Institute for Visualization and Interactive Systems
University of Stuttgart

UniversitatsstraBe 38
D-70569 Stuttgart

Bachelorarbeit Nr.

Simulation and Adaptation
of Contextual Bandit Algorithms
for loT Service Discovery

Jenny Schmalfuss

Course of Study: Simulation Technology
Examiner: Prof. Dr. Albrecht Schmidt
Supervisor: Dipl.-Medieninf. Tilman Dingler,

Dr.-Ing. Darren Carlson

Commenced: May 15, 2016

Completed: November 14, 2016

CR-Classification: 1.2.6

Abstract

As the emerging Internet of Things (IoT) makes an increasing ammout of connected
services accessible to a broad range of users, the identification of contextually relevant
services becomes an indispensable task.

In order to evaluate existing methods for contextual IoT service recommendation, we
develop an ambient space simulation to emulate huge numbers of IoT services and user
interactions. Secondly we investigate a new extension of the previously evaluated single
IoT service recommendation - the recommendation of composite services consisting of
multiple services to perform a mutual task. To address this challenge, we construct and
implement a framework called ConComM to identify services that are likely to work
well together for a joint task. Our previously developed ambient space simulation is
then used to evaluate our frameworks performance.

The framework itself utilizes a novel k-cut algorithm based on a modification of the
existing k-cut procedure SPLIT. We call this new procedure SPLIT,.; and show it to
outperform all tested benchmark algorithms for minimum k-cuts on graphs used by
ConComM. Our experiments prove ConComM to significantly push the performance of
an existing single service recommendation approach for composite service recommenda-
tion.

Within this work we do not only provide a simulation that allows to evaluate recom-
mendation systems in environments densly filled with IoT services. We also develop a
framework that enables contextual bandit algorithms to provide improved recommenda-
tions for composite services.

Contents

1 Introduction

2 Background and Related Work

2.1 The vision of a connected world . . .

2.1.1 Context and Context Awareness

2.1.2 IoTand WoT

2.1.3 Ambient Dynamix and Ambient Ocean

2.2 Contextual Recommendation Systems*
2.2.1 From Collaborative Filtering to Multi Armed Bandits
2.2.2 Bandits and Context: A first approach

2.2.3 The Contextual UCB Family .

2.2.4 Bandit Algorithms for the WoT Vision

2.3 Graph Cuts and Classification*
2.3.1 Graphs and Graph Cuts
2.3.2 Stoer Wagner Algorithm . . .
2.3.3 Min-Max Cut Algorithm . . .

2.3.4 Remarks on Online Graph Clustering

2.3.5 Classifier Overview

2.3.6 Remarks on Online Classification

2.4 Quality Measures for Clustering and Classifier

2.4.1 Quality Measures
2.4.2 Cross Validation

3 Towards an Ambient Space Simulation

3.1 Back to the Future: The Lack of Real World Data.

3.1.1 Motivation

3.1.2 Methodology and Requirement Analysis

3.1.3 Refining the Notion of Context

13

14
14
15
17

19
20
22
24
28

30
30
32
33
35
35
38

39
39
42

43

43
43
44
45

3.2 Conceptand Design. i i it e
3.2.1 General Concept: The Simulation Work Flow
3.2.2 C(lass Conception to Build a Floor Plan
3.2.3 User Movement Concept

3.3 Implementation e e e e
3.3.1 Movement Patterns and Doors
3.3.2 To Take or not to Take: The Reward Cook Book

3.4 Evaluation of and with the Simulation
3.4.1 Movement Pattern Analysis
3.4.2 GatheringData
3.4.3 Evaluation of LinUCB for Single Service Recommendation
3.4.4 Evaluation of LinUCB for Composite Service Recommendation . .

The ConComM Context Composition Machinery

4.1 The Service Composition Scenario
4.1.1 Comparing Playlists Generation to Composite Services
4.1.2 Problem Definition: Addressing LinUCB Limitations
4.1.3 Introducing the ConComMIdea

4.2 ConComM Framework
4.2.1 Algorithms for ConComM
4.2.2 Improving SPLIT
4.2.3 Generating a Graph Representation
4.2.4 Unconnected Graphs

4.3 Implementation Challenges
4.3.1 A Space Efficient Representation for Graphs
4.3.2 Implementing SPLIT
4.3.3 Classification Implemented

Evaluation

5.1 Ambient Space Simulation Revisited - GatheringData
5.1.1 Composing Serviceso
5.1.2 The Reward Function
5.1.3 The User Variable,

5.2 How to Evaluate Quality Measures
5.2.1 Cluster Comparison
5.2.2 Cross Validation Parameters

5.3 ConComM Evaluated
5.3.1 Clustering Methods over Probability Grid
5.3.2 Clustering Methods: Cluster Number Stability
5.3.3 C(lassificationResults

5.4 Closing the Circle: LinUCB for Composite Service Recommendation II . .
5.5 ConComM Method Discussion

Conclusion

6.1 Approach Summary.
6.2 Contribution e e
6.3 Potential Future Work

Algorithms and Derivations

A.1 LinUCB Hybrid Model Derived
A.2 Stoer Wagner Cut Methods
A3 InRoom Visibility

Bibliography

Sections marked with * form the propaedeuticum.

List of Figures

2.1 TheUCB and EXP Principles
2.2 Evaluation Smart Twitter Notification
2.3 SkewandBalanced Cut e
2.4 Logistic Regression Probability Distribution
2.5 Support Vector Machine (SVM),

3.1 SimulationSetup
3.2 Simplified Class Diagram for the Ambient Space Simulation
3.3 Door Illustration with doorWidth=stepSize=1
3.4 User MovementPatterns,
3.5 FloorPlan Coverage i v i i
3.6 Influenceof conLinUCB.

117

117
118
118

121

121
123
124

129

List of Figures

3.7 Clickthrough Rate (CTR) for Different LinUCB Models 64
3.8 Local Comparison of Different LinUCB Models 65
3.9 Single and Composite Service Recommendation 67
4.1 ConComM Framework Illustration. 75
4.2 Graph Cut with SPLIT and SPLIT,; 79
5.1 Interaction Graph Illustration for (iCP, iSP) Combinations 92
5.2 Ground Truth and Clustering 96
5.3 Floor Plan for ComComM Evaluation 98
5.4 Recall Evaluated over iCPiSPGrid 100
5.5 Clustering Example for Stoer Wagner 102
5.6 Behaviour of SPLIT and SPLIT,.,; for (iCP,iSP)=(0.2,0.1) 103
5.7 The Effect of Using Refinement for SPLIT,., with Min-Max Cut on
(iCP,iSP)=(0.2,0.5) 104
5.8 Inverse Recall, Informedness and Correlation for SPLIT and SPLIT,.; . . . 105
5.9 Recall over Number of Clusters 107
5.10 Inverse Recall for Cut Strategies (iCP,iSP)=(0.2,0.5) over Number of
CIUSterS o o e e e e e e e e 109
5.11 Correlation for Cut Strategies over Number of Clusters 110
5.12 Classifier Correlation for Different Features 112
5.13 Classifier Probability Distribution over Container for Different Features . 113
5.14 CTR for Composite Service Recommendation with ConComM 115
A.1 Object Visibility within a Non Convex Room 126

1 Introduction

Today prepares us for tomorrow.

(Joe Buddon)

With the Internet of Things (IoT) a huge amount of services enters the web and becomes
accessible to users as they move through their daily environments. Projects like Ambient
Dynamix [Car16] will enable us to connect to any of these services in a foreseeable
future; on demand and without the need to install specialized apps or to configure
connectivity settings in order to connect to them. Being enabled to potentially connect
to hundreds of different services through the smart phone opens incredible new ways of
interacting with our environment, but also introduces a variety of challenges.

One of the most crucial questions to answer is how users can discover [oT resources
that are relevant in their situation without being overburdened by a vast number of
choices. If one could sense all IoT services close by, finding a particular service becomes
harder the higher the density of IoT services in the environment and hence the higher
the number of possible services becomes. In order to make the number of choices
manageable from a users perspective, an intelligent way to decide what services are
relevant is required.

To address this challenge previous studies have shown contextual bandit algorithms
such as LinUCB to be suited for context sensitive IoT service discovery. However the
evaluation of these algorithms is challenging itself, given that most environments in our
daily lives have not yet reached the IoT service density these methods are designed to
address. Real world datasets do therefore insufficiently reflect the projected situation
with 200 billion IoT services by 2020 [IIOT16]. This was our main motivation to develop
a simulation that can emulate environments with an IoT service density high enough to
test recommendation algorithms under anticipated future conditions. Hence the first
part of this thesis is dedicated to our ambient space simulation.

With this tool in hand we aim to extend an existing recommendation approach in the
second part. Instead of recommending single IoT services, we present a method to
recommend multiple services in order to use them for a joint task. Finding multiple
services for a mutual task is more challenging than simply selecting some services that
are suitable for a certain user, as they also need to be interoperable in some sense.
To address this issue we present a framework called ConComM, whose purpose is the

1 Introduction

identification of groups of services that can be used for such a combined task. A major
part of the following work is spent on ConComM'’s design, development and evaluation
as a whole and its parts. Equipped with additional information about interoperable
services provided through ConComM, we test the performance of an existing [oT service
recommendation algorithm for composite service recommendation. The second part’s
evaluation is mostly based on data provided by our previously developed ambient space
simulation.

In the following work we explore new ways to evaluate recommendation algorithms
for IoT service discovery. Also we extend a method for single service recommendation
to make it applicable for composite service recommendation. A brief overview over
the chapter structure is given below. The sections 2.2 and 2.3 in Background and
Related Work form the propaedeuticum, which is also indicated by * after the section
headings.

Chapter Overview

Chapter 2 — Background and Related Work gives necessary background information
on IoT and context awareness and introduces contextual recommendation systems
with a focus on bandit approaches. It also provides the required information on
graph cuts and classification, which is needed for ConComM.

Chapter 3 - Towards an Ambient Space Simulation describes development and fea-
tures of the ambient space simulation. It also gives results of a recommendation
system evaluation based on a simulated environment.

Chapter 4 - The ConComM Context Composition Machinery addresses the chal-
lenging recommendation of composite services. Along with the evaluation chapter
it forms the core of this work. In a first section we formulate the challenges and
introduces the general idea, which is deeply discussed in the subsequent theoretical
development and implementation of ConComM.

Chapter 5 — Evaluation analyses the priorly constructed ConComM framework from
an experimental point of view. Before ConComM is evaluated as a whole and in its
parts, we discuss input data collection with the ambient space simulation and the
evaluation of quality measures.

Chapter 6 — Conclusion unites approach summary and contribution, and considers
potential future work.

10

Thesis Context

The work presented within this thesis was conducted at the National University of
Singapore (NUS), where the main author worked in the Ubiquitous Computing Group
from April to October 2016. During this time, the group was lead by Dr. Darren Carlson
and is part of the Felicitous Computing Institute. Background for this work is a research
project started by Nirandika Wanigasekara, who is PhD student in Dr. Carlson’s group.
She investigated the performance of bandit algorithms for IoT service discovery and
developed a modification of the standard LinUCB approach that is particularly suitable
in this context.

Her preliminary results in this field are explained in 2.2.4. Along with our evaluation
results obtained through the ambient space simulation presented in this thesis, our work
was submitted to and accepted by the IoT Conference 2016 in Stuttgart [WSCR16]. A
second paper, which comprised our work on Composite Service Recommendation and
more precisely the Context Composition Machinery ConComM is currently (November
2016) under submission for PERCOM 2017.

11

2 Background and Related Work

Theory provides the maps that turn an
uncoordinated set of experiments or
computer simulations into a cumulative
exploration.

(David E. Goldberg)

“Our IoT world is growing at a breathtaking pace, from 2 billion objects in 2006 to a
projected 200 billion by 2020. That will be around 26 smart objects for every human being
on Earth!”

This statement can be found on Intel’s Internet of Things web page in 2016 [IIOT16]. It
clearly shows that by now IoT enters not only the big companies but also the private
sector.

The IoT vision is a world where everything is connected. This unlocks a whole new
generation of services affecting buildings, transportation, manufacturing, energy man-
agement, working environments and health care. However, there is still a long way to
go in order to use the full IoT potential, as the current Internet of Things is rather an
Internet of Thing due to platform fragmentation and protocol barriers. New projects
such as Ambient Dynamix [Car16] work on bridging the fragments in order to create a
true Internet of Things. But even without the technical limitations, the identification of
relevant services among 200 billion options is a challenge on its own. Therefore service
recommendation could be the key to utilize the potential of future IoT environments.

Within this work we will use the term IoT service instead of the more commonly used
term IoT device. This is due to the fact that we do not only cover real world devices
with the presented methods, but also conventional web services that can be composed
with the services offered by IoT devices. We explain this matter more deeply in 2.1.2
when we cover the Web of Things (WoT) view on IoT.

This chapter is split into three main parts. The first section provides background
information on context, [oT and Ambient Dynamix and forms the background of our
work. The two next sections form the thesis’ propaedeuticum and present related
work on contextual recommendation systems and methods required for the ConComM

13

2 Background and Related Work

construction, covering graph cuts and classification. Lastly we give a short introduction
to quality measures for graph cuts and classification.

2.1 The vision of a connected world

Back in 1991 Weiser [Wei91] introduced what is today known as the Ubiquitous
Computing Paradigm. It foresees that computers will become a background technology
in our every day lives. What was called the ‘third wave of computing’ back then is
reality today. After the first and second wave, namely many persons sharing a computer
followed by a one person one personal computer use, the third wave with more than
one device per person is reality for developed countries.

Today the Internet of Things (IoT) is the next big paradigm, which “envisions an era
where billions of sensors are connected to the Internet” [PZCG14]. As this results in a
tremendous amount of data, identifying information that is relevant in specific contexts
or situations becomes increasingly important.

2.1.1 Context and Context Awareness

When computers moved away from being mere desktop applications, users started to use
them in different contexts for the first time. It soon became clear that an applications
behaviour could profit from context information. The most common association with the
word “context” is “location”. However in 1999 Schmidt, Beigl, and Gellersen [SBG99]
showed that considering a broader range of context information helps to enhance the
interface between users and mobile devices. Examples for contextual information are
location, acceleration, elevation, temperature, humidity, mood, activity or time. In 2001
Dey, Abowd, and Salber [DASO1] were the first to publish a guide to developing context
aware applications. They did not only provide the first conceptual model for context
aware computing. With the Context Toolkit they also offered a tool to practically develop
context aware applications.

The problem with previous work was the ambiguous definition of context as a term itself.
One of their main contributions is to scientifically analyse the different types of context
and to develop a definition that is widely accepted in this area:

Definition 2.1.1 (Context)

Context is any information that can be used to characterize the situation of an entity. An
entity is a person, place, or object that is considered relevant to the interaction between a
user and an application, including the user and applications themselves [ADB+99].

14

2.1 The vision of a connected world

Having defined the concept of context, one can define what context awareness means.

Definition 2.1.2 (Context Awareness)
A system is context aware if it uses context to provide relevant information and/or services
to the user; where relevancy depends on the users task [ADB+99].

Context awareness is nowadays part of many applications. Google maps can be to
find restaurants nearby when given access to the location of the querying device and
smartphones are able to adapt the screens brightness to the intensity of the surrounding
light.

With the emerging Internet of Things context awareness becomes increasingly important
to many real world applications as they can gain access to sensor data to an extent
that was hard to imagine a decade back. The next subsection will therefore give a
brief introduction to IoT and one view on it that is most relevant for contextual service
discovery.

2.1.2 IoT and WoT

The vision of IoT is an environment that contains billions of sensors, that are all
connected to the world wide web. Processing all the collected sensor data in real time
will most likely either exceed or at least present a major challenge to our nowadays
computing capabilities. Hence it will be crucial to identify the data that needs to be
processed - either real time, or on demand. Perera et al. [PZCG14] claim that context
awareness will play a critical role in order achieve this.

There exist many definitions of what IoT actually is and they mainly differ in the area on
which they focus. To give at least one definition of IoT we use the definition promoted
by Strategy and Unit [SUO5].

Definition 2.1.3 (Internet of Things)
The Internet of Things allows people and things to be connected anytime, anyplace, with
anything and anyone, ideally using any path/network and any service [SUO5]

IoT is the vision of a smart environment that makes our daily lives easier by knowing
what we prefer, want and need and that reacts by itself based on this information
[PZCG14]. It is more than the the vision of a coffee-machine that tells your car to heat
up the wind shield when you make your morning coffee in winter, so the wind shield is
not crusted by ice when you want to leave. The grand vision is also about personalized
healthcare systems that provides long term monitoring and help when you really need it
as well as services that are seamlessly integrated in our lives [DMD+10].

15

2 Background and Related Work

Knowing the grand vision, reality shows that there is still a long way to go. Today’s
IoT can better be summarized as every day objects with an IP address and internet
connection [ZGC11]. As most of them do not use internet protocol standards, the sensor
data remains inaccessible for conventional web services. To address this problem, Zeng,
Guo, and Cheng [ZGC11] postulated a view on IoT which they called Web of Things
(WoT). WoT focuses its attention on the part of IoT that describes the connection to and
interaction with the web. It depicts a world where objects speak the same language
and can communicate or interoperate freely through the web. Hence the web not only
offers conventional web services but the palette is extended to services offered by smart
things.

This brings the new notion of a smart service, which not exclusively describes smart
devices as in IoT, but aggregates web services and services offered by smart devices as
they seamlessly integrate with the web. Controlling smart objects would not only be
possible through specialized apps or web based applications as it tends to be the case
nowadays, but simply through the browser.

As smart devices integrate to the existing web, a whole new range of possibilities to
compose web services unfolds. A first example of what such a composed web service
that includes web and real world services would look like is the Geiger Counter World
Map [GM16]. This project provides a real time radiation map, which combines a maps
map with radiation data measured by sensors all around the world. In real time users
can view the radiation measured by different sensors and request historic activity data
for sensors of interest.

Because WoT would allow to freely compose services just like web applications, the
possibilities to compose devices are endless. By now, to obtain a health screening system
that measures heart beat, EKG and also includes a GPS service, its components have
to be designed and implemented to work together by an expert. WoT would allow to
take some heartbeat sensor, some sensor to monitor the EKG and some GSP service and
compose them just like a web application, which requires no expert knowledge about
the functionality of its components any longer. Additionally it could easily be coupled
with a map to show the GPS services location as this is only a further service added to
the composition.

These compositions are more commonly known as Mashups and are the main feature of
WoT. As services are available on the web, this would also allow to search for services
offered by real world objects just like searching for web sites. In a nutshell, the vision
WoT is that one can discover, compose and execute a collection of web services that are
not exclusively conventional ones [ZGC11] .

In their conceptual paper Zeng, Guo, and Cheng [ZGC11] also discuss the challenges
and unsolved problems that prevent the WoT vision to turn into reality instantly. One of

16

2.1 The vision of a connected world

the two key aspects is the challenging integration of real world services in the web, given
their heterogeneity. WoT as they present it, standardizes the communication channel at
the application layer. However, this is without effect if the lower layers, which are the
real world IoT devices, do not support it. As IoT devices use many different protocols
which fragments the IoT landscape, there exists no homogeneous solution. The second
big challenge concerns search and discovery. Searching for IoT services is even more
complicated than searching for classical web content as a services state can change
rapidly given its rich context. Querying for sensors that currently measure 35°C are
likely to produce a different output for two search requests within 5 minutes. These
quick changes due to the contextual information are not addressed by standard web
search engines. The question how people find the services they are looking for is not
answered by the WoT concept.

The WoT vision to discover, compose and execute services has motivated further research
in that field. The next subsection will present an approach, that addresses the two key
challenges of WoT that are related to service discovery and offers a possible solution to
them.

2.1.3 Ambient Dynamix and Ambient Ocean

IoT objects are often controllable through apps and most manufacturers offer apps that
are specifically designed to control their services. Using these apps one quickly ends up
with a bunch of installed apps that either do not support service interactions that leave
the manufacturers ecosystem or setting up these interactions requires a huge amount
of configuration. Apart from the issue of specific smart devices being controlled trough
specific and potentially not interoperable apps, there is a second problem. As there
are no application layer protocol standards, the heterogeneous practices by different
manufacturers split the IoT landscape in a number of “walled gardens” [WSCR16].
In addition to that, many real world devices do not even use web protocols and can
therefore not be integrated into WoT [CAS13].

To address these limitations, Carlson, Altakrouri, and Schrader [CAS13] proposed a
framework that is called Ambient Dynamix or just Dynamix. In contrast to approaches
that were proposed previously, Ambient Dynamix does not try to connect smart devices
with the web by installing smart gateways to each device, as they would have to be
physically installed and configured for each target network. Dynamix runs on mobile
devices like smartphones, what turns them into smart gateways and enables other smart
services without their own gateway to enter the web. This also allows web applications
to interact with non-web services from the browser.

17

2 Background and Related Work

To enable a connected service to talk to Dynamix, it needs to implement a simple
application programming interface (API). Hence Dynamix does not require a smart
gateway to be installed on each and every service, the implementation of a plug-in
for each service-type is sufficient. If an interaction with a service is required, Ambient
Dynamix automatically discovers and downloads the required plugins to enable the
communication. One of the big advantages of this approach and a strength of Dynamix
is that plugins can be loaded and installed on demand. Hence plug-ins are only loaded
when they are required and can be exchanged if the communication with other services
is desired. A similar behaviour holds for protocols. Dynamix is able to detect a services
protocol and install the required protocol gateway only if needed.

As Ambient Dynamix enables services to communicate to the web through it, is is situated
between the local hardware and the Dynamix app layer. Android and web apps are
supported by the framework. Hence it bridges the gap between the web and services
with no or proprietary web protocol support and enables those services to become a part
of WoT. With Ambient Dynamix, the first hurdle on the way to WoT service discovery is
taken. However, the question how users find services has not been addressed yet.

Carlson and Schrader [CS14] proposed Ambient Ocean (Ocean) which addresses the
challenges of making smart services searchable. The last subsection already suggested
that smart resource discovery differs from conventional web search as it is highly
non-static. Smart services change their context quite often as they sense non-static
environments and can be switched off unexpectedly. The cloud based service Ambient
Ocean therefore collects information about interactions with IoT services that were
performed by Dynamix users [WSCR16].

When an interaction is reported to Ocean, the interaction is provided along with the
context information relevant for this interaction. This context information is called
Context snapshot. Therefore Ocean can be queried with arbitrary contextual data and is
able to return any service that was ever used for some interaction with Ambient Dynamix
before. The mechanism of Ocean “memorizing” each service that was used with Ambient
Dynamix by any user, is called Community Based Query Expansion [CS14].

Even though being enabled to query for services is an improvement, the above described
procedure still has shortcomings. When a user queries for a smart display device of
a certain brand that is currently switched on, Ocean would return a list with any
smart display device of that brand that was ever used by any Ambient Dynamix user.
Probably the query was made in order to find a display that the querying user needed
to show some slides. It is easy to agree on the fact that not every service is equally
relevant for this person, given that a display more than 1000km away from the persons
location will not be of much use to show a few slides to a colleague. The relevancy
of a service depends on the context of the querying party. Selecting those results that
are most suitable for a person is a recommendation task. To allow personalized service

18

2.2 Contextual Recommendation Systems*

discovery Ocean provides integration hooks for Recommendation Engines [CS14] that
offer support for different recommendation systems. In this work we simulate and
improve a recommendation system that can be integrated into Ambient Dynamix.

Summing up the main facts in this subsection, the vision of WoT about discovering,
composing and executing services became significantly substantiated by the possibilities
offered through Ambient Dynamix and Ambient Ocean. Services can be connected to the
WoT even without direct web protocol support and Ocean allows to query for services.
However, these services might not yet be the most relevant, given the context of the query.
This motivates the need for personalized and contextual service recommendations, that
can be embedded in a system such as Ambient Dynamix. The next section will illustrate
this need further and introduce existing work regarding recommendation systems.

2.2 Contextual Recommendation Systems*

When one queries for a certain service, there is usually an intention behind the search.
Given the vast amount of services that suddenly become searchable through Dynamix, it
becomes increasingly important to rank the search outcomes according to their suspected
relevancy for the querier. Assuming the query produces google-like search results, a
request for a service that can display a certain type of file would output a long list of
services. One would potentially find a huge fraction of all smart monitors, displays and
TV’s in the world, as they are all able to display that type of file and could be accessed
through the web. Given that in 2020 a total number of 200 billion smart services is
projected [IIOT16], we can not expect users to be able to go through that list of services
and being able to pick the one service they are looking for.

Therefore we require highly personalized recommendation systems that can select the
services that are most suited for the querier given its current context. When one searches
for a display service for a small presentation, services that are located far away from
a user are less likely to be useful in his' situation. Or considering a researcher who
always works with data in a special format, those recommendations should mainly
contain sensors that provide this data format. This shows that contextual personalized
recommendations can be the key to unlocking the full potential that comes with WoT
rather than just being a vast amount of services that are searchable only for its own
sake.

*This section is part of the propaedeuticum.
tUsers can explicitly be male and female. As the B.Sc. students in the main autors field of studies are
male in 75% of the cases, we will address users as male individuals in this thesis.

19

2 Background and Related Work

2.2.1 From Collaborative Filtering to Multi Armed Bandits

A recommender system always tries to estimate some kind of rating function R : User x
Item — Rating that represents how a user would rate an item [AT11]. One of the oldest
approaches to recommendation is Collaborative Filtering [RRS11]. In its most simple
version, collaborative filtering assumes that rating functions of similar users are also
similar. Therefore it recommends such items to users that were rated high by other users
with a similar profile. Lemire and Maclachlan [LM] present an approach of collaborative
filtering that can be updated on the fly and is efficient at query time.

Collaborative filtering works well for “main stream user” while its performance drops
for users with more unique preferences. Also it suffers from the so called Cold Start
Problem, which means recommendations for users of which no past preferences are
known or on items that have not been used by any user are poor.

A well studied problem that resembles the recommendation challenge is the Multi
Armed Bandit Problem that was among others analysed by Robbins [Rob85] or Auer,
Cesa-Bianchi, and Fischer [ACF02]. The problem describes a bandit and many gambling
machines (arms). In the case of a k-armed bandit there exist exactly & gambling
machines. In each time step ¢, the bandit can play a machine and wins an amount of
money that depends on the machine played. This money is called reward r. After a
certain number of time steps, the rewards the bandit collected are summed up. This
accumulated reward is compared to the reward the bandit could have scored if he had
always played the optimal machine. The difference between this optimal value and the
accumulated reward is called regret [AB10].

Given that the bandit does not know which machine is optimal at any time step, the
multi armed bandit problem asks which strategy the bandit should adopt in order to
minimize regret to maximize his reward. Applied to service recommendation, every
possible service can be seen as an arm and for each query the bandit has to select a
service. If the service is suitable for a user, the user will select the service and connect to
it. This can be considered as a reward of 1. If the user does not like the recommendation,
the service is not selected which equals to a reward of 0. Maximizing rewards in this
setting equals to maximizing the users satisfaction with the recommendations where
each request for a service is a time step.

The key to the multi armed bandit problem is to find a good balance between explo-
ration and exploitation. If the bandit keeps trying different machines, it can not receive
the optimal reward because it often plays suboptimal machines. On the other hand,
if the bandit sticks to one machine, it can not know if there is a machine that would
probably yield higher rewards. To balance exploration (trying new machines) and
exploitation (collecting reward from machines that have proven to give high rewards),

20

2.2 Contextual Recommendation Systems*

oo
ol
[oeereeed
=
®
o
[_

Q
=
Q
N
Q
W
Q
H
Q
=
Q
N
Q
w
Q
H

oo
ol
o

o
[
®
[

a; a, as au a; a, as au
- ~ £

G, ¢ 1 ¢ o 0@
a; a, as au a; a, as au

Figure 2.1: The UCB and EXP Principles

The working principles for UCB (left) and EXP (right) approaches. Given the arms ay, as, as, a4, for
each arm UCB has a current reward estimate (black dot) and an uncertainty estimate (dotted line). The
exponential weights approach assigns a weight to each arm that is represented through the size of the
black circle. From top to bottom, the figure illustrates 3 time steps. The first time step ¢y shows an
arbitrary initial setup. In ¢;, for both approaches arm a3 was pulled as it has the highest UCB and is most
likely to be pulled for EXP. It did not receive a good reward. Therefore the reward estimate for UCB is
lowered and the uncertainty estimate shrinks. For EXP, the weight of a3 is decreased. The third row ¢
illustrates pulling arm a4 as next arm. Assuming a4 returned a positive reward, the reward estimate for
LinUCB is increased and the uncertainty lowered. For EXP, the weight for a4 is increased.

two approaches have proven themselves very useful. The first are are Upper Confidence
Bounds (UCB) and the second are Exponential Weights (EXP) [Rey13].

The idea behind UCB is to calculate two values for every arm. The fist represents
what average reward was scored from the arm so far. The second reflects how sure
one can be that this average score is accurate. Bringing these values together, the
upper confidence bound of each arm is the current reward estimate plus an uncertainty
estimate [MRTM12]. In each time step, the arm with the highest UCB is played. If an
arm was not played very often, the uncertainty about this arm will be very high - even
though the current reward estimate is probably not too high. However, an arm that was
played multiple times will not have a high uncertainty, but the reward estimate will be
very correct. This ensures that rarely played arms with a high uncertainty are played

21

2 Background and Related Work

(exploration) but knowledge about good arms with and high reward estimate is also
used (exploitation).

Exponential weights are used in algorithms such as Exp3 [ACFS02] and adopt a strategy
that relies on assigning weights to each arm. In each time step, an arm is picked
randomly. However the probability to play a certain arm is proportional to the weight
assigned to the arm. Arms with high weights get played more often. If picking the arm
gives a reward, the weight of the arm is increased. Should the arm return no reward its
weight decreases. As this increase or decrease is often realized by doubling or taking
half of the original weight, this approach is called exponential weights [Rey13]. Figure
2.1 illustrates the working principles for both UCB and EXP.

Such strategies also avoid the cold start problem. In the case of UCB algorithms, a
new service has a high uncertainty and would therefore be played at least a few times.
This is sufficient to get an estimate about its reward - hence no information about
how other users rated or clicked the service is required to incorporate a new service
in the recommendation process. However, the approaches presented so far do not
use any contextual knowledge. As the context plays an important role for IoT service
recommendation, the next section discusses how bandits with context are defined and
presents a simple contextual bandit algorithm.

2.2.2 Bandits and Context: A first approach

Generally, a context aware recommender system can be seen as an extension of the
conventional recommender system that tries to estimate a rating function that is not
only depending on User and Item but also on the context. Therefore the rating function
isnow R : User x Item x Context — Rating [AT11].

Until now, a bandit problem was described by arms that return a certain reward. This
reward follows a probability distribution P over the arms. For a contextual bandit, the
reward does not only depend on the arm but also on the context.

Definition 2.2.1 (Contextual Bandit Problem)

In a contextual bandits problem, there is a distribution P over (x,ry,...,ry), where z is
context, a € {1,...,k} is one of the k arms to be pulled, and r, € |0, 1] is the reward for
arm a. The problem is a repeated game: on each round, a sample (x,rq,...,r) is drawn

from P, the context x is announced, and then precisely one arm a chosen by the player, its
reward r, is revealed [LZ08].

As an example, take a recommendation system that is supposed to recommend a display
device. A user will prefer different displays, which are the arms, when being at home

22

2.2 Contextual Recommendation Systems*

and being at work. So the location as part of the context information plays a role, as
the reward for displays is not distributed independently of the users location. Having a
definition for a contextual bandit problem, a contextual bandit algorithm can be defined
as below.

Definition 2.2.2 (Contextual Bandit Algorithm)

A contextual bandits algorithm determines an arm a € {1,. .., k} to pull at each time step
t, based on the previous observation sequence (z1,a1,741);- - -, (Tt—1,at-1,7a1-1), and the
current context x; [LZ08].

Langford and Zhang [LZ08] were the first to propose the contextual bandit problem
along with a contextual bandit algorithm which they call Epoch-Greedy. The goal
for any bandit algorithm is to maximize the accumulated reward R, or to maximize
the expectation value of the rewards over all time steps. In the bandit setting, there
exist several so called Hypotheses h € H that map a context x € X to a specific arm
h:X — {1,...,k}. Ahypothesis h basically tells the bandit which arm to choose when
given a context. The bandits has to compete with the best hypothesis, even though it
does not know which hypothesis is the best.

The epoch greedy procedure [LZ08] is organized in epochs [€ N. Each epoch begins
with one exploration step. In the exploration step, one arm is chosen uniformly at
random and the reward is observed. The tuple of current context, chosen arm and
reward (zy, at,74;) is added to a set of observations JV. Afterwards, the best hypothesis
h, € H for the current epoch is selected by evaluating max,cy X (wara)ew Tal (R(T) = a).
For each hypothesis, this expression sums up the rewards the bandit would have received
if it had played with this hypothesis. /(h(z) = a) is an indicator function that returns 1 if
the hypothesis would have taken arm « when presented context x. If this is not the case,
the indicator is 0. After the exploration step, a predefined number of exploitation steps
follows. Here the bandit selects arms according to the best hypothesis in this epoch 7,
and receives the rewards.

The reason why epoch-greedy draws the arm during the exploration uniformly at random
and also only evaluates the hypothesis on arms drawn during the exploration is the
following: For each time step, only one reward is observed. In order to evaluate the best
hypothesis on an unbiased set of pulled arms, the arms have to be drawn uniformly at
random. Else the sample would be biased by some hypothesis that then receives more
rewards as it was used to predict the arm.

Epoch greedy is a very simple contextual bandit as it has a predefined number of
exploration and exploitation steps per epoch. However, UCB and EXP approaches
were designed to balance these two influences themselves. After having seen how the
concept of context can be integrated into the bandit approach, the next section will

23

2 Background and Related Work

present contextual Upper Confidence Bound algorithms as they balance exploitation and
exploration on their own.

2.2.3 The Contextual UCB Family

A family of algorithms that balances the number of exploration and exploitation steps
more independently are upper confidence bound algorithms. Contextual UCB algorithms
have received a notable attention by the scientific community and are were often trained
for online recommendation tasks. This makes them a very good starting point when it
comes to [oT service recommendation.

The first contextual upper confidence bound algorithm was proposed by Li et al.
[LCLS10]. Their LinUCB is able to quickly adapt to changing pools of content and
contexts, as it was developed for personalized news article recommendation. There-
fore it must quickly recognize breaking news as especially relevant, but also detect
the decreasing relevancy of older articles. A scenario like this is very similar to IoT
service recommendation as the pool of services is constantly changing and the relevancy
of services changes according to their current state. If a service is in use by another
user, the recommendation system should be able to promptly recognize this and stop
recommending the service if it is only usable by a single user.

The main idea behind LinUCB is to assume that the reward for each arm a can be
modelled using linear regression on features of the context x. In other word, it assumes
that for each arm there exists a function that returns the correct reward for this arm
when presented the context features x. Linear regression is used to find this function,
which has the form z76. This is the scalar product of x with the weights #, which gives a
function that is linear in its features. Hence for each arm «, the expected reward can be
modelled by

E[Tt,a|$t,a] = xfﬁé (2.1)

with z, , being the feature vector of context x for time step ¢ and arm a. Here every arm
gets an own function and no features are shared with other arm. Therefore this model is
called LinUCB disjoint. If all arms use the same features, the « in the subscript of x can
be dropped. 6% is the unknown optimal coefficient vector for the arm.

In order to obtain the optimal coefficients for each arm « given some training data that
consists of tuple (z;,, ¢ q);_,, ONe wants to minimize the following loss function:

t t

Lo= (D co—> xl, 0a)* + 1|0a]>. (2.2)

S S

24

2.2 Contextual Recommendation Systems*

This function returns the squared difference of the accumulated actual rewards and the
rewards the arms function would predict. If the difference is O, the arms function does
completely fit with the actual rewards. The term ||6,]|? is used for regularization to avoid
overfitting. To find the optimal vector 6, that minimizes L, the loss is derived by 0,, set
to zero and solved for 6,. Deriving the loss function becomes much easier if the sums
are rewritten in terms of matrices norms. Therefore we define

T
xl,al Ca71
D, = : and ¢, =

T
xt,at Ca,t

D, and c are simply the stacked versions of the feature vectors and their corresponding
rewards. Now equation 2.2 can be expressed as

La = |le = Dafla||* + [16a] (2.3)

with || - || being the euclidean norm. Deriving this term by 6,, setting it to zero and
solving it for ¢, yields the optimal 6,

0, = (D'D,+I,)"'Dl¢, = A-'b, with A,=D'D,+1, and b, = D’c,,

where I, is the d-dimensional identity matrix. Recalling what we wanted the optimal
0, for, now one can compute the expected reward for each arm. As UCB approaches
require and estimate over the reward per arm and an estimate about the uncertainty per
arm, the only thing that is still missing is a model for the uncertainty. For LinUCB, the
uncertainty for an arm « is modelled as o /z{,A; 'z, , with A, being the inverse of the

first factor in the expression for 0,, A, = (DT D, + 1,). Now the upper confidence bound
for each arm can be written as sum of expected reward and uncertainty, which gives a
rule how to choose the optimal arm a, for every time step ¢:

a; = arg max (a:tTaHQ + om/xzaAglxt,a)
ac€A; N , .

ExpectedReward EstimatedUncertainty

The model parameter « is used to control the balance of exploration and exploitation
during the learning phase. A high o encourages exploration while a small « is suppress-
ing it. If « is set to O, basically no exploration happens, which is equal to choosing only
one arm for a context without exploring other options. Now, the whole algorithm for
LinUCB disjoint as presented in [LCLS10] can be formulated. The procedure is shown in
algorithm 2.1.

The procedure is the following. In each time step the context is converted in the right
feature vector for each arm. As a next step, the optimal coefficients §, are computed, if
the arm did not exist before it is initialized. With the optimal coefficient, the UCB p; , is

25

2 Background and Related Work

Algorithmus 2.1 LinUCB Disjoint

procedure LINUCB DiSJOINT(«)
fort=1,2,...,7T do
observe features z, , for all arms a € A;
for alla € A, do
if a is new then
Aa — I
ba — @dxl
end if
0, +— A1,

T) T A—-1
Dta xw@a + oy /1 Ay,

end for
Ay = argmaXgcA, Pta
Ag, Aq, + T 0,77,
ba, < T4 Tt 4,
end for
end procedure

calculated for the arms in line 10. In a next step in line 12, for the current time step ¢
the optimal arm «; is chosen, which is the arm with the highest UCB. Afterwards, for this
(and only for this) arm the matrices and vectors required to compute the optimal éat are
updated so that 0, gets updated during the next timestep. To see why the updates in
line 13 and 14 take this form, z{,, and r, can be plugged in the formulations for 4,, and
b, as D, and c,, as this is are the new data points for time step ¢.

Li et al. [LCLS10] also suggest a second version of LinUCB which they call LinUCB
hybrid. The expected reward for LinUCB Hybrid does not only consider arm specific
features but also features that are shared among arms. This allows to model influences
that affect all arms instead of each arm separately. For example, these shared features
could be used to model the time dependency that affects each each arm (=service or
news article) in the same way. Hence, not every arm has to learn on its own that its
relevancy fades over time. It can profit from the coefficients representing this behaviour
that have already been trained by the other arms. The expected reward for an arm
becomes

Elriola.) = th:aﬁ* + Hfz:aez 2.9

which adds the shared coefficient vector 5* and the shared features z;, to 2.1. The
general strategy of LinUCB is sufficiently illustrated by the rather detailed explanation
and derivation of LinUCB hybrid above. However, [LCLS10] does not give much detail
on how the equations for the hybrid model are obtained and only formulates the basic

26

2.2 Contextual Recommendation Systems*

idea with 2.4 and the full algorithm. As we derived the equations required for the hybrid
approach, which are given but not derived in the paper, they can be found in appendix
A.l.

Having seen an example for contextual bandits in detail, the remainder of this section
will give a more general overview of other contextual UCB algorithms.

An algorithm that adapts the general LinUCB procedure is LinPRUCB [CLCL14]. The
idea is to achieve a quicker convergence of the coefficient vectors toward the real
optimum by estimating the reward for non-played arms. LinUCB only updates the
coefficients for the played arm as it lacks feedback for the non-played ones. LinPRUCB
utilizes a complex reward estimation to compute pseudo-rewards that are fed to the
learner. Hence LinPRUCB is short for LinUCB with pseudo-rewards.

However, LinPRUCB is still quite close to LinUCB with regard to the main idea. Other
alternatives are LogUCB [MRTM12], which uses logistic regression instead of linear
regression to represent the reward distribution of a selected arm, and NeuralBandit1
by Allesiardo, Féraud, and Bouneffouf [AFB14], which utilizes a neural network for this
task.

Having seen that LinUCB is by far not the only contextual bandit, it should be noted that
there are multifarious possibilities to specialize and boost bandit algorithms. An idea
that was formulated by Traca and Rudin [TR15] is based on the observation that many
real life patterns change periodically. Therefore, exploration activities could be focused
on the beginning of those periods. The work of Bouneffouf, Bouzeghoub, and Gancarski
[BBG12] focuses on the aspect of context evolution, as change in a contexts’ meaning is
neglected by most recommendation systems. Especially the highly specialized versions
of UCB algorithms can be very costly in terms of computation and time. Yue, Hong, and
Guestrin [YHG12] propose an acceleration strategy for contextual bandits that uses a
hierarchical coarse to fine approach.

Starting from simple approaches like collaborative filtering, this section covered the
key aspects of recommendation that are relevant for IoT service recommendation. As it
describes the IoT service recommendation scenario very well, it explained the general
multi-armed bandit problem and its extension to the contextual multi armed bandit.
LinUCB was introduced as the first and most famous contextual upper confidence bound
algorithm. Even though there exist many specialized versions, LinUCB still offers a good
trade off between computational complexity and recommendation accuracy. Therefore
LinUCB is taken starting point to explore the integration of contextual bandit algorithms
in the WoT query system Ocean. To conclude the motivation of the work done in
this thesis, the next section will give the preliminary results of integrating a LinUCB
modification into Ambient Ocean.

27

2 Background and Related Work

2.2.4 Bandit Algorithms for the WoT Vision

Wanigasekara et al. [WSCR16] proposed an UCB algorithm that can be used IoT service
recommendation with the Ocean Search Engine. The algorithms is called LinUCB Partial
and has a better performance than the standard LinUCB for IoT service recommendation.
Inspired by LinPRUCB [CLCL14] (see section 2.2.3) it adopts the idea of receiving more
than the reward for only one arm at a time. LinPRUCB used a dedicated pseudo-reward
retrieving strategy to estimate the reward of all unplayed arm based on the played
arms reward. LinUCB partial does not assume full information as a user that rates all
suggested services seems very unlikely. However, it assumes to receive more than one
reward at a time, which means that rewards for a few unplayed arms are received as
well.

Method and Procedure: Having explained the algorithmic idea, LinUCB partial was
preliminarily tested in two experiments. The first usability test is based on the following
scenario: A user wants to be notified whenever he or she receives a new twitter mention.
Because smart phones tend to be in pockets, jackets or bags, the notification is supposed
to happen via a flashing smart light bulb that is closest to the user. To perform this
experiment, a room was equipped with a number of smart lamps and 10 people were
asked move through the room. As they wandered around and interacted with the lamps,
the algorithm learnt the closest light bulbs for the different user positions. It was able to
predict the closest light even for positions, the user had not been in before.

The second experiment was performed based on data gathered during smart kitchen
usability testing. The data consists of values like movement (does the user sit, stand or
walk), high level activity (Relax, Coffee, Clean up), movement of left and right arm, the
object in right and left arm and the mutual movement of both arms. This information
was measured through accelerometers around the users arms. The LinUCB approach
was employed to predict the service within the kitchen that would be most useful to
a person that is performing a complex task. Such a task could be the preparation of a
meal or the cleaning of surfaces. In order to receive personalized recommendations,
user data was passed to the algorithm.

Results: Figure 2.2 shows the performance of different LinUCB versions for the Smart
Twitter notification in comparison to the benchmark bandit approach LinGreedy. All
LinUCB approaches score better results than the benchmark approach. LinUCB partial
clearly outperforms the other LinUCB variants LinUCB disjoint (LinUCB-D) and LinUCB
hybrid (LinUCB-H), especially during the first few number of trials (< 200). Even though
not shown here, the results for the different bandit approaches on the smart kitchen
data were similar.

28

2.2 Contextual Recommendation Systems*

0.5

0.4

0.3

CTR

0.2

e—e LinUCB-D

1% ¢—¢ LinUCB-H
m—@ LinUCB-partial
¢—¢ LinGreedy

0.1

0.0
0 200 400 600 800 1000

Number of trials

Figure 2.2: Evaluation Smart Twitter Notification

The performance of the LinUCB variants LinUCB disjoint, LinUCB hybrid and LinUCB partial in comparison
to the benchmark LinGreedy. The plotted Clickthrough Rate (CTR) is the number of accepted or good
recommendations over all recommendation given. All LinUCB versions outperform LinGreedy which
shows that LinUCB is well suited for personalized recommendation tasks.

Discussion: For IoT service recommendation, the performance during the first few
trials is very important as a user will not continue to use a system that gives poor
recommendations for a long time. LinUCB partial is not only outperforming all other
approaches on the long run, but also has a very good performance after only a few time
steps. This makes the approach a very promising candidate for IoT service recommenda-
tion.

However, the generalizability of this evaluation suffers from a lack of usable datasets to
test the approaches performance on. Especially the smart kitchen usability test seems
quite artificial. When preparing a meal, the choice of using the fridge, a knife or the
oven is not so much determined by personal preference, but by the recipe and the task
itself. Currently it is hard to find datasets that reflect the high IoT service density that
is projected for 2020, as our current density is much lower. Therefore the evaluation
of algorithms that are designed to address even those densities, presents a challenge
that has not been addressed so far. The first part of our work will address this issue
and provide a tool to test recommendation approaches under more general conditions,
which are currently hardly represented by most real world datasets.

Here, LinUCB partial is only tested for experiments where the number of services is
relatively small and contextual information not very rich. But the preliminary results
shown in this section already indicate a good performance of LinUCB partial for IoT
service discovery. This clearly demonstrates that the WoT vision does not have to remain
one, as these results are a great step towards IoT service discovery.

29

2 Background and Related Work

2.3 Graph Cuts and Classification*

In the last two sections we explored the background that makes IoT service discovery
possible and required. Now we present algorithms that are used for graph cuts and
classification. We require both tasks for our ConComM framework that enables a LinUCB
approach to recommend multiple services, which we present in chapter 4.

Topics concerning graphs and graph cuts are covered within the first four subsections.
Out of them, the first subsection gives an overview of the terminology that is commonly
used for graphs and briefly mentions important algorithms. The next two subsections
discuss important algorithms in greater detail, followed by some brief remarks about
online graph clustering. The last two subsections in this section are reserved for classi-
fiers, with an extended overview in 2.3.5. Some final remarks on online classification
are given in the last subsection.

2.3.1 Graphs and Graph Cuts

The notion of a graph has been briefly mentioned in the last section, but before exploring
different graph clustering techniques it seems appropriate to define our notation of a
graph.

Definition 2.3.1 (Graph)
A graph G = (V, £) is an object consisting of a non empty, finite vertex set } and an edge
set £ C V2 [Trul3]

For our framework, it will be required to cut graphs into several subgraphs. Therefore
the definition of a graph cut used by us is given below to illustrate our notation further.

Definition 2.3.2 (Graph Cut)
Acut C = (S8, T) is a partition of the vertex set V into the two subsets S € £ and T € &.
The edges connecting the subsets form the cut-set {(v,w) € £ |v € S,w € T} [R15].

To cut the graph according to the above formulated requirements, we want to find
partitions whose accumulated weight of edges in the cut-set is minimal. The cut that
gives these partitions is called a Min-Cut [SW97].

There exist a number of algorithms that solve the Min-Cut problem such as the Edmonds-
Karp [EK72] or Stoer-Wagner algorithm [SW97]. If only an approximate solution with a

*This section is part of the propaedeuticum.

30

2.3 Graph Cuts and Classification*

s Balanced

Figure 2.3: Skew and Balanced Cut

Two different cuts through the graph. The lightest cut cuts only a single node, resulting in a skew
distribution of nodes. The balanced cut is not necessarily the lightest, but might represent the overall
graph structure better.

better runtime is required, the randomized Kargers algorithm [Kar93] or its successor
the Karger-Stein algorithm [KS96] can be used.

However, most of these algorithms tend to produce very skew cuts [DHZ+01] [CW91].
The difference between skew and balanced cuts is explained in figure 2.3. To obtain
more balanced cuts a few algorithms have been proposed, namely ratio cut [CW91]
[HK92], normalized cut [SMO00] and Min-Max cut [DHZ+01]. Min-Max cut is based on
the min-max clustering principle. The min-max clustering principle tries to maximize
the similarity within each subgraph while it minimizes the similarity between subgraphs.
Min-Max cut not only encourages balanced cuts, but also outperforms ratio cut and
normalized cut [DHZ+01].

All the above mentioned algorithms can be used to split a graph into two subgraphs. If
more subgraphs are required, a minimum k-cut can be used. It is defined in accordance
to the two-partition graph cut, the only difference is in the number of partitions that is
now k. The weight of the cut is the summed weight over the cut-set for every pair of
sets.

As it turns out, finding a minimum k-cut for £ > 3 is NP-hard [DJP+92]. Goldschmidt
and Hochbaum [GH88] proposed an algorithm to find the minimum -cut for a fixed &
in O(n**) with n being the number of vertices in the graph. Their algorithm is based on
the idea that after finding the min-cut that separates k vertices for all combination of &
out of n vertices, the optimal solution was among the cuts.

Considering the runtime of this algorithm, one might not be interested in the optimal
but in a good-enough solution. In their paper Saran and Vazirani [SV95] present two
simpler algorithms that find an approximate solution to the min-k-cut problem with

31

2 Background and Related Work

less computational complexity. The two algorithms are called EFFICIENT and SPLIT.
EFFICIENT picks for all edges e a minimum weight cut that separates ¢’s end points. All
cuts are sorted by increasing weight; afterwards, repeatedly the lightest cut is picked
until their union is a k-cut. SPLIT on the other hand uses a min-cut algorithm on the
whole graph and splits the graph according to the min-cuts outcome. Until the number
of k subgraphs is reached, the minimal cut for each of the graphs is calculated and the
graph with the smallest cut weight is split again.

Most of the above mentioned min-cut algorithms find the minimum cut for a graph rather
than through a specific edge. Also, SPLIT requires only O(kn) min cut computations
while EFFICIENT consumes O(e) with e being the number of edges. For a fully connected
graph this is O(n!).

2.3.2 Stoer Wagner Algorithm

The following paragraphs show the mode of function for the Stoer-Wagner graph cut
algorithm [SW97]. Stoer-Wagner assumes a weighted connected graph G = (V,¢€)
with a edge-weighting function w. Also, the a subset of the graphs vertices S C V
is used for the algorithm. The vertex s € V is an arbitrary vertex that is taken as
start-vertex for the algorithm. The algorithm has two methods: one of them is called
MinimumCutPhase(G,w,s) and the other is the MinimumCut(G,w,s). Both methods are
given in appendix A.2.

MinimumCutPhase takes the start vertex and begins to merge it with the most tightly
connected vertex from the free set of vertices. It repeats this until only one vertex is left.
A vertex v € V is the most tightly connected vertex if

v ¢ S and w(S,v) = max{w(S,u) | u ¢ S}.

Then, it determines the cut weight between the free vertex and the merged vertex and
stores this value. Note, that the merging is not performed on the real graph since it is
only required to find the current cut weight. As a last step, the free vertex and the vertex
that was last added to S are merged with effect on the real graph.

MinimumCut on the other hand calls MinimumCutPhase as long as there is more than one
vertex left. Because MinimumCutPhase merges two vertices in every run, for n vertices
this gives (n — 1) MinimumCutPhase-calls. MinimumCut also keeps track of the lightest cut
that was returned by MinimumCutPhase so far, which is the lightest graph cut after the
graph was fully merged.

32

2.3 Graph Cuts and Classification*

Table 2.1: Matrix Representations for a Graph

Graph Illustration = Degree Matrix Adjacency Matrix Laplacian Matrix

8 000 05 21 8§ =5 =2 -1
06 00 5 0 01 -5 6 0 -1
006 0 2 00 4 -2 0 6 -4
00 0®6 1140 -1 -1 -4 6

2.3.3 Min-Max Cut Algorithm

While Stoer-Wagner aims to find the minimum cut, Min-Max cut not only tries to find
a cut that is small. It also aims to produce clusters that have maximal similarity, but
minimal linkage among each other. Before presenting the ideas by Ding et al. [DHZ+01],
we briefly introduce the required graph theoretical definitions to demonstrate our
notation for them.

A graph G = (V. £) with |V| = n can be represented in terms of different matrices. The
first important matrix is the Degree Matrix D = diag(d,, . . .,d,), where d; is the vertex
degree of the i vertex [Weil6b]. A vertexes degree is defined as the number of edges
that are connected to it [Weil6d].

The next required matrix is called Adjacency Matrix W. Like the degree matrix it is an
n x n matrix with rows and columns labelled according to the graphs vertices [Weil6a].
For a weighted graph, each entry represents the edge weight between two vertices. For
an undirected graph, the adjacency matrix is symmetric. A connected graph without self
loops (edges of the form e = (v, v) with v € V), has zero entries on its diagonal.

The third and last matrix that has to be introduced is the Laplacian Matrix L =D — A
[Weil6c]. It is defined as the difference of degree and adjacency matrix and will play
an important role for the Min-Max cut. Table 2.1 shows a small example graph and the
corresponding degree, adjacency and laplacian matrices.

Before we formulate the objective for Min-Max cut, a last definition has to be given.
Ding et al. [DHZ+01] define the cut weight between two subgraphs A and B with w,,
as the weight of the edge between the vertices u,v € V as follows:

cut(A,B) = W(A,B) = > Wy,

u€A,veEB

W(A) = W(A,A).

33

2 Background and Related Work

These definitions give the weight a graph cut that is in accordance to the definition of a
graph in the first subsection. This definition does not only give rule how to calculate
the weight of a cut. With 1/ (A) exists a measure to quantify a the strength of a clusters
internal connectivity. Now it is possible to give an objective function that represents the
two goals of Min-Max: To maximize similarity within a cluster while minimizing the
similarity between clusters,

cut(A,B) cut(A,B)
W(A) W(B)

Mcut -

Hence, the M,.,; goal is minimized if the internal connections in the clusters are strong,
or the cut separating them is light. In their paper, Ding et al. [DHZ+01] continuously
relax this Min-Max cut function to find a solution that optimizes the function. They
derive that the so called Fielder Vector gives a solution to the optimization problem. The
Fielder vector is the eigenvector that corresponds to the second smallest eigenvalue of
the graphs Laplacian matrix.

One of the Fielder vector’s most important properties is that it provides a so called ‘linear
search order’. Its entries are in the range [—1, 1]. Therefore it splits the vertices that
form the laplacian matrix into two groups, according to the sign of their Fielder-entry.
Computing the eigenvector to the second smalles eigenvalue of the graphs laplacian
gives a first clustering.

The second contribution in the paper of Ding et al. [DHZ+01] is called linkage-based
refinement. It considers the split obtained by the Fielder order as a good first approxi-
mation, but not as perfect split. Therefore it tries to identify vertices that have a higher
linkage to the cluster they are not currently in. If such a vertex is found, it is to test
whether moving it to the other cluster would lower the cut-weight and if so, the vertex
is moved. Therefore at first a measure of the similarity between the two clusters is
required. This measure is called linkage [:

W(A,B)

[(AJB) = ————.

A= A e)

As a last step, the linkage difference Al for a vertex v € V can be defined as
Al(v) = l(v,A) — (v, B).

If Al(v) > 0 the linkage of v with A is higher, else it is stronger linked to B. The
combination of a preliminary clustering that is obtained by the Fielder order with
linkage based refinement leads to the full Min-Max cut procedure.

34

2.3 Graph Cuts and Classification*

2.3.4 Remarks on Online Graph Clustering

Before proceeding with classification algorithms, we want to briefly address online
graph partitioning. As suggested before, we use graph cut algorithms in our framework
that allows the recommendation of more than one service for a combined task. A
recommendation system for (composite) IoT services would have to adapt according
to new requests during run time, without the need to recalculate the whole graph
partition. Especially the need to partition huge and constantly changing social network
graphs, have promoted the field of online load balancing and online partition. There
exists work like [FK15] or [RPG+13] that can potentially be applied to our ConComM
framework. However, our work aims to explore whether a framework like ConComM
would significantly improve composite service recommendations. To parallelise the
framework and prepare it for online use is an interesting topic for future work, which
we discuss in 6.3.

2.3.5 Classifier Overview

After our previous discussion of graph cut algorithms, this section will give an intro-
duction to classification algorithms. The first part covers the different types of binary
classification algorithms while extensions to multi class classification are briefly dis-
cussed in the end. All algorithms we present in this section were explained in a course
held by Toussaint [Toul5] or introduced in the book by Friedman, Hastie, and Tibshirani
[FHTO1]. This subsection mainly focuses on logistic regression and support vector ma-
chines as they are the most common classifiers. Assume labelled data D = {(z;, 1)},
with feature vectors z; € R and class labels y; € R. A data point is characterized by its
feature vector and label.

We consider Logistic regression to be the first nameable classifier in this context. Its
main idea is to find a function to describe each class. If a feature vector belongs to class
represented by a certain function, its value for this vector should be higher than the
value of any other function. Linear regression is used to obtain the class functions.

The following equations cover binary class classification, which means y; € Y = {0, 1}.
In the binary case, two functions f(z,0) and f(z,1) are required to describe the two
classes. Depending on whether the feature vector x is in class O or 1, the first or
respectively second function should return the greater value. Therefore, the class y for a
feature vector z can be identified by evaluating

= argmaxf(:c, 7). (2.5)
Yy

35

2 Background and Related Work

This goal makes the formulation of the problem more simple, as we can fix one of the
functions to be zero. Without loss of generality, we assume f(x,0) = 0. The non-fixed
function is sufficient to provide a classification, as it is supposed to be greater than zero
if its own class is the correct class and smaller if its own class is not correct. The missing
function is obtained by linear regression and can therefore be written in terms of the
the feature vector x and some weights 3 as f(z,y) = 27 3. Logistic regression aims to
minimize an especially designed loss function that is called neg-log-likelihood (NNL)

LNPE(B) = =3 " log p(yilx:) + Al B3 (2.6)

i=1

Here, p(y;|x;) is the probability of observing class y; when presented the features z;. A
good classifier should aim to maximize the probability of predicting the right class for a
context. Hence, maximizing the probabilities minimizes the neg-log-likelihood. For a
fixed set of labels y; €) the probability p(y;|x;) is defined as

ef (@i,yi)

m with f(z;,y) = 2] 5.
j€

p(yilzi) =
Note, that the probability can be calculated for both classes. Hence it not only provides
the class for a given feature vector, but also a probability distribution over all possible
classes. Therefore, having a data point one gets an estimate for all classes about its
likelihood to belong to it. A sample probability distribution using multi class logistic
regression for an example with 6 classes is shown in figure 2.4.

The § vector for a class is obtained by setting the derivative of the neg-log-likelihood to
zero. As there exists no analytical solution, one has to use an iterative method such as
the Newton method to extract the solution. A full derivation of all required formulas for
the multi class case that were used in ConComM can be found in [Li16] and [Toul5].

A second method for classification is to use Support Vector Machines (SVMs). The
following explanation is inspired by Friedman, Hastie, and Tibshirani [FHTO1]. For
support vector machines, a hyperplane is constructed that separates the two classes
while minimizing the wrongly classified points. To seperate the two classes, the so called
margin measures the minimal distance a point that was correctly classified can keep
from the hyperplane. A maximized margin means that the hyperplane, which marks the
decision boundary, is positioned with maximized distance from both clusters. Hence the
clusters are separated in the best possible way. To maximize the margin is therefore the
first goal when constructing the hyperplane. We illustrate the situation in figure 2.5a. A
suboptimal margin is shown in red, the optimal margin is marked in gray.

However, in most cases it is not possible to construct a hyperplane that separates
both classes without data points that lie in the wrong cluster on the other side of the

36

2.3 Graph Cuts and Classification*

Aungeqodd sseld

X

Figure 2.4: Logistic Regression Probability Distribution

Multi Class Logistic Regression trained on sample points that were labelled with their container. The
containers are areas in a 2D space and displayed at the bottom. Each sample point was characterized by
its x and y location. The logistic regression used quadratic features to obtain the class functions. The final

probabilities for each point and each class are shown, using a different colour for each class. Note that

these are not the class functions.

o o
y Oo 15) £, OO
e O o ® @ o0l © o
/ @) o (9} 1) © @)
/1 00 O 09%, 0o O
@) //) ° (@) O 5 .E3
° ®e® ef, O
o 4 o
) o o o [6) .‘ @ ESQ‘— o o O
)
Margin O o Margin © o
(a) Different Margins

(b) Support Vectors
Figure 2.5: Support Vector Machine (SVM)

The figures illustrate the two parameters a SVM tries to optimize. Figure 2.5a demonstrates the positioning
of the hyperplane within the feature space. The hyperplane shown as black solid line maximizes the
margin that is shown as dashed lines. The hyperplane in red is a suboptimal solution. Figure 2.5b shows

the case for non-separable clusters. The points outside the cluster-margin are the support vectors with an
assigned a weight &.

hyperplane. These data points are called ‘Support Vectors’. The situation is pictured
in figure 2.5b. Support vectors are assigned a weight ¢ # 0 that is proportional to the

37

2 Background and Related Work

distance to margin for their cluster. This means, a support vector far within the other
cluster has a higher weight than a support vector that did only exceed the margin slightly.
A data point within the right cluster that not exceeds the margin has £ = 0. SVMs not
only aim to maximize the margin but also to minimize the sum over all weights ¢.

Besides logistic regression and SMVs, two other groups of methods are worth mentioning.
The first one are Decision Trees and Random Forests. Decision trees are a chain of
binary decisions. Depending on whether a criterion is met, a branch leads to a next
criterion-check or a decision. Using the techniques Bagging and Boosting can turn simple
decision trees into very powerful classifiers. The second method is Deep Learning
where a neural network is simulated and trained to output the correct class. Because
deep learning requires huge amounts of training data, this method was not considered
any further as the datasets within this work are too small for this method.

To come from binary class classification to multi class classification, there exist two
schemes that can turn any binary classifier in a multi class classifier [BisO6]. The first
one is based on a one-against-the-rest idea, where for each class a classifier is trained
with labels that are 1=inClass or O=notInClass. In the end, the class is assigned to
the point that scored the highest prediction value. This approach is used for logistic
regression. The second option is a one-against-one approach, where for a classifier is
trained for each pair of classes. In the end, the point is given the class with the highest
number of predictions. What makes logistic regression very useful for such a case, is that
it internally already uses the one-against-the-rest procedure. Therefore the extension to
a multi class case comes quite naturally.

2.3.6 Remarks on Online Classification

As for the cut algorithms, there exist a number of online versions for most classification
algorithms. To name a few examples, Cao et al. [CMBP04] performed online motion
classification with support vector machines, the online version of regularized classifi-
cation algorithms were mathematically investigated by Ying and Zhou [YZ06]. Ridge
regression is not an online algorithm by name, however it can be trained as long as one
wishes. This implies, it also can be trained with the same input but another label in case
the label changes and adding new training data only requires one update to obtain the
modified classifier.

Nevertheless, what was said for online graph cuts equally holds for online cut algorithms:
developing our framework to work as online framework is an interesting option that
definitely is possible due to the number of possible online algorithms. However, this is
not the focus of our work and therefore this topic is not deepened further.

38

2.4 Quality Measures for Clustering and Classifier

2.4 Quality Measures for Clustering and Classifier

2.4.1 Quality Measures

Clustering is a typical task for machine learning algorithms, therefore most quality
measures to evaluate the goodness of a clustering come from that field. This subsection
will start to explain quality measures for two clusters which equals having a prediction
for one class. Their generalization to the multi class case is discussed in the second
part.

Table 2.2: Sample Clustering and Confusion Matrix

Classification Illustrated Confusion Matrix
Predicted Class
(o) o 0 True False
o O
)
00 °) o o tr.u-e fals.e
o ©O @ o~ ° O O £ | positives negatives
o o wn H
° ©o 2 (12) (5)
© ° o ° O
© o O g Y fa.ls'e tru.e
@) o) @) B = | positives negatives
[
@) (@) o (3) (20)

The blue coloured dots represent the class of interest. A sample predicted area for blue points is shown in
grey. All points in the grey area form the predicted class that corresponds to the blue dot class. Points
with thick outlines are misclassified and therefore yield an error. The confusion matrix for this prediction
shows the four prediction cases out of which exactly one describes each point. The total number of points
falling into each class is given in the table. To illustrate the example, cells corresponding to cases where
the class of a point is blue are coloured in blue. If the true class of a point is not blue, the cells are
coloured in yellow. Cells corresponding to the predicted grey class are coloured in a darker tone, while
cells representing a negative prediction and therefore the white area have a lighter tone.

To give an illustrated introduction to the different cases of correct and misclassification,
assume many data points spread in a 2-dimensional space. There are blue points that
form a class, as shown in the illustration in table 2.2. [SL09]. A classifier learnt to
predict this class, its prediction for the class is shown as grey area in the figure. If a point
is within the grey area, the point is predicted to be blue. Now there are four different
cases out of which exactly one has to be true for each point. There are two variables
that can either be true or negative. The first variable is the true class. It is positive if
the point is really blue, which means it is in the class of interest. If the point is not in

39

2 Background and Related Work

the class of interest, the true class variable is false. The second variable is the predicted
class. Predicting ‘true’ is equal to claiming that the prediction for the point to be in the
blue class is positive. Therefore, the grey area covers all points for which the predicted
class is true. The white rest of the background is the opposite case, as points in this class
are predicted not to be in the blue class. Therefore the prediction for these points is
negative.

Having two options per variable, this yields the following for cases:

* True Positive (TP): The point is predicted to be in the blue class and the point is
truly blue - the prediction is therefore positive. Points in this class were correctly
predicted to be in the class of interest. In the illustration, these are all blue points
in the gray area.

* False Positive (FP): The point is predicted to be in the blue class (prediction
positive), but the point is not blue. In the illustration, these points are orange
within the grey area. As the classification for them is wrong, this is also called a
type I error.

* False Negative (FN): A point is predicted not to be in the blue class - the prediction
for it to be blue is negative - but its true colour is blue. Those points are blue on
a white background. Again the classification is incorrect, this particular type of
misclassification is called type II error.

* True Negatives (TN): Those points are predicted not to be blue (negative predic-
tion) and as they are true negatives, their true class is not blue. This is the case for
all yellow points on a white background.

These four cases are arranged in the so called confusion matrix that is also illustrated
in table 2.2. This confusion matrix also contains the total number of points falling into
each class. All points that introduce an error, irrespective of whether its type I or II, have
thicker outlines.

Knowing TP, FP, FN and TN for a clustering, there exist some measures to quantify the
quality of a prediction. The following measures are analysed in great detail in the paper
of Powers [Pow07]. The most common measures are Precision P, Recall R and their
inverse counterparts Inverse Precision P; and Inverse Recall R;. They are defined as
follows:

TP TN
P=— and P=——
TP + FP TN + FN
TP TN
" and Ri=-——"
TP+FN TN + FP

40

2.4 Quality Measures for Clustering and Classifier

The precision is also known as confidence. A high precision indicates that not many
samples were erroneous predicted to be in the class of interest. Aiming to maximize
precision often comes to the price of missing out points that would belong to the cluster.
To illustrate this fact, assume one would want to maximize the precision of the cluster
shown in 2.2. Shrinking the egg shaped grey class until no yellow points are covered
by its area leads to a precision of 1.0 as no false positives are left in the area. However,
many blue points would be missed out by that procedure and this effect is measured by
the recall or sensitivity. The recall quantifies how many blue points were missed out by
the current cluster, as it is the fraction of correctly identified blue points over the total
number of blue points. Assuming that we only have two clusters, inverse precision and
recall measure the same quantities for the second cluster.

However all these values are biased, which is shown by Powers [Pow03]. The author
proposes a new measure that is derived based on the bookmaker strategy that aims for a
fair bet. Given the odds X : Y. X is the amount the betting party wins if the bet was
correct and Y is the amount that is lost otherwise. The bookmaker tries to give the odds
in a way, that the expectation value for the bet is 0. Therefore he has to give X and Y
such that

Y X

=Xy ¥V x+v

Here X has to be low if the probability of Y being correct is high. Applying this thinking
pattern to the quality measures above, Powers derives an unbiased quality measure
which is called Informedness I, ;. The informedness gives the fraction of times when
the classifier makes an informed decision instead of guessing. It is given by

Ly=R+R;—1.

As the informedness is an unbiased measure using only the recall, there also exists
a similar formulation using the precision. This measure is called Markedness M,
[Pow07] and defined as

My =P+ P — 1.

Informedness and markedness can be unified in to a last notable measure that is called
Correlation C,,,.. The correlation quantifies how much of the variance in the predicted
values can be explained by the reality. It is given by

Carr = Inf : Mark-

This concludes the overview of important quality measures.

So far only quality measures for the two class case were given. Sokolova and Lapalme
[SLO9] summarize the two ways of calculating precision and recall for more than two

41

2 Background and Related Work

classes. Both ways are based on the idea of evaluating the confusion matrix for each
cluster. Hence the values for the different clusters have to be averaged in a way. The
two procedures to obtain the measures for the multi class case differ in the averaging
procedure and are called Macro-Averaging M and Micro-Averaging /.

Assume ¢ = 1,..., k classes that for which one want to calculate precision and recall.

In this case, the macro and micro averaged values precision and recall are given to
[SLO9]

Zk TP, Zk’ TP,
c=1 c=1
TP.+FP. and RM — TP.+FN, ’
k k
k k
c=1 TPC c=1 TPC

P, = .
Sk TP, +FP, >* | TP.+FN,

P]V[:

and R, =

For micro averaging the result of each class is weighted with the classes number of
points influencing the measure. For macro averaging, precision or recall are calculated
for every class and averaged with equal weights, regardless of the size and therefore
‘importance’ of the class.

2.4.2 Cross Validation

Cross validation is an important tool for the evaluation of classification algorithms. The
idea is to measure an algorithms performance with a fixed number of training samples if
no new samples can be used to test the algorithms performance on them. To do that,
the training data is split into m equally sized smaller sets. The most common procedure
is the leave one out cross validation. The name already explains the procedure, as the
classifier is trained on m — 1 samples and its quality is evaluated on the predictions for
the left out sample. After doing this for all the small sets, the results are averaged. Some

more details on how we used cross validation for our evaluation are given in chapter
5.2.2.

42

3 Towards an Ambient Space Simulation

Essentially, all models are wrong, but
some are useful.

(George E. P, Box)

In the first chapter we introduced the concepts of IoT and WoT and explained why context
sensitive recommendations play an important role for the WoT vision of discovering,
composing and executing services. We also presented preliminary results of a contextual
bandit algorithm that was used for IoT service recommendation. In the course of
this evaluation, we indicated that a meaningful experimental design often requires
environments that are rich in IoT objects and can therefore be problematic. Our
simulation is able to emulate environments that do not only possess a hight density
of smart services. The environments as well as the objects are rich in contextual
information and form an ambient space for simulated users and recommendation
algorithms. Therefore we refer to our project as ambient space simulation.

3.1 Back to the Future: The Lack of Real World Data

3.1.1 Motivation

The challenge of evaluating bandit algorithms for service recommendation in a smart
space lead to our first contribution, which is covered in this chapter. In order to
provide an environment that can be used to test an algorithm’s performance under ‘real’
conditions, we developed a simulation to imitate users in an ambient smart space.

Having a simulation to test IoT service recommendation has multiple advantages over a
real usability test. At first, the simulation can emulate a huge number of IoT services that
would have to be bought for a usability test. Therefore it is much cheaper than gathering
all these services in one building and to ask user to interact with them. Furthermore, a
simulation can simulate any interaction and any IoT service - even if the service itself is
not yet available on the market. And lastly, simulating a scenario is much quicker than
to perform a real usability test. Additionally it can be repeated as often as required and

43

3 Towards an Ambient Space Simulation

whenever required, which is an advantage especially in early stages when the system
needs a lot of testing.

With this simulation we aim to facilitate the evaluation of existing and new approaches
to the recommendation challenge. Knowing that a simulation can only be realistic to
some extent, it still seems like a good option to review the results obtained by real
world data and extend the evaluation to greater scale scenarios. The next subsection
will briefly explain how we structured our development process and give details on the
requirement analysis, which we conducted as first developmental step.

3.1.2 Methodology and Requirement Analysis

We developed our ambient space simulation according to the waterfall development
approach. In the following, we briefly describe our general course of action with a focus
on the requirement analysis.

Recalling the data issue discussed in the last section, we formulate some basic re-
quirements a simulation would have to fulfil, in order to make it suitable to evaluate
recommendation systems. Since we want to investigate how users move and act in an
environment that is full of connected services, we need an environment that can be filled
with services. Also, one needs agents that are able to move through this environment
and interact with different services. In the following, these agents are referred to as
‘users’.

We are aiming to evaluate a recommendation algorithm that needs feedback after giving
a recommendation. Hence every agent requires a personalized reward function that
determines a feedback for each service. Last but not least there has to be a way to
communicate with the recommendation system to send the current context, receive
recommendations and return feedback.

Knowing the basic requirements, we started to design the simulation. Given the strong
focus on an environment that consists of objects, we choose an object oriented solution.
It was our first goal to create a simulation that is able to emulate one or several
users moving through a virtual environment. The environment itself should consists of
different rooms, that are filled with a diversity of smart services the user could interact
with. The success and the users satisfaction with a certain interaction should hereby be
based on two factors: A user profile to represent personal preferences and in addition to
that technical factors such as having required apps, or being in the correct network to
enable an interaction. Hence these factors should be considered in a reward function.
More details on the design are given in 3.2.

44

3.1 Back to the Future: The Lack of Real World Data

Concerning the following implementation, we developed the simulation in Java using
Java SE 8. All testing was done with Ubuntu 14.04 and selected implementation
aspects are discussed in 3.3. Our IntelliJ project can be found on the ‘supervisor CD’
accompanying this thesis.

Lastly we verified our ambient space simulation. We did this by reproducing results
of a real usability test for a bandit algorithm trained with simulated data. A detailed
description of our experimental setup, results and discussion of this testing is given in
3.4.3.

3.1.3 Refining the Notion of Context

As our ambient space simulation aims to emulate environments that are rich in context,
we require a more differentiated notion of context for the following sections. For a
general notion of context, the definition 2.1.1 given in Context and Context Awareness
is used. To adapt this very general definition to the reality of the simulator presented
in the following subsections, we introduce the following distinction. Attributes of an
object can either be Geometrical or Profile Properties, both classes combined will be
referred to as Contextual Properties.

* Geometrical Properties: Attributes belonging to this category are important for
the physical basis of the simulation. They are used to ensure that objects behave, to
some extent, like objects in a real physical environment. As a rule of thumb, every
attribute that would be required for an attempt to plot the scene is a geometrical

property.

* Profile Properties: These Attributes are necessary to model a scenario that does
also capture ‘soft’ influences such as user preferences or current network for
services. These properties would not be needed if the goal was just to construct a
floor plan, nevertheless these attributes will extensively be used when it comes to
modelling the reward function.

Now that we defined the most important term for this section, the focus of the remaining
section will be on how the simulation works and what design choices were made to
evaluate the results.

45

3 Towards an Ambient Space Simulation

6 [A— o o
) o O e}
5 0\ oo
4 o (O oo (o) (o)
o O [
3 o
o] O o]
2 X@) oo oQo
o
1 0 O o
0 L VY |

-2 -1 0 1 2 3 4 5 6 7 8 9 10 11

Figure 3.1: Simulation Setup

A sample initial setup for the simulation, the figure gives a birds eye view on the simulated building. We
choose a floor plan with two grey rooms that are connected trough a door (thick black line). The floor
plan contains IoTDevices such as lamps (yellow dots), monitors (blue boxes), unspecified loTDevices
(blue dots) and two users (black dots).

3.2 Concept and Design

3.2.1 General Concept: The Simulation Work Flow

With the results of our requirement analysis, we designed the following very general
simulation work flow: In a first setup step we generate the floor plan of a building. The
floor plan itself consists of one or many rooms that can be filled with arbitrary many
services. To be consistent with the class names given in the simulation, these services
are called IoTDevices and there exist multiple types such as light bulbs and monitors.
Finally, an arbitrary number of users is added to the room and equipped with a personal
profile.

A sample initial setup is shown in Figure 3.1. The service’s and user’s contextual
properties are employed to generate the feedback for a recommendation in the later
steps.

When the setup is completed, we execute the simulation for a previously specified
number of time steps. In each time step, every user makes a step in a random direction.
The specifics of how user movement is implemented are given in subsection 3.2.3 User
Movement Concept. Next, we send a so called context snapshot to the recommendation
algorithm. A context snapshot is user specific and contains contextual information such

46

3.2 Concept and Design

as current location, gender, age, current network and sensed services. The recommenda-
tion system takes this context snapshot and computes the most suitable service, which it
returns as a recommendation to the user. The user receives this recommendation and
evaluates its personalized reward function for it.

In a nutshell the reward function compares the properties of the recommended service
to the user profile and tries to evaluate how well they match. We give more details
on the used properties and how we model their dependencies are given in 3.3.2 To
Take or not to Take: The Reward Cook Book. Evaluating the reward function results
in a decision, where the user accepts or rejects the recommendation. This decision is
then communicated back to the recommendation system. Whether the recommendation
system uses this feedback to improve its predictions is irrelevant for our simulation.
Once all users received recommendations and made a decision about them, the next
time step begins until the required number of steps is simulated and the simulation
terminates.

It is one of our main goals to keep our ambient space simulation extensible and as general
as possible, rather than tied to a specific use case. Hence we designed it to be very
flexible with respect to adding new IoTDevice types, or changing the flow of a simulation
step. It is supposed to be a tool to set up complex service filled environments that
can track users interactions with these services, irrespective of whether the interaction
was induced by an algorithms recommendation or by any other influence. We strongly
employ this flexibility in the experimental design in Chapter 5. In the next subsections,
we give more details on the class conception to build the floor plan, user movement and
the reward function.

3.2.2 Class Conception to Build a Floor Plan

In our simulation, a floor plan is a map of the world that supplies the world with a
concept of location and space. Hence we consider it as the core of our simulation.
It shows the position of different rooms and everything located within these rooms.
The way we structured the floor plan strictly follows the object-oriented programming
paradigm, which makes the structure very clear. A simplified class diagram that shows
our most important classes with selected class variables and functions, is given in figure
3.2.

Our most important class in the whole ambient simulation is the World class. The world
contains everything that will later interact on and move over the floor plan. It also
keeps track of all objects currently being part of the ongoing simulation, which is an
indispensable task for plotting.

47

3 Towards an Ambient Space Simulation

+ getCarpetBox() : Box 0.1 + getYCentre() : float

Box Room
| Monitor
xMin : float world : World -
xMax : float boxSet : HashSet<Box> width : float
yMin : float doorSet : HashSet<Door> depth Ilﬂgat tI]
yMax : float i normal - floa
room : Room + contains() : boolean -
isDoorBox : boolean + getWorld() : World + retur_nRew.ard() : float
isCarpetBox : boolean + addBox() : void : ge'{\éVldttt;](()) ..fflloatt
L 2 + removeBox() : void getoeptny) - floa
+ contains() : void < — +addDoor() : void + getNormal() : float(]
+ set Room() : void] + removeDoor() : void
+ getRoom() : Room I -
+ setDoor() : void m A A A ¢ loTDevi
+isDoor() : boolean | 0.1 1 I 0.1] 0.4 1 | ofbevice
+ setCarpet() : void 0.*] -
+ isCarpet() : boolean <—I— J : I : | ;g::g: ;232:
| | iotD : string
I I | version : float
Door l | | I I k-D network : Network
—— I I | brand : brand
doorBox : Box 0.* I J : l room : Room
carpetBox : Box o _ —_—— |
connectedRooms: <]_ I + returnReward() : float
HashSet<Room> 0.* | 1 + setXCentre() : void
e — — — — \ | (—— —>{ +getXCentre() : float
+ getDoorBox() : Box | | + setYCentre() : void
1y
| V

I
I
+ getConnectedRooms() : I _|_ E— setloTID() : void
HashSet<Room> (I + getloTID() : string
I | f'D + setVersion() : void
) I I + getVersion() : float
User I) 1 0.4| + setNetwork() : void
e — — — — — V + getNetwork() : Network
xlocation : float + setBrand() : void
ylocation : float World + getBrand() : Brand
room : Room - + setRoom() : void
currRec : loTDevice roomsInWorld : HashSet<Room> + getRoom() : Room
currDec : boolean doorsinWorld : HashSet<Door>
I iotDevicesInWorld :
+ makeStep() : void HashSet<loTDevice>
- getNextStep() : float[] currentUsers : HashSet<User> Lightbulb
+ setX() : void - o
+ getX() : float + simulate() : void radius : float
+ setY() : void + addRoom() : void maxBrightness : int
+ getY() : float + removeRoom() : void lightColorSet : HashSet<Color>
+ set Room() : void +addDoor() : void i
+ getRoom() : Room + removeDoor() : void + returnReward() : float
+ setCurrRec() : void + addloTDevice() : void + getRadius() : float
+ getCurrRec() : loTDevice + removeloTDevice() : void + getMaxBrightness() : int
+ setCurrDec() : void +addUser() : void + getColors() : HashSet<Color>
+ getCurrDec() : boolean + removeUser() : void + addColor() : void
Ro N

Figure 3.2: Simplified Class Diagram for the Ambient Space Simulation

Normal Classes are coloured in blue while subclasses are marked in green. Class functions that are not
getter or setter for the class variables are highlighted in bold.

48

3.2 Concept and Design

To have a surrogate for a service filled building was the main motivation to build a
simulation. Therefore, the World principally requires Rooms to accommodate IoT services
and users. In our simulation concept, a room is not much more but a collection of Boxes.
Our intention behind defining a room as a collection of primitive shapes is that we want
to be able to extend our shape collection to other primitives such as polygons or circles.
In later stages, these primitive shapes can be used to define the shape of more general
rooms. Boxes themselves are simple geometric objects that are defined by their extent in
x and y direction. A table with selected class variables that cover the properties discussed
in this section is given on page 50. After we created a box, it can be assigned to a room.
Two rooms can not posses the same box and boxes assigned to different rooms are not
allowed to overlap. When we assign a box to a room, the box will automatically adopt
all important room properties such as world the room belongs to.

So far a user would not be able to move freely, at least when we are assuming that
walking through walls is forbidden. Therefore we require some Door construction
to enable user movement among rooms. More details on doors and how a they are
constructed are given in subsection 3.2.3.

We have the intention to write a smart space simulation that simulates users in a service
packed world, therefore it is time to introduce some services. Every smart service inherits
from a class called IoTDevice. When ever we talk about a member of the IoTDevice
class, it will be denoted as IoT device while IoT service will represent real world IoT
services. The fact, that the class is called ToTDevice’ instead of ‘loTService’ results from
an earlier development stage where the concept of an IoT service as the combination
of devices plus online services was not yet clear. So far, all presented classes only had
geometrical properties. Unlike them, IoT devices also have profile properties, which
are marked with x in table 3.1. Those profile properties are mainly used for the reward
function in 3.3.2 and will be explained there. In our simulation we define that a service
can not be positioned if its centre location is not within the given room. Also the service
must be entirely enclosed by the given room, which becomes for IoT devices with a
physical extent. We would like to point out that general IoT devices do only have a
centre point, but no physical extent in any direction.

Specialized IoT devices such as Lightbulbs or Monitors are subclasses of IoTDevice.
These objects are used to represent smart light bulbs such as Hue or LIFX lamps, whereas
a smart monitors could be an apple TV to name only one example. All these objects
are network connected and can be controlled over this network. Those objects have
additional contextual properties, of which we give samples in table 3.1.

Finally we introduce a class to model agents that is called User. We want users to move
over our floor plan, which requires a movement concept that is explained in the next
section. In the last subsection we suggested that users in combination with IoT services

49

3 Towards an Ambient Space Simulation

Table 3.1: Ambient Space Simulation: Classes and their Variables

Class Name Variable Name Variable Type
roomsInWorld HashSet<Room>
doorsInWorld HashSet<Door>

World . . :
iotDevicesInWorld HashSet<IoTDevice>
currentUsers HashSet<User>
world World

Room boxSet HashSet<Box>
doorSet HashSet<Door>
doorBox Box

Door carpetBox Box
connectedRooms HashSet<Room>
xMin float
yMin float
xMax float
Box yMax float
room Room
isDoorBox boolean
isCarpetBox boolean
centre location float tuple
room Room
IoTDevice iotI]? String
version* float
network* Network enum
brand* Brand enum
radius float
Lightbulb maxBrightness* int € {0,...,6}
lightColorSet* HashSet<Color>
width float
Monitor depth float
normal float tuple
location float tuple
User room . Room .
currentRecommendation IoTDevice
currentDecision boolean

50

3.2 Concept and Design

are subjects of a reward function. This concept is very important for this simulation and
also given an own subsection.

3.2.3 User Movement Concept

In this section we explain how we integrate user movement in our simulation concept.
We cover basic movement patterns and the realization of doors.

A user starts with some initial position that has to be within a room. In each time step
the user can make a step, which means its position moves by a certain value in an
arbitrary direction. This value is called stepSize. We discuss the specifics of different
step pattern in the implementation section 3.3.1.

When we define user movement, we have to make sure that users do not leave a room
and “teleport” through walls. Hence for every step we introduce the check, if the
step a user tries to take is valid. If the step is not valid, we will try a step in another
direction which is then again tested for validity. A first definition of validity that prevents
teleportation, is to demand on oldRoom==newRoom for the old and new user position.

Using only the above oldRoom==newRoom validity criteria is realistic in a way that it does
not allow teleportation through walls, because it does not allow the transition from
one into another room. Nevertheless, in the real world there are object that do allow
humans to move between rooms, without any magic being involved. If we want to have
a simulation that models human movement patterns in a more realistic way, it needs to
incorporate the concept of doors.

Because users do not have any fixed step size or walking pattern, our idea behind a
door is based on the definition of special areas. When a user steps into such a special
area, this area enables it to perform a step that would not be allowed if the user was not
standing in the special area. The most simple door representation using this idea is the
following: We define a rectangular area, that is half contained in both rooms. Now we
establish the following rule: When a user steps into the area, its next step is also valid it
remains in the special area - regardless of what room is there. This means as long as the
user’s steps are within the special area, the user can move freely from the first to the
second room. To transit between rooms now comes down to stepping from room 1 into
the special area covering room 1, moving to the special area in room 2. After the user
stepped into the special area in the second room, its current room is the second room
and now every new step in the second room is valid.

We use a more sophisticated door construction based on this general idea. Employing
the box-concept, we define a door as two boxes and call one of them door-box and the
other one carpet-box. The door-box is a smaller box (marked dark red in figure 3.3)

51

3 Towards an Ambient Space Simulation

YARN
¥ v X

0 0 0
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

(a) Light red = carpet-box, (b) The additionally allowed (c) The additionally allowed
dark red = door-box positions for user in right positions for user in right
door-box carpet-box

Figure 3.3: Door Illustration with doorwWidth=stepSize=1

Mlustration of a floor plan with two rectangular rooms (outlines in black, mostly filled with gray) and
a door (thick black line from (4, 3) to (3,3)). The dark red and light red patches visualize the special
areas that relax the rules for valid steps when a user steps onto them. Subfigures 3.3b and 3.3c¢ show the
additional steps a user can make when situated in both sorts of special areas. A step is represented by an
arrow that starts at the old position and points to the new position.

that is enclosed by the carpet-box (light red) as illustrated in figure 3.3a. It is important
to note that the boxes overlap, so each area that is covered by the door-box is likewise
covered by the carpet-box. Both box types allow certain steps that would not be allowed
otherwise. A user that stands in a door-box is additionally allowed take any position
within the carpet-box. This is demonstrated in figure 3.3b for a user standing in the left
part of the dark red door-box. Hence the user can additionally enter all patches on the
carpet-box in the right room. Similarly we allow a user in the carpet-box to take any
position within the doorbox-box - regardless of whether the position is in its previous
room. The situation is shown in figure 3.3c, users in the left carpet box are additionally
allowed to enter the right door-box.

Usually a step would be rejected if user.previousRoom # user.newRoom. However,
being located in a door gives two additional allowed transition rules, that will result in a
valid step even if the above rule is violated:

1. doorBox.contains(previousLocation) && doorCarpet.contains(newLocation)
2. doorCarpet.contains(previousLocation) && doorBox.contains(newlLocation)

Within our simulation we used the combination of door- and carpet-box with this set
of rules to model doors.

52

3.3 Implementation

3.3 Implementation

3.3.1 Movement Patterns and Doors

As suggested in 3.2.3, each user has a stepsize that influences the step pattern in a
way. In our implementation, we assign this step size on inizialization and it can not be
changed afterwards. When a user stands at a certain point on the floor plan, its step size
regulates how far he can move in one step. We either allow a step to change the users
position by stepsize in positive or negative x or y direction, as in 3.1. Or we allow a
change by the outcome of a vector addition of scaled x and y direction as in 3.2.

Pafter Step = Pbefore Step + stepsize - w, (3.1

Dater Step = Phefore step == StePsize - (1, 0)" + stepsize - (0,1)7, (3.2)

with w = (1,0)7 or (0,1)7 and p € R?. Only using the next steps described by 3.1 leads
to a movement pattern that we call purelyXY, which is illustrated in figure 3.4a. If we
use the steps allowed by equations 3.1 and 3.2 we get a pattern that we call full user
movement. The pattern is shown in figure 3.4b.

(a) PurelyXY Movement Pattern (b) Full Movement Pattern

Figure 3.4: User Movement Patterns

The figures illustrate the different step possibilities for a user (black dot) using different movement
patterns. Possible next positions are marked with black arrows. The purelyXY movement pattern is
described by equation 3.1, the full movement by 3.2.

That we have two patterns also means, we can choose which pattern to use for user

movement, in order to determine the next step. An evaluation of both patterns that
aims to find their assets and drawbacks can be found in 3.4.1. In addition to these

53

3 Towards an Ambient Space Simulation

two patterns, another choice to make is whether we allow the user to keep its current
position for a time step or not. This decision is saved as a user variable that is called
allowNoMovement.

To model a step sequence, a user performs a random walk given that each possible
new position is equally likely. In this context, possible means allowed by the movement
pattern. After a new position is drawn from the possible new positions uniformly at
random, a check if the new position is valid follows. We explained the criteria for
step validity in 3.2.3. New positions are drawn until a valid new position is found
or a maximum number of draws is reached. The latter case results in no movement,
irrespective of the specified user-rule. For our simulation it seemed favourable to gain
the same trajectory for each user, whenever it was started with the same initial setup.
Such a construction ensures that each recommender system gets the same situation with
the same trajectory, making the results comparable. To achieve this goal, we assinged a
private random number generator for every user that is initialized with the bit sequence
of the user’s initial position. This construction results in the desired behaviour.

After we explained the basic concept for doors in 3.2.3, the last paragraph describes the
construction of a door within the simulation. For a door set up, the simulation requires
a centre point, an axis along which the door is placed and a doorwidth. To ensure that
every user can use the door properly, the door initialization parameter doorWidth should
at least equal the biggest user.stepsize used in the simulation. Figure 3.3 shows a door
with centre=(3.0,3.5), axis="y’ and doorWidth=1.0. Using this information, a door
box with measures 2-doorWidthx1-doorWidth is created. A rectangle-shaped fraction of
1-doorwWidthx1-doorWidth extends into both connected rooms. The carpet-box is bigger
with an extend of at least 2-doorWidthx3-doorWidth. For the carpet box, a fraction of
1-doorWidthx3-doorWidth should extend into each room. This is done in such a way
that the 1 x 1 rectangle of the door-box is placed in the middle of the carpet-box’s 1 x 3
segment.

3.3.2 To Take or not to Take: The Reward Cook Book

As we want to give a test environment for recommendation algorithms, we need to
introduce a mechanism that evaluates the quality of a given recommendation. Hence
we introduce a reward function that takes a user and an IoT device, which includes con-
textual properties for both, and returns a value in [0, 1|. Because most recommendation
algorithms expect feedback in the form of acceptance—1 or reject—0, the return value
of the reward function has to be mapped to a decision.

An easy and not too unrealistic way to achieve this, is to introduce a user specific value
which will be referred to as pickiness. We define it as threshold in [0, 1] and the reward

54

3.3 Implementation

function’s outcome has to exceed or be equal to the pickiness in order to mark the
recommended service as accepted. A service is rejected otherwise. If we know the
reward function’s output value and the user specific pickiness, it is possible to map the
reward functions outcome into a decision.

By definition, with a pickiness close to 1 we make a user very strict about accepting
services as they have to match very well to be taken. Small pickiness values on the other
hand make the user accept even imperfect recommendations. So we can mimic users
that either do not have strong personal preferences or do not take a lot time to look for
better services. Because of this distinction the pickiness is one of the most important
values for the simulation. Hence we need to choose it with some care for a direct
recommendation comparison. After we applied this simple mapping to the outcome of
the reward function, the decision can be communicated back to the recommendation
system. But before we receive a decision, we first need to define how the user and
service properties are linked in order to get the reward functions outcome in [0, 1].

Every good recipe starts with the ingredients, hence we give the relevant properties
used to model the reward function in table 3.2. Profile properties are most relevant
for the reward function and marked with x. Most values are self-explanatory, but a
short description is required for our variables earlyAdopter and version. We introduced
earlyAdopter in order to model a users affinity to use new releases. A earlyAdopter value
close to 0 should affect the users satisfaction in such a way that the user does not care
whether the service is a new release or not. In contrary a high earlyAdopter close to 1
should lower the users satisfaction with a outdated recommendation, as a high value
indicates a strong affection to new services. To make this behaviour representable we
introduced a version for IoT devices, which is the service-equivalent to earlyAdopter It is
a value in [0, 1] that equals 1 if the service was newly released and decreases to O the
more outdated it becomes. Currently no ageing-mechanism for services is implemented;
once assigned the version value remains as set until it is changed.

Now we use these properties to model relations between users and IoT services, so we
connect these attributes in a useful way. In a last step we explain how different reward
functions are constructed using these interrelations. To increase readability we use IoT
to address an IoTDevice object in formulas and pseudo code.

One of the first things that comes to ones mind when thinking about a context dependent
function, is to use the distance between objects. A position is a very simple geometrical
attribute and the distance between two objects can be easily computed, given that we
know the position of everything within the simulation. A modelling choice we made is
to assume a reward that decreases linearly with increasing distance. Because we defined

55

3 Towards an Ambient Space Simulation

Table 3.2: Variables for the Reward Function

Class Name Variable Name Possible Values Variable Type
pickiness* [0,1] float
position [—00, 00] X [—00,] float tuple
gender* {0(m),1(H)} int
User appNames* all combinations of apps HashSet<App>
network* each implemented network Enum
{Presentation, Conversation,
activity* Break, Brainstorming, Reading, Enum
VisuallyDemanding}
position [—00, 00] X [—00, 0] float tuple
network* each implemented network Enum
IoTDevice availability* {true, false} boolean
version* 0,1] float
brand* each implemented brand Enum
LightBulb rTlaxBrightness* {0,,6} o int
lightColors* all combinations of colors HashSet<Color>

List of relevant variables for the reward function with their possible values. Variables that represent profile
properties are marked with x.

the reward as non negative, the value can not go below 0. The most simple way to
compute such a reward Rew is the following:
&
0, otherwise.

1 — L .dist(user,IoT), if dist(user,IoT) < 10.
Rew = { () () (3.3)

By this definition, the reward will be 1 if user.location = IoT.location and linearly
decreases to O until dist(user,IoT) = 10. Another geometrically motivated interrela-
tion is the following: even though a service is only a few steps away, its position may
be in another room or a wall of the current room blocks the view. In this case, a user
would most likely not accept the recommendation because he can not see the object
and might not be able to physically reach it. With these two considerations we from the
geometrical interrelations:

* Distance Dependency: The distance based reward is computed using 3.3 which
gives a high reward for a small distance and decreases linearly with increasing
distance.

* Unblocked View: A ray cast from the user to the service stays within the room
and is not blocked by any wall. The reward will be set to 0 otherwise.

56

3.3 Implementation

The Unblocked View was the main reason to implement Ray objects that would allow
to compute intersection points for two rays. For their definition and more details on
how they are used within the situation, please refer to Algorithms and Derivations. To
determine if a ray stays inside a room is not as easy as it might seem at the first moment.
A detailed description of my algorithmic solution to this problem, can be found in
appendix A.3.

So far we only considered geometrical properties to construct the interrelations. We
will now give a number of criteria that have to be met, otherwise the reward is set to 0
immediately.

* IoT Service Available The service is not in use by another user and therefore not
available to further usage. Also it is not switched off.

* Networks Compatible User and IoTDevice are in the same network, which makes
it possible for them to connect.

* Device Usability The user phone satisfies the required preconditions to connect to
the service. This is modelled through apps that enable a user to connect to certain
services.

The first criteria requires a simple check of the IoTDevice’s attribute availability. We
implemented a mechanism to block services that works as described below: Users can
have an IoTDevice that is the currentRecommendation for the user, along with a boolean
currentDecision that indicates whether or not the recommendation was accepted. If a
user accepts a recommendation, we ensure that setting currentDecision == true goes
along with setting the services availablitiy to false, which blocks the IoT device from
being accepted by any other user. The second criteria is not hard to verify either. For the
third interrelation, the concept of apps was introduced to the simulation. An App maps
an appName to one or multiple brands. If a user has an app in its personal app list that
enables him to communicate with services sharing the IoTDevices brand, the last criteria
is met.

However we do not only have matching criteria, but also interrelations that require more
careful modelling. Linking the user’s value earlyAdopter to the IoTDevice version is one
of them. Given that a high earlyAdopter value means new releases are very important to
the user, we model the interrelation as follows:

R Rew — %earlyAdopter(l — pickiness), if version < earlyAdopter.
ew =

Rew, otherwise.
(3.4)

57

3 Towards an Ambient Space Simulation

The term (1 - pickiness) is the value by which the reward function can decrease before
the user rejects a service. This means, the more important new releases are to the user,
the more the reward will decrease if the service does not meet the users preferences.
These considerations lead to the next interrelation:

* Device Too Old if user.earlyAdopter > IoT.version, the reward is reduced
according to 3.4, otherwise the reward remains as it is.

For lamps, there were extra two extra profile properties: The maximalBrightness and
the colorList. Linking the maximal brightness to a user property, requires a slightly more
complicated mapping. Zhao et al. [ZARP15] investigated what ambience a person would
prefer for a certain task. Their study demonstrated that some tasks require a brighter
ambience than other. Based on their results, we came up with an Activity—Brightness
mapping that maps user activities to the preferred brightness level: Conversation—3,
Break—3, Brainstorming—4, Reading—4, Presentation—5, VisuallyDemanding—6.
Combining this mapping with a lamps maximalBrightness in {1,...,6} is now easier.

Rew — %(mapping(activity) — maxBrightness)(1 — pickyess),
Rew = if maxBrightness < mapping(activity). (3.5)

Rew, otherwise.

This function yields in a reward reduction that is equal to the fraction of the brightness-
difference over the overall maximalBrightness. The less the levels match, the more the
reward is reduced. The following two lamp interrelations conclude the constrains that
can be applied to the reward function:

* Activity Brightness If the activity value is greater than the light’s maximal bright-
ness, the reward is reduced proportional to the value difference as defined in
3.5

* Pink Issue A male user will not accept a lamp that can display pink light. If pink
is among the lightColor, the reward will be set to O.

This leaves eight interrelations that can be considered in a reward function. In the
remainder of this thesis, there will be two types of reward function that are used to
gather data and perform different types of analysis on top of that.

1. Profile Based Reward This function assumes an initial reward of 1 and applies
all criteria based on profile attributes to it. It does not consider any information
about the user’s or IoTDevice’s location. This leaves the interrelations IoT Service
Available, Networks Compatible, Device Usability, Device Too Old and in case of a
lamp Activity Brightness and Pink Issue.

58

3.4 Evaluation of and with the Simulation

2. Distance and Profile Based Reward Here the initial reward is obtained from eval-
uating the Distance Dependency. Next, the second geometrical criteria Unblocked
View is applied. The resulting reward is used as initial reward before applying the
profile based criteria.

This concludes the explanation of important aspects, that covered how the ambient
space simulations models users, services and rewards. The last section in chapter 3.2
focus on applying the simulation rather than constructing it.

3.4 Evaluation of and with the Simulation

In the last sections, we gave some insights into how an IoT service filled environment
is modelled and implmented within the ambient space simulation. Now it is time to
explore the simulations features and how real recommendation systems perform in this
environment. In this section we first evaluate two movement patterns. Afterwards we
perform experiments with LinUCB in a simulated environment and compare the data
to the results of a real usablility testing. In a third and last step, the performance of
LinUCB for multiple service recommendation is investigated.

3.4.1 Movement Pattern Analysis

To investigate how well the both movement patterns purelyXY and full presented in 3.3.1
cover the floor plan if a user is moving freely, we performed a simple experiment.

Procedure: To obtain the coverage of user visits over the floor plan, we simulated
10 users with the different movement patterns performing 1000 steps each. For the
evaluation we split the floor plan into patches of 1 x 1 and accumulated the number
user visits per patch. The results were logged and plotted.

Results: The coverage of a floor plan, using the full and the purelyXY movement
style is shown in figure 3.5b and 3.5c. The floor plan is the one illustrated in in figure
3.1. Overall the coverage is steadyly, given that every patch has been visited several
times for both patterns. However the edges of a room are not frequented as strongly as
the patches in the middle. The purelyXY pattern covers the edges better than the full
movement pattern and also leads to a more uniform distribution of visits, given that the
full movement pattern produces stronger peak-patches that have been visited very often
or very rarely.

59

3 Towards an Ambient Space Simulation

Discussion: The effect of rarely vis-
ited edges results from the fact that a
patch in the centre has 8 for full, or 4 for
purelyXY, surrounding positions a user
could use to enter the patch. A patch on
the edge in contrast can only be entered
by 5 respectively 3 patches, of which the
two neighbouring edge-patches them-
selves have a smaller probability of be-
ing entered. For a patch in the corner
only 3 or 2 patches remain, of which 2
have limited access.

Our result that purelyXY is able to cover
the floor plan more smoothly is a con-
sequence of the above described patch
blocking, which makes edge-patches
more likely to be visited when using the
purelyXY pattern. A simple calculation
illustrates the case: An edge patch can
still be entered by 3/1 of the patches us-
ing purelyXY, while for full only 5/s re-
main. This means that edges are more
likely to be visited by a user moving
based on purelyXY. The same calcula-
tion can be done for patches in a corner,
that are accessible by 2/+ = 1/2 of the
overall possible patches for purelyXY,
but only by 3/s for the full movement
pattern. For all these boundary patches,
it is 1/s more unlikely to be entered by a
user employing the full movement pat-
tern.

This observation also implies that these
users are more likely to be trapped in

y location

~N

N

w1

»

x location

(a) Floor plan basic shape

y location

1© = N W A U N

1

| "
0
2 3 45 6 7 8 9 10 11
x location

0 1

(b) Coverage for full movement pattern

y location

200

175 <
S

150 ©

N U1 N =
u O un1 ©ON
o wu
Uservisits per

o

2 3 45 6 7 8 9 10 11
x location

(c) Coverage for purelyXY movement pattern

Figure 3.5: Floor Plan Coverage

Floor plan coverage based on the movement of 10 users
with different initial positions, performing 1000 steps
each.

small rooms because it is hard for them to enter doors, given that patches behind doors
have a limited number of patches to be entered by. The trapping-effect explains the peak
values, that can be observed in the upper right corner in 3.5b for the full movement. The
overall coverage is very good for both movement patterns, but the purelyXY movement
is favourable due to the smoother coverage explained above.

60

3.4 Evaluation of and with the Simulation

3.4.2 Gathering Data

Recommender Systems have been extensively applied to providing personalised online
advertisements. In this area, one of the key indicators for the performance of a rec-
ommendation system is the clickthrough rate (CTR). We use it to describe how often
a displayed add was clicked and is calculated as the number of clicks over the total
number of display times [Gool6].

Therefore the CTR is a percentage giving the number of good recommendations over the
ignored ones. A high CTR is indicating a good recommender while a low CTR shows that
the average number of recommendations was not good, because users did not consider
the suggested adds worth clicking.

When we apply this thinking pattern to the simulation, each user request for a recom-
mendation can be seen as an opportunity to display a list of service possibilities to the
user. More specifically, if our user accepts the recommendation and connects to the
device, this equals clicking an advertisement. Hence we implemented the clickthrough
rate as quality measure, as our situation is similar to the advertisement model above.

Within the simulation, in each time step for all active users, one recommendation is
requested and the total number of requests is increased by one. A second acceptance
counter is increased if the reward function for the recommendation is higher or equal to
the users pickiness. After we updates both values, the current CTR is computed as user-
specific acceptance counter divided by number of requests. The value is then logged to a
file. Along with the raw CTR, the users position is saved to evaluate the room-coverage
pattern. Saving this information also gives us the opportunity to compute a localized
CTR per position, in order to evaluate the spatial quality of recommendations.

3.4.3 Evaluation of LinUCB for Single Service Recommendation

With the information logged as described in the last subsection, in this section we address
three questions with our evaluation of LinUCB for single service recommendation. To
compare our results of a simulated user to results that already exist from studies
with real users as described in 2.2.4, a first test evaluates the influence of the model
parameter o on LinUCB’s recommendations. If the influence of « on the simulated
experiment is similar to its influence on the real experiment, the simulation succeeds
in its goal to model the experiment in order to allow an up scaled experimental setup.
In a second experiment we evaluate the quality of results obtained by LinUCB partial,
which was specifically designed for IoT service recommendation, in comparison to the
existing methods LinUCB disjoint and LinUCB hybrid. The two quantities of interest
are CTR evolution over time and a view on the model that reveals spatial patterns in

61

3 Towards an Ambient Space Simulation

CTR

) 200 400 600 800 1000
Number of Trials

Figure 3.6: Influence of o on LinUCB

Logged Clicktrough Rate for the LinUCB disjoint and different variations of the model parameter «.. The
algorithm was trained on the sample scenario shown in figure 3.1 with 10 users making 1000 steps each
for each a. The plotted curves are averages over the 10 results.

the CTR distribution over the floor plan. The last point is particularly interesting as
it investigates whether the quality of recommendations increases, the more often the
contextual information is the same. In the simulation this means, if a user stands on the
same spot for a while and requests services, the LinUCB approach should reliably learn
good recommendations for this spot.

In the first tests for the LinUCB approach we evaluated how the model parameter «
influences the quality of recommendations within the simulation. Previous experiments
have shown that the best balance of exploration and exploitation is found for values
around o = 1.2.

Procedure: For the first evaluation, we simulated 10 users with different user profiles
and initial positions for 1000 time steps each. The floor plan we used in this simulation
is the sample plan shown in figure 3.1. The bandit algorithm itself, LinUCB disjoint, was
configured with the o values between 0.0 and 2.0. With each « configuration we trained
the algorithm for all 10 users separately. The CTR was logged over the time steps and
averaged over the 10 users for all o’s.

Results: Our results are plotted in figure 3.6. For o = 0.0 the CTR is lowest and does
barely exceed 0.35 even for 800 time steps. With increasing «, the CTR also increases
over time. The performance for « = 0.4 is still lower than for the remaining values
a = 1.0 and a = 2.0 on the long run, even though it outperforms them during the first
time steps. Values around o = 1.0 (which includes o« = 1.2 and o = 1.4 that are not
plotted to keep the plot clear) perform best with a CTR exceeding 0.7 for more than 700
time steps. Even though o = 2.0 outperforms o = 0.4 for number of trials greater than

62

3.4 Evaluation of and with the Simulation

400, the CTR increases slowly for the first time steps and is always worse than for values
around o = 1.0.

Discussion: In this evaluation we observe that very limited exploration (o = 0.0)
results in poor recommendations and consequently in a low CTR. Further, the quality of
recommendations saturates for a good balance of exploration and exploitation, which
occurs for « around o = 1.0. This is in accordance with earlier experiments and indicates
that the simulation serves its purpose to scale up and extend previous experimental
setups.

What we also observe in the plot is that the quality of recommendations and hence the
CTR decreases again as « reaches o = 2.0. Here, exploitation is cut back due to a lot of
exploration, which leads to significantly delayed performance growth for the first 400
time steps. Approaches that encourage exploitation score better results in this stage of
the learning process as they actively use the exploration results and do not focus on
exploration alone.

We see that experiments based on simulated data confirm preliminary findings for this
problem class, hence we used it to conduct further experiments. The experiments
focus on the LinUCB modification LinUCB partial, which was introduced in 2.2.4.
Recalling the algorithmic idea, LinUCB partial only requires feedback for a few service
per recommendation with minimum correction rather than demanding on full feedback.
This approach should lead to a faster convergence and better overall recommendations
compared to LinUCB disjoint and LinUCB hybrid, which were introduced in 2.2.3.

Procedure: Within the simulation, we realized the approach by recommending more
than one service per request. The user would then return the feedback for all recom-
mended services. We only logged the CTR for the first recommendation, as we consider
this one as the ‘real’ recommendation the user would follow. For the accompanying
services we only evaluated the reward function and returned the result to the LinUCB
partial model. Following the logging procedure that was also used for the last experi-
ment, we trained each model on 2 separate users walking for 500 time steps each and
afterwards averaged over the users.

Results: The overall clickthrough rates for the approaches LinUCB disjoint, hybrid
and partial are shown in figure 3.7. For most time steps, LinUCB partial dominates the
disjoint and hybrid model. As the number of time steps exceeds 100, it outperforms the
disjoint CTR by 0.1 on average. The disjoint approach is the worst performing out of the
tested LinUCB models, as hybrid and partial outperform it for all time steps simulated.

Discussion: The results illustrates that the partial approach has a high performance
for single service recommendations given that clickthrough rates around 0.8 can be

63

3 Towards an Ambient Space Simulation

0.9
e—e Disjoint
0-8 o o Hybrid

0.7 B—@ Partial

AV

0.6

0.5

CTR

0.4
0.3
0.2
0.1

0.0
0 100 200 300 400 500

Number of Iterations

Figure 3.7: Clickthrough Rate (CTR) for Different LinUCB Models

Logged Clickthrough Rate for the LinUCB models disjoint, hybrid and partial with « = 1.0. The values
were obtained by simulating four users, performing 500 steps each.

considered high for an average running time of 500 time steps. This means that the
algorithm does give correct recommendations in 80% of all requests. That LinUCB
disjoint does not use shared information is a real drawback in comparison to the other
approaches. Due to its construction it performs linear regression over the features for
each arm separately, but does not consider that parts of the feature vector is better
shared among arms. For example, seeing a device as an arm, it must learn that location is
an important feature for each arm. If the information that location matters is shared over
all arms, it can propagates more quickly. Each selected arm that identifies location as
an important factor would contribute to the significance of the shared feature ‘location’.
Therefore, even an arm that has not been played yet can access the shared information
and use the knowledge about the locations importance in its own calculation. The
CTR per patch for the partial approach in 3.8c clearly demonstrates its advantage in
feedback-information over LinUCB disjoint and hybrid, which results in the overall very
good CTR for this approach.

Procedure: Lastly, we wanted to investigate the spatial behaviour of the three models
LinUCB hybrid, disjoint and partial. The experimental setup is the same as described
above, however this time the information about the users location when receiving the
recommendation is also evaluated. Hence the floor plan seen in figure 3.1 is split into
1 x 1 patches. For each patch we accumulate, the number of user visits, accepted and
rejected recommendations over the 500 steps and 2 users.

64

3.4 Evaluation of and with the Simulation

1.0
0.9
0.8
07§
0.6 38
0.5 %
0.4
035
0.2
0.1
0.0

1 2 3 45 6 7 8 9 10 11 1 2 3 45 6 7 8 9 1011
X location x location

y location
1© » N W A 1O N
o
(o)}
Pa

o
w
er
y location
O = N W A U1 O N

—
o

(a) LinUCB Disjoint Model, CTR per patch. (b) LinUCB Hybrid Model, CTR per patch.

7 1.0
0.9
0.8
0.7 5
0.6 3
055
04,_
03U
0.2
0.1
0.0

2 3 45 6 7 8 9 1011 101 2 3 45 6 7 8 9 1011
X location x location

40
35 ¢
2
308
25
Q

y location

O = N W > 01 O
y location
j1© » N W D 1 O N

‘ 5

(c) LinUCB Partial Model, CTR per patch. (d) User visits per patch for all three models.

1.0
35 0.9
30
0.8
25
20 0.7
15 0.6 §
150 0.5 %
0 0.4
-5 0.3
-10
12 0.2
0.1
-2 0.0

8
10 45 -2

(e) Combined view of CTR and visits per patch for LinUCB
Disjoint.

Figure 3.8: Local Comparison of Different LinUCB Models

CTR per patch for LinUCB disjoint, hybrid and partial for o = 1.0 along with the user visits per patch
for this experiment. The data was gathered from two users with different profiles moving over the floor
plan shown in figure 3.1, simulated for 500 time steps each. Afterwards, the floor plan was split into
1 x 1 patches and the number of visits, accepted and rejected recommendations was accumulated for each
patch and the CTR calculated. Subfigure 3.8e gives a combined view of CTR and number of visits per
patch. The bar height gives the total number of visits, while the part below 0 gives total of rejected and
accepted (above 0) recommendations. The bar colour encodes the CTR for the bar in question.

65

3 Towards an Ambient Space Simulation

Results: Subfigure 3.8d shows the number of visits per patch for the whole experiment.
Recalling that the floor plan consist of two rooms, an strong accumulation of visits is
visible in the right room. In subfigures 3.8a-3.8c the CTR is shown on a per patch
basis and not averaged over the whole area, as given in figure 3.7. As measured by
the quantity and colour intensity of green patches that indicate a high CTR, LinUCB
partial dominates LinUCB hybrid and LinUCB disjoint as in the last experiment. Once
again, the hybrid approach still performs better than the disjoint version. 3.8e gives
a combined view for LinUCB disjoint on the CTR per patch and the number of visits,
which are represented by the bars height. The bar height above 0 indicates the number
of accepted, the height below 0 the number of rejected recommendations. Encoded in
the bar colour is the CTR per patch. This representation visualizes a correlation between
a high number of visits and a high CTR per patch.

Discussion: All our findings are in accordance to the reasons given for figure 3.7. The
correlation between number of visits and CTR is also not surprising, given that LinUCB
learns more about a certain user feature vector the more often this vector occurs, as it
receives feedback for each recommendation. Hence more visits mean more feedback
and more reliable recommendations.

3.4.4 Evaluation of LinUCB for Composite Service Recommendation

When we recall the discussion about IoT and WoT in 2.1.2, the WoT vision was not only
about discovering but also about composing different services. So far we covered service
discovery with our LinUCB approach coupled with the knowledge about available IoT
services, which can be provided by Ambient Dynamix. However the mashup composition
still has to be coordinated from client side. Our current approach does not care whether
services are mutually compatible and could be used for a joint task, which is an important
property for a mashup or composite service.

Procedure: To investigate whether LinUCB can be used to recommend multiple ser-
vices in order to compose them, we designed the following experiment. Our scenario is
a user moving through the environment in figure 3.1, who wants to use a display service
and two lamps for a composite task. Introducing an additional constraint on the three
services, we modify the reward function not only to test if all these services are accepted
but also if all of them are in one room. The user rejects the composite service if one of
these criteria is not met. Within the experiment, we used LinUCB hybrid to identify the
top ranking display service and the two top ranking lamps, which are then forwarded
to the simulation as composite service suggestion to the user. As in the evaluation for
single service recommendation, the current CTR is logged after each recommendation
attempt and plotted over the number of time steps.

66

3.4 Evaluation of and with the Simulation

0.8
0.7
0.6
0.5
0.4
0.3

CTR

0.2 e—e LinUCB Single Service
0.1 9—¢ LinUCB Composite Service

0.0
0 100 200 300 400 500

Number of Trials

Figure 3.9: Single and Composite Service Recommendation

The CTR by LinUCB hybrid for single and composite service recommendation over 500 recommendations.

Results: Figure 3.9 shows the CTR over number of given recommendations for Lin-
UCB hybrid used on single service (dark blue dot) and composite service (red square)
recommendation. The plot clearly shows a dramatic loss of CTR for composite service
recommendation. For composite service recommendation, the CTR is less than half of
its value for the same algorithm used to recommend single services.

Discussion: We see two reasons for the low performance on composite service rec-
ommendation, of which one is a lack of information from a LinUCB perspective and
the other is a structural error introduced by the reward function. The reward function
error is based on the structure of our composite service recommendation. Even if we
assume that all services are within one room, our recommendation approach has a
certain probability do recommend a service that will be accepted. This probability is
equal to the CTR. Given that we combine three services, the CTR for the composite

service is (under the assumption that all are in the same room) CTRgmgleSem.

The other problem concerns the information given to the algorithm In composite service
recommendation, we suddenly assume a service’s room to be a determining factor for
the recommendation, which has not been the case before. Furthermore the algorithm
itself has no clue about the concept of a room, as this is not encoded in any of the
context features. In order to retrieve better recommendations for composite services
the algorithm needs information about the factors that determine whether services can
work together. However, in the current state this information is not directly accessible
by only considering the IoT service’s feature vectors. We can not do anything about
the structural error if we do not change the reward function, however we can address
the information shortage. In the next chapters we present a mechanism to provide the
required information.

67

4 The ConComM Context Composition
Machinery

The most effective way to cope with
change is to help create it.

(L.W.Lynett)

Our main motivation to develop the ambient space simulation was the lack of data,
which became an issue for the evaluation of personalized service recommendation
systems. Previously we also explained why IoT service recommendation is about to
become one of the crucial challenges within the next years. We demonstrated existing
approaches such as LinUCB to perform well for single service recommendation, as seen
in 2.2.4 and 3.4. However the results received for composite service recommendations
are not even close to the good performance for single service recommendation tasks.
This motivated our second contribution in this thesis, which is the development and
evaluation of a framework called Context Composition Machinery (ConComM), to
improve the quality of composite service recommendations.

In the first section of this chapter we motivate such a framework and address the
so far neglected question why one would be interested to receive a bundle of recom-
mended services. The designed framework itself and an algorithmic change to one
of the participating algorithms are presented in ConComM Framework. After this the-
oretic introduction of the ConComM Framework, the last section discusses selected
implementation aspects, before the framework is evaluated in the next chapter.

4.1 The Service Composition Scenario

In the 3.4.4 it became obvious that neither the standard LinUCB approach nor its
extensions are able to perform well for composite service recommendations. However,
the question why someone would want recommendations for composite services was
not addressed so far. Before we talk about the approach explored in this thesis, the next
paragraph motivates the need for more than one recommendation at a time.

69

4 The ConComM Context Composition Machinery

We assume a building that is filled with smart services. Each room is equipped with
smart light bulbs; the curtains can be opened or closed using a smartphone or any other
connectible service that is able to run some kind of curtain-control-app. Further, in some
rooms one finds smart sound systems, smart monitors or even beamers. In addition to
that, the temperature can be controlled individually for different places to ensure that it
suits the needs of the person/persons working there.

A person in this building is planning to give a presentation in an arbitrary room later
that day. In order to give a good presentation, this person wants a room with a beamer, a
sound system, some lamps that can be dimmed and curtains that can be controlled by its
phone. Now, it is important to keep in mind that there are many rooms in the building,
each offering some of these services. We assume that the person does not know all the
services and how they are spread over the rooms, hence the selection of a suitable set
of services becomes a real challenge. As seen before, when we merely request some
suitable beamer, some suitable sound system and so on this does not lead to the desired
bundle of services that can be used to give a presentation. There is no guarantee that
these services work together or are at least within the same room.

A framework like Ambient Dynamix can ensure that the required services are linked
to the internet, which allows to compose them in the WoT sense as explained in 2.1.2
and 2.1.3. This implies that there already exists a way to make sure that services can
work together in a technical sense. Nevertheless, the challenge of finding services that
are physically within the same room and can therefore be used together still remains
unsolved. In the first part of this section we discuss existing methods to find objects that
‘work together’ in some sense. After we explored these existing methods, we spent some
thought on how composite service recommendations can be realized using the LinUCB
approach that was evaluated in the last chapter. We conclude by outlining a framework
that we use to provide additional data about service interoperability. This data can then
be used by a LinUCB approach in order to give better recommendations for composite
services.

4.1.1 Comparing Playlists Generation to Composite Services

As we motivated above, composite service recommendation needs a mechanism to
identify whether or not services can be used together in a physical sense; in the previous
example, the limiting factor is their localization within the same room. For tasks that
require such information to provide good recommendations, the classical LinUCB is not
sufficient any more. In a first attempt, we examine a scenario that is in a way similar
to composite service recommendation. Here we explore the different approaches and
discusses whether these techniques can be applied to our problem.

70

4.1 The Service Composition Scenario

To generalize the composite service scenario, we look for situations that require different
entities that share a certain type feature. The last requirement can be softened further.
Instead of demanding on shared features, we can also require the features to be similar
or more precisely close in some metric. For our “composite service in a room scenario”,
the first definition could mean that each service in the composite service has to be within
the same room. Here the service is the entity and the service’s room is its feature or
context. Depending on the feature that is required to be the same or similar, the problem
definition changes. Also, is important to keep in mind that a user’s satisfaction with a
recommended entity will still depend on the contextual information given by the user’s
and the entities’ properties. Just because a set of services is within the same room, this
does not imply that a user would accept the entities because they can still mismatch the
users personal taste.

If we consider a general scenario as formulated above, a well studied problem is the
challenge of playlist generation. We understand it as the structurally most similar
problem that received scientific attention in recent years. Here, the songs have to work
well together and need to suit the listeners preferences. In a nutshell, a good playlist
contains songs that have approximately the same style and each song goes along with
the listeners taste. The challenges of playlist generation strategies are quite alike to
those that are faced for composite service recommendation: The number of available
tracks/services is very high, while information about entities is often neither structured
nor complete. Further, the user feedback to allow personalized recommendations is
limited [BJ13].

The work of Bonnin and Jannach [BJ13] gives a very good and detailed summary of
proposed techniques for playlist generation, the interested reader should refer to their
work for more details. Generally, there exist a several approaches for playlist generation,
out of which the three most important are mentioned here. A first approach is the use
of Markov Chains. A Markov Chain or Markov Process is a random process without
memory, which means the next state is only influenced by the current state [Nor98].
Applied to playlists this implies that the probability distribution over the possible next
songs is only influenced by the current song. Such an approach has been used for playlist
generation by Mcfee and Lanckriet [ML11] and Chen et al. [CMTJ12]. Another idea
is to mine for frequent patterns in order to find association rules. An association rule
is an implication, where a set of items implies another set of items [AIS93]. As an
example, take the implication that users that like The Rolling Stones and Nickelback
also like Queen. The last notable approach are neighbourhood recommenders. Here
a k-nearest-neighbour recommender is either applied the tracks [ML11] or to whole
playlists. The latter approach with whole playlists was proposed by Hariri, Mobasher,
and Burke [HMB12]. Using this procedure on songs, the next song will be one of the k
contextually most similar songs to the current one.

71

4 The ConComM Context Composition Machinery

All these methods have been applied to playlist generation, but there is one big difference
between playlist generation and IoT composite service recommendation. Playlists are
sequential, which makes them very suitable for Markov Chains and models that assume
a sequential structure. But in the case of composite service recommendation, the user
requests a set of services rather than a sequence. Further, most sequential solutions look
for a successor in a local way, which means the current song (and maybe a few preceding
songs) is taken into account when selecting the next one. In the composite case however,
all these services have to work together. As an example, we consider the services A, B
and C. In the sequential case, we could find that A works with B and B works with C.
However, this does not necessarily imply that A would work with ', which is required
in the composite service case for a request of three services. For composite services, a
more global interaction guarantee is required.

Association rules as non-sequential approach suffer from the cold start problem, as they
require existing data to mine for rules. In an IoT composite service scenario the context
of a service changes often, as services are moved through the environment. This change
of context must influence the services suitability to be part of a certain composite service,
as a service can be good to interact with in one room but too far away or inaccessible
in another location. Therefore, new association rules are required whenever a service
changes its context. It is utopian to assume that after each change in context, new data
about interactions with the service instantly exists. Hence no association rule exists for
a service after a context change, which presents a repeatedly occurring version of the
cold start problem.

This motivates the need for a new solution that differs in its structure from what has
been done for playlist recommendation and similar problems. In the next section we
present a framework that tackles the composite service challenge. We dedicate the
remainder of of this work to the frameworks development and evaluation.

4.1.2 Problem Definition: Addressing LinUCB Limitations

For our problem comparison in the last subsection we only required a very rough problem
specification to realize that playlist approaches are not well suited for service composition.
To get a better impression of what is actually required for a set-recommendation, we
refine our view on the problem before we present our solution.

First of all, it is important to define what kind of composite services we want to
recommend. In our introductory presentation scenario, a the composite service did
consist of single services that allow a person to give a presentation. The task itself
requires all services to be within one room. The constraint to have all services united in
the same room holds for most scenarios in a smart building context, since most actions

72

4.1 The Service Composition Scenario

are performed without a change of location. Therefore we consider it as very important
to have services united in a certain location. However, we also need to consider other
barriers such as different network affiliation that prevents service interaction. Summing
up all these factors, splits an environment into what we call interaction enabling
containers. Within such a container it can be guaranteed that a way of interaction
among each pair of services exists, which we require for a composite service. A real
world room can represent such a container, but a container can also be a room and a
certain network. In this case all services belonging to this network and located within
this room, are in the same container. In order to recommend composite services, we
consider it important to firstly identify services that are in the same container and
therefore are able to work together.

When we assume that information about a services affiliation to a container exists
for each service, there are several possible ways to incorporate this knowledge in
the recommendation process. A first and very simple approach is to select a suitable
container first. Afterwards, a sequential service recommendation is performed using
all services within the selected container. However, this procedure may seem a bit
cumbersome, given that a first recommender system would have to be trained on the
containers given the task and a second recommender needs to be trained on the services
given the user. A more elegant solution that only requires one recommender system is to
treat information about a services container as part of its contextual information. There
is only one difference to the low performing LinUCB approach that has been used for the
bandit algorithm evaluation on composite services in 3.4.4. The new bandit additionally
receives the service container and user task as part of the contextual information. This
approach could be used without rewriting the existing LinUCB approach, as it simply
uses additional knowledge.

It seems plausible that information about a services interaction enabling container can
improve a contextual recommendation system’s performance for composite services.
This leads to better formulation of the challenge that we tackle in the second part of this
thesis: How can we obtain the correct interaction enabling container for a given service?
Scaled down to the example scenario that was used in the introduction, this would yield
the question: How can we obtain the correct room for a given service?

It is important to keep in mind that a room is only one way to characterize these
containers. A services affiliation to a container can be influenced by many factors such
as network affiliation or even the brand of a service.

73

4 The ConComM Context Composition Machinery

4.1.3 Introducing the ConComM Idea

In the last subsection we motivated why it is important to determine a services container
in order to get good composite service recommendations. This container information
has to be gained from data that hopefully exist in such a scenario. For the remainder of
this work, we make a very weak assumption concerning the type of existing data. Since
our overall goal is to recommend services that can interact, it is valid to assume that
users already interacted with different services at a time. Therefore, we assume data
that captures interactions between two or more different services to exist.

Before we dive into the explanation how the framework works, we need to address
an important issue of notation. So far we used the word ‘service’ whenever we talked
about things that can interact and are assigned to a container. From now on, this is not
sufficient any more. Until now this was acceptable because no details on how we obtain
the services container were discussed. Now it is important to point out that the things
we actually want to assign to containers are not services, but a service’s context. Why
is this distinction necessary? We take a smart lamp as a sample service. This lamp L,
has a certain model and manufacturer, is located at a specific position p4 within room A
and uses network N;. The lamp itself is the service, while manufacturer, model, position
and network are its context. When the lamp is moved into room B, the service is still
the same but the context changed. Services that worked with the lamp when it still was
in room A do not have to work with it any longer after it was moved to room B. On
the other hand, a new smart lamp L, that has exactly the same manufacturer, model
and network as the first lamp that is moved to room A and set to p,, will work with all
services that worked with L. Even though the services differ, the context is the same -
which ideally leads to the same interactive behaviour. This is the reason why we are not
interested in the container for a given service, but for a given context. The context itself
already contains all necessary information about the service.

At this point we spent some thought on what we eventually want to achieve. It would be
favourable to have a model that could predict the container for a given services context,
even if the service was not part of any interaction yet. If we assume that every service
context has exactly one correct container, this is a typical classification task and the field
of machine learning offers various algorithms to solve it. Hence we formulate our goal
to obtain a classifier that determines the container for a given context.

We specified that we have interaction data and want to end with a classifier, as described
above. The next open question is how to transform this data about previous interactions
into a working classifier. We take a reverse approach and start with the main requirement
to train a classifier, which is training data. Hence for each data point, which is a service
context, we need the correct container or class, what is sometimes called ground truth.
But in general we can not access this information directly, as we have no information

74

4.1 The Service Composition Scenario

Minimum k-Cut Training Data

@ O OO
@)
% ® o O
Y e
o O
(@)
Interaction Graph Clustering Classifier

Figure 4.1: ConComM Framework Illustration

The general ConComM workflow. Starting with an interaction graph, we apply a graph cut to obtain a
clustering. This clustering is then used to train a classifier that can output a class even for new service
contexts.

about what fatures shape these containers. The only data we can access is interaction
data, which can be represented as a graph. Its nodes are given by service contexts and
each interaction is an edge with a specific weight. Under the assumption that services
within the same room are more often used together than services in different rooms, the
graph should represent this fact. Therefore a graph cut that separates service contexts
that share a container should be more expensive than a cut through context-pairs that
belong to separate containers. In order to build a ground truth from such a graph, the
easiest way is to assume a number of rooms and then cut the graph into this number of
subgraphs, using a minimum cut.

Even though presented in reverse, the above explained procedure outlines the framework
we designed to obtain a classifier that can give the container for a given service context.
In a nutshell, our framework works in two stages. In the first stage we use a minimum k&
cut to split the graph into rooms and to obtain training data; in the second stage we train
a classifier with this data. Figure 4.1 illustrates the framework. Because the framework
composes the contextual information of services in order to obtain a classifier, we call it
Context Composition Machinery, abbreviated to ConComM.

What makes this framework remarkable is that it requires no information about the
underlying container structure, but tries to learn the containers only from an interaction
graph. If we do not learn what shapes the containers, we require the knowledge about
impacting factors explicitely. However this knowledge is highly ambiguous, as the
container structure can be influenced by many factors including not only technical but
also psychological ones. The most likely reason for the container structure is that the

75

4 The ConComM Context Composition Machinery

task itself requires services to be within the same location, which they not necessarily
are. But we must also consider more complex dependencies, which are not limited to
rooms or networks, that prevent services from being used in a composite setting. Hence
simply using accessible information such as a services location may not be sufficient.
Therefore we designed ConComM to obtain the container structure without making any
assumptions about what shapes it. ConComM is more than a system that merely trains a
classifier to output a container when presented a services context, as it has to identify
the container structure on its own.

4.2 ConComM Framework

After we presented the general ConComM idea in the last chapter, this section finally
explores ConComM in detail. In the first subsection, we refine the basic idea behind
ConComM and complete it with algorithms presented previously. The second subsection
goes a step further and showcases a modification we introduced to SPLIT in order to
inherently anchor the min-max clustering principle within ConComM. After developing
the basic ConComM idea, we show how to prepare the initial interaction data to process
it with ConComM. Hence we discuss the representation choices when we convert
interaction data into a graph. As the graph formed by the initial data is not necessarily
connected, we also analyse the chosen cut algorithm’s behaviour for unconnected
graphs.

4.2.1 Algorithms for ConComM

Recalling the two stages of ConComM, graph cut and classification, the focus of our
work is slightly shifted towards the first stage. Given the fact that the classification can
only be as good as the presented ground truth, it is justifiable to pay more attention to
the graph cut that leads to a clustering.

For the first stage, the interaction graph is cut into a predefined number of subgraphs
using a 2-cut algorithm and the k-cut procedure SPLIT, mainly for two reasons. Firstly
because SPLIT requires less cut calculations than EFFICIENT. The second reason is that
most 2-cut algorithms we discussed in 2.3 find the lightest cut for a graph, and not
the lightest cut that separates two nodes. SPLIT only requires a procedure that cuts
a graph, while EFFICIENT needs an algorithm to find the lightest cut separating two
nodes. Hence most 2-cut algorithms integrate more smoothly with SPLIT than with
EFFICIENT. Using the algorithm of Goldschmidt and Hochbaum [GH88] is not an option

76

4.2 ConComM Framework

since it still has a polynomial runtime. Because SPLIT only gives a procedure, we also
need to choose appropriate 2-cut algorithms to obtain a full k-cut procedure.

For ConComM, two 2-cut algorithms were implemented and compared. The first one is
the well known and exact Stoer-Wanger algorithm; the second is Min-Max cut, which
encourages more balanced cuts. Generally we are good with an approximate solution,
as the interaction graph is also inaccurate to some extent. This is because the interaction
graph itself is build based on sample interactions that are not necessarily perfect samples.
Hence Stoer-Wagner is considered as benchmark, since it finds the precise minimum
cut.

In our case, the containers we try to identify by cutting the graph are most likely
comparable in size. Min-Max cut is designed to find balanced cuts that satisfy the
min-max clustering principle. The fact that it avoids skew cuts makes it seem most
suitable for cutting a graph formed by ‘real world’ data, where cutting outliers would
potentially give the lightest cut, but not the anticipated ground truth. Hence Min-Max
cut is our most promising candidate for the 2-cut algorithm used for the k-cut procedure
in ConComM’s first stage. To better integrate with the aim of the Min-Max clustering
principle, we developed a modified version of SPLIT which is presented in 4.2.2.

In ConComM’s second stage we train a classifier on the sample contexts over the newly
gained ground truth. We decided for multi-class logistic regression as classifier mainly
for the following reason: Logistic regression not only returns the class for a given feature
vector, but the outcome can be interpreted as probability distribution over the possible
classes. This comes very handy when the probability distribution can be added to the
contextual information of a service that is later used as input context for LinUCB. In
the end, one has a classifier that takes an arbitrary context and returns the contexts
probability to belong to each container. This probability vector can then be used as a
context extension for LinUCB or any other contextual Bandit.

4.2.2 Improving SPLIT

Our ConComM version presented in the last section is a carefully designed combination
of algorithms. In this section we present a modification, which makes the min-max
clustering principle an inherent part of SPLIT and hence ConComM. Recalling the min-
max clustering principle, it is used to obtain clusters that are internally connected, but
not well connected among each. ConComM is supposed to find services that work well
together, so cutting through such a cluster of services is definitely not desired. Therefore
the cut weight separating clusters should be small. On the other hand, if we split only
a few services this is not favourable either as it leaves clusters that are too big. These
clusters would not represent containers with services that work well together, as they

77

4 The ConComM Context Composition Machinery

include too many services. Hence finding only the lightest cut does not resemble the
well motivated min-max principle.

As the min-max principle seems very appropriate to represent interaction enabling con-
tainers, we tried to incorporate the idea not only in the clustering algorithm but within
ConComM itself. In a first step, we identify the parts of ConComM that would potentially
conflict with the min-max principle. ConComMs second part, the classification, is only
influenced by the output of the first part. Therefore the min-max principle is only of
use during the clustering. A clustering algorithm such as Min-Max cut already uses this
principle. Hence the only part we have not considered by now, is the algorithm that is
used to obtain a k-cut instead of a 2-cut. In ConComM, we choose SPLIT for this task.

The SPLIT procedure itself is very simple. Given a initial clustering that can consist
of one or several partitions, the following procedure is repeated until the clustering
contains the desired number of & clusters [SV95]:

1. calculate a minimum 2-cut for all clusters in the clustering
2. select the cluster whose minimum cut is lightest

3. remove the cluster from the clustering and add its two subclusters that were
obtained by the minimum 2 cut.

Here, 2 is the crucial step. If we select the minimum cut this is not in accordance with
the min-max principle. For our current procedure, the following scenario is not unlikely:
After splitting the graph for the first time, we obtain a smaller and a bigger cluster. As
the smaller cluster contains less nodes and hence has fewer connections, a cut through
the smaller cluster is very likely to be lighter than a cut that separates the bigger cluster.
Following this logic, the current procedure has the tendency to get stuck in cutting a
small and not so well interconnected cluster into tiny clusters. Their cut weights will
always be smaller than a cut through the big cluster, that would potentially resemble
the reality better.

After we identified this problem, we attempt to adapt SPLIT by not only considering the
absolute weight of a cut. The min-max principle demands on us to take the interconnec-
tivity of a graph into account. For a very interconnected graph, the cut weight per node
in the graph would be high. For a graph that is not very connected at the cut position,
the cut weight per node should be small. To avoid cuts that chose a very light cut but
only separate a single node, we choose the following alternative criterion for 2. Instead
of taking the minimum cut weight, our modified SPLIT selects the cut that minimizes

cut weight

(number of nodes in smaller cluster)?’ 4.1)

weight, , =

78

4.2 ConComM Framework

(a) Sample Graph (b) First Cut (A) for SPLIT (c) Second Cut for SPLIT (B)
and SPLIT,; and SPLIT,.; (C)

Figure 4.2: Graph Cut with SPLIT and SPLIT,.,;

A sample graph cut for SPLIT and SPLIT,.;. Figure 4.2a shows the initial setup with one graph. In the
first step 4.2b, for both procedures the lightest cut is A and no alternatives exist. In the second step 4.2¢
we have two subgraphs, so the procedure has to choose which subcluster to cut. The conventional weight
for the cuts B and C is 2 and 3, hence SPLIT chooses the lighter cut B. This results in a big subgraph with
14 nodes and two small ones with 5 nodes each. The SPLIT,..; weights calculated with 4.1 for B and C
are 0.08 and 0.05. Therefore SPLIT,..; chooses C, which gives similarly sized subgraphs with 8, 9 and 10
nodes.

As weight,, gives a relative cut weight per nodes, we call this modified SPLIT version
SPLIT,.;. The procedures for SPLIT and SPLIT,,, only differ in step 2, where SPLIT
selects the cut according to its minimum weight while SPLIT,.; considers the relative
weight given in 4.1. We give a sample scenario to illustrate the structural difference
between SPLIT and our SPLIT,.; in figure 4.2.

To sum up our approach, SPLIT,.,; is the result of our efforts to incorporate the min-max
principle in ConComM. With SPLIT,..; we aim to produce more balanced cuts, not only on
a 2-cut basis as Min-Max cut does, but also for k-cuts obtained by the SPLIT procedure.
In the evaluation chapter 5, our min-max principle optimized version of a k-cut using
Min-Max cut and SPLIT,.; is benchmarked against Min-Max cut with SPLIT and Stoer
Wagner with SPLIT.

4.2.3 Generating a Graph Representation

Our previous subsections are sufficient to give a full description of our framework.
However, our considerations usually started with the assumption of a graph that would
represent the interactions between services. This subsection will bridge the gap between
our preliminary assumption of interaction data and the graph that most descriptions
were based on. Thus, we describe what choices can be made when interaction data is
transformed into a graph.

79

4 The ConComM Context Composition Machinery

We represent an interaction between services as a set of their contexts. Therefore, each
interaction / can be written as I = {¢;,...,¢,}, with ¢4, ..., ¢, being the contexts of the
participating services. In the graph G = (V, £), each context is represented by a vertex
v € V. Since a graph can be fully described by its laplacian matrix, each context is also
represented by a specific row and column index in the laplacian.

When we add an interaction to the graph, the most natural way to do this is to increase
the edge weight between all interacting contexts by 1. This gives a procedure to add
interactions, but so far we did not address how we initialized the graph. There exist two
principal ways that strongly influence the graphs properties. The first way is to assign
no edge weight between the nodes as we initialize the graph. Doing so results in a
completely unconnected graph, as no two contexts are connected by an edge, assuming
that an edge with weight 0 is not existing. Afterwards, we add known interaction data,
which connects certain nodes with higher edge weight than 0. The second way is to
initially assign a certain edge weight to any connection in the graph. This does not
change the information stored in the graph, as the edge weights are equal to a graph in
which all eges are initialized to zero and we just introduced an uniform offset. However,
in this case the graph is connected.

For ConComM, we assume an unconnected initial graph as this seemed like a more natu-
ral way, than enforcing an edge weight lift by an arbitrary value for all connections.

A point we will not cover any further, but that seems worth mentioning with later
applications in mind, is customer feedback. So far we only assumed that interactions
were monitored passively. However, at some point there might be feedback for certain
interactions, judging whether they are favourable or not. If the feedback for a certain
interaction is positive, it would be worth increasing the edge weight between the contexts
by more than 1, as this interaction was actively rated as good. The other case is negative
feedback. If a certain interaction does not work at all, negative feedback could be given.
In this case it would be good to decrease the weights between the interacting contexts
instead of ignoring this information. However, for this action we need to check that the
edge weight does not decrease below its value on initialization, as graphs with negative
weights might cause problem for some cut algorithms.

4.2.4 Unconnected Graphs

A problem that can occur with natural datasets is an unconnected interaction graph,
given that the graph is initialized with zero edges between context. The min-cut
algorithms Stoer-Wagner and Min-Max cut do not explicitly demand a connected graph,
nevertheless unconnected graphs presented a challenge during the implementation. To

80

4.2 ConComM Framework

circumvent problems we need to consider how the algorithms behave when presented
an unconnected graph.

Due to its construction, Stoer Wagner is very well behaved for unconnected graphs. For
simplicity, we assume a scenario with two unconnected graphs. Our argumentation
also holds for scenarios with more than two graphs. The only difference is that the
distribution of graph parts over the two output clusters will mainly depend on the
implementation.

In every MinimumCutPhase, we add the most tightly connected vertex. Hence the
MinimumCutPhase will start to add all vertices that are directly connected to the start
vertex. After the start vertex consumed all vertices that are within its graph part, it will
only have edges with the weight 0 left. Adding one of the vertices with zero edge weight
‘bridges the gap’ between the two unconnected graph parts. Now, that a vertex connected
to the second graph part is added to the start vertex, the next most tightly connected
vertex will come from the second graph. The cut that is returned by MinimumCutPhase
is either 0O, if the second graph did only consist of one vertex, or has some weight
because it cuts through the second graph. If the second graph has more than one vertex,
the last added and therefore merged vertices were both from the second graph. The
MinimumCutPhase is repeated until all vertices in the second graph are merged. Now,
the second graph only consists of 1 vertex, which results in a cut weight of 0 in the next
MinimumCutPhase. No cut through the first or the second graph part can be smaller
than 0, therefore MinimumCut must select the cut separating the two graph parts as cut
with minimal weight.

This explains why Stoer-Wagner works out-of-the-box for implementations that allow
to merge vertices with connection weight 0. Min-Max cut on the other hand is not as
well behaved. Because the laplacian of a unconnected graph looses many of its useful
properties, the Fielder vector does not provide a linear search order of the expected
form.

For connected graphs, the preliminary graph cut can be obtained by forming a cluster
from all vertices whose Fielder entry is > 0 and a second cluster from those with Fielder
< 0. For unconnected graphs, the Fielder vector will only indicate one cluster with
entries that are either strictly greater or smaller than 0. Any other entry is 0. We
illustrate the case in table 4.1.

If we partition the the sample graph using the above described rule, this leads to the
obviously undesired partitions {1, 3,4,5,6} and {2}. A working, but not optimal solution
to overcome this behaviour is the following: Instead of taking zero as the threshold, we
can also consider it as a third class. If the number of entries in the zero-class exceeds a
certain number (for example two or three), we treat all members of the zero-class as

81

4 The ConComM Context Composition Machinery

Table 4.1: Fielder Vector for Unconnected Graph

Graph Illustration Laplacian Fielder Vector
1 -1 0 0 0 O —0.7071
(6) 11 0 0 0 0 0.7071
1 N 0 0 1 -1 0 0 0
9 o 0 -1 1 0 0 0
0 0 0 0 1 -1 0
0 0 0 0O -1 1 0

one partition, and the second partition is formed from entries that are less or greater
than zero.

One of the easiest options is just to avoid disconnected graphs. If we initialize every
edge of the graph with a small value as described in the last subsection, this produces a
connected graph. However, our work showed that using the above described procedure
to treat zero entries an own graph if their number exceeded 3, did not perform any
different to initializing the graph with a small edge weight. Therefore we decided
to go with an initial edge weight of 0, as this occurred to us as the most natural
representation.

4.3 Implementation Challenges

In the following section we talk about implementation changes we faced during the
ConComM implementation with Java 8. This section is not meant to be an implementa-
tion guide, as this would be out of the scope of this work. We rather attempt to provide
insight in some interesting aspects that we faced during the implementation. We ask
those who are interested in the implementation details to refer to the source code.

In the first subsection we present our space efficient representation for graphs that stores
the graphs full laplacian once for the whole simulation. SPLIT is an important part of
ConComM and min-cut computations can be costly, therefore we present an implemen-
tation that minimizes the number min-cut computations in the second subsection. Lastly,
we give a few practical notes and detail on the classifier implementation.

82

4.3 Implementation Challenges

Table 4.2: Correct Subgraph Representation with the Laplacian

Matrix Name Indices Matrix Illustration
8 —5 —2 -1

-5 6 0 -1
Full Laplacian £ = {l1, 15,13, 14} o 0 6 4

-1 -1 —4 6
Laplacian 6 -1

7T =

Cropped {l2, la} (—1 6
Laplacian T = (b, 1s} I -1 @
Correct Ui 11 1

@

The issue with cropping the full laplacian in order to obtain the subgraphs laplacian. The mere selection
of laplacian entries that are associated with the subgraphs vertices is not sufficient, as the degree still
represents the connection with the full graph. This leads to phantom self-loops in the graph. To get the
correct laplacian for a subgraph, the degree has to be adjusted to the new number of vertices.

4.3.1 A Space Efficient Representation for Graphs

As the interaction graphs laplacian matrix L contains all information about the graph
and is required to compute the Fielder vector, we chose this representation to store all
information about the interaction graph. During construction, we assign each row or
column index uniquely to a vertex, which equals a context ¢y, ..., ¢, in the interaction
graph. We call the laplacians indices Global Indices £ = J,{l;} and we need to store
the bijective globallndex-context-mapping /; — ¢;. An entry of the Laplacian matrix with
row /; and column /; will be denoted as L(l;, ;) or L, ; for short.

The weight of each connection between two contexts is already stored in the laplacian
and will not change if we only consider a subgraph. Hence, it seems unwise to duplicate
this information for each subgraph by saving a smaller version of the full laplacian. In
our implementation, a graph G is not defined as set of vertices and edges, but only as set
of vertex-indices Z C L that is a subset of the global indices contained in the laplacian.
However it is not sufficient to store only a subset of indices and construct the laplacian
matrix for the subgraph by taking the laplacian entries L;; whenever /;,[; € 7 holds. This
results in the cropped Laplacian (L; ;) with [;,[; € Z.

83

4 The ConComM Context Composition Machinery

The problem that arises with cropping is illustrated in table 4.2. The second row shows
the subgraph we obtained by cropping the laplacian with the above described technique.
Cropping the relevant entries leaves the correct connections between two different
nodes, but the diagonal still shows the vertex-degree for the full graph. The sum over a
row or a column in the laplacian is the weight of a nodes self-loop, as self loops increase
the degree but do not appear in the adjacency matrix. When we crop the laplacian we
therefore produce phantom self-loops, that do not exist in the correct subgraph. To
circumvent this problem, our the subgraph definition not only requires the index set
7 but also the new degrees d(I;, G) for each vertex I; € Z. Calculating the new degree
for [; is easy, as it is the negative sum over a column or row in the subgraphs cropped
laplacian without the diagonal entry:

d(li,é): Z _Li,j: Z _Lj,i-

leZ,lz?élj l]‘GI,li#lj

To take the sum over row or column is only possible because the graph is undirected
and adjacency as well as laplacian matrix are symmetric.

Now, our graph can be defined as § = (Z, D(Q)) with the index or vertex set Z and the
associated degrees for all contained indices D(G) = U, cz{d(l;,G)}. Our construction
saves a lot of memory. To store the full laplacian for a subgraph with n indices would
require n? values, while storing our new subgraph construction only requires 2n values.

4.3.2 Implementing SPLIT

Within ConComM, SPLIT [SV95] is used to cut the initial interaction graph in & sub-
graphs. To achieve this, it repeatedly calculates min-cuts for all current subgraphs and
only performs the lightest cut, until the desired number of cuts is reached. In our
implementation we only calculate the minimal required number of min-cuts.

In order to minimize the number of cut calculations, we use two sets that contain graphs
and a tree structure to hold the graphs. To distinguish the sets, they are given the names
CurrentClusters (CC) and UnexpandedClusters (UC). Each graph can have none or two
subgraphs. Also, for each graph we store the cut weight between the subgraphs. If the
graph has no subgraphs, we define the cut weigh to be infinite.

The SPLIT implementation 4.1 takes the number of desired clusters k£ and an initial
graph G. It returns a set of graphs CC. Our SPLIT implementation calculates min-cuts on
a graph only when they are needed, which is the case if the cut through the graph could
be the lightest. Because we store a calculated cut with its cut weight and the resulting
subgraphs, we need to calculate the min-cut for a graph only once. Graphs that are

84

4.3 Implementation Challenges

Algorithmus 4.1 SPLIT with Minimal Number of Cut-Calculations

procedure SPLIT(k, G)
CC«+ ¢
UC <+ ¢
while |CC| < k£ do
for Graph G in UC do
GETMINCUT(G)
set the graphs resulting from the min-cut as subgraphs for G
remove G from UC
end for
smallestCut +— oo
relevantGraph < @
for Graph G in CC do
if Subgraph cut weight for G smaller than smallestCut then
update smallestCut
relevantGraph < G
end if
end for
Add relevantGraphs subgraphs to CC
Add relevantGraphs subgraphs to UC
remove relevantGraphs from CC
end while
return CC
end procedure

currently part of the minimum k-cut are stored in CC. UC holds graphs that have not yet
been split using a min-cut.

Our algorithm starts by putting the input graph in the current and unexpanded clus-
ters. While the desired number of clusters is not reached, we perform the following
steps: Firstly, all graphs in unexpandedClusters are expanded and removed from the
unexpandedClusters. We save the cut-weights set the sub-graphs as children of the
cut graphs. In the first run this only computes the min-cut for the original graph. The
unexpandedClusters should be empty afterwards. This assures that no currentCluster
is unexpanded. In a second step, we identify the current cluster whose cut results in
a minimal cut weight. We then remove this graph from the currentClusters, while its
children are added to currentClusters and unexpandedClusters. Hence, the number of
currentClusters increased by one. Before we choose the minimal cut the next time, the
newly added subgraphs are already cut, because unexpandedClusters are expanded at
the beginning of run.

85

4 The ConComM Context Composition Machinery

Our SPLIT version computes the minimal number of min-cuts because it only computes
a min-cut when the result is required to identify the next graph to split.

4.3.3 Classification Implemented

For the final classification, we use multi class logistic regression. As we know the
equations that have to be solved in order to get the optimal . vectors that describe
the class functions, the basic implementation is comes down to implementing the
formulas.

However we noticed a numerical issue that can lead to wrong results. When we
introduced logistic regression in 2.3.5, the class specific probability that is required to
compute the neg-log-likelihood 2.6 was defined as

ef (@iyi)

SRR flwiy) = xlB.
9€

p(yil:) =
As both, nominator and denominator can potentially be very large, the result is numer-
ically not stable. A simple division of nominator and denominator by the nominator,
which equals multiplying by one, gives the following and more stable version

1 1
p<yl|$l) = J@d) ef(@i9)

Zg}ey ef(@i:;) 1+ Zz}#yi,ﬂey ef (@i:v;)

Here we put the ‘dangerous’ fraction of two exponential functions in the denomina-
tor. The 1 in the denominator that originates from Zﬁ:ij; dominates, if the fraction
approaches 0, giving a probability of 1. If the fraction dominates, the probability ap-
proaches 0. In our implementation we used this formula, which gives a numerically

stable scheme.

As the § computation can not be performed analytically, we implemented Newtons
method to obtain the result. In our implementation, we abort the Newton method and
return the result if one of the two conditions is fulfilled:

* The maximum elementwise absolute difference between the previous and the new
/3 vector is smaller than 107

* A total number of 10000 newton steps is exceeded

As there is exists no rule how to choose these values, only the application can tell if
these values are chosen appropriate. For all our test runs this combination gave good
results.

86

4.3 Implementation Challenges

Concerning the feature vectors, we implemented linear and quadratic features for
ConComM. Linear features take the context of a service and return a vector that contains
1 as first entry as well as an entry for every context component. Quadratic features take
the vector obtained by the linear features and add entries that contain the product of
every context component combination.

Given the context C' = (cy, ¢, c3)T, its linear feature vector is z; = (1, ¢y, ¢z, c3)T and
its quadratic feature vector is z, = (1, ¢y, c9, ¢3, 12, €13, Cac3, €2, 3, c3) 1. By multiplying
these feature vectors with the weights beta, we can therefore describe every linear
or quadratic function in a 3-dimensional space. This concludes the remarks on our
ConComM implementation.

In this chapter we motivated the need for a framework like ConComM to improve the
performance of contextual bandit algorithms for composite service recommendation.
By adapting SPLIT to act in accordance with the min-max principle, we aim to achieve
an improved overall performance of ConComM when it comes to identifying the con-
tainer structure. After our brief discussion about interesting aspects during ConComMs
implementation, the next chapter evaluates how different design choices influence the
frameworks performance.

87

5 Evaluation

| have not failed. I've just found 10,000
ways that won’t work.

(Thomas A. Edison)

Within this chapter, we test the performance of our ConComM framework with different
experiments. One of the key questions we try to answer is whether k-cut procedures
using SPLIT,.,; are able to produce more accurate cuts, and whether the framework as a
whole can predict the container of a new service correctly. Lastly it is of importance to
find out whether the ConComM information about a services container does improve
the quality of composite service recommendations. All three questions are addressed
in 5.3 ConComM Evaluated and 5.4 Closing the Circle: LinUCB for Composite Service
Recommendation II respectively.

In preparation for the evaluation, in the first section we describe how the data, on top
of which ConComM is evaluated, is gathered utilizing the ambient space simulation
we developed earlier. To quantify the quality of ConComM results, we describe how
we measured the quality of our outcomes. In the last section we investigate the ques-
tion whether the additional information about a services container provided through
ComComM enables LinUCB to give better recommendations for composite services.

5.1 Ambient Space Simulation Revisited - Gathering Data

In order to evaluate ConComM, the first thing we require is Interaction Data. One
interaction [is represented by a set of contexts I = {¢i,...,¢,} that belong to the
services participating in the specific action. Hence interaction data is a set of such
interactions {/, ..., I;;}. It is important to note that a single interaction is equal to a
composite service, as a composite service is nothing but a set of contexts belonging to
the services that are used together. Therefore interaction data is also a set of composite
services.

For our evaluation, the lack of real word data was a problem as we did not find data sets
for the usability testing with sufficiently high IoT service density. Therefore we utilized
the ambient space simulation to evaluate ConComM.

89

5 Evaluation

The first subsection takes a closer look at the process of composing multiple services
into a composite service. We explore how different design choices during the service
assembly influence the interaction graph and describe the scheme we used to retrieve
interactions from the simulation. As the presented strategy to obtain composite services
depends on the user who ‘composes’ the services, we focus on the design of our user
variables in the second subsection.

5.1.1 Composing Services

Certainly, the easiest way to obtain a composite service is to select a number of services
that are accepted by a specific user. As the components obtained by the above outlined
procedure are not even guaranteed to be within one container, the process of composing
services has to differ from the just described. Hence we need to take a service’s container
into account.

Given that it is not likely that only services within one container are used together,
we introduced a probability that is called incompatible container probability (iCP).
With the incompatible container probability we provide a measure, how often users
use services in different containers together. An iCP of 0.0 therefore does not allow
a composite service to consists of single services that are in different containers. A
high iCP on the other hand encourages composite services whose components are
scattered over many containers. Thinking in terms of an interaction graph, which is
built from composite services that were gathered using a certain iCP, the iCP does
significantly determine the graphs properties: An iCP of 0 would therefore result
in a disconnected graph since there is no interaction among containers. The full
disconnection is only reached as long as the containers are non-overlapping, which is
the case for a classification problem. As the iCP increases, the number of connections for
services belonging to different containers increases. An iCP of 1.0 makes it impossible
to extract information about the container structure by only considering the weighted
connections between them, as a composite service is not allowed to contain services
within the same container.

To make the service composition more realistic, we also introduced the incompatible
service probability (iSP). When we recall the example given in The Service Composition
Scenario, the user who wanted to give a presentation required a beamer, a sound system,
different lamps and so forth. In such scenario, the user would more likely accept single
devices that does not completely fit its personal taste for the sake of having them all in
the same room. Hence selecting a composite service makes it more likely for user to
also accept single services that do not match completely with its preferences. We model
this factor by the iSP. As in the previous case, an iSP of 0.0 only composes a composite

90

5.1 Ambient Space Simulation Revisited - Gathering Data

service from services that are accepted by a user, given the outcome of the users reward
function. As the iSP approaches 1.0, a composite service consists of more services that
are not be accepted by the user if they were recommended as single services. Different
sample interaction graphs obtained by certain combinations of iCP and iSP values are
presented in figure 5.1.

As we have no knowledge about the iCP/iSP for a realistic scenario, different probability
tuple were assumed to obtain the ConComM evaluation interactions. However, there are
probability for iCPs/iSPs that are more likely to represent composite services composed
by real users. For example, iCP values greater than 0.5 are highly unlikely, as every
second service within a composite service using this probability would be in a different
container. Smaller values in the range [0,0.2] are more likely, as composite services
composed following this probability range would mainly be within one container but
also accept a few services in different containers. For iSP values the limits are much
harder to guess, as the users willingness to accept less suitable services will mainly
depend on the services importance within the composite service and the users overall
willingness to compromise. In our presentation example, it would be more likely that
the user accepts a less suitable lamp than a hopelessly outdated beamer.

After we defined the two key influences that determine the selection of services for a
composite service or interaction, we describe how the interaction data was gathered
using the simulation. Our procedure to obtain a single interaction is straight forward
and only needs the required number of interacting services n, and a user who composes
the services as well as the iCP and iSP that are used to assemble the services. In a first
step, we draw a service uniformly at random among all possible services that fulfil the
iSP. To do that, we draw a random number in [0, 1] and if the value is bigger than the
iSP value, the service has to be accepted by the user in order to join the composite
service. If the random number is smaller than the iSP value, the service has to be
rejected to be part of the composite service. Afterwards, we draw services until a
service that is accepted, or respectively rejected, is found. The obtained service serves
as seed, since the incompatible container probability requires a container to compare
the other containers to. Until the required number of services n is obtained, we repeat
the following procedure: To determine if the next service has to be accepted and if it
needs to be within the same container, two new random numbers in [0, 1] are drawn.
Assigning the choices works as described for the first service. Now, that we announced
the requirements (acceptable/rejected and same/different container), a service is drawn
uniformly at random from the remaining services. Here remaining means all services
that are not part of the current composite service. Then we evaluate the service, which
means its room and the value of the user’s reward function are determined and added
to the composite service, if the evaluation results match the requirements. If the service
did not match, a new service is drawn until a suitable service is found or a maximum
number of steps is reached.

91

5 Evaluation

(a) (1.0, 0.0) (b) (1.0, 0.5) (c) (1.0, 1.0)

o o A O/O/\T\g/o\o\ OA%\O
ﬁﬂ’ o Q——%@' ° o%
(d) (0.5, 0.0) (e) (0.5, 0.5) (f) (0.5, 1.0)
TR Ao | |8 Foa| [0 ,4;.

(g) (0.0, 0.0) (h) (0.0, 0.5) (i) (0.0, 1.0)

Figure 5.1: Interaction Graph Illustration for (iCP, iSP) Combinations

Ilustration of three containers (gray) containing services that would be accepted (white nodes) and
rejected (black nodes) by a user. The graphs represent accumulated interactions that would be allowed
according the corresponding (iCP, iSP) probability tuple. Therefore the graph does not represent a
single interaction but rather accumulated interactions that were allowed by the probability tuple. When
iCP = 0.0, the interactions have to remain within a single container as in the bottom row. As it increases
to 0.5, half of all the interactions have to be within one container. This can be seen in the middle row.
An iCP of 1.0 does not allow interactions within one container, but rather enforces interactions among
containers, which is illustrated in the top row. A similar logic holds for the iSP: an iSP of 0.0 requires the
interacting services to be accepted by the user as in all graphs in the left column. While iSP = 0.5 requires
the interacting services to have equally many accepted and rejected services (middle column), an iSP of
1.0 enforces the services not to be accepted by the user, which is shown in the right column.

Now that we explained the generation of composite services, we need to answer the
question how the containers for composite services are designed in the simulation. As a
device’s room is surely a key factor when it comes to composing composite services, the
container structure in the simulation is equal to its room structure.

92

5.1 Ambient Space Simulation Revisited - Gathering Data

In Introducing the ConComM Idea we spent some time explaining why there are many
factors that influence the container structure and how ConComM is designed to still
extract the underlying structure. Now we evaluate ConComM on a container structure
that is exclusively influenced by the room structure. This is possible for one good
reason. The ConComM framework itself has no knowledge about the concept of rooms.
It extracts the clusters only from the interaction graphs structure, which happens to
be influenced by the room structure because we choose this to be the determining
factor for interactions. The factors influencing the graph structure can have a nearly
unlimited complexity, the graph cut will only cut the graph into a predefined number of
subgraphs.

The more interesting question is whether the classifier can learn the clustering based on
the features that are given by the nodes contexts. Here again, the classification algorithm
itself does not know anything about the fact that we choose random squares in a two
dimensional space to be the determining factor for a container. But if it can learn this
pattern, it can probably learn any other pattern that is more complex and influenced by
more factors than just a z and y coordinate.

5.1.2 The Reward Function

For this evaluation, we used a reward function that uses only the profile based reward
components, introduced in 3.3.2. The reward function using those components is
evaluated for all services in the composite service. If all services are accepted through
the reward function and all of them are within the same room, we accept the composite
service as a whole. If any of these criteria is not met, we reject the composite service.

5.1.3 The User Variable

As the reward function that decides over a devices acceptance or rejection is user specific,
the users profile strongly influences the outcome of the service composition procedure
described above. In order to get a realistic simulation, we put some effort into the design
of representative users. The key factors that influence a users reward function are the
users pickiness, gender, activity, early adopter and apps.

Out of those, the early adopter value is best motivated from the diffusion of innovation
theory that was first introduced by Beal, Bohlen, et al. [BB+57]. They claim, that every
innovation is first used by a small group of so called innovators. This group is followed
by a slightly bigger group to adapt to that new technology, the early adopters. After a
while, also the early majority integrates the former innovation in their lives, they again

93

5 Evaluation

Table 5.1: Early Adopter Values Used to Describe Users

Early Adopter Total Amount
early adopter . .
Percentage Composite Services

2.5% Innovators 0.99 25
13.5% Early Adopters 0.93 135
34.0% Early Majority 0.68 340
34.0% Late Majority 0.32 340
16.0% Laggards 0.08 160

The different types of innovation acceptance according to [BB+57] with their estimated percentage of the
total population is given in the first column. It is followed by our translation to the earlyAdopter value
used in the simulation. Lastly, the total number of composite services provided by users of each group for
a total 1000 composite service simulation is given.

are followed by the late majority. The group that is using the innovation either last or
not at all is called laggards.

A rough estimation of the percentages each group represents in the overall population is
given in table 5.1. We translated these percentages into the corresponding user value
early adopter in [0,1] as follows: The early adopter value is 1 minus the sum over
all predecessors divided by 100 minus half of the own percentage divided by 100. These
values are also given in table 5.1.

Table 5.2: Additional Values Used to Describe Users

pickiness activity apps
1.0 Presentation {H,w}
0.8 Conversation {L,w}
0.6 Break {A,H,W}
0.4 Visually Demanding {A,L,W}
0.2 Brainstorming {H,L,w}
0.0 Reading {A,H,L,W}

Parameters that are randomly assigned to the 6 users for each group. The table gives the possible values
for a users pickiness, activity and apps. Concerning apps, the letters encode the following app types:
Hue (H), LIFX (L), Apple (A) and WorksAlways (W)

We choose to design 30 users, 6 for each group. The early adopter value is fixed for
each group, while the other values still have to be assigned. Six different values for
pickiness, activity and app are given in table 5.2. Over all 6 users in a group we
assigned these values to the users so that every value is used once, but the corresponding

94

5.2 How to Evaluate Quality Measures

user is picked randomly. Further, a randomly picked selection of 3 users is defined to
be female, the other half is male. The apps Hue (H), LIFX (L) and Apple (A) can be used
to connect to Hue or LIFX lamps and to Apple TVs and prevent an acceptance of such
services if they are not installed. Also, each user has an app called WorksAlways by
default that works with devices of the same brand. Such devices can be used by all users
without any additionally assigned app.

The graphs we present in this evaluation are based on interaction data obtained by these
users. The number of devices forming one composite service is 3 for all evaluations
done within this work. Whenever interaction data for a certain probability distribution
is requested, these 30 users are used to obtain a number of interactions that depends
on the users group. We gave the group specific numbers of contributed services in the
last row of table 5.1. Summing up each groups’ services, a randomly selected set of
one user from each group always results in 1000 interactions in total. This concludes
the description how we designed users in order to obtain interaction data to evaluate
ConComM.

5.2 How to Evaluate Quality Measures

After the extended discussion how we obtained the interaction data to test ConComM,
this section describes how we quantify the quality our clustering results. In 2.4 we
describe how the quality of a clustering can be measured. These methods do only
work, if one already knows how the clustered clusters are associated to the true clusters,
which are the containers in our case. Our approach to match a clustering’s clusters
to the container’s clusters is outlined in the second subsection. As cross validation is
an important tool to a get more representative evaluation, the last subsection explains
how this validation technique is used to evaluate the classification results. For the
whole evaluation we used micro averaging, as the number of relevant points in a cluster
determines how strongly the cluster influences the quality measure.

5.2.1 Cluster Comparison

When we introduced quality measures for a clustering in 2.4.1 one might already have
wondered how the association between the true class and the predicted class is made. In
the illustrated clustering with blue dots and its prediction in 5.2 a human does instantly
determine that the mapping gray cluster — blue dots is the most suitable match. But
how can one determine, which mapping predicted — true class is the best and how do

95

5 Evaluation

we define the best? Obviously the mapping matters, as the quality measures for white
cluster — blue dots would surely not be as good as the ‘true’ best mapping.

It should be noted that the words cluster-
ing and cluster are used to describe differ-

(0] @) . .

(o) o o ent objects. A clustering is a set of clusters
S L, ° ®e where every cluster is a set of points. In
o © 0® oo © o © order to evaluate the quality of a mapping,
o (OING) we need to answer the question how to

o o° i
© o ° ° map the clusters of two different cluster-
0 o © ings. In the case of the ConComM evalu-
o o o & ation, the container structure is given by
© © o the rooms and the clusters obtained by

. . graph cuts are to be compared with this
Figure 5.2: Ground Truth and Clustering ground truth. So initially there is no in-

A human quickly associates the grey clustering with formation about a good mapping between

the cluster of blue dots. However, more effort is these two clusterings.
required to find the mapping gray cluster — blue dots

with an algorithmic approach. A mapping in this context is defined as

function m : C* — C? that maps the clus-
ters ¢! of a clustering C' to the clusters ¢? of a second clustering C?. The mapping we
used does not allow two clusters in C'* to be mapped to one cluster in C?, which equals
injectivity of the function. There is one exception to that rule, which allows several
clusters in C'! to be mapped to an empty cluster if and only if the number of clusters
in C! is bigger than the number of clusters in C2. If any ground truth is part of the
mapping, we assume to map the clusterings clusters to the clusters of the ground truth.
| - | gives the number of clusters in a clustering. We can distinguish the following three
cases:

1. |C* < |C?|: In this case the clustering is injective as every element in C' must be
uniquely mapped to an element in C*?

2. |C'| = |C?|: Here the clustering is bijective as every element is mapped to one and
only one element in C?. Bijectivity implies injectivity.

3. |C'] > |C?: This case occurs if the first cluster has more elements than the second
cluster. If this is the case, the second clustering gets an additional cluster that
contains no elements. We allow several clusters of C'! to be mapped to this empty
cluster in C?, as this is convenient for evaluating the quality measures. Therefore,
this case yields a surjective function.

Our mapping for the last case can be brought down to an injective function if clusters
are removed from the first clustering until |C'| = |C?|. The procedure we used to obtain
the mapping implicitly does that, as it only looks for a number of associations that is

96

5.2 How to Evaluate Quality Measures

equal to the smaller number of clusters in both clusterings. The empty cluster will be
implicitly assumed for all clusters that do not have a directly mapped cluster.

Our procedure to find the best mapping is rather simple. It tries all possible mappings
that have the required number of associations and selects the mapping with the maximal
sum of true positives over all classes in the mapping. For case 3 all clusters in the first
clustering without a corresponding cluster in the second cluster are implicitly mapped to
the empty cluster. This yields a total of 0 TP for clusters mapped to the empty cluster.

After the best mapping is obtained, we save all association rules of the form ¢! € C' —
c? € C2. To calculate the quality measures for the clustering, developed algorithm 5.1 to
evaluate the TP, TN, FP, FN scores.

Algorithmus 5.1 Cluster Mapping Evaluation

procedure CALCULATEQUALITY(C', m)
for each cluster C in clustering C' do
for each node N in clustering do
if Ve C & & N € m(C) then
increase TP,
elseif N € C && N ¢ m(C) then
increase FP,
elseif N ¢ C && N € m(C) then
increase FN..
else
increase TN,
end if
end for
end for
calculate P, R,,,. ..
end procedure

It is important to note that the clustering in line 2 has to be the clustering that represents
the prediction and not the ground truth. We obtain a node’s cluster in the ground truth
by evaluating m(c) for ¢ € C'. Also, line 3 goes over all nodes in the clustering - not
only those in the current cluster. In our actual implementation, the following lines are
only evaluated for those nodes that are existent in both clusterings. In the case that
cluster C' is mapped to the empty cluster, by definition the node can not be in m(C') as
m(C) = @. Therefore, clusters mapped to the empty cluster can only increase the false
or true negatives.

97

5 Evaluation

o
18
o
17 O ° O
16 o ° o
. I : :
o
14 ° o
3 O O ? °
1
o o
12 o O o O o
o °
1 o
(o] °
1 O O O o =
o
9 o
s o O O O) O
o o o

° (o] [e]

7 o o
o
: =
O ° o o
5 A
| o))
4 o e
(o] °
3 o
o I T ?

2 °
1 e . -—
o \ A4 o W

-1
-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Figure 5.3: Floor Plan for ComComM Evaluation

The floor plan used to extract interactions for the ConComM evaluation contains 91 services in 6 rooms.
Out of those services, 50 are light bulbs, 20 are monitors and 21 are unspecified IoT services. Apart from
their location, all other properties were assigned randomly.

5.2.2 Cross Validation Parameters

We implemented leave one out cross validation for ridge regression. For the evaluation,
each dataset is split into 5 parts and the classifier is trained on 4 of them. Afterwards,
classifiers prediction for all data points in the training sample is used as clustering on
which the cluster mapping with the ground truth is evaluated. Now that the clustering
exists, the evaluation procedure is applied to the left out points with the mapping
obtained by the training data.

5.3 ConComM Evaluated

In this section we present the performance of ConComM on a simulated scenario. Our
scenario is a simulated floor plan with 6 rooms and 91 services, which was used to
gather the composite services. The floor plan is shown in figure 5.3. We obtained the
interaction data using the functions and users explained in 5.1.1 and 5.1.3.

Our evaluation is split into the three main experiments, which we performed to analyse
ConComM'’s performance. Corresponding to the first stage of ConComM, the first two

98

5.3 ConComM Evaluated

parts analyse the different cut procedures. In 5.3.1 different cut strategies are evaluated
for interaction graphs obtained by different iCP and iSP values. In this case, we fix
the number of clusters produced by the cut strategy to the real number of clusters.
Secondly, we evaluate the stability of the cut techniques for different cluster numbers
and representative iCP iSP tuple. In the third and last part of our evaluation we focus
on the classification and investigate the cluster number stability for different features.

5.3.1 Clustering Methods over Probability Grid

In 5.1.1 we explained in great detail how iCP and iSP, which are used to gather the
interaction data, influence the properties of the interaction graph. Therefore our first
experiment investigates how the the cut methods perform on interaction graphs obtained
for different (iCP, iSP) tuple.

Procedure: We perform the evaluation on a probability grid that covers both proba-
bilities in a range from [0.0, 0.8] with step size 0.1. We investigated the cut procedures
SPLIT using Stoer Wagner without refinement, SPLIT using Min-Max clustering with and
without refinement and SPLIT,.; using Min-Max clustering with and without refinement.
SPLIT using Stoer Wagner is here considered as the benchmark, as SPLIT is unmodified
and Stoer Wagner is one of the standard graph cut algorithms. As linkage based refine-
ment was introduced for Min-Max cut, we always test Stoer Wagner without refinement,
even though the procedure can be applied to any existing cut algorithm. We compared
the clustering output against the real container structure, and calculated recall, precision,
inverse recall, inverse precision, informedness, markedness and correlation based on
these two clusterings.

Figure 5.4 shows the recall values obtained by the 5 cut procedures for every point on
the iCP iSP grid. The recall gives the fraction of services that are assigned to the correct
container over the number of services that are in the predicted container. Hence a high
recall is desirable as it indicates that the correct container structure is estimated very
well. Recalling the theoretical analysis of iCP-iSP combinations whose interaction graphs
were illustrated in figure 5.1, it is important to figure out what to expect from these
plots. As an iCP > 0.5 enforces more than 50% of the interacting services to be in a
different room, graphs with these iCP values barely carry any information about the
room structure. The recall measures which fraction of the services within a room were
identified to be in this room by the clustering. Bringing these two pieces of information
together, we can not expect the cut algorithms to perform better than a algorithm that
randomly assigns services to clusters, as the iCP exceeds 0.5. Given that we have 6
rooms, randomly assigning services to 6 clusters would yield an expectation value of 1/6

99

5 Evaluation

1.0
0.8
0.9
0.7
> 0.8
306 0.7
£
= 0.5
8 0.6
5
204 0.5
8
203 0.4
g
Eo0.2 0.3
e
s 0.2
0.1
0.1
0.0

00 01 02 03 04 05 06 07 08 0.0

Inacceptable Service Probability

(a) Stoer Wagner SPLIT no refine-
ment

1.0 1.0

o
®
°
@

o
N
o
N

0.8

o
o
o
o

0.7

o
«n

o

o
°
«

0.6

0.5

Incompatible Container Probability
o o
w »
o o
P
Incompatible Container Probability
o
IS

0.4

I
W

0.3

o
N
o
N

0.2

°
=

°
-

0.1

e
o
o
o

0.0

00 01 02 03 04 05 06 0.7 0.8
Inacceptable Service Probability Inacceptable Service Probability

(b) Min-Max SPLIT no refinement (c) Min-Max SPLIT refined

00 01 02 03 04 05 06 07 08

1.0 1.0

0.8 0.8
0.9 0.9

o
3
o
N

0.8

o
o
o
o

0.7

o
o

o

o
o
0

0.6

0.5

Incompatible Container Probability
o o
w »
o o
IR
Incompatible Container Probability
o
IS

0.4

o
W

0.3

o
)
o
N

0.2

°
o
°
=

0.1

o
o
o
=)

0.0 0.0

00 01 02 03 04 05 06 0.7 08
Inacceptable Service Probability Inacceptable Service Probability

(d) Min-Max SPLIT,; no refinement (e) Min-Max SPLIT,..; refined

00 01 02 03 04 05 06 07 08

Figure 5.4: Recall Evaluated over iCP iSP Grid

The recall value for different k-cut clustering methods evaluated over an iCP iSP grid. The x-axis represents
the iSP while the y-axis displays the different iCPs. The values were calculated for a k-cut that cuts the
interaction graph obtained by each iCP-iSP combination into 6 subgraphs.

100

5.3 ConComM Evaluated

correctly identified services per cluster. Therefore the recall should be approximately 1/6
for iCP > 0.5.

Knowing that we can not expect much for high iCPs the results become increasingly
relevant for small iCPs. An iCP of 0.0 yields unconnected graphs that become increasingly
connected between rooms as the iCP approaches 0.5. The cut procedures should at
least be able to perform well for small iCP values since the cuts that separate rooms are
lightest for those values. The more stable a cut procedure is, the better it will perform
even for bigger iCP values as the cuts separating rooms are harder to identify due to
their increasing weight.

For the different iSP values, the rooms are internally most tightly connected if the
iSP ~ 0.5. In this case, acceptable and unacceptable services are equally likely to
participate in an interaction, therefore neither the preferred nor the unacceptable
services are left out. Hence the best performance can be expected for iSP values around
0.5 as a cut through a room is likely to have very high weight.

Taking the information about iCP and iSP together, the cut procedures should roughly
perform better than random in a ’triangle’ of which one edge covers the iCP = 0.0 line
and the opposite vertex is positioned on the iSP = 0.5 line. The bigger the triangle,
the more robust is the procedure with respect to changing iCP and iSP values, which is
desirable as these values might change depending on the user and the type of composite
service that is required.

After we identified what is desirable and to expect, the analysis of the recall results for
the cut procedures in figure 5.4 becomes more intuitive. As the cut algorithms were
used to cut the graph in 6 parts and the floor plan consists of 6 rooms, it is theoretically
possible score a recall of 1.0 with perfect graph cut.

Results: As shown in figure 5.4, Stoer Wagner scores the best possible recall values
of 1.0 for unconnected graphs (iCP = 0.0). For iCP > 0.0 however, is not significantly
better than random. Neither of the Min-Max derived methods scores such high values
for all samples with iCP = 0.0. But heir performance for those probabilities is still much
better than random. Furthermore the recall values for iCP > 0.0 do not instantly drop to
a random-like performance as in the case of Stoer-Wagner. Both cut procedures using
Min-Max and SPLIT,.; generally score higher recall values than the ones using SPLIT,
especially when the graph becomes fully connected for iCP > 0.0. Using refinement
slightly betters the recall values for SPLIT,.; but does not have a significant positive
influence for Min-Max with SPLIT.

Discussion Figure 5.4a demonstrates what we stated about the Stoer Wagner algorithm
with respect to its behaviour for unconnected graphs and its tendency to produce
skewed cuts. For unconnected graphs (iCP = 0) it scores top recalls of 1.0 as it can

101

5 Evaluation

Clusters: 6

19 o

Clusters: 6

® @ O 19 (&} (&) (&}
18 18 o
17 [e) [6) o 17 (5} (5}
16 6] 16) (5}
15 (©] @] O 15 (] (9] (] (]
14 16} O O 14 @ °
13 o L2 (] S 13 o ¢ ©
12 e o) ® 20) 12 ° &)) o
11 o L — 11 (5} Ld
10 “ o o7 10 S ° ® g
9 ® o = 9)
&) [o ()
8 o 8
; €] ® ®) () ; &) ® ® (&) (&) C
¢ .O. (] = ¢ OOO &) >
5 o ° &} = O 5] °]
4 eoe0 =3 Cluster|0 4 (o6} =0 Cluster|0
3 Y ° [Sluster|1 3 @ ° [@luster|1
2 PS ° =1 Cluster|2) P o = Cluster|2
® TEER Cluster|3 (5] EEE Cluster|3
! (6} ® Bl Cluster|4 ! () [6) BB Cluster|4
0 W Custer 5 0 5
1 1

W Ciuste

-10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 7—10 1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

(a) The 6-cut of a graph obtained by (b) The 6-cut of a graph obtained by
(iCP,iSP)=(0.0,0.2) (iCP,iSP)=(0.1,0.2)

Figure 5.5: Clustering Example for Stoer Wagner

The good performance of Stoer Wagner for an unconnected graph (0.0, 0.2) and the skewed cuts as soon
as the graph becomes connected for (0.1,0.2). The iSP has no influence on the performance of Stoer
Wagner and is therefore fixed to the arbitrary value 0.2.

reliably identify the unconnected room structure. However, as the containers become
slightly connected, Stoer Wagner starts cutting single vertices as they give the lightest
cut. The two clusterings obtained by Stoer Wagner for (iCP,iSP) = (0.0,0.2) and
(iCP,iSP) = (0.1,0.2) in figure 5.5a illustrates the matter. Hence Stoer Wagner only
performs well for iCP = 0, irrespective of the iSP.

Due to their problems with unconnected graphs, all four strategies based on the Min-Max
clustering perform not as good as Stoer Wagner for iCP = 0.0. However all of them
outperform Stoer Wagner as soon as the graph becomes slightly connected for iCP > 0.
Also, our prognosticated triangle-like shape with recall greater than 1/s can be seen for
all of them. Nevertheless our both strategies using SPLIT,.; outperform the Min-Max
SPLIT combination, as Min-Max SPLIT,.; scores top results for both iCPs 0.1 and 0.2
and still gives reasonable results for 0.3 in the middle iSP range. The both SPLIT based
procedures only achieve results that are similar to those of SPLIT,.; with iCP = 0.3 for
the much smaller iCP of 0.1.

On the probability grid the effect of the modification in SPLIT,.; becomes visible. SPLIT
tends to make one or two good cuts and afterwards gets stuck in splitting the smaller
graph as this yields lighter cuts. Since SPLIT,.; chooses not the lightest cut but the cut
that is lightest given the number of nodes it separates, it cuts ‘meaningful’ partitions
much longer before it falls into the SPLIT behaviour. One of the many samples for such
a situation is shown in figure 5.6.

102

5.3 ConComM Evaluated

Clusters: 6

W Ciuste

Clusters: 6

W Ciustel

[) 1
19) (o) () 19 (5] () o
18 (e} 18
17 ® o O 17 o (9]
16 —@ O O 16 (] {]
15 O O 0] o 15 [] (9] (9 (6]
14 O U 5 e} 14 (5] Py o
13) o 1° o o 13 (<) ® (<) =
12 o O— T+ it (¢] 12 o e
o @) [}
1 [®) o C (9 i [J © (&)
10 000 o o 10 (9] @
o (8} (©)
9 ® O 9 °
8 .. o ® O @ O 8 .. (9] O (o)
. ° o o T |6 Ol , O o [©)
¢ "~Oo o > ¢ .o. ° <
S| ee e o + - o 1@ sk | g °
4 o0 “EZ3 Cluster|0 4 e 0 =3 Cluster|0
3) °) O o [Sluster| 1 3 Y ° [@luster 1
5 ® A o O3 Cluster|2 5 PS L] [Cluster|2
.) T © B Cluster|3 L 0 m Cluster|3
o (] (@) (@) Bl Cluster|4 @ o @ Cluster(4
0 5 0 5
1 1

-10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 7—10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

(a) SPLIT for (iCP,iSP)=(0.2,0.1) (b) SPLIT,.; for (iCP,iSP)=(0.2,0.1)

Figure 5.6: Behaviour of SPLIT and SPLIT,.,; for (iCP,iSP)=(0.2,0.1)

lustration of the behavioural difference of SPLIT and SPLIT,.; for a 6-cut, both using Min-Max cut
without refinement on (0.2,0.1). SPLIT quickly gets lost in cutting the smallest subgraph into smaller
subgraphs as they have the lightest cut weights. SPLIT,; in contrast is longer choosing cuts that split
more than a few points, as its selection routine considers not only the cut weight but also the number of
nodes separated.

The last influence we did not analyse so far is the linkage based refinement, which can be
applied to refine the results obtained by Min-Max clustering. Generally, this procedure
identifies nodes that are better linked to the other cluster and reassigns them if they
lower the overall cut weight. In the case of SPLIT,,; this often leads to an improved
clustering, as the original cut is a rough approximation of the cut direction while the
linkage based refinement ‘cleans’ the cut by ordering the directly affected nodes into
the right clusters. Figure 5.7 shows a good example for a successful linkage based
refinement.

However, there are cases where applying refinement makes things worse instead of
improving the result. This might be the case for cuts that already did represent some
part of underlying container structure well but are forced to do more cuts. It can happen
that a previously good approximation of a container is cut. Taking the lightest cut would
hereby often result in only cutting a few nodes, as the nodes are very well interconnected.
But the refinement often adds more nodes to the enforced cluster, making the cut equally
sized. This is not good for the hight level performance of the clustering as it was more
accurate without the new nodes. Even though these cases can occur, linkage based
refinement tends to make things better instead of worse. Nevertheless, it is important to
be aware of this fact to know the method’s limitations.

103

5 Evaluation

Clusters: 6 Clusters: 6
0 20

oo |® ° ® ° o) |® ° o . °
18 o) 18 °
17 o ® o o 17 o o
16 @ o (0] O 16 { [O (9}
15 o (9 (6 O 15 [] o O (6}
14) O o o o 14 ° O r o o
O =
13 ° ° ® _ 13 o) 1) o
12) o % o ® ~o 12 ° o' ? o ® ; %
i S S CJ ° (] . 1 S 5 (¢] ° o R
10 e O (o) o —— 10 . © o @
° () ® i (&) > o - s Q ® . (©) C @ 5
8 D 8
° (] [} ° (& ® © 0 © ° (6} (9] ° o ° @ ° (0}
7 @ 7 o
¢ .O. (©) = ¢ .O. @ =
5 [] PY [] [} >3 o 5 (6} ° (6} (9] (6}
4 o0 =3 Cluster|0 4 e =3 Cluster|0
3 o ° o o ° [Sluster|1 3 16} ° 16} @ °® — Gluster 1
) ° ° ® =3 Cluster|2)] ® [o= Cluster|2
® (©) B Cluster|3)) E=3 Cluster|3
! o o o (o) Bl Cluster|4 ! o (6} o) BB Cluster|4
o B Cluster 5 o B CIUSter 5
71—1 01 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 71—1 01 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25
(a) No refinement for Min-Max cut (b) Refinement with Min-Max cut

Figure 5.7: The Effect of Using Refinement for SPLIT,., with Min-Max Cut on
(iCP,iSP)=(0.2,0.5)

The positive effect of linkage based refinement for SPLIT,.; and Min-Max cut applied to (0.2, 0.5). This
illustrates the successful reordering of nodes from a preliminary cut in order to further lower the cut
weight. The preliminary cut result is shown in the version without refinement, while the reordering to
lower the overall cut weight can be seen for the version with refinement.

After we discussed the results for the recall values over the iCP-iSP grid in great detail,
we give some insight in the measures inverse recall, informedness and correlation in
figure 5.8. The results are only shown for Min-Max with SPLIT and SPLIT,.; without
refinement, as the refinement does not change the general tendency and Stoer Wagner
scores top results for iCP = 0.0 and acts random like for all other values. Due to
our mode of cluster assignment presented in 5.2.1, the values for precision/recall and
inverse precision/inverse recall are the same. This is sound as every value that is a false
negative in one cluster, which means a point was wrongly predicted not to be within
this cluster, is a false positive in another cluster. The micro averaging strategy adds up
all false positives and false negatives over the clusters, which leads to the same number
of summed false positives and false negatives. Consequently precision and recall take
the same value. Due to their computation, the values for markedness and informedness
are equal as they are based on precision (markedness) and recall (informedness). What
we said about precision and recall also holds for inverse precision and inverse recall.
Therefore only one plot for each of these indicator pairs is given.

Results: The inverse recall (5.8a and 5.8b) is very high for SPLIT and SPLIT,.;. Even
if they approach random results for iCP > 0.5, the inverse recall is not smaller than 0.9.
However for iCP — 0.0 the inverse recall goes to 1.0. Within the relevant probability
triangle the values for Min-Max with SPLIT,; are generally closer to the optimal value

104

5.3 ConComM Evaluated

o o o
o N @
o o 9
o N =

o
o
=)
o
o
o
o
o

o
W
=)
IS
o
W
o
S

o
N

Incompatible Container Probability
o
IS
«n
Incompatible Container Probability
o =)
N »
o
«n

)
-
)
o

o
o
o
o

00 01 02 03 04 05 06 07 08 0.0 00 01 02 03 04 05 06 07 08 0.0

Inacceptable Service Probability Inacceptable Service Probability

(a) InverseRecall for SPLIT with Min- (b) InverseRecall for SPLIT,.; with
Max Min-Max

1.0 1.0

o o o
o N)
o o o
) N @

o
5
o
)
o
0
e
)

o
W
|

o

N
=)
W

o
N
o
N

Incompatible Container Probability
5}
IS
)
)
Incompatible Container Probability
)
>
)
)

. o

=3
-
=)
i

o
=)
o
=)

00 01 02 03 04 05 06 07 0.8 00 01 02 03 04 05 06 07 08
Inacceptable Service Probability Inacceptable Service Probability

(¢) Informedness for SPLIT with Min- (d) Informedness for SPLIT,.; with
Max Min-Max

1.0 1.0

o o o o
. O N
°
[}
o o o o
. O N
o
o

o
W
=)
IS
o
W

o
N
o
)

Incompatible Container Probability
o
IS
- - o
«n
Incompatible Container Probability
=)
'S
o
«n

)
=
o
o

o
=)
o
=)

00 01 02 03 04 05 06 07 08 : 00 01 02 03 04 05 06 07 08 00

Inacceptable Service Probability Inacceptable Service Probability

(e) Correlation for SPLIT with Min- (f) Correlation for SPLIT,..; with Min-
Max Max

Figure 5.8: Inverse Recall, Informedness and Correlation for SPLIT and SPLIT,.;
Further evaluation of SPLIT and SPLIT,..; with Min-Max without refinement on the probability grid for

a 6-cut. Due to the micro averaging strategy, the values for precision and recall, inverse precision and
inverse recall, informedness and markedness are the same.

105

5 Evaluation

1.0 than those for Min-Max with SPLIT, following the same pattern that was already
observed for the recall values. For iCP > 0.5 the informedness is very close to 0.0,
negative values are not obtained for any of the k-cut procedures. The values are mostly
greater than 0.5 within the relevant triangle and even tend to approach the optimum 1.0
for Min-Max with SPLIT,.;. As the micro averaging strategy results in the same values
for informedness and markedness, the correlation has to be equal to informedness and
markedness which is the case.

Discussion: An inverse recall of 0.9 is the expected value for randomly assigning
points to 6 equally sized classes. Hence the inverse recall has to be bigger than 0.9
if the obtained clusters are more accurate than randomly assigned ones. As Min-Max
with SPLIT,., approximates the real container structure better than Min-Max with
SPLIT, the inverse recall is also higher for this method. The same argument holds for the
informedness. A as the clusters obtained by this method represent the container structure
and do not actively try to exclude points within a certain cluster, the informedness has
to be at least 0.0 and can not be negative - which would represent such an ‘uninformed’
clustering. Due to its definition, for micro averaging the correlation is the absolute value
of the informedness.

Our evaluation over the probability grid clearly shows that cut procedures based on our
specifically designed SPLIT,.; tend to be more accurate than those based on SPLIT. So far
we assumed that the number of clusters obtained by the k-cut is equal to the number of
real clusters. In the next subsection we investigate how well the cut procedures perform
if the number of clusters obtained by the procedures is not equal to the real number of
clusters.

5.3.2 Clustering Methods: Cluster Number Stability

In a real scenario we can not generally assume that the number of containers is known. In
the best case, we can expect a rough estimation. Therefore it is important to investigate
whether the cut procedures used for ConComM still produce good cuts, if the selected
number of clusters is not equal to the real number of containers.

Procedure: For selected probability tuple the number of clusters k for the k-cut was
varied from 2 to 11, knowing that the real number of containers was 6 as in the previous
experiment. Once again, we evaluated the quality measures presented in 5.2 for every
number of clusters and cutting procedure. Figure 5.9 shows sample results for the iCP
iSP tuple (0.0,0.3) (5.9a), (0.1,0.2) (5.9b) and (0.2, 0.5) (5.9¢).

106

5.3 ConComM Evaluated

1.0 o O O O A
0.8 U

0.6

e »
e »
e »
<l »
<ol »

0.4 A A StoerWagner SPLIT nR
I MinMax SPLIT nR
0.2 VYV MinMax SPLIT R
@ @ MinMax SPLITrel nR
0.0 ¢ {) MinMax SPLITrel R

Recall

1 2 3 4 5 6 7 8 9 10 11
Number of Clusters

(a) (iCP,iSP)=(0.0,0.3)

1.0 g o Qg o
0.8 ¥

0.6 A

B0 <
o<
se<
m <
o<
o<

Recall

0.4 AA StoerWaghler SPLIT nR

I MinMax SPLITnR A
02 VYV Mi:M:x SPLIT g A A A A A A A

@ @ MinMax SPLITrel nR
0.0 O Q MinMax SPLITrel R

1 2 3 4 5 6 7 8 9 10 11
Number of Clusters

(b) (iCP,iSP)=(0.1,0.2)

1.0 64 2 %

0
0.8) '
0.6 A
A

0.4 A A StoerWagner SPLIT nR
I MinMax SPLIT nR
0.2 V V¥V MinMax SPLIT R
@ @ MinMax SPLITrel nR
0.0 <> <> MinMax SPLITrel R

Recall
> HeO0 <
> B4 0 <
> e &
> B &
B
B
> B 0O

1 2 3 4 5 6 7 8 9 10 11
Number of Clusters

(c) (iCP,iSP)=(0.2,0.5)
Figure 5.9: Recall over Number of Clusters

Changes in the recall for 5 cutting strategies and different iCP iSP tuple if the numbers of clusters varies
from 2 to 11. The cutting strategies are Stoer Wagner with SPLIT without refinement (StoerWager SPLIT
nR), Min Max cut with SPLIT refined (MinMax SPLIT R) and without refinement (MinMax SPLIT nR)
and Min Max cut with SPLIT,.; refined (MinMax SPLITrel R) and unrefined (MinMax SPLITrel nR). The
evaluation is based on interaction graphs obtained by a scenario with 6 containers.

107

5 Evaluation

Results: Without refinement, Stoer Wagner and SPLIT only scores high precision
values for the whole range of cluster numbers for iCP = 0.0, which is demonstrated in
5.9a. For all other iCP values, the recall starts around 0.6 for 2 clusters and decreases to
a value around 0.2. There it remains for any number of clusters that is bigger than the
real value 6.

Even though the Min-Max based cut procedures do not score recalls as high as those for
Stoer-Wagner and iCP = 0.0, their values are not lower than 0.7 even for 11 clusters. We
consider this quite stable given that 11 clusters are twice as many clusters as there are in
reality. For iCP > 0.0 Min-Max based procedures score recalls that are better than those
for Stoer-Wagner by 0.2 at least. It also is well observable that SPLIT,., improves the
cuts recall by 0.2 in comparison to the SPLIT procedures on average. Also the positive
effect of using refinement (R) in contrast to not using it (nR) can be seen in all three
figures.

Within 5.9b and 5.9c¢ the positive effect of SPLIT,.; on a cut-procedures performance is
demonstrated again. Even without refinement, Min-Max with SPLIT,; (circular marker)
rarely scores recall values smaller than 0.8 as it exceeds the real number of clusters. The
results with refinement (diamond marker) are even better.

Discussion: Generally, the cut procedures recall is very stable after they reached
number of real clusters. For smaller cluster numbers, the recall is generally higher.
This is due to the mode of evaluation that was used to calculate the recall for these
experiments. If the number of clusters is smaller than the real number of containers,
only those clusters are considered for the recall evaluation that are mapped to a real
cluster. Hence each cluster is mapped to a real cluster that fits well and points that are
not within both clusters are not considered for the evaluation.

To give a small example, if only one cluster exists this cluster is mapped to some real
cluster. If the recall is small, the cut cluster missed out many points that had to be within
the container. For a few big clusters, the number of missed out points is small which
results in a high recall close to optimal 1.0. However, the negative effect of too few
clusters is represented by the inverse precision. The inverse precision gives the fraction
of values that correctly identified not to be within the cluster over all values the cluster
does not contain. In other words, the more values are wrongly added to a cluster, the
lower the inverse recall. If a small number of cluster is mapped to a clustering that
contains more clusters, the few clusters will most likely contain many values that do not
belong to the real clusters they are mapped to. Therefore the inverse recall will be lower,
the smaller the number of cut clusters and the bigger the difference to the real number
of clusters. The effect is demonstrated in figure 5.10 for the representative example
(iCP,iSP)=(0.2,0.5). For all cutting procedures the inverse precision increases until the
real number clusters is reached where the increase terminates.

108

5.3 ConComM Evaluated

QQQQQQQQQ
oo g

0.4 A A StoerWagner SPLIT nR
I MinMax SPLIT nR
0.2 VYV MinMax SPLIT R
@ @ MinMax SPLITrel nR
0.0 ¢ {) MinMax SPLITrel R

Inverse Recall

1 2 3 4 5 6 7 8 9 10 11
Number of Clusters

Figure 5.10: Inverse Recall for Cut Strategies (iCP,iSP)=(0.2,0.5) over Number of
Clusters

Changes in the inverse recall for 5 cutting strategies if the numbers of clusters varies from 2 to 11. The
true number of containers is 6.

Procedure: As the correlation is calculated using not only recall and precision but
also their inverse values, it is a good measure for the overall quality of a clustering. In
figure 5.11 we plotted the correlation over the number of clusters for the probabilities
(0.1,0.2) and (0.2,0.5) as these plots are representative samples.

Results: As a general tendency, the correlation increases until it reaches the real
number of clusters and remains within 0.1 of this peak correlation value with a tendency
to decrease for higher cluster numbers. Both examples in figure 5.11 show a strong
increase in correlation until the real number of clusters is reached. This increase is
followed by a stagnation or very slow decrease around a value that is not more than 0.2
below the optimal. For iCP > 0, which we assume to be the case for the majority of real
world graphs, cut procedures with SPLIT,.; outperform those based on SPLIT. As for the
SPLIT based procedures, those using Min-Max cut clearly outperform the Stoer-Wagner
using procedure. The use of refinement (R) further improves the results for SPLIT,.; by
0.1 on average, the increase for SPLIT is lower. With a stable average correlation of 0.8
for all cluster number exceeding 6, cut procedures using SPLIT,.; give also high quality
results for wrongly estimated cluster numbers.

Discussion: The correlation visualizes the combined influence of recall and inverse
recall in the combined measure. For cluster numbers smaller than the real value 6, the
low inverse recall reduces the overall clustering quality for the cutting methods. As the
number of cut clusters exceeds 6, the increased number of clusters separates values that
originally belong to one cluster. Hence an imperfect cluster is mapped to the real cluster,
missing out relevant values which leads to a decrease in recall.

109

5 Evaluation

-
o

6 0 0 vy
0.8 Q o) ©) 0
0.6 Q v B § m a : :

0.4 A A StoerWagner SPLIT nR
I MinMax SPLIT nR

0.2 V¥V MinMax SPLIT R A
Q0 Max S ITrel nA A A A A A A

0.0 {){) MinMax SPLITrel R

Correlation

1 2 3 4 5 6 7 8 9 10 11
Number of Clusters

(a) Correlation for (0.1,0.2)

1.0 <> A A StoerWagner SPLIT nR
<> W MinMax SPLIT nR
_ 08 % @ Q v MinMéSPLIT
S T) @@ MinM® sPLIT@nR
0.6 v] v ¢) MinMax SPLITrel R
204 o = 3 = B Y ¥ %
s ®
0.2 A
A A A A A A A 4 2
0.0
1 2 3 4 5 6 7 8 9 10 11

Number of Clusters

(b) Correlation for (0.2,0.5)
Figure 5.11: Correlation for Cut Strategies over Number of Clusters

Changes in the correlation for 5 cutting strategies and different iCP iSP tuple if the numbers of clusters
varies from 2 to 11. The true number of containers is 6.

Overall, the recall has a high stability for an increasing number of clusters. This implies
that even if the number of clusters is estimated incorrectly, the graph cut still represents
the original container structure as good as if the correct number would have been given.
Considering the results in 5.11, we consider it advisable to use the cutting strategy
Min-Max with SPLIT,.; and refinement in ConComM. This shows that Min-Max with
SPLIT,.,,; is indeed very suited to identify meaningful cuts, even if the graph is strongly
interconnected as for (iCP,iSP)=(0.2,0.5). If the number of real containers is unknown,
our results suggest to overestimate the number of clusters as the correlation remains
high even for cluster numbers that are wrong by a factor of 2 compared to the real
container number.

110

5.3 ConComM Evaluated

5.3.3 Classification Results

In the last two subsections we evaluated the first ConComM stage. Our results indicated
that the cutting procedure Min Max cut with SPLIT,.; and refinement is the most capable
k-cut technique for our investigated cases. But ConComM not only consists of a graph
cutting part. We use the clustering obtained by the cut to train a classifier, in order to
predict the container even for those points that have not yet been part of any interaction
and therefore the interaction graph.

Methodology: In this subsection we quantify the quality of classifiers that were trained
on the outcome of the different k-cut strategies. The classifiers were obtained using
logistic regression with different features. In this classification evaluation, we investigate
two main questions. Firstly we are interested to find good features that produce
reliable classifiers, even if the number of classes is much higher than the real number
of containers. Hence we trained logistic regression trained using linear and quadratic
features and compared them against each other.

The second question addresses the uncertainty in factors influencing the container
structure. If the classifier should be able to learn the container structure, the influencing
factors have to appear in the features used for classification. As one we not tell what is
required (influencing) information and what is not when we define the features for the
first time, we have to assume that the features include a lot information that does not
influence the container structure. Therefore the feature vectors contain a lot of noise
due to these unnecessary information parts. We consider it important to find out how
the classification results change if unnecessary information is added to the features. For
the evaluation, the relevant parameters to describe containers are x and y coordinate,
as the containers are given by the room. To add noise, we added information about a
service’s network to the features. Within the simulation we introduced three networks
that were randomly assigned to the services. In order to use the network information
for the features, the networks were mapped to the numbers 1, 2 and 3.

Procedure: The classifier is trained on the services contexts labelled with the clusters
obtained by the k cut. The whole dataset of 91 service contexts is randomly split into 5
nearly equally sized subsets. Next, leave one out cross validation is applied to the sub
datasets. This results in 5 classifiers for each combination of feature, cutting method
and number of cuts. We calculated the quality measures for the left out data points and
averaged the measures over the 5 classifiers.

Results: As the results and tendencies are very similar for all relevant iCP iSP tuple
only the results for (iCP,iSP)=(0.2,0.5) are shown here. Figure 5.12 gives the correlation
of classifiers based on four different features types and the different k-cut strategies

111

5 Evaluation

1.0 /\/\ StoerWagner SPLIT nR Lin 1.0 /\/\ StoerWagner SPLIT nR LinNet
[[JCJ MinMax SPLIT nR Lin [C]J] MinMax SPLIT nR LinNet

0.8 V'V MinMax SPLIT R Lin 0.8 V V¥ MinMax SPLIT R LinNet
@@ MinMax SPLITrel nR Lin @ @ MinMax SPLITrel nR LinNet

'% 0.6 N ¢ ¢ ° ° (X3 gnMax SPLITrel R Lin % 0.6 v ¢ ¢ :’ MinM‘ax spuze\ R Lirxet
e L F oo ® Eoe ¥ ; L
o [§)

0.2 ¥y ®w o 0.2 m 8 a

. A ® o A A 3 § 8 9 A 2 A A A 5 3 x ¥

1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11
Number of Clusters Number of Clusters
(a) Linear Features for x and y coordinate (b) Linear Features for x, y coordinate and
Network
1.0 /\/\ StoerWagner SPLIT nR Quad 1.0 A/ StoerWagner SPLIT nR QuadNet
’] MinMax SPLIT nR Quad [CJ[J MinMax SPLIT nR QuadNet

0.8 ‘ o ’ 'V MinMax SPLIT R Quad 0.8 WV MinMax SPLIT R QuadNet
S v ¢ ® @@ MinMax SPLITrel nR Quad s @@ MinMax SPLITrel nR QuadNet
B o6 ¢ v ® @ & MinMax SpLITrel R Quad B 06 ¢ & Minmax sgyrme! Rguadwe" ¢ ¢ ¢ ‘ ¢
L o4 a E vV YV v ¥ ' L o4 ¥ , e ©) ‘
8 B @ = ¥ 8 [] ? v 5 =

D S N N S N 2 oA 2 @ , B i I > 7B

0.0 G ﬁ ﬁ 0.0 X X

1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11
Number of Clusters Number of Clusters

(¢) Quadratic Features for x and y coordinate (d) Quadratic Features for x, y coordinate and
Network

Figure 5.12: Classifier Correlation for Different Features

The correlation of classifiers trained using logistic regression on the k-cut results for different cut
procedures. Here the classifiers were trained using different features. All of them use x and y coordinate of
a training point (IoT service) with additional network information in two cases. Subplots 5.12a and 5.12b
use linear features represented through an orange colour scheme, while 5.12¢ and 5.12d use quadratic
features marked with a blue colour scheme.

over the investigated number of clusters. The different feature types are linear features
(orange colour scheme) for x and y coordinate (LinXY 5.12a) and x, y with network
(LinXYNet 5.12b) as well as quadratic features (blue colour scheme) with purely x and y
(QuadXY 5.12c¢) or additional network (QuadXYNet 5.12d).

We observe that the results for the feature types LinXY, LinXYNET and QuadXYNet
look very alike in terms of overall performance and stability over number of clusters.
Especially the stability over number of clusters is constant and high, as the results
classifiers trained on SPLIT,, based cut results are in range [0.4,0.6] for all cluster
numbers > 5. All other methods perform worse than this.

The outlier are classifiers trained with QuadXY features. Here the peak performance for
SPLIT, ., is around 0.9 for 6 clusters. However, the performance decreases as the number
of clusters exceeds 8, which indicates a suboptimal stability. For quadratic features is
is therefore important to note that introducing the network information smooths the
results and makes them more stable. The same can be observed for a comparison of
quadratic and linear features. Reducing the features complexity from quadratic to linear
has the same flattening effect as the introduction of noise.

112

5.3 ConComM Evaluated

Aqngeaosd ssed
geaod sseid

(a) Linear Features for x and y coordinate (b) Quadratic Features for x and y coordinate
Figure 5.13: Classifier Probability Distribution over Container for Different Features

The probability distribution for a point in the x-y-plane to belong to a certain container (room) for the
example setup shown in figure 5.3. The probability functions for the 6 different classes are shown in
yellow, orange, light green, dark green and blue and the real container outlines are given in black. The
classifiers were both trained on the 5-cut outcome of SPLIT,.; with Min Max cut without refinement on

interaction data obtained by (iCP,iSP)=(0.2,0.5). The plots show the structural difference in probability
distributions of classifiers trained with linear or quadratic features.

Discussion: Both observations can be explained through regularization. The more
complex features get, the more prone to overfitting the classifier becomes. Features that
allow the classifier to strongly adapt to single outliers can lead to an overall performance
reduction. This is illustrated in 5.12c. If the input data is very correct, the classifier
is able to perfectly model the underlying ground truth as for 6 clusters. However, if
the input data labels do not represent the underlying ground truth perfectly (as for

more than 8 clusters), the classifier is rather learning the noise instead of the general
tendency.

Figure 5.13 shows the structural difference in the probability distribution of two different
classifiers, trained with linear and quadratic features. The probability distribution for
quadratic features 5.13b represents the underlying room structure much more accurately.
This is because quadratic functions allow a more accurate model of the geometry than
linear functions. However it can also model noise more accurately. Linear features
on the other hand can not model the geometry as accurately but this limitation turns
into a strength when noise makes generalization important in order to see the general
tendency. The introduction of network information as feature also acts as regulator,

which explains why quadratic features with network information produce more stable
results.

In comparison to the correlation results for the pure cut strategies in figure 5.11b, the
correlations for the trained classifiers are lower by at least 0.2 on average. It is not
surprising that the quality of classifier is lower as it was trained on imperfectly labelled

113

5 Evaluation

data and depending on the choice of features the classifier also introduces an error. But
given given that each logistic regression is trained with about 72 data points only, the
performance of the classification can be considered high. Under the (not completely
correct) assumption that each cluster contains about the same amount of samples, this
gives less than 10 training points per class for all cluster numbers greater than 7. Even
though the assumption of equally distributed samples is wrong, the number of samples
is still small what makes a correlation of 0.5 a good result.

Summing up the results of this section we can state the following: SPLIT,.; with Min Max
cut is a very powerful method to cut graphs with approximately equally sized clusters.
Not only does it give reliable results even for graphs with strongly interconnected
clusters, it also produces highly correct cuts if the number of cuts is twice as big as the
number of real clusters. For this task it outperforms all other tested methods. The quality
of a classifier trained on the corresponding graph cuts is lower than the cut quality
and more stable over the cluster numbers if regularization is introduced. As adding
non relevant information to the feature vector introduces noise and therefore acts as
regularization, we require no knowledge about the factors influencing the container
structure to train well performing classifiers. Taking all this together, ConComM works
as we intended it to. It takes only an interaction graph and learns the container structure
without prior knowledge about the factors shaping the structure.

After we evaluated our tool to predict a services container, in the last section we investi-
gate whether this additional information improves composite service recommendation
with bandit algorithms.

5.4 Closing the Circle: LinUCB for Composite Service
Recommendation II

In 3.4.4 we demonstrated that LinUCB’s performance significantly decreases when it
is used to recommend composite services. ConComM provides additional contextual
information about each service’s interaction enabling container, what can be incorporated
in the LinUCB approach.

Procedure: Our experimental setup is the same as in 3.4.4. This included that a
composite service is rejected a whole if either one of its component services is not
accepted by the users reward function or if they are not within one room. We added the
ConComM probability distribution over the rooms for each service as service feature to
the bandit. Furthermore, we added the users room as user feature.

114

5.4 Closing the Circle: LinUCB for Composite Service Recommendation I

0.40
0.35
0.30
0.25
0.20
0.15

0.10 e—e LinUCB without ConComM
0.05 9—¢ LinUCB with ConComM

0.00
0 200 400 600 800 1000

Number of Trials

CTR

Figure 5.14: CTR for Composite Service Recommendation with ConComM

The CTR for LinUCB used for composite service recommendation over the total number of recommenda-
tions made. The dark blue line with circular markers shows the results for LinUCB that has no information
about a services container. Plotted in read with square markers are the results for a LinUCB approach that
utilizes container information about the services provided through ConComM.

Figure 5.14 shows CTR for composite service recommendation with LinUCB using the
ConComM container estimates (square marker) and not using it (circle marker). The
CTR is plotted over the number of consecutive recommendations.

Results: Utilizing the ConComM information improves the CTR by about 14% in
comparison to the standard approach if the number of trials exceeds 200. This long
term trend validates the initial conjecture, which assumed knowledge about the con-
tainer structure to improve the results for composite service recommendation. Another
interesting observation can be made for the first 100 recommendations. Within the first
50 recommendations, the approach using ComComM achieves CTR’s twice as high as
for the benchmark approach. Afterwards, the benchmark outperforms the ConComM
approach for a few iterations before ConComM takes over again and consolidates its
position.

Discussion: The first few (<50) recommendations are most crucial for a system
relying on user feedback. It has to perform acceptable especially with only a few samples
in order to motivate users to keep using it. Hence the strong CTR increase within the first
50 recommendations is one of the biggest advantages of the ConComM using LinUCB
over a standard LinUCB. Our above presented strategy to incorporate the ComComM
information as feature into LinUCB is only a first approach. Further possibilities exist,
but their implementation and evaluation is beyond the scope of this work. But even
for one of the most simple strategies, the results are already very promising. The
container information we provided through ComComM can therefore be used as starting
point for further investigation to improve bandit approaches for composite service
recommendation.

115

5 Evaluation

5.5 ConComM Method Discussion

Given the CTR increase for composite service recommendation with LinUCB and incor-
porated ConComM data in comparison to an unmodified LinUCB, the general framework
clearly served its purpose. The modification of SPLIT in order to choose more meaning-
ful cuts that resemble the min max clustering principle was also a clear success. For a
broad variety of graphs, the methods based on SPLIT,.; outperformed the benchmark
procedures by far and also showed a high stability even if the number of cuts was much
higher than the real number of clusters.

For ConComM we focused on the development of a good cut method as we hoped that a
cut procedure that reliable extracts the container structure would give more accurate
classifiers, as they can only be as good as the training data. This connection is well
observable, given that the classifiers trained on SPLIT,,; cut results score much higher
correlation values than the classifiers trained on SPLIT based procedures. However the
loss in quality for the classifiers in comparison to the raw cut results can be explained
by the construction of our reward function. The probability that all three services are
accepted even if we guarantee that they are all within the same room is the probability
of one service being accepted to the power of three, for three services in a composite
service. As LinUCB hybrid scored CTR values around 0.7, which can be seen as the
probability that a device is accepted, the probability for an accepted composite service
is 0.343. This matches very well with the CTR for LinUCB hybrid with ConComM
information.

However, there is still room for improvement as we did not spend a lot thought on a
sophisticated features for the classifier. We rather tried to identify good cut algorithms to
obtain high quality training data than to tune the classifiers features to give good results.
With better feature engineering one might be able to further improve the classification
results.

Currently we only evaluated ConComM based on one sample scenario with 91 IoT
services. To truly explore the full potential and possible shortcomings of the approach,
more experiments would have been desirable. The reason for conducting all tests
only based on one scenario was the high computational effort to evaluate the different
ConComM stages and linked to that, the long time per evaluation.

While the use of ConComM makes the computation more complex in comparison to
only using LinUCB, an improvement by 14% is a significant increase. Unfortunately we
could not investigate the effect of designing different feature sets for LinUCB and how
they effect the method’s performance. Given the current simplicity of linking LinUCB
with ConComV,, it is a justified expectation that a more sophisticated way of feature
incorporation will further improve the results.

116

6 Conclusion

Success is not final, failure is not fatal: it is
the courage to continue that counts.

(Winston S. Churchill)

6.1 Approach Summary

The emerging Internet of Things and the integration of real world services into the web
creates new challenges in terms of 10T service discovery. One of the key problems is the
recommendation of contextually relevant services to users who request a certain type of
service. Preliminary studies have shown Contextual Bandit algorithms like LinUCB to be
well suited for IoT service recommendation.

Testing recommender systems for this purpose is problematic due to the lack of reliable
data sets, as current buildings and environments rarely offer the high density of IoT
services these systems are designed to handle. To address this issue an ambient space
simulation was developed in chapter 3, which can be used to simulate large numbers of
IoT services in an artificial building environment. Utilizing the simulation it was possible
to confirm the good performance of the LinUCB approach for single service IoT service
discovery.

In the course of investigating LinUCBs abilities for IoT service recommendation tasks it
became apparent that the bandit approach, however suited for single service recommen-
dation, did not perform well for recommending multiple services for a combined task.
The development of a framework that would improve LinUCB’s performance for compos-
ite service recommendation became the second and main contribution presented in this
thesis. Based on the idea that information about services that work well together would
improve LinUCB’s performance, the ConComM framework aims to identify services that
can be guaranteed to work together in a composite task.

Only requiring information about previous interactions among IoT services, ConComM
uses a specifically designed k-cut procedure based on Min-Max cut and a modified version
of SPLIT that is called SPLIT,,; to cut the interaction graphs in groups of compatible
services or ‘containers’. In order to know the container even for those services that have
not yet been part of an interaction, logistic regression is used to obtain a classifier that

117

6 Conclusion

outputs the container given a services context. Extensive testing has shown that classifiers
trained on the SPLIT,; based k-cut procedure score a correlation of more than 0.5 on
average, which outperforms classifiers trained on cuts by benchmark algorithms by far.
Also it was possible to document a quality improvement by 14% for recommendations
that used information about a services container, even for a rather simple method of
information incorporation.

6.2 Contribution

In this thesis we present a specialized and easily extensible simulation that can emulate
hundreds of services in different rooms. It is equipped with a carefully modelled
reward function. This reward function enables us to imitate user interaction with
recommendation systems, which can not be accomplished by existing mere IoT device
simulators. The reward function qualifies the simulation as testing ground for different
context sensitive recommendation algorithms in an IoT service discovery context. To the
best of our knowledge, such an evaluation tool has not been introduced before.

Furthermore we developed a framework to identify interoperable IoT services, without
any preliminary knowledge about the constraints that influence interoperability. The
system itself as well as the incorporation of the framework’s outcome into existing
bandit approaches is a novel approach, as the recommendation of multiple interoper-
able services in IoT context did not receive any scientific attention so far. Therefore
ConComM enables contextual recommendation approaches that work for single service
recommendation, to be applied to composite service recommendation.

6.3 Potential Future Work

In ConComM Method Discussion we talked about possible starting points for further
evaluation, namely the better embedding of ConComM results into the bandit approach
and the need for more feature engineering for the classifier. Both problems did not
receive the appropriate attention due to the time limitations of a bachelors thesis.
It would be very interesting to investigate whether different feature types such as
radial basis functions could improve the quality of predictions and what happens if the
unnecessary information is the dominant part of a feature vector.

So far we used logistic regression to obtain a classifier that maps a service to a probability
distribution over the different possible containers. Hence We treated the problem of
assigning service context to containers as multi class problem. An approach that would

118

6.3 Potential Future Work

require a completely restructured framework is to treat the mapping service context —
container as multi-labelled instead of multi class problem. Within this work we assumed
that each service context was part of one and only one container. This might not be
true in reality, as a service could be part of different interaction enabling containers.
Logistic regression already allows more detailed statements, given that the probability
distribution is a more detailed statement than the strict mapping described above.
Therefore it would be interesting to investigate whether the probability distribution can
- where necessary supported by more feature engineering towards that goal - already be
used for multi label like statements. For example, a service context with a probability
distribution scoring more than 30% for two discriminative classes could be assigned to
both of them.

Given the long computation time for ConComM, another very important point of contact
for future work is adaptation of ConComM towards an online and on demand framework.
Currently the cut and classifier have to be newly computed whenever the interaction
graph changes, which will permanently be the case in a real scenario. As our work
aimed to explore whether a framework like ConComM would improve composite service
recommendations, the incorporation of online and on demand cut and classification
algorithms is a further interesting topic when it comes to considering a large scale
application.

The promising results for composite service recommendation with LinUCB using Con-
ComM information and the importance of IoT service recommendation within the next
years alone are enough reason for further studies. Our investigation can only be a start
to explore the full potential of adapted bandit approaches for composite IoT service
recommendation. The development of the highly reliable k-cut procedure SPLIT,., with
Min Max cut and the good performance of classifiers trained on top of these results are
excellent outcomes on their own. Our results and the fascinating unexplored options
described above motivate further investigations in this field.

119

A Algorithms and Derivations

A.1 LinUCB Hybrid Model Derived

In this section we derive the hybrid model for LinUCB [LCLS10]. The Loss function for
the hybrid model L, , at a specific time step ¢ is given by

=0 r— Zzsaﬁ Zx 0)? + B + 02 (A.1)

In order to obtain the optimal values for g, and 6, the Loss function (A.1) is seperately
derived by both variables and each derivation set to 0. First the Loss is derived by f;:

oL, _ 0

0= %5 86*(2 Zzsasﬁ wa 457+ 6)

t t t t
0= 23 2 (= Y Yl 0) + 26
t
— Bt Zzs asz:gra =+ [Zzs asTs — Zzs,asxzaset>
S
To improve readability the following abbreviations are introduced:
t
Ao, =1+ sz,asxias
S
t
Bat = Zxﬁ,aszzas
S
t
baf - Z T'sZs,aq
S

This gives a formulation for ; in a more compact form:

Z Zs angTas +1)” Z Zs.asTs — BZ;Qt) (A.2)

121

A Algorithms and Derivations

So far we have not derived a sufficient formulation for 6, in this context. Therefore we
derive the loss function (A.1) again, but this time by 6,:

0L, 0

36’; :8015(; Zzsaﬁ Zm +5t+92)

0:

¢ ¢
0:22%7%(2 Zzsasﬁ ZxT 6) + 20,

0= (i, + 1) (e = a2,)
S

Using the compact notations from above, this yields

0, = (Aq,) (ba, — Ba,Br). (A.3)

For each time step ¢, both equations (A.2) and (A.3) for ; and 6; have to be fulfilled.
Plugging the newly gained formulation for 6; in (A.2) leads to the term

Zzs agz;jpa +1)” Zzs aTs — A;bat + BZL;A;IBW@).
Solving this for g, leads to
= (]_(Zt: Zs,aSZzas-H)_lBT lBat> (Z Zs,0.%5a, —|—]) (zt: 257%7"5—3;’;14;11)%),
= (X 1) (f_@zs,aszg;aﬁz) BT B)) (zzsasrs T A,

- (iz&aszzas +1—BLA'B.,) (Zzs a7s — B AL ba,).

Following the form that solutions for coefficients in linear regression usually take, we are
aiming to express 3; € R* as 8, = Ay by, where Ay, € R¥** and b,, € R*. We therefore
define A, and b, as follows:

S,0s

t
A()’t = (Z ZS@SZT —I— I — BZ;A;}Bat)_l,

t
bos = (Z Zs.asTs — Bg;A;tlbat).

122

A.2 Stoer Wagner Cut Methods

To update Ay, and b, incrementally, they are initialized with Ay; = I;; and by; = 0. In
each iteration the following calculations have to be performed:

_ T T 4—1 T —1
AO,t = A07t_1 —+ zmtzt’at — BatAai Bat + B Aatle

ag—1 ag—13

bo,s = boi—1 + 240, Tt — Bg;A;tlbat + BaTt_lA(;l_lbat_l,
where A,,, Bgt and b,, are the parameters associated with the arm having the hightest
confidence bound in the #** step. To reduce the amount of data that needs to be stored,
it is advisable to add the terms belonging to ¢ — 1 first. Then the update of A,, ,, BI |
and b,, , can be done. As a final step, the new values A,,, B., and b,, can be used to
finish the computation of A, and by ;.

A.2 Stoer Wagner Cut Methods

Algorithmus A.1 MinimumCutPhase for Stoer-Wagner Algorithm

procedure MINIMUMCUTPHASE(G, W, s)
S+ s
while S # V do
Add the vertex, that is most tightly connected to A to A
end while
shrink G by merging the two vertices last added to A
return cut-of-the-phase
end procedure

Algorithmus A.2 MinimumCut for Stoer-Wagner Algorithm

procedure MINIMUMCUT(G, W, s)
minimumCut < oo
while |V| > 1 do
cut-of-the-phase < MINIMUMCUTPHASE(G, W, s)
if cut-of-the-phase < minimumCut then
minimumCut < cut-of-the-phase
end if
end while
end procedure

123

A Algorithms and Derivations

A.3 In Room Visibility

An interesting problem that occurred during the interrelation definitions in To Take or
not to Take: The Reward Cook Book was the visibility issue. How do we trace whether a
user can actually see the device that is in the same room. As a counterexample, imagine
a L shaped room which is made out of two boxes. Now picture a device places in left
part of the lower box forming the L’s vertical line and a user standing up in the L’s
horizontal line-box. The user could can not see the device from its position, because the
device is blocked by the rooms wall. How can we test if two objects in the room have an
unblocked free view of each other? A similar situation is illustrated in figure A.1 for the
user whose intersection points are denoted by .

The way described here uses Ray objects and traces the ray from the user to the device as
long as it stays within room boxes. A ray has an origin r,,;, in the 2 dimensional space R?
as well as a direction ry;, that also is a vector in R?. The first step of the here proposed
solution is to construct a ray between the users position, which we call start position
SP € R? and the end position EP € R?, where the device is located. The following
process is based on the fact that a room is constructed from boxes, which are concave
geometric objects. By definition, concave means that the connecting line between two
arbitrary points within a concave area itself is fully contained in the area. Applied to
our problem we can state: as long as we are following a ray within a single box, we can
be sure a user could see any point on the ray because the ray itself is fully contained
in the box. The basic idea is now to follow the ray from the start position within some
box containing SP as far as possible towards the endpoint. As far as possible means
that we stop when we would leave the box that has the furthest extend towards £ P and
contains SP. If we did not hit £P on the way, we set our current position C'P to that
point we have just reached. We repeat the described process with C'P instead of SP
until we either find F'P or tested all boxes that contain C'P without finding a box that
would allow us to walk any further.

Having explained the general idea, the next paragraphs will explain the computation in
deeper detail. Once the ray between E'P and SP is constructed, the whole computation
takes place on the ray. This transforms the previous 2D problem into a 1D problem. In
a first step SP and EP are transformed into positions on the ray. The new coordinate
system on the ray is denoted by 7" € R, points in this system will be denoted by ¢ in
[—00, 0], with ¢ = 0 being in the rays origin. The position ¢ on the ray for an arbitrary
point p € R? in an 2-dimensional space can easily be computed by solving the following
equation for ¢t € T

P = Torig + 1 rgir (A4)

124

A.3 In Room Visibility

This formulation also holds for rays in higher dimensions with p, 74,4, 7¢; € R". Positive
t’s on the ray are such positions that are obtained by adding the direction that is
multiplied by some scalar value to the origin. Negative ¢’s are obtained by subtracting
the scaled direction to the origin. Transforming SP and EP into the ¢-System using A.4,
we obtain ¢, = 0 and ¢..

By construction, the ray in the simulation has its origin in S P which results in ¢, = 0. For
other ray construction techniques it can not be ensured that transforming SP onto the
ray will result in ¢, = 0. Because of this, a second transformation is done to transform the
rays coordinate system. The new system is denoted by X. The X'-system is constructed
to have its origin in ¢,, with the the additional constraint that transforming ¢. into x.
in the X’ system gives a positive number. This implies that increasing a value =z € X
from = = 0, which is S P, will be like walking towards £ P and having passed it it after
exceeding z.. How to transform a value in the 7 -system into a value in the X’-system
is given in A.5. Here, d,,qking is merely factor to adjust the sign in order to ensure that
z, € [0, 00] is truely positive.

(te B tS)
Awalking = T
ting ||te - tSH2
T = (t - ts) : dwalking; (AS)
with || - ||» being the euclidean norm for n-dimensional vector spaces. Using A.5 to

transform ¢, and ¢, into x, and z, results in the following values that have the desired
properties:

(te - ts)z
Le = (te - ts) : dwalkmg = > 0.

”te —ts ||2
Algorithm A.3 begins with assigning the transformation of SP to the current position
xe.urr in X, which leads to z.,,, = 0. For the scenario illustrated in figure A.1, z.,,, = 0
for the users denoted by x and y. Now we will compute intersections of the ray with
all boxes, the current position z.,.. is currently in. All the intersection points are
transformed into the X'-system, where then the biggest x value is chosen. Choosing
this value equals choosing the box that allows us to follow the ray furthest towards
the end point z.. We denote this biggest value by z,... The process of computing the
intersections and getting the biggest = value is summarized as getFurthestXPoint(ray,
box). For the example obtaining x;.; would work as follows: Both users are only
contained in Box 1. Computing the intersection points with box 1 and transforming
them into the X’ system for both users gives the possible points {z_;, z; } for user x and

125

A Algorithms and Derivations

i
Yai
¢
I
\\ Yo
\\
\\
)
X1 \‘\ Xo Y1
X1
Y2
X3
. X
"' s.‘\3
i Y3 Y
H

Figure A.1: Object Visibility within a Non Convex Room

Visibility of an IoTDevice (orange circle) for two different user positions (black circles) in a non-convex
room that consists of Box 1 and Box 2. All points on the ray are given within the X'-coordinate system
for the rays originating in x¢ and y respectively, with their positive axis pointing towards the IoTDevice.
Therefore, all intersection positions x and y with positive indices are scalars [0, co].

{y_1,y-} for user y. Selecting the point on the ray that is closest to the orange IoT device,
results in z,.,; being assigned x; for user x and y, for user y respectively.

If 240t > 7., x. is within the same box and can therefore be seen from z,. The search
is concluded here and the result visible can be returned. If z,..; is smaller than z., but
strictly bigger than z.,,,, T;.s; becomes the new z.,,.. Afterwards, the next set of boxes
that contain z.,,., is tested for a bigger z,.. If, on the other hand, x.; < Z ¢y, We will
not update x.,,,. This happens when x.,,, is the last position before leaving the room,
which means it is impossible to follow the ray any further without leaving the room. In
this case we did not find x. before leaving; the result invisible will be returned. Applying
this procedure to the example gives the following: In the first run x.,,, is updated for
both users, because z;.s < x. and x;est > T for both cases. The next iteration leads
to the possible candidates {z_;,z;} for user x and {y;,ys} for user y. z,., therefore
becomes x; and y3 respectively. For user y x;..; > x. holds, which returns visible. For
user x, on the other hand, z;.; < x. and x;.5; < Xy, Which correctly returns invisible.

126

A.3 In Room Visibility

Algorithmus A.3 Test if Connection between two Points Stays within a Room

procedure RAYSTAYSINSIDE(room, ray, £ P, x.)
Leurr < 0
xCurrChanged < true
while room has unchecked boxes && xCurrChanged do
xCurrChanged < false
box <+ GETUNCHECKEDBOX(room)
if £ P in box then
return true
else
Ttest < GETFURTHESTXPOINT (ray, box)
if 2051 > Teyrr then
xCurrChanged < true
L eurr — Ttest
if ;. > 7. then
return true
end if
end if
end if
end while
return false
end procedure

127

Bibliography

[AB10]

[ACF02]

[ACFS02]

[ADB+99]

[AFB14]

[AIS93]

[AT11]

[BB+57]

J.-Y. Audibert, S. Bubeck. “Best Arm Identification in Multi-Armed Ban-
dits.” In: COLT - 23th Conference on Learning Theory - 2010. Haifa, Israel,
June 2010, 13 p. URL: https://hal-enpc.archives-ouvertes.fr/hal-00654404
(cit. on p. 20).

P. Auer, N. Cesa-Bianchi, P. Fischer. “Finite-time Analysis of the Multiarmed
Bandit Problem.” In: Machine Learning 47.2 (2002), pp. 235-256. URL:
http://dx.doi.org/10.1023/A:1013689704352 (cit. on p. 20).

P. Auer, N. Cesa-Bianchi, Y. Freund, R. E. Schapire. “The Nonstochastic
Multiarmed Bandit Problem.” In: SIAM Journal on Computing 32.1 (2002),
pp. 48-77. eprint: http://dx.doi.org/10.1137/50097539701398375. URL:
http://dx.doi.org/10.1137/50097539701398375 (cit. on p. 22).

G.D. Abowd, A.K. Dey, P.J. Brown, N. Davies, M. Smith, P. Steggles.
“Towards a Better Understanding of Context and Context-Awareness.” In:
Proceedings of the 1st International Symposium on Handheld and Ubiquitous
Computing. HUC '99. Karlsruhe, Germany: Springer-Verlag, 1999, pp. 304—
307. URL: http://dl.acm.org/citation.cfm?id =647985.743843 (cit. on
pp- 14, 15).

R. Allesiardo, R. Féraud, D. Bouneffouf. “A neural networks committee
for the contextual bandit problem.” In: International Conference on Neural
Information Processing. Springer. 2014, pp. 374-381 (cit. on p. 27).

R. Agrawal, T. Imielinski, A. Swami. “Mining association rules between
sets of items in large databases.” In: Acm sigmod record. Vol. 22. 2. ACM.
1993, pp. 207-216 (cit. on p. 71).

G. Adomavicius, A. Tuzhilin. “Context-aware recommender systems.” In:
Recommender systems handbook. Springer, 2011, pp. 217-253 (cit. on
pp- 20, 22).

G. M. Beal, J. M. Bohlen, et al. The diffusion process. Agricultural Experi-
ment Station, Iowa State College, 1957 (cit. on pp. 93, 94).

129

https://hal-enpc.archives-ouvertes.fr/hal-00654404
http://dx.doi.org/10.1023/A:1013689704352
http://dx.doi.org/10.1137/S0097539701398375
http://dx.doi.org/10.1137/S0097539701398375
http://dl.acm.org/citation.cfm?id=647985.743843

Bibliography

[BBG12]

[Bis06]

[BJ13]

[Carl6]

[CAS13]

[CLCL14]

[CMBPO04]

[CMTJ12]

[CS14]

130

D. Bouneffouf, A. Bouzeghoub, A.L. Gancarski. “A Contextual-Bandit
Algorithm for Mobile Context-Aware Recommender System.” In: Neu-
ral Information Processing: 19th International Conference, ICONIP 2012,
Doha, Qatar, November 12-15, 2012, Proceedings, Part III. Ed. by T. Huang,
Z. Zeng, C. Li, C. S. Leung. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 324-331. URL: http://dx.doi.org/10.1007/978-3-642-34487-
9 40 (cit. on p. 27).

C. M. Bishop. “Pattern recognition.” In: Machine Learning 128 (2006) (cit.
on p. 38).

G. Bonnin, D. Jannach. “A comparison of playlist generation strategies
for music recommendation and a new baseline scheme.” In: Workshops at
the Twenty-Seventh AAAI Conference on Artificial Intelligence. 2013 (cit. on
p. 71).

D. Carlson. Ambient Dynamix. 2016. URL: http://ambientdynamix.org/
(cit. on pp. 9, 13).

D. Carlson, B. Altakrouri, A. Schrader. “An ad-hoc smart gateway plat-
form for the web of things.” In: Green Computing and Communications
(GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE
International Conference on and IEEE Cyber; Physical and Social Computing.
IEEE. 2013, pp. 619-625 (cit. on p. 17).

K.-C. Chou, H.-T. Lin, C.-K. Chiang, C.-J. Lu. “Pseudo-reward Algorithms
for Contextual Bandits with Linear Payoff Functions.” In: ACML. 2014
(cit. on pp. 27, 28).

D. Cao, O.T. Masoud, D. Boley, N. Papanikolopoulos. “Online motion
classification using support vector machines.” In: Robotics and Automation,
2004. Proceedings. ICRA04. 2004 IEEE International Conference on. Vol. 3.
IEEE. 2004, pp. 2291-2296 (cit. on p. 38).

S. Chen, J.L. Moore, D. Turnbull, T. Joachims. “Playlist prediction via
metric embedding.” In: Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM. 2012, pp. 714—
722 (cit. on p. 71).

D. Carlson, A. Schrader. “Ambient ocean: A web search engine for context-
aware smart resource discovery.” In: Internet of Things (iThings), 2014 IEEE
International Conference on, and Green Computing and Communications
(GreenCom), IEEE and Cyber, Physical and Social Computing (CPSCom),
IEEE. IEEE. 2014, pp. 177-184 (cit. on pp. 18, 19).

http://dx.doi.org/10.1007/978-3-642-34487-9_40
http://dx.doi.org/10.1007/978-3-642-34487-9_40
http://ambientdynamix.org/

Bibliography

[CWO1]

[DASO1]

[DHZ+01]

[DJP+92]

[DMD+10]

[EK72]

[FHTO1]

[FK15]

[GH88]

[GM16]

[Goo16]

C.-K. Cheng, Y.-C. Wei. “An improved two-way partitioning algorithm
with stable performance [VLSI].” In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 10.12 (1991), pp. 1502-1511
(cit. on p. 31).

A.K. Dey, G.D. Abowd, D. Salber. “A Conceptual Framework and a Toolkit
for Supporting the Rapid Prototyping of Context-aware Applications.”
In: Hum.-Comput. Interact. 16.2 (Dec. 2001), pp. 97-166. URL: http:
//dx.doi.org/10.1207/S15327051HCI16234 02 (cit. on p. 14).

C.H. Q. Ding, X. He, H. Zha, M. Gu, H.D. Simon. “A Min-max Cut Al-
gorithm for Graph Partitioning and Data Clustering.” In: Proceedings of
the 2001 IEEE International Conference on Data Mining. ICDM ’01. Wash-
ington, DC, USA: IEEE Computer Society, 2001, pp. 107-114. URL: http:
//dl.acm.org/citation.cfm?id=645496.658058 (cit. on pp. 31, 33, 34).

E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, M. Yan-
nakakis. “The Complexity of Multiway Cuts (Extended Abstract).” In:
Proceedings of the Twenty-fourth Annual ACM Symposium on Theory of
Computing. STOC '92. Victoria, British Columbia, Canada: ACM, 1992,
pp. 241-251. URL: http://doi.acm.org/10.1145/129712.129736 (cit. on
p- 31).

A. Dohr, R. Modre-Osprian, M. Drobics, D. Hayn, G. Schreier. “The Internet
of Things for Ambient Assisted Living.” In: ITNG 10 (2010), pp. 804-809
(cit. on p. 15).

J. Edmonds, R. M. Karp. “Theoretical Improvements in Algorithmic Effi-
ciency for Network Flow Problems.” In: J. ACM 19.2 (Apr. 1972), pp. 248-
264. URL: http://doi.acm.org/10.1145/321694.321699 (cit. on p. 30).

J. Friedman, T. Hastie, R. Tibshirani. The elements of statistical learning.
Vol. 1. Springer series in statistics Springer, Berlin, 2001 (cit. on pp. 35,
36).

I. Filippidou, Y. Kotidis. “Online and on-demand partitioning of streaming
graphs.” In: Big Data (Big Data), 2015 IEEE International Conference on.
IEEE. 2015, pp. 4-13 (cit. on p. 35).

O. Goldschmidt, D.S. Hochbaum. “Polynomial algorithm for the k-cut
problem.” In: FOCS. 1988, pp. 444-451 (cit. on pp. 31, 76).

Google. Geiger Counter World Map. 2016. URL: http://www.gmcmap.com/
(cit. on p. 16).

Google. Google — AdWords Help. 2016. URL: https://support.google.com/
adwords/answer/2615875?hl=en&from=6305&rd=2 (cit. on p. 61).

131

http://dx.doi.org/10.1207/S15327051HCI16234_02
http://dx.doi.org/10.1207/S15327051HCI16234_02
http://dl.acm.org/citation.cfm?id=645496.658058
http://dl.acm.org/citation.cfm?id=645496.658058
http://doi.acm.org/10.1145/129712.129736
http://doi.acm.org/10.1145/321694.321699
http://www.gmcmap.com/
https://support.google.com/adwords/answer/2615875?hl=en&from=6305&rd=2
https://support.google.com/adwords/answer/2615875?hl=en&from=6305&rd=2

Bibliography

[HK92]

[HMB12]

[IIOT16]

[Kar93]

[KS96]

[LCLS10]

[Lil6]

[LM]

[LZ08]

[ML11]

132

L. Hagen, A. B. Kahng. “New spectral methods for ratio cut partitioning
and clustering.” In: IEEE transactions on computer-aided design of integrated
circuits and systems 11.9 (1992), pp. 1074-1085 (cit. on p. 31).

N. Hariri, B. Mobasher, R. Burke. “Context-aware music recommendation
based on latenttopic sequential patterns.” In: Proceedings of the sixth ACM
conference on Recommender systems. ACM. 2012, pp. 131-138 (cit. on
p. 71).

Intel. A guide to the Internet of Things. 2016. URL: http://www.intel.com/
content/www/us/en/internet-of-things/infographics/guide-to-iot.html
(cit. on pp. 9, 13, 19).

D.R. Karger. “Global Min-cuts in RNC, and Other Ramifications of a Simple
Min-Cut Algorithm.” In: SODA. Vol. 93. 1993, pp. 21-30 (cit. on p. 31).

D.R. Karger, C. Stein. “A New Approach to the Minimum Cut Problem.”
In: J. ACM 43.4 (July 1996), pp. 601-640. URL: http://doi.acm.org/10.
1145/234533.234534 (cit. on p. 31).

L. Li, W. Chu, J. Langford, R. E. Schapire. “A Contextual-bandit Approach
to Personalized News Article Recommendation.” In: Proceedings of the 19th
International Conference on World Wide Web. WWW ’10. Raleigh, North
Carolina, USA: ACM, 2010, pp. 661-670. URL: http://doi.acm.org/10.
1145/1772690.1772758 (cit. on pp. 24-26, 121).

J. Li. Logistic Regression. 2016. URL: http://sites.stat.psu.edu/ ~jiali/
course/stat597e/notes2/logit.pdf (cit. on p. 36).

D. Lemire, A. Maclachlan. “Slope One Predictors for Online Rating-Based
Collaborative Filtering.” In: Proceedings of the 2005 SIAM International
Conference on Data Mining. Chap. 43, pp. 471-475. eprint: http://epubs.
siam.org/doi/pdf/10.1137/1.9781611972757.43. URL: http://epubs.siam.
org/doi/abs/10.1137/1.9781611972757.43 (cit. on p. 20).

J. Langford, T. Zhang. “The Epoch-Greedy Algorithm for Multi-armed Ban-
dits with Side Information.” In: Advances in Neural Information Processing
Systems 20. Ed. by J. C. Platt, D. Koller, Y. Singer, S. T. Roweis. Curran
Associates, Inc., 2008, pp. 817-824. URL: http://papers.nips.cc/paper/
3178-the-epoch-greedy-algorithm-for-multi-armed-bandits-with-side-
information.pdf (cit. on pp. 22, 23).

B. Mcfee, G. Lanckriet. THE NATURAL LANGUAGE OF PLAYLISTS. 2011
(cit. on p. 71).

http://www.intel.com/content/www/us/en/internet-of-things/infographics/guide-to-iot.html
http://www.intel.com/content/www/us/en/internet-of-things/infographics/guide-to-iot.html
http://doi.acm.org/10.1145/234533.234534
http://doi.acm.org/10.1145/234533.234534
http://doi.acm.org/10.1145/1772690.1772758
http://doi.acm.org/10.1145/1772690.1772758
http://sites.stat.psu.edu/~jiali/course/stat597e/notes2/logit.pdf
http://sites.stat.psu.edu/~jiali/course/stat597e/notes2/logit.pdf
http://epubs.siam.org/doi/pdf/10.1137/1.9781611972757.43
http://epubs.siam.org/doi/pdf/10.1137/1.9781611972757.43
http://epubs.siam.org/doi/abs/10.1137/1.9781611972757.43
http://epubs.siam.org/doi/abs/10.1137/1.9781611972757.43
http://papers.nips.cc/paper/3178-the-epoch-greedy-algorithm-for-multi-armed-bandits-with-side-information.pdf
http://papers.nips.cc/paper/3178-the-epoch-greedy-algorithm-for-multi-armed-bandits-with-side-information.pdf
http://papers.nips.cc/paper/3178-the-epoch-greedy-algorithm-for-multi-armed-bandits-with-side-information.pdf

Bibliography

[MRTM12]

[Nor98]

[Pow03]

[Pow07]

[PZCG14]

[R15]

[Rey13]

[Rob85]

[RPG+13]

[RRS11]

[SBG99]

[SLO9]

[SMOO]

D. K. Mahajan, R. Rastogi, C. Tiwari, A. Mitra. “LogUCB: An Explore-exploit
Algorithm for Comments Recommendation.” In: Proceedings of the 21st
ACM International Conference on Information and Knowledge Management.
CIKM '12. Maui, Hawaii, USA: ACM, 2012, pp. 6-15. URL: http://doi.acm.
org/10.1145/2396761.2396767 (cit. on pp. 21, 27).

J.R. Norris. Markov chains. 2. Cambridge university press, 1998 (cit. on
p- 71).

D. M. Powers. “Recall & Precision versus The Bookmaker.” In: International
Conference on Cognitive Science. 2003 (cit. on p. 41).

D. Powers. “Evaluation: From Precision, Recall and F Factor to ROC, In-
formedness, Markedness & Correaltion.” In: Sch. Informatics Eng. Flinders
(2007) (cit. on pp. 40, 41).

C. Perera, A. Zaslavsky, P. Christen, D. Georgakopoulos. “Context aware
computing for the internet of things: A survey.” In: IEEE Communications
Surveys & Tutorials 16.1 (2014), pp. 414-454 (cit. on pp. 14, 15).

W. R. Graph Cuts Approach to the Problems of Image Segmentation. 2015.
URL: http://www.coe.utah.edu/~cs7640/readings/graph_cuts_intro.pdf
(cit. on p. 30).

L. Reyzin. New Algorithms for Contextual Bandits. 2013. URL: http://www.
levreyzin.com/presentations/CMU_bandits.pdf (cit. on pp. 21, 22).

H. Robbins. “Some aspects of the sequential design of experiments.” In:
Herbert Robbins Selected Papers. Springer, 1985, pp. 169-177 (cit. on
p- 20).

F. Rahimian, A. H. Payberah, S. Girdzijauskas, M. Jelasity, S. Haridi. “Ja-
be-ja: A distributed algorithm for balanced graph partitioning.” In: (2013)
(cit. on p. 35).

F. Ricci, L. Rokach, B. Shapira. Introduction to recommender systems hand-
book. Springer, 2011 (cit. on p. 20).

A. Schmidt, M. Beigl, H.-W. Gellersen. “There is more to context than
location.” In: Computers & Graphics 23.6 (1999), pp. 893-901 (cit. on
p. 14).

M. Sokolova, G. Lapalme. “A systematic analysis of performance measures
for classification tasks.” In: Information Processing & Management 45.4
(2009), pp. 427-437 (cit. on pp. 39, 41, 42).

J. Shi, J. Malik. “Normalized cuts and image segmentation.” In: IEEE
Transactions on pattern analysis and machine intelligence 22.8 (2000),
pp. 888-905 (cit. on p. 31).

133

http://doi.acm.org/10.1145/2396761.2396767
http://doi.acm.org/10.1145/2396761.2396767
http://www.coe.utah.edu/~cs7640/readings/graph_cuts_intro.pdf
http://www.levreyzin.com/presentations/CMU_bandits.pdf
http://www.levreyzin.com/presentations/CMU_bandits.pdf

Bibliography

[SUOS5]

[SVO5]

[SW97]

[Toul5]

[TR15]

[Trul3]

[Weil6a]

[Weil6b]

[Weil6c]

[Weil6d]

[Wei91]

[WSCR16]

[YHG12]

[YZ06]

134

I. Strategy, P. Unit. “ITU Internet Reports 2005: The internet of things.”
In: Geneva: International Telecommunication Union (ITU) (2005) (cit. on
p. 15).

H. Saran, V. V. Vazirani. “Finding k cuts within twice the optimal.” In: SIAM
Journal on Computing 24.1 (1995), pp. 101-108 (cit. on pp. 31, 78, 84).

M. Stoer, F. Wagner. “A Simple Min-cut Algorithm.” In: J. ACM 44.4 (July
1997), pp. 585-591. URL: http://doi.acm.org/10.1145/263867.263872
(cit. on pp. 30, 32).

M. Toussaint. Introduction to Machine Learning. 2015. URL: https://ipvs.
informatik.uni-stuttgart.de/mlr/marc/teaching/15-MachineLearning/
15-MachineLearning-script.pdf (cit. on pp. 35, 36).

S. Traca, C. Rudin. “Regulating greed over time.” In: arXiv preprint
arXiv:1505.05629 (2015) (cit. on p. 27).

R.J. Trudeau. Introduction to graph theory. Courier Corporation, 2013
(cit. on p. 30).

E. W. Weisstein. Adjacency Matrix. 2016. URL: http://mathworld.wolfram.
com/AdjacencyMatrix.html (cit. on p. 33).

E.W. Weisstein. Degree Matrix. 2016. URL: http://mathworld.wolfram.
com/DegreeMatrix.html (cit. on p. 33).

E. W. Weisstein. Laplacian Matrix. 2016. URL: http://mathworld.wolfram.
com/LaplacianMatrix.html (cit. on p. 33).

E.W. Weisstein. Vertex Degree. 2016. URL: http://mathworld.wolfram.
com/VertexDegree.html (cit. on p. 33).

M. Weiser. “The computer for the 21st century.” In: Scientific american
265.3 (1991), pp. 94-104 (cit. on p. 14).

N. Wanigasekara, J. Schmalfuss, D. Carlson, D. S. Rosenblum. “A Bandit
Approach for Intelligent IoT Service Composition across Heterogeneous
Smart Spaces.” In: (2016) (cit. on pp. 11, 17, 18, 28).

Y. Yue, S. A. Hong, C. Guestrin. “Hierarchical exploration for accelerating
contextual bandits.” In: arXiv preprint arXiv:1206.6454 (2012) (cit. on
p. 27).

Y. Ying, D.-X. Zhou. “Online regularized classification algorithms.” In: IEEE
Transactions on Information Theory 52.11 (2006), pp. 4775-4788 (cit. on
p. 38).

http://doi.acm.org/10.1145/263867.263872
https://ipvs.informatik.uni-stuttgart.de/mlr/marc/teaching/15-MachineLearning/15-MachineLearning-script.pdf
https://ipvs.informatik.uni-stuttgart.de/mlr/marc/teaching/15-MachineLearning/15-MachineLearning-script.pdf
https://ipvs.informatik.uni-stuttgart.de/mlr/marc/teaching/15-MachineLearning/15-MachineLearning-script.pdf
http://mathworld.wolfram.com/AdjacencyMatrix.html
http://mathworld.wolfram.com/AdjacencyMatrix.html
http://mathworld.wolfram.com/DegreeMatrix.html
http://mathworld.wolfram.com/DegreeMatrix.html
http://mathworld.wolfram.com/LaplacianMatrix.html
http://mathworld.wolfram.com/LaplacianMatrix.html
http://mathworld.wolfram.com/VertexDegree.html
http://mathworld.wolfram.com/VertexDegree.html

[ZARP15] N. Zhao, M. Aldrich, C.F. Reinhart, J. A. Paradiso. “A Multidimensional
Continuous Contextual Lighting Control System Using Google Glass.” In:
Proceedings of the 2Nd ACM International Conference on Embedded Systems
for Energy-Efficient Built Environments. BuildSys ’15. Seoul, South Korea:
ACM, 2015, pp. 235-244. URL: http://doi.acm.org/10.1145/2821650.
2821673 (cit. on p. 58).

[ZGC11] D. Zeng, S. Guo, Z. Cheng. “The web of things: A survey.” In: Journal of
Communications 6.6 (2011), pp. 424-438 (cit. on p. 16).

All links were last followed on November 10, 2016.

http://doi.acm.org/10.1145/2821650.2821673
http://doi.acm.org/10.1145/2821650.2821673

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all
direct or indirect statements from other sources con-
tained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature

	1 Introduction
	2 Background and Related Work
	2.1 The vision of a connected world
	2.1.1 Context and Context Awareness
	2.1.2 IoT and WoT
	2.1.3 Ambient Dynamix and Ambient Ocean

	2.2 Contextual Recommendation Systems*
	2.2.1 From Collaborative Filtering to Multi Armed Bandits
	2.2.2 Bandits and Context: A first approach
	2.2.3 The Contextual UCB Family
	2.2.4 Bandit Algorithms for the WoT Vision

	2.3 Graph Cuts and Classification*
	2.3.1 Graphs and Graph Cuts
	2.3.2 Stoer Wagner Algorithm
	2.3.3 Min-Max Cut Algorithm
	2.3.4 Remarks on Online Graph Clustering
	2.3.5 Classifier Overview
	2.3.6 Remarks on Online Classification

	2.4 Quality Measures for Clustering and Classifier
	2.4.1 Quality Measures
	2.4.2 Cross Validation

	3 Towards an Ambient Space Simulation
	3.1 Back to the Future: The Lack of Real World Data
	3.1.1 Motivation
	3.1.2 Methodology and Requirement Analysis
	3.1.3 Refining the Notion of Context

	3.2 Concept and Design
	3.2.1 General Concept: The Simulation Work Flow
	3.2.2 Class Conception to Build a Floor Plan
	3.2.3 User Movement Concept

	3.3 Implementation
	3.3.1 Movement Patterns and Doors
	3.3.2 To Take or not to Take: The Reward Cook Book

	3.4 Evaluation of and with the Simulation
	3.4.1 Movement Pattern Analysis
	3.4.2 Gathering Data
	3.4.3 Evaluation of LinUCB for Single Service Recommendation
	3.4.4 Evaluation of LinUCB for Composite Service Recommendation

	4 The ConComM Context Composition Machinery
	4.1 The Service Composition Scenario
	4.1.1 Comparing Playlists Generation to Composite Services
	4.1.2 Problem Definition: Addressing LinUCB Limitations
	4.1.3 Introducing the ConComM Idea

	4.2 ConComM Framework
	4.2.1 Algorithms for ConComM
	4.2.2 Improving SPLIT
	4.2.3 Generating a Graph Representation
	4.2.4 Unconnected Graphs

	4.3 Implementation Challenges
	4.3.1 A Space Efficient Representation for Graphs
	4.3.2 Implementing SPLIT
	4.3.3 Classification Implemented

	5 Evaluation
	5.1 Ambient Space Simulation Revisited - Gathering Data
	5.1.1 Composing Services
	5.1.2 The Reward Function
	5.1.3 The User Variable

	5.2 How to Evaluate Quality Measures
	5.2.1 Cluster Comparison
	5.2.2 Cross Validation Parameters

	5.3 ConComM Evaluated
	5.3.1 Clustering Methods over Probability Grid
	5.3.2 Clustering Methods: Cluster Number Stability
	5.3.3 Classification Results

	5.4 Closing the Circle: LinUCB for Composite Service Recommendation II
	5.5 ConComM Method Discussion

	6 Conclusion
	6.1 Approach Summary
	6.2 Contribution
	6.3 Potential Future Work

	A Algorithms and Derivations
	A.1 LinUCB Hybrid Model Derived
	A.2 Stoer Wagner Cut Methods
	A.3 In Room Visibility

	Bibliography

