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Zusammenfassung

Stark korrelierte Materialien stellen eine einzigartige Klasse von Verbindungen
dar, in denen interessante physikalische Phänomene gefunden werden können. Einige
Beispiele sind: kolossaler Magnetowiderstand, Metall-Isolator-Übergang und Hochtem-
peratursupraleitung. Diese neuartigen Phänomene versprechen einerseits neue Tech-
nologien —oder haben diese bereits ermöglicht—, die die menschliche Gesellschaft
erheblich verbessern könnten, und bieten andererseits eine hervorragende Plattform,
um innovative Physik zu entdecken. Daher ist das Verstehen solcher Systeme oder
insbesondere der Versuch, universelle Konzepte und Methoden zu entwickeln, die eine
Verbindung zwischen der mikroskopischen Elektronenstruktur und den makroskopis-
chen Eigenschaften herstellen können, eines der großen Ziele der Physik der konden-
sierten Materie und definiert auch den Bereich, zu dem diese Doktorarbeit beitragen
soll.

Eine der charakteristischen Eigenschaften korrelierter Elektronensysteme ist, dass
ihre Observablen gleichzeitig Merkmale der vollständig lokalisierten Grenze—wie
atomare Multiplets—und der itineranten (renormierten) Fermi-Flüssigkeitsgrenze auf
weisen können, was ihre theoretische Behandlung schwierig und störungstheoretis-
che Ansätze inadäquat macht. Genau aus dem diesem Grund besitzen diese Syste-
men jedoch reichhaltige Phasendiagramme, die ihre Empfindlichkeit gegenüber ex-
ternen Einflüssen zeigt. Daher ist die Entwicklung einer störungstheorie-freien Be-
handlung der Niedrigenergiemodelle—wie das Hubbard-Modell und seine Multiband-
Varianten—, die für diese Kategorie von Systemen abgeleitet wurden, äußerst wün-
schenswert.

Die dynamische Molekularfeldtheorie (DMFT) ist eine der erfolgreichsten Meth-
oden, die in den letzten Jahrzehnten entwickelt wurde, um diese subtilen Merk-
male stark korrelierter Systeme zu beschreiben. Sie legt einen Schwerpunkt auf
die Lokalität dieser Systeme und behandelt die lokalen Korrelationen stö̈rungsthe-
oriefrei, durch Abbildung des ursprünglichen Systems auf ein effektives Störstellen-
Modell, welches mit numerischen Methoden mit hoher Genauigkeit gelöst wird. Es
wurde erfolgreich angewendet, um die Natur des Metall-Isolator-Übergangs und die
Auswirkungen der Hund’schen Kopplung in Multi-Orbital-Systemen aufzudecken.
Kürzlich wurden auch Erkenntnisse über das Zusammenspiel von Coulomb-Wechselwi-
rkung und Spin-Bahn-Kopplung in Seltenerdmetalloxiden gewonnen. Trotz des Er-
folges gibt es jedoch Mängel und Hindernisse bei der Anwendung von DMFT: Die
lokalen Korrelationen werden zwar störungsfrei behandelt, die nicht lokalen Korre-
lationen, die für die zugrunde liegende neuartige Physik von großer Bedeutung sein
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könnten, werden jedoch komplett vernachlässigt; Außerdem kann die Lösung des—
zwar vereinfachten—Störstellen-Modells immer noch sehr schwierig sein, insbesondere
wenn es mehrere stark verschränkte Freiheitsgrade enthält. Diese Arbeit stellt unsere
Lösungsansätze, diese Mängel und Hindernisse von DMFT zu beseitigen, vor.

Wir beginnen mit der Darstellung des Hintergrunds der Standard-DMFT, die die
klassische Molekularfeldtheorie um lokale, thermische und Quantenfluktuationen er-
weitert, gefolgt von der Motivation, sowohl nicht-lokale Korrelationen als auch Wech-
selwirkungen einzubeziehen. Durch Einführung von Bosonischen Feldern zur Entkop-
plung der Elektron-Elektron-Wechselwirkung wird eine einheitliche Herleitung der
Selbstkonsistenzgleichungen für DMFT, Extended DMFT (EDMFT) und TRiply Ir-
reducible Local EXpansion (TRILEX) dargestellt. Innerhalb dieses einheitlichen Rah-
mens werden die Approximationsebenen verschiedener Methoden (DMFT, EDMFT,
TRILEX) offensichtlich. Als ein Beispiel für die Wichtigkeit und Notwendigkeit der
Einbeziehung nicht-lokaler Korrelationen werden die Adatom-Oberflächensysteme,
deren Niedrigenergiephysik durch ein erweitertes Einband-Hubbard-Modell mit einer
1/r - Lang- streckenwechselwirkung auf dem Dreieck-Gitter beschrieben wird, mit der
TRILEX-Methode untersucht. Das Zusammenspiel von Spin- und Ladungsfluktua-
tionen und deren Auswirkungen auf die Entstehung unkonventioneller Supraleitung
in diesen experimentell gut kontrollierten Systemen werden durch die Analyse der
Impulsaufgelö- sten Antwortfunktionen aufgedeckt. Interessanterweise spielt die in-
trinsische nicht-lokale Wechselwirkung in dieser Materialkategorie eine wesentliche
Rolle für die Entstehung einer unkonventionellen supraleitenden Paarung, was sich
in der direkten Abhängigkeit der supraleitenden Übergangstemperatur von der nicht-
lokalen Wechselwirkungsstärke im widerspiegelt. Ein weiterer wichtiger Bestandteil
der beobachteten supraleitenden Phase ist die Dreiecksgittersymmetrie dieser Ma-
terialien, die einen kumulativen Beitrag von Spin- und Ladungsfluktuationen zur
supraleitenden Instabilität ermöglicht. Diese Ergebnisse lassen auf ein supraleiten-
des Paarungsszenario schließen, das sich vom häufig untersuchten Hubbard-Modell
auf dem Quadratgitter unterscheidet und möglicherweise auch die experimentelle
Forschung im loch-dotierten Bereich dieser Materialien anregt.

Der zweite Teil dieser Arbeit trägt zur Entwicklung tensorproduktzustandsbasierter
Lösungsmethoden für das Anderson Impurity Modell auf der reellen Achse für all-
gemeine DMFT-Rechnungen bei. Wir beginnen mit der Motivation von Matrix-
Produktzuständen (MPS) basierenden Ansätze, indem wir die Stärken und Mängel
der vorhandenen Methoden untersuchen. Anschließend geben wir eine umfassende
Einführung in die MPS-Theorie und die zugehörigen Algorithmen, die zur Implemen-
tierung des Störstellen-Lösers erforderlich sind. Im nächsten Schritt führen wir die
Rotation in die natürliche Orbitalbasis für allgemeine Störstellen-Modelle ein und
stellen ihren Vorteil gegenüber der allgemein verwendeten Ketten- und Sternbasen
durch Analyse der Verschränkung des Störstellen-Grundzustands fest. Durch Rota-
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tion auf die natürliche Orbitalbasis erzielen wir nicht nur eine viel kleinere maximale
Bindungsdimension der MPS, sondern auch einen schnelleren Abbau der Bindungs-
dimension im ganzen System. Darüber konvergiert die Dichte als Funktion des Ab-
stands von der Störstelle in der Bad-Stelle im Leitungsband (Valenzband) exponen-
tiell zum leeren (vollen) Zustand. Basierend auf dieser Dichteverteilung schlagen wir
eine Teilchenzahl-Projektionsmethode vor, die die Anzahl der erlaubten Elektronen
(Löcher) im Leitungsband (Valenzband) begrenzt. Dies ermöglicht eine systematische
Kontrolle des Gleichgewichts zwischen Genauigkeit und Rechenaufwand durch Anpas-
sung der Projektionsparameter. Die Leistungsfähigkeit der vorgeschlagenen Methode
wird durch Lösen des Einband-Hubbard-Modells auf dem Bethe-Gitter in verschiede-
nen Parameterregionen demonstriert. Um den Schwierigkeiten im Frequenzbereich
entgegenzuwirken, erweitern wir diese Projektionsmethode auf den Zeitbereich. In-
dem wir den exponentiellen Abfall der Gewichte von Zuständen, hinsichtlich der
erlaubten Teilchenzahl, im Leitungsband und Valenzband zeigen, können wir den
Schluss ziehen, dass diese Projektionsmethode hocheffizient ist und exponentiell mit
der Entwicklungsordnung, der Anzahl der zulässigen Teilchen in der projizierten Re-
gion, und Subsystemgröße konvergiert. Benchmarks und Tests dieser Zeitbereichs-
Projektionsmethode werden auch für das Einband-Hubbard-Modell auf dem Bethe-
Gitter durchgeführt, und es wird eine gute Übereinstimmung mit den vorhandenen
Ergebnissen aus der Literatur beobachtet.

Trotz der Tatsache, dass die Rotation zur natürlichen Orbital Darstellung die
Einteilchenbasis optimiert und eine kleine Grundzustandsverschränkung für Störstel-
lenmodelle zur Folge hat, ist die Kettengeometrie der MPS nicht für Mehrband-
modelle geeignet. Dies lässt sich anhand des folgenden Beispiels veranschaulichen:
Betrachtet man ein Mehrband-Störstellenmodell, das eine ähnliche Bandbreite und
Wechselwirkungsstärke aufweist, so kann einerseits die Verschränkung zwischen der
Störstelle und der aktiven Stelle, die zum selben Band gehört, aber auch die Ver-
schränkung zwischen den Störstellen, wegen Interband-Wechselwirkungen, ziemlich
groß sein. Daher gibt es keine Möglichkeit, die Kettengeometrie so zu ordnen, das die
Verschränkung zwischen Störstelle-Aktive Stelle und Störstelle-Störstelle gleichzeitig
optimiert. Darüber hinaus ist es unvermeidlich, weit-entfernte Sprünge einzuführen,
wenn die Bad-Stellen eines Mehrband-Störstellenmodells auf einer Kettengeometrie
angeordnet werden. Daher sind alternative Tensorproduktzustände wünschenswert,
die in der Lage sind, die Verschränkungsstruktur eines allgemeinen Mehrband-Störstell-
enmodells auf optimierte Weise zu erfassen. Fork-Tensor-Produkt-Zustände (FTPS)
stellen einen dieser Versuche dar. Sie trennen die Freiheitsgrade, die zu verschiede-
nen Bändern gehören, indem sie auf verschiedene Gabelungen—der Fork (Gabel)—
gelegt werden. Indem wir weiter festhalten, dass die FTPS zu den allgemeineren
Tree-Tensor-Produkt-Zuständen (TTPS) gehören, schlagen wir in dieser Arbeit eine
TTPS-Darstellung der Vielkörperwellenfunktion eines allgemeinen, in die Basis der
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natürlichen Orbital rotierten, Mehrband-Störstellenmodells vor. Der Vorteil dieser
vorgeschlagenen TTPS ist, dass sie nicht nur die Freiheitsgrade, die zu verschiedenen
Bändern gehören, sondern auch das Leitungs- und das Valenzband, die ausdrücklich
zu demselben Band gehören, voneinander trennen. Zusammen mit allen Vorteilen
der Rotation in die natürliche Orbitalbasis kann dieser Störstellen-Löser Probleme be-
wältigen, die mit anderen Methoden nicht möglich sind. Für Benchmark- und Demon-
strationszwecke wird die prototypische Verbindung SrVO3 mit dem vorgeschlagenen
Störstellen-Löser im Rahmen von DMFT gelöst. Die erhaltene Green’sche Funktion
zeigt eine schnelle Konvergenz mit der Bindungsdimension der TTPS, löst die atom-
aren Multiplets korrekt auf und zeigt auch eine gute Übereinstimmung mit den FTPS
Referenzergebnissen.

Zusammenfassend haben wir die Wichtigkeit und Notwendigkeit der Einbeziehung
nicht-lokaler Korrelationen in die Standard-DMFT Methode durch die TRILEX-
Studie der loch-dotierten Adadom-Oberflächensysteme gezeigt. Darüber hinaus wer-
den die wesentlichen Rollen der Ferninteraktion und Gittersymmetrie bei der Entste-
hung der supraleitenden Paarung durch die Analyse der Impuls-aufgelösten Antwort-
funktionen aufgezeigt. Um nicht-lokale Korrelationen in die Cluster-Erweiterungen
von DMFT einzubeziehen und auch Mehrbandsysteme zu handhaben, entwickeln wir
einen effizienten Störstellen-Löser, der den Kern der DMFT-Berechnungen bildet.
Durch die Rotation in die natürliche Orbitalbasis wird ein Projektionsmethode sowohl
für den Frequenz- als auch für den Zeitbereich vorgeschlagen und getestet. Um
den inhärenten Schwierigkeiten der MPS-Darstellung der Vielkörperwellenfunktion
eines Mehrbandsystems entgegenzuwirken, haben wir einen baumtensorproduktzus-
tand vorgeschlagen, um die Verschränkungsstrukturen von Mehrbandmodellen kor-
rekt zu erfassen. Dieser Störstellen-Löser wurde durch Simulationen des prototypis-
chen SrVO3 getestet und zeigt ein großes Potenzial für weitere Anwendungen.
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1
Introduction and Motivation

Strongly correlated materials present a unique class of compounds in which interest-
ing phenomena can be found. Some of the examples are colossal magnetoresistance,
metal-insulator transition and high-temperature superconductivity. These novel phe-
nomena, on one hand, promise and have already triggered new techniques that could
greatly improve human society, and on the other hand, provide a great platform
to reveal novel physics. Hence, the understanding of such systems, or specifically,
attempt of developing universal concepts and methods that can build a connection
between the microscopic electron structure to the macroscopic properties, is one of
the golden goals of condensed matter physics, and also defines the realm to where
this thesis intends to contribute.

One of the characteristic features of correlated electron systems is that their ob-
servables may show-at the same time-features from the fully localized limit (like
atomic multiplets) and itinerant or renormalized Fermi-liquid limit, which makes their
theoretical treatment challenging and perturbative approaches inadequate. However,
it is precisely for the same reason that these systems display rich phase diagrams
highlighting their sensitivity to external perturbation. Hence, the development of
non-perturbative treatment of low energy models derived for this category of systems
(like the Hubbard model and its multi-band variants) is highly desirable.

Dynamical mean-field theory (DMFT) is one of the most successful methods which
are developed during the past decades aimed to capture these subtle features of
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strongly correlated systems. It puts an emphasis on the locality of these systems
and treats the local correlation non-perturbatively through mapping of the original
system to an effective impurity model which is then solved with numerical methods to
high accuracy. It has been successfully applied to reveal the nature of metal-insulator
transition, the effects of Hund’s coupling in multi-orbital systems, and recently it also
provides insights into the interplay between Coulomb interaction and spin-orbital cou-
pling in rare earth metal oxides. However, despite its success, there are shortcomings
and obstacles in the application of DMFT: first, although the local correlations are
treated in a non-perturbative way, the non-local correlations, which could be quite
important in the underlying novel physics, are totally ignored; second, compared to
solving the original lattice problem, although it has already been simplified, solving
the impurity model, especially when it contains several highly entangled degrees of
freedom, can be still very difficult.

This thesis presents our attempts to improve upon these shortcomings and ob-
stacles of DMFT. In the first part, we present the theoretical background of TRiply
Irreducible Local EXpansion (TRILEX) extension to DMFT and its application to
adatom systems as:

• chapter 2 first presents the basic background of the standard DMFT followed by
the motivation to include both non-local correlations and interactions. Then,
by introducing bosonic fields to decouple the electron-electron interaction, a
unified derivation of the self-consistency equations for DMFT, extended DMFT
(EDMFT) and TRILEX is presented. Within such a unified framework, the
levels of approximation of different methods (DMFT, EDMFT, TRILEX) are
discussed.

• in chapter 3, the TRILEX method is applied to the adatom surface systems.
Starting from a motivation to study the interplay between spin- and charge-
fluctuations and their effects on the emergence of unconventional superconduc-
tivity in well controlled systems, we perform a comprehensive study of the hole
doped phase diagram of the adatom systems. In particular, the impact of long-
range interaction and lattice symmetry on the superconductivity instability are
studied in detail as a novel ingredient to unconventional superconductivity.
Parts of the contents of this chapter have been published in
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“Chiral d−wave superconductivity in a triangular surface lattice mediated by
long-range interaction”, Xiaodong Cao, Thomas Ayral, Zhicheng Zhong, Olivier
Parcollet, Dirk Manske, and Philipp Hansmann, Phys. Rev. B 97, 155145,
20 April 2018

The second part of this thesis contributes to the development of tensor product
states based impurity solvers on the real-axis for general DMFT calculations as:

• in chapter 4, we start with the motivation of the matrix product states (MPS)
based impurity solver for general DMFT calculations by reviewing the strengths
and shortcomings of the existing methods, then we give a comprehensive intro-
duction of the MPS and the related algorithms which are needed to implement
the impurity solver.

• in chapter 5 and chapter 6, we introduce the rotation to natural-orbital basis
for general impurity models and establish its advantage to chain and star basis
by analyzing entanglement of the impurity ground state. Furthermore, based
on the density distribution in the natural-orbital basis, we propose a particle-
number projection method which constrains the allowed electrons (holes) in the
conduction (valence) channel. This allows for a systematical control of balance
between the accuracy and computational cost by tuning the projection parame-
ters. Performances of the proposed method in both frequency- and time-domain
are demonstrated by solving the single-band Hubbard model on the Bethe lat-
tice in various parameter regions.
Parts of the contents of this chapter have been presented in

“Natural-Orbital Impurity Solver and Projection Approach for Green’s Func-
tion”, Yi Lu, Xiaodong Cao, Philipp Hansmann and Maurits W. Haverkort,
Phys.Rev.B 100, 115134, 16 September 2019.

• in chapter 7, by analyzing the entanglement structure of multi-band impurity
models, we introduce the tree tensor product states (TTPS) as an extension
of the MPS for the single-band impurity models in the natural-orbital basis.
After elaborating on extending algorithms developed for the MPS to TTPS, we
demonstrate its performance by solving the prototypical compound SrVO3.
Parts of the contents of this chapter are presented in
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“Efficient real-aixs tree tensor product states impurity solver in the natural-
orbital basis”, Xiaodong Cao, Yi Lu, Philipp Hansmann and Maurits W.
Haverkort, in preparation.

In chapter 8, we present a conclusion of this thesis and an outlook for future
research.
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2
Dynamical mean-filed theory and its

TRILEX extension

The Hamiltonian for a general solid, which consists of oppositely charged nuclei and
electrons, in crystalline structure can be formulated as

H = He +Hi, (2.1)

He =
∑
i

[
− ℏ2

2m
∇2

ri
+ V (ri)

]
+

1

2

∑
i ̸=j

Vee (ri − rj) , (2.2)

Hi =
∑
i

− ℏ2

2M
∇2

Ri
+

1

2

∑
i ̸=j

Vii (Ri −Rj) . (2.3)

Here, m (M) represents the mass of an electron (ion), and ri (Ri) its coordinates. Vee
(Vii) is the Coulomb interaction between electrons (ions), while V (ri) =

∑
j Vei(ri −

Rj) is the ionic potential experienced by each electron. Since the ion is usually much
heavier than the electron, it is reasonable to consider the ions to be static and focus
only on the electronic degrees of freedom. After choosing a specific Wannier basis
for the lattice problem, such an electronic Hamiltonian can be also written in the

6



second-quantized form as

H0 =
∑
ij,αβ

tαβij c
†
iαcjβ, (2.4)

Hint =
1

2

∑
ijkl

∑
αβγδ

Uαβγδ
ijkl c

†
iαc

†
jβckγclδ, (2.5)

where the latin indices represent the spatial coordinates, and the greek indices rep-
resents the collection of orbital and spin degrees of freedom. The hopping (tαβij ) and
interaction (Uαβγδ

ijkl ) can be obtained from the integral between the localized Wannier
wave functions on each lattice site.

In general, a full solution of the Eq. (2.4) is impractical. The difficulty is that,
when the interaction term Hint is not negligible or comparable with the kinetic part
H0, the total Hilbert space grows exponentially with the number of degrees of freedom.
This is the famous ”exponential wall problem” of strongly correlated systems.

To circumvent this difficulty, various methods have been developed over the past
decades. Among these, mean-filed theory is probably the simplest method one might
come up with. The basic idea behind this method is to map the original untraceable
lattice model to an effective single-site model. Typically, such mapping causes fluc-
tuations to be frozen out and thus only a static mean-field is left out to represent the
relevant energy scale of the original system. It can be useful to provide a qualitative
understanding about the underlying physics. However, once the fluctuations become
strong or several energy scales are closely coupled and compete with each other, we
need to employ more sophisticated methods.

Similar to the traditional mean-filed theory, DMFT also maps the complicated
lattice model into an effective impurity model. The pioneering work to this mapping
was made by Metzner and Vollhardt [1], who pointed out that the lattice fermionic
strongly correlated systems have a nontrivial limit in the large dimension limit: the
self-energy and Green’s function are purely local! Then, with such an insight, a further
interpretation of functional equations in the large dimension limit as an interacting
impurity coupled with a self-consistent determined non-interacting bath was made in
Refs. [2, 3, 4]. The difference to the classical mean-theory is that in DMFT, although
the spatial fluctuations are frozen, the effective impurity model inherits all the local
quantum fluctuations and remains a quantum many-body problem which leads to
energy-dependent self-energies.
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Although, the local picture provided by DMFT has been successfully applied to
various systems to reveal the underlying mechanisms of certain interesting phenom-
ena (like the Mott transition), novel physics induced by non-local interactions and
non-local correlations are beyond its scope. During the last decades, a lot of efforts
have been made to include these effects in various extensions of the standard DMFT.
Extended DMFT (EDMFT) was proposed [5] to include the screening effects of non-
local interaction by a self-determined local retarded interaction, while the self-energy
and polarization remain to be local. However, when non-local correlations start to
play an important role, local approximations like DMFT and EDMFT are both in-
sufficient to reveal the underlying physics. To overcome these shortcomings, further
extensions have been proposed [6, 7] and they can be divided into two categories as:

• Cluster extensions in real or reciprocal space [8, 9, 10, 7]: Since DMFT can
capture the correlations inside the impurity exactly, a natural extension is to
extend the single-site impurity to a cluster in real or reciprocal space. Although,
compared to the original lattice problem, the effective impurity model is easier
to be handled and a lot of sophisticated methods, both analytical and numeri-
cal, have been developed (originating from the study of the Kondo effect [11] in
impurity systems), solving it can still be very challenging and numerical expen-
sive especially for systems with low symmetry. Hence, the cluster extensions
are usually limited by the size of the cluster (smaller than 10 × 10 for high
temperature calculations) that can be handled.

• Diagrammatic extensions which include Feynman diagrams that are not taken
into account in the DMFT framework. Examples are, (E)DMFT+GW [12, 13,
14] which emphasizes on the charge fluctuations, and FLEX+DMFT [15] which
emphasizes on the spin fluctuations. In order to avert the bias on the fluctua-
tion channels, dual boson (DB) method [16, 17, 18, 19] and dynamical vertex
approximation (DΓA) [20] promote the locality on the one-particle irreducible
level to two-particle irreducible level. Hence, despite the fact that we only need
to solve a single-site impurity model, further two-particle quantities which have
three-frequency dependence are needed to close the self-consistent loops.

A balance between the capacity of interesting physics and computational costs is
achieved by the TRILEX method proposed by Ayral and Parcollet [21, 22, 23, 24].
In this framework, fluctuations in charge- and spin-channel are treated on the same
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footing and contribute to a momentum dependence on the fermonic self-energy and
bosonic polarization functions, while the computational costs remain manageable as
only the three-legged vertex as function of two frequencies needs to be computed.

This chapter is organized as follows: section 2.1 introduces the model which will
be used throughout this chapter; section 2.2 discusses the self-consistency equations
of DMFT and EDMFT; in section 2.3 we present the TRILEX self-consistency loop
and its numerical implementations.

2.1 Modeling the long-range interaction
As indicated in Eq. (2.4), electrons in solids have two competing energies: a kinetic
energy which favors the electrons to be delocalized, and a repulsive Coulomb inter-
action which favors the electrons to be localized. Such a competition between states
being delocalized and localized provides the playground of fascinating phenomena in
many-body systems. The minimal model that is able to capture this competing effect
is the celebrated Hubbard model [25, 26, 27]. In its single-band form, the Hamiltonian
reads

H = −
∑
ij,σ

tijc
†
iσcjσ − µ

∑
i

ni + U
∑
i

ni↑ni↓, (2.6)

where c†i,σ (ciσ) creates (annihilates) an electron on site i with spin σ ∈ {↑, ↓}. µ is
the chemical potential. tij is the hopping amplitude between site i and j, U is the
on-site Hubbard interaction. ni = ni↑ + ni↓ and niσ = c†iσciσ.

Despite its apparent simplicity, the Hubbard model has been a challenge since
its introduction. Except for few specific cases, exact solutions, either analytical or
numerical, of this model are absent. We can take two limits of this model to gain
some insights:

• when t/U → ∞, the Hamiltonian can be diagonalized through the Fourier
transformation into momentum space. Ĥ(t/U → ∞) ≈

∑
kσ ϵ(k)c

†
kσckσ. Its

ground and excited states are just made up by single Slater determinant.

• when t/U → 0, the Hamiltonian can be diagonalized in real space. At half-
filling, its ground state is a degenerate state that has one electron per site. A
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gain of energy U , representing the existence of a doubly occupied site caused
by electron hopping, exhibits a charge gap between the ground state and the
first excited state. Such a charge gap induced by electron interaction is called
Mott gap and the underlying insulator is called Mott insulator.

The Coulomb interaction in the Hubbard model is assumed to be purely local
because of the screening effects in solids. However, as we will see in the next chapter, in
some systems, screening effects are not strong enough to screen the original Coulomb
interaction into a short-range (or on-site) interaction, hence a long-range interaction
with a 1/r (r is the distance) tail can survive. To model this kind of systems, we
can further add long-range density-density type interaction terms into the Hubbard
model as,

H = −
∑
ij,σ

tijc
†
iσcjσ − µ

∑
i

ni +
1

2
Uij
∑
ij

ninj, (2.7)

where Uij is the interaction strength between site i and j

Uij = U0δij +
V

|ri − rj|
(1− δij) , (2.8)

where U0 is the on-site Hubbard interaction strength, V is the nearest-neighbor in-
teraction strength. Here, we have assumed the lattice constant to be 1.

The long-range interaction in momentum space can be formulated as:

U(q) = U0 + v(q) = U0 + V
∑
i ̸=0

1

|ri|
eiq·ri . (2.9)

The Madelung like lattice-sum in (2.9) prevents a direct numerical summation because
of its slow spatial decay. To handle this difficulty, we follow the ideas of Ewald [28]
and split the sum in terms of a short-range (first term) and a long-range (second
term) contribution as

ν(q)/V =

 ∑
r∈BL⧹{0}

erfc (|r|/η)
|r|

eiq·r

+

 ∑
r∈BL⧹{0}

erf (|r|/η)
|r|

eiq·r

 , (2.10)

where η is a parameter controlling the summation range and satisfying
√
N ≪ η ≲ N ,
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Figure 2.1: Decomposition of the long-range irregular function 1/|r| into a short-range ir-
regular one erfc(|r|)/|r| and a long-range regular one erf(|r|)/|r|.

with N being the linear size of the lattice (N = 64 in our calculations). erf(x) is the
error function and erfc(x) = 1− erf(x) its complementary. BL stands for sites in the
Bravais lattice. In Fig. 2.1, we plot the behavior of the short- and long-ranged parts as
a function of distance. The short-range, fast decaying erfc(|r|)/|r|, although irregular
when |r| → 0, can be evaluated accurately by numerical summation within η. For
the long-range, but regular, erf(|r|)/|r| in two-dimension, an analytical summation
can be performed as

∑
r∈BL⧹{0}

erf (|r|/η)
|r|

eiq·r ≈ (2.11)

∫ ∞

0

ρdρ

∫ 2π

0

dθ
erc(ρ/η)

ρ
ei|q|ρ cos θ − lim

|r|→0

erf (|r|/η)
|r|

eiq·r =

2π

|q|
erfc

(
|q|η
2

)
− 2

η
√
π
.

Thus, we have the final formula for long-range interaction in momentum space as

v(q) = V

 ∑
r∈BL⧹{0}

|r|<N

erfc (|r|/η)
|r|

eiq·r +
2π

|q|
erfc

(
|q|η
2

)
− 1

η

2√
π

 . (2.12)

The divergence as |q| → 0 can be handled by either a small shift of the whole Brillouin
zone, or by putting a cutoff of q. In the end, such a shift of the Brillouin zone or
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cutting off should not influence the final results.

2.2 DMFT and EDMFT self-consistency equa-
tions

In this section, we present the DMFT and EDMFT self-consistency equations follow-
ing the cavity approach [29, 30, 5] and put emphasis on the Luttinger-Ward functional
which indicates the level of approximation of these two methods. But before that,
we first consider the mean-field theory introduced by Weiss [31] that can provide
an intuitive picture about the quantities we are going to introduce. A prototypical
example of the mean-field solution is the Ising model whose Hamiltonian reads

H = −J
∑
⟨ij⟩

sisj − h
∑
i

si, (2.13)

where J is the coupling strength between two neighboring classical spins si = ±1. h
is an external magnetic field coupled locally with each spin. Here we assume J > 0

which favors a ferromagnetic ground state. The relevant degrees of freedom we choose
to construct the mean-field solution is the averaged magnetic order m = ⟨si⟩. Then,
after decoupling the interacting terms by neglecting spatial fluctuations, we end up
with an effective Hamiltonian Heff [heff] = −heffs. With heff = Jzm + h being the
Weiss field, the self-consistency condition is enforced by requiring ⟨s⟩eff = m. Here,
we notice that m is a lattice quantity while ⟨s⟩eff is an impurity quantity. Similarly,
in (E)DMFT, we follow the same strategy by first isolating a site and then taking the
infinite dimension limit d → ∞. In this limit, the single-particle Green’s function G

and fully screened interaction W then serves as m in the Ising model.
The grand-canonical partition function Z = tr e−βH can be written as

Z =

∫
D[ci, ci]e−S , (2.14)

S =

∫ β

0

dτ

{∑
ij,σ

ciσ(τ)[(∂τ − µ̃)δij + tij]cjσ(τ) +
1

2

∑
ij

Uijni(τ)nj(τ)

}
,

with a shifted chemical potential µ̃ = µ+ U
2
. β = 1/T is the inverse temperature. ciσ
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(ciσ) is the (conjugated) Grassmann antiperiodic field. To decouple the interacting
term, we can introduce a bosonic field ϕi which couples with the electron density ni
locally by a Hubbard-Stratonovich transformation of the form

exp

{
1

2

∫ β

0

dτni(τ)Uijnj(τ)

}
= (2.15)∫

D [ϕi] exp

{∫ β

0

dτ

(
1

2
ϕi(τ)

[
−U−1

]
ij
ϕj(τ)± ϕi(τ)ni(τ)

)}
.

Now, the action S has an additional dependence on the bosonic field ϕi

S[ci, ci, ϕi] =
∫ β

0

dτdτ ′

{
−
∑
ij,σ

ciσ(τ)
[
(G0)

−1 (τ − τ ′)
]
ij
cjσ(τ

′)

}
(2.16)

+

∫ β

0

dτ

{
1

2

∑
ij

ϕi(τ)
[
U−1

]
ij
ϕj(τ) + iα

∑
i

ϕi(τ)ni(τ)

}
,

with the free lattice Green’s function defined as
[
(G0)

−1]
ij

= −[(∂τ − µ̃)δij + tij].
By introducing a real bosonic field ϕi which couples the electron density locally, the
pure electron-electron interaction is replaced by an electron-boson interaction. The
advantage of using an electron-boson interaction is that in such a form the screening
effects can be monitored in an intuitive manner. α is the elctron-boson interaction
strength, and the physical relevant case is α = 1.

The generating functional for the electron propagatorGij(τ, τ
′) = −⟨T ci(τ)cj(τ ′)⟩,

and boson propagator Wij(τ, τ
′) = ⟨T ϕi(τ)ϕj(τ ′)⟩ can be constructed by introducing

the bilinear source fields B and F

Ω [B,F ] = − ln

∫
D [B,F ] e−S[c,c,ϕ]+S[B,F ], (2.17)

S [B,F ] =
∫ β

0

dτdτ ′
∑
ij

(
ciσ(τ)Fij(τ, τ

′)cjσ(τ
′) +

1

2
ϕi(τ)Bij(τ, τ

′)ϕj(τ
′)

)
. (2.18)

The propagators can be obtain by Gij(τ, τ
′) = δΩ/δFij(τ, τ

′)|Fij→0 and Wij(τ, τ
′) =

−2 δΩ/δBij(τ, τ
′)|Bij→0. A transformation of functional dependence on the source
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fields to the propagators can be achieved by a Legendre transformation as

Γ [W,G] = Ω [B,F ]− Tr [FG] +
1

2
Tr [BW ] . (2.19)

Then, the condition that requires the source filed to vanish in the evaluation of G
and W is accomplished by simply requiring Γ [W,G] to be stationary with respect to
G and W , i.e., F = − δΓ

δG
= 0 and B = 2 δΓ

δW
= 0. Γ is the famous Baym-Kadanoff

functionals [32, 33]. We can further separate the non-interacting and interacting part
in Γ by

Γ [W,G] = Γ0 +Ψ [W,G] . (2.20)

Here Γ0 corresponds to the case of no electron-boson coupling and its formula is
straightforwardly to compute. Ψ is the extension of electron Luttinger-Ward func-
tional which has only a functional dependence on G to a functional dependence on
both G and W . The self-energy for the electron and boson can be obtained by Σ = δΨ

δG

and Π = −2 δΨ
δW

.
Now, it is obvious that different approximation frameworks correspond to different

approximations on Ψ [W,G]. The first non-trivial approximation can be obtained as

Σ = , (2.21)
Π = ,

which is the GW approximation. Comparing to the Fork diagram, the bare interaction
Uij is replaced by the fully screened interaction Wij. Furthermore, we can directly
see that the screening effects originate from the particle-hole process represented by
the bubble diagram in Eq. (2.21).

Now, we are ready to adapt the standard cavity method to map our lattice model
to an impurity model by separating our action (2.16) into three parts S = S0+S(0)+
∆S, corresponding to the action of site 0, the action of the remaining lattice with a
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S(0)

∆S
S0

thermal and quantum fluctuations

τ = 0 τ = β

Figure 2.2: Illustration of the separation of the lattice action. S0 represents the thermal and
quantum fluctuations on the impurity site; S(0) represents the action of the rest of the lattice
with a cavity at site 0; ∆S represents the hybridization between the impurity site 0 and the
rest of the lattice.

cavity at site 0, and the hybridization terms between them

S0[c, c, ϕ] =
∫ β

0

dτ

{
c0(τ)(∂τ − µ)c0(τ) + iαϕ0(τ)n0(τ) +

1

2
ϕ0(τ)U

−1
00 ϕ0(τ)

}
(2.22)

S(0)[c, c, ϕ] =
∫ β

0

dτ

{
−
∑

i ̸=0,j ̸=0

ci(τ)
[
G−1

0 (τ)
]
ij
cj(τ)

}
, (2.23)

+

∫ β

0

dτ

{
1

2

∑
i ̸=0,j ̸=0

ϕi(τ)
[
U−1

]
ij
ϕj(τ) + iα

∑
i ̸=0

ϕi(τ)ni(τ)

}
,

∆S[c, c, ϕ] =
∫ β

0

dτ

{
−
∑
i≠0

ti0 [c0(τ)ci(τ) + ci(τ)c0(τ)] +
∑
i ̸=0

ϕi(τ)U
−1
i0 ϕ0(τ)

}
.

(2.24)

Such a separation is illustrated in Fig. 2.2.
Since we want to go to the infinite dimension limit, in which the hopping and

interaction terms need to be rescaled correctly, we can rewrite the hybridization term
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as

∆S[c, c, ϕ] =
∫ β

0

dτ

{
−
∑
i ̸=0

[ci(τ)ηi(τ) + ηi(τ)ci(τ)] +
∑
i ̸=0

ji(τ)ϕi(τ)

}
, (2.25)

by defining ηi(τ) = ti0c0(τ) and ji(τ) = U−1
i0 ϕ0(τ). To obtain an effective action of

the impurity site 0, we need to integrate out the remaining lattice degrees of freedom
represented by

Ω[η, η, j] = ln

∫
Di ̸=0[ci, ci, ϕi]e

−S(0)−∆S . (2.26)

Note that
∫
D[c0, c0, ϕ0]e

Ω = Z. We can define the effective action of site 0 by,

e−Seff/Zeff =

∫
Di ̸=0[c

∗
i , ci, ϕi]e

−S(0)−S0−∆S/Z. (2.27)

Noting that Ω[η∗, η, j] can be viewed as the generating functional of the connected
Green’s function of the cavity lattice as

G
(0)
i1,··· ,in,jn,··· ,j1(τ1, · · · , τn, τ

′
n, · · · , τ ′1) = (−1)n δ2nΩ[η, η, j]

δηi1(τ1) · · · δηin(τn)δηjn(τ ′n) · · · δηj1(τ ′1)
,

(2.28)

W
(0)
i1,··· ,in,jn,··· ,j1(τ1, · · · , τn, τ

′
n, · · · , τ ′1) =

δ2nΩ[η, η, j]

δji1(τ1) · · · δjin(τn)δjjn(τ ′n) · · · δjj1(τ ′1)
,

which means that we can express the generating functional Ω as an exponential ex-
pansion of connected Green’s functions, i.e.,

Ω[η, η, j] =
∞∑
n=1

∑
i1,··· ,in,j1,··· ,jn

∫ β

0

ηi1(τ1) · · · ηin(τn)ηjn(τ
′
n) · · · ηj1(τ ′1) (2.29)

(−1)nG(0)
i1,··· ,in,jn,··· ,jn,··· ,j1(τ1, · · · , τn, τ

′
n, · · · , τ ′1)+

∞∑
n=1

∑
i1,··· ,in,j1,··· ,jn

∫ β

0

ji1(τ1) · · · jin(τn)jjn(τ ′n) · · · jj1(τ ′1)

W
(0)
i1,··· ,in,jn,··· ,jn,··· ,j1(τ1, · · · , τn, τ

′
n, · · · , τ ′1).

The key simplification to this expansion series comes from the finding of Metzner and
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Vollhardt [1]. They pointed out that in infinite dimension, the hopping terms need
to be scaled as t/

√
z, while the interaction terms need to be scaled as V/z with z

being the coordinate number. So, in order to keep the kinetic and interacting terms
remaining comparable, the connected Green’s function also has to be rescaled by
t/
√
z. Then in the expansion series, any term containing orders of connected Green’s

function higher then n = 1 vanish! In the end, we arrive at

Ω[η, η, j] =

∫ β

0

dτdτ ′

{
−
∑
i,j ̸=0

ti0tj0c0(τ)G
(0)
ij (τ − τ ′)c0(τ ′)

}
(2.30)

+

∫ β

0

dτdτ ′

{∑
i,j ̸=0

Ui0Uj0ϕ0(τ)W
(0)
ij (τ − τ ′)ϕ0(τ

′)

}
.

The effective action of the impurity site can be already written as (dropping the index
0)

Seff[c, c, ϕ] = −
∫ β

0

c(τ)G−1(τ)c(τ) +

∫ β

0

ϕ(τ)U−1(τ)ϕ(τ) + i

∫ β

0

ϕ(τ)n(τ), (2.31)

with G and U being the Weiss propagators of the electron and boson defined as

G−1(τ) = −∂τ + µ−
∑
i,j ̸=0

ti0tj0G
(0)
ij (τ), (2.32)

U−1(τ) = ν−1
00 −

∑
i,j ̸=0

Ui0Uj0W
(0)
ij (τ). (2.33)

and their Fourier transformed counterpart

G−1(iω) = iω + µ−
∑
i,j ̸=0

ti0tj0G
(0)
ij (iω), (2.34)

U−1(iν) = ν−1
00 −

∑
i,j ̸=0

Ui0Uj0W
(0)
ij (iν). (2.35)

By further using the relation between the lattice propagator and cavity propaga-
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tor, we finally arrive at the self-consisent equations of (E)DMFT for electron

Glat(k, iω) =
1

iω + µ− ϵk − Σ(iω)
, (2.36)

Gloc(iω) =
∑
k

Glat(k, iω), (2.37)

G(iω) = 1

G−1
loc(iω) + Σ(iω)

, (2.38)

and for boson

Wlat(q, iν) =
1

U−1(q)− Π(iν)
, (2.39)

Wloc(iν) =
∑
q

Wlat(q, iν), (2.40)

U(iν) = 1

W−1
loc(iν) + Π(iν)

. (2.41)

The self-consistency conditions of this set of equations are Σloc(iω) = Σimp(iω) and
Πloc(iν) = Πimp(iν). Here quantities with subscript ”imp” or ”loc” stand for the
impurity or local lattice quantities. For DMFT, we only need to compute the impurity
self-energy, while for EDMFT, we need to further compute the impurity polarization
with an retarded local interaction U(iν).

The term ”dynamical” in DMFT now has a very intuitive illustration: the static
hopping (t0i) and interaction (U0i) terms between the impurity site and cavity lattice
sites are replaced by two time-dependent Weiss propagators G(τ) and U(τ) which
mimic the effects of the cavity lattice on the impurity site.

Furthermore, we can see from the self-consistency equations for the bosonic field
that the screening effects contain two categories of contributions: one category of con-
tributions are generated by the particle-hole processes induced by the hybridization
between the cavity lattice and the impurity site; another category of contributions
originate from the particle-hole process inside the impurity. For the first kind of con-
tributions, there are two possible sources: the first source is that the bare interaction
has an explicit momentum dependence, i.e., the system has non-local interactions;
the second source is the bare interaction has a dynamic character, for instance, the
bare interaction obtained from a downfolding process, like cRPA [34], will maintain a
dynamical nature. Hence, if there is no non-local interaction and the bare interaction
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is static, the set of self-consistency equations returns to the normal DMFT ones which
just require a self-consistency determination of the electron self-energy.

2.3 A local approximation to the three-legged
vertex: TRILEX

As discussed in last section Sec. (2.2), local approximations like DMFT and EDMFT
which approximate the Luttinger-Ward functional by its local contributions, are able
to capture the local fluctuations but totally neglect the spatial fluctuations. These,
however, are key to some of the most exciting phenomena (especially in low dimensions
and low temperatures). For instance, the short-range spin fluctuations is proposed to
be the source of high-Tc superconductivity in cuprates.

In this section, we present the TRILEX approximation which aims at including
non-local fluctuations while keeping the computational cost manageable [21, 22, 24].
As already shown in Equation (2.16), an electron-electron interacting action can be
rewritten as an electron-boson action by introducing a bosonic field coupled locally
with the electron density. In the EDMFT construction, a real bosonic field is intro-
duced, leading to a self-consistent determination of the charge fluctuations, while the
spin fluctuations are ignored. Following this line, we can include the spin fluctuations
by reintroducing another bosonic field which couples with the local spin operators
{sx, sy, sz}. To do this, we need to first decouple our interaction term and rewrite it
as a combination of spin and charge contributions as

U

2
nn =

1

2

∑
I

U InInI , (2.42)

here I = {0, x, y, z} and n0 = n = n↑ + n↓, nx = sx, ny = sy and nz = sz. If
the underlying Hamiltonian has SU(2) symmetry, we can choose U0 = Uch, and
Ux = Uy = U z = U sp. The superscript ”ch” and ”sp” correspond to charge- and
spin-channel, respectively. Requiring the decoupled interaction to be equal to the
original one, we have U = Uch − 3U sp. Such a decoupling is called Heisenberg
decoupling.

Now, we are ready to extend the electron-boson action in Eq. (2.16) to a more
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general form,

Seb = cµ
[
−G−1

0

]
µν
cν +

1

2
ϕα
[
−W−1

0

]
αβ
ϕβ + λµναcµcνϕα, (2.43)

with Grassmann fields cµ and cν which describe fermionic degrees of freedom. The
µ (ν) index represents a collection of possible space Rµ (Rν), time τµ (τν), and spin
σµ (σν) indices. If the index is equipped with (without) a over line, it stands for
an outgoing (incoming) direction. ϕα is the real bosonic fields, and the index α (β)
represents a collection of space Rα (Rβ), time τα (τβ) and bosonic channel Iα (Iβ)
indices. G0 and W0 are the free electron and boson propagators. λµνα stands for a
general electron-boson coupling constant. All repeated indices are summed over.

Now, we can define the free energy of the system with external sources (h,B, F, λ)
which are coupled with the fermionic, bosonic degrees of freedom,

Ω [h,B, F, λ] = − ln

∫
D[c, c, ϕ]e−Seb+hαϕα− 1

2
ϕαBαβϕβ−cµFµνcν . (2.44)

Note that, since λ in the Seb already plays the role of trilinear source field, we do not
need to further introduce another one for the electron-bonson coupling operator ccϕ.
The definition of Ω [h,B, F, λ] can be used as the generator for correlation functions
as

φα = ⟨ϕα⟩ = −
∂Ω

∂hα

∣∣∣∣
B,F,λ

, (2.45)

Wnc
αβ = −⟨ϕαϕβ⟩ = −2

∂Ω

∂Bβα

∣∣∣∣
h,F,λ

, (2.46)

Gµnu = −⟨cµcν⟩ = −
∂Ω

∂Fνµ

∣∣∣∣
h,B,λ

. (2.47)

The superscript ”nc” in Wnc indicates that it contains non-connected terms. To
change the variable from the external sources to correlation functions, we can perform
a Legendre transformation with respect to the external sources as

Γ2 [φ,W,G, λ] = Ω [h,B, F, λ]− trFG+
1

2
trBW nc + trhφ. (2.48)

Here trHJ =
∑

µν HµνJνµ. Now, the sources can be generated by the derivatives of
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Γ2 through

hα =
∂Γ2

∂φα

∣∣∣∣
Wnc,G,λ

, (2.49)

Bαβ = 2
∂Γ2

∂W nc
βα

∣∣∣∣∣
φ,G,λ

, (2.50)

Fµν = −
∂Γ2

∂Gνµ

∣∣∣∣
φ,W,λ

. (2.51)

In the fermionic context, similar to the construction of the EMDFT approximation,
Γ2 is the Baym-Kadanoff functional [32, 33]. One can separate Γ2 into

Γ2 [φ,W
nc, G, λ] = Γ2 [φ,W

nc, G, λ = 0] + Ψ [φ,W nc, G, λ] , (2.52)

with Γ2 [φ,W
nc, G, λ = 0] being the noninteracting contributions, which can be com-

puted straightforwardly. Since Ψ contains all the interacting information, by inserting
equation (2.52) into equations (2.49) and requiring B = F = 0, we obtain the Dyson
equation for fermionic and bosonic fields as

∂Ψ

∂Gνµ

= Σµν =
[
G−1

0

]
µν
−
[
G−1

]
µν
, (2.53)

−2 ∂Ψ

∂Wβα

= Pαβ =
[
W−1

0

]
αβ
−
[
W−1

]
αβ
. (2.54)

Similar to its fermonic counterpart, i.e., the Luttinger-Ward functional, Ψ [φ,W,G, λ]

contains two-particle irreducible diagrams composed by fermionic (G) and bosonic
(W ) propagators, and the bare electron-boson interaction vertex λ. Different ap-
proximations to Ψ leads to various kinds of approximation for the fermionic and
bosonic self-energies. For instance, the (E)DMFT approximation corresponds to

ΨDMFT ≈ Ψ [Gloc] ,Ψ
EDMFT ≈ Ψ [Wloc, Gloc] . (2.55)

Instead of approximating Ψ to be local on the single-particle level, TRILEX pro-
motes the locality to the level of the three-legged diagrams. To achieve this, we
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introduce another Legendre transformation

Γ3 [φ,W,G, χ
nc] = Γ2 [φ,W,G, λ] + λµναχ

nc
µνα, (2.56)

with the three-point correlation function χnc
µνα (containing non-connected contribu-

tions) defined as

χnc
µνα = ⟨cµcνϕα⟩ = −

∂Ω

∂λµνα

∣∣∣∣
h,B,F

. (2.57)

Its connected counterpart is defined as

χµνα = ⟨cµcν (ϕα − φα)⟩ = χnc
µνα +Gµνφα. (2.58)

The three-particle irreducible functional now can be defined as

K [φ,W,G,Λ] = Ψ [φ,G,W, λ] + λνµαχ
nc
µνα −

1

2
ΛxµαGwxGµνWαβΛνwβ, (2.59)

with Λ being the amputated, connected correlation function

Λνµα =
[
G−1

]
xµ

[
G−1

]
νw

[
W−1

]
αβ
χwxβ. (2.60)

The Dyson-like equation on the three-particle irreducible level can be obtained as

Λνµα = λνµα +Kνµα, (2.61)

Kνµα = −
[
G−1

]
xµ

[
G−1

]
νw

[
W−1

]
αβ

∂K
∂Λxwβ

. (2.62)

The fermionic and bosonic self-energies are thus related with Λ by

Σµν = −λµωαGωxWαβΛxνβ + λµναφα, (2.63)
Pαβ = λµωαGνµGωxΛxνβ. (2.64)

TRILEX approximates the three-particle irreducible functional as

K [W,G, χ] ≈
∑
R

K [GRR,WRR, χRRR] , (2.65)
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meaning that it only contains the local contributions! Similar to the local self-energies
induced by the local approximation of Ψ in (E)DMFT on the two-particle irreducible
level, here, the local approximation of K leads to a local Λ on the three-particle level

K (k,q; iω, iν) ≈ K (iω, iν) , (2.66)

which is obtained, together with Eq. (2.61), from the the auxiliary impurity quantities

χηRRR(iω, iν) = χηimp(iω, iν), (2.67)
GRR(iω) = Gimp(iω), (2.68)
WRR(iν) = Wimp(iν). (2.69)

The self-consistency is achieved by Eqs. (2.60)(2.61)(2.63)(2.67). From here we can
see that, compared with (E)DMFT, TRILEX requires to compute the three-legged
vertex from the impurity solver, which leads to an increase of the computational costs.
However, compared with DΓA which requires to compute the two-particle irreducible
vertex which depends on 3 frequencies, the three-legged vertex only has 2 frequency
variables and thus is computational much more accessible.
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3
The impact of long-range interaction on

the emergence of unconventional
superconductivity

Parts of the contents presented in this chapter have been published in
“Chiral d−wave superconductivity in a triangular surface lattice mediated by long-
range interaction”, Xiaodong Cao, Thomas Ayral, Zhicheng Zhong, Olivier Parcol-
let, Dirk Manske, and Philipp Hansmann, Phys. Rev. B 97, 155145, 20 April
2018

Since the discover of high-Tc superconductivity in cuprates [35], enormous efforts,
both experimentally and theoretically, have been made in the search of new candi-
dates for unconventional superconductivity. Although the original intention of re-
search on the BaxLa5−xCu5O5(3−y) compound was to seek after materials with large
electron-phonon coupling, this system and the entire cuprate family have opened a
new research field on materials beyond the BCS theory. These materials become su-
perconducting at a critical temperature far above the ”conventional” superconductors
described by BCS theory. A timeline of the discovery of superconductors and their
Tc is depicted in Fig 3.1.
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Figure 3.1: Timeline (from Wikipedia) of discover of superconductors. Green circles rep-
resent the BCS superconductors, blue diamonds represent the cuprates and yellow squares
represent the iron-based superconductors.

Although, extensive efforts have been made to understand the paring mechanism
in unconventional superconductors, a unified theory is still missing. One of the main
encumbrances originates from the complexity of these materials. Usually, to have a
concrete theoretical understanding of a system, we first derive a minimal low energy
model which is able to capture the relevant physics while remaining as simple as
possible. Although, the two-dimensional copper-oxygen plane plays a central role in
cuprates, to have an effective low energy model which describes the correct competing
energy scales is still very challenging. For instance, in La2−xSrxCuO4 (LSCO), the
nominal valence configuration is Cu 3d9 and O 2p6. The degeneracy of the Cu d

orbitals is lifted (into two eg(x2 − y2 and 3z2 − r2) and three t2g(xy, yz, zx) levels)
by the cubic environment. A tetragonal distortion further splits these d levels into
four distinct levels (x2 − y2, 3z2 − r2, xy and degenerate xz and yz levels in energy
descending order) and the oxygen 2p orbitals into σ and π levels. By symmetry
argument, only the in-plane dx2−y2 and two σ levels will strongly hybridize with each
other. Hence, the minimal model we can adapt is a three band model that includes
these three hybridizing levels.

The hybridizing dx2−y2 and (px, py) orbitals form three distinct levels including a
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Figure 3.2: Stretch of various scenarios by comparing the Hubbard interaction U on dx2−y2
orbital and charge-transfer energy ∆ = ϵd − ϵp. LHB stands for lower Hubbard band; UHB
stands for upper Hubbard band; ZRS stands for Zhang-Rice Singlet band and T for Triplet
band. ( adapted from [36].)

pair of bonding (B) and anti-bonding (AB) bands, and a non-bonding (NB) band,
see Fig. 3.2(a). The AB band is half-filled while the NB and AB bands are fully
occupied. If the single-particle energy split ∆ = ϵd − ϵp, where ϵd,p is the on-site
potential on d and p orbitals , is much larger than the on-site interaction U on
the dx2−y2 orbital, then we have a Mott-insulator, and an effective single-band model
describing the AB band only is sufficient (the NB and B bands can be ignored safely),
see Fig. 3.2(b). However, this is not the case in cuprates in which we have U ≫ ∆.
In this case, we have a charge-transfer insulator [37] instead of a Mott-insulator, see
Fig. 3.2(c). Furthermore, the holes in the AB band and electron on the B band
will hybridize and form the famous Zhang-Rice singlet (ZRS) and triplet (ZRT) [38],
see Fig. 3.2(d). Thus, the downfolding to a single-band model should be verified
carefully in the context of cuprates! Hence, an alternative system, which can be
described by a simper low energy model and also be experimentally well controlled,
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Figure 3.3: Phase diagram at half-filling as function of on-site interaction strength U and
long-range interaction strength V . The inserts sketches show the unit cell and occupation
patterns in the Mott and stripe (3× 3 geometry) phases. Taken from [41].

is highly desirable for the understanding of cuprates.
In recent years, sophisticated synthesis technology allows for the construction

of new materials like heterostructures or surface systems on an atomic length scale.
Many-body studies on experimentally well controlled correlated adatom lattices X:Si(111)
and X:Ge(111) with (X=Pb,Sn,C) revealed that these systems are good playground
of interesting physics induced by correlation effects [39, 40, 41, 42, 43]. Furthermore,
because of the simplicity of these systems, an effective single-band model can be de-
rived, and it provides an unified phase diagram [41] for various variants at half-filling.
As summarized in Fig. 3.3, due to sizable long-range interaction in the triangular lat-
tice geometry, some of the materials were shown to be in close vicinity to a triple point
between a Fermi liquid, a Mott insulator, and a charge-ordered insulator. Sn:Si(111)
and Pb:Si(111) in particular turned out to be close to a charge-order Mott insulator
phase transition with sizable charge fluctuations visible in core level spectroscopy [43]
of Sn:Si(111). In complementary studies [42] the importance of spin fluctuations in
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Sn:Si(111) was emphasized. Such materials are, hence, promising candidates to search
for unconventional superconductivity.

In this chapter, we show that the triangular lattice model for the adatom materials
has a dome shaped superconducting phase of chiral d-wave symmetry as a function
of hole doping in realistic parameter regimes. The long-range interaction is key for
enhanced critical temperatures and distinguishes the adatom Hamiltonian from trian-
gular Hubbard models [44, 45, 46, 47, 48, 49, 50, 51]. By analyzing spin- and charge
response functions we further show that the pairing mechanism crosses over from a
cumulative spin/charge fluctuation character at small dopings to a charge dominated
one at large doping.

3.1 Model and TRILEX implementation
The low energy Hamiltonian on the triangular lattice with long-range interaction
reads:

H =
∑
i,j,σ

tij ĉ
†
iσ ĉjσ +

1

2

∑
i,j

Uijn̂in̂j − µ
∑
i

n̂i, (3.1)

where ĉ†iσ (ĉiσ) are electron creation (annihilation) operators on site i with spin
σ =↑, ↓. n̂i = n̂i↑ + n̂i↓ is the density operator on site i, and µ is the chemical poten-
tial. tij and Uij are the hopping integrals and long-range Coulomb interaction strength
between sites i and j. For translational invariant two-dimensional systems, the long-
range Coulomb interaction, in momentum space, reads Uq = U0 + V

∑
i ̸=0 e

iq·ri/|ri|
where ri are real space coordinates, U0 is the on-site interaction, and V is the strength
of the long-range interaction respectively (See 2.1 for more details). More specifi-
cally, we adopt hopping parameters up to next-nearest-neighbors (t = 0.042eV and
t′ = −0.02eV) from [40, 41] derived from density functional theory (DFT) for the
Pb:Si(111) adatom system (closest to the triple point, see Fig. 3.3) and vary the inter-
action parameters in realistic regimes for the adatom materials found by constrained
random phase approximation [41].

As detailed in previous chapter, TRILEX approximates the three-legged fermion-
boson interaction vertex using a local self-consistent quantum impurity model. For
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systems retaining SU(2) symmetry, the self-consistent TRILEX equations [21, 22, 23,
24] for the fermionic single particle self-energy Σ(k, iωn) and bosonic polarization in
charge and spin channel P c,s(q, iνn) can be rewritten as:

Σk,iωn = Σimp
iωn
−
∑
η,q,iνn

mηG̃k+q,iωn+iνnW̃
η
q,iνn

Λimp,η
iωn,iνn

,

P η
q,iνn

= P imp,η
iνn

+ 2
∑
k,iωn

G̃k+q,iωn+iνnG̃k,iωnΛ
imp,η
iωn,iνn

, (3.2)

where the index η = {c, s} corresponds to charge and spin channel respectively, and
ωn = (2n+1)π/β and νn = 2nπ/β are fermionic and bosonic Matsubara frequencies.
Gk,iωn is the dressed Green’s function, and W c,s

q,iνn
are the fully screened interactions in

the charge and spin channel respectively. The local part of self-energy and polarization
are replaced by their impurity counterparts Σimp

iωn
and P imp,η

iνn
respectively, and for any

quantity X, X̃k,iωn = Xk,iωn − X loc
iωn with X loc

iωn = 1
Nk

∑
k∈B.Z.Xk,iωn . We employ

the Heisenberg decomposition of the interaction [22], for which we have mc = 1,
ms = 3 and W η

q,iνn
= Uη

q

[
1− Uη

qP
η
q,iνn

]−1. Bare interactions in charge and spin
channel are, hence, given by U c

q = U0

2
+ vq and U s = −U0

6
. This spin/charge ratio

is a choice (dubbed “Fierz ambiguity” [22, 24]). The impurity problem was solved
using the segment picture in the hybridization-expansion continuous time quantum
Monte-Carlo algorithm [52, 53, 54, 55, 56] implemented with the TRIQS library [57].

In order to probe superconductivity instabilities, we solve the linearized gap equa-
tion with converged TRILEX results as an input [23]. For singlet d−wave pairing the
corresponding eigenvalue equation for the gap reads

λ∆k,iωn = −
∑
k′,iω′

n

|Gk′,iω′
n
|2∆k′,iω′

n
V eff
k−k′,iωn−iω′

n
, (3.3)

where the singlet pairing interaction is given by

V eff
q,iνn = mcW c

q,iνn −m
sW s

q,iνn , (3.4)

and is therefore a combination of effective interaction in charge and spin channel.
The SC instability occurs when the largest eigenvalue λ = 1. The pairing symmetry
is monitored by the k dependence of the gap function ∆k,iωn .
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Figure 3.4: Charge- and spin response functions with (solid lines) and without (dashed
lines) vertex corrections for V = 0.1eV and V = 0.3eV. Upper panels: Static charge- (a)
and spin (b) response function along the high symmetry points. Lower panels: Spectrum of
charge- (c) and spin (d) response function at q = qmax. with qmax. being the peak position of
the corresponding static response function. The shown results were obtained for U0 = 0.7eV,
T = 116K and δ = 0.2.

3.2 Effects Vertex correction
In this section, we want to show the impact of vertex corrections to the charge- and
spin-fluctuations. As depicted in Fig. 3.4, upon increasing the long-range interaction
strength from V = 0.1eV to V = 0.3eV, the static charge- and spin response functions
are enhanced (see Fig. 3.4 (a) and (b)). Simultaneously, their characteristic frequen-
cies are shifted to lower energies as shown in Fig. 3.4 (c) and (d). In Fig. 3.4(a) we
see that Λimp,c(iωn, iνn) partially suppresses the charge response function. This result
agrees with findings in [58], i.e., the critical nearest-neighbor interaction strength Vc

of metal to charge-ordered phase transition is shifted to larger values if the three-
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Figure 3.5: Phase diagram of the Hamiltonian (3.1) as function of temperature (for T >
40K) and doping for U0 = 0.7eV, V = 0.2eV (circles) and V = 0.3eV (diamonds). Green/blue
regions correspond to 1 ⩾ Max[−Ps(q, iνn = 0)Us] ⩾ 0.95 for q ∈ B.Z.. Orange/red regions
indicate chiral d−wave superconductivity.

legged vertex is taken into account. For the spin response function (Fig. 3.4(b)),
Λimp,s(iωn, iνn) slightly suppresses its value and shifts its maximum closer to M . Fi-
nally, the λ values obtained from the solution of the gap equation for V = 0.3eV
are actually increased from 0.49 to 0.52 as a consequence of the vertex corrections
(for V = 0.1eV λ increases from 0.271 to 0.274). This means that inclusion of vertex
corrections leads to even higher values of Tc which was found also in another recent
TRILEX study for the 2D square lattice Hubbard model [23].

Based on the above observations, we can conclude that the vertex corrections
will not change the qualitative behaviors of the results for superconductivity critical
temperature. Hence, in the following, we will further approximate the TRILEX self-
consistency equations (3.2) by choosing Λimp,η

iωn,iνn
= 1.

3.3 Hole-doped phase diagram
In Fig. 3.5 we plot the temperature–doping (T–δ) phase diagram for V = 0.2eV and
V = 0.3eV for a fixed value of U0 = 0.7eV in the simplified TRILEX approximation.
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Figure 3.6: Plot of the imaginary part of the local fermionic self-energy on the Matsub-
ara axis Im [Σloc(iωn)] for several hole doping levels. We show data for fixed (U0, V ) =
(0.7, 0.3)eV, and T = 40K.

At half-filling (δ = 0) we obtain a correlated Fermi liquid with strong magnetic fluc-
tuations. The Fermi liquid character can be seen from the imaginary part of the local
fermionic self-energy on the Matsubara axis as plotted In Fig. 3.6 (data from various
hole doping levels are also plotted). From the data shown we can estimate the mass
enhancement of the correlated quasiparticles m/m∗ = [1− Im [Σloc(iω0)] /ω0]

−1 =

0.047, 0.21, 0.38 corresponding to δ = 0.0, 0.2, 0.5 respectively.
The static spin-spin correlation function χs(q, iνn = 0) is very large at some q

points but has not diverged yet, i.e. no phase transition has occurred. More precisely,
we use Max[−Ps(q, iνn = 0)Us] with q ∈ B.Z. which reaches 1 at a second order spin
ordering phase transition to quantify the strength of the spin fluctuations and color
code regions in the phase diagram for which 1 > Max[−Ps(q, iνn = 0)Us] ⩾ 0.95 in
green (V = 0.2eV) and blue (V = 0.3eV). From this plot we see that spin fluctuations
are slightly enhanced by increasing V . For δ > 0.2 we observe the emergence of a
dome-shaped superconducting phase. A plot of the λ parameter in Eq. (3.3) as a
function of temperature is shown in Fig. 3.7. The SC instability is indicated by λ = 1
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Figure 3.7: Plot of λ as a function of temperature T at different doping levels for fixed
U0 = 0.7eV and V = 0.3eV.

(for instance δ = 0.2 at T ≈ 40K and δ = 0.26 at T ≈ 55K). Please note that no
extrapolation of λ(T ) is needed due to the absence of a magnetically ordered phase,
different from the square lattice case [23].

The pairing symmetry of the SC phase is of d-wave character and includes doubly
degenerate dx2−y2- and dxy-wave pairing channels. In Fig. 3.8 we plot the momentum
dependence of the chiral d−wave gap function ∆d+id′ obtained from the solution of the
gap equation (3.3) for the triangular lattice with long-range interaction. The chiral
d + id′ superconducting state is a time-reversal symmetry breaking state with non-
trivial topology as can be seen in Fig. 3.8(d) from the non-zero winding number(= 2)
along the Fermi surface. This indicates the existence of two edge states [59].

The degeneracy of these two pairing symmetries is protected by the C6v point
group of the triangular lattice, which then yields chiral d−wave symmetry below Tc

to maximize condensation energy. The predicted chiral SC phase depends crucially
on V : Tc increases from V = 0.2eV (red circles) to V = 0.3eV (orange diamonds) as
shown in Fig. 3.5. Moreover, for V = 0.0eV and V = 0.1eV (not shown here) we do
not find a SC phase for T > 40K.
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Figure 3.8: Momentum dependence of the gap function ∆d+id′(k, iωn) at ω0 = iπT .
(a) Re [∆d+id′ ], (b) Im [∆d+id′ ] and (c) ∥∆d+id′∥. (d) Plot of the complex gap function
as vectors (Re [∆d+id′ ] , Im [∆d+id′ ]) on top of the momentum dependent spectral function
A(k, ω = 0) = −G(k, τ = β/2)/π. The gap function and spectral function were calculated
for T = 40K, δ = 0.2 and (U0, V ) = (0.7, 0.3)eV.

3.4 Impact of the long-range interaction
The impact of V on the SC instability is reflected in the effective singlet-pairing
interaction V eff

q,iνn which depends on fluctuations in both charge and spin channels. We
analyze the respective susceptibilities χc/s(q, iνn) with the data shown in Fig. 3.9: In
the upper panels we show the maximum values of the static (iνn = 0) charge (left
hand side) and spin (right hand side) susceptibilities as a function of hole doping.
The corresponding position of the maximum in the first Brillouin zone is color coded
(see inset).

The charge fluctuations increase with hole doping to a maximum value around
δ = 0.5 and, thereafter, decrease approaching the “empty” limit at δ = 1. The spin
fluctuations, instead, decrease monotonically as a function of δ. While χc(q, iνn = 0)
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Figure 3.9: Maximum values of the static charge (a) and spin (b) response functions ver-
sus hole doping. Color coding indicates the position of the maximum in the first Brillouin
zone as defined in the inset. Data is shown for fixed U0 = 0.7eV and T = 40K and non-local
interaction strength V = 0.3eV (diamonds) and V = 0.2eV (circles); (c) Charge- and spin
response functions on the real frequency axis (obtained by analytical continuation with the
maximum entropy method[60]) at their maximum in momentum space (qmax.) with (dashed)
and without (solid) vertex corrections for T = 116K and δ = 0.2; (d) Characteristic frequency
of charge- (filled symbols) and spin (open symbols) fluctuations with the same convention and
parameters as (a) and (b).

always peaks at K, the maximum of χs(q, iνn = 0) moves from M to K when the
system is slightly doped, and then follows K → M → Γ when the system is further
hole-doped. The peak position of the charge response function as a function of doping
remains at the K point since its momentum dependence is mainly determined by the
doping independent v(q) which energetically favors a 3 × 3 charge configuration in
real space [41]. The momentum dependence of the spin response function, however,
is mostly determined by the topology of the Fermi surface. Indeed, the V dependence
is much stronger for the charge response (compare diamond (V = 0.3eV) and circle
(V = 0.2eV) symbols in Fig. 3.9). There are, however, small effects of V to the spin
response function which can be understood by the V -dependent renormalization of
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Figure 3.10: Single particle spectral function A(k, ω) along the high symmetry path Γ-M-
K-Γ (see inset of Fig. 3.9) obtained at δ = 0.2, T = 40K, U0 = 0.7eV and four values of
V .

the one-particle spectra as show in Fig. 3.10 [61]. At fixed T = 40K and δ = 0.2,
V is increased from 0.0eV to 0.3eV (subplots from left to right hand side). Upon
increasing V , the bandwidth is effectively reduced and the spectral weight near to
the Fermi energy is increased. Consequently, particle-hole excitations that contribute
to the spin polarization P s(q, iνn) and the spin susceptibility are enhanced.

We now extend these considerations to the frequency dependence of the bosonic
fluctuations. In Fig. 3.9(c) we plot the dynamic response functions at the q-points
where they are maximal (qmax.) for doping δ = 0.2. The data clearly shows a peaked
structure of the dynamic response functions. Moreover, we show in this plot the
impact of the vertex corrections (compare solid and dashed lines) which are only
quantitative in the considered case as claimed in section 3.2. Fig. 3.9(d) shows the
doping dependence of the characteristic frequency ωc,s

0 (qmax.) defined by

ωc,s
0 (qmax.) =

∫ ∞

0

ωIm [χc,s(qmax., ω)] dω/

∫ ∞

0

Im [χc,s(qmax., ω)] dω (3.5)

in both channels. Inside the superconducting region (indicated by the vertical red
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Figure 3.11: Eigenvalue λ of the gap equation Eq. (3.3) (λ = 1 signals SC transition)
from full effective singlet pairing interaction V eff

q,iνn
(cyan) and charge/spin only channels (red

/green). (a) Plot for V = 0.3eV along the SC phase boundary up to doping δ = 0.38. (b)
Plot as a function of V for fixed doping δ = 0.2 and temperature T = 40K.

dashed lines) the characteristic frequency of the fluctuations are of the order of
100 − 200meV. Moreover, |ωc

0-ωs
0| is small and minimal for the region of maximum

Tc. In agreement with our discussion above we see that an increase of V yields even
smaller |ωc

0-ωs
0| which suggests that charge and spin contributions to the SC pairing

mechanism are cumulative.

3.5 Separating spin and charge channels in the
pairing mechanism

In order to disentangle the interplay between charge and spin degrees of freedom in
gap equation (3.3), we solve for λ including contributions from only spin- (λs) and
only charge channel (λc), i.e., V eff

q,iνn = −3W s
q,iνn and V eff

q,iνn = W c
q,iνn respectively.

First, we follow the phase boundary of the SC phase in the underdoped regime for
fixed V = 0.3eV starting from (δ, T ) = (0.2, 40K) up to (δ, T ) = (0.38, 65K). In
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Fig. 3.11(a) we plot λ, λs, and λc: Since we are following the phase transition line,
λ ≈ 1. λc and λs are both smaller than λ and λc + λs ≈ λ indicating a cumulative
charge and spin contribution for the chiral d-wave pairing in the underdoped regime.
The same conclusion can be drawn when the λ values are calculated at the critical
doping δc = 0.2 as a function of the non-local interaction V as depicted in Fig. 3.11(b).

Our data indicates that overall both spin- and charge fluctuations are important
for the SC phase. As a function of doping, however, we observe that charge fluctua-
tions become increasingly dominant and λs becomes negligible. This effect is reflected
in the V dependence of the SC dome in Fig.3.5 which is stronger at larger dopings.
We arrive at the same conclusions when we analyze the dependence of λ on the choice
of the Fierz parameter that defines the charge-to-spin fluctuation ratio which will be
presented below.

3.6 Dependence on the charge to spin ratio
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Figure 3.12: Chiral d−wave λ values corresponding to different values of the Fierz param-
eter α as a function of doping. The shown data was obtained at T = 40K, U0 = 0.7eV, and
V = 0.3eV.

As mentioned in Chapter 2.3, the ratio of the bare interaction in charge- and spin
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channels may be parametrized by α, i.e.,

U c(q) = (3α− 1)U0 + v(q), U s = (α− 2/3)U0 (3.6)

for Heisenberg decoupling [21]. The TRILEX results depend a priori on the choice
of the Fierz parameter α. In the following, we show that our conclusions are robust
with respect to the choice of α. While there is a sizable dependence of the λ values
on α, this dependency leads only to a quantitative shift of the boundary of the SC
phase but SC is never suppressed.

Since α controls the contributions from charge- and spin fluctuations to the SC
pairing glue, we can exploit the dependence of the results on α as an indicator of their
respective role in the emergence of SC. As shown in Fig. 3.12, for comparatively small
doping (δ ∼ 0.2) λ is increased by decreasing α (i.e. emphasizing spin fluctuations).
This indicates that at small doping spin fluctuations are the main contributor to
the emergence of superconductivity. At large doping (δ ≥ 0.5), in contrast, λ is
increased by increasing α (emphasizing the charge channel), which indicates once
more that charge fluctuations are key for the emergence of superconductivity at large
doping. Finally, for intermediate doping (δ ∈ (0.3, 0.42)), the largest λ value is found
for α = 0.5, indicating that in this region charge- and spin fluctuations contribute
“cumulatively” to the SC instability. While it is hard to further disentangle the cross
influence of charge and spin fluctuations in the self-consistent solution, the insights
from the α dependence support the picture of a cooperative (or additive) spin-charge
pairing mechanism.

3.7 Long-range versus short-range non-local in-
teraction

In this section, we move to show that it is not possible to obtain the same phase
diagram (in particular the superconducting phase) with non-local but short-range
(e.g. nearest-neighbor) interaction. In Fig. 3.13(a) we show λ as a function of V
for the short-range (diamonds) and long-range (circles) interaction. Please note that
V denotes the strength of the 1/r tail when long-range interactions are considered
while it represents nearest-neighbor interactions only for the short-range version. We
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Figure 3.13: Comparison of short- and long-range interaction. Here V represents the
nearest-neighbor interaction strength for short-range interaction and the 1/r prefactor for
long-range interaction. (a) λ values as a function of V for short- (diamond) and long-range
interaction (circle). (b) Maximum of static charge susceptibility as a function of V . The pa-
rameters are U0 = 0.7eV, T = 40K and δ = 0.2.

not only observe a downturn of λ upon increasing V but, most importantly, a dra-
matic increase in the associated charge response functions indicating a second order
phase transition to a charge ordered phase (Fig. 3.13(b)). Hence, when only nearest-
neighbor interaction is considered, a charge order instability will occur long before
superconducting fluctuations become sizable. In the case of true long-range interac-
tions, the situation is quite different and charge (and spin) fluctuations are enhanced
but remain finite up to the point of λ = 1.

3.8 Comparison to the square lattice
As discussed above, the charge/spin pairing mechanism of our chiral SC instability
depends crucially on the degeneracy of the dx2−y2− and dxy pairing state. This is
the case for the triangular lattice where both states belong to the same irreducible
representation (E2). For different lattice geometries where dx2−y2− and dxy pairing
states are not degenerate the interplay between charge- and spin fluctuation for the
SC instability can be qualitatively different from our model. As an important exam-
ple we mention the 2D square lattice for which dx2−y2− and dxy belong to different
irreducible representations B1 and B2, respectively. In Fig. 3.14(a) and (d) we show
the corresponding λ values obtained in the square lattice as a function of the long-
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Figure 3.14: Simplified TRILEX results for the square lattice with long-range interaction.
The parameters are chosen as t = −0.25eV and t′ = −0.2t corresponding to nearest-neighbor
and next-nearest-neighbor hopping integrals, on-site interaction U0 = 2.0eV and fixed temper-
ature T = 290K. Upper panel: (a) λ values for dx2−y2 pairing symmetry as a function of long-
range interaction strength V computed with charge (down triangular), spin (up triangular)
and combined (diamond) contributions; (b) static spin response function; (c) solved dx2−y2
gap function at iωn = iπ/β. Here hole doping level is δ = 0.2, and V = 0.0eV for (b) and
(c). Lower panel:(d) λ values for dxy pairing symmetry as function of long-range interaction
strength V computed with charge (down triangular), spin (up triangular) and combined (di-
amond) contributions; (e) static charge response function; (f) solved dxy gap function. Hole
doping level is fixed at δ = 0.5 and V = 0.6eV for (e) and (f).

range interaction V for both dx2−y2− and dxy pairing symmetries. With the same
separation of channel contribution as performed in section 3.5, we see a qualitative
difference in the behavior of λ: on the triangular lattice, λ is larger than λc and λs,
while on square lattice λ is in between or smaller than λc and λs.

In order to disentangle the singlet-pairing interaction in the particle-particle chan-
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nel into charge- and spin contributions we use

V eff(q, iνn) = W c(q, iνn)− 3W s(q, iνn) =
U c(q)

1− U c(q)P c(q, iνn)
− 3

U s

1− U sP s(q, iνn)

(3.7)

= U(q) +
U c(q)P c(q, iνn)U

c(q)

1− U c(q)P c(q, iνn)︸ ︷︷ ︸
charge,−

−3 U
sP s(q, iνn)U

s

1− U sP s(q, iνn)︸ ︷︷ ︸
spin,+

,

with U c(q) = U0

2
+ v(q). The +(−) denotes the positive/negative contribution from

each channel (P c/s < 0 in our parameter range). We denote the typical pairing-
scattering momentum for charge- and spin channel as Qc (Fig. 3.14(e)) and Qs

(Fig. 3.14(b)) respectively (i.e. momenta where χc/s are maximal). In order to find a
large λ value when solving Eq. (3.3) ∆(k, iωn) should not change sign for scattering
with Qc in the charge channel, while it should change sign when scattering with Qs.
Hence, when spin fluctuations dominate, the dx2−y2(Fig. 3.14(c)) pairing symmetry is
favorable in the d−wave singlet pairing and charge fluctuations contribute destruc-
tively. Vice versa, when charge fluctuations dominate, dxy(Fig. 3.14(f)) symmetry
will be the favored.

3.9 Conclusion
In conclusion we predict the existence of a dome shaped unconventional chiral d-
wave superconducting phase for hole-doped triangular lattice systems with ∝ 1/r

interactions which could be realized by hole-doping existing α phase Si(111) adatom
materials. The analysis of spin and charge correlation functions reveals that lattice
geometry as well as the non-local interaction are necessary conditions for the emer-
gence of superconductivity. The nature of the pairing undergoes a crossover from a
combined charge/spin mechanism in the underdoped regime towards a charge fluctu-
ation dominated one at higher doping. We have emphasized two aspects about the
induced SC: i) The true long-range character is crucial in our range of parameters. If
only short-range (i.e. nearest-neighbor) interactions are considered charge ordering is
overestimated and long before any SC emerges the system turns into a charge ordered
insulator as proven by calculations shown in 3.7. ii) The degeneracy of dx2−y2− and
dxy−wave pairing state is important for the cumulative charge and spin interplay.
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Since the origin of this degeneracy is connected to the lattice symmetry group, a
different behavior can be expected for the 2D square lattice as showed in 3.8: in the
square geometry with relatively large V/U0, the q dependence of χc(q, iνn = 0) favors
dxy−pairing symmetry while χs(q, iνn = 0) prefers dx2−y2−pairing symmetry, and the
two channels compete with each other.
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4
Matrix Product States

The continuous development of DMFT and its various extensions, has provided us
with deep understanding on strongly correlated systems far beyond the scope of tra-
ditional mean-filed theory. In the previous parts of this thesis, we have applied its
TRILEX extension to unveil the novel physics induced by long-range interactions
in the adatom systems. We have shown the importance of momentum resolved
spin- and charge fluctuations in the emergence of unconventional superconductivity.
However, we should also point out that the spin- and charge fluctuations considered
in the single-site implementation of TRILEX has a Fermi surface nesting nature, i.e.,
their strength and momentum dependence are mainly determined by the particle-hole
processes of the quasi-particles around the Fermi surface, while the short-range spin
singlet and charge bond fluctuations are not included properly. To circumvent this
shortcoming, we need to enlarge our impurity size either in real- or reciprocal space,
similar to the strategies that are applied in the cluster extensions of DMFT. Hence,
at the core of DMFT and its various extensions, is the efficient and accurate solution
of the auxiliary impurity model.

Furthermore, the class of various quantum impurity problems itself is also of long-
standing interest to physicists. They describe a wide range of quantum mechanical
problems that involve an interacting subsystem with a limited number of degrees of
freedom (an impurity) coupled to a much larger non-interacting system (a bath) that
contains a quasi-continuum of degrees of freedom. Examples include the Kondo and
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heavy-fermion systems [62, 63], tunneling in dissipative systems [64], various problems
in quantum optics [65], and the core-level X-ray spectrscopy [66, 67].

Over the past decades, many numerical methods have been developed to solve
the impurity problems. Among which, the most prominent examples are the exact
diagonalization (ED) [68, 69, 70, 71, 72, 73, 74], numerical renormalization group
(NRG) [11, 75, 76, 77, 78, 79], continuous-time quantum Monte Carlo (CT-QMC) [80,
81, 82, 83, 84, 85], density-matrix renormalization group (DMRG) or matrix product
states [86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98]. Each method has its own
merits and shortcomings:

• ED represents the most straightforward approach to the solution of impurity
problems. It approximates the continuum hybridization function by few energy
levels (usually 5− 12) represented by bath sites in the discretized Hamiltonian.
Then the Hamiltonian is solved, either by a full diagonalization or a Lanczos
approach. Because of the exponential increase of the Hilbert space as the num-
ber of bath sites, the limitation of ED is the small number of bath sites it can
handle. For such a small number of bath sites, it is impossible to achieve a
reasonable resolution of the spectral function on real-axis, hence, most of the
ED based solvers are performed on the imaginary-axis.

• NRG circumvents the exponential growth of Hilbert space encountered in ED
by, instead of diagonalizing the full Hamiltonian directly, first diagonalizing a
small subsystem and including effects of the rest of the bath sites in a renor-
malization group manner: each time a site in the rest of the bath sites is ab-
sorbed into the effective system, the Hamiltonian of the combined system is
diagonalized, while only a fixed number of low lying energy states are kept to
construct the new effective system. It can be performed on real-axis and also
a large number of bath sites can be handled in single- and two- band calcu-
lations. It can have extremely good energy resolution for low-energy spectra,
however, due to the necessarily logarithmic bath discretization [78] to guaran-
tee the convergence of this algorithm, the resolution for high-energy features
lacks satisfactory. Furthermore, its application to multi-band problems is also
very challenging, because the computational costs increase exponentially as the
number of bands.

• QMC in its discrete and continuous time variants represent another category
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of methods, in which instead of diagonalizing the many-body Hamiltonian, cor-
relation functions and observables are obtained by efficient sampling of the
configuration space. It can solve multi-band problems efficiently, and even be
maintainable to include retarded interactions. However, since it is formulated
on the imaginary axes, it entails an ill-conditioned inversion problem when ob-
taining real-frequency spectra [60]. In addition, when applied to problems with
low-symmetry interactions and/or off-diagonal Green’s functions, the famous
fermionic sign problem, which decreases the sampling efficiency exponentially,
prevents its applications at low temperatures.

• DMRG in the MPS language is another candidate for the impurity problem.
This category of method is based on an efficient parameterization of the many-
body wave function: the original exponential growth of variables in the wave
function is reduced to a polynomial one that exhibits a matrix product form.
When implemented on the real axes, its resultant achieves a good resolution of
the spectral function in both high- and low energies. However, it is limited to one
and two band cases due to the exponential scaling of the complexity-or bond
dimension in the matrix product states language-with the number of bands.
Furthermore, the linear growth of entanglement in the real time evolution poses
another hard core limit to extract long time dynamics. Alternatively, imaginary
time evolution is proposed to circumvent the growth of entanglement in real time
evolution [94], but this approach introduces, again, the ill-conditioned analytical
continuation of data to the real-axis.

With the strengths and shortcomings of each of these methods in mind, we want
to further motivate to perform calculations directly on the real-axis instead of the
imaginary-axis. As already indicated in the early attempts to fit the hybridization
function on the imaginary-axis with a small number of bath site parameters, aside
from the ill-conditioned analytical continuation process, the information contained in
imaginary time quantities are not enough to resolve the fine structure in the spectral
functions [99]. For instance, as presented in [94], the accuracy of fitting the hybridiza-
tion function can’t be improved anymore after 9 bath sites. Impurity models with
such a limited number of bath sites have a poor resolution of the spectral function. As
explained in [99] in detail, even if we can keep the accuracy of data on the imaginary-
axis up to 10 digits, it can be presented by a relatively small number of poles (∼ 10).
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Thus, we lose certain details in the spectral function, if the imaginary-axis are used
to perform the calculations.

However, for calculations performed on the real-axis, we usually need a large
number of bath sites (∼ 100 for each band) to have a reasonable resolution of the
spectra. Hence, it is usually inaccessible for the methods listed above. One of the
breakthrough is the alternative approach for countering the exponential growth of
computation cost by searching for an optimized local basis for representing impurity
problems. This has been most actively explored using ED methods [72, 74], which are
otherwise severely limited in accessible number of bands and bath sites. In Ref. [74],
the authors have demonstrated that a one-band impurity problem with a few hundred
bath sites, ten times of that dealt with in conventional ED, can be efficiently solved
on the real-axis when represented on a optimized single-particle basis set.

From the above discussion, we can conclude that, compared to other methods,
the MPS based impurity solver is promising, although further improvements are still
needed to circumvent the difficulties of handling multi-band systems and accessing
long time dynamics. The rest of this thesis represents our attempts in these directions.
In this chapter, we will introduce the basic background of MPS and the related
algorithms which are needed in the implementation of our solver.

4.1 Matrix Product States
For a general many-body wave function living on a global Hilbert space H = ⊗iHi

which is composed by tensor product of L local Hilbert space each spanned by local
basis set {σi}, it can be expressed as

|ψ⟩ =
∑

σ0σ1···σL−1

cσ1σ2···σL|σ1σ2 · · ·σL⟩, (4.1)

where cσ0σ1···σL−1
is the rank−L complex coefficients. Its dimension is equal to dL with

d being the dimension of the local Hilbert space. The main idea of MPS is that, for
systems with a local and gapped Hamiltonian, the exponential growth of cσ0σ1···σL−1

against the system size L can be reduced to a polynomial one that exhibits a matrix
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M0 M1 M2 M3 M4 M5 M6

Figure 4.1: Graphic representation of the MPS. Mi represents a rank−3 site tensor with
two bond legs and one physical leg.

product form [100, 101]

|ψ⟩ =
∑

σ0σ1···σL−1

M0;σ0
b0b1

M1;σ1
b1b2
· · ·ML−1;σL−1

bL−1bL
|σ0σ1 · · ·σL−1⟩, (4.2)

where M i;σi
bi−1bi

is a rank−3 tensor, and all the repeated indices are implicitly summed
over. σi and bi are called physical and bond leg, respectively. The first and last bond
legs are dummy ones and have dimension of 1, e.g., b0 = bL = 1. The bond dimension
of the MPS is defined as the largest bond dimension throughout the system D =

max {bi, i ∈ [0, L]}. We can represent the MPS graphically as depicted in Fig. 4.1:
on each lattice site, we have a rank−3 site tensor with a free physical leg and two
bond legs each of which is connected with another nearest-neighbor site tensor. All
the legs shared by two site tensors are summed over.

We can bring the site tensor into a left-normalized form by singular-value de-
composition (SVD) as depicted in Fig. 4.2(a). We first group the physical and
left bond legs into a combined leg, then the new formed matrix is decomposed as
M i

(σibi−1),bi

SVD
===⇒ U ·S ·V †. The new site tensor is obtained by reforming the U matrix

back into a rank−3 tensor Ai;σibi−1bi
, while S and V † are multiplied to the next site

tensor M i+1. Since the new site tensor is obtained from the SVD of M i, we have∑
σi

(
Ai;σi

)†
Ai;σi = I. (4.3)

Similarly, as depicted in Fig. 4.2(b), we can also bring M i into a right-normalized
form. The resulting new site tensor Bi should satisfy∑

σi

Bi;σi
(
Bi;σi

)†
= I. (4.4)

Graphic representation of equation (4.3) and (4.4) are depicted in Fig. 4.3.
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Figure 4.2: Graphic representation of taking the site tensor M i into the (a) left-normalized
and (b) right-normalized form by the SVD.

Starting from the first (last) site and bringing the site tensors into left- (right-
) normalized form successively, we can achieve a complete left- (right-) normalized
MPS. As will be shown in the following discussions, bringing the MPS into left- or
right-normalized form can benefit the MPS related operations dramatically. We can
also have an MPS in mixed form with an orthogonality center at site i meaning that
the site tensors in the left of M i are in left-normalized form, while the site tensors on
the right of M i are in right-normalized form.

4.1.1 Compression of the MPS

One should note that, MPS with a fixed bond dimension doesn’t form a vector space,
i.e., for two MPSs |ψ1⟩ and |ψ2⟩ with bond dimension D, their addition |ψ⟩ = |ψ1⟩+
|ψ2⟩ will have a bond dimension different from D. To show this, assume that |ψ1⟩ =∑

{σi}Tr [{M
i
1}] |{σi}⟩ and |ψ2⟩ =

∑
{σi}Tr [{M

i
2}] |{σi}⟩, then the resultant MPS
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Figure 4.3: Graphic representation of the left- and right-normalization relation satisfied by
(a) Ai and (b) Bi.

|ψ⟩ =
∑

{σi}Tr [{M
i}] |{σi}⟩ from the addition operation should satisfy

M0;σ0 =
(
M0;σ0

1 M0;σ0
2

)
, (4.5)

for the fist site,

M i;σi =

(
M i;σi

1 0

0 M i;σi
2

)
, (4.6)

for the bulk site 0 < i < L− 1 and

ML−1;σL−1 =

(
M

L−1;σL−1

1

M
L−1;σL−1

2

)
, (4.7)

for the last site. From Eq.(4.5), (4.6) and (4.7), it is apparent that bond dimension of
the resulting MPS is increased. Another usual occasion in which the bond dimension
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can be increased is the applying of many-body operators on MPS which will be
elaborated in Sec.(4.3).

Although MPS reduces the exponential complexity of presenting a many-body
wave function into a polynomial one, handling MPS with large bond dimension still
poses challenges in practical calculations, because the computational costs usually
have a polynomial dependence on the bond dimension (∼ m3 for single-site ground
state search). Hence, from time to time, we need to compress a MPS from a large
bond dimension D′ to a small one D.

To do this, consider a MPS |ψ′⟩ with bond dimension D′ and we want to compress
it into a MPS |ψ⟩ with bond dimension D ( D < D′). The criteria for such a
compression is that the Hilbert distance between these two states

|||ψ⟩ − |ψ′⟩|| (4.8)

is minimized. The most direct way to compress |ψ′⟩ is to truncate eachM ′ successively
by keeping only the largest D singular values after the SVD of M ′. This is done by
assuming that the orthogonality center of |ψ′⟩ is located at site i and performing a
SVD to M ′i as

M ′i;σi
bibi+1

=
D′∑
a=0

Uσi
bia
Saa
(
V †)

abi+1
. (4.9)

Here, index a is summed up to D′. We can now approximate M ′ by M by only
keeping the largest D singular values of S as

M i;σi
bibi+1

=
D∑
a=0

Uσi
bia
Saa
(
V †)

abi+1
. (4.10)

To move to site i + 1, one assign the truncated U to be the new left-normalized site
tensor Ai, and multiply the truncated S and V † into Bi+1 to generate the new site
tensor M ′i+1. The truncation error ϵi for each site tensor is equal to the square root
of the sum of the square of the dropped singular values

ϵi =

√√√√ D′∑
a=D+1

S2
aa. (4.11)
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The overall error induced by such a compression can be approximated by ϵ =
∑

i ϵi ≈
L
√
tw, where tw is the uniform truncation weight during the calculation. One impor-

tant aspect of non-critical quasi-one-dimensional systems is, for most scenarios, that
the singular values decrease very quickly (exponentially for gaped systems). Hence,
the compressed MPS can form a very good representation of the original one.

Note that the SVD compression of an MPS is purely local and has an asymmetric
effect for the first and last site: if we start from the left most site its truncation does
not dependent on the right most site, while the truncation on the right most site
instead shows a dependence on the left most site. To circumvent this problem, one
can construct a variational optimization algorithm that treats all site tensors equally.

The variational compression algorithm of an MPS is an iterative sweeping mech-
anism which is commonly used in tensor product-state based algorithms: in order to
find the global optimal solution, one sweeps multiple times through the system and
finds the local optimal solution for each site. The Hilbert distance between the input
MPS and output MPS reads

|||ψ′⟩ − |ψ⟩|| = ⟨ψ′|ψ′⟩+ ⟨ψ|ψ⟩ − ⟨ψ|ψ′⟩ − ⟨ψ′|ψ⟩. (4.12)

Since {M i} is just a set of variational parameters, one can keep all tensors but M i to
be fixed and require a stationary solution with respect to M i by differentiating the
cost function to M i,

∂

∂M i
|||ψ′⟩ − |ψ⟩|| = ∂

∂M i
(⟨ψ|ψ⟩ − ⟨ψ|ψ′⟩) = 0. (4.13)

Eq. (4.13) can be graphically represented as Fig. 4.4. Making use of the left- and right-
normalization conditions for site tensors before and after the active site i, Eq. (4.13)
can be reduced to

δbibiδbi+1bi+1
M i

bibi+1
= Li

bibi
Ri
bi+1bi+1

M
′i
bibi+1

, (4.14)

with Li and Ri being the left and right rank−2 environment tensors satisfying the
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Figure 4.4: Graphic representation of the variational compression of the MPS. Here, we use
dashed (real) triangles and circles to represent the target (input) tensors.

following recursive relations

Li+1

bi+1bi+1
=
∑
bi,σi,bi

(
Li
bibi
M

′i;σi
bibi+1

)
M i;σi

bibi+1
, (4.15)

Ri−1

bibi
=

∑
bi+1,σi,bi+1

(
Ri
bi+1bi+1

M
′i;σi
bibi+1

)
M i;σi

bibi+1
, (4.16)

with boundary conditions L0
b0b0

= δb0b0 and RL−1

bLbL
= δbLbL .

To initialize the variational sweep process, one can start with a trial wave function
from the SVD compression of |ψ′⟩. By sweeping multiple times through the systems
and solving the linear equation (4.14) for each site, a global optimized MPS with
smaller bond dimension can be obtained . In order to make the bond dimension also
adjustable, one can use a two-site variant of the single-site variational compression
algorithm, i.e., instead of solving a local optimization problem for only one site tensor,
one can form a local optimization problem for two site tensor X ′i,i+1 = M

′i ·M ′i+1.
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After obtaining the new two site tensors X i,i+1 , one decomposes it with a SVD
X i,i+1 SVD

===⇒ U · S · V †, and the new one site tensor is obtained by U
reshape−−−−→ Ai and

S ·V † ·Bi →M i+1 for left-to-right sweeping, and V † reshape−−−−→ Bi+1, and Ai ·U ·S →M i

for right-to-left sweeping.

4.1.2 Orthogonalization of the MPS

Sometimes it is necessary to make a given MPS |ψ⟩ to be orthogonal to a set of
N MPSs {|ϕo⟩}N−1

0 . The most straightforward way do to this is the Gram-Schmidt
orthogonalization procedure in which the target state |φ⟩ is obtained as

|ψ⟩ − ⟨ϕ0|ψ⟩
⟨ϕ0|ϕ0⟩

|ϕ0⟩ → |φ⟩, (4.17)

|φ⟩ − ⟨ϕo|φ⟩
⟨ϕo|ϕo⟩

|ϕo⟩ → |φ⟩, for 0 < o < N. (4.18)

However, as mentioned in last section, since the MPS-MPS addition operation will
increase the bond dimension, a compression of the resulting MPS is needed for each
step of this process. The truncation error introduced by the MPS compression method
then leads to a loss of orthogonality between |φ⟩ and |ϕi⟩ .

For MPS with large bond dimension, instead of using the Gram-Schmidt orthog-
onalization procedure, one can also target the desired state |φ⟩ which minimizes the
Hilbert distance

|||φ⟩ − |ψ⟩||, (4.19)

with the constraint that ⟨φ|ϕo⟩ = 0, for o ∈ [0, N − 1], in a variational manner. This
is equivalent to minimize the following cost function

|||φ⟩ − |ψ⟩+
∑
o

λo⟨φ|ϕo⟩||, (4.20)

with {λo} being the Lagrange multipliers. By partially differentiating the cost func-
tion w.r.t the conjugate site tensor, we arrive at a set of tensor equations for the
Lagrange multipliers as illustrated in Fig. 4.5. Vectors φi, ψi and ϕoi represent the
reshaped rank−3 tensors (with a dimension of d×m×m) for the desired state |φ⟩,
input |ψ⟩ and orthogonal states |ϕo⟩, respectively. Let Φi = {ϕ0

i , · · · , ϕN−1
i } and
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Figure 4.5: Graphic representation of the variational orthogonalization algorithm for the
MPS. Here, site tensor with dark dashed, dark real and orange real edges belongs to the de-
sired state |φ⟩, input state |ψ⟩ and orthogonal states |ϕo⟩, respectively.

Λi = {λ0i , · · · , λN−1
i }T , then the stationary equation represented in Fig. 4.5 can be

reformulated as

φi − ψi + Φi · Λi = 0, (4.21)

for each active site i. From the constraint that ⟨ϕo|φ⟩ = 0, we have ϕo†i · φi = 0 for
o ∈ [0, N − 1]. Multiplying Φ†

i from left hand side to Eq. (4.21), we arrive at

Λi =
(
Φ†
i · Φi

)−1

Φ†
iψi. (4.22)

Note that, Φ†
iψi is the vector (size N) of overlaps between the orthogonality vectors ϕoi

and input vector ψi, while Φ†
i ·Φi is the matrix (of size N×N) of overlaps between the

orthogonality vectors ϕoi . Since N is usually small, the vector of Lagrange multipliers
can be computed exactly from Eq. (4.22). After obtaining {Λi}, it is straightforward
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to update the target site tensor by Eq. (4.21).
Because of the variational nature of this orthogonalization procedure, there are

two potential pitfalls concerning the limited variational space: first, according to
Eq. (4.21), the variational space is bounded by the bond dimension of the input
state. Hence, in order to allow for an increase of the variational space, one can adapt
a two-site variant of the above algorithm and adjust the bond dimension dynamically
by a SVD truncation threshold. But it will also induce a truncation error after the
orthogonaliztion on each site. Hence, the best way to adjust bond dimension of the
target state is to firstly apply the two-site algorithm for a few sweeps to make the bond
dimension large enough, and then a few more one-site sweeps are applied to target
the final desired state that is perfectly orthogonal to {|ϕo⟩}N−1

0 ; second, even though
the bond dimensions of site tensors in the central regions of an MPS can be quite
large, their values are usually very small in the regions close to the two leads. For
instance, in the ground state of the Anderson impurity model, the bond dimension
far away from the impurity will be around 1 − 10. Such a small bond dimension
will again limit the available variational space and make the orthogonaliztion process
problematic. One way to avoid this problem is, in the fist sweep, to require the target
state to be orthogonal to a subset of {|ϕo⟩} to make sure that the resulting φi has a
norm larger than α|ψi| with α being a small threshold (typically we use 1e−3). Then,
in the second sweep, this condition is ignored, and the set of orthogonal states is
restored.

4.2 Matrix Product Operator
Once we have represented the many-body wave function in the MPS form, the Hamil-
tonian can also be formulated as matrix product operator (MPO). A general operator
Ô that lives on a Hilbert space H =

⊗L−1
0 Hi, with Hi being the local Hilbert space

on site i spanned by local basis set {|σi⟩}, can be written as

Ô =
∑

{σi},{σ′
i}

oσ0···σL−1;σ
′
0···σ′

L−1
|σ0 · · · σL−1⟩⟨σ′

0 · · ·σ′
L−1|, (4.23)

with oσ0···σL−1;σ
′
0···σ′

L−1
being a rank−d2L tensor. d is the dimension of the local Hilbert

space. Similar to MPS that presents an efficient parameterization of the rank−dL
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Figure 4.6: Graphic representation of the MPO. Each rank−4 site tensor W i has two physi-
cal legs {σ′i, σi} and two bond legs {wi, wi+1}.

wave function coefficient, MPO presents an efficient parameterization of this rank-
d2L coefficient by a contraction of L rank-4 tensors,

Ô =
∑

{σi},{σ′
i}

W 0;σ0σ′
0

w0w1
· · ·WL−1;σL−1σ

′
L−1

wL−1wL |σ0 · · ·σL−1⟩⟨σ′
0 · · ·σ′

L−1|. (4.24)

A graphic representation of MPO is illustrated in Fig. 4.6. For each site tensor
W

i;σiσ
′
i

wiwi+1 , we can view it as a matrix with elements being the local operators
(
W i;σiσ

′
i

)
wiwi+1

,
i.e., the outer matrix indices are bond indices and inner matrix indices are physical
indices. The bond dimension wi of an MPO is determined by its underlying interac-
tion form. We take the Hamiltonian with nearest-neighbor interaction terms as an
example:

Ĥ =
∑
i

(
Ôi

†
· Ôi+1 + Ô†

i+1 · Ôi

)
+
∑
i

Zi, (4.25)
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where Ôi and Ẑi are arbitrary local operators. Its MPO representation has the fol-
lowing rank-4 tensors: for site 0 < i < L− 1

W i =


Î 0 0 0

Ô† 0 0 0

Ô 0 0 0

Ẑ Ô Ô† Î

 , (4.26)

while for the first and last sites

W 1 =
(
Ẑ Ô Ô† Î

)
, (4.27)

WL−1 =


Î

Ô†

Ô

Ẑ

 . (4.28)

Since Ô, Ô† and Ẑ are local operators, they usually have only few non-zero matrix
elements. For instance, the electron creation operator c†σ has the following matrix
representation

c†↑ =


0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0

 , c†↓ =


0 0 0 0

0 0 0 0

1 0 0 0

0 −1 0 0

 , (4.29)

in the local basis spanned by {|∅⟩, | ↑⟩, | ↓⟩, | ↑↓⟩} representing an empty state, a spin
up electron occupied state, a spin down electron occupied state and a double occu-
pied state, respectively. The minus sign in c†↓ comes from the local anti-commutative
relation of fermions. Together with Eq. (4.26), we can see that W i is sparse. Fur-
thermore, unlike the bond dimension of MPS which shows an exponential growth
with the system size, wi has a constant value in this example. Generally, the bond
dimension of MPO has a polynomial dependence on the range of interactions.

For a general Hamiltonian with complicated interactions, it is usually not pos-
sible to construct each W i analytically as we have done in the above example. To
handle complicated interactions, one can follow the so called finite-state machine
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(FSM) [102, 103] which generates the MPO representation in an automatic way.
However, as shown in [104], the FSM method becomes extremely complicated for
system on a cylinder geometry (quasi two-dimensional stripe with open boundary
condition in the x−direction and periodic boundary condition in the y−direction).
In our implementation, we follow the compression method presented in [105], which
is able to handle complicated interactions automatically while keeping the desired
sparsity in the generated MPO. The basic idea is the following: we first construct the
MPS representation of the single-site operators appeared in the given Hamiltonian
and then use them as the basic ingredients to generated the individual terms in the
Hamiltonian. The compression methods of the generated MPO work similarly to the
SVD compression of MPS, i.e., for a given site tensor W ′i of the original MPO , it is
possible to find a new site tensor W i with a smaller bond dimension satisfying

W
′i;σiσ′

i
wip =

∑
p

W
i;σiσ

′
i

wiwi+1Twi+1p, (4.30)

with p < wi+1. T is the transfer tensor and is absorbed into the next site tensor
which is to be compressed. Different from the SVD compression of MPS in which
we have T = S · V T for left-to-right sweeping, usually, the transfer tensor T can not
be obtained by a direct SVD of W i [105]. The reasons for its failure are: first, as
already indicated in Eq. (4.26), the site tensors are usually very sparse, and SVD of
such a sparse tensor will result a dense S tensor with slowly decaying elements, which
makes the truncation framework very inefficient; second, unlike the MPS which is
normalized, the norm of MPO grows with the system size L. Hence, after a direct
left-to-right or right-to-left SVD sweep, we will have L − 1 bulk site tensors with
elements of order 1, and one edge tensor (the first or last tensor) with exponentially
large elements, which will compromise the accuracy of our calculations. To circum-
vent these difficulties, instead of using a direct SVD compression, one can apply the
rescaled-SVD, deparallelisation and delinearisation method to compress the encoun-
tered Hamiltonian (as implemented in this thesis). For details of these algorithms we
refer the reader to the original literature [105].
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4.3 Applying the MPO to MPS
Applying an MPO onto an MPS is a commonly used operation in MPS related algo-
rithms. For instance, in the calculation of single-particle Green’s function within the
Krylov subspace framework, the Krylov vectors are generated by applying Ĥ succes-
sively on the excited state. If the MPO is a single-site operator, then, except for the
active site (where the single-site operator act on), the site tensors are left unchanged.
Hence, the naive direct tensor multiplication, i.e.,

M
′i;σ′

i

b′ib
′
i+1

=
∑
σi

W
i;σiσ

′
i

wiwi+1M
i;σi
bibi+1

, (4.31)

is applicable. Where M i and M
′i present the MPS site tensor before and after the

application of the MPO (with site tensor being W i), respectively. b′i = bi ⊗ wi and
b′i+1 = bi+1 ⊗ wi+1. However, if the MPO is not a single-site operator which makes
wi ̸= 1, the resulting MPS will have a bond dimension of mk, with k being the bond
dimension of the MPO. Since typical values of k would be around 10−100, depending
on the underlying system, it is highly desirable to have an efficient way to truncate
the bond dimension from km back to m (or some value m′ < km). As indicated in
Eq. (4.31), one should also note that the application of MPO to an MPS in the naive
way will destroy the orthogonality existing in the original MPS. So, if one performs
a sweep of SVD truncation to the resulting MPS, the computational cost will be
∼ Ld3k3m3, which is highly inefficient.

One way to circumvent this problem is, similar to the variational compression
algorithm for MPS elaborated in Sec. 4.1.1, to use a variational algorithm to minimize
the Hilbert distance

|||ψ′⟩ − Ô|ψ⟩||, (4.32)

with |ψ′⟩ being our compressed MPS with a bond dimension of m′ < km. However,
since this process is purely local and is restricted by the number of variational pa-
rameters if Ô has long-range interactions or the resulting MPS is far away from its
original one, it may fail to converge.

An alternative way to this problem is the so called zip-up algorithm [106] which
begins by first bringing the input MPS into a right-normalized form, i.e., moving the
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Figure 4.7: Graphic representation of the construction of (a) C0 and (b) Ci tensor in the
zip-up algorithm.

the orthogonality center to the first site, then it constructs the C tensors on the first
site as

C0;σ0
w1b1

=
∑
σ′
1

W 0;σ1σ′
1

w1
A

0;σ′
1

b1
. (4.33)

A SVD of C0 is performed by regrouping its indices as (σ0, (w1b1)),

C0;σ0
(w1b1)

=
∑
α

Uσ0αSαV
†
α(w1b1)

. (4.34)

Here, we can perform a truncation of the singular values either according to a fixed
maximal bond dimension or a singular value threshold. The truncated U0 tensor is
assigned to be the new site tensor, which is left-normalized by construction. Then
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the successive Ci and site tensors U i can be generated recursively as

Ci;ασi
wi+1bi+1

=
∑

βσi−1σ′
ibiwi

(
U i−1†)σi−1

αβ
C
i−1;βσi−1

wibi
W

i;σiσ
′
i

wiwi+1A
σ′
i
bibi+1

, (4.35)

Ci;ασi
(wi+1bi+1)

=
∑
β

U i;σi
αβ SβV

†
β(wi+1bi+1)

. (4.36)

A graphic representation of this algorithm is presented in Fig. 4.7. If we assume k < m

(usually satisfied), the leading computational cost which comes from the contraction
of Ci−1 with Ai is ∼ m3kd. After reaching the last site, a further right-to-left SVD
sweep is performed to reduce the bond dimension to the desired value.

4.4 Ground state optimization: Density-Matrix
Renormalization Group

Density-matrix renormalization group (DMRG) is a variational optimization algo-
rithm which targets the ground state by sweeping iteratively throughout the system.
For a given Hamiltonian Ĥ represented by a MPO with site tensors {W i}, its ground
state |ψ⟩ is defined by the state which minimizes the energy

min|ψ⟩

(
⟨ψ|Ĥ|ψ⟩
⟨ψ|ψ⟩

)
, (4.37)

with the constraint that ⟨ψ|ψ⟩ = 1. This is equivalent to

min|ψ⟩

(
⟨ψ|Ĥ|ψ⟩ − λ⟨ψ|ψ⟩

)
, (4.38)

by introducing a Lagrangian multiplier λ. The tensors {M i} in the MPS serve as a
set of variational parameters. It is impractical to optimize all the parameters at the
same time, and the idea of DMRG is to introduce a sweeping process, similar to the
variational algorithms for compression and orthogonalization of MPS which optimize
a single site tensor each time. In other words, DMRG translates a global optimization
problem into a series of iteratively constructed local problems. To achieve this, we
start by partially differentiating Eq. (4.38) w.r.t. M i† and requiring a stationary
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Figure 4.8: Graphic representation of Eq. (4.39).

condition as

∂

∂M i†

(
⟨ψ|Ĥ|ψ⟩ − λ⟨ψ|ψ⟩

)
= 0, (4.39)

the resultant tensor equation can be graphically represented by Fig. 4.8. If i is the
orthogonality center, this equation can be further reduced to

H i
eff ·M i = λM i. (4.40)

Here H i
eff is the effective Hamiltonian acting on the site wave function M i, which can

be constructed as

H
i;σiσ

′
i

bib′ibi+1b′i+1
=
∑
wiwi+1

Libib′iwiW
i;σiσ

′
i

wiwi+1R
i
bi+1b′i+1wi+1

, (4.41)
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where the left- and right-environment tensors Li and Ri are constructed recursively
as

Libiwib′i =
∑

bi−1σi−1σ′
i−1wi−1b′i−1

Li−1
bi−1wi−1b′i−1

A
i−1;σi−1

bi−1bi
W

i−1;σi−1σ
′
i−1

wi−1wi A
i−1†;σ′

i−1

b′i−1b
′
i

, (4.42)

Ri−1
biwib′i

=
∑

biσiσ′
iwi+1b′i+1

Ri
bi+1wi+1b′i+1

Ai;σibibi+1
W

i;σiσ
′
i

wiwi+1A
i†;σ′

i

b′ib
′
i+1
, (4.43)

with the boundary condition L0 = I, RL−1 = I.
Eq. (4.40) can be recast into a standard eigenvalue problem by reshaping the site

tensor M i into a vector with dm2 elements, while H i
eff is reshaped into a matrix with

dimension of dm2 × dm2. Such an eigenvalue problem can be efficiently solved by
the standard Lanczos algorithm to find the extreme eigenvalue and eigenvector. The
updated M i is obtained by reshaping the eigenvector corresponding to the lowest
eigenvalue back to a rank-3 tensor.

Similar to all the variational methods introduced in this chapter, the simple single-
site DMRG algorithm presented above can be trapped into a local minimum because
of the limited variational space. The most straightforward way to go around this
difficulty is to target two optimized site tensors instead of just one optimized site
tensor each time. However, there are two possible drawbacks of this two-site variant:
first, the computational cost of two-site DMRG scales as ∼ m4 for the leading term
(single-site DMRG scales as ∼ m3), which is unfavorable for systems with large
bond dimension; second, it is very slow to include long-range correlations in two-site
DMRG, because, by construction, only nearest-neighbor sites can exchange particles.
In order to stay in the single-site framework, alternative methods based on the density-
perturbation and subspace expansion have been introduced in recent years. Details
about these algorithms can be found in the original literature [107, 108].
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5
Matrix Product States based impurity

solver in frequency-domain

Parts of the contents presented in this chapter have been published in
“Natural-Orbital Impurity Solver and Projection Approach for Green’s Function”, Yi
Lu, Xiaodong Cao, Philipp Hansmann and Maurits W. Haverkort, Phys.Rev.B
100, 115134, 16 September 2019

In this Chapter, we demonstrate advantages of the natural-orbital representation
of the impurity model. Especially, by exploiting the energy separation of states
provided by the natural-orbital representation, we propose to calculate the ground
state and Green’s functions of the impurity model (with a few hundred spin-orbitals)
by projecting the full Hilbert space to a small subspace. The proposed projection
approach is applicable for all real-space wave-function based methods and can be
straightforwardly implemented in DMRG and ED. We further provide a simplification
of the proposed projection scheme, which allows for efficient and accurate solution of
the full impurity model by solving a subsystem with only up to dozens of spin-orbitals.
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5.1 Impurity Hamiltonian
A general Anderson impurity model is described by the Hamiltonian HA that contains
two parts

HA = Hloc +Hbath, (5.1)

where a locally interacting impurity site (Hloc) is coupled to a non-interacting bath
(Hbath). There are several special cases which are of interest for the following discus-
sions: i). Single-band Anderson impurity model

Hloc = Und↑nd↓ + ϵdnd, (5.2)

Hbath =

Nb−1∑
l=0,σ

(
vlc

†
lσdσ + v∗l d

†
σclσ

)
+

Nl−1∑
l=0

ϵlnlσ, (5.3)

where d†σ and dσ are the electron creation and annihilation operator on the impurity
site with spin σ = {↑, ↓}, c†lσ and clσ are the creation and annihilation operators on
bath site l with spin σ; ndσ = nd↑ + nd↓ is the density operator on the impurity site
with spin σ; nlσ = nl↑ + nl↓ is the density operator on l−th bath site with spin σ.
The hybridization function can be extracted from the set of parameters {vl, ϵl} as

∆(ω) =
∑
l

|vl|2

w − ϵl
. (5.4)

For the Bethe lattice, the bath has a semielliptic spectral function as

− 1

π
∆(ω) =

2

πD

√
1−

( ω
D

)2
, (5.5)

where D is the half-band width. With a given hybridization function ∆(ω), the set of
bath parameters {vl, ϵl} can be obtained by discretizing ∆(ω) on the frequency-axis
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Figure 5.1: Graphical representation of an impurity model in (a) the conventional “star”
geometry and (b) the natural-orbital geometry (see text). The impurity is represented by a
square and bath by circles. The solid lines denote hoppings between two “sites”. Each site
consists of m spin-orbitals.

into Nl = l intervals {Il} as

v2l =

∫
Il

dω

[
− 1

π
Im∆(ω)

]
, (5.6)

ϵl =
1

v2l

∫
Il

dωω

[
− 1

π
Im∆(ω)

]
. (5.7)

ii). Multi-band Model. For a multi-orbital impurity model, the interaction
term is typically assumed to have a Kanamori form

Hloc = HDD +HSF−PH, (5.8)

HDD = U
∑
m

nm↑nm↓ + (U − 2J)
∑

m′>m,σ

nmσnm′σ + (U − 3J)
∑

m′>m,σ

nmσnm′σ,

HSF−PH = J
∑
m′m

(
d†m↑dm↓dm′↑d

†
m′↓ + h.c.

)
− J

∑
m′>m

(
d†m↑d

†m ↓dm′↑dm′↑ + h.c.
)
,

(5.9)

where HDD describes the density-density interaction terms and HSF−PH describes the
spin-flip and pair-hopping terms. U is the Hubbard interaction and J is the Hund’s
coupling.

Star representation of the Hamiltonian (5.1) is depicted in Fig. 5.1(a).
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5.1.1 Natural-orbital representation of an impurity model

The natural orbitals are defined as a single-particle basis set on which the ground-state
single-particle density matrix of a quantum system is diagonal. They are widely used
in quantum chemistry [109] as they have several advantageous features for molecular
systems such as optimal convergence properties for the wave functions and energies.
In the context of quantum impurity problems, they have been discussed in conjunction
with configuration interaction (CI) expansion approximation [72, 73]. These methods
have proven to be capable of solving impurity problems exceeding the size of those
dealt with by conventional ED [68]. The caveat of employing natural orbitals for
impurity models is that a naive implementation that diagonalizes the density matrix
of the whole system inevitably mixes the impurity states with the non-interacting bath
states. This transforms the original local interactions (contained in Hloc) into long
range ones and turns a locally correlated problem into a fully correlated one, which
may bring a severe penalty that overcomes the advantage of the natural orbitals,
especially for large systems that contains O(102) bath sites.

In Ref. [74], a natural-orbital representation of the impurity model by restricting
the optimization of the basis set only for the bath degrees of freedom was introduced.
It was shown that an ED solver employing such a natural-orbital basis set substan-
tially outperforms conventional ones and is capable of solving impurity models with
the number of bath sites comparable to that achieved by NRG or DMRG solvers [74].
The resulting geometry of the impurity Hamiltonian is graphically represented in
Fig. 5.1(b). The procedure for obtaining such a representation is detailed in Ref. [74].
We briefly recapitulate the steps here:

• Solve Hamiltonian (5.1) (as depicted in Fig. 5.1(a)) within mean-field methods
(e.g. Hartree-Fock) and obtain the ground-state single-particle density matrix
ρ̂MF =

(
ρ̂i ρ̂il
ρ̂li ρ̂l

)MF, where we distinguish the impurity (i) and bath (l) parts
explicitly.

• Diagonalize the bath density matrix ρ̂MF
l , which leads to a new set of bath

orbitals with occupation of either 0 or 1, with the exception of m (the number
of impurity spin-orbitals) orbitals that have fractional occupation. We assign
these orbitals to site b as shown in Fig. 5.1(b). Its density matrix ρ̂MF

b satisfies
the relation Trρ̂MF

b = m− Trρ̂MF
i .
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• Linearly combine the impurity site i and bath site b into “bonding” and “anti-
bonding” sites with occupation m and 0. The former (latter) only couples to
the completely filled (empty) bath sites obtained from last step, respectively.
The mean-field Hamiltonian has now been separated into two decoupled terms,
which describes the filled and empty spin-orbitals of the complete single-particle
Hilbert space, respectively.

• Perform unitary transformation (Lanczos tridiagonalization) on the two parts
of the Hamiltonian and obtain two separate empty and filled “chains” starting
with the bonding and anti-bonding sites, respectively.

• Finally, reverse the unitary transformation in step (iii) and recover the i and
b sites, which now couple to both the empty and filled chains. Following the
convention in Ref. [74], we dub the two chains “conduction” and “valence” baths,
respectively.

In the limit of U → 0, these mean-field natural orbitals are exact, and the many-
body ground state of the exact impurity solution can be written out using only 2m

Slater determinants [74]. At finite U values, the exact occupation of the conduction
or valence bath sites will deviate from 0 or 1, necessitating the inclusion of more states
with excited electrons or holes in the conduction or valence chains. Nonetheless, the
“leakage” of electrons (holes) onto a conduction (valence) site is expected to rapidly
decay as a function of its distance to the impurity site, as states with electrons (holes)
deep in the conduction (valence) chain are energetically unfavorable. This allows for
an efficient description of the ground state and the low-energy excitations by only
including states with electron (hole) excitations in the conduction (valence) bath
that are localized around the impurity site.

5.2 Comparing the natural-orbital and star rep-
resentation

As discussed in Ref. [93], although the star configuration introduces long-range hop-
ping terms in the Hamiltonian, it has better performance compared with the chain
configuration. The reason is that, in star configuration, the electron occupations on
most bath sites are very close to empty or full. In the following discussions, we will
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Figure 5.2: Comparison the ground state properties in the star and NO configurations. Pa-
rameters are chosen as: half-band width D = 1, interaction strength U = 2D, two-site DMRG
truncation weight tw = 1e−10. (a) the maximal bond dimensions of the ground states in the
star (blue diamond) and NO (origin cycle) basis as functions of the number of bath sites N ;
(b) the bond dimension distribution through the system with N = 120 for star (blue dashed
line) and NO (origin dashed line) configuration. ”NO” is the abbreviation of ”natural-orbital”.

only focus on the comparison between star and natural-orbital configurations by using
the half-filling single-band Anderson impurity model as an example.

As the first comparison, we plot the maximal MPS bond dimension m throughout
the system as function of number of bath sites Nl in Fig 5.2(a). There are two aspects
we want to emphasize: first, with a fixed number of bath sites, the bond dimension
of the ground state in the natural-orbital configuration is much smaller than the one
in the star configuration, and this difference becomes larger as Nl gets increased;
second, different from the much faster growth of m in the star configuration as Nl is
increased, bond dimension in the natural-orbital configuration increases only slightly.
The almost independent maximal bond dimension m against the number of bath sites
in the natural-orbital configuration has a significant impact on the application of the
MPS based method as an impurity solver for DMFT. Because, usually, different from
the case on the imaginary-axis, the DMFT self-consistent loop on real axis needs
a more refined resolution of the hybridization function to converge, meaning that a
much larger number of bath sites are needed on real axis calculations. Hence, if we can
have an almost constant maximal bond dimension after some number of bath sites,
the overall computational cost (typically ∼ m3) can be tremendously reduced. These
two ground state features of natural-orbital configuration highlight its advantage to
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Figure 5.3: Comparison of ground state density distribution in the star and natural-orbital
configurations. Parameters are chosen the same as Fig. 5.2 for N = 120. (a) density distribu-
tion of the ground state for the star (blue diamond) and natural-orbital (origin cycle) config-
uration. (b) and (c) log plot of the density distribution in the conduction and valence chain,
respectively. ”NO” is the abbreviation of ”natural-orbital”.

the star configuration which is commonly used in literature. Furthermore, as depicted
in Fig 5.2(b), compared to the star configuration, the natural-orbital configuration
will not only result in a much smaller maximal bond dimension, but the overall bond
dimension distribution through the whole system has also a better profile.

The reason that the natural-orbital configuration has a better representativity
than the usual implemented star (and also chain) configuration can be revealed in
the ground state density distribution as depicted in Fig. 5.3. Although, both star
and natural-orbital configuration have a similar density distribution profile, the bath
site density shows an exponential convergence to empty for conduction chain and full
for valence chain as a function of its distance to the impurity site in natural-orbital
configuration, while its convergence is much slower in star configuration.
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Figure 5.4: Separating the full Anderson impurity Hamiltonian HA defined on the natural
orbitals into four parts HI, Hc, Hv, and V . Each Hamiltonian acts on the sites enclosed by
its corresponding box. The hybridization operator V (dashed bonds) connects HI to Hc and
Hv. Hc are Hv are termed as projection region.

5.3 Ground-state projection
So far we have rewritten the impurity Hamiltonian (5.1) on the natural-orbital basis
and shown the fast convergence of the density distribution in this basis. Such a
representation has an optimal scaling behavior with respect to the number of bath
sites, as adding empty (filled) bath sites at the end of the conduction (valence) chains
incurs little to none cost for describing the ground state. However, the computation
complexity is still expected to scale exponentially with the number of impurity spin-
orbitals, which may become intractable for full d/f -orbital impurities that are each
coupled to a few hundred bath sites.

To further reduce the computation cost and alleviate the scaling problem for
the ground state, we propose to project the full Hilbert space onto a subspace that
only contains states with completely empty conduction (filled valence) sites with
indices l > L (Fig. 5.4), with L as a tunable parameter controlling the trade-off
between projection accuracy and computation cost. Note that a single L is used
here for simplicity. For a general multi-orbital impurity model, L does not need
to be the same for the conduction and valence bath or for different spin-orbitals.
The projection essentially separates the full Hamiltonian HA into three parts: an
impurity Hamiltonian HI of a much smaller system, as well as Hc and Hv describing
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two truncated bath chains that are coupled to HI via hybridization V . The Anderson
impurity Hamiltonian is then

HA = H0 + V, (5.10)

where
H0 = HI +Hv +Hc. (5.11)

The projected ground state wave function is given as

|Φ0⟩ = |ϕI⟩ ⊗ |0c⟩ ⊗ |1v⟩. (5.12)

Here, |ϕI⟩ is the exact ground state of HI that can be efficiently computed by ED or
DMRG methods for moderately large L, and |0v⟩ (|1c⟩) denotes the product states
of completely empty conduction (filled valence) sites with indices l > L. |Φ0⟩ is the
exact solution of H0. The projected ground-state energy is

E0(L) ≡ ⟨Φ0|HA|Φ0⟩ = ⟨ϕI|HI|ϕI⟩+
∑
l>L,m

ϵvlm, (5.13)

where the second term is the sum of on-site energies of all spin-orbitals with indices m
at each site l in the truncated valence chain. The accuracy of the projected ground-
state wave function can be assessed by calculating the deviation of Eq. (5.13) from
the exact ground-state energy when the latter is attainable, or by calculating the
energy variance of the projected ground-state using the full Hamiltonian HA as

δE0(L)
2 ≡ ⟨Φ0|H2

A|Φ0⟩ − E0(L)
2

= δEI(L)
2 + δV (L)2,

(5.14)

with

δEI(L)
2 = [ ⟨ϕI|H2

I |ϕI⟩ − ⟨ϕI|HI|ϕI⟩2]
δV (L)2 = ⟨Φ0|V 2|Φ0⟩ .

The first term δEI(L)
2 is intrinsic to the numerical method of choice that solves HI.

The second term δV (L)2 originates from the imposed projection and therefore scales
exponentially to zero with increasing L.
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5.3.1 Excited-state projection and Green’s Functions

The central object of interest for an impurity problem is the impurity Green’s function
Gimp(ω). On the real-frequency axis, it is defined as

Gimp(ω) = G+(ω)−G−(−ω)∗, (5.15)

where G±(ω) are the retarded Green’s functions for electron addition (+) and removal
(−) at the impurity site i:

G+(ω) = lim
η→0+

⟨Ψ0|d
1

ω −HA + iη
d†|Ψ0⟩ , (5.16)

G−(ω) = lim
η→0+

⟨Ψ0|d†
1

ω −HA + iη
d|Ψ0⟩ , (5.17)

with |Ψ0⟩ the impurity ground state. The Green’s functions can be directly calculated
in the frequency domain using the Lanczos method, which is an approach generally
adopted in ED-based solvers [68, 69, 70, 71, 72, 73, 74]. For DMRG solvers, Gimp(ω)

is also commonly obtained via Fourier transform from the real-time Green’s func-
tions [110, 96]. While the proposed projection scheme is applicable for both methods,
in this chapter, we will focus on the direct calculation in the frequency domain, while
calculation in the time-domain is left to the next chapter.

The idea of our projection method is to obtain the impurity Green’s function of
the full system Gimp(ω) from that of the projected system G0(ω) given by H0 and
succesive non-perturbative expansion in the hybridization V . Such an expansion can
in principle be done using diagrammatic methods and the Dyson equations. This
requires knowledge not only on the impurity Green’s function of H0, but also on
electron (hole) propagators starting at site cL (vL). Here, however, we employ a
method based on Hilbert space reductions, which has the advantage that we can use
standard Lanczos routines for solving the Green’s functions of impurity models.

The method is based on the notion that we can connect to each operator H
with a fixed number of electrons a Hilbert space H. We start with the projected
subspace H0 = HI ⊗ |1v⟩ ⊗ |0c⟩ defined for the ground-state calculation, where HI

is the Hilbert space of the subsystem HI. To obtain G±
0 (ω), we use the Lanczos

method and construct a series of M Krylov vectors |ν̃j⟩ = Hj
I a

(†)
i |ϕI⟩ ∈ H′

I, where the
prime denotes the Fock subspaces of electron removal (addition) with respect to HI.
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After orthogonalizing each |ν̃j⟩ to the previous states and proper normalization, the
resultant set of vectors {|νj⟩} become the basis set of a subspace (Krylov space) KM of
H′

I with dimension M . The Hamiltonian HI is represented as a tridiagonal matrix H I

on KM , and G±
0 (ω) can be straightforwardly calculated as the leading element of the

resolvents G±
0 (ω) = (ω + iη −H I)

−1
00 , which is conveniently expressed as a continued

fraction [74]. The corresponding impurity Green’s functions G±
0 (ω) are identical to

those of the subsystem HI.
TheG±

0 (ω) obtained above are in general quite different from the Green’s functions
G±(ω) of the full system, especially for small L values, due to the limited degrees
of freedom. To obtain a more accurate description, we need to relax the projection
condition to include more excited states. This can be done by allowing electron (hole)
excitations into the completely empty conduction (filled valence) chains. As states
with higher-order excitations are energetically more costly and therefore contribute
less to the Green’s functions, the number of excited particles p serves as a control
parameter for the projection. Conceptually this is similar to the restricted active
space method used in quantum chemistry.

The proposed projection scheme can be implemented in ED and DMRG solvers
by targeting a specific U(1) symmetry sector for the bath chains in each step of the
Lanczos or time-evolution process when computing the Green’s function. Here, we
combine it with further simplification by manually identifying the relevant states for
p-particle excitations. While it might seem cumbersome at first, the advantage of
such a procedure is that it allows for the calculation of the full Green’s function by
evaluating Hamiltonian matrix elements on the basis of KM and their derived states
with singly (p = 1) and doubly (p = 2) excited particles in the bath chains. This
essentially reduces the solution of a many-body problem HA with a few hundred
spin-orbitals to that of the much smaller subsystem HI.

5.3.2 p = 1 projection

In the following, we derive the expression of the Hamiltonian and the Green’s functions
on the expanded subspace that includes single-electron (hole) excitations into the
conduction (valence) chain. For simplicity, we assume a single-orbital model, as the
generalization to multi-orbital case is straightforward. We further omit spin indices
as the expressions are spin independent.
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The expanded states with single-particle excitations in the bath chains can be
obtained by acting with HA on the initial subspace H′

0 = H′
I ⊗ |1v⟩ ⊗ |0c⟩. As H′

0

is closed with respect to H0, the singly excited states are then generated by VH′
0.

Note that H′
I is still exponentially large for a sufficiently large L, in practice we

approximate it by KM , which is known to provide an accurate representation for HI.
H′

0 is then replaced by H′
0 = span(|ψj⟩ = |νj⟩ ⊗ |1v⟩ ⊗ |0c⟩ |j = 0, . . . , K). The p = 1

expanded vector space H′
1 is therefore approximately given as

H′
1 ≈ H′

1 = span({
∣∣ψejk⟩}) + span({

∣∣ψhjk⟩}),
where ∣∣ψejk⟩ = tccL |νj⟩ ⊗ |ek⟩ = |ηj⟩ ⊗ |ek⟩ , and∣∣ψhjk⟩ = tvv

†
L |νj⟩ ⊗ |hk⟩ = |ζj⟩ ⊗ |hk⟩ ,

where |ek⟩ = |1v⟩ ⊗ c†L+k |0c⟩ and |hk⟩ = vL+k |1v⟩ ⊗ |0c⟩ (k ≥ 1) are the single
electron and hole states of the truncated bath chains. We have relabeled the fermionic
operators on the conduction and valence sites by c(†) and v(†), respectively. V is now
explicitly given as V = tcc

†
LcL+1+ tvv

†
LvL+1+H.c., where tc(v) is the hopping between

conduction (valence) bath sites L and L + 1 (see Fig. 5.4). It is easily seen that H′
1

is orthogonal to H′
0. We can evaluate the matrix elements of HA = H0 + V on the

p ≤ 1 subspace as

⟨ψj|H0|ψk⟩ = ⟨νj|HI |νk⟩ = HI
jk

⟨ψejk|H0|ψelm⟩ = ⟨ηj|HI |ηl⟩ δkm + ⟨ek|Hc|em⟩ δjl
= HIη

jl δkm +Hc
k,mδjl

⟨ψhjk|H0|ψhlm⟩ = ⟨ζj|HI |ζl⟩ δkm + ⟨hk|Hv|hm⟩ δjl
= HIη

jl δkm +Hv
kmδjl.

(5.18)

and

⟨ψj|V |ψekl⟩ = ⟨ηj|ηk⟩ δ0l = V η
jkδ0l

⟨ψj|V
∣∣ψhkl⟩ = ⟨ζj|ζk⟩ δ0l = V ζ

jkδ0l.
(5.19)

Note that we have defined the ground-state energy to be zero. The elements of the

76



matrices HI(≡ HI), Hc, and Hv are already known. One only needs to evaluate
the (M -dimensional) matrices HIγ and V γ (γ = η, ζ), with the latter identified with
the overlap matrix of {|γ⟩}. Note that the states { |ψe(h)jk ⟩} are not orthonormal.
To bring them into an orthonormal form, one can solve the generalized eigenvalue
problem HIγ with respect to V γ and obtain the eigenvector matrix T γ. The above
matrices are then expressed on the orthonormal basis set as H̃Iγ = T γ†HIγT γ, which
is the diagonal eigenvalue matrix, and Ṽ γ = V γT γ. The Green’s function can then
be calculated by inverting the full HA defined on H1.

5.3.3 p = 2 projection

We further relax the projection condition to allow double excitations. The full p ≤ 2

subspace is given by H2
AH′

0 = H′
0 + H′

1 + V 2H′
0. The p = 2 subspace H′

2 is then
spanned by the subset of doubly excited states in V 2H′

0 = VH′
1. Similar to the p = 1

case, we approximate H′
2 ≈ H′

2 = VH′
1. Under such approximation, the states in H′

2

are given as

ψe↑e↓jkl = t2ccL,↑cL,↓ |νj⟩⊗|ek↑el↓⟩ = |λj⟩⊗|ek↑el↓⟩
ψh↑h↓jkl = t2vv

†
L,↑v

†
L,↓ |νj⟩⊗|hk↑hl↓⟩ = |µj⟩⊗|hk↑hl↓⟩

ψeσhσ
′

jkl = tctvcL,σv
†
L,σ′ |νj⟩⊗|ekσhlσ′⟩ = |θj⟩⊗|ekσhlσ′⟩

which describe two-electron, two-hole, and electron-hole excitations into the bath
chains. The spin indices are recovered here considering the Pauli principle. The
Hamiltonian matrix elements for H0 read

⟨ψe↑e↓jkl |H0|ψe↑e↓mno⟩=HIλ
jmδknδlo+H

c
knδjmδlo+H

c
loδjmδkn

⟨ψeσhσ′

jkl |H0|ψeσhσ
′

mno ⟩=HIθ
jmδknδlo+H

c
knδjmδlo+H

v
loδjmδkn,

(5.20)

with HIλ and HIθ the Hamiltonian matrices evaluated on the basis set {|λ⟩} and
{|θ⟩}. The matrix elements for V are given as

⟨ψe↑jk|V |ψ
e↑e↓
lmn ⟩ = ⟨θj|θl⟩ δk,mδ0,n = V θ

jlδk,mδ0,n

⟨ψe↓jk|V |ψ
e↑e↓
lmn ⟩ = ⟨θj|θl⟩ δk,mδ0,n = V θ

jlδ0,mδk,n.
(5.21)
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Similar expressions can also be derived for the excited-hole states. Same as for the
p = 1 case, the expanded states {|λ⟩}, {|µ⟩}, {|θ⟩} need to be orthonormalized.

Finally we emphasize that, as we approximate the electron addition/removal
Hilbert space H′

0 of the subsystem HI by KM , the completeness of the p = 1 and
p = 2 states depends on M and the results should be tested for convergence in M .

5.4 DMFT loop on real-axis
We now demonstrate an application of the natural-orbital solver presented above in
the context of DMFT [111, 112]. Within DMFT, a Hubbard model is mapped onto
a single-impurity Anderson model supplemented by a self-consistency condition that
identifies the impurity Green’s function with the local lattice one. The central ingredi-
ent of DMFT is thus the (iterative) calculation of the impurity Green’s function. The
steps for constructing the DMFT self-consistency loop entirely on the real-frequency
for a general Hamiltonian can be found in e.g. Ref. [74, 98]. It should be noted
that the prerequisite of such constructions is to include a sufficiently large number
(O(102)) of bath sites in the Hamiltonian (5.1), which is necessary for an accurate
real-frequency representation of the bath Green’s function.

In the following sections, we focus our discussion on the calculation of the one-
band Hubbard model on the Bethe lattice with infinite coordination number, for
which the DMFT mapping is exact. In addition, for benchmark purposes we assume
spin-symmetric couplings and particle-hole symmetry, as there is abundant literature
containing high quality results obtained from different numerical methods. In this
case, the the DMFT loop can be greatly simplified, as the imaginary part of the
bath hybridization function ∆̃(ω) ≡ − 1

π
Im∆(ω) =

∑
l |Vl|

2
δ(ω− ϵl) is related to the

impurity spectral function Aimp(ω) ≡ − 1
π
ImGimp(ω) as ∆̃(ω) = D2

4
Aimp(ω), where D

is the half-bandwidth of the semi-elliptic non-interacting density of states. The spin
indices for the observables are omitted hereafter for the ease of notation.

Within each DMFT loop, the bath parameters are obtained by a discrete repre-
sentation of the hybridization function over Nl ∼ O(102) poles. We employ a scheme
similar to Ref. [78] by discretizing the frequency-axis into Nl intervals {Il}. Here we
chose the intervals such that the weight V 2

l is equal for each bath site. The impurity
spectral function Aimp(ω) is then obtained by solving the resulting impurity model
with our solver described in in Sec. 5.1, which leads to an update of the hybridization
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function
∆̃(ω) =

D2

4

[
αA′

imp(ω) + (1− α)Aimp(ω)
]
, (5.22)

with α ∈ [0, 1) a mixing factor that allows for under-relaxation by mixing in the
spectral function A′

imp(ω) from the previous loop. The convergence is reached once
Aimp(ω) = A′

imp(ω).

5.5 Results
We note that while the natural-orbital representation and projection scheme in Sec. 5.1
can be readily implemented in existing ED solvers [74], we adopt the MPS-based
DMRG method [90] here for computing the impurity ground state and Green’s func-
tions, which is expected to be more efficient for large L values considering the quasi
one-dimensional geometry in Fig. 5.1(b). We use the zip-up method (see section 4.3)
when multiplying a Hamiltonian to MPS [113] for generating the Krylov states. Note
that due to the relatively small size of the subsystem HI, the total truncated weight
of the MPS in each Lanczos step can be kept well below 10−16.

In the following, we present DMFT results obtained for the one-band Hubbard
model on the Bethe lattice using the proposed projection method. The total number
of bath sites is set to Nl = 301, with each bath chain of full length 150. The cal-
culation is performed for interaction values U/D ranging from 1/16 to 16, including
both the itinerant and atomic limits. Especially, we focus our discussion on three
representative values U/D = 1.0, 2.0, and 4.0, which correspond to weakly-correlated
metal, strongly-correlated metal, and Mott insulator ground states in DMFT, respec-
tively [112].

5.5.1 Ground state convergence

We start by discussing the ground-state results for the different U values. Fig. 5.5(a)
shows the number of electrons per spin-orbital on the first 10 conduction bath sites in
the converged DMFT ground state. Note that this is identical to the hole occupation
in the valence chain due to the particle-hole symmetry. In the metallic regime with
U/D from 1/16 to 2, nl on each site converges towards 0 with decreasing U values.
This is expected as the natural orbitals are exact in the U → 0 limit. For a given U , we
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Figure 5.5: (a) Number of electrons per spin-orbital on the first 10 conduction bath sites
in the converged DMFT ground state for U/D values ranging from 1/16 to 16 as a geomet-
ric sequence with common ratio 2. The values are noted next to each curve. (b) Normalized
ground-state energy deviation [E0(L)− Eexact]/|Eexact| as a function of L.

observe near-exponential decay of nl with increasing site index l. Exact exponential
decay of nl is observed for the insulating cases with U/D ≥ 4, as any particle-
hole excitations into the bath chains is suppressed by the Mott gap of approximately
U−2D. The slowest convergence is observed for the correlated metals with U/D ∼ 2,
yet the electron density reaches below 10−3 within the first two to four bath sites for all
the cases considered here. Closer inspection of the ground-state wave function reveals
that even for the worst cases, states with completely empty conduction (filled valence)
bath sites for l ≥ 2 comprise more than 99% of the total weight, which justifies the
proposed p = 0 projected wave function in Sec. 5.3 as a valid approximation for the
exact ground state.
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Figure 5.6: DMFT spectral functions for (a) U/D = 1.0, (b) U/D = 2.0, and (c) U/D =
4.0 calculated with different projection parameters (L, p).

Fig. 5.5(b) shows the relative error of the projected ground-state energy E0(L)

(Eq. (5.13)) when applying projection at bond L between bath sites L and L + 1

(see Fig. 5.4). As the energy deviation is directly correlated with the ground-state
electron (hole) density in the conduction (valence) chains, one observes that E0(L)

converges exponentially to the exact DMRG ground-state energy for the full system
Eexact.

5.5.2 Green’s Functions

We proceed to calculate the DMFT Green’s functions with a few different sets of con-
trol parameters (L, p). The calculated spectral functions are presented in Fig. 5.6(a)–
(c) for U/D = 1.0, 2.0, and 4.0, respectively. The spectra are convoluted with a
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Gaussian kernel with full width at half maximum of 0.04D.
The first row of each panel shows the spectral functions calculated with p = 1.

Within each row, the results are presented for L = 1 on the left up to L = 4 on
the right. For all U values, the spectra retain the general line shape of previous
results [74, 95, 96]. This is best seen for the U/D = 2.0 case in Fig. 5.6(b), where
the spectra show a sharp resonance at ω = 0 and two broad Hubbard bands at
approximately ω = ±U/2. Especially, the Luttinger pinning [114] at ω = 0 with the
condition πDA(ω = 0) = 2.0 is fulfilled to a high accuracy for the metallic cases in
Fig. 5.6(a) and (b). This suggests that the p = 1 projected states, i.e. those with only
single-particle excitations in the bath sites, indeed capture the low-energy physics of
the impurity model. On the other hand, we notice spurious oscillatory features/small
peaks on the side of the quasiparticle peak or on the Hubbard bands, most noticeably
for the metallic cases. As the amplitude of these features decreases with increasing L,
they can be attributed partially to the missing of states with multi-particle excitations
in bath sites close to the impurity site in the p = 1 projected subspace. We also note
that for the insulating case in Fig. 5.6(c), there is some small residual weight (smaller
than 10−4) close to ω = 0 for L = 1, which vanishes for L ≥ 2.

The second row of each panel shows the spectral functions calculated with p = 2.
Compared to the p = 1 results, the oscillatory features are greatly suppressed and
smooth spectra are recovered for all U and (L, p) values. The results for L = 3

and 4 are in excellent agreement with previous results obtained using time evolving
block decimation (TEBD) [96]. For the case of U/D = 2.0, two sharp side peaks
can be observed at the inner edges of the Hubbard bands, in line with previous ED
or DMRG results [74, 95, 96, 93]. We do note that the exact size of the side peaks
is L dependent, and shows a converging behavior with increasing L similar to that
of a Fourier spectral decomposition with increasing frequency cutoff. In Ref. [96] it
was pointed out that the peak position and size are dependent on the system size
(number of bath sites), and are likely related to the time-dependent probability of
the impurity being doubly occupied. For the insulating case, we note that the change
of A(ω) between the p = 1 and p = 2 results is less than 10−3 at all frequencies for
L ≥ 2.

Figure 5.8 shows the DMFT spectral functions obtained for U/D = 1.0 and 2.0
with p = 2 and L = 2, 3, 4. Compared to the quasi-exact results by solving the full
impurity model [96], the key spectral features including the width of the quasi-particle
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Figure 5.7: DMFT spectral function for U/D = 2.0 with different sizes of the initial Krylov
space M . The insets show the detail of the quasiparticle peak and the Hubbard band.

peak and the size and position of the Hubbard bands are well reproduced already with
L = 2.

As mentioned before, the convergence of the projected results depends on the size
of the initial Krylov space M . Fig. 5.7 shows the DMFT spectral functions with
(L, p) = (4, 2) for U/D = 2.0 calculated with M ranging from 50 up to 400. The
details of the quasiparticle peak and the upper Hubbard band are shown in the insets.
For small M values, small oscillations are seen on the side of the quasiparticle peak,
whose amplitude decreases with increasing M . The line shape becomes smooth and
converges between M = 300 and 400. The size of the side peak on the Hubbard band
is also seen to be M dependent, which becomes static for M ≥ 100. For all spectra
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Figure 5.8: DMFT spectral functions for (a) U/D = 1.0 and (b) U/D = 2.0 for L = 2, 3,
and 4 (solid lines), in comparison to results obtained by TEBD (dashed lines) reproduced from
Fig. 1 in Ref. [96]. Note that the TEBD results are calculated with 119 bath sites.

shown in Fig. 5.6, their convergence in M is tested, which typically requires a value
no more than a few hundred.

Finally, we comment on the computation cost of the proposed projection method.
The most time-consuming part of the method is the generation of the initial Krylov
space KM and evaluating the Hamiltonian and overlap matrix element of the Krylov
states as described in Sec. 5.3.1. The computation time then strongly depends on L

and the size of the Krylov space M . For (L, p) = (1, 2), calculating one G(ω) takes
less than two minutes using a single CPU core (with G±(ω) less than one minute
each). The computation cost increases substantially with increasing L due to the
increase of system size, and consequently the necessary increase of M . For the most
challenging case of U/D = 2.0 and (L, p) = (4, 2), calculating one G(ω) with M = 300

takes about two hours on a node with two eight-core processors (Intel Xeon E5-2630
v3, 2.40 GHz). However, as shown in Fig. 5.7, the spectral function calculated with
M = 100 already closely resembles the converged result and correctly reproduces all
the key features. It takes about twenty minutes to compute.
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5.6 Conclusion
In conclusion, in this chapter, we have proposed a projection scheme for efficiently
solving impurity models represented on a natural-orbital basis set. The natural-
orbital representation and the projection scheme are generally applicable for fermionic
impurity models regardless of number of orbitals or the form of interactions. We
have shown that for a one-band Hubbard model solved within DMFT, accurate
Green’s functions can be calculated directly on the real frequency axes for all in-
teraction strengths in the matter of minutes while including a few hundred bath
sites. While the presented results are obtained within the DMRG framework using
the Lanczos method, we expect the proposed method to work equally well with wave-
function based techniques when calculating spectral functions, e.g. correction-vector
method [115], dynamical DMRG [116], and various time-evolution methods [88] (see
chapter 6). For multi-band problems, the exponential scaling of the computation cost
with respect to the number of orbitals may still pose challenges for ED and MPS-
DMRG with large L values. In chapter 7, by constructing the TTPS representation
of the general multi-band impurity problems in the natural-orbital representation, an
efficient and general-purpose impurity solver can be achieved.
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6
Matrix Product States based impurity

solver in time-domain

In the last chapter, we have introduced the projection framework for impurity systems
on the frequency-axis. By separating the whole impurity Hamiltonian into three parts:
including a small interacting subsystem which contains the impurity, a non-interacting
bath part and the hybridization between these two parts, we can generate the Green’s
function of the full impurity problem from the one of the small interacting subsystem.
This is achieved by expanding the Green’s function of the small interacting subsystem
w.r.t. the hybridization order in a successive non-perturbative manner. For the half-
filling single-band Hubbard model on the Bethe lattice, an expansion to the second
order is enough to converge the spectra to an acceptable accuracy. This corresponds
to allow maximal 2 electrons (holes) in the projected conduction (valence) band.
However, there are several potential pitfalls of this method:

• first, since the subsystem Green’s function is calculated by the Krylov subspace
method, it suffers from the fact that the high energy spectra can not be resolved
accurately;

• second, it is tremendously difficult to extend the expansion to higher orders.
The possible hopping terms from the impurity subsystem to the rest of the con-
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duction or valence band grows quickly to intractable numbers as the expansion
order is increased;

• third, it is not easy to extend this method to complicated multi-band systems.
This difficulty originates from the facts that i) the MPS is not an efficient
representation of the many-body wave function of a general multi-band impurity
system (see next chapter); ii) the computation of the Krylov vectors poses a
global change to the wave function conducted by the MPO-MPS operation, and,
hence, results in a very quick growth of the MPS bond dimension.

In this chapter, we extend the projection framework to the time-domain which
circumvents some of these difficulties encountered on the frequency-domain: the wave
function is evolved locally and the expansion to higher order is straightforward. This
chapter is organized as follows: In section 6.1, we introduce the projection framework
in the time-domain; section 6.2 and 6.3 present discussions on the results of the
single-band Anderson model and the DMFT solutions of the single-band Hubbard
model on the Bethe lattice.

6.1 Particle number projection in the time-domain
In the previous chapter, we have established the advantage of the natural-orbital
representation of the impurity model. In this section, we will make use of the natural-
orbital representation and further introduce a particle number projection framework
in the time-domain to improve the computation efficiency of computing the one-
particle Green’s function.

To compute the Green’s function, after having already obtained the ground state
|0⟩ from DMRG, one needs to evolve the excited state to time t as |ψ(t)⟩ = e∓i(Ĥ−E0)t

d(†)|0⟩. Since the impurity Hamiltonian written in the natural-orbital basis might
have long-range terms, the time-dependent variational principle (TDVP) [117, 118]
is adapted in this thesis to evolve the state. The main idea of the TDVP method is
to project the action of Ĥ to the tangent space of the MPS manifold by introducing
a tangent space projector P̂T|ψ⟩ . Here, besides P̂T|ψ⟩ , following the same spirit of
the projection framework on the frequency-domain presented in the last chapter, we
further introduce an electron (a hole) number projector P̂ c(v)

L,Ne(h)
, which constrains

the maximal number of electrons (holes) Ne(h) allowed in the projected conduction
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Figure 6.1: Graphic representation of the two-site tangent space projector acting on site 3
and 4. Here Ai(Bi) represents the left- (right-) normalized MPS site tensor.

(valence) band. Here, L is the number of bath sites which are not subjected to
occupation restrictions (see Fig. 5.4). Furthermore, in the rest of this thesis we will
call the b site depicted in Fig. 5.4 as the “active” site and relabel it as a.

To allow a dynamical adjustment of the bond dimension during the time evolu-
tion, we will focus on the two-site variant of the TDVP algorithm. Together with the
particle number projector, the time-dependent Schrödinger equation is now written as

d

dt
|ψ(t)⟩ = −iP̂ c

Lc,NeP̂
v
Lv ,Nh

P̂T|ψ⟩Ĥ|ψ(t)⟩. (6.1)

The tangent space projector P̂|ψ⟩ can be decomposed into

P̂|ψ⟩ =
N−1∑
n=1

P̂ 1:n−1
L ⊗ 1̂n ⊗ 1̂n+1 ⊗ P̂ n+2:N

R (6.2)

−
N−1∑
n=2

P̂ 1:n−1
L ⊗ 1̂n ⊗ P̂ n+1:N

R ,

with a graphical representation of the first line as Fig. 6.1, while the second line can
be represented in a similar way.

By acting P̂T|ψ⟩ on a MPS |ψ⟩, the first sum contains all MPSs that differ at
most on two nearest neighbor sites from |ψ⟩, while the second sum removes all MPSs
that differ at most on one site (except the first site) from |ψ⟩. With such a decom-
position of the tangent space projector, TDVP evolves |ψ(t)⟩ at time t to t + ∆t

by a successive left-to-right and right-to-left sweeping, which is similar to the stan-
dard two-site DMRG algorithm [118]. The difference is that, instead of solving a
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local eigenvalue problem as in DMRG, in TDVP, one needs to solve the following
local forward and backward problem, taking left-to-right sweeping as example (while
right-to-left sweeping is similar),

X̂n

(
t+

∆t

2

)
= exp

(
−i∆t

2
Ĥ(2)
n

)
X̂n (t) , (6.3)

M̂σn+1

(
t+

∆t

2

)
= exp

(
i
∆t

2
Ĥ

(1)
n+1

)
M̂σn+1 (t) . (6.4)

Here,
[
X̂n

]σnσn+1

bn−1bn+1

=
∑

bn
M̂σn

bn−1bn
M̂

σn+1

bnbn+1
is the two-site wave function. The effective

two- and one-site Hamiltonian Ĥ
(2)
n and Ĥ

(1)
n are constructed iteratively during the

sweeping process by [
Ĥ(2)
n

]σnσn+1bn−1bn+1

σ′
nσ

′
n+1b

′
n−1b

′
n+1

= (6.5)∑
wn−1wnwn+1

L̂
b′n−1bn−1

wn−1 Ŵ σ′
nσn

wn−1wn
Ŵ

σ′
n+1σn+1

wnwn+1 R̂
b′n+1bn+1

wn+1 ,

and [
Ĥ(1)
n

]σnbn−1bn

σ′
nb

′
n−1b

′
n

=
∑

wn−1wn

L̂
b′n−1bn−1

wn−1 Ŵ σ′
nσn

wn−1wn
R̂b′nbn
wn , (6.6)

where L and R represent the left- and right-environment tensors satisfying the fol-
lowing recursive relations

L̂b
′
nbn
wn =

∑
b′n−1bn−1wn−1

L̂
b′n−1bn−1

wn−1 M̂
†σ′
n

b′n−1b
′
n
Ŵ σ′

nσn
wn−1wn

M̂σn
bn−1bn

, (6.7)

R̂
b′n−1bn−1

wn−1 =
∑

b′nbnwn

R̂b′nbn
wn M̂

†σ′
n

b′n−1b
′
n
Ŵ σ′

nσn
wn−1wn

M̂σn
bn−1bn

, (6.8)

with the boundary condition that L̂b
′
0b0
w0 = R̂

b′N+1bN+1

wN+1 = I3 is a rank−3 identity tensor.
Equation (6.3) and (6.4) can be solved by the Krylov exponential solver to very

high precision. Similar to the two-site DMRG, bond dimension of the MPS will
increase along the time evolution. Hence, in order to suppress the growth of the bond
dimension, after obtaining the new two-site wave function X̂n, a SVD factorization
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Figure 6.2: Density propagation through the system for different U values. From left to
right panel, U is chosen as (a) U = 0.25D, (b) U = 2D and (c) U = 4D. D is the half band
width of the semi-elliptic density of states, and N = 118. The impurity/active site is located
at i = 58/59.

and successive truncation of singular values w.r.t. a desired truncation weight tw are
usually performed. The effect of particle number projector is to restrict the
maximal number of allowed electrons (holes) in the rest of the conduction
(valence) band. One should note that, by increasing the allowed particle number
(Ne(h)) or number of bath sites before the projection (L), we should be able to recover
the pseudo-exact solution given by the TDVP (for the analysis of error introduced by
TDVP, we refer to [117, 118, 119, 120]).

6.2 Application to the single-band Anderson im-
purity model

We start the discussions about the applicability of our projection framework by first
studying the density propagation of the perturbed state |ψ(t)⟩ = e−iĤtd†|0⟩ with
different U values. Although the leading velocity of the wave packets for different U
values are approximately the same, the amplitude is slightly suppressed by increasing
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Figure 6.3: The snapshot of density propagation through the system at t = 10D for U =
0.25D (blue circle ), U = 2D (orange diamond) and U = 4D (green down triangle). D is
the half band width of the semi-elliptic density of states, and N = 118. The impurity site is
located at i = 58 (indicated by the gray dashed line).

U from 0.25D to 2D and is strongly suppressed by further increasing U to 4D as shown
in Fig. 6.2. Furthermore, for U = 0.5D and U = 2D, the excitation on the impurity
is more delocalized and keeps no residue for long times, while for U = 4D, it is more
localized and leaves an almost constant residue on the impurity site. This behavior
is connected with the formation of a Kondo singlet state between local moment on
the impurity with moments on the bath sites (indicated by the Schrieffer-Wolff limit
U ∼ 2D), which is more clearly shown in Fig. 6.3 by a time snapshot of the density
propagation.

After having gained some intuitive understanding on how the excitation propa-
gates through the system, we move on to the analysis of the distribution of number
of leaked electrons in the conduction bath sites of the perturbed states |ψ(t)⟩ =

e−iĤtd†|0⟩. The ground state |0⟩ is computed by the standard two-site DMRG with a
truncation weight of 1e−10, and |ψ(t)⟩ is evolved by two-site TDVP with a truncation
weight of 1e−9. Fig. 6.4(a)-(c) show the weight of state WNe(t) containing Ne electrons
in the conduction bath sites as function of time for three interaction values U = 0.25D,
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Figure 6.4: The weight of states with Ne electrons leaked into the conduction bath sites as
functions of time for different U values. From left to right panel, U is chosen as 0.25D, 2D
and 4D, respectively. D is the half band width of the semicircle density of states.

U = 2D and U = 4D. At t = 0, WNe(0) shows an exponential decrease for larger Ne

values and, as the perturbation begins to propagate through the system, WNe(t) with
large Ne value begins to increase, while W0(t) decreases. However, states with small
Ne values still dominate the dynamics of the system. For instance, when U = 2D, we
have W0(t > 10D) +W1(t > 10D) +W2(t > 10D) = 0.38%+37%+42% ≈ 80%, and
when U = 0.25D we even have W1(t > 5) ≈ 97%. Such a dominant contribution from
small Ne values justifies that a truncation of the wave function with respect to the
number of leaked electrons in the conduction bath sites can be well controlled. One
should also note that, for the Anderson impurity model, by comparing WNe(t) for
different U values in Fig. 6.4, the truncation of states with respect to leaked electrons
is more challenging for large U values. However, in DMFT large U values usually
introduce a Mott charge gap in the spectra and suppress the leaking of electrons
into the conduction band (and also holes into the valence band). This makes our
projection framework more efficient.

One can expect that once going deeper into the conduction (valence) band (by
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Figure 6.5: The weight of state having Ne electrons leaked into the conduction band as a
function of the impurity subsystem size L. U is fixed to be 2D.

increasing L), similar to the density profile of the ground state, contributions from
the states containing higher leaked electrons (holes) to the total wave function |ψ(t)⟩
will be further suppressed. This expectation is justified by the WNe(t) distribution
as function of L as shown in Fig. 6.5. We can clearly see that, when L is increased,
WNe(t) is suppressed for large Ne values (Ne = 2, 3, 4 in the plot) and increased for
small Ne values (Ne = 0, 1 in the plot).

Finally, we turn to the single-particle Green’s function and verify its convergence
in L and Ne(h). Here we fix the interaction strength as U = 2D which represents a
challenging case. Fig. 6.6(a) shows the real part of G>(t) calculated with different
projection parameter combinations (Le, Lh, Ne, Nh): with Le (Lh) the number of free
sites in the conduction (valence) band (ie., the unprojected region), and Ne (Nh) the
allowed maximum number of electrons (holes) in the projected region. For Lc = Lh =

L = 1, Ne = Nh = Nf = 1, the Green’s function can be reliably computed only in a
narrow short time region (t < 2D), while for the long time region, a large oscillation
around the exact data is observed. Such an oscillating error can be understood from
the following intuitive picture:once the excitation wave packet reaches the projector,
only states with

[
0, · · · , Ne(h)

]
leaked electrons (holes) are allowed to continue to
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Figure 6.6: (a) Real part of the greater Green’s function G>(t) with U = 2D computed
from different projection parameters: L = 1, Nf = 1 (green dashed); L = 2, Nf = 1
(green dash dotted); L = 1, Nf = 2 (blue dashed); L = 2, Nf = 2 (blue dash dotted)
and L = 1, Nf = 3 (cyan dashed). As a reference, we also plot the data obtained without
projection (red real). The insert shows an enlarged plot in the large time region. (b) the bond
dimension between the impurity and the active site as a function of time for different projec-
tion parameters (same symbolism as (a) ).

propagate, while states with larger number of leaked electrons (holes) are truncated.
Hence, if L is too small to filter out the high energy excitations or the allowed leaked
electrons (holes) number is too small, the excitation wave pocket will be blocked and
form artificial bounded states located between the electron and hole projectors. As
expected, when L or Nf is increased, the derivation to the exact result decreases
exponentially as shown in the insert of Fig. 6.6(a).

To show the computational cost averted by our projection framework, we plot
the bond dimension between the impurity and active site m (the largest one through
the system) as a function of time in Fig. 6.6(b) for different (L,Nf ) combinations.
As a reference, we also plot the bond dimension for calculation without projection.
We can see that, compared with the one without projection, the bond dimension
of calculation with projection enjoys a much slower growth. Hence, our projection
framework provides a systematic framework, which balances the desired accuracy and
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computational cost, to compute the impurity Green’s function.

6.3 Application to the single-band Hubbard model
on the Bethe lattice

In the previous section, we have shown that the particle number projection method
can be used as a well controlled method to achieve a balance between accuracy and
efficiency for the Anderson impurity model. In this section, we further use it as the
impurity solver for the DMFT solution of the single-band Hubbard model on the
Bethe lattice at half-filling. During the self-consistent loop, the truncation weight for
the DMRG search of the ground state is chosen as 1e−10, and 1e−9 for the TDVP
time-evolution. A Lorentz kernel η = 0.05D of the form eiωt−η|t| is used in the Fourier
transformation from G(t) to G(ω).

In Fig. 6.7, we show the spectral functions for three typical U values: U = D

corresponds to a weekly correlated metal; U = 2D corresponds to a strongly correlated
metal; U = 4D corresponds to a Mott-insulator. In all interaction regions, we observe
a fast convergence of the Green’s function w.r.t. L and Nf by comparing with the
quasi-exact TEBD data. Furthermore, even with L = 1 and Nf = 1, the main
features of the spectral function are already revealed. For both L = 1 and L = 2,
once we allowed more than 1 electron (hole) in the conduction (valence) band, the
spectra is converged w.r.t. Nf .

6.4 Conclusion
In conclusion, we have extended the particle number projection framework formulated
on the frequency-domain to the time-domain. This extension circumvents several
shortcomings encountered in frequency-domain calculations: first, it is straightfor-
ward to take into account corrections to the Green’s function from the higher order
excitation processes; second, the excited state is evolved locally which contracts to
the global changing of the state in frequency-domain. To justify the validity of the
projection framework, we performed a comprehensive analysis of the density prop-
agation process and particle number distribution during the time evolution of the
impurity model. A fast decrease of the weight of states w.r.t. the number of leaked
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electrons (holes) in the conduction (valence) band is observed. This guarantees the
fast convergence of the projection method w.r.t. the size of the unprojected region
and the number of the allowed leaked particles. Finally, this projection framework is
used as an impurity solver for DMFT to solve the single-band Hubbard model on the
Bethe lattice. The obtained Green’s functions show a great agreement with the exact
data and converges quickly as the projection parameters (L and Nf ) are increased.

96



−2.0−1.5−1.0−0.5 0.0 0.5 1.0 1.5 2.0
ω

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
π
D
A

(ω
)

(a)

−2.0−1.5−1.0−0.5 0.0 0.5 1.0 1.5 2.0
ω

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

π
D
A

(ω
)

(b)

−4 −3 −2 −1 0 1 2 3 4
ω

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

π
D
A

(ω
)

(c)
L = 1, Nf = 1

L = 1, Nf = 2

L = 1, Nf = 3

−2.0−1.5−1.0−0.5 0.0 0.5 1.0 1.5 2.0
ω

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

π
D
A

(ω
)

(d)

−2.0−1.5−1.0−0.5 0.0 0.5 1.0 1.5 2.0
ω

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

π
D
A

(ω
)

(e)

−4 −3 −2 −1 0 1 2 3 4
ω

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

π
D
A

(ω
)

(f)
L = 2, Nf = 1

L = 2, Nf = 2

L = 2, Nf = 3

Figure 6.7: DMFT Spectral function of the single band Hubbard model on the Bethe lat-
tice with different projection combinations and interaction strengths. (a) - (c) corresponds to
U = D,U = 2D,U = 4D with L being fixed to be L = 1 and Nf varying from 1 (blue line),
2 (orange line) and 3 (green line). (d) - (f) have the same parameters setting as (a) - (c) ex-
pect for L = 2. The gray real lines in (a), (b), (d) and (e) indicate the TEBD data taken
from Ref. [96].
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7
Tree Tensor Product states: an efficient

multi-band impurity solver on the real-axis

Part of this chapter is presented in the preprint
“Efficient real-aixs tree tensor product states impurity solver in the natural-orbital
basis”, Xiaodong Cao, Yi Lu, Philipp Hansmann and Maurits W. Haverkort, in
preparation

In the last two chapters, the single band Hubbard model is solved within the
DMFT approximation with a MPS based impurity solver that combines the rotation
to the natural-orbital basis and the particle-number projection performed either on
the frequency- or time-domain. However, the chain geometry of the MPS is best suited
for quasi one-dimensional systems [90], hence its applications to impurity problems
are limited on single- and two-band cases [96][97] for real-axis calculations. Although
the MPS based impurity solver has been successfully used to solve the three-band
model [94] on the imaginary-axis, the over fitting of the hybridization function and
the ill-conditioned analytical continuation process put a limitation on its accuracy.

In this chapter, by first analyzing the disadvantage of using the MPS to solve
multi-band impurity systems, we propose a tree tensor product state (TTPS) which
is able to encode the complicated entanglement structures of multi-band impurity
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Figure 7.1: Placing the impurity and bath sites of a three-band model on the chain geome-
try in the interaction dominated way. Here Ii stands for the i−th impurity site, and Ai stands
for the i−th active site. cji (v

j
i ) stands for the j−th conduction (valence) bath site of the i−th

orbital. The red lines represent the intra-impurity interactions, while the green, yellow, blue,
orange and pink lines correspond to the hopping terms between the impurity and active sites,
impurity and valence sites, impurity and conduction sites, active and conduction sites and ac-
tive and valence sites.

systems in a more efficient way. Then, the key algorithms of TTPS are presented and
their computational costs and potential pitfalls are discussed. Finally, we present the
discussions on the application to SrVO3 and further potential applications.

7.1 Modeling multi-band impurity systems with
tensor product states

The intrinsic difficulty of using MPS to solve multi-orbital models can be illustrated as
follows: when we place the impurity and bath sites in an ”interaction” dominated way
(illustrated in Fig 7.1), the entanglement between the impurity sites of different bands
can be very large because of the inter-band interactions. However, as already indicated
in the single-band system, the entanglement between the impurity and active site can
be also very large. Since the entanglement between two sites is transferred through the
auxiliary degrees of freedom living on the bonds that connect them, bond dimensions
of the bonds that connect the impurity and active site belonging to the same band
(e.g., I0 and A0 in Fig. 7.1) can be very large and make the calculation infeasible.
One can also choose to place the impurity and active site belonging to the same band
together. With such an ordering, however, the entanglement generated by the inter-
band interactions will again increase bond dimensions of the bonds that connect the
separated impurity sites.

In order to optimize the overall entanglement of the system, one can, in principle,
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Figure 7.2: (left) Fork geometry for a three-band impurity model. Here Ii stands for the
i−th impurity, bji stands for the j−th bath site of the i−th band. The red lines connecting
two impurity sites represent the interaction between them, and the green lines connecting the
impurity and bath sites represent the hopping terms between them. (b) The fork tensor prod-
uct states. Here, except site I1, each site has a rank−3 tensor with two bond legs (black)
and one physical leg (orange). The dashed lines at the edges of the fork represent the dummy
bond legs. On site I1, there is a rank−4 site tensor M10 with three bond legs and one phys-
ical leg. The indices of Mij have the meaning that the i−th branch and j−th steps into the
fork.

use the mutual-information [121] to reorder the sites. Because of the chain geometry
of the MPS, however, the average distance between two arbitrary sites will increase
linearly w.r.t. the total number of sites N . Hence, for typical DMFT calculations on
the real-axis which need a large number of bath sites (∼ 100− 1000) for a reasonable
resolution of the spectra, the MPS has a very bad scaling to the number of bands
(similar to the application of the MPS to quasi one-dimensional systems, in which
the computational cost increases exponentially with the width of the sample).

In conclusion, the main disadvantage of the MPS for multi-band systems is the
mixing of degrees of freedom that belong to different bands. Hence, if sites belonging
to different bands are placed into separated chains and these chains are connected
only through the impurity sites, we can achieve a geometry that optimizes both entan-
glement between the different impurity sites and entanglement between the impurity
and bath sites belonging to the same band. This is the key idea behind the so called
fork tensor product states (FTPS) [98] which is illustrate in Fig. 7.2.
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Figure 7.3: A depth 3 binary tree geometry. Each node can have two child nodes and one
parent node.

In this tensor-network state, each site has a rank−3 site tensor Mij (i represents
the branch index and j represents the steps into that branch), with two bond legs
and one physical leg, except the impurity sites having two impurity neighbors (I1
for the three-band model depicted in Fig. 7.2) which have three bond legs and one
physical leg. Such an explicit separation of bath degrees of freedom of different bands
in the fork geometry assures that there is no intermediate auxiliary bonds between
the impurity sites and each impurity site is connected with its bath sites directly,
hence, it provides a better representation of the entanglement structure for multi-
band systems. However, as discussed in the last chapter, the star geometry ordering
of the bath sites within the same band does not provide the best one-particle basis set
that minimizes the overall entanglement. The natural-orbital basis provides a better
one-particle basis for the impurity problem.

One should note that, the FTPS is a specific case of the more general tree tensor
product state [122]. In Fig. 7.3, we plot a binary tree geometry with depth ∆ = 3. In
this geometry, each node can have two child nodes (a and b) and a parent node (r).
One of the most important properties of the tree geometry with coordinate number z
and depth ∆ is that, the distance between two arbitrary sites scales logarithmically
with the total number of sites N , which differs from the linear scale of the chain
geometry. This can be understood from the fact that the largest distance between
two sites in a general tree geometry with coordinate number z is 2∆, and we also
have

N = 1 +
∆∑
i=1

(z − 1)j =
(z − 1)∆+1 − 1

z − 2
. (7.1)
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Figure 7.4: Sketch of the proposed tree tensor product states for a three-band impurity
model. Here, Aij represents the auxiliary rank−3 tensor which locates at the i−th depths
from the root and j−th branch in that depth level. cji represents the j−th conduction bath
site of the i−th impurity, and vji represents the j−th valence bath site of the i−th impurity.
Here, we use a light cyan (red) color to indicate that the filling on the conduction (valence)
bath sites are almost empty (full). The orange and black legs represent the physical and bond
legs, and the black dashed ones represent the dummy bond legs.

Such a logarithmic scaling promotes tensor-network states based on tree geometry to
be able to capture more complicated entanglement structures than MPS and FTPS.

Inspired by the above considerations, we propose the following tree tensor product
states for general multi-orbital systems: for impurity systems with No orbitals, we use
2No non branching fork to represent their conduction- and valence bands separately.
These non branching forks are connected by auxiliary rank−3 tensors. A sketch of
this tensor product states for No = 3 is presented in Fig. 7.4. In this proposed tensor
product states, we have a rank−3 tensor (two bond legs and one physical leg) on each
of the physical impurity and bath sites. Conduction and valence channels belonging
to the same band are first connected by an auxiliary rank−3 tensor with three band
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legs (A20 connects c00 and v00). Then degrees of freedom belonging to different bands
are connected by auxiliary rank−3 tensors with three bond legs of higher hierarchy in
the tree (A10 connects A20 and A21). The main benefit of the TTPS is that, additional
to the separation of degrees of freedom belonging to different bands as achieved also in
the FTPS, this network has a further explicit separation of degrees of freedom within
the same band into a conduction and valence channel by the rotation into the natural-
orbital basis. Once rotated into the natural-orbital basis, the filling of bath sites on
the conduction channel are almost empty and decrease exponentially to zero with the
distance to the impurity site. And the filling of the bath sites in the valence channel
are almost full and show an exponential convergence to 2 with the distance to the
active site. With such a fast converged density distribution we might expect that the
most entangled sites are located close to the last branching auxiliary tensors (A20, A21

and A22 in Fig. 7.4). Hence, the proposed TTPS captures the correct entanglement
structure of a general multi-band impurity model, i.e., the strongly entangled sites
are connected with an optimized minimal distance. Another benefit of TTPS is that,
since it separates the conduction and valence channel explicitly, we can resolve the
spectral function in an optimized way: we can assign the number of bath sites for the
conduction and valence channel according to the filling of this band. For the SrVO3

case which has a filling of one electron occupying three bands, giving 100 total bath
sites for each band, we can assign 16 bath sites to the valence channel and 84 bath
sites to the conduction channel.

7.2 Tree Tensor Product states
The basic ingredient of the proposed TTPS, or more general binary tree tensor prod-
uct states, is the rank−4 site tensor M ip

iriaib
living on each node, which can be graph-

ically represented as:

M

ip

ia
ib

ir

,

where ir, ia, ib is the root, a-child and b-child bond leg, respectively, and ip is the
physical leg which forms a complete basis set for the local Hilbert space. For a
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Hubbard site, the physical leg has a dimension of d = 4 (ip ∈ {|0⟩, | ↑⟩, | ↓⟩, | ↑↓⟩}).
In our proposed TTPS, the auxiliary rank−3 tensors can be generated by simply
setting the physical leg to be a dummy vacuum leg, while the rank−3 site tensors
living on the impurity and bath sites can be generated by setting ib to be a dummy
vacuum leg. By working on the general rank−4 tensors, or equivalently, on the
binary tree geometry, we can further branch the conduction and valence channels in
our current network for future applications. Similar to MPS, we can also encode the
symmetry information of the underlying systems into the site tensors. Currently, we
have implemented the abelian U(1) symmetry, the non-abelian SU(2) symmetry is
left for future study.

With the properly constructed site tensors on a tree geometry, the many-body
wave function can be constructed as:

|ψ⟩ =
∑
{σi}

tr
{
{M ip

iriaib
}
}
|σ0 · · ·σL−1⟩. (7.2)

Here, the trace operator tr{ } means that all the connected bond legs in the tensor-
network are contracted. For a system of L sites, different from the Ldm2 scaling in the
MPS, the number of parameters used in the TTPS now has a cubic scaling as Ldm3

w.r.t. the bond dimension m. The allowed maximal bond dimension m determines
how much entanglement can be encoded in the TTPS. When m→∞, we recover an
exact representation of the many-body wave function.

For the MPS, we can bring the state into a left-/right-normalized form by perform-
ing the SVD to its site tensors recursively by starting from the leftmost/rightmost
site. Similarly, we can bring the TTPS into a root-normalized form by starting from
the leafs of the TTPS (the bottom nodes), and moving upwards until the root node
(top most node) of this network with the following operation to each site tensor M :

M
SVD

U S V †

.

U is reshaped to the rank−4 site tensor A satisfying
∑

ipiaib
A
ip
ir(iaib)

A
†ip
(iaib)ir′

= δir′ ir .
S · V is transferred to its root site tensor. Here the hermitian operator acts on the
root index ir and the combined index (iaib).
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The bipartite nature (i.e., any cut of the bond legs connecting two sites will
separate the network into two disconnected parts) of the TTPS makes it possible
to extend the efficient DMRG algorithm for ground state optimization and TDVP
algorithm for time evolution developed for the MPS to TTPS. In the following, we
will elaborate on such extensions and analyze the performance of these algorithms.

7.3 Compression of TTPS
Similar to the MPS, TTPS does not form a complete vector space neither. Addition
of two TTPSs of bond dimension m1 and m2 will result in a TTPS of bond dimension
m1+m2. Also, by applying a general operator represented by the tree tensor product
operator (TTPO) on the TTPS , its bond dimension will increase inevitably. As
the most straightforward compression method, here we present the SVD compression
algorithm for TTPS.

In the SVD-compression of a MPS, we first perform a right-to-left sweep without
truncating the singular values to bring the MPS into a right-normalized form, then
a successive left-to-right sweep with the desired truncation accuracy is performed.
This guarantees that when the SVD is performed to a site tensor, its left site tensors
are all left-normalized and right site tensors are all right-normalized, during the final
left-to-right truncating sweep. In other words, we have constructed a left- and right-
orthonormalized basis set for this site tensor. In the TTPS, since each site tensor
has three bond legs, it is a bit more complicated to perform the SVD compression
properly, i.e., when a SVD truncation is performed to a specific bond leg, we must
ensure that the other two bond legs are in the properly normalized form or equivalently
forming a proper orthonormalized basis set. To achieve this, we perform the SVD
truncation in the following recursive way: starting from the top most node, for each
node tensor, we first bring its b-child sub-tree into root-normalized form without
truncating the singular values followed by an a-normalization of the current node
tensor also without truncation of the singular values. Then, we descent into the
a-child sub-tree and perform the same procedure to truncate it. After the a-child
sub-tree is properly truncated, an a-normalization of the current site tensor followed
by a root-normalization to its a-child site tensor are conducted with the desired
truncation accuracy. Then, we descent into the b-child sub-tree and perform the SVD
compression to it with the same recursive procedure as done for the a-child sub-tree.
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Finally, this site tensor is brought into r-normalized form with the desired truncation
accuracy. Such a truncation process ensures that each bond leg is truncated in both
directions. For a bond connecting an a-child site tensor and its parent tensor, e.g.,
it is truncated first by a r-normalization followed by an a-normalization of its parent
node tensor and finally by another r-normalization.

The recursive visiting of nodes in the tree network presented above is frequently
used in the TTPS related algorithms. To demonstrate how this visiting procedure
works, let’s use the TTPS presented in Fig. 7.4 as an example: we start from node
A0, then the site tensors are visited in the following sequence: A0

a−→ A10
a−→ · · · a−→

c00
a−→ · · · a−→ c50

r−→ · · · r−→ c00
r−→ A20

b−→ v00
a−→ · · · a−→ v30

r−→ · · · r−→ v00
r−→ A20

r−→
A10

b−→ A21 · · · (visiting the second band) · · · (visiting the third band) · · ·A11
r−→ A0.

Here the superscript of each arrow indicates how this bond leg is normalized (a, b
and r stands for a-, b- and r-normalized respectively). Hence, we visit the site tensors
by going along the edge of the tree in an counter-clockwise direction.

7.4 Overlap and expectation value of two TTPS
To compute the overlap between two TTPSs ⟨ψ2|ψ1⟩, we contract the tensor network
recursively as:starting from the leafs of the tree network, for each node, we first check
that whether it has an a-child or not. If it has one, we construct the a-environment
tensor Ea for it, and if not we use an identity rank−2 tensor as the a-environment
tensor; after the a-environment tensor has been constructed, the b-environment ten-
sor Eb is constructed in the same way. Finally, the new a- or b-environment tensor
(depending on whether the current node is an a-child or b-child to its root node) is
constructed as:

A1 A1

Ea
A1

Ea

Eb

A1

Ea

Eb

A∗
2

.

Once the many-body operator and state are represented by the TTPO and TTPS,
we can compute the expectation value of any operator overlapped by two states
⟨ψ2|Ô|ψ1⟩ in a recursive way which is similar to the one used for the evolution of the
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overlap value as presented above. For a node that does not have an a- or b-child, a
rank−3 split tensor is used as the initial environment tensor, instead of an identity
rank−2 tensor. This split tensor is constructed by using the operator and state child
legs as the two outgoing legs. The new environment tensor is constructed as:

A1 A1

Ea

A1

Ea

Eb
A1

Ea

Eb

W

A1

Ea

Eb

W

A∗
2

Noting that, the contraction order is that we first contract the site tensor A1 with the
two environment tensors Ea and Eb successively, then the resultant rank−6 tensor is
contracted with the operator site tensor W followed by a final contraction with A†

2.
The total computational cost will be ∼ m · (wm · dm2) +m · (wm · dm ·wm) + dm2 ·
(m3 · wd) + dm2 · (wm2), with a leading order of ∼ m5.

7.5 Applying the TTPO on TTPS: the zip-up Al-
gorithm

The zip-up algorithm proposed for the MPS approximates the new state resulting
from applying a general operator on a given state has been shown to be very efficient
and accurate. In our impurity solver implementation on the frequency-domain, it is
used as the key algorithm to generate the Krylov subspace for the excited states. To
extend it to the TTPS, we follow the same strategy as applied in the MPS: we first
bring the TTPS into a r-normalized form without truncating it. Next, by starting
from the root node, each site tensor is updated as follows: if the node has a root node,
then the tensor on its root node is brought into the correct normalized form, i.e., if
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Figure 7.5: Local update of the site tensor in the zip-up algorithm. Here, Fr represents the
rank−3 fusing tensor, and Sa,b represents the rank−3 a-/b-child splitting tensor, respectively.

this node is an a(b)-child, then the tensor on its r-node is a(b)-normalized. Then,
the tensor on the current node is updated as depicted in Fig. 7.5. After the local
update, we descent into its a-child and b-child sub-tree (if they exist), and update
them recursively. Once its a- and b-child sub-tree are both updated, the site tensor
is brought into root-normalized form. Note that, up to now, all the normalization
operations are performed with a relaxed truncation threshold. Finally, the updated
TTPS is truncated with the desired accuracy by a overall root-normalization. This
procedure is summarized in Algorithm. 1.
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Algorithm zipUpAlgo()
Input: TTPS |ψ⟩, TTPO Ô, Truncation Thresholds trunc
/* root normalize the state without truncation */
root-normalize the input state |ψ⟩ without truncating it
/* relax the truncation thresholds */
truncR = relaxed truncation thresholds of trunc
/* apply the TTPO onto |ψ⟩ with a relaxed truncation threshold,

typically, the bond dimension is twice enlarged. The
recursive routine starts from the root node of the input
state. */

error + = zipUpRec(|ψ⟩,|ψ⟩.r, Ô.r, truncR)
error + = truncating |ψ⟩ with trunc
return error

Procedure zipUpRec(|ψ⟩, aptr, optr, iLeg, trunc)
/* recursive routine for zip-up algorithm */
error ← 0
if aptr has a-child then

error + = zipUpSite(aptr, optr, iLeg, trunc)
error + = zipUpRec(|ψ⟩, aptr→a, optr→a, aLeg, trunc)
if aptr has b-child then

error + = zipUpRec(|ψ⟩, aptr→b, optr→b, bLeg, trunc)
end
error + = root-normalize aptr
return error

end
if aptr has b-child then

error + = zipUpSite(aptr, optr, iLeg, trunc)
error + = zipUpRec(|ψ⟩, aptr→b, optr→b, bLeg, trunc)
error + = root-normalize aptr
return error

end
error + = zipUpSite(aptr, optr, aLeg, trunc)
error + = root-normalize aptr
return error

Procedure zipUpSite(aptr, optr, iLeg, trunc)
/* update the local site tensor for zip-up algorithm, see

Fig. 7.5 for detail implementation. */
Algorithm 1: The Zip-up Algorithm for TTPS
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7.6 Time dependent variational principle algo-
rithm for the TTPS

Although, the original TDVP is derived for the MPS, it can also be extended to
the TTPS in a similar way as we have adapted for previous algorithms. The key
to this extension is to design a recursive update framework, which is summarized in
Algorithm 2. The procedure ensures that each site tensor M is forward propagated
twice with each time evolved by ∆t

2
. Each bond tensor C is also updated twice with

each time propagated by −∆t
2

M(t+
∆t

2
) = e−iĤ

(1)
eff

∆t
2 ·M(t), (7.3)

C(t− ∆t

2
) = eiĤ

(0)
eff

∆t
2 · C(t). (7.4)

Here, Ĥ(1)
eff is the single site effective Hamiltonian on this site which can be graphically

represented as:

WiEa

Eb

Er

,

while Ĥ(0)
eff is the zero-site effective Hamiltonian which has the same formula as in the

MPS and can be graphically represented as:

Ea Er

.

Ea, Eb and Er are the environment tensors which can be constructed iteratively during
the sweep. For instance, the environment tensor on its a-child node can be constructed
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as

(Ea)
i4
i′rir

= (7.5)

∑
i3i′pi

′
3

∑
i1ipib

∑
i2

(
(Ea

a)
i3
i1i2

(Ma)
ip
iri2ib

)
i1i3ipirib

∑
i′1

(
(Eb

a)
i′3
i′1ib

(Wa)
i′pip
i′ri1i

′
1

)
i1i′pi

′
ripi

′
3ib


i3i′pi

′
riri

′
3

(M †
a)i′pi4i3i′3

)
,

(7.6)

here Ea
a and Eb

a are the a- and b-environment tensors of its a-child node. Ma and
Wa are the state and operator site tensors of its a-child node. Eb and Er can be con-
structed in the same way. Such a sweeping procedure leads to a Trotter decomposition
error of second order, i.e., ∼ O (∆t3).

We also note that, by replacing the Krylov exponentializing solver used to solve
Eq. (7.3) with the Lanczos eigen solver, we can adapt this algorithm directly to find
the ground state, i.e., DMRG for the TTPS. The difference is that, instead of sweeping
throughout the network just once as in the TDVP, in DMRG, we sweep multiple times
until the desired accuracy is achieved.

Since the single-site algorithm can not increase the bond dimension during the
local update process, we need to add noise terms to help DMRG get out of local
minima. For the single-site TDVP, instead, there is no way to increase the bond
dimension during the time-evolution process. Because of the increasing entanglement
during the time-evolution and the lack of strategies to adjust the bond dimension
dynamically limits the applicability of the single-site TDVP for general systems. For
simple systems, the single-site TDVP algorithm can typically be very efficient and
accurate. For demonstration and benchmark purposes, we construct an impurity
model with three independent bands, and each of them has a semicircular DOS and
intra-band Hubbard U interaction. As indicated in Fig. 7.6, the single-site TDVP for
the TTPS with a relative small bond dimension m = 20 can already produce reliable
results for both hall-filled and doped cases, by comparing with the quasi-exact data
computed from single-band case with a much larger bond dimension (m = 300).

However, for more complicated systems, the single-site TDVP can fail to extract
the long-time dynamics behavior correctly, because of the increasing entanglement

111



Algorithm evolveSingleTree()
evolveSite(Ĥ(0)

eff , M , ∆t
2
)

if this node has a-child then
evolveSingleChild(aLeg)

end
if this node has b-child then

evolveSingleChild(bLeg)
end
evolveSite(Ĥ(0)

eff , M , ∆t
2
)

Procedure evolveSingleChild(iLeg)
if iLeg == aLeg then

U, S, V † ← SVD(M)
M ← V †

C ← U · S
evolveBond(Ĥ(0)

eff , C, −∆t
2
)

evolveSingleTree( its a-child)
Ua, Sa, V

†
a ← SVD(Ma)

Ma ← Ua
Ca ← Ua · Sa
evolveBond(Ĥ(0)

eff , Ca, ∆t
2
)

else if iLeg == bLeg then
U, S, V † ← SVD(M)
M ← V †

C ← U · S
evolveBond(Ĥ(0)

eff , C, −∆t
2
)

evolveSingleTree( its b-child)
Ub, Sb, V

†
b ← SVD(Mb)

Mb ← Ub
Cb ← Ub · Sb
evolveBond(Ĥ(0)

eff , Cb, ∆t
2
)

Procedure evolveSite(Ĥ(1)
eff , M , ∆t)

/* using Krylov subspace method to exponentialize the effective
1-site Hamiltonian */

M ← e−iĤ
(1)
eff ∆tM

Procedure evolveBond(Ĥ(0)
eff , C, ∆t)

/* using Krylov subspace method to exponentialize the effective
0-site Hamiltonian */

C ← e−iĤ
(0)
eff ∆tC

Algorithm 2: Single-site TDVP time-evolution algorithm for TTPS.
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Figure 7.6: One-particle Green’s function for the (a) half-filled and (b) doped three-band
impurity model. The quasi-exact MPS solutions of G>(t) are obtained by evolving a single-
band Anderson impurity model with the two-site TDVP algorithm with truncation weight
tw = 1e−9 and maximal bond dimension 300, while the TTPS results are obtained by solving
the impurity problem of three independent bands (each of them is constructed with the same
parameters as the single-band model used in the MPS calculation) with the single-site TDVP
algorithm with a bond dimension of 20. The Hubbard interaction is chosen to be U = 2D,
and half-band width D = 1. For the doped case, we shift the overall filling by putting a chem-
ical potential µ = −3.0.

during the time-evolution. To circumvent this drawback, a two-site variant can be
adapted. The key difference is that during the local update procedure, instead of
updating only one site tensor, two site tensors are updated simultaneously. The
two-site effective Hamiltonian can be graphically represented as:

W WrEa

Eb

Er

Er
b

.

Now, Ĥ(2)
eff is used to forward propagate the state, while Ĥ(1)

eff is used to backward
propagate the state. Since Ĥ(2)

eff has a dimension of d4m8, compared with Ĥ
(1)
eff which
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Figure 7.7: Comparing greater Green’s functions computed from the single-site (orange
line), two-site (cyan line) and hybrid (green dot) TDVP time-evolution algorithm. Here, the
maximal bond dimension are fixed to be m = 50 for all cases. The time step is chosen to
be ∆t = 0.1. In the hybrid TDVP, the system is evolved by the two-site TDVP to 4 with a
truncation weight of tw = 1e−8 (same as the pure two-site TDVP). In the construction of the
impurity model, for each band, we use 30 sites for the conduction channel and 10 sites for the
valence channel.

has a dimension of d2m6, we can expect that the two-site TDVP is computationally
much heavier. To achieve a balance between accuracy and computational cost, one
can adapt a hybrid framework: the system is evolved by the two-site TDVP to some
point of time, then we switch to the single-site TDVP and evolve the state to the
final time. This framework enables the dynamic adjustment of bond dimensions while
maintaining the computational cost reasonable.

To compare the performance of the different time-evolution frameworks, we com-
pute the Green’s function of of an impurity model with three degenerate bands and
each of them has an input DOS taking from SrVO3. The interaction on the impu-
rity is of density-density type. This system will be studied in detail in the latter
discussions, and here it is used just for demonstration purpose. In Fig. 7.7, Green’s
functions computed from different time-evolution frameworks are plotted. We can see
that with the same fixed maximal bond dimension (m = 50 for the plot), the hybrid
TDVP exhibits a good agreement with the computational much more expensive pure
two-site TDVP in a large time region, while the pure single-site TDVP fails to capture
the correct long-time behaviors. Hence, in later discussions, unless specified, we will
use the hybrid TDVP to evolve the underlying TTPS.
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7.7 Application to SrVO3

The SrVO3 has a cubic crystal symmetry and the V 3d orbitals are split into two
degenerate eg and three degenerate t2g orbitals. The three degenerate t2g orbitals
which are filled by one electron form the correlated subspace for this system. The non-
interacting density of states is obtained from the FPLO [123, 124] implementation of
the DFT, and the local interaction is assumed to have a density-density or Kanamori
form as described in section 5.1. Here we have chosen the interaction parameters to
be U = 4eV and J = 0.6eV as the physical relevant case.

Before presenting the DMFT results, we first analyze the atomic energy levels
created by the density-density interaction to gain some insights. Since there is just one
electron occupying the three degenerate t2g orbitals in the atomic limit, we can expect
a single hole excitation peaked at −ϵ in the removal spectra, with ϵ the on-site single-
particle energy, and three single electron-excitation generated energy levels peaked at
U − 3J , U − 2J and U + ϵ. Here, the U − 3J level corresponds to the six degenerate
high spin states formed by two electrons {| ↑, ↑, 0⟩, | ↑, 0, ↑⟩, |0, ↑, ↑⟩, | ↓, ↓, 0⟩, | ↓
, 0, ↓⟩, |0, ↓, ↓⟩}, the U − 2J level corresponds to the six degenerate low spin states
{| ↑, ↓, 0⟩, | ↑, 0, ↓⟩, |0, ↑, ↓⟩, | ↓, ↑, 0⟩, | ↓, 0, ↑⟩, |0, ↓, ↑⟩}, and the U+ϵ level corresponds
to the three degenerate doubly occupied states {| ↑↓, 0, 0⟩, |0, ↑↓, 0⟩, |0, 0, ↑↓⟩}. The
higher particle excitations can result more complicated multiplets, but due to their
large excitation energies, their weights are expected to be small. Once placed in a
solid, we can expect that these discrete atomic levels will be shifted and broadened
by their hybridization with the conduction bands.

For all the results shown in the following, we use a number of Nc = 50 conduction
bath sites and Nv = 18 valence bath sites for each band, and have tested that an
increasing of the number of bath sites does not change the results. The ground state
is calculated with a truncation weight of tgsw = 1e−12 and a minimal sweeping number
of 30. To calculate the Green’s function, we first evolve the excited states to t = 4eV −1

by the two-site TDVP with a truncation weight of tevw = 1e−8 and a maximal bond
dimension m, then we turn to the single-site TDVP to evolve to t = 16eV −1. The
time step is chosen as ∆t = 0.1eV −1. Finally, the time series is further extrapolated
to 1000eV −1 by the linear-prediction method [125]. In the Fourier transformation to
the frequency-axis, we use a Gaussian broadening in the kernel eiωt−(ηt)2 of η = 0.04eV

to avoid the cutoff effects.
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Figure 7.8: DMFT spectral functions of SrVO3 with different bond dimensions. Here we
have used the density-density interaction with U = 4eV and J = 0.6eV . The blue, orange
and green line corresponds to m = 50, 70, 100, respectively. The grey line is the FTPS result
taken from [98] which is shown as a reference. The insert shows the two-electron excitations
at higher energies.

The DMFT spectral functions with the density-density interaction for different m
values are shown in Fig. 7.8. As discussed above, the main features of the spectral
function consist of a hole-excitation peak in the removal spectra, and three single
electron-excitation peaks in the upper Hubbard band. This is indeed the case as
shown in Fig. 7.8. Profoundly, we are able to resolve these features already with a
very small bond dimension m = 50, although the spectral function can be slightly
changed by further increasing m. We should emphasis that these fine peak structures
originated from the atomic multiplets are not present in the spectral function obtained
from the QMC solver performed on the imaginary-time axis [98]. They are smeared
out by the ill-conditioned analytical continuation process. Furthermore, as shown
in the insert, besides the one-electron excitations, we are even able to resolve the
two-electron excitations which have higher excitation energies. As shown in Fig. 7.9
and its insert, similar situation is observed for the Kanamori interaction:we are able
to resolve the fine structures of the spectral function with a relative small bond
dimension. For both type of interactions, we also plot the FTPS results from Ref. [98]
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Figure 7.9: DMFT spectral functions of SrVO3 with different bond dimensions. Here we
have used the Kanamori interaction with U = 4eV and J = 0.6eV . The blue, orange and
green real line corresponds to m = 50, 70, 100, respectively. The grey line is the FTPS result
taken from [98] which is shown as a reference. The insert shows the two-electron excitations
at higher energies. The red dashed line is the spectra calculated from the projection method
on the frequency-dome presented in chapter 5.

as for comparison. We observe a good overall agreement with the FTPS results, but
small differences are found. These differences might come from the fact that we are
using input DOS generated by different DFT implementations.

Finally, the computational time used for above calculations are:each DMFT loop
takes about 28 minutes up to 2.5 hours by increasing the bond dimension m from 50

to 150 on a node with two ten-core processors(Intel Xeon E5-2630 v4, 2.20GHz).

7.8 Conclusion
In conclusion, despite the fact that the rotation to the natural-orbital representation
can optimize the one-particle basis and results a small ground state entanglement
for impurity problems, the chain geometry of the MPS is not suitable for multi-
band models. This can be revealed from the following example:consider a multi-band
impurity model which has a comparable band-width and interaction strength, then
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the entanglement between the impurity and active sites belonging to the same band
can be quite large, while the entanglement between the impurity sites can also be
very large because of the inter-band interactions. Hence, there is no way of ordering
on the chain geometry that can optimize the impurity-active and impurity-impurity
entanglement at the same time. Furthermore, it is inevitable to introduce long-
range hoppings when placing the bath sites of a multi-band impurity model on a
chain geometry. Hence, alternative tensor product-states that are able to capture the
entanglement structure of a general multi-band impurity model in an optimized way
are desirable. The FTPS represents one of these attempts, it separates the degrees
of freedom belonging to different bands by placing them on different forks. In this
chapter, by further noting that the FTPS belongs to the more general tree tensor
product states, we propose a TTPS representation of the many-body wave function
of a general multi-band impurity model rotated in the natural-orbital basis. The
advantage of this proposed TTPS is that it separates not only the degrees of freedom
belonging to different bands, but also the conduction and valence band belonging
to the same band explicitly. Together with all the benefits from the rotation to
the natural-orbital basis, this solver has the potential to tackle problems that are
not accessible in other methods. For benchmark and demonstration purposes, the
prototypical compound SrVO3 are solved in DMFT with the proposed solver. The
obtained Green’s function shows a fast convergence with the bond dimension and
resolves the atomic multiplets correctly, and also shows a greet agreement with the
FTPS results.
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8
Conclusion and outlook

Correlated electron systems provide one of the most profound playgrounds for the
exploring of novel physics. The interplay between correlation effects, orbital physics
and lattice symmetries poses challenges for the development of universal concepts and
methods for this category of materials. DMFT presents one of the most successful
methods that is able to capture the relevant physics to a wide range of materials. De-
spite these successes, the local approximation to the self-energy which founds the basis
of DMFT limits its applicability to systems in which non-local correlation effects are
significant. Extensions of DMFT to include non-local correlations can be categorized
into two directions, i.e., the diagrammatic extensions and cluster extensions. Meth-
ods following the diagrammatic extension to DMFT try to include diagrams which
are not included in DMFT, exemplary examples are GW+(E)DMFT, FLEX+DMFT,
DΓA and also the TRILEX method, while methods following the cluster extension
to DMFT intend to enlarge the impurity size either in real- or momentum space,
since the correlation effects within the impurity are correctly captured in DMFT. In
this thesis, we have presented the adatom surface system as an exemplary example in
which the non-local correlations and interactions can have significant impact on the
emergence of exotic phases, and then we further devoted to the development of im-
purity solver which has the potential to pursue DMFT calculations with large cluster
size and/or complicated multi-band structure on the real-axis. Here, we recapitulate
the main results of each part.
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In the first part of this thesis, we started with a short review of the general back-
ground of DMFT, then proceeded with a unified derivation of the (E)DMFT and
TRILEX self-consistent equations. Then, motivated by the study of the interplay
between charge-, spin- and pairing-instability in cuprates, the adatom surface sys-
tems which have a half-filling phase diagram that hosts competing exotic phases, are
studied by the TRILEX method. A dome shaped superconducting phase is found in
the vicinity of a strong spin fluctuating metal phase in the low doping region and
a strong charge fluctuating metal phase in the high doping region. There are two
interesting features of this superconducting phase: first, its superconducting criti-
cal temperature has a positive dependence on the long-range interaction strength;
second, its paring symmetry is of chiral d−wave, which has a non-trivial topology in-
variant. By a close analysis of the individual contribution from the charge- and spin
channel, we find a cumulative contributions from these two channels to the supercon-
ducting instability, which is a resultant of the underlying triangular lattice symmetry.
Furthermore, the novel effects of the long-range interaction are reflected by its simul-
taneous enhancement of both the charge- and spin-fluctuations. Together with the
cumulative contributions of the spin- and charge-fluctuations to the superconducting
instability, the simultaneously enhancement of the spin- and charge-fluctuation by
the long-range interaction explains the positive dependence of Tc on the long-range
interaction strength. The uniqueness of the adatom systems are shown by the absent
of superconductivity in systems that have a non-local but short-range interactions,
and systems that have a different lattice symmetry. This synergic behavior of spin-
and charge-fluctuations in triggering the superconducting instability provides a fun-
damental different scenario to the one on the square lattice that has competing spin-
and charge-contributions.

In the second part of this thesis, we present the development of efficient solver
for the general impurity models. It can be helpful for the extensions of DMFT by
enlarging the impurity size, or solving multi-band systems with low symmetry. Start-
ing with an introduction to the natural-orbital representation of a general impurity
model, we established its superior to the commonly used star and chain representa-
tions by comparing the ground state properties (including entanglement distribution
and density profile) in these representations. The profound small entanglement in the
ground state and fast convergence of bond dimension with the number of bath sites
promote the natural-orbital representation as the method of choice for the general
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impurity problems. Furthermore, the fast (almost exponential) convergence of the
density in the conduction (valence) bath sites to empty (fully occupied) motivates us
to propose a projection framework that reduces the computation of the full impurity
Green’s function to solely computing the one of a small subsystem. This is done by
first separating the whole system into three distinct parts including an impurity sub-
system, the conduction and valence bath sites, and the hybridization between them.
Next, we compute the Green’s function of the small impurity subsystem, while the
impurity Green’s function of the whole system is obtained by expanding the subsys-
tem Green’s function with respect to the hybridization terms. We further formulated
the one- and two-particle projection framework for general impurity models on the
frequency-domain. The applicability of this projection framework is elucidated by the
single-band Anderson impurity model and DMFT solution of the single-band Hub-
bard model on the Bethe lattice. Fast convergence of the Green’s function with the
expansion order and subsystem size are observed by comparing with the quasi-exact
date from literature. To counter the difficulty to extend to higher order expansions
and avoid the global changing of the wave function in the generation of the Krylov
vectors on frequency-domain, we further extended this projection framework to the
time-domain and observed a similar convergence of the Green’s function with the
subsystem size and expansion order. The proposed projection framework provides
a balance between accuracy and computational cost for the impurity problems. Al-
though, the projection framework has the same approximation criterion for calcula-
tions performed on the frequency- and time-domain, the choosing of on which domain
to perform the calculation can be case dependent:the frequency-domain is best suited
for spectroscopy calculations which usually have a quite large damping factor, while
the time-domain is suited for non-equilibrium calculations and can be easily extended
to higher expansion orders when needed.

Although the proposed projection framework can reduce the computational cost of
solving the impurity problem, the entanglement structure of a multi-band impurity
system is not represented by the MPS in an optimized way. To correctly capture
the entanglement structure of multi-band impurity systems in the natural-orbital
representation, we designed the TTPS which separates not only the degrees of freedom
belonging to different bands but also the conduction and valence degrees of freedom
within the same band explicitly. With such a combination of using the natural-orbital
representation and the tree tensor product-states parameterization of the many-body

121



wave function, we proposed an impurity solver which has the potential to solve the
impurity models inherited from DMFT calculations which are not accessible in other
methods. To demonstrate the power of our method, the prototypical compound
SrVO3 is studied in DMFT with our solver. Indeed, our method resolves the peak
features of the spectral function correctly and shows a fast convergence with the bond
dimension. The application of this solver to more complicated systems, for instance
Sr2VO4, Sr2RuO4 and also cluster extensions of DMFT are left for future study.

In summary, we have shown the importance and necessity of the inclusion of non-
local correlations in the standard DMFT by the TRILEX study of the hole-doped
adadom surface systems. Furthermore, the essential roles of the long-range interac-
tion and lattice symmetry in triggering the superconducting pairing are revealed by
analyzing the momentum resolved response functions. In order to include non-local
correlations in the cluster extensions of DMFT and also handle multi-band systems,
we move on to develop efficient impurity solver which lies at the core of DMFT cal-
culations. By rotating to the natural-orbital basis, a projection framework on both
the frequency- and time-domain are proposed and tested. Furthermore, to counter
the intrinsic difficulties of the MPS representation of the many-body wave function
of a multi-band system, we have proposed the TTPS to capture the entanglement
structures correctly. This solver has been tested by solving the prototypical SrVO3

and shows a great potential for further applications.

122



Acknowledgments

During the past four years of my Ph.D. study in Stuttgart, I have had the chance to
work with many excellent people and participated in many interesting and challenging
projects. This work would not be possible without the help of many people.

First and foremost, I want to thank my supervisor Dr. Philipp Hansmann for his
continues mentoring and support. Throughout my Ph.D. study, discussions with him
were always stimulating and inspiring. He led me into the research field of strongly
correlated systems and guide me through the projects presented in this thesis. He also
gave me the freedom to choose topic, and provided me supports when I was thwarted.

During the last two years of my Ph.D., I was fully dedicated in the developing
of the new impurity solver and I want to thank Dr. Yi Lu and Prof. Maurits W.
Haverkort for their invaluable insights and help on this project. Without them, there
is no chance to achieve what was presented in this thesis. I am also in debt to
Yi for sharing me knowledge on a variety range of research fields. I am grateful
to my colleagues and friends in Stuttgart:Daniil Mantadakis, Schmid Michael and
Stefan Kaeser. Daniil was my office mate for the past four years, he encouraged me
when I was depressed and provided me unlimited help when I struggled. Without
his company, life will be in another dim color. I appreciate the friendship with him
sincerely. Michael was always full of energy and passion to his study and inspired me
many times. Stefan was like a source of happiness in our group, his optimist helped
me a lot when I was struggling with the bugs in my code. I thank Dr.Wenbin Rui
for helping me on the topology aspect of matter, and also being a good friend and
providing me encourage and help.

I thank Thomas Ayral for teaching me on the CT-QMC code and TRILEX
method. I thank Prof. Oliver Parcollet for stimulating discussions on TRILEX and
providing the elegant TRIQS library. I thank Prof. Dirk Manske for his support
and stimulating discussions on the superconductivity pairing mechanism. I thank
Prof. Dr. Sabine Andergassen for teaching me the many-body theory. I own my
thank to Cornelia Hille for sharing me the insights on the Emery model and cRPA
method. I thank Dr.Demetrio Vilardi and Dr. Ciro Taranto for teaching me FRG. I

124



thank Dr. Dobrautz Werner for the delightful times on the balcony and help on the
Zusammenfassung.

I also want to thank my Chinese colleagues and friends during my stay in Stuttgart:
Zhi-cheng Zhong, Wen-bin Rui, Yu-Xin Zhao and Li-Cheng Wang for sharing this
period of shining memory in my life.

Last but not least, I want to thank my parents and girl friend for their continues
support and unconditional love! This thesis is dedicated to you!

125



List of Figures

2.1 Decomposition of the long-range interaction into a short-range irregu-
lar one and a long-range regular one. . . . . . . . . . . . . . . . . . . 11

2.2 Sepration of the lattice action in the cavity derivation of DMFT equa-
tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Timeline of discover of superconductors . . . . . . . . . . . . . . . . . 25
3.2 Stretch of various scenarios generated by different interaction and

charge-transfer energy ratio. . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Half-filling phase diagram of Adatom surface systems. . . . . . . . . . 27
3.4 Impact of vertex corrections on the charge- and spin response functions. 30
3.5 Hole-doped phase diagram of adatom systems. . . . . . . . . . . . . . 31
3.6 Imaginary part of the local fermionic self-energy for different hole dop-

ing levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7 λ as a function of temperature T at different doping levels. . . . . . . 33
3.8 Momentum dependence of the gap and spectral function at ω0 = iπT . 34
3.9 Charge and spin response functions versus hole doping. . . . . . . . . 35
3.10 Single particle spectral functions for different long-range interaction

values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.11 Separation of charge and spin contributions to the SC instability. . . 37
3.12 Impact of Fierz parameter on SC instability. . . . . . . . . . . . . . . 38
3.13 Comparison of short- and long-range interaction. . . . . . . . . . . . 40
3.14 TRILEX results for square lattice with long-range interaction. . . . . 41

4.1 Graphic representation of the MPS. . . . . . . . . . . . . . . . . . . . 48
4.2 Taking the site tensor into left- and right-normalized form by SVD. . 49
4.3 Left- and right-normalization relations satisfied by Ai and Bi. . . . . 50
4.4 Variational compression of the MPS. . . . . . . . . . . . . . . . . . . 53
4.5 Variational orthogonalization method for MPS. . . . . . . . . . . . . 55
4.6 Graphic representation of the MPO. . . . . . . . . . . . . . . . . . . 57

126



4.7 The Zip-up algorithm for MPO-MPS operation. . . . . . . . . . . . . 61
4.8 DMRG algorithm for ground state optimization. . . . . . . . . . . . . 63

5.1 Star and natural-orbital representation of impurity Hamiltonian. . . . 67
5.2 Comparison the ground state properties of half-filling SAIM in the star

and natural-orbital configurations. . . . . . . . . . . . . . . . . . . . 70
5.3 Density distribution in the natural-orbital and star representations. . 71
5.4 Separation of the full Hamiltonian into several subsystems in the natural-

orbital representation. . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.5 Ground energy convergence in the natural-orbital representation. . . 80
5.6 DMFT spectral functions calculated with different projection param-

eters for different interaction strength. . . . . . . . . . . . . . . . . . 81
5.7 Dependence of the DMFT spectral function on the Krylov space size. 83
5.8 Comparison of DMFT spectral functions calculated from the projec-

tion method with the ones from TEBD method. . . . . . . . . . . . . 84

6.1 Graphic representation of the two-site tangent space projector . . . . 88
6.2 Density propagation in the SAIM. . . . . . . . . . . . . . . . . . . . . 90
6.3 The snapshot of density propagation at t = 10D for different interac-

tion values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.4 The weight of state with Ne electrons leaked into the conduction bath

sites as a function of time for different U values. . . . . . . . . . . . . 92
6.5 The weight of state having Ne leaked electrons in the conduction bath

sites as a function of the impurity subsystem size L. . . . . . . . . . . 93
6.6 Accuracy of the computed Green’s function and bond dimension growth

for different projection parameters. . . . . . . . . . . . . . . . . . . . 94
6.7 DMFT spectral functions computed from different projection param-

eters for three typical phases: the weakly correlated metal, strongly
correlated metal and Mott insulator. . . . . . . . . . . . . . . . . . . 97

7.1 Placing the impurity and bath sites of a three-band model on the chain
geometry in the interaction dominated way . . . . . . . . . . . . . . . 99

7.2 Fork geometry and tensor product states for three-band impurity model.100
7.3 A depth 3 binary tree geometry. . . . . . . . . . . . . . . . . . . . . . 101

127



7.4 Sketch of the proposed tree tensor product state for a three-band im-
purity model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.5 Local update of the site tensor in the zip-up algorithm for TTPS. . . 108
7.6 Comparison of Green’s functions computed from TTPS and MPS. . 113
7.7 Comparing Green’s functions computed from different time-evolution

frameworks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.8 Convergence of the DMFT spectral functions of SrVO3 using the density-

density interaction with the TTPS bond dimension. . . . . . . . . . . 116
7.9 Convergence of the DMFT spectral functions of SrVO3 using the Kanamori

interaction with the TTPS bond dimension. . . . . . . . . . . . . . . 117

128



List of Algorithms

1 The Zip-up Algorithm for TTPS . . . . . . . . . . . . . . . . . . . . . 109
2 Single-site TDVP time-evolution algorithm for TTPS. . . . . . . . . . 112

129



References

[1] Walter Metzner and Dieter Vollhardt. Correlated lattice fermions in d = ∞
dimensions. Phys. Rev. Lett., 62:324–327, Jan 1989.

[2] Fusayoshi J. Ohkawa. Electron correlation in the hubbard modelin d=∞ di-
mension. Journal of the Physical Society of Japan, 60(10):3218–3221, 1991.

[3] Fusayoshi J. Ohkawa. Electron correlation in the hubbard model in d=+∞ di-
mension: Heavy electrons in the mott-transition region. Journal of the Physical
Society of Japan, 61(5):1615–1632, 1992.

[4] Antoine Georges and Gabriel Kotliar. Hubbard model in infinite dimensions.
Physical Review B, 45(12):6479, 1992.

[5] Qimiao Si and J. Lleweilun Smith. Kosterlitz-thouless transition and short
range spatial correlations in an extended hubbard model. Phys. Rev. Lett.,
77:3391–3394, Oct 1996.

[6] G Rohringer, H Hafermann, A Toschi, AA Katanin, AE Antipov, MI Kat-
snelson, AI Lichtenstein, AN Rubtsov, and K Held. Diagrammatic routes
to non-local correlations beyond dynamical mean field theory. arXiv preprint
arXiv:1705.00024, 2017.

[7] Thomas A. Maier, Mark Jarrell, Thomas Pruschke, and Matthias H. Hettler.
Quantum cluster theories. Reviews of Modern Physics, 77(July):1027–1080,
2005.

[8] M. H. Hettler, A. N. Tahvildar-Zadeh, M. Jarrell, T. Pruschke, and H. R. Krish-
namurthy. Nonlocal Dynamical Correlations of Strongly Interacting Electron
Systems. Physical Review B, 58(12):R7475, 1998.

[9] A. I. Lichtenstein and M. I. Katsnelson. Antiferromagnetism and d -wave su-
perconductivity in cuprates: A cluster dynamical mean-field theory. Physical
Review B, 62(14):R9283, 2000.

130



[10] Gabriel Kotliar, Sergej Y. Savrasov, Gunnar Pálsson, and Giulio Biroli. Cellular
dynamical mean field approach to strongly correlated systems. Phys. Rev. Lett.,
87:186401, Oct 2001.

[11] Kenneth G. Wilson. The renormalization group: Critical phenomena and the
kondo problem. Rev. Mod. Phys., 47:773–840, Oct 1975.

[12] Ping Sun and Gabriel Kotliar. Extended dynamical mean-field theory and GW

method. Phys. Rev. B, 66:085120, Aug 2002.

[13] Ping Sun and Gabriel Kotliar. Many-body approximation scheme beyond gw.
Phys. Rev. Lett., 92:196402, May 2004.

[14] Thomas Ayral, Silke Biermann, and Philipp Werner. Screening and nonlocal
correlations in the extended hubbard model from self-consistent combined gw

and dynamical mean field theory. Phys. Rev. B, 87:125149, Mar 2013.

[15] Motoharu Kitatani, Naoto Tsuji, and Hideo Aoki. Flex+dmft approach to the
d-wave superconducting phase diagram of the two-dimensional hubbard model.
Phys. Rev. B, 92:085104, Aug 2015.

[16] A.N. Rubtsov, M.I. Katsnelson, and A.I. Lichtenstein. Dual boson approach
to collective excitations in correlated fermionic systems. Annals of Physics,
327(5):1320 – 1335, 2012.

[17] E. G. C. P. van Loon, H. Hafermann, A. I. Lichtenstein, A. N. Rubtsov, and
M. I. Katsnelson. Plasmons in strongly correlated systems: Spectral weight
transfer and renormalized dispersion. Phys. Rev. Lett., 113:246407, Dec 2014.

[18] E. G. C. P. van Loon, M. Schüler, M. I. Katsnelson, and T. O. Wehling. Cap-
turing nonlocal interaction effects in the hubbard model: Optimal mappings
and limits of applicability. Phys. Rev. B, 94:165141, Oct 2016.

[19] Hartmut Hafermann, Erik G. C. P. van Loon, Mikhail I. Katsnelson, Alexan-
der I. Lichtenstein, and Olivier Parcollet. Collective charge excitations of
strongly correlated electrons, vertex corrections, and gauge invariance. Phys.
Rev. B, 90:235105, Dec 2014.

131



[20] A. Toschi, A. A. Katanin, and K. Held. Dynamical vertex approximation: A
step beyond dynamical mean-field theory. Phys. Rev. B, 75:045118, Jan 2007.

[21] Thomas Ayral and Olivier Parcollet. Mott physics and spin fluctuations: A
unified framework. Phys. Rev. B, 92:115109, Sep 2015.

[22] Thomas Ayral and Olivier Parcollet. Mott physics and spin fluctuations: A
functional viewpoint. Phys. Rev. B, 93:235124, Jun 2016.

[23] Jaksa Vucicevic, Thomas Ayral, and Olivier Parcollet. Trilex and gw+ edmft
approach to d-wave superconductivity in the hubbard model. Phys. Rev. B,
96:104504, 2017.

[24] Thomas Ayral, Jaksa Vucicevic, and Olivier Parcollet. The fierz convergence
criterion: a controlled approach to strongly-interacting systems with small em-
bedded clusters. arXiv preprint arXiv:1706.01388, 2017.

[25] John Hubbard. Electron correlations in narrow energy bands. Proceedings of
the Royal Society of London. Series A. Mathematical and Physical Sciences,
276(1365):238–257, 1963.

[26] Junjiro Kanamori. Electron correlation and ferromagnetism of transition met-
als. Progress of Theoretical Physics, 30(3):275–289, 1963.

[27] Martin C Gutzwiller. Effect of correlation on the ferromagnetism of transition
metals. Physical Review Letters, 10(5):159, 1963.

[28] Thomas Ayral. Nonlocal Coulomb Interactions and Electronic Correlations:
Novel Many-Body Approaches. PhD thesis, Ecole Polytechnique, 2015.

[29] Antoine Georges, Gabriel Kotliar, Werner Krauth, and Marcelo J. Rozenberg.
Dynamical mean-field theory of strongly correlated fermion systems and the
limit of infinite dimensions. Rev. Mod. Phys., 68:13–125, Jan 1996.

[30] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, and C. A.
Marianetti. Electronic structure calculations with dynamical mean-field theory.
Rev. Mod. Phys., 78:865–951, Aug 2006.

132



[31] Pierre Weiss. L’hypothèse du champ moléculaire et la propriété ferromagné-
tique. J. Phys. Theor. Appl., 6(1):661–690, 1907.

[32] Gordon Baym and Leo P. Kadanoff. Conservation laws and correlation func-
tions. Phys. Rev., 124:287–299, Oct 1961.

[33] Gordon Baym. Self-consistent approximations in many-body systems. Phys.
Rev., 127:1391–1401, Aug 1962.

[34] F. Aryasetiawan, M. Imada, A. Georges, G. Kotliar, S. Biermann, and A. I.
Lichtenstein. Frequency-dependent local interactions and low-energy effective
models from electronic structure calculations. Phys. Rev. B, 70:195104, Nov
2004.

[35] J George Bednorz and K Alex Müller. Possible hight c superconductivity in the
ba- la- cu- o system. Zeitschrift für Physik B Condensed Matter, 64(2):189–193,
1986.

[36] Andrea Damascelli, Zahid Hussain, and Zhi-Xun Shen. Angle-resolved photoe-
mission studies of the cuprate superconductors. Rev. Mod. Phys., 75:473–541,
Apr 2003.

[37] J Zaanen, GA Sawatzky, and JW Allen. Band gaps and electronic structure of
transition-metal compounds. Physical Review Letters, 55(4):418, 1985.

[38] FC Zhang and TM Rice. Effective hamiltonian for the superconducting cu
oxides. Physical Review B, 37(7):3759, 1988.

[39] Sergej Schuwalow, Daniel Grieger, and Frank Lechermann. Realistic model-
ing of the electronic structure and the effect of correlations for sn/si(111) and
sn/ge(111) surfaces. Phys. Rev. B, 82:035116, Jul 2010.

[40] Philipp Hansmann, Loïg Vaugier, Hong Jiang, and Silke Biermann. What about
u on surfaces? extended hubbard models for adatom systems from first princi-
ples. Journal of Physics: Condensed Matter, 25(9):094005, 2013.

[41] P. Hansmann, T. Ayral, L. Vaugier, P. Werner, and S. Biermann. Long-range
coulomb interactions in surface systems: A first-principles description within

133



self-consistently combined gw and dynamical mean-field theory. Phys. Rev.
Lett., 110:166401, Apr 2013.

[42] Gang Li, Philipp Höpfner, Jörg Schäfer, Christian Blumenstein, Sebastian
Meyer, Aaron Bostwick, Eli Rotenberg, Ralph Claessen, and Werner Hanke.
Magnetic order in a frustrated two-dimensional atom lattice at a semiconduc-
tor surface. Nature communications, 4:1620, 2013.

[43] Philipp Hansmann, Thomas Ayral, Antonio Tejeda, and Silke Biermann. Un-
certainty principle for experimental measurements: Fast versus slow probes.
Scientific reports, 6, 2016.

[44] Sen Zhou and Ziqiang Wang. Nodal d + id pairing and topological phases
on the triangular lattice of naxcoo2 · yh2O: Evidence for an unconventional
superconducting state. Phys. Rev. Lett., 100:217002, May 2008.

[45] Shi-Quan Su, Zhong-Bing Huang, Rui Fan, and Hai-Qing Lin. Numerical study
of ferromagnetic fluctuations and pairing correlations in the single-band hub-
bard model on the triangular lattice. Phys. Rev. B, 77:125114, Mar 2008.

[46] Kazuhiko Kuroki. Spin-fluctuation-mediated d+id′ pairing mechanism in doped
β−mNCl (m = Hf,Zr) superconductors. Phys. Rev. B, 81:104502, Mar 2010.

[47] Rahul Nandkishore, LS Levitov, and AV Chubukov. Chiral superconductivity
from repulsive interactions in doped graphene. Nature Physics, 8(2):158–163,
2012.

[48] Kuang Shing Chen, Zi Yang Meng, Unjong Yu, Shuxiang Yang, Mark Jarrell,
and Juana Moreno. Unconventional superconductivity on the triangular lattice
hubbard model. Phys. Rev. B, 88:041103, Jul 2013.

[49] Maximilian L. Kiesel, Christian Platt, Werner Hanke, Dmitry A. Abanin, and
Ronny Thomale. Competing many-body instabilities and unconventional su-
perconductivity in graphene. Phys. Rev. B, 86:020507, Jul 2012.

[50] Maximilian L. Kiesel, Christian Platt, Werner Hanke, and Ronny Thomale.
Model evidence of an anisotropic chiral d+id-wave pairing state for the water-
intercalated naxcoo2 · yh2O superconductor. Phys. Rev. Lett., 111:097001, Aug
2013.

134



[51] Annica M. Black-Schaffer, Wei Wu, and Karyn Le Hur. Chiral d-wave super-
conductivity on the honeycomb lattice close to the mott state. Phys. Rev. B,
90:054521, Aug 2014.

[52] Philipp Werner, Armin Comanac, Luca de’ Medici, Matthias Troyer, and An-
drew J. Millis. Continuous-time solver for quantum impurity models. Phys.
Rev. Lett., 97:076405, Aug 2006.

[53] Thomas Ayral, Philipp Werner, and Silke Biermann. Spectral properties of
correlated materials: Local vertex and nonlocal two-particle correlations from
combined gw and dynamical mean field theory. Phys. Rev. Lett., 109:226401,
Nov 2012.

[54] Philipp Werner and Andrew J. Millis. Efficient dynamical mean field simulation
of the holstein-hubbard model. Phys. Rev. Lett., 99:146404, Oct 2007.

[55] Junya Otsuki. Spin-boson coupling in continuous-time quantum monte carlo.
Phys. Rev. B, 87:125102, Mar 2013.

[56] Hartmut Hafermann. Self-energy and vertex functions from hybridization-
expansion continuous-time quantum monte carlo for impurity models with re-
tarded interaction. Phys. Rev. B, 89:235128, Jun 2014.

[57] Olivier Parcollet, Michel Ferrero, Thomas Ayral, Hartmut Hafermann, Igor
Krivenko, Laura Messio, and Priyanka Seth. Triqs: A toolbox for research on
interacting quantum systems. Computer Physics Communications, 196:398 –
415, 2015.

[58] E. A. Stepanov, A. Huber, E. G. C. P. van Loon, A. I. Lichtenstein, and M. I.
Katsnelson. From local to nonlocal correlations: The dual boson perspective.
Phys. Rev. B, 94:205110, Nov 2016.

[59] Annica M. Black-Schaffer. Edge properties and majorana fermions in the pro-
posed chiral d-wave superconducting state of doped graphene. Phys. Rev. Lett.,
109:197001, Nov 2012.

[60] Mark Jarrell and J.E. Gubernatis. Bayesian inference and the analytic continu-
ation of imaginary-time quantum monte carlo data. Physics Reports, 269(3):133
– 195, 1996.

135



[61] Philipp Werner and Michele Casula. Dynamical screening in correlated elec-
tron systems—from lattice models to realistic materials. Journal of Physics:
Condensed Matter, 28(38):383001, 2016.

[62] Alexander Cyril Hewson. The Kondo problem to heavy fermions, volume 2.
Cambridge university press, 1997.

[63] G. R. Stewart. Heavy-fermion systems. Rev. Mod. Phys., 56:755–787, Oct 1984.

[64] A. J. Leggett, S. Chakravarty, A. T. Dorsey, Matthew P. A. Fisher, Anupam
Garg, and W. Zwerger. Dynamics of the dissipative two-state system. Rev.
Mod. Phys., 59:1–85, Jan 1987.

[65] Sajeev John and Jian Wang. Quantum electrodynamics near a photonic band
gap: Photon bound states and dressed atoms. Phys. Rev. Lett., 64:2418–2421,
May 1990.

[66] G. van der Laan, J. Zaanen, G. A. Sawatzky, R. Karnatak, and J.-M. Esteva.
Comparison of x-ray absorption with x-ray photoemission of nickel dihalides
and nio. Phys. Rev. B, 33:4253–4263, Mar 1986.

[67] M. W. Haverkort, G. Sangiovanni, P. Hansmann, A. Toschi, Y. Lu, and
S. Macke. Bands, resonances, edge singularities and excitons in core level
spectroscopy investigated within the dynamical mean-field theory. EPL,
108(5):57004, dec 2014.

[68] Michel Caffarel and Werner Krauth. Exact diagonalization approach to corre-
lated fermions in infinite dimensions: Mott transition and superconductivity.
Phys. Rev. Lett., 72:1545–1548, Mar 1994.

[69] G. Sangiovanni, A. Toschi, E. Koch, K. Held, M. Capone, C. Castellani, O. Gun-
narsson, S.-K. Mo, J. W. Allen, H.-D. Kim, A. Sekiyama, A. Yamasaki, S. Suga,
and P. Metcalf. Static versus dynamical mean-field theory of mott antiferro-
magnets. Phys. Rev. B, 73:205121, May 2006.

[70] Massimo Capone, Luca de’ Medici, and Antoine Georges. Solving the dynamical
mean-field theory at very low temperatures using the lanczos exact diagonal-
ization. Phys. Rev. B, 76:245116, Dec 2007.

136



[71] Erik Koch, Giorgio Sangiovanni, and Olle Gunnarsson. Sum rules and bath
parametrization for quantum cluster theories. Phys. Rev. B, 78:115102, Sep
2008.

[72] Dominika Zgid, Emanuel Gull, and Garnet Kin-Lic Chan. Truncated configura-
tion interaction expansions as solvers for correlated quantum impurity models
and dynamical mean-field theory. Phys. Rev. B, 86:165128, Oct 2012.

[73] Chungwei Lin and Alexander A. Demkov. Efficient variational approach to the
impurity problem and its application to the dynamical mean-field theory. Phys.
Rev. B, 88:035123, Jul 2013.

[74] Y. Lu, M. Höppner, O. Gunnarsson, and M. W. Haverkort. Efficient real-
frequency solver for dynamical mean-field theory. Phys. Rev. B, 90:085102,
Aug 2014.

[75] Ralf Bulla, Theo A. Costi, and Thomas Pruschke. Numerical renormalization
group method for quantum impurity systems. Rev. Mod. Phys., 80:395–450,
Apr 2008.

[76] R. Bulla. Zero temperature metal-insulator transition in the infinite-
dimensional hubbard model. Phys. Rev. Lett., 83:136–139, Jul 1999.

[77] R. Bulla, T. A. Costi, and D. Vollhardt. Finite-temperature numerical renor-
malization group study of the mott transition. Phys. Rev. B, 64:045103, Jun
2001.

[78] Ralf Bulla, Hyun-Jung Lee, Ning-Hua Tong, and Matthias Vojta. Numerical
renormalization group for quantum impurities in a bosonic bath. Phys. Rev. B,
71:045122, Jan 2005.

[79] Th. Pruschke, R. Bulla, and M. Jarrell. Low-energy scale of the periodic an-
derson model. Phys. Rev. B, 61:12799–12809, May 2000.

[80] Emanuel Gull, Andrew J. Millis, Alexander I. Lichtenstein, Alexey N. Rubtsov,
Matthias Troyer, and Philipp Werner. Continuous-time monte carlo methods
for quantum impurity models. Rev. Mod. Phys., 83:349–404, May 2011.

137



[81] Antoine Georges and Werner Krauth. Numerical solution of the d=∞ hubbard
model: Evidence for a mott transition. Phys. Rev. Lett., 69:1240–1243, Aug
1992.

[82] M. Ulmke, V. Janiš, and D. Vollhardt. Anderson-hubbard model in infinite
dimensions. Phys. Rev. B, 51:10411–10426, Apr 1995.

[83] A. N. Rubtsov, V. V. Savkin, and A. I. Lichtenstein. Continuous-time quantum
monte carlo method for fermions. Phys. Rev. B, 72:035122, Jul 2005.

[84] Philipp Werner, Armin Comanac, Luca de’ Medici, Matthias Troyer, and An-
drew J. Millis. Continuous-time solver for quantum impurity models. Phys.
Rev. Lett., 97:076405, Aug 2006.

[85] Philipp Werner and Andrew J. Millis. Hybridization expansion impurity solver:
General formulation and application to kondo lattice and two-orbital models.
Phys. Rev. B, 74:155107, Oct 2006.

[86] Steven R. White. Density matrix formulation for quantum renormalization
groups. Phys. Rev. Lett., 69:2863–2866, Nov 1992.

[87] Steven R. White. Density-matrix algorithms for quantum renormalization
groups. Phys. Rev. B, 48:10345–10356, Oct 1993.

[88] Ulrich Schollwöck. The density-matrix renormalization group. Rev. Mod. Phys.,
77:259–315, Apr 2005.

[89] Karen A. Hallberg. New trends in density matrix renormalization. Adv. Phys.,
55(5-6):477–526, 2006.

[90] Ulrich Schollwöck. The density-matrix renormalization group in the age of
matrix product states. Ann. Phys., 326(1):96 – 192, 2011.

[91] Daniel J. García, Karen Hallberg, and Marcelo J. Rozenberg. Dynamical mean
field theory with the density matrix renormalization group. Phys. Rev. Lett.,
93:246403, Dec 2004.

[92] Carsten Raas, Götz S. Uhrig, and Frithjof B. Anders. High-energy dynamics of
the single-impurity anderson model. Phys. Rev. B, 69:041102(R), Jan 2004.

138



[93] F. Alexander Wolf, Ian P. McCulloch, and Ulrich Schollwöck. Solving nonequi-
librium dynamical mean-field theory using matrix product states. Phys. Rev.
B, 90:235131, Dec 2014.

[94] F. Alexander Wolf, Ara Go, Ian P. McCulloch, Andrew J. Millis, and Ulrich
Schollwöck. Imaginary-time matrix product state impurity solver for dynamical
mean-field theory. Phys. Rev. X, 5:041032, Nov 2015.

[95] Martin Ganahl, Patrik Thunström, Frank Verstraete, Karsten Held, and
Hans Gerd Evertz. Chebyshev expansion for impurity models using matrix
product states. Phys. Rev. B, 90:045144, Jul 2014.

[96] Martin Ganahl, Markus Aichhorn, Hans Gerd Evertz, Patrik Thunström,
Karsten Held, and Frank Verstraete. Efficient dmft impurity solver using real-
time dynamics with matrix product states. Phys. Rev. B, 92:155132, Oct 2015.

[97] Andreas Holzner, Andreas Weichselbaum, and Jan von Delft. Matrix product
state approach for a two-lead multilevel anderson impurity model. Phys. Rev.
B, 81:125126, Mar 2010.

[98] Daniel Bauernfeind, Manuel Zingl, Robert Triebl, Markus Aichhorn, and
Hans Gerd Evertz. Fork tensor-product states: Efficient multiorbital real-time
dmft solver. Phys. Rev. X, 7:031013, Jul 2017.

[99] Yi Lu and Maurits W Haverkort. Exact diagonalization as an impurity solver
in dynamical mean field theory. The European Physical Journal Special Topics,
226(11):2549–2564, 2017.

[100] Norbert Schuch, Michael M. Wolf, Frank Verstraete, and J. Ignacio Cirac. En-
tropy scaling and simulability by matrix product states. Phys. Rev. Lett.,
100:030504, Jan 2008.

[101] J. Eisert, M. Cramer, and M. B. Plenio. Colloquium: Area laws for the entan-
glement entropy. Rev. Mod. Phys., 82:277–306, Feb 2010.

[102] F. Fröwis, V. Nebendahl, and W. Dür. Tensor operators: Constructions and
applications for long-range interaction systems. Phys. Rev. A, 81:062337, Jun
2010.

139



[103] Gregory M. Crosswhite, A. C. Doherty, and Guifré Vidal. Applying matrix
product operators to model systems with long-range interactions. Phys. Rev.
B, 78:035116, Jul 2008.

[104] Johannes Motruk, Michael P. Zaletel, Roger S. K. Mong, and Frank Pollmann.
Density matrix renormalization group on a cylinder in mixed real and momen-
tum space. Phys. Rev. B, 93:155139, Apr 2016.

[105] C. Hubig, I. P. McCulloch, and U. Schollwöck. Generic construction of efficient
matrix product operators. Phys. Rev. B, 95:035129, Jan 2017.

[106] E M Stoudenmire and Steven R White. Minimally entangled typical thermal
state algorithms. New Journal of Physics, 12(5):055026, may 2010.

[107] Steven R. White. Density matrix renormalization group algorithms with a single
center site. Phys. Rev. B, 72:180403, Nov 2005.

[108] C. Hubig, I. P. McCulloch, U. Schollwöck, and F. A. Wolf. Strictly single-site
dmrg algorithm with subspace expansion. Phys. Rev. B, 91:155115, Apr 2015.

[109] Stephen Wilson. Electron correlation in molecules. Courier Corporation, 2014.

[110] Steven R. White and Adrian E. Feiguin. Real-time evolution using the density
matrix renormalization group. Phys. Rev. Lett., 93:076401, Aug 2004.

[111] Walter Metzner and Dieter Vollhardt. Correlated lattice fermions in d = ∞
dimensions. Phys. Rev. Lett., 62:324–327, Jan 1989.

[112] Antoine Georges, Gabriel Kotliar, Werner Krauth, and Marcelo J. Rozenberg.
Dynamical mean-field theory of strongly correlated fermion systems and the
limit of infinite dimensions. Rev. Mod. Phys., 68:13–125, Jan 1996.

[113] E M Stoudenmire and Steven R White. Minimally entangled typical thermal
state algorithms. New J. Phys., 12(5):055026, may 2010.

[114] E. Müller-Hartmann. The hubbard model at high dimensions: some exact
results and weak coupling theory. Zeitschrift für Physik B Condensed Matter,
76(2):211–217, Jun 1989.

140



[115] Till D. Kühner and Steven R. White. Dynamical correlation functions using
the density matrix renormalization group. Phys. Rev. B, 60:335–343, Jul 1999.

[116] Eric Jeckelmann. Dynamical density-matrix renormalization-group method.
Phys. Rev. B, 66:045114, Jul 2002.

[117] Jutho Haegeman, J. Ignacio Cirac, Tobias J. Osborne, Iztok Pižorn, Henri
Verschelde, and Frank Verstraete. Time-dependent variational principle for
quantum lattices. Phys. Rev. Lett., 107:070601, Aug 2011.

[118] Jutho Haegeman, Christian Lubich, Ivan Oseledets, Bart Vandereycken, and
Frank Verstraete. Unifying time evolution and optimization with matrix prod-
uct states. Phys. Rev. B, 94:165116, Oct 2016.

[119] Sebastian Paeckel, Thomas Köhler, Andreas Swoboda, Salvatore R Manmana,
Ulrich Schollwöck, and Claudius Hubig. Time-evolution methods for matrix-
product states. arXiv preprint arXiv:1901.05824, 2019.

[120] Shimpei Goto and Ippei Danshita. Performance of the time-dependent varia-
tional principle for matrix product states in the long-time evolution of a pure
state. Phys. Rev. B, 99:054307, Feb 2019.

[121] Jörg Rissler, Reinhard M Noack, and Steven R White. Measuring orbital inter-
action using quantum information theory. Chemical Physics, 323(2-3):519–531,
2006.

[122] Y-Y Shi, L-M Duan, and Guifre Vidal. Classical simulation of quantum many-
body systems with a tree tensor network. Physical review a, 74(2):022320, 2006.

[123] Klaus Koepernik and Helmut Eschrig. Full-potential nonorthogonal local-
orbital minimum-basis band-structure scheme. Physical Review B, 59(3):1743,
1999.

[124] I Opahle, K Koepernik, and H Eschrig. Full-potential band-structure calculation
of iron pyrite. Physical Review B, 60(20):14035, 1999.

[125] Steven R. White and Ian Affleck. Spectral function for the s = 1 heisenberg
antiferromagetic chain. Phys. Rev. B, 77:134437, Apr 2008.

141


	Zusammenfassung
	Introduction and Motivation
	Dynamical mean-filed theory and its TRILEX extension 
	Modeling the long-range interaction
	DMFT and EDMFT self-consistency equations
	A local approximation to the three-legged vertex: TRILEX

	The impact of long-range interaction on the emergence of unconventional superconductivity
	Model and TRILEX implementation
	Effects Vertex correction
	Hole-doped phase diagram
	Impact of the long-range interaction
	Separating spin and charge channels in the pairing mechanism 
	Dependence on the charge to spin ratio
	Long-range versus short-range non-local interaction
	Comparison to the square lattice
	Conclusion

	Matrix Product States
	Matrix Product States
	Matrix Product Operator
	Applying the MPO to MPS
	Ground state optimization: Density-Matrix Renormalization Group

	Matrix Product States based impurity solver in frequency-domain
	Impurity Hamiltonian
	Comparing the natural-orbital and star representation
	Ground-state projection
	DMFT loop on real-axis
	Results
	Conclusion

	Matrix Product States based impurity solver in time-domain
	Particle number projection in the time-domain
	Application to the single-band Anderson impurity model
	Application to the single-band Hubbard model on the Bethe lattice
	Conclusion

	Tree Tensor Product states: an efficient multi-band impurity solver on the real-axis
	Modeling multi-band impurity systems with tensor product states
	Tree Tensor Product states
	Compression of TTPS
	Overlap and expectation value of two TTPS
	Applying the TTPO on TTPS: the zip-up Algorithm
	Time dependent variational principle algorithm for the TTPS
	Application to SrVO3
	Conclusion

	Conclusion and outlook
	Acknowledgements
	List of Figures
	List of Algorithms
	Bibliography

