127] measured in various sol-

vent environments. Second, interesting applications may be considered. For example,
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the application of PBI derivatives as sensors is interesting from a computational perspec-

tive because various modifications of the perylene core can be conveniently studied in

silico. Recent experimental work was directed to the use of an aspartic acid modified

perylene bisimide as fluorescence probe for caffeine in aqueous solution [525]. Another

study investigated the use of PBI derivatives as sensor for aromatic amines in aqueous

solution [526]. For future work it would be also of interest to study optical properties of

PBI aggregates by a multiscale approach of time-dependent density functional theory and

molecular dynamics simulations [301, 527].

6.2 Deep Eutectic Solvents

The increasing demands for eco-friendly processes within the framework of green and

sustainable chemistry has raised deep eutectic solvents (DES) to a prominent position.

They show interesting properties similar to those of ionic liquids (IL) including negligible

volatility, high conductivity and non-flammability. Compared to ILs they have the advan-

tage of being less expensive, more synthetically accessible, non-toxic, and biodegradable.

Despite the enormous interest in DES from the application point of view fundamental

questions about DES formation, the nature of its interactions and structure underpinning

the liquid phase formation, the solid-liquid phase diagram and its rigorous description

using thermodynamic models, the role of water in DES formation and stability as well as

the structure and dynamics of DESs at the molecular level have not received the same

attention [528]. The present work contributes to the molecular level understanding of the

role of water in the DES glyceline. At the same time molecular simulations have shown

to be a predictive tool to estimate important process parameters such as viscosity and

thermodynamic activity of water. This sets the stage for further investigations of DES as

reaction media for biotransformation. An important application is for example the use

of DES in enzymatic biodiesel production from waste oils. Here glyceline-water mixtures

have recently been successfully tested as a replacement of an ionic liquid [529]. To ac-

celerate progress in this field the combination of molecular simulation, equation of state

calculation and systematic experimental measurements is expected to benefit in process

design challenges.

6.3 Development of a TAMie Force Field

for n-Alcohols

The use of physically based equations of states such as PC-SAFT in force field parametri-

sation has been demonstrated as an efficient approach for tuning force field parameters.
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Allowing for repulsive exponents different from the traditional n = 12 choice allows for

a very accurate representation of both vapor-liquid equilibria and vapor pressures. How-

ever, this improvement in the description of static properties is hardly propagated to the

(prediction) of transport properties such as the shear viscosity, not included in the force

field optimisation process [517]. Therefore, in future work, it needs to be shown whether

the consideration of transport properties in the force field calibration will compromise

the VLE and vapor pressure prediction or whether the degrees of freedom available in

the model allows for an accurate description of both. The efficient inclusion of transport

properties in the optimisation process is an interesting task in itself. Here again the use

of an equation of state might be beneficial in the context of the entropy scaling approach

[530]. Moreover, by using reweighting techniques [531] the efficiency of probing the large

parameter space can be increased which may allow for relaxing some of the parameter

constraints used in the suggested TAMie alcohol models. As recent results show, TAMie

potentials that are very reliable at normal conditions may fail at extreme temperatures

and pressures [532]. Extending the coverage of both chemical space and thermodynamic

state points will therefore remain a very active area of force field research [533–535] and

force field development will remain one of the cornerstones of computational molecular

science.
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and viscometric study of binary systems of ethyl butyrate with alcohols. J. Chem.

Eng. Data 59, 3677–3690 (2014).

491. Raabe, G. & Sadus, R. J. Molecular dynamics simulation of the effect of bond

flexibility on the transport properties of water. J. Chem. Phys. 137, 104512 (2012).

492. Medina, J. et al. Molecular dynamics simulations of rigid and flexible water models:

Temperature dependence of viscosity. Chem. Phys. 388, 9–18 (2011).

493. Allen, W. & Rowley, R. L. Predicting the viscosity of alkanes using nonequilibrium

molecular dynamics: Evaluation of intermolecular potential models. J. Chem. Phys.

106, 10273–10281 (1997).

494. Pratt, K. C. & Wakeham, W. A. Self-diffusion in water and monohydric alcohols.

J. Chem. Soc., Faraday Trans. 2: Mol. Chem. Phys. 73, 997–1002 (1977).

495. Chen, X., Hu, R., Feng, H., Chen, L. & Lüdemann, H.-D. Intradiffusion, Density,
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A.1 GROMOS Force Field Parameters for PBI
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Figure S1: Atom number (plain bold), integer atom code (italic bold), IAC charge (plain).
The different colors denote the different charge groups.

168



C20
3131

C21
2929

N2
2424

C24
2121

C25
2020

C26
2323

C16
3838

C17
3636

C18
3434

C19
3232

C27
1818

C28
1616

C15
1515

C14
1313

C6
1414

C5
3737

C7
4646

C2
4343

C3
4141

C4
3939

C13
1111

C12
99

C8
88

C9
66

N1
55

C1
4444

C22H2
2525

C10H244

O3
77

O8
4545

O7
2222

O4
3030

H1
4040

H4
1010

H12
4242

H5
1212

H6
3535

H7
3333

H10
1919

H11
1717

23

1717
5 5

15 15

153
15 15

15
3

15 15 15

15
15

15
15

33

15 15

15
15

15
15

3
3

15 15 15

3

15 15

15

15

3

1515

5 5

1717

23

15

27
27

30 27
27

27
27

25

25

27

27

27

27
27

27 27

27

27

27

27

27

27

27

27
27

27 27

27
27

27

27

27
27

27

27

27

27

27
27

27

27

27

27

27

27

27

27

27
27

27
27

27

27

27

25

25

25

25

25

25

25

25

25

25

25

25

25

25

30

2727

27
27

2727

27
27

27

C11

O2O1

C23H2

O5 O6

27

663

2

1

15

22

38

22

12

26

27 28

22

12

22

38

27

6
6

Figure S2: Atom number (plain bold), bond type (plain underlined), bond angle type
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Table S1: GROMOS mass atom type codes, masses and names

mass atom type code mass in a.m.u mass atom name

1 1.008 H
4 14.022 CH2

12 12.011 C
14 14.0067 N
16 15.9994 O

Table S2: GROMOS bond-stretching parameters

bond type code quartic force constant harmonic force constant ideal bond length
106 kJ mol-1 nm-4 106 kJ mol-1 nm-2 nm

3 12.30 0.292273 0.109
5 16.60 0.502283 0.123
6 13.40 0.418750 0.125
15 8.66 0.334640 0.139
17 8.54 0.334768 0.140
23 7.64 0.334693 0.148
27 7.15 0.334749 0.153

Table S3: GROMOS bond-angle bending parameters

bond-angle type code cosine force constant harmonic force constant ideal bond angle
kJ mol-1 kJ mol-1 deg-2 deg

15 530.0 0.140487 111.0
22 635.0 0.153360 117.0
25 505.0 0.115184 120.0
27 560.0 0.127749 120.0
30 685.0 0.153127 121.0
38 770.0 0.153365 126.0
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Table S4: GROMOS improper-dihedral angle parameters

improper dihedral-angle type code force constant ideal improper dihedral angle
kJ mol-1 deg-2 deg

1 0.0510 0.00

Table S5: GROMOS dihedral angle parameters

dihedral-angle type code force constant phase shift multiplicity
kJ mol-1 deg

39 1.00 180.00 6
41 3.77 0.00 6

Table S6: GROMOS van der Waals parameters

integer atom code atom type C6(I,I)1/2 C12(I,I)1/2

(kJ mol-1 nm6)
1/2

10−3 (kJ mol-1 nm12)
1/2

1 2 3

1 O 0.04756 1.0000 1.1300 0.0000
2 OM 0.04756 0.8611 1.8410 3.0680
9 NR 0.04936 1.5230 1.8410 0.0000
12 C 0.04838 2.2220 0.0000 0.0000
15 CH2 0.08642 5.8280 0.0000 0.0000
20 HC 0.00920 0.1230 0.0000 0.0000
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Molecular building block of PBI in GROMOS format

1 MTBUILDBLSOLUTE

2 # RNME

3 PBI

4 # number of atoms , number of preceding exclusions

5 # NMAT , NLIN

6 46 0

7 # preceding exclusions

8 # ATOM MAE MSAE

9 # atoms

10 # ATOM ANM IACM MASS CGM ICGM MAE MSAE

11 1 O1 2 16 -0.761 0 3 2 3 4

12 2 C11 12 12 0.721 0 3 3 4 5

13 3 O2 2 16 -0.761 0 1 4

14 4 C10 15 4 0.0235 0 7 5 6 7 8 43 44 45

15 5 N1 9 14 -0.3285 1 9 6 7 8 9 41 43 44 45 46

16 6 C9 12 12 0.6525 0 10 7 8 9 44 46 10 11 14 43 45

17 7 O3 1 16 -0.5385 0 4 8 9 44 46

18 8 C8 12 12 -0.3245 0 11 9 46 10 11 14 43 12 13 37 41 44

19 9 C12 12 12 0.036 0 8 10 11 12 13 46 14 15 43

20 10 H4 20 1 0.1065 1 4 11 12 13 46

21 11 C13 12 12 -0.217 0 8 12 13 14 15 16 37 38 46

22 12 H5 20 1 0.160 0 3 13 14 15

23 13 C14 12 12 0.0505 0 12 14 15 16 37 38 46 17 18 23 36 39 43

24 14 C6 12 12 -0.044 0 12 37 46 15 36 39 43 16 34 38 40 41 44

25 15 C15 12 12 0.0505 1 12 16 38 17 18 23 36 19 20 31 34 37 46

26 16 C28 12 12 -0.217 0 8 17 18 19 20 38 21 23 36

27 17 H11 20 1 0.160 0 4 18 19 20 38

28 18 C27 12 12 0.036 0 8 19 20 21 23 22 24 31 38

29 19 H10 20 1 0.1065 1 3 20 21 23

30 20 C25 12 12 -0.3245 0 10 21 23 22 24 31 38 25 29 32 36

31 21 C24 12 12 0.6525 0 8 22 24 23 25 29 30 31 38

32 22 O7 1 16 -0.5385 0 4 24 23 25 29

33 23 C26 12 12 0.299 1 10 31 38 29 32 36 24 30 33 34 37

34 24 N2 9 14 -0.3285 0 6 25 29 26 30 31 32

35 25 C22 15 4 0.0235 0 6 26 27 28 29 30 31

36 26 C23 12 12 0.721 0 2 27 28

37 27 O5 2 16 -0.761 0 1 28

38 28 O6 2 16 -0.761 1 0

39 29 C21 12 12 0.6525 0 6 30 31 32 33 34 38

40 30 O4 1 16 -0.5385 0 2 31 32

41 31 C20 12 12 -0.3245 0 6 32 33 34 38 35 36

42 32 C19 12 12 0.036 0 6 33 34 35 36 37 38

43 33 H7 20 1 0.1065 1 3 34 35 36

44 34 C18 12 12 -0.217 0 5 35 36 37 38 39

45 35 H6 20 1 0.160 0 3 36 37 38

46 36 C17 12 12 0.0505 0 6 37 38 39 40 41 46

47 37 C5 12 12 0.0505 0 7 39 38 40 41 46 42 43

48 38 C16 12 12 -0.044 1 1 39

49 39 C4 12 12 -0.217 0 6 40 41 42 43 44 46

50 40 H1 20 1 0.160 0 3 41 42 43

51 41 C3 12 12 0.036 0 5 42 43 44 45 46

52 42 H12 20 1 0.1065 1 3 43 44 46

53 43 C2 12 12 -0.3245 0 3 44 46 45

54 44 C1 12 12 0.6525 0 2 45 46

55 45 O8 1 16 -0.5385 0 1 46

56 46 C7 12 12 0.299 1 0

57 # total charge of the molecule: -2.000

58 # bonds

59 # NB

60 52

61 # IB JB MCB

62 1 2 6

63 2 3 6

64 2 4 27

65 4 5 23

66 5 6 17

67 5 44 17

68 6 7 5

69 6 8 15

70 8 9 15

71 8 46 15

72 9 10 3

73 9 11 15

74 11 12 3
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75 11 13 15

76 13 14 15

77 13 15 15

78 14 37 15

79 14 46 15

80 15 16 15

81 15 38 15

82 16 17 3

83 16 18 15

84 18 19 3

85 18 20 15

86 20 21 15

87 20 23 15

88 21 22 5

89 21 24 17

90 23 31 15

91 23 38 15

92 24 25 23

93 24 29 17

94 25 26 27

95 26 27 6

96 26 28 6

97 29 30 5

98 29 31 15

99 31 32 15

100 32 33 3

101 32 34 15

102 34 35 3

103 34 36 15

104 36 37 15

105 36 38 15

106 37 39 15

107 39 40 3

108 39 41 15

109 41 42 3

110 41 43 15

111 43 44 15

112 43 46 15

113 44 45 5

114 # bond angles

115 # NBA

116 86

117 # IB JB KB MCB

118 1 2 3 38

119 1 2 4 22

120 3 2 4 22

121 2 4 5 15

122 4 5 6 27

123 4 5 44 27

124 6 5 44 30

125 5 6 7 27

126 5 6 8 27

127 7 6 8 27

128 6 8 9 27

129 6 8 46 27

130 9 8 46 27

131 8 9 10 25

132 8 9 11 27

133 10 9 11 25

134 9 11 12 25

135 9 11 13 27

136 12 11 13 25

137 11 13 14 27

138 11 13 15 27

139 14 13 15 27

140 13 14 37 27

141 13 14 46 27

142 37 14 46 27

143 13 15 16 27

144 13 15 38 27

145 16 15 38 27

146 15 16 17 25

147 15 16 18 27

148 17 16 18 25

149 16 18 19 25

150 16 18 20 27

151 19 18 20 25

152 18 20 21 27
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153 18 20 23 27

154 21 20 23 27

155 20 21 22 27

156 20 21 24 27

157 22 21 24 27

158 20 23 31 27

159 20 23 38 27

160 31 23 38 27

161 21 24 25 27

162 21 24 29 30

163 25 24 29 27

164 24 25 26 15

165 25 26 27 22

166 25 26 28 22

167 27 26 28 38

168 24 29 30 27

169 24 29 31 27

170 30 29 31 27

171 23 31 29 27

172 23 31 32 27

173 29 31 32 27

174 31 32 33 25

175 31 32 34 27

176 33 32 34 25

177 32 34 35 25

178 32 34 36 27

179 35 34 36 25

180 34 36 37 27

181 34 36 38 27

182 37 36 38 27

183 14 37 36 27

184 14 37 39 27

185 36 37 39 27

186 15 38 23 27

187 15 38 36 27

188 23 38 36 27

189 37 39 40 25

190 37 39 41 27

191 40 39 41 25

192 39 41 42 25

193 39 41 43 27

194 42 41 43 25

195 41 43 44 27

196 41 43 46 27

197 44 43 46 27

198 5 44 43 27

199 5 44 45 27

200 43 44 45 27

201 8 46 14 27

202 8 46 43 27

203 14 46 43 27

204 # improper dihedrals

205 # NIDA

206 70

207 # IB JB KB LB MCB

208 43 46 14 37 1

209 46 14 37 39 1

210 14 37 39 41 1

211 37 39 41 43 1

212 39 41 43 46 1

213 41 43 46 14 1

214 46 8 9 11 1

215 8 9 11 13 1

216 9 11 13 14 1

217 11 13 14 46 1

218 13 14 46 8 1

219 14 46 8 9 1

220 14 13 15 38 1

221 13 15 38 36 1

222 15 38 36 37 1

223 38 36 37 14 1

224 36 37 14 13 1

225 37 14 13 15 1

226 36 34 32 31 1

227 34 32 31 23 1

228 32 31 23 38 1

229 31 23 38 36 1

230 23 38 36 34 1
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231 38 36 34 32 1

232 38 15 16 18 1

233 15 16 18 20 1

234 16 18 20 23 1

235 18 20 23 38 1

236 20 23 38 15 1

237 23 38 15 16 1

238 23 31 29 24 1

239 31 29 24 21 1

240 29 24 21 20 1

241 24 21 20 23 1

242 21 20 23 31 1

243 20 23 31 29 1

244 44 5 43 45 1

245 43 41 44 46 1

246 41 39 42 43 1

247 39 37 40 41 1

248 37 14 36 39 1

249 14 13 37 46 1

250 46 8 14 43 1

251 8 6 9 46 1

252 6 5 7 8 1

253 5 4 6 44 1

254 2 1 3 4 1

255 9 8 10 11 1

256 11 9 12 13 1

257 13 11 14 15 1

258 15 13 16 38 1

259 38 15 23 36 1

260 36 34 37 38 1

261 34 32 35 36 1

262 32 31 33 34 1

263 31 23 29 32 1

264 29 24 30 31 1

265 24 21 25 29 1

266 26 25 27 28 1

267 21 20 22 24 1

268 20 18 21 23 1

269 23 20 31 38 1

270 18 16 19 20 1

271 16 15 17 18 1

272 8 46 43 44 1

273 8 6 5 44 1

274 5 6 8 46 1

275 6 8 46 43 1

276 6 5 44 43 1

277 5 44 43 46 1

278 # dihedrals

279 # NDA

280 4

281 # IB JB KB LB MCB

282 1 2 4 5 39

283 2 4 5 44 41

284 29 24 25 26 41

285 24 25 26 27 39

286 # LJ Exceptions

287 # NEX

288 0

289 END
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A.2 Dimerization in Pure Water
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Figure S3: Distribution functions g(z) of water oxygen atoms evaluated separately for
each PBI molecule in the complexed state. In Figure 2.3 of the main text the average of
the two curves is shown.
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Figure S4: Free energy as function of pressure in pure water. Dots are representing mean
values with error bars as confidence interval of 95 %. Linear function ∆G(p) = αp + βpp
with parameters αp = −53.624 kJ mol−1 and βp = −5.9986 · 10−3 kJ mol−1 bar−1 is shown
as dashed line.
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A.3 Dimerization in Ethanol/Water Mixtures
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Figure S5: Potentials of mean force as function of the center-of-mass separation for dif-
ferent temperatures in 25 vol% (a) and 50 vol% (b) ethanol/water mixture, respectively.
Errors are within the line width and correspond to one standard deviation.
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Figure S6: van’t Hoff plots of the temperature dependence of the equilibrium constant
for the dimerization in 25 vol% (a) and 50 vol% (b) ethanol/water mixture, respectively.
The curves labelled fit1 correspond to an unconstrained optimization of the three pa-
rameters α, β and C (see Eq. 2.8 in the main text). The curves labelled fit2 correspond
to an optimization of α2 and C2 only while fixing β2 to 0.1132 kJ mol−1 K−1 (a) and
−0.0065 kJ mol−1 K−1 (b).
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Figure S7: Potentials of mean force as function of the center-of-mass separation for dif-
ferent temperatures in 25 vol% (a) and 50 vol% (b) ethanol/water mixture, respectively.
Symbols corespond to MD simulations, solid lines represent the two reference PMFs and
dashed lines the predictions according to Eq. 2.4 of the main text. For better readability
each PMF has been shifted by 5 kJ mol−1 relative to the previous PMF at the next lower
temperature.

A.4 Dimerization in Aqueous NaCl Solution
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Figure S8: Potentials of mean force at 298.15 K in 1 M aqueous NaCl solution for two
different sizes of the computational box. The number of solvent molecules and ions is
specified in Table 2.1 of the main text.

178



0 200 400 600 800 1000
time / ns

0

30

60

90

120

150

180

 / 
°

0.00 0.01 0.02
occurrence / a.u.

Figure S9: Time series and distribution of the center-of-mass distance for a PBI dimer at
298.15 K in 0.5 M NaCl solution.
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Figure S10: Radial distribution functions of Na+, Cl− and water oxygen around the
carboxylate oxygens of the dimerized PBI in 0.5 M (a) and 1.0 M (b) aqueous NaCl solution
at 298.15 K.
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Figure S11: Potentials of mean force as function of the center-of-mass separation for
different temperatures in 0.5 M (a) and 1.0 M (b) aqueous NaCl solution, respectively.
Errors are within the line width and correspond to one standard deviation.
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Figure S12: van’t Hoff plots of the temperature dependence of the equilibrium constant
for the dimerization in 0.5 M (a) and 1.0 M (b) aqueous NaCl solution, respectively. The
curves labelled fit1 correspond to an unconstrained optimization of the three parame-
ters α, β and C (see Eq. 2.8 in the main text). The curves labelled fit2 correspond
to an optimization of α2 and C2 only while fixing β2 to −0.1566 kJ mol−1 K−1 (a) and
−0.1230 kJ mol−1 K−1 (b).
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Figure S13: Potentials of mean force as function of the center-of-mass separation for
different temperatures in 0.5 M (a) and 1.0 M (b) aqueous NaCl solution, respectively.
Symbols corespond to MD simulations, solid lines represent the two reference PMFs and
dashed lines the predictions according to Eq. 2.4 of the main text. For better readability
each PMF has been shifted by 5 kJ mol−1 relative to the previous PMF at the next lower
temperature.
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B.1 Force Field Parameters for the Cholinium Cation

no. name q /e mass / a.u.

1 CA -0.12078 12.011
2 HA 0.10737 1.008
3 HA 0.10737 1.008
4 HA 0.10737 1.008
5 NA 0.04518 14.0067
6 CS -0.02898 12.011
7 CA -0.12078 12.011
8 CA -0.12078 12.011
9 HA 0.10737 1.008
10 HA 0.10737 1.008
11 HA 0.10737 1.008
12 HA 0.10737 1.008
13 HA 0.10737 1.008
14 HA 0.10737 1.008
15 HS 0.10044 1.008
16 HS 0.10044 1.008
17 CW 0.13509 12.011
18 OY -0.55701 15.9994
19 HCW 0.0459 1.008
20 HCW 0.0459 1.008
21 HY 0.40905 1.008

Table S7: Partial charges and atomic masses.

name σ / nm ε / kJ mol−1

CA 3.39967E-01 4.57730E-01
CS 3.39967E-01 4.57730E-01
CW 3.39967E-01 4.57730E-01
NA 3.25000E-01 7.11280E-01
OY 3.06647E-01 8.80314E-01
HA 1.95998E-01 6.56888E-02
HS 1.95998E-01 6.56888E-02

HCW 2.47135E-01 6.56888E-02
HY 1.99600E-02 4.18000E-03

Table S8: Lennard-Jones parameters.
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atom i atom j bond length / nm

1 5 0.1499
2 1 0.1091
3 1 0.1091
4 1 0.1091
6 17 0.1535
7 5 0.1499
8 5 0.1499
9 7 0.1091
10 7 0.1091
11 7 0.1091
12 8 0.1091
13 8 0.1091
14 8 0.1091
15 6 0.1091
16 6 0.1091
17 18 0.1426
18 21 0.0974
19 17 0.1093
20 17 0.1093
5 6 0.1499

Table S9: Equilibrium bond lengths.
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atom i atom j atom k Θeq / ° K0 / kJ/mol/rad2

1 5 6 110.6400473 525.84512
1 5 7 110.6400473 525.84512
1 5 8 110.6400473 525.84512
2 1 3 110.7400473 326.68672
2 1 4 110.7400473 326.68672
2 1 5 107.9100461 410.19936
3 1 4 110.7400473 326.68672
3 1 5 107.9100461 410.19936
4 1 5 107.9100461 410.19936
5 6 15 107.9100461 410.19936
5 6 16 107.9100461 410.19936
5 6 17 114.3200492 539.31760
6 17 18 109.4300470 566.68096
6 17 19 110.0700471 387.94048
6 17 20 110.0700471 387.94048
7 5 6 110.6400473 525.84512
7 5 8 110.6400473 525.84512
8 5 6 110.6400473 525.84512
9 7 5 107.9100461 410.19936
9 7 10 110.7400473 326.68672
9 7 11 110.7400473 326.68672
10 7 5 107.9100461 410.19936
10 7 11 110.7400473 326.68672
11 7 5 107.9100461 410.19936
12 8 5 107.9100461 410.19936
12 8 13 110.7400473 326.68672
12 8 14 110.7400473 326.68672
13 8 5 107.9100461 410.19936
13 8 14 110.7400473 326.68672
14 8 5 107.9100461 410.19936
15 6 16 109.5500472 327.85824
15 6 17 111.7400478 385.09536
16 6 17 111.7400478 385.09536
17 18 21 108.1600465 394.04912
19 17 18 109.8800469 426.51696
19 17 20 109.5500472 327.85824
20 17 18 109.8800469 426.51696

Table S10: Equilibrium bending angles and force constants.
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atom i atom j atom k atom l φS / ° Kφ / kJ mol−1 n

1 5 7 9 0.0 0.652704 3
1 5 7 10 0.0 0.652704 3
1 5 7 11 0.0 0.652704 3
1 5 8 12 0.0 0.652704 3
1 5 8 13 0.0 0.652704 3
1 5 8 14 0.0 0.652704 3
1 5 6 15 0.0 0.652704 3
1 5 6 16 0.0 0.652704 3
1 5 6 17 0.0 0.652704 3
2 1 5 7 0.0 0.652704 3
2 1 5 6 0.0 0.652704 3
2 1 5 8 0.0 0.652704 3
3 1 5 8 0.0 0.652704 3
3 1 5 6 0.0 0.652704 3
3 1 5 7 0.0 0.652704 3
4 1 5 6 0.0 0.652704 3
4 1 5 8 0.0 0.652704 3
4 1 5 7 0.0 0.652704 3
5 6 17 18 0.0 0.652704 3
5 6 17 19 0.0 0.652704 3
5 6 17 20 0.0 0.652704 3
6 17 18 21 0.0 0.669440 3
6 17 18 21 0.0 1.046000 1
7 5 8 12 0.0 0.652704 3
7 5 8 13 0.0 0.652704 3

Table S11: Dihedral angles - Part 1.
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atom i atom j atom k atom l φS / ° Kφ / kJ mol−1 n

7 5 8 14 0.0 0.652704 3
7 5 6 15 0.0 0.652704 3
7 5 6 16 0.0 0.652704 3
7 5 6 17 0.0 0.652704 3
8 5 6 15 0.0 0.652704 3
8 5 6 16 0.0 0.652704 3
8 5 6 17 0.0 0.652704 3
9 7 5 6 0.0 0.652704 3
9 7 5 8 0.0 0.652704 3
10 7 5 6 0.0 0.652704 3
10 7 5 8 0.0 0.652704 3
11 7 5 6 0.0 0.652704 3
11 7 5 8 0.0 0.652704 3
12 8 5 6 0.0 0.652704 3
13 8 5 6 0.0 0.652704 3
14 8 5 6 0.0 0.652704 3
15 6 17 18 0.0 0.652704 3
15 6 17 19 0.0 0.652704 3
15 6 17 20 0.0 0.652704 3
16 6 17 18 0.0 0.652704 3
16 6 17 19 0.0 0.652704 3
16 6 17 20 0.0 0.652704 3
19 17 18 21 0.0 0.698728 3
20 17 18 21 0.0 0.698728 3

Table S12: Dihedral angles - Part 2.
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B.2 Force Field Parameters for Chloride Anion

no. name q /e mass / a.u.

1 Cl -0.90 35.435

Table S13: Partial charges and atomic masses.

name σ / nm ε / kJ mol−1

Cl 4.40100E-01 4.18480E-01

Table S14: Lennard-Jones parameters.

B.3 Force Field Parameters for Glycerol

no. name q /e mass / a.u.

1 C3 0.1197 12.010
2 C3 0.1521 12.010
3 C3 0.1197 12.010
4 OH -0.6270 16.000
5 OH -0.5848 16.000
6 OH -0.6270 16.000
7 H1 0.0537 1.008
8 H1 0.0537 1.008
9 H1 0.0221 1.008
10 H1 0.0537 1.008
11 H1 0.0537 1.008
12 HO 0.4096 1.008
13 HO 0.3912 1.008
14 HO 0.4096 1.008

Table S15: Partial charges and atomic masses.

name σ / nm ε / kJ mol−1

C3 3.40E-01 4.58E-01
H1 2.47E-01 6.57E-02
HO 2.00E-02 4.18E-03
OH 3.07E-01 8.80E-01

Table S16: Lennard-Jones parameters.
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atom i atom j bond length / nm

1 2 1.54E-01
1 6 1.43E-01
1 7 1.09E-01
1 8 1.09E-01
2 3 1.54E-01
2 5 1.43E-01
2 9 1.09E-01
3 4 1.43E-01
3 10 1.09E-01
3 11 1.09E-01
4 12 9.74E-02
5 13 9.74E-02
6 14 9.74E-02

Table S17: Equilibrium bond lengths.

atom i atom j atom k Θeq / ° K0 / kJ/mol/rad2

1 2 3 1.11E+02 5.29E+02
1 2 5 1.09E+02 5.67E+02
1 2 9 1.10E+02 3.88E+02
1 6 14 1.08E+02 3.94E+02
2 1 6 1.09E+02 5.67E+02
2 1 7 1.10E+02 3.88E+02
2 1 8 1.10E+02 3.88E+02
2 3 4 1.09E+02 5.67E+02
2 3 10 1.10E+02 3.88E+02
2 3 11 1.10E+02 3.88E+02
2 5 13 1.08E+02 3.94E+02
3 2 5 1.09E+02 5.67E+02
3 2 9 1.10E+02 3.88E+02
3 4 12 1.08E+02 3.94E+02
4 3 10 1.10E+02 4.27E+02
4 3 11 1.10E+02 4.27E+02
5 2 9 1.10E+02 4.27E+02
6 1 7 1.10E+02 4.27E+02
6 1 8 1.10E+02 4.27E+02
7 1 8 1.10E+02 3.28E+02
10 3 11 1.10E+02 3.28E+02

Table S18: Equilibrium bending angles and force constants.
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atom i atom j atom k atom l n K1 / kJmol−1 K2 / kJmol−1 K3 / kJmol−1 K4 / kJmol−1

1 2 3 4 3 6.5084E-01 1.95252 0.0000 -2.60336
1 2 3 10 3 6.5084E-01 1.95252 0.0000 -2.60336
1 2 3 11 3 6.5084E-01 1.95252 0.0000 -2.60336
1 2 5 13 3 1.0460E+00 -1.04600 0.0000 -0.00000
1 2 5 13 3 6.6944E-01 2.00832 0.0000 -2.67776
2 1 6 14 3 1.0460E+00 -1.04600 0.0000 -0.00000
2 1 6 14 3 6.6944E-01 2.00832 0.0000 -2.67776
2 3 4 12 3 1.0460E+00 -1.04600 0.0000 -0.00000
2 3 4 12 3 6.6944E-01 2.00832 0.0000 -2.67776
3 2 5 13 3 1.0460E+00 -1.04600 0.0000 -0.00000
3 2 5 13 3 6.6944E-01 2.00832 0.0000 -2.67776
4 3 2 5 3 0.0000E+00 -0.00000 9.8324 -0.00000
4 3 2 5 3 6.0250E-01 1.80750 0.0000 -2.41000
4 3 2 9 3 1.0460E+00 -1.04600 0.0000 -0.00000
4 3 2 9 3 0.0000E+00 -0.00000 0.0000 -0.00000
5 2 3 10 3 1.0460E+00 -1.04600 0.0000 -0.00000
5 2 3 10 3 0.0000E+00 -0.00000 0.0000 -0.00000
5 2 3 11 3 0.0000E+00 -0.00000 0.0000 -0.00000
5 2 3 11 3 1.0460E+00 -1.04600 0.0000 -0.00000
6 1 2 3 3 6.5084E-01 1.95252 0.0000 -2.60336
6 1 2 5 3 0.0000E+00 -0.00000 9.8324 -0.00000
6 1 2 5 3 6.0250E-01 1.80750 0.0000 -2.41000
6 1 2 9 3 0.0000E+00 -0.00000 0.0000 -0.00000
6 1 2 9 3 1.0460E+00 -1.04600 0.0000 -0.00000
7 1 2 3 3 6.5084E-01 1.95252 0.0000 -2.60336
7 1 2 5 3 1.0460E+00 -1.04600 0.0000 -0.00000
7 1 2 5 3 0.0000E+00 -0.00000 0.0000 -0.00000
7 1 2 9 3 6.5084E-01 1.95252 0.0000 -2.60336
7 1 6 14 3 6.9733E-01 2.09199 0.0000 -2.78932
8 1 2 3 3 6.5084E-01 1.95252 0.0000 -2.60336
8 1 2 5 3 1.0460E+00 -1.04600 0.0000 -0.00000
8 1 2 5 3 0.0000E+00 -0.00000 0.0000 -0.00000
8 1 2 9 3 6.5084E-01 1.95252 0.0000 -2.60336
8 1 6 14 3 6.9733E-01 2.09199 0.0000 -2.78932
9 2 3 10 3 6.5084E-01 1.95252 0.0000 -2.60336
9 2 3 11 3 6.5084E-01 1.95252 0.0000 -2.60336
9 2 5 13 3 6.9733E-01 2.09199 0.0000 -2.78932
10 3 4 12 3 6.9733E-01 2.09199 0.0000 -2.78932
11 3 4 12 3 6.9733E-01 2.09199 0.0000 -2.78932

Table S19: Dihedral angles.
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B.4 Self-Diffusion Coefficients

System xW / Dself(T = 280.15 K) / Dself(T = 320.15 K) / Dself(T = 360.15 K) /
mol mol−1 10−5 cm2/s 10−5 cm2/s 10−5 cm2/s

C0 1.00 1.5236 ± 0.0282 3.8444 ± 0.0674 7.0428 ± 0.0799
C1 0.90 0.7245 ± 0.0121 1.9774 ± 0.0231 3.9689 ± 0.0297
C2 0.75 0.2287 ± 0.0073 0.8228 ± 0.0147 1.9504 ± 0.0217
C3 0.50 0.0410 ± 0.0133 0.2448 ± 0.0064 0.8053 ± 0.0251
C4 0.25 0.0135 ± 0.0124 0.8962 ± 0.0059 0.4087 ± 0.0242
C5 0.10 0.0121 ± 0.0206 0.0570 ± 0.0106 0.3008 ± 0.0253

TIP4P 1.00 - 0.3038 -

Table S20: Uncorrected self-diffusion coefficients for different compositions and different
temperatures. Errors listed equal one standard deviation.

B.5 Finite Size Effects

LBox / nm NCh and NCl NGly NW

4.94623 225 450 675
5.44400 300 600 900
5.86419 375 750 1125
6.85893 600 1200 1800

Table S21: Composition and box lengths for different system sizes of composition C3.
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B.6 Binary Mixture Glycerol and Water
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Figure S14: Liquid density of a binary mixture of glycerol and water for different water
mole fractions at two different temperatures (280.15 K and 360.15 K). Experimental data
are taken from Ref. [536] (open circles at 280.15 K and open squares at 360.15 K), from
Ref.[537] (open plus at 283.15 K and open diamond at 368.15 K), from Ref. [538] (open
triangles down at 288.15 K).
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Figure S15: Self-diffusion coefficient of a binary mixture including glycerol and water for
different water mole fractions at 280.15 K. Experimental data for water are taken from
Ref. [539] (open triangles) and Ref. [540] (open circles) while experimental data for
glycerol are taken from Ref. [539] (open squares). Note that all experimental data are
measured at 298.15 K.
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B.7 Binary Mixture Choline and Water

0 1 2 3 4 5 6
mChCl / kg mol 1

990

1000

1010

1020

1030

1040

1050

1060

liq
 / 

kg
 m

3

T = 298.15 K

Figure S16: Liquid density of a binary mixture of choline chloride and water as function
of ChCl molality at 298.15 K. Experimental data are taken from Refs [541, 542] and are
represented by open symbols.
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Figure S17: Self-diffusion coefficients in a binary mixture of choline chloride and water as
function of ChCl molality at 298.15 K.
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B.8 Radial Distribution Functions
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Figure S18: Radial distribution function for composition C1 at 280.15 K.
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Figure S19: Radial distribution function for composition C1 at 320.15 K.
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Figure S20: Radial distribution function for composition C1 at 360.15 K.
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Figure S21: Radial distribution function for composition C3 at 280.15 K.
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Figure S22: Radial distribution function for composition C3 at 360.15 K.
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Figure S23: Radial distribution function for composition C5 at 280.15 K.
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Figure S24: Radial distribution function for composition C5 at 320.15 K.
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Figure S25: Radial distribution function for composition C5 at 360.15 K.
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B.9 Self-Diffusion Coefficients of Choline, Chloride

and Glycerol
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Figure S26: Self-diffusion coefficient of cholinium cation as function of the inverse box
length for system C3.
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Figure S27: Self-diffusion coefficient of chloride as function of the inverse box length for
system C3.
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Figure S28: Self-diffusion coefficient of glycerol as function of the inverse box length for
system C3.
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Appendix C

Supporting Information: On the use

of transport properties to

discriminate Mie-type molecular

models for 1-propanol optimized

against VLE data

C.1 Covalent Force Field Parameters

i j bond length / nm

H1 O1 0.0945
O1 C1 0.1420
C1 C2 0.1514
C2 C3 0.1714

Table S22: Bond lengths.

i j k bond angle θ0
ijk / ° force constant kθijk / kJ/mol/rad2

H1 O1 C1 107.40 382.13268
O1 C1 C2 113.50 517.57527
C1 C2 C3 114.00 519.65388

Table S23: Equilibrium bending angles θ0
ijk and force constants kθijk used to describe the

angle bending potential according to Ubend(θijk) = 1
2
kθijk

(
θijk − θ0

ijk

)2
.
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i j k l φs / ° force constant kφ,C(i) / kJ mol−1 n

H1 O1 C1 C2 0.00 -1.53809 0
H1 O1 C1 C2 0.00 0.68179 1
H1 O1 C1 C2 180.00 0.30672 2
H1 O1 C1 C2 0.00 2.52635 3

O1 C1 C2 C3 0.00 0.00000 0
O1 C1 C2 C3 0.00 1.71652 1
O1 C1 C2 C3 180.00 -1.85047 2
O1 C1 C2 C3 0.00 9.02186 3

Table S24: Phase shift φs, force constant kφ,C(i) and multiplicities n used to describe the
torsional potential energy according to Utorsion(φijkl) =

∑
C(i) kφ,C(i) (1 + cos(nφ− φs)).

C.2 Self-Diffusion Coefficients - Uncorrected Values

set 1 set 2 set 3 set 4

T / K Dself Dself Dself Dself

273.15 0.34067 0.3344 0.4404 0.3417
293.15 0.63384 0.6332 0.7640 0.6673
323.15 1.41546 1.3839 1.6409 1.4956
350.15 2.54204 2.5191 2.7109 2.4006

Table S25: Uncorrected self-diffusion coefficients in 10−5cm2s−1.
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C.3 Radial Distribution Functions
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Figure S29: Radial distribution function g(r) at 273.15 K
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Figure S30: Radial distribution function g(r) at 293.15 K
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Figure S31: Radial distribution function g(r) at 323.15 K
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Appendix D

Supporting Information:

Transferable Anisotropic

Mie-Potential Force Field for

n-Alcohols: Static and Dynamic

Fluid Properties of Pure Substances

and Binary Mixtures

D.1 Nonbonded Energy Calculation

Alternatively Eq. (5.1) in the main text can be expressed as

uinter
ij = A(σij, εij, nij,mij)h(rij) + C(σij, εij, nij,mij)g(rij) +

qiqj
4πε0

f(rij) (D.1)

with

A(σij, εij, nij,mij) =
nij

nij −mij

(
nij
mij

) mij
nij−mij

εijσ
nij
ij (D.2)

and

C(σij, εij, nij,mij) =
nij

nij −mij

(
nij
mij

) mij
nij−mij

εijσ
mij
ij (D.3)

where h(rij) = r
−nij
ij , g(rij) = −r−mijij , and f(rij) = r−1

ij . The latter form of the interaction

potential energy is particularly convenient if used in the context of tabulated potentials

as it is done in this work for carrying out the molecular dynamics simulations.
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D.2 Results

D.2.1 Pure Component Properties

D.2.1.1 Liquid Density
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Figure S32: Liquid density ρL of 1-butanol as function of temperature T for two different
temperature ranges. (a) ρL at VLE conditions obtained from GCMC simulations. Exper-
imental data are represented by the DIPPR correlation [419]. (b) ρL obtained from MD
simulations at 1 bar. Experimental data are from various sources [460, 463, 467, 474, 475,
479–482, 485–487, 490, 510, 513, 543–550] Error bars are within line-width and equal one
standard deviation.
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Figure S33: Liquid density ρL of 1-hexanol as function of temperature T for two different
temperature ranges. (a) ρL at VLE conditions obtained from GCMC simulations. Exper-
imental data are represented by the DIPPR correlation [419]. (b) ρL obtained from MD
simulations at 1 bar. Experimental data are from various sources [519]. Error bars are
within line-width and equal one standard deviation.
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Figure S34: Liquid density ρL of 1-octanol as function of temperature T for two different
temperature ranges. (a) ρL at VLE conditions obtained from GCMC simulations. Ex-
perimental data are represented by the DIPPR correlation [419]. (b) ρL obtained from
MD simulations at 1 bar. Experimental data are from various sources [512, 513, 515, 551,
552]. Error bars are within line-width and equal one standard deviation.

D.2.1.2 Shear Viscosity
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Figure S35: Viscosity η of 1-butanol as function of temperature T . Experimental data are
from various sources [423, 424, 452, 454–456, 460, 463, 466, 467, 471, 474, 475, 477–482,
485–487, 490, 510, 545–550, 553–564]. Error bars are within symbol size.
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Figure S36: Viscosity η of 1-hexanol as function of temperature T . Experimental data
are from various sources [475, 490, 515, 518, 547, 551, 552, 554, 565–569]. Error bars are
within symbol size.
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Figure S37: Viscosity η of 1-octanol as function of temperature T . Experimental data
are from various sources [458, 513, 515, 516, 551, 552, 554, 557, 569, 570]. Error bars are
within symbol size.
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D.2.1.3 Self-Diffusion Coefficient
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Figure S38: Coefficient of self-diffusion Dself of 1-butanol as function of temperature T .
Experimental data are from various sources [451, 519–521, 571–575]. Error bars equal one
standard deviation. Corrections for finite size effects have been applied according to Yeh
and Hummer [346].
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Figure S39: Coefficient of self-diffusion Dself of 1-hexanol as function of temperature T .
Experimental data are from various sources [519, 520]. Error bars equal one standard
deviation. Corrections for finite size effects have been applied according to Yeh and
Hummer [346].
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Figure S40: Coefficient of self-diffusion Dself of 1-heptanol as function of temperature T .
Experimental data are from [519]. Error bars equal one standard deviation. Corrections
for finite size effects have been applied according to Yeh and Hummer [346].

D.2.1.4 Saturation Vapor Pressure
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Figure S41: Saturation vapor pressure psat of 1-butanol as function of temperature T .
Experimental data are represented by the DIPPR correlation [419].
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Figure S42: Saturation vapor pressure psat of 1-pentanol as function of temperature T .
Experimental data are represented by the DIPPR correlation [419].
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Figure S43: Saturation vapor pressure psat of 1-hexanol as function of temperature T .
Experimental data are represented by the DIPPR correlation [419].
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Figure S44: Saturation vapor pressure psat of 1-heptanol as function of temperature T .
Experimental data are represented by the DIPPR correlation [419].
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