
Theory of Leaky Mode Propagation in 
Optical Waveguide Geometries

University of Stuttgart
2020

Izzatjon Allayarov





Theory of LeakyMode Propagation in

OpticalWaveguide Geometries

Von der Fakultät Mathematik und Physik

der Universität Stuttgart zur Erlangung der Würde

eines Doktors der Naturwissenschaen (Dr. rer. nat.)

genehmigte Abhandlung

vorgelegt von

Izzatjon Mukhiddinovich Allayarov
aus Gurlan, Usbekistan

Hauptberichter: Jun.-Prof. Dr.omas Weiss

Mitberichter: Prof. Dr. Günter Wunner

Vorsizsende: Prof. Dr. Stefanie Barz

Tag der Einreichung: 05.06.2020

Tag der mündlichen Prüfung: 17.07.2020

4. Physikalisches Institut der Universität Stuttgart

June 2020



Izzatjon Allayarov: eory of Leaky Mode Propagation in Optical
Waveguide Geometries, 2020



DECLARATION

I hereby certify that this dissertation is entirely my own work except

where otherwise indicated. Passages and ideas from other sources have

been clearly indicated.

Stuttgart, June 2020

Izzatjon Allayarov





In memory of my brother

Maqsadjon Mukhiddinovich Aminov

(1990–2009)





SCIENTIFIC CONTRIBUTIONS

articles in peer-reviewed scientific journals

Articles within the scope of this thesis:

[A1] S. Upendar, I. Allayarov, M. A. Schmidt, and T. Weiss:

Analytical mode normalization and resonant state expansion for
bound and leaky modes in optical bers-an ecient tool to
model transverse disorder, Opt. Express 26, 22536–22546 (2018).
DOI 10.1364/oe.26.022536, cit. on pp. 4, 7, 16, 24–25, 27, 40, 42, 91.

[A2] I. Allayarov, S. Upendar, M. A. Schmidt, and T. Weiss:

Analytic mode normalization for the Kerr nonlinearity
parameter: Prediction of nonlinear gain for leaky modes, Phys.
Rev. Lett. 121, 213905 (2018).
DOI 10.1103/physrevlett.121.213905, cit. on pp. 4, 16, 35, 42, 49–51,

62, 67–68.

[A3] I. Allayarov, M. A. Schmidt, and T. Weiss: Theory of four-wave
mixing for bound and leaky modes, Phys. Rev. A 101, 043806
(2020).

DOI 10.1103/physreva.101.043806, cit. on pp. 4, 42, 57.

Other articles beyond the scope of this thesis:

[O1] I. Allayarov and E. N. Tsoy: Dynamics of fronts in optical
media with linear gain and nonlinear losses, Phys. Lett. A 377,
550–554 (2013).

DOI 10.1016/j.physleta.2012.12.029, cit. on p. 68.

[O2] E. N. Tsoy, I. Allayarov, and F. K. Abdullaev: Stable localized
modes in asymmetric waveguides with gain and loss, Opt. Lett.

39, 4215–4218 (2014).
DOI 10.1364/ol.39.004215.

[O3] I. Allayarov and E. N. Tsoy: Dynamics of Airy beams in
nonlinear media, Phys. Rev. A 90, 023852 (2014).
DOI 10.1103/physreva.90.023852.

vii

http://dx.doi.org/10.1364/oe.26.022536
http://dx.doi.org/10.1103/physrevlett.121.213905
http://dx.doi.org/10.1103/physreva.101.043806
http://dx.doi.org/10.1016/j.physleta.2012.12.029
http://dx.doi.org/10.1364/ol.39.004215
http://dx.doi.org/10.1103/physreva.90.023852


contributions to conferences and workshops

Contributed talks (presenting author):

[T1] I. Allayarov, M. Schäferling, M. L. Nesterov, and T. Weiss:

Eciency analysis of a nite-dierence modal method for the
derivation of electromagnetic elds, DPG Frühjahrstagung der

Sektion Kondensierte Materie (SKM), Regensburg (Germany),

2016.

[T2] I. Allayarov, M. Schäferling, and T. Weiss: Ecient calculation
of electromagnetic elds in the nite-dierence modal method
with adaptive coordinates, Matheon-Workshop: 10th Annual

Meeting Photonic Devices, Berlin (Germany), 2017.

[T3] I. Allayarov, M. Schäferling, M. L. Nesterov, and T. Weiss:

Adaptive spatial resolution in the nite-dierence modal method
for the derivation of electromagnetic elds, DPG
Frühjahrstagung der Sektion Kondensierte Materie (SKM),

Dresden (Germany), 2017.

[T4] I. Allayarov, S. Upendar, M. A. Schmidt, and T. Weiss: A new
denition for the Kerr nonlinearity parameter, DPG
Frühjahrstagung der Sektion Atome, Moleküle, Quantenoptik

und Plasmen (SAMOP), Erlangen (Germany), 2018.

[T5] I. Allayarov, S. Upendar, M. A. Schmidt, and T. Weiss: A new
denition for the Kerr nonlinearity parameter, XXVI
International Workshop on Optical Wave and Waveguide

eory and Numerical Modelling (OWTNM), Bad Sassendorf

(Germany), 2018.

[T6] I. Allayarov, S. Upendar, M. A. Schmidt, and T. Weiss:e
impact of a new approach for the Kerr nonlinearity parameter
on four-wave mixing, DPG Frühjahrstagung der Sektion

Atome, Moleküle, Quantenoptik und Plasmen (SAMOP),

Rostock (Germany), 2019.

[T7] I. Allayarov, S. Upendar, M. A. Schmidt, and T. Weiss: A New
eoretical Formulation for the Nonlinear Pulse Propagation in
Waveguide Geometries, OSA Nonlinear Optics (NLO), Hawaii

(USA), 2019.

viii



Contributions as co-author:

[C1] S. Upendar, I. Allayarov, G. Li, M. A. Schmidt, and T. Weiss:

Resonant State Expansion in Fiber Geometries, CLEO Pacic

Rim Conference, Hong Kong SAR (China), 2018.

[C2] S. Upendar, I. Allayarov, M. A. Schmidt, and T. Weiss:

Resonant state expansion for disordered claddings in photonic
crystal bers, DPG Frühjahrstagung der Sektion Kondensierte

Materie (SKM), Berlin (Germany), 2018.

[C3] S. Upendar, I. Allayarov, M. A. Schmidt, and T. Weiss:

Resonant state expansion for exterior perturbations in photonic
crystal bers, DPG Frühjahrstagung der Sektion Atome,

Moleküle, Quantenoptik und Plasmen (SAMOP), Rostock

(Germany), 2019.

[C4] S. Upendar, I. Allayarov, M. A. Schmidt, and T. Weiss:

Resonant State Expansion in Fiber Geometries, International
School and Conference on Disorder in Materials Science

(DisoMAT), Potsdam (Germany), 2019.

ix





CONTENTS

1 introduction 1

2 resonant states of waveguide geometries 7

2.1 Maxwell’s equations and resonant states . . . . . . . . . 7

2.1.1 Maxwell’s equations in time domain . . . . . . . 8

2.1.2 Maxwell’s equations in frequency domain . . . 9

2.1.3 Propagation equation . . . . . . . . . . . . . . . 10

2.2 Expansion of the Green’s dyadic . . . . . . . . . . . . . . 13

2.2.1 Green’s dyadic in reciprocal space . . . . . . . . 13

2.2.2 Green’s dyadic in real space . . . . . . . . . . . . 16

2.3 Poles on the complex frequency plane . . . . . . . . . . 18

2.4 Analytic mode normalization . . . . . . . . . . . . . . . 20

2.4.1 Conventional normalization schemes . . . . . . 20

2.4.2 Analytical normalization scheme . . . . . . . . 24

2.4.3 Example: Step-prole ber . . . . . . . . . . . . 27

3 master equation for pulse propagation 35

3.1 Derivation of general master equation . . . . . . . . . . 35

3.2 Nonlinear Schroedinger equation . . . . . . . . . . . . . 37

3.3 e Kerr nonlinearity parameter . . . . . . . . . . . . . . 40

3.4 Nonlinear gain and loss . . . . . . . . . . . . . . . . . . . 49

3.5 e nonlinear gain and pulse propagation . . . . . . . . 52

4 generalized theory of four-wave mixing 57

4.1 Bound-mode theory . . . . . . . . . . . . . . . . . . . . . 58

4.2 General coupled amplitude equations . . . . . . . . . . . 62

4.3 Modulation instability in hollow-core bers . . . . . . . 68

4.4 Optical system and simulation details . . . . . . . . . . . 71

4.4.1 e optical system parameters . . . . . . . . . . 72

4.4.2 Nonlinearity parameters . . . . . . . . . . . . . . 75

4.4.3 Simulation details . . . . . . . . . . . . . . . . . 75

4.5 Results and discussion . . . . . . . . . . . . . . . . . . . 80

4.5.1 Quasicontinuous-wave regime . . . . . . . . . . 80

4.5.2 Ultrafast regime . . . . . . . . . . . . . . . . . . 82

xi



5 dipole emission in hollow-core fibers 87

5.1 Dipole elds in bers . . . . . . . . . . . . . . . . . . . . 88

5.1.1 Dipole elds from the Green’s dyadic . . . . . . 89

5.1.2 Dipole elds from the reciprocity principle . . . 90

5.2 Purcell factor . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3 Dipole emission in hollow-core bers . . . . . . . . . . . 93

6 conclusion and outlook 101

bibliography 105

xii



ABSTRACT

Optical waveguides can support bound or leaky modes, depending

on their geometrical and optical parameters. ese modes are elec-

tromagnetic waves that propagate along the waveguide with a distinct

transverse intensity prole and a propagation constant. Since bound

modes exhibit an exponentially decaying transverse intensity prole,

their propagation can easily be described within the standard theories.

However, in leaky modes, the energy transversely radiates away from

the waveguide, which results in to an exponentially growing transverse

intensity prole. is makes the application of the standard theoretical

formulations for the description of leaky modes questionable.

is thesis is dedicated to present a new theory of leakymodes propa-

gation in optical waveguide geometries. e theory is based on a power-

ful and rigorous method for open systems in electrodynamics, namely

the resonant-state expansion, together with an analytic mode normal-

ization. e general master equation of the theory allows a rigorous

description of both bound and leaky modes in waveguide geometries

within a single theoretical framework.

We apply our theory to the nonlinear pulse propagation in a widely

used types of waveguides in modern nonlinear optics, namely hollow-

core bers, that are dominated by leaky modes. At the beginning, we

show that in the single-mode approximation, themaster equation trans-

forms into the well-known nonlinear Schroedinger equationwith a new

and general denition for the Kerr nonlinearity parameter. We nd that

for leakymodes theKerr nonlinearity parameter can be a complex quan-

tity with a negative imaginary part providing the nonlinear gain for the

overall attenuating pulses. is nonlinear gain results in a stronger

spectral broadening, which is demonstrated here on the example of a

liquid-lled capillary-type bers.

Next, we extend our theory for parametric processes such as four-

wave mixing, which implies coupling between dierent modes and

wavelengths. In this case, our theory predicts a more ecient gener-

ation of the so-called Stokes and anti-Stokes side-bands with an earlier

onset than expected from the previous theory for bound modes. ese

eects are demonstrated numerically for a gas-lled hollow-core an-

nulus ber that supports leaky modes. Moreover, we demonstrate that

xiii



leakymodes yieldmodulation instability in hollow-core bers, not only

in the anomalous but also in the normal dispersion regime. e modu-

lation instability can occur for all frequencies, which is a fundamental

dierence to bound modes.

In addition, we investigate the change of the emission of a dipole cou-

pled to an optical ber since such systems have important applications

in quantum light sources and sensors. In this case, our theory can be

straightforwardly applied to derive the electromagnetic elds that are

generated by the dipole in complex waveguide geometries, including

dierent types of hollow-core bers.
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ZUSAMMENFASSUNG

Optische Wellenleiter können gebundene Moden oder Leckmoden un-

terstützen, abhängig von ihren geometrischen und optischen Kenngrö-

ßen. Diese Moden stellen elektromagnetische Wellen mit einem genau

umschriebenen transversalen Prol und einer Ausbreitungskonstante

dar, die entlang desWellenleiters propagieren. Da gebundeneModen in

transversaler Richtung über ein exponentiell abklingendes Intensitäts-

prol verfügen, kann ihre Ausbreitung auf einfache Art und Weise im

Rahmen der herkömmlichen eorien beschrieben werden. In Leck-

moden tritt jedoch in transversaler Richtung Energie aus demWellen-

leiter aus, was ein exponentiell anwachsendes transversales Intensitäts-

prol zur Folge hat. Dies macht die Anwendung der herkömmlichen

theoretischen Formulierungen für die Beschreibung von Leckmoden

problematisch.

Die vorliegende Arbeit hat sich zum Ziel gesetzt, eine neueeorie

zur Ausbreitung von Leckmoden in optischen Wellenleitern vorzustel-

len. Dieeorie basiert auf einer leistungsstarken und konsequenten

Beschreibungsmethode für oene Systeme in der Elektrodynamik, und

zwar der Resonanzzustandsentwicklung, zusammen mit einer analyti-

schen Modennormierung. Die allgemeine Mastergleichung dereo-

rie erlaubt eine konsequente Beschreibung sowohl von gebundenen

Moden als auch von Leckmoden in Wellenleitergeometrien in einem

einheitlichen theoretischen Rahmen.

Wir wenden unsereeorie auf die nichtlineare Pulsausbreitung in

einem in dermodernen nichtlinearenOptik vielgenutzten Typ vonWel-

lenleitern an, und zwar den Hohlkernfasern, welche dominiert werden

von Leckmoden. Anfangs zeigen wir, dass sich die Mastergleichung un-

ter der Einzelmodennäherung in die wohlbekannte nichtlineare Schrö-

dingergleichung überführen lässt mit einer neuen und allgemeinen De-

nition des Kerr-Nichtlinearitätsparameters. Für Leckmoden nden

wir heraus, dass der Kerr-Nichtlinearitätsparameters eine komplexwer-

tigeGröße sein kann, die über einen negativen Imaginärteil verfügt, wel-

cher eine nichtlineare Verstärkung für die insgesamt gedämpen Pulse

bereitstellt. Diese nichtlineare Verstärkung hat eine verstärkte spektrale

Verbeiterung zur Folge, was hier am Beispiel einer üssigkeitsgefüllten

Kapillarfaser gezeigt wird.
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Als nächstes erweitern wir unsereeorie um parametrische Prozes-

se wie Vier-Wellen-Mischung, die eine Kopplung zwischen verschiede-

nen Moden und Wellenlängen beinhaltet. In diesem Fall sagt unsere

eorie eine ezientere Erzeugung und ein früheres Einsetzten der

sogenannten Stokes und Anti-Stokes Seitenbänder voraus als es nach

der herkömmlicheneorie über gebundene Moden zu erwarten wäre.

Diese Eekte werden numerisch für eine gasgefüllte Hohlkrenringfa-

ser gezeigt, welche Leckmoden unterstützt. Des Weiteren zeigen wir,

dass Leckmoden Modulationsinstabilität in Hohlkernfasern erzeugen,

nicht nur im Bereich der anomalen Dispersion, sondern auch im Be-

reich der normalen Dispersion. Die Modulationsinstabilität kann bei

allen Frequenzen aureten, was einen grundlegenden Unterschied zu

gebundenen Moden darstellt.

Zusätzlich untersuchen wir die Änderung der Emission eines Dipols,

der an eine optische Faser koppelt, da solche Systeme bedeutende An-

wendungen für Quantenlichtquellen und Sensoren haben. In diesem

Fall kann unsereeorie auf einfache Art und Weise dazu verwendet

werden, die Felder des Dipols in komplexen Wellenleitergeometrien

einschließlich verschiedener Arten von Hohlkernfasern herzuleiten.
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1
INTRODUCTION

Nowadays, optical waveguides are a key elements of many modern de-

vices and systems which are used in dierent elds. e prime example

are communication systems based on optical bers, which outperform

traditional electrical cabling systems in terms of their compactness and

high information rate. Apart from that, optical bers have other impor-

tant applications in sensing, optical imaging, medicine, power trans-

mission, etc.

Inmost of these applications, commonor relativelyweak light sources

are used. erefore, the response of a waveguide medium to the light

eld is practically linear. However, propagation of a high power laser

beams or pulses in such waveguides leads to a nonlinear interaction

between the light and the medium. In this case, one can observe vari-

ous interesting nonlinear eects and objects such as self-focusing and

optical solitons [5, 6]. e origin of these eects is the nonlinear refrac-

tion, i.e., the power dependence of the refractive index, which is in turn

known as the Kerr eect [5, 7–10]:

n = n0 + n2P, (1.1)

where n0 and n2 are the linear and the nonlinear refractive indices,

respectively, and P ∝ ∣A∣2 is the power, which is proportional to the

eld amplitude A.
In the simplest case, the dynamics of the optical wave is described by

the well-known nonlinear Schroedinger equation [5, 6, 10]:

∂A
∂z
= −i β̄

(2)

2

∂2A
∂t2
+ iγ∣A∣2A, (1.2)

where β̄(2) is the second-order dispersion coecient, γ is the Kerr

nonlinearity parameter that inversely proportional to the optical con-

nement (i.e., mode area [5]). Note that in the one-dimensional case,

Eq. (1.2) is an exactly integrable model, which has been shown within

inverse scattering method [11, 12]. e solutions of this equation corre-

1



introduction

spond to the well-known solitons [5]. e fundamental soliton has the

following general form [5, 10, 13]:

A(z, t) = A0 sech(
t + vz − ts

t0
) e

i ksz−iωs t+iϕs , (1.3)

where t0 = T0/η and ωs = δ/T0 are the width and the frequency, respec-

tively, of the soliton with the initial phase ϕs located at the position ts.
Here, δ and η are the real and the imaginary parts of the eigenvalue of

the so-called Zakharov-Shabat scattering problem [11]. e fundamen-

tal soliton’s amplitude A0, velocity v, and wave number ks are given by

A0 = η(
∣β̄(2)∣
γT2

0

)
1/2

, v = δ ∣β̄
(2)∣

T2
0

, ks = (η2 − δ2)
∣β̄(2)∣
2T2

0

.

In these equations, β̄(2) and γ are assumed to be a negative and a real

number, respectively, and T0 is the characteristic time dened by the

initial condition. us, all soliton parameters are dened by the real δ
and the imaginary η parts of the eigenvalue of the scattering problem

and the waveguide’s linear and nonlinear characteristics. Another in-

teresting point here is that the width and the amplitude of the soliton

is inversely proportional to each other.

As one can see, within the nonlinear Schroedinger model, the lin-

ear and the nonlinear eects are characterized by a single β̄(2) and a

γ parameter, respectively. Accordingly, consistency between simula-

tion results based on this model and the experimental measurements

partially depends on if these parameters are accurately calculated. e

linear properties of optical waveguides can be measured or calculated

since there are a lot of experimental and numerical methods that pro-

vide accurate results. For conventional step-prole bers, for which the

guiding mechanism of light is total internal refection and hence modes

are truly guided (bounded) [5, 14–16], the nonlinearity parameter γ can
also be evaluated within the conventional and well-known approaches.

However, there are modern and advanced type of waveguides with

complex transverse geometry, namely hollow-core waveguides [5, 17].

For instance, a conventional step-prole ber with inverted core and

cladding refractive indices can also be considered as simple hollow-core

ber with step-prole refractive index. e scanning electron micro-

scope images of dierent hollow-core waveguides are shown in Fig. 1.1.

2
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Figure 1.1. Scanning electron microscope images of dierent types of hollow-

core waveguides: (a) Hollow-core photonic crystal ber, (b) Kagoḿe ber,

(c) nano-scaled hollow-core ber, (d) Bragg-grating ber, (e) rectangular

hollow-core antiresonant reecting optical waveguide. [Image adapted with

permission from Ref. [17]. Copyright Taylor and Francis Group.]

Nowadays, hollow-core photonic crystal bers represent a novel class of

bers that are widely used in the context of nonlinear photonics. ey

oer a plethora of additional degrees of freedom to control the optical

properties compared to conventional bers. For instance, the linear

dispersion properties of gas-lled hollow-core bers can be controlled

through changing the gas temperature and the pressure, in addition to

modifying its geometrical parameters, which in fact allows to achieve

octave spanning supercontinua [see Fig. 1.2 (a)] [17, 18]. Moreover, gas

lled hollow-core photonic crystal bers can substantially enhance an-

other import process, namely four-wave mixing [see Fig. 1.2 (b)] [19].

On the other hand, geometric resonances of hollow-core bers can be

used for light generation [20]. Furthermore, using gases as a nonlinear

medium allows for applying high-power laser sources without damag-

ing the waveguide [21, 22]. Additionally, nonlinear eects in such bers

can be enhanced by using dierent nonlinear liquids [23–26].

e standard formulations for the nonlinear pulse propagation in

step-prole bers with bound modes are not capable of treating the

pulse propagation in hollow-core bers accurately. e reason is the

following: As it is mentioned above, the conventional step-prole bers

carry bound core modes with an exponential decay of the electromag-

netic elds in the homogeneous surrounding due to the total internal

3
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Figure 1.2. Nonlinear pulse propagation in hollow-core bers: (a) Supercon-
tinuum generation in a Kagoḿe photonic crystal ber lled by argon. [Image

adapted with permission from Ref. [18]. Copyright Macmillan Publishers Lim-

ited.] (b) four-wave mixing in hollow-core ber with air holes. [Image adapted

with permission from Refs. [19, 27]. Copyrighte Optical Society.]

reection. However, the total internal reection is broken in case of

hollow-core bers. erefore, hollow-core bers are dominated by an-

other class of modes, namely leaky modes [28]. Such modes loose en-

ergy due to the radiation perpendicular to the direction of propagation,

which corresponds to having an imaginary part of the corresponding

propagation constant. As a direct consequence, the electromagnetic

elds of leaky modes diverge with distance from the ber center [A1–

A3]. Hence, the nonlinearity parameter γ of leaky modes vanishes in

the framework of conventional approaches. us, the system would

exhibit no Kerr nonlinearity at all, which is unphysical.

Essentially, the main problem with leaky modes is the normalization.

In optical waveguides, the total electromagnetic eld can be described

as a sum of the elds of dierent modes. Within such schemes, all

modes must be normalized and satisfy a certain orthogonality condi-

tion. Bound modes of step-prole ber usually are normalized by an

integral of the absolute square value of the electric elds or the axial

component of the time-averaged Poynting vector over the entire cross

section of the ber. However, these normalizations are not applicable

in the case of leaky modes, since they grow in transverse direction. Sev-

eral approaches have been suggested to bypass this issue, such as using

4
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a restricted area of normalization dened by radiation caustic [28] and

applying a complex coordinate transformation to regions outside the

spatial inhomogeneities [29, 30] for suppressing the divergence (equiva-

lent to perfectly matched layers [31]). Nevertheless, in most cases these

approaches are prone to failure or are not eective, since they include

several free parameters that need to be adapted to a specic geometry.

Here, one should mention that, there are an iterative approaches

for the nonlinearity parameter that do not require any normalization

and can be applied for both bound and leaky modes [32, 33]. However,

iterative methods purely rely on numerical calculations and hence can

be quite time consuming.

us, an accurate description of the nonlinear propagation of leaky

modes is not straightforward in contrast to bound modes. It has chal-

lenging problems concerning the mode normalization and characteri-

zation of the nonlinear properties. In this dissertation, we present solu-

tions to these challenges by a thorough study of leaky modes within our

new theory for nonlinear pulse propagation in waveguide geometries.

e dissertation is structured as follows: In Chapter 2, we start by

presenting the foundations of the resonant-state expansion, which is

the base of our new theory for the pulse propagation. Aer giving a

denition of resonant states/modes, we discuss the expansion of the

Green’s dyadic in the basis of resonant states and derive orthogonal-

ity and normalization conditions of these states from the reciprocity

theorem.

In Chapter 3, we derive a general master equation for the nonlinear

pulse propagation in waveguides. Aer this, we consider a single-mode

limit of the master equation that simplies into the standard nonlinear

Schroedinger equation with a closed expression for the Kerr nonlinear-

ity parameter. In addition, we investigate the spectral broadening of

an initial pulse, i.e., supercontinuum generation within this model by

carrying out numerical simulations.

Chapter 4 focuses on a generalized theory of four-wavemixing. Aer

a detailed derivation of new coupled equations for four-wave mixing

from the master equation, at rst, we review modulation instability of

the steady-state within the generalized theory. In the following section,

we apply our theory to a gas-lled annulus ber and demonstrate nu-

merically that our theory predicts a more ecient power conversion

between waves in comparison with the conventional theory.

Single photon emitters coupled to optical bers have important ap-

plications in quantum light sources and sensors. erefore, in the last

5
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Chapter 5, we consider the linear propagation of leakymodes excited by

a point current source. At rst, we derive the total electromagnetic eld

of an oscillating dipole by using the Green’s dyadic and the reciprocity

principle. Aer this, we investigate the change of the spontaneous emis-

sion rate of a dipole in hollow-core bers.

Finally, Chapter 6, concludes the main results of all studies presented

and provides a short outlook about the possible improvements and the

future development of the presented theory.

º

6



2
RESONANT STATES OF WAVEGUIDE GEOMETRIES

is chapter is partially based on the following publication [A1]:

S. Upendar, I. Allayarov, M. A. Schmidt, and T. Weiss: "Analytical
mode normalization and resonant state expansion for bound and leaky
modes in optical bers – an ecient tool to model transverse disorder",
Opt. Express, 26 22536–22546 (2018).

DOI 10.1364/oe.26.022536

is chapter provides a brief introduction to the fundamental equations

of the light eld propagation in optical waveguides. erefore, at the

beginning, we consider Maxwell’s equations in the absence of sources

and dene the eigensolutions/modes of the system as a resonant states.

Next, we show that the Greens’s dyadic, i.e., the solution of Maxwell’s

equations for a point current source, can be represented as a sum over

the resonant states. Since eigensolutions of a source-free system are

dened up to arbitrary factor, rst of all, we discuss conventional ways

of normalization. Aer this, we derive our analytical normalization

scheme as well as the orthogonality condition for resonant states. In

addition, at the end of the chapter, we give an exact form of this nor-

malization scheme for a simple step-prole ber geometry and use it

to normalize the fundamental bound and leaky modes of the ber.

2.1 maxwell ’s equations and resonant states

e following subsections briey introduceMaxwell’s equations in time

and frequency domains, and the constitutive relationswith the approach

in which the induced polarization is split into the linear and nonlinear

parts. Next, taking into account translational symmetry of the equa-

tions, we obtain the propagation equation and dene resonant states of

waveguide geometries.
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resonant states of waveguide geometries

2.1.1 Maxwell’s equations in time domain

e propagation of optical elds in waveguides is described by the

macroscopic Maxwell’s equations. In the Gaussian unit system, these

equations have the form [34]

∇× E(r; t) = − 1
c
∂B(r; t)

∂t
, (2.1a)

∇×H(r; t) = 1

c
∂D(r; t)

∂t
+
4π
c
j(r; t), (2.1b)

∇ ⋅D(r; t) = 4π[ρf(r; t) + ρb(r; t)], (2.1c)

∇ ⋅ B(r; t) = 0. (2.1d)

Here, E andH are electric and magnetic eld vectors, respectively, and

D and B denote the corresponding electric displacement (induction)

and magnetic induction. e sources of the electromagnetic eld are

represented by the current density j and the free ρf and bound ρb con-
tributions of charge density.

e electric and magnetic inductions D and B are related with the

electric and magnetic elds E andH through the following constitutive

relations [34]:

D(r; t) = E(r; t) + 4πP(r; t), (2.2a)

B(r; t) = H(r; t) + 4πM(r; t), (2.2b)

where P andM are the polarization and the magnetization vectors, re-

spectively.

e most of optical waveguides are made of nonmagnetic materi-

als. Furthermore, at optical frequencies, the magnetization M can be

neglected, i.e.,M ≈ 0. However, in order to keep our formulation as gen-

eral as possible, we assume that the magnetizationM and the magnetic

eldH are linearly connected asM = χ(1)m H via the rst-order magnetic

susceptibility constant χ(1)m . In contrast, the polarization P is split into

the linear PL = χ(1)e Ewith the rst-order electric susceptibility constant

8



2.1 maxwell ’s equations and resonant states

χ(1)e and the nonlinear PL parts. us, the constitutive relations can be

written in the form

D(r; t) = ε(r)E(r; t) + 4πPNL(r; t), (2.3a)

B(r; t) = µ(r)H(r; t), (2.3b)

where ε = 1+ 4πχ(1)e is the permittivity and µ = 1+ 4πχ(1)m is the perme-

ability. Additionally, for the sake of completeness, we keep the tensorial

form of ε and µ.
Using the constitutive relations, the curl part of Maxwell’s equations

are now given by

∇× E(r; t) = − µ(r)
c

∂H(r; t)
∂t

, (2.4a)

∇×H(r; t) = ε(r)
c

∂E(r; t)
∂t

+

4π
c
[j(r; t) + ∂PNL(r; t)

∂t
]. (2.4b)

2.1.2 Maxwell’s equations in frequency domain

When dealingwithwaveguide geometries, it is oen convenient towork

in frequency domain rather than in time domain. erefore, rst of all,

let us introduce the following direct Fourier transform

f (r;ω) =
+∞

∫
−∞

f (r, t)eiωtdt, (2.5)

and convolution

f ⋆ g = 1

2π

+∞

∫
−∞

f (ω − ω′)g(ω)dω′ . (2.6)

e corresponding inverse transformations are

f (r; t) = 1

2π

+∞

∫
−∞

f (r,ω)e−iωtdω, (2.7)

9



resonant states of waveguide geometries

and

f ∗ g =
+∞

∫
−∞

f (t − t′)g(t)dt′ , (2.8)

respectively.

us, the frequency-domain representation of the curl Maxwell’s

equations can be written as

∇× E(r;ω) = ik0µ(r;ω)H(r;ω), (2.9a)

∇×H(r;ω) = −ik0ε(r;ω)E(r;ω)+

4π
c
[j(r;ω) − iωPNL(r;ω)], (2.9b)

where k0 = ω/c is the free spacewave number. For the sake of simplicity,

we denote the elds with the same letters as in the case of time domain.

Whenever it is necessary to distinguish both, we will write the time or

frequency dependence explicitly.

Aer some algebra, Eqs. (2.9a) and (2.9b) can be cast into a compact

operator form [35]:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ε(r;ω)k0 −∇×

−∇× µ(r;ω)k0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡M(r;ω)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

E(r;ω)

iH(r;ω)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡F(r;ω)

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

JE(r;ω)

iJH(r;ω)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡J(r;ω)

, (2.10)

where JE = −4πi/c(j − iωPNL) is the general electric current source,

and the magnetic current JH ≡ 0 is introduced articially for symmetry

purposes.

2.1.3 Propagation equation

In waveguide geometries, the permittivity and the permeability tensors

ε and µ, respectively, possess a translational symmetry in one spatial

direction, which we choose to be the z direction. Hence, it is convenient
to Fourier transform Maxwell’s equations along this direction using

f̂ (r∣∣ , β;ω) =
1

2π

+∞

∫
−∞

f (r∣∣ , z;ω)e−iβzdz, (2.11)

10



2.1 maxwell ’s equations and resonant states

where r∣∣ denotes the spatial coordinates in the transverse xy plane, and
the hat implies that we are in Fourier space or simply in reciprocal β
space. In order to transform back to real z space, we use

f̂ (r∣∣ , z;ω) =
+∞

∫
−∞

f (r∣∣ , β;ω)eiβzdβ. (2.12)

Note that hereinaer, we usually omit the limits (−∞,+∞) of the inte-

gral in any Fourier transformation.

us, applying Eq. (2.11) to Eqs. (2.9a) and (2.9b), we obtain the prop-

agation equation:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ε(r∣∣;ω)k0 −∇̂β×

−∇̂β× µ(r∣∣;ω)k0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡M̂(r∣∣ ,β ;ω)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ê(r∣∣ , β;ω)

iĤ(r∣∣ , β;ω)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡F̂(r∣∣ ,β ;ω)

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ĴE(r∣∣ , β;ω)

iĴH(r∣∣ , β;ω)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡Ĵ(r∣∣ ,β ;ω)

. (2.13)

Here, ∇̂β ≡ [∂/∂x , ∂/∂y, iβ]T and T denotes the transpose operation.

For the sake of brevity, hereinaer we omit the ω dependence in the

equations. However, when needed, the dependence on ω will be men-

tioned explicitly.

Solving Eq. (2.13) in the absence of sources, i.e., in case of Ĵ = 0, leads
to the eigenvalue problem

M̂(r∣∣ , βm)F̂(r∣∣ , βm) = 0, (2.14)

that gives eigenvalues βm and eigenvectors F̂m = F̂(r∣∣ , βm) of the sys-
tem, numbered by the index m. We restrict our considerations to so-

lutions that satisfy outgoing boundary conditions (also know as the

Sommerfeld’s radiation condition [36]):

F̂m(r∣∣)→
eiϰm ρ

ρ1/2
for ρ →∞, (2.15)

where ρ = ∣r∣∣∣ is the radial distance and ϰm = (εµk20 − β2m)1/2 is the
in-plane component of the wavenumber.

We dene these eigensolutions as resonant states of the system [35, 37–

40]. In theory of optical waveguides the resonant states are usually

called the waveguide modes. In this terminology, F̂m represents the

mode elds with the propagation constant βm . For a homogeneous
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medium with refractive index nho, modes are either decaying exponen-

tially [evanescent modes, Re(βm) = 0, Im(βm) > 0] or they are prop-
agating outwards [radiating modes, 0 < βm < nhok0]. If we consider
a spatially modulated, i.e., structured region surrounded by homoge-

neous space (e.g., an optical ber), the propagation constant βm is in

general a complex quantity. It can be real, if the refractive index of

the spatially modulated region is higher than surrounding medium. In

this case the total internal reection takes place, the waveguide modes

are bound, and mode elds decay exponentially in the surrounding re-

gion. For instance, conventional step-prole optical ber with ncl < nco,

where nco and ncl are the core and the cladding refractive indices, re-

spectively, supports bound modes with the real propagation constant

dened in the range nclk0 ⩽ βm < ncok0 [28, 41]. Otherwise, i.e., in

the case of ncl > nco, the propagation constant satises Re(βm) > 0,

Im(βm) > 0. Waveguide modes in this case are leaky and the outgoing

boundary conditions require that the eld distributions of leaky modes

F̂m with radiation to the far eld grow with distance to the structured

region [28, 38].

Here, we note that due to the reciprocity theorem [42], for each eigen-

vector F̂m with eigenvalue βm , there is another "reciprocal conjugate"
eigenvector F̂R

m ≡ F̂−m with eigenvalue −βm . Here, R denotes the re-

ciprocal conjugation. Under the transformation βm → −βm , Eq. (2.14)
must be invariant. Hence, there are two possibilities that full this con-

dition. Either

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ex → +Ex

Ey → +Ey

Ez → −Ez

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Hx → −Hx

Hy → −Hy

Hz → +Hz

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, for βm → −βm , (2.16)

or

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ex → −Ex

Ey → −Ey

Ez → +Ez

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Hx → +Hx

Hy → +Hy

Hz → −Hz

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, for βm → −βm . (2.17)

In this thesis, we stick in the rst convention. Note that for bound

modes, the reciprocal conjugation is equivalent to the complex conju-

gation.
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2.2 expansion of the green ’s dyadic

2.2 expansion of the green ’s dyadic

e Green’s function approach is a powerful and widely used concept

in electromagnetic eld theory [43–45]. erefore, in this section, we

introduce the concept of the dyadic Green function and derive its ex-

plicit spectral representation based on the resonant states of the optical

system. For the sake of completeness, we also dene the Green’s dyadic

in the real space.

2.2.1 Green’s dyadic in reciprocal space

e Green’s dyadic is typically dened as a solution of Eq. (2.13) for a

point source located at r′
∣∣
that satises the outgoing boundary condition

Eq. (2.15):

M̂(r∣∣ , β)Ĝβ(r∣∣ , r′∣∣) = Îδ(r∣∣ − r
′
∣∣), (2.18)

where Î is the 6× 6 identity matrix. As shown in [35, 37–40, 46, 47], the

Green’s dyadic Ĝβ(r∣∣ , r′∣∣) can be expanded into the basis of resonant

states. From a mathematical point of view, this follows from the Mittag-

Leer theorem [48]. In this context, resonant states denote a nite

number of poles of the Green’s dyadic in the complex β plane:

Ĝβ(r∣∣ , r′∣∣) =∑
m

R̂m(r∣∣ , r′∣∣)

β − βm
+ Ĝcut

β . (2.19)

Here, R̂m denotes the residue of Ĝβ around βm . Sometimes in Eq. (2.19)

along with the poles, we have to take into account the so-called cut

contribution Ĝcut
β of the Green’s dyadic. e cut has to be considered

if Ĝβ is a multi-valued function with an innite number of Riemann

sheets [38, 48, 49]. In this thesis, we neglect the cut contribution in the

Green’s dyadic, assuming that the poles are located far from the cut.

Now, let us nd the exact form of the residue R̂m . For that, we pro-

ceed in the same manner as usually for the resonant state expansion,

i.e., we assume a source term that vanishes at resonance [35, 37–39, 47]:

M̂(r∣∣ , β)F̂(r∣∣ , β) = Ĵ(r∣∣ , β), (2.20)

with

Ĵ(r∣∣ , β) =∏
m
(β − βm) ξ̂m(r∣∣), (2.21)
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where ξ̂m is some arbitrary function. In this case, the right hand side of

Eq. (2.20) vanishes at resonance, and it reduces to the eigenvalue prob-

lem Eq. (2.14). In principle, we can assume any functional dependence

on the right hand side with the order ofO(β−βm) for β → βm . Further-
more, ξ̂m should be located in the regions of spatial inhomogeneities,

i.e., not in the homogeneous surrounding. In addition, we have to be

careful in the case of degenerate resonant states.

us, the solution of Eq. (2.20) can be written as

F̂(r∣∣ , β) =∫ Ĝβ(r∣∣ , r′∣∣) Ĵ(r
′
∣∣ , β)dr

′
∣∣ . (2.22)

Considering this solution in the limit β → βm , we get:

F̂m(r∣∣) = lim
β→βm

F̂(r∣∣ , β) =

lim
β→βm

∑
m′

β − βm
β − βm′ ∫

R̂m′(r∣∣ , r′∣∣) ⋅ σ̂(r
′
∣∣ , β)dr

′
∣∣ =

∑
m′

δmm′ ∫ R̂m′(r∣∣ , r′∣∣) ⋅ σ̂m(r
′
∣∣)dr

′
∣∣ =

∫ R̂m(r∣∣ , r′∣∣) ⋅ σ̂m(r
′
∣∣)dr

′
∣∣ , (2.23)

with

σ̂(r∣∣ , β) = ∏
n≠m
(β − βn) ξ̂n(r∣∣), (2.24)

and σ̂m(r∣∣) ≡ σ̂(r∣∣ , βm). us, taking into account the last expression,

we can assume the following form of the residue:

R̂m(r∣∣ , r′∣∣) = −
1

2Nm
F̂m(r∣∣)⊗ Ĝm(r′∣∣). (2.25)

Here, Ĝm is an unknown vector and ⊗ denotes the outer product. By

rewriting Eq. (2.23) as

F̂m(r∣∣) = F̂m(r∣∣)
⎡
⎢
⎢
⎢
⎣
−

1

2Nm
∫ Ĝm(r′∣∣) ⋅ σ̂m(r

′
∣∣)dr

′
∣∣

⎤
⎥
⎥
⎥
⎦
, (2.26)

we can see that our assumption should full the condition

−
1

2Nm
∫ Ĝm(r∣∣) ⋅ σ̂m(r∣∣)dr∣∣ = 1, (2.27)
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with Nm being the normalization constant of the resonant states that

should be dened. e factor "-1/2" is introduced for the later conve-

nience.

In the following, rst of all, we derive the unknown vector Ĝm . For

that we use reciprocity theorem. Let us consider two elds F̂(r∣∣ , β) and
F̂(r∣∣ ,−β) originating in a sources Ĵ(r∣∣ , β) and Ĵ(r∣∣ ,−β), respectively,
and write the corresponding propagation equations:

M̂(r∣∣ , β) F̂(r∣∣ , β) = Ĵ(r∣∣ , β), (2.28a)

M̂(r∣∣ ,−β) F̂(r∣∣ ,−β) = Ĵ(r∣∣ ,−β). (2.28b)

Multiplying Eq. (2.28a) with F̂(r∣∣ ,−β) and Eq. (2.28b) with F̂(r∣∣ , β)
from the le hand side, respectively, and then subtracting the second

expression from the rst one, we obtain:

F̂(r∣∣ ,−β) ⋅ M̂(r∣∣ , β)F̂(r∣∣ , β) − F̂(r∣∣ , β) ⋅ M̂(r∣∣ ,−β)F̂(r∣∣ ,−β) =

F̂(r∣∣ ,−β) ⋅ Ĵ(r∣∣ , β) − F̂(r∣∣ , β) ⋅ Ĵ(r∣∣ ,−β). (2.29)

Using the following vector identity for two arbitrary vectors A and B

B ⋅ ∇̂β ×A−A ⋅ ∇̂−β′ ×B = ∇∣∣ ⋅ (A×B)+ i(β− β′)(A×B)z , (2.30)

the le hand side (LHS) of Eq. (2.29) can be transformed for symmetric

permittivity and permeability tensors (εT = ε and µT = µ) into

LHS = ∇∣∣ ⋅ [Ê(r∣∣ , β)× Ĥ(r∣∣ ,−β)− Ê(r∣∣ ,−β)× Ĥ(r∣∣ , β)], (2.31)

with in-plane gradient ∇∣∣. e subscript z in Eq. (2.30) denotes the z
component of the vector.

Integration over spatial inhomogeneities in the r∣∣ plane, this term
vanishes since F̂(r∣∣ , β) and F̂(r∣∣ ,−β) have the same outgoing boundary

conditions [see Eq. (2.15)]. us, integrating Eq. (2.29) over all spatial

inhomogeneities provides the reciprocity theorem:

∫ [F̂(r∣∣ ,−β) ⋅ Ĵ(r∣∣ , β) − F̂(r∣∣ , β) ⋅ Ĵ(r∣∣ ,−β)]dr∣∣ = 0. (2.32)
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Next, replacing F̂(r∣∣ , β) and F̂(r∣∣ ,−β) in Eq. (2.32) with their denition
in terms of Green’s dyadic that is provided in Eq. (2.22), we obtain:

∬ Ĝ−β(r∣∣ , r′∣∣) Ĵ(r
′
∣∣ ,−β) ⋅ Ĵ(r∣∣ , β)dr∣∣dr

′
∣∣ =

∬ Ĝβ(r∣∣ , r′∣∣) Ĵ(r
′
∣∣ , β) ⋅ Ĵ(r∣∣ ,−β)dr∣∣dr

′
∣∣ . (2.33)

is is valid for arbitrary sources, hence, it yields

Ĝβ(r∣∣ , r′∣∣) = Ĝ
T
−β(r

′
∣∣ , r∣∣). (2.34)

Hence, we can infer that this symmetry property of the Green’s dyadic

results in Ĝm = F̂R
m , i.e.,

R̂m(r∣∣ ,r′∣∣) = −
F̂m(r∣∣)⊗ F̂R

m(r′∣∣)

2Nm
=

−
1

2Nm

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Êm(r∣∣)⊗ÊR
m(r′∣∣) iÊm(r∣∣)⊗ĤR

m(r′∣∣)

iĤm(r∣∣)⊗ ÊR
m(r′∣∣) −Ĥm(r∣∣)⊗ĤR

m(r′∣∣)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.35)

us, the Green’s dyadic for a waveguide geometries in the reciprocal

β space is given by [A1, A2]

Ĝβ(r∣∣ , r′∣∣) = −∑
m

F̂m(r∣∣)⊗ F̂R
m(r′∣∣)

2Nm(β − βm)
. (2.36)

2.2.2 Green’s dyadic in real space

In the previous subsection, we have derived the spectral representation

of theGreen’s dyadic for waveguide geometries in the reciprocal β space.
It allows us to nd the solution of Eq. (2.13) for an arbitrary source

using Eq. (2.22). Nevertheless, in most of the cases, we are interested

to nd the solutions of Maxwell’s equations in real space. We can get

the solution F̂(r∣∣ , β) in real space by simply using the inverse Fourier

transform of Eq. (2.12):

F(r) =∬ Ĝ(r∣∣ , r′∣∣ , β) Ĵ(r
′
∣∣ , β) e

iβzdβ dr′∣∣ . (2.37)
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Taking into account Eq. (2.11) and changing the order of integration, we

can write

F(r) = ∫ [
1

2π ∫
Ĝ(r∣∣ , r′∣∣ , β) e

iβ(z−z′) dβ] J(r′) dr′

= ∫ G(r, r′) J(r′) dr′ . (2.38)

Here, we note that the expression in square brackets denes the in-

verse Fourier transform of the spectral representation of the Green’s

dyadic back to the z space. us,

G(r, r′) =
1

2π ∫
Ĝ(r∣∣ , r′∣∣ , β) e

iβ(z−z′) dβ =

−
1

2π∑m
∫

F̂m(r∣∣)⊗ F̂R
m(r′∣∣)

2Nm(β − βm)
e
iβ(z−z′) dβ. (2.39)

is integral can be evaluated by employing the Cauchy’s integral

formula [48]. As we can see in Fig. 2.1, there are two possible contours.

Here, we have to keep in mind that the Green’s dyadic contains pairs of

Figure 2.1. e poles and the contour of integration of the Green’s dyadic on

the complex β plane. e real axis line Cr can be closed on the complex half

plane by Cp or Cn , depending on the observation position.

poles at β = ±βm [35, 38]. When z − z′ > 0, we may close the contour

in the upper half plane (half circle Cp, solid line). If z − z′ < 0, the
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resonant states of waveguide geometries

contour may be closed from below (half circle Cn, dashed line). us,

we obtain [43, 48]:

G(r, r′) =∑
m

F̂m(r∣∣)⊗ F̂R
m(r′∣∣)

2iNm
e
iβm ∣z−z′∣ . (2.40)

Accordingly, the source eld in real space is now given by

F(r) =∑
m

F̂m(r∣∣)
2iNm

∫ F̂R
m(r

′
∣∣) ⋅ J(r

′
) e

iβm ∣z−z′∣dr′ . (2.41)

Here, it should be noted the Green’s dyadic and the elds are dened at

a certain frequency.

2.3 poles on the complex frequency plane

In the previous sections, we have expanded the Green’s dyadic at a xed

frequency in the basis of resonant states that are dened on the complex

β plane. However, alternatively, we can dene the resonant states on

the complex wave number (frequency) k = ω/c plane. In this case, the

Green’s dyadic has poles at k = km , which are the wave numbers of the

resonant states of the system. Hence, it can be written as following [38,

39, 47, 50, 51]

Gk(r, r′) =∑
m

Em(r)⊗ Em(r′)
Nmk(k − km)

. (2.42)

As it is already mentioned, in the rst approach, we x the frequency

and search resonant states on the complex β plane. is is a more nat-

ural choice for guiding geometries with propagating modes that are

typically characterized by propagation constant βm [28]. While the

second approach is more appropriate for open optical cavities, three-

dimensional resonators and periodic structures [39, 47, 50, 51]. e

latter description for guiding geometries would mean to x real valued

β and search for the resonant states on the complex frequency plane.

is allows to consider global excitation of waveguide modes, e.g., in-

duced by incident plane wave from the side of the optical ber.

Before deriving our newnormalization scheme for the resonant states

of waveguide geometries, let us rst discuss normalization schemes

used for the resonant states dened on the complex frequency plane.
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2.3 poles on the complex frequency plane

In most cases, the electric eld Em of the mode of a resonator is

normalized as [52]

Nm = ∫
V

ε(r)E2
m(r)dr. (2.43)

However, for an open resonators this volume integral diverges since the

elds of an open system grow exponentially outside of the system due to

their leakage. It can only be used for lossless systems or approximately

for low loss cases by articially choosing a nite integration volume

[see Section 2.4.1]. In Refs. [53–56], it has been suggested the following

normalization scheme:

Nm = lim
V→∞∫

V

ε(r)E2
m(r)dr −

1

2ikm ∮SV
E2
m(r)dS , (2.44)

where SV is the surface that surrounds volume V . is normalization

scheme provides much more accurate results for leaky modes of an

open resonators in comparison to Eq. (2.43), because of the second

surface term that suppresses divergence of the rst volume integral.

Despite that fact Eq. (2.44) works quite well in numerical simulations

for a nite volume V , in Ref. [50] authors showed that it can diverge

in the limit V →∞ and provided the correct mode normalization that

can be written as [35, 39, 50]:

Nm = Vm + Sm , (2.45)

with the volume term

Vm = ∫
V

Em(r) ⋅ ε̂(r)Em(r)dr, (2.46)

and the surface term

Sm =
1

2k2m
∮

SV

[Em(r) ⋅
∂
∂s
(r ⋅ ∇)Em(r)−

∂Em(r)
∂s

⋅ (r ⋅ ∇)Em(r)]dS . (2.47)

Here, ε̂ is the permittivity tensor and ∂/∂s denotes the normal deriva-

tive.
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In alternative to these analytical normalization schemes, one can ex-

tend real coordinates r into the complex plane through a certain coordi-

nate transformation that is essentially equivalent to absorbing boundary

conditions. Such approaches are widely used in numerical calculations.

For instance, a similar approach is introduced by authors in Ref. [31]

for a description of plasmonic nanoresonators. We will discuss the con-

cept of complex coordinate transformation a bit more in detail in the

next section within the normalization of the resonant states of guiding

geometries.

2.4 analytic mode normalization

In the previous sections, we have constructed the explicit form of the

Green’s dyadic that can be expressed as an expansion into the basis of

resonant states. As we have mentioned previously, these states are the

eigensolutions of Maxwell’s equations in the absence of sources. is

means that the electric Êm and the magnetic Ĥm eld distributions of

the resonant states are dened up to an arbitrary scalar factor. However,

the Green’s dyadic must be uniquely dened. at is why we have intro-

duced the normalization constant Nm in Eq. (2.25) that is supposed to

provide a correct weight for these eld distributions.

In the last section, we have reviewed normalization of the modes of

open resonators. In this section, we discuss dierent possibilities and

ways for normalization of the resonant states of waveguide geometries.

Hence, rst of all, we review briey the conventional normalization

schemes from the literature. Aer this, we derive our analytical and

rigorous normalization scheme for the resonant states.

2.4.1 Conventional normalization schemes

Traditionally, the normalization constant of the eigenstates of the ho-

mogeneous Maxwell’s equations Eq. (2.14) is dened as an integral of

the absolute square value of the electric elds

Nm =

+∞

∫
−∞

∣Em(r∣∣)∣2dr∣∣ , (2.48)
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2.4 analytic mode normalization

or the axial component of the time-averaged Poynting vector Sm ,z =

cRe[(Em ×H∗m)z]/8π over the entire transverse region of the optical

system [28]:

Nm =

+∞

∫
−∞

Sm ,z(r∣∣)dr∣∣ . (2.49)

ese denitions work well for the eigenfunctions that decay in the

transverse region outside the optical system. According to the bound-

ary condition Eq. (2.15), the bound and evanescent modes of waveg-

uides fulll this condition since their eigenvalues are real and purely

positive imaginary numbers, respectively. Here, we note that these nor-

malization schemes can be analytically calculated for simple step-prole

bers [57].

However, the resonant states of an open electromagnetic systems di-

verge in the transverse region. For example, this is the case for leaky

modes of hollow-core waveguides. In this case, it is obvious that the

normalization schemes Eq. (2.48) and Eq. (2.49) are not applicable in

their current form, since Nm =∞. Nevertheless, they can be still used

under certain approximations. Here, as an example, we briey con-

sider two of them. e rst and more straightforward approximation

is based on the radiation caustic [28]. In order to explain the idea, let

us consider a simple step-prole hollow-core ber with ncl > nco. In

Fig. 2.2 (a), it is shown a schematic representation of the intensity distri-

bution of the fundamental leakymode over the cross section of the ber.

ere, we can dene a cylindrical surface with radius rrad (indicated by
white dashed line) that corresponds to the minimum of the intensity

distribution. is surface can be identied as the source of the leaky

mode radiation [see Fig. 2.2 (b)] and therefore, it is called the radiation

caustic [28].

us, in the region 0 ⩽ ρ < rrad, the elds of a leaky mode behave

similar to the elds of a bound mode. Hence, the normalization con-

stant Eq. (2.49) in the case of a leaky mode can be approximated as

Nm ≈

2π

∫
0

rrad

∫
0

ρ Sm ,z(ρ, ϕ)dρdϕ. (2.50)

A similar approximation can also be done for Eq. (2.48).
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resonant states of waveguide geometries

Figure 2.2. Schematic illustration of the radiation caustic that denes the area

of integration in the normalization schemes Eq. (2.48) and Eq. (2.49). (a)e

intensity distribution of the fundamental leaky mode of a step-prole hollow-

core ber with radius rc . (b)e intensity distribution in radial direction. e

minimum of the intensity at rrad denes the so-called radiation caustic, i.e., the

origin of radiation.

Figure 2.3. Schematic illustration of the contour of integration on the complex

ρ plane in the normalization scheme Eq. (2.52). [Image is based on Fig. 1 from

Ref. [30].]
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2.4 analytic mode normalization

e radiation caustic radius is dened in surrounding region of the

ber, i.e., rrad ⩾ rc. For low-order modes this radius is not sharply de-

ned. erefore, it is necessary to analyze the elds of every mode ad-

ditionally. However, for high-order leaky modes (i.e., for the azimuthal

mode number m ≫ 1) it can be dened as following [28]:

rrad =
m

Re(ϰclm)
. (2.51)

It is important to note that the normalization based on the radiation

caustic provides acceptable results only for bound and nearly bound

modes with a small attenuation coecient, i.e., ∣Im(βm)∣≪ ∣Re(βm)∣.
Since the attenuation coecient is Im(βm) ∝ λ2/r3c for hollow-core
bers [58], Eq. (2.50) can be used if the core radius of the ber is much

bigger than the wavelength of interest, i.e., rc ≫ λ.
In addition, based on the radiation caustic one can classify leaky

modes [28]. e physical mechanism of the energy leakage through

rrad is known as tunneling. Hence, the modes for which the radiation

caustic radius rc < rrad <∞ are called tunneling leaky modes [59–61].

emodes in the case rrad = rc are referred to as refracting leakymodes.

In this context, it is clear that if rrad = ∞, there is no energy leakage

and the leaky mode becomes a bound mode.

In another approach, it is suggested to introduce a complex coordi-

nate system to regions outside the spatial inhomogeneities for suppress-

ing the divergence of leaky modes [29, 30]. As it can be seen in Fig. 2.3,

this can be done by simply deforming the contour of integration into the

complex ρ plane. e contour should be chosen in such a way that in

the limit R →∞ and for a certain angle θ, the following normalization

scheme based on Eq. (2.49) [similarly Eq. (2.48)] converges:

Nm = lim
R→∞

2π

∫
0

(

rrad

∫
0

ρ Sm ,z(ρ, ϕ)dρ+∫
LR

ρ Sm ,z(ρ, ϕ)dρ)dϕ. (2.52)

Essentially, this approach is equivalent to the well-known perfectly

matched layers (PML) that are widely used in dierent commercial tech-

nical simulation soware packages such as Comsol Multiphysics [31,

50]. In comparison to the concept of the radiation caustic, the second

approach is mathematically exact. However, it can be tedious to imple-

ment and the standard orthogonality conditions are not valid in this

approach [28].
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2.4.2 Analytical normalization scheme

As we have seen in the previous subsection, the normalization of reso-

nant states is not straightforward within the conventional approaches.

It becomes especially problematic for the resonant states of hollow-core

waveguides. In order to solve this problem once and for all, in this sec-

tion, we derive an exact analytical form of the normalization scheme.

For that, following other related works [A1, 35, 37, 38], let us consider

Eq. (2.28a) and Eq. (2.28b) in the form:

M̂(r∣∣ , β)F̂(r∣∣ , β) = (β − βm)σ̂(r∣∣ , β), (2.53a)

M̂(r∣∣ ,−βm)F̂R
m(r∣∣) = 0. (2.53b)

We multiply Eq. (2.53a) with F̂R
m , and Eq. (2.53b) with F̂ from the le

side. en, subtracting the second expression from the rst one, we

obtain:

F̂R
m(r∣∣) ⋅ M̂(r∣∣ , β)F̂(r∣∣ , β) − F̂(r∣∣ , β) ⋅ M̂(r∣∣ ,−βm)F̂

R
m(r∣∣) =

(β − βm)F̂R
m(r∣∣) ⋅ σ̂(r∣∣ , β). (2.54)

Using the vector identity of Eq. (2.30), aer some algebra, we obtain:

[∇∣∣ + i(β−βm)êz] ⋅ [Ê(r∣∣ , β)×ĤR
m(r∣∣)−Ê

R
m(r∣∣)×Ĥ(r∣∣ , β)] =

i(β − βm)F̂R
m(r∣∣) ⋅ σ̂(r∣∣ , β), (2.55)

where êz denotes the unit vector in the z direction. Dividing by β − βm ,
integrating over the spatial inhomogeneities in the limit β → βm , and
taking into account Eq. (2.27), we get

lim
β→βm
∫

∇∣∣

i(β−βm)
⋅[Ê(r∣∣ , β)×ĤR

m(r∣∣)−Ê
R
m(r∣∣)×Ĥ(r∣∣ , β)]dr∣∣+

∫ [Ê(r∣∣ , β)×ĤR
m(r∣∣)−Ê

R
m(r∣∣)×Ĥ(r∣∣ , β)]z dr∣∣=−2Nm . (2.56)

For evaluating the limit β → βm , we Taylor expand F̂(r∣∣ , β) around βm :

F̂(r∣∣ , β) = ∑
n⩾0

(β − βm)n

n!
∂nF̂(r∣∣ , β)

∂βn

RRRRRRRRRRR βm

, (2.57)
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2.4 analytic mode normalization

where F̂ stands for Ê and Ĥ. Substituting Eq. (2.57) in Eq. (2.56) yields

∫ ∇∣∣ ⋅
⎡
⎢
⎢
⎢
⎣

∂Ê(r∣∣ , β)
∂β

∣
βm
× ĤR

m(r∣∣) − Ê
R
m(r∣∣) ×

∂Ĥ(r∣∣ , β)
∂β

∣
βm

⎤
⎥
⎥
⎥
⎦
dr∣∣+

∫ i[Ê(r∣∣ , β) × ĤR
m(r∣∣) − Ê

R
m(r∣∣) × Ĥ(r∣∣ , β)]z dr∣∣=−2iNm . (2.58)

e rst term of Eq. (2.58) can be converted to a line integral by using

the divergence theorem. If we use more convenient cylindrical coordi-

nates, the curve of integration is a circle of radius R outside the region

of inhomogeneities. Furthermore, using the aforementioned relations

between F̂R
m and F̂m [see Eq. (2.16)], we can rewrite Eq. (2.58) in more

compact form as [A1]

Nm = Sm + Lm , (2.59)

with the surface term

Sm =
2π

∫
0

R

∫
0

ρ(Êm ,ρĤm ,ϕ − Êm ,ϕĤm ,ρ) dρdϕ, (2.60)

and the line term

Lm =
βmR
2iϰm

2π

∫
0

[
∂Êm ,ϕ

∂ϰ
Ĥm ,z +

∂Êm ,z

∂ϰ
Ĥm ,ϕ−

∂Ĥm ,ϕ

∂ϰ
Êm ,z −

∂Ĥm ,z

∂ϰ
Êm ,ϕ]

βm ,R
dϕ. (2.61)

Here, ϰ = (n2
surk20 − β2)1/2 and nsur is the refractive index of the homo-

geneous surrounding. Note that the surface Sm and the line Lm terms

of normalization Nm , as well as the eld distributions are written in

cylindrical coordinates. e second index in the elds stand for the

corresponding vector eld component. Furthermore, the subscripts

βm and R at the right rectangular bracket of Eq. (2.61) denote that the

integrand should be evaluated at these parameters.

e current form of the line term, i.e., Eq. (2.61) contains the deriva-

tives with respect to the untypical variable ϰ. In order to convert them
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into the usual spatial derivatives, rst, we use the following relations

between the ϰ and ρ derivatives of the axial components of the elds:

∂Êm ,z

∂ϰ
=
ρ
ϰ
∂Êm ,z

∂ρ
, (2.62a)

∂Ĥm ,z

∂ϰ
=
ρ
ϰ
∂Ĥm ,z

∂ρ
. (2.62b)

Next, the in-plane components of the elds can be expressed by the

axial one as [28, 41]:

Êm ,ρ =
iβ
ϰ2

∂Êm ,z

∂ρ
+
ik0µ
ϰ2ρ

∂Ĥm ,z

∂ϕ
, (2.63a)

Ĥm ,ρ =
iβ
ϰ2

∂Ĥm ,z

∂ρ
−
ik0ε
ϰ2ρ

∂Êm ,z

∂ϕ
, (2.63b)

Êm ,ϕ =
iβ
ϰ2ρ

∂Êm ,z

∂ϕ
−
ik0µ
ϰ2

∂Ĥm ,z

∂ρ
, (2.63c)

Ĥm ,ϕ =
iβ
ϰ2ρ

∂Ĥm ,z

∂ϕ
+
ik0ε
ϰ2

∂Êm ,z

∂ρ
. (2.63d)

Finally, we can write the following integral identity

2π

∫
0

dϕ ∂ f
∂ϕ

g = −
2π

∫
0

dϕ f ∂g
∂ϕ

, (2.64)

where f and g stand for components of Êm and Ĥm , respectively. us,

taking into account all these relations and aer some algebra and rear-
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rangements, we can write the line term in more symmetrical form with

respect to the electric and the magnetic elds [A1]:

Lm =
εµk20+β2m

2ϰ4m

2π

∫
0

(Êm ,z
∂Ĥm ,z

∂ϕ
−Ĥm ,z

∂Êm ,z

∂ϕ
)dϕ+

k0βmR2

2ϰ4m

2π

∫
0

{µ[(∂Ĥm ,z

∂ρ
)
2

−ρĤm ,z
∂
∂ρ
(
1

ρ
∂Ĥm ,z

∂ρ
)]+

ε[(∂Êm ,z

∂ρ
)
2

− ρÊm ,z
∂
∂ρ
(
1

ρ
∂Êm ,z

∂ρ
)]} dϕ. (2.65)

In addition to the unique normalization scheme, the resonant states

of a certain waveguide geometry satisfy a certain orthogonality con-

dition. In order to derive this orthogonality relation, we consider the

following two equations:

M̂(r∣∣ , βm)F̂m(r∣∣) = 0, (2.66a)

M̂(r∣∣ ,−βm)F̂R
m(r∣∣) = 0. (2.66b)

Aer repeating the steps that have been done to derive the normaliza-

tion, for βn ≠ βm , we obtain the orthogonality condition for resonant

states [see Section 5.1.2]:

∫ [∇∣∣ + i(βn − βm)êz] ⋅ [Ên(r∣∣) × ĤR
m(r∣∣)−

ÊR
m(r∣∣) × Ĥn(r∣∣)]dr∣∣ = 0. (2.67)

2.4.3 Example: Step-prole ber

Here, as an example, we apply our analytical normalization scheme to

a simple step-prole ber. For that, rst of all, we have to nd the exact

eigensolutions of Eq. (2.14) for

ε(r∣∣) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

n2
co for ρ < rc ,

n2
cl for ρ > rc ,

(2.68)
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and µ(r∣∣) = 1. In this case, for the z component F̂m ,z of the eld F̂m ,

we can make the following ansatz:

F̂m ,z(r∣∣) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

Fco
0 Jm(ϰcom ρ) eimϕ for ρ < rc ,

Fcl
0 H(1)m (ϰclmρ) eimϕ for ρ > rc ,

(2.69)

where Jm andH(1)m are Bessel and the rst kindHankel functions, respec-

tively, and Fco
0 = (Eco

0 ,Hco
0 )

T and Fcl
0 = (Ecl

0 ,Hcl
0 )

T are their amplitudes

in the core and cladding regions, respectively. By using the boundary

conditions that F̂m ,z and F̂m ,ϕ must be continuous, including at ρ = rc,
this yields eigenvalue problem [28, 41]:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Rco
m 0 −Rcl

m 0

0 Rco
m 0 −

ncl

nco

Rcl
m

βm
kco

Y co
m −Xco

m −
βmϰcom
kcoϰclm

Y cl
m

nclϰcom
ncoϰclm

Xcl
m

Xco
m −

βm
kco

Y co
m −

n2
clϰcom

n2
coϰclm

Xcl
m

nclβmϰcom
ncokcoϰclm

Y cl
m

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Eco
0

Hco
0

Ecl
0

Hcl
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0, (2.70)

with

Rco
m ≡ R

co
m (ϰ

co
m rc) = Jm(ϰcom rc), (2.71a)

Rcl
m ≡ R

cl
m(ϰ

cl
mrc) = H

(1)
m (ϰclmrc), (2.71b)

X re g
m =

1

2
[Rre g

m−1 − R
re g
m+1], (2.71c)

Y re g
m =

1

2
[Rre g

m−1 + R
re g
m+1]. (2.71d)

Here, kre g = nre gk0, and "reg" (region) stands for "co" (core) and "cl"

(cladding). e zeros of the determinant of the 4×4matrix in Eq. (2.70)

correspond to the eigenvalues βm of the system.
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Aer some algebra, we obtain the exact form of the amplitudes:

Eco
0 = E0 , (2.72a)

Ecl
0 =

Rco
m

Rcl
m
E0 , (2.72b)

Hco
0 =

βm
kco

Y co
m Eco

0 −
ϰcom
ϰclm

Y cl
m Ecl

0

Xco
m −

ϰcom
ϰclm

Rco
m

Rcl
m
Xcl
m

, (2.72c)

Hcl
0 =

kcl
kco

Rco
m

Rcl
m
Hco

0 , (2.72d)

where E0 is an arbitrary constant. As it is shown inEqs. (2.63a) to (2.63d),

the F̂m ,ρ and F̂m ,ϕ components of the mode eld F̂m can be expressed

by its F̂m ,z component [28, 41]. us, using these solutions, aer some

simplications, we obtain the following analytical expressions for the

surface Sm and line Lm terms:

Sm = ncoScom + nclSclm , (2.73)

Lm = nclLcl
m , (2.74)

with

Sre gm = Cre g
1 [(E

re g
0 )

2

+ (Hre g
0 )

2

](Ire gm−1(ρ)∣
rc

0
+ Ire gm+1(ρ)∣

rc

0
)−

Cre g
2 Ere g

0 Hre g
0 (I

re g
m−1(ρ)∣

R

rc
− Ire gm+1(ρ)∣

R

rc
), (2.75)

and

Lcl
m = −C

cl
1 [(E

cl
0 )

2

+ (Hcl
0 )

2

](Iclm−1(ρ)∣
R
+ Iclm+1(ρ)∣

R
)+

Ccl
2 E

cl
0 H

cl
0 (I

cl
m−1(ρ)∣

R
− Iclm+1(ρ)∣

R
). (2.76)
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In these equations Ire gm (ρ) denes the integral of the squared Bessel

functions [62]:

Ire gm (ρ) =∫ ρ[Rre g
m (ϰ

re g
m ρ)]

2

dρ =

ρ2

2
{[Rre g

m (ϰ
re g
m ρ)]

2

− Rre g
m−1(ϰ

re g
m ρ)Rre g

m+1(ϰ
re g
m ρ)}. (2.77)

Finally, the coecients Cre g
1 and Cre g

2 are dened as

Cre g
1 = −

π
2

βmkre g
(ϰre g

m )2
, (2.78a)

Cre g
2 = −

π
2

β2m + k2re g
(ϰre g

m )2
. (2.78b)

In the case of TE and TMmodes (m = 0), Cre g
1 and Cre g

2 must be multi-

plied by factor of 2 since their elds do not depend on ϕ. Furthermore,

one can note that Lcl
m = −2Sclm . Hence, we can write

Nm = ncoScom − nclSclm . (2.79)

Let us now consider the fundamental bound and leaky modes of

two geometries with a core radius rc = 0.3 µm at a wavelength of

λ0 = 800nm. In the rst geometry, we assume that the ber core is

made of bismuth oxide (Bi2O3) doped glass with refractive index of

nco = 2.05 [63] and air cladding with ncl = 1. e ber with these

parameters carries bound modes and the panel (a) of Fig. 2.4 displays

the spatial distribution of the z-component of the real-valued Poynting

vector of the fundamental bound mode that propagates with the prop-

agation constant βm = 14.455 µm−1. We can see that the elds of the

bound mode decay exponentially outside of the core and fully satisfy

the boundary condition Eq. (2.15).

Fig. 2.4 (b) shows the fundamental leakymode (βm = 11.15+1.63i µm−1)
of the second geometry, which is a step-prole hollow-core ber. e

ber has the same geometrical parameters as in the rst one, but the

core is lled by carbon disulde (CS2) with refractive index of n =
1.6 [64], while the cladding material is bismuth oxide (Bi2O3) doped

glass with refractive index of nco = 2.05. In contrast to the boundmodes

that exist in the rst geometry, the second geometry exhibit the leaky

modes with elds that grow in the exterior with distance from the core.
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2.4 analytic mode normalization

Figure 2.4. Spatial distribution of the z-component of the real-valued Poynting

vector of the fundamental ber modes at λ0 = 800 nm for two geometries with

core radius rc = 0.3 µm (indicated by white dashed circle): (a) Bound mode

in a cylindrical step-index ber with bismuth oxide (Bi2O3) doped glass core

with refractive index of n = 2.05 and air cladding with n = 1, (b) leaky mode

in a Bi2O3 capillary lled with carbon disulde (CS2, n = 1.6). e eective

refractive index neff = βm/k0 of the corresponding fundamental modes are

neff = 1.84 and neff = 1.42 + 0.21i, respectively. e mode elds are normalized

with respect to Eq. (2.59) and the corresponding normalization constants are

Nm = −0.645 and Nm = 0.37 − 0.66i, respectively.

Panels (a) and (b) in Fig. 2.5 display the real and the imaginary parts

of the surface Sm and the line Lm terms of the normalization as well as

the total normalization constant Nm of the fundamental leaky mode

of the second geometry [see Fig. 2.4 (b)] as a function of the radius

of normalization rn. As we can see, the surface Sm and the line Lm
terms oscillate and diverge since the elds grow in the cladding region.

However, the total normalization constant Nm does not depend on the

radius of normalization. Similar pictures can be obtained for all other

higher-order hybrid HEmn/EHmn and transverse TEmn/TMmn modes.

Let us now repeat the calculations for the fundamental bound mode

[see Fig. 2.4 (a)]. e results are shown in Fig. 2.6. As we can see, the

real part of the surface Sm and the line Lm terms are already converged

at rn = 1.5rc, while their imaginary parts are zero. As in the previous

case, the sum of Sm and Lm remains constant for all rn and gives the

normalization constant Nm . Furthermore, for bound modes the line

term vanishes at rn →∞ as expected.
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Figure 2.5. e real (a) and imaginary (b) parts of the surface term Sm (red

solid line) and line term Lm (blue solid line) of the analytical normalization

Eq. (2.59) for the fundamental leaky mode shown in Fig. 2.4 (b) as a function of

the radius of normalization rn . e surface and line terms diverge due to the di-

vergent nature of the leakymode elds, while their sum gives the normalization

constant Nm = 0.37 − 0.66i (black dashed line).

Figure 2.6. e real (a) and imaginary (b) parts of the surface term Sm (red

dashed line) and line term Lm (blue solid line) of the analytical normalization

Eq. (2.59) for the fundamental bound mode shown in Fig. 2.4 (a) as a function

of the radius of normalization rn. e surface and line terms converge expo-

nentially and their sum gives the normalization constant Nm = −0.645 (black

dashed line).
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2.4 analytic mode normalization

us, we showed that our new normalization scheme can be applied

for both bound and leaky modes of waveguide geometries. Within

the new scheme, in order to calculate the exact normalization constant,

one can use theminimum area that includes all spatial inhomogeneities.

As we will see in the next chapters, this distinctive feature of the new

normalization scheme becomes important in the description of the

nonlinear pulse propagation.

In conclusion, in this chapter, we provided a brief introduction to

the resonant-state expansion. Following the previous works, we have

constructed the Green’s dyadic ab initio from the Maxwell’s equations

using eigensolutions of the waveguide that we dene as the resonant

states. Furthermore, we have derived the correct normalization scheme

and the orthogonality condition for the resonant states. Additionally, as

an example, we have applied this normalization scheme for bound and

leaky modes of a step-prole bers and obtained the exact analytical

form of the normalization.

º
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3
MASTER EQUATION FOR PULSE PROPAGATION

is chapter is based on the following publication [A2]:

I. Allayarov, S. Upendar, M. A. Schmidt, and T. Weiss: "Analytic mode
normalization for the Kerr nonlinearity parameter: Prediction of nonlin-
ear gain for leaky modes", Phys. Rev. Lett., 121 213905 (2018).
DOI 10.1103/physrevlett.121.213905

In this chapter, we use an expansion of Green’s dyadic with the analytic

mode normalization that has been obtained in the previous chapter to

derive amaster equation for the nonlinear pulse propagation that allows

for a rigorous description of both bound and leakymodes in waveguide

geometries. Aer obtaining the master equation, we consider its par-

ticular case, namely in the single-mode approximation that simplies

to the standard nonlinear Schroedinger equation. In the framework

of approximation, we discuss our new vectorial approach for the Kerr

nonlinearity parameter that has a nonvanishing imaginary part and

compare it with conventional formulations. At the end of the chapter,

we investigate the impact of the imaginary part of the Kerr nonlinearity

parameter on the pulse broadening within numerical simulations.

3.1 derivation of general master equation

In the previous chapter, we have derived an expansion of the Green’s

dyadic in terms of resonant states.is allows us to express the resulting

eld F̂ for an arbitrary source Ĵ in Eq. (2.13) as:

F̂(r∣∣ , β;ω)=∫ Ĝβ(r∣∣ , r′∣∣;ω) Ĵ(r
′
∣∣ , β;ω)dr

′
∣∣ =

−∑
m

F̂m(r∣∣;ω)
2Nm[β−βm(ω)]∫

F̂R
m(r

′
∣∣;ω) ⋅ Ĵ(r

′
∣∣ , β;ω)dr

′
∣∣ . (3.1)
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master equation for pulse propagation

Next, we can make the ansatz that the eld on the le hand side can be

expressed as a superposition of resonant states, i.e.,

F̂(r∣∣ , β;ω) =∑
m
âm(β,ω)

1

N 1/2
m

F̂m(r∣∣;ω), (3.2)

where âm is the modal amplitude. By comparing the right hand side

of Eq. (3.1) with ansatz Eq. (3.2), and evaluating the result for each F̂m
independently, we obtain:

i[β−βm(ω)]âm(β,ω) =
1

2iN 1/2
m
∫ F̂R

m(r∣∣;ω) ⋅ Ĵ(r∣∣ , β;ω)dr∣∣ . (3.3)

Applying the inverse Fourier transform of Eq. (2.12) to Eq. (3.3) yields

[
∂
∂z
− iβm(ω)]am(z;ω)=

1

2iN 1/2
m
∫ FR

m(r∣∣;ω) ⋅J(r∣∣ , z;ω)dr∣∣ . (3.4)

For the system without external current source

J(r∣∣ , z;ω) =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

−
4πω
c PNL(r∣∣ , z;ω)

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (3.5)

i.e, the nonlinear polarization becomes the main source, which yields

[
∂
∂z
− iβm(ω)]am(z;ω)=

2πiω
c ∫

eRm(r∣∣;ω)⋅PNL(r∣∣ , z;ω)dr∣∣ , (3.6)

where eRm ≡ ER
m/N

1/2
m is the normalized reciprocal conjugate electric

eld.

Finally, aer transformation from frequency to time domain using

Eq. (2.7), we obtain the general master equation for the nonlinear pulse

propagation:

∂am(z; t)
∂z

=iβm(t) ∗ am(z; t)

−
2π
c

∂
∂t ∫

eRm(r∣∣; t) ∗ PNL(r; t)dr∣∣ . (3.7)

Here, ∗ denotes convolutions in time domain. is equation is fully

vectorial and contains no approximation so far. e only limitation of
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3.2 nonlinear schroedinger equation

Eq. (3.7) is that the expansion of the Green’s dyadic in terms of resonant

states is not straightforward in the external regions outside the spatial

inhomogeneities [47, 51, 65]. us, the nonlinear polarization should

be restricted to the region of spatial inhomogeneities, i.e., excluding the

homogeneous exterior.

3.2 nonlinear schroedinger equation

e general master equation for the nonlinear pulse propagation in

waveguide geometries contains the nonlinear polarization as a source

in general form. In this section, we consider the nonlinear polariza-

tion within a certain approximations and obtain the corresponding

propagation equation, namely the well-known nonlinear Schroedinger

equation.

In general, the nonlinear polarization PNL can be expressed as a

power series in the electric eld E as

PNL(r; t) =χ(2)e (t) ∗ E(r; t)E(r; t)+

χ(3)e (t) ∗ E(r; t)E(r; t)E(r; t)+

χ(4)e (t) ∗ E(r; t)E(r; t)E(r; t)E(r; t) + . . . . (3.8)

In Eq. (3.8), the rst term vanishes inmost cases, since the second-order

electric susceptibility χ(2)e = 0 for an isotropic medium such as liquids,

gases, and glasses [9]. Hence, we solely consider the third-order non-

linear term with χ(3)e as the dominating contribution in PNL [5]. While

the fourth- and other higher-order contributions can become relevant

in specic nonlinear polymers [e.g., polydiacetylene para-toluene sul-

fonate (PTS) [66]] and semiconductor-doped glasses at relatively high

pulse intensity [67, 68], their impact can be neglected in our case.

For further simplication, we rstly assume an instantaneous third-

order nonlinear response, i.e., χ(3)e (t) = χ(3)e δ(t − t′). e third-order

electric susceptibility χ(3)e is a fourth-rank tensor, due to the vectorial

nature of the elds, and its components depend on the class of the

crystal. e spatial symmetry of an isotropic medium restricts 34 = 81

elements of χ(3)
e, i jk l , where (i , j, k, l = x , y, z), to 21 nonzero elements, of
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which only three are independent [9]. Hence, these nonzero elements

can be expressed as [9, 15]:

χ(3)
e, i jk l = χ

(3)
e,xx y yδ i jδk l + χ(3)e,x yx yδ i kδ j l + χ(3)e,x y yxδ i l δ jk , (3.9)

and diagonal elements of the tensor are

χ(3)
e, i i i i = χ

(3)
e,xx y y + χ(3)e,x yx y + χ(3)e,x y yx . (3.10)

Additionally, by using intrinsic permutation symmetry of the tensor

and taking into account the nonresonant electronic nature of the non-

linearity, we can write χ(3)e,xx y y = χ
(3)
e,x yx y ≈ χ

(3)
e,x y yx [9]. Finally, all these

approximations allow us to write the following:

PNL(r; t) =
χ(3)e,xxxx

4
[2E(r; t)∣E∗(r; t)∣2 + E∗(r; t)E2

(r; t)]. (3.11)

For the electric elds in Eq. (3.11), we use the Fourier transform of

Eq. (3.2) from frequency to time domain. Considering pulses that are

centered around a frequency ω0 with a nite spectral width, and assum-

ing that em depends only weakly on the frequency around ω0, the elds

can be written as

E(r; t) =∑
m
am(z; t) ∗ em(r∣∣; t) + c.c.

≈∑
m
am(z; t)em(r∣∣) + c.c.

= e0(r; t) e−iω0 t + c.c., (3.12)

where em(r∣∣) ≡ em(r∣∣;ω0), and e0(r; t) is the envelope for the domi-

nant plane wave with frequency ω0.

us, the propagation equation becomes

∂am(z; t)
∂z

≈iβm(t) ∗ am(z; t)−

1

c ∑n ,p ,q
∂
∂t
[αmnpqan(z; t)a∗p(z; t)aq(z; t)], (3.13)
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3.2 nonlinear schroedinger equation

with the overlap integral

αmnpq =∫ n2(r∣∣){2[eRm(r∣∣) ⋅ eq(r∣∣)][en(r∣∣) ⋅ e
∗
p(r∣∣)]+

[eRm(r∣∣) ⋅ e
∗
p(r∣∣)][en(r∣∣) ⋅ eq(r∣∣)]}dr∣∣ . (3.14)

Here, n2 = 2πχ(3)e,xxxx/4 is the nonlinear refractive index. In the single-

mode approximation, we can transform Eq. (3.13) into the standard

nonlinear Schroedinger equation. For that, rstly, we separate βm into

real and imaginary parts β̄m and ᾱm , respectively. Expanding them into

Taylor series around ω0 yields

βm(ω) ≡ β̄m(ω)+ iᾱm(ω) ≈ ∑
n⩾0

⎛

⎝

β̄(n)m

n!
+ i ᾱ

(n)
m

n!
⎞

⎠
(ω−ω0)

n
, (3.15)

where

β̄(n)m =
∂n β̄m
∂ωn ∣ω0

, (3.16a)

ᾱ(n)m =
∂n ᾱm

∂ωn ∣ω0

, (3.16b)

are the nth-order dispersion and loss coecients, respectively. How-

ever, here, we only keep up to the second-order dispersion and assume

a constant modal loss with ᾱm(ω) ≈ ᾱm(ω0) ≡ ᾱ(0)m . Hence, by intro-

ducing

am(z; t) ≡ Am(z; t) e−iω0 t+i β̄(0)m z
, (3.17)

we obtain the well-known nonlinear Schoedinger equation [5]

∂Am(z; τ)
∂z

≈iγm(1 −
1

iω0

∂
∂τ
)∣Am(z; τ)∣2Am(z; τ)−

i β̄
(2)
m

2

∂2Am(z; τ)
∂τ2

− ᾱ(0)m Am(z; τ), (3.18)

where γm = k0αmmmm is the Kerr nonlinearity parameter and τ =
t−β̄(1)m z is the so-called retarded time. Here, wewould like to emphasize

that Eq. (3.18) is obtained in a rigorous way without any slowly-varying

approximation and more general due to the analytic mode normaliza-

tion in contrast to conventional formulations.

39



master equation for pulse propagation

3.3 the kerr nonlinearity parameter

e denition of the Kerr nonlinearity parameter γ that we have ob-

tained in the previous section within the single-mode approximation

is general and fully vectorial. It can be readily applied to both bound

[see Fig. 2.4 (a)] and leaky [see Fig. 2.4 (b)] modes due to the analytic

mode normalization. In the case of leaky modes, the analytic mode

normalization Eq. (2.59) provides the correct weight to the elds, thus,

γ are complex quantities, in agreement with previous ndings within

the iterative [32, 33] and the perturbative approaches [16]. Particularly,

our approach for the Kerr nonlinearity parameter γ is similar to that

derived in Ref. [16]. However, authors in Ref. [16] use the standard

normalization scheme based on the axial component of the Poynting

vector [see Section 2.4.1] leading to an incorrect value of γ for leaky

modes. In contrast, our approach with the correct mode normalization

ensures a straightforward and ecient implementation in numerical

calculations [A1].

Here, we discuss this new denition of the Kerr nonlinearity param-

eter γ in more details and compare it with previous perturbative ap-

proaches. First of all, let us briey review the conventional approaches

of the Kerr nonlinearity parameter that are widely used in the literature.

Depending on the underlying approximation, we can divide these ap-

proaches in scalar and vectorial ones. e standard scalar approach is

based on a weakly-guiding approximation and given by Agrawal [5]:

γAgrawal =
n2k0

AAgrawal

eff

, (3.19)

with the eective mode area

AAgrawal

eff
=

[
+∞

∫
−∞

∣Em ,∣∣(r∣∣)∣2dr∣∣]
2

+∞

∫
−∞

∣Em ,∣∣(r∣∣)∣4dr∣∣
. (3.20)

Here, Em ,∣∣ = (Em ,x , Em ,y) denotes the transverse components of the

electric eld of the corresponding mode. e numerator in Eq. (3.20)

is basically the squared scalar normalization constant introduced in

Section 2.4.1 [see Eq. (2.48)]. e current denition of the Kerr nonlin-

earity parameter γ can be slightly improved by using the z-component

of the real-valued Poynting vector Sm ,z instead of the transverse mode
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3.3 the kerr nonlinearity parameter

elds E∣∣ in the eective mode area [see Eq. (3.20)]. is has been sug-

gested by Foster et al. [14]. us, we can write Foster’s denition of the

Kerr nonlinearity parameter as

γFoster =
n2k0
AFoster
eff

, (3.21)

where

AFoster
eff =

[
+∞

∫
−∞

Sm ,z(r∣∣)dr∣∣]
2

+∞

∫
−∞

[Sm ,z(r∣∣)]2dr∣∣
. (3.22)

In this case, the numerator in Eq. (3.22) is the squared normalization

constant based on the axial component of the Poynting vector intro-

duced in Section 2.4.1 [see Eq. (2.49)].

Essentially, these denitions are scalar approaches since they do not

take into account the axial component of the elds. e vectorial de-

nition of the Kerr nonlinearity parameter γ is obtained from Afshar et

al. [15]:

γAfshar = k0

+∞

∫
−∞

n2(r∣∣)n2(r∣∣)[2∣Em(r∣∣)∣4 + ∣E2
m(r∣∣)∣2]dr∣∣

3[
+∞

∫
−∞

Sm ,z(r∣∣)dr∣∣]
2 . (3.23)

In a similar fashion to the Foster’s denition, this vectorial approach

can be written as:

γAfshar =
ñ2k0
AFoster
eff

, (3.24)

with a redened nonlinear refractive index averaged over spatial inho-

mogeneities and weighted with respect to the elds [15]:

ñ2 =

+∞

∫
−∞

n2(r∣∣)n2(r∣∣)[2∣Em(r∣∣)∣4 + ∣E2
m(r∣∣)∣2]dr∣∣

3
+∞

∫
−∞

[Sm ,z(r∣∣)]2dr∣∣
. (3.25)

is vectorial denition provides more accurate results compared

to the scalar approaches. However, it becomes less accurate or fails
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completely in case of leaky modes. e reason is that the mode elds

are still normalized with respect to the axial component of the time-

averaged Poynting vector Sz over the entire cross section of the ber. As
we have discussed in Section 2.4.1, this normalization scheme diverges

in the case of leaky modes, and hence, results in an unphysical value

for the Kerr nonlinearity parameter. As we have shown in the example

of the fundamental bound [see Fig. 2.6] and leaky [see Fig. 2.5] modes

of the step-prole ber, the analytical mode normalization Eq. (2.59)

based on resonant state expansion does not depend on the area/radius

of integration.

For the sake of completeness and convenience, we rewrite our ap-

proach for γ based on the resonant-state expansion in a similar form

as previous scalar and vectorial approaches:

γRSE=k0
Amin

∫
0

n2(r∣∣){2[eRm(r∣∣)⋅em(r∣∣)][em(r∣∣)⋅e
∗
m(r∣∣)]+

[eRm(r∣∣)⋅e
∗
m(r∣∣)][em(r∣∣)⋅em(r∣∣)]}dr∣∣ , (3.26)

where Amin denotes the minimum that includes all spatial inhomo-

geneities, i.e., the same area is used in the analytical normalization.

e eective mode area within our formulation of the Kerr nonlin-

earity parameter can be dened as follows:

ARSE
eff =

⎧⎪⎪
⎨
⎪⎪⎩

Amin

∫
0

{2[eRm(r∣∣)⋅em(r∣∣)][em(r∣∣)⋅e
∗
m(r∣∣)]+

[eRm(r∣∣)⋅e
∗
m(r∣∣)][em(r∣∣)⋅em(r∣∣)]}dr∣∣

⎫⎪⎪
⎬
⎪⎪⎭

−1

. (3.27)

In this denition the eective mode area is in general a complex quan-

tity. Note that the electric elds em in Eq. (3.26) and Eq. (3.27) are

already normalized according to Eq. (2.59).

As it has beenmentioned at the beginning of Chapter 2, all equations

in this dissertation are given in Gaussian units, consistent with our pub-

lications[A1–A3]. However, one can straightforwardly reformulate the

equations in SI units by using the following changes: e permittivity

ε and permeability µ have to be replaced by the relative ones, and one
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3.3 the kerr nonlinearity parameter

needs to substitute the magnetic eld H with Z0HSI, where Z0 is the

vacuum impedance, while the electric eld E simply becomes ESI. Next,

for the conversion of the third-order electric susceptibility from Gaus-

sian to SI units we can use χ(3)e = 4π/(3 × 104)2[χ(3)e ]
SI [69]. In order

to allow for an easier comparison with experimental results, we present

our simulation results in the following sections and chapters in SI units.

Figure 3.1. Comparison of dierent perturbative approaches for calculating the

Kerr nonlinearity parameter γ of dierent modes of a cylindrical step-index

ber with bismuth oxide (Bi2O3) doped glass core with refractive index of n =
2.05 in air with n = 1 at λ0 = 800 nm: γ of the rst transverse electric (TE01)

(a), the transverse magnetic (TM01) (b), and the fundamental (HE11) (c) bound
modes as a function of core radius rc for a radius of normalization rn = 5rc;
(c) dependence of γ of the fundamental bound mode on rn for rc = 0.15 µm,

indicated by the arrow in (c).

Let us now compare our approach for the calculation of the Kerr non-

linearity parameter γ with other perturbative formulations in case of

bound modes. Since bound modes exhibit a real propagation constant,

reciprocal conjugation can be replaced by usual complex conjugation,
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i.e., ER
m = E∗m . Hence, one can show that our γ has exactly the same

form as in the vectorial approach Eq. (3.23) described in Refs. [15, 16,

57], whereas the scalar approaches of Refs. [5, 14] are approximately

valid. Panels (a) and (b) in Fig. 3.1 display the Kerr nonlinearity pa-

rameter γ of the rst transverse electric (TE01) and transverse magnetic

(TM01) bound modes of a cylindrical step-prole ber with bismuth

oxide Bi2O3 doped glass [n2 = 3.2 × 10−19 m2 W−1] core surrounded

by air [n2 = 5.7 × 10
−23 m2 W−1] as a function of core radius rc, respec-

tively. e results have been obtained by the weakly guiding approx-

imation [Agrawal, red line, Eq. (3.19)], its slightly improved version

suggested in [Foster, black dashed line, Eq. (3.21)], the fully vectorial

approach [Afshar, blue crosses, Eq. (3.23)], and our approach based

on the resonant-state expansion [RSE, green square dots, Eq. (3.26)].

It can be seen that our approach provides exactly the same results as

the fully vectorial one. In contrast, both scalar approaches (Agrawal,

Foster) deviate signicantly for small core radii since they do not take

into account the inhomogeneity of the waveguide structure i.e., n(r∣∣)
and n2(r∣∣) completely as well as the vectorial nature of electromagnetic

elds [15]. However, in this case, these scalar approaches give the same

results, which is due to the absence of the longitudinal component of

the elds of TE (Em ,z = 0) and TM (Hm ,z = 0) modes [28]. Indeed,

Eq. (3.22) can be written as [15]

AFoster
eff =

{
+∞

∫
−∞

[βm ∣Em ,∣∣∣
2 + iEm ,∣∣ ⋅ ∇∣∣Em ,z]dr∣∣}

2

+∞

∫
−∞

[βm ∣Em ,∣∣∣
2 + iEm ,∣∣ ⋅ ∇∣∣Em ,z]

2

dr∣∣
. (3.28)

As we can see, in the case of transverse modes it simplies to Eq. (3.20).

In Fig. 3.1 (c), we show the same calculations for the fundamental (HE11)

bound mode of the step-prole ber. In this case, both fully vectorial

approaches (RSE and Afshar) provide the same result again as expected

while the scalar approaches are still less accurate in subwavelength

regime, i.e, 2rc < λ0. One can note that for large core radii (2rc ≫ λ0),
all approaches provide similar results since the elds are almost con-

centrated in the core region and the in-plane components of the elds

become dominating.

e advantage of our approach compared to the fully vectorial one is

that in numerical calculations, we can restrict the area of normalization

to the regions of spatial inhomogeneities, which is in the present waveg-

uide geometry the ber core. is can be seen in Fig. 3.1 (d), where γ
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3.3 the kerr nonlinearity parameter

is displayed as a function of the radius of normalization rn for a xed
core radius of rc = 1.5 µm. While previous approaches [5, 14, 15] require

some nite radius rn of roughly 3rc in order to exhibit a deviation of less
than 5% of their exact value of normalization for rn →∞, our approach

is independent of the radius of normalization for all rn > rc, as expected
from Eq. (2.59) and shown in Fig. 2.6. is fact makes numerical cal-

culations more ecient, especially for complex ber geometries such

as photonic crystal bers [70] and situations with extended evanescent

elds.

Figure 3.2. Comparison of dierent approaches for calculating γ of the funda-
mental (HE11) leaky mode in a bismuth oxide Bi2O3 glass capillary lled with

carbon disulde CS2 with n = 1.6 at λ0 = 800 nm. e real (a) and the imagi-

nary part (c) of γ as a function of core radius rc for a radius of normalization

rn = rc . eir dependence on radius of normalization rn for rc = 1.5 µm which

is indicated by the arrow in (c) is shown in panels (b) and (d), respectively.

Let us address leaky modes, for which most existing approaches can-

not be used in a straightforward manner. As a rather simple example

for leaky modes, we consider a Bi2O3 capillary ber that has been used

in dierent experiments [63, 71]. In our case, the capillary is lled with

carbon disulde CS2 [n2 = 2.7 × 10
−18 m2 W−1] [64, 72–74], which we

assume here to be the only nonlinear material, since its nonlinear re-
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fractive index is much higher than Bi2O3 doped glass. e dependence

of the real and imaginary parts of the Kerr nonlinearity parameter γ
on core radius rc is shown in Fig. 3.2 (a) and (b), respectively. In the

strong guidance or subwavelength regime (2rc < λ0), the scalar and
the fully vectorial approach begin to deviate from our value for the real

part of γ [Fig. 3.2 (a)]. As in the case of the bound modes, for large

core radii (2rc ≫ λ0), the deviation between the dierent approaches

becomes smaller. Here, we have used rn = rc as an optimum radius of

normalization for each core radius, which corresponds to theminimum

deviation between the real parts of γ of conventional formulations to

our approach. Essentially, this optimal normalization radius is the posi-

tion of the radiation caustic rrad, i.e., rn = rrad [28]. e normalization

scheme based on the radiation caustic is discussed in Section 2.4.1.

e dependence of the real and imaginary parts of theKerr nonlinear-

ity parameter γ for the fundamental leaky mode on the normalization

radius rn is shown in Fig. 3.2 (b) and Fig. 3.2 (d), respectively, for a xed
core radius of rc = 1.5 µm. As we can see, our approach yields the same

γ for all radii of normalization, while the other approaches result in

γ → 0 for rn →∞ due to incorrect normalization of the mode.

It is also interesting to consider the Kerr nonlinearity γ of the trans-
verse electric (TE) and the transverse magnetic (TM) leaky modes of

the capillary ber since the mode with the lowest attenuation constant

is not always the fundamental (HE11) one. is becomes important

in designing a high-power pulse compression systems based on the

hollow-core bers [21, 75, 76]. Indeed, as it has been shown in Ref. [58],

the real β̄m and the imaginary ᾱm parts of the propagation constant βm
[zeros of the determinant of the 4 × 4 matrix in Eq. (2.70)] in case of

ϰmrc ≫ 1 can be approximated as

β̄mn = k0[1 −
1

2
(
umn

k0rc
)
2

], (3.29)

and

ᾱmn =
u2
mn

k20r
3
c

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

(n2
r − 1)

1/2
for TE0n modes(m = 0),

n2
r

(n2
r − 1)

1/2
for TM0n modes(m = 0),

1

2

n2
r + 1

(n2
r − 1)

1/2
for HEmn/EHmn modes(m ≠ 0),

(3.30)
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3.3 the kerr nonlinearity parameter

Figure 3.3. Comparison of dierent approaches for calculating γ of the rst

transverse electric TE01 (a), (b) and TM01 (c), (d) leaky modes in a silicon (Si)

capillary with refractive index of n = 3.45 lled with nitrobenzene C6H5NO2

with n = 1.52 at λ0 = 800 nm. e real (a), (c) and the imaginary parts (b), (d)
of γ of the leaky modes as a function of core radius rc , respectively.

where umn is the mth root of the Bessel function Jn−1(x) and nr =

ncl/nco. From Eq. (3.30), we nd that the mode with the lowest modal

loss is the rst transverse electric TE01 leaky mode if nr > 2.02 [58]. In

order to full this condition, we consider a capillary made of silicon

(Si) with the linear and nonlinear refractive indices of ncl = 3.45 and

[n2 = 2.6×10
−18 m2 W−1] [77] and lled with nitrobenzene (C6H5NO2)

with nco = 1.52 and [n2 = 6.9 × 10
−18 m2 W−1] [72, 73, 78]. e, panels

(a) and (b) in Fig. 3.3 display the real and the imaginary parts of γ
of TE01 and TM01 leaky modes as a function of the core radius rc of
the capillary, respectively. As we can see, for a smaller core radius, in

our approach the Kerr nonlinearity parameter γ of TE01 leaky mode is

much larger than γ of TM01. In the opposite direction, i.e., for 2rc ≫ λ0
the deviation between them becomes smaller as well as the deviation

between dierent approaches. However, the imaginary part of γ of TE01

leaky mode tends to zero much faster than the imaginary part of γ of

47



master equation for pulse propagation

TM01. is can be useful to design a waveguide with certain nonlinear

properties.

As we have shown in Figs. 3.2 and 3.3, for suciently large capil-

lary radii relative to the wavelength, the deviation between the con-

ventional perturbative approaches and our denition for γ becomes

smaller. is can be correlated to the fact that the attenuation constant

of modes of capillary bers with radii much larger than the wavelength

is ᾱm ∝ λ20/r3c [see Eq. (3.30)] [58]. On the other hand, according to

panels (b) and (d) of Fig. 3.2, the deviation between dierent approaches

depends on the radius of normalization. However, it was only for one

xed core radius [indicated by black arrow in Fig. 3.2 (c)]. In order to

show it for a wide range of the core radii, we have repeated those calcu-

lations and then found a dierence between two vectorial approaches.

In Fig. 3.4, we display the minimum deviation of the real part of γ
(red solid line) and its absolute value (blue dashed line) between the

approach by Afshar [see Eq. (3.23)] and our denition [see Eq. (3.26)]

as a function of core radius rc. As we can see, the minimum relative

dierence is quite big for the subwavelength region, although decreases

rapidly over the core radius. Evidently, the imaginary part of γRSE is

the main reason for the signicant deviation for larger core radii.

Figure 3.4. Minimum relative dierences between the vectorial γAfshar and our
γRSE (blue dashed line) as well as Re(γRSE) (red solid line) as a function of the

core radius for the Bi2O3 doped glass capillary lled with carbon disulde CS2

at λ0 = 800 nm.
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3.4 nonlinear gain and loss

3.4 nonlinear gain and loss

As we have seen in the previous section, in contrast to bound modes

and the other pertubative approaches that we have considered, our de-

nition for the Kerr nonlinearity parameter γRSE [see Eq. (3.26)] provides
a nonvanishing imaginary part in case of leaky modes. In this section,

we discuss this imaginary part of γ and give a physical explanation.

As a matter of fact, it is already known from previous works [16, 32,

33] that the Kerr nonlinearity parameter can have an imaginary part. In

these works authors have predicted the Kerr nonlinearity parameter γ
with a positive imaginary part that corresponds to the additional non-

linear loss in addition to themodal loss ᾱ(0)m . Indeed, if we approximate

Eq. (3.18) as

∂Am(z; τ)
∂z

≈ −[ᾱ(0)m + Im(γ)P]Am(z; τ), (3.31)

that has a solution

Am(z; τ) = e−[ᾱ
(0)
m +Im(γ)P]z , (3.32)

where P = ∣Am(z; τ)∣2 is the initial pulse power. It is clear that in case

of Im(γ) > 0 the eld envelope Am decays in a shorter propagation dis-

tance than only with the modal loss. However, we nd that, depending

on the ber parameters, Im(γ) can change its sign [A2]. In order to

demonstrate this numerically, we consider the fundamental leakymode

in a capillary ber of radius rc = 0.3 µm with a bismuth oxide Bi2O3

doped glass cladding (n = 2.05) and a varying refractive index in the

core at a wavelength of λ0 = 800 nm. As we can see in Fig. 3.5 (c) the

imaginary part of γRSE can change sign. Interestingly, it occurs around

the refractive index of the core medium at n ≈ 1.9 that is close to the

minimum of the eective refractive index neff . It should be noted that

such a behavior can be expected from iterative approaches for the cal-

culation of the Kerr nonlinearity parameter γ [32, 33], which should

yield a sign change of the imaginary part exactly at the minimum of the

iteratively derived linear attenuation, while the homogeneous change of

the refractive index in the core can be understood as a simplistic binary

version of the rst iteration.

e imaginary part of the Kerr nonlinearity parameter with a neg-

ative sign corresponds to the nonlinear gain. From the mathematical

point of view, this can be easily seen fromEq. (3.32) by reversing the sign
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Figure 3.5. Numerical results of the fundamental leaky mode in a capillary

ber of radius rc = 0.3 µm with a Bi2O3 cladding (n = 2.05) and a varying

refractive index in the core at a wavelength of λ0 = 800 nm: (a) eective re-
fractive index (neff ), (b) real and (c) imaginary parts of the Kerr nonlinearity

parameter γ. Red solid and black dashed lines have been calculated using the

scalar approximations of Agrawal [Eq. (3.19)] [5] and Foster [Eq. (3.21)] [14],

respectively, whereas blue crosses have been obtained by the vectorial approach

of Afshar [Eq. (3.23)] [15]. e green squares have been calculated by our ap-

proach [Eq. (3.26)] [A2], which yields a nonvanishing imaginary part of γ. It
can be seen in (c) that this imaginary part can change sign, i.e., can exhibit

nonlinear loss and even nonlinear gain. e latter can be explained by a self-

focusing of the nonlinear pulse [see Fig. 3.6], which reduces the pulse intensity

at the interface to the cladding, which in turn decreases the amount of light that

is transversely transmitted into the cladding and is radiating to the far eld.
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3.4 nonlinear gain and loss

of Im(γ). In this case constant modal loss ᾱ(0)m is decreased by Im(γ)P.
Here, it seems that for high enough initial pulse power P nonlinear gain

can dominate over the constant modal loss ᾱ(0)m so that Im(γ)P > ᾱ(0)m .

It means, that the eld envelope Am grows exponentially. is con-

tradicts to the energy conservation law. Indeed, for pulses with such

power, it is necessary to take into account higher order loss terms and

probably other nonlinear eects such as lamentation and ionization

of the medium [79].

Figure 3.6. A physical interpretation of the nonlinear gain and loss. e inter-

pretation is based on self-focusing that arises due to the optical Kerr eect. (a)
"Normal" self-focusing corresponding to Im(γ) = 0 is chosen as a reference.

(b)e negative imaginary part of γ enhances (with respect to the reference)

the self-focusing in the core region and reduces the intensity near the core/-

cladding interface. is decreases the energy dissipation through the cladding

that can be considered as a nonlinear gain. (c)e positive imaginary part of γ
makes the self-focusing weaker (with respect to the reference) that increases the

energy dissipation through the cladding and can be considered as a nonlinear

loss.

e physical mechanism of the nonlinear gain and loss can be ex-

plained by a self-focusing [A2]. First of all, following Ref. [15], let us

introduce the eective nonlinear refractive index n̄2 = n2 − Im(γ)/k0
that depends on the waveguide geometry and eld distributions. Now,

imagine the case in which the imaginary part of the Kerr nonlinearity

parameter is Im(γ) = 0. Due to the optical Kerr eect (∆n = n̄2P), the
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actual refractive index at the center of the step-prole hollow-core ber

is higher than the near sides [see Fig. 3.6 (a)]. erefore, the local total

internal reection takes place and as a direct consequence self-focusing

of a light occurs. Let us call it the "normal" self-focusing case. Now, let

the imaginary part of the Kerr nonlinearity parameter be Im(γ) < 0. In
this case, the refractive index increment ∆n is larger than the "normal"

self-focusing case.is leads to a stronger local light connement in the

core region that reduces the intensity at the core/cladding interface [see

Fig. 3.6 (b)], which in turn decreases the energy dissipation through

the cladding. We can consider this reduction in energy dissipation as a

nonlinear gain. In case of Im(γ) > 0, the eective nonlinear refractive
index n̄2 is decreased [see Fig. 3.6 (c)]. Accordingly, the central reduc-

tion in the refractive index lets more light escape the core. Hence, this

in turn can be interpreted as nonlinear loss.

3.5 the nonlinear gain and pulse propagation

In the previous sections, we have obtained the nonlinear Schroedinger

equation [see Eq. (3.18)] with the new denition the Kerr nonlinearity

parameter [see Eq. (3.26)] that can be applied to bound and leakymodes.

Furthermore, we found that the Kerr nonlinearity parameter can have a

negative imaginary part for leaky modes. is negative imaginary part

of the Kerr nonlinearity parameter can be considered as a nonlinear

gain. As a next step, we study the impact of this nonlinear gain on the

pulse propagation.

For our numerical simulations, as a simple example, we consider

the Bi2O3 (n = 2.05) capillary ber with a radius of rc = 10 µm lled

with CS2 (n = 1.6). e numerical solution of Eq. (3.18) is calculated

using the well-known split-step Fourier method [5]. Here, we use an

enhanced version of the method that the nonlinear part of Eq. (3.18) is

integrated by a fourth-order Runge-Kutta method [80–82]. e initial

pulse used in our simulations has

Am(z = 0; τ) = P01/2 sech(
τ
T0

), (3.33)

eld prolewith peak power P0 = 15 kWand full width at half-maximum

TFWHM = 1.763T0 = 140 fs. Since the initial pulse width is quite narrow,

in Eq. (3.18), we consider the dispersion terms up to β̄(4).
e panels (c) and (d) of Fig. 3.7 display the spectral and temporal

evolution of the fundamental leaky mode of the capillary ber, respec-
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Figure 3.7. Numerical simulation showing the nonlinear pulse propagation

inside a CS2-lled Bi2O3 doped glass capillary (rc = 10 µm)with γRSE = (141.7−
1.9i) km−1W−1

[panels (a) and (b)] and γAfshar = 141.5 km−1W−1
[panels (c) and

(d)]. e input hyperbolic secant shape pulse at λ0 = 800 nm has P0 = 15 kW
peak power and the full width at half-maximum of TFWHM = 140 fs. Calculated

dispersion parameters of the ber are β̄(2) = −0.82 ps2km−1, β̄(3) = 1.05 ×

10
−3

ps
3
km
−1
, β̄(4) = −1.78 × 10−6 ps4km−1, with an attenuation coecient of

ᾱ(0) = 60.15 m−1 .

Figure 3.8. Comparison of the numerical simulation showed in Fig. 3.7 for the

nonlinear pulse propagation in the capillary ber at the propagation distance

z = 5cm.

53



master equation for pulse propagation

tively, obtained by solving Eq. (3.18) with γAfshar = 141.5 km−1W−1. e

results in Fig. 3.7 (a) and Fig. 3.7 (b) have been obtained for γRSE =
(141.7 − 1.9i) km−1W−1 based on our approach. In the latter case [see

Fig. 3.7 (a)], we can clearly see an increasing spectral broadening (also

known as supercontinuum generation [82, 83]) compared to the fully

vectorial approach [Fig. 3.7 (c)] that is accompanied by a narrowing in

the corresponding temporal evolutions [Fig. 3.7 (b) and Fig. 3.7 (d)].

is can be seen more clearly in Fig. 3.8 that shows the compari-

son of simulation results (spectral and temporal evolutions) for two

approaches at the propagation distance of z = 5 cm. In our case, the full

width at half maximum (FWHM) is roughly 2 times shorter than the

case of the full vectorial approach. Here, the pulse asymmetry of shape

is caused by the phenomenon of self-steepening [5]. is means that

the negative imaginary part of the Kerr nonlinearity parameter leads

to pulse compression, which in turn gives rise to spectral broadening.

Figure 3.9. Numerical simulation showing the nonlinear pulse propagation

inside a CS2-lled Bi2O3 doped glass capillary (rc = 1 µm) with γRSE = (14.37−
1.81i)m−1W−1

[panels (a) and (b)] and γAfshar = 12.65 m−1W−1
[panels (c) and

(d)]. e input hyperbolic secant shape pulse at λ0 = 800 nm has P0 = 15 kW
peak power and the full width at half-maximum of TFWHM = 140 fs. Calculated

dispersion parameters of the ber are β̄(2) = −60.18 ps
2
km
−1
, β̄(3) = 5.87 ×

10
−2

ps
3
km
−1
, β̄(4) = −5.22 × 10−5 ps4km−1, with an attenuation coecient of

ᾱ(0) = 59.11 mm
−1
.
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As we have discussed in the previous section, the imaginary part

of the Kerr nonlinearity parameter γRSE acts as a nonlinear gain. is

means that the initial pulse in simulationswith γRSE should decay slower
thanwith real γAfshar, which has been demonstrated in the above numer-

ical simulations. Let us repeat the simulations for a smaller core radius

that has an even higher imaginary part of the γRSE [see Fig. 3.2 (c)]. For
that, we consider the same ber with rc = 1 µm. In this case, for the

fundamental leaky mode, we obtain γRSE = (14.37− 1.81i)m−1W−1 and
γAfshar = 12.65 m−1W−1. As we can see in Fig. 3.9, in both cases, the

results are quite similar with the initial pulse decaying rapidly because

of the extremely high modal loss. It indicates that the ber losses still

dominate and the energy conservation is not violated despite that γRSE
is now several orders higher than the previous case.

Figure 3.10. Numerical simulation showing the nonlinear pulse propagation

inside a CS2-lled Bi2O3 doped glass capillary (rc = 70 µm) with γRSE = (2.28−
5.43× 10

−3 i) km−1W−1
[panels (a) and (b)] and γAfshar = 2.28 km−1W−1

[panels

(c) and (d)]. e input hyperbolic secant shape pulse at λ0 = 800 nm has

P0 = 15 kW peak power and the full width at half-maximum of TFWHM = 140 fs.

Calculated dispersion parameters of the ber are β̄(2) = −1.68 × 10−2 ps2km−1 ,
β̄(3) = 2.28 × 10−5 ps3km−1, β̄(4) = −3.55 × 10−8 ps4km−1, with an attenuation

coecient of ᾱ(0) = 0.17 m−1 .

For the completeness, consider the opposite case, i.e., the capillary

with radius of rc = 70 µm. In this case, the simulation results are shown
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in Fig. 3.10 and the corresponding Kerr nonlinearity parameters are

γRSE = (2.28− 5.43× 10−3 i) km−1W−1 [panels (c) and (d)] and γAfshar =
2.28 km

−1
W−1 [panels (a) and (b)]. Since in both cases the real part of γ

is the same and the imaginary part of γRSE is too small in comparison to

the real part, there is almost no dierence between the top and bottom

panels.

us, we have presented here a new rigorous formulation for sim-

ulating nonlinear pulse propagation in waveguides and optical bers

based on the resonant-state expansion with analytic mode normaliza-

tion. Most importantly, we nd that, in the case of leaky modes, the

Kerr nonlinearity parameter has an imaginary part that provides ei-

ther nonlinear loss or nonlinear gain for overall attenuating pulses. We

demonstrated here on the example of liquid-lled capillary-type bers

that this imaginary part can signicantly inuence the spectral and

temporal evolution of an ultrashort pulse.

º
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4
GENERALIZED THEORY OF FOUR-WAVE MIXING

is chapter is based on the following publication [A3]:

I. Allayarov, S. Upendar, M. A. Schmidt, and T. Weiss: "eory of four-
wave mixing for bound and leaky modes", Phys. Rev. A, 101 043806
(2020).

DOI 10.1103/physreva.101.043806

In the previous chapter, we have derived a master equation for the non-

linear pulse propagation that allows for a rigorous description of both

bound and leaky modes in waveguide geometries. ere, we showed

that in the single-mode approximation, it simplies to the standard

nonlinear Schroedinger equation for bound and leaky modes. is

approximation is widely used for description of supercontinuum gen-

eration. However, in order to describe a parametric processes such as

four-wave mixing, the single-mode approximation has to be extended

by taking into account the coupling between dierentmodes at a certain

wavelength or coupling of modes with dierent wavelengths.

Four-wavemixing is one of the interesting nonlinear phenomena that

occurs in optical bers due to the third-order nonlinear polarization [5].

It has been studied extensively over the last several decades [84–89].

Traditionally, four-wave mixing is used to generate waves at certain

frequencies or amplify a pre-existing weak signal [90, 91]. However,

it is a highly undesired eect for applications such as in optical ber

communications where it leads to interchannel crosstalk [92, 93]. At the

same time, four-wave mixing is one of the main nonlinear mechanisms

for supercontinuum generation in optical bers in combination with

self-phase and cross-phase modulations [5].

From the quantum physics point of view, the process of four-wave

mixing relates to the annihilation of two incident (pump) photons at dif-

ferent frequencies and the simultaneous creation of two photons at new

frequencies, while the laws of conservation of energy and momentum

have to be fullled [see lower le inset of Fig. 4.1 (a)]. Historically, the

photons at new frequencies are either called Stokes (at lower frequency)

or anti-Stokes (at higher frequency) photons. In this context, the pro-
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cess of annihilation of two photons at the same frequency is known as

degenerate four-wave mixing. In optical bers, four-wave mixing origi-

nates from the Kerr-type nonlinearity. Ecient four-wave mixing can

only occur if there is no phase mismatch between pump, Stokes, and

anti-Stokes waves. erefore, observation and realization of four-wave

mixing at desired frequencies requires dispersion-engineered waveg-

uides with specic parameters.

In this chapter, we present a comprehensive theory of four-wave mix-

ing in waveguide geometries, providing a rigorous description of the

dynamics of both bound as well as leaky modes within a single theoret-

ical framework. For that, we extend our new theory of the nonlinear

pulse propagation to four-wave mixing, requiring to consider the cou-

pling of excitations of several frequencies inside a single ber. We show

that for bound modes, our theory agrees with the scalar and vectorial

theories reported in literature [5, 15]. In the case of leaky modes, it

results in a modied nonlinear pulse propagation, predicting a more

ecient generation of Stokes and anti-Stokes bands than expected from

the previous theory for bound modes. Furthermore, we show that the

modulation instability can occur for all frequencies in both anomalous

and normal dispersion regions.

In order to demonstrate these eects numerically, as a generic exam-

ple of a hollow-core ber geometry, we consider a gas-lled hollow-core

annulus ber geometry consisting of a single glass ring embedded in

an otherwise low index medium [geometry depicted in the upper right

inset of Fig. 4.1(a)]. As we can see in Fig. 4.1 (b) and (c), it supports

core leaky modes. Moreover, as shown in Ref. [96], this ber geometry

allows an accurate resemblance of the dispersion parameter of various

kinds of hollow-core bers and in particular, antiresonant bers, mak-

ing it a useful model system to study nonlinear pulse propagation in

dissipative waveguide geometries.

4.1 bound-mode theory

Four-wave mixing in conventional silica bers that carry boundmodes,

usually is described within a scalar theory [5]. In this approach, the

electric eld of the involved waves in four-wave mixing is assumed to

be

E j(r, t) = A j(z, t)E j ,∣∣(r∣∣) e
i β̄(0)j z

. (4.1)
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Figure 4.1. (a) Cross section and schematics of an annulus ber made from

silica (SiO2) and lled by xenon (Xe) in nitrogen (N) surrounding. e low

le inset shows energy-level diagram for four-wave mixing occurring due to

the annihilation of two photons at frequencies ω1 and ω2 with creation of two

new photons at frequencies ω3 and ω4. (b) Spatial distribution of the axial

component of the real-valued Poynting vector of the fundamental leaky mode

of the annulus waveguide geometry shown in (a). Outside the core region, a

logarithmic scale is used for the distance to the ber core. e white dashed

line in (c) indicates the inner radius of the ber. e refractive indices of silica

and gases are taken fromRefs. [94, 95]. e inner and outer radii of the annulus

waveguide are R1 = 30 µm and R2 = 30.476 µm, respectively. e fundamental

leaky mode of the ber is calculated at the wavelength of λ = 470 nm.
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Here, as before, A j and E j ,∣∣ are the amplitude and the transverse part

of the jth eld of the mode with the propagation constant β̄(0)j . Hence,

in the scalar theory, the dynamics of A j is determined by the following

four coupled equations [5]:

dA1

dz
= i(γ1∣A1∣

2
+2∑

j≠1
γ1 j ∣A j ∣

2
)A1+2iγ1234A∗2A3A4e

i∆ β̄(0)z
, (4.2a)

dA2

dz
= i(γ2∣A2∣

2
+2∑

j≠2
γ2 j ∣A j ∣

2
)A2+2iγ2134A∗1 A3A4e

i∆ β̄(0)z
, (4.2b)

dA3

dz
= i(γ3∣A3∣

2
+2∑

j≠3
γ3 j ∣A j ∣

2
)A3+2iγ3412A∗4A1A2e

−i∆ β̄(0)z
, (4.2c)

dA4

dz
= i(γ4∣A4∣

2
+2∑

j≠4
γ4 j ∣A j ∣

2
)A4+2iγ4312A∗3A1A2e

−i∆ β̄(0)z
. (4.2d)

Here, A1 and A2 are the rst and the second pump wave amplitude, re-

spectively, while A3 and A4 are the Stokes and the anti-Stokes wave am-

plitude, respectively. e wave-vector mismatch ∆β̄(0) between these

waves is given by

∆β̄(0) = β̄(0)3 + β̄
(0)
4 − β̄

(0)
1 − β̄

(0)
2 . (4.3)

e nonlinearity parameters γ j ≡ γ j j j j [same as Eq. (3.19)], γ j l ≡ γ j l j l ,

and γ j l pq is dened as

γ j l pq = n2k j

+∞

∫
−∞

(E∗j ,∣∣ E
∗
l ,∣∣ Ep ,∣∣ Eq ,∣∣)dr∣∣

N jN lNpNq
, (4.4)

with the normalization constant

N j = (

+∞

∫
−∞

∣E j ,∣∣∣
2dr∣∣)

1/2

. (4.5)

In Eqs. (4.2a) to (4.2d), γ j , γ j l , and γ j l pq quantify the self-phase modu-

lation, the cross-phase modulation, and four-wave mixing, respectively.

As we can note, Eq. (4.4) is the nondegenerate form of Eq. (3.19) from

the previous chapter. It means, that the self-phase modulation and the
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4.1 bound-mode theory

cross-phasemodulation are particular cases of themore general process

of four-wave mixing with dierent orders of degeneracy.

Eqs. (4.2a) to (4.2d) are valid for so-called quasi-continuous wave

regime (nanosecond pulses) in which the group-velocity dispersion

can be neglected [5]. In the ultrafast regime, i.e, for a picosecond pulses

the le hand side of Eqs. (4.2a) to (4.2d) should be replaced with

dA j

dz
→

∂A j

∂z
+ β̄(1)j

∂A j

∂t
+ i

β̄(2)j
2

∂2A j

∂t2
+
ᾱ(0)j

2
A j . (4.6)

In principle, based on the full vectorial model for the nonlinear pulse

propagation derived in Ref. [15], we can obtain a more accurate, vec-

torial form of the coupled amplitude equations for four-wave mixing.

Indeed, considering the coupling of excitations of four frequencies, one

can get a similar coupled equations as in case of the scalar theory. e

dierence between the scalar and the vectorial formulations are in the

nonlinearity parameters. In the latter case, they are given by γ j = k jα j j j j
[same as Eq. (3.23)], γ j l = k j(α j l j l +α j j l l), and γ j l pq = k j(α j l pq+α jqpl)

with the overlap integral of the form

α j l pq =

+∞

∫
−∞

n2n2

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

2
(E∗j ⋅ Eq)(El ⋅ E∗p)

3N jN lNpNq
+
(E∗j ⋅ E

∗
p)(El ⋅ Eq)

3N jN lNpNq

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

dr∣∣ , (4.7)

where the normalization constant N j of the mode elds is [see also

Section 2.4.1]

N j = (

+∞

∫
−∞

S j ,zdr∣∣)
1/2

. (4.8)

ese scalar and vectorial approaches for four-wave mixing are valid

only for bound modes due to the absence of a rigorous normalization

[see also Chapter 3]. In the next sections, based on themaster nonlinear

pulse propagation equation with the correct mode normalization, we

provide a general theory for four-wave mixing. We will consider the

vectorial formulation, hereinaer referred to as bound-mode theory, as

a reference to our theory of four-wave mixing.
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generalized theory of four-wave mixing

4.2 general coupled amplitude equations

In the Chapter 3, we have shown that the evolution of the modal am-

plitude am(z; t) can be described by the following general master equa-

tion [A2]:

∂am(z; t)
∂z

=iβm(t) ∗ am(z; t)−

2π
c

∂
∂t ∫

eRm(r∣∣; t) ∗ PNL(r; t)dr∣∣ . (4.9)

For further convenience, we consider its frequency domain form:

∂am(z;ω)
∂z

=iβm(ω)am(z;ω)+

2πiω
c ∫ eRm(r∣∣;ω) ⋅ PNL(r∣∣ , z;ω)dr∣∣ . (4.10)

Several assumptions are introduced in the following to simplify this

master equation. First, we restrict the analysis to the fundamental leaky

core mode, which allows us to omit the mode index m in Eq. (4.10).

Hence, the electric eld E(r;ω) can be written as

E(r;ω) =∑
m
am(z;ω)

Em(r∣∣;ω)

N 1/2
m

≈ a(z;ω) e(r∣∣;ω). (4.11)

e latter approximation is the discrimination of the fundamentalmode

from higher-order modes. Indeed, for suciently long bers only the

fundamental mode can propagate since it usually has the lowest attenu-

ation constant [21, 58].

Next, we assume that optical pulses propagating in a ber are narrow-

band and centered around carrier frequencies ω j ( j = 1, 2, 3, ...). us,

the electric eld E(r;ω) can be approximated as a superposition of the

electric elds at these dominant carrier frequencies:

E(r;ω) ≈∑
j
a j(z;ω) e(r∣∣;ω j). (4.12)

Note that in Eq. (4.12) and following, the frequency dependence of

the transverse spatial distribution of the electric eld is assumed to be

negligible (i.e., all elds are the same), i.e., e(r∣∣;ω) ≈ e(r∣∣;ω j), and

a j(z;ω) is spectrally separated for the dierent dominant frequencies.

62



4.2 general coupled amplitude equations

us, Eq. (4.10) aer these approximation takes the following form:

∂a j(z;ω)
∂z

=iβ(ω)a j(z;ω)+

2πiω
c ∫ eR(r∣∣;ω) ⋅ PNL(r∣∣ , z;ω)dr∣∣ . (4.13)

Note that the nonlinear part of Eq. (4.13) is not changed so far. Let us

at the beginning nish with the linear part of the equation. Hence, we

make the typical approximation by expanding β(ω) into a Taylor series
around ω j :

β(ω) ≡ β̄(ω) + iᾱ(ω) ≈ ∑
n⩾0

⎛

⎝

β̄(n)j

n!
+ i

ᾱ(n)j

n!
⎞

⎠
(ω − ω j)

n
, (4.14)

where

β̄(n)j =
∂n β̄
∂ωn ∣ω j

, (4.15)

and

ᾱ(n)j =
∂n ᾱ
∂ωn ∣ω j

, (4.16)

are the nth-order dispersion and loss coecients at ω j , respectively.

Additionally, we use that for narrowbandpulseswith a carrier frequency

ω j , the modal amplitude a j can be split into slowly and rapidly varying

parts as

a j(z; t) ≡ A j(z; t) ei β̄
(0)

j z−iω j t , (4.17)

that has the following frequency domain form:

a j(z;ω) ≡ A j(z;ω − ω j) e
i β̄(0)j z

. (4.18)

us, taking into account Eq. (4.14) and Eq. (4.18), we obtain the follow-

ing equation for the slowly varying part (envelope) A j(z;ω − ω j):

∂A j(z;ω−ω j)

∂z
= D̂ j(ω − ω j)A j(z;ω−ω j)+

2πiω
c

e
−i β̄(0)j z

∫ eR(r∣∣;ω)⋅PNL(r∣∣ , z;ω)dr∣∣ , (4.19)
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generalized theory of four-wave mixing

where the dispersion operator D̂ j is dened as

D̂ j(ω−ω j) = ∑
n⩾0

⎡
⎢
⎢
⎢
⎣
i
β̄(n+1)j

(n + 1)!
(ω−ω j)

n+1
−
ᾱ(n)j

n!
(ω−ω j)

n
⎤
⎥
⎥
⎥
⎦
. (4.20)

Let us now address the nonlinear part of Eq. (4.19). As before, we

assume that eR(r∣∣;ω) ≈ eR(r∣∣;ω j) ≡ eRj (r∣∣), which allows us to avoid

convolutions when transforming to the time domain. Furthermore, as

in the case of the linear part of Eq. (4.19), we consider only the dominant

frequencies. us, by carrying out the Fourier transform of Eq. (4.19)

according to

A j(z; t) =
1

2π

+∞

∫
−∞

A j(z;ω − ω j)e
−i(ω−ω j)tdω, (4.21)

we obtain:

∂A j(z; t)
∂z

=D̂ j(i
∂
∂t
)A j(z; t)−

2π
c
e
iω j t−i β̄(0)j z ∂

∂t ∫
eRj (r∣∣) ⋅ PNL(r∣∣ , z; t)dr∣∣ . (4.22)

Next, we assume the nonlinear polarizationPNL of the form Eq. (3.11)

with the total electric eld

E(r; t) ≈
4

∑
j=1

A j(z; t) e j(r∣∣) e
i β̄(0)j z−iω j t + c.c. . (4.23)

Taking into account Eq. (3.11) and Eq. (4.23), we can rewrite Eq. (4.22)

as

∂A j(z; t)
∂z

= D̂ j(i
∂
∂t
)A j(z; t) + i(1 −

1

iω j

∂
∂t
)I j(z; t), (4.24)

where

I j(z; t) ≡ 2πk j∫ eRj (r∣∣) ⋅ PNL(r∣∣ , z; t)e
iω j t−i β̄(0)j zdr∣∣ . (4.25)

For the sake of convenience, we split the integral I j into two parts as

I j = ∑
l ,p ,q

I j l pq = ∑
l ,p ,q
[I(1)j l pq + I

(2)

j l pq], (4.26)
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4.2 general coupled amplitude equations

with

I(1)j l pq = γ
(1)

j l pqA
∗
l ApAqe

iϕpq , l j , (4.27)

I(2)j l pq = γ
(2)

j l pqA lApA∗qe
iϕ l p ,q j , (4.28)

and

γ(1)j l pq = k j ∫ n2(eRj ⋅ e
∗
l )(ep ⋅ eq)dr∣∣ , (4.29)

γ(2)j l pq = k j ∫ 2n2(eRj ⋅ el)(ep ⋅ e
∗
q)dr∣∣ . (4.30)

Here, the general phase dierence ϕ j l ,pq is dened as

ϕ j l ,pq = ∆β̄
(0)

j l ,pqz − ∆ω j l ,pq t, (4.31)

with

∆β̄(0)j l ,pq = (β̄
(0)

j + β̄
(0)

l ) − (β̄
(0)
p + β̄

(0)
q ), (4.32)

and

∆ω j l ,pq = (ω j + ω l) − (ωp + ωq). (4.33)

e complete expression for I j includes a large number of terms

involving the products of three amplitudes. Nevertheless, we can dis-

tinguish the terms responsible for self-phase modulation, cross-phase

modulation, and four-wave mixing. For instance, in the case that q =
p = l = j, we obtain the following term for self-phase modulation:

ISPMj = I(1)j j j j + I
(2)

j j j j = γ j ∣A j ∣
2A j , (4.34)

where γ j = γ(1)j j j j + γ
(2)

j j j j [same as Eq. (3.26)]. Similarly, the sum over the

index pairs (p = j, q = l), (p = l , q = j), and (p = q = l , l = j) provides
terms for the cross-phase modulation:

IXPMj l = I(1)j l j l + I
(1)

j l l j + I
(2)

j l j l + I
(2)

j j l l =∑
l≠ j

γ j l ∣A l ∣
2A j . (4.35)
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where

γ j l = k j∑
l≠ j
∫ 2n2[(eRj ⋅ e

∗
l )(e j ⋅ el) + (e

R
j ⋅ el)(e j ⋅ e

∗
l )

+ (eRj ⋅ e j)∣el ∣
2
]dr∣∣ . (4.36)

By collecting the terms for which q ≠ p ≠ l ≠ j, we obtain the four-wave
mixing contribution to Eq. (4.25):

IFWM
j l pq = I

(1)

j l pq + I
(1)

j l qp + I
(2)

j l pq + I
(2)

j l qp = γ j l pqA∗l ApAqe
i∆ β̄(0)pq , l jz , (4.37)

where

γ j l pq = k j ∫ 2n2[(eRj ⋅ e
∗
l )(ep ⋅ eq) + (e

R
j ⋅ eq)(ep ⋅ e

∗
l )

+ (eRj ⋅ ep)(eq ⋅ e
∗
l )]dr∣∣ . (4.38)

Note that in Eq. (4.37) and Eq. (4.38), we permuted the second and the

fourth indices of I(2)abcd and γ(2)abcd . Furthermore, the particular case, in

which q ≠ p ≠ l = j or (q = p ≠ l ≠ j), is known as three-wave mixing

or degenerate four-wave mixing.

In general, Eq. (4.25) contains many other phase terms responsible

for phenomena such as frequency tripling (ωq = ω j + ω l + ωp) or

other frequency conversion processes (e.g., ωq = 2ω j + ωp). Here, we

neglect such contributions, since from the quantum-mechanical point

of view, the probability of these processes is rather low [5]. Additionally,

we neglect the time derivative term on the right hand side of Eq. (4.24)

that accounts for the dispersion of the nonlinearity, leading to nonlinear

eects such as self-steepening and optical shock formation, which only

become important for femtosecond pulses [5]. erefore, we keep only

all dominant terms that are responsible for processes such as self-phase

modulation, cross-phase modulation, and four-wave mixing. Under

these assumptions, Eq. (4.24) applied to each eld at frequencies ω j
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4.2 general coupled amplitude equations

( j = 1−4) leads to the following set of four coupled amplitude equations:

∂A1

∂z
= (D̂1 + N̂1)A1 + iγ1234A∗2A3A4e

i∆ β̄(0)z
, (4.39a)

∂A2

∂z
= (D̂2 + N̂2)A2 + iγ2134A∗1 A3A4e

i∆ β̄(0)z
, (4.39b)

∂A3

∂z
= (D̂3 + N̂3)A3 + iγ3412A∗4A1A2e

−i∆ β̄(0)z
, (4.39c)

∂A4

∂z
= (D̂4 + N̂4)A4 + iγ4312A∗3A1A2e

−i∆ β̄(0)z
, (4.39d)

with the nonlinear operator

N̂ j ≡ i(γ j ∣A j ∣
2
+∑

l≠ j
γ j l ∣A l ∣

2
), (4.40)

and the linear phase-mismatch

∆β̄(0) ≡ ∆β̄(0)34,21 = ∆β̄
(0)
34,12 = −∆β̄

(0)
12,43 = −∆β̄

(0)
12,34 . (4.41)

us, the system of Eqs. (4.39a) to (4.39d) describes four-wave mix-

ing for bound and leaky modes. e eciency of four-wave mixing

depends on the wave-vector mismatch ∆β̄(0) and becomes maximum

when it vanishes, i.e., ∆β̄(0) = 0.
It should be noted that Eqs. (4.39a) to (4.39d) look similar to the

scalar and vectorial formulations [see Section 4.1] [5, 15]. However, the

main dierence is in the nonlinearity parameters. While in Eqs. (4.39a)

to (4.39d), the reciprocal conjugation is the identical operation to the

complex conjugation for bound modes, it yields dierent results for

leaky modes. erefore, all nonlinearity coecients in Eqs. (4.39a)

to (4.39d) deviate from those of the conventional bound-mode theory

when considering leaky modes. Particularly, as we have shown in Chap-

ter 3, they exhibit a non-vanishing imaginary part that is either positive,

corresponding to nonlinear loss [16, 32, 33], or negative acting as non-

linear gain for overall attenuating elds [A2]. In the next sections, we

numerically analyze the impact of our new formulation on four-wave

mixing of leaky modes by comparing it with results that are based on

applying the bound-mode theory to leaky modes. In order to do that,

we basically ignore any issues with the normalization of bound modes
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generalized theory of four-wave mixing

using the conventional theory and assume that the real part of the non-

linearity coecients has been calculated correctly, while we neglect its

imaginary part.

4.3 modulation instability in hollow-core fibers

In general, the system of Eqs. (4.39a) to (4.39d) describes narrowband

pulses that are spectrally separated. However, for small frequency spac-

ings (< 1 THz), it is more convenient to use a single nonlinear Schroe-

dinger equation with a certain initial condition [5]. In that case, an

interaction between the nonlinear and dispersive eects can lead to

the generation of new frequencies from noise, which is also known as

modulation instability [5]. Typically, the nonlinearity parameter γ is

assumed to be a real quantity in the stability analysis of themodulations.

However, as mentioned in the introduction, the nonlinearity parameter

γ has a negative imaginary part for hollow-core bers supporting leaky

modes that can act as a nonlinear gain, partially diminishing the impact

of modal attenuation during propagation [A2]. Hence, we observe here

an interplay between nonlinear gain and modal loss besides self-phase

modulation and group velocity dispersion. In this section, we derive

steady-state solutions in this regime and analyze their stability against

small perturbations.

In the following, for the sake of simplicity, we consider the standard

nonlinear Schroedinger equation with a complex nonlinearity parame-

ter and linear loss:

i ∂A
∂z
−
β̄(2)

2

∂2A
∂τ2
+ (γr + iγ i)∣A∣2A+ iᾱ(0)A = 0. (4.42)

Here, γr (> 0 self-focusing, < 0 self-defocusing) and γ i (> 0 nonlinear

loss, < 0 nonlinear gain) are the real and imaginary parts of the nonlin-

earity parameter γ, respectively. Below, we consider the self-focusing
case.

Considering Eq. (4.42) as a dynamical system, yields the following

steady-state solution [O1, 97]:

A = A0 e
iγr ∣A0 ∣

2z
, (4.43)

where

A0 =
⎛

⎝
−
ᾱ(0)

γ i
⎞

⎠

1/2

. (4.44)
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is basically means that we require a suitable balance between linear

attenuation and nonlinear gain.

In order to investigate modulation instability, we add a small pertur-

bation to the steady-state solution [5]:

Ã = [A0 + a(z, τ)] eiγr ∣A0 ∣
2z
= A+ a eiγr ∣A0 ∣

2z
, (4.45)

where a(z, τ) is the small perturbation.

Substituting Eq. (4.45) in Eq. (4.42) and linearizing a(z, τ), we obtain
aer some algebra:

i ∂a
∂z
−
β̄(2)

2

∂2a
∂τ2
+ (γr + iγ i)∣A0∣

2
(a + a∗) = 0. (4.46)

A general solution of Eq. (4.46) can be written as

a(z, τ) = u(z) eiΩτ
+ v∗(z) e−iΩτ

, (4.47)

where u and v are the coecients determined by solving Eq. (4.46), and

Ω is the frequency of the modulation.

By introducing b = u+v and c = u−v and by inserting Eq. (4.47) into
Eq. (4.46), we obtain the following system of homogeneous equations:

∂
∂z

⎛
⎜
⎜
⎜
⎜
⎜
⎝

b

c

⎞
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

−2γ i ∣A0∣
2 i β̄

(2)

2
Ω2

i β̄
(2)

2
Ω2 + 2iγr ∣A0∣

2 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
M

⎛
⎜
⎜
⎜
⎜
⎜
⎝

b

c

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (4.48)

Searching for the eigenvalues Γ of the matrix M, we obtain a character-

istic equation of the form

Γ2
+ 2γ i ∣A0∣

2Γ + β̄(2)

2
Ω

2
(
β̄(2)

2
Ω

2
+ 2γr ∣A0∣

2
) = 0, (4.49)

which has solutions

Γ± = − γ i ∣A0∣
2
±

[(γ i ∣A0∣
2
)
2

− (
β̄(2)

2
Ω)

2

(Ω
2
+ sgn(β̄(2))Ω2

c)]
1/2

, (4.50)
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where sgn(β̄(2)) = ±1 depends on the sign of β̄(2) and

Ω
2
c =

4γr ∣A0∣
2

∣β̄(2)∣
. (4.51)

is yields

b(z) = b+ eΓ+z + b− eΓ−z , (4.52)

c(z) = c+ eΓ+z + c− eΓ−z , (4.53)

where b± and c± depend on the initial conditions of the perturbation

a. Note that Γ can be related to a wavenumber K of the perturbation

as Γ = iK. In fact, perturbations can grow exponentially along the

ber in the regime with γ i < 0, since the rst line on the right-hand

side of Eq. (4.50) always yields a nonvanishing positive real part for

any real Ω. Interestingly, this does not depend on the sign of β̄(2) – in
contrast to the modulation instability described in the literature, which

occurs only in the anomalous dispersion regime (β̄(2) < 0) at certain
frequencies [5].

Furthermore, we also note that the rst line on the right-hand side

of Eq. (4.50) does not depend on the frequency. is already indicates

that the modulation instability can occur at any wavelength. For fur-

ther analysis of the results, we introduce the gain spectrum dened as

g(Ω) = 2Re(Γ). As we can deduce from Eq. (4.50), the gain is mini-

mal if the expression under the square root is negative. is minimal or

"background" gain is given by gmin = −2γ i ∣A0∣
2 = 2ᾱ(0) for frequencies

Ω with

Ω
2
⩾ Ω

2
± ≡

1

2
Ωc

2

⎧⎪⎪
⎨
⎪⎪⎩

[1 + (
γ i
γr
)
2

]
1/2

− ∓1

⎫⎪⎪
⎬
⎪⎪⎭

, (4.54)

where Ω+ and Ω− correspond to the normal and the anomalous disper-

sion, respectively.

As we can see in Fig. 4.2, inside the frequency window Ω2 < Ω2
±,

the gain spectrum can always exceed gmin. It has two maxima at Ω =

±Ωc/2
1/2 in the anomalous dispersion regime (red dashed line) while

in the case of normal dispersion (green solid line) g(Ω) is maximum

at Ω = 0.

Here, we note that the steady-state solution of Eq. (4.42) and accord-

ingly the dispersion relation Eq. (4.50) are determined uniquely by the
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Figure 4.2. Gain spectra of modulation instability at a pump wavelength of

λ = 470 nm for the annulus ber with γ = (8.47× 10−6 − 4.58× 10−9 i)m−1W−1
,

α = 0.24 m−1, and ∣β̄(2)∣ = 6.84 × 10−2 ps2km−1. e red dashed line indicates

the gain spectrum of modulation instability calculated in the anomalous dis-

persion regime with sgn(β̄(2)) = −1, while the solid green line is obtained for

sgn(β̄(2)) = 1, corresponding to the normal dispersion regime. Note that in

both cases, there is a nonzero gain for all frequencies.

ber parameters. Waves with such properties are sometimes called

autowaves [98]. Particularly, localized waves in gain-loss-balanced non-

linear systems are referred to as autosolitons or dissipative solitons [99].

4.4 optical system and simulation details

In this section, we provide geometrical and optical parameters of a test

system as well as details of the numerical simulations of the coupled

nonlinear pulse propagation equations. At rst, we discuss optical prop-

erties of the chosen waveguide geometry such as the linear dispersion

and the nonlinear characteristics. Furthermore, we estimate the posi-

tion of the Stokes and the anti-Stokes bands that are required in further

numerical simulations. In the second subsection, we mostly concen-

trate on the parameters of the numerical simulations by considering

e.g., the time-frequency discretization, and the choice of longitudinal

computation steps.
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4.4.1 e optical system parameters

As example of an optical system for our numerical investigation, we

consider an annulus ber made from silica (SiO2) and lled by xenon

(Xe) with a nitrogen (N) surrounding [see Fig. 4.1 (a)]. e inner and

outer radii of the annulus are R1 = 30 µm and R2 = 30.476 µm, respec-

tively. e optical parameters of this waveguide such as the linear and

nonlinear refractive indices are taken fromRefs. [94, 95, 100, 101]. Here,

we assume that the pressure inside (Xe) and outside (N) the ber are

1 bar and 4 bar, respectively. us, with these geometrical and optical

parameters of the annulus ber, we are able to design a dispersion curve

such that it yields a strong impact of our theory.

e modal properties of the ber are found by solving Maxwell’s

equations. Following the procedures described in the literature [28, 41],

we can derive an eigenvalue equation for the propagation constant β.
Panels (a) and (b) in Fig. 4.3 display the real and imaginary parts of

the eective refractive index neff = β/k of the fundamental leaky mode

of the ber as a function of wavelength. Since the silica layer can be

considered as a Fabry-Perot-type resonator, it has resonances at the

wavelengths [102]

λ = 2(R2 − R1)

m
[n2

SiO2
(λ) − n2

Xe(λ)]
1/2

, (4.55)

where m = 1, 2, ... with the modal loss [∝ Im(neff)] having their max-

ima at these resonances. In the wavelength range, considered in Fig. 4.3,

we can see the second (m = 2) resonance at λ = 507 nm.

Next, we use the solutions of the eigenvalue problem to calculate

the nonlinear parameters. For instance, panels (c) and (d) in Fig. 4.3

display the real and imaginary parts of the nonlinearity parameter γ of
the fundamental leaky mode of the ber as a function of wavelength.

In these panels, the red solid line indicates the results obtained by us-

ing the resonant-state expansion, while the blue dots are based on the

results of bound-mode theory. Details about the dierence between

resonant-state expansion and bound-mode theory can be found at the

end of Section 4.2. We note that in both cases the contribution of the

surrounding gas, i.e., nitrogen, to the nonlinear parameters is neglected,

since χ(3)
e,SiO2

≫ χ(3)
e,Xe
≫ χ(3)

e,N
[101]. Furthermore, we can consider the

smallest region with spatial inhomogeneities, i.e., R = R2 as the radius

of normalization in Eq. (2.59). In the case of bound-mode theory, ber

modes are normalized with respect to the axial component of the time-
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4.4 optical system and simulation details

Figure 4.3. Spectral distributions of the various relevant parameters. (a) Real
and (b) imaginary parts of the eective refractive index of the fundamental

leaky mode of the annulus ber shown in Fig. 4.1. Comparisons of results

obtained by the resonant-state expansion and the bound-mode theory for the

real and imaginary parts of the nonlinearity parameter of the fundamental leaky

mode of the same ber are given in panels (c) and (d), respectively. (e) Phase
mismatch for degenerate four-wave mixing at a pump wavelength of 470 nm

and an initial power of 3.1 MW (green solid line) and 3.2 MW (red dashed

line), respectively. e central arrow indicates the position of pump (P) wave,

while the side arrows indicate the estimated positions of the Stokes (S) and

the anti-Stokes (AS) bands that occur at the wavelength with vanishing phase

mismatch. (f) Second-order dispersion coecient. All three waves are in the

normal dispersion region. e gray vertical dashed lines in all panels indicate

the spectral positions of the Stokes and the anti-Stokes waves.
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generalized theory of four-wave mixing

averaged Poynting vector with a radius of normalization of R = ∞.

However, innite radius of normalization applied to leaky modes yields

a vanishing value for the nonlinearity parameter γ, since the elds of
leaky modes diverge [see Fig. 4.1 (b)]. erefore, we choose the radius

of normalization such that the deviation of the real part of γ between
the resonant-state expansion and the bound-mode theory isminimized.

As we can see in Fig. 4.3 (c), the real part of the nonlinearity parame-

ter γ is similar in both approaches. However, the bound-mode theory

solely provides a purely real γ.
e estimated positions of the Stokes and anti-Stokes waves for par-

ticular pump wave parameters (wavelength and power) are dened by

the phase-matching condition. In order to have the most ecient side-

band generation, it is necessary to compensate the linear wave-vector

mismatch ∆β̄(0) between the pump and side bands with the nonlinear

phase shis caused by self-phase and cross-phase modulations. For the

sake of simplicity we consider degenerate four-wave mixing, for which

ω1 = ω2. In this case, we can write the phase-matching condition as

follows [5]:

∆β̄ = (β̄(2)Ω2
s +

β̄(4)

12
Ω

4
s) + 2γrP1 ≈ 0. (4.56)

Here, Ωs = ω1 − ω3 = ω4 − ω1 is the frequency shi with respect to

the pump frequency ω1, β̄(2) and β̄(4) are the dispersion parameters at

ω1, and γr is the real part of the nonlinearity parameter γ at the pump

frequency.

In order to exclude a strong impact of modulation instability and

consider rather typical four-wave mixing, we choose the pump wave

parameters such that all the pump wave and Stokes side-bands are in

the normal dispersion regime. In this case, the phase-matching condi-

tion can be satised if β̄(4) < 0. For example, as shown in Fig. 4.3 (d),

for the pump wave with an initial power of P1 = 3.1 MW and a wave-

length of λ1 = 470 nm, at which β̄(2) = 6.84 × 10−2 ps2km
−1
, β̄(4) =

−1.14×10−5 ps4km
−1
, and γr = 8.47×10−6 m−1W−1, the phasemismatch

vanishes at a wavelengths of λ3 = 540.6 nm (Stokes) and λ4 = 415.8 nm
(anti-Stokes). In Fig. 4.3 (e), we see that all three (i.e., the pump, Stokes,

and anti-Stokes) waves are in the normal dispersion region. e posi-

tions of the side bands can be easily tuned by varying the pump wave

parameters.
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4.4.2 Nonlinearity parameters

e system of Eqs. (4.39a) to (4.39d) include the nonlinearity param-

eters γ j l and γ j l pq in addition to the Kerr nonlinearity parameter γ j .

e latter is shown in panels (c) and (d) of Fig. 4.3. In this section, we

discuss the nonlinearity parameters γ j l and γ j l pq that quanties cross-

phase modulation and four-wave mixing, respectively. Furthermore,

we provide the complete table of nonlinear parameters of the optical

system.

In the bound mode theory [see Eq. (4.7)], the nonlinearity param-

eters γ j l , as we can see in the bottom of Tables 4.1 and 4.3, are real

numbers. e same parameters that are calculated by using our for-

mulation [see Eq. (4.36)] are complex numbers [top part of Tables 4.1

and 4.3].

e most interesting, as we can see in Tables 4.2 and 4.4, nondegener-

ate nonlinearity parameters γ j l pq are in general complex numbers not

only in our theory but also in the bound mode theory. Furthermore, in

our approach, the imaginary part of γ j l pq is negative for all cases that

are considered here. However, it can have an opposite sign in the bound

mode theory. us, we can conclude that no matter which method is

used, nondegenerated nonlinearity parameter γ j l pq is in general com-

plex number for both bound and leaky modes.

4.4.3 Simulation details

So far, we have drawn our attention to determine the parameters of

the ber that enter Eqs. (4.39a) to (4.39d), while in the following, we

discuss the details of the numerical simulations. As an initial condition

for the amplitude of the pump pulse, we consider a hyperbolic secant

prole

A1(z = 0, t) = P1 1/2 sech(
t
T0

), (4.57)

with the initial width T0 = 100 ps. For such a relatively long pulse, we

can neglect higher order nonlinear eects such as self-steepening and

Raman scattering [5]. Still, these nonlinear eects could be considered

in our model. However, as we have mentioned in Section 4.2, they

become signicant only for pico- or even femtosecond pulses. Further-

more, in this case, the higher-order Taylor expansion terms in Eq. (4.14)

are generally negligible [5]. Hence, the real β̄(λ) and the imaginary
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approach pump stokes anti-stokes

γ j l l λ1 = 470nm λ3 = 540.6 nm λ4 = 415.8 nm

RSE 1 8.472 × 10−6 1.449 × 10−5 1.904 × 10−5

−4.581 × 10−9 i −1.536 × 10−8 i −2.191 × 10−9 i
2 1.694 × 10−5 1.449 × 10−5 1.904 × 10−5

−9.162 × 10−9 i −1.536 × 10−8 i −2.191 × 10−9 i
3 1.667 × 10−5 7.129 × 10−6 1.873 × 10−5

−8.795 × 10−9 i −7.384 × 10−9 i −2.103 × 10−9 i
4 1.684 × 10−5 1.440 × 10−5 9.461 × 10−5

−9.025 × 10−9 i −1.514 × 10−8 i −1.079 × 10−9 i
BMT 1 8.465 × 10−6 1.447 × 10−5 1.903 × 10−5

2 1.693 × 10−5 1.447 × 10−5 1.903 × 10−5

3 1.665 × 10−5 7.118 × 10−6 1.871 × 10−5

4 1.683 × 10−5 1.439 × 10−5 9.460 × 10−5

Table 4.1. e partially degenerate nonlinearity parameters γ j l [in m
−1
W
−1
]

calculated within the bound mode (BMT) and our (RSE) theories at the pump

and side-bands spectral positions. e spectral positions (wavelengths) of the

side-bands correspond to the initial pulse power of P1 = 3.1 MW.

approach pump stokes anti-stokes

γ j l pq λ1 = 470nm λ3 = 540.6 nm λ4 = 415.8 nm

RSE 1.675 × 10−5 1.456 × 10−5 1.894 × 10−5

−9.265 × 10−10 i −8.605 × 10−9 i −1.119 × 10−8 i
BMT 1.674 × 10−5 1.455 × 10−5 1.892 × 10−5

−1.648 × 10−8 i 1.433 × 10−8 i −1.572 × 10−8 i

Table 4.2. e nondegenerate nonlinearity parameters γ j l pq [in m
−1
W
−1
] cal-

culated within the bound mode (BMT) and our (RSE) theories at the pump

and side-bands spectral positions. e spectral positions (wavelengths) of the

side-bands correspond to the initial pulse power of P1 = 3.1 MW.
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approach pump stokes anti-stokes

γ j l l λ1 = 470nm λ3 = 541.1 nm λ4 = 415.5 nm

RSE 1 8.472 × 10−6 1.448 × 10−5 1.905 × 10−5

−4.581 × 10−9 i −1.497 × 10−8 i −2.187 × 10−9 i
2 1.694 × 10−5 1.448 × 10−5 1.905 × 10−5

−9.162 × 10−9 i −1.497 × 10−8 i −2.187 × 10−9 i
3 1.667 × 10−5 7.125 × 10−6 1.874 × 10−5

−8.798 × 10−9 i −7.200 × 10−9 i −2.101 × 10−9 i
4 1.684 × 10−5 1.439 × 10−5 9.468 × 10−5

−9.025 × 10−9 i −1.476 × 10−8 i −1.077 × 10−9 i
BMT 1 8.465 × 10−6 1.446 × 10−5 1.904 × 10−5

2 1.693 × 10−5 1.446 × 10−5 1.904 × 10−5

3 1.665 × 10−5 7.118 × 10−6 1.873 × 10−5

4 1.683 × 10−5 1.438 × 10−5 9.467 × 10−5

Table 4.3. e partially degenerate nonlinearity parameters γ j l [in m
−1
W
−1
]

calculated within the bound mode (BMT) and our (RSE) theories at the pump

and side-bands spectral positions. e spectral positions (wavelengths) of the

side-bands correspond to the initial pulse power of P1 = 3.2 MW.

approach pump stokes anti-stokes

γ j l pq λ1 = 470nm λ3 = 541.1 nm λ4 = 415.5 nm

RSE 1.675 × 10−5 1.455 × 10−5 1.895 × 10−5

−1.145 × 10−9 i −8.405 × 10−9 i −1.095 × 10−8 i
BMT 1.674 × 10−5 1.454 × 10−5 1.894 × 10−5

−1.522 × 10−8 i 1.322 × 10−8 i −1.622 × 10−8 i

Table 4.4. e nondegenerate nonlinearity parameters γ j l pq [in m
−1
W
−1
] cal-

culated within the bound mode (BMT) and our (RSE) theories at the pump

and side-bands spectral positions. e spectral positions (wavelengths) of the

side-bands correspond to the initial pulse power of P1 = 3.2 MW.
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ᾱ(λ) parts of the propagation constant β(λ) around the corresponding
waves are approximated by Taylor series expansions up to β̄(4) and ᾱ(2)
as the fourth and second order, respectively. As we can see in Fig. 4.4,

Figure 4.4. e Taylor series expansion of (a) the real β̄(λ) and (b) the imag-

inary ᾱ(λ) parts of the propagation constant β(λ) of the fundamental leaky

mode of the annulus ber [see Fig. 4.1] around the pump, the Stokes, and the

anti-Stokes positions. ey are approximated by truncating the corresponding

series at β̄(4) and ᾱ(2) as the fourth and second order, respectively. e spec-

tral positions of the pump (P, green colour), the Stokes (S, red colour), and

the anti-Stokes (AS, blue colour) waves are λ1 = 470nm, λ3 = 540.6 nm, and

λ4 = 415.8 nm, respectively, that correspond to the initial power of P1 = 3.1MW.

the fourth order approximation for the real part of β(λ), i.e., for the
dispersion yields near identical results to the exact curve. Moreover, the

expansion around eachwavelength can accurately cover the entire wave-

length window. However, the imaginary part of β(λ) that corresponds
to themodal loss can reproduce the exact curve in a smaller wavelength

range. Unfortunately, due to the exponential dependence of the loss on

wavelength, adding other higher-order terms of the expansion is not so

ecient. Nevertheless, the approximation can be used since the pump,

the Stokes, and the anti-Stokes waves are widely separated and narrow-

band. Moreover, in the literature, mostly, the modal losses are assumed

to be the same (constant) for all wavelengths [5]. Furthermore, in the nu-

merical simulations, we assume that the pump, Stokes, and anti-Stokes

wavelengths have the same group velocities vg ≡ 1/β̄(1). Indeed, as one
can see in Fig. 4.5, they have nearly the same group velocities and the

relative dierence of vg between them is less than ∆vg/vg < 10−5.
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4.4 optical system and simulation details

Figure 4.5. Spectral distribution of the group velocity vg ≡ 1/β̄(1) (respect to
the speed of light c) of the fundamental leaky mode of the annulus ber shown

in Fig. 4.1. e gray vertical dashed lines indicate the spectral positions of

the pump (P), the Stokes (S) and the anti-Stokes (AS) waves at λ1 = 470nm,

λ3 = 540.6 nm, and λ4 = 415.8 nm, respectively. e side bands positions

correspond to the initial power of P1 = 3.1 MW.

e initial amplitudes for the Stokes A3 and anti-Stokes A4 waves are

given by

A3,4(z = 0, t) = P1/2
3,4 sech(

t
T0

) e
∓iΩs t , (4.58)

where P3,4 ≪ P1 and the "−" sign is for A3. We choose P3,4 such that a

seed for the Stokes and anti-Stokes waves at the corresponding frequen-

cies is at the level of the spectral background (noise) of the pump eld

[see Fig. 4.6].

Figure 4.6. Initial prole of the pump Eq. (4.57), the Stokes, and the anti-Stokes

amplitudes Eq. (4.58) in (a) time and (b) frequency domain for P1 = 3.1 MW,

Ωs = 522.9 THz, T0 = 100 ps, and P3 = P4 = 10−26 W.
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e numerical solution of Eqs. (4.39a) to (4.39d) is carried out by

using an improved version of thewell-known split-step-Fouriermethod

[see Section 3.5] [5, 80, 81]. In our numerical simulations, we use N =
222 points to discretize a time window of TSpan = 100TFWHM. ese

parameters provide the wavelength window of λSpan = cN/TSpan ∼

320−770 nm according to the sampling theorem, which entirely covers

the spectral range of our interest. e longitudinal step size used in

numerical simulations is ∆z = 40 µm.

4.5 results and discussion

In this section, we investigate the pulse dynamics for two cases. In the

rst case, we consider the so-called continuous-wave regime that allows

to consider only the nonlinear part of Eqs. (4.39a) to (4.39d), while in

the second case, we solve the full system of equations including the

dispersion and nonlinear eects.

4.5.1 Quasicontinuous-wave regime

Let us start our analysis by considering the simplied case, i.e., namely

continuous-wave or quasicontinuous-wave regime. is regime sup-

poses the propagation of pulses with relatively widewidth that is around

T0 ∼ 1 ns. Hence, dispersion eects can be neglected and we solve equa-

tions Eqs. (4.39a) to (4.39d) without dispersion operator D̂ j . In our

simulations, we consider the pump pulse at wavelength λ1 = 470nm

with power of P1 = 3.1MWand P1 = 3.2MW. As an initial power for the

side bands, we use P3 = P4 = 10−26 W and the wave-vector mismatch is

assumed to be ∆β̄ = −2γrP1.
e simulation results are displayed in Fig. 4.7. It shows the total

power of the pump (P1), Stokes (P3) and anti-Stokes (P4) waves normal-

ized to the initial power of the pump wave as a function of propagation

distance z. e red solid lines indicate the power calculated by using

our formulation (RSE) while the blue dashed lines express the results

based on the bound-mode theory (BMT). In the le column [panels

(a), (c) and (e)], we display the results for the initial pump power of

P1 = 3.1 MW. As we can see, the ecient generation of the Stokes and

the anti-Stokes bands occurs roughly aer propagating along z = 80 cm
length of the ber. Subsequently, we observe a continuous exchange

of power between the pump and the side-bands. e period of the ex-
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Figure 4.7. Four-wave mixing in the quasicontinuous-wave regime. Normal-

ized pump [panels (a) and (b)], the Stokes [panels (c) and (d)] and the anti-

Stokes [panels (e) and (f)] power as a function of propagation distance obtained
by using our theory based on the resonant-state expansion (red solid line) and

the bound-mode theory (blue dashed line) for initial pump powers of 3.1 MW

(le column) and 3.2 MW (right column).

change, i.e., distance between two consequent maxima, is not constant.

During the propagation, it becomes shorter dierently for dierent the-

ories. Furthermore, in our case, the Stokes and anti-Stokes bands oc-

cur a bit (roughly 4 cm) earlier than in the bound-mode theory. Due

to these facts, there is a shi between the curves that correspond to

dierent theories. For instance, they become nearly out of "phase" at

z = 1.44 m, i.e., the Stokes and anti-Stokes bands have a local maximum

power in our theory, while they have a local minimum power in the

bound-mode theory. Additionally, we can note that in our formulation,

the Stokes and anti-Stokes bands exhibit a higher maximum power. For

instance, in our case the maximum eciency of the Stokes and the anti-

Stokes bands generation is 14.9 % and 19.4 %, respectively, while it is

12.3 % and 16.8 %, respectively, in the bound-mode theory. However,
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it reduces at long distances, which is due to the pump depletion and

modal losses.

We obtain very similar results for the initial pump power of P1 =
3.2 MW (the right column of Fig. 4.7). Increasing the initial pump

power leads to generation of Stokes and anti-Stokes bands with a higher

power. Furthermore, the side-band generation arises a bit earlier in

both formulations. For example, for P1 = 3.2 MW, it is roughly 2 cm

shorter than the previous case.

4.5.2 Ultrafast regime

Let us now simulate Eqs. (4.39a) to (4.39d) in the ultrafast regime that

requires the inclusion of dispersion eects. In this case, we start our

analysis of the pulse dynamics by investigating the total power spectral

density S(λ). Panel (a) in Fig. 4.8 depicts S(λ) dynamics based on

our formulation for the initial pump power of P1 = 3.1 MW, while the

results in panel (b) are based on the bound-mode theory. Note that

the nal equations become similar for both cases. e main dierence

is in the denition of the nonlinearity parameters. In the rst case,

the nonlinearity parameter γ has a negative imaginary part in contrast

to the latter [see Fig. 4.3 (d)]. In addition, reciprocal conjugation is

replaced by complex conjugation in the bound-mode theory. More

details about the dierence between twomodels can be found at the end

of Section 4.2. By comparing panels (a) and (b) of Fig. 4.8, we clearly see

that our formulation yields substantially more pronounced side bands.

is is a substantial eect, considering that Im(γ)/Re(γ) is rather small.

Due to the higher modal loss at the Stokes position (λ3 = 540.6 nm)

compared to the anti-Stokes one (λ4 = 415.8 nm), the power spectral

density of the Stokes wave is rather small [see Fig. 4.3 (b)]. Please note

that we use a broken power axis to show the side bands clearly.

Let us now repeat our simulations for a higher initial pump power of

P1 = 3.2 MW for the same pump wavelength. In this case, the positions

of the side bands are slightly shied according to the phase-matching

condition [see Fig. 4.3 (e)]. However, they are still in the normal disper-

sion regime and all other parameters are close to those of the previous

case. As we can see in panels (c) and (d) of Fig. 4.8, the Stokes and

anti-Stokes bands are generated with a higher power spectral density.

Specically, the increment in S(λ) is larger for the bound-mode the-

ory [e.g., compare the anti-Stokes band in panels (b) and (d)] than in

our formulation based on the resonant-state expansion [e.g., compare
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Figure 4.8. Four-wave mixing in the ultrafast regime. Spatial-spectral evo-

lution of the total power-spectral-density S(λ) obtained by using our theory

based on the resonant-state expansion and the bound-mode theory for an ini-

tial pump power of 3.1 MW [panels (a) and (b)] and 3.2 MW [panels (c) and
(d)], respectively.

the anti-Stokes band in panels (a) and (c)]. e reason for the latter is

that the impact of the nonlinear gain contribution [i.e., terms propor-

tional to Im(γ)∣A1∣
2] to the side-band generation is decreasing due to

the strong pump power (P1 ∝ ∣A1∣
2) depletion when using the resonant-

state expansion. Moreover, the spectral broadening of the pump and

side bands and their interaction generates various new frequencies, giv-

ing rise to supercontinuum generation at larger propagation distances.

erefore, in Fig. 4.8, we have truncated the nonlinear pulse dynamics

around z = 2.1 m.

Now, let us consider the eciency of the side-band generation. For

that, we calculate the total power of each waves by integrating the cor-
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Figure 4.9. Four-wave mixing in the ultrafast regime. Normalized pump [pan-

els (a) and (b)], the Stokes [panels (c) and (d)] and the anti-Stokes [panels (e)
and (f)] power as a function of propagation distance obtained by using our the-

ory based on the resonant-state expansion (red solid line) and the bound-mode

theory (blue dashed line) for initial pump powers of 3.1 MW (le column) and

3.2 MW (right column).

responding total power spectral density S(λ) over wavelength for each

step of propagation. In Fig. 4.9, we plot the total power of the pump

(P1), Stokes (P3) and anti-Stokes (P4) waves normalized to the initial

total power of the pump wave as a function of propagation distance

z. e red solid lines indicate the power calculated by using our for-

mulation, while the blue dashed lines express the results based on the

bound-mode theory. In the le column [panels (a), (c) and (e)], we

display the results for the initial pump power of P1 = 3.1 MW. First, we

clearly recognize that in our formulation, the Stokes and anti-Stokes

bands exhibit at least two times more maximum power. Second, the

most interesting point is that in our case, the Stokes and anti-Stokes

bands occur roughly 50 cm earlier than in the bound-mode theory. An

ecient power transfer from the pump to the side bands is observed
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around z = 1.5 m, where the pump power sharply starts to decrease.

Furthermore, we can see an oscillatory behavior of their total power

over distance, which is clearly pronounced in the case of the Stokes

band and relates an exchange of power between the two excitations.

e situation for the initial pump power of P1 = 3.2 MW (the right

column) is very similar to the previous case. As a main dierence, we

note the following: Increasing the initial pump power leads to a gen-

eration of Stokes and anti-Stokes bands with higher power within the

phase-matching condition. Besides, the onset of the side-band genera-

tion arises earlier in both formulations. For example, for P1 = 3.2 MW,

the onset is roughly 20 cm earlier than in the previous case. Finally, the

side bands decay at long distances, which might be due to the pump

depletion and modal losses.

In conclusion, we have presented here a new and general theoretical

formulation for a rigorous description of four-wave mixing in waveg-

uide geometries. e formulation is based on the so-called resonant-

state expansion with analytic mode normalization, which allows to con-

sider both bound and leaky modes within a single framework. For a

proof-of-concept analysis and as an example system, we have applied

our theory to a gas-lled hollow-core annulus ber. e numerical

results reveal that our new formulation predicts a more ecient gener-

ation of the Stokes and anti-Stokes bands with an earlier onset for the

leaky mode system in comparison with the bound-mode theory. Our

ndings originate from an accurate description of the nonlinear prop-

erties and in particular of the nonlinearity parameter of the considered

waveguide.

º
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5
DIPOLE EMISSION IN HOLLOW-CORE FIBERS

In nano-optics, dipole emitters coupled to optical resonators andwaveg-

uides have important applications in dierent areas such as spectroscopy

[103, 104], sensing [105], plasmonics [106, 107], single-photon sources

[108, 109], and nanolasers [110]. In these applications, wide tuning capa-

bilities of hollow-core bers can be useful for enhancing the emission

power of the dipole. For instance, the holes of the ber can be lled with

dierent chemical and biological materials, which makes hollow-core

bers a great platform for sensing applications. erefore, in this chap-

ter, we apply the resonant-state expansion to model the dipole emission

in hollow-core bers. At rst, we derive the total electromagnetic elds

of an oscillating dipole in a waveguide by using the Green’s dyadic and

the reciprocity principle. Aer this, we investigate the change of the

spontaneous emission rate of a dipole in hollow-core bers.

It is placing an emitter in an optical resonator or waveguide that

leads to a change of its spontaneous emission rate due to an interaction

with the electromagnetic resonances of the optical system. is phe-

nomenon is known as the Purcell eect [111]. It is characterized by the

self-titled factor that is dened as the ratio of the spontaneous emission

rate of a dipole in an electromagnetic environment to the free space one

and can be approximated as [111]:

FP =
6πc3Qm

n3
surω3Vm

. (5.1)

Here, Qm is the quality factor of the resonator mode, Vm is the mode

volume and nsur is the refractive index of the material surrounding the

dipole that oscillates with frequency ω. In Eq. (5.1), the mode volume

Vm can be written as [50, 52]

Vm =

∫
V
ε(r)E2

m(r)dr

[p0 ⋅ Em(rd)]2
, (5.2)

where p0 and rd are the position and the polarization vector of the

dipole, respectively. e integral in the numerator of Eq. (5.2) is the

normalization constant of the electric eld E of the mode. As we have

87



dipole emission in hollow-core fibers

discussed in Section 2.3, this normalization diverges in the case of the

open resonators because of the energy leakage. us, the mode volume

and hence the Purcell factor are not correctly dened for open systems.

However, the authors in Ref. [50] have solved this issue and presented

an exact analytic theory of the Purcell eect that can be applied for open

three-dimensional (3D) resonators. Using the Green’s dyadic Gk(r, r′)
Eq. (2.42) and the correct mode normalization constant Nm Eq. (2.46),

the Purcell factor in the weak coupling can be written as [50]

FP =
3πc3

ω ∑
m
Im
[p0 ⋅ Em(rd)]2

Nmωm(ωm − ω)
, (5.3)

where ωm are the eigenfrequencies of the modes.

e change of the dipole emission in conventional step-prole optical

bers, i.e., in two-dimensional (2D) systems (i.e., 3D systems transla-

tional invariant in one direction) with boundmodes has beenmodelled

within dierent approximations in literature [28, 112–114], as well as the

uorescence of isotropic and homogeneously distributed emitters in

microstructured bers in the single mode approximation [115–117]. It

has been theoretically and experimentally shown that the spontaneous

emission rate and the radiation pattern of emitters change near an in-

terface between two dierent materials [113, 114, 118, 119].

To the best of our knowledge, the modelling of the dipole emission

in hollow-core optical bers with leaky modes is missing so far. In

the following sections, we try to tackle this issue within our theory.

For that, rst of all, we derive the elds generated by an oscillating

point dipole by using the Green’s dyadic of Section 2.2.2 for waveguide

geometries. Next, we show that the elds can be obtained directly from

the reciprocity principle.

5.1 dipole fields in fibers

e Purcell factor can also be dened as the ratio of the power P radiated

by a dipole in the resonator to the power P0 = ω4∣p0∣2/(3c3) radiated
in an homogeneous medium, i.e., FP = P/P0 [120]. erefore, in this

section, we derive the total electromagnetic eld of a dipole located in

optical waveguides including hollow-core bers. As we have shown in

Chapter 2, the elds generated by an arbitrary source in a waveguide

can be obtained by using the Green’s dyadic that is decomposed into

the waveguide’s resonant states. Hence, in the following subsection, we

derive the electromagnetic elds of a dipole based on this approach.
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5.1.1 Dipole elds from the Green’s dyadic

e Green’s dyadic in real space is given by [see Section 2.2.2]

G(r, r′;ω) =∑
m

Fm(r∣∣;ω)⊗ FR
m(r′∣∣;ω)

2iNm
e
iβm ∣z−z′∣ . (5.4)

Based on this, we can calculate the eld F generated by an arbitrary

source J in the waveguide as

F(r;ω)=∑
m

Fm(r∣∣;ω)
2iNm

∫ FR
m(r

′
∣∣;ω)⋅J(r

′
;ω)eiβm ∣z−z′∣dr′ . (5.5)

In Eq. (5.5), as a source we consider an oscillating point dipole with

dipole moment p0 and frequency ω0, located at r0 = (x0 , y0 , z0). e

corresponding electric current density of the dipole is:

JE(r; t) = −
4πi
c

j(r) e−iω0 t , (5.6)

where j(r) = j0 δ(r − r0), and j0 = p0 ω0. e transformation into the

frequency domain provides

JE(r;ω) = −
8π2 i
c

j0 δ(r − r0) δ(ω − ω0). (5.7)

us, the eld F generated by this point source can be written as

F(r;ω) =∑
m
am(z,ω)Fm(r∣∣;ω), (5.8)

where am is the mode amplitude given by

am(z,ω) = −
4π2

cNm
[ER

m(x0 , y0;ω) ⋅ j0] e
iβm ∣z−z0 ∣ δ(ω − ω0). (5.9)

Finally, the Fourier transformation into the time-domain provides:

F(r; t) = −∑
m

4π2ω0

cNm
[ER

m(x0 , y0;ω0) ⋅ p0]

× Fm(r∣∣;ω0) e
iβm ∣z−z0 ∣ e−iω0 t . (5.10)

Note that here F stands for the electric E and the magneticH elds.
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5.1.2 Dipole elds from the reciprocity principle

In this section, the reciprocity principle is used to derive the electro-

magnetic elds of sources in optical waveguides including hollow-core

bers that are dominated by leaky modes. Note that this derivation is

an alternative to the previous one, which is based on the Green’s dyadic.

Let us start by considering the following equations:

M̂(r∣∣ , β;ω) F̂(r∣∣ , β;ω) = Ĵ(r∣∣ , β;ω), (5.11)

M̂(r∣∣ ,−βm ;ω) F̂Rm(r∣∣;ω) = 0. (5.12)

First, we multiply Eq. (5.11) with F̂Rm and Eq. (5.12) with F̂ from the le

side and then subtract the second expression from the rst one. By

using Eq. (2.30), the resulting expression can be simplied to the form

[∇∣∣+i(β − βm)êz] ⋅ [Ê(r∣∣ , β;ω) × ĤR
m(r∣∣;ω)−

ÊR
m(r∣∣;ω) × Ĥ(r∣∣ , β;ω)] = iÊ

R
m(r∣∣;ω) ⋅ ĴE(r∣∣ , β;ω), (5.13)

where êz denotes the unit vector in the z direction.
Next, we make the ansatz that the elds Ê and Ĥ can be expressed as

a superposition of resonant states Ên and Ĥn , respectively, and assume

that the source term ĴE vanishes at the resonances:

Ê(r∣∣ , β;ω) =∑
n
ân(β;ω) Ên(r∣∣;ω), (5.14)

Ĥ(r∣∣ , β;ω) =∑
n
ân(β;ω) Ĥn(r∣∣;ω), (5.15)

ĴE(r∣∣ , β;ω) =∏
n
(β − βn) ξ̂n(r∣∣;ω). (5.16)

Here, ân is the amplitude of the resonant state and ξ is an arbitrary

function. Hereinaer, for the sake of brevity, we omit the r∣∣ and ω
dependencies in the equations. Substituting Eqs. (5.14) to (5.16) into

Eq. (5.13) and integrating over the spatial inhomogeneities, we obtain:

∑
n
∫ ân[∇∣∣ + i(β−βm)êz] ⋅ (Ên × ĤR

m − Ê
R
m × Ĥn)dr∣∣ =

i(β − βm)∫ ÊR
m ⋅ ∏

n≠m
(β − βn)ξndr∣∣ . (5.17)
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In the limit β → βn (βn ≠ βm), Eq. (5.17) yields the following orthogo-
nality relation for the resonant states:

lim
β→βn
∫ ∑

n
ân[

∇∣∣

i(β − βm)
+ êz] ⋅(Ên×ĤR

m−Ê
R
m×Ĥn)dr∣∣ = 0. (5.18)

In the limit β → βm , the integral on the right hand side of Eq. (5.17) is

dened as the normalization coecient Nm [see also Section 2.4] [A1].

Hence, we can combine the orthogonality and normalization condi-

tions as following:

lim
β→βn
∫ ∑

n
ân[

∇∣∣

i(β−βm)
+ êz] ⋅(Ên×ĤR

m−Ê
R
m×Ĥn)dr∣∣ = −2Nmδmn .

(5.19)

Now, let us dene the mode amplitudes âm(β). e assumption that

Ĵ(β) → 0, and, accordingly, F̂(β) → F̂m in the limit β → βm results in

âm(β)→ âm(βm) = 1, i.e.,

âm(βm)=−
1

2Nm
∫ ÊR

m ⋅∏
n≠m
(βm − βn)σ̂n dr∣∣=1. (5.20)

Introducing an analytical continuation âm(β) of âm(βm) in the com-

plex β plane around the β = βm point, we can write

âm(β) = −
1

2Nm
∫ ÊR

m ⋅ ∏
n≠m
(β − βn)σ̂n dr∣∣ . (5.21)

Using Eq. (5.16), the right hand side of Eq. (5.21) can be written as

âm(β) = −
1

2Nm
∫

ÊR
m ⋅ ĴE

β − βm
dr∣∣ . (5.22)

Now, we can Fourier transform back into the z space:

am(z) = −∬
ÊR
m ⋅ ĴE

2Nm(β − βm)
e
iβzdr∣∣dβ. (5.23)

Representing ĴE in Eq. (5.23) as

ĴE =
1

2π ∫
JE e−iβzdz, (5.24)
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we obtain:

am(z) = −
1

2π∭
ÊR
m ⋅ JE

eiβ(z−z
′
)

2Nm(β − βm)
dz′dβdr′∣∣ =

1

2iNm
∫ ER

m ⋅ JE e
iβm ∣z−z′∣dr′ . (5.25)

Note that the Fourier transform in Eq. (5.25) is evaluated in the same

manner as in the case of the Green’s dyadic [see Section 2.2.2]. Finally,

multiplying Eq. (5.25) with Fm and summing over m, we obtain an

expression the total eld, which is the same as Eq. (5.5):

F(r;ω) =∑
m

F̂m(r∣∣;ω)
2iNm

∫ FRm(r
′
∣∣;ω) ⋅ J(r

′
;ω) eiβm ∣z−z′∣dr′ . (5.26)

In Eq. (5.26), we have replaced ER
m and JE with FRm and J, respectively.

is does not change the nal results since JH ≡ 0 in J.

5.2 purcell factor

e change of the dipole emission rate γ in an optical ber relative to the
free space one γ0, i.e., the Purcell factor FP [111] can be dened as [120]

FP =
γ
γ0

, (5.27)

where

γ0 =
2nsurk30∣p0∣2

3ħ
. (5.28)

Here, nsur is the refractive index of surrounding homogeneousmedium.

e decay rate of a dipole in ber can be expressed in terms of the

Green’s dyadic as [50, 120]

γ = −4πk0∣p0∣
2

ħ
{np ⋅ Im[G(r, r;ω)] ⋅ np}, (5.29)

where np is a unit vector in the direction of p0.
us, substituting Eq. (5.4) into Eq. (5.29), we obtain

FP =
3π

nsurk20
∑
m
Re[(np ⋅ em)(np ⋅ eRm)], (5.30)

with em = Em/N 1/2
m being the normalized electric eld of the bermode.
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5.3 dipole emission in hollow-core fibers

In this section, we apply our approach to a dipole located in two dier-

ent hollow-core optical bers. e rst geometry is a simple capillary

ber made of silica and lled with water. e second geometry is the

so-called hollow-core wagon-wheel ber [63, 116] that has three noncir-

cular holes and one of them is lled with water. e schematic of the

bers as well as their geometrical and optical parameters are shown in

panels (a) and (b) of Fig. 5.1. Additionally, panels (c) and (d) in Fig. 5.1

display the fundamental leaky modes of the bers at the wavelength

λ0 = 590 nm.

Figure 5.1. Schematic of the modelling hollow-core (a) step-prole and (b)
wagon wheel bers as well as their fundamental HE11 leaky modes [panels (c)
and (d), respectively] at λ0 = 590 nm. e geometrical and optical parameters

of the bers are the following: rc = 7 µm, r1 = 0.85 µm, r2 = 1.5 µm, g = 0.1 µm.

e refractive index of air, H2O and SiO2 are n = 1, n = 1.33 and n = 1.46,

respectively.
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Here, one can note that the electromagnetic elds of the fundamental

mode of the second geometry is highly conned and exhibits very high

nonlinear properties [63]. Furthermore, one should note that these

hollow-core bers exhibit an innite number of leaky modes [41, 58].

Let us now consider the hollow-core step-prole ber that is shown

in Fig. 5.1 (a). We assume that at the center of the ber, we have an

electric dipole that oscillates along the horizontal direction (i.e., in the

direction of the x-axis) at the wavelength λ0 = 590 nm. Due to the

symmetry of the system, among all transverse TE0n/TM0n and hybrid

HEmn/EHmn modes, only the hybridHE1n/EH1n modeswith azimuthal

number m = 1 can be excited. Here, we consider the rst N = 2500

modes (among which 1248 and 1252 are EH1n and HE1n modes, re-

spectively, see Fig. 5.4) that are sorted in ascending order according

to the imaginary part of their propagation constant, i.e., their modal

loss. Panel (a) in Fig. 5.2 shows the Purcell factor of each excited mode.

As we can see, the modes with low loss are exited quite eciently, while

the Purcell factor of the higher order modes has an oscillatory behavior

around zero. With increasing mode order, the amplitude of this oscil-

lation diverges. At rst glance, it seems that the oscillation becomes

harmonic for the higher-order modes and hence, that when evaluating

the sum over all contributions, the negative and positive Purcell factors

of individual modes cancel each other. However, if we plot the conver-

gence of the Purcell factor over the number of modes, which is shown

in Fig. 5.2 (b), one can see that due to this oscillation the Purcell factor

obtained with this method is not dened uniquely. For comparison, a

full wave COMSOL Multiphysics simulations was performed, which

provides a Purcell factor of FP = 1.12 [green dashed line in Fig. 5.2 (b)].

Let us now take a look at the emission patterns. It is known that a

dipole radiates perpendicularly to its oscillation direction [34]. Hence,

since in our case, the dipole is oriented in the horizontal direction, we

expect it to radiate vertically. e bottom panels (c) and (d) in Fig. 5.2

display the electric eld of the dipole approximated by usingN = 60 and
N = 400 modes, respectively. In the rst case (N = 60), as we can see,

the radiation pattern shows the expected qualitative behavior. However,

in the second case (N = 400), for which the Purcell factor from our

approach and the full wave simulations are identical [see Fig. 5.2 (b)],

the dipole does not radiates in vertical direction.

Pair of panels [(e), (f)] and [(g), (h)] in Fig. 5.2 depict the electric

eld of the dipole approximated by N = 60 and N = 400 modes, in the

xy and yz planes, respectively. As we can see in panels (e) and (f), the
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Figure 5.2. e Purcell factor of an horizontally oriented dipole (oscillating

at λ0 = 590 nm) located at the center of the hollow-core step-prole ber

that is shown in Fig. 5.1 (a). Panel (a) displays the individual Purcell factor
of each mode (HE1n/EH1n) while panel (b) shows the total Purcell factor as
a function of the number of modes, i.e., the convergence. e green dashed

line corresponds to the Purcell factor obtained from a full wave COMSOL

Multiphysics simulation. e bottom panels (c) and (d) display the electric

eld of the dipole (at z = 0) approximated by N = 60 and N = 400 modes of

the ber, respectively. e corresponding points are indicated by black arrows

in panel (b). Pair of panels [(e), (f)] and [(g), (h)] display the electric eld of

the dipole shown in panels (c) and (d) in the xz (at y = 0) and yz (at x = 0)
planes, respectively. White dashed lines indicate the core-cladding interface.

Note that in this system, only HE1n/EH1n modes are excited.
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emission patterns in the xz and yz planes are dierent since the dipole
radiates in the y direction. By comparing them with the emission pat-

terns in the xy and yz planes for N = 400 [(g), (h)] modes, we see

that they are almost identical. It is due to the fact that the higher-order

modes have very high modal losses. For example, the propagation con-

stant of HE130 and EH130 modes (n = 30) are β = (0.554+6.519i) µm−1
and β = (0.355 + 9.690i) µm−1, respectively. Hence, the elds of these
and the following higher-order modes decrease more than 1000 times

in a few nanometers of propagation along the z direction. Additionally,
in Fig. 5.2 (e–h), we can clearly see the refraction of dipole radiation

at the core-cladding interfaces (white dashed lines) into the cladding

region.

As it is known from the literature, we can distinguish two types of

hybrid modes, i.e., HEmn and EHmn modes [28, 41]. For these modes

all six components of the electromagnetic elds are nonzero and the

main dierence between them is the following: In HEmn modes, the

longitudinal component of the electric eld Ez dominates over the lon-

gitudinal component of the magnetic eld Hz , while in EHmn modes,

this is vice versa. erefore, in order to analyze the above issue, let us

rst consider the excited hybrid HE1n and EH1n modes individually.

Panels (a) and (b) in Fig. 5.3 display the Purcell factor of the n-th
mode in the set of hybrid HE1n modes and the convergence of the Pur-

cell factor over the number of modes, respectively. As we can see, the

amplitude of the oscillation is quite small and decreases with increas-

ing n. However, the same analysis for EH1n modes shows an oppo-

site behavior, i.e., the amplitude of the oscillation becomes bigger for

the higher-order modes. us, we see that the Purcell factor of HE1n
modes calculated by using Eq. (5.30) converges, but slowly, while for

EH1n modes our approach provides relatively good results if only the

lower-order modes are considered.

Let us continue our analysis by considering the positions of the hy-

brid HE1n and EH1n modes in the complex eective refractive index

neff = β/k0 plane. As we know, they correspond to the poles of the

Green’s dyadic Eq. (2.36). In Fig. 5.4, the red crosses and the blue lled

circles denote the HE1n and EH1n modes, respectively. e rst quad-

rant (positive real and imaginary values) contains the poles with neff ,

while the third one (negative real and imaginary values) contains the

poles with−neff that exist due to the reciprocity [see also Fig. 2.1]. As we

can see, the lower-order modes are located near the real axis, while the

higher-order modes are close to the imaginary axis. Interestingly, the
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Figure 5.3. e Purcell factor of the horizontally oriented dipole (oscillating

at λ0 = 590 nm) located at the center of the hollow-core step-prole ber that

is shown in Fig. 5.1 (a). Panels (a) and (c) display the individual Purcell factor
of each HE1n and EH1n mode, respectively, while panels (b) and (d) display
the total Purcell factor as a function of the number of HE1n and EH1n modes,

respectively.

higher-order hybridHE1n modes slowlymove away from the imaginary

axis with increasing mode number.

In contrast to 3D systems, the Green’s dyadic Eq. (2.36) of 2D systems

has a cut in the complex neff plane along the negative imaginary half

axis [38, 39]. In Fig. 5.4, the position of the cut is indicated by the green

solid line. is cut contribution occurs due to the rst kind of Hankel

function, which describes the mode elds in the exterior and it is not

uniquely dened [62]. e latter can be easily identied by consider-

ing the boundary condition Eq. (2.15), which essentially describes the

asymptotic behavior of the electromagnetic elds at ρ →∞. As we can
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Figure 5.4. Poles of the Green’s dyadic in the complex neff = β/k0 plane that
correspond to the HE1n and EH1n modes of the hollow-core step-prole ber

shown in Fig. 5.1 (a). e higher-order EH1n modes are located very close to

the cut of the Green’s dyadic, while the HE1n modes move away from the cut.

see in Eq. (2.15), it has a square-root in the denominator that has a cut in

the complex plane. e presence of these cut contributions explains the

issues related the divergence of the Purcell factor for the higher-order

modes.

e cut contribution can be neglected if the poles and accordingly

the waveguide modes are far from the cut. erefore, we have obtained

self-consistent results for the Purcell factor in case of HE1n as well as

lower-order EH1n modes of hollow-core step-prole ber that are far

from the cut [see Fig. 5.4]. However, when the poles are close to the cut

as in case of the higher-order EH1n modes, the cut contribution in the

Green’s dyadic Eq. (2.19) has to be taken into account.

For the sake of completeness, let us briey consider the second, so-

called wagon-wheel ber geometry. In contrast to the previous geome-

try, the symmetry of the system is broken due to the water-lled hole. In

this case, we use COMSOLMultiphysics for calculating the bermodes.

In our COMSOL simulations, domain radius and the perfectlymatched

layer (PML) thickness are 12 µm and 2 µm, respectively. For meshing,

we have used the free triangular mesh with a minimum element size of

λ/(8n), where λ and n are the wavelength of interest and the refractive

index of themedium, respectively. Furthermore, in COMSOL, it is hard

to select only those modes that are excited by the dipole. erefore, we

consider only the rst N = 150 modes with the lowest loss.
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Figure 5.5. e Purcell factor of a horizontally oriented dipole (oscillating

at λ0 = 590 nm) located at the center of the hollow-core wagon wheel ber

that is shown in Fig. 5.1 (b). Panel (a) displays the Purcell factor obtained

with our modal approach (blue line) as a function of the number of modes.

e green dashed line corresponds to the Purcell factor obtained from full-

wave simulations. Panel (b) displays the electric eld of the dipole (at z = 0)
approximated by N = 150 modes of the ber. e bottom panels (c) and (d)
display the electric eld of the dipole shown in panel (c), in the xz (at y = 0)
and yz (at x = 0) planes, respectively. Note that in this case, we have used the

rst N = 150 modes with the lowest modal loss.

e simulation results are shown in Fig. 5.5. In panel (a), the blue

line displays the resulting Purcell factor as a function of the number

of modes. For comparison, the green dashed line indicates the Pur-

cell factor that was obtained by full wave calculations (performed with

COMSOLMultiphysics as well). As we can see, the Purcell factor of the

modal approach convergences quite slowly. Furthermore, not all modes

are excited, which is why dependence in Fig. 5.5 (a) is not so smooth.

e electric eld of the dipole in the xy plane (at z = 0) approximated

by N = 150 modes is shown in panel (b). Due to the asymmetry of

the system, radiation occurs only in one direction. Finally, the radia-
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tion patterns in the xz (at y = 0) and yz planes (at x = 0) are shown
in Fig. 5.5 (c) and Fig. 5.5 (d), respectively. As we can see, the radia-

tion is mostly conned in a small core region, i.e., between three holes.

However, it partially refracts into the water-lled hole.

In this chapter, we have provided a model for the description of

dipole emission in open waveguide systems. Our model is based on

the resonant-state expansion with the correct mode normalization. We

have derived the electromagnetic elds of a dipole in two dierent ways,

namely by using the Green’s dyadic and by relying on the reciprocity

principle, aswell as established an expression for the Purcell factor. Note

that in our model, we have assumed that the so-called cut contribution

in the Green’s dyadic is negligible.

Based on this approach, we have calculated the change of the spon-

taneous emission rate of a dipole in two dierent kinds of hollow-core

waveguide geometries. Our simulations show that for an accurate de-

scription it is necessary to take into account a relatively high number

of excited waveguide modes. It turns out that in this case, some of the

modes are close to the cut of the Green’s dyadic and hence the cut con-

tribution has to be considered in order to obtain accurate results. is

will be a subject of future investigations.

º
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6CONCLUSION AND OUTLOOK

In conclusion, we have presented here a new theory for simulating the

linear and nonlinear propagation of both bound and leaky mode in

waveguides, including the more advanced and complex hollow-core

bers. e approach is based on a powerful and rigorous method,

namely the resonant-state expansion, with an analytic mode normaliza-

tion. e latter allows to apply the approach straightforwardly to dier-

ent waveguide geometries and to restrict the computational domain to

regions of spatial inhomogeneities giving substantial improvements in

numerical simulations.

We have built our theory ab initio from the Maxwell’s equations.

Based on the concept of the Green’s dyadic that can be represented as

a sum over the correctly normalized eigensolutions of the system, we

have derived a master equation. By considering the nonlinear polar-

ization as the general source in this equation, we have obtained the

nonlinear pulse propagation equation. is rigorous approach does not

include any slowly varying amplitude approximation in contrast to the

standard formulations and can be readily applied to both bound and

leaky modes.

In the single-mode approximation, the master equation simplies to

the well-known nonlinear Schroedinger equation that includes a new

denition for the Kerr nonlinearity parameter. Applying this equation

for the description of the nonlinear pulse propagation in hollow-core

bers that are governed by leaky modes has revealed that the Kerr non-

linearity parameter has an imaginary part. While this was expected

from previous works, we have found that, depending on the ber pa-

rameters, the imaginary part can change its sign. If it is positive, it

corresponds to nonlinear loss, while a negative imaginary part acts as

a nonlinear gain for the overall attenuating pulses. e mechanism of

the nonlinear gain can be explained by a self-focusing that reduces the

pulse intensity at the interface of core and surrounding, which in turn

decreases the energy dissipation through to exterior. Our numerical

simulations for the pulse propagation in a capillary bers demonstrate

that it can have signicant inuence on the spectral and temporal evo-

lution of an ultrashort pulse.
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Our theory is neither restricted to simple waveguide geometries nor

to the single-mode approximation, within which usually the spectral

broadening of the initial pulse, also known as supercontinuum genera-

tion, is investigated. It can be easily applied tomore complex waveguide

geometries such as Kagoḿe bers, and it can be extended to other non-

linear processes such as four-wave mixing.

In order to demonstrate this, we have used our theory to derive a rig-

orous description of four-wave mixing in waveguide geometries, which

allows consideration of both bound and leaky modes within a single

framework. For a proof-of-concept analysis and as an example system,

we have applied our theory to a relatively complex gas-lled hollow-

core annulus ber. e numerical simulations reveal that our theory

predicts a more ecient generation of the Stokes and anti-Stokes bands

for the leaky mode system in comparison with the bound-mode the-

ory. Another interesting point is that in our theory, the side-bands

were found to occur roughly 50 cm earlier than predicted by the bound-

mode theory. ese ndings originate from an accurate description of

the nonlinear properties and, in particular, of the nonlinearity parame-

ter of the considered waveguide.

Our theoretical and numerical investigations have demonstrated that

leaky modes provide modulation instability in both the anomalous and

normal dispersion regions. Furthermore, there is always a minimal

nonzero background gain for the entire spectral range. It means that

the modulation instability can occur for all frequencies. is is can

be considered as one of a fundamental dierences of leaky modes to

bound modes.

Within our theory, it is possible to describe a waveguide mode that is

excited by arbitrary external or internal sources. Such dipole-ber sys-

tems have important applications in ber based sensors, non-classical

light sources for quantum information and other devices. Consequently,

we have applied our model to describe the emission of point sources

in hollow-core waveguides and investigated the change of the sponta-

neous emission rate. Our simulations show that themodel can properly

describe the spontaneous emission of the dipole if the excited waveg-

uide modes are far enough from the cut of the Green’s dyadic. However,

in most of the cases, for an accurate description, it is necessary to take

into account a relatively high number of modes. In this case, the cut

contribution has to be taken into account within the scope of the theory.

We are quite sure that our theory is not restricted to the cases con-

sidered here. It has unrevealed potentials and can include other eects
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that we have neglected so far due to choice of the initial conditions. For

example, it can further be extended to consider nonlinear dispersion

eects by solving the master equation in the frequency domain. Addi-

tionally, it will be interesting to extend the theory for PT-symmetric

systems since in most of the cases, they have an intrinsic gain and loss.

Since leakymodes play a crucial role in a large number of ber geome-

tries, we think that our theory opens new routes for tailoring the linear

and nonlinear pulse propagation in these waveguides. e comparison

of the standard theory with our theory reveals that the conventional the-

ory is inappropriate for capturing all phenomena that arise during the

propagation of leaky modes. erefore, we believe that our theory can

accurately describe and perform numerical modelling of experimen-

tally observed features not only qualitatively but also quantitatively.

º
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