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Institut für Formale Methoden der Informatik

2020





Contents

Zusammenfassung i

Summary iii

Introduction v

I. Map Rendering 1

1. Map Simplification 9
1.1. Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3. Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5. An ILP-based Exact Approach . . . . . . . . . . . . . . . . . . . 21
1.6. A Heuristic Greedy Approach . . . . . . . . . . . . . . . . . . . 23

1.6.1. Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.6.2. Bounding Distances . . . . . . . . . . . . . . . . . . . . . 26
1.6.3. Managing Small Values Of δ . . . . . . . . . . . . . . . . 29
1.6.4. Correctness . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.6.5. Running Time . . . . . . . . . . . . . . . . . . . . . . . . 30
1.6.6. Guarantees . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.7. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.7.1. Comparison Of Heuristic And Optimal Solutions . . . . . 31
1.7.2. Larger Instances . . . . . . . . . . . . . . . . . . . . . . 32

1.8. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2. Area Labeling 37
2.1. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2.1. Medial Axis . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.3. Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.4. Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4.1. High-level Idea . . . . . . . . . . . . . . . . . . . . . . . 47
2.4.2. Barrault’s Incarnation . . . . . . . . . . . . . . . . . . . 47

3



Contents

2.4.3. RALF – Real-time Area Label Fitting . . . . . . . . . . 47
2.5. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.5.1. Implementation . . . . . . . . . . . . . . . . . . . . . . . 54
2.5.2. Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

II. Route Planning 61

3. Stalling Traces 63
3.1. General Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2.1. Contraction Hierarchies . . . . . . . . . . . . . . . . . . 65
3.2.2. Hub Labels . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3. Stalling Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.3.1. Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.3.2. Computation . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Bibliography 79

4







Zusammenfassung

In dieser Arbeit werden verschiedene Teilbereiche der Kartendarstellung und
der Wegefindung betrachtet.

Der erste Abschnitt befasst sich mit der Darstellung von Karten und besteht
aus zwei Teilen. Im ersten Teil wird ein Ansatz vorgestellt, um detaillierte
Karten vereinfacht darzustellen. Hierbei wird aus einer gegebenen polygonalen
Flächenunterteilung eine Unterteilung mit weniger Knoten erzeugt. Es wird ein
iteratives Verfahren auf Basis von Delaunay-Triangulierungen vorgestellt. Die
neue Unterteilung ist überschneidungsfrei und berücksichtigt dazu Topologie-
und Flächen-Einschränkungen. Außerdem wird eine optimale Lösung durch
ein ILP berechnet um die Qualität der Heuristik mit dem Optimum zu vergle-
ichen. Der zweite Teil beschäftigt sich mit Kartenbeschriftungen. Hierbei ist
das Ziel einen Schriftzug gut leserlich in einem Polygon zu platzieren. Zuerst
wird die Form des Polygons durch sein Skelett approximiert. Dann werden ver-
schiedene Kreisbögen entlang des Skeletts ausgewählt und der Schriftzug auf
den Kreisbögen platziert. Letztendlich wird die beste so gefundene Beschrif-
tung ausgewählt.

Der zweite Abschnitt beschäftigt sich mit der Routenplanung und stellt eine
Beschleunigungstechnik für Contraction-Hierarchies vor. Bei einer Contraction-
Hierarchies-Anfrage werden unnötige Berechnungen durchgeführt. In einer
Vorberechnung werden Informationen erzeugt, damit die unnötigen Berech-
nungen erkannt werden und nicht ausgeführt werden müssen. Dies beschleu-
nigt die Anfragen entsprechend.

i





Summary

This work considers different aspects of map-rendering and routing.
The first part deals with the presentation of maps and consists of two chap-

ters. The first chapter presents a technique to simplify detailed map data.
Given a polygonal subdivision, we compute a subdivision with fewer ver-
tices. We propose an incremental algorithm, which is based on Delaunay-
triangulations. The new subdivision is intersection-free and respects topolog-
ical as well as area constraints. Furthermore, optimal solutions are computed
via an ILP to compare the heuristic’s solutions to the optimum. The second
chapter deals with map labeling. Here a given text should be placed inside a
polygon legibly. First we approximate the shape of the polygon via its skele-
ton. Then different arcs along the skeleton are computed and the text is placed
along those arcs. Finally, the best such placement is selected.

The second part presents an acceleration technique for contraction hierar-
chies. A contraction hierarchy query performs some unnecessary computa-
tions. In a preprocessing step, we compute auxiliary information to detect
those superfluous computations and skip them. This accelerates the queries
accordingly.
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Introduction

Maps have evolved tremendously throughout history. The first maps were
simple representations of landscape features carved into animal bones. The
Babylonians already mapped their cities on clay tablets. Soon there also were
simple world maps, most often depicting the earth as a flat surface.

Today’s maps are much more refined and augmented with features. We now
even have very detailed information about single buildings, which can be used
to render 3d-models of entire cities. See Figure 1 for some example pictures.

We still encounter maps as a vital tool and they appear in a great variety
of contexts and services.

See for example the following use-cases:

• Find your way through an unknown city: When travelling through an
unknown city, we can use map-services to find our current position. Fur-
thermore these services can provide a nice overview of close sightseeing
targets or other locations of interest (such as restaurants or shopping
malls).

• Driving to a location: When driving to an unknown location, we can
use online map services like Google Maps to find a way to our target.
Even if we know a way to the location one might consider to have a
look at Google Maps to get a better understanding of the current traffic
situation along the route and maybe take a detour to get to the target
faster.

Many services include maps to help users fulfill their tasks. Online Portals
for booking hotels can show an overview of all hotels with available rooms on a
map. Or delivery services can give you an overview of close pick-up an delivery
stations. See Figure 2 for examples of those use-cases.

Of course the classic use-case of maps is navigation. Therefore most map-
services also offer routing as part of their portfolio. In the case of large online
services, fast and flexible algorithms are a necessity. A standard implementa-
tion of Dijkstra’s algorithm can run up to several seconds per query. But an
online service might need to handle tens of thousands of requests per second.
So they use faster routing-schemes to answer all queries in reasonable time.
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Introduction

(a) City outlines on a clay tablet.

(b) A drawn map with detailed coast-
lines.

(c) A detailed map of Manhatten with 3d-models of the buildings.

Figure 1.: The evolution of maps.
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(a) Overview of available hotel rooms on booking.com

(b) Overview of close posting and pick-up stations on dhl.de

Figure 2.: Use cases of maps in different services.
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Introduction

Google Maps offers a comprehensive suite of functionality in a single service.
While the service is free of charge it’s not really “free” in the sense that the
dataset and algorithms used are private. Thanks to the open-source commu-
nity there is a large amount of freely available map data. The most well known
project is “Open Street Maps” (OSM - [52]). See Figure 3 for a comparison
between Google Maps and OSM.

To be able to offer a free replacement for services like Google Maps we
also need free implementations of the algorithms, favorably in the form of an
open-source implementation of the complete service.

This work wants to contribute to this movement by proposing algorithms
for some of the problems solved in map services, namely in map rendering
and route-planning. All algorithms offer an implementation which is tested on
freely available data-sets.

The first part of this work deals with the representation of maps.
First a scheme to reduce superfluous complexity is presented. It handles

the simplification of polygonal subdivisions. Those occure in the context of
maps as borders and outlines of entities such as countries, cities, and areas like
forests. Preliminary versions of these works were presented and published on
the European Workshop on Computational Geometry 2016 (Lugano, [24]), the
Meeting on Algorithm Engineering and Experiments 2017 (Barcelona, [25]),
Meeting on Algorithm Engineering and Experiments 2018 (New Orleans, [42]).

Then detailed explanation of an improved labeling scheme is given. Here
the goal is to place text-labels in polygonal boundaries. Think about putting
country names inside the country’s borders on a map. A preliminary version
of the work is published on Arxiv.org ([38]).

In the second part an acceleration technique for navigating through street-
networks is presented. The scheme combines existing techniques to reduce
redundancy in queries and therefore accellerates the computation. This work
was presented and published in the Special Event on Analysis of Experimental
Algorithms 2019 (Kalamata, [23]).
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Figure 3.: GoogleMaps (top) and OSM (bottom) next to one another. Even
tough the OSM data is available free of charge and collected by
volunteers, it is highly detailed. The level of detail can even surpass
Google Maps in this example.
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Part I.

Map Rendering
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General Problem

Maps can contain a very diverse set of features. Features can be represented
as areas (e.g. countries, cities), as lines (e.g. streets, rivers) or as points (e.g.
landmarks).

When working with maps, one of the main challenges is the presentation
of the available information. The large amount of data available even from
publicly accessible data must be tamed to give an understandable overview.

The presentation of a map needs to consider the context in which the data
is used. We need to consider different aspects of the data for different tasks.
When one is hiking, the focus of a map should be the surrounding paths and
the geographic shape of the area. Think of contour lines. For longer hikes
things like shelters and bbq-stations are also of interest. If one is cycling, only
suitable paths should be shown. And even those paths should be differentiated,
to show e.g. the difference between roads where cars are allowed and where
they are not. During a road trip, the road-network is the most important piece
of information. For longer drives the locations of gas stations and restaurants
along the way are also relevant.

Then, there are additional levels of information which can augment a map.
For example in the case of using a (digital) map while driving. Dynamic
information, like the current or predicted traffic situation, can be of great
help.

So one of the main tasks in map-rendering is filtering the data, such that
only information fitting the current use-case is shown. And even the relevant
information might be filtered to show only the most important parts.

Aside from filtering out relevant features, also the representation of the very
data must adapt to the situation. To find a specific building in a city a highly
detailed representation helps to orient oneself exactly. If the map is to be used
while driving (e.g. in a navigation system), there should only be very little
information displayed.

Today even freely available data, like in the Open-Street-Map project, offers
huge amounts of precise data. The data consists of roads, coastlines, rivers,
country- and city-borders, local shops and much more. From a geometric
perspective there is so much data available that it needs to be simplified.
There is no point in using tens of thousands of points to define a polygon
which is displayed on a low resolution display in a small area. The user can’t
even perceive all of the data. In a mobile context it can be favorable to receive
a coarse representation of the data to save bandwidth.

In addition to the colorful geometric representation of data on a map, there
are also labels assigned to different objects. They differentiate and give mean-
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(a) Adapted for german streets. (b) Adapted for cycling.

(c) Adapted for public transport. (d) The default rendering style.

Figure 0.4.: Different rendering styles of the OSM dataset for different appli-
cations.
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Figure 0.5.: Example of how Google Maps uses simplification. The pictures
are scaled to show the same region on different zoom levels. The
more one zooms out, the coarser the representation gets.
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Figure 0.6.: Examples of classical labelings, which tended to be curved, and
modern labelings which are mostly axis aligned.

ing to the distinct objects on the map and play an important role in localizing
a position on a map. They also help in interpreting the map. Things like
polygons and points of interest are relatively straight forward to display, be-
cause they are defined by their very position on the map. But there is a great
deal of freedom on how to label them. Where should labels of point-like data
(points-of-interest) or polygonal data (rivers, countries) be placed? While the
labeling of point-like data mostly has to deal with the position of the text,
polygonal data has even more freedom. The labels should visibly be assigned
to the area. But it is unclear if they should be fully contained in the area.
We can draw labels axis aligned or in a curved manner. Maybe the size of
the label should be dependent on the polygon? Figure 0.6 show the labeling
from a classical atlas, which uses labels that conform to the area’s shapes, as
compared to the labeling in a modern map-service, which uses axis aligned
labels.

In the following we present our contributions. In the context of the geometric
simplification of maps we provide a precise problem definition. We augment the
classical definition with the useful notion of “local topological consistency”. We
present an ILP formulation which solves the problem exactly and is applicable
for small instances. For larger instances we present a fast heuristic. Compared
to the exact solution, we can see, that the heuristic computes good solutions
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on small instances. On larger instances the heuristic is still able to compute a
solution quickly.

For labeling areas of maps we improve an existing labeling scheme, so that
it can be used in real-time contexts. This is achieved by removing unnecessary
computations from the algorithm. This part was joint work with Filip Krumpe.
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1. Map Simplification

One of the main challenges for rendering map data on the screen arises from
the abundance of data. In its typical representation (e.g. in OpenStreetMap),
a several hundred kilometers long highway consists of thousands of individual
road segments. Rendering all of those nodes and even more so transmitting
them over the internet is certainly a waste of time, in particular for a mobile
device. So typically one simplifies the chain of segments by replacing sub-
sequences of degree-2 nodes by single segments. Depending on the screen size
and resolution, this can be done without really affecting the visual quality.
The same holds for country borders and most of the available map features in
general.

Especially in the context of map rendering, there are additional features to
consider. For example we wouldn’t want cities to end up in the wrong country
or in the sea, after the simplification.

The following picture gives an example for these kinds of problems:

Figure 1.1.: A map of Western Europe with intersections and topology vio-
lations after line simplification of country boundaries (from [8],
courtesy of de Berg et al.)

9



1. Map Simplification

1.1. Problem Definition

A possible formalization for the problem is given by the following Classical
Line Simplification Problem. Generalizations of the problem allow for more
pleasant and reasonable output.

Line Simplification

In the classical line simplification problem (CLSP) we are given a polygonal
chain C = p0p1p2 . . . pn with pi ∈ R2 and an error parameter ε ≥ 0 and ask
for a simplification of C. That is, indices 0 < i1 < i2 < · · · < ik < n such
that the polygonal chain C̃ = p0pi1pi2 . . . pikpn is a faithful approximation of
C. Here ’faithful’ means that for every ’shortcut’ segment sj = pijpij+1

of the
simplification, the furthest distance of a point in {pij , . . . pij+1

} to the shortcut
segment sj is at most ε. A natural optimization goal is to compute a faithful
approximation with as few vertices as possible. That is, minimizing k. See
Figure 1.2 for an example how the epsilon constraint can change the computed
simplification.

Solving CLSP is of great interest, in particular in the map rendering context.

10



1.1. Problem Definition

Figure 1.2.: Two simplifications for a single polyline with different ε-values. A
circle of radius ε is drawn around every vertex. A larger value for
ε allows for a simplification with fewer segments, but results in a
coarser representation.

11



1. Map Simplification

Figure 1.3.: The simplification on the left contains intersecting segments. The
simplification on the right is intersection free.

Intersection Free

Naturally, simplification of degree-2-chains should not introduce intersections.
So a sensible generalization of CLSP to the map rendering context is the map
simplification problem (MSP). There, we are given a planar subdivision, in
form of a planar straight-line embedding of a graph G(V,E), and a parameter
ε ≥ 0. The goal is to solve CLSP for each maximal degree-2 chain of the
graph without introducing intersections (within a single and between different
degree-2 chains).

See Figure 1.3 for an example how simplifications can introduce intersections.

12



1.1. Problem Definition

Figure 1.4.: With the left simplification a constraint point moves from the
inside to the outside. The right simplification keeps the constraint
point in the inside.

Topology constraints

Unfortunately, just solving MSP without additional care might lead to unde-
sired effects (see Figure 1.1). In the simplification (right) of a map excerpt of
Europe (left), some cities switched countries or ended up in the sea. This gives
rise to a more general map simplification problem with topology constraints
(MSTOPOP): Given a planar subdivision, a parameter ε, and a set of points
P ⊂ R2, the goal is to solve CLSP in such a way that every point p ∈ P
remains in the same face as before. If some face is contained within another
face, this relationship should also be preserved. See Figure 1.4 for an example,
how simplifications must be aware of the constraint points.

In section 1.3 we will present a more local variant of this problem
(MSLOCTOPOP), which better preserves spatial relationships in the map-
rendering context.

13



1. Map Simplification

Figure 1.5.: In the left simplification the small area nearly vanishes because of
the large ε value. Through area-preservation it maintains a larger
area in the right simplification.

Area-Preservation

Even though the boundary movement is bounded by ε there might still be
significant loss of area for (relatively) small features.

To counter this, an additional parameter δ ≥ 0 is introduced, which restricts
the amount of area lost (or gained). So in addition to MSTOPOP we also
enforce that for every face f with area Af the area of it’s simplified counterpart
lies in the interval [Af · (1/(1 + δ)), Af · (1 + δ)].

This is especially useful when rendering maps. By bounding the possible loss
of area, we can make sure that every area roughly keeps its original significance.
Even if large values of ε are applied to small features.

See Figure 1.5 for an example, how area preservation can help to maintain
the visual impression for small details, even under large ε-values.

14



1.2. Related Work

(a) The instance.
(b) The instance with all ε-valid

shortcuts.

(c) The shortest path between the first and last node.

Figure 1.6.: Example run of the Imai/Iri-algorithm.

1.2. Related Work

For CLSP there are several known algorithms. The most popular being the
algorithm by Douglas and Peucker [19]. Unfortunately, it neither guarantees
absence of self-intersections nor optimality (i.e. minimum number of surviving
points) of the result. Its worst-case running time is Θ(n2), even though better
running times are experienced in practice. Hershberger and Snoeyink in [34]
showed how to speed-up the Douglas-Peucker algorithm to a worst-case run-
ning time of O(n log n). The algorithm by Imai/Iri [35] guarantees a result with
minimum number of surviving points, but not the absence of self-intersections.
Its running time is O(n3) in its original version, but an improved variant with
a running time of O(n2) exists, see [14]. Figure 1.6 shows an example of this
algorithm.

Estkowski and Mitchell [22] have shown, that for MSTOPOP (without topol-
ogy points) it is NP-hard to obtain an approximate solution better than within
a factor of n1/5−δ, δ > 0. Their result carries over to MSP and its generaliza-
tions.

In [8] de Berg et al. consider a heuristic solution to MSTOPOP and MSP.
Their algorithm has a running time of O(n(n+m) log n) where n is the number
of vertices of the subdivision chains and m the number of topology constraints.
Unfortunately, this algorithm has never been implemented and inherently bears
a lower bound on the running time that is quadratic in the length of the

15



1. Map Simplification

longest degree-2-chain, which to us made it not a very promising candidate for
implementation of a fast heuristic.

For MSP an implementation is available in the CGAL-library [51] which
follows [20].

There are also quite different approaches where the simplification does not
have to use the original point set, e.g. [30]. Yet, also for this variant the authors
could show, that computing a then so-called minimum-link simple polygon of
a given homotopy type is NP-hard.

Another technique to simplify maps is given by Poorten and Jones [46].
Like our approach it is also based on Delaunay Triangulations. Their goal
is different though: Rather than minimizing the number of vertices in the
simplification they aim at preserving specific features of the input.

Instead of subsampling the vertices of a given subdivision, Goethem et al.
[28] propose fitting curves to the input while preserving topology. They do not
incorporate constraint points, though.

Abam et al. [1] consider a problem somewhat in between the ones stated
above. For a given polyline, a set of constraint points, and an error bound
the goal is to find an optimal simplification of the input line within that error
bound, that is homotopic to the input line. They give a polynomial time
algorithm to solve the problem. Further they define the notion of a strongly
homotopic simplification, which allows exactly those simplifications our local
definition does. They give an algorithm to compute all shortcuts that can be
used in a strongly homotopic simplification, which runs in O(n(n+m)log(n+
m)) time. After computing those shortcuts, they plug their results into the
Imai/Iri framework to obtain a simplification. Unfortunately, their output
might contain self-intersections.

As a side node, in the GISCup’14 – a competition held at the ACM SIGSPA-
TIAL GIS conference 2014 – a variant of the problem (without a precision
constraint – i.e., ε = ∞) was tackled by several teams.

Bose et al. describe different measures of area displacement in [11]. They
only consider x-monotone polygonal chains. They propose an algorithm with
quadratic running time for one of their measures. For the other two measures
they prove NP-hardness and propose an approximation algorithm for each
them, again with super-quadratic running times.

In [13] Buchin et al. introduce an edge-move operation. This operation
allows simplification of subdivisions that preserve topology as well as area.
Additionally, no new edge orientations are introduced. This allows for nice
schematizations but running times are rather high (“few hours” for maps with
1.8 million edges).

[43] describes an approach for area- and topology-preserving schematization,

16



1.3. Concepts

which outputs only rectilinear edges. This algorithm has again up to quadratic
running times.

Our Contribution

This chapter presents an heuristic algorithm to solve the MSTOPOP-problem
with additional area-constraints. We also present an ILP-formulation for the
problem. The algorithm is evaluated on real-world data-sets. For the smaller
data-sets we compute optimal solutions based on the ILP-formulation.

1.3. Concepts

Local Topology-Consistency

v0

v1 v2

v3

v4v5

v6v7

v8v9

p

(a) overview

v0

v1 v2

v3

v4v5v8v9

p

(b) violated topology

v0 v3

v4v5

v6v7

v8v9

p

(c) self-intersection

v0 v3

v4v5v8v9

p

(d) valid simplification

Figure 1.7.: Two invalid simplifications that become valid when applied simul-
taneously.

Consider the example in Figure 1.7, (a) where we have a planar subdivi-
sion with two faces – one U-shaped face bounded by v0v1 . . . v9v0 and an outer
face which also contains a topology constraint point p. For sufficiently large

17



1. Map Simplification

values of ε, the simplification shown in Figure 1.7(d) is indeed a valid simplifi-
cation according to MSTOPOP since p still lies in the outer face. This might
be somewhat counterintuitive since p somehow ‘switched sides’ (even though
topologically it is, of course, still in the right face). In particular, if we locally
inspect the shortcut v0v3 replacing the chain v0v1v2v3 there is indeed a switch
of sides; it is only valid by simultaneously shortcutting v5v6v7v8 by v5v8.

We believe that, in map rendering applications, it is more natural to demand
that shortcuts locally do not make points switch sides. We therefore employ
our own definition of topologically correct simplifications. This definition also
matches what is implied by strong homotopy according to [1].

Definition 1. For given ε > 0 and constraint point set P , a shortcut u1uk is
considered a valid shortcut for the polygonal chain C = u1u2 . . . uk if

• the distance of ui, 1 < i < k to the segment u1uk is at most ε.

• the polygon (possibly with self-intersections) defined by the polygonal
chain
C ′ = u1u2 . . . uku1 does not contain a constraint point (via the even-odd-
rule [50]).

Definition 2. For a planar subdivision, given as a straight-line embedding
of a graph G(V,E), a set of constraint points P ⊂ R2, and an ε > 0, the
goal of the Map Simplification with LOCal TOPOlogy constraints Problem
(MSLOCTOPOP) is to simplify degree-2 chains of G using non-intersecting
valid shortcuts such that the total number of remaining vertices is minimized.

As MSLOCTOPOP comprises MSP as a special case (with the set of topol-
ogy constraints being empty), the hardness of approximation result in [22] car-
ries over. Hence there is little hope to find a polynomial-time approximation
algorithm which solves MSLOCTOPOP with an approximation ratio substan-
tially better than n1/5. In fact, avoidance of intersections during minimization
seems to be the core of hardness, since with intersections not forbidden, [1]
yields a polynomial-time solution.

1.4. Preliminaries

(Delaunay) Triangulations

Given a set of points P ⊆ R2, a triangulation is defined as a partition of the
Convex Hull of the point set into triangles, such that all triangles have their
corners in P . Such triangulations can be computed in time O(n log n).

18



1.4. Preliminaries

(a) all circumcircles are empty from
point.

(b) Points in some circumcircle are
“blocked” by a constrained edge.

Figure 1.8.: A point set and the corresponding Delaunay Triangulation (left)
and Constrained Delaunay Triangulation (right). Bold edges indi-
cate constraints. All circumcircles are empty from points, which
are not hidden by a constraint edge.

A special case of a triangulation, is a Delaunay Triangulation. A Delaunay
Triangulation is a triangulation with the special property, that any circumcircle
of a triangle does not contain any point in its interior. Delaunay Triangulations
are generally considered to be “nice” triangulations because they tend to have
“fatter” triangles: A Delaunay Triangulation maximizes the minimum angle
of its triangles.

Constrained Triangulations are a special case of triangulations. A con-
strained triangulation consists of a set of points, as well as a set of edges
between some of the points. The edges should be non-intersecting. The goal
is, to compute a triangulation of the point-set, which contains all of the input-
edges.

We can also define, what a constrained Delaunay Triangulation is. Because
some edges are required to be present, we can no longer guarantee, that all
circumcircles are empty of points. But a weaker property can be guaranteed:
Consider the constraint edges to be “blocking view”. Then no circumcircle
contains a point, which can be seen from the interior of the corresponding
triangle.

See Figure 1.8 for examples of such triangulations.

There are a number of algorithms for computing (Delaunay) Triangulations:
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1. Map Simplification

flipping, incremental, divide-and-conquer, sweepline, via Voronoi-diagram-duality,
and via 3d-convex-hull duality. See [33] for more details.

Computing the constrained Delaunay Triangulation of a simple polygon can
even be done in linear time ([15]).

Linear Programming

Examine the following problem: As a company you can build different products
from a given portfolio. You know the price for which each item can be sold
and how much resources are in stock. The prominent question is: How much
of each item should be produced, with a limited resource stock in mind, if the
revenue should be maximized?

Consider the following notation: Let xi be the amount of item i to be pro-
duced. Let pi be the price per unit for item i. Let rij be the amount of resource
j that is needed to produce one unit of item i. Finally sj denotes the amount
of resource j which is in stock.

Then the problem can be written as follows: We are looking for values of xi
which do not use more resources than we have in stock: ∀j :

∑
xi · rij ≤ sj

From all possible values for xi we want to select those, that maximize our
revenue: max

∑
xi · pi

This example shows the typical structure of linear programs, which is:

max c′x

s.t. Ax ≤ b

for real-valued vectors x, c, b and a real-valued matrix A.

Problems of this form can be solved using the simplex method ([16]). There
even are polynomial time algorithms for these kind of problems, based on the
interior point method ([37]).

A special case of Linear Programs are called Integer Linear Programs. For
these programs, the values of the xi should be discrete integers instead of real
numbers.

While LPs can be solved in polynomial time, ILPs are NP-complete. This
is rather easy to see, because we could encode 3-KNF into an ILP-instance.
Even though there might be such really hard instances, there is a plethora of
heuristics, which can handle even medium sized ILPs in reasonable time.

Because linear programs are used in a lot of industrial and business con-
texts there exists a lot of specialized software to handle such problems. One
of those solvers is the Gurobi Optimizer offered by Gurobi ([31]). It offers
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1.5. An ILP-based Exact Approach

interfaces for different programming languages. The solver implements many
highly engineered heuristics which are used to quickly solve the problems.

1.5. An ILP-based Exact Approach

This section describes an ILP-formulation for the MSLOCTOPOP problem
with additional area constraints.

Let C be the set of chains, that is maximal sequences of degree-two points
in the subdivision, where only the first and last point have degrees other than
two. For any chain c ∈ C, |c| denotes its number of nodes and c0, c1, . . . c|c|−1
the sequence of nodes.

For every chain c ∈ C we introduce binary variables xci,j. This variable
indicates whether the nodes ci+1, ci+2, . . . cj−1 are replaced with the segment
cicj (xci,j = 1) or not (xci,j = 0).

The objective of the program is simply to minimize the sum of all variables:

min
∑
c∈C

∑
0≤i<j<|c|

xci,j

To make sure that chains are replaced with chains, we can use the following
constraints. We start with exactly one segment from the first node and make
sure every intermediate node has the same number of segments coming in and
going out (that is: 1 if it is part of the simplified chain or 0 if it is omitted):

∀c ∈ C :
∑

0<i<|c|

xc0,i = 1

∀c ∈ C : ∀0 < j < |c| :
∑
0≤i<j

xci,j =
∑

j<k<|c|

xcj,k

The next set of constraints ensures we can only use variables whose corre-
sponding segments are ε-valid:

if ∃i < j < k : dist(cj, cick) > ε then xci,k = 0

We only allow shortcuts that are locally topological consistent as described
in section 1.3:

if ∃p ∈ P : p ∈ poly(ci, ci+1, . . . cj, ci) then xci,j = 0

Let orgArea denote the original area of a face and areaf (c, i, j) denote the
area of the complex polygon cici+1 . . . cjci and thus the area change of f , if
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1. Map Simplification

the corresponding shortcut gets realized (The sign of the area depends on the
orientation of the chain, relative to the face). To keep the areas δ-close to the
original areas, we employ the following constraint:

∀f ∈ F :
1

1 + δ
· orgArea(f) ≤

orgArea(f) +
∑

c∈chains(f)

∑
0≤i<j≤|c|

xci,j ∗ areaf (c, i, j) ≤ (1 + δ) · orgArea(f)

Finally we need to prevent two segments from being picked simultaneously
if they are intersecting:

if cicj intersects c′kc
′
l then xci,j + xc

′

k,l ≤ 1

Complexity

The resulting ILP therefore has V :=
∑

c∈C
(|c|
2

)
variables.

Additionally there are |C| +
∑

c∈C |c| constraints to ensure a connected so-
lution, up to V constraints for both ε-validity and topology-consistency, and
finally up to

(
V
2

)
constraints to avoid intersecting shortcuts.

Lazy constraints

Because the number of variables can be Θ(n2) the number of intersection-free
constraints can be Θ(n4). Therefore these constraints should be implemented
as lazy constraints. This means, we do not initially enter these constraints
into the ILP-Solver, but check for the condition on every solution the solver
presents us. If we detect an intersection, we add the constraints for the vari-
ables corresponding to the intersecting segments and have the solver continue
with the new constraint-set. This process is repeated until an optimal solution
without intersections is found.

Example

v0

v1 v2

v3

v4

Let us go through the exact structure of the
ILP for a small example. Consider the poly-
line on the right.

We introduce a variable for any pair of
vertices, to represent all possible shortcuts.
Therefore we have the following variables:

x01, x02, x03, x04, x12, x13, x14, x23, x24, x34
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1.6. A Heuristic Greedy Approach

Because we want to end up with as few vertices as possible our objective is:

minx01 + x02 + x03 + x04 + x12 + x13 + x14 + x23 + x24 + x34

To make sure the simplified polyline starts at node 0 we pick exactly one of
the outgoing shortcuts:

x01 + x02 + x03 + x04 = 1

To obtain a connected line we have to make sure to pick a shortcut from
some note if and only if we also picked a shortcut ending in it:

x01 = x12 + x13 + x14 (for node 1)

x02 + x12 = x23 + x24 (for node 2)

x03 + x13 + x23 = x34 (for node 3)

We can discard any shortcuts for which the ε-constraint is violated:

x02 = 0, x03 = 0, x04 = 0, x13 = 0, x24 = 0

To respect the local topology constraint the following shortcuts may not be
chosen, because of the red constraint point:

x02 = 0, x03 = 0, x04 = 0

Finally, throughout the solving process we might need to add some of the
following constraints to avoid intersecting shortcuts:

x02 + x14 ≤ 1

x02 + x34 ≤ 1

x14 + x23 ≤ 1

In the end the solution would be x01 = x14 = 1 and all other variables are 0.

1.6. A Heuristic Greedy Approach

While the ILP-formulation gives optimal results, it takes too much time to com-
pute solutions even for medium sized instances. This is due to the quadratic
number of variables. Therefore we propose an heuristic algorithm. To evalu-
ate the quality of the algorithm, we compare its solutions to optimal solutions
obtained via the ILP for small instances.

The heuristic is based on Constrained Delaunay Triangulations. We start
with the original input and remove nodes one by one, maintaining a valid sim-
plification at all times. The triangulation allows us to quickly decide whether
a given node can be removed without violating any constraints.
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1. Map Simplification

1.6.1. Algorithm

Preparation

The algorithm starts by computing a constrained Delaunay triangulation. All
nodes (endpoints of segments, as well as constraint points) become vertices of
the triangulation. Additionally all segments of the input create a constrained
edge in the triangulation. Afterwards we compute the area of each occurring
face (of the input subdivision) as a baseline for our algorithm.

Main Loop

After initialization our algorithm follows a rather simple procedure. It consid-
ers all degree-2 nodes. For each node it checks the following conditions (let v
be the considered node, and u and w its two neighbors):

• Is there any neighbor (in the triangulation) of v, that is not on the outside
of the triangle ∆(uvw)? (except u and w)

• If we subtract the area of the triangle ∆(uvw) from the face (in the
subdivision) to the left of the segment uv and add it to the right face:
Are the areas of both faces still δ-close to the initial areas?

• Are all nodes that were inbetween u and w in the original subdivision
ε-close the shortcut uw?

If all three conditions hold, we can remove v from the triangulation, uncon-
strain the edges uv and vw, and constrain the edge uw.

This loop is repeated until we removed less than a set fraction (e.g. 1%) of
the remaining nodes.

Figure 1.9 shows a small example run of the heuristic.
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1.6. A Heuristic Greedy Approach

(a) instance with its triangulation (b) topology-test failed

(c) ε-test failed (d) ε- and topology-test succeeded

(e) ε-test failed
(f) end of round 1

Figure 1.9.: Example Run of the algorithm. After triangulating the input,
nodes are considered one after another and removed if possible.
In the next round more nodes might be removed.
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1. Map Simplification

1.6.2. Bounding Distances

One of the main aspects of the algorithm is to always maintain a valid sim-
plification. Making sure that the ε-constraint is fulfilled after some removal
could be costly. Therefore we present techniques to make the check simpler.

exact

Whenever we need to know whether the segment uiuj is valid, we check all
nodes inbetween. That is for each node uk with i < k < j we test whether the
distance between the node uk and the segment uiuj is less than ε.

upper bound

For each shortcut segment we keep an upper bound on how far it deviates from
the replaced nodes. At first this upper bound is 0 for all segments.

When removing node v, with adjacent nodes u and w, the segments uv and
vw would be replaced by the segments uw.

Let’s concsider a node p, which has been replaced by the segment uv. The
distance of p to the new segments uw is no more, than its distance to uv +
the distance of v to the segment uw.

That means that a valid upper bound for the new segment can be obtained
by adding the distance between the removed node and the new segment to the
maximum upper bound of the adjacent segments.

In some cases this upper bound might become very crude over time. Think
of a sequence of points with a zig-zag pattern. The upper bound would grow
with each removal, even though the maximum error is bounded by a constant.

This effect can be dampened by resetting the upper bound from time to
time. The real value can always be obtained using the exact method.

ε-cones

For a sequence of points p0, p1, . . . pn, we sequentially check whether we can
remove points p1, p2, . . . pn and after each removal introduce the according
shortcut. Imagine ε being large enough that we can remove all points. When
removing point pi−1 we still have to make sure the points p1, p2, . . . pi−1 are all
at most ε away from the segment p0pi. Naively we would compute the distance
for all i− 1 points. This would lead to a quadratic running time.

We improve over this by generalizing the wedge-based approach of de Berg
et al. [8]. Instead of only handling x-monotone chains we handle arbitrary
chains. First we introduce the notion of an ε-cone. Figure 1.10 depicts such a
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1.6. A Heuristic Greedy Approach

Figure 1.10.: ε-cone. For any Segment s originating from p to a point in the
shaded area, q is at most ε away from s.

cone for two points p and q. Because ε is known all other values can easily be
computed (notice that the angle ∠ptq is 90 degrees). The ε-cone is the shaded
region of the construction.

Given such an ε-cone of p and q, the following holds for any point r: If r
lies in the ε-cone, q is at most ε away from the segment pr. ε-cones can easily
be intersected if they have a common source point.

In the mentioned example of removing nodes from a chain we can use these
cones, by keeping the intersection of the ε-cones from all currently removed
nodes, to reduce the complexity of the check from linear to constant time.
Figure 1.11 visualizes the procedure.

lazy combination

We can combine the methods of evaluating distances as follows. On the first
run, when lots of nodes are removed, we use the ε-cone method. Later on
we can employ a quick check via the upper-bound method and only resort to
exact computation once this does not allow to prune any more nodes.

Furthermore, when we certified, that some node cannot be removed at a
given time, this remains true until one of its neighbors has been removed.
Only then could this node become removable at all.
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1. Map Simplification

(a) before removal of q

(b) after removal of q

Figure 1.11.: The first picture depicts the situation before removal of q. We
can remove q because r lies in the intersection of all ε-cones seen
so far. The second picture shows the situation after removal of
q. We cannot remove r because s does not lie in the intersection
of all ε-cones seen so far.
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1.6. A Heuristic Greedy Approach

1.6.3. Managing Small Values Of δ

For very small values of δ the algorithm might get stuck, because every single
removal would displace more area than δ permits. Even though the simul-
taneous combination of two or more removals would be feasible. To remedy
this situation, we switch to the following strategy once the algorithm cannot
remove any more vertices: For every chain we compute the set of vertices,
which can be removed without considering the area-constraint. We now need
to find a subset of those vertices, such that the sum of their respective area
displacements is again feasible. We can only remove non-adjacent points safely
at the same time, so this is an additional constraint to the selection problem.

We employ the following simple strategy to find a feasible subset of those
points:

1. Greedily select a subset of non-adjacent points.

2. While the sum of the chosen subset is not feasible: Remove one element
such that the sum of the remaining elements gets as close as possible to
the feasible range.

This algorithm terminates when an appropriate subset has been found. It
might return an empty set. In all cases we can then simultaneously remove all
vertices in this subset.

1.6.4. Correctness

We start with a valid simplification (e.g. the trivial one, identical to the initial
subdivision) and at all times keep it intact:

Lemma 1. None of the performed removals makes the simplification invalid.

Proof. The ε-constraints is taken care of via the ε-cones. To retain topology
we only perform removals of nodes v (with neighbors u and w) if the triangle
∆(uvw) is empty. This condition holds if none of the neighbors of v (except u
and w) lie within this triangle: Let u0, u1, . . . uk be the sequence of neighbors
of v starting with u and ending in w. Either any of them lies in the triangle
or all of them lie outside. If any node is inside, we’re done. If all of them
lie outside, the union of their faces does not contain a vertex and forms a
superset of the triangle. In this case we’re also finished. (See Figure 1.12 for
a visualization.)
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1. Map Simplification

u

v

u1

Figure 1.12.: If none of v’s neighbors lies in the triangle ∆(uvw), the triangle
is empty.

1.6.5. Running Time

The running time of the algorithm is bounded by the time to compute the
initial constrained triangulation.

Lemma 2. The algorithm takes time O((n+m) log(n+m) +
∑
Di), with Di

being the degree (in the triangulation) of the i’th considered node.

Proof. The initial constrained triangulation can be built in timeO((n+m) log(n+
m)). In each iteration of the loop we sweep linearly over the input and extend
the ε-cones. Because we lose at least a constant fraction of the input nodes
in every iteration (otherwise we stop) the total number of considered nodes
is bounded by O(n). For every node we look at all of its neighbors. This
takes time D, with D being the degree of the node. When we remove a node,
we have to re-triangulate the resulting hole. This can be done in time O(D)
([15]).

The special procedure to handle small δ values can be executed in time
|c| log |c| for any chain c. As the length of each chain is bounded by n the
whole term is bounded by n log n and because of the exponential decrease of
n the total work of all calls to this procedure is bounded by n log n.

In our experiments we never witnessed values of D greater than 50 and on
average the observed values were less than 6. So in practice the algorithm
behaves near-linear.

We employ a constrained Delaunay Triangulation instead of a regular con-
strained triangulation as it tends to keep the maximum node degree lower.
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Because in practice nearly all nodes have small degree, we could modify the
algorithm to fail the topology test for nodes with high degree (e.g. larger than
a small constant). This would not make any noticeable difference for the algo-
rithm, but it would allow to drop the

∑
Di term from the theoretical bound

of the running time.

1.6.6. Guarantees

Theorem 1. The algorithm computes a valid simplification in time O((n +
m) log(n+m) +

∑
Di).

1.7. Evaluation

In this section we provide some results about the running time and solution
size of the implementations of our two approaches. Please note that the ILP
solves the MSLOCTOPOP-problem, with the refined topological constraints.
We use real world data sets of different sizes.

The experiments were executed on a single core of a standard laptop with an
Intel Core i5-4300U CPU with 1.9GHz and 12GB of RAM. The triangulation
based approach was implemented using the CGAL library [51]. For the ILPs
we employed the Gurobi solver [31]. G++ 5.4 with the -O3 flag was used to
compile the programs on a Linux installation.

We evaluate our algorithm on several real-world data-sets:

• GIS{1-5}: The data-sets from GISCup’14

• BW: County Borders of German federal state Baden-Württemberg with
towns/cities/villages as constraint points

• GMY: Germany with all state-district borders and towns/cities

• EU: Europe with all federal-district-borders and cities

The data-sets BW, GMY and EU were extracted from OpenStreetMap.

1.7.1. Comparison Of Heuristic And Optimal Solutions

We compare our heuristic with optimal solutions obtained via the aforemen-
tioned ILP. Experiments are run on the GIS{1-5} data-sets as these are small
enough to solve the ILP or at least compute usable lower-bounds. See table 1.1
for the results.
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1. Map Simplification

Consider the first column, which represents the instance “GIS1” The table
shows, that it consists of 11 faces, 965 segments, and 26 constraint points. The
first row of that column compares the results of the ILP, which computed an
optimal solution, with the results of the heuristic for parameters ε = 1 and
δ = 0.001. The ILP computed a solution with 49 segments in 321.16 seconds,
while the heuristic found a solution with 130 segments in 1.09 seconds. The
first row of column “GIS4” states that the ILP found a solution of size 24136
and computed a lower bound of size 1777. The computation was terminated
after 24 hours. The heuristic computed a solution of size 3427 in 32.85 seconds.

One can see, that both ε and δ have an effect on the running time.
A small value for ε means, that the algorithm terminates earlier, because it

runs out of nodes to contract earlier. Let’s consider the seconds column. The
first 5 rows show the effect of decreasing ε-values for a fixed δ. As ε decreases
the number of segments in both the optimal and the computed solution goes up.
On the other hand the running times decrease. The ILP has to deal with fewer
constraints, because all ε-invalid constraints can be discarded immediately.
The heuristic also runs faster, because it runs out of valid shortcuts earlier.

Smaller values for δ make the problem harder, because the algorithm has
to find multiple nodes to contract, so that the area-constraint stays fulfilled.
The last 5 rows show what happens if we decrease δ. Naturally, the number of
segments in the solutions goes up, because we have less freedom to choose the
final set of segments. The running time increases also. This is because it gets
harder for both the ILP, as well as the heuristic, to find a good combination
of segments to fulfill the area-constraint.

With one exception (GIS3, ε = .01, δ = .0001) our algorithm always man-
ages to be within a factor of 3 to the lower bound obtained by the ILP. Also
note, that the bounds for the seemingly bad cases are often far from tight and
the algorithm might be even better, compared to the optimal solution.

1.7.2. Larger Instances

We evaluate our heuristic on several real-world data-sets. Even on continental
sized instances the algorithm can compute reasonable small results in mere
minutes. See table 1.2 for details.

Considering the dataset GMY, we can again observe the same trends as be-
fore. Reducing ε yields larger solutions, while running times decrease, because
of earlier termination. Reducing δ also yields larger solutions, yet running
times increase, because the heuristic searches for a valid combination of re-
movals more often.
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GIS1 GIS2 GIS3 GIS4 GIS5

#faces 11 19 163 466 793
#segments 965 1518 8055 26661 25992
#constraint-points 26 124 151 356 1607

ε = 1 δ = .001

ILP solution (time) 49 (321.16s) 102 (1883.00s) [1002, 692] [24136, 1777] [23001, 3529]
ALG solution (time) 130 (1.09s) 226 (2.93s) 1692 (17.00s) 3427 (32.85s) 6574 (56.25s)

ε = .1 δ = .001

ILP solution (time) 49 (668.47s) 102 (1598.37s) [1002, 692] [24136, 1777] [23001, 3529]
ALG solution (time) 130 (1.27s) 226 (2.88s) 1692 (17.00s) 3427 (32.73s) 6574 (56.37s)

ε = .01 δ = .001

ILP solution (time) 87 (9.19s) 155 (36.29s) [1187, 709] [24475, 1785] [22839, 3528]
ALG solution (time) 151 (0.81s) 262 (2.59s) 1692 (16.90s) 3429 (32.80s) 6577 (56.11s)

ε = .001 δ = .001

ILP solution (time) 490 (0.90s) 717 (1.99s) 2825 (5316.66s) [2665, 2573] [7288, 4771]
ALG solution (time) 538 (0.36s) 812 (1.10s) 3568 (9.61s) 3870 (32.48s) 7248 (55.14s)

ε = .0001 δ = .001

ILP solution (time) 853 (0.79s) 1264 (1.20s) 8004 (2.81s) 14488 (53.85s) 21086 (11.67s)
ALG solution (time) 856 (0.36s) 1267 (0.47s) 8004 (5.45s) 16388 (13.03s) 22339 (18.03s)

ε = .01 δ = 1

ILP solution (time) 84 (1.27s) 139 (2.48s) 579 (7.39s) 1476 (61.02s) 2600 (69.29s)
ALG solution (time) 98 (0.31s) 160 (0.44s) 588 (5.19s) 1491 (12.88s) 2622 (19.50s)

ε = .01 δ = .1

ILP solution (time) 84 (1.89s) 145 (5.73s) 597 (340.63s) 1564 (28128.73s) 2776 (19741.66s)
ALG solution (time) 98 (0.31s) 172 (0.46s) 624 (5.27s) 1637 (12.87s) 2900 (20.06s)

ε = .01 δ = .01

ILP solution (time) 86 (1.84s) 151 (10.57s) [690, 678] [22166, 1686] [3476, 3123]
ALG solution (time) 107 (0.35s) 206 (1.84s) 963 (9.69s) 2250 (20.96s) 4259 (34.13s)

ε = .01 δ = .001

ILP solution (time) 87 (9.19s) 155 (36.29s) [1187, 709] [24475, 1785] [22839, 3528]
ALG solution (time) 151 (0.81s) 262 (2.59s) 1692 (16.90s) 3429 (32.80s) 6577 (56.11s)

ε = .01 δ = .0001

ILP solution (time) 88 (441.45s) [162, 158] [7348, 727] [26661, 1818] [24344, 3785]
ALG solution (time) 201 (2.22s) 357 (3.48s) 2536 (20.94s) 4734 (37.98s) 9811 (67.87s)

Table 1.1.: Comparison on GISCup’14 data
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BW GMY EU
#faces 84 89 5182
#segments 137732 407538 3433890
#constraint-points 3996 2488 1092

ε = 1 δ = .001 1328 (18.43s) 1693 (30.85s) 63544 (170.40s)
ε = .1 δ = .001 1328 (19.27s) 1693 (30.95s) 63545 (169.00s)
ε = .01 δ = .001 1363 (19.05s) 1702 (30.13s) 63550 (170.15s)
ε = .001 δ = .001 4201 (16.57s) 3449 (28.20s) 64197 (166.14s)
ε = .0001 δ = .001 22957 (10.14s) 18897 (27.11s) 120813 (250.79s)
ε = .01 δ = 1 762 (9.69s) 809 (21.40s) 11342 (217.17s)
ε = .01 δ = .1 813 (9.65s) 1116 (23.58s) 23218 (225.83s)
ε = .01 δ = .01 967 (15.49s) 1247 (27.09s) 33331 (250.97s)
ε = .01 δ = .001 1363 (19.05s) 1702 (30.13s) 63550 (170.15s)
ε = .01 δ = .0001 1988 (28.53s) 3491 (33.86s) 124909 (310.63s)

Table 1.2.: Results on OSM data
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1.8. Conclusions

Our proposed scheme differentiates itself from most other schemes in multiple
ways. We can rule out algorithms, which do not guarantee intersection-free
results, because this is one of the main reasons why this problem is hard at all.
Furthermore most of the proposed algorithms have a super-quadratic running
time, which prevents their use on large, real-world data-sets.

The algorithm by Imai/Iri ([35]) is a simple algorithm, which computes all
possible shortcuts and then looks for a minimum link path in the resulting
DAG. Because the number of shortcuts can be Θ(n2) this algorithm has a
worst-case running time of Ω(n2). Depending on the cost of computing the
actual shortcuts the running time could be even higher.

The algorithm of Abam et al. ([1]) uses the Imai/Iri algorithm as a frame-
work to include constraint points. They compute all shortcuts that can be
used without any topological inconsistencies and then also compute the min-
imum link path in the resulting graph. Their approach to compute all valid
shortcuts has super-quadratic running time, though.

The CGAL implementation ([51]) is actually somewhat similar to our algo-
rithm. Even though it does not incorporate constraint points, nor does it allow
for area-preservation. It also uses a triangulation to quickly decide whether a
node can be removed without introducing topological errors. The nodes are
tested and removed according to their distance to the shortcut segment in as-
cending order. This means nodes which introduce a small error are removed
first. When all remaining nodes would introduce an error greater than ε the
algorithms stops.

Our algorithm distinguishes itself by allowing constraint points as well as
area-preservation. Furthermore our ε-cones help to speed up the computation,
as they allow for quick ε checks, when considering the nodes of a polygonal
chain one after another.

One of the few schemes which allows area-preservation is proposed by Buchin
[13]. But the main problem they solve is different from ours: Their goal is to
compute a schematization of a map. Throughout their algorithm they maintain
the orientation of edges while modifying them via an “edge-move” operation.
Their scheme also allows for restricting edge orientation to a specific set of
angles. When applied to similar sized instances their scheme takes “hours”,
when our algorithm computes a solution within few minutes.
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1. Map Simplification

Future Work

While removing points is the obvious way to reduce the number of points it
would be interesting to also allow the use of additional vertices. Those vertices
could lie on the poly-lines themselves or might be completely new points. With
some cleverly chosen steiner points the simplification might yield even smaller
results.
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2. Area Labeling

The work presented in this part is joint work with Filip Krumpe.
Map labeling is a vast problem in which one aims at annotating text to

maps. One can label point-like data (points of interests), one-dimensional
data (streets, rivers) or two-dimensional data (lakes, countries). Each of these
problems has its own set of challenges.

When labeling points, one has to decide which points can receive a label and
where to place the label, so the labels don’t intersect. When labeling streets
and rivers, one has to decide if the labels should repeat multiple times (e.g.
on a long street), or if it should bend around sharp corners for example. For
areas one has to decide where to put the label. Does the label have to be
completely inside the area? If there are multiple large spaces joined by narrow
paths, should the label be written in all of the spaces separately? If not, in
which should it be written? Should the label be straight and axis-aligned or
can it be bent?

Recent literature recommends to label an area with a label that is completely
contained within the area and fits the rough area shape.

Figure 2.1 shows how Google Maps labels countries and lakes. Countries
are receiving axis-aligned labels, while the labels for lakes are bent along the
shape of the polygon. Figure 2.2 depicts labelings occuring in printed maps.
One can see, that printed maps also make use of bent labels.

Figure 2.3 shows a labeling of European countries, computed with our pro-
posed approach.

Especially in interactive maps, one is faced with the problem that areas may
only be partially visible when panning the map view. In a static setting, labels
might not be visible for those areas. This leads to problems as displayed in
Figure 2.4. The static labeling (left) is no longer appropriate because the label
Russia is not completely visible. A better labeling is displayed in Figure 2.4
where the subpart of Russia currently contained in the viewport is labeled
dynamically.

2.1. Related Work

Eduard Imhof in 1975 (see [36]) systematically described what a good labeling
of a map is like. The main goal is to provide a good readability, i.e. that the
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2. Area Labeling

Figure 2.1.: In Google Maps, the countries are labelled axis-aligned. The labels
for lakes are bent.
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2.1. Related Work

(a) Photograph from “Diercke
Weltatlas”.

(b) This picture is property of “land-
kartenindex.blogspot.com”.

Figure 2.2.: Examples of curved labelings.

39



2. Area Labeling

user can easily identify the feature corresponding to a label. Furthermore, the
labels need to be non-overlapping, they should also reflect the importance and
classification of its feature, and the map should be labeled with a good density.
Concerning area features, he recommends to label it either with a horizontally
aligned label or a curved label which is conform to the area shape. In both
cases, the label should be completely contained within the area and leave a
free space of one to one-and-a-half of a character to the area boundary. In case
of a curved label, it should be based on a circular arc with a circular angle
smaller then 60 degrees.

In the most recent publication in this field, M. Barrault in 2001 proposed a
set of criteria to measure the quality of an area label [3]. When displaying an
area label, there are several degrees of freedom, i.e. differing inter-character,
-word and -line spacings. These can be adopted to better fit the label into
its corresponding area. In the same publication, he is introducing an algo-
rithm to compute area labels based on his proposed quality measures. This
algorithms is based on the skeleton of the area, which is used to approximate
the general shape of the polygon. The concrete label position is constructed
by approximating paths in the skeleton by circular arcs. These arcs are used
to place a label and evaluate the positioning. The best of these candidates is
used to label the area. Barrault in his work also describes some shortcomings
of his approach. The most important one is related to the enumeration of the
paths which are considered to be the most promising candidates to be further
evaluated.

In her bachelor thesis, N. Mendel reimplemented and evaluated his results
on real world area data of the German state [41]. She could reproduce the
shortcomings and showed that best candidates are often not considered at
all. She also pointed out that the quality measure formula in Barrault’s work
contains an error leading to unwanted results. Details and a fix are provided
in her work.
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Quality Measures for Area Labels

To measure the quality of an area label Barrault in [3] is evaluating six crite-
ria. In the following, the term longitudinal is used to describe the left-right
dimension and respectively latitudinal for the top-bottom dimension.

Longitudinal extend: The extent along a circular arc should be maximized.

Longitudinal centre: The label should be centered in the polygon in the lon-
gitudinal dimension . . .

Latitudinal centre: . . . as well as in the latitudinal dimension.

Conformity: The base arc of the label should be conform to the shape of the
labeled area.

Orientation: The more horizontal the label, the better.

Curvature: A label based on an arc with larger radius is preferred.

The center point and radius of a circular arc are defining the support line of
the label - the line along which the label is bent. The possible label position
is bounded by the points where the arc is intersecting the polygon. A label
position is determined by two angles describing start and endpoint of the label
along the support line. This concrete position is called the baseline of a label.
A valid baseline length is obliviously determined by the label length and the
different spacings. The latter are variables and in a general case can freely be
chosen from given ranges.

The quality of a label candidate is evaluated by its perceived coverage of
the polygon (PC). It is computed via an integral along the baseline, summing
the minimum of the space above and below the label. An additional cost is
induced if the endpoints of the label are too close to the border of the area.
This is to prevent labelings from looking crammed.
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Figure 2.3.: Labeling of the European countries with the automated labeling
process we propose.
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Figure 2.4.: Labeling of the European countries with Russia labeled statically
(left), and with a dynamic labeling (right).
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2. Area Labeling

2.2. Preliminaries

2.2.1. Medial Axis

Figure 2.5.: Skeleton of a polygon with
a hole.

The medial axis of a planar shape
was first defined by Blum in 1967 [9]
and Lee in 1982 [39] amongst others.
Given a simple polygon P represent-
ing the shape, its medial axis is de-
fined as the locus of points p internal
to P such that at least two points on
the polygon’s boundary are equidis-
tant and closest to p. This definition
can be applied to polygons contain-
ing holes in a straightforward man-
ner. Each point on the medial axis
can be assign a radius, describing the
distance to the boundary. [18]

As Schmitt in [49] and Brandt in [12] point out the medial axis, also called
skeleton, of a polygon can be approximated using Voronoi Diagrams. The
medial axis in this case is a special subset of Voronoi edges namely those
who are completely contained in the polygon [40]. For each of these, we can
approximate the minimum distance to the polygon boundary, which we will
call its clearing (for details see Section 2.4.3). We are going to use this clearing
to find paths through the skeleton-graph which offer a good amount of space
to fit the label.

Figure 2.6 show the similarity of a polygon’s skeleton to the internal edges
of its Voronoi Diagram.
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(a) the skeleton (b) the Voronoi graph

(c) Overlay of parts of the Voronoi Diagram and
the skeleton.

Figure 2.6.: Approximating the medial axis of a polygon via its Voronoi Dia-
gram.
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Figure 2.7.: A circular arc inside a polygon, with a text label along the arc.
The upper and lower arcs indicate the maximal vertical extend of
the letters. A space character is inserted to the left and to the
right of the label for visual clarity.

2.3. Problem Definition

To get a formal definition of the problem we want to solve, we settle for the
following setting. We want to place a text label inside a polygon. The text
should be printed with a fixed inter-letter spacing. For a given string, this
yields a ratio of its height and length, which we will call its aspect. The text
label should be fully contained inside the polygon and the way it is placed
should resemble the shape of the polygon if possible. To reduce the amount of
freedom, we aim at placing the label along a circular arc. The space occupied
by the label should be maximized.

That means, given a polygon and a text label, we want to compute a circu-
lar arc, starting and end angles such that the size of the label is maximized if
placed along this part of the arc. Figure 2.7 shows an instance of this proce-
dure.
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2.4. Algorithm

2.4. Algorithm

2.4.1. High-level Idea

As we want to place our labels along a circular arc, we first have to find some
arcs, which are a reasonable fit to the polygon. To find such an arc, we use an
approximation of the medial-axis. A long path through this graph should be
an appropriate representative of the area’s shape. Because we want our labels
to be placed along circular arcs, we fit a circle through the vertices of the path.
Multiple candidates are enumerated and evaluated according to the optimal
label-placement along the arc. Of the so obtained labelings, the largest is
reported.

2.4.2. Barrault’s Incarnation

Barrault’s algorithm follows the steps described above. To decrease the com-
plexity of the input polygon, morphologic erosion is applied. For the eroded
polygon, a Delaunay Triangulation is computed. For each of the Delaunay
triangles, a convex-combination of its corners defines a “center point” of the
triangle. Those “center-points” of adjacent triangles are connected and thus
form the edges of the medial-axis approximation.

After approximating the medial-axis in this manner, the 50 longest shortest
paths are considered as candidates. A circle is fitted through each of them and
investigated further as a possible label support line.

To find an optimal label placement for each support line, all possible place-
ments (discretized) are considered. That is, every possible combination of
starting and ending angles. For each placement, the label is evaluated. The
placement with the highest score is then returned as the optimal label.

A major drawback of Barrault’s approach is his choice of the 50 paths he is
evaluating. These paths are mostly very similar and so are the fitted circular
arcs, as N. Mendel shows in [41]. As a result, many promising alternatives
are not considered at all. Additionally, the evaluation of the possible label
placements contain several integral computations, all of them being computa-
tionally intensive. Overall, the computation takes a long time and in many
cases does not even leads to good results.

2.4.3. RALF – Real-time Area Label Fitting

We go beyond Barrault’s algorithm in several points. Firstly, we use a medial
axis approximation based on the Voronoi graph. This allows for each edge
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2. Area Labeling

Figure 2.8.: The clearance of a Voronoi edge if the centers are on the same side
(left) or on different sides (right) of the Delaunay edge.

in the medial axis to approximate the minimum distance to the boundary
polygon. We call this distance the clearance of an edge.

This clearance value is then used to find paths in the skeleton which are
promising to fit a large label through. This discards paths that are to close to
the border of the area, which would restrict the label size.

We also improve path selection by computing a more diverse set of paths.

A third improvement is an approach to finding an optimal position for the
label along a candidate arc. Here, we are proposing a new scheme to compute
an optimal placement along the arc.

Space Around The Medial Axis

To get an approximation of the medial-axis where we are able to bound the
distance to the boundary polygon, we proceed as follows: We compute the
Delaunay Triangulation of the boundary polygon. For each Delaunay triangle,
the Voronoi center is defined as the center of the circumcircle of the Delaunay
triangle. We connect the Voronoi centers of adjacent Delaunay triangles if this
so called Voronoi edge is completely contained within the polygon. For these
edges, we can approximate the clearance, i.e. the minimum distance to the
boundary polygon. We need to distinguish two cases: If the Voronoi centers
are on different sides of the Delaunay edge, the minimum clearance is half
the length of the radical line of the two circumcircles (i.e. the Delaunay-edge
itself). In the second case, both Voronoi centers are located on the same side
of the Delaunay edge. Then the clearance is the minimum of the radii of the
two corresponding circumcircles. See Figure 2.8 for an example.

The rational behind this is as follows: All points closer to the segment than
the computed distance are also contained in at least one of the Voronoi-balls.
Those balls are empty of other points by definition of a valid Delaunay Tri-
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angulation. Therefore, there are no points within the cleared segment. The
clearance of the segment might still intersect the boundary of the polygon.
But this can be remedied if the boundary is sampled sufficiently dense. Fur-
thermore, we only use these clearance-values as guidance but do not rely on
them for correctness (i.e. keeping the labeling within the polygon).

The so constructed skeleton graph has an associated clearance value for each
of its edges.

Finding Candidate Paths

Having constructed the skeleton graph and the clearance values, one wants to
find promising paths in the skeleton. These paths should allow to place a label
of maximum size.

We aim to find a set of k diverse candidate paths which we further investigate
to place a good label. Our strategy is based on the following observation: If we
place a label along a given path, the minimum clearance of the path-edges hints
at the maximum possible height of the label along this path. We therefore are
looking for paths with a high minimal clearance, whose length allows to fully
utilize the vertical space promised by this clearance. That is the length of the
path should be no less than lmin = 2∗clearance

aspect
.

The idea is to start with a large clearance value (e.g. the maximum clearance
value) and remove all edges of the skeleton which have smaller clearance value.
In this subgraph, we search for shortest paths such that their length is larger
than the appropriate minimum length. If we can’t find enough paths, we reduce
the clearance and search for the remaining paths in the subgraph filtered with
the new clearance. In our case, we start the first round with the maximum
clearance in the graph and reduce it by

√
2 each round. I.e. we half the area

of the label box we search for.
In detail, we proceed as follows: In each component of the pruned skeleton,

we start with an arbitrary node and search for the node which is furthest away.
This is done with one dijkstra call by tracking the root node of every shortest-
path-tree. The so found nodes form our set of start nodes. We now search
for the node which is furthest from our set of start nodes - also requiring only
one dijkstra call with all the nodes as sources. The so found pair of nodes
approximates the longest shortest path in the pruned skeleton (this method is
exact for trees but not for arbitrary graphs). If the path length is larger than
lmin, we report the path and add its vertices to the set of start-nodes. If we
did not yet find k paths, we repeat the search with the new set of start-nodes.
If the found path is of shorter length, we decrease our clearance by

√
2, refilter

the graph and proceed as described. We repeat this until we have found k
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2. Area Labeling

Figure 2.9.: The segments of the polygon restrict the label size. If the label
is placed below or above a segment, the segment constrains the
possible size (green label). We have to move the label considerably
to the side so it can grow (red label).

paths.
A circle is fitted through each of the candidate paths. Let p1, . . . pn be the

points of the path. We compute a center c and a radius r such that the term∑n
i=1 (|pi − c| − r)2 is minimized.

Label Placement

Given a circle, a polygon and a text label, we aim to find the position along
the arc such that the size of the label can be maximized. We can compute this
optimal placement in time n log n, where n denotes the size of the polygon.

Let us first consider how a single polygon-segment constrains the label place-
ment. We employ the following simplification: A circular bounding-box is con-
structed around each polygon-segment. For a given circle, this object has the
same angular extent as the segment. Its inner and outer radius are defined by
the minimum and maximum distance between the segment and the center of
the circle.

There are two cases: First if the label size is restricted by the segment in its
height, then we can move it along the arc without getting any benefit. In the
second case, the size of the label is restricted by the segment in its length. In
this case, the size of the label increases if we move the center of the label away
from the segment. The more we shift it away from the segment, the more we
can increase the size of the label. If we consider the possible size of the label
as a function of the angle where the label is placed on the circle, we get a
piecewise function with three parts: When the label gets closer to the segment
the possible height decreases until it can fit below/above the segment. It then
stays constant, while passing above/below the segment and finally increases.
Let’s call those functions “wedge”. For a given angle, they tell us how large
a label can be if it is placed at this angle on the circle. This is illustrated in
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Figure 2.10.: Polygon segments with their circular bounding boxes (top) and
the corresponding bounds in the circular diagram for a very tall
label (middle) and a very long label (bottom). The tall label is
constrained by the cyan segment. We can actually move it a little
to left or to the right. The long label is constrained by the pink
and the gray segments.
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α

r

ds

Figure 2.11.: The label can start to grow, when its corner touches the corner
of the segment’s bounding box.

Figure 2.9.
We now construct all those “wedges” from the segments and find the highest

point, which is below each of the wedges. This point describes the angle where
the label width is maximal. Because the label-aspect is fixed, this means that
the label size is maximized. So this yields the optimal label placement.

To find this point, we first consider the complete circle from 0 up to 2 · π.
We then consider each wedge, from lowest to highest, and restrict the possible
placements. When there are no more valid placements left, we return the
highest point seen. A simple example instance is depicted in Figure 2.10.

The active wedges can be organized in a segment tree. For any height, the
set of wedges looks like a set of segments. When going up, these segments
grow. When two wedges intersect, we can merge the associated segments.

We can enumerate the wedges with a heap, to access them from lowest to
highest. Because we can stop the computation, when there are no more valid
placements left, we only consider a small amount of segments. Considering
the example in Figure 2.10 with the long label, we would only inspect the pink
and gray wedges before returning the optimal placement.

Wedge Computation

In this chapter, we will go through the math needed to actually compute
the wedges. For any mathematical symbols, please consider Figure 2.11 as a
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reference. Furthermore A denotes the aspect of the label.
First let’s derive the relationship between the height of the label (H), its

width (L) and the spanned angle (α) for a given circle with radius r.
By definition the following holds:

H = L · A (2.1)

Furthermore we can easily derive:

L = (r −H/2) · α (2.2)

For a given segment s, let ds denote the minimal distance of the segment
to the circle. If the height H of our label is less than 2 · ds the segment does
not interfere with the label placement. If it is greater, we can compute the
spanned angular range α by plugging (2.2) into (2.1) and solving for α. The
center of the label needs to be at least α/2 from the segment.

With the special case of H = 2 · ds we can compute exactly the placement
of the label for which the wedge transitions from one linear function to the
next. Coming from the left the label shrinks, until it can fit below the segment.
It then slides along without changing size. Finally, its size can increase once
again if its far enough to the right.

The following statements are equivalent:

• The height of the label is maximized.

• The length of the label is maximized.

• The area of the label is maximized.

• The angular extent of the label is maximized.

It’s easiest to describe the wedges in terms of maximum angular extent.
Let αds be the alpha value, such that H equals 2 · ds. Also, let β1 and β2 be

the angles between the circle center and the segment’s endpoints. Finally let
αl denote the angle on which the label center is placed.

If αl > β2+αds/2 the maximum possible label extent is αds+2·(αl − (β2 + αds/2))
If αl < β1−αds/2 the maximum possible label extent is αds+2·((β1 − αds/2)− αl)
If αl falls within those bound the value is exactly αds .
This yields 3 piecewise linear functions for the wedges.
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Figure 2.12.: Running time of the main operations on different sized data-sets.

2.5. Evaluation

2.5.1. Implementation

We implemented our algorithm in C++. For the geometric operations we relied
on the CGAL Library [51]. Graph searches were done with the help of the
Boost Graph Library [10]. The code was compiled with gcc 8.3. The experi-
ments were run on a standard desktop computer with a Intel Xeon E3-1225v3
CPU with 3.20GHz.

2.5.2. Benchmarks

We evaluated our code on a data set of countries. The data-set was obtained
from [45]. For some of the countries multiple polygons were provided to ac-
commodate small islands belonging to those countries. The complete polygon
set consisted of 687, 820 nodes. We computed all labels in about 4 seconds.
The running times for the main operations are depicted in Figure 2.12.

Path selection

One of our main contributions is the refined path selection. In this experiment,
we compare our path selection against what Barrault proposed (picking the 50
longest paths).
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instance # nodes skeleton paths label total
Antarctica 31919 60.348 29.610 220.830 310.788
Argentina 8543 15.210 7.163 19.988 42.361
Australia 18925 33.434 12.156 46.900 92.490
Austria 2195 3.746 3.373 5.019 12.138
Belgium 1307 2.236 2.120 3.282 7.638
Brazil 18315 32.933 11.374 41.867 86.174
Canada 40125 74.711 31.376 104.849 210.936
China 23943 42.578 17.325 71.771 131.674
Denmark 1943 3.423 4.115 6.154 13.692
CzechRepublic 1847 3.032 2.898 4.270 10.200
Egypt 3593 6.525 3.358 10.928 20.811
Finland 4411 7.824 3.696 13.121 24.641
France 6199 10.983 4.631 16.044 31.658
Germany 4755 8.145 3.935 12.016 24.096
Greece 5431 9.618 10.184 16.340 36.142
Greenland 31101 62.488 25.852 81.491 169.831
Iceland 6127 11.545 5.974 13.684 31.203
Hungary 1701 2.766 2.941 3.823 9.530
India 13629 24.040 10.008 35.318 69.366
Ireland 4527 7.985 5.150 13.734 26.869
Italy 3903 6.753 4.129 15.740 26.622
Japan 4959 8.446 4.728 30.376 43.550
Kyrgyzstan 2257 3.638 4.139 5.537 13.314
Liechtenstein 59 0.400 0.527 0.570 1.497
Luxembourg 395 0.762 1.124 1.305 3.191
Mexico 12249 21.770 9.854 29.309 60.933
Norway 15827 30.643 18.811 45.282 94.736
Poland 2673 4.666 2.287 6.910 13.863
Portugal 1761 2.995 2.868 4.592 10.455
Russia 45847 84.000 30.770 290.066 404.836
Spain 4317 7.440 3.671 12.110 23.221
SriLanka 1551 2.755 2.098 3.749 8.602
Sweden 6781 12.581 5.489 22.430 40.500
Switzerland 1501 2.578 3.163 3.737 9.478
Turkey 6113 10.692 5.528 14.736 30.956
UnitedKingdom 7423 13.186 9.751 21.869 44.806
UnitedStatesofAmerica 25017 45.336 18.710 59.059 123.105
Vatican 15 0.368 0.546 1.338 2.252

Table 2.1.: Running times for some of the instances. Times are in ms.

55



2. Area Labeling

instance #vertices time clear time bf size rel time rel
Deutschland 141338 1.010 107.749 0.353 106.6
Mecklenburg-Vorpommern 10154 0.054 0.335 0.476 6.1
Bayern 117003 0.826 71.474 0.139 86.5
Brandenburg 19730 0.114 1.091 1.837 9.5
Schleswig-Holstein 5632 0.030 0.135 0.662 4.4
Baden-Württemberg 34679 0.202 3.314 0.425 16.4
Sachsen 37967 0.235 4.526 0.228 19.2
Hessen 21797 0.138 1.473 0.482 10.6
Berlin 5890 0.032 0.179 0.646 5.4
Sachsen-Anhalt 13749 0.080 0.517 0.263 6.4
Bremen 2459 0.014 0.053 0.373 3.7
Thüringen 29332 0.166 2.539 1.029 15.2
Nordrhein-Westfalen 39475 0.229 4.838 0.489 21.0
Hamburg 2987 0.016 0.054 0.663 3.3
Saarland 6246 0.034 0.166 1.040 4.7
Rheinland-Pfalz 24393 0.133 1.433 0.942 10.7
Niedersachsen 28789 0.173 2.312 0.863 13.3

Table 2.2.: Comparing two path selection strategies. Choosing fewer paths
according to the clearing values of the medial-axis results in smaller
running times. Selecting 50 longest paths in a brute-force way takes
longer and gives worse quality for most instances.

For this comparison, we picked up to 7 paths with our scheme. Because of
the lower number of paths the algorithm terminates earlier, because less paths
are considered, but also the quality of the results improved. See Table 2.2 for
a comparison of the two strategies.

Consider the instance “Sachsen”. This instance consists of 37967 vertices.
When selecting paths with respect to the clearing around the skeleton, the
whole algorithm takes 235ms to terminate. When selecting 50 paths in a
brute-force-manner, the algorithm takes 4.5s in total. Even though the brute-
force variant inspects more paths, the computed label is only roughly one fifth
times the size of the label computed with our scheme. Even though it took
19.2 times longer to compute the result.

The brute-force approach beats our stategy three times on the 16 datasets.
Two of those labels are very close (less than 5%) in size. Only in the case of
Brandenburg, the brute-force method computes a label nearly twice the size
of our label.
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Figure 2.13.: Examples of computed labels.
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2.6. Conclusions

There is not a lot of other work on area labeling.

Early works for labeling areas include the work of Roessel ([47]). In this
work, he proposes a scheme to compute a maximal, axis-aligned rectangular
box inside a given polygon. This is achieved by partitioning the polygon into
horizontal stripes and then scanning through the segments of the polygon. This
algorithm is more primitive than our algorithm as it only considers horizontal
labels in a rectangular box.

Another approach for labeling general geometries of maps simultaneously
was proposed by Edmondson et al ([21]). They first propose valid labelings for
the different objects (point-, line- and area-features). For every object, a set
of candidate labels is computed. Given this set of labels, they perform simu-
lated annealing to find a solution which minimizes some penalty value. The
penalty considers overlapping between labels, between labels and map objects,
as well as the quality of the individual object labelings. Computing possible
positions for area-labels is rather primitive. They compute the so called “inset
polygon”, which consists of all points inside the polygon, where the label could
be placed. They then sample a set of those positions as candidates. This al-
gorithm differs from our approach because it computes positions for multiple
labels at once. If we are only considering the placement of area-labels, we see
the same shortcomings as in Roessel’s algorithm.

In [27] Goethem et al propose an algorithm to label groups of islands. They
consider straight line labels as well as circular labels. The label types are
further differentiated whether they overlap the island group or not. The goal
is to find a labeling, which minimizes the maximum minimal distance between
the label and any island. To compute the actual labeling, they use point-line
duality and computation of the minimum-width annulus. The algorithm is
rather involved and has (in the case of circular labels) quadratic running time.

When labeling polygonal areas, the work done by Barrault ([3]) is still one
of most recent contributions.

With our approach, we have improved the most obvious shortcomings of Bar-
rault’s algorithm. Our improved path selection has been shown to improve the
size of the computed labels, even though we inspect less paths. Furthermore,
we improved the placement of the label along the candidate arcs. Instead of
trying any valid position in a brute-force manner (and testing the whole poly-
gon against all considered placements), we scan the segments of the polygon
once and derive the optimal placement.
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Future Work

As discussed in the beginning of the section, there are a lot of degrees of
freedom to formulate the labeling problem. Instead of putting the labels along
circular arcs, we could consider other shapes. For some instances, a circular
arc is not a good fit. So other shapes can help to provide a better integration
of the label inside the polygon. But one has to make sure that readability of
the resulting labeling does not suffer.

Furthermore, we have seen, that the running times depend heavily on the
size of the input polygon. We could use some sort of simplification to reduce
the complexity of the input polygon. This could greatly reduce the size of
the input, without really affecting the results. In the context of our proposed
scheme, we would have to make sure to keep the maximum length of the
polygon segments small enough to still get a good approximation of the medial
axis.
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There are lots of services which compute the quickest paths to drive a car
from some position to a destination. Such services can be hosted online and
compute the paths on a server or the services can be downloaded to a mobile
device and do the computation offline. Figure 3.1 shows some examples for
such services.

In both cases fast and efficient algorithms are needed. The online services
have to serve many requests simultaneously without too much of a delay. Of-
fline services on the other hand have to make use of the limited resources of
mobile devices efficiently.

Using plain dijkstra’s algorithm can take up to multiple seconds to find a
route in a country-sized network.

In this section we propose a preprocessing-step which accelerates a well-
known routing-scheme by around 30%. Even though the preprocessing step
takes a good amount of time to compute, the space overhead is reasonably
small.

3.1. General Problem

While the problem of computing shortest paths in general graphs with non-
negative edge weights seems to have been well understood already decades
ago, the last 10–15 years have seen tremendous progress when it comes to
the specific problem of efficiently computing shortest paths in real-world road
networks. Here the main idea is to spend some time in a preprocessing step
where auxiliary information about the network is computed and stored, such
that subsequent queries can be answered much faster than via standard Dijk-
stra’s algorithm. One might classify most of the employed techniques into two
classes: ones that are based on pruned graph search and such that are based
on distance lookups. Most approaches fall into the former class, e.g., reach-
based methods [32], [29], highway hierarchies [48], arc-flags-based methods [7],
or contraction hierarchies (CH) [26]. Here, basically Dijkstra’s algorithm is
given a hand to ignore some vertices or edges during the graph search. The
achievable speed-up compared to plain Dijkstra’s algorithm ranges from one
magnitude ([32]) up to three orders of magnitudes ([26]). In practice, this
means that a query on a country-sized network like that of Germany (around
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(a) The Google Maps Web- and Mobile- Routing-Service

(b) The Here Maps Web- and Mobile- Routing-Service

(c) The Bing Maps Web-Routing-Service

(d) The OS-
Mand
Mobile-
Routing-
App

Figure 3.1.: Examples of Routing-Services
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20 million nodes) can be answered in less than a millisecond compared to few
seconds of Dijkstra’s algorithm. While these methods directly yield the actual
shortest path, the latter class is primarily concerned with the computation of
the (exact) distance between given source and target queries – recovering the
actual path often requires some additional effort. Examples for such distance-
lookup-based methods are transit nodes [6], [4] and hub labels [2]. They allow
for the answering of distance queries another one or two orders of magnitudes
faster.

In spite of their inferior query times, the methods based on pruned graph
search are more popular in practice, because most of the time the actual short-
est paths are in fact needed, and the methods based on distance lookups typ-
ically incur quite a considerable space overhead. For example, for a network
of around 20 million nodes, the hub labeling scheme [2] requires to store for
each node in the order of hundreds distance labels to allow for quick query
answering. Hence the space consumption of the precomputed auxiliary infor-
mation by far exceeds the space consumption of the original graph itself. For
most methods based on pruned graph search, the space consumption of the
precomputed auxiliary information is very moderate compared to the original
graph itself. See [5] for a comprehensive survey on the topic.

3.2. Related Work

3.2.1. Contraction Hierarchies

The contraction hierarchies approach [26] computes an overlay graph in which
so-called shortcut edges span large sections of the shortest path. This reduces
the hop length of optimal paths and therefore allows a variant of Dijkstra’s
algorithm to answer queries more efficiently.

The preprocessing is based on the so-called node contraction operation.
Here, a node v as well as its adjacent edges are removed from the graph.
In order not to affect shortest path distances between the remaining nodes,
shortcut edges are inserted between all neighbors u,w of v, if and only if uvw
was the only shortest path (which can easily be checked via a Dijkstra run).
The cost of the new shortcut edge (u,w) is set to the summed costs of (u, v)
and (v, w). In the preprocessing phase all nodes are contracted one-by-one in
some order. The rank of the node in this contraction order is also called the
level of the node.

After having contracted all nodes, a new graph G+(V,E+) is constructed,
containing all original edges of G as well as all shortcuts that were inserted
in the contraction process. An edge e = (v, w) – original or shortcut – is

65



3. Stalling Traces
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Figure 3.2.: Augmentation of shortcuts along a shortest path.
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Figure 3.3.: Shortcut creation on node removal.

called upwards, if the level of v is smaller than the level of w, and downwards
otherwise. By construction, the following property holds: For every pair of
nodes s, t ∈ V , there exists a shortest path in G+, which first only consist of
upwards edges, and then exclusively of downwards edges. This property allows
to search for the optimal path with a bidirectional Dijkstra only considering
upwards edges in the search starting at s, and only downwards edges in the
reverse search starting in t. This reduces the search space significantly and
allows for answering of shortest path queries within the milliseconds range
compared to seconds on a country-sized road network.
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3.2.2. Hub Labels

Hub Labeling is a scheme to answer shortest path distance queries which differs
fundamentally from graph search based methods. Here the idea is to compute
for every v ∈ V a label L(v) such that for given s, t ∈ V the distance between
s and t can be determined by just inspecting the labels L(s) and L(t). All the
labels are determined in a preprocessing step (based on the graph G), later on,
the graph G can even be thrown away.

There have been different approaches to compute such labels (even in the-
ory); we will be concerned with labels that work well for road networks and
are based on CH again, following the ideas in [2]. To be more concrete, the
labels we are constructing have the following form:

L(v) = {(w, d(v, w)) : w ∈ H(v)}

Here we call H(v) a set of hubs – important nodes – for v. The hubs should
be chosen such that for any s and t, the shortest path from s to t intersects
L(s) ∩ L(t).

If such label sets could be computed, the computation of the shortest path
distance between s and t boils down to determining the node w ∈ L(s) ∩ L(t)
minimizing the summed distance. If the labels L(.) are stored lexicographically
sorted, this can be done in a very cache-efficient manner in time O(|L(s)| +
|L(t)|).

Knowing about CH, there is a natural way of computing such labels: simply
run an upward Dijkstra from each node v and let the label L(v) be the settled
nodes with their respective distances. Clearly, this yields valid labels since CH
answers queries exactly. The drawback is that the space requirement is quite
large; depending on the metric and the CH construction, one can expect labels
consisting of several hundreds to thousands node-distance pairs. It turns out,
though, that many of the labels created in such a manner are useless as they do
not represent shortest-path distance (as we restricted ourselves to a search in
the upgraph only); pruning out those reduces the number of labels by a factor
of 4. A source target distance query can then be answered in the microseconds
range.

The computation of hub labels can be made more efficient than simply
scanning the upwards-search-spaces. To reduce the amount of graph-searches
we have to do, we observe the following: The upward-search space of a node
is the union of the upward search-spaces of its upward neighbors. This means
we can compute hub labels from highest to lowest level. For every node we
simply merge the computed labels of its up neighbors. In this merging step we
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need to remove duplicates as nodes can occur in more than just one neighbor’s
search-space.

Furthermore we can filter out incorrect distances as follows: After computing
the hub labels for a given node, we know that we also have correct hub labels
for all the nodes occurring in this node’s label, as they are higher level. We can
then use the hub labels themselves to check, whether the recorded distance is
correct. Incorrect entries are removed from the label.

Example

Consider the graph on the right.

D

C

B

A

3

1

1

8

9

When we compute the hub labels for node
A we have already computed the labels for
the nodes B and C.

The relevant labels are the forward
labels of nodes B and C (Bf and
Cf ), and the reverse label of node B
(Br):
Bf = [(B, 0), (D, 8)]
Br = [(B, 0), (C, 1)]
Cf = [(C, 0), (D, 9)]

We compute the labels of A sep-
arately for paths going over B and
C:
ABf = [(A, 0), (B, 0 + 3), (D, 8 + 3)]
ACf = [(A, 0), (C, 0 + 1), (D, 9 + 1)]

Now we can merge both labels:
Ãf = [(A, 0), (B, 3), (D, 10), (D, 11)]

We only keep the smallest entry for each node:
Âf = [(A, 0), (B, 3), (C, 1), (D, 10)]

We check all distances in the temporary label, with the label itself (boot-
strapping). When looking at label Br and Âf , we see, that the distance from
A to B is 2, not 3. Therefore we remove the entry from the label and get:
Af = [(A, 0), (C, 1), (D, 10)]
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(a) Stall-on-demand can identify the
incorrect label of node B (4 in-
stead of 2) and does not need to
explore nodes Di.
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(b) Stall-on-demand cannot identify
the incorrect label of node B (4 in-
stead of 3) and therefore explores
nodes Di.

Figure 3.4.: The limits of 1-hop stall-on-demand.

3.3. Stalling Traces

3.3.1. Idea

As we already observed in the construction of hub labels, the exploration of
the upgraph during the CH query phase might visit nodes with non-shortest
path distances. Obviously, none of the nodes settled with non-shortest path
distance are relevant for answering a shortest path query, yet they contribute
to the query time. In the original CH paper [26] a technique, which they call
stall-on-demand, was suggested which identifies some of the nodes with non-
shortest path distances in the exploration of the upgraphs. Note, that there
is a trade-off between the decrease in query time due to the reduced number
of nodes to consider and the effort to identify nodes with non-shortest path
distance.

In its simplest form, the stall-on-demand strategy from [26] works as follows:
Consider the upgraph search from the source s (the reverse upgraph search
from the target t works analogously). When a node v is pulled from the
priority queue with distance label d(v), one inspects all incoming neighbors w
with (v, w) and level(w) > level(v). Clearly, if d(w) + c(w, v) < d(v), d(v)
cannot be the shortest path distance from s to v and hence the exploration
(in particular relaxation of outgoing edges) of v can be ’stalled’. Of course,
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this procedure does not necessarily identify all nodes with non-shortest path
distances, yet it is easy to implement and still prunes the search considerably.
More involved stall-on-demand strategies explore a larger neighborhood to
conclude for even more nodes to bear non-shortest-path distances. Yet, the
additional effort at query time is not rewarded by a respective more reduced
search space. See Figure 3.4 for an example of how stall-on-demand can reduce
the number of nodes explored in the upward-search.

The contribution of this work is the idea of precomputing perfect stalling
decisions. In that way, we can benefit from a maximally reduced search space
during the CH search without incurring a runtime penalty for performing a
stall-on-demand computation at query time. It turns out that this can be done
with moderate space overhead.

The first idea that comes to mind is to store for each node of the upgraph
of s (and analogously for t) a bit whether it is reachable within the upgraph
with shortest path distance. There are some disadvantages of this idea: First,
we might store information for nodes in the upgraph that would never be
encountered during the search because all immediate predecessors have already
been stalled. Second, since the desired information varies for different sources
s, we have to store for each s and each v in the upgraph of s whether v is
reachable from s on a shortest path within the upgraph. While the actual
information is only a single bit, storing the identity of each v is quite costly,
e.g., a node ID is typically 64 bits. Storing several hundreds or thousands of
such items results in several kilobytes additional memory for each node in the
graph.

3.3.2. Computation

Note that if CH-based hub labels are available, the decision whether a node
v just pulled from the priority queue with distance label d(v) in the upgraph
search from s can be made by using hub labels to look up the correct shortest
path distance and comparing with d. Clearly, these decisions are perfect in a
sense that we stall exactly those nodes that are not reachable on a shortest
path within the upgraph. Yet, the requirement of having precomputed hub
labels in the background just to speed up CH queries is prohibitive in practice
due to the considerable space consumption.

Now the main idea to enjoy the benefits of stalling at query time without
the runtime penalty of stall-on-demand or the space overhead of hub labels is
to simulate the upgraph searches with perfect stalling during a preprocessing
step (with the help of precomputed CH-based hub labels) and only record the
respective decisions as a bit stream – which we call stalling trace – in the
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order they are taken. For each node v we store two stalling traces – one for
the upgraph search where v acts as source, one for the reverse upgraph search
where v acts as target. Apart from representing perfect stalling decisions, this
approach not necessarily requires a bit for every node of the upgraph of v; if
for a node w in the upgraph of v, all immediate predecessors are not reachable
on shortest paths from v, w will never be pulled from the priority queue (due
to the perfect stalling decisions) and hence does not require a bit in the stalling
trace.

In summary, the preprocessing phase of our method looks as follows:

PREPROCESSING(G)

1. Construct CH

2. Construct CH-based hub labels HL

3. for each node:

a. simulate upgraph searches

b. store stalling traces

4. discard HL and only keep CH and stalling traces

At query time we simply run an ordinary CH-query but use the stalling
traces to have perfect stalling decisions during the exploration of the upgraphs.
Algorithms 1 and 2 illustrate the precomputation of a trace as well as the query
for an unidirectional dijkstra run. In the bi-directional case we simply use the
traces of the source as well as the target node.

We will see in the next section that this strategy pays off. Queries are
considerably accelerated without incurring a major space overhead compared
to pure CH representation.

Lightweight Construction

Most of the memory consumption comes from computing and storing the hub
labels for the whole graph. Even though the hub labels are only an intermedi-
ate step for computing the stalling traces they consume most of the memory
throughout the process. So the question arises, whether we can compute the
traces without computing all hub labels at once.

Let us look into the possibility of computing stalling traces for a set of
nodes. To obtain the complete bit-trace, we have to consider all of the up-
graphs originating from any of the nodes. Furthermore we need to have hub
labels available for all of those nodes in any of the upgraphs, so we can make
the decision whether a distance is correct or not. As we need to have the
forward as well as the backward hub labels available, we can compute the
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Data: Node s, UpGraph G
Result: Boolean Vector “trace”
trace = Vector[Bool];
distance = Vector[Integer](default=INF);
pq = MinHeap;
pq.push(0, s);
distance[s] = 0;
while pq not empty do

settle next node from pq;
if distance is correct then

trace.push(TRUE);
relax outgoing edges;

else
trace.push(FALSE);

end

end
Algorithm 1: Computing the trace for a single node. The decision whether
a distance is correct is made via precomputed hub labels.

Data: Node s, UpGraph G, Trace t
Result: Distance Vector “distance”
distance = Vector[Integer](default=INF);
pq = MinHeap;
pq.push(0, s);
distance[s] = 0;
while pq not empty do

settle next node from pq;
if t.next() == TRUE then

relax outgoing edges;
end

end
Algorithm 2: Using the trace during upgraph search.
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Figure 3.5.: The upward search-spaces of a graph-partitioning may overlap
(pink nodes)

“upwards-closure” for a set of nodes: Namely all the nodes in the up-graph,
disregarding the direction of the edges.

If we chose the subset of nodes in such a way that most of the nodes in the
respective up-graphs are within the subset, we can compute stalling-traces for
a partition of the graph with minimal overhead. Figure 3.5 illustrates how the
upward-search spaces of two cells might overlap.

Simply using a grid to partition the nodes suffices. Using a 10-by-10-grid
the overhead turns out to be around 1%. But memory consumption for the
hublabel computation reduces to around 1%, because we can discard the labels
of a finished grid cell.

Even though some labels are computed multiple times in the lightweight
scheme, running times are virtually the same. This stems from the much
smaller memory footprint.
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Table 3.1.: Data sets for benchmarking

STGT BW GER
nodes 1.16M 3.67M 24.61M
edges (original + shortcuts) 4.32M 13.76M 91.61M
CH shortcuts 1.97M 6.37M 41.82M
HL avg. label size 81.2 109.5 236.28

Table 3.2.: Running times for precomputation (in hh:mm:ss)

STGT BW GER

hub labels 00:02:04 00:10:44 04:52:21
traces 00:01:16 00:07:13 02:40:43
total 00:03:21 00:17:57 07:33:05

3.4. Evaluation

In the following we report on our experiments with the improved query scheme
for contraction hierarchies. All implementations were compiled using g++

7.3.0 and executed on a single core of a Ubuntu Linux 18.04 system with
an Intel Xeon E3-1225v3, 3.2GHz and 32GB of RAM.

Data Sets, CH and HL precomputation

We consider three data sets that were extracted from the OpenStreetMap
project [52]. The datasets we considered are:

• STGT: Administrative area of the city Stuttgart

• BW: The State Baden-Württemberg

• GER: The Country Germany

We used travel time as a metric. For all three data sets contraction hierarchies
as well as CH-based hub labels were computed using the standard approaches
in [26] and [2]. See Table 3.1 for the resulting characteristics of our data sets.
Note that both graphs and metrics differ from the ones used in [26] or [5],
hence in particular the number of shortcuts as well as the average label sizes
differ.

Table 3.2 shows the running times for computing the stalling-traces. Table
3.3 summarizes the result of our preprocessing step. Note that our implemen-
tation is single-threaded; we expect considerable speedup by parallelization
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since any number of vertices can be processed in parallel. Observe that we
require less than the graph representation itself of additional memory to store
the stalling traces.

Queries

Now let us analyze the effect on query times. We report on average query times
for random source target queries for plain Dijkstra (Dijk), plain CH without
stall-on-demand (CH), CH with standard stall-on-demand (CHso), and CH
with perfect stalling (CHps), stating both number of settled nodes as well as
the actual query times. All numbers are averaged over 100,000 queries except
for plain Dijkstra, where we only made 100 queries due to time constraints.
See Table 3.4 for the results.

As to be expected all CH variants are at least a factor of 1,000 more efficient
than plain Dijkstra, both in terms of number of settled nodes as well as actual
query time (both max and average). Comparing the CH variants for the largest
graph, the CHso variant on average settles only around 35% of the nodes,
the query times are around 39% of the standard CH query. Somewhat to our
surprise, CHps only settles slightly less nodes than CHso, yet the average query
times improve to just 25% of the standard CH query. So one-hop stall-on-
demand is almost perfect in detecting nodes with non-shortest-path distances;
the additional improvement of CHps in query time is due to not having to
perform stall-on-demand and simply use the precomputed stalling trace. We
also observe that both stalling variants become more effective the larger the
graphs get. The respective maximum values behave similar to the averages.
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Table 3.3.: Stalling Trace Construction

STGT BW GER
avg. trace length (Bits/node) 130.2 202.6 489.4
max. trace length (Bits/node) 233 332 851
total trace space (MBytes) 36.0 177.3 2871.5
Graph size (incl. CH) (MBytes) 182.5 580.9 3870.2

Table 3.4.: Query benchmarks: measuring average number of settled nodes as well as query times.
STGT BW GER

Dijk CH CHso CHps Dijk CH CHso CHps Dijk CH CHso CHps
# settled
avg 627k 313 206 201 1.65M 586 321 311 12.9M 2212 782 761
max 1.14M 634 390 377 3.59M 1183 585 577 24.4M 4161 1388 1297
query-time
avg in µs 155ms 85 66 47 439ms 200 124 83 4.4s 1159 457 301
max in µs 298ms 133 95 70 951ms 313 175 119 8.6s 1874 644 427
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3.5. Conclusions

Precomputation has an important place in shortest-path computation. If lots
of shortest path queries are to be answered the time to compute some addi-
tional information, to speed up subsequent queries, is well spend. The addi-
tional information could be hints to guide a dijkstra search, augmentations to
the graph-structure to allow for a quicker traversal, or some other informa-
tion extracted from the graph, which allows for distance computation without
looking at the graph at all anymore.

Reach ([32]) aims at identifying which nodes are important for long-distance
queries and which are not. The preprocessing computes a value for each node,
which states whether the node is part of some long shortest path or not. When
the dijkstra search has expanded enough from the source and target node,
nodes with small reach-values can be discarded.

A different scheme for goal direction is Arc-Flags ([44]). The underlying
graph is partitioned into parts of roughly equal sizes and with few edges inter-
connecting the components. For each edge a bit vector is computed. The i’th
bit indicates whether this edge lies on a shortest path to the i’th component.
During the query only edges which lie on a shortest path to the component of
the target node are considered.

The performance of Arc-Flags is dependent on the size of the graph-partitioning.
Small partitions introduce larger bit-vectors on each edge as well as increased
pre-computation time. Larger partitions diminish its effect, because routing
inside the target partition is still slow.

Both, Reach and Arc-Flags prune large parts of the graph from the dijk-
stra search-space. Our approach always benefits from the already much more
reduced CH search-space, which is further pruned by the stalling-traces.

Hub labels ([2]) represent another class of speed-up technique. The pre-
processing step computes a list of labels for each node. Computing distances
between nodes can then be achieved without considering the underlying graph
at all: The labels of both nodes are intersected and the minimum distance of
any common nodes is returned. Computation of the hub labels can be done
via contraction hierarchies. The upwards search space of a node can be used
as a label.

While talking about hub labels there are also compressed hub labels ([17]),
which also reduce the hefty memory footprint of normal hub labels. The
compression makes use of the observation that nearby vertices share large
parts of their labels. Labels are transformed into trees and common subtrees
of different labels are only stored once. This space reduction is bought with
worse running times than standard hub labels (about a factor of 5). They
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are also a little more involved in terms of complexity for the pre-computation.
The resulting data-structure is bigger than the graph itself.

Our scheme shares the goal of representing the minimal necessary search-
space without storing too much data. The stalling-trace can be used to identify
exactly those nodes with minimal distances in the upward CH-searches. Hub
labels (with pruning) also store only the necessary information. The compres-
sion scheme merely aims at reducing the amount of data stored, which is still
more than our approach. In total the compressed hub labels offer faster query
times than our approach but use a more involved computation and use more
storage.

Future Work

Providing good service is important for many map and routing providers. Ac-
celerating queries plays an important role in two ways. If the service cannot
answer queries in reasonable time users are repelled. On the other hand faster
queries allow the service to answer more complex queries in reasonable time
(e.g. evaluating multiple alternatives).

Contraction Hierarchies are a popular speed-up scheme for computing short-
est paths in road network. And while providing incredible speed-ups already
we always want to find ways to improve query times further.
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