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vNF Virtualized Network Function

VS Virtual Synchrony

VT-x Intel Virtualization Technology x86

WAN Wide-area Network

ZMF Zero Module Framework

ZMQ ZeroMQ

ZSDN ZeroSDN controller framework

ZSDN-AFC ZeroSDN employing the Autonomous Forwarding Controllet

ZSDN-IPC ZeroSDN based on Unix Domain Sockets

ZSDN-TCP ZeroSDN based on TCP
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ABSTRACT

Software-defined Networking (SDN) is an emerging networking paradigm promising

flexible programmability and simplified management. Over the last years, SDN has built

up huge momentum in academia that has led to huge practical impact through the large-

scale adoption of big industrial players like Google, Facebook, and Microsoft driving cloud

computing, data center networks, and their interconnection in SDN-based wide-area

networks. SDN is a key enabler for high dynamics in terms of network reconfiguration

and innovation, allowing the deployment of new network protocols and substantially

expanding the networking paradigm by moving applications into the network, both at

unprecedented pace and ease. The SDN paradigm is centered around the separation of

the data plane from the logically centralized but typically physically distributed control

plane that programs the forwarding behaviour of the network devices in the data plane

based on a global view. Especially requirements on correctness, scalability, availability,

and resiliency raised through practical adoption at scale have put a strong emphasis on

consistency and distribution in the SDN paradigm.

This thesis addresses various challenges regarding consistency and distribution in

Software-defined Networking. More specifically, it focusses and contributes to the re-

search areas of update consistency, flexibility in control plane distribution, and data plane

implementation of a distributed application. Reconfiguring an SDN-based network inevit-

ably requires to update the rules that determine the forwarding behaviour of the devices

in its data plane. Updating these rules, which are situated on the inherently distributed

data plane devices, is an asynchronous process. Hence, packets traversing the network

may be processed according to a mixture of new and old rules during the update process.

Consequently arising inconsistency effects can severely degrade the network performance

and can break stipulated network invariants for instance on connectivity or security. We

introduce a general architecture for network management under awareness of expectable

update-induced inconsistency effects, which allows for an appropriate selection of an

update mechanism and its parameters in order to prevent those effects. We thoroughly

analyze update consistency for the case of multicast networks, show crucial particular-
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ities and present mechanisms for the prevention and mitigation of multicast-specific

inconsistency effects.

Observing that on the one hand SDN’s separation of control has been deemed rather

strict, moving any control “intelligence” from the data plane devices to remote controller

entities hence increasing control latency while on the other hand the coupling between

controller and data plane devices is quite tight hence hindering free distribution of control

logic, we present a controller architecture enabling flexible and full-range distribution

of network control. The architecture is based on decoupling through an event abstrac-

tion and a flexible dissemination scheme for those events based on the content-based

publish/subscribe paradigm. This lightweight design allows to push down control logic

back onto data plane devices. Thus, we expand SDN’s control paradigm and enable

the full range from fully decentralized control, over local control still profiting from

global view up to fully centralized control. This scheme allows to trade-off scope of state

data, consistency semantics and synchronization overhead, control latency, and quality

of control decisions. Furthermore, our implementation covers a large set of mechanisms

for improving control plane consistency and scalability, such as inherent load-balancing,

fast autonomous control decision making, detection of policy conflicts, and a feedback

mechanism for data plane updates.

In a last area, we focus on the implementation of a distributed application from the

domain of message-oriented middleware in the data plane. We implement Complex

Event Processing (CEP) on top of programmable network devices employing data plane

programming, a recent big trend in SDN, or more specifically, using the P4 language. We

discuss challenges entailed in the distributed data plane processing and address aspects

of distribution and consistency in particular regarding consistency in stateful data plane

programming, where internal state that determines how packets are processed is changed

within this very processing, in turn changing the processing of subsequent packets. Since

packet processing is executed in parallel on different execution units on the same device

sharing the same state data, strong consistency semantics are required in order to ensure

application correctness. Enabled by P4’s flexible and powerful programming model,

our data plane implementation of CEP yields greatly reduced latency and increased

throughput. It comprises a compiler that compiles patterns for the detection of complex

events specified in our rule specification language to P4 programs, consisting of a state

machine and operators that process so-called windows containing historic events.
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ZUSAMMENFASSUNG

Softwaredefinierte Netzwerke (SDN) verkörpern ein neues Netzwerkparadigma mit dem

Ziel einer flexibleren Netzwerkprogrammierung und eines vereinfachten Netzwerkmana-

gements. Dabei hat SDN über die letzten Jahre sehr stark an Bedeutung gewonnen, sowohl

in der Forschung als auch in der Industrie, wo bedeutende Firmen wie Google, Facebook

und Microsoft SDN verbreitet zum Betrieb ihrer Cloudumgebungen, ihrer Rechenzen-

trumsnetzwerke als auch für die die Rechenzentren verbindenden Weitverkehrsnetzwerke

einsetzen. SDN ist eine Schlüsselkomponente sowohl für den Umgang mit hoher Netzdy-

namik im Sinne von Netzrekonfiguration als auch für eine bislang unerreicht schnelle und

unkomplizierte Umsetzung von Innovationen im Netzwerkbereich etwa durch neue Proto-

kolle oder durch das Erweitern des gesamten Netzwerkparadigmas durch das Abbilden

von Anwendungen im Netzwerk selbst. Das SDN-Paradigma basiert auf einer Trennung

der Datenebene von der logischen zentralisierten, typischerweise aber physisch verteilten

Kontrollebene, die das Weiterleitungsverhalten der Netzkomponenten in der Datenebene

programmiert, wobei sie auf eine globale Netzsicht zurückgreifen kann. Insbesondere

Anforderungen an Korrektheit, Skalierbarkeit, Verfügbarkeit und Resilienz, die sich durch

den Einsatz in der Praxis im großen Maßstab ergeben, messen Konsistenz und Verteilung

im SDN-Paradigma eine hohe Bedeutung bei.

Die vorliegende Arbeit behandelt verschiedene Herausforderungen bezüglich Konsistenz

und Verteilung in softwaredefinierten Netzwerken und bezieht sich dabei insbesondere

auf die Forschungsbereiche Updatekonsistenz, Flexibilität bei der Verteilung der Kon-

trollebene, sowie der Implementierung einer verteilten Anwendung in der Datenebene

und den damit einhergehenden Konsistenzgesichtspunkten. Die Rekonfiguration eines

SDN-basierten Netzwerks erfordert unausweichlich eine Aktualisierung der Regeln die

das Weiterleitungsverhalten der Netzkomponenten in der Datenebene steuern. Das Aktua-

lisieren dieser sich auf den inhärent verteilten Datenebenenkomponenten befindlichen

Weiterleitungsregeln stellt einen asynchronen Prozess dar. Dies kann dazu führen, dass

Pakete in der Datenebene nach einer Mischung aus alten und neuen Regeln verarbeitet

werden. Die dadurch auftretenden Inkonsistenzeffekte können die Netzwerkperformanz
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erheblich einschränken und verletzen oft festgelegte Netzeigenschaften, etwa damit fest-

gelegte Verbindungs- oder Sicherheitseigenschaften. In der vorliegenden Arbeit wird

daher eine generische Architektur für Netzwerkmanagement eingeführt die sich dadurch

auszeichnet Kenntnis über zu erwartende Inkonsistenzeffekte zu haben und diese dadurch

in Kontrollentscheidungen miteinbeziehen zu können. Somit wird die Auswahl eines

angemessenen Updatemechanismus mitsamt zugehöriger Parameter ermöglicht, um das

Auftreten dieser Inkonsistenzeffekte zu verhindern. Des Weiteren wird eine vollständige

Analyse von Updatekonsistenz für Multicastnetzwerke durchgeführt. Dabei werden signifi-

kante multicastspezifische Eigenheiten aufgezeigt, sowie Mechanismen zur Verhinderung

bzw. Abmilderung von multicastspezifischen Inkonsistenzeffekten präsentiert.

Motiviert durch die Beobachtung, dass die Trennung von Kontrolle in SDN im Allge-

meinen sehr strikt umgesetzt wird, wodurch sämtliche Kontrollfunktionalität von der

Datenebene zu entfernten Einheiten der Kontrollebene verschoben wird, was die Kon-

trolllatenz erhöht, und andererseits eine enge Kopplung zwischen Kontrolleinheiten und

Datenebenenkomponenten besteht, was die freie Verteilung von Kontrolllogik einschränkt,

wird in der Arbeit eine Kontrollarchitektur vorgestellt, die eine flexible und vollumfäng-

liche Verteilung von Kontrolllogik ermöglicht. Diese Architektur basiert auf einer durch

eine Eventabstraktion erreichten Entkopplung in Kombination mit einem flexiblen Event-

verbreitungsschema basierend auf dem inhaltsbasiertem Publish/Subscribe-Paradigma.

Das leichtgewichtige Design ermöglicht die Rückverlagerung von Kontrolllogik auf die

Datenebenenkomponenten, was das Kontrollparadigma von SDN erheblich ausweitet

und die ganze Spanne von vollständig dezentralisierter Kontrolle über lokale Kontrolle

unter Miteinbezug der globalen Netzsicht bis hin zur vollständig zentralisierten Kontrolle,

auf die das SDN-Paradigma ursprünglich beschränkt war, ermöglicht. Dieses Kontroll-

schema ermöglicht eine Abwägung zwischen Umfang der Zustandsdaten (globale Sicht

bis ausschließlich lokale Sicht), Konsistenzsemantiken und Synchronisationsaufwand,

sowie Kontrolllatenz und Qualität der Kontrollentscheidungen. Des Weiteren deckt der

vorgestellte Ansatz einen breiten Bereich an Mechanismen zur Erhöhung der Kontrollebe-

nenkonsistenz und der Skalierbarkeit ab, etwa durch inhärente Lastverteilung, schnellen

autonomen Kontrollentscheidungen, Erkennung von Konflikten in Netzrichtlinien, sowie

durch einen Feedbackmechanismus für Regelaktualisierungen auf der Datenebene.

Ein letzter Bereich der vorliegenden Arbeit behandelt die Implementierung einer ver-

teilten Anwendung aus dem Bereich der kommunikationsorientierten Diensteschicht

(„Middleware“) in der Datenebene. Darin wird eine komplexe Ereignisverarbeitung, oder

„Complex Event Processing“ (CEP), auf programmierbaren Netzgeräten unter Verwendung
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von Datenebenenprogrammierung, einem neuen und mächtigen Schritt in der Evolution

des SDN-Paradigmas, mit der spezifischen Programmiersprache P4 umgesetzt. In diesem

Zuge werden die mit einer verteilten Verarbeitung in der Datenebene einhergehenden

Herausforderungen herausgearbeitet, insbesondere bezüglich Verteilung und Konsistenz

in zustandsbasierter Datenebenenprogrammierung, in welcher interner Zustand, der die

Verarbeitung von Paketen bestimmt, durch eben jene Verarbeitung verändert wird, was

wiederum die Verarbeitung von nachfolgenden Paketen beeinflusst. Da Paketverarbeitung

typischerweise auf hochparallel ausgelegten Verarbeitungseinheiten auf dem selben Gerät

unter Nutzung des selben Zustandsspeichers ausgeführt wird, sind strikte Konsistenzse-

mantiken zur Sicherstellung der Korrektheit der Anwendung unerlässlich. Durch die Paket-

verarbeitung auf Hardware, welche durch das flexible und mächtige Programmiermodell

von P4 ermöglicht wird, konnte der Durchsatz und die Latenz der vorgestellten Datenebe-

nenimplementierung von CEP stark erhöht, bzw. verringert werden. Die Implementierung

beinhaltet einen Compiler, der Regeln die in einer eigenen Regelspezifikationssprache

verfasst sind in ein P4-Programm übersetzt. Das P4-Programm wiederum besteht aus

einem Zustandsautomaten zur Eventerkennung und einer Verarbeitungseinheit für in

einem sogenannten Fenster gespeicherte historische Ereignisse.
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1 INTRODUCTION

The modern Internet, enabling a worldwide exchange of information in the form of pack-

ets, and many other kinds of communication networks including data center, enterprise,

and domestic networks are vastly dependent on distributed protocols for network control

and packet transport. Traditional IP networks along with their hardware devices such as

routers and switches, on which those distributed protocols run, constitute the backbone

of many networks and are hence vastly adopted, although it is commonly agreed that

they are complex and hard to manage [BAM09, KREV+15]. To implement the desired

behaviour of the network (network policies), network operators need to configure devices

typically through low-level and proprietary, i.e., vendor-specific, management interfaces

using closed APIs. Given the scale and complexity of modern networks and the demand

to maintain optimal operation in the presence of high dynamics regarding failures of

devices and shifts in load patterns, their configuration poses a particular challenge. The

segmentation of network control due to vendor-proprietary management has effectively

hindered holistic and standardized mechanisms for automated adaptation and reconfigur-

ation in current IP networks. Furthermore, current networking devices tightly couple in

their firmware the control plane (CP), whose responsibility it is to decide how traffic in

the network is to be handled in order to implement desired network policies, and the data

plane (DP), also called forwarding plane, which forwards traffic according to the control

decisions taken in the control plane. These properties of current IP networks, proprietary

management interfaces and bundling of control plane and data plane, have led to very

high development and deployment cycles in the order of years or even decades and asso-

ciated high cost, effectively hindering innovation in network protocols and architectures,

as can for instance be seen in the dragging adoption of IPv6 [NGN16].
Software-defined Networking (SDN), is a recent paradigm and architecture to tremend-

ously increase flexibility in networking and foster evolution and innovation in particular

of network protocols. To counter the aforementioned deficiencies of traditional net-

work architectures, the SDN paradigm is based on the two concepts described in the

following sections: (1) a clear separation of the control plane, exerting network control,

25



1 Introduction

from the data plane, implementing forwarding and processing functionality, and (2) the

centralization of control logic on a logically centralized entity, called controller.
SDN has been receiving substantial attention from both, academia and industry. Large

internet companies like Google and Facebook have been adopting the SDN paradigm

both within data center networks (DCNs) [Kol14, SOA+15] and their interconnections

in global wide area networks (WANs) like Google’s B4, interconnecting 12 data centers

[JKM+13]—back in 2013. In a scenario of tremendously growing traffic, Google was able

to increase the capacity of a single data center by a factor of 100. Due to its unprecedented

flexibility, SDN is also a key technology for operating huge public clouds based on network

virtualization, for instance, Microsoft’s Azure cloud [Rus15, Gre15] or the Google Cloud

Platform [WV18]. Moreover, a large internet service provider has set the goal of controlling

75% of its network with software by 2020 [Don].
The great support of big industrial players like Google, Facebook, Microsoft, large

device manufacturers, and telco providers has led to the foundation of large industry

consortia. Most important are the Open Networking Foundation (ONF) [Thec], promoting

the adoption of SDN through open standards, most notably the OpenFlow protocol [Opeb]
and the ONOS SDN controller [Thea], and the Open Compute Project (OCP) [Opea],
driving the development of open SDN-enabled hardware by contributing open-hardware

specifications of so-called SDN white-box switches and other networking devices along

with unified software components, including the ONIE bootloader.

1.1 SEPARATION OF CONTROL PLANE AND DATA PLANE &

FLOW-TABLE PROGRAMMING ABSTRACTION

SDN originates [FRZ14] from approaches for designing and deploying programmable

data plane devices, such as partially proposed in Active Networks [TSS+97] back in the

1990s, the “Forwarding and Control Element Separation” (ForCES) [YDAG04, DSH+10],
published in 2004 by the Internet Engineering Task Force (IETF), as well as the more

recent OpenFlow [MAB+08] proposed in 2008 and “Protocol oblivious Forwarding” (PoF)

[Son13] from 2013. Their common scheme subsumed in SDN is a flow-table abstraction

for programming of network behaviour (cf. Figure 2.1, p. 39), i.e., forwarding and

processing of packets, to implement desired policies. To this end, traffic of interest is

classified by specific combinations of packet headers of any layers and their values, defining

flows through the network (opposed to traditional forwarding and routing, which would
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Figure 1.1. The generic SDN System Architecture

typically consider solely packet destination information). Data plane devices, henceforth

called switches, implement flow tables (FT). Entries in this table, called flow rules, match

on a subset of the traffic that is specified by the flow, and associate a set of actions that is

applied to all incoming packets belonging to that flow. Common actions include dropping

or forwarding a packet (to another switch or to the controller) and appending, removing,

or modifying of packet headers, for instance adding tags of tunneling mechanisms such as

VLAN, or decrementing the time to live (TTL) field in the IP header. The latest evolution

of SDN with Data Plane Programming enables much more powerful matching and action

flexibility by granting access to advanced capabilities on a switch’s packet processing

hardware. Capable devices have reconfigurable processing pipelines and inter-packet state

memory allowing for powerful user-defined packet processing, as well as a flexible parser

and de-parser, allowing for the definition of custom packet headers and hence new, user-

defined protocols, breaking protocol-dependency—at full line rate processing throughput.

This abstraction along with the so-called match-action semantic is overall quite powerful:

depending on the installed rules, switches can implement simple network functions

(NFs) like forwarding or routing, but also perform more complex NFs like firewalling,

load-balancing, or traffic-shaping up to yet more complex middlebox functionality, like

content-based publish/subscribe or Complex Event Processing.

Figure 1.1 shows a simplified view of a typical SDN architecture. The decoupling of a

switch’s data plane from the control plane is implemented by a southbound interface that
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allows the dynamic configuration by remote entities, i.e., the controller, through simple

operations (control actions) of adding, removing, and updating of flow rules, i.e., entries

in a switch’s flow table. A southbound protocol, such as the most prominent OpenFlow

Protocol [MAB+08, Opeb], specifies a well-defined API to grant the controller direct access

to the switch’s flow table and to auxiliary functions, such as monitoring, for instance,

gathering network statistics. Furthermore, it provides a back-channel for switch-solicited

notifications of events in the data plane, such as incoming packets for which the flow table

holds no matching rule, switchport and link failures, etc. The controller thus exercises

direct control over the switch and determines the network function(s) the switch is to

implement. The controller is furthermore able to detect and (automatically) react to

events in the data plane, in order to maintain (optimal) network operation.

The northbound interface provides an API to developers of applications on top of a con-

troller framework (application plane). It allows developers to use common functionality

of a controller framework, such as topology discovery, switch inventory and management,

etc. More specifically, control applications are able to consistently use the global network

view that is gathered by the controller framework. Moreover, depending on the actual

framework, it may offer an abstraction for high-level network programming—a big domain

in SDN research [MRF+13a, AFG+14, KRG+15]—hiding low-level southbound program-

ming interfaces, i.e., direct resource access to switch flow tables, in favour of allowing for

modular and declarative network programming using network programming languages

like Frenetic [FGR+13] or Pyretic [RMF+13]. Some SDN literature further differentiates

between the application plane and a management plane (undepicted) as an interface

between the control plane and (human) network operators defining network policies and

orchestrate functionality offered by the application plane.

The major benefit of a decoupled control plane with offloaded control plane functions

and a standardized and open southbound protocol is that through the separation of

concerns, the controller (and the actual applications) can be implemented in software

and use non-proprietary interfaces. Compared to traditional networking where control

plane functionality was tightly integrated in the switch devices in form of vendor- and

device-specific firmware implementations using closed APIs, SDN tremendously facilitates

changes and extensions to the control plane and thus ultimately to network operation

with drastically decreased innovation cycles. The protocol independence and additional

flexibility in terms of packet processing introduced by data plane programming further

drastically speeds up development, however relying on special, not yet widely adopted

hardware.
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1.2 DISTRIBUTION AND LOGICAL CENTRALIZATION OF

CONTROL IN SOFTWARE-DEFINED NETWORKING

SDN is based on the paradigm of logically centralized control over distributed network

elements. Logical centralization is nothing more than the concept of distribution trans-
parency, which is well-known from Distributed Systems. Distribution transparency hides

the complexity of a physically distributed system from the application by making distri-

bution aspects “transparent”, i.e., not visible to the application. Thus, the client can be

implemented as if the system were centralized. In particular, network control applications

implementing network control logic have a global view of the network. In traditional

networking, fully decentralized control algorithms had to construct and maintain a (par-

tial) view of the network entirely locally before being able to make local control decisions

based on this view. In SDN, the problem of constructing a view of a much larger scope,

i.e., an entire global view, is dedicated to the centralized SDN controller, which acquires

this global view by gathering network information such as topology information through

monitoring of inherently distributed network elements (the switches). This allows control

applications to improve the quality of control decisions, consistently taken on the provided

global view. Moreover, the SDN controller itself might be (ideally) a distributed system

with all its defining properties like replication transparency, fragmentation transparency,

and without a single point of failure. For instance, topology information stored in a

network information base (NIB) might be replicated to and partitioned between many

controller instances.

While the data plane is inherently distributed due to its physically distributed network

elements, production-grade SDN frameworks also tend to physically distribute the control

plane, i.e., the controller, in order to ensure adequate levels of availability and scalability.

More specifically, these requirements demand for eliminating a single point of failure by

providing sufficient redundancy of controller functionality (availability) and providing

sufficient controller performance for an increasing scale of networks to control (scalability).

In order to meet these requirements, two distribution models are typically be applied: (1)

replication and (2) partitioning.

The rationale of (1) replication, is to distribute application logic implemented in a single

entity to a set of identical entities (replicas) mainly to improve reliability, fault-tolerance,

and availability. Note that replication may also increase scalability since the workload can

then be distributed to a set of replicas instead of a single entity handling the entire load

(see partitioning). In the case of SDN, the controller is thus replicated to a set of controller
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instances that are identical in terms of control logic. The controller instances are assumed

to be deterministic, which means that their behavior solely depends on its state, i.e., data

completely describing an instance’s current state, such as the network view (the NIB), and

control state (control decisions). In other words, the same input (data plane event) leads

to the same output (control decision) on any instance, iff all controller instances operate

on the same state. Furthermore, state is assumed to only be changed by input, in a way

specified by the (common and immutable) control logic. Thus, for correct and consistent

network control, the state data has to be synchronized among all instances. In general,

this can be achieved by a mechanism known as State Machine Replication (SMR) [Sch90],
where distributed consensus mechanisms such as Paxos [Lam98] basically ensure that

the set of replicas agree on the ordering of inputs and hence each replica processes the

same (sequence) of inputs. Another means to achieve controller state synchronicity is

to externalize the state data in a logically centralized data store, where a transactional

replication mechanism ensures consistent data access from controller instances under

ACID properties (atomicity, consistency, isolation, and durability) as known from database

systems [HR83]. It should be noted, that keeping the state data synchronized introduces

cost in terms of message complexity (increased control plane traffic) and time complexity

(increased control latency), depending on the desired level of consistency.

In order to improve scalability, (2) partitioning aims to structurally break an overall

problem into tractable subproblems by a formation of disjoint partitions along one or

multiple problem dimensions, which can be processed largely independently and hence

in parallel to the other partitions. The improvement in scalability stems from distributing

the overall load to multiple instances responsible for dedicated partitions. In the case of

an SDN controller, state synchronization efforts can be minimized by partitioning along

network topology. While being functionally equivalent, instances can be mainly bijectively

associated to partitions of the network topology, thus reducing the scope of state data that

has to be shared with other instances, consequently reducing synchronization overhead.

Partitioning the topology along its layers, for instance in a leave-spine data center network

topology, is known as hierarchical distribution in SDN literature [LHG+15]. Note, that

partitioning along the topology cannot fully eliminate dependency to other partitions,

without creating actual network partitions, i.e., network regions that can not communicate

with each other. Another partitioning scheme is to partition along network functions.

Here, controller instances are not functionally equivalent, but only contain logic for the

NF to implement. However, the NF-partitioned instances operate on overlapping or even

congruent topology regions, requiring state synchronization of larger scope.
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1.3 CONSISTENCY IN SOFTWARE-DEFINED NETWORKING

Overall, the ideal of the SDN paradigm is to achieve a consistent behaviour of network

control defined by high-level network policies at any point in time, whose control decisions

are directly deployed to the data plane, while the data plane behaves exactly as intended

by the control plane at any point in time. Moreover, the control plane ideally has an

accurate global view that is consistent with the actual physical data plane at any point in

time. Deviations from this ideal such as caused by (temporal) inconsistencies in general

result in a varying degree of negative implications on network management, i.e., the

violation of policies, for instance ranging from slight and temporary network performance

degradation or slight deviations of policies up to fatal and long-lasting cease of network

operation or total policy violation. Figure 1.2 illustrates the problem space of consistency

in SDN, which can be broken down into the following tractable subproblems.

First, consistent behaviour of a physically distributed control plane mandates consistency

of control state data among controller instances (state data consistency). As described

earlier, the problem of state synchronization can be solved by applying mechanisms like

state machine replication or be offloaded to externalized datastores. A much-debated

question in SDN literature is to define an adequate consistency semantics and whether

state data can be differentiated by “importance”, requiring stronger consistency semantics

for important data and less strict semantics for less important data.

Second, a controller has to detect and reconcile inconsistencies caused by conflicting

controller applications or conflicting policies (policy conflict)—a problem recognized as

policy composition in literature [CKLS13]. A simple and obvious example is an application

installing communication flows between network elements might easily conflict with

a firewall application that is deliberately preventing specific network communication.

Canini et al. [CKLS13] provide a more intricate example of conflicting policies regarding

monitoring and waypoint enforcement. On the same line of ensuring coordination among

policies, there is also a need for coordination among controller instances, in the case of

controller partitioning, where a consistent mapping of instances to topology partitions

has to be maintained. The problem is exacerbated by non-disjoint, i.e., overlapping, topo-

logy regions with possibly resulting multiple controller associations and hence multiple

responsibilities or a partitioning along network functions, basically resembling the policy

composition problem.

Third, a prerequisite of guaranteeing consistent decisions of network control applications

is to ensure a consistent global view among those applications (see above). However,
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Figure 1.2. Problem space of consistency in Software-defined Networking with respect to the
deliberate distribution of the control plane and the inherently distributed data plane.

the global view acquired and maintained by the controller might not represent and thus

be inconsistent with the actual ground truth, i.e., the physical data plane state of the

network [PZH+17].
Fourth, traffic in the data plane is processed (packet processing) according to state held

in the switches’ flow tables (flow-table programming abstraction). Today’s softwarized

networks are in constant flux, continuously adapting to changes in the network topology,

load patterns, network functions, and overall policies. To implement adaptations, the

network has to be reconfigured inevitably. During the process of reconfiguration (network

update), the flow tables (FT) of one set of switches might already have been updated,

while another set still operates on not-yet updated flow tables. Thus, network traffic

might be handled according to different, inconsistent versions of flow table configuration,

which in turn might temporarily violate arbitrary network policies—a problem known as

update consistency [RFRW11, FSV19].
Fifth, in modern data plane programming, packet processing is not solely determined

by table entries, but instead considers local inter-packet state. This kind of state is in

contrast to table state not changed by the control plane, but through the processing of

packets in the data plane, effectively extending the network control loop to the data

plane (stateful data plane processing). Thus, consistency of local inter-packet state among

reconfigurable data plane devices plays a crucial role for the correctness of distributed

applications implemented in the data plane.
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1.4 RESEARCH FOCUS AND CONTRIBUTIONS

In this thesis, we address various aspects of the presented research areas of distribution and

the problem space of consistency in Software-defined Networking, focussing on three main

areas. The thesis is based on work that has been presented to the scientific community

in the form of peer-reviewed publications at international conferences [KDR15, KDR17,

KDBR17, KMD+18] and within international journals [KDR16, KDR18]. It combines and

extends these works and their particular contributions on distribution and consistency

in SDN. The contributions of this thesis were endorsed by continuous advising of Prof.

Dr. Kurt Rothermel and Dr. Frank Dürr. Furthermore, parts of the implementations and

evaluations involve contributions from student’s works [Str15, Fet16, Bäu16, Maa18].
More specifically, the main research areas and contributions of this thesis are as follows.

1. UPDATE CONSISTENCY AND SDN-BASED MULTICAST NETWORKS The first part of this

thesis focuses on update consistency and SDN-based management of multicast networks.

A conducted literature research on update consistency leads us to argue, that in general,

updating the network is an intricate and crucial process with a possibly large parameter

space. Thus, network management architectures should incorporate awareness of incon-

sistency effects due to network updates. We present such a management architecture

allowing for an appropriate selection of an update mechanism and its parameters based

on expected inconsistency effects. We find that multicast benefits much from SDN-based

management and identify crucial particularities of update consistency in particular of

multicast networks, which have been left largely unconsidered in literature. A thorough

investigation of update consistency for the case of multicast routing leads us to the defini-

tion of the novel duplicate-freeness correctness property. We show in an extensive analysis

why it is impossible to avoid violation of the two invariants drop- and duplicate-freeness

for arbitrary multicast network updates using a stateless update approach. We present an

update procedure for multicast routing updates that identifies critical update steps, which

are fed back into the management’s reconfiguration process, along with a lightweight

approach that allows for the selection of an update strategy, preventing either drops

or duplicates. Furthermore, we present an optimization of an existing powerful, but

resource-intensive state-based update approach as well as an approach for in-network

filtering of duplicates. These contributions are primarily based on work published in

[KDR15] and [KDR16]. The author of this thesis contributed approximately 90% of the

scientific content.
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2. CONCEPTS FOR FLEXIBLE CONTROL PLANE DISTRIBUTION In the second part of this

thesis, we propose an architecture for network control distribution focussing on flexibility

in terms of distribution schemes, called ZeroSDN. Our research and the proposed architec-

ture consider many of the aforementioned aspects of distribution and consistency, which

are refined in the following. The contributions are primarily based on work published in

[KDR17, KDBR17, KDR18].

2.1. MESSAGE BUS AND EVENT ABSTRACTION. A central component of our architecture

is the message bus for decoupling controller functionality and control applications

from each other and from switches. The message bus is based on the abstraction of

events in the data plane and content-based filtering of these so-called data plane

events. The event-based decoupling yields numerous benefits over the tighter

coupling of standard OpenFlow. It allows for employing a mixture of distribution

schemes, replication and partitioning, and inherently implements a load-balancing

mechanism. It offers different levels of consistency for state data synchronization.

Moreover, its event-abstraction implements a mechanism for the coordination of

network control through so-called control plane events, which also allows for the

detection of policy conflicts and provides a feedback mechanism for network updates,

implementing a precursor for a transactional interface for network updates. The

author of this thesis contributed approximately 50% of the scientific content.

2.2. LOCAL DATA PLANE EVENT PROCESSING AND FULL-RANGE DISTRIBUTION. Using a

micro-kernel approach to implement very lightweight controller modules allows us

to push down control functionality onto the switches and thus implement switch-

local control decision making. We call this concept local data plane event processing

(LDPEP). Proposing LDPEP, we question the clean-slate approach of network control

in SDN, where any logic is removed from switches. With LDPEP, we vastly expand the

SDN control paradigm, enabling full-range distribution of SDN control, from fully

decentralized control, over local control still profiting from global view (augmented
fully distributed control) up to SDN-typical fully (logically) centralized control.

Allowing a varying scope of local state data enables trading off quality of control

decision and consistency requirements (both through the scope of locally held

state) with control latency. Consequently, we propose autonomous local procedures,

that without any switch-external control allow for temporary fast yet possibly sub-

optimal reaction (intermediate local procedures), for instance swiftly recovering

local link failures (local fast failover). We provide a thorough example for LDPEP
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with the autonomous forwarding control module, showing control coordination,

reconciliation of policy conflicts, and fine-granular local aggregation of global view

by leveraging the message bus. The author of this thesis contributed approximately

75% of the scientific content.

2.3. LIGHTWEIGHT VIRTUALIZATION OF LOCAL CONTROL ON WHITE-BOX NETWORKING

HARDWARE. Switch-local control mandates an accessible switch control plane,

which an emerging class of open networking hardware, so-called white-box switches,

fulfills. This property, on the other hand, raises concerns about the safety of the

control plane operation that is threatened by the execution of arbitrary local control

applications. Thus, we propose safety mechanisms for robust control plane operation

based on lightweight virtualization and containerization techniques, providing

adequate isolation properties and mechanisms for fine-grained resource control.

The evaluation of ZeroSDN’s control latency includes measurements of control

latency on a physical network testbed based on white-box switch hardware, also

evaluating the overhead of state-of-the-art virtualization mechanisms running atop.

The author of this thesis contributed approximately 85% of the scientific content.

3. IMPLEMENTATION AND CONSISTENCY CONSIDERATIONS OF A DISTRIBUTED DATA-PLANE

APPLICATION In the third part of this thesis, we account for the progression of distribution

in data-plane centric SDN. We present an approach called P4CEP as an implementation

of a distributed application from the domain of message-oriented middleware on top of

programmable network devices using data plane programming—a recently huge trend

and SDN’s emerging evolutionary step—by using the P4 language. Traditionally, Complex

Event Processing (CEP) has been implemented as an overlay of software middleboxes,

inferring higher-level knowledge (complex events) by evaluating specific combinations of

incoming information (basic events). Enabled by P4’s flexible and powerful programming

model, we present a data plane implementation of CEP that yields greatly reduced latency

and increased throughput due to hardware-based packet processing. Since we want to

prevent swapping one dedicated device, a CEP middlebox for another, a dedicated network

device solely implementing CEP, we implement a mechanism to allow the co-existence of

CEP alongside arbitrary other P4 programs on the same device. We discuss challenges

entailed in the distributed data plane processing and address aspects of distribution and

consistency in particular for stateful data plane programming, where packet processing

changes internal state, which in turn changes the processing of subsequent packets. In

distributing CEP, basic events may have to be propagated in a one-to-may pattern, raising
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the issue of update consistency of multicast trees, as addressed in the thesis’ first part. The

implementation of P4CEP consists of a compiler that compiles patterns for the detection

of complex events specified in our rule specification language to data plane programs,

consisting of a state machine and operators that process windows containing historic events.

We evaluate the performance and scalability of P4CEP on programmable hardware NICs.

These contributions are primarily based on work published in [KMD+18]. The author of

this thesis contributed approximately 80% of the scientific content.

1.5 STRUCTURE OF THE THESIS

Chapter 1 has so far given an introduction and motivation for Software-defined Networking

in general, and its distribution aspects in order to outline the problem space of consistency

in SDN in particular. Having introduced the research area, an overview of the particular

focus and research goals of this thesis along with its contributions have been given.

The remainder of this thesis is structured as follows. Chapter 2 lays out conceptual

and technical foundations and essential reasoning in the context of SDN as relevant for

the subsequent parts. More specifically, it presents a generic SDN system architecture

that is refined in later parts as required; specifics of the OpenFlow processing model and

southbound protocol specification, as relevant for update consistency, control distribution

and to illustrate differences to the data plane programming model; a refinement of data

plane consistency along with a classification of existing mechanisms; the design space

and trade-offs in network control distribution along with development of architectures

and a presentation and discussion of consistency in state synchronization; an overview

of white-box networking hardware as used for evaluating ZeroSDN; and data plane

programming along with the P4 language and its relation and role for replacement of

the NFV and middleboxing model. The subsequent parts of the thesis directly reflect

the aforementioned areas of research and contributions. Chapter 3 presents our work

on update consistency and management of SDN-based multicast networks. Chapter 4

presents concepts and reasoning for full-range distribution of network control along

with a presentation of ZeroSDN, an event-based architecture for flexible control plane

distribution. Chapter 5 presents P4CEP as a data plane implementation of complex event

processing, focussing on distributed implementation and consistency in stateful packet

processing in the data plane. Finally, Chapter 6 concludes the thesis with a summary of

our contributions and an outlook on future work.
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In this chapter, we refine our initial introduction by providing conceptual and technical

foundations of Software-defined Networking in general and of the addressed research

area of distribution and consistency in SDN in particular along with essential reasoning in

order to establish a sound basis for the presentation of our approaches in the subsequent

chapters.

2.1 ARCHITECTURE AND SYSTEM MODEL

We start by refining the high-level SDN architecture as depicted in Figure 1.1 to a level

valid for all of our addressed aspects. Since the scope and focus of those aspects differ,

we refine the common system model in the chapters as required but sum up the major

differentiations here.

We briefly summarize our common SDN system model as follows. The separation of

control plane and data plane is implemented through a southbound interface, allowing a

set of distributed controllers in the control plane to configure packet processing behaviour

of switches, or other network elements with configurable packet processing, residing

in the data plane. A control channel enables bi-directional communication between

switches and controllers, passing control actions from a controller to a switch, and data

plane events in the opposite direction. The control channel is typically implemented

out-of-band in a dedicated and physically or logically separated control network, however

in-band implementations exist. Throughout the thesis, we assume an out-of-band control

channel. The dedicated northbound interface, enabling network control applications to

use controller APIs to implement desired network behaviour (policies), is of negligible

importance in our approaches and hence not explicitly modelled but subsumed in the

control plane, without loss of generality. Except in Chapter 3, we moreover do not model

the management plane explicitly. Furthermore, end-systems, also called hosts, where

applications are running and requiring basic or advanced network services such as basic

connectivity or advanced messaging patterns like publish/subscribe, are included in the
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system model as required. Another differentiation lays in the scope of the control plane.

Logically, traditional SDN follows the clean-slate paradigm of network control, where

switches are not participating in network control at all, and are thus modelled solely

in the data plane. Technically, even in the traditional SDN paradigm, the switch-side

implementation of the southbound interface is typically running on dedicated general-

purpose hardware units (control plane processing units, e.g., CPUs) that are separated

from the units for high-speed and specialized packet processing (data plane processing
units (“switch silicon”), e.g., ASICs), while both units reside on the same switch hardware

(see Section 2.5). Thus, the control plane technically extends to the switches to include

the implementation of the southbound interface. With ZeroSDN (see Chapter 4) we also

logically extend the control plane to the switches by placing actual control logic onto

switches.

Throughout this thesis, we use the following convention on notation. We denote a

switch entity as Si. A switch comprises switchports, physical (pi) or virtual (vi), possibly

connected to another switchport or end-system via a weighted link l. We refer to a

controller instance as Ci, where possibly multiple controller instance entities form a

logically centralized controller Clogic. Control functions are denoted as CFi and represent

network functions (NFi) or network control applications (see application plane above)

implemented within Ci. Considering controller distribution (replication and partitioning),

CMi, j denotes a controller module encapsulating CFi in a replica j forming a logical control

module CMi,logic. A controller module that is executed at a switch, i.e., a local controller

module, is denoted as Li. State is held in a logically centralized state store SMlogic, such as

the Network Information Base (NIB), and might analogously be physically distributed,

where a state module SMi is associated to a co-located CMi, j.

2.2 OPENFLOW—THE DE-FACTO STANDARD OF SDN

Due to its central, yet recently diminishing role as a de-facto standard of SDN, in this

section we provide an introduction of relevant parts of OpenFlow (OF), in particular for

distribution aspects within its processing model and southbound protocol specification.

We also discuss limitations of OpenFlow adoption in recent hardware switches.
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Figure 2.1. High-level differences in programming models of conventional fixed pipeline switches,
e.g., OpenFlow switches (see Section 2.2.1), and reconfigurable pipeline switches
using data plane programming with the P4 language (see Section 2.6).

2.2.1 THE OPENFLOW PROCESSING PIPELINE

The original paper [MAB+08] proposes OpenFlow as a pragmatic compromise to promote

the standardisation of switch interfaces to allow researchers for uniform access to internal

flow tables and hence experimentations at line-rate and high port-densities on hetero-

geneous switches, while not forcing vendors to disclose insights into their internal switch

architectures.

OpenFlow implements a flow-table abstraction for programming of network behaviour,

as described in the introduction and illustrated in Figure 2.1(a). In OpenFlow, commu-

nication flows through the network are defined through flow-table entries, matching on

headers of existing and well-established layer 2 to layer 4 protocol headers and phys-

ical layer properties like ingress switchport-identifier. In the evolution of the OpenFlow

protocol specification [Opeb], the number of supported matching fields have been con-

tinuously increased (from 20 in OF v1.0 to 41 in OF v1.5), as has the number of applicable

actions (from 13 to 59) [KREV+15], in an attempt to extend and flexibilize OpenFlow-
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Figure 2.2. Fixed processing pipeline for bridging and routing functionality of a switching ASIC
under the OpenFlow data plane abstraction (OF-DPA) [Brod].

based SDN. However, in contrast to data plane programming, matching in OpenFlow is

still limited to established network protocols. We provide a high-level comparison of the

programming abstractions of OpenFlow and data plane programming in Figure 2.1, while

introducing data plane programming and the P4 language in Section 2.6.

The single flow-table model in OF v1.0 has soon been extended to a multi-stage pipeline

consisting of multiple flow tables. In order to increase throughput, hardware switches

implement a pipeline execution model where packet processing is split into stages that

are associated to distinct execution engines of the switch silicon which run and thus

process packets in parallel [BGK+13]. The stages implement different parts of packet

processing for instance operating on different header fields (for matching and for applying

actions). For instance, the OpenFlow Data Plane Abstraction (OF-DPA), which abstracts

hardware pipelines of current OF-enabled hardware switches, differentiates 34 tables

(ingress, action, and egress tables) for the implementation of a number of fixed pipelines

implementing common network functions in the context of data center networking, like

bridging/routing, tunneling, ACLs, traffic shaping, metering, etc. Figure 2.2 exemplarily

shows a fixed processing pipeline for bridging and routing functionality. Note that those

tables are heterogeneous, resulting in limitations on the mapping of pipeline stages to

flow tables as well as restrictions on table capacities, flow-entry types, matching semantics

(exact matching, ternary matching, match-field sizes) and correspondingly employed

memory type (SRAM, CAM, TCAM), applicable actions, and counters.

Due to its crucial role in particular for update consistency, we would like to briefly
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address limitations of flow-table memory. In particular, tables for exact matching, for

instance for lookups of MAC-address to switchport mapping, could be stored in SRAM.

However, the worst-case linear lookup time complexity and even faster lookups through

algorithmic-optimizations like hashtables or tries may yield insufficient scalability, consid-

ering matching of tens to hundreds of millions of packets per second in modern switches

with terbit-per-second-range throughput leaving only a tiny time budget of a few clock

cycles for matching. Hence, optimized content-addressable hardware memory (CAM)

with O(1) lookup time complexity are often used. Binary CAMs are typically used for fast

exact matching and combined to multiple CAMs for longest prefix matching (LPM) of

fixed prefix-lengths. For arbitrary matching, also called wildcard matching, ternary CAM

(TCAM) are the most prevalent memory type to be implemented on switching ASICs.

TCAM’s superior lookup time complexity comes at the cost of greatly increased power

consumption (about a factor of 100 in comparison to conventional RAM [STT03]), ASIC

die size consumption, and hence price. Thus, it is a fairly scarce resource, typically

implemented in sizes to accommodate in the order of only thousands of entries with

fully-quantified ternary matches, i.e., ternary matching on any header field, on recent

typical top-of-rack data center switches [SCF+12, KPK15, PIC18].

2.2.2 THE OPENFLOW CONTROL CHANNEL

The OpenFlow control channel provides an interface for connecting OF-enabled switches to

OF-capable controllers. In addition to the aforementioned bi-directional control communic-

ation of control actions, most prominently flow modification messages (OF_FLOW_MOD),

and data plane events, most prominently packets without a matching flow rule (OF_PKT_

IN), the controller can also inject packets to the data plane (OF_PKT_OUT). The Open-

Flow control channel by default is secure, however plain TCP can be used. By using TLS,

it inherits the security features authentication, integrity, and confidentiality.

As mentioned earlier, the control channel can be implemented in-band and, most typic-

ally, out-of-band. OpenFlow supports multiple concurrent control channels from a switch

to controllers, following two schemes. First, auxiliary connections provide redundancy of

a single control channel by maintaining multiple connections to the same controller, for

instance using different transport protocols (TCP or UDP or their secure implementations

TLS and DTLS). Second, since OF v1.2 the multiple controller functionality may improve

reliability by maintaining multiple concurrent control channels to different controllers in an

active/active and active/passive scheme. Controllers coordinate which channels are to be
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active, i.e., the controller gets all switch-solicited messages and can fully control the switch,

and which channels are to be passive, i.e., the controller does not get switch-solicited

messages and can not fully control the switch. However, vendor-specific implementation

in hardware switches might impose restrictions, e.g., on the number of concurrent con-

troller connections [Hew16], limiting practicability. To overcome compatibility issues, an

n:m switch-controller-mapping can be implemented by an OF-external control channel

demultiplexer, such as ZeroSDN’s SwitchAdapter controllet (see Section 4.4.2), that runs

locally or in close proximity to each switch and proxies OpenFlow messages from the

switch to respective controllers, and vice-versa.

2.2.3 OPENFLOW-SPECIFIC MECHANISMS FOR UPDATE CONSISTENCY

As we will detail in Chapter 3, data plane consistency puts stringent requirements on the

handling of OpenFlow messages on switches, in particular requiring guarantees about (1)

the ordering in which incoming control actions are processed and (2) about the reliability

of message processing. In general, a switch has to entirely process every control action

conveyed in a message received from a controller. Control actions in general are not

positively acknowledged, however in case an error occurs, the switch has to inform the

controller, thus implicitly implementing a negative-acknowledgement mechanism, which

is a necessary condition for the processing reliability requirement.

The ordering requirement (1) is not guaranteed by default. Most important for update

consistency, the order of the insertion of flow entries in tables might arbitrarily differ

from the order the corresponding OF_FLOW_MOD messages have been received. However,

OpenFlow provides a barrier mechanism that can be used to enforce in-order processing

of messages. Upon reception of an OF_BARRIER_REQ message, the switch ensures that

all previously received messages have been processed and subsequently acknowledges

with an OF_BARRIER_REPLY, before processing any new messages. This mechanism

also can be used to effectively separate interdependent control actions.

In recent OF versions (since v1.4), the bundle mechanism effectively satisfies the

reliability requirement (2) by providing transactional, i.e. all or nothing, semantics

for message processing. It allows for the definition of a sequence of control actions, that

are applied as a single OpenFlow operation—the bundle. Control actions are collected

in a temporary staging area without taking effect. Upon being committed, they are

applied to the switch state, e.g., tables, and acknowledged, iff all control actions have

been successfully executed. Otherwise, all state control actions are rolled-back and a
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negative acknowledgement, i.e., the error message of the failing action, is sent to the

issuing controller. Moreover, the bundle mechanism recognizes two flags, for in-order

execution of control actions within a bundle, analogously to the barrier mechanism, as

well as for packet-atomic execution of the bundle, which means, that packets incoming

while the bundle is applied should either be processed with none or with all of the control

actions having been applied, which resembles a strict update consistency semantic.

However, both, the barrier and the bundle mechanism are not mandated to be actually

implemented by OF-compliant switches. To date, most OF-enabled hardware switches

do not implement bundles at all. Furthermore, a recent study revealed flaws in their

implementation on OF hardware switches [KPKC18] that do claim to support them.

2.3 DATA PLANE CONSISTENCY

In this section, we provide background information regarding update consistency, which

addresses implications of changing flow-table entries on the adherence of policies and

other desired network properties. After introducing the network update problem, we

refine the update process in the network control loop and describe classes of mechanisms

that solve it, i.e., mechanisms that consistently implement network updates.

2.3.1 UPDATE CONSISTENCY

Today’s softwarized networks exhibit a high degree of dynamics, which is also a main

motivation for the SDN paradigm in the first place. For instance, in modern data center

networks, especially in the cloud computing context, shifts of network load and network

functions, e.g., through migration of virtual machines or dynamic scaling processes in

Network Function Virtualization (NFV), or provisioning of cloud-tenant resources that

are to be interconnected by the underlying network (network virtualization), require an

almost continuous adaptation of the network. To implement adaptations, the network

has to be reconfigured inevitably. The SDN network control loop (see Figure 2.3) aims

to maintain a steady operation of the network in accordance to global network policies

by reacting to disturbances, i.e., changes in the control plane or the data plane (both

deliberate, such as policy changes, and involuntary, such as load shifts, failures, etc.), by

computing necessary adaptations and consequently updating the data plane accordingly.

Updating the data plane can be described as the transition from an old network state

λ to a new network state λ′, where a state λ at time t comprises the set of flow-rules U
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Figure 2.3. A typical SDN network control loop maintaining steady operation of the network
in accordance to global network policies, reacting to disturbances by adapting, i.e.,
updating the data plane.

that are installed in the switches flow tables at t. A state hence is encoding all network

policies at t. To advance to a new network state λ′, the affected switches have to be

updated individually. Since updating flow-table entries is an inherently asynchronous

process, i.e., flow mod messages can get lost or delayed and furthermore the delay until a

rule update has been applied varies among the switches, packets in the data plane may be

processed according to a mixture of new and old rules as they traverse the network, while

it is being updated. Thus, a network property π that holds in λ and in λ′ my not hold in

an intra-update state λ∼, possibly violating network invariants Π, where Π is given by the

network policies comprising arbitrary π. Figure 2.4 shows an example of updating a flow’s

route through a network, leading to two inconsistency effects, looping of packets (due

to transient cycles) and en-route dropping of packets (due to a missing flow-rule (black

hole)). If consistency properties are not violated, updates are denoted to be consistent or

correct. Reitblatt et al. [RFR+12] stipulate a refinement of the notion of update consistency

considering temporal aspects of the data plane: (1) per-packet consistency requires that

during an update, a packet is processed entirely according to a single state, i.e., a single

policy or a single composition of policies, whereas (2) per-flow consistency requires that

packets of an entire flow, for instance, all segments of a TCP connection, are processed

according to a single state. The network update problem [RFR+12, MW13] asks for a

sequence of control operations that implement a network state transition λ→ λ′ such

that a set of invariants Π holds in any possible intermediate state λ∼, or in other words,

the ensure the transition consists entirely of correct updates.
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Figure 2.4. Illustration of an exemplary routing update leading to intermediate states (λ∼a , λ∼b )
during the state transition from current to target. Temporarily, a loop and a black
hole are introduced respectively, violating desired network properties (invariants).

Multifarious correctness properties have been stipulated in literature. In the following,

we give a classification and present the most relevant properties. (1) Path-properties
[MW13, FMW16, XYL+17, FLMS18], including way-pointing (enforcing the traversal

of specific switches or end-systems), shortest-path-routing, loop-freeness (absence of

transient loops), or drop-freeness (absence of missing segments in routes); (2) network-
properties, including isolation of specific flows (end-systems, traffic classes, etc.) [LRFS14],
duplicate-freeness (absence of packet duplication, see Section 3.3); (3) link-properties
[JLG+14, ZLT+18] considering capacity limitations of links (congestion-free updates) and

timing constraints; and (4) switch-properties such as memory limitations (flow-table size)

or specific switch capabilities [RHC+17].
A violation of invariants in the best case reduces the network’s efficiency, possibly

violating soft requirements such as Quality of Experience (QoE). In the worst case, it may

severely jeopardize stipulated hard invariants, e.g., when black holes occur in routing,

which is a network function of utmost importance. Since the management of networks

includes definition and implementation of requirements on the network operation, we

argue in Section 3.1 to create awareness about update consistency in network management

in order to be able to circumvent effects that stem from update inconsistencies. This

implies the selection of suitable update methods based on the network specifications to

maintain.
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2.3.2 DATA PLANE UPDATE MECHANISMS

We refine the network control loop1, as illustrated in Figure 2.3, that an SDN controller

implements as follows. After monitoring events in the network and subsequently analysing

whether these events are to trigger an adaptation of the network, a network state transition

is possibly implemented by a planning phase, where a set of necessary flow updates U to

implement the adaptation are determined, and an execution phase, in which U is applied

to the data plane. There are two classes of mechanisms for achieving update consistency.

(1) The very powerful two-phase update mechanism that guarantees the maintenance of

arbitrary invariants during a network transition, and (2) lightweight mechanisms centered

around coordination in the planning phase (generation of update plans).

(1) Reitblatt’s 2-phase update approach [RFRW11, RFR+12] effectively eliminates the

possibility of any λ∼. Consequently, iff π holds in both λ and λ′, π also holds during

λ→ λ′. In other words, any property that holds in both the old and new state is guaranteed

to hold during their transition. The key to such strong consistency is to employ state

information in both flow-rules and packets traversing the network. A version tag v is

injected to each packet that enters the network, such that flow-rules installed in the

switches can match on a specific version tag. Hence, each state λi can be associated to a

version tag vi. Reconfiguration is achieved by installing a new set of rules with an increased

version match field vi+1 (associated to λ′) on all switches affected by the transition. Once

the new set of rules has been entirely installed, the ingress switches are instructed to

tag newly incoming packets with vi+1. Increasing the tagged version number effectively

switches the configuration that new packets are processed according to and hence λ′ is

effective for all newly entering packets. A traversing packet is thus processed according to

a single coherent state (per-packet consistency), such that there exists no λ∼. While being

very powerful on the one hand, the two-phase update approach has severe drawbacks on

the other hand, limiting its practicability. First of all, it is not transparent for data plane

traffic since it actively modifies the packets by encoding v in a vacant header field (typically

the VLAN tag), consequently placing a technical dependency on an available2 header field.

Second, unless the installation of the new rule set encoding λ′ is completed, it requires

to store both, the old and new rule sets in parallel in each affected switch. Hardware

switches store their flow tables in ternary content-addressable memory (TCAM), which is

a power-hungry and fairly limited resource (see Section 2.2.1), with typical capacities of

1overall resembling a MAPE cycle as known from the domain of Autonomic Computing [KC03]
2that is, a header field which is neither used for other flow specification, nor used by any (future) traffic in

the network
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thousands of rule entries for current hardware switches [SCF+12, KPK15, PIC18]. Third,

(only) after the old rule set is not required any more, i.e., all packets of vi have left the

network, all rules matching on vi have to be removed from the switches, causing either

control overhead through flow-deletion messages or increasing update completion time in

case of relying on OpenFlow’s automated flow-timeout removal mechanism. Furthermore,

depending on the update frequency, there might by more than two rule sets be installed in

parallel, consequently exacerbating rule-space consumption of affected switches further

more. Overall, this mechanism inflicts overhead in the execution phase in terms of rule-

space and update time. In [KRW13], the authors present an extension to their original

approach allowing to trade-off time required to perform a consistent update against

rule-space overhead required to implement it. A special two-phase approach, however of

typically limited practicability, is to redirect all affected packets to the controller while a

transition is being implemented [McG12].
Considering the drawbacks of two-phase updates, (2) stateless approaches based on

coordination in update plans received a lot of attention. This class of update mechanisms

does not rely on state information and in general can not guarantee the maintenance

of arbitrary invariants, however, algorithms that guarantee specific properties (see Sec-

tion 2.3.1), including loop-freeness and drop- or duplicate-freeness in multicast networks

(see Chapter 3) exist. Basically, the overhead to ensure correctness is shifted from the

execution phase (as with the two-phase updates) to the planning phase. In this phase,

stateless approaches generate update plans (also called update schedules) that define

ordered sets of updates to tightly coordinate the actual execution of the updates later on

in the execution phase. Typically, update plans rely on an appropriate ordering of updates

among switches (update-ordering approaches) or their precise temporal execution (timed-

update approaches). They may consist of regular flow-rule updates, temporary (“helper”)

updates, logic operators, and timed-updates [MSM16], i.e., time-triggered updates with

an associated wall-clock time to become effective. For the determination of update plans,

search-based approaches such as [LWZ+13, MFC14], and constructive approaches such as

[JLG+14, MW13], have been proposed. We refer to [FSV19] for a survey of constructive

approaches. We present our update-ordering approach for multicast networks along with

our algorithm for update plan calculation in detail in Section 3.4, where we also present

a hybrid approach that combines a two-phase mechanism applied to critical updates with

a lightweight update ordering mechanism applied to uncritical updates.
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2.4 DESIGN SPACE AND TRADE-OFFS IN NETWORK CONTROL

DISTRIBUTION

In this section, we lay out the design space of network control distribution. We refine

the distribution schemes replication and partitioning, as introduced in Section 1.2, by

reflecting the evolution of controller architectures proposed in literature before we discuss

trade-offs regarding consistency in state synchronization.

2.4.1 EVOLUTION OF SDN CONTROLLER ARCHITECTURES

Many SDN controllers have been implemented so far based on the concept of logically

centralized control. For most comprehensive surveys we refer to [KD17, BSM18], while

focussing on most relevant or prominent approaches in the following. Figure 2.5 depicts

the evolution of controller architectures with respect to distribution and modularization.

First SDN controllers were monolithic systems, implementing the controller as one

process. The SDN controller connects through the southbound interface to the switches

using, for instance, the OpenFlow protocol, and the control applications interface with

the SDN controller through a northbound interface, e.g., a Java API or REST interface.

Although physical centralization is appealing due to the simplicity of its implementation,

physically centralized controllers cannot meet the scalability requirements of modern

networks, in particular considering data center networks (DCN) with scales in the order

of tens of thousands of switches [BAM10, YTG13]. Most prominent representatives of

physically centralized controllers are the controller frameworks NOX [GKP+08], Maestro

[Ng], Floodlight [Big], and Ryu [Ryu]. Furthermore, it has also been shown that physical

control centralization is not a viable option for SDN-based wide-area networks (WANs)

regarding failure-resiliency and scalability [MK17]. To increase availability and scalability,

the monolithic process implementing all control logic may be replicated (Figure 2.5(a))

in an active or passive replication scheme [FBMP13].
Very similar to the evolution of monolithic operating system kernels like the Linux kernel,

this monolithic design was soon extended to a modular monolithic design (Figure 2.5(b)),

where control modules implementing certain control functions (network functions) can be

dynamically (un-)loaded into the controller process at runtime. Two examples showing

that this design is still used in practice are the popular ONOS [BGH+14, Thea] and

OpenDaylight [OF] controllers relying on OSGi [OSG]. However, their modular controller

architectures remain monolithic since they still rely on a central controller executing
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all modular control functions in one process. This generation of controllers typically

employs replication. Most prominent representatives of replicated frameworks besides

OpenDaylight and ONOS are Onix [KCG+10] and HyperFlow [TG10]. In order to improve

not just availability but to actually improve scalability, the set of switches to control is

partitioned, where each controller replica is associated a mostly disjoint subset of switches

to control (horizontal partitioning). Typically, the set of switches is partitioned along

topological properties. For instance, in the common leave-spine topology in DCN, each

leave can be associated a dedicated controller replica. While horizontal partitioning

allows for scalability with the network size, it also raises the need for coordination. In the

DCN example, partitioning along the leaves requires tighter coordination on the spine

layer. For instance, establishing dedicated inter-leave communication from an end-system

residing in leave a and one residing in leave b requires involvement of multiple controller

instances, controlling the leave switches of a and b and controlling the spine switches on

the path a→ b.

Another partitioning scheme distributes network control along functional properties

(vertical partitioning, illustrated in Figure 2.5(c)). Similar to the modular monolithic

design, individual control functions can be factored out into control modules, which

are now partitioned between different physical machines instead of fully replicating all

control functions on all machines. For instance, Kandoo [HYG12] proposes a two-layered

controller hierarchy, where a root controller handles only rare events of global scope,

and local controllers handling all frequently occurring local events. On the same line,

Google’s B4 [JKM+13] implements separation of concern by employing a control layer for

intra-DCN traffic and a control layer for inter-DCN, i.e., WAN traffic. Another example

is partitioning along the flow-space, where for instance, long-lasting high-traffic flows

(elephant flows) such as long-lasting TCP connections possibly transporting bulk data are

handled disjointly from short-lived low-traffic flows (mice flows) such as connection-less

UDP traffic possibly transporting traffic of real-time applications like media voice-over-IP

(VoIP). This way, dedicated control modules can account for flow diversity by employing

flow-type specific optimizations, for instance, traffic engineering for elephant flows (see

Section 4.3.2.3) and optimizations focussing on timeliness for mice flows. Note, that the

vertical partitioning requires multiple concurrent control channels (see Section 2.2.2) in

the case of non-disjoint control module association.

A last step is to freely combine replication and partitioning schemes while also allowing

to push down control logic onto switches themselves (Figure 2.5(d)). With ZeroSDN

in Chapter 4 we elaborate on this scheme and make a case for full-range distribution
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of network control by discussing its rationale and presenting its underlying event-based

network control.

2.4.2 STATE CONSISTENCY AND SYNCHRONIZATION

Having discussed different distribution schemes employed by established SDN controllers,

we now address implications of distribution in terms of consistency in the control plane.

We denote control plane state to comprise all data relevant for control plane operation

and hence control decision making, or more specifically, the global view of the network,

which is typically referred to as network information base (NIB) in literature, as well as

state of control applications.

Inconsistencies in the control plane can arise in two ways. (1) Inconsistency between

assumed network state (control plane state) and the actual network state (physical data

plane state). Just as for update consistency (see Section 2.3), an (even non-distributed)

controller that takes a control decision based on a stale view of the network might introduce

inconsistency effects that violate network invariants. (2) Inconsistencies between control

plane sate of different controller instances in a distributed control plane. Controller

instances that take a control decision based on a view that differs among the instances

may lead as well to the violation of network invariants, in particular of policies defined

by network control applications or severely degrading application performance, as shown

for inconsistencies in an SDN-based load balancer [LWH+12]. In the following, we

concentrate on the latter, i.e., (2) consistency of state in a distributed control plane.

Temporary state inconsistencies are inevitable in distributed systems. Based on the

consistency model, such inconsistencies are either resolved internally and guaranteed

not to be exposed to clients of such systems (strong consistency) or be tackled in a best-

effort manner where internal inconsistencies might be (temporarily) exposed to clients

(weak consistency). Preventing negative implications due to inconsistency effects calls for

mechanisms ensuring strong consistency of control plane state, which consequently ensure

that any controller instance takes the same control decision, given the same input event

that triggers the decision making. Basically, consistency of the control plane state can be

ensured by serializing updates to that state, i.e., all controller instances have to reach

consensus about the order of events that modify the control plane state. In order to reach

that consensus, the controller instances have to coordinate, typically employing consensus

protocols, such as Viewstamped Replication [OL88], Paxos [Lam98], Raft [OO14], or Zab

[JRS11].
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However, synchronization mechanisms ensuring strong consistency come at the cost

of introduced synchronization overhead that may compromise responsiveness to handle

data plane events. For instance, Onix [KCG+10] provides a replicated transactional data-

base backed by a replicated state machine (SMR). While providing strong consistency,

the authors state severe performance limitations for high rates of control actions that

modify the control plane state and hence trigger a synchronization of that state. This

trade-off between consistency semantics and synchronization overhead and hence control

latency has been subject of a large body of literature debating the question of determ-

ining an adequate level of consistency for control plane state [KCG+10, TG10, LWH+12,

BRKB13, KZFR15, YG16a, PZH+17]. On the one side of the spectrum, for instance Levin

et al. [LWH+12] motivate and implement a strongly consistent state synchronization, as

well as Bothelo et al. who rely on an external data store backed by an SMR approach

based on BFT-SMART [BSA14], yielding “strong consistency at acceptable” performance

bearable for certain SDN applications. Katta et al. with Ravana [KZFR15] require an even

stronger semantic of exactly-once delivery of controller-switch messages. On the other

side, a number of works question the necessity of strong consistency. For instance, the

authors of SCL [PZH+17] argue that too strict requirements on state consistency hinders

control plane operation since every update operation on control plane state requires a

quorum to be created upfront, which limits control responsiveness. Furthermore, the

authors argue, that the even stricter exactly-once requirement of Ravana more drastically

degrades availability, since it requires the system to be unavailable in the presence of

failures.

Another question debated in literature is whether strong consistency should be the sole
option. While for instance Hyperflow [TG10] relies solely on passive synchronization

of control plane state yielding weaker eventual consistency, other controllers allow for a

differentiation of control plane state by providing strong consistency for important state

data, for instance, global policies relevant for all controller instances, and less strong

semantics for less important state data, for instance transient data that is less relevant for

other controller instances. In particular, the influential Onix framework in addition to the

replicated transactional database providing strong consistency as mentioned above also

provides a synchronization mechanism based on distributed in-memory hash tables (DHT),

yielding weaker eventual consistency. As for the carrier-grade controllers OpenDaylight

and ONOS, they both provide a strongly consistent data store based on Raft, where

ONOS, just like Onix, additionally provides an eventual consistent data store based on an

optimistic replication mechanism assisted by a gossip-mechanism (anti-entropy protocol)

52



2.4 Design Space and Trade-offs in Network Control Distribution

[BGH+14, MGBM17]. A recent paradigm called adaptive consistency even calls for a

mechanism to adjust the consistency level during runtime [AM16, SK18].
In-line with the argumentation about providing flexibility in terms of consistency

semantics, we present in a student’s work [Str15] a proof-of-concept implementation

of an externalized distributed data store for OpenDaylight, based on the ISIS2 toolkit,

which follows the virtual synchrony (VS) model [BJ87]. Virtual Synchrony is solving

the problem of ensuring a total ordering in the delivery of multicast messages (atomic

multicast [DSU04]) which is equivalent [CT96, MHS11] to the consensus problem as used

in SMR for the serialization of inputs to instances of a replicated state machine. Based

on the observation that applications often do not require solely strong consistency, ISIS2

provides synchronization primitives of varying fault models and guarantees regarding

message ordering, and hence consistency semantics, ranging from FIFO over causal and

total ordering to in-memory Paxos and disk-persisted Paxos.

We conclude from literature, that the concentration on strong consistency for control

plane state synchronization is questionable due to its high overhead and mechanisms of less

strict semantics have shown to be sufficient at (greatly) improved control responsiveness.

We would like to add that application-specific optimizations of state synchronization exist,

as shown for instance in the context of pub/sub in messaging middleware [BTK+15]. They

typically rely on the principle of reducing the scope of data that has to be synchronized.

With ZeroSDN we draw a lesson from the debates in literature by combining the

approach to provide flexibility with respect to distribution schemes and consistency in

synchronization of control plane state with a means to reduce the scope of data to be

synchronized. Our event-based message bus abstraction (see Section 4.2) implements state

synchronization by propagation of input events among controller instances with a flexible

dissemination scheme (content-based pub/sub). As shown above, there is a large set of

synchronization techniques available, which our message bus can transparently implement.

To increase responsiveness, i.e., decrease control latency, we enable a reduction of the

scope of control plane state to be synchronized by allowing switch-local control decision

making operating on a scope of state data flexibly ranging from solely local to full global

view. Hence, we enable yet another trade-off between scope of state, synchronization

overhead (and hence control latency), and quality of control decisions (see Section 4.3.1).
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2.5 WHITE-BOX NETWORKING—ANATOMY OF OPEN SDN

HARDWARE SWITCHES

Alongside the proliferation of SDN, recent years have seen an increasing trend towards

white-box networking. In traditional black-box switches, the control plane is tightly

coupled to the underlying hardware and is only accessible through proprietary CLIs or

APIs and, in case of SDN support, an interface for remote programmability of the data

plane behavior, e.g., through OpenFlow. SDN separates the data plane from the control

plane, allowing for control decisions based on a global network view typically taken

remotely in the control plane. Similarly, white-box networking consequently decouples

the data plane, where specialized hardware (typically ASICs) process packets, from the

control plane, where control-software determines the behavior of this processing. In

white-box networking, the switch hardware is not tightly coupled to the switch’s software

stack, the so-called network operating system (NOS). Typical white-box networking NOSes

consist of a standard Linux OS and control software running atop, forming the switch’s

control plane, as illustrated in Figure 2.6. This decoupling is for instance reflected in the

fact that white-box switch hardware typically is sold separately from the NOS. Similar to

the transition in the server market from proprietary server software and hardware to open

operating systems like Linux on commodity off-the shelf hardware, or the decoupling from

proprietary hardware (softwarization) of network functions (NFs) in Network Function

Virtualization (NFV) [Eur12], white-box networking offers superior flexibility at greatly

reduced capital expenditures. The proliferation of white-box switches is reflected in the

increasing number of open specifications of both, hardware and software for white-box

switches that are provided to the public domain by big players like Facebook and Microsoft

for instance in the OpenCompute Project [Opea]. The white-box market share is expected

to double within the next five years [Mar].
While white-box switches typically feature the same data plane processing hardware

(switch silicon) as proprietary products, their computing resources on the control plane

have reached a level comparable to small workstations and are still becoming increasingly

powerful. Contrasting black-box switches, white-box NOSes are completely accessible,

allowing for the execution of arbitrary applications on their control plane. These properties

allow for the exploitation of the switch’s locality. We present our concept of Local Data

Plane Event Processing (LDPEP) later in Section 4.3.2.

One thing to note is that the current white-box switch landscape exhibits a high hetero-

geneity with respect to hardware, i.e. switch silicon and control plane architecture and
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software, i.e. operating systems and forwarding agents, as illustrated in Figure 2.7.

A first differentiation is found in the switch-silicon, which differs in type, e.g. ASIC

or NPU, and model. Considering forwarding performance, flexibility, capability, and

accessibility, the selection of switch silicon is crucial. A second differentiation lays in the

hardware architecture of the control plane as one of x86, PowerPC, or ARM.

On the software side, although all currently available NOSes are Linux-based, they differ

in the aspects openness (closed- or open-source), used kernel, and Linux-distribution. A

typical white-box network operating system (NOS) comprises the following components:

(1) A base OS, typically Debian with a Linux-kernel. (2) Components for accessing

platform hardware including the switch silicon, fans, LEDs, etc. Access to the switch

silicon is provided through drivers, which are built against a typically proprietary silicon

SDK. The top layer of the driver offers an abstracted API for configuration of the switch

silicon hardware pipeline. The most relevant APIs are Broadcom’s Open Network Switch

Library (OpenNSL [Brob]) and OpenFlow Data Plane Abstraction (OF-DPA [Broc, Brod])
as well as the generic switch abstraction interface (SAI [Pro]). (3) A forwarding agent

that interfaces with the driver to program the data plane. Most prominent are: Indigo

OpenFlow Agent (OF-DPA), SnapRoute (OpenNSL, SAI), and Facebook FBOSS (OpenNSL).

Prominent NOSes include (a) Open Network Linux (ONL): open-source (part of the

Open Compute Project), broad selection of silicon drivers and forwarding agents, (b) Pica8

PicOS: proprietary, based on Open vSwitch (OVS), and (c) Cumulus Linux: proprietary. All

named have open control plane access, however, just ONL and PicOS provide OpenFlow

forwarding agents. We discuss the implications of white box switche’s openness and

heterogeneity in Section 4.3.4.

2.6 DATA PLANE PROGRAMMING—THE EVOLUTION OF DATA

PLANE CENTRIC SDN

Recent developments in SDN have given rise to a new evolutionary step of network

programmability. Data Plane Programming, like advocated by the popular P4 initiative

[BDG+14], has hence become a huge trend in SDN. It features protocol-independent

and flexible packet processing in networking hardware, opposing OpenFlow’s matching

mechanism that is limited to static headers of established network protocols and the

rather static hardware processing-pipelines of traditional switch silicon. In a nutshell,

data plane programming leverages the increased capabilities and programmability of
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modern networking hardware, such as network processors, FPGA-augmented switch

silicon, programmable switching ASICS like the popular Tofino ASIC, or programmable

NICs to extend the expressiveness of packet processing in the data plane. Data plane

programming paves the way for complex yet efficient processing of high-volume data in

the network at line-rate, for instance in the domain of data analytics or stream processing,

as we show later.

In this section, we briefly introduce the rationale of data plane programming by elab-

orating on the P4 programming language, before we discuss its implications redefining

the relationship to related fields like Network Function Virtualization and the middlebox

model.

2.6.1 THE P4 LANGUAGE

Like OpenFlow was considered the de-facto standard or even a synonym for SDN, P4 to

date is considered the de-facto standard for data plane programming. P4 is a domain-

specific language designed to allow programming of packet processing. The eponymically

titled original proposal “Programming Protocol-Independent Packet Processors” [BDG+14]
converged into an open-source language maintained by the non-profit P4 Language

Consortium with a broad set of industrial contributors [Con]. P4’s original specification

called P414 [P4 18c] was released in 2014, as was the paper, and was succeeded by the

P416 specification [P4 18d] in late 2016. Major extensions and differences between the

two versions are well described in [BD17].
P4 was designed around a more general notion of packet processing than mere for-

warding. It declares the following design goals which drastically extend the networking

paradigm that was formerly limited by the capabilities of traditional and OF-enabled

networking hardware (cf. Section 2.2.1).

(1) Reconfigurability: opposed to traditional networking hardware where the packet

processing pipeline is tied to the underlying fixed-function ASIC, the processing semantics

of P4-enabled networking hardware, called P4 targets, can be flexibly changed after their

deployment through reconfiguration in the field by a controller.

(2) Protocol independence: P4 targets are not to rely on and be limited by fixed

definitions of protocols in terms of packet formats and headers. Instead, a P4 program

comprises the definition of packet parsers [GVHM13] that interpret an abstract bit-string

representation of a packet and hence allow for the extraction of header fields and values

on which later entries of match-action tables operate on.
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(3) Target independence: The specification of a P4 program is to be agnostic of the

specific type of target the program is later deployed on. The P4 compiler however

includes a target-specific (back-end) part that is aware of the target’s capabilities and

transforms a target-independent description specified in the uniform P4 language to a

target-specific program deployed to hardware. The P4 compiler chain and its target-

dependencies are illustrated on the example of our P4CEP workflow later in Figure 5.5

on p. 149. A classification of P4 targets along with a discussion of challenges of hardware

implementation is given later in Section 5.1.1.

Like OpenFlow, P4 implements a table abstraction for programming of network beha-

viour which is however much more powerful due to the aforementioned design principles.

As illustrated in Figure 2.1(b) on p. 39, the ingress pipeline of a P4 target consists of

a programmable parser and multiple stages of programmable match-action tables. The

egress pipeline (undepicted) analogously consists of multiple tables and a deparser. A P4

program accordingly comprises (1) a specification of (multiple) parsers and their possible

combination in a parse graph along with definitions of headers, (2) definitions of table

structures (matching fields and applicable actions), and (3) a control program (control
flow), determining the relative sequence of tables (stages) and their conditional execution,

hence specifying specific paths through the pipeline that packets of specific flows follow.

The logic in the control flow can incorporate and maintain two types of state. Intra-packet

state, most notably intrinsic packet metadata such as ingress port, packet length, and

timestamps and inter-packet state3 in the form of registers, counters, and meters, where

only the inter-packet state is persisted in stateful memory and hence retained across

packets, enabling stateful packet processing.

The reconfiguration process consists of compiling a P4 program and deploying the P4

program through a programming API, consequently defining the pipeline constituents

(1-3) as mentioned above. The OF-equivalent of flow programming is the population of

the defined tables with table entries through a dedicated runtime API. Reconfiguration

typically is a disruptive process ceasing packet processing while it is running, whereas

the population of tables is a non-disruptive runtime process (just as with OpenFlow).

Interestingly, P4 used to lack a uniform, target-independent runtime API, i.e., a southbound

interface for populating tables, which OpenFlow implemented from the start. In 2018, the

P4 Language Consortium released P4 Runtime [P4.19] as a unified interface for populating

flow tables, which has been rapidly adopted by the Google Cloud Platform [WV18].

3Technically, tables constitute another form of inter-packet state memory, which can however only be
modified by the control plane while being read-only for the data plane.
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2.6.2 EMBRACING MIDDLEBOXING AND NETWORK FUNCTION

VIRTUALIZATION

In Network Function Virtualization (NFV), network functions (NFs) such as firewalls,

NAT gateways, or load balancers, are flexibly moved from costly dedicated hardware

middleboxes onto commodity server hardware using virtualization techniques.

Remote hardware is used for NF implementation in both the middlebox model, i.e.,

proprietary appliances on closed hardware, and in NFV, i.e., general-purpose hardware

running virtualized software NF-implementations. While dedicated middleboxes are

placed on or at least close to the path, virtualization hosts providing vNFs are typically

remote, i.e., off the path. On the one hand, packet processing in software running on

general-purpose hardware has become remarkably fast. On the other hand, ex-situ packet

processing inherently requires to re-steer the traffic to traverse additional hardware

entities—hence the name middle-boxes. By steering traffic through remote hardware,

additional round trips are inherently inflicted, consequently increasing application latency.

Thus, packets are ideally processed in-situ at high-performance network elements that

they naturally traverse, consequently combining forwarding and processing. Furthermore,

in modern networking, traffic typically has to traverse multiple (v)NFs (service chaining).

Although NFV may mitigate chaining costs through consolidation of multiple VNFs into a

single physical host, the traffic still has to traverse multiple software components (virtual

switches, hypervisors, virtual NICs). Overall, significant latencies accrue depending on

the physical or logical distance of (V)NFs and chain lengths. For WAN scenarios, the

incurred latency can easily reach an order of tens to hundreds of milliseconds. Moreover,

the probability of failures increases with increasing chain length.

Many network functions, such as load-balancing or firewalling, depend on exerting fine-

grained control over network traffic and ultimately boil down to providing connectivity—or

deliberately not providing connectivity—and thus to forwarding behavior which nowadays

SDN is able to flexibly control. Even with traditional OpenFlow, complex network-centric

appliances such as content-based routing can be substituted by in-situ packet processing

directly on switches data plane, providing line-rate throughput [BTK+17] and eliminating

the need for a remote middlebox or a virtualized network function (the broker). Recently,

many approaches within NFV-related SDN have proposed in-situ middlebox replacements,

i.e., the implementation and distribution of network functions onto the switch data plane.

Generic frameworks are for instance OpenBox [BBHH16] and NetBricks [PHJ+16].
Data plane programming shifts this frontier even further, enabling pushing down more
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complex network functions to switches. In the recent trend of in-network computing,

NFs of middleboxes and application functionality from end-systems are offloaded to

programmable network elements using data plane programming while leveraging the

performance of specialized forwarding hardware. In Section 4.3.3, we discuss the re-

lationship between processing in ZeroSDN with data plane programming and network

function virtualization. In Chapter 5, we present a P4-based in-network implementation

of Complex Event Processing as a representative of a more complex application from the

domain of message-oriented middleware requiring stateful packet processing.
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3

UPDATE CONSISTENCY AND

CONSISTENT MANAGEMENT FOR

SDN-BASED MULTICAST

In Section 2.3.2, we described two classes of mechanisms to ensure correctness of network

updates. While two-phase updates guarantee the maintenance of any property during

an update, they are resource-intense in terms of flow rule memory, which is a scarce

resource on hardware switches, and time, required for the installation and removal of

parallel versions of flow rules. Update ordering approaches, on the other hand, are

lightweight and already solve many problems for unicast route updates and even minimal

procedures for some invariants like way-point enforcement and loop-freeness exist (see

Section 2.3). However, there are no thorough investigations of update ordering approaches

for the multicast paradigm, although in particular multicast could benefit very much

from consistent updates to increase performance and user experience. As we show in

this chapter, update consistency entails numerous crucial particularities that are to be

considered in the management of multicast networks.

Multicast is a messaging pattern that implements efficient one-to-many and many-to-

many communication (group-communication). On a broader sense, the multicast pattern

basically comprises any communication where messages are at some place replicated in

order to be sent to a group of receivers (but in differentiation to broadcast typically not

to all receivers). Throughout this chapter, we consider this broader definition, which

subsumes the well-known IP Multicast.

Multicast tremendously benefits from SDN [IKM14]. Opposed to the distributed cre-

ation and maintenance of multicast distribution trees, logical control centralization tre-

mendously reduces complexity and allows for optimized routing, as has been shown

in [ARTN13] and will be shown in this chapter. Membership management and control

naturally benefit from centralization alike. Multiple classes of applications rely on mul-

ticast, including large-scale media streaming in WANs, like distribution of live television

broadcasts using IPTV. To provide resiliency, both, data and services in data centers are
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typically distributed and replicated, using e.g., Apache Hadoop or Infinispan, heavily

relying on multicast. Furthermore, the replication of messages is a base mechanism for

many other message-passing patterns like publish/subscribe (see Section 4.1) and is

widely used in message-oriented middleware, for instance implementing Complex Event

Processing (see Chapter 5).

In this chapter, we make the case for update consistency awareness (see Section 3.1)

and perform an in-depth analysis for the concrete case of multicast networks. We propose

an update ordering and hybrid approach that tackles the update problem of avoiding

dropping and duplication of messages in multicast networks. The relevance of drops

is obvious. For instance, in audio or video streams, dropped packets result in dropped

frames, which may severely reduce the Quality of Experience (QoE). Duplicate messages

waste bandwidth and might lead to bandwidth bottlenecks during updates, which again

might degrade the QoE of the application (e.g., a video application not receiving sufficient

bandwidth anymore). Moreover, duplicates might confuse the application if it is not

prepared to handle them. As an overall implication of drops or duplicates, temporary

degradation of network performance and thus application QoE degradation can be stated.

In detail, the contributions of this chapter are as follows:

First, we propose a generic system architecture for network management, incorporating

knowledge about update consistency to allow for the selection of an appropriate update

mechanism and its parameters.

Second, we specify a network update correctness property specific to multicast—

duplicate-freeness—which has been formerly unconsidered in the context of network

update consistency. In our extensive analysis, we then prove that in general it is im-

possible to avoid violation of the two invariants drop- and duplicate-freeness for arbitrary

multicast network updates using a stateless approach.

Third, we identify and define necessary conditions on multicast tree updates, leading

to undesired effects that possibly break invariants. We show that update ordering is a

degree of freedom, resulting in maintenance of drop-freeness, while sacrificing duplicate-

freeness and vice versa. This allows for an update strategy that avoids drops at the cost

of duplicates and vice versa. Either behavior can be achieved by a deliberate selection

of a respective strategy. We furthermore introduce the loop-freeness invariant, which our

approach additionally maintains.

Fourth, we conduct a detailed analysis of packets traversing the network while an

update is being applied and show that the update order as perceived by the packets

may differ to the order the controller has initiated these updates, depending on their
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propagation delay. We show the implications of this reordering and present a method to

prevent it.

Fifth, we propose a generic multicast update procedure. We introduce the path up-
date algorithm, which decomposes a global multicast network transition into update

steps for which invariant maintenance can be guaranteed, leveraging the degrees of

freedom identified in the analysis. We outline the involved algorithms and procedures that

translate tree changes to SDN rule updates and executes these updates in a guaranteed

order, maintaining desired invariants. In addition, we present a mechanism to mitigate

update-caused duplications through in-network filtering. Furthermore, we present a novel

alternative update approach as an optimized state-based approach that maintains arbitrary

invariants, while rule space consumption, i.e., TCAM space, is minimized. Overall, we

particularly highlight feedback of the prevailing network state and update situation to the

network management, as well as its decisions about the approach selection and parameter

determination.

The remainder of this chapter is organized as follows. In Section 3.1, a generic system

architecture for network management, incorporating update consistency is presented.

Henceforth, this scheme is applied to the concrete case of multicast networks, where

update consistency is shown to be of particular relevance. Section 3.2 formally introduces

the multicast model. Section 3.3 provides the problem statement and an in-depth analysis.

Section 3.4 describes our flexible update approach for multicast trees utilizing update

ordering, with optional duplicate filtering, or an optimized hybrid approach. To investigate

the implications of inconsistency effects, in Section 3.5 their frequencies and impact for

real WAN scenarios are evaluated, both, analytically and empirically, through direct

measurement in the data plane under update. Section 3.6 states related work. Finally,

conclusions are provided in Section 3.7.

3.1 UPDATE CONSISTENCY IN NETWORK MANAGEMENT

Overall, SDN has been fostering the evolution of network management [KF13, AB14],
to allow for complex management of heterogeneous network elements and possibly

overlapping network functions. In this section, we describe a generic system architecture

for SDN network management under awareness of inconsistency effects due to network

updates.

Figure 3.1 gives an overview of the proposed system architecture and control flow. We

build on a typical SDN architecture (see Section 2.1), where management and control
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are strictly separated from the actual packet forwarding in the data plane. Specifically,

our architecture embeds a dedicated control loop (see Section 2.3) that implements

an adaptation mechanism providing network updates that are consistent with given

consistency criteria and avoiding undesired inconsistency effects. We subsume the control

and management plane in a logically centralized entity denoted as Network Manager

(NM), which implements the network configuration logic and handles the communication

with the switches to deploy the configuration. We assume the Network Manager to have

global knowledge of the data plane. To achieve scalability, the NM might be transparently

distributed. High Level Policies (HLPs) represent the definition of network functions as

well as global network constraints (QoS, QoE), the data plane has to implement and

adhere to. HLPs might be declaratively defined in a high-level network programming

language, such as Frenetic [FHF+11, MRF+13b], or be concretely implemented as SDN

controller modules. Multiple network functions, such as routing, traffic monitoring, load

balancing, or multicast, may co-exist. Their composition [CKLS13] is handled by the

Network Manager. Initially, a concrete configuration of a network function NFi is derived

from its HLPi (planned configuration) and pushed to the data plane where it eventually

becomes effective, such that the effective configuration (data plane) reflects the planned

configuration (management plane).

In this chapter, we focus on change management: based on the current configuration,

the NM reacts to changes in both, the management plane, such as changes of the HLP,

and the data plane. Data plane changes may be generic, such as topology changes, and

thus affecting all network functions, or network function specific, such as a host joining

a multicast group. In the configuration control loop, change events are interpreted as

disturbance and trigger a reconfiguration process, in which the NM in reaction adapts

to the changed conditions. This consists of two steps: (1) A set of rule updates U that

change the current planned configuration of the NM to a new, adapted configuration, has

to be calculated. This is naturally highly network function specific. In this chapter, we

show how incremental updates of multicast traffic distribution trees are calculated. (2) In

order to implement the network state transition, the update is then to be applied to the

data plane. Based on how this is done (update method), the update execution possibly

leads to transient inconsistency effects that might also affect other NFs.

The selection of an update method and its parameters has severe implications not only

on the type of occurring inconsistency effects, but also on their extent, the reconfiguration

duration, and data plane resource consumption, i.e., switch rule space. Thus, the NM

assesses different types of information, describing the prevailing update situation, in order
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Figure 3.1. Overview of the proposed SDN-based system architecture for update consistency
aware multicast networks.

to decide on an appropriate method and its parameters. This information includes expected

update inconsistency effects, specific to the available update methods, characteristics of

the triggering change event, the affected HLPs, and monitoring data from the data plane,

such as statistics of NF-specific or generic flows. While the expected type of effects of

an update method are known a priori to the NM, its extent can be estimated through a

static analysis of U . The monitoring data, e.g., flow-associated packet rates [vADK14],
even allows the NM to empirically estimate the expected number of affected packets.

The NM is thus able to evaluate a method-parameter combination against the stipulated

system specification or concrete HLP goals. This allows for a dynamic selection of an

adequate update mechanism and determination of its parameters on the granularity of

NFs and concrete updates. We leave the description of concrete algorithms for selection

and quantitative parameter determination for later work, and rather focus on describing

specific update methods.
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3.2 MULTICAST MODEL

In this section, we describe preliminary assumptions and introduce multicast tree updates

along with relevant consistency properties defining the problem statement.

Without loss of generality, we follow the IP Multicast Service Model [Dee89, Fen97]:
there are possibly many senders and several receivers, denoted as multicast group. Logical

addressing assigns a single class-D IP address to each group. Group messages are sent

to respective destination multicast IP addresses over a distribution tree that defines the

routing of the multicast traffic through the network. In our analysis, we focus on multicast

traffic distribution and thus only consider switches in the distribution tree, not actual

member end-systems (hosts). While irrelevant for the analysis, our approach assumes

group management to be handled using the Internet Group Management Protocol (IGMP

[Fen97]) as end-system-to-switch protocol.

We call a switch with connected group members (hosts belonging to group) a mem-

ber switch. Routing is entirely done by SDN switches, which snoop IGMP signaling packets

and report group membership to an SDN controller, enabling logically centralized group

and tree management. We furthermore assume a network consisting of a set of SDN

switches sw ∈ SW (deviating from Section 2.1) with associated ports p ∈ P connected over

bidirectional links l ∈ L with associated weight w(l), forming a topology graph T . The

distribution tree is denoted as a directed acyclic graph (DAG): G(SWMC ⊆ SW, LMC ⊆ L).
Switches are associated special roles as depicted in Figure 3.2 and listed below:

Table 3.1. Definition of switches roles in a multicast distribution tree

switch role definition cardinality

root / source S = {s} ⊂ SWMC : degin(s) = 0 |S|= 1

group members m ∈ M ⊆ SWMC |M | ≥ 2

relays (single out-port) rel ∈ Rel ⊆ SWMC : degout(rel) = 1 *

replicators (multiple out-ports) r ∈ Rep ⊆ SWMC : degout(r)> 1 *

non-tree switches SW \ SWMC *

Throughout this chapter, we use the terms switch and node as well as link and edge

interchangeably, depending on the current focus on either the networking aspect or its

graph-theoretical representation. Packets are intentionally replicated and sent out on

multiple links of replicator switches. We differentiate between relays and replicators,

since replicators are shown to play a distinguished role for update consistency, as we will
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Figure 3.2. Update of a branch s→ m2 (dashed lines) within a multicast distribution tree (G),
leading to a new network state, i.e., distribution tree (G′).

describe in the analysis. Note that group members, i.e., switches with connected member

hosts, may also relay or replicate, they are not necessarily leaves of the tree. For ease of

illustration, we assume a single multicast tree, which either might be a source-based tree

or shared tree. We consider only group traffic of one multicast group, i.e., one destination

IP address. This simplification does not limit the generality of our approach. It is valid for

multiple groups and thus multiple distribution trees as well.

3.3 PROBLEM STATEMENT AND ANALYSIS

In this section, we first give the problem statement (Section 3.3.1). Next, we state the

impossibility of combined drop- and duplicate-freeness (Section 3.3.2). We then refine

conditions on updates which lead to violation of invariants (Section 3.3.3). We introduce

a central structure for both the analysis and approach (Section 3.3.4). We then introduce

the loop-freeness property (Section 3.3.5). Finally, we conduct an analysis of the update

order as seen by packets being in the network during an update (Section 3.3.6).

3.3.1 PROBLEM STATEMENT: MULTICAST TREE UPDATES

Applying network updates to a multicast network, a global network state translates to a

distribution tree instance. We assume distribution tree calculation to be a non-incremental

process: in reaction to a topology or membership change, a tree is computed entirely
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anew, irrespective of the extent of the actual change that triggers that recalculation. Thus,

even small changes may result in huge differences in the recalculated tree. Our goal is

to advance from an old distribution tree (G) to a new distribution tree (G′) by finding

an update order, while maintaining certain invariants (Π). More specifically, we want to

guarantee drop-freeness and duplicate-freeness, where the latter informally describes the

reception of an unintended duplicate.

Note that we exclude the actual calculation of the distribution tree from the problem

scope. We assume the distribution tree as a minimum Steiner tree [HHLY14]. The Steiner
tree problem asks for a tree, spanning a set of terminals (VT = S ∪M) at minimum cost

(
∑

l∈LMC
w(l), where w(l) is given by a cost metric such as bandwidth or latency), possibly

including additional non-terminal elements, called Steiner nodes (VSt). Figure 3.11 shows

an overlay Steiner tree on top of a WAN topology. This variant of the Steiner tree problem

has been recognized as NP-hard within Karp’s original 21 NP-complete problems [Kar72].
However, approximations with polynomial runtime complexity [CGSW14] as used in our

evaluation (Zelikovsky’s 11/6-approximation [Zel93] with O( |SW| × |LMC| + |VT |4 )) exist.

3.3.2 IMPOSSIBILITY RESULT

Claim: It is impossible to avoid violation of the two simultaneous invariants drop-

freeness and duplicate-freeness for arbitrary transitions using a stateless update method.

Proof: We assume that maintaining both invariants at any time was possible, i.e., there

exists exactly one effective path from s to each mi at any time. Consider a scenario as

shown in Figure 3.2, where a transformation from G (left) to G′ (right), both correct

multicast trees, is performed. In G, packets from a source s are sent to a replicator switch 2,

which replicates the packets and forwards them to relay switches 4 and 5, where the

respective replicas are forwarded to member m1 and member m2 respectively. In G′,
s takes over the replication and forwards to 2 and 3, while 2 only forwards to 4 and thus

does not replicate anymore. To implement this transformation, the output port list of

switches s, 2 and 3 have to be updated by rule updates ui for switch i as presented in

Table 3.2 and described in the following. To improve readability, we denote updates that

add out-ports, i.e., add new path segments, as u+i , whereas updates that remove out-ports,

i.e., remove existing path segments, as u−i .

Path s −→ 5 has to be installed (u+s , u+3 ), whereas path 2 −→ 5 has to be removed (u−2 ).

This implies the “shift” of the replication from 2 to s. The execution order of these

updates is crucial: Figure 3.3 shows intermediate states λ∼1 , λ∼2 of two update order
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Table 3.2. Port change-set representation of a branch update

Switch i Out-port set
old (POi) new (PO′i) update

s {2} {2,3} u+s = POs ∪ {3}
2 {4, 5} {4} u−2 = PO2 \ {5}
3 ; {5} u+3 = PO3 ∪ {5}

permutations, where u+3 and u+s (λ∼1 ) and u+3 and u−2 (λ∼2 ) have been executed. In other

words, path 3 −→ 5 has been installed first, followed by an update of the new replicator r ′

to do replication in λ∼1 and, respectively, followed by an update of the old replicator r to

stop replication in λ∼2 . We use the happens-before relation [Lam78] to express an order of

events: event e1 happens before event e2 iff e1 Ã e2. We do not consider latency aspects

for now, hence we subsume in an update event ui the sending of an update message from

the controller as well as the reception and the execution at a switch i. A detailed analysis

including additional timing aspects, such as propagation delay, is given in Section 3.3.6.

Formally, those two cases depict intermediate states of update orders λ∼1 : u+3 Ã u+s (Ã u−2 )
and λ∼2 : u+3 Ã u−2 (Ã u+s ), where the respective last update has not yet been executed.

Obviously, a cycle has been introduced in λ∼1 through a new effective path s −→ m2. A

packet p entering the network at s, denoted as event switch(p, s), at that point in time

will get replicated twice and follow both paths which results in two replicas reaching

m2, which we call a duplicate at m2. In λ∼2 , with u+3 Ã u−2 Ã switch(p, s), neither s nor 2

are replicating. Hence, there is no effective path s −→ m2 at all, resulting in a missing

packet at m2. Note that for λ∼1 it does not matter whether u+3 is executed before or

after u+s . Both orders, u+3 Ã u+s (Ã u−2 ) and u+s Ã u+3 (Ã u−2 ), result in an intermediate state

with multiple effective paths to m2. Analogously, there exists an equivalence class of

update orders causing drops due to an intermediate state with no effective path to m2:

u+3 Ã u−2 (Ã u+s ), u−2 Ã u+3 (Ã u+s ), u+s Ã u−2 (Ã u+3 ), and u−2 Ã u+s (Ã u+3 ). Hence, in any of all

six possible update order permutations, either duplicate-freeness or drop-freeness is violated

which contradicts our assumption. We thus have proven that there exists no correct update

procedure w.r.t. both, drop- and duplicate-freeness. �

3.3.3 CONDITIONS FOR VIOLATION OF INVARIANTS

Although we have proven that in general we cannot guarantee both desired properties at

the same time, we describe the conditions for the violation in the following.
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Figure 3.3. Traces of packets (arrows), entering the network in two intra-update states λ∼1
and λ∼2 , where u+3 and u+s (a) and u+3 and u−2 (b) have been executed, resulting in
duplicates and drops, respectively.

Branch update, replicator pair: We refer to the kind of update as shown above, where

there is a change in the path from s to some branch member, as branch update. We define

a replicator pair (r, r ′) as a pair of old and new replicator, where r ∈G, r ′∈ G′. In the

example, r is switch 2 and r ′ is s. Note that, as described, postponing u+3 in λ∼1 , i.e.,

u+s Ã u+3 (Ã u−2 ), does not solve but only defers the problem: as long as 3 −→ 5 is missing,

duplicates are stopped at 3, however, eventually, u+3 and u−2 have to be executed. Anyway,

pushing a critical update, i.e., that update that finally establishes a new path and thus

would cause duplicates, from a replicator downstreams along unicast paths constitutes an

additional degree of freedom.

This reveals the reason for the impossibility result: replicator updates inherently involve

updating a pair of distinct switches, affecting common subsequent switches downstreams

of them. Ignoring m1, this transition would be a trivial unicast path update, were after

3 −→ 5 has been installed, the single switch, s, would be updated through a single non-

competing update to forward to 3, instead of 2. In our multicast scenario, this is not

feasible, since 2 still has to forward packets downstream via 2 to m2 and thus has to

receive packets from s.
Dependency of replicators: In the depicted type of replicator change, both, r and r ′ of

a replicator pair are common elements of at least one path from s to all m ∈ M . Hence,
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there exists a dependency among (r, r ′) in forwarding packets on such paths. In such

cases, we denote replicators of a pair to be dependent. We refine this definition in the

following.

Replicator move (downstream/upstream): If a dependency among (r, r ′) is present,

we call the two associated updates (ur , ur ′) a replicator move. A replicator move is directed.

It is denoted an upstream move if r ′ is upstreams of r, i.e., r ′ is a (transitive) predecessor

of r on at least one path from s to all m. In this case, as in the example, r is dependent

on r ′. This dependency stems from the dependency of packets, being forwarded on such

a path: The events of r receiving a packet p from r ′ (er,rec) and subsequently sending p
further downstreams (er,snd) are causally dependent on the event of r ′ sending a message

to r (er ′,snd). Thus: er ′,snd Ã er,rec Ã er,snd. Vice versa, if r is a predecessor of r ′, it is denoted

a downstream move. A minimal illustration of both, a downstream and an upstream move

is show in Figure 3.6 on p. 76.

Replicator swap: If replicators are not dependent, we call the update a replicator swap.

In conclusion, we state that simultaneous drop- and duplicate-freeness is not possible

for updates that involve a change of a replicator pair (r, r ′). However, depending on

the update ordering, one of the inconsistency effects, either drops or duplicates, can be

prevented.

This degree of freedom can be leveraged by a deliberate selection of an inconsistency

effect that is tolerable, while the other one is prevented. We denote the exploitation of

this particular degree of freedom within multicast network update as update strategy. As

explained in the introduction, it depends on the concrete application that uses multicast

whether violating one property is preferred over violating the other. In general, this

decision is to be made by the network manager. Henceforth, we assume drops more fatal

than duplicates, and thus, without loss of generality, argue from this perspective.

3.3.4 CENTRAL ANALYSIS STRUCTURE: THE DELTA GRAPH

In the following, we introduce a central structure for both, our analysis and approach. As

seen in the examples so far, inconsistency effects due to replicator pair updates do not

necessarily affect all members. Furthermore, a network update might consist of several

replicator pair updates as well as of uncritical updates. To be able to identify relevant

nodes of a network update as well as to identify affected nodes of individual replicator

moves, we introduce the delta graph (G∆). It captures differences of two distribution trees

G and G′. Informally, it can be constructed by merging G and G′, removing all common
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edges, followed by removing all unconnected vertices. Formally, we define (def.) G∆ as

follows:

Def. G∆: G∆ =
�

(G − L′MC)+(G
′ − LMC)

�

−SW0
MC, where LMC is the set of links and SWMC

is the set of switches of G. Primes indicate reference to G′. SW0
MC denotes unconnected

nodes, i.e., ∀sw ∈ SW0
MC : degin(sw) = degout(sw) = 0.

Figure 3.4 illustrates an intermediate step after merging exemplary G and G′, where

ellipses denote unicast paths of arbitrary length, to provide generalization. Thin, blue

edges (bottom paths) are exclusively in G and thus represent old paths, to be removed as

part of a network update, whereas thick, red edges (top paths) are exclusively in G′ and

thus represent new paths, to be installed respectively. Common edges (dashed), both in

G and G′, and respective nodes (dashed) are not to be changed and thus removed from

G∆ in a subsequent step. We further define a set of join nodes N> as follows:

Def. join node: ∀ j ∈ N> ⊂ SW∆
MC : degin( j) = 2. Each j is associated with a replicator

move. The effects of a corresponding replicator move affect all downstream nodes of j.
Def. P, P ′, split node s<: We further denote the old path from s to j in G as s P−→ j, and

the new path from s to j in G′ as s P ′−−→ j, analogously. To identify a replicator pair (r, r ′),
we back-traverse P and P ′ in G∆, starting from j, until no further predecessor exists or

a common predecessor in both P and P ′, denoted as split node s<, is reached. The end

nodes on P and P ′ define r and r ′, respectively. If s< exists, a non-competing update,

which is performed by an update of a single node, s< = r = r ′, is present. Non-competing

updates arise for instance when a single edge, connecting s< and j is replaced by a path

s< P ′−−→ j. Since they are not critical in terms of update consistency, we do not consider

them to be replicator updates. In the exemplary G∆ in Figure 3.5, four join nodes ji define

replicator moves with respective replicator pairs (ri, r ′i ) and paths (Pi, P ′i ).

3.3.5 MAINTAINING LOOP-FREENESS

A special update case that has shown to occur very frequently in our evaluation scenarios

arises, when old and new paths are interleaved, leading to swap paths, i.e., edges both in

G and G′ but with opposite direction, as illustrated in Figure 3.5. Consider the following

naive but drop-freeness-maintaining update: after processing of j1 = 5 (install 4 P ′1−−→ 5,

remove 3 P1−−→ 5), a transient loop 3 → 4 → 5 → 3 is introduced during processing of

j2 = 3, while 5 P ′2−−→ 3 has been installed and 3 P2−−→ 4 has not yet been removed. Note

that if duplicate-freeness is to be maintained, i.e., Pi is removed before P ′i is installed,

naturally, loops and duplicates do not appear. As the occurrence of loops is dependent on
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Figure 3.4. Intermediate step of G∆-construction, after exemplary G, G′ have been merged.
Dashed edges and vertices are removed in a subsequent step.
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Figure 3.5. Traversal of an exemplary delta graph (different from Figure 3.4), leading to a correct
ordering among the updates. The dotted subtree represents joining group members.
Replicator pairs (grey labels) other than (r0, r ′0) are omitted for brevity.
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the update strategy, we define a third correctness property, loop-freeness, which is relevant

for competing replicator move updates when drop-freeness is to be guaranteed. Avoiding

cycles can however be achieved through a suitable update ordering. We derive a general

update ordering, maintaining also loop-freeness in Section 3.4.

3.3.6 EFFECTIVE UPDATE ORDER

While we have focused on the formal structural analysis of multicast network updates

so far, in the following, we incorporate further aspects of time to complement the prior

analysis. In this section, we describe the situation for packets traversing the network

while an update is being applied. We show that propagation delay of group messages may

lead to an inversion of inconsistency effects and thus has to be included in the approach

in order to be able to guarantee an invariant as selected by the update strategy. On the

other hand, it can be used to mitigate inconsistency effects.

3.3.6.1 ANALYSIS

We differentiate between two types of events: (1) Events due to the packet forwarding

process in the data plane: message receipt (packet ingress) and processing (forwarding),

which possibly leads to multiple message sending. We consider processing latencies

negligible compared to link propagation delay and thus only consider the latter in this

analysis. Therefore, we subsume all named sub-events in a single switch event. (2) Events

due to update messages from the controller: update message receipt and processing

(execution). We assume that the network manager is aware of the control channel

latencies and handles the timing of control messages accordingly. We continue discussing

this assumption at the end of this subsection. We depict update events to mark the end of

the update execution, i.e., when the update has become effective on the data plane.

For ease of demonstration, we simplify the example from Figure 3.2 by omitting nodes

which are solely relay nodes in both G and G′, i.e., switches 3 to 5, as shown in Figure 3.6.

We start with the upstream replicator move (see Figure 3.6 with r = s and r ′ = 2),

where r is a successor of r ′ and thus dependent on r ′, as in our running example. We

assume the drop prevention update strategy, at the cost of duplicates, and thus an update

order of u+r ′ Ã u−r . Figure 3.7(a) shows a space-time diagram, depicting packet traversal

with varying propagation delays and in intermediate states of an upstream move. A time

axis for each node is given, where arrows depict events. A packet pk is entering the

network at the source node s and is forwarded on ingress by each switch i in a switch
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event switch(pk, i) according to the rules installed at i at the time of the switch event.

The traversal of each packet is captured by a respective trace, reflecting the history of

update events as seen by the traversing packet. As shown in Figure 3.7(a), packets always

reach m1 correctly, i.e., exactly once, such that we do not include them in traces (dotted

arrows).

Packet and trace names are binary coded according to the state that was present at

network ingress or switch events, respectively. For instance, packet pk11 (rightmost)

enters the network after all updates have already been executed and become effective

(irrespective of their order): · · · Ã switch(pk11, r ′). Packet pk11 results in a correct trace

tr11 (rightmost), since all switch events happen after the update of the respective switches.

A packet pk00 is entering the network before u−r and u+r ′ and is thus switched at the ingress

switch s = r ′ before u+r ′: switch(pk00, r ′)Ã u+r ′ . Depending on the propagation delay of

r ′ −→ r, denoted as Tr ′,r , packet pk00 might reach r before its update or in an intermediate

state after its update. In the following, we assume two cases of a small and large Tr ′,r

respectively. The first case, switch(pk00, r ′)Ã switch(pk00, r)Ã · · ·, results in a correct trace

tr00 (leftmost trace). In the second case, switch(pk00, r ′)Ã u−r Ã switch(pk00, r), however,

r ′ did not yet replicate, whereas r has, due to its update, already stopped replicating,

resulting in a drop at m2 in the trace tr01. Due to propagation delay, the effective update

order, i.e., the update order as experienced by the traversing packet, is inverted from

u+r ′ Ã u−r to u−r Ã u+r ′ .
As shown in the motivating example, a packet ingress in an intra-update state, i.e., within

the volatile phase (Tvol), pk10 with u+r ′ Ã switch(pk10, r ′)Ã switch(pk10, r)Ã · · ·, results in

a duplicate (tr10). However, analogously, through propagation delay, pk10 might see

a different update order, u+r ′ Ã switch(pk10, r ′)Ã u−r Ã switch(pk10, r), which leads to a

correct trace tr11, although the packet ingress has happened at an intra-update state.

For upstream replicator moves with an update order of u−r Ã u+r ′ (see Figure 3.7(b)),

inversion through propagation delay cannot happen, since the dependent replicator r is

updated before its predecessor r ′ and thus, irrespective of Tr ′,r , tr10 cannot occur. Thus,

pk00 either leads to tr00 (correct) or tr01 (drop), where pk01 necessarily leads to tr01.

In the case of downstream moves, where r ′ is a successor of and thus dependent on

r, the situation is inverted. Downstream moves with u−r Ã u+r ′ , i.e., the update strategy

to prevent duplicates at the cost of drops, pk10 may lead to drops, as can be verified in

Figure 3.7(c). Through propagation delay, this effect may be inverted, such that duplicates

instead of drops occur. Analogously, downstream moves with u+r ′ Ã u−r , (not shown) may

result in duplicates in case of intermediate states, also due to propagation delay.
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Figure 3.6. Simplified example for the analysis of intermediate states, showing downstream and
upstream replicator moves and corresponding updates.

We thus conclude: in general, two conditions for perceived update reordering through

propagation delay between (r, r ′) can be stated: dependency among (r, r ′) and the up-

stream node being updated before the downstream node. Due to the independence of

replicator swaps, they are not prone to reordering. Replicator moves present dependency

but only two out of four possible cases, those fulfilling the second condition, are prone to

reordering: upstream moves with u+r ′ Ã u−r , possibly leading to drops through propagation

delay, instead of duplicates, and downstream moves with u−r Ã u+r ′ , possibly leading to

duplicates through propagation delay, instead of drops.

Effective update reordering due to propagation delay obviously counters the update

strategy. However, first, typically the network manager would select one static update

strategy for the whole multicast group traffic. Thus, there would only be one case

left where drop-freeness cannot be fully guaranteed. Second, typical flow modification

processing delay of OpenFlow-enabled hardware switches [RSU+12, HYS13] are at least

one order of magnitude larger than typical one-hop latencies of LAN or WAN links. Anyway,

since we enable the network manager to be aware of this effect and its conditions, it

is able to estimate the effect’s extent and evaluate its criticality. The network manager

has global knowledge of the topology and the changes to be applied to the multicast

network, including the type of replicator change. This allows for a static analysis of the

effect’s extent (see Section 3.5.1). Along with the empirical measurement of data rates,

the network manager can even estimate the expected number of drops (see Section 3.5.2).

Based on this evaluation, the network manager may either simply choose to tolerate the

reordering or apply a method to eliminate effective update reordering, which we present

in the following.
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Figure 3.7. Intermediate states of replicator moves as perceived by traversing packets, considering
propagation delay, which may invert the effects.
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3.3.6.2 MITIGATION APPROACH

In the analysis, we have identified a crucial measure for the reordering: the propagation

delay between the replicators, Tr ′,r , which, in a real-world network, would typically include

multiple hops and might thus accumulate to the order of tens to hundreds of milliseconds

for WANs. The network manager’s global knowledge also allows for a measurement of

path latencies and thus the determination of Tr ′,r .

To eliminate effective update reordering, for cases where these would occur, the update

of the downstream replicator is artificially delayed by max(Tr ′,r) + ts, where ts denotes a

safety margin which may possibly be added to handle outliers of Tr ′,r . For instance, in the

example of Figure 3.7(a), this guarantees that the last packet pk00 with ingress before

u+r ′ does not reach a yet updated r, such that drops are prevented. On the downside,

however, this approach increases the volatile phase Tvol. Consequently, it constitutes a

trade-off between potentially increasing the extent of tolerable effects through decreasing

the extent of undesired effects. Furthermore, it is prone to jitter, i.e., variation of link

delay. While the jitter in LANs is typically small enough to be safely ignored here, in WANs

it might have to be considered in the determination of Tr ′,r . With small jitter, however,

the extent of tolerable effects is small, since packets entering the network within the

volatile phase (pk10), would, through the artificial delay and small propagation jitter, most

probably reach a yet updated downstream replicator, leading to a drop and duplicate free

trace (tr11).

An optimization of this delay-based method is to minimize Tvol through the incorporation

of the network manager’s knowledge about the update rates of the involved SDN switches,

similarly to [JLG+14]. This would allow creating exactly timed update schedules, which

could be precisely executed by the network manager, utilizing the timed network updates

approach [MSM16]. The timed update approach relies on sufficiently synchronized

switch clocks, which is a reasonable assumption for both, LANs and WANs. On modern

hardware using data plane programming, a synchronization error< 50 ns (99th percentile)

can be achieved over 4 hops in a LAN with heavy network load [KJC19]. For WAN

scenarios, GPS-based synchronization, with errors < 200 ns according to [ubA] and own

measurements, can be used. Since we enable awareness of the network manager also

for the stated trade-off and dependencies, it is able to reason and decide on a concrete

method, including the determination of parameters and optimizations. In Section 3.4.4,

we present another update approach which guarantees the maintenance of arbitrary

invariants by combining stateless updates with optimized state-based updates to minimize

the rule space consumption.
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3.4 FLEXIBLE APPROACH FOR MULTICAST TREE UPDATES

Next, we present a flexible update approach for multicast distribution trees that feeds back

the prevailing update situation to the network manager, which dynamically decides on an

update mechanism to be used. In Sections 3.4.1 to 3.4.2 we describe a stateless update

mechanism which allows for the selection of one primary invariant to be guaranteed

(update strategy), where optional duplicate filtering (Section 3.4.3) may be applied. In

Section 3.4.4 we present a hybrid, i.e., both, stateless approach and state-based approach,

which maintains arbitrary invariants, while rule space consumption is minimized. An

overview of the proposed update procedure is given in Figure 3.8, relevant notations for

this section are listed in the following:

Table 3.3. Table of relevant notations for Section 3.4

sw switch (node) s<i split node i l link
s source node G(’) distribution tree pk packet
ji join node i G∆ delta graph tr packet trace

r(’)
i ; (ri , r ′i ) replicator node ∈ G(’), associated with ji; r. pair

P(’), sw1
P(’)

−−→ sw2 path in G(’), from sw1 to sw2
L− / L+ paths to be removed/installed in one update step
u−sw / u+sw rule update (removal/installation) at sw
Tsw1,sw2

propagation delay between sw1, sw2

The update procedure comprises five steps, as presented in Figure 3.8:

S1) We capture differences in the distribution tree, which was recalculated due to

events in the network, such as topology changes, e.g., link and node failures or utilization

changes, as well as changes in the group membership due to joining or leaving nodes

(churn). The change analyzer constructs the delta graph (G∆), representing all changes.

S2) The change analyzer returns all join nodes, their update type, i.e., (up-/downstream)

replicator move, replicator swap, non-competing, as well as the number and identity of

affected nodes to the network manager’s reconfiguration process. There, an appropriate

update mechanism is selected along with its parameters, based on the prevailing update

situation.

S3) Based on the selected mechanism and parameters, the necessary data plane updates

are calculated by the path update algorithm that decomposes the tree changes into

incremental edge updates. To this end, it traverses G∆ in order to identify and classify all

changes into branch updates, replicator updates, and added and removed edges due to
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member dynamics. Then it defines update sequences by building a partial ordering over

sets of edge updates, associated with an update type. The order depends on the given

update strategy.

S4) These sets of edge updates are translated into SDN rule updates by the rule update

generator.

S5) Lastly, the updates are applied to the data plane in guaranteed order by the update

executor, which executes all updates based on the update mechanism, selected by the

network manager.
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Figure 3.8. Overview of the proposed multicast update procedure, where the specification of the
update mechanism to be used is determined in the network manager’s reconfiguration
process.

3.4.1 PROCESSING GRAPH CHANGES (S1 TO S3)

The change analyzer creates G∆ (S1), which contains all changed edges of a pair of

old and new distribution tree (G, G′), reflecting their transition. Thus, every edge l is

associated with either G or G′. An edge l is in G∆ iff l− ∈ G ∧ l− /∈ G′ or l+ ∈ G′ ∧ l+ /∈ G.
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Within the transition, all l− ∈ L− are to be removed and all l+ ∈ L+ are to be installed.

3-phase G∆-decomposition: Through constructive traversal, the path update al-

gorithm decomposes G∆ into path segments (S3), i.e., ordered sets of edges, and defines

an ordering of these steps. One step contains maximum-length path segments, while still

maintaining invariants, e.g., unicast paths of arbitrary length as depicted in Figure 3.5

(running example) can be combined in one update. We refer to paths in G consisting of

l− as old paths and vice versa for new paths. An update step is defined as a pair (L−, L+).
On the one hand, the execution order within one update pair is determined by the update

strategy: in general, if drops are to be prevented, edges are installed before edges are

removed and vice versa, when preventing duplicates. On the other hand, the order

among update pairs is crucial: intuitively, the general “remove-before-add” procedure

implies careful removal, such that only edges that are independent, i.e., not needed by

downstream nodes, are removed. This is, e.g., to verify, that an old path sw1
P−→ sw2 is

removed only when it either has been replaced by a new path sw1
P ′−−→ sw2 or sw2 6∈ G′.

The first case would be caused by a replicator move, the second case would be caused by

a leaving member or a relay node in G becoming a non-tree node. To ensure this behavior,

i.e., to determine a proper inter update pair order, we traverse G∆, starting at s.
Phase 1 - Determining join node sequence: In the first traversal step, we employ a

depth-first search (DFS) to obtain an ordered list of all join nodes ji ∈ G∆ (indices depict

sequence in Figure 3.5), to be processed in order later. Note that s is not necessarily an

element of G∆ and furthermore, G∆ might be a forest. We thus traverse G′ starting from

the closest (most upstream) node of s for each possibly isolated tree of G∆ which is in G′

(node 1 (rightmost) in Figure 3.5).

Phase 2 - Join node processing: Then, join nodes are processed in order, where for

each ji, the number of affected nodes is assessed, as is a pair (L−i , L+i ). The pairwise update

step is determined by a backward DFS, traversing G∆ backwards (upstreams), starting

from ji. Edges from G are appended to L−i , analogously edges from G′ are appended to

L+i . The traversal stops when another join node or the end of the path is reached. In

the example of Figure 3.5 (ignoring the dotted subtree), processing of j0 would yield

(L−0 = P0, L+0 = P ′0) with P0 = [3→ 4] and P ′0 = [6→ 4, 7→ 6, 1→ 7]. As described, the

ends of the respective paths define the replicator pair (ri, r ′i ), with r0 = 3, r ′0 = 1 in the

example (grey label). If ri = r ′i = s<i , the replicator move is classified as non-competing.

Finally, L−i is reversed, such that the most upstream edge is removed first, continuing in

downstream direction. Individual update steps are stored in an ordered set, in order of

the join node processing.
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To consider member changes, within the backward DFS, a forward DFS is started when

a node sw has degout(sw)> 1. The subtree branching from 7 in the example (dotted lines),

is traversed by a forward DFS, started when the backward DFS reaches 7, and is inserted

as a nested sublist within P ′0.

Phase 3 - Processing residuals: After processing join nodes, there might be residual,

unhandled parts in G∆, which are subsequently handled in a second traversal step. These

can be isolated trees that do not contain a join node. Root nodes with degin(sw) = 0 are

determined and processed in order by employing a forward DFS to identify residual paths

and create update steps accordingly.

3.4.2 TRANSLATING GRAPH CHANGES TO THE DATA PLANE (S4 TO S5)

After the path update algorithm has decomposed the (G, G′) transition into a partially

ordered set of edge update steps, the update steps have to be translated into SDN flow

rule updates on a per-switch basis. Since distribution tree calculation is executed by

the logically centralized network manager and thus both, topology data and switch

management data is present, this step is straightforward: the rule update generator

(S4) translates the directed edges l of the distribution tree into an associated switch-

switchport pair (sw, psw), where sw is the source of l, in the order given by the update

steps. The update aggregator component keeps track of rules installed in sw’s flow table

and determines an appropriate incremental rule update action1 for each (sw, psw).
Lastly, the update executor executes all rule updates (S5) given by the rule update

generator using an update mechanism as determined by the network manager (S2). For

the stateless update mechanism, it coordinates the execution on multiple switches and

guarantees total execution order. Thus, the invariant, selected by the update strategy is

guaranteed to be maintained throughout the whole update process. Update scheduling

and execution has been subject to intensive research, e.g., [JLG+14, PKCK14, XYL+17].
We thus consider scheduling to be out of the scope of this work. Moreover, we identified

several opportunities to leverage parallelization of update execution in our approach,

whose implementation we leave for future work.

1When, e.g., a flow-table entry in sw for group messages already exists, it is either deleted or its out-port
action is changed to include or exclude psw.
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3.4.3 IN-NETWORK DUPLICATE FILTERING

In this section, we describe an approach to mitigate duplicates which may occur in our

stateless update mechanism with drop-prevention strategy, i.e., u+r ′ Ã u−r . This approach

is applicable to both replicator moves and replicator swaps. We tackle the symptoms of

this update inconsistency by installing an additional rule at the join node j, associated

with a replicator pair (r, r ′), which aims to detect and filter duplicates after the actual

replication (post-filtering). Consider a replicator swap, where the path from the split node

s< to j over r (s< r−→ j) and over r ′ (s< r ′−→ j) are completely disjoint, as in Figure 3.5 with

j = j1 = 5, s< = 1, r ′ = 4, r = 3. The base filter principle is illustrated in Figure 3.9(a):

when the first packet pk1 reaches j over the (new) path P ′ we consider all consequent

packets reaching j over the (old) path P to be duplicates. Thus, on ingress of pk1 at j,
we install a rule to drop all packets, reaching j over the ingress port that is associated

with the link to j’s predecessor in P. For the sake of illustration only, we assume that each

packet is assigned a strong monotonically increasing sequence number si at ingress. In

the illustration, the ingress of pk1 with sn from r ′ triggers the installation of the drop rule

at j (u j), which identifies subsequent packets from r (pk0 with sn, sn+1) as duplicates and

drops them accordingly.

In standard OpenFlow, flow rules typically cannot change the state or content of other

rules, which is mandatory here. However, even in early releases of commonly used SDN

switch software implementations, such as Open vSwitch [PPK+15], local switch logic has

been enabled by implementing the Nicira Extensions2. They implement, inter alia, a MAC

learning switch, where packet ingress triggers the installation of new forwarding rules,

completely based on local logic, without controller involvement. We propose an approach

for switch-local control logic (autonomously) handling generalized control plane and data

plane events in Chapter 4. Incorporating local switch logic thus, analogously, allows us to

pre-install the described drop rules that are activated by local logic, i.e., packet ingress,

by the switch, without time-consuming controller involvement.

However, depending on differences in the accumulated propagation delay of r P−→ j
and r ′ P ′−−→ j, this approach can only guarantee partial duplicate filtering. As illustrated in

Figure 3.9(b), duplicates pass unfiltered, when Tr ′, j > Tr, j. Vice versa, when Tr ′, j < Tr, j,

yet unreceived packets from r may be filtered, leading to effective drops. However, similar

to the effective update order method, effective drops can be avoided by deferring u j such

that filtering becomes effective after the last non-duplicated pk0 from r reached j.

2https://git.io/vgTKL
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Figure 3.9. In-network duplicate filtering: the ingress of a packet from r ′ triggers the installation
of the drop rule at j, which identifies subsequent packets from r as duplicates and
drops them accordingly. The filter effectiveness is dependent on Tr ′, j − Tr, j .

In conclusion, the effectiveness of the filtering approach is anti-proportional to the

difference of Tr ′, j and Tr, j, however, removing any (extent of) unnecessary load from a

network is beneficial. Awareness of this dependency allows the network manager to gauge

the costs and benefit and dynamically decide whether to apply duplicate filtering (S2).

3.4.4 HYBRID UPDATE MECHANISM

While effective order elimination and duplicate filtering mechanisms are able to partially

decrease the extent of invariant violation by tackling the symptoms of inevitable update

inconsistency, in this section we present an optimized state-based approach, eliminating

the reason of inconsistency. We present an optimized version of the prominent two-phase
update approach of Reitblatt et al. [RFR+12], combined with a stateless update ordering

as an alternative update approach for multicast networks.

We optimize the original approach (see Section 2.3.2) as described in the following.

Through the conducted extensive analysis on the concrete problem of update consistency

of multicast networks, we identified the critical parts of reconfiguration, where drop- and

duplicate-freeness breaks, as the replicator pair (r, r ′). In order to maintain both—in fact,

arbitrary invariants—we employ a two-phase update, but limited to the replicator pairs.

While the calculation of the necessary updates stays unchanged, their execution order

(S3) is changed: P ′i \ r ′i , denoted as P ′0i , is installed, before a two-phase update, limited

to (ri, r ′i ) is conducted. Note, that the installation order of P ′0i is even irrelevant, since the

associated path is not used until the two-phase update of (ri, r ′i ) has been executed. After
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(ri, r ′i ) has been updated, P ′ is effective, while P is ineffective due to the update of r, such

that P0
i can be safely removed in arbitrary order. The update order of uP ′0i

Ã u(r,r ′) Ã uP0
i

has to be guaranteed though.

Depending on the severity of the update inconsistency effects, the network manager

might decide (S2) to prefer rule space capacity and use this approach only if effective

update order and duplicate filtering mechanisms would yield bad results, rather than

blindly apply it whenever the technical condition (a vacant header field) is met.

3.5 EVALUATION

Our evaluation consists of two stages: first, we analytically evaluate the impact, i.e., the

number of replicator moves and affected nodes, for a varying degree of network dynamics

(random member and link changes) for a small and large WAN topology. Second, we

apply our approach to these graph changes to transform them into rule changes and

corresponding network updates, which we execute on an SDN network emulated with

Mininet [LHM10]. We empirically measure the occurrence of drops and duplicates directly

on the data plane, while varying the update strategy and the degree of the random

reordering of the given update sequences. All stages were executed on a dual-socket Intel

Xeon E5-2687Wv3 (10 physical cores at 3.1 GHz per socket) with 128 GB RAM, running

CentOS 7.

3.5.1 STAGE I: IMPACT ANALYSIS OF NETWORK DYNAMICS

Methodology: For Stage I, we implemented a scenario generator which first creates a

random initial state (source node and members selection) for a given number of members

m and a given topology, along with an according distribution tree. The scenario generator

then simulates random data-plane events, i.e., (a) member changes and (b) link changes,

which trigger a recalculation, leading to a new tree. This change-recalculate process

is repeated in a stepwise execution model, where one step is denoted by a time period

pi, as illustrated in Figure 3.10. All trees of one scenario generator run are called a

scenario. Distribution trees are calculated using a C++-implementation of Zelikovsky’s
11/6-approximation [Zel93, CGSW14] of the minimal Steiner tree problem [HHLY14].

For (a) membership changes, we employ a probabilistic model, where p defines the

probability of a node changing its membership state in the subsequent step. For (b) link

changes, we assume a congestion / over-utilization of a link, which we simulate by a
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Figure 3.10. Scenario Generator, stepwisely recalculating the distribution tree, triggered by
simulated link and member changes.

temporary significant increase of the respective edge weight, where c denotes the number

of over-utilized links, per period.

In each period, the change analyzer creates a G∆ and assesses three metrics: (1)

the number of replicator moves, (2) the total number of affected nodes, and (3) the

distribution of replicator update types within that period. Note that non-competing

replicator moves are not considered here. Furthermore, recall that (affected) nodes do

not consider potentially connected end-systems, which would be affected as well. The

path update algorithm calculates all edge update sequences, which are dumped and used

in Stage II.

In Stage I, we use two real-world WAN topologies of different scales (number of vertices

v, number of edges e): the European National Research & Education Networks (NREN)3

with v = 440, e = 599, as well as the IP-backbone of the German Research & Education

Network (DFN X-WiN) with v = 50, e = 76. Link latencies are used as initial edge weights.

For NREN, latencies missing in the obtained data set were interpolated (with an added

Gaussian-distributed random error), whereas latencies of the X-WiN were obtained from

the web service of its active probing system4. The number of initial members m is given

as a fixed ratio of m/v = 0.4. An exemplary Steiner tree based on the DFN X-WiN underlay

topology is shown in Figure 3.11. The degree of dynamics is gradually increased in six

levels, ranging in p ∈ [0.005, . . . , 0.1], c ∈ [0, . . . , 10] (p: member change probability; c:

number of simulated link over-utilizations). To reduce the impact of structural dependency

on the initial state, each level is evaluated by a common set of five scenarios. Each scenario

consists of 200 periods.

Results: Figure 3.12 shows period- and scenario-aggregated mean ratios of replicator

moves. Error bars in the figure and stated variances henceforth refer to the standard

deviation of the inter-scenario aggregation, i.e., among scenarios. As expected, a strong

3obtained from http://www.topology-zoo.org/eu_nren.html
4http://pallando.rrze.uni-erlangen.de:8090/services/MA/HADES/DFN
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Figure 3.11. DFN X-WiN base topology (light edges, light and unfilled vertices; edge labels: avg.
link delay in µs) with superimposed exemplary multicast distribution tree (dark
edge l; link delay w(l); downward triangle: source s (node 45); upward triangle:
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correlation between degree of dynamics and extent of effects can be inferred.

The number of replicator moves directly reflects the degree of dynamics. Constantly

low variance indicates low dependency on both topology and scenario.

The number of affected nodes naturally reflects the number of replicator nodes. Even

small/few changes in the network already cause a significant extent of effects, mostly

stemming from simulated link over-utilization. For instance, for (p = 0.005, c = 1) the

number of affected nodes is 24.21± 13.72 (NREN) and 13.06± 2.72 (X-WiN). Respective

statistical ratios5 are 5.5% of all NREN nodes and 26.1% of all X-WiN nodes. However,

a high variance and thus a high dependency on the underlying topology and its initial

conditions can be stated. Naturally, the specific position of the respective replicator pairs in

the graph along with initial conditions and scenario parameters, such as average distance

to the source or graph diameter, strongly influence the number of affected nodes.

The distribution of replicator update types, excluding non-competing replicator up-

dates, is shown in Figure 3.13. The churn type depicts moves, where either r /∈ G′ or

r ′ /∈ G. In both, NREN and X-WiN, ≈ 80% of the moves are replicator moves, where,

on average, downstream moves are twice as likely as upstream moves for X-WiN with

moderate and high dynamics and about 25% more likely for NREN, irrespective of the

degree of dynamics. For drop-prevention, the effective update reordering, happening at

upstream moves, is thus shown to be of potential practical relevance, if HW switches’

flow update rates are unconsidered, as discussed. Reorder-free replicator swaps are more

significant for NREN with ≈ 17% on average than on X-WiN with ≈ 10%, both showing

anti-proportionality wrt. the degree of dynamics. The churn type ratio is rather constant

at ≈ 5% for both base topologies.

We summarize the observations in stating that even moderate degree of dynamics lead

to a significant extent of tree changes and thus to a significant amount of nodes, affected

by update inconsistency.

3.5.2 STAGE II: EMPIRICAL VALIDATION

Methodology: In Stage II, we translate the edge updates from the scenarios of Stage

I into corresponding FlowMod messages (OF 1.3) and execute them in an emulated

network with X-WiN topology and given link characteristics (latency). We use Mininet

[LHM10] version 2.2.1 with Linux Traffic Control (TC) enabled links, which allow for

5Note that this ratio does not imply the coverage of actual nodes, since a single node can be affected by
multiple replicator moves within a period.
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Figure 3.12. Analytic evaluation (Stage I): period and scenario aggregated mean values of
number of replicator moves and affected nodes for varying degree of dynamics.
Even small dynamics cause a significant extent of network changes.

link latency emulation, in combination with Open vSwitch (OVS) [PPK+15] version 2.3.2.

The rule update generator and the update executor are implemented as a module for

the Python-based Ryu SDN controller. Since the update executor has to guarantee total

update execution order on a switch basis, OF BarrierMessages (see Section 2.2.3) are used

as flow-modification feedback mechanism, i.e., updates sent to a switch for execution,

block sending updates to other switches, until the executions of all former updates are

acknowledged.

Recent SDN hardware switches have a limited flow modification capacity of around 40

flows per second (update rate) [HYS13, RSU+12] due to inherent properties of TCAM.

We simulate this rate through an artificial delay in the update executor. However, to show

general applicability, we present an extended evaluation with update rates up to 1000

flows per second at the end of this section. However, other work, including [JLG+14],
suggest a high volatility of the flow update rate and strong dependency on a number of

factors, such as control-plane load, number of installed rules, rule priority and complexity

(actions). The update executor processes all translated updates of a scenario period,

before progressing to the next period. This results in a typical execution time of 1.1± 0.3 s

per period.

We measure the occurrence of drops and duplicates within one period directly on the
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Figure 3.13. Distribution of replicator update types

data plane, while updates are being executed. Therefore, the sender node is added as

a Mininet host that constantly sends group messages, containing a sequence number as

payload, at a rate of 250 pps (packets per second), which is a realistic number, e.g., for

media streaming, and a packet size of 50 Bytes. We capture the complete traffic on all

Mininet network interfaces, i.e., switchports. The number of captured packets is denoted

by n. Through evaluating the sequence numbers of captured packets on a switchport, we

directly measure the number of duplicates du. To assess the number of dropped packets

dr, we evaluate sequence number gaps between two consecutively captured packets on a

switchport, respecting period-borders. We then aggregate duplicate and drop values to

the switch level by summation and evaluation of possibly overlapping sequence number

and their gaps, respectively.

Here, edge updates of the five scenarios with moderate degree of dynamics (p = 0.005,

c = 1) from Stage I are used. The update strategy is varied between drop prevention

(ADD_F) and duplicate prevention (REM_F), to validate the effectiveness of our approach.
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As a baseline, we provide a random update order. To show the implications of deviation

from the pure strategies up to complete randomness, we employ a gradually increasing

extent of random reordering: ps denotes the probability of a message within an ordered

list of messages to be chosen for reordering. The set of chosen messages are then randomly

reordered, using Fisher–Yates Shuffling [WIS39, Knu97]. While unchosen messages stay

at their list position, chosen messages are replaced by shuffled messages. Note that only

the ordered elements within an update pair (L−i , L+i ) are shuffled, whereas the order

among update pairs (strategy) is maintained.

Results: Figure 3.14 shows mean packet drop factor (quotient of number of dropped

and number of expected packets: λdr = dr/dr+n) and duplication factor (quotient of

number of duplicates and number of captured packets: λdu = du/n) of affected nodes

for varying degree of reordering, where the extremes (leftmost, rightmost) show pure

strategies (no shuffling: ps = 0), with a gradual 0.25 p-increase (partial shuffling) towards

the center, which is fully shuffled (ps = 1). As illustrated, our approach can be shown to

be correct: the drop prevention strategy (left) successfully prevents drops λdr = 0± 0, at

the cost of duplicates λdu = 0.05± 0.005 and vice versa for duplicate prevention (right):

λdu = 0± 0, λdr = 0.09± 0.01.

Deviating from a pure strategy, e.g., drop prevention, is shown to result in introduced

effects, actually to be prevented, e.g., drops, as expected. While the extent of the inverse

effect, i.e., duplicates, decreases strong monotonically with increasing ps in the case

of drop prevention, curiously this is not the case when deviating from pure duplicate

prevention. One possible explanation is the small topology scale, typically resulting in

short message lists, where the effectiveness of probabilistic shuffling is small, such that

the extent of reordering is similar for a large range of ps-gradations.

Another asymmetry is present in the average λdr being almost 2 ∗λdu. This asymmetry

however naturally follows from the nature of removal and installation of unicast paths

to a respective join node j: for the non-shuffled case of add first, the new path to j is

first fully installed, before the old path is removed. Until the last edge in the installation

phase has been installed, neither drops nor duplicates occur. In contrary, with remove first,
the first removal of an edge immediately results in drops, lasting over the removal and

installation phase, until the last edge of the new path has been installed. Thus, drops are

much more likely than duplicates. Similarly, for shuffled cases, the probability to have the

only unicast path to j broken by a reordered and thus premature remove-update is much

higher than the probability to have a complete redundant unicast path installed, despite

the mixing of installation and removal updates. For averagely larger path lengths, e.g., in
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Figure 3.14. Empirical data plane effect occurrence evaluation of affected nodes (Stage II): mean
drop and duplication factors for varying strategy and degree of random update
message reordering, validating the correctness of our approach.

larger topologies, this effect is expected to be of much higher extent.

In a last evaluation, we have increased the assumed flow update rate to 1000 s−1,

the order of magnitude we could see on upcoming SDN switch hardware. In order to

reliably assess update inconsistency effects, we target a packet rate that is one order of

magnitude higher than the update rate, i.e., 10 kpps. On our evaluation machine, Mininet

does not scale further than approx. 3 kpps for the X-WiN base topology, using default

Linux virtual Ethernet (veth) pair links. Thus, we have to use OVS specific OVS patch
links6 to interconnect OVS bridge ports. Since these interfaces are not exposed to the

OS, performing packet capture on them is not possible. We thus add a Linux dummy
interface to each OVS bridge and mirror all packets from the other (regular) OVS ports to

it. Capturing on those dummy interfaces thus allows for assessing the complete network

traffic. The results shown above were confirmed for increased update and packet rates,

however, the changed evaluation method introduces a packet reorder rate of about 1%.

Furthermore, OVS patch links do not support link latency emulation, so that we could not

consider timing aspects.

6see manual page of ovs-vswitchd.conf.db
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3.5.3 EVALUATION CONCLUSIONS

Our evaluations have shown the relevance of the addressed problem of multicast tree

updates even for moderate degrees of network dynamics and have validated the correctness

and practicability of our update order approach.

The analytical part (Stage I) has shown that both, the underlying topology and the

scenario, have a low impact on the occurrence of replicator moves, which are causing

inconsistency effects. They have shown a high prevalence of about 80% of all replicator

update types. Furthermore, even small and few changes in the distribution tree were

shown to cause a significant extent of inconsistency effects in terms of number of affected

network nodes, ranging from 5.5% of all NREN nodes to 26.1% of all X-WiN nodes with

an apparent higher impact of the underlying topology.

The empirical evaluation of inconsistency effects on the data plane (Stage II) have shown

that drop-freeness can be achieved at the cost of 5% duplication rate, whereas duplicate-

freeness comes at the cost of 9% packet drop rate, even for update rates exceeding

TCAM’s update rate by two orders of magnitude. A deviation from the correct update

ordering (through a random permutation of update steps or a systematically selection of

the opposite strategy) would result in averages of ≈2.5% to 5% duplication rate and ≈7%

to 10% drop rate. Since duplication is caused by an additional effective path to affected

nodes consisting of possibly many path segments, duplication effects are overall of lower

extent than packet drops, which occur if an effective path is broken and hence already

when only a single path is missing in the path.

3.6 RELATED WORK

SDN constitutes a perfect match to solve key deployment problems that have been imped-

ing the adoption of multicast in large-scale real-world scenarios so far. Especially for data

center networks, a management method of multicast in overlay networks is described in

[NHS12]. Avalanche enables secure and bandwidth-efficient multicast in DCNs [IKM14].
Scaling and routing of multicast in data-center topologies is investigated in [LYYW11]. For

multicast-based streaming with multiple simultaneous streams among multiple WAN sites

under real-time requirement (3D teleimmersion), [ARTN13] introduces an SDN-based

control protocol allowing for seamless reconfiguration of the network. Bandwidth and

connectivity invariants are maintained using a state-based update procedure. Stateless

network updates are not considered in these works. However, the number of recent works
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indicate a clear trend for SDN enabled adoption of multicasting in both, DCNs and WANs.

As mentioned in the introduction, in the domain of network update consistency, a

state-based mechanism guaranteeing arbitrary invariants [RFR+12] as well as stateless

approaches, based on update ordering have been proposed. A minimal stateless procedure

as well as an overview of correctness properties and their interdependencies are presented

in [MW13]. With the aim to improve update speed, dynamic scheduling of consistent

updates respecting these interdependencies is proposed in [JLG+14]. A stateless search-

based approach is presented in [MFC14]. Neither approach considers the peculiarities of

updating multicast networks though.

In the domain of network management, a rather early contribution from the year 2013

explores SDN’s ability to ease management and configuration of a variety of networks

[KF13]. The authors propose a network control architecture focussing on the interde-

pendency of high-level network policies, declared in a functional programming language,

and low-level network configuration, including its deployment in a campus network.

More recent and detailed work on the SDN-enabled management of large-scale networks

propose a layered and distributed control plane. The authors of [FBC+15] focus on intra-

domain control and management of large-scale networks and present revised algorithms

for hierarchical routing and local link-failure recovery in the context of management

distribution, exploiting global network knowledge. In [TCCP15], a layered management

and control framework for fixed backbone networks is proposed, along with a placement

algorithm for control entities. This allows for adaptive resource management operations

as demonstrated on two exemplary use cases, adaptive load-balancing and energy man-

agement. Neither of these approaches considers efficient incremental updates or identifies

the relevance of update consistency.

3.7 CONCLUSION

In this chapter, we have proposed a generic system architecture for network management,

focussing on change management. We have proven that it is impossible in general to

achieve drop-freeness and duplicate-freeness simultaneously just by ordering updates

in a multicast network. We have presented a detailed formal analysis of this update

problem. In order to alleviate this problem, we have proposed a flexible update approach,

allowing for selecting a strategy that either prevents duplicate or drops. We have shown

that update consistency is multifarious and comprises many degrees of freedom, spanning

a large configuration space. In combination with the severity of impacts on the network
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performance, this has shown the relevance of update consistency in network management

and argues for incorporating update consistency awareness in the network reconfiguration

process.

Our evaluation has shown the relevance of the addressed problem even for a small

degree of network dynamics and has validated the correctness of our update order

approach: drop-freeness can be achieved at the cost of as few as 5% introduced duplicates.

Since duplicates, in contrast to drops, have been shown to be of less extent and certainly

can be assumed less fatal for most applications, our approach is highly practical.
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4
FULL-RANGE DISTRIBUTION OF

EVENT-BASED NETWORK CONTROL

In Section 2.4.1, we described architectures for control plane distribution. Given that

distributed SDN controllers hence already exist today, can we conclude that their evolution

has reached its end? We argue that this is not the case. In this chapter, we thus make the

case for a full-range distribution of SDN controllers and present our novel event-based

architecture, providing maximum flexibility with respect to distribution and improved

manageability. We motivate our concept by identifying the following inflexibilities and

deficiencies of recent distributed control schemes.

First of all, implementing fully distributed network control (without switch-external

control functions) is not anticipated. In other words, the traditional SDN approach

mandates an external network controller, be it monolithic or distributed. Direct switch-to-

switch communication in the control plane and hence coordination for network control

[VCB+15] is not possible. This reflects the clean-slate paradigm shift from distributed

network control to logically centralized control, where switches are just “dumb” network

elements, stripped from any control logic but specialized to do fast forwarding, according

to rules defined by an “intelligent” remote controller implementing all network control

logic. Traditional decentralized control algorithms, such as link state routing, are removed

from the switches and replaced by centralized algorithms running on the controller. On

the one hand, this reduces the functionality of switches to a bare minimum, allowing

for minimal switch resources and design. On the other hand, outsourcing all control

from the switch comes at the cost of increasing latency due to incurring switch-controller

round-trip times (slower reaction), increasing load on the control network, or difficult

implementation of robust logically centralized control relying on additional machines that

can fail. Therefore, we argue that a highly flexible SDN architecture would allow for the

full spectrum of distribution, from fully centralized to fully distributed control. In other

words, control logic has to be brought back onto the switch. Although execution of control

logic on the switch hardware on the one hand has been conceptually proposed in literature

[CMT+11, HYG12, DHM+14], due to lack of distribution support or high computational
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resource demand, in concrete implementations it has been reduced to offloading of certain

functionality, such as packet generation [BBBS16] or state machine logic [BBCC14].
To fully exploit the locality of switches, we argue to include the switch in the control

distribution and allow for decision making on the local scope. Besides the extremes—fully

centralized and fully decentralized control—we argue that network control decisions

are ideally be taken as local as possible, in order to minimize control latency, while

leveraging the logically centralized paradigm of SDN through access to global knowledge

in order to improve decision quality. Since requirements, such as timeliness, optimality,

and consistency, may tremendously differ between network functions, a network control

architecture should provide the flexibility for balancing these trade-offs for each individual

network function to account for their heterogeneity. For instance, for forwarding decisions

at a switch, full global knowledge is typically not required. The focus rather lays on

timeliness in order to reduce forwarding latency. In contrast, traffic engineering or

monitoring are applied on a much broader time scale and thus looser latency constraints,

but relying on more global knowledge for improved solution quality.

Secondly, with the current concept, we observe that controllers tend to be quite heavy-

weight (which might also be a practical reason why control has been removed from

switches). For instance, in order to just receive packet-in events, the ONOS controller

requires a full-fledged OSGi environment with a total code size of ≈ 216 MB. Controllers

that are more lightweight typically lack modularity or distribution capability. We argue

that it should be possible to identify a minimal feature set that every control module

can implement to communicate with switches and other distributed control modules.

Anything else should be factored out into the implementation of the control function. In

other words, we advocate a lightweight micro-kernel approach for SDN controllers instead

of a heavyweight monolithic controller architecture.

Thirdly, we observe that switches and controllers are still tightly coupled, which hinders

the free distribution of control logic. For instance, an OpenFlow control channel (see

Section 2.2.2) typically requires a TCP connection to a controller. Since TCP is inherently

connection-oriented, spawning new control applications at other machines or migrating

them between machines is cumbersome and potentially disruptive [KCGJ14, BBHK15].
We argue that switches must be decoupled from the SDN controller. This can be achieved

by using state-of-the-art communication middleware as already successfully used in other

domains for the communication between services [Cha04]. As a side effect, choosing a

suitable communication middleware also allows for implementing control logic in virtually

any language and to support event-driven as well as request/response types of interaction.
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The main contribution of this chapter is a novel architecture for a distributed SDN

controller fulfilling all of the above requirements: (1) high flexibility with respect to distri-

bution of control logic covering the whole design space from logically centralized to fully

distributed control; (2) micro-kernel controller architecture for distributed lightweight

controller modules, so-called controllets; (3) push-down of controllets implementing

control logic onto switches, allowing for fast local decision making while leveraging global

knowledge if required; (4) decoupling of controllets through a message bus supporting

content-based filtering of so-called data plane events. Furthermore, we address challenges

in practical deployments of switch-local controllets, where we employ lightweight virtual-

ization techniques to cope with hardware heterogeneity and to implement isolation and

resource control for a safe and controlled control plane operation.

The rest of the chapter is structured as follows. In Section 4.1, we describe the architec-

ture of our distributed SDN controller together with an overview of the basic concepts.

We proceed with describing the message bus in more detail in Section 4.2. In Section 4.3,

we discuss how our concept enables highest flexibility in terms of control distribution,

before we present local logic based on global knowledge, along with multiple applica-

tions. We also address the relation to data plane programming and Network Function

Virtualization as well as challenges in practical deployment on networking hardware.

In Section 4.4 we elaborate on implementation aspects, followed by an evaluation of

performance and scalability of our distributed architecture as well as results from the

deployment of on white-box networking switch hardware in Section 4.5. We discuss

related work in Section 4.6 and conclude the chapter in Section 4.7.

4.1 SYSTEM ARCHITECTURE

We start by introducing the basic architecture of our distributed SDN controller (see

Figure 4.1).

Our approach is based on what we call a micro-kernel architecture for SDN controllers.

We split network control logic into lightweight control modules, whose instances we

call controllets (CMi). In contrast to a monolithic controller, controllets do not require a

heavyweight execution environment. Instead, we execute each controllet in a separate

process, possibly being also physically distributed, and enable communication between

them. The micro-kernel (µK) just provides basic functions for messaging including

publish/subscribe message routing and passing (in particular of OpenFlow messages),

and registration and discovery of controllets and switches. Any other functionality like
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tributed local (L) & external controllets (CM), interconnected by a message bus.

network topology management, routing, etc. is implemented by the controllets’ “business”

logic. One advantage of having a slim functionality for the SDN micro-kernel is that we

can port the micro-kernel with little effort to different languages enabling us to basically

use any language for the implementation of controllets. Moreover, the lightweight nature

of controllets enables us to push down control logic by executing controllets directly on

switches (Si), instead on remote server hardware. We denote controllets running locally

on switches as Li. Opposed to a monolithic solution, the distribution of control logic

comes at the cost of increased complexity for the distribution of its state. We discuss

trade-offs in control distribution in Section 4.3.1.

Communication is based on a unified message bus to decouple controllets from switches

and other controllets, both, logically and physically. We are thus able to reduce the switch-

controller coupling to inter-module communication over the message bus. Each controllet

and switch can communicate with other controllets or switches through the message bus

by sending events using the publish/subscribe (pub/sub) paradigm, or sending direct

messages using the request/response paradigm. Decoupling controllets and switches

allows for flexible distribution including migration of controllets, and dynamic spawning

or exchanging of controllets at runtime. The message bus implementation is integrated

into the micro-kernel. Overall, this architecture allows for maximum flexibility.
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4.2 THE SDN MESSAGE BUS: DECOUPLING CONTROLLETS

THROUGH EVENTS

Our architecture is based on event-based communication to decouple the producers of

events from their consumers in both, time (asynchronous communication) and space

(distribution of logic between nodes). In this section, we show why the event abstraction is

both desirable and well suited for network control and describe the design of our message

bus along with an example.

In the domain of SDN, we particularly consider so-called data plane events (DPE)

stemming from packets or state changes of data plane elements (switches and end-

systems). Virtually anything in the data plane can be modelled as a data plane event,

for instance, the addition or removal of network elements, link status updates such as

detected congestion or over-utilization as discussed in Chapter 3, and packet ingress or

egress. From certain DPEs state information can be inferred, such as knowledge of the

physical network topology and end-system protocol state, e.g., TCP-sessions. A DPE is

either processed in the hardware forwarding-pipeline of the switch, e.g., a packet ingress

is processed according to the flow rules installed in the switch’s TCAM (fast-path), or is

being forwarded to the control plane (slow-path), e.g., when no matching forwarding

rule exists. In the latter case, the switch silicon passes the associated packet to the

switch’s CPU, where it is encapsulated into an OpenFlow PACKET_IN message. When

not processed locally (see Section 4.3.2), the switch publishes the DPE to the message

bus, which delivers it to controllets that are subscribed to this kind of event. The message

bus is responsible for routing event notifications to their subscribers. Since DPEs often

include matches on packet header fields, we argue that the message bus should support

content-based filtering of events [EFGK03]. Therefore, event conditions include matches

on header field tuples or any other metadata. This paradigm can also emulate standard

client/server communication (request/response), multicast, or topics [EFGK03] using

filters on receivers, groups, topics, etc.

Event routing in the message bus is exemplarily illustrated in Figure 4.2: an ingress

TCP segment from an end-system at S0 is encapsulated in a DPE (OF_PKT_IN) and

published to the message bus, where a remote monitoring firewall controllet (Mon) and

one instance of a remote forwarding controllet (Forw2) have matching subscriptions, i.e.,

are responsible for such events, and are consequently delivered the event. As a result

of processing this event, Forw2 sends a packet-out message (OF_PKT_OUT) over the

message bus directly to S2 using the request/response pattern. Analogously, Forw2 installs

101



4 Full-range Distribution of Event-based Network Control

Mon
µ-Kernel

Forw1
µ-Kernel

Forw2
µ-Kernel

Topo
µ-Kernel

MESSAGE
BUS

S1

C
P

D
P

S2

C
P

D
PS0

C
P

D
P

TCP
segment

OF_PKT_IN
DST_PORT: 80

OF_PKT_IN
Subnet: 10.1/16

OF_PORT_
STATUS:*

TOPO_CHANGED:*

OF_PKT_OUTµK

µKµK
Link
failure

Figure 4.2. Content-based routing (publish/subscribe) of data plane events (dotted) and control
plane events (dashed) for exemplary subscriptions and direct messaging (request/re-
sponse; dash-dotted) over the message bus, decoupling remote controllets.

a flow from S0 to S2 by sending flow modification messages (OF_FLOW_MOD; omitted in

Figure 4.2 for readability).

However, we do not restrict ourselves to basic data plane events, but also consider

complex data plane events involving, for instance, multiple packets and timing conditions.

For instance, a complex event could be triggered by a certain sequence of packets, or the

non-arrival, i.e., absence, of a certain packet over a defined period of time, also across

multiple switches. Typically, switches only fire basic events, which are then forwarded to

subscribing controllets, which in turn evaluate complex event conditions to fire complex

data plane events. In Chapter 5, we offload Complex Event Processing from end-systems

and middleboxes to switches and programmable NICs. This concept is also applicable

for the evaluation of complex data plane events, assuming such programmable network

elements are available also in the control plane.

Another type of events, used for inter-controllet communication, is the control plane

event (CPE), which bears state changes or other events of the controllets’ business logic

or their micro-kernel, such as topology changes, multicast-group membership changes

as discussed in Chapter 3, changes of any high-level network policy such as firewalling,

or recovery/shutdown of controllets. CPEs are mainly used for coordination among con-

trollets. In our example, a link failure DPE (OF_PORT_STATUS) at S1 is disseminated to
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the message bus and delivered to the subscribed Topo controllet, which hence adapts its

knowledge about the network topology. Consequently, Topo informs interested controllets

by publishing a CPE (TOPO_CHANGED), for which all forwarding controllets have sub-

scribed to react to topology changes, and so on. In the multicast example (Chapter 3), an

IGMP message (DPE) would be received by a subscribed multicast controllet, which infers

a change of group membership from the DPE and consequently triggers the recalculation

of the multicast distribution tree, possibly by another controllet using a CPE, and executes

the necessary tree transition through a set of update DPEs (OF_FLOW_MODs).

Recent SDN research has shown that consistency in an inherently distributed system

of switches and controllers might require certain semantics of the delivery of messages

[KZFR15]. The message bus transparently implements a range of semantics, such as

exactly once or the relaxed at most once, by employing corresponding messaging primitives,

such as atomic multicast, (un-)ordered multicast, etc. Thus, the message bus provides

arbitrary guarantees on message delivery (reliability) to controllets as building blocks

for implementing network control with flexible consistency semantics that match the

criticality of respective control tasks.

Since the message bus is a crucial system component, we want to briefly discuss its

implications regarding scalability and reliability. In traditional messaging middleware,

publish/subscribe used to be implemented by a hardware appliance or a software-based

component, the broker, which manages subscriptions and implements filtering of messages

in a centralized fashion. To prevent swapping one centralized component (centralized SDN

controller) for another (centralized message broker), we employ a distributed solution

that exhibits high scalability: Modern brokerless message bus implementations use efficient

transport mechanisms for event dissemination, like multicast or unicast with publisher-side

subscription-based filtering or even hardware-based filtering with line-rate performance

[BTK+17], targeting scalability to hundred thousands of subscriptions [nan17], which

suffices to accommodate typical data center networks [SOA+15]. We provide macro-

evaluations of our message bus implementation in Section 5.5. Should performance issues

arise nonetheless, e.g., due to an insufficiently dimensioned control network, scalability

can be improved by employing a message bus hierarchy, where the scope of controllets

is limited, e.g., reflecting tiers on modern data center network topologies, such as core,

spine, and leaves. Regarding fault-tolerance, we stress that a worst-case complete failure

of the message bus translates to a broken control channel, which is equally severe as a

broken control channel in traditional, non-distributed SDN architectures. On the contrary

though, local control in our architecture increases fault-tolerance, as we show later.
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4.3 HIGHLY FLEXIBLE CONTROL PLANE DISTRIBUTION

In this section, we make a solid case for rethinking the radical clean-slate approach most

common SDN architectures follow by showing how lightweight controllets can bring back

control onto the switch while still benefiting from the logically centralized paradigm of

SDN. We also address drawbacks of control decentralization and challenges in practical

deployments.

4.3.1 AUGMENTED FULLY DISTRIBUTED CONTROL

Most SDN architectures have abandoned fully decentralized network control based on a

distributed control plane implemented solely by switches in favor of logically centralized

control. While not strictly arguing for or against logically centralized control or fully

distributed control, where control logic is distributed to both, controllers and switches,

we observe that the strict notion of separating data plane elements from the logically

centralized control plane limits the full potential of the SDN paradigm. For instance,

“legacy” distributed control protocols, such as distance vector or link state routing protocols,

have proven to be fault-tolerant and scalable. As found by [KZFR15], vigorous efforts

have to be undertaken to provide the same fault-tolerance with a logically centralized SDN

network. We stress the fact that on the one hand maintaining a global view and exerting

logically centralized control comes at a cost [LWH+12] due to the inherent need for

acquiring a global state, which gets costlier the stricter the consistency requirements are,

and communication with a remote control entity, respectively. While this holds true also

for the decentralized control model, we stress that on the other hand, a full global view is

however not even needed for many control decisions, as we show later in Section 4.3.2.

Hence, logically centralized control should not be the sole option. Consequently, we

argue that true flexibility in network control implies to leverage the whole design space

of control (de-)centralization and thus also includes the option for full distribution of

network control, as depicted in Figure 4.3.

Recent developments in networking hardware enable switch-local control logic due to

(a) increased computing performance and (b) programmability through open access to

the switch’s control plane. In particular, white-box networking switches (see Section 2.5)

feature open, Linux-based switch operating systems as the control plane, running on

increasingly powerful CPUs (see Section 4.5.3). Therefore, and in-line with recent research

[SS13, BBCC14, BBBS16, CPSC15], our architecture encourages pushing lightweight

controllets directly onto the switch, as illustrated in Figure 4.1. These switch-local
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controllets can then execute the full spectrum from simple local logic to fully distributed

network control protocols. Like any controllet, also switch-local controllets communicate

through the message bus. Thus, we can implement distributed network control alongside

logically centralized network control, or implement anything in-between (Figure 4.3,

light-shaded area). This scheme allows for the best of both worlds—fully decentralized

processing, yet being centrally coordinated, and logical centralization, which allows

for trading-off control latency (latency of event processing and communication) against

overheads of distribution and synchronization of controller state. For the synchronization

of state among controllets (see Section 2.4.2), communication primitives of varying

reliability offered by the message bus can be combined with additional methods to achieve

a desired level of consistency and other properties, for instance by employing a 2-phase

commit protocol for distributed transactions [MGBM17]. The selection of a suitable level

of synchronicity (synchronization requirement; Figure 4.3, dark-shaded area) depends on

the criticality of a network function to control. For instance, network operators could

consider admission control more critical than monitoring or traffic engineering, where

temporal inconsistencies are bearable, i.e., changes in these policies do not have to be

enacted as quickly (eventual consistency).

Besides the partitioning of controller state data along network functions, state can

additionally be partitioned by topological scope. Through the incorporation of (more)
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global knowledge, i.e., state data of larger topological scope, we can thus additionally

trade-off the scope of state data against solution quality of control decisions (Figure 4.3,

dark-shaded area). As we show next, local knowledge can be augmented by partial

caching or aggregation of (more) global knowledge upfront or by requesting remotely

within a control decision process.

Potential control decision conflicts can be resolved by publishing all policy data and

aggregating it locally alike. Local controllets decide which policy data is relevant for their

control decisions, issue corresponding subscriptions, and cache received policy data.

The flexibility of our approach is to the best of our knowledge yet unmet and exploits

the full conceptual range of SDN.

4.3.2 LOCAL DATA PLANE EVENT PROCESSING

We argue for placing control decision making as close as possible to the entities it is

affecting, i.e., pushing down decision making instead of decisions (in form of forwarding

entries) to the switches. We denote this concept as local data plane event processing

(LDPEP). LDPEP allows for reacting most timely on data plane events, decreasing control

latency. Another important advantage is that the state data of local scope naturally is

most recent locally and thus has to be considered the ground truth for decision making

[PZH+17]. Due to its locality, it neither has to be costly acquired nor has it to be consistently

agreed upon. Furthermore, opposed to a non-local controllet, the total control load is

inherently balanced to local controllets, relieving the message bus.

We apply a fast heuristic to quickly decide whether an event is to be processed locally

or remotely. Therefore, we consider (i) the actual control application, (ii) the scope of

the state data required for decision making, and (iii) the scope of the particular control

decision. If the involved state data and decision are of limited scope and all necessary state

data is locally available, the event is processed locally. Otherwise, the event is propagated

over the message bus to be processed by remote entities in the control plane. Note that

this decision is not exclusive and also the control scope is not necessarily limited to a

single switch. Even with LDPEP, we still allow controllets to have forwarding rules being

installed directly at the switch.

LDPEP not only decreases latency but also increases the network’s failure resilience: it

constitutes a stand-alone procedure in case an adequate remote controllet or the entire

message bus is currently unavailable.

In the following, we show essential use cases enabled by LDPEP and elaborate on its

design by example.
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4.3.2.1 AUTONOMOUS FORWARDING

A prime candidate that naturally lends itself to LDPEP is simple forwarding as, e.g., being

implemented by the MAC learning switch Nicira extension [VMW] in the prominent SDN

software switch implementation Open vSwitch (OVS) [PPK+15].
In the following, we present the concept of Autonomous Forwarding, which is illustrated

in Figure 4.4, running on a typical switch hardware platform. Following standard Open-

Flow behavior, packets (Ê from Hostsrc destined to Hostdst) without matching forwarding

rules in the fast-path Ë are escalated over the slow-path to the switch’s control plane

(Ì PACKET_IN), where a forwarding decision is taken and applied by installing respect-

ive forwarding rules (Ð FLOW_MOD) for subsequent packets and sending the particular

packet to a switch data plane egress port (Ñ PACKET_OUT). Naively one could conclude

the only state information needed for the forwarding decision was the host MAC to switch-

port mapping, which is either passively learned Í from ingress packets or actively probed.

However, the destination host might not be attached to a port of that switch. In addition,

forwarding decisions might violate global network policies, such as firewall rules, ACLs,

or tenant isolation.

To implement centrally coordinated control, preventing policy conflicts, and leverage

global network view, the Autonomous Forwarding controllet (AFC) subscribes to relevant

topology data and policy information on the message bus À. Due to limited resources

on the switch, the extent of local state caching has to be limited. Received publications

about possibly interfering policies are thus aggregated Á into an exception list, storing

hosts and local switch-ports that are affected by any policy and are thus being blacklisted

(or whitelisted). Similarly, topology information is reduced to only relevant parts for local

processing before being stored in the cache.

In the forwarding decision process, the MAC-switch-port mapping of Hostsrc is learned

and the Forward Information Base (FIB) cache is updated Í. Note that FIB entries (tuples)

may be arbitrarily extended, for instance to consider VLAN tags. Since the mapping

constitutes topology information that in general is highly relevant for many other con-

trollets as well, it is published to the message bus Ã. Then, the cached topology data,

i.e. the FIB, is queried for the switch-port associated with Hostdst Î. In case the data is

not present locally, the PACKET_IN event can be escalated to the message bus to be

processed by some remote controllet Ä or a request for the required data can be published.

To evaluate whether autonomous local processing can be applied, the exception list is

queried Ï. In case of a hit, the decision must not be taken locally and is thus escalated to

the external control plane by a publication of the event to the message bus Å. Otherwise,
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Figure 4.4. Schematic overview of the Autonomous Forwarding controllet and its processing of a
local data plane event (forwarding of Hostsrc→ Hostdst) on a typical switch hardware
platform. Data plane events and control plane events are routed over the message
bus in order to enable coordination with other controllets and access to the global
view.

108



4.3 Highly Flexible Control Plane Distribution

local processing proceeds ÐÑ. Note that for policies that can be translated directly into

local drop-rules, such as admission control, affected DPEs with corresponding matches in

the exception list can still be processed entirely locally.

While maintaining a local exception list is mandatory for policy adherence, the scope

of non-local topology information to be locally cached can be chosen more fine-grainedly,

considering the available resources on the particular switch and the desired data con-

sistency. The scope of the local topology cache thus can range from purely local over

regional (neighbor switches) to global view. This allows for trading off optimality of a

control decision against resource consumption (memory, processing) and latency (for

decision making and enacting). As mentioned above, data consistency is a crucial factor

for the optimality and even validity of a decision. Typical cache invalidation and eviction

strategies such as least recently used or least frequently used can be applied to optimize

caching behavior. As a middle ground, instead of topology data itself, the cache can just

store the primary source for that data—the controllet at which the data is local. Thus, in

case such data is needed, the respective peer can be queried directly rather than publishing

an uninformed query to the whole message bus.

4.3.2.2 ARP HANDLING

ARP is another essential networking mechanism, which has already been investigated

in the context of local control and controller-function offloading [BBBS16, YZB+16].
Autonomous forwarding can be easily extended to include ARP handling. Additional to

the link layer address data, ARP needs network protocol address data, which is passively

or actively acquired, alike. Since ARP is a control protocol, we argue to employ a reactive

control scheme, where all ARP requests are escalated to and handled in the control plane.

Thus, at the cost of negligible memory consumption, ARP handling profits from decreased

latency of LDPEP, while the remote controllets are effectively shielded from ARP control

load that, in contrast to proactive flows, is to be fully handled by the control plane.

Extensive evaluations of the quantitative impact of local ARP handling can be found in

the mentioned literature.

4.3.2.3 FAST FAILOVER & ADAPTIVE LINK LOAD BALANCING

While decisions of the AFC and ARP LDPEPs are permanent, i.e., typically not chal-

lenged by external authorities (remote controllets), we now describe another class of

LDPEP: intermediate local procedures. These allow for fast local reaction, while pos-
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sibly compute-intensive and thus time-intensive centralized control decision is eventually

determined and possibly replacing the local short-term procedure decision.

In our exemplary local fast failover procedure, a link failure (yet another type of

data plane event) between a pair of adjacent switches (S1, S2) is detected at S1 and

propagated to a controllet running on S1. A local procedure temporarily compensates the

failure by steering the traffic over a link locally known1 to belong to a redundant path

to S2. S2 recovers analogously. Although being possibly suboptimal, local intermediate

procedures provide a timely recovery, while the failure event is propagated to the message

bus, where a remote controllet recalculates a globally optimal route that is ultimately

deployed to the switches possibly overriding the decision of the local procedures. If S1

and S2 have broader cache scope, they could even avoid most suboptimal recoveries

by coordinating their plans among each other using peer-to-peer communication, and

adapt it in case of discovered sub-optimality. A related approach [AAK14] relying on

pre-installation of failover flows and thus consuming additional scarce flow-table space

shows that recovering through remote controllers is one order of magnitude slower than

local procedures.

Instead of being applied to recover from (rare) failures, re-steering flows over redundant

links according to the present link utilization can be a time-event-triggered (periodic)

process, which we denote as adaptive link load balancing. This procedure is highly

appealing for traffic engineering and more dynamic than traditional approaches, such as

Equal-cost Multipath Routing (ECMP) [TH00]. Recent switch instrumentation technologies,

like Broadcom’s BroadView [Broa], even enable fine-grained access to hardware switch-

port queue statistics, which allows for more detailed traffic analysis. Furthermore, adaptive

link load balancing can be applied not only on local scopes, but rather on different levels

of a whole control hierarchy, e.g., reflecting tiers on data center network topologies.

4.3.2.4 CONTROL PLANE FEEDBACK MECHANISM

Local controllets are the only entities that can directly access the switch’s flow-table entries.

Thus, any applied change to a flow table can be propagated to interested controllets,

implementing a feedback mechanism that allows a controllet to verify whether its flow

change has been successfully applied—a precursor for a transactional interface [CKLS15].
Although policy conflicts between controllets should be avoided by coordination upfront,

with this mechanism, controllets are able to detect conflicts, e.g., when a rule, encoding a

1Switch to switch links can be discovered by employing active probing using the Link Layer Discovery
Protocol (LLDP), as described in Section 4.4.
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policy of one controllet CM1 is modified by another controllet CM2 such that the original

policy of CM1 is violated.

4.3.3 RELATION TO DATA PLANE PROGRAMMING AND NETWORK FUNCTION

VIRTUALIZATION

In the following, we want to briefly discuss the relation of ZeroSDN in general and LDPEP

in particular to data plane programming as well as to Network Function Virtualization.

As introduced in Section 2.6, P4 (Programming Protocol-independent Packet Processors)

[BDG+14] specifies a high-level language for network programming that is not tied to

fixed packet header definitions. The P4 compiler maps generic control programs to specific

hardware or software platforms of target switches. Thus, P4 is able to fully exploit the

capabilities of individual switch hardware, e.g., ASIC, NPU, or FPGA. However, switches in

P4 do not take control decisions but merely execute control logic that has been compiled

down from a high-level description, i.e., deploying control decisions instead of distributing

decision making. Furthermore, P4 does not address the question where its compiler is

actually executed, overall showing that control plane distribution is not yet considered.

Recent NFV-related SDN approaches typically focus on the distribution of network

functions onto the switch data plane (see Section 2.6.2), like the generic frameworks

OpenBox [BBHH16] and NetBricks [PHJ+16], or the management and orchestration of

virtualized network functions (vNFs), like the E2 [PLH+15] framework, which handles the

dynamism, placement, and chaining of vNFs. ZeroSDN is mostly complementary to NFV.

While it also supports the implementation of dynamic network functions in the switch

data plane2, for instance implementing a stateless firewall with the AFC, with LDPEP,

ZeroSDN rather focuses on the distribution of control plane functions for fast adaption, as

shown with the intermediate local fail-over procedure or local load balancing. Contrasting

OpenFlow and P4, ZeroSDN thus incorporates local control decision making, rather than

a mere local installation of remotely taken control decisions.

4.3.4 CHALLENGES OF DEPLOYMENT ON NETWORKING HARDWARE

In the following, we address challenges of deploying LDPEP on recent OpenFlow-enabled

hardware switches. More specifically, we describe how switches without control plane

2In principle, LDPEP can implement arbitrary packet processing—in the control plane. For a detailed
discussion on LDPEP’s generalization to arbitrary slow-path packet processing, we refer to related work
of ours [KDBR17].
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access can be integrated in ZeroSDN nonetheless, as well as how we assure a safe control

plane operation in case of an accessible control plane.

4.3.4.1 MIGRATION AND CLOSED SWITCH HARDWARE

In order to be able to run controllets locally, the switch’s control plane has to be accessible,

which is a defining property of white-box switches, as introduced in Section 2.5. For

switches with an inaccessible control plane or insufficient resources, we provide a fallback

mechanism that enables integration in our architecture. Such a switch is coupled with

a dedicated SwitchAdapter, which instead of running locally is running on any other

hardware, preferably in close proximity to the switch, via an OpenFlow connection and

acts as a gateway to the switch in the message bus. Note that an external SwitchAdapter

is still capable of executing local logic, yet additional network latency is incurred. We

determine the penalty of externalizing the SwitchAdapter in Section 4.4.2.

4.3.4.2 ISOLATION AND RESOURCE CONTROL THROUGH LIGHTWEIGHT VIRTUALIZATION

The accessibility of the control plane is white-box switches’ boon and bane: it allows

arbitrary processes of different provenance to run in a less controlled environment, op-

posed to the closed switch model of traditional full-stack vendor implemented proprietary

switch platforms. This raises concerns regarding security and reliability. (Unintentional)

adverse behavior of control plane processes, including failures and excessive resource

consumption, could starve other essential processes and thus poses a severe threat to

its entire operation. For instance, in case of starvation of the OpenFlow agent, which

is the sole interface to the underlying switch silicon in OF-switches, the control plane

would be unable to detect and thus properly react to any data plane event, for instance,

port state changes the in case of link failures. Also, the network’s administrative domain

might differ from the origin of the control application code. For instance in NFV, the

network operator typically differs from the vendor of a virtualized network function (vNF),

requiring trust in the code issuer and functional correctness of the VNF. In case of network

virtualization, where tenants are provided logical partitions of network resources, the

origin and behavior of control logic might not even be known to the network operator.

Consequently, we derive two requirements for the practical deployment of LDPEP:

(1) Isolation to protect processes’ data from each other and ensure data integrity, as illus-

trated in Figure 4.5(a), and (2) Prioritization and resource control to ensure liveness of

control operation and thus ultimately network operation, as illustrated in Figure 4.5(b).
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Figure 4.5. Requirements for safe control plane operation with multiple LDPEP controllets,
ensuring data integrity and liveness of control plane applications.

Moreover, the current white-box switch landscape exhibits a high heterogeneity with re-

spect to hardware, i.e. switch silicon and control plane architecture (x86, ARM, PowerPC),

and software, i.e. operating systems and forwarding agents, as described in Section 2.5.

We combine local controllets with lightweight virtualization to cope with white-box

networking heterogeneity and to achieve required isolation properties.

In traditional virtualization, the emulation of resources provides isolation while their

allocation to a VM depicts resource control. Since the large overhead of virtualizing a

full OS along with an application, as employed with traditional virtual machines (see

Figure 4.6(a)), counteracts the latency gains of local logic, we focus on using lightweight

techniques. Two ways to counter virtualization costs (image size, memory footprint, and

boot time) have been evolving: (1) stripping down the guest OS to a bare minimum, i.e.,

providing just the functionality the virtualized application needs for its operation (library
OS / Unikernel, see Figure 4.6(b)) and (2) abandoning hardware emulation and full OS

virtualization in favor of using isolation features of a shared kernel, providing multiple

isolated user-space instances (Container, see Figure 4.6(c)).

Unikernels naturally lend themselves to cloud computing and NFV where they have

been gaining importance in recent years, as for instance with ClickOS [MAR+14], a

minimalistic, virtualized operating system for network processing. Unikernels have a single

address-space. Kernel and application are a single, unified process. This eliminates the

need for context-switches, but also prevents usage of multi-processing, signals, dynamic

libraries, and virtual memory. Furthermore, application logic has to be ported to a

particular Unikernel framework. However, Rump kernel [KC] uses NetBSD’s kernel and

libc. Thus, POSIX-compliant applications obeying these restrictions are supported without

modifications.

In our scheme, the main goal of virtualization is to protect the control plane from unin-
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Figure 4.6. Comparison of traditional heavyweight and lightweight virtualization techniques,
implementing required isolation and resource control requirements.

tentional adverse behavior of controllets which justifies lessening the isolation requirement

to some degree. Containers allow for fine-grained control over the scope of isolation

and resource allocation with almost no additional overhead. They rely on namespaces, a

feature of the Linux kernel that isolates system resources, e.g., user and process IDs, IPC,

filesystems and networking, of a set of processes whose resources are accounted using the

control groups (cgroups) kernel feature. Two well-known implementations of container

libraries are LXC and Docker. Besides the kernel, which is necessarily shared among all

containers, a container configuration can share or isolate any combination of namespaces.

We evaluate the overhead of these techniques with given levels of isolation in our

evaluations in Section 4.5.3.

4.4 IMPLEMENTATION

We have implemented an open-source prototype of our distributed SDN controller archi-

tecture, consisting of a modular execution framework (ZMF) running a distributed SDN

controller application (ZSDN) with essential controllets atop. ZMF and most modules are

written in C++, but we also provide a Java-based module framework (JMF). We provide

build support for x86 and ARM architectures. This section presents the most important

aspects of our implementation.

4.4.1 ZMF: THE ZERO MODULE FRAMEWORK

Our micro-kernel implementation consists of two components, the PeerDiscovery-

Service and MessagingService. Module runtime environments are completely
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decoupled and independent of each other. They run in dedicated processes, possibly on

separate hardware. The PeerDiscoveryService implements module discovery with

dependency and life-cycle management, enabling bootstrapping and peer dynamics. To

this end, changes in a module’s lifecycle state, such as joining/leaving the framework, are

propagated using efficient UDP multicast. Furthermore, modules periodically confirm

their state by multicasting heartbeat messages. Thus, with linear message complexity,

each module knows the type and state of all other (relevant) modules.

For the message bus, we employ the production-grade low-latency communication

middleware ZeroMQ (ZMQ) [iC]. Besides numerous communication patterns and transport

mechanisms of varying reliability, ZeroMQ comes with a security framework implementing

authentication, confidentiality, message integrity, etc. [iMa]. Access to the message bus is

provided to ZMF modules through the MessagingService. We use TCP and IPC as

reliable transport mechanisms. Later, we will show the mapping of data plane events and

control plane events to pub/sub topics.

4.4.2 ZSDN: A DISTRIBUTED SDN CONTROLLER

ZSDN consists of prototypical controllets for distributed SDN control. All controllets

support OpenFlow (OF) 1.0 and 1.3. Common data structures like topology data are

mapped to Google Protocol Buffers [Goo] definitions, providing language-independent

module communication.

Figure 4.7 shows essential controllets and their logical interdependencies. The SwitchAd-

apter (SA) wraps an OF-enabled switch in an instance which is running locally on the

switch, integrating it to and representing it within the framework.

State controllets acquire data plane state by passively reacting on subscribed events or

Integration
State
Control

DeviceTopology

Statistics LinkDiscoverySwitchRegistry

SimpleForwardingForwardingARP

SwitchAdapter

Figure 4.7. Dependency graph for essential controllets
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active probing. For instance, the SwitchRegistry registers all available switches through

subscriptions on changes of their representing SwitchAdapters, whereas the LinkDiscovery

controllet detects switch to switch links by subscribing to LLDP (Link-Layer Discovery

Protocol) data plane events and proactively injecting LLDP packets over the SA instances

into the data plane. The Topology controllet subscribes to both, SwitchRegistry and Link-

Discovery events, such that eventually it holds complete topology knowledge, excluding

end-systems, which are managed by the Device controllet. Topology information can be

actively queried by controllets using req/rep. Topology changes are published through

events, allowing for passive synchronization of controllet-local caches. Another module

class provides control feedback to the data plane and thus closes the network control loop

by modifying forwarding rules, such as the SimpleForwarding controllet.

4.4.2.1 EVENT SPACE – TOPICS MAPPING

Due to the lack of practical high-performance content-based pub/sub middleware im-

plementations, we use ZMQ’s topic-based pub/sub implementation instead. We map

the event space of both, data plane events (from SA) and control plane events (other

controllets), to topics employing a hierarchical topic scheme which allows for fine-grained

subscriptions. In the following, we describe the mapping, while illustrating its usage on

the example of a SwitchAdapter.

Each controllet defines two sets of topics: Set TO defines which message types (topics)

a controllet is able to process, i.e., which data plane events it wants to receive from

the message bus. This set is mapped to corresponding subscriptions for event filtering.

Set FROM defines the topics published by the controllet, i.e., events disseminated to the

bus. Other controllets can subscribe to these advertised topics. Topic definition is strictly

hierarchical. The first hierarchy layer defines the type of declaration (TO or FROM). The

second layer comprises the identity of the controllet. All upper layers contain structure of

controllet-type specific content. Attributes are encoded as a bit-sequence, with a specific

length associated to each hierarchy layer, at a specific location within the topic-hierarchy.

Wildcard matching (“?”) is supported. For the SA, as shown in Listing 4.1, the semantics

are as follows: Listens to Events (TO): The SA will receive any incoming message of these

topics and forward it to the switch. Publishes Events (FROM): any OF message the SA

receives from the switch is published using a corresponding topic within this set of topics.
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Listing 4.1. Excerpt of the SwitchAdapter topic-hierarchy

TO=0x01

SWITCH_ADAPTER=0x0000

SWITCH_INSTANCE=0x???????

OPENFLOW=0x00

FEATURES_REQUEST=0x05

PACKET_OUT=0x0D

FLOW_MOD=0x0E

ROLE_REPLY = 0x19

METER_MOD = 0x1D

...

FROM=0x02

SWITCH_ADAPTER=0x0000

-

OPENFLOW=0x00

FEATURES_REPLY=0x06

PACKET_IN=0x0A

LB_GROUP=0x?? default=0x00

IPv4=0x0800

TCP=0x06

UDP=0x11

PORT_STATUS=0x0C

...

4.4.2.2 PARTITIONING & LOAD BALANCING

Note that hierarchy layers are not tied to a fixed representation of the underlying event

space, e.g., SA topics are not restricted to directly reflect OF-matching fields. Artificial

hierarchy layers may be freely introduced between any layers. For instance, to enable

load balancing of PACKET_IN messages, the SA artificially discriminates PACKET_INs

by introducing an additional 1-Byte topic hierarchy layer (LB_GROUP) and disseminating

such events in a round-robin fashion to the set of groups. Controllets participating in load

balancing subscribe to a specific LB_GROUP, whereas controllets that want to receive all

PACKET_INs apply a wildcard subscription on the LB_GROUP layer. This mechanism

enables partitioning along the network topology where, for instance, Topology controllets

refine their subscriptions to certain groups.

4.4.3 INTEGRATION SCHEMES FOR LDPEP

One way to implement switch-local control is to identify a set of essential controllets and

run them locally on each switch. That way, full modularization is maintained and the

controllets’ code can be directly reused. While highly scalable, communication over the

message bus, e.g., for querying topology data in case of the AFC (see Section 4.3.2.1),

incurs higher latency compared to, e.g., direct memory access in case of a single-process

integration. Although TCP connections over the local loopback interface are highly

optimized in recent Linux kernels, micro-benchmarks [SMS+12] executed on our testbed
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nodes3 and switch4 (see Sections 4.5.1 and 4.5.3) indicate higher throughput and lower

latency when using inter-process communication (IPC) mechanisms.

When focussing on latency, LDPEP should be implemented by a fully integrated, mono-

lithic controllet connected to the message bus in order to leverage the global view and

central coordination, as explained for the AFC. Performance potential lays in a tighter

coupling to the underlying switch hardware. Ideally, local logic would be pushed down

to the data plane hardware using data plane programming, which however focuses on

packet processing and thus is not suited to implement arbitrary control logic.

By supporting multiple integration schemes, our architecture offers great flexibility to

network operators who have to compromise between performance and implementation

efforts, based on the expected load. We have implemented the schemes modularized

(ZSDN-TCP, ZSDN-IPC) and fully integrated (ZSDN-AFC) and compare their performance

in the following.

4.5 EVALUATION

In this section, we present the evaluation of our proposed distributed SDN controller

architecture, consisting of a raw performance comparison, an analysis of the scalability

of our approach, as well as results from the deployment on our white-box networking

switch, including the overhead of virtualization.

4.5.1 RAW CONTROLLER PERFORMANCE

First, we asses the raw performance of ZSDN and conduct a comparison with popular non-

distributed or less distributed controller frameworks using the following methodology.

We use cbench [SY] for measuring controller throughput and latency. Cbench emulates

switch behavior by sending OF_PACKET_INs (triggers) to the connected controller.

To measure throughput, cbench sends triggers as fast as possible and averages over

the number of received OF_FLOW_MOD and OF_PACKET_OUT from the controller. To

prevent double-counting, we modified the processing of controllers to respond with

only one type of message. For sequential throughput, cbench waits for a response to a

sent trigger, before sending the subsequent trigger. Hence, we approximate controller

3https://www.cl.cam.ac.uk/research/srg/netos/projects/ipc-bench/details/
tmpFxslu8.html

4https://www.cl.cam.ac.uk/research/srg/netos/projects/ipc-bench/details/
tmpgtzzD3.html
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Figure 4.8. Evaluation setup of control plane (testbed) for raw controller performance evaluation
(Section 4.5.1) and scalability evaluation (Section 4.5.2).

processing latency as the inverse of sequential throughput. Cbench and the controllers

run on a testbed consisting of 12 nodes (Intel Xeon E3-1245v2 @ 3.4 GHz, 4 physical

cores, 16 GB RAM) interconnected through a switched GbE network.

To investigate the impact of controller locality, as illustrated in Figure 4.8, we differenti-

ate between the switch (cbench) and the controller (traditional SDN controller or ZSDN)

running on the same node Hi (local; OpenFlow channel: TCP over loopback interface)

and running on different nodes Hi+1 and Hi (remote; OF Channel: TCP over switched

Ethernet).

Each cbench run is averaging over 60 seconds in parallel on each of the 12 nodes (local)
and 120 seconds on each of the 6 node pairs (remote), totalling in the aggregation of 12

minutes of observation time for each experiment.

We evaluate the following platforms:

(1) ZeroSDN ZSDN-TCP/IPC: modular controller framework using single-instance con-

trollets with message bus communication using reliable (guaranteed and in-order

message delivery) transport mechanisms TCP and IPC (UNIX domain sockets)

(2) ZeroSDN ZSDN-AFC: the Autonomous Forwarding controllet employing local data

plane event processing (LDPEP), as introduced in Section 4.3.2.1, fully integrated

(single process, see Section 4.4.3)

(3) NOX (verity) [GKP+08, Theb]: an early academic C++ implementation, popular for

its performance

(4) ONOS [Thea]: Java-based, carrier-grade controller framework, modularized using

OSGi [OSG]
(5) Floodlight [Big]: Java-based, production-grade controller framework, forked from
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the academic Beacon controller

(6) Ryu [Ryu]: Python-based controller framework, popular for its support of most recent

OF versions

Figure 4.9 shows the results of the controller comparison, where error bars depict the

standard deviation. Regarding local throughput (Figure 4.9, top half), NOX performs

best with ≈ 369± 2 msg/ms (messages per millisecond). The LDPEP of ZSDN-AFC results

in similar figures with ≈ 260± 1msg/ms.

The performance penalty of distribution shows to be bearable: distributed ZSDN

throughput is about 53% of ZSDN-AFC (≈ 138± 28 msg/ms), mainly dedicated to mes-

sage passing. Note that here we ran only one instance of each controllet, thus measuring

only the costs of distribution, not its benefits, which we measure in the next section.

Interestingly, ZSDN throughput decreases by 1/3 when using IPC instead of TCP. This

contradicts expectations risen through the micro-benchmarks, where UNIX domain socket

throughput was reported to be about 20% higher than TCP on these nodes (see Sec-

tion 4.4.3). While Floodlight is close to ZSDN-IPC, ONOS performs slightly better. The

Python-based controller Ryu is far off with ≈ 0.8msg/ms. Overall, throughput penalties

for a remote OF connection are moderate. Interestingly, the remote throughput of ONOS

and Floodlight are measured to be higher than their local throughputs, which we could

trace down to stem from their common Java-based network framework (Netty). Note

that although the control load, i.e., event rate, in practical deployments can be expected

to be smaller than in our maximum throughput evaluation, our results provide valuable

insights in determining the upper performance bound.

Looking at latency (Figure 4.9, bottom half) however, remote latency is increased

drastically compared to local latency with factors of 2 (ZSDN-TCP) to 6 (ZSDN-AFC). This

is a strong argument for local processing, especially for the integrated LDPEP mode. On

the other hand, when using modularized controllets, the penalty for running SAs remotely,

e.g., for migration or inaccessible control planes (see Section 4.3.4.1) is bearable.

4.5.2 SCALABILITY OF CONTROLLET DISTRIBUTION

Next, we evaluate the benefits of distribution and replication of ZSDN controllets with

the following methodology. As illustrated in Figure 4.8, we distribute the most compute-

intense controllets SwitchAdapter (SA) and SimpleForwarding (SF) to dedicated nodes.

For the moment, we use only a single SA instance (replication factor k=1) placed at

Hi (local) or Hi+1 (remote). Furthermore, we replicate the SF with a varying replication
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factor n. Each instance SF j with j ∈ [1, n] is placed on a dedicated node (Hi+1+ j). The SA

distributes the total load evenly to these instances (see Section 4.4.2.2). We additionally

vary the number of switches s, cbench emulates. For each switch connection, the SA

spawns 4 threads, dedicated to that connection.

The results are shown in Figure 4.10. Even for n= 1 (no SF replication), we achieve

15% higher throughput just by placing the SF instance on a dedicated node. For s = 1 and

increasing n, throughput increases, but only sublinearly. In this setting, the SA constitutes a

bottleneck. It maxes out 1 thread (per-core performance) and is not able to fire drastically

more data plane events which the SF instances could process. If we increase s, the

throughput increases almost linearly until the (single) SA instance maxes out (per-CPU

performance (all cores)) at s = 3. Having n> 3 does not further improve performance,

such that the overall peak performance is reached with s=3, n=3 at ≈ 280± 16msg/ms.

Note that maxing out introduces high indeterminism (e.g., apparent throughput drop in

the graph). To investigate the scale-up behavior, we repeated the experiment using more

powerful nodes (Xeon E5-1650v3 @ 3.5 GHz, 6 physical cores), where throughput peaks

at s=5, n=5 with ≈ 670± 20 msg/ms. Note that more compute-intense processing, such

as deep packet inspection, would much more benefit from distribution and replication.

For n = 1, latency increases by about 22% due to the physical separation of SA and SF

and thus one additional hop over the control plane network. In contrast to remote, local
latency increases with increasing s, since SA and cbench are running on the same host,

thus sharing an increasingly loaded CPU, slowing down cbench’s production of emulated

data plane events and SA’s distribution pace. With increasing n, local latency increases

as well, due to increased splitting and merging efforts of events to be disseminated to

the message bus and reactions received over the bus. Remote latency follows the same

trend, but only slightly increases with increasing n since the impact on latency of the

OpenFlow TCP connection over the physical network instead of the loopback interface

is the dominating factor. In more practical scenarios with lower event rates but higher

packet sizes, this effect is expected to be of a much lesser extent.

When using the full distribution capabilities by replicating both, SF and SA, i.e., increas-

ing n as well as k, and keeping n/k balanced, we could verify linear scalability. Depending

on the efficiency of group communication, which is very efficient in ZMQ due to filtering

right at the publisher, network saturation limits scalability. For scenarios with such high

event rates however, it is reasonable to employ 10GbE or higher on the control plane,

counteracting network capacity bottlenecks.
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4.5.3 PERFORMANCE ON WHITE-BOX NETWORKING SWITCH HARDWARE

In our last evaluation, we compare the controller performance on real white-box switch

hardware, instead of emulating it. We compare ZSDN-IPC, ZSDN-AFC, NOX, and Ryu.

The device under test is a typical top-of-rack white-box switch (cf. Figure 2.7, p. 55)

Edge-Core AS5712-54X, whose hardware specification is publicly available under the

Open Compute Project [Opea]. Its control plane comprises an x86 Intel Atom CPU (C2538)

[Cor] with 4 cores at 2.4 GHz, 8GB RAM, and a GbE NIC. Atop we run the operating

systems OpenNetworkLinux (ONL) 2.0 with a 3.16.39-LTS kernel and Pica8 PicOS 2.8

with a 3.16.7 kernel. On the data plane, it features a Broadcom Trident II ASIC with

48× 10GbE and 6× 40GbE ports.

Our methodology, illustrated in Figure 4.11, is as follows. The switch runs a network
operating system (NOS) on its control plane. For remote performance, the OpenFlow

agent running atop of the NOS connects to a remote controller. For local, we deploy a

controller directly on top the NOS, which the OpenFlow agent connects to. Later, we

isolate the local controller using a hypervisor or container. We intentionally provoke

that every ingress packet at a data plane port is processed in the control plane. To this

end, the controllers run learning switches, but do not install flows. In the data plane, we

connect two end-systems (hosts H0, H1) with 10GbE links to the switch. H0 is sending

packets to H1 where they are reflected back. Packet identity is ensured through unique

sequence numbers attached to the packets (as sole payload). Both, egress (tTX) and
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ingress (tRX) times are captured using hardware-timestamping. Thus we can measure the

RTT at the sender (TRTT = ts,RX − ts,TX) and the time spent for reflection at the reflector

(Trefl = tr,TX − tr,RX) with high precision. We approximate the (one-way) switch processing

latency as Tproc = 1/2 ∗ (TRTT − Trefl), neglecting transmission and propagation delay.

The throughput results show significant throttling. This is expected behavior, although

the switch silicon is interconnected with the CPU over a PCI-Express bus with plenty of

bandwidth. Switch vendors introduce limiting of traffic between the switch silicon (data

plane) and the CPU (control plane) in their switch design, to prevent denial of service

attacks on the control plane caused by (uncontrolled) data plane traffic. We observe

that with ONL, throughput is capped at 1 kpps (1000 packets per second) with a low

peak CPU utilization of the ONL’s OF-DPA daemon of 50% of one core. This shows

that the rate limit is clearly not caused by a CPU bottleneck. For switch-ingress rates

≥ 20kpps on PicOS, we measure an egress-rate of about 7kpps, while PicOS’s Open

vSwitch daemon consumes two cores. Note that due to isolation and resource control,

our lightweight virtualization deployment effectively protects control plane operation,

rendering additional safety mechanisms like the rate-limiting superfluous.

For evaluating switch control plane processing latency, we send with a rate of 100kpps

for 50 s. Through reflection, the effective packet rate (ingress rate at the switch) is doubled.

We begin with a comparison of controllers (Figures 4.12 and 4.13) running bare-metal

(no hypervisor/container) on ONL or remotely (Xeon E5-1650v3).

For switch-local controllers, NOX performs best with an average latency of≈ 330± 75µs.

ZSDN-AFC is consistently within 3% of NOX. The costs for module decoupling over the

message bus of ZSDN-IPC evaluates to ≈ 767± 112µs, a factor of 2.3, clearly showing the

superiority of LDPEP with the full integration scheme of ZSDN-AFC which still profits fully

from centralized view and coordination. Remote execution increases latency by a factor of

≈ 1.8, for ZSDN-AFC and NOX and a factor of ≈ 1.4 for ZSDN-IPC. Note that our scenario

of a one-hop switched GbE control network is almost ideal, providing a lower bound for

switch control plane processing latency. For larger distances or WAN scenarios, remote

control latencies are expected to be orders of magnitudes higher. Ryu (Figure 4.14)

is expectedly performing worse than its C++ counterparts with ≈ 1795± 225µs but

surprisingly 20% faster remote execution.

We evaluate virtualization overhead of Docker (ONL only) as well as rump kernels

(rumprun) and full VMs (KVM), both running on QEMU with KVM-acceleration enabled

by the Atom’s VT-x [UNR+05, Cor] support. The baseline is bare-metal execution (none).

Since NOX and ZSDN are relying on Digital Shared Objects (DSO), we were not able to
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port them to rumprun. The results are illustrated in Figures 4.14 and 4.15. Docker has

the lowest overhead. With full isolation of all but the network namespace, Docker imposes

almost no overhead for NOX/ZSDN. Latency and its deviation are within 1µs to bare-

metal execution. Ryu on Docker results in about 80µs additional latency. Additionally

isolating the network namespace (undepicted) incurs 100µs additional latency which

can be mostly attributed to the Linux network bridge, as we describe later.

Next, we measure the combined overhead of the hypervisor and the guest OS of

virtualization variants, employing KVM’s pseudo-paravirtualized network driver virtio.

Full virtualization (KVM) adds large overhead. On average, 410µs (factor 1.5) incur

for ONL and 820µs (factor 1.8) for PicOS, both slower than remote execution. Standard

deviations are larger by factors 2 and 2.2, respectively. Ryu as a Unikernel (rumprun)

is showing much better results. Compared to a full VM, latencies and deviations are

greatly reduced by 220µs and 285µs for ONL, and 310µs and 190µs for PicOS. This

is the result of the minimal guest OS and hence reduced OS overhead. Compared to

bare-metal/Docker, factors of 1.2 and 1.5 for latency on ONL and PicOS are promising.

We find that the standard Linux bridge in use at least partially accounts for the larger

overhead. By using optimized software bridges, like macvlan, VALE or OVS in combination

with hardware virtualization support such as SR-IOV [PLZ+15, KJ17] (paravirtualization),

latencies as small as 45µs [MAR+14] have been achieved—on server hardware, though.

Lastly, we evaluate the difference between the NOSes. For all measurements, compared

to ONL, PicOS adds quite consistent latency of 200µs on average for bare-metal and

remote, 420µs for NOX/ZSDN, and as high as 950µs for KVM and rumprun. Especially

for higher packet rates, we have observed instability of QEMU on PicOS. One explanation

for the discrepancy may lay in the forwarding agent. While OF-DPA (used in ONL) tightly

reflects the underlying switch silicon hardware pipeline, which is quite restrictive (see

Section 2.2.1), OVS (used in PicOS) offers an abstracted and seemingly unrestricted

multi-table pipeline as per the OpenFlow 1.3 specification. The implementation of this

mapping is expected to cause additional latency as a rather static offset, as we observed.

We can conclude that containers provide isolation as needed at minimal cost. We could

verify and quantify the benefit of reduced latency to be almost halved with containerized

local control logic, despite isolation. Note, that our scenario of a one-hop switched

GbE control network, is almost ideal, providing a lower bound for switch control plane

processing latency. For larger distances or WAN scenarios, remote control latencies are

expected to be orders of magnitudes higher, even compared to local yet sub-optimal

virtualization variants.
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4 Full-range Distribution of Event-based Network Control

4.5.4 EVALUATION CONCLUSIONS

To conclude the results of our evaluations, we first can state that in a raw comparison

to other controllers, our local data plane event processing (LDPEP) approach ZeroSDN-

Autonomous-Forwarding-controllet (ZSDN-AFC) reaches a throughput of ≈ 260msg ms−1

(messages per millisecond), which is about 70% of the best-in-class controller NOX.

The costs for distribution with ZSDN was measured as a throughput penalty of 53% in

comparison to ZSDN-AFC. Regarding latency, remote processing is drastically inferior

to local processing, as expected. Local processing yields factors 2 for ZSDN-TCP and

6 for ZSDN-AFC of reduced latency compared to remote processing. Overall, this is a

strong argument for local processing and LDPEP, which combines the advantages of local

processing with aggregated global knowledge while having efficient access to remote

controllets.

After observing ZSDN’s throughput penalty due to the worst-case scenario, where all

controllets are running on the same node, bearing just the cost but not using the benefit

of the distributed architecture, we investigated the scalability of ZSDN when actually

distributing. Thus, we distributed the most compute-intense controllets, switch adapter

(SA) and forwarding (SF) to dedicated nodes. Not distributing the SA controllet in the

beginning, we verified expectable scaling behavior (scale-up) of the SA controllet, scaling-

up from ≈ 280msg ms−1 to ≈ 670msg ms−1. Distributing both, SA and SF (scale-out),

we could verify linear scalability of throughput until saturation of the GbE control plane

network.

The performance evaluation on actual switch hardware (a white-box switch) first of all

revealed an excessive throughput throttling due to an intentional security mechanism to

protect control plane operation. Interestingly, our concept of isolation and resource control

renders this switch-vendor implemented mechanism superfluous. In terms of switch

control plane processing latency, we could again verify the superiority of LDPEP. While

NOX and ZSDN-AFC are about on-par with ≈ 330µs, the cost of decoupling controllets

over the message bus evaluated to a factor of 2.3 (to ≈ 767µs) for ZSDN-IPC. Providing

isolation and resource control using containers have shown to come at virtually no cost.

The more heavyweight virtualisation techniques Unikernel and full hypervisor (KVM)

introduce average factors of 1.2 and 1.5 additional latency on Open Network Linux (ONL),

compared to containers and bare-metal execution.
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4.6 RELATED WORK

Many early approaches, including Onix [KCG+10], propose to externalize state storage,

which incurs additional latency for lookups. In Onix, switches and controller instances

are tightly coupled. While Onix limits the shared view onto network state information,

HyperFlow [TG10], as our approach, holistically propagates all kinds of data plane

events. HyperFlow also facilitates pub/sub to propagate events, event classification is

however limited to three topics, whereas our approach leverages content-based filtering

(mapped to a topic hierarchy in our preliminary implementation) to allow for fine-grained

subscriptions. Furthermore, HyperFlow exclusively relies on passive synchronization of

the locally cached network-wide view, while our approach offers maximum flexibility

allowing both, local caches for fast access as well as access to highly consistent centralized

storage.

DevoFlow [CMT+11] is the first SDN approach to allow for local decision making on the

switch, however mandating changes of the switching ASIC. Kandoo [HYG12] proposes a

two-layered controller hierarchy with a root controller maintaining network-wide state,

and local controllers possibly running directly on switching hardware, only handling local

events where no global knowledge is required. While this scheme allows for offloading of

simple local logic, local controllers do not hold any state data, neither do they interact

with each other at all. Our approach is not limited to such a strict hierarchical scheme

and does not rely on a root controller instance, thus offering superior flexibility.

While these approaches exhibit a static switch-controller assignment, ElastiCon [DHM+14]
allows for a dynamic switch to controller instance mapping. By periodic monitoring of

controller load, the number of instances and the mapping is adapted for effective load

balancing. Since switches are still tightly coupled to an instance, the authors introduce a

switch migration protocol. A similar problem is addressed in [KCGJ14, BBHK15]. The

decoupling of switch and controller offered by our approach eliminates the need for

complex and costly migration mechanisms.

More recent approaches improve on fault-tolerance in control distribution. Beehive

[YG16b] models control applications as centralized asynchronous message handlers fea-

turing and thus focussing on application partitioning, exclusive handling of messages

among a set of controllers, as well as consistent replication of control state information.

Logical message propagation is dictated by map-functions that determine to which set of

applications a specific message is to be sent to. Message passing is not addressed in detail.

Furthermore, each Beehive controller instance contains all application logic in contrast to
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our highly modular approach. Another work, Ravana [KZFR15], focuses on controller

fault-tolerance. Ravana subsumes event dissemination from switches, their processing

by a controller, and the resulting execution of controller commands at the switches in

a transaction and guarantees that control messages are processed transactionally with

exactly-once semantics. Message propagation and actual distribution schemes are not

addressed.

Fibbing [VTVR15] exerts centralized control over routers that implement a legacy,

non-SDN, control plane running fully decentralized routing algorithms, such as OSPF

and IS-IS. The forwarding behavior of routers, i.e., their forwarding information base,

is manipulated as to achieve desired network behavior by faking input messages to the

distributed routing algorithms. Although being congruent in the notion of centralized

control, unlike in our approach, Fibbing’s control is solely indirect and thus inherently

limited.

With respect to Network Function Virtualization, OpenBox [BBHH16], an SDN-based

framework for NFs proposes to employ SDN-switches as packet processors in favor of

middleboxes, however based on the assumption of a centralized controller. Moreover,

E2 [PLH+15] proposes a framework for NFV applications, strengthening the role of SDN

in NFV management through the unification of SDN and NFV in a single controller that

automates NF-placement and service interconnection (management and orchestration).

For extended network processing capabilities, they push richer programming abstractions

into the network layer, however relying on software switches.

4.7 CONCLUSION

In this chapter, we presented a novel architecture for a highly flexible distributed SDN

controller based on a message bus for communication and a micro-kernel design. Network

control logic is split into control modules, called controllets, which can be freely distributed.

Controllets communicate through the message bus and are decoupled from switches and

other controllets using the publish/subscribe paradigm. The micro-kernel design only

requires controllets to implement a small set of functions to connect to the message

bus and participate in publish/subscribe communication. Consequently, controllets are

extremely lightweight and can also be executed directly on white-box switches to enable

fully distributed network control even without external SDN controller—a new level

of flexibility in control plane distribution that so far is not possible with standard SDN

controllers. Our evaluations showed the practicality of our architecture for both, full
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distribution as well as the integration of controllets for fast local processing of data

plane events, while still benefiting the from global view and centralized coordination.

Through employing lightweight virtualization techniques, we cope with crucial challenges

of practical deployment to ensure a safe operation of the control plane and thus continuous

network operation.
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5

P4CEP—A DATA PLANE

IMPLEMENTATION OF COMPLEX EVENT

PROCESSING

As described in Section 2.6, data plane programming can be seen as an evolutionary step in

SDN, introducing full protocol-independence and tremendously extending flexibility and

capability with respect to packet processing, opposed to SDN’s established de-facto stand-

ard data plane model of OpenFlow with its fixed parser and pipeline. This evolution has

given rise to a recent trend in SDN, called in-network computing [SAA+17], which exploits

data plane programming for offloading of application functionality from end-systems

to programmable network elements while leveraging the performance of specialized

forwarding hardware, capable of processing packets at line-rate throughput in orders up

to Terabits per second with low latency. In-network computing has so far been proposed

to support in particular distributed applications, ranging from consensus [DSC+15] and

concurrency control [JdSM+18] over caching in distributed key-value stores [LLN+17],
feedback control in a cyber-physical system [RGW+18] to aggregation functions in data-

centric processing including machine learning and graph analytics [SAA+17]. It has been

shown that in-network computing can yield significant performance improvements by

increasing throughput, bandwidth-efficiency, or reducing latency.

In this chapter, we present how we employ in-network computing to offload Complex
Event Processing (CEP), a representative of stateful processing from the domain of message-

oriented middleware. Traditionally, CEP has been implemented as an overlay of software

middleboxes (operators) inferring higher-level knowledge (complex events) by evaluating

specific combinations of incoming information (basic events). Packets convey basic

events, which are typically comprising structured low-dimensional data, such as sensor

data, stock market values for high-frequency trading, or data of network management,

such as intrusion-detection systems or anomaly detection. In-network computing is

best suited for processing of small data encapsulated in packet headers. As described

earlier in Section 2.6.2, the middlebox model, where packets are processed on remote
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Figure 5.1. Comparison of ex-situ and in-situ processing in the case of Complex Event Processing
in a fire-detection scenario. In-situ processing implements the CEP operator within
programmable network elements, eliminating additional RTTs.

hardware appliances (middleboxes) or in virtualized environments on commodity server

hardware (NFV), bears disadvantages: it increases network management complexity by

the introduction of additional system components (remote, off-path entities) that can fail,

and have to be managed (placement, dynamic configuration). By steering traffic through

remote hardware, additional round trips are inherently inflicted, consequently increasing

application latency. Thus, packets are ideally processed in-situ (see Figure 5.1) at high-

performance network elements that they naturally traverse, consequently combining

forwarding and processing, which resembles the rationale of in-network computing.

Furthermore, the uniform interface of data plane programming, provided by the P4

language, greatly facilitates portability.

CEP is a well suited application to show challenges entailed in the distributed processing

of in-network computing. Through the distribution of CEP operators, basic events may

have to be propagated in a one-to-may pattern, raising the issue of update consistency

of multicast trees, which we addressed in Chapter 3. Moreover, CEP heavily relies on

state that is kept among arrivals of basic events (inter-packet state). In stateful processing,

such an inter-packet state is used during processing as well as to store the output of

the processing. Keeping inter-packet state data consistent is of utmost importance to

guarantee the correctness of this class of applications. Stateful in-network computing is

challenging since data plane programming is not yet particularly well-suited to ensure

data consistency.

The contributions of this chapter are as follows: we present P4CEP—our work on an
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in-network implementation of CEP, including a compiler from our P4CEP rule specification

language to P4. Our design contains generic mechanisms for stateful processing, namely

window-based aggregation functions (for reasoning over a window of events) and state

machine logic (for event detection), which are novel and highly relevant in the context of

in-network computation and can be reused for the in-network implementation of other

stateful packet processing applications. We discuss requirements from the perspective of

CEP applications addressing in particular distribution and consistency aspects. We show

implications of stateful processing in in-network computing and provide feedback on

related observed limitations in order to facilitate the further development of in-network

computing for this class of applications. Lastly, we provide an evaluation of the per-

formance properties of our implementation, which we deployed on programmable NIC

hardware targets.

5.1 BACKGROUND

In this section, we give a brief introduction to stateful data plane programming and

describe challenges and limitations imposed by P4 and existing hardware targets, followed

by an introduction to Complex Event Processing.

5.1.1 DATA PLANE PROGRAMMING WITH P4

As introduced in Section 2.6, the paradigm of data plane programming subsumes the

combination of (1) a quasi-standardized, hardware-agnostic domain-specific language (P4)

implementing a uniform interface for defining the forwarding behavior of (2) emerging

reconfigurable data plane hardware. Key elements of reconfigurable hardware are a

parser defining header syntax and semantics and a match-action engine defining the

semantics of processing. Both, parser and engine are software-definable, implementing a

programmable multi-stage pipeline.

For P4CEP, we consider the following targets: hardware targets residing in end-systems,

so-called smart-NICs, such as (1) the Netronome Agilio NIC (NFP framework)[Ope18,

Inc18b], (2) the NetFPGA platform [WSD+17, P4 18b], as well as (3) reconfigurable

ASIC-based (RMT [BGK+13]) or FPGA-based (Corsa [Cor18]) data center switches. Fur-

thermore, we consider (4) software-switch implementations, such as the P4 reference

switch implementation bmv2 [P4 18a] and PISCES [SCP+16], and (5) extended Berkeley

Packet Filter (eBPF) [Gun18], which provide fast in-kernel processing within end-systems.
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In general, these hardware targets face inherent limitations [SAA+17, JYVM15]. (1) The

size of both SRAM and TCAM memory is limited, which imposes bounds on the number

of tables, their entries, and other held state. (2) Hardware switches are designed to

unconditionally guarantee line-rate throughput. This places an upper bound on processing

latency in the order of tens of nanoseconds, consequently bounding the number and

complexity of packet operations in each pipeline stage. Hence, P4 models the control

flow as an imperative program that specifies the execution sequence through the pipeline

as a DAG, which rules out loops and thus renders P4 Turing-incomplete. (3) Stateful

packet processing on programmable switches has been shown to be challenging [SCB+16].
Unsynchronized, concurrent access to state memory can lead to inconsistency effects,

such as lost updates, which pose a severe threat for the correctness of stateful packet

processing algorithms. The support of atomic memory operations is target-dependent and

not mandated by P4. However, Netronome’s NFP SDK provides a number of mechanisms

for data consistency. Also for data center switches, hardware designs guaranteeing strong

consistency semantics have been proposed [SCB+16]. We elaborate on consistency aspects

while also referring to our concrete implementation later in Section 5.4.5.

While reconfigurable switching ASICs are primarily designed for network functions

like forwarding, FPGAs are much more flexible as they allow for the implementation of

custom logic in hardware. To be able to exploit the extended programmability of such

targets, the P4 version P416 includes the extern primitive, which provides an interface

to functions that are not part of the P4 specification, such as checksum computation and

cryptographic operations. They can also be used for synchronization of memory access.

For instance, the NFP framework allows referencing to external functions (primitive

actions) written in a C-variant Micro-C [Net14] and executed in a Micro-C-sandbox

running on NFP’s micro-engines. Similar to P416’s extern concept, NFP’s primitive

actions can be used to process and manipulate packet headers and metadata fields as

well as access stateful memory (registers). Micro-C natively supports efficient atomic

arithmetic operations and has a built-in mutex and semaphore library. Although external

functions are a very powerful concept, they break target-independence and possibly lead

to unbounded processing latency.

5.1.2 COMPLEX EVENT PROCESSING

Complex Event Processing (CEP) [ABW06, Luc08, CM10, CM12b] is a paradigm to infer

the occurrence of situations of interest from basic events. For instance, in the field of
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algorithmic trading, a situation of interest can be the detection of a leading market signal,

whereas the basic event streams contain stock quotes of a stock exchange [Hir12]. An

example from the field of sensor fusion is detecting fire (the complex event) by reasoning

over measurements of networked smoke and temperature sensors (basic events), as

illustrated in Figure 5.1. In doing so, a CEP system deploys a distributed operator graph
between event sources and sinks, where each operator detects a specific event pattern

in its input streams and emits output events when instances of the corresponding event

pattern have been detected.

The pattern to be detected by a CEP operator is typically defined in an event specific-

ation language [CM10] as a continuous query. Such a query consists of a number of

matching expressions, such as Sequence, AND, OR, NOT, etc., that specify the conditions

under which a sequence of input events matches the query. Furthermore, a query can

contain aggregation operations such as MAX, MIN, AVG, etc., that are known from stream

processing systems [ABW06]. In the fire detection example, these expressions are used

to combine measurements of different sensor types (smoke, temperature) and allow the

reasoning over their aggregated measurement values. Based on existing languages, we

define a meaningful subset for in-network CEP, which we describe in greater detail in

Section 5.4.2.

CEP operators are often stateful, i.e., the processing of one event may influence the

internal state of the operator, which in turn influences the processing of subsequent

events. Usually, the state relevant to a CEP operator is limited by a sliding window

[ABW06, MST+17]. A sliding window restricts the infinite sequence of input events in

an operator to a subsequence that can match the query. The extents of a sliding window

are specified by a window policy, which defines the size of a window and its slide, i.e.,

by how much the window moves from one window instance to the next. In our running

example, sliding windows, as illustrated in Figure 5.2, enable reasoning over time-series

of measurements, e.g., allowing to infer trends. For instance, a fire can be defined to be

inferred, when the averages over the last n measurements of the smoke and temperature

sensors exceed a given threshold.

Thus, both pattern detection and sliding windows require holding state among the

processing of incoming events. For an in-network implementation, this consequently

mandates stateful processing of packets (events), holding and processing per-packet state

as well as inter-packet state. Required consistency semantics on reliability (lost events)

and ordering (out-of-order events) in event processing may differ depending on the CEP

application, as we detail later.
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𝐹𝑛: avg/min/max

size

...

slide

𝐹𝑛: count

...   20°C   18°C   30°C   35°C   42°C   55°C 49°C   63°C 65°C𝑆𝑖_𝑇𝑒𝑚𝑝:

...   false false false false true true true true true𝑆𝑖_𝑆𝑚𝑜𝑘𝑒:

𝑡

Figure 5.2. Illustration of a Sliding-window within Complex Event Processing in a fire-detection
scenario. The window splits the infinite input event stream into finite-sized sub-
sequences.

Typically, CEP operators are executed on end-systems. Typical performance figures

show average processing latencies of about 200µs, excluding the end-system’s network

stack latency, for detecting sequences of two states [CM12a], which is the simplest form

of stateful processing. In terms of throughput, highly parallel implementations of CEP

operators on multi-core CPUs can reach up to 218,000 events/second for more complex

patterns [MST+17]. We provide a comparison with a state-of-the-art software-based CEP

framework Apache Flink later in the evaluation.

5.2 SYSTEM MODEL

The underlying system model for P4CEP, illustrated in Figure 5.3, assumes a set of end-

systems that are interconnected by a set of programmable network processing elements

(P4CEP-targets), forming a data plane topology.

End-systems that host event-based applications (CEP end-systems) are differentiated

into event sources, which observe basic events and disseminate them, e.g., networked-

sensors or server reporting performance metrics or log data, and event sinks, which

receive and react to the delivery (also called notification) of complex events.

P4CEP-targets (listed in Section 5.1.1) implement two types of functions: (1) net-

work functions, which co-exist with CEP (Co-NF), typically simple forwarding of packets,

and (2) CEP functions, i.e., CEP operators implementing in-situ event detection. CEP op-

erators and CEP end-systems comprise the operator graph spanning an overlay network.

The P4CEP runtime component implements a control plane interface to P4CEP-targets.

Besides deploying compiled P4CEP programs, it handles all runtime tasks: updating P4

table entries and state transitions in the CEP engine as well as acquiring statistics and

other monitoring data from the targets.
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Figure 5.3. The P4CEP system model

5.3 DISTRIBUTION AND CONSISTENCY ASPECTS

Distribution is an inherent property of CEP systems due to the inherent distribution of

sources, sinks, and operators across the overlay network. In this section, we discuss aspects

of the distribution of CEP along with implications on consistency in light of its requirements,

before proceeding with particular specifics and benefits regarding distribution in P4CEP.

5.3.1 REQUIREMENTS FROM THE APPLICATION’S PERSPECTIVE

From the perspective of CEP as an application, it is important that the detected complex

events are a true representation of the monitored environment. Thus, they have to

capture and process underlying basic events in a consistent way, ensuring that neither

false-negatives, i.e., some events of interest were not regarded (missed events), nor false-

positives, i.e., events that did not actually happen in the monitored environment (“wrong”
events), do occur [May18]. On the strictest notion, this requirement would translate to

strong requirements on consistency, i.e., exactly-once and in-order processing of basic

events [CEF+17, KF19] ensuring the correctness of processing and delivery of events.

A CEP application may not only consider an event missed when a constituting basic

event is is not regarded at all, for instance due to a packet drop in the overlay network.

It may also consider an event missed if it is delivered too late. Hence, the timeliness
requirement stipulates the importance of latency in event detection, requesting upper
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bounds for the time span from the detection of a complex event at on operator to the

delivery of its notification to the event sinks. The severity of delayed event delivery, and

possibly an effective reordering of events (cf. in-order processing above), ranges from

obsoleteness of events, when late events are not relevant any more, up to actual false

positives, when late events cannot be discriminated from and are hence interpreted as

subsequently detected events.

Another requirement of CEP is scalability. The distribution of operators improves

scalability and performance of event detection. Concepts for distribution have been

proposed in great numbers in the CEP literature and can be categorized by (1) placing the

operator ideally in the network (operator placement) [Ac04, PLS+06, RDR10, CGLPN16],
(2) distributing the operator (disaggregation of event detection to multiple operators)

[SMMP09, KKR10], and (3) parallelization of the operator (data parallelization) [HSS+14,

BMK+11, MKR15].

5.3.2 CONTROL PLANE: OPERATOR PLACEMENT AND CONTROL UNDER

GLOBAL VIEW

The global view on the network as part of the SDN paradigm simplifies and improves the

quality of placement of P4CEP operators. Fully decentralized placement algorithms, as

described above, can be replaced by algorithms implemented in a logically centralized

controller (the P4CEP runtime component) leveraging global knowledge or use a full-

range distribution model, i.e., anything in between fully decentralized and centralized, as

described in Chapter 4. The control plane data required for the control and management

of a distributed CEP (control state) is topological information, i.e., the operator graph and

overlay network (information about event sources and sinks, placement of operators) as

well as the mapping of complex event patterns to operators. For instance, in contrast to

decentralized placement algorithms, the controller can directly use its global knowledge to

evenly distribute the CEP load in order to avoid missed events due to network congestion.

5.3.3 DATA PLANE: CONSISTENT ONE-TO-MANY EVENT PROPAGATION AND

CEP OPERATION

In P4CEP, the data plane is used for (1) the propagation of events, i.e., the forwarding

of CEP (and non-CEP) packets, and (2) the implementation of CEP operators within

P4CEP targets, as we describe in Section 5.4.4. Regarding data plane consistency we thus
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differentiate between consistent event propagation (network-centric) and consistent CEP

operation (processing-centric), which we describe individually in the following. Atomicity

of data plane updates triggered by the P4CEP runtime component can be guaranteed by

atomic update blocks as per the P416 specification [P4.18].
When a basic event is required by more than one operator, i.e., the distribution of

operators is not disjoint with respect to the complex event patterns, it has to be replicated

and propagated to multiple operators in the overlay network. In other words, a one-

to-many communication pattern, such as the efficient multicast, is required. Operator

placement typically is dynamic in the sense that it reacts on changes to the overlay network

or the pattern-mapping, ultimately resulting in updates of the multicast distribution tree.

As described in Chapter 3, this kind of update will inevitably cause inconsistency effects

in the data plane in form of duplicates (possibly causing wrong events) or drops (possibly

causing missed events), which our approach for correct multicast tree updates allows to

control.

Consistency regarding the actual processing of events, i.e., pattern detection, is determ-

ined by the processing engine of a target. Due to the targets’ predominant execution model

of pipeline processing on highly parallel execution units, the main challenge lays within

keeping the stateful data consistent. We describe mechanisms for data consistency in our

concrete implementation of P4CEP’s stateful processing in detail later in Section 5.4.5.

5.3.4 STATELESS IN-NETWORK FILTERING OF EVENTS

The early filtering of unnecessary events, i.e., events that are not part of any complex

event pattern mapped to downstream operators or that do not have downstream sinks,

leads to reduced load in the event detection engine and to increased bandwidth-efficiency,

overall benefiting all stipulated CEP requirements.

While not part of this work, we want to highlight the opportunity to leverage the

distribution inherent to CEP by embracing in-network computing also for in-network

filtering. Compared to P4CEP’s stateful processing, filtering does not require holding state,

except the filter rules, which are however not changed during or as a result of processing.

Thus, limitations stemming from stateful processing do not apply, overall simplifying

implementation.

Bhowmik et al. [TKBR14, BTK+17, Bho17] have previously proposed concepts and

provided an implementation for offloading of content-based filtering in publish/subscribe

middleware systems from dedicated middleboxes to OpenFlow SDN switches, enabling
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line-rate filtering. Since OpenFlow switches use a fixed pipeline and do not have a flexible

packet header parser, the content of a message has to be mapped into static header

fields, limiting expressiveness. Thus, we expect an in-network implementation to be more

expressive while having reduced implementation complexity.

5.4 P4CEP: DESIGN & IMPLEMENTATION

In this section, we first describe the processing semantics and expressiveness of P4CEP

as defined by our P4CEP rule specification language, before we describe the concrete

mapping to a P4 pipeline along with a description of the P4CEP workflow and compiler,

present details of the pipeline implementation, and discuss inherent limitations of (i) the

P4 language and (ii) stateful data plane programming in general. We illustrate our design

by an accompanying example running throughout the entire section.

As stated in the system model, we assume only in-situ operators residing on P4CEP

targets, rather than incorporating ex-situ operators residing on dedicated end-systems,

for instance traditional software middleboxes. Although the design space could be in

principle easily extended to such a hybrid scenario where CEP functionality is distributed

to both programmable switches and dedicated end-systems, in this chapter we focus on

the data plane implementation of CEP using P4, while the hybrid scenario would mainly

increase complexity in the control part. Furthermore, for the sake of illustration, the

descriptions in the subsequent sections take the perspective of just a single P4CEP-target,

without loss of generality.

5.4.1 ABSTRACT EVENT PROCESSING MODEL

In a nutshell, P4CEP implements the following event processing model (for details see

Section 5.4.4). Each event is processed in the order of ingress at a P4CEP target. The

processing of an individual event in the incoming event stream consists of (1) window op-
erators employing aggregation functions on windows storing values of historic events and

(2) the detection of patterns (complex events) in the incoming event stream. While window

operators operate directly on stored historic events, pattern detection is implemented by

finite state machines (FSMs), which encode the rules that specify complex events.

P4CEP supports the parallel detection of multiple patterns (encoded in multiple FSMs),

either of different patterns or multiple detection of the same pattern (in the case of

interleaving basic events in the event stream).
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5.4.2 THE P4CEP RULE SPECIFICATION LANGUAGE

As described above, the specification of the CEP-functionality in P4CEP is split into the

definition of window operators and event definition rules, which are encoded into finite

state machines (FSMs) implementing pattern detection. The P4CEP rule specification

language comprises both, the definition of window operators and event definition rules.

Listing 5.1 shows our exemplary rule definition whose complex event definition is

translated into a FSM shown in Figure 5.4. Note that for the sake of illustration, we

simplified the example by considering a network-centric CEP application that considers

arbitrary network traffic as events, evaluating headers of common layer 3 and 4 network

protocols. For a CEP application that considers other types of basic events, such as

readings from temperature sensors, as in the initial generic CEP example (see Figure 5.2),

event type and data can be encoded in custom headers (CEP event header) for instance

using type-value pairs (see Section 5.4.3 “CEP Design Config: Event Header Definitions”).

Since P4 allows for an arbitrary interpretation of packet headers and fields, both options,

existing or custom headers, are functionally equivalent for P4CEP.

As a side effect, the example shows that some co-NFs, such as anomaly/intrusion-

detection, typically relying on sums or counts of specific (sequence of) packets, can be

mapped directly to CEP-functionality. The illustrated example enables the detection of

the following anomaly pattern: a large IPv4 packet and an HTTP-packet, followed in

sequence by an UDP-datagram or the sum of total lengths over all last n = 8 seen IPv4

packets exceeding 6 KB.

We describe the formal elements of the P4CEP rule specification language which are

used to express such patterns in the following.

5.4.2.1 SPECIFICATION OF WINDOWS

The definition of a window consists of a name, a window size, and a field reference

whose value is to be stored within that window. There might be multiple window

specifications. Windows can be referenced by name within a pattern of a complex event

definition or as its return value.

In P4CEP, field references are simple references to P4 headers or packet metadata that

must have been parsed by the P4 program and thus be defined either as a CEP event

header or as a co-NF header.

The example defines a window named sample_wnd that stores the last n= 8 values

of the IPv4 header Total Length field of the last n ingress IP-packets (basic events).
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Listing 5.1. Exemplary P4CEP-rule definition of a window and a sequential pattern, composed of
predicates on simple L3/L4-packets and on a window.

var sum_threshold = 6000;
window sample_wnd {

size 8
value ipv4.totalLen

}
complex_event sample_evt {
value sum(ipv4.totalLen)
strategy skip-till-next-match

instances 1
pattern ([ipv4.totalLen > 500] && [tcp.dstPort == 80]) ;

([sum(sample_wnd) > $sum_threshold] ||
[ipv4.protocol == 17])

}

else

dstPort == 80

totalLen > 500 dstPort == 80

totalLen > 500
protocol == 17

sum > 6000

start

else

else

else

ε

Figure 5.4. Generated finite state machine (FSM) detecting complex event patterns as specified
in Listing 5.1.

Table 5.1. Representation of the FSM (see Figure 5.4) as a P4 match-action table as used in the
P4CEP pipeline (see Section 5.4.4).

Keys Values

State Match (predicate ID) Next State Accept. State

0 totalLen > 500 1 false
0 dstPort == 80 2 false
1 dstPort == 80 3 false
2 totalLen > 500 3 false
3 sum > 6000 4 true
3 protocol == 17 4 true
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5.4.2.2 SPECIFICATION OF COMPLEX EVENTS

The definition of a complex_event is structured as follows. There might be multiple

complex events defined in which case an ingress event is evaluated in the detection of all

defined complex events.

(1) A return value to be set in a complex event packet sent in case of detection. This

can be (1a) any valid P4 expression (static expression, field reference), or (1b) a

reference to an aggregation function over a window (e.g., sum(sample_wnd)),

or over a header field. In the example, the return value of the complex event named

sample_evt is set as an aggregation function (the sum) over all Total Length

fields of all processed IPv4 packet since the start of the pattern detection.

(2) A strategy specifying the state transition of the state machine that is encoding

the pattern if an incoming basic event does not match any predicate:

(2a) skip-till-next-match performs a transition to the same state, i.e., ig-

nores the event (else-branches in Figure 5.4 of the FSM-representation of

the example).

(2b) strict resets the state machine by setting the next state to the initial state.

For the strategy skip-till-next-match, an additional parameter instances

can be set. It enables multiple parallel detections of this complex event when

the constituting basic events are interleaved in the incoming event stream. More

specifically, it defines the number of matchers that are active in parallel. For instance,

for a rule with the pattern [ A ; B ] and instances = 1 an incoming event

stream of <A, A, B> would result in just a single detection.

(3) A pattern of basic events defining a complex event. Basic events are specified by

simple or compound predicates Px . Predicates are demarcated by square brackets

and combined to patterns using the following logical operators.

(3a) Sequence ;: the left predicate must hold true before the right.

(3b) Conjunction &&: both predicates must hold true (in any order).

(3c) Disjunction ||: one of the predicates must hold true.

In P4CEP, a predicate can be any valid P4 condition on one or more field references,

or a condition on an aggregation function over a window or over a header field.

A simple predicate consists of a single term, i.e., a comparison operator with two

operands, (1) a window reference or a P4 expression and (2) a reference value
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to compare the first operand to. A compound predicate consists of multiple terms

combined by the logical operators conjunction (&&) and disjunction (||).

As described above, the example defines a pattern consisting of a sequence of

event A and B. A is satisfied iff both predicates Px1 =ipv4.totalLen > 500

and Px2 =tcp.dstPort == 80 are true for two ingress events in any order,

leading to alternative paths branching from the initial state in the correspond-

ing FSM (see Figure 5.4). B is satisfied iff predicate Px3 =sum(sample_wnd)
> $sum_threshold or predicate Px4 =ipv4.protocol == 17 is true for

any subsequent event. That is an ingress event that satisfies Px4, i.e., any UDP

datagram, or the satisfaction of Px3, which is true iff the sum over the defined

window sample_wnd (see above) is larger than the value of the variable of

$sum_threshold (which is set to 6000 in its declaration (see Section 5.4.2.4)).

5.4.2.3 AGGREGATION FUNCTIONS

The following aggregation functions on windows (window form) or field references

(free form) are currently supported: sum, min, max, and count. If applied on a field

reference, i.e., a header field, the aggregation function is applied on each basic event

while the aggregate value is stored in a register. If applied on a window, as in the example,

the function is used to build the aggregate over the entire window within the window

evaluation.

Count differs from the other functions, as it does not operate on a field reference, but

expects a boolean expression which is evaluated while the count of how many times the

expression has been true is stored in a register. In its free form, its expression is evaluated

upon event ingress and if true the counter is incremented. The actual counter value can

be used within a predicate. For instance, Px = count(ipv4.totalLen) >= 500.

In its window form, it counts how often the expression is true for the values within

the current window. A special variable $value allows referencing the current value

of a window iteration within a predicate. For instance, Px = count(sample_wind,

$value >= 500) >= 10 counts how many elements of the window have a value

≥500 and compare the counter value with the threshold of 10 in the evaluation of the

predicate.

Implementing average is not straightforward due to P4’s missing float support and

lack of a division operator, but can be approximated by fix-point and bit-shift operations

on windows of sizes 2n.
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5.4.2.4 DECLARATION OF VARIABLES

P4 expressions, which among other purposes are used for the definition of predicates, are

hard-coded within P4 program code by the P4CEP compiler. In order to allow the change

of expressions at runtime, variables can be used. They are declared using the keyword

var by name and initial value. They are referenced by prefixing the name with $.

5.4.3 THE P4CEP WORKFLOW AND COMPILER

In the following sections, we describe the mapping of CEP functionality to P4 and discuss

implementation details. P4CEP’s design-workflow is illustrated in Figure 5.5. It is mainly

composed of our P4CEP compiler and an unmodified P4 compiler chain, consisting

of a target-independent and target-dependent compiler, as well as target-dependent

toolchains. Currently, we support target-specific external functions for the Netronome

NFP target. The user-input to the P4CEP compiler (CEP design config) consists of P4-

definitions of header fields and parser instructions for packets that are to be interpreted

and processed as basic events as well as declarations of window operators and event

definition rules, which describe how complex events are derived from basic events, as

defined by the P4CEP rule specification language (see Section 5.4.2).

From these definitions, the P4CEP compiler creates corresponding P4 source code,
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Figure 5.5. P4CEP workflow: design-time components and source files involved in building
P4CEP for different targets
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supporting both P4 specifications, i.e., versions P414 [P4 18c] and P416 [P4 18d, BD17].
It comprises definitions of registers (holding inter-packet state), metadata structures

(holding per-packet state), auxiliary tables for (multiple) windows, implemented as

register ring buffers, and (multiple) state machines, each associated with a complex event

pattern to detect. The P4 code generated by the P4CEP compiler is merged with the

user-provided P4 program source file, which implements co-NF functionality, using P4’s

include-primitive. Additionally, runtime configuration files hold table entries and can

be (re-)deployed at runtime by the P4CEP runtime control plane component. They are

created in a target-compatible format by the P4CEP compiler and given as user-input for

the co-NF part, respectively.

5.4.4 THE P4CEP PROCESSING PIPELINE

Figure 5.6 illustrates P4CEP’s pipeline for processing packets and events within a P4-target.

Upon packet ingress, a classifier discriminates CEP-related events, i.e., basic and complex

events, from non-CEP related, i.e., other network traffic. We encode events in packet

headers, leveraging P4’s flexible and powerful parser, which maps the abstract bit-vector

resembling an ingress packet to a concrete interpretation as given by the header definition,

which we specify as part of the CEP design config. Non-CEP traffic is routed to the Co-NF

P4 control flow (dark-shaded). CEP traffic is handled by the CEP ingress control flow

(light-shaded). Note that although events are conceptually considered to be CEP-traffic,

the target’s responsibility is also the propagation of both simple and complex events to

other operators or end-systems over the network, i.e., propagation in the overlay graph

and hence forwarding in the underlay network. Thus, they may additionally be handled

by the Co-NF control flow. When a complex event is created within a target, we send it to

the classifier for further handling through the P4’s resubmission mechanism.
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basic events,

complex events
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Figure 5.6. P4CEP’s pipeline, depicting processing of packets and events within a P4-target
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The main CEP logic is implemented in the CEP ingress control flow, which processes a

packet that transports a basic event. It can be divided into window operations, which

store the n last values of header fields in a FIFO-manner and offer aggregation functions

over these values, and the event detection engine, which detects complex events based

on a state machine implementation.

In the first step of window operations, the current instance count (ring buffer head

pointer) of the window is read from a register and incremented with overflow handling.

One drawback of P4 (Limitation 1) is that registers cannot be directly referenced in

arithmetic operations or as table keys. Thus, register values have to be copied into

dedicated intermediate metadata fields and back, which bloats code space and execution

overhead. Then, the header field value of the current event and instance count are stored

in registers, i.e., are persisted in the window. For applying the aggregation function on

the window, our compiler has to unroll the window iteration, due to P4’s lack of loops

(Limitation 2). The aggregate value is stored in a metadata field maggr, as is the iteration

counter miter. For each value ri in the window, ri has to be copied from the window register

to a metadata field mi. Then, the aggregation function is applied on maggr, referencing mi.

This procedure is repeated for all windows.

We define a complex event as a pattern of basic events which is formally defined by the

P4CEP rule specification language. The detection of patterns within the pattern detection

engine, can be modelled as a deterministic finite state machine C = (Σ, S, s0,δ, F), as

illustrated in Figure 5.4 on p. 146. It consists of a sequence of basic events (input symbols

x ∈ Σ), where typically a basic event is specified by predicates Px (simple or compound)

on packet header fields (see Section 5.4.2.2). For each pattern, the following actions are

executed sequentially: all packet predicates are evaluated. If Px evaluates to true, an id

associated to that predicate (Px→ x) is stored in a metadata field mx . Then, the state

machine is executed by first acquiring the current state q∈S by copying from a register

to a metadata field mq, followed by performing a lookup with the key-pair <mq, mx>
on the transition table ∆—a P4 table encoding δ (see Table 5.1 on p. 146). Upon a

match, the returned value pair <qn=δ(q, x), bis_accepting> is written to registers if qn is

not an accepting state (¬bis_accepting ≡ qn /∈ F). If it is an accepting state, the state machine

is reset, i.e., qn is set to the initial state s0, and the return value for the complex event

is set, encoded in a header field, before the packet is sent to registered CEP sinks or

other operators using the P4-resubmission mechanism. P4CEP allows the detection

of multiple complex events by sequential execution of the corresponding state machines.
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5.4.5 DATA CONSISTENCY IN P4CEP’S STATEFUL PROCESSING

In the following, we address data consistency in stateful processing in P4 in general, as

well as mechanisms specifically used in our implementation. As described in Section 5.3.3,

the main challenge here is to keep the stateful data consistent while it is being processed

and changed by highly parallelized processing units1.

P4CEP holds inter-packet state in registers. Inter-packet state state in P4CEP comprises

window ringbuffers (event header values, head index, window aggregate value), the

current state qi of each state machine Ci, and possibly additional instance counter vari-

ables for the count aggregation function and for multiple instances of event detectors.

Consequently, inconsistency effects may lead to missed events, for instance when values

are written into the same window ringbuffer slot because the head pointer has not yet

been updated (lost update), or even produce wrong events, for instance when a new state

qnew due to a triggered transition has not yet been persisted in the register, while another

arriving event of the same type is being processed with the FSM still being in the old

state qold (dirty read). In order to prevent data inconsistency and to ensure correctness

(cf. Section 5.3.1), write access to registers or more general, execution of critical code

sections, have to be isolated. It is obvious, that this partial linearization of processing is

mandatory for correctness but leads to degradation of performance (Limitation 3).

For the expression of atomic execution of code blocks, P416 provides the @atomic

annotation, which can be applied to block statements, parser states, control blocks, or

whole parsers [P4 18d, P4.18]. If a target is not capable of executing a block atomically,

its compiler back-end rejects the program, such that atomicity is either clearly ensured or

clearly rejected. P414 lacks native primitives for atomic execution.

Regarding our primary target for P4CEP, the Netronome NFP SDK provides several

mechanisms for data consistency which can augment a P414 program or which are directly

mapped to by the NFP P416 back-end compiler. External C functions may employ a simple

spin lock algorithm which makes use of the atomic memory access feature provided by

the NFP’s C-API. The P4CEP compiler inserts this function call wherever a critical region

is required. As a more transparent mechanism, the NFP SDK provides annotations on

register and action objects within P4 source code. In P4CEP, every register definition is

annotated with the @pragma netro reglocked pre-processor pragma, which will

create a mutex for each register that grants exclusive access within all actions that reference

that register. Hence, this pragma is used to indicate that all accesses to the given register

1see Section 5.5.1 for details on the microarchitecture of our primary target
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should occur under mutual exclusion. Furthermore, to prevent the NFP from caching

register contents, which would also jeopardize data consistency, the P4CEP compiler

prepends the @pragma netro no_lookup_caching pragma to each action that

accesses a register. Despite full protection and thus ensured correctness, we reach practical

performance results on the NFP, as we show later.

5.4.6 LIMITATIONS FOR STATEFUL PROCESSING

Here, we discuss the encountered limitations of P4 and their implications for stateful

packet processing. Additional to the aforementioned Limitation 1 (no direct operations

on registers), Limitation 2 (lack of a loop construct), and Limitation 3 (synchronizing

access to inter-packet state, atomic code blocks), another limitation lays in the fact that

conditions in P4 can be only used within the control flow, not within actions (Limitation

4). Moreover, P414-actions cannot be directly executed within a control flow (Limitation

5). Instead, they have to be indirectly executed by using P4’s apply-primitive to perform

a lookup on an empty dummy-table where the action to be executed is specified as the

default action. This limitation clearly shows that P4 is centered around the match-action

paradigm which in particular traditional targets have been following. For large portions

of P4CEP-generated code, this workaround has to be applied by expressing it’s processing

semantics in match-action semantics, which is feasible but inefficient. We realize that

some of these limitations are inherent design trade-offs in creating P4, which seemed to be

driven by satisfying the intricate requirements of switch hardware architectures [JYVM15]
to maintain line-rate processing, for instance ruling out loops (Limitation 2), rather than

having stateful packet processing in mind. However, we observe that the evolution of P4

with P416 reflects the evolution of P4 targets in terms of extended capabilities and different

processing semantics. Consequently, P416 better facilitates stateful packet processing, e.g.,

by the introduction of the atomicity primitive (Limitation 3) and corrects other seemingly

unnecessary limitations like the action indirection (Limitation 5).

5.5 EVALUATION

In this section, we evaluate P4CEP’s practicability on state-of-the-art P4 targets and

compare its performance with a popular software-based CEP system.
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5.5.1 P4CEP HARDWARE AND SOFTWARE TARGETS

As a hardware target platform for P4CEP, we use a Netronome Agilio smart-NIC with

2× 10GbE ports (ISA-4000-10-2-2), based on Netronome’s mid-range NFP-4000 Flow

Processor [Inc18a, Inc18b] as part of their Agilio CX series.

The NFP-4000 clocks at 1.2 GHz and features 60 eight-way multi-threaded Flow Pro-

cessing Cores (FPCs) based on a RISC design, a hierarchical memory subsystem, and

a programmable PCIe interface, interconnected via a 9.6 Tbps switch fabric, achieving

100 Gbps stateful packet processing throughput at 148 million packets per second (Mpps).

Its hierarchical memory subsystem consists of an internal memory unit (IMU) with 4 MB

internal SRAM with a latency of ≤ 25 cycles and external memory units (EMU) providing

additional 6MB SRAM increasing the latency to ≤ 500 cycles though. Furthermore, the

EMUs facilitate the integration of external DDR3 DRAM memory (up to 8 GB) usable as

flow-table memory or as a packet buffer. As we show later, program memory, stored in

SRAM, constitutes a bottleneck for the scalability of parallel event processing and window

operators.

An optimization of the NFP’s memory management as to leverage additional EMU SRAM

memory to shift program memory limitations is thus of particular interest. A further

optimization would be to leverage NFP’s massively-parallel processing architecture by

deliberate placement of independent CEP operators on the NFP’s highly-parallel processing

units. However, in order to stay target-independent, we refrained from implementing such

NFP-specific optimizations, except the Micro-C-sandbox implementation for the window

iteration and the Micro-C spin-lock implementation to isolate access to critical sections.

On our NFPs with NFP SDK version 6.0.4, we run a pure P4 implementation of P4CEP

(NFP) and the optimized version employing NFP’s Micro-C-sandbox for window iteration

(NFP-C).

As a software target platform for P4CEP, we use the popular P4 reference switch

implementation bmv2 [P4 18a], implemented in C++, at version 1.12.0. One should note

that bmv2 is not optimized for performance but to cover the P4 specification in terms

of functionality. Since it is often used to showcase other P4 programs, we consider it

meaningful for comparison though.

5.5.2 A SOFTWARE-FRAMEWORK FOR CEP: APACHE FLINK

Apache Flink [CKE+15] is an open-source software-based stream processing system imple-

mented in Java. It has been heavily optimized for performance and is hence being used
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as a CEP framework for wide-spread real-world applications. Due to its high performance

[KRK+18] in terms of latency and throughput, we use Flink as a reference state-of-the-art

software-based CEP system to compare P4CEP against. In order to provide a fair com-

parison, we tried to keep the semantics of CEP processing between P4CEP and Flink as

similar as possible. Keeping in mind that results are hence not directly comparable, they

nonetheless provide a fair approximation of performance comparison.

As described in greater detail in [CKE+15], Flink differentiates APIs for batch pro-

cessing (DataSet API) and real-time processing (DataStream API), where we use the

latter, reflecting CEP’s execution model. Data processing is modelled as DAGs (Dataflow

Graphs), encoding data flows between sources, operators, sinks, and external data storage

devices. The provided primitives allow to closely mimic P4CEP’s processing semantics.

Flink’s internal buffer management allows for trading-off latency and throughput. Buf-

fers, containing payload data, are forwarded to a subsequent operator in the DataFlow

graph either as soon as they are full or upon a timeout. Hence, the timeout parameter

constitutes a lower latency bound and is consequently considered a crucial parameter for

our evaluation.

5.5.3 METHODOLOGY

For evaluating latency and throughput of P4CEP and Flink, we use a setup as illustrated

in Figure 5.7. We employ a pair of end-systems (Intel Xeon E5-1650v4 @ 3.6GHz,

6 physical cores, 32 GB RAM), running CentOS 7.6 with a 4.9.75-29.el7 kernel and being

interconnected by two 10GbE links.

The CEP operator end-system hosts the CEP operator that is implemented either in

hardware by P4CEP running on the Netronome Agilio NFP (NFP and NFP-C) or in software

by P4CEP running on bmv2 version 1.11.0 or by Apache Flink version 1.4.2 on OpenJDK

1.8.0_161. Depending on the evaluation scenario, the NFP’s physical ports (p0, p1) are

either used directly by the NFP engine (for P4CEP on NFP) or are transparently exposed to

the operating system as ordinary network interfaces (for P4CEP on bmv2 and Flink), using

the NFP’s virtual ports (v0.0, v0.1). The latter scenario is equivalent to using an ordinary

NIC, instead of the NFP—we could not measure any latency nor throughput penalty.

The CEP src/snk end-system is responsible for the production of basic events (CEP

source) and consumption of complex events (CEP sink), separated by dedicated network

namespaces (with a shared clock), each being assigned one 10GbE network interface.

Basic events and event definition rules at the operator are aligned such that each basic

155



5 P4CEP—A Data Plane Implementation of Complex Event Processing

ts,TX

tr,RX

10GbECEP source

CEP src/snk end-system
Network Namespace 1

Network Namespace 2

CEP sink

triggering
basic event

triggered
complex 

event
NFP

P
4C

E
P

bmv2
HW Software

Flink

Data-
Stream

API

10GbE
p1

p0 v0.0

CEP operator end-system

HW TIMESTAMP

HW TIMESTAMP

P
4C

E
P

v0.1

Figure 5.7. Evaluation setup for measuring latency and throughput of the P4CEP hardware
target (NFP) and software target (bmv2), as well as of the Apache Flink software
framework.

event triggers a complex event detection. Thus, packet rate and event rate are equivalent.

For latency evaluations, basic events are sent at an egress rate of 2 kpps for a 30 seconds

period to the operator system, resulting in a sample size N = 60,000 events. An event is

encoded as a UDP datagram with an 8-byte payload to carry a unique sequence number

for packet identity. We approximate the latency for CEP processing (end-to-end event

detection latency) lp by hardware-timestamping the egress of basic events (ts,TX) and the

ingress of consequently detected complex events (t r,RX) as: lp = t r,RX − ts,TX. Propagation

and serialization delay are negligible. For throughput evaluations, we send basic events

as denoted above, at an egress rate equivalent to full line-rate and measure the ingress

rate of complex events (Bi) by counting respective packets. Hardware-timestamping is not

used. We assess the relative throughput Bp = Bi/Blr, where Blr is the line-rate throughput.

5.5.4 BASELINE PERFORMANCE

To give an impression of the P4CEP target’s absolute performance, we provide a minimal

baseline analysis of a simple P4 program, implementing stateless forwarding based on

parsing layer 2–5 headers of smallest-sized packets. We measured a baseline latency

including serialization delay of 6.8µs for NFP and NFP-C and 475µs for bmv2, respectively.

Baseline throughput is full line-rate (≈14.88 million packets per second (Mpps) for 10GbE)

for NFP and NFP-C, where bmv2 shows Bp ≈ 0.08% (≈ 12 kpps).
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For Flink, we mimic the P4 target’s baseline behaviour by defining a minimal dataflow

graph consisting of a DataStreamSource encapsulating each received datagram and a

SinkFunction that directly forwards it. We measured Flink’s baseline latency as 205µs

along with a baseline throughput of Bp ≈ 5% (≈ 744 kpps) with timeout parameter set to

0, effectively removing the latency lower bound at the cost of decreased throughput.

5.5.5 SCALABILITY EVALUATION

In our main evaluation, we extensively assess the scalability of P4CEP in terms of window

size, pattern complexity, predicate complexity, number of variables, number of complex

events, and number of event instances. For the window size scalability, we provide a

comparison with Apache Flink and bmv2.

The results are summarized in Table 5.2 and described in the subsequent sections.

Table 5.2. Summary of P4CEP scalability results on the NFP target

complexity limitation/
test. until

space impact latency impact throughput im-
pact

window size ≤ 1000 ring buffer, linear increase +1µs, lin. sublin. decr.
pattern ≤ 1000 transition table, linear increase * *
predicate ≤ 1000 expression validation, linear in-

crease
8 ns, lin. *

# variables ≤ 240 dummy table, stepwise-linear
increase

+500 ns, const. *

# complex events ≤ 4 tables, expression valid., re-
gisters

+1.3µs, lin. −1.5 Mpps, lin.

# instances ≤ 5 tables, expression valid., re-
gisters

+1.5µs, const. *

* not measurable

5.5.5.1 WINDOW SIZE

To assess P4CEP’s scalability with respect to window size, we use a rule definition as depic-

ted in Listing 5.2. It consist of a window definition of varying size n where 0≤n≤1000

along with a simple pattern that triggers the evaluation of the window and evaluates a

sample predicate, which is always true in this case.

Figure 5.8 shows the mean performance over N = 60,000 samples within the inter-

val 0≤n≤20. We measured a processing latency of 9.8µs ≤ lp≤ 29.5µs and relative

throughput of 56%≥Bp≥ 16% for NFP-C. The pure P4 implementation (NFP) performs
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Listing 5.2. Rule definition for the scalability evaluation, where the window size parameter (grey
box) is varied. The pattern is used to ensure triggering of the window evaluation.

window sample_wnd {

size 2
value ipv4.totalLen

}
complex_event sample_evt {

value event.id
strategy skip-till-next-match
pattern [event_id.id >= 0] || [sum(sample_wnd) > 0]

}

slightly better, showing low overhead for the extern-mechanism. However, for n> 10,

the size of the generated P4 code grows too large, due to manual loop-unrolling, exceeding

the program size limit of our NFP-4000 smart-NIC. With window operations implemented

in the C-sandbox, NFP-C scales linearly with ∆lp ≈ 1µs per iteration, up to lp ≈ 969µs

for n = 1000, whereas Bp drops sublinearly down to 0.4% (≈60 kpps). Considering

the NFP’s baseline latency of 6.8µs, the overall latency penalty that the P4CEP pipeline

imposes is quite moderate with 3µs. While throughput penalty is more drastic, one should

keep in mind that the NFP-4000 is a mid-range smart-NIC for which we employed no

optimizations, whereas the performance of other targets like FPGA-based smart-NICs or

programmable data center switches can be expected to be much higher. The NFP(-C)’s

standard deviation of lp (jitter) is overall low (tens to hundreds of nanoseconds), as is its

deviation of throughput (≈0.02%).

While bmv2 has no code size restrictions, its performance is significantly worse. Starting

with lp ≈ 512µs and Bp ≈ 0.05%, it also shows inferior scalability properties, exceeding

lp ≈ 10 ms for n>15. Jitter is also of much greater extent.

For a comparison with Flink, we implemented a dataflow graph, shown in Listing 5.3,

that tightly mimics the semantics of P4CEP. Similar to the baseline evaluation, we use a

DataStreamSource (ids) for the generation of an event from each received datagram

and a SinkFunction (IdPacketSink) that creates the complex event notification,

encapsulated in an UDP datagram. The countWindowAll method instantiates a count-

based sliding window, of varying size n (with n= 2 in the example) that is evaluated on

each event ingress. The SumWindowFunction aggregates the values in the window

using a SUM operator, as the name suggests. While Flink mainly focusses on time-based

windows, its DataStream API also allows for the implementation of a count-based sliding

window that is semantically equivalent to P4CEP’s sliding-window implementation. Again,
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Figure 5.8. P4CEP’s performance for increasing window sizes n on an NFP smart-NIC where win-
dow operators are implemented natively in P4 (NFP) or within the NFP’s C-sandbox
(NFP-C) and on the P4 reference software switch implementation bmv2. Apache
Flink is added as a reference for state-of-the-art software-based CEP frameworks.
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Listing 5.3. Functional Flink equivalent to the P4CEP rule definition for the scalability evaluation
(see Listing 5.2). The window size parameter (grey box) is varied.

ids.countWindowAll( 2 , 1)
.process(new SumWindowFunction())
.addSink(new IdPacketSink(<...>));

we set the buffer timeout parameter within the StreamExecutionEnvironment to

0, thus optimizing for latency. As shown in Figure 5.8, Flink does not show significant

performance impact when scaling the window size. Both latency and throughput stay con-

stant even within 0≤n≤1000 with lp =270µs and Bp =3.5% (≈520 kpps), respectively.

Due to software processing, the standard deviation of latency (jitter) and throughput

are with ≈62µs and ≈1% significantly higher than for NFP(-C). While both, latency and

throughput of Flink are an order of magnitude worse than for P4CEP on NFP(-C) for small

n, Flink outperforms P4CEP for n¦ 280.

5.5.5.2 PATTERN COMPLEXITY

We denote pattern complexity as the number of distinct predicates n that comprise the

pattern in a sequential combination. As shown in Listing 5.4, we increase the number

of distinct predicates n within a pattern. In order to enforce that each predicate Px is

actually evaluated, they must not be equal but they all have to evaluate to false. Due to

their sequential composition within the pattern, the number of states |S| and consequently

the transition table ∆ increases linearly with n. The transition table ∆ is implemented by

a match-action table within the P4 pipeline. The NFP implements match-action tables

in content-addressable memory (CAM), which have O(1) memory access. Thus, lp is

expected to grow linearly. However, since the memory access time is several orders

of magnitude lower than lp, we could not measure any impact on lp and on Bp within

0≤n≤1000.

Listing 5.4. Rule definition for the scalability evaluation, where the complexity of a pattern

(grey boxes) is varied by increasing the number of sequentially-combined distinct

predicates.

complex_event sample_evt {

value event.id

strategy skip-till-next-match

pattern [ethernet.etherType == 2049] ; [ethernet.etherType == 2050]

}
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5.5.5.3 PREDICATE COMPLEXITY

We denote predicate complexity as the number of simple predicates n within a compound

predicate. As shown in Listing 5.5, we increase the number of distinct simple predicates n
that comprise a compound predicate, where the pattern consists of just that one compound

predicate. The simple predicates can be combined by conjunctions or disjunctions. Since

the validation of expressions, to which simple predicates are mapped, are executed

sequentially for each ingress event, the number of validations increases linearly with n.

Overall, we have measured minimal performance impact. For n = 1000, lp is increased by

≈8µs, whereas Bp stays constant. We can calculate a mean linear increase of 8 ns, which

meets approximately the resolution of our hardware-timestamping mechanism.

Listing 5.5. Rule definition where the complexity of a single predicate (grey boxes) is varied by

increasing the number of its constituting simple predicates.

complex_event sample_evt {

value event.id

strategy skip-till-next-match

pattern [ ethernet.etherType == 2049 || ethernet.etherType == 2050 ]

}

5.5.5.4 NUMBER OF VARIABLES

As shown in Listing 5.6, we increase the number of variables n by adding additional defin-

itions of variables along with a reference within a predicate. Since variable assignment

has to be implemented within a dummy table as a workaround in P414 (table indirection,

Limitation 5), additional latency of ≈500 ns incurs for the traversal of an additional table

in the pipeline. We could not measure any impact on throughput. The number of variables

per table is limited to 15, overall limiting n to 240 for the NFP Agilio CX.

Listing 5.6. Rule definition where the number of variables (grey boxes) is varied by adding

additional definitions of variables along with a reference within a predicate.

var var_0 = 0;

var var_1 = 1;

complex_event sample_evt {

value event.id

strategy skip-till-next-match

pattern [ipv4.protocol == $var_0] ; [ipv4.protocol == $var_1]

}
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5.5.5.5 NUMBER OF COMPLEX EVENT DEFINITIONS

As shown in Listing 5.7, we increase the number of complex events n that are to be

detected by adding additional definitions of complex events (of the same complexity)

in the rule. Performance scales linearly with n with a latency increase of ≈1.3µs and

throughput decrease of ≈ 1.5 Mpps per additional complex event. Due to limitations of

program memory and pipeline capacity of the Agilio CX, n is limited to ≤ 4.

Listing 5.7. Rule definition where the number of complex events to be detected (grey boxes) is

varied by adding additional definitions of complex events.

complex_event sample_evt_0 {

value event.id

strategy skip-till-next-match

pattern [ethernet.etherType == 2049]

}

complex_event sample_evt_1 { ... }

5.5.5.6 NUMBER OF EVENT INSTANCES

In our last evaluation, we increase the number of event instances n (interleaved patterns

to be detected in parallel), as shown in Listing 5.8. In order to ensure that all instances are

in a state different from the starting state s0. We measured a static latency offset of 1.5µs

for the second instance n= 2 and constant lp for n> 2 as well as constant throughput.

Due to limitations of program memory and pipeline capacity of the Agilio CX, n is

limited to ≤ 5.

Listing 5.8. Rule definition where the number of engine instances (grey boxes) is varied.

complex_event sample_evt {

value event.id

strategy skip-till-next-match

instances 2

pattern [ipv4.protocol == 17] ; [ipv4.protocol == 1234]

}

5.5.6 EVALUATION CONCLUSIONS

We conclude from the evaluations that P4CEP achieves good performance, rendering our

approach practical. On the NFP hardware target, it outperforms sate-of-the-art software-
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based CEP systems by an order of magnitude with respect to latency and throughput for

viable window sizes. In absolute terms, P4CEP on the NFP tremendously outperforms

existing CEP systems with 9.8µs end-to-end event detection latency at around 8.3 million

events per second, when not using windows operations. Our scalability evaluations have

shown, that overall, the extent of stateful processing incorporating registers, in particular

window operations, has a negative impact on performance on the NFP. The main reason for

this performance degradation can be attributed to the overhead due to the synchronization

of register access and atomic code blocks (Limitation 3). Furthermore, due to hardware

limitations, scalability with respect to the number of complex events to detect as well as

the number of instances is limited, whereas in particular mechanisms with low register

involvement, such as pattern and predicate complexity, show great scalability.

Given the impediments that come with the early stage of in-network computing and data

plane processing, we identify performance potential in eliminating workarounds due to

the experienced limitations of P414, for instance for the table indirection, greatly limiting

the scalability of variables. Moreover, it should be noted that P4CEP’s lack of optimizations

of the compiler and specific hardware platform, except the window iteration, bears further

potential for performance improvement. For instance, we expect an extension of the

NFP’s program memory by using its external memory unit to significantly increase the

scalability of complex events and instances, as well as throughput improvements with

optimized operator placement. Lastly, we expect great performance improvement on more

optimized implementations and targets like the high-end Agilio NFP series, NetFPGA, or

programmable data center switches.

5.6 RELATED WORK

In this section, we briefly discuss related work other than already mentioned.

SNAP [AKG+16] is a network-centric, high-level language for network programming,

extending stateless packet processing with primitive stateful operations. It offers a stateful

network-wise abstraction for packet processing by enabling access to a persistent global

array in control programs, while making the distribution of that state in the data plane

transparent to the programmer. Packet processing in a SNAP program depends on the

current state of the network, which is held in variables within the global array and which

is possibly changed as a result of processing. SNAP considers events as non-frequent

changes in the network, such as traffic changes and failures, that trigger recompilation of

the network program in the control plane.
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Stateful NetKAT is a language for event-driven network programming [MHFe16], ex-

tending the NetKAT language by mutable state. It is similar to SNAP, however, it rather

focuses on applying consistent network updates where consistency properties hold during

the transition between two network configurations, which is triggered in response to

events.

While both approaches enable network-centric stateful packet processing, P4CEP is

tailored for complex event processing with a generic notion of events that includes but is

not limited to network events. Since P4CEP is based on P4, it is more lightweight while

still leveraging the full expressiveness of P4.

OpenState [BBCC14] is an implementation of a generic state machine in the data plane

of an OpenFlow switch. It maps the state machine execution to a fixed match-action

pipeline consisting of two tables, holding the current state and transitions on a per-flow

basis. Since state is held in flow-table entries, OpenState requires a custom OpenFlow

instruction to be able to update the state after a transition. While the authors provide

a modified implementation of an OpenFlow software switch, there are no hardware

implementations. P4CEP uses P4 to implement its state machine logic without the need

for modifications of software or hardware.

5.7 CONCLUSION

In this chapter, we presented P4CEP, an in-network implementation of Complex Event

Processing. As a representative of the class of stateful processing applications, we showed

the implications of CEP’s distributed processing in our data plane implementation with

regard to data plane consistency, where we discussed the need for a mechanism for

correct multicast tree updates as well as the central role of data consistency with respect

to inter-packet state and related capabilities of today’s data plane programming. We

conclude however, that some encountered limitations of P4 that limit its applicability for

stateful processing have already been addressed in the evolution of the P4 language or

are mitigated by target-specific extensions for data center switches or smart-NICs.

In the evaluation, we showed that P4CEP offers practical performance and good scalab-

ility, despite enforced partial linearization of the processing in order to ensure application

correctness. On a programmable NIC, P4CEP outperforms the state-of-the-art software

CEP system Apache Flink by an order of magnitude in latency (tens of microseconds

range) and throughput (million events per second range) for a viable degree of stateful

operations. We identified constrained scalability of simultaneous pattern detection due to
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target-dependent resource constraints on the one hand but also identified a large potential

for target-specific optimizations on the other hand.
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6 CONCLUSION AND FUTURE WORK

This chapter closes the thesis by summarizing its presented main contributions and

providing an outlook on possible future work and research directions.

6.1 CONCLUSION

Recent years have seen a tremendous proliferation of Software-defined networking that

has elevated SDN from a theoretical concept to large-scale adoption in real-world net-

works such as Data Center Networks and their interconnections through WANs of big

industrial players like Google, Facebook, and Microsoft. SDN is a key enabler for high

dynamics in terms of changes of the network configuration, for instance in the cloud

computing context, and in terms of a high rate of innovation allowing experimentation

and deployment of new network protocols and substantially expanding the networking

paradigm by moving applications into the network at unprecedented pace and with small

effort. Centered around the separation of the inherently distributed data plane from the

logically centralized and hence possibly physically distributed control plane, aspects of

consistency and distribution are naturally of utmost importance for SDN, especially when

facing requirements on scalability, availability, and resiliency raised through practical

adoption at scale. This thesis addresses various aspects of distribution and the problem

space of consistency in Software-defined Networking. In particular, it focusses on the three

areas of update consistency, flexibility in control plane distribution, and the in-network

implementation of a distributed application, making the following contributions.

1. As a consequence of high network dynamics, the networks have to be frequently

reconfigured. Reconfiguration of a network on the one hand profits from logically

centralized control and global network view, on the other hand, it has shown to be

an intricate and crucial process which may severely degrade the performance of

a network and break network invariants, stipulated to ensure certain security or

connectivity functions for instance. We present a management architecture that is
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aware of expectable inconsistency effects due to reconfiguration and hence allows

for an appropriate selection of an update mechanism and its parameters in order to

prevent those effects.

2. A thorough investigation of update consistency in multicast networks leads us to

the introduction of a novel correctness property, duplicate-freeness. When using a

lightweight update mechanism, we show that it is impossible to avoid both dropping

and duplication of packets. However, we present an analytical framework that

allows identifying crucial update steps and enables feeding back those steps to the

management architecture. Our evaluations show the practical relevance of the

addressed problem even for moderate degrees of dynamics in real-world mid- to

large-scale WANs.

3. We introduce a lightweight update mechanism for multicast route updates that

allows for the selection of an update strategy preventing either dropped packets

or duplicated packets. Evaluations show that prevention of drops results in 5%

duplication rate and prevention of duplicates results in 9% drop rate on the aforemen-

tioned topologies. Furthermore, we present a mitigation approach implementing

in-network filtering of duplicates. If both effects are to be prevented accepting higher

cost, we provide an optimization of an existing powerful but resource-intensive

update approach.

4. To provide flexibility with respect to distribution schemes and consistency in syn-

chronization of control plane state in order to increase control responsiveness, we

present ZeroSDN, an event-based architecture for flexible full-range control plane

distribution. Our architecture is centered around a message bus concept decoup-

ling controller functionality from each other and from switches through so-called

control plane events and data plane events, respectively. The flexible dissemination

scheme for those events, based on the content-based publish/subscribe paradigm,

allows for a free combination of replication and partitioning of control functionality

with different consistency semantics. Our implementation covers a large set of

mechanisms for improving consistency and scalability of the control plane, such

as the inherently implemented load-balancing, detection of policy conflicts, and a

feedback mechanism for data plane updates. Evaluations show linear scalability

when distributing compute-heavy control functions.

5. To further decrease control latency, we enable switch-local control decision making.
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By placing control logic onto switches in combination with our message bus, we

expand SDN’s control paradigm and enable the full range from fully decentralized

control, over local control still profiting from global view up to SDN-typical fully

(logically) centralized control. Allowing to limit the scope the local logic operates

on from full global view to solely local view allows to trade-off scope of state, syn-

chronization overhead (and hence control latency), and quality of control decisions.

We provide use cases for all control schemes, for instance presenting autonomous

local procedures that without switch-external control allow for temporary fast yet

possibly sub-optimal control decisions, for instance swiftly recovering local link

failures, as well as “autonomous forwarding” featuring control coordination, re-

conciliation of policy conflicts, and fine-granular local aggregation of the global

view. A performance comparison with established controller frameworks shows raw

throughput without distribution of about 70% of the best-in-class controller. Local

processing yields factors 2 to 6 of reduced latency compared to non-local processing.

In absolute terms, the control latency with local logic on a recent top-of-rack 10GbE

hardware switch has been measured to be as low as ≈ 330µs.

6. In order to ensure a safe and steady control plane operation in the face of arbit-

rary switch-local control logic, we present mechanisms for enforcing isolation and

fine-grained resource control for local control applications, based on lightweight

virtualization techniques. Evaluations show that adequate isolation and resource-

control can be reached at virtually no overhead using container technology.

7. In order to address SDN’s latest evolution, we present P4CEP, an implementation of

a distributed application from the domain of message-oriented middleware. We im-

plement Complex Event Processing (CEP) on top of programmable network devices

using data plane programming, in particular, the P4 language. Enabled by P4’s

flexible and powerful programming model, we present a data plane implementa-

tion of CEP that yields greatly reduced latency and increased throughput due to

hardware-based packet processing. Since we do not want to swap a dedicated CEP

middlebox for a dedicated network device solely implementing CEP, we implement a

mechanism to allow the co-existence of CEP along arbitrary other network functions

on the same device. Our implementation comprises a compiler that compiles pat-

terns for the detection of complex events specified in our rule specification language

to data plane programs, consisting of a state machine and operators that process

so-called windows containing historic events.
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8. We discuss challenges entailed in distributed data plane processing and address

aspects of distribution and consistency in particular for stateful data plane pro-

gramming, where packet processing changes internal state, which in turn changes

the processing of subsequent packets. In summary, we identified the following

limitations of P4 for stateful in-network computing: (1) the overhead of ensuring

data consistency by synchronizing register access and atomic code blocks, (2) the

inability to directly handling inter-packet state in registers, and (3) the indirection of

action invocations. Although we understand some limitations as deliberate decisions

in P4’s design, we see great potential for constructs like bounded loops or more

efficient primitives for synchronization. Evaluations on a programmable NIC show

excellent performance of 9.8µs end-to-end event detection latency at around 8.3

million events per second when not employing window operators, outperforming

the software-based Apache Flink CEP system which yields about lp =270µs and

Bp =3.5% (≈520 kpps) for windows sizes up to 1000. However, the programmable

NIC shows limited scalability properties. Due to a limitation on the size of a P4

program, window sizes > 10 preclude loop-unrolling and hence require P4-extern

mechanisms, for instance, a C-based sandbox in case of the evaluated programmable

NIC. Overall, scalability evaluations show significant performance penalties when

handling state data under tight consistency requirements, as (1) suggests.

6.2 FUTURE WORK

The research conducted in this thesis and its resulting approaches can be potentially exten-

ded by several subsequent research directions and refinements of approaches, respectively.

In the following, we give a short list of the most promising future work and discussions in

the context of consistency and distribution in Software-defined Networking.

• In the context of the update consistency, we argued for the incorporation of update

inconsistency effects in the reconfiguration process triggered by a network manager.

While we have shown specific relevance and approaches for the multicast paradigm,

our generic update awareness architecture can be applied to a plethora of other

applications and network functions, by investigating on application-specific optimiz-

ation of update processes and possibly designing specific hybrid update approaches,

combining stateless and stateful update mechanisms. For instance, more complex

network functions from the virtualization within the domain of mobile networks
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such as cloud RAN (cRAN) [CCY+15] or mobile edge computing (MEC) [MYZ+17]
can be expected to be particularly susceptible to inconsistency effects.

• More specifically for our multicast update approach, while designing our rule update

generator and update executor, we identified several opportunities to leverage par-

allelization of update execution which could be addressed in future work. Moreover,

a combination of update scheduling with timed updates and high-precision time

synchronization looks promising to further mitigate update inconsistency effects

due to propagation delay.

• We also identified further improvements and extended scope of the presented

concept of event-driven distributed network control. Our distributed SDN controller

is based on content-based filtering of events, in particular, the filtering of data plane

events based on header field matching. In larger networks, event notifications

might arrive at a high rate, which makes content-based message filtering by the

message bus challenging. In our prototype, we used a high-performance topic-based

messaging system (ZeroMQ) as a workaround by mapping match fields onto a

topic hierarchy. However, such a topic mapping also comes with inherent problems.

More specifically, the discretization of the event space incurs lack of expressiveness.

Also, attributes have to be specified according to the order given by the topic

hierarchy. Irrelevant hierarchy levels can be wildcarded, however, efficient wildcard

topic matching at high event rates is hard to implement in software. To solve

this problem, an in-network implementation of content-based routing [BTK+17]
could be employed. Furthermore, the evaluation of complex data plane events and

complex data plane events could be offloaded to the network, using data plane

programming techniques as proposed with P4CEP, however being deployed in the

control plane network rather than the data plane network.

• As another extension of ZeroSDN, we can further leverage the publish/subscribe

paradigm to build a holistic distributed system controller not limited to controlling the

network elements but to include virtual network functions, end systems (including

virtual machines), applications (e.g., client and server processes on the application

layer), etc. In other words, we can extend the network control plane to a holistic
system control plane implemented by a set of distributed controllets, which commu-

nicate indirectly through events including not only simple and complex data plane

events but any event relevant for controlling and managing the holistic system.

As a simple example, consider the migration of a virtual machine (VM), which
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might also require the migration of virtual network functions like firewalls, and the

adaptation of routes for chaining services. Using event-based communication, we

can trigger actions to implement an event-triggered workflow defining the sequence

of actions necessary to migrate the VM. For instance, as soon as the VM has been

suspended by a VM controllet, an event could be fired that triggers the migration

of network functions, which then trigger the adaptation of routes in the network

through further events. This way, complex system management workflows can be

implemented in a decentralized fashion.

• Based on our experiences gained from designing our in-network CEP implementation

P4CEP, we argue that in-network computation, in particular for stateful processing,

poses an interesting research question regarding the trade-off between portabil-

ity (target-independence) and leveraging programmability, including application-

specific custom functions (introducing target-dependence). For instance, while

it was our design goal to stay target-independent through the exclusive use of a

uniform data-plane programming language (P4), implementing custom functions

enabled mitigation of current limitations of P4 and enriched functionality at the

cost of becoming target-dependent. To further explore this trade-off, more powerful

operators from CEP and stream processing can be adopted, including application-

specific custom functions (introducing target-dependence). One example is a CEP

operator for face recognition in a stream of image data that might be implemented

on an FPGA. Another subsequent step is the implementation and investigation of

target-specificity of P4CEP on data center switches with reconfigurable ASICs follow-

ing the P4 Portable Switch Architecture (PSA), such as the Barefoot Tofino, as well

as on hardware models specifically designed for a high degree of data consistency,

offering packet transactions [SCB+16].

• Extensions more specific to our approach are time-based windows and other window

semantics, e.g., tumbling windows. Since timestamps for packet ingress and egress

are available as P4 intrinsic metadata, we expect their implementation with relative

ease. Moreover, additional aggregation operators (or their approximation) such as

average could be implemented.

• The combination of high-precision switch clock synchronization [KJC19] and very

small jitter of processing latency due to hardware processing could furthermore

lead to an adoption of in-network CEP in the domain of time-sensitive networks

(TSN) [NDR16], providing real-time CEP with very tight jitter and latency bounds.
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