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Abstract

We study PDEs and SPDEs defined by a measure theoretic Laplacian ∆µ with
Neumann or Dirichlet boundary conditions, where µ is a Borel measure on [0, 1]. We
do not assume that µ possesses a Lebesgue density, which includes singular measures
and especially self-similar measures on Cantor-like sets.

In the first part, we address the question of how to interpret a heat equation
defined by ∆µ if the support of µ is not the whole interval. We show that weak
measure convergence implies convergence of the solutions to the corresponding heat
equations. This provides an interpretation for the mathematical model of heat
diffusion in a rod with gaps in that the heat in this model diffuses approximately
like the heat in a rod possessing a strictly positive mass distribution which is small
on the gaps of the former rod.

In the second part, we investigate stochastic heat and wave equations, where µ is
a self-similar measure on a Cantor-like set. We prove existence and uniqueness of
the mild solution under some Lipschitz and linear growth conditions. Further, we
establish Hölder continuity in space and time and determine Hölder exponents. The
obtained results generalize the well-known Hölder continuity properties of stochastic
heat and wave equations defined by the standard Laplacian.
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Zusammenfassung

Wir untersuchen PDGs und SPDGs, die durch einen maßtheoretischen Laplace-
Operator ∆µ mit Neumann- oder Dirichlet-Randbedingungen definiert sind, wobei
µ ein Borelmaß auf [0, 1] ist. Wir stellen nicht die Annahme der Existenz einer
Lebesgue-Dichte, was singuläre Maße und insbesondere auch selbstähnliche Maße
auf Cantor-ähnlichen Mengen einschließt.

Im ersten Teil befassen wir uns mit der Frage, wie eine durch ∆µ definierte
Wärmeleitungsgleichung interpretiert werden kann, wenn der Träger von µ nicht
das gesamte Intervall umfasst. Wir zeigen, dass schwache Maßkonvergenz Kon-
vergenz der Lösungen der zugehörigen Wärmeleitungsgleichungen impliziert. Dies
liefert eine Interpretation für das mathematische Model von Wärmeleitung in einem
Stab mit Lücken: Die Wärme in diesem Modell diffundiert annähernd wie Wärme
in einem lückenlosen Stab, der aber an den Lücken des zuvor betrachteten Stabs
hinreichend wenig Masse besitzt.

Im zweiten Teil untersuchen wir stochastische Wärmeleitungs- und Wellenglei-
chungen, wobei µ ein selbstähnliches Maß auf einer Cantor-ähnlichen Menge ist.
Wir beweisen Existenz und Eindeutigkeit der milden Lösung unter der Annahme
geeigneter Lipschitz- und linearer Wachstumsbedingungen. Weiterhin weisen wir
Hölderstetigkeit in Raum und Zeit nach und bestimmen Hölderexponenten. Die
erhaltenen Resultate verallgemeinern die bekannten Hölderstetigkeitseigenschaften
von stochastischen Wärmeleitungs- und Wellengleichungen, die durch den Standard-
Laplace-Operator definiert sind.
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1 Introduction

1.1 Statement of the problem

The heat equation, first introduced by Joseph Fourier [25] around 200 years ago,
constitutes the prototype of a parabolic partial differential equation and is of funda-
mental importance in various scientific fields. The connection to Brownian motion,
to the flow of electricity, to the diffusion of solutes in liquids (compare e.g. [60]) and
to the Black-Scholes partial differential equation (compare [7]) are just a few exam-
ples of countless applications. Joseph Fourier established a connection to physics:
The equation

ρ(x)
∂u(t, x)

∂t
=
∂2u(t, x)

∂x2
, (t, x) ∈ [0,∞)× [0, 1]

describes heat flow on some one-dimensional, for example metallic, rod with mass
density ρ : [0, 1]→ (0,∞). This equation has been investigated in numerous works
(compare e.g. [40], [8]), where the existence of a strictly positive mass density ρ is
usually assumed. But what if the rod does not possess such a mass density?

The treatment of this problem involves the generalization of the spatial derivative
with respect to a measure µ. To this end, let µ be a non-atomic Borel probability
measure on [0, 1] such that 0, 1 ∈ supp(µ), L2([0, 1], µ) be the space of measurable
functions f such that

∫ 1

0
f 2dµ < ∞ and L2([0, 1], µ) be the corresponding Hilbert

space of equivalence classes. A function g ∈ L2([0, 1], µ) is called the µ-derivative of
f : [0, 1]→ R if

f(x) =

∫ x

0

g(y)dµ(y), x ∈ [0, 1].

Composing the µ-derivative with the classical first derivative yields a measure the-
oretic generalization of the classical one-dimensional Laplacian ∆. We define

D2
µ :=

{
f ∈ C1([0, 1]) : there exists (f ′)

µ ∈ L2([0, 1], µ) :

f ′(x) = f ′(0) +

∫ x

0

(f ′)
µ

(y)dµ(y), x ∈ [0, 1]
}
.

The measure theoretic Laplacian with respect to µ is defined by

∆µ : D2
µ ⊆ L2([0, 1], µ)→ L2([0, 1], µ), f → (f ′)

µ
.
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Consequently, (f ′)µ is the L2([0, 1], µ)-equivalence class of the µ-derivative of f ′.

This operator has been widely studied, for example with an emphasis on address-
ing questions of the spectral asymptotics and further analytical properties, such as
properties of the resolvent operator and Green’s function [6,11,23,26–33,35–37,57,
58, 61, 62]. Further, heat kernels and their connection to the associated Markov
process, known as Quasi or gap diffusion [47,53,54], wave equations [10] and higher-
dimensional generalizations [34,59].

Let ut(x) := u(t, x), (t, x) ∈ [0,∞)× [0, 1]. We are interested in the heat equation

∂u

∂t
(t, x) = ∆µut(x), (t, x) ∈ [0,∞)× [0, 1] (1)

with appropriate initial value and boundary conditions, especially in its physical
meaning. How can we interpret a solution to this equation if the support of the
mass distribution µ is not the whole interval?

The inhomogeneous problem

∂u

∂t
(t, x) = ∆µut(x) + f(t, x), (t, x) ∈ [0,∞)× [0, 1] (2)

allows for an external heat source. We study the case where f is a stochastic
force, more precisely a stochastic process that involves a multiplicative space-time
white noise, and suitable initial and boundary conditions are given. We are inter-
ested in the regularity of the solution according to an appropriate solution concept.
Hambly and Yang [41] considered generalized Laplacians on some connected sets
with spectral dimension dS ∈ [1, 2), which includes the case of Hausdorff dimension
dH ∈ [1, 2), and proved that the regularity decreases as dS increases. We will extend
this result by examining the case of Hausdorff dimension less than or equal one.

In addition to that, we analyse the second-order problem

∂2u

∂t2
(t, x) = ∆µut(x) + f(t, x), (t, x) ∈ [0,∞)× [0, 1], (3)

where f involves a multiplicative space-time white noise and the Hausdorff dimension
of the support of µ is less than or equal one. This equation generalizes the well-known
stochastic wave equation defined by ∆, which describes the motion of a vibrating
string that is struck by a succession of random particles. The canonical application
is a stringed instrument left out during a sandstorm (compare [69]).
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1.2 Physical motivation

We give a physical motivation for heat equations defined by ∆µ, where we follow
[40, Section 1.2] and consider a metallic rod of constant cross-sectional area oriented
in the x-direction occupying a region from x = 0 to x = 1 such that all thermal
quantities are constant across a section. The rod can thus be considered as one-
dimensional. We investigate the conduction of thermal energy on a segment from
x = a to x = b. Let the temperature at the point x ∈ [a, b] and time t ∈ [0,∞) be
denoted by u(t, x) and the total thermal energy in the considered segment at time
t by ea,b(t). Let t ∈ [0,∞) be fixed. It is well-known that

ea,b(t) =

∫ b

a

u(t, x)ρ(x)dx,

assuming that the rod possesses a mass density ρ : [0, 1] → (0,∞). However, if we
denote the mass distribution of the rod by µ, we can write

ea,b(t) =

∫ b

a

u(t, x)dµ(x).

This equation involves no density. Hence, we can compute the total thermal energy
even if µ has no density. The total thermal energy changes only if thermal energy
flows through the boundaries x = a and x = b. We deduce for the rate of change of
thermal energy

d

dt
ea,b(t) = φ(t, a)− φ(t, b), (4)

where φ(t, x) denotes the heat flux density at (t, x), which gives the rate of thermal
energy flowing through x at time t to the right. Assuming sufficient regularity, we
can rewrite (4) as ∫ b

a

∂

∂t
u(t, x)dµ(x) = −

∫ b

a

dφt
dµ

(x)dµ(x),

where φt(x) := φ(t, x). With ut(x) := u(t, x), Fourier’s law of heat conduction
φ = −u′t gives ∫ b

a

∂

∂t
u(t, x)dµ(x) =

∫ b

a

d

dµ

d

dx
ut(x)dµ(x).
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Figure 1: First steps of the iterative construction of the Cantor set

Since this is valid for all a, b ∈ [0, 1], a < b, it follows for µ-almost all x ∈ [0, 1]

∂

∂t
u(t, x) =

d

dµ

d

dx
ut(x).

Applying the definition of ∆µ yields the heat equation (1) with Dirichlet boundary
conditions u(t, 0) = u(t, 1) = 0 for all t ≥ 0 if we assume that the temperature van-
ishes at the boundaries or with Neumann boundary conditions ∂u

∂x
(t, 0) = ∂u

∂x
(t, 1) = 0

for all t ≥ 0 if the boundaries are assumed to be perfectly insulated.

This provides a physical motivation for a mass distribution having full support
even if it possesses no Lebesgue density. However, it is still not clear how to interpret
the equation if the support of the mass distribution is not the whole interval, in
particular for singular measures, such as measures on the Cantor set.

1.3 Cantor set, Cantor-like sets and Cantor mea-

sures

The classical Cantor set, also known as the Cantor ternary set or simply the
Cantor set, first described by Cantor [9] and Smith [66], is a subset of the real line
that enjoys a lot of remarkable properties. It can be introduced in different ways.
Cantor [9] introduced it as the set of real numbers that can be written as

∞∑
n=1

cn
3n
, cn ∈ {0, 2}.

An iterative construction, which is maybe more instructive than the above defi-
nition, is visualized in Figure 1 and can be described as follows: First, remove the
open middle third of the interval [0, 1]. Then, remove the open middle third of the
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resulting two intervals and continue this procedure ad infinitum.

A further construction relies on the theory of iterated function systems, which
goes back to Hutchinson [46]. An iterated function system (IFS) is defined as a
finite set of contraction mappings {S1, ..., SN} on a complete metric space, where we
additionally assume that Si is a similarity mapping for i ∈ {1, ..., N}. There exists
a unique non-empty compact set K such that

N⋃
i=1

Si(K) = K. (5)

K is called self-similar with respect to {S1, ...SN}.

Let S1, S2 : [0, 1] → R, S1(x) := x
3
, S2(x) := 2

3
+ x

3
, x ∈ [0, 1]. The Cantor set is

the unique non-empty compact set that is self-similar with respect to {S1, S2}. The
theory of iterated function systems allows various generalizations of the Cantor set.
We are interested in the following: Let {S1, ..., SN} be an IFS consisting of affine
contractions on [0, 1] with contraction factors 0 < ri < 1 such that

0 = S1(0) < S1(1) ≤ S2(0) < S2(1) ≤ ... < SN(1) = 1.

We call the unique non-empty compact set satisfying (5) a Cantor-like set.

One of the most important properties when studying these sets is their Hausdorff
dimension, named after Felix Hausdorff, who introduced this concept in [44]. The
Hausdorff dimension of a Cantor-like set K can be calculated easily: By Hutchinson
[46], the Hausdorff dimension of K, denoted by dH(K), is the unique solution d of

N∑
i=1

rdi = 1. (6)

It is notable that the Hausdorff dimension of Cantor-like sets for different contraction
factors can be understood as an interpolation of the dimension of a single point and
that of an open interval: By variation of the contraction factors, the Hausdorff
dimension of Cantor-like sets can take any number d ∈ (0, 1). For example, let K
be the Cantor-like set given by S1(x) = rx, S2(x) = 1 − r + rx, x ∈ [0, 1], where
r = 2−

1
d . Evidently, it holds 0 < r ≤ 1

2
. Formula (6) gives dH(K) = d.

We can define several measures on a Cantor-like set K. For example, Hutchinson
[46] introduced the class of self-similar measures on Cantor-like sets, also called
Cantor measures. Let µ1, ...µN ∈ (0, 1) be probability weights, that is

∑N
k=1 µk = 1.

14



Figure 2: Self-similar measure on a Cantor-like set

By Hutchinson [46], there exists a unique Borel probability measure µ such that

µ(A) =
N∑
k=1

µkµ(S−1
k (A))

for any Borel set A ⊆ [0, 1] and it holds supp(µ) = K. The measure µ is called
self-similar with respect to (S1, ..., SN) and (µ1, ...µN). In particular, for n ∈ N
and w1, ..., wn ∈ {1, ..., N}, it holds µ (Sw1 ◦ ... ◦ Swn([0, 1])) = µw1 · · · µwn . Figure 2
illustrates that for n = 2. The natural choice of weights is µi = r

dH(K)
i , i ∈ {1, ..., N}.

The resulting measure is the normalized dH(K)-dimensional Hausdorff measure,
often called natural measure. If the sum of all contraction factors is less than one,
the one-dimensional Lebesgue measure of K, denoted by λ1(K), vanishes and any
measure on K is thus singular with respect to λ1. This is the class of singular
measures we are especially interested in.

1.4 White noise and the Brownian sheet

Let µ be the Lebesgue measure on [0, 1]. Recall the inhomogeneous heat equation

∂u

∂t
(t, x) = ∆µut(x) + f(t, x), (t, x) ∈ [0,∞)× [0, 1] (7)

with Dirichlet boundary conditions u(0, t) = u(1, t) = 0 for all t ≥ 0 and an ap-
propriate initial condition. For a random exogenous forcing density f , we seek to
find a stochastic process that solves this equation. In order to define the notion
of random force we will include, let N ≥ 1 and (ξi,j : 1 ≤ i, j ≤ N) be a sequence
of i.i.d. random variables such that P (ξi,j = 1) = P (ξi,j = −1) = 1

2
. The random
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variable ξi,j can be interpreted as a short-term heat impulse at time t = i
N

around
x = j

N
. We consider the two-parameter random walk

Sk,m =
∑

1≤i≤k

∑
1≤j≤m

ξi,j, k,m ≤ N.

According to Khoshnevisan [51, Theorem 4.1.1],

{
N−1SbNtc,bNxc : t, x ∈ [0, 1]

}
→ {B(t, x) : t, x ∈ [0, 1]} , N →∞

weakly in a suitable space, where B is a two-parameter real-valued centred Gaussian
process with covariance

E [B(t, x)B(t′, x′)] = min{t, t′}min{x, x′}, t, t′, x, x′ ∈ [0, 1].

This process is called a Brownian sheet on [0, 1]2. Replacing the time interval [0, 1]

by [m,m + 1] for m ≥ 1 and glueing the obtained processes Bm, m ≥ 0 together,
more precisely, by

B(t, x) = Bbtc(t− btc, x) +

btc−1∑
i=0

Bi(1, x), t ≥ 0, x ∈ [0, 1],

we obtain a process called Brownian sheet on [0,∞) × [0, 1]. It can be understood
as a two-parameter generalization of Brownian motion. Following Walsh [69], we
define the random set function

ξ([0, t]× [0, x]) := B(t, x), (t, x) ∈ [0,∞)× [0, 1].

Let B([0,∞) × [0, 1]) be the Borel-σ-algebra on [0,∞) × [0, 1]. By extending the
definition of ξ to all elements of B([0,∞) × [0, 1]), we obtain a centred Gaussian
process with covariance given by

E [ξ(A1)ξ(A2)] = λ2(A1 ∩ A2), A1, A2 ∈ B([0,∞)× [0, 1]),

where λ2 is the two-dimensional Lebesgue measure. ξ is called space-time white
noise and allows for the definition of a stochastic integral

∫
[0,t]×[0,1]

g(s, x)dξ(s, x) for
a suitable integrator g in the sense of Walsh [69].

We want to apply this concept of random noise to the inhomogeneous heat equa-
tion (7). For sufficient smooth exogenous forcing density f and zero initial condi-
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tion, Duhamel’s principle (see e.g. [21, Problem 7.1]) provides a solution to (7) in
L2([0, 1), µ), given by

u(t, x) =

∫ t

0

∫ 1

0

pDt−s(x, y)f(s, y)dyds, (t, x) ∈ [0,∞)× [0, 1],

where pD is the heat kernel of the Dirichlet Laplacian on L2([0, 1), µ). If we assume
that f is the Radon-Nikodym derivative of a Borel measure ν on B([0,∞)× [0, 1]),
we can rewrite the previous identity as

u(t, x) =

∫ t

0

∫ 1

0

pDt−s(x, y)dν(s, y), (t, x) ∈ [0,∞)× [0, 1].

Accordingly, we define

u(t, x) =

∫ t

0

∫ 1

0

pDt−s(x, y)dξ(s, y)

to be the mild solution to

∂u

∂t
(t, x) = ∆µut(x) + ξ(t, x) (8)

for (t, x) ∈ [0,∞)× [0, 1] with Dirichlet boundary conditions and zero initial value.
The term ξ(t, x) in equation (8) needs to be understood formally. In contrast to
the case of ν, where f is the weak derivative of the distribution function of ν,
the (pathwise) derivative of the distribution function of ξ, the Brownian sheet, only
exists in a distributional sense. Changing over to heat equations in the distributional
sense, equation (8) can be made more rigorous. We refer to [49] for more details.

If µ is an arbitrary Borel probability measure on [0, 1], we define a space-time
white noise based on µ as a centred Gaussian process with

E [ξ(A1)ξ(A2)] =
(
λ1 ⊗ µ

)
(A1 ∩ A2), A1, A2 ∈ B([0,∞)× [0, 1]).

If A1 ⊆ [0,∞) × ([0, 1] \ supp(µ)), then E [ξ(A1)2] = 0 and thus ξ(A1) = 0 almost
surely. In the context of a metallic rod: There is no noise on massless parts of the
rod.
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1.5 Outline of the thesis

Each of the chapters 3-5 is dedicated to one of the equations (1)-(3). Before turn-
ing towards those problems, we summarize basic properties of measure theoretic
Laplacians and give a brief introduction into the theory of SPDEs driven by white
noise in Chapter 2.

The goal of Chapter 3 is to give an interpretation of a solution to the heat equation
(1) in the case where µ is not of full support: We approximate the solution by a
sequence of solutions to heat equations defined by µn for n ∈ N such that µn is of
full support and converges weakly to µ for n→∞.

To this end, let b ∈ {N,D} represent the boundary condition, whereN denotes ho-
mogeneous Neumann and D homogeneous Dirichlet boundary conditions. Further,
we assume that (µn)n∈N is a sequence of non-atomic Borel probability measures on
[0, 1] such that 0, 1 ∈ supp(µn) and µn ⇀ µ,n→∞, where⇀ denotes weak measure
convergence.

It is well-known that ∆b
µ is the generator of a strongly continuous semigroup(

T bt
)
t≥0

on L2([0, 1], µ). If u0 ∈ L2([0, 1], µ), the unique solution to the initial value
problem

du

dt
(t) = ∆b

µu(t), t ∈ [0,∞),

u(0) = u0

(9)

in L2([0, 1], µ) is given by u(t) = T bt u0 for t ≥ 0 according to a generalized solution
concept. This motivates the investigation of strong semigroup convergence. How-
ever, for different measures, the corresponding semigroups are defined on different
spaces. For the special case supp(µ) = supp(µn) = [0, 1] for all n ∈ N, the results by
Croydon [14] can be applied to obtain strong semigroup convergence on the space of
continuous functions on [0, 1]. To formulate a strong semigroup convergence result
without this assumption, we restrict the semigroup

(
TNt
)
t≥0

associated to ∆N
µ on

L2([0, 1], µ) to the subspace of continuous functions, denoted by (C[0, 1])Nµ , which
is a Banach space with the uniform norm. The semigroup

(
TDt
)
t≥0

is restricted to
the Banach space of continuous functions satisfying Dirichlet boundary conditions,
denoted by (C[0, 1])Dµ . We show that the restricted semigroup, denoted by

(
T̄ bt
)
t≥0

,
is again a strongly continuous contraction semigroup and its infinitesimal generator
is given by the restriction of ∆b

µ to
{
f ∈ D

(
∆b
µ

)
: ∆b

µf ∈ (C[0, 1])bµ
}
. We denote
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this operator by ∆̄b
µ. Moreover, if we assume that supp(µ) ⊆ supp(µn) for all n ∈ N,

the space (C[0, 1])bµ can be continuously embedded in (C[0, 1])bµn , where we denote
the embedding by πn. We will see that in this case, strong resolvent convergence
implies strong semigroup convergence and strong resolvent convergence is what we
will establish.

More precisely, let f ∈ (C[0, 1])bµ, λ > 0 and n ∈ N. We define R̄b
λ :=

(
λ− ∆̄b

µ

)−1

and R̄b
λ,n :=

(
λ− ∆̄b

µn

)−1 and prove

∥∥πnR̄b
λf − R̄b

λ,nπnf
∥∥
∞ → 0, n→∞. (10)

The proof of (10) involves the construction of measure theoretic hyperbolic functions
in order to generalize the hyperbolic functions

sinh(x) =
∞∑
k=0

x2k+1

(2k + 1)!
, cosh(x) =

∞∑
k=0

x2k

(2k)!
, x ∈ [0, 1]

by replacing xk

k!
by generalized monomials defined by µ. This extends the theory

of measure theoretic functions, developed for trigonometric functions by Arzt [2].
Then, we show that weak measure convergence implies convergence of the corre-
sponding hyperbolic functions and that the resolvent density of the operator ∆b

µ

is a product of generalized hyperbolic functions. This leads to the desired strong
resolvent convergence. We obtain for f ∈ (C[0, 1])bµ and t ≥ 0

lim
n→∞

∥∥πnT̄ bt f − T̄ bt,nπnf∥∥∞ = 0, (11)

uniformly on bounded time intervals. Afterwards, we will see that for f ∈ (C[0, 1])bµ,

u : [0,∞)→ (C[0, 1])bµ, t 7→ T̄ bt f

is the unique solution to the initial value problem

du

dt
(t) = ∆̄b

µu(t),

u(0) = f
(12)

for t ∈ [0,∞) in the sense that t 7→ u(t) satisfies (12) for all t > 0 and is continuous
with respect to (C[0, 1])bµ for all t ≥ 0. The same holds true if µ is replaced by µn
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for n ∈ N. Finally, combining these results and (11) yields

lim
n→∞

‖πnu(t)− un(t)‖∞ = 0,

uniformly on bounded time intervals.

We obtain a meaningful interpretation for the diffusion of heat in the case of a
mass distribution with gaps in that the heat in a rod with mass distribution µ dif-
fuses approximately like the heat on a rod with mass distribution µn for sufficiently
large n ∈ N.

In Chapter 4, we study the SPDE

∂

∂t
u(t, x) = ∆b

µut(x) + f(t, u(t, x)) + g(t, u(t, x))ξ(t, x),

u(0, x) = u0(x)
(13)

for (t, x) ∈ [0, T ]×[0, 1], where T > 0, µ is a self-similar measure on a Cantor-like set
K, ξ is a space-time white noise based on µ, f and g are predictable processes sat-
isfying some Lipschitz and linear growth conditions and u0 satisfies some regularity
conditions.

We establish the existence of a unique mild solution to (13) as well as various
regularity properties. A mild solution is defined to be a predictable [0, T ] × [0, 1]-
indexed process such that for every (t, x) ∈ [0, T ]× [0, 1] it holds almost surely

u(t, x) =

∫ 1

0

pbt(x, y)u0(y)dµ(y) +

∫ t

0

∫ 1

0

pbt−s(x, y)f(s, u(s, y))dµ(y)ds

+

∫ t

0

∫ 1

0

pbt−s(x, y)g(s, u(s, y))ξ(s, y)dµ(y)ds,

(14)

where the last term is a stochastic integral in the sense of Walsh [69]. We review
the theory of this integral in Section 2.3.

If µ = λ1 and u0, f and g are uniformly bounded, it is known (see e.g. [69]) that
the stochastic heat equation has a unique mild solution, which is essentially 1

2
-Hölder

continuous in space and 1
4
-Hölder continuous in time. Essentially α-Hölder contin-

uous means Hölder continuous for every exponent strictly less than α. However, in
two space dimensions, the mild solution is a distribution, not a function. Hambly
and Yang [41] studied these properties in the setting of a p.c.f. self-similar set (in
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Figure 3: Hölder exponent graphs for the stochastic heat equation

the sense of [48]) with spectral dimension between one and two. It turned out that
the temporal Hölder exponent decreases as the space dimension increases.

We consider the case where the Hausdorff dimension of K is less than or equal one.
It will turn out that a mild solution to (13) exists and is unique. Moreover, assuming
some additional regularity conditions, there exists a version that is essentially 1

2
-

Hölder continuous in space and essentially 1
2
− γδ

2
-Hölder continuous in time. Here,

γ is the spectral exponent of ∆b
µ (see Section 2.2) and δ := max1≤i≤N

log µi
log((µiri)γ)

can
be understood as a measure for the "skewness" of µ. If µ is the normalized dH(K)-
dimensional Hausdorff measure, we obtain the essential temporal Hölder exponent
1
2
(dH(K) + 1)−1. Therefore, the temporal Hölder exponent we obtained increases as
dH(K) decreases. Figure 3 visualizes that.

Preliminary for proving these results, we focus on the heat kernel of ∆b
µ. First,

we establish an improved estimate on the uniform norm of the eigenfunction ϕbk for
k ∈ N (see Section 2.1 for a detailed definition of ϕbk). In fact, we prove that there
exists a constant C > 0 such that for all k ∈ N

∥∥ϕbk∥∥∞ ≤ Ck
δ
2 . (15)

A comparable result was proven by Kigami [48, Theorem 4.5.4] for eigenfunctions
of Laplacians on p.c.f. self-similar sets. This estimate along with the well-known
estimates on spectral exponents (see [37]) allows us to prove several continuity prop-
erties of the heat kernel of ∆b

µ. This will be essential in the observation of temporal
Hölder continuity of the mild solution.
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The key tool in order to establish spatial Hölder continuity is the approximation
of (t, y) 7→ pbt(x, y) for fixed x ∈ K by (t, y) 7→

〈
pbt(·, y), fxn

〉
µ
in the space L2([0, T ]×

[0, 1], λ1 ⊗ µ) for n ≥ 1 sufficiently large, where the sequence (fxn )n∈N approximates
the Delta functional δx. We prove that the approximating mild solutions, which
are defined by replacing the heat kernel by the approximated heat kernel, have the
desired spatial continuity and that the regularity is preserved upon taking the limit.
The technique of approximating point evaluations of heat kernels is usually applied
to investigate SPDEs in the sense of da Prato-Zabczyk (compare e.g. [24, 41–43]).
We provide a way to apply this idea to Walsh SPDEs.

Besides these continuity properties, we investigate a property called intermittency.
Roughly speaking, an intermittent process develops increasingly high peaks on small
space-intervals when the time parameter increases. This is a phenomenon of mild
solutions to stochastic heat equations, which has found much attention in the last
years (compare, among many others, [3,45,49,50]). According to [49, Definition 7.5],
we call a mild solution u weakly intermittent on [0, 1] if the lower and the upper
moment Lyapunov exponents, which are respectively the functions γ and γ̄ defined
for p ∈ (0,∞), x ∈ [0, 1] by

γ(p, x) := lim inf
t→∞

1

t
logE [|u(t, x)|p] , γ̄(p, x) := lim sup

t→∞

1

t
logE [|u(t, x)|p]

satisfy
γ(2, x) > 0, γ̄(p, x) <∞, p ∈ [2,∞), x ∈ [0, 1].

We prove this in the Neumann case for f = 0 assuming some conditions on g.

In Chapter 5, we are concerned with the stochastic wave equation

∂2

∂t2
u(t, x) = ∆b

µut(x) + f(t, u(t, x))ξ(t, x),

u(0, x) = u0(x),
∂

∂t
u(0, x) = u1(x)

(16)

for (t, x) ∈ [0, T ]× [0, 1], where µ is a self-similar measure on a Cantor-like set K, f
is a predictable process satisfying some Lipschitz and linear growth conditions and
u0 and u1 satisfy some regularity conditions.

It is known (see [69]) that if µ = λ1 and f is uniformly bounded, the stochastic
wave equation has a unique mild solution, which is essentially 1

2
-Hölder continuous
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Figure 4: Hölder exponent graphs for the wave equation

in space and in time. Again, in two space dimensions, the mild solution is a dis-
tribution, not a function. Hambly and Yang [41] addressed the questions regarding
these properties for stochastic wave equations in the sense of da Prato-Zabczyk on
p.c.f. self-similar sets with Hausdorff dimension between one and two. According to
the knowledge of the author, there are no results about second-order Walsh SPDEs
defined by a fractal Laplacian.

We show that there is a unique mild solution, which has a version that is essentially
1
2
-Hölder continuous in space and essentially

(
dH(K) + 1 +

log(min1≤i≤N νi)

log(max1≤i≤N ri)

)−1

-Hölder
continuous in time, where νi := µi

r
dH (K)
i

, i = 1, ..., N . In particular, if µ is the natural

measure on K, we obtain the essential temporal Hölder exponent 1
dH(K)+1

. Figure 4
indicates this result.

Essential for the proof is the examination of the wave propagator of ∆b
µ, defined

by

PN
t (x, y) = t+

∑
k≥2

sin
(√

λNk t
)

√
λNk

ϕNk (x)ϕNk (y), (t, x, y) ∈ [0,∞)× [0, 1]2, (17)

where ϕNk , k ≥ 1 are the L2([0, 1], µ)-normed eigenfunctions and λNk , k ≥ 1 the
related eigenvalues of −∆N

µ , which will be introduced precisely in Section 2.1, and
analogously for Dirichlet boundary conditions. It is the wave equation counterpart
to the heat kernel. In contrast to the heat kernel, there is nothing known about
the regularity of the wave propagator. Further, an upper estimate of (17) using
the eigenfunction estimate (15) does not even give convergence. We approximate
y → P b

t (x, y) for fixed (t, x) ∈ [0,∞) × K by y →
〈
P b
t (y, ·), fxn

〉
µ
in L2([0, 1], µ)

for n sufficiently large and conclude that y → P b
t (x, y) is an L2([0, 1], µ)-function.

Then, we show that the approximated mild solutions, defined by replacing the wave
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propagator by these approximating functions, have the desired Hölder continuity
properties and that the regularity is preserved upon taking the limit. Finally, we
observe weak intermittency.

This thesis is based on the following papers (compare the references [17], [18], [19]):

• T. Ehnes, B. Hambly, An Approximation of Solutions to Heat Equations de-
fined by Generalized Measure Theoretic Laplacians, Preprint, 2020.

• T. Ehnes, Stochastic Heat Equations defined by Fractal Laplacians on Cantor-
like Sets, Preprint, 2019.

• T. Ehnes, Stochastic Wave Equations defined by Fractal Laplacians on Cantor-
like Sets, Preprint, 2019.
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2 Preliminaries

2.1 Basic properties of measure theoretic Laplacians

First, we introduce basic concepts that will be essential in this work. For a more
detailed account, we refer to [38,48].

Let µ be a Borel measure on [0, 1] and let L2([0, 1], µ) be the Hilbert space with
inner product 〈f, g〉µ :=

∫ 1

0
f(x)g(x)dµ(x). Further, let C[0, 1] be the Banach space

of continuous functions with the uniform norm ‖f‖∞ := supx∈[0,1] |f(x)|.

Definition 2.1: Let D be a dense subset of L2([0, 1], µ). A Dirichlet form on
L2([0, 1], µ) is defined to be a symmetric bilinear function E : D × D → R such
that

(i) E(u, u) ≥ 0 for all u ∈ D.

(ii) D equipped with the bilinear function E1(u, v) := 〈u, v〉µ + E(u, v), u, v ∈ D is
a Hilbert space.

(iii) If u ∈ D, then ū := (0 ∨ u) ∧ 1 ∈ D and E (ū, ū) ≤ E(u, u).

Property (iii) is known as the Markov property. Furthermore, a Dirichlet form is
regular if D∩C[0, 1] is dense in D with respect to the norm

√
E1(u, u) and dense in

C[0, 1] with respect to the uniform norm.

Definition 2.2: Let (A,D(A)) be a densely defined linear operator on L2([0, 1], µ).
An element y ∈ L2([0, 1], µ) is said to belong to the domain D(A∗) of the adjoint
operator A∗ if there exists h ∈ L2([0, 1], µ) such that

〈Af, g〉 = 〈f, h〉 .

In this case, A∗f := h. Further, A is said to be self-adjoint if D(A) = D(A∗) and
A = A∗.

If A is a non-negative self-adjoint operator on L2([0, 1], µ), there exists a unique
self-adjoint operator B on L2([0, 1], µ) such that BBf = Af for all f ∈ D(A) (see
e.g. [48, Proposition B.1.2]). This operator is called the square root of A and we
write B = A

1
2 .

Let (X, ‖·‖) be a real Banach space and idX be the identity on X.
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Definition 2.3: A strongly continuous semigroup is defined to be a family (Tt)t≥0

of linear operators on H satisfying

(i) T0 = idX ,

(ii) Ts+t = TsTt for s, t ≥ 0,

(iii) limt↘0 ‖Ttf − f‖ = 0 for f ∈ X.

Furthermore, we define

D(A) =

{
f ∈ X : there exists g ∈ X such that

∥∥∥∥g − lim
t↘0

Ttf − f
t

∥∥∥∥ = 0

}
and A := limt↘0

Ttf−f
t

for f ∈ D(A). A is the infinitesimal generator of the strongly
continuous semigroup (Tt)t≥0.

Definition 2.4: Let A be an operator on X. The resolvent set ρ(A) is defined as
the set ρ(A) := {λ ∈ R : A− λidX maps D(A) bijectively onto X}. For λ ∈ ρ(A),
we define R(λ,A) := (A− λidX)−1. This operator is called the resolvent operator of
A.

We now define measure theoretic Laplacians. To this end, let b ∈ {N,D} and let
µ be a non-atomic Borel probability measure on [0, 1] such that 0, 1 ∈ supp(µ). If
[0, 1] \ supp(µ) 6= ∅, [0, 1] \ supp(µ) is open in R and can be written as

[0, 1] \ supp(µ) =
⋃
i≥1

(ai, bi) (18)

with 0 < ai < bi < 1, ai, bi ∈ supp(µ) for i ≥ 1. Recall from Section 1.1 that

D2
µ =

{
f ∈ C1([0, 1]) : there exists (f ′)

µ ∈ L2([0, 1], µ) :

f ′(x) = f ′(0) +

∫ x

0

(f ′)
µ

(y)dµ(y), x ∈ [0, 1]
}
.

We define
D
(
∆N
µ

)
:=
{
f ∈ D2

µ : f ′(0) = f ′(1) = 0
}
⊆ L2([0, 1], µ)

and ∆N
µ as the restriction of ∆µ to D

(
∆N
µ

)
, that is

∆N
µ : D

(
∆N
µ

)
→ L2([0, 1], µ), f → (f ′)

µ
.
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For λ > 0, the resolvent operator RN
λ := R

(
λ,∆N

µ

)
=
(
λ−∆N

µ

)−1 is a continuous
self-adjoint operator on L2([0, 1], µ) (see [27, Theorem 6.1]). Consequently, λ−∆N

µ

is the inverse of a self-adjoint injective operator and thus self-adjoint (see e.g. [67,
Proposition A.8.2]. We conclude that ∆N

µ is self-adjoint.

A more abstract way to introduce measure theoretic Laplacians relies on the theory
of Dirichlet forms. Let

D1 :=
{
f : [0, 1]→ R : there exists f ′ ∈ L2

(
[0, 1], λ1

)
:

f(x) = f(0) +

∫ x

0

f ′(y)dy, x ∈ [0, 1]
}

and let F be the space of all L2([0, 1], µ)-equivalence classes that possess a D1-
representative. Note that we write λ1 for the one-dimensional Lebesgue measure
restricted to an interval I ⊆ (−∞,∞) if the restriction is clear from the context.

We define the non-negative symmetric bilinear form (E ,F) on L2([0, 1], µ) by

E(u, v) =

∫ 1

0

u′(x)v′(x)dx, u, v ∈ F .

From now on, for each argument, which is an element of L2([0, 1], µ), we choose
the D1-representative that is for i ≥ 1 linear on [ai, bi] (see Lemma A.1 for the
proof of existence of this representative). By Freiberg [28, Theorem 4.1], (E ,F) is a
Dirichlet form on L2([0, 1], µ). As a consequence of the basic theory of Dirichlet forms
(see [38, Theorem 1.3.1]), there exists a unique self-adjoint operator

(
AN ,D

(
AN
))

on L2([0, 1], µ) such that

〈
−ANu, v

〉
µ

= E(u, v), u ∈ D
(
AN
)
, v ∈ F . (19)

Freiberg [27, Proposition 3.1] proved that ∆N
µ satisfies the Gauss-Green formula (19)

as well. We obtain D
(
AN
)

= D
(
∆N
µ

)
and AN = ∆N

µ .

We treat the case of Dirichlet boundary conditions in the same way. Let

D
(
∆D
µ

)
:=
{
f ∈ D2

µ : f(0) = f(1) = 0
}
⊆ L2([0, 1], µ)

and let ∆D
µ be the restriction of ∆µ to D

(
∆D
µ

)
. Further, let F0 be the space of

all L2([0, 1], µ)-equivalence classes having a D1-representative f such that f(0) =

f(1) = 0. Then, (E ,F0) is a Dirichlet form (see [28, Theorem 4.1]). Again, there
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exists an associated self-adjoint operator
(
AD,D

(
AD
))

on L2([0, 1], µ) such that

〈
−ADu, v

〉
µ

= E(u, v), u ∈ D
(
AD
)
, v ∈ F0. (20)

We deduce D
(
AD
)

= D
(
∆D
µ

)
as well as AD = ∆D

µ with a similar argumentation to
the Neumann case.

By Freiberg [27, Proposition 6.3, Lemma 6.7, Corollary 6.9], there exists an or-
thonormal basis {ϕbk : k ∈ N} of L2([0, 1], µ) consisting of eigenfunctions of −∆b

µ

and for the related ascending ordered eigenvalues {λbk : k ∈ N} it holds that
0 ≤ λb1 ≤ λb2 ≤ ..., where λD1 > 0. Since {ϕbk : k ≥ 1} is an orthonormal ba-
sis of L2([0, 1], µ), each f ∈ L2([0, 1], µ) can be written as f =

∑
k≥1 f

b
kϕ

b
k, where

f bk :=
〈
f, ϕbk

〉
µ
, k ≥ 1. Along with the self-adjointness, we obtain the following

formula, called the spectral representation of ∆b
µ (see e.g. [38, Section 1.3]):

−∆b
µf =

∑
k≥1

λbkf
b
kϕ

b
k,

D
(
∆b
µ

)
=

{
f ∈ L2([0, 1], µ) :

∑
k≥1

(
λbkf

b
k

)2
<∞

}
.

The spectral representation provides a direct way to introduce the associated semi-
group. Define for f ∈ L2([0, 1], µ)

T bt f :=
∑
k≥1

e−λ
b
ktf bkϕ

b
k, t ≥ 0. (21)

Then,
(
T bt
)
t≥0

is a strongly continuous semigroup on L2([0, 1], µ) and its infinitesimal
generator is ∆b

µ (see [38, Lemma 1.3.2]). Further, the Markov property of the associ-
ated Dirichlet form implies the Markov property of the associated semigroup, which
means that for all t ≥ 0 we have that T bt f ∈ [0, 1] µ-a.e. whenever f ∈ L2([0, 1], µ)

and f ∈ [0, 1] µ-a.e. (see [38, Theorem 1.4.1]). Moreover,
(
T bt
)
t≥0

is the transition
semigroup of a strong Markov process (see [38, Theorem 7.2.1]), which is known as
Quasi or gap diffusion (see for example [47, 53–55]). This process is not the object
of this work.
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2.2 Spectral asymptotics for self-similar measures

Throughout this section, let µ be self-similar with respect to (S1, ..., SN) and
(µ1, ..., µN), where S1, ..., SN are affine contractions on [0, 1] with contraction factors
0 < ri < 1 such that

0 = S1(0) ≤ S1(1) ≤ S2(0) ≤ S2(1) ≤ ... ≤ SN(1) = 1

and µ1, ..., µN ∈ (0, 1) are probability weights (compare Section 1.3). We further
assume that 0, 1 ∈ supp(µ) and set K := supp(µ).

Let b ∈ {N,D}. We have already mentioned that there exists an orthonormal basis
{ϕbk : k ∈ N} of L2([0, 1], µ) consisting of eigenfunctions of −∆b

µ and that for the
related ascending ordered eigenvalues {λbk : k ∈ N} we have that 0 ≤ λb1 ≤ λb2 ≤ ...,

where λD1 > 0. Let ri be the contraction factor of Si and let γ be the unique solution
of

N∑
i=1

(µiri)
γ = 1. (22)

By Fujita [37], there exist constants c0, c1 > 0 such that for k ≥ 2

c0k
1
γ ≤ λbk ≤ c1k

1
γ . (23)

γ is called the spectral exponent of ∆b
µ.

The goal of this section is to develop an asymptotic upper estimate on the uniform
norm of ϕbk for k →∞. The only known estimate, established in [29, Section 2] and
[2, Lemma 3.6], is elementary to derive and grows exponentially in k, which will turn
out to be far too weak for our purposes. In the following, we establish an improved
estimate, where we do not use the explicit representation of the eigenfunctions as
Arzt [2]. Instead, we follow Kigami [48, Theorem 4.5.4], who has established a
similar estimate for Laplacians on p.c.f. self-similar sets.

Theorem 2.5: Let δ := max1≤i≤N
log µi

log((µiri)γ)
. Then, there exists a constant c̄2 > 0

such that for all k ∈ N

∥∥ϕbk∥∥∞ ≤ c̄2

(
λbk
) γδ

2 .

Since ϕbk is an element of L2([0, 1], µ), it is not determined on [0, 1] \ supp(µ).
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To overcome this ambiguity in the definition of
∥∥ϕbk∥∥∞, we henceforth evaluate the

D2
µ-representative of ϕbk, which is for i ≥ 1 linear on [ai, bi].

Theorem 2.5 implies with c2 := c
γδ
2

1 c̄2 for all k ∈ N

∥∥ϕbk∥∥∞ ≤ c2k
δ
2 . (24)

We now prepare the proof of Theorem 2.5. First, we introduce some notation.

A concept to describe Cantor-like sets is given by the so-called word or code
space. Let I := {1, ..., N}, Wn := In be the set of all sequences ω of length |ω| = n,
W∗ := ∪n∈NIn be the set of all finite sequences and W := I∞ be the set of all infinite
sequences ω = ω1ω2ω3... with ωi ∈ I for i ∈ N. Then, I is called the alphabet
and W, W∗, Wn, n ∈ N are called word spaces. We define an ordering on W by
denoting two words ω and σ as equal if ωi = σi for all i ∈ N and otherwise, we
write ω < σ :⇔ σκ < ωk or ω > σ :⇔ σκ > ωκ, where κ := inf{n ∈ N : σn 6= ωn}.
In addition to an ordering, we define a metric on the word space by the map d :

W×W→ R, d(ω, σ) := N−κ with κ defined as before. For every x ∈ [0, 1], the map

πx : W→ K, σ 7→ lim
n→∞

Sσ1 ◦ Sσ2 ◦ ... ◦ Sσn(x)

is well-defined, continuous, surjective and independent of x ∈ [0, 1], which means
that for x, y ∈ [0, 1], σ ∈ W we have that πx(σ) = πy(σ) (see [5, Theorem 2.1]).
Hence, for every x ∈ [0, 1] and every y ∈ K there exists at least one element of W,
which is by πx associated to y.

We need a couple of lemmas to prove Theorem 2.5.

Lemma 2.6: If u ∈ F0, then
‖u‖2

µ ≤ E(u),

where E(u) := E(u, u) and ‖u‖2
µ := 〈u, u〉µ.

Proof. Using λD1 ≥ 1 (see e.g. [58, Lemma 4.9]), the assertion follows by the repre-
sentation of the smallest eigenvalue of a Dirichlet form (see [16, Theorem 1.3]).

Lemma 2.7: There is a constant c3 > 0 such that for all u ∈ F

‖u‖2
µ ≤ c3

(
E(u) + ‖u‖2

1

)
,

where ‖u‖1 :=
∫ 1

0
|u(x)|dµ(x).
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Proof. Let u ∈ F and let u0 be the unique harmonic function with u0(0) = u(0) and
u0(1) = u(1), that is u0(x) := u(0)(1− x) + u(1)x, x ∈ [0, 1]. We have (u− u0)(0) =

(u−u0)(1) = 0 and thus u−u0 ∈ F0. Since the space of harmonic functions on [0, 1]

with two boundary conditions is two-dimensional, there exists c′3 ≥ 1 such that for
all harmonic functions u0

‖u0‖µ ≤ c′3 ‖u0‖1 .

Since µ is a probability measure we have for all u ∈ F

‖u‖1 ≤ ‖u‖µ .

Furthermore, for u ∈ F and the corresponding harmonic function u0

E(u− u0) = E(u)− 2E(u, u0) + E(u0)

= E(u)− 2

∫ 1

0

u′(x)(u(1)− u(0))dx+ (u(1)− u(0))2

= E(u)− 2(u(1)− u(0))2 + (u(1)− u(0))2

= E(u)− (u(1)− u(0))2

and thus
E(u− u0) ≤ E(u).

By Lemma 2.6 and the above calculations,

‖u‖µ ≤ ‖u0‖µ + ‖u− u0‖µ
≤ c′3 ‖u0‖1 +

√
E(u− u0)

≤ c′3(‖u‖1 + ‖u− u0‖1) +
√
E(u− u0)

≤ c′3(‖u‖1 + ‖u− u0‖µ) +
√
E(u− u0)

≤ c′3 ‖u‖1 + c′3
√
E(u− u0) +

√
E(u− u0)

≤ 2c′3

(
‖u‖1 +

√
E(u)

)
.

The assertion follows from the fact that for positive numbers a, b, c with a ≤ b + c

we have that a2 ≤ 2(b2 + c2).

Moreover, we will need scaling properties for µ and E . Firstly, we introduce the
notion of a partition, following Kigami [48, Definition 1.3.9].
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Definition 2.8: Let ω ∈W∗ and

Σω := {σ = σ1σ2... ∈W : σi = ωi for all 1 ≤ i ≤ |ω|}.

A finite subset Λ ⊂W∗ is called partition of W if it holds Σω∩Σσ = ∅ for ω 6= σ ∈ Λ

and W =
⋃
ω∈Λ Σω.

Let w ∈ W∗. For a function f , we define fω := fω1 ◦ fω2 ◦ ... ◦ fω|ω| . Further, let
rω := rω1rω2 · · · rω|ω| and µω := µω1µω2 · · ·µω|ω| .

Lemma 2.9: Let Λ be a partition. We have

(i) µ =
∑
ω∈Λ

µω(µ ◦ S−1
ω ).

(ii)
∑
ω∈Λ

r−1
ω E(u ◦ Sω) ≤ E(u) for all u ∈ F .

This can be verified using [1, Section 3.2.1] by induction. Since this is a standard
argument, we skip the proof.

Proof of Theorem 2.5. Let u ∈ F be fixed and let Λ be a partition. Then,

‖u‖2
µ =

∫ 1

0

u2(x)dµ(x)

=
∑
ω∈Λ

µw

∫ 1

0

u2(x)dµ ◦ S−1
ω (x) (25)

=
∑
ω∈Λ

µw

∫ 1

0

u(Sω(x))2dµ(x)

≤ c3

∑
ω∈Λ

µw
(
E(u ◦ Sω) + ‖u ◦ Sω‖2

1

)
(26)

≤ c3

(
max
ω∈Λ
{µωrω}

∑
ω∈Λ

r−1
ω E(u ◦ Sω) +

∑
ω∈Λ

µ−1
w

(
µω

∫ 1

0

|u ◦ Sω(x)|dµ(x)

)2
)

≤ c3

(
max
ω∈Λ
{µωrω}E(u) + min

ω∈Λ
{µ−1

ω } ‖u‖
2
1

)
. (27)

In the above, equation (25) follows from Lemma 2.9(i), inequality (26) from Lemma
2.7 and inequality (27) from Lemma 2.9(ii). Now, let νi := (µiri)

γ, i = 1, ..., N . By
(22) we have

∑N
i=1 νi = 1. Let λ ∈ (0, 1] and the partition Λλ be defined by

Λλ = {ω ∈W∗ : νω1 · · · νω|ω|−1
> λ ≥ νω}.
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By definition of Λλ, for ω ∈ Λλ we have ν
1
γ
ω = µωrω ≤ λ

1
γ and thus maxω∈Λλ(µωrω) ≤

λ
1
γ . Furthermore, it is known from [48, Proposition 4.5.2] that there exists c′2 > 0

such that minω∈Λλ µω ≥ c′2λ
δ, from which it follows (minω∈Λλ µω)−1 ≤ 1

c′2
λ−δ. This

and (27) yield the existence of a constant c′′2 > 0 such that for all λ ∈ (0, 1], u ∈ F

‖u‖2
µ ≤ c′′2

(
λ

1
γ E(u) + λ−δ ‖u‖2

1

)
.

Let θ := 2γδ. Lemma 2.6 implies
‖u‖2

1 ≤ ‖u‖
2
µ ≤ E(u).

We can thus choose λ ∈ (0, 1] such that λ
1
γ

+δ =
‖u‖21
E(u)

. It follows

‖u‖2
µ ≤ 2c′′2λ

−δ ‖u‖2
1 (28)

and with c′′′2 := (2c′′2)1+ 2
θ

‖u‖2+ 4
θ

µ ≤ (2c′′2)1+ 2
θλ−δ−

1
γ ‖u‖2+ 4

θ
1

= (2c′′2)1+ 2
θ ‖u‖

4
θ
1 E(u)

= c′′′2 ‖u‖
4
θ
1 E(u).

Let ψ : L2([0, 1], µ) → L2(K,µ), f 7→ f |K and ∆̃N
µ : ψ

(
D
(
∆N
µ

))
→ L2(K,µ),

u 7→ ψ∆N
µ ψ
−1u. Then, ∆̃N

µ is self-adjoint, has eigenvalues −λNk with eigenfunctions
ψϕNk for k ∈ N and the Dirichlet form Ẽ (ũ, ṽ) := E(ψ−1ũ, ψ−1ṽ), ũ, ṽ ∈ F̃ := ψ(F) is
associated (see Lemma A.2). It follows that for all ũ ∈ F̃ the Nash-type inequality

‖ũ‖2+ 4
θ

µ ≤ c′′′2 Ẽ (ũ) ‖ũ‖
4
θ
1 (29)

is satisfied. Applying [48, Proposition B.3.7] yields the existence of c′′′′2 > 0 such
that for all k ∈ N and all t > 0∥∥∥T̃Nt ϕ̃Nk ∥∥∥∞ ≤ c′′′′2 t

− θ
4 , (30)

where
(
T̃Nt

)
t≥0

is the strongly continuous semigroup associated to ∆̃N
µ . Using that

T̃Nt ϕ̃
N
k = e−λ

N
k tϕ̃Nk for t ≥ 0 (see [48, Corollary B.2.7]) and setting t := 1

λNk
and
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c̄2 := c′′′′2 e for k ≥ 2, we obtain for all k ∈ N

∥∥ϕ̃Nk ∥∥∞ ≤ c̄2

(
λNk
) γδ

2 .

The assertion follows for b = N since we evaluate the Dµ2 -representative of ϕbk that
is for i ≥ 1 linear on [ai, bi] (see (18) for the definition of ai, bi). In case of b = D

the proof works analogously since F0 ⊆ F .

2.3 Stochastic integration

In this section, we review the integration theory with respect to space-time white
noise in the sense of Walsh [69]. Let µ be a finite Borel measure on [0, 1], let
(Ω,F ,F,P) be a filtered probability space and let F = (Ft)t≥0 satisfy the usual
conditions. The white noise integration theory can be extended in various directions,
such as for measures on Lusin spaces, but we won’t need these generalizations and
therefore refer to Walsh [69, Chapter 1].

First, we recap the definition of white noise.

Definition 2.10: A space-time white noise based on µ w.r.t. F is a centred Gaussian
process ξ = (ξ(A) : A ∈ B([0,∞)× [0, 1])) such that for all A1, A2 ∈ B([0,∞) ×
[0, 1]), A3 ∈ B([0, 1])

(i) E [ξ(A1)ξ(A2)] = (λ1 ⊗ µ) (A1 ∩ A2),

(ii) t 7→ ξ([0, t]× A3) is an F-martingale.

For the proof of the existence of such a process, we refer to Walsh [69, Chapter
1]. We will write space-time white noise, or white noise, if the measure µ and the
filtration F are clear from the context. White noise is an L2(Ω)-valued countably-
additive measure on B([0,∞)× [0, 1]) (see [49, Lemma 2.3]). This motivates the idea
to integrate appropriate functions against it. Walsh [69] developed an integration
theory for a wider class of integrators, the so-called martingale measures. White
noise is a well-behaved example of a martingale measure.

First, we define the stochastic integral for a class of simple processes, as one does
for the well-known Itô integral.
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Definition 2.11: A simple process φ : Ω× [0,∞)× [0, 1]→ R is defined as a finite
sum of functions h : Ω× [0,∞)× [0, 1]→ R of the form

h(ω, t, x) = X(ω)1(a,b](t)1B(x), (ω, t, x) ∈ Ω× [0,∞)× [0, 1]

with X bounded and Fa-measurable, a, b ≥ 0, a < b and B ∈ B([0, 1]).

Let T > 0. We define the stochastic integral for h(ω, t, x) = X(ω)1(a,b](t)1B(x)

by ∫ T

0

∫ 1

0

h(ω, t, x)ξ(t, x)dµ(x)dt = X(w) (ξ([0, t ∧ b]×B)− ξ([0, t ∧ a]×B)) .

The integral for a simple process φ, denoted by
∫ T

0

∫ 1

0
φ(t, x)ξ(t, x)dµ(x)dt, is defined

by linearity. As usual, we suppress the dependence on ω.

For each simple process φ : Ω× [0,∞)× [0, 1]→ R it can be easily shown that

E

[∣∣∣∣∫ T

0

∫ 1

0

φ(t, x)ξ(t, x)dµ(x)dt

∣∣∣∣2
]

=

∫ T

0

∫ 1

0

E [φ(t, x)]2 dµ(x)dt (31)

(compare [49, Section 4.2]). Identity (31) is known as Walsh’s isometry. In stochastic
calculus, the Itô isometry is essential to extend the stochastic integral to a class of
predictable processes, where the predictable σ-algebra is generated by the class of
simple processes on Ω × [0, T ]. The extension for Walsh integrals has a similar
character.

Let P[0,T ],[0,1] be the σ-algebra that is generated by the class of simple processes
on Ω × [0, T ] × [0, 1]. We call a process on Ω × [0, T ] × [0, 1] predictable if it is
measurable from P[0,T ],[0,1] into B(R).

Definition 2.12: Let P2,T be the space of all processes φ ∈ L2(Ω × [0, T ] × [0, 1])

such that φ is predictable.

P2,T is a Banach space, which can be checked by a standard argument, so we skip
the proof here. The subspace of all simple processes, where we identify each element
with all of its modifications, is dense in P2,T (see [69, Proposition 2.3]). Now, let
φ ∈ P2,T and let (φn)n∈N be a sequence of simple processes such that φn → φ in P2,T
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as n→∞. Then,

E

[∣∣∣∣∫ T

0

∫ 1

0

φn(t, x)ξ(t, x)dµ(x)dt−
∫ T

0

∫ 1

0

φm(t, x)ξ(t, x)dµ(x)dt

∣∣∣∣2
]

=

∫ T

0

∫ 1

0

E [φn(t, x)− φm(t, x)]2 dµ(x)dt

= ||φn − φm||2L2(Ω×[0,T ]×[0,1]).

Since L2(Ω) is a Banach space, the stochastic integral of φn converges in L2(Ω) and
we define∫ T

0

∫ 1

0

φ(t, x)ξ(t, x)dµ(x)dt := lim
n→∞

∫ T

0

∫ 1

0

φn(t, x)ξ(t, x)dµ(x)dt in L2(Ω),

where the limit is independent of the choice of the convergent sequence. Obviously,
this integral again satisfies Walsh’s isometry. Further, (MT )T≥0 defined by

MT :=

∫ T

0

∫ 1

0

φ(t, x)ξ(t, x)dµ(x)dt

is a continuous F-martingale (see [49, Proposition 4.3]).

There are other notions of stochastic integrals. The theory of da Prato–Zabczyk
[15] is another very common way to define SPDEs. However, we do not investigate
such SPDEs in the present work. It should be noted that by using the results in the
present work, the investigations of heat and damped stochastic wave equations on
Cantor-like sets in the sense of da Prato–Zabczyk work very similar to those in [41]
and [43] for p.c.f. fractals.
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3 An Approximation of Solutions to Mea-
sure Theoretic Heat Equations

In this chapter, we consider heat equations defined by a generalized measure the-
oretic Laplacian on [0, 1]. These equations describe heat diffusion on a rod such
that the mass distribution of the rod is given by a non-atomic Borel probability
measure µ. First, we develop a theory of measure theoretic hyperbolic functions in
Section 3.1. Then, we establish properties of measure theoretic Laplacians on spaces
of continuous functions in Section 3.2. Based on that, we show that weak measure
convergence implies convergence of the corresponding measure theoretic Laplacians
in the strong resolvent sense. We prove that strong semigroup convergence with
respect to the uniform norm follows, which implies uniform convergence of solutions
to the corresponding heat equations. This is all done in Section 3.3.

3.1 Generalized hyperbolic functions and the resol-

vent density

Let b ∈ {N,D} and let µ be a non-atomic Borel probability measure on [0, 1]

such that 0, 1 ∈ supp(µ). In this section, we develop a useful representation for the
resolvent density of ∆b

µ.

Let λ > 0. We consider the initial value problem

∆µg = λg,

g(0) = 1, g′(0) = 0
(32)

on L2([0, 1], µ). (32) possesses a unique solution (see [27, Lemma 5.1]), which we
denote by gλ1,N . Further, under the initial conditions

g(1) = 1, g′(1) = 0, (33)

g(0) = 0, g′(0) = 1, (34)

and
g(1) = 0, g′(1) = 1, (35)
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respectively, the above eigenvalue problem also possesses a unique solution (see [27,
Remark 5.2]), and we denote it by gλ2,N , gλ1,D and gλ2,D, respectively. The resolvent
density is then given as follows.

Lemma 3.1: Let λ > 0. The resolvent operator Rb
λ := (λ − ∆b

µ)−1 is well-defined
and for all f ∈ L2([0, 1], µ) we have

Rb
λf(x) =

∫ 1

0

ρbλ(x, y)f(y)dµ(y), x ∈ [0, 1],

where the resolvent densities are given by

ρNλ (x, y) = ρNλ (y, x) :=
gλ1,N(x)gλ2,N(y)(

gλ1,N
)′

(1)
, x, y ∈ [0, 1], x ≤ y,

ρDλ (x, y) = ρDλ (y, x) := −
gλ1,D(x)gλ2,D(y)

gλ1,D(1)
, x, y ∈ [0, 1], x ≤ y.

Proof. See [27, Theorem 6.1].

It is well-known that if µ = λ1, the solutions to (32) and (34) are given by

gλ1.N(x) = cosh
(√

λx
)

and gλ1.D(x) =
1√
λ

sinh
(√

λx
)
, x ∈ [0, 1],

respectively. We generalize the notion of hyperbolic functions by solving (32) and
(34) for an arbitrary measure µ according to the given conditions. To this end, we
introduce generalized monomials as in [2].

Definition 3.2: For x ∈ [0, 1] we set p0(x) = q0(x) = 1 and for k ∈ N

pk(x) :=


∫ x

0
pk−1(t)dµ(t), if k is odd,∫ x

0
pk−1(t)dt, if k is even,

qk(x) :=


∫ x

0
qk−1(t)dt, if k is odd,∫ x

0
qk−1(t)dµ(t), if k is even.

We note that for x ∈ [0, 1] and k ≥ 0

p2k+1(x) ≤ p2k(x) ≤ xk

k!
, q2k+1(x) ≤ p2k(x) ≤ xk

k!
(36)

(see [29, Lemma 2.3]).

38



Definition 3.3: We define for x ∈ [0, 1], z ∈ R

sinhz(x) :=
∞∑
k=0

z2k+1q2k+1(x), coshz(x) :=
∞∑
k=0

z2kp2k(x).

By (36) for all z ∈ R
‖sinhz‖∞ ≤ zez

2

, ‖coshz‖∞ ≤ ez
2

. (37)

Example 3.4: If µ = λ1, we have qk(x) = xk

k!
, k ≥ 0. It follows that in this case

sinhz(x) =
∞∑
k=0

z2k+1 x2k+1

(2k + 1)!
= sinh(zx)

and analogously coshz(x) = cosh(zx).

Proposition 3.5: Let λ > 0. Then, for x ∈ [0, 1], we have

gλ1,N(x) = cosh√λ(x), gλ1,D(x) =
1√
λ

sinh√λ(x),

gλ2,N(x) = cosh√λ(1− x), gλ2,D(x) =− 1√
λ

sinh√λ(1− x).

Proof. The assertion for gλ1,D was proven in [29, Lemma 2.3]. The proof for gλ1,N
works analogously. We verify the assertion for gλ2,N . Let x ∈ [0, 1]. Then,

cosh√λ(1− x) =
∞∑
n=0

λnp2n(1− x)

= 1 +
∞∑
n=1

λn
∫ 1−x

0

∫ y

0

p2n−2(t)dµ(t)dy

= 1 +
∞∑
n=1

λn
∫ 1−x

0

∫ 1

1−y
p2n−2(1− t)dµ(t)dy

= 1−
∞∑
n=1

λn
∫ 1

x

∫ y

0

p2n−2(1− t)dµ(t)dy

= 1−
∞∑
n=0

λn+1

∫ 1

x

∫ y

0

p2n(1− t)dµ(t)dy.
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Due to estimate (36) we can use the dominated convergence theorem and obtain

cosh√λ(1− x) = 1− λ
∫ 1

x

∫ y

0

∞∑
n=0

λnp2n(1− t)dµ(t)dy

= 1− λ
∫ 1

x

∫ y

0

cosh√λ(1− t)dµ(t)dy.

We set f(x) := cosh√λ(1− x), x ∈ [0, 1] and get

f(x) = 1− λ
∫ 1

x

∫ y

0

f(t)dµ(t)dy, x ∈ [0, 1]

and in particular

f(0) = 1− λ
∫ 1

0

∫ y

0

f(t)dµ(t)dy.

Hence, for x ∈ [0, 1],

f(x)− f(0) = λ

∫ x

0

∫ y

0

f(t)dµ(t)dy.

The latter equation can be written as ∆µf = λf. It remains to check the initial
conditions. Obviously, f(1) = cosh√λ(0) = 1. Using (36) again, we have

f ′(1) = −
∞∑
n=1

λnp2n−1(0) = 0.

The proof for gλ2,D follows using the same ideas.

This leads to the following representation for the resolvent density:

Corollary 3.6: Let λ > 0. It holds for x, y ∈ [0, 1], x ≤ y,

ρNλ (x, y) = ρNλ (y, x) =
(

cosh′√
λ
(1)
)−1

cosh√λ(x) cosh√λ(1− y),

ρDλ (x, y) = ρDλ (y, x) =
1√
λ

(
sinh√λ(1)

)−1
sinh√λ(x) sinh√λ(1− y).
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3.2 Restricted semigroups

Let b ∈ {N,D} and let µ be defined as before. Recall that ∆b
µ is the generator of

a strongly continuous Markovian semigroup
(
T bt
)
t≥0

of contractions on L2([0, 1], µ).

Definition 3.7: For (t, x, y) ∈ (0,∞)× [0, 1]× [0, 1], we define

pbt(x, y) :=
∞∑
k=1

e−λ
b
ktϕbk(x)ϕbk(y). (38)

This is called the heat kernel of ∆b
µ. Note that for fixed (t, y) ∈ (0,∞)× [0, 1], pt(·, y)

is affine on the intervals outside of supp(µ), as the eigenfunctions are affine. Hence,
this pointwise representation coincides with the D2

µ-representative of the L2([0, 1], µ)-
equivalence class given by (38).

The heat kernel is the integral kernel of T bt for t > 0. That is, for t > 0 and
f ∈ L2([0, 1], µ), we can write

T bt f(x) =

∫ 1

0

pbt(x, y)f(y)dµ(y), x ∈ [0, 1].

In this section, we restrict these semigroups to appropriate spaces of equivalence
classes of continuous functions.

Definition 3.8: (i) We define (C[0, 1])Nµ as the set of all L2([0, 1], µ)-equivalence
classes possessing a continuous representative, formally

(C[0, 1])Nµ :=
{
f ∈ L2([0, 1], µ) : f possesses a continuous representative

}
.

(ii) We further define (C[0, 1])Dµ as the set of all L2([0, 1], µ)-equivalence classes
possessing a continuous representative that satisfies Dirichlet boundary condi-
tions, formally

(C[0, 1])Dµ :=
{
f ∈ L2([0, 1], µ) : f possesses a continuous representative f̄

such that f̄(0) = f̄(1) = 0
}
.

The space (C[0, 1])bµ is a Banach space with the norm ‖f‖(C[0,1])bµ
:=
∥∥∥f |supp(µ)

∥∥∥
∞
.

Note that
‖f‖(C[0,1])bµ

=
∥∥∥f̃∥∥∥

∞
,

41



where f̃ is the continuous representative of f that is for i ≥ 1 linear on [ai, bi] (see
(18) for the definition of ai, bi). This is the representative we use when evaluating
f(x) for x ∈ [0, 1]\ supp(µ). To simplify the notation, we henceforth write ‖f‖∞ for
‖f‖(C[0,1])bµ

.

Let u =
∑

k≥1 u
b
kϕ

b
k ∈ L2([0, 1], µ) and let t > 0. We have

∆b
µT

b
t u =

∑
k≥1

λbke
−λbktubkϕ

b
k ∈ L2([0, 1], µ) (39)

and thus T bt u ∈ D
(
∆b
µ

)
. Hence, the following inclusion holds:

T bt
(
(C[0, 1])bµ

)
⊆ (C[0, 1])bµ.

This motivates the definition of the restricted semigroup
(
T̄ bt
)
t≥0

, which is for t ≥ 0

defined by
T̄ bt : (C[0, 1])bµ → (C[0, 1])bµ, T̄

b
t f := T bt f.

The goal of this section is to show that
(
T̄ bt
)
t≥0

again defines a strongly continuous
contraction semigroup. It is obvious that the semigroup property holds. Note that
by the Markov property of

(
T bt
)
t≥0

it follows with f ≡ 1 for (t, x) ∈ (0,∞)× [0, 1]

0 ≤ T bt f(x) =

∫ 1

0

pbt(x, y)dµ(y) ≤ 1

and consequently for g ∈ (C[0, 1])bµ

∣∣T bt g(x)
∣∣ =

∣∣∣∣∫ 1

0

pbt(x, y)g(y)dµ(y)

∣∣∣∣ ≤ ‖g‖∞ ∣∣∣∣∫ 1

0

pbt(x, y)dµ(y)

∣∣∣∣ ≤ ‖g‖∞ , x ∈ [0, 1].

Hence,
(
T̄ bt
)
t≥0

is a semigroup of contractions. It remains to prove the strong con-
tinuity. To this end, we need some preparations. We write E(f, f) := E(f).

Lemma 3.9: If f ∈ F , then

‖f‖∞ ≤ E(f)
1
2 + ‖f‖µ .
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Proof. Let f ∈ F . Then, by the Cauchy-Schwarz inequality for all x, y ∈ [0, 1]

|f(x)− f(y)| =
∣∣∣∣∫ y

x

f ′(z)dz

∣∣∣∣ ≤ (∫ y

x

(f ′)
2

(z)dz

) 1
2

|x− y|
1
2 = E(f)

1
2 |x− y|

1
2 .

It follows by the reversed triangle inequality and by |x− y| ≤ 1

|f(x)| ≤ |f(y)|+ E(f)
1
2 .

Further, by integrating of y w.r.t. µ,

|f(x)| ≤
∫ 1

0

|f(y)|dµ(y) + E(f)
1
2

and finally by the Cauchy-Schwarz inequality

|f(x)| ≤ ‖f‖µ + E(f)
1
2 .

Lemma 3.10: Let f ∈ (C[0, 1])bµ. Then, limt→0

∥∥T bt f − f∥∥∞ = 0.

Proof. We follow the proof of [48, Proposition 5.2.6]. Let f ∈ F . By Lemma 3.9
and [48, Lemma B.2.4],

lim
t→0

∥∥T bt f − f∥∥∞ ≤ lim
t→0
E
(
T bt f − f

) 1
2 +

∥∥T bt f − f∥∥µ
≤ lim

t→0
2

1
2

(
E
(
T bt f − f

)
+
∥∥T bt f − f∥∥2

µ

) 1
2

= 0.

By the fact that F is dense in (C[0, 1])Nµ and that, for t ≥ 0, TNt is continuous on
(C[0, 1])Nµ , we obtain the assertion for b = N . To verify the case b = D, we prove
that F0 is dense in (C[0, 1])Dµ . Let f ∈ (C[0, 1])Dµ . Then, by the density of F in
(C[0, 1])Nµ , there exists a sequence (fn)n∈N with fn ∈ F for each n ∈ N such that
‖f − fn‖∞ → 0, n→∞. We define for n ∈ N

fn,0(x) := fn(x)− fn(0)− x(fn(1)− fn(0)), x ∈ [0, 1],
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which is an element of F0. Further, we have that

f0(x) := f(x)− f(0)− x(f(1)− f(0)) = f(x), x ∈ [0, 1]

since f satisfies Dirichlet boundary conditions. This implies

lim
n→∞

‖fn,0 − f‖∞

= lim
n→∞

‖fn,0 − f0‖∞

≤ lim
n→∞

sup
x∈[0,1]

|fn(x)− f(x)|+ |fn(0)− f(0)|+ |x (fn(1)− fn(0)− (f(1)− f(0)))|

= 0.

The main result of this section now follows immediately.

Corollary 3.11:
(
T̄ bt
)
t≥0

is a strongly continuous contraction semigroup on (C[0, 1])bµ.

3.3 Convergence results

3.3.1 Strong resolvent convergence

Let µ be defined as before and let F be the distribution function of µ. We give
our basic assumption.

Assumption 3.12: Let (µn)n∈N be a sequence of non-atomic Borel probability mea-
sures on [0, 1] such that 0, 1 ∈ supp(µn) and µn ⇀ µ, n → ∞, where ⇀ denotes
weak measure convergence.

We denote the distribution function of µn by Fn for n ∈ N.

First, we give convergence results for the generalized hyperbolic functions intro-
duced in Section 3.1. Let pk, qk, k ∈ N be defined by µ and pk,n, qk,n, k ∈ N be
defined by µn for n ∈ N.
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Lemma 3.13: For x ∈ [0, 1] and k, n ∈ N we have

|q2k(x)− q2k,n(x)| ≤ 2
‖F − Fn‖∞ xk

(k − 1)!
,

|p2k(x)− p2k,n(x)| ≤ 2
‖F − Fn‖∞ xk

(k − 1)!
,

|q2k+1(x)− q2k+1,n(x)| ≤ 2
‖F − Fn‖∞ xk

(k − 1)!
,

|p2k+1(x)− p2k+1,n(x)| ≤ 2
‖F − Fn‖∞ xk

(k − 1)!
.

Proof. The distribution function of µ is continuous. Hence, weak measure conver-
gence implies uniform convergence of the corresponding distribution functions (see
e.g. [12, Section 8.1]). We can thus apply [30, Lemma 3.1].

For z ∈ R let coshz, sinhz be defined by µ and coshz,n, sinhz,n be defined by µn
for n ∈ N. We obtain a convergence result for the generalized hyperbolic functions,
comparable to that for generalized trigonometric functions in [30].

Lemma 3.14: Let z ∈ R. Then,

‖coshz − coshz,n‖∞ ≤ 2z2ez
2 ‖F − Fn‖∞ ,∥∥cosh′z − cosh′z,n

∥∥
∞ ≤

(
z2 + 2z4ez

2
)
‖F − Fn‖∞ ,

‖sinhz − sinhz,n‖∞ ≤ 2z3ez
2 ‖F − Fn‖∞ .

Proof. Let x ∈ [0, 1] and n ∈ N. Then,

|coshz(x)− coshz,n(x)| ≤
∞∑
k=1

|p2k(x)− p2k,n(x)| z2k

≤ 2
∞∑
k=1

‖F − Fn‖∞
(k − 1)!

z2k

= 2
∞∑
k=0

‖F − Fn‖∞
k!

z2k+2

= 2z2ez
2 ‖F − Fn‖∞ .
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Further, note that

cosh′z(x) =
∞∑
k=1

p2k−1(x)z2k

and
|p1(x)− p1,n(x)| = |µ([0, x])− µn([0, x])| ≤ ‖F − Fn‖∞ .

With that,

∣∣cosh′z(x)− cosh′z,n(x)
∣∣ ≤ ∞∑

k=1

|p2k−1(x)− p2k−1,n(x)| z2k

≤

(
z2 + 2

∞∑
k=2

z2k

(k − 2)!

)
‖F − Fn‖∞

=
(
z2 + 2z4ez

2
)
‖F − Fn‖∞ .

Finally,

|sinhz(x)− sinhz,n(x)| ≤
∞∑
k=1

|q2k+1(x)− q2k+1,n(x)| z2k+1

≤ 2
∞∑
k=1

z2k+1

(k − 1)!
‖F − Fn‖∞

= 2
∞∑
k=0

z2k+3

k!
‖F − Fn‖∞

= 2z3ez
2 ‖F − Fn‖∞ .

We turn to the main result of this section. For b ∈ {N,D}, λ > 0 and n ∈ N,
let Rb

λ be defined by µ, Rb
λ,n be defined by µn and let the resolvent densities be

analogously defined. We assume supp(µ) ⊆ supp(µn) for all n ∈ N. Then, the
mapping

πn : (C[0, 1])bµ → (C[0, 1])bµn , f 7→ f (40)

defines an embedding, where f ∈ (C[0, 1])bµn denotes the L2([0, 1], µn)-equivalence
class of the representative of f ∈ (C[0, 1])bµ that is linear on each interval I ⊆
supp(µn) \ supp(µ).
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Theorem 3.15: Let λ > 0. Then, for all f ∈ (C[0, 1])bµ,

lim
n→∞

∥∥Rb
λ,nπnf − πnRb

λf
∥∥
∞ = 0.

Proof. We simplify the notation in this proof by omitting all embeddings. If we
evaluate on supp(µn) \ supp(µ), we always evaluate the representative that is linear
on each interval I ⊆ supp(µn) \ supp(µ). First, we consider the case b = N. Let
λ > 0, n ∈ N, x, y ∈ [0, 1] with x ≤ y. Using the triangle inequality,∣∣ρNλ (x, y)− ρNλ,n(x, y)

∣∣
≤
∣∣∣∣(cosh′√

λ
(1)
)−1

−
(

cosh′√
λ,n

(1)
)−1
∣∣∣∣ ∣∣cosh√λ(x) cosh√λ(1− y)

∣∣
+
∣∣cosh√λ(x)− cosh√λ,n(x)

∣∣ ∣∣∣∣(cosh′√
λ,n

(1)
)−1

cosh√λ(1− y)

∣∣∣∣
+
∣∣cosh√λ(1− y)− cosh√λ,n(1− y)

∣∣ ∣∣∣∣(cosh′√
λ,n

(1)
)−1

cosh√λ,n(x)

∣∣∣∣ .
(41)

We have

cosh′√
λ
(1) =

∞∑
k=1

λkp2k−1(1) ≥ λp1(1) = λ (42)

and similarly cosh′√
λ,n

(1) ≥ λ. Applying this along with Lemma 3.14, we get

∣∣∣∣(cosh′√
λ
(1)
)−1

−
(

cosh′√
λ,n

(1)
)−1
∣∣∣∣ =

∣∣∣∣∣cosh′√
λ,n

(1)− cosh′√
λ
(1)

cosh′√
λ
(1) cosh′√

λ,n
(1)

∣∣∣∣∣
≤
(
λ+ 2λ2eλ

)
‖F − Fn‖∞

λ2

and thus with (37)∣∣∣∣(cosh′√
λ
(1)
)−1

−
(

cosh′√
λ,n

(1)
)−1
∣∣∣∣ ∣∣cosh√λ(x) cosh√λ(1− y)

∣∣
≤
(
e2λ + 2λe3λ

)
‖F − Fn‖∞

λ
.

For the second term on the right-hand side of inequality (41), we calculate

∣∣cosh√λ(x)− cosh√λ,n(x)
∣∣ ∣∣∣∣(cosh′√

λ,n
(1)
)−1

cosh√λ(1− y)

∣∣∣∣ ≤ 2e2λ ‖F − Fn‖∞ .

Treating the third term analogously and plugging the above calculations into (41)
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yields

lim
n→∞

max
x∈[0,1]

∣∣ρNλ (x, y)− ρNλ,n(x, y)
∣∣

≤ lim
n→∞

(
e2λ + 2λe3λ

)
‖F − Fn‖∞

λ
+ 4e2λ ‖F − Fn‖∞

= lim
n→∞

(
1

λ
+ 2eλ + 4

)
e2λ ‖F − Fn‖∞

= 0.

Further, by (37) and (42),∣∣∣∣∫ 1

0

ρNλ (x, y)f(y)dµ(y)−
∫ 1

0

ρNλ (x, y)f(y)dµn(y)

∣∣∣∣
≤
∣∣∣∣(cosh′√

λ
(1)
)−1

cosh√λ(x)

∣∣∣∣
∣∣∣∣∣
∫ 1

0

cosh√λ(1− y)f(y)dµ(y)

−
∫ 1

0

cosh√λ(1− y)f(y)dµn(y)

∣∣∣∣∣
≤ eλ

λ

∣∣∣∣∫ 1

0

cosh√λ(1− y)f(y)dµ(y)−
∫ 1

0

cosh√λ(1− y)f(y)dµn(y)

∣∣∣∣ .
Due to weak measure convergence,

lim
n→∞

∫ 1

0

cosh√λ(1− y)f(y)dµn(y)−
∫ 1

0

cosh√λ(1− y)f(y)dµ(y) = 0

and consequently,

lim
n→∞

max
x∈[0,1]

∣∣∣∣∫ 1

0

ρNλ (x, y)f(y)dµ(y)−
∫ 1

0

ρNλ (x, y)f(y)dµn(y)

∣∣∣∣ = 0.

We get the same result for x ≥ y and obtain

lim
n→∞

max
x∈[0,1]

∣∣RN
λ,nf(x)−RN

λ f(x)
∣∣

≤ lim
n→∞

max
x∈[0,1]

∣∣∣∣∫ 1

0

ρNλ (x, y)f(y)dµ(y)−
∫ 1

0

ρNλ (x, y)f(y)dµn(y)

∣∣∣∣
+ lim

n→∞
max
x∈[0,1]

∣∣∣∣∫ 1

0

(
ρNλ (x, y)− ρNλ,n(x, y)

)
f(y)dµn

∣∣∣∣
= 0.
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Now, let b = D. Again by the triangle inequality, for n ∈ N and x, y ∈ [0, 1], x ≤ y,∣∣ρDλ (x, y)− ρDλ,n(x, y)
∣∣

≤ 1√
λ

(∣∣∣(sinh√λ(1)
)−1 −

(
sinh√λ,n(1)

)−1
∣∣∣ ∣∣sinh√λ(x) sinh√λ(1− y)

∣∣
+
∣∣sinh√λ(x)− sinh√λ,n(x)

∣∣ ∣∣∣(sinh√λ,n(1)
)−1

sinh√λ(1− y)
∣∣∣

+
∣∣sinh√λ(1− y)− sinh√λ,n(1− y)

∣∣ ∣∣∣∣(sinh′√
λ,n

(1)
)−1

sinh√λ,n(x)

∣∣∣∣
)
.

(43)

We have

sinh√λ(1) =
∞∑
k=0

λk+ 1
2 q2k+1(1) ≥

√
λq1(1) =

√
λ

and thus ∣∣∣(sinh√λ(1)
)−1 −

(
sinh√λ,n(1)

)−1
∣∣∣ ≤ 2

√
λeλ ‖F − Fn‖∞ .

Arguing in the same way as before, we get

lim
n→∞

max
x∈[0,1]

∣∣ρDλ (x, y)− ρDλ,n(x, y)
∣∣ ≤ lim

n→∞

2√
λ

√
λeλ ‖F − Fn‖∞ λe

2λ

+ lim
n→∞

4√
λ
λ

3
2 eλ ‖F − Fn‖∞ e

λ

= lim
n→∞

(
2eλ + 4

)
λe2λ ‖F − Fn‖∞

= 0.

Further,

max
x∈[0,1]

∣∣∣∣∫ 1

0

ρDλ (x, y)f(y)dµ(y)−
∫ 1

0

ρDλ (x, y)f(y)dµn(y)

∣∣∣∣
≤ max

x∈[0,1]

∣∣∣∣ (√λ sinh√λ(1)
)−1

sinh√λ(x)

∫ 1

0

sinh√λ(1− y)f(y)dµ(y)

−
∫ 1

0

sinh√λ(1− y)f(y)dµn(y)

∣∣∣∣
≤
∣∣∣∣(√λ sinh√λ(1)

)−1
∣∣∣∣ ∥∥sinh√λ

∥∥
∞

∣∣∣∣ ∫ 1

0

sinh√λ(1− y)f(y)dµ(y)

−
∫ 1

0

sinh√λ(1− y)f(y)dµn(y)

∣∣∣∣.
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Due to the weak measure convergence, this goes to zero as n tends to∞. Deducing
the same result for x ≥ y and combining the above inequalities,

lim
n→∞

max
x∈[0,1]

∣∣RD
λ,nf(x)−RD

λ f(x)
∣∣

≤ lim
n→∞

max
x∈[0,1]

∣∣∣∣∫ 1

0

ρDλ (x, y)f(y)dµ(y)−
∫ 1

0

ρDλ (x, y)f(y)dµn(y)

∣∣∣∣
+ lim

n→∞
max
x∈[0,1]

∣∣∣∣∫ 1

0

(
ρDλ (x, y)− ρDλ,n(x, y)

)
f(y)dµn

∣∣∣∣
= 0.

3.3.2 Graph norm convergence

Let µ be defined as before and let λ > 0. Analogously to the restricted semigroup,
we define the restricted resolvent operator by

R̄N
λ : (C[0, 1])Nµ → (C[0, 1])Nµ , R̄

N
λ f := RN

λ f,

R̄D
λ : (C[0, 1])Dµ → (C[0, 1])Dµ , R̄

D
λ f := RD

λ f.

Further, we define the operators ∆̄N
µ and ∆̄D

µ by

∆̄N
µ f := ∆N

µ f, D
(
∆̄N
µ

)
:=
{
f ∈ D

(
∆N
µ

)
: ∆N

µ f ∈ (C[0, 1])Nµ
}
,

∆̄D
µ f := ∆D

µ f, D
(
∆̄D
µ

)
:=
{
f ∈ D

(
∆D
µ

)
: ∆D

µ f ∈ (C[0, 1])Dµ
}
,

which are called the part of the operator ∆N
µ in C[0, 1])Nµ and the part of the oper-

ator ∆D
µ in C[0, 1])Dµ , respectively. The following Lemma shows how the restricted

semigroup, the restricted resolvent and the part of the operator are connected. For
that, let b ∈ {N,D}.

Lemma 3.16: (i) The infinitesimal generator of the strongly continuous contrac-
tion semigroup

(
T̄ bt
)
t≥0

is ∆̄b
µ.

(ii) R̄b
λ is the resolvent of ∆̄b

µ.

Proof. For all f ∈ L2([0, 1], µ), we have that ‖f‖∞ ≥ ‖f‖µ, therefore the inclusion
map i : (C[0, 1])bµ → L2([0, 1], µ), f 7→ f is continuous. Moreover,

(
T̄ bt
)
t≥0

defines
a strongly continuous contraction semigroup on (C[0, 1])bµ and (C[0, 1])bµ is

(
T̄ bt
)
t≥0

-
invariant (see Corollary 3.11). We thus can apply [21, 2.3 Proposition] to verify (i).
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We turn to part (ii). Let λ > 0 and let R̃b
λ be the resolvent of ∆̄b

µ. By part (i)

and [21, 1.10 Theorem], this operator is well-defined and given by

R̃b
λf =

∫ ∞
0

e−λsT̄ bs fds, f ∈ (C[0, 1])bµ.

Further, by definition of
(
T̄ bt
)
t≥0

and R̄b
λ,

R̄b
λf = Rb

λf =

∫ ∞
0

e−λsT bs fds =

∫ ∞
0

e−λsT̄ bs fds, f ∈ (C[0, 1])bµ.

It follows R̃b
λ = R̄b

λ on (C[0, 1])bµ.

We are now able to establish graph norm convergence. To this end, let (µn)n∈N
satisfy Assumption 3.12 and we assume supp(µ) ⊆ supp(µn) for all n ∈ N.

Theorem 3.17: Let b ∈ {N,D}. For f ∈ D
(
∆̄b
µ

)
there exists (fn)n∈N with fn ∈

D
(
∆̄b
µn

)
such that for n ∈ N

lim
n→∞

‖πnf − fn‖∞ +
∥∥πn∆̄b

µf − ∆̄b
µnfn

∥∥
∞ = 0.

Proof. Let λ > 0, f ∈ D
(
∆̄b
µ

)
and g :=

(
λ− ∆̄b

µ

)
f . Then, f = R̄b

λg and we define
fn := R̄b

λ,nπng. Applying Theorem 3.15,

lim
n→∞

‖πnf − fn‖∞ = 0. (44)

Further,
∆̄b
µf = λf −

(
λ− ∆̄b

µf
)
f = λf − g

and
∆̄b
µnfn = λfn −

(
λ− ∆̄b

µn

)
fn = λfn − πng.

It follows ∥∥πn∆̄b
µf − ∆̄b

µnfn
∥∥
∞ = λ ‖πnf − fn‖∞

and thus, by (44),
lim
n→∞

∥∥πn∆̄b
µf − ∆̄b

µnfn
∥∥
∞ = 0.
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3.3.3 Strong semigroup convergence

For b ∈ {N,D}, let
(
T bt
)
t≥0

be defined by µ,
(
T bt,n
)
t≥0

be defined by µn and
analogously the restricted semigroups

(
T̄ bt
)
t≥0

and
(
T̄ bt,n
)
t≥0

be defined by µ and µn,
respectively. The main result of this chapter is a direct consequence of the previous
results.

Theorem 3.18: Let f ∈ (C[0, 1])bµ. Then, for all t ≥ 0

lim
n→∞

∥∥πnT̄ bt f − T̄ bt,nπnf∥∥∞ = 0,

uniformly on bounded time intervals.

Proof. For n ∈ N, πn is a bounded linear transformation between Banach spaces.
Further,

(
T̄ bt
)
t≥0

and
(
T̄ bt,n
)
t≥0

, n ∈ N are strongly continuous contraction semi-
groups on their respective spaces (see Corollary 3.11). Hence, due to [22, Theorem
6.1], the assertion is a direct consequence of Theorem 3.17.

Strong semigroup convergence can be interpreted as convergence of solutions to
heat equations. The connection is given as follows (see [21, Proposition 6.2]).

Lemma 3.19: Let A be the generator of a strongly continuous semigroup (St)t≥0

on a Banach space X. Then, for each f ∈ D(A) the abstract heat equation

∂u

∂t
(t) = Au(t),

u(0) = f
(45)

for t ≥ 0 has a unique classical solution in X given by

u : [0,∞)→ X, t 7→ Stf,

meaning that u is continuously differentiable with respect to X, u(t) ∈ D (A) and
(45) holds for all t ≥ 0.

Let T > 0 and f ∈ D
(
∆̄b
µ

)
. Theorem 3.18 implies that the classical solution to

∂un
∂t

(t) = ∆̄b
µnun(t),

un(0) = πnf
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converges uniformly for (t, x) ∈ [0, T ]× [0, 1] to the classical solution to

∂u

∂t
(t) = ∆̄b

µu(t),

u(0) = f

as n → ∞, assuming that πnf ∈ D
(
∆̄b
µn

)
. However, the assumption f ∈ D

(
∆̄b
µ

)
and πnf ∈ D

(
∆̄b
µn

)
for all n ∈ N is very restrictive, as the following example

illustrates.

Example 3.20: Let µ be a measure according to the given conditions such that
supp(µ) is a λ1-zero set and assume that supp(µn) = [0, 1] for all n ∈ N. Further,
let f ∈ D

(
∆̄b
µ

)
. Then, for i ≥ 1, πnf is linear on [ai, bi]. Now, if we assume that

πnf ∈ D
(
∆̄b
µn

)
, then ∆̄b

µnf(x) = 0, x ∈ [ai, bi] and thus ∆̄b
µnf = 0 ∈ (C[0, 1])bµn . If

b = D, we obtain πnf = 0 ∈ (C[0, 1])Dµn and thus f = 0 ∈ (C[0, 1])Dµ and if b = N ,
(πnf)′ = 0 ∈ C[0, 1] and thus f ′ = 0 ∈ (C[0, 1])Nµ .

This motivates the following solution concept (compare [21, Definition 6.3]).

Definition 3.21: Let X be a Banach space, A : X → X and f ∈ X. We call a
map u : [0,∞)→ X, t 7→ u(t) solution to the abstract heat equation

du

dt
(t) = Au(t),

u(0) = f
(46)

for t ≥ 0 if u is continuous with respect to X for t ≥ 0, u(t) ∈ D(A) for all t > 0

and limh→0
u(t+h)−u(t)

h
= Au(t) with respect to X for t > 0.

Using this solution concept, we can establish the desired convergence for any initial
condition with respect to the uniform norm.

Theorem 3.22: Let f ∈ (C[0, 1])bµ and let (µn)n∈N satisfy Assumption 3.12. Fur-
ther, let {u(t) : t ≥ 0} be the unique solution to

du

dt
(t) = ∆̄b

µu(t), t ≥ 0,

u(0) = f
(47)
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and let for n ≥ 1 {un(t) : t ≥ 0} be the unique solution to

dun
dt

(t) = ∆̄b
µnun(t), t ≥ 0,

un(0) = πnf.
(48)

Then,
lim
n→∞

‖πnu(t)− un(t)‖∞ = 0, (49)

uniformly on bounded time intervals.

Proof. First, we show that t 7→ T̄ bt f is a solution to (47). Let t > 0. By (39) we
have for any k ∈ N

u(t) = T̄ bt f = T bt f ∈ D
((

∆b
µ

)k)
.

It follows that ∆b
µu(t) ∈ D

(
∆b
µ

)
and especially ∆b

µu(t) ∈ (C[0, 1])bµ, which implies
u(t) ∈ D

(
∆̄b
µ

)
. From the strong continuity of

(
T̄ bt
)
t≥0

along with the semigroup
property we get the continuity of u with respect to (C[0, 1])bµ. Further, since ∆̄b

µ is
the infinitesimal generator of

(
T̄ bt
)
t≥0

,

lim
h→0

u(t+ h)− u(t)

h
= lim

h→0

T̄ bhT̄
b
t f − T̄ bt f
h

= ∆̄b
µT̄

b
t f = ∆̄b

µu(t).

For the proof of uniqueness, first note that the unique solution to

dv

dt
(t) = ∆b

µv(t), t ≥ 0,

v(0) = f
(50)

on the Hilbert space L2([0, 1], µ) is given by v(t) = T bt f (see [48, Theorem B.2.6]).
We now show that a solution to (47), which we denote by u, is also a solution to
(50). The continuity with respect to L2([0, 1], µ) follows from

‖u(t)− u(s)‖µ ≤ ‖u(t)− u(s)‖∞ , s, t ≥ 0.

Let t > 0. We have u(t) ∈ D
(
∆̄b
µ

)
, which by definition implies that u(t) ∈ D

(
∆b
µ

)
.

54



Further,

lim
h→0

∥∥∥∥u(t+ h)− u(t)

h
−∆b

µu(t)

∥∥∥∥
µ

= lim
h→0

∥∥∥∥u(t+ h)− u(t)

h
− ∆̄b

µu(t)

∥∥∥∥
µ

≤ lim
h→0

∥∥∥∥u(t+ h)− u(t)

h
− ∆̄b

µu(t)

∥∥∥∥
∞

= 0.

Therefore, u is a solution to (50). This proves the uniqueness. We can follow the
same arguments to verify that T̄ bt,nπnf is the unique solution to (48) for n ∈ N.
Then, (49) is a direct consequence of Theorem 3.18.

3.4 Applications

Example 3.23: As a first application, we consider a non-atomic Borel probability
measure µ on [0, 1] such that 0, 1 ∈ supp(µ) and supp(µ) 6= [0, 1]. We define for
ε ∈ (0, 1) the approximating probability measure µε by

µε :=
µ+ ελ1

1 + ε
.

It is elementary that µε converges weakly to µ as ε → 0 and Theorem 3.22 is
applicable. Let b ∈ {N,D} and f ∈ (C[0, 1])bµ. Then, the unique solution {uε(t) :

t ≥ 0} to

duε
dt

(t) = ∆̄b
µεuε(t), t ≥ 0,

uε(0) = πεf,

where πε : (C[0, 1])bµ → (C[0, 1])bµε is an embedding as previously defined (see (40)),
converges to the unique solution {u(t) : t ≥ 0} to

du

dt
(t) = ∆̄b

µu(t),

u(0) = f

for each t ≥ 0 with respect to the uniform norm as ε tends to zero.

In the previous example, µ could be chosen to be an absolutely continuous measure,
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Figure 5: Approximating Cantor measures of levels n = 1, 2.

for example λ1
|
[0, 13 ]∪[ 23 ,1]

, or to be a singular measure, as a self-similar measure on the

Cantor set. Furthermore, it is not required that the approximating measures have
full support.

Example 3.24: Let µ be the unique invariant Borel probability measure on [0, 1]

given by the IFS consisting of S1(x) = x
3
and S2(x) = 2

3
+ x

3
, x ∈ [0, 1] and weights

µ1, µ2 ∈ (0, 1), i.e. µ is a Cantor measure. Following [30], for n ∈ N we define the
approximating Cantor measures of level n by

µn(B) := 3n
∑

x∈{1,2}n
λ1
|Ix

n∏
i=1

µxi , B ∈ B([0, 1]),

where Ix := (Sx1 ◦ ... ◦ Sxn) ([0, 1]), x ∈ {1, 2}n. Figure 5 illustrates the approxi-
mating Cantor measures of levels n = 1, 2. We denote the distribution function of
µ by F and the distribution function of µn by Fn for n ∈ N. Then, ‖F − Fn‖∞ → 0

(see [30, Proposition 4.2]) as well as supp(µ) ⊂ supp(µn) for n ∈ N and Theorem
3.22 can be applied. Hence, for f ∈ (C[0, 1])bµ, the unique solution {un(t) : t ≥ 0}
to

dun
dt

(t) = ∆̄b
µnun(t),

un(0) = πnf

converges to the unique solution {u(t) : t ≥ 0} to

du

dt
(t) = ∆̄b

µu(t),

u(0) = f

for each t ≥ 0 with respect to the uniform norm as n tends to infinity.

Finally, we connect both applications.
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Example 3.25: Let ε > 0, n ∈ N and let µ, µn, {u(t) : t ≥ 0} and {un(t) : t ≥ 0}
be defined as in Example 3.24. We define µn,ε by

µn,ε :=
µn + ελ1

1 + ε
,

i.e. analogously to Example 3.23, and {un,ε(t) : t ≥ 0} to be the solution to

dun,ε
dt

(t) = ∆̄b
µn,εun,ε(t),

un,ε(0) = πn,εf,

where πn,ε is an embedding as previously defined. Further, let t ∈ [0,∞) and δ > 0.
By Example 3.24, there exists n0 ∈ N such that for all n ≥ n0 we have that

‖u(t)− un(t)‖∞ <
δ

2
.

By Example 3.23, for each n ≥ n0 there exists εn > 0 such that for all ε < εn we
have that

‖un(t)− un,ε(t)‖∞ <
δ

2
.

Hence, for all n ≥ n0, ε < εn it holds

‖u(t)− un,ε(t)‖∞ < δ.

Hence, the heat on a rod with mass distribution given by a Cantor measure diffuses
approximately like the heat on a rod possessing a strictly positive mass density
which is small off the Cantor set.
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4 Analysis of Measure Theoretic Stochastic
Heat Equations

Let µ be a self-similar measure on a Cantor-like set K according to Section 2.2.
Further, let (Ω,F ,F,P) be a filtered probability space and let F = (Ft)t≥0 satisfy
the usual conditions. The object of study in this chapter is the stochastic PDE

∂

∂t
u(t, x) = ∆b

µut(x) + f(t, u(t, x)) + g(t, u(t, x))ξ(t, x),

u(0, x) = u0(x)
(51)

for (t, x) ∈ [0, T ] × [0, 1], where T > 0, b ∈ {N,D}, u0 : Ω × [0, 1] → R, f, g :

Ω × [0, T ] × R → R. Further, ξ denotes a F-space-time white noise based on µ

according to Definition 2.10.

Before we elaborate on the mild solution to (51), we need to have a closer look on
the resolvent density and the heat kernel of ∆b

µ.

4.1 Approximation of the resolvent density

We develop a method to approximate the Delta functional on a Cantor-like set K,
in particular to approximate the resolvent density, which will then again be used to
approximate point evaluations of heat kernels.

For n ≥ 1, let Λn be the partition of the word space W defined by

Λn = {ω = ω1...ωm ∈W∗ : rω1 · · · rωm−1 > rnmax ≥ rω},

where rmax := maxi=1,...,N ri. Further, let dH be the Hausdorff dimension of K,
νi := µi

r
dH
i

for i ∈ {1, ..., N} and Kω := Sω(K) for ω ∈W. |A| denotes the cardinality
of a set A if A is countable and the diameter if A is uncountable.

Lemma 4.1: Let n ∈ N. Then,

(i) |Λn| <∞ and
⋃
ω∈Λn

Kω = K.

(ii) For ω ∈ Λn there exists a subset Λ′ ⊆ Λn+1 such that Kω =
⋃
ν∈Λ′ Kν .

(iii) For ω, ν ∈ Λn, ω 6= ν, it holds |Kω ∩Kν | ∈ {0, 1}.
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(iv) For ω ∈ Λn, it holds µ(Kω) > rndHmaxr
dH
minν

n
min, where rmin := mini=1,...,N ri, νmin :=

mini=1,...,N νi.

(v) For w ∈W∗ there exists n ∈ N such that w ∈ Λn. Consequently, for all m ≥ n

there exists Λ′m ⊆ Λm such that Kw = ∪ν∈Λ′mKν.

If the measure µ is given by µi = rdHi and thus νi = 1, i = 1, ..., N , the estimate
in (iv) coincides with that in [41, Lemma 3.5(iv)].

Proof. (i) The first claim is obvious. For the second, note that ∪w∈WKw = K

and that ∪w∈ΛnΣw = W and thus ∪v∈Σw,w∈ΛnKv = K. It remains to show that
Kw = ∪v∈ΣwKv for w ∈ Λn. This follows by applying Sw to both sides of
equation ∪ν∈WKν = K.

(ii) Let ω ∈ Λn. We know by part (i) that Kw = ∪ν∈ΣwKν . If rw ≤ rn+1
max , choose

Λ′ = {w}. Now, let rw > rn+1
max and i ∈ {1, ..., N}. We have rω ≤ rnmax, which

implies rωri ≤ rn+1
max and thus wi ∈ Λn+1. Hence, choosing Λ′ = {w1, ...wN}

verifies the statement.

(iii) The assertion follows directly from the fact that |Si([0, 1])∩Sj([0, 1])| ∈ {0, 1}
for i 6= j along with the injectivity of Si for i ∈ {1, ..., N}.

(iv) Let ω ∈ Λn and m := |ω|. By definition of Λn we have rω1 · · · rωm−1 > rnmax and
therefore rω > rnmaxrmin. Then,

µω = rdHω1

µω1

rdHω1

· · · rdHωm
µωm

rdHωm

≥ rdHω νmmin

> rndHmaxr
dH
minν

m
min

≥ rndHmaxr
dH
minν

n
min.

In the last inequality, we have used that m ≤ n and νmin ≤ 1.

(v) Let w = w1....wm ∈ W∗. Choose n ∈ N such that rw ≤ rnmax and rw > rn+1
max .

We have rw1 ...rwm−1rmax > rw1 ...rwm and thus

rw1 ...rwm−1 > rw1 ...rwmr
−1
max > rn+1

maxr
−1
max = rnmax.

We have found an n ∈ N such that w ∈ Λn. For the second part, we can argue
as in (ii) by induction.
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We introduce a sequence of functions approximating the Delta functional. Hereby,
we use the notation from [41]. We prepare this by defining the n-neighbourhood of
x ∈ K for n ∈ N by

D0
n(x) :=

⋃
w∈Λn,x∈Kw

Kw.

Note that D0
n(x) consists of at least one element of {Kw : w ∈ Λn}, which follows

from Lemma 4.1(i), and of at most two elements since pairs of these elements in-
tersect in at most one point. From the latter and the definition of Λn it follows
that

|D0
n(x)| ≤ 2rnmax (52)

and we define the approximating functions for x ∈ K and n ≥ 1 by

fxn (y) := µ(D0
n(x))−11D0

n(x)(y), y ∈ [0, 1]. (53)

By Lemma 4.1(iv),

||fxn ||2µ = µ(D0
n(x))−1 < r−ndHmax r−dHmin ν

−n
min. (54)

Lemma 4.2: If x ∈ K and g ∈ L2([0, 1], µ) is continuous, then limn→∞ 〈fxn , g〉µ =

g(x).

Proof. Let x ∈ K be fixed. For n ∈ N and ω ∈ Λn, we have |Kω| ≤ rnmax and thus,
for y ∈ D0

n(x), |x − y| ≤ rnmax. Now, let ε > 0. Since g is continuous, there exists
δ > 0 such that |g(x)− g(y)| < ε for y ∈ [0, 1] with |y − x| < δ. Choose n ∈ N such
that rnmax < δ. Then,

|〈fxn , g〉µ − g(x)| = 1

µ(D0
n(x))

∣∣∣∣∫
D0
n(x)

g(y)dµ(y)− g(x)

∣∣∣∣
≤ 1

µ(D0
n(x))

∫
D0
n(x)

|g(y)− g(x)|dµ(y)

≤ 1

µ(D0
n(x))

µ(D0
n(x)) · ε = ε.

Let b ∈ {N,D}. The resolvent density of ∆b
µ is a product of eigenfunctions on ∆b

µ

(see Corollary 3.6). Therefore, it is elementary to check that there exists a constant
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L1 such that for (x, y, z) ∈ [0, 1]3

∣∣ρb1(x, z)− ρb1(y, z)
∣∣ ≤ L1|x− y|. (55)

Lemma 4.3: Let x1, x2 ∈ K and m,n ≥ 1. Then,∣∣∣∣∫ 1

0

∫ 1

0

ρb1(y, z)fx1m (y)fx2n (z)dµ(y)dµ(z)− ρb1(x1, x2)

∣∣∣∣ ≤ L1(rnmax + rmmax).

Proof. Using the Lipschitz continuity of ρb1 and (52),∣∣∣∣∫ 1

0

∫ 1

0

(
ρb1(y, z)− ρb1(x1, x2)

)
fx1m (y)fx2n (z)dµ(y)dµ(z)

∣∣∣∣
≤
∫ 1

0

∫ 1

0

(∣∣ρb1(y, z)− ρb1(x1, z)
∣∣+
∣∣ρb1(x1, z)− ρb1(x1, x2)

∣∣) fx1m (y)fx2n (z)dµ(y)dµ(z)

=
1

µ(D0
m(x1))µ(D0

n(x2))

(∫
D0
m(x2)

∫
D0
n(x1)

∣∣ρb1(y, z)− ρb1(x1, z)
∣∣

+
∣∣ρb1(x1, z)− ρb1(x1, x2)

∣∣dµ(y)dµ(z)

)
≤ 1

µ(D0
m(x1))µ(D0

n(x2))

∫
D0
m(x2)

∫
D0
n(x1)

L1 (rmmax + rnmax) dµ(y)dµ(z)

= L1 (rmmax + rnmax) .

4.2 Heat kernel properties

In this section, we recap basic properties of heat kernels and prove a couple of
continuity properties. Recall Definition 3.7 for the definition of the heat kernel.
Moreover, we define for h ∈ L2([0, 1], µ)

∫ 1

0
pb0(x, y)h(y)dµ(y) := h(x). Part (iii)

of the subsequent lemma shows that this is a meaningful definition. Further, let
b ∈ {N,D}.

Lemma 4.4: Let T > 0, h ∈ L2([0, 1], µ) and (T bt )t≥0 be the strongly continuous
semigroup associated to ∆b

µ.

(i) For all (t, x, y) ∈ [T,∞)×[0, 1]2, there exists KT > 0 such that
∣∣pbt(x, y)

∣∣ < KT .

(ii) (t, x, y) 7→ pbt(x, y) is continuous on (0,∞)× [0, 1]2.

(iii) For t > 0, s ≥ 0, x, y ∈ [0, 1],
∫ 1

0
pbs(x, z)p

b
t(z, y)dµ(z) = pbt+s(x, y).
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(iv) For (t, x, y) ∈ (0,∞)× [0, 1]2, let pbt,x(y) := pbt(x, y). Then, pbt,x ∈ D
(
∆b
µ

)
and

for all t ∈ (0,∞), x, y ∈ [0, 1],

∂

∂t
pbt(x, y) = ∆b

µp
b
t,x(y).

(v) For (t, x, y) ∈ (0,∞)× [0, 1]2, pbt(x, y) ≥ 0.

(vi) For (t, x) ∈ (0,∞)× [0, 1],
∫ 1

0
pNt (x, y)dµ(y) = 1 and

∫ 1

0
pDt (x, y)dµ(y) ≤ 1 .

(vii) For t ∈ (0,∞), T bt h(x) =
〈
pbt,x, h

〉
µ
in L2([0, 1], µ).

(viii) For t > 0, supx,y∈[0,1] p
b
t(x, y) = ‖T bt ‖1→∞, where ‖A‖p→q denotes the operator

norm of an operator A : Lp → Lq.

Proof. (i)-(vi) are well-known for Neumann boundary conditions (see e.g. [54]). (i)-
(vi) for Dirichlet boundary conditions can be checked in the exact same way as for
heat kernels on p.c.f. self-similar sets in [48, Chapter 5].
The proof of (viii) is a standard argument. Let t ∈ (0,∞) be fixed and C :=

supx,y∈[0,1]

∣∣pbt(x, y)
∣∣ . Further, let f ∈ L1([0, 1], µ). Then, for x ∈ [0, 1],

∣∣T bt f(x)
∣∣ =

∣∣∣∣∫ 1

0

pbt(x, y)f(y)dµ(y)

∣∣∣∣ ≤ C

∫ 1

0

|f(y)| dµ(y)

and thus
∥∥T bt ∥∥1→∞ ≤ C.

Recall that [0, 1]\K =
⋃∞
i=1(ai, bi) (see (18)). Since pbt is symmetric and continuous

on [0, 1]2 and we evaluate the representative that is for i ≥ 1, y ∈ [0, 1] linear on
[ai, bi]× {y}, there exist x0, y0 ∈ K such that pbt(x0, y0) = C. Let n ∈ N and fx0n be
defined as in (53). We have ‖fx0n ‖1 = 1. By Lemma 4.2,

lim
n→∞

〈
fx0n (·), pbt(·, y0)

〉
µ

= pbt(x0, y0) = C.

Hence, for all ε > 0 there exists n ∈ N such that

∣∣T bt fx0n (y0)
∣∣ =

〈
fx0n (·), pbt(·, y0)

〉
µ

≥ C − ε.

It follows that
∥∥T bt fx0n ∥∥∞ ≥ C − ε, which implies

∥∥T bt ∥∥1→∞ ≥ C as ε can be chosen
arbitrarily small.
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Hambly and Yang [41, Lemma 6.6] investigated continuity properties of heat ker-
nels associated to Laplacians on connected p.c.f. self-similar sets. We give a compa-
rable result for Cantor-like sets, where we additionally take all self-similar measures
according to the given conditions into account. Recall that γ is defined to be the
spectral exponent of ∆b

µ and δ = max1≤i≤N
log µi

log((µiri)γ)
.

Proposition 4.5: Let T > 0.

(i) There exists C0(T ) > 0 such that for all (t, x, y) ∈ (0, T ]× [0, 1]2

pbt(x, y) ≤ C0(T )t−γδ.

(ii) There exists C1(T ) > 0 such that for all (t, x, x′, y) ∈ (0, T ]× [0, 1]3

∣∣pbt(x, y)− pbt (x′, y)
∣∣ ≤ C1(T )|x− x′|

1
2 t−

1
2
− γδ

2 .

(iii) There exists C2(T ) > 0 such that for all (s, t, x) ∈ (0, T ]2 × [0, 1] with s ≤ t

∣∣pbs(x, x)− pbt(x, x)
∣∣ ≤ C2(T )

(
s−γδ − t−γδ

)
.

Proof. We follow the proof of [41, Lemma 6.6].

(i) We can apply [48, Proposition B.3.7] as in (30) to obtain the existence of a
constant C0(1) such that

∥∥T bt ∥∥1→∞ ≤ C0(1)t−γδ for t ∈ (0, 1]. By Lemma
4.4(viii),

sup
x,y∈[0,1]

pbt(x, y) ≤ C0(1)t−γδ, t ∈ (0, 1].

If T > 1, the assertion follows from the previous inequality and the fact that
pb is continuous and thus bounded on [1, T ]× [0, 1]2.

(ii) Let (t, y) ∈ (0, T ]× [0, 1] be fixed. By part (i),

∥∥∥pbt
2
(·, y)

∥∥∥2

µ
=

∫ 1

0

pbt
2
(x, y)2dµ(x) = pbt(y, y) ≤ C0(T )t−γδ.

Let u(x) := pbt
2

(x, y), x ∈ [0, 1]. With [38, Lemma 1.3.3(i)] and the contractiv-
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ity of T bt
2

, it follows that

E
(
T bt

2
u, T bt

2
u
)
≤ 1

t

(
‖u‖2

µ −
∥∥∥T bt

2
u
∥∥∥2

µ

)
≤ 1

t
‖u‖2

µ

≤ C0(T )t−1−γδ.

Since pbt(·, y) is continuously differentiable, we can apply the Cauchy-Schwarz
inequality and get for x, x′ ∈ [0, 1]

∣∣pbt(x, y)− pbt(x′, y)
∣∣ ≤ ∫ x′

x

∣∣∣∣ ∂∂zpbt(z, y)

∣∣∣∣ dz
≤ |x− x′|

1
2

(∫ 1

0

∣∣∣∣ ∂∂zpbt(z, y)

∣∣∣∣2 dz
) 1

2

.

Note that T bt
2

u = pbt(·, y). We obtain

∣∣pbt(x, y)− pbt(x′, y)
∣∣2 ≤ |x− x′|E (pbt(·, y), pbt(·, y)

)
= |x− x′|E

(
T bt

2
u, T bt

2
u
)

≤ |x− x′|C0(T )t−1−γδ

and therefore

sup
x,x′∈[0,1]

∣∣pbt(x, y)− pbt(x′, y)
∣∣

|x− x′|
1
2

≤
√
C0(T )t−

1
2
− γδ

2 .

(iii) Let t ∈ (0, T ], x, y ∈ [0, 1] and pbt
2
,x

(y) := pbt
2

(x, y). We have

∂

∂t
pbt(x, x) =

∂

∂t

∫ 1

0

pbt
2
(x, y)2dµ(y)

=

∫ 1

0

∂

∂t
pbt

2
(x, y)2dµ(y)

= 2

∫ 1

0

pbt
2
,x(y)

∂

∂t
pbt

2
,x(y)dµ(y),

where we can interchange integral and derivative since ∂
∂t
pbt

2

(x, y)2 is bounded
on [t − ε, t + ε] × [0, 1]2 for ε > 0 sufficiently small. By Lemma 4.4(iv) along
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with identity (19) and (20), respectively,∫ 1

0

pbt
2
,x(y)

∂

∂t
pbt

2
,x(y)dµ(y) =

∫ 1

0

pbt
2
,x(y)∆b

µp
b
t
2
,x(y)dµ(y)

= −E
(
pbt

2
,x, p

b
t
2
,x

)
.

We obtain the existence of a constant C ′2(T ) such that∣∣∣∣ ∂∂tpbt(x, x)

∣∣∣∣ =
∣∣∣2E (pbt

2
,x

)∣∣∣ ≤ C ′2(T )t−1−γδ,

where the last step can be checked in the same way as in the proof of (ii). We
conclude for all x ∈ [0, 1], s, t ∈ (0, T ]

∣∣pbs(x, x)− pbt(x, x)
∣∣ ≤ C ′2(T )

∫ t

s

z−1−γδdz =
C ′2(T )

γδ

(
s−γδ − t−γδ

)
.

4.3 Heat kernel approximation

We develop a way to approximate point evaluations of heat kernels. First, we
provide upper estimates of functionals of the heat kernel using the resolvent density.

Lemma 4.6: Let h ∈ L2([0, 1], µ) and t ∈ (0,∞). Then,

∫ t

0

∫ 1

0

(∫ 1

0

pbs(x, y)h(y)dµ(y)

)2

dµ(x)ds ≤ e2t

2

∫ 1

0

∫ 1

0

ρ1(x, y)h(x)h(y)dµ(x)dµ(y).

Proof. Let h ∈ L2([0, 1], µ) and t ∈ (0,∞). We adapt ideas from [42, Lemma
4.6]. We first note that T bt is self-adjoint, which follows directly by the spectral
representation (21) along with the functional calculus theory (see [64, Theorem
VIII.5]). Using this and Lemma 4.4(vii),

∫ t

0

∫ 1

0

(∫ 1

0

pbs(x, y)h(y)dµ(y)

)2

dµ(x)ds =

∫ t

0

〈
T bsh, T

b
sh
〉
µ
ds

=

∫ t

0

〈
T b2sh, h

〉
µ
ds

≤ e2t

∫ t

0

e−2s
〈
T b2sh, h

〉
µ
ds.

65



Further, we have the following connection of semigroup and resolvent: If λ > 0,
then Rb

λh =
∫∞

0
e−λtT bt hdt (see e.g. [21, Theorem 1.10]). With that,

e2t

∫ t

0

e−2s
〈
T b2sh, h

〉
µ
ds ≤ e2t

〈∫ ∞
0

e−2sT b2shds, h

〉
µ

=
e2t

2

〈∫ 1

0

ρb1(·, y)h(y)dµ(y), h

〉
µ

=
e2t

2

∫ 1

0

∫ 1

0

ρb1(x, y)h(x)h(y)dµ(x)dµ(y).

We derive a way to approximate (t, y) 7→ pbt(x, y) for fixed x ∈ K.

Lemma 4.7: Let t ∈ (0,∞) and x ∈ K. Then,∫ t

0

∫ 1

0

(〈
pbs(·, y), fxn

〉
µ
− pbs(x, y)

)2

dµ(y)ds ≤ 2L1e
2trnmax.

Proof. Let x ∈ K and m,n ≥ 1. By Lemma 4.3,∣∣∣∣∫ 1

0

∫ 1

0

ρb1(z, y)(fxm(z)− fxn (z))(fxm(y)− fxn (y))dµ(z)dµ(y)

∣∣∣∣
=
∣∣∣ ∫ 1

0

∫ 1

0

ρb1(z, y)fxm(z)fxm(y)− ρb1(x, x)− ρb1(z, y)fxm(z)fxn (y) + ρb1(x, x)

− ρb1(z, y)fxn (z)fxm(y) + ρb1(x, x) + ρb1(z, y)fxn (z)fxn (y)− ρb1(x, x)dµ(z)dµ(y)
∣∣∣

≤ 4L1(rmmax + rnmax). (56)

Now, let s ∈ (0,∞) and x ∈ K. Then,∫ 1

0

(〈
pbs(·, y), fxn

〉
µ
− pbs(x, y)

)2

dµ(y)

=

∫ 1

0

(
∞∑
k=1

e−λ
b
ksϕbk(y)

〈
ϕbk, f

x
n

〉
µ
− pbs(x, y)

)2

dµ(y)

=

∫ 1

0

(
∞∑
k=1

e−λ
b
ks
[〈
ϕbk, f

x
n

〉
µ
− ϕbk(x)

]
ϕbk(y)

)2

dµ(y)

=
∞∑
k=1

e−2λbks
[〈
ϕbk, f

x
n

〉
µ
− ϕbk(x)

]2

.
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By Lemma 4.2 and Fatou’s lemma,

∞∑
k=1

e−2λbks
[〈
ϕbk, f

x
n

〉
µ
− ϕbk(x)

]2

=
∞∑
k=1

e−2λbks
[〈
ϕbk, f

x
n

〉
µ
− lim

m→∞

〈
ϕbk, f

x
m

〉
µ

]2

=
∞∑
k=1

lim
m→∞

e−2λbks
[〈
ϕbk, f

x
n

〉
µ
−
〈
ϕbk, f

x
m

〉
µ

]2

≤ lim inf
m→∞

∞∑
k=1

e−2λbks
[〈
ϕbk, f

x
n

〉
µ
−
〈
ϕbk, f

x
m

〉
µ

]2

.

Further, using Fatou’s Lemma again,∫ t

0

∫ 1

0

(〈
pbs(·, y), fxn

〉
µ
− pbs(x, y)

)2

dµ(y)ds

≤ lim inf
m→∞

∫ t

0

∞∑
k=1

e−2λbks
〈
ϕbk, f

x
n − fxm

〉2

µ
ds

= lim inf
m→∞

∫ t

0

∥∥∥∥∥
∞∑
k=1

e−λ
b
ks
〈
ϕbk, f

x
n − fxm

〉
µ
ϕbk

∥∥∥∥∥
2

µ

ds

= lim inf
m→∞

∫ t

0

∫ 1

0

(∫ 1

0

pbs(y, z)(f
x
n (z)− fxm(z))dµ(z)

)2

dµ(y)ds.

Finally, by Lemma 4.6 and estimate (56),

∫ t

0

∫ 1

0

(∫ 1

0

pbs(y, z)(f
x
n (z)− fxm(z))dµ(z)

)2

dµ(y)ds

≤ e2t

2

∫ 1

0

∫ 1

0

ρb1(x, y)(fxn (y)− fxm(y))(fxn (z)− fxm(z))dµ(y)dµ(z)

≤ 2L1e
2t(rnmax + rmmax).

We conclude∫ t

0

∫ 1

0

(〈
pbs(·, y), fxn

〉
µ
− pbs(x, y)

)2

dµ(y)ds = lim inf
m→∞

2L1e
2t (rnmax + rmmax)

= 2L1e
2trnmax.
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4.4 Existence, uniqueness and continuity

Let b ∈ {N,D} and T > 0 be fixed. We define the concept of a solution to (51)
that will be the object of study in the present chapter.

Definition 4.8: A mild solution to the SPDE (51) is defined as a predictable
[0, T ]× [0, 1]-indexed process u(t, x) such that for every (t, x) ∈ [0, T ]× [0, 1] it holds
almost surely

u(t, x) =

∫ 1

0

pbt(x, y)u0(y)dµ(y) +

∫ t

0

∫ 1

0

pbt−s(x, y)f(s, u(s, y))dµ(y)ds

+

∫ t

0

∫ 1

0

pbt−s(x, y)g(s, u(s, y))ξ(s, y)dµ(y)ds,

(57)

where the last term is a stochastic integral in the sense of Walsh (see Section 2.3).

We define the spaces in which we will search for a solution.

Definition 4.9: Let q ≥ 2 and let Sq,T be the space of [0, T ] × [0, 1]-indexed pre-
dictable processes v that satisfy

||v||q,T := sup
t∈[0,T ]

sup
x∈[0,1]

(E [|v(t, x)|q])
1
q <∞.

Further, we define Sq,T as the space of equivalence classes of elements of Sq,T , where
two processes v1, v2 are equivalent if v1(t, x) = v2(t, x) almost surely for all (t, x) ∈
[0, T ]× [0, 1].

Note that Sq,T is a Banach space. The proof works by standard arguments, so we
skip it here.

We allow for random initial data u0, but since u0 is not time-dependent, we need
to introduce a further space.

Definition 4.10: Let q ≥ 2. We define Sq as the space of [0, 1]-indexed processes v
that are measurable from F0 ⊗ B([0, 1]) into B(R) and satisfy

‖v‖q := sup
x∈[0,1]

(E [|v(x)|q])
1
q <∞.

Further, we define Sq as the space of equivalence classes of elements of Sq, where
two processes v1, v2 are equivalent if v1(x) = v2(x) almost surely for all x ∈ [0, 1].
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Sq is a Banach space as well. The proof is a standard argument and we skip it.

Throughout this section, we make the following assumptions, which are adapted
from [41, Hypothesis 6.2].

Assumption 4.11: There exists q ≥ 2 such that

(i) u0 ∈ Sq,

(ii) f and g are predictable and satisfy the following Lipschitz and linear growth
conditions: There exists L > 0 and a predictable process M : Ω × [0, T ] → R
such that ‖M‖q,T := sups∈[0,T ]‖M(s)‖Lq(Ω) < ∞ and for all (w, t, x, y) ∈ Ω ×
[0, T ]× R2

|f(ω, t, x)− f(ω, t, y)|+ |g(ω, t, x)− g(ω, t, y)| ≤ L|x− y|,

|f(ω, t, x)|+ |g(ω, t, x)| ≤M(w, t) + L|x|.

Predictability of a process f : Ω× [0, T ]×R can be defined in the same way as in
Section 2.3 (see also [69]).

We are now able to prove stochastic continuity properties of v1 and v2, which are
defined for (t, x) ∈ [0, T ]× [0, 1] and v0 ∈ Sq,T by

v1(t, x) :=

∫ t

0

∫ 1

0

pbt−s(x, y)g(s, v0(s, y))ξ(s, y)dµ(y)ds, (58)

v2(t, x) :=

∫ t

0

∫ 1

0

pbt−s(x, y)f(s, v0(s, y))dµ(y)ds. (59)

Proposition 4.12: Let q ≥ 2 be fixed. Then, there exists a constant C3 > 0

such that for v0 ∈ Sq,T v1 and v2 are well-defined and we have for all s, t ∈ [0, T ],

x, y ∈ [0, 1], i ∈ {1, 2}

E [|vi(t, x)− vi(t, y)|q] ≤ C3

(
1 + ‖v0‖qq,T

)
|x− y|

q
2 ,

E [|vi(s, x)− vi(t, x)|q] ≤ C3

(
1 + ‖v0‖qq,T

)
|s− t|q(

1
2
− γδ

2 ).

Remark 4.13: Note that γδ < 1 is equivalent to

max
i=1,...,N

log µi
log(µiri)

< 1,

which is satisfied as we assume 0 < µi, ri < 1.
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Proof. We adapt ideas from [41, Proposition 6.7]. First, we consider v1. For x ∈
[0, 1], (t, y) → pbt(x, y) is continuous on (0, T ] × [0, 1] and g and v0 are predictable.
The integrand is thus predictable. By Hypothesis 4.11, for q ≥ 2, (t, x) ∈ [0, T ] ×
[0, 1],

E [|g(t, v0(t, x))|q] ≤ 2q−1 (E [|M(t)|q] + LqE [|v0(t, x)|q]) . (60)

Hence, by Lemmas 4.4(iii) and 4.5,

E
[∫ t

0

∫ 1

0

pbt−s(x, y)2g(s, v0(s, y))2dµ(y)ds

]
≤

(
2 sup
s∈[0,T ]

‖M(s)‖2
L2(Ω) + 2L2 ‖v0‖2

q,T

)∫ t

0

∫ 1

0

pbt−s(x, y)2dµ(y)ds

=

(
2 sup
s∈[0,T ]

‖M(s)‖2
L2(Ω) + 2L2 ‖v0‖2

q,T

)∫ t

0

pb2s(x, x)ds

≤

(
2 sup
s∈[0,T ]

‖M(s)‖2
L2(Ω) + 2L2C0(2T ) ‖v0‖2

q,T

)∫ t

0

(2s)−γδds,

which is finite due to γδ < 1. Hence, v1(t, x) is well-defined.

In order to prove the spatial estimate for v1, let (t, x, y) ∈ [0, T ]× [0, 1]2 be fixed.
There exists a constant C(q) such that

E [|v1(t, x)− v1(t, y)|q]

= E
[∣∣∣∣∫ t

0

∫ 1

0

(
pbt−s(x, z)− pbt−s(y, z)

)
g(s, v0(s, z))ξ(s, z)dµ(z)ds

∣∣∣∣q]
≤ C(q)E

[∣∣∣∣∫ t

0

∫ 1

0

(
pbt−s(x, z)− pbt−s(y, z)

)2
g(s, v0(s, z))2dµ(z)ds

∣∣∣∣
q
2

]
(61)

≤ C(q)

∣∣∣∣∫ t

0

∫ 1

0

∣∣(pbt−s(x, z)− pbt−s(y, z))q E [|g(s, v0(s, z))|q]
∣∣ 2q dµ(z)ds

∣∣∣∣
q
2

(62)

= C(q)

∣∣∣∣∫ t

0

∫ 1

0

(
pbt−s(x, z)− pbt−s(y, z)

)2
(E [|g(s, v0(s, z))|q])

2
q dµ(z)ds

∣∣∣∣
q
2

≤ 2q−1C(q)
(
‖M‖qq,T + Lq‖v0‖qq,T

) ∣∣∣∣ ∫ t

0

∫ 1

0

(
pbt−s(x, z)

− pbt−s(y, z)
)2
dµ(z)ds

∣∣∣∣ q2 ,
(63)

where we have used the Burkholder-Davis-Gundy inequality (see [49, Theorem B.1])
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in (61), Minkowski’s integral inequality in (62) and relation (60) in (63). We proceed
by dealing with the integral term in (63), whereby we first treat the case x, y ∈ K.
Applying Lemma 4.3, Lemma 4.6, Lemma 4.7 and the Lipschitz continuity of the
resolvent density (see (55)),∫ t

0

∫ 1

0

(
pbt−s(x, z)− pbt−s(y, z)

)2
dµ(z)ds

= lim
n→∞

∫ t

0

∫ 1

0

〈
pbt−s(·, z), fxn − f yn

〉2

µ
dµ(z)ds

≤ e2t

2
lim
n→∞

∫ 1

0

∫ 1

0

ρb1(z1, z2)(fxn (z1)− f yn(z1))(fxn (z2)− f yn(z2))dµ(z1)dµ(z2)

=
e2t

2

∣∣ρb1(x, x)− 2ρb1(x, y) + ρb1(y, y)
∣∣

≤ L1e
2t|x− y|.

For i ∈ N and x ∈ (ai, bi), recall that we evaluate the D2
µ-representative of pbt(·, y)

for (t, y) ∈ (0, T ]× [0, 1]. We thus have

pbt(x, y) = pbt(ai, y) +

(
x− ai
bi − ai

)(
pbt(bi, y)− pbt(ai, y)

)
, y ∈ [0, 1]

and consequently,

v1(t, x) =

∫ t

0

∫ 1

0

pbt−s(x, y)g(s, v0(s, y))ξ(s, y)dµ(y)ds

= v1(t, ai) +

(
x− ai
bi − ai

)
(v1(t, bi)− v1(t, ai))

almost surely. Consequently, for all x, y ∈ [0, 1]

∣∣∣∣∫ t

0

∫ 1

0

(
pbt−s(x, z)− pbt−s(y, z)

)2
dµ(z)ds

∣∣∣∣
q
2

≤ (L1)
q
2 eqt|x− y|

q
2 .

We conclude

E [|v1(t, x)− v1(t, y)|q] ≤ 2q−1eqtC(q) (L1)
q
2
(
‖M‖qq,T + Lq‖v0‖qq,T

)
|x− y|

q
2 .

This proves the spatial estimate.
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We turn to the temporal estimate. Let s, t ∈ [0, T ] with s < t and x ∈ [0, 1]. Then,
by using the Burkholder-Davis-Gundy inequality, Minkowski’s integral inequality
and inequality (60) in the same way as before, we get

E [|v1(t, x)− v1(s, x)|q]

≤ C(q)

∣∣∣∣∫ t

0

∫ 1

0

∣∣∣(pbt−u(x, y)− pbs−u(x, y)1[0,s](u)
)2 E [|g(s, v0(s, y))|q]

∣∣∣ 2q dµ(y)du

∣∣∣∣
q
2

≤ 2q−1C(q)
(
‖M‖qq,T + Lq‖v0‖qq,T

) ∣∣∣∣ ∫ t

0

∫ 1

0

(
pbt−u(x, y)

− pbs−u(x, y)1[0,s](u)
)2
dµ(y)du

∣∣∣∣ q2 .
We split the latter integral in the time intervals [0, s] and (s, t] and get for the first
part by Proposition 4.5(iii)∫ s

0

∫ 1

0

(
pbt−u(x, y)− pbs−u(x, y)

)2
dµ(y)du

=

∫ s

0

∫ 1

0

(
pbu(x, y)− pbu+t−s(x, y)

)2
dµ(y)du

=

∫ s

0

pb2u(x, x)− 2pb2u+t−s(x, x) + pb2(u+t−s)(x, x)du

≤ 2−γδC2(2T )

∫ s

0

u−γδ − 2

(
u+

t− s
2

)−γδ
+ (u+ t− s)−γδ du (64)

≤ 2−γδ+1C2(2T )

∫ s

0

u−γδ −
(
u+

t− s
2

)−γδ
du

=
2−γδ+1

1− γδ
C2(2T )

(
s1−γδ −

(
s

2
+
t

2

)1−γδ

+

(
t− s

2

)1−γδ
)

≤ C2(2T )

1− γδ
(t− s)1−γδ.

For the second part by Proposition 4.5(i)∫ t

s

∫ 1

0

pbt−u(x, y)2dµ(y)du =

∫ t−s

0

pb2u(x, x)du

≤ 2−γδC0(2T )

∫ t−s

0

u−γδdu

≤ 2−γδ

1− γδ
C0(2T )(t− s)1−γδ.
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The statements about v2 can be shown in the same way using Jensen’s inequality
instead of the Burkholder-Davis-Gundy inequality.

Corollary 4.14: Let q ≥ 2 and v0 ∈ Sq,T . Then, v1 and v2 defined as in (58)-(59)
are elements of Sq,T .

Proof. By setting s = 0 in Proposition 4.12 we obtain ‖vi‖q,T < ∞, i = 1, 2. We
need to show that v1 is predictable. Let n ∈ N, (t, x) ∈ [0, T ]× [0, 1] and

vn1 (t, x) :=
2n−1∑
i,j=0

v1

(
i

2n
T,

j

2n

)
1( i

2n
T, i+1

2n
T ](t)1( j

2n
, j+1
2n ](x).

Evidently, ‖vn1 ‖q,T <∞. To prove that vn1 is predictable, we show that vn1 is the Sq,T -
limit of a sequence of simple processes. To this end, let N ≥ 1, (t, x) ∈ [0, T ]× [0, 1]

and
vn,N1 (t, x) := ((−N) ∨ vn1 (t, x)) ∧N.

This defines a simple process since
(
(−N) ∨ v1

(
i

2n
T, j

2n

))
∧N is F iT

2n
-measurable and

bounded for 0 ≤ i, j ≤ 2n−1. Further, it converges in Sq,T to vn1 as N →∞. Indeed,
let X be a set, f : X → R. We define f+(x) := f(x) ∨ 0 and f−(x) := f(x) ∧ 0,
x ∈ X. With that,

lim
N→∞

∥∥∥vn1 (t, x)− vn,N1 (t, x)
∥∥∥
q,T

≤ lim
N→∞

2n−1∑
i,j=0

∥∥∥∥v+
1

(
i

2n
T,

j

2n

)
−
(
v+

1

(
i

2n
T,

j

2n

)
∧N

)∥∥∥∥
q,T

+

∥∥∥∥v−1 ( i

2n
T,

j

2n

)
−
(

(−N) ∨ v−1
(
i

2n
T,

j

2n

))∥∥∥∥
q,T

= lim
N→∞

2n−1∑
i,j=0

∥∥∥∥v+
1

(
i

2n
T,

j

2n

)
−
(
v+

1

(
i

2n
T,

j

2n

)
∧N

)∥∥∥∥
Lq(Ω)

+

∥∥∥∥v−1 ( i

2n
T,

j

2n

)
−
(

(−N) ∨ v−1
(
i

2n
T,

j

2n

))∥∥∥∥
Lq(Ω)

= 0,

where the last equation follows by the monotone convergence theorem. We conclude
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that vn1 is predictable for n ∈ N. By Proposition 4.12,

‖v1 − vn1 ‖q,T ≤ sup
|s−t|<T

n

sup
|x−y|< 1

n

‖v1(s, x)− v1(t, y)‖Lq(Ω)

≤ sup
|s−t|<T

n

sup
x∈[0,1]

‖v1(s, x)− v1(t, x)‖Lq(Ω)

+ sup
t∈[0,T ]

sup
|x−y|< 1

n

‖v1(t, x)− v1(t, y)‖Lq(Ω)

≤
(
C3

(
1 + ‖v0‖qq,T

)) 1
q

((
T

n

) 1
2
− γδ

2

+

(
1

n

) 1
2

)
→ 0, n→∞.

Hence, v1 is predictable. The predictability of v2 follows in the same way.

We can now follow the methods in [41, Theorem 6.9] to establish existence and
uniqueness.

Theorem 4.15: Assume Condition 4.11 with q ≥ 2. Then, SPDE (51) has a
unique mild solution in Sq,T .

Proof. Uniqueness: Let u, ũ ∈ Sq,T be mild solutions to (51). Then v := u−ũ ∈ S2,T .
By setting G(t) := supx∈[0,1] E [v2(t, x)], t ∈ [0, T ], we calculate for (t, x) ∈ [0, T ] ×
[0, 1]

E
[
v(t, x)2

]
≤ 2TE

[∫ t

0

∫ 1

0

(
pbt−s(x, y)

)2
(f(s, u(s, y))− f (s, ũ(s, y)))2 dµ(y)ds

]
+ 2E

[∫ t

0

∫ 1

0

(
pbt−s(x, y)

)2
(g(s, u(s, y))− g (s, ũ(s, y)))2 dµ(y)ds

]
(65)

≤ 2(T + 1)L2E
[∫ t

0

∫ 1

0

v2(s, y)
(
pbt−s(x, y)

)2
dµ(y)ds

]
≤ 2(T + 1)L2

∫ t

0

G(s)

∫ 1

0

(
pbt−s(x, y)

)2
dµ(y)ds

= 2(T + 1)L2

∫ t

0

G(s)pb2(t−s)(x, x)ds

≤ 21−γδ(T + 1)C0(2T )L2

∫ t

0

G(s)(t− s)−γδds, (66)

where we have used Walsh’s isometry (see Section 2.3) and Hölder’s inequality in
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(65) and Proposition 4.5(i) in (66). For t ∈ [0, T ], it follows

G(t) ≤ 21−γδ(T + 1)C0(2T )L2

∫ t

0

G(s)(t− s)−γδds.

Setting hn = G, n ∈ N in [69, Lemma 3.3] gives G(t) = 0 for t ∈ [0, T ]. We conclude
u(t, x) = ũ(t, x) almost surely for every (t, x) ∈ [0, T ]× [0, 1].

Existence: As usual, we apply Picard iteration to find a solution. For that, let
u1 = 0 ∈ Sq,T and for n ≥ 1, (t, x) ∈ [0, T ]× [0, 1],

un+1(t, x) =

∫ 1

0

pbt(x, y)u0(y)dµ(y) +

∫ t

0

∫ 1

0

pbt−s(x, y)f(s, un(s, y))dµ(y)ds

+

∫ t

0

∫ 1

0

pbt−s(x, y)g(s, un(s, y))ξ(s, y)dµ(y)ds.

(67)

Let n ≥ 1, assume that un ∈ Sq,T and define un+1 as in (67). The last two terms
on the right-hand side are elements of Sq,T by Corollary 4.14. The first term is pre-
dictable because it is F0-measurable and thus adapted and almost surely continuous
due to the dominated convergence theorem and Proposition 4.5(i). Furthermore, by
Minkowski’s integral inequality and Lemma 4.4(vi)

E
[∣∣∣∣∫ 1

0

pbt(x, y)u0(y)dµ(y)

∣∣∣∣q] ≤ ∣∣∣∣∫ 1

0

pbt(x, y)E [|u0(y)|q]
1
q dµ(y)

∣∣∣∣q
≤ ‖u0‖qq

∣∣∣∣∫ 1

0

pbt(x, y)dµ(y)

∣∣∣∣q
≤ ‖u0‖qq .

It follows un+1 ∈ Sq,T .

We prove that (un)n∈N is a Cauchy sequence in Sq,T . For n ∈ N, let vn := un+1 −
un ∈ Sq,T . By Hölder’s and the Burkholder-Davis-Gundy inequality, for (t, x) ∈
[0, T ]× [0, 1]

E [|vn+1(t, x)|q]

≤ 2q−1T
q
2E

[∣∣∣∣∫ t

0

∫ 1

0

pbt−s(x, y)2 (f(s, un+1(s, y))− f (s, un(s, y)))2 dµ(y)ds

∣∣∣∣
q
2

]

+ 2q−1C(q)E

[∣∣∣∣∫ t

0

∫ 1

0

pbt−s(x, y)2 (g(s, un+1(s, y))− g (s, un(s, y)))2 dµ(y)ds

∣∣∣∣
q
2

]
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and using the Lipschitz property of f and g and Minkowski’s integral inequality,

E [|vn+1(t, x)|q]

≤ 2q−1
(
T
q
2 + C(q)

)
LqE

[∣∣∣∣∫ t

0

∫ 1

0

pbt−s(x, y)2v2
n(s, y)dµ(y)ds

∣∣∣∣
q
2

]

≤ 2q−1
(
T
q
2 + C(q)

)
Lq
(∫ t

0

∫ 1

0

pbt−s(x, y)2 (E [|vn(s, y)|q])
2
q dµ(y)ds

) q
2

.

Let n ∈ N and Hn(s) := supy∈[0,1] (E [|vn(s, y)|q])
2
q , s ∈ [0, T ]. Then, there ex-

ists a constant c̃n such that |Hn(t)| ≤ c̃n for each t ∈ [0, T ]. By setting C :=(
2q−1

(
T
q
2 + C(q)

)
Lq
) 2
q we get for (t, x) ∈ [0, T ]× [0, 1] and n ∈ N

(E [|vn+1(t, x)|q])
2
q ≤ C

∫ t

0

Hn(s)pb2(t−s)(x, x)ds

≤ 2−γδC0(2T )C

∫ t

0

Hn(s)(t− s)−γδds,

where we have used Proposition 4.5(i) and thus

Hn+1(t) ≤ 2−γδC0(2T )C

∫ t

0

Hn(s)(t− s)−γδds.

By [69, Lemma 3.3], there exists a constant C ′ > 0 and an integer k ≥ 1 such that
for n,m ≥ 1, t ∈ [0, T ]

Hn+mk(t) ≤
C ′m

(m− 1)!

∫ t

0

Hn(s)(t− s)ds.

Therefore,
∑

m≥1

√
Hn+mk(t) converges uniformly for t ∈ [0, T ], which is straight

forward to check by the ratio test using that
√

Hn+(m+1)k(t)

Hn+mk(t)
≤
√

C′

m
for n,m ≥ 1. We

conclude
sup
t∈[0,T ]

√
Hn(t)→ 0, n→∞,

which implies the same for ‖vn‖q,T . Hence, (un)n≥1 is a Cauchy sequence in Sq,T
with limit, say u. To show that u satisfies (57), let (t, x) ∈ [0, T ] × [0, 1] be fixed
and take the limit in Lq(Ω) for n→∞ on both sides of (67). We get u(t, x) on the
left-hand side. For the right-hand side, note that there is a constant C ′′ ≥ 0 such
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that

E
[∣∣∣∣∫ t

0

∫ 1

0

pbt−s(x, y) (f(s, u(s, y))− f (s, un(s, y))) ξ(s, y)dµ(y)ds

∣∣∣∣q]
+ E

[∣∣∣∣∫ t

0

∫ 1

0

pbt−s(x, y) (g(s, u(s, y))− g (s, un(s, y))) dµ(y)ds

∣∣∣∣q]
≤ C ′′

(∫ t

0

∫ 1

0

pbt−s(x, y)2 (E [|u(s, y)− un(s, y)|q])
2
q dµ(y)ds

) q
2

,

which goes to zero as n tends to infinity with the same argumentation as before.

Before stating the main result, we define usto ∈ Sq,T by

usto(t, x) :=

∫ t

0

∫ 1

0

pbt−s(x, y)f(s, u(s, y))dµ(y)ds

+

∫ t

0

∫ 1

0

pbt−s(x, y)g(s, u(s, y))ξ(s, y)dµ(y)ds

almost surely for (t, x) ∈ [0, T ]× [0, 1]. That is,

usto(t, x) = u(t, x)−
∫ 1

0

pbt(x, y)u0(y)dµ(y)

almost surely for (t, x) ∈ [0, T ]× [0, 1]

Theorem 4.16: Assume Condition 4.11 with q ≥ 2. Then, there exists a version
of usto, denoted by ũsto, such that the following holds:

(i) If q > 2 and t ∈ [0, T ], ũsto(t, ·) is essentially 1
2
− 1

q
-Hölder continuous on [0, 1].

(ii) If q >
(

1
2
− γδ

2

)−1
and x ∈ [0, 1], ũsto(·, x) is essentially 1

2
− γδ

2
− 1

q
-Hölder

continuous on [0, T ].

(iii) If q > 2
(

1
2
− γδ

2

)−1
, ũsto is essentially

(
1
2
− γδ

2
− 2

q

)
-Hölder continuous on

[0, T ]× [0, 1].

Proof. The continuity properties in part (i) and (ii) of a version of usto are direct
consequences of Proposition 4.12 by setting v0 := u and Kolmogorov’s continuity
theorem (see e.g. [52, Proposition 21.6]).

Now, let (s, t, x, y) ∈ [0, T ]2 × [0, 1]2 and without loss of generality, we assume
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|s− t| ≤ 1. Then,

E
[∣∣usto(s, x)− usto(t, y)

∣∣q]
≤ 2q−1

(
E
[∣∣usto(s, x)− usto(t, x)

∣∣q]+ E
[∣∣usto(t, x)− usto(t, y)

∣∣q])
≤ 2qC3

(
1 + ‖u‖qq,T

) (
|x− y|

q
2 + |s− t|q(

1
2
− γδ

2 )
)

≤ 2qC3

(
1 + ‖u‖qq,T

)
max

{
|x− y|

q
2 , |s− t|q(

1
2
− γδ

2 )
}

≤ 2qC3

(
1 + ‖u‖qq,T

)
max {|x− y|, |s− t|}q(

1
2
− γδ

2 ) .

The result follows by Kolmogorov’s continuity theorem in two dimensions (see e.g.
[52, Remark 21.7]).

Remark 4.17: We consider usto because the regularity of u is, in general, restricted
by the regularity of u − usto. However, we can formulate the following: There is a
version of u−usto such that this version is for fixed t ∈ (0, T ] 1

2
-Hölder continuous on

[0, 1] and for fixed x ∈ [0, 1] and T1 > 0 1
2
-Hölder continuous on [T1, T ]. This can be

checked in the same way as [41, Lemma 6.10] using Proposition 4.5. Consequently,
there exists a version ũ of u such that

(i) If q > 2 and t ∈ (0, T ], ũ(t, ·) is essentially 1
2
− 1

q
-Hölder continuous on [0, 1].

(ii) If q >
(

1
2
− γδ

2

)−1
and x ∈ [0, 1], ũ(·, x) is essentially 1

2
− γδ

2
− 1

q
-Hölder contin-

uous on [T1, T ].

Example 4.18: (i) If u0, f and g satisfy Assumption 4.11 for some q ≥ 2 and,
in addition, are uniformly bounded, q can be chosen arbitrarily large such
that we obtain 1

2
for the ess. spatial and 1

2
− γδ

2
for the ess. temporal Hölder

exponent. If, moreover, the measure µ is the natural measure on K, then

1

2
− γδ

2
=

1

2
− 1

2
max

1≤i≤N

log
(
rdHi

)
log
(
rdH+1
i

) =
1

2
− dH

2dH + 2
=

1

2dH + 2
.

The left-hand side of Figure 6 visualizes that for 0 < dH ≤ 1.

For dH = 1 and the natural measure on K, we meet the well-known Hölder
continuity properties for the stochastic heat equation defined by the standard
Laplacian. Further, in case of ∆b

µ being a Laplacian on a p.c.f. self-similar
set with 1 ≤ dH < 2, Hambly and Yang [41, Theorem 6.14]) established the
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Figure 6: Hölder exponent graphs for the stochastic heat equation

essential spatial Hölder exponent 1
2
and the essential temporal Hölder exponent

1
2dH+2

. Therefore, our results can be understood as an extension of their results
to the case of dH < 1.

(ii) If µ is not the natural measure on K, then it can be easily checked that

1

2
− γδ

2
<

1

2dH + 2
.

As an example, consider the weighted IFS given by S1, S2 : [0, 1]→ R, S1(x) =
x
2
, S2(x) = x

2
+ 1

2
, x ∈ [0, 1] and weights µ1, µ2 ∈ (0, 1). Then,

1

2
− γδ

2
=

1

2
− 1

2
max
i=1,2

log µi
log(µiri)

=
1

2
− 1

2

log µmin

log
(
µmin

2

) ,
which goes to zero as µmin → 0. The right-hand side of Figure 6 indicates
that.

4.5 Weak intermittency

Let b ∈ {N,D}. We consider the process u given by

u(t, x) =

∫ 1

0

pbt(x, y)u0(y)dµ(y) +

∫ t

0

∫ 1

0

pbt−s(x, y)f(s, u(s, y))dµ(y)ds

+

∫ t

0

∫ 1

0

pbt−s(x, y)g(s, u(s, y))ξ(s, y)dµ(y)ds

(68)

almost surely for (t, x) ∈ [0,∞)× [0, 1].
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According to [49, Definition 7.7], we call u weakly intermittent on [0, 1] if the lower
and the upper moment Lyapunov exponents, which are respectively the functions γ
and γ̄ defined for p ∈ (0,∞), x ∈ [0, 1] by

γ(p, x) := lim inf
t→∞

1

t
logE [|u(t, x)|p] , γ̄(p, x) := lim sup

t→∞

1

t
logE [|u(t, x)|p] ,

satisfy
γ(2, x) > 0, γ̄(p, x) <∞, p ∈ [2,∞), x ∈ [0, 1].

In this section, we make the following additional assumption:

Assumption 4.19: We assume that u0 ∈ Sq for some q ≥ 2. Moreover, we assume
that f and g are predictable and satisfy the following Lipschitz and linear growth
condition: There exists a constant L > 0 such that for all (w, t, x, y) ∈ Ω×[0,∞)×R2

|f(ω, t, x)− f(ω, t, y)|+ |g(ω, t, x)− g(ω, t, y)| ≤ L|x− y|,

|f(ω, t, x)|+ |g(ω, t, x)| ≤ L(1 + |x|).

Predictability of a process f : Ω × [0,∞) × R can be defined in the same way as
in Section 2.3 (compare [69]).

First, we establish the upper bound.

Theorem 4.20: There exists C4 > 0 such that for all p ∈ [1, q], (t, x) ∈ [0,∞)×[0, 1]

(E [|u(t, x)|p])
1
p ≤

(
2 ‖u0‖q + 1

)
eC4p

1
1−γδ t.

Remark 4.21: If µ is the natural measure on K, we have γ = dH
dH+1

and thus
1

1−γ = dH + 1. Then, the above inequality reads as

(E [|u(t, x)|p])
1
p ≤

(
2 ‖u0‖q + 1

)
eC4p

dH+1t.

Before proving Theorem 4.20, we need to extend our heat kernel estimates.

Lemma 4.22: Let b ∈ {N,D}. There exists C5 > 0 such that for all (t, x) ∈
(0,∞)× [0, 1]

pbt(x, x) ≤ C5

(
1 + t−γδ

)
.
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Proof. Let T > 0. By (23) and (24), for each (t, x) ∈ (0,∞)× ∈ [0, 1]

∣∣pbt(x, x)
∣∣ ≤∑

k≥1

e−c0k
1
γ tc2

2k
δ.

The term on the right-hand side converges uniformly on [T,∞) (see [48, Lemma
5.1.4]). Further, we have λN1 = 0, ϕN1 ≡ 1, λD1 > 0. The dominated convergence
theorem gives

lim
t→∞

pNt (x, x) = 1, lim
t→∞

pDt (x, x) = 0,

uniformly for all x ∈ [0, 1]. This along with Proposition 4.5(i) implies the result.

Proof of Theorem 4.20. We follow the methods of [41, Theorem 7.5]. Let p ∈
[2, q], α > 0, (t, x) ∈ [0,∞) × [0, 1] be fixed. By the Burkholder-Davis-Gundy
inequality,

e−αt (E [|u(t, x)|p])
1
p

≤ ‖u0‖p +

(
E
[∣∣∣∣∫ t

0

∫ 1

0

e−αtpbt−s(x, y)f(s, u(s, y))dµ(y)ds

∣∣∣∣p])
1
p

+ 2
√
p

(
E

[∣∣∣∣∫ t

0

∫ 1

0

e−2αtpbt−s(x, y)2g(s, u(s, y))2ds

∣∣∣∣
p
2

]) 1
p

.

To estimate the first integral, we apply Minkowski’s integral inequality and obtain

(
E
[∣∣∣∣∫ t

0

∫ 1

0

e−αtpbt−s(x, y)f(s, u(s, y))dµ(y)ds

∣∣∣∣p])
1
p

≤
∫ t

0

∫ 1

0

e−αtpbt−s(x, y) (E [|f(s, u(s, y))|p])
1
p dµ(y)ds

≤ L

∫ t

0

∫ 1

0

e−αtpbt−s(x, y)
(

1 + (E [|u(s, y)|p])
1
p

)
dµ(y)ds

≤ L

(
te−αt +

∫ t

0

∫ 1

0

e−αtpbt−s(x, y) sup
z∈[0,1]

(
(E [|u(s, z)|p])

1
p

)
dµ(y)ds

)

≤ L

(
1

α
+ sup

(s,z)∈[0,t]×[0,1]

(
e−αsE [|u(s, z)|p]

) 1
p

∫ t

0

e−α(t−s)ds

)

≤ L

α

(
1 + sup

(s,z)∈[0,t]×[0,1]

(
e−αsE [|u(s, z)|p]

) 1
p

)
.
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In the second last inequality, we have used that t → te−αt reaches its maximum at
t = 1

α
. We turn to the second integral. Applying Minkowski’s integral inequality

and Lemma 4.22,

(
E

[∣∣∣∣∫ t

0

∫ 1

0

e−2αtpbt−s(x, y)2g(s, u(s, y))2dµ(y)ds

∣∣∣∣
p
2

]) 1
p

≤
(∫ t

0

∫ 1

0

e−2αtpbt−s(x, y)2 (E [|g(s, u(s, y))|p])
2
p dµ(y)ds

) 1
2

≤ L

(∫ t

0

e−2αtpb2(t−s)(x, x) sup
z∈[0,1]

(
1 + (E [|u(s, z)|p])

1
p

)2

ds

) 1
2

= L

(∫ t

0

e−2α(t−s)pb2(t−s)(x, x) sup
z∈[0,1]

(
e−αs + e−αs (E [|u(s, z)|p])

1
p

)2

ds

) 1
2

≤ L sup
(s,z)∈[0,t]×[0,1]

(
e−αs + e−αs (E [|u(s, z)|p])

1
p

)(∫ t

0

e−2α(t−s)pb2(t−s)(x, x)ds

) 1
2

≤ 2−
1
2L sup

(s,z)∈[0,t]×[0,1]

(
1 + e−αs (E [|u(s, z)|p])

1
p

)(∫ ∞
0

e−αspbs(x, x)ds

) 1
2

≤ 2−
1
2LC

1
2
5

(∫ ∞
0

e−αs(1 + s−γδ)ds

) 1
2

sup
(s,z)∈[0,t]×[0,1]

(
1 + e−αs (E [|u(s, z)|p])

1
p

)
.

We denote the gamma function by Γ and calculate∫ ∞
0

e−αs(1 + s−γδ)ds =

∫ ∞
0

e−αsds+

∫ ∞
0

e−αss−γδds

=
1

α
+

1

α

∫ ∞
0

e−s
( s
α

)−γδ
ds

=
1 + αγδΓ(1− γδ)

α
.

This implies that a constant C ′4 > 0 exists such that for all α ≥ 1∫ ∞
0

e−αs(1 + s−γδ)ds ≤ C ′4α
γδ−1.
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Then,

e−αt (E [|u(t, x)|p])
1
p

≤ ‖u0‖p +

(
L

α
+ L

√
2C5C ′4α

γδ−1p

)
sup

(s,z)∈[0,t]×[0,1]

(
1 + e−αs (E [|u(s, z)|p])

1
p

)
.

Now, let α := C ′′4p
1

1−γδ , where C ′′4 ≥ 1 does not depend on p. Then,

L

α
+ L

√
2C5C ′4α

γδ−1p =
L

C ′′4p
1

1−γδ
+ L

√
2C5C ′4 (C ′′4 )

γδ
2
− 1

2 ,

which goes to zero as C ′′4 →∞. Consequently, we can choose C ′′4 ≥ 1 such that

L

α
+ L

√
2C5C ′4α

γδ−1p ≤ 1

2
.

This leads to
(E [|u(t, x)|p])

1
p ≤

(
2 ‖u0‖p + 1

)
eC
′′
4 p

1
1−γδ t.

If 1 ≤ p < 2, we have for (t, x) ∈ [0,∞)× [0, 1]

(E [|u(t, x)|p])
1
p ≤

(
E
[
|u(t, x)|2

]) 1
2

≤
(

2 ‖u0‖p + 1
)
eC
′′
4 2

1
1−γδ t

=
(

2 ‖u0‖p + 1
)
eC
′′
4 ( 2

p)
1

1−γδ p
1

1−γδ t

and obtain the assertion for all p ∈ [1, q] by setting C4 := C ′′4 2
1

1−γδ .

The above proposition immediately implies for p ∈ [1, q]

γ̄(p, x) ≤ lim sup
t→∞

1

t
sup
x∈[0,1]

logE [|u(t, x)|p] = C4p
1+ 1

1−γδ .

We now establish a lower bound for the second moment of u defined by

u(t, x) =

∫ 1

0

pNt (x, y)u0(y)dµ(y) +

∫ t

0

∫ 1

0

pNt−s(x, y)g(u(s, y))ξ(s, y)dµ(y)ds (69)

almost surely for (t, x) ∈ [0,∞) × [0, 1]. That is, we let f := 0 and g be not
time-dependent in (68). Furthermore, let the following conditions hold.
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Assumption 4.23: (i) u0 : [0, 1]→ R is measurable and bounded.

(ii) g : R→ R satisfies the following Lipschitz and linear growth conditions: There
exists L > 0 such that for all (x, y) ∈ R2

|g(x)− g(y)| ≤ L|x− y|,

|g(x)| ≤ +L(1 + |x|).

Proposition 4.24: Define Lg := infx∈R\{0}

∣∣∣g(x)
x

∣∣∣ and assume infx∈[0,1] u0(x) > 0.
Then, γ(2, x) ≥ L2

g for all x ∈ [0, 1].

Proof. Let (t, x) ∈ (0,∞)× [0, 1]. By the non-negativity of u0 and Lemma 4.4(vi)∫ 1

0

pNt (x, y)u0(y)dµ(y) ≥ inf
y∈[0,1]

u0(y)

∫ 1

0

pNt (x, y)dµ(y) = inf
y∈[0,1]

u0(y).

Using Walsh’s isometry, the zero-mean property of the stochastic integral and the
previous estimate, we get

E
[
u(t, x)2

]
=

(∫ 1

0

pNt (x, y)u0(y)dµ(y)

)2

+

∫ t

0

∫ 1

0

pNt−s(x, y)2E
[
g(u(s, y))2

]
dµ(y)ds

+

∫ 1

0

pNt (x, y)u0(y)dµ(y)E
[∫ t

0

∫ 1

0

pNt−s(x, y)g(u(s, y))ξ(s, y)dµ(y)ds

]
≥ inf

z∈[0,1]
u0(z)2 +

∫ t

0

∫ 1

0

L2
gp
N
t−s(x, y)2E

[
u(s, y)2

]
dµ(y)ds.

It holds ϕN1 = 1 and λN1 = 0 and consequently,

pNt (x, x) =
∑
k≥1

e−λ
N
k tϕNk (x)2 ≥ e−λ

N
1 tϕN1 (x)2 = 1.

With I(t) := infx∈[0,1] E [u(t, x)2] , t ≥ 0, we obtain

I(t) ≥ inf
z∈[0,1]

u0(z)2 +

∫ t

0

∫ 1

0

L2
gp
N
t−s(x, y)2I(s)dµ(y)ds

= inf
z∈[0,1]

u0(z)2 +

∫ t

0

L2
gp
N
2(t−s)(x, x)I(s)ds

≥ inf
z∈[0,1]

u0(z)2 +

∫ t

0

L2
gI(s)ds. (70)
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It follows

I(t) ≥ inf
z∈[0,1]

u0(z)2 +

∫ t

0

L2
g inf
z∈[0,1]

u0(z)2ds+

∫ t

0

L2
g

∫ s

0

L2
gI(u)duds

= inf
z∈[0,1]

u0(z)2 + L2
g inf
z∈[0,1]

u0(z)2t+

∫ t

0

L2
g

∫ s

0

L2
gI(u)duds

and by iterating this

I(t) ≥ inf
z∈[0,1]

u0(z)2

∞∑
n=0

L2n
g t

n

n!
= inf

z∈[0,1]
u0(z)2eL

2
gt,

which yields

lim inf
t→∞

1

t
logE

[
u(t, x)2

]
≥ lim inf

t→∞

log
(
infz∈[0,1] u0(z)2

)
t

+ L2
g = L2

g.

The main result of this section follows directly.

Corollary 4.25: Let infx∈[0,1] u0(x) > 0 and Lg > 0. Then, u given by (69) is
weakly intermittent on [0, 1].
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5 Analysis of Measure Theoretic Stochastic
Wave Equations

5.1 Preliminaries

Let b ∈ {N,D}, T > 0 and let µ be a self-similar measure on a Cantor-like set
K according to Section 2.2. Further, let (Ω,F ,F,P) be a filtered probability space
and let F = (Ft)t≥0 satisfy the usual conditions. In this chapter, we address the
hyperbolic stochastic PDE

∂2

∂t2
u(t, x) = ∆b

µut(x) + f(t, u(t, x))ξ(t, x),

u(0, x) = u0(x),

∂

∂t
u(0, x) = u1(x)

(71)

for (t, x) ∈ [0, T ] × [0, 1], u0, u1 : [0, 1] → R, f : Ω × [0, T ] × R → R. Further, ξ
denotes a space-time white noise based on µ according to Definition 2.10.

Before defining the concept of a mild solution to (71), we need to have a closer
look on deterministic wave equations.

To this end, let u0 ∈ D
(
∆b
µ

)
, u1 ∈ D

((
−∆b

µ

) 1
2

)
and let ub0,k, ub1,k, k ≥ 1 such that

u0 =
∑

k≥1 u
b
0,kϕ

b
k and u1 =

∑
k≥1 u

b
1,kϕ

b
k. In particular,

∑
k≥1

(
λbk
)2 (

ub0,k
)2

< ∞
and

∑
k≥1 λ

b
k

(
ub1,k
)2
<∞. For (t, x, y) ∈ [0,∞)× [0, 1]2 let

PN
t (x, y) := t+

∑
k≥2

sin
(√

λNk t
)

√
λNk

ϕNk (x)ϕNk (y)

and

PD
t (x, y) :=

∑
k≥1

sin
(√

λDk t
)

√
λDk

ϕDk (x)ϕDk (y).

This is called wave propagator of ∆b
µ, b ∈ {N,D}. As ∆b

µ is a self-adjoint, dissipative
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operator on L2([0, 1], µ), the wave equation

∂2

∂t2
u(t, x) = ∆b

µut(x),

u(0, x) = u0(x),

∂u(0, x)

∂t
= u1(x)

for t ≥ 0 on L2([0, 1], µ) has a unique solution, which is for (t, x) ∈ [0,∞) × [0, 1]

given by
u(t, x) = Cb

tu0(x) + Sbtu1(x),

where the operators Sbt , Cb
t : L2([0, 1], µ)→ L2([0, 1], µ) are defined by

SNt :
∑
k≥1

fNk ϕ
N
k 7→ tfN1 +

∑
k≥2

sin
(√

λNk t
)

√
λNk

fNk ϕ
N
k ,

SDt :
∑
k≥1

fDk ϕ
D
k 7→

∑
k≥1

sin
(√

λDk t
)

√
λDk

fDk ϕ
D
k ,

CN
t :
∑
k≥1

fNk ϕ
N
k 7→

∑
k≥2

cos

(√
λNk t

)
fNk ϕ

N
k ,

CD
t :
∑
k≥1

fDk ϕ
D
k 7→

∑
k≥1

cos

(√
λDk t

)
fDk ϕ

D
k .

for t ≥ 0. The connection to the wave propagator is given by∫ 1

0

P b
t (x, y)u1(y)dµ(y) = Sbtu1(x), (t, x) ∈ [0,∞)× [0, 1].

The operator families {Sbt : t ≥ 0} and {Cb
t : t ≥ 0} are called strongly continuous

sine and cosine family, respectively (see also [68]).

We are now able to define the concept of a solution to (71) that we will investigate
in this chapter.

Definition 5.1: A mild solution to the SPDE (71) is defined as a predictable
[0, T ]× [0, 1]-indexed process such that for each (t, x) ∈ [0, T ]× [0, 1] it holds almost
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surely

u(t, x) = Cb
tu0(x) + Sbtu1(x) +

∫ t

0

∫ 1

0

P b
t−s(x, y)f(s, u(s, y))ξ(s, y)dµ(y)ds. (72)

We now give a set of conditions, which we assume to hold throughout this chapter.

Assumption 5.2: (i) u0 ∈ D
(
∆b
µ

)
, u1 ∈ D

(
(−∆b

µ)
1
2

)
.

(ii) There exists q ≥ 2 such that f is predictable and satisfies the following Lipschitz
and linear growth conditions: There exists L > 0 and a predictable process
M : Ω × [0, T ] → R with ‖M‖q,T := sups∈[0,T ]‖M(s)‖Lq(Ω) < ∞ such that for
all (w, t, x, y) ∈ Ω× [0, T ]× R2,

|f(ω, t, x)− f(ω, t, y)| ≤ L|x− y|,

|f(ω, t, x)| ≤M(w, t) + L|x|.

Recall that γ is defined to be the spectral exponent of ∆b
µ. Note that the self-

adjointness of ∆b
µ along with the assumption u0 ∈ D

(
∆b
µ

)
implies that there is a

constant C6 <∞ such that∣∣∣〈u0, ϕ
b
k

〉
µ

∣∣∣ ≤ C6k
− 1
γ , k ≥ 1.

Indeed, for k ≥ 2 we have∣∣∣〈u0, ϕ
N
k

〉
µ

∣∣∣ =
1

λNk

∣∣∣〈u0,−∆N
µ ϕ

N
k

〉
µ

∣∣∣ =
1

λNk

∣∣∣〈−∆N
µ u0, ϕ

N
k

〉
µ

∣∣∣ ≤ c−1
0

∥∥∆N
µ u0

∥∥
µ
k−

1
γ .

Analogously, since u1 ∈ D
(

(−∆b
µ)

1
2

)
, there is a constant C7 <∞ such that

∣∣∣〈u1, ϕ
b
k

〉
µ

∣∣∣ ≤ C7k
− 1

2γ , k ≥ 1.
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5.2 Wave propagator properties and approximation

Let T > 0 and t ∈ [0, T ] be fixed. Obviously, P b
t : (x, y) 7→ P b

t (x, y) is an element
of L2 ([0, 1]2, µ⊗ µ). We provide a way to approximate P b

t (x, ·) : y 7→ P b
t (x, y) by

L2([0, 1], µ)-functions for fixed x ∈ K. Then, we deduce that P b
t (x, ·) ∈ L2 ([0, 1], µ)

for x ∈ [0, 1].

Let A : L2([0, 1], µ) → L2([0, 1], µ) be a linear operator. We denote the operator
norm of A by ‖A‖. This is defined by

‖A‖ := sup
g∈L2([0,1],µ):
‖g‖µ=1

‖Ag‖µ .

We show that the map t 7→ Sbt is Lipschitz continuous on [0,∞) with respect to the
operator norm.

Lemma 5.3: Let 0 ≤ s < t. Then,

∥∥Sbt − Sbs∥∥ ≤ t− s.

Proof. Let g =
∑

k≥1 g
N
k ϕ

N
k such that ‖g‖µ = 1. Then,

∥∥(SNt − SNs )g
∥∥2

µ

= (t− s)2
(
gNk
)2

+
∑
k≥2

(
sin
(√

λNk t
)
− sin

(√
λNk s

))2

λNk

(
gNk
)2
.

We have λN2 ≥ 1 (see e.g. [1, Section 3.3.1]). Hence,

(t− s)2
(
gN1
)2

+
∑
k≥2

(
sin
(√

λNk t
)
− sin

(√
λNk s

))2

λNk

(
gNk
)2

≤ (t− s)2
(
gN1
)2

+ sup
λ≥1

(
sin
(√

λt
)
− sin

(√
λs
))2

λ

∑
k≥2

(
gNk
)2

≤ (t− s)2
∑
k≥1

(
gNk
)2

= (t− s)2.
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Further, using λD1 ≥ 1 (see e.g. [58, Lemma 4.9]), we obtain the assertion for Dirichlet
boundary conditions in the same way.

The following lemma provides a way to find upper estimates of functionals of the
wave propagator using the resolvent density.

Lemma 5.4: There is a constant C̄8 ≥ 0 such that for all g ∈ L2([0, 1], µ) and all
t ∈ [0, T ], ∫ 1

0

(
Sbt g(x)

)2
dµ(x) ≤ C̄8

∫ 1

0

∫ 1

0

ρb1(x, y)g(x)g(y)dµ(x)dµ(y).

Proof. Let g =
∑∞

k=1 g
N
k ϕ

N
k and t ∈ [0, T ]. Then,∫ 1

0

(
Sbt g(x)

)2
dµ(x)

=

∥∥∥∥∥∥tgN0 +
∞∑
k=2

sin
(√

λNk t
)

√
λNk

gNk ϕ
N
k

∥∥∥∥∥∥
2

µ

= t2
(
gN0
)2

+
∞∑
k=2

sin2
(√

λNk t
)

λNk

(
gNk
)2

≤ (T 2 ∨ 1)

((
gN0
)2

+
∞∑
k=2

1

λNk

(
gNk
)2

)

≤ (T 2 ∨ 1)
1 + λN2
λN2

∞∑
k=1

1

1 + λNk

(
gNk
)2

= (T 2 ∨ 1)
1 + λN2
λN2

〈
g,
(
1−∆N

µ

)−1
g
〉
µ
. (73)

By definition of the resolvent density,

(
1−∆N

µ

)−1
g(x) =

∫ 1

0

ρN1 (x, y)g(y)dµ(y), x ∈ [0, 1].

Plugging this into (73), the assertion for b = N follows. The case b = D works
similarly.

This leads to an approximation of y 7→ P b
t (x, y) for fixed (t, x) ∈ [0, T ]×K.

90



Lemma 5.5: There is a constant C8 ≥ 0 such that for all x ∈ K, t ∈ [0, T ] and
n ∈ N ∫ 1

0

(
Sbt f

x
n (y)− P b

t (x, y)
)2
dµ(y) ≤ C8r

n
max.

Proof. Let x ∈ K, t ∈ [0, T ] and n ∈ N. Note that 〈1, fxn 〉µ =
∫ 1

0
fxn (y)dµ(y) = 1.

Then,∫ 1

0

(
SNt f

x
n (y)− PN

t (x, y)
)2
dµ(y)

=

∫ 1

0

t 〈1, fxn 〉µ +
∞∑
k=2

sin
(√

λNk t
)

√
λNk

ϕNk (y)
〈
ϕNk , f

x
n

〉
µ
− PN

t (x, y)

2

dµ(y)

=

∫ 1

0

t(〈1, fxn 〉µ − 1
)

+
∞∑
k=2

sin
(√

λNk t
)

√
λNk

[〈
ϕNk , f

x
n

〉
µ
− ϕNk (x)

]
ϕNk (y)

2

dµ(y)

=

∫ 1

0

 ∞∑
k=2

sin
(√

λNk t
)

√
λNk

[〈
ϕNk , f

x
n

〉
µ
− ϕNk (x)

]
ϕNk (y)

2

dµ(y).

By the Riesz-Fischer theorem, it holds

∫ 1

0

 ∞∑
k=2

sin
(√

λNk t
)

√
λNk

[〈
ϕNk , f

x
n

〉
µ
− ϕNk (x)

]
ϕNk (y)

2

dµ(y)

=
∞∑
k=2

sin2
(√

λNk t
)

λNk

[〈
ϕNk , f

x
n

〉
µ
− ϕNk (x)

]2

,

provided that the latter series converges. By Fatou’s lemma and Lemma 4.2,

∞∑
k=2

sin2
(√

λNk t
)

λNk

[〈
ϕNk , f

x
n

〉
µ
− ϕNk (x)

]2

=
∞∑
k=2

sin2
(√

λNk t
)

λNk

[〈
ϕNk , f

x
n

〉
µ
− lim

m→∞

〈
ϕNk , f

x
m

〉
µ

]2

≤ lim inf
m→∞

∞∑
k=2

sin2
(√

λNk t
)

λNk

[〈
ϕNk , f

x
n

〉
µ
−
〈
ϕNk , f

x
m

〉
µ

]2

.
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Further, by Lemma 4.3 and Lemma 5.4, for m ∈ N

∞∑
k=2

sin2
(√

λNk t
)

λNk

[〈
ϕNk , f

x
n

〉
µ
−
〈
ϕNk , f

x
m

〉
µ

]2

=

∫ 1

0

(
SNt (fxn (y)− fxm(y))

)2
dµ(y)

≤ C̄8

∫ 1

0

∫ 1

0

ρN1 (z, y)(fxn (y)− fxm(y))(fxn (z)− fxm(z))dµ(y)dµ(z)

= C̄8

∫ 1

0

∫ 1

0

ρN1 (z, y)
(
fxm(z)fxm(y)− fxm(z)fxn (y)

− fxn (z)fxm(y) + fxn (z)fxn (y)
)
dµ(z)dµ(y)

= C̄8

∫ 1

0

∫ 1

0

ρN1 (z, y)fxm(z)fxm(y)− ρN1 (x, x)− ρN1 (z, y)fxm(z)fxn (y) + ρN1 (x, x)

− ρN1 (z, y)fxn (z)fxm(y) + ρN1 (x, x) + ρN1 (z, y)fxn (z)fxn (y)− ρN1 (x, x)dµ(z)dµ(y)

≤ 4C̄8L1(rmmax + rnmax).

We conclude∫ 1

0

(
SNt f

x
n (y)− PN

t (x, y)
)2
dµ(y) ≤ lim inf

m→∞
4C̄8L1(rnmax + rmmax)

= 4C̄8L1r
n
max.

The estimates for Dirichlet boundary conditions can be found similarly.

Finally, we are able to establish that P b
t (x, ·) ∈ L2([0, 1], µ) for fixed (t, x) ∈

[0, T ]× [0, 1].

Lemma 5.6: There exists a constant C9 > 0 such that

sup
t∈[0,T ]

sup
x∈[0,1]

∥∥P b
t (x, ·)

∥∥
µ
< C9.

Proof. Let h1, h2 : [0, 1]→ R∪{−∞,∞} be measurable. By Minkowski’s inequality,

(∫ 1

0

h2
1(x)dµ(x)

) 1
2

=

(∫ 1

0

(h1(x)− h2(x) + h2(x))2 dµ(x)

) 1
2

≤
(∫ 1

0

(h1(x)− h2(x))2 dµ(x)

) 1
2

+

(∫ 1

0

h2
2(x)dµ(x)

) 1
2

,
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where it is not required that the integrals are finite (see e.g. [20, Theorem VI 1.8]).
Further, let t ∈ [0, T ]. For f ∈ L2([0, 1], µ) we have

∥∥Sbt f∥∥µ ≤ (T ∨ 1) ‖f‖µ ,

which follows directly by the definition. Using this, Lemma 5.5 and inequality (54),
we obtain for x ∈ K, n ∈ N,

(∫ 1

0

(
P b
t (x, y)

)2
dµ(y)

) 1
2

≤
(∫ 1

0

(
Sbt f

x
n (y)− P b

t (x, y)
)2
dµ(y)

) 1
2

+

(∫ 1

0

(
Sbt f

x
n (y)

)2
dµ(y)

) 1
2

≤
(∫ 1

0

(
Sbt f

x
n (y)− P b

t (x, y)
)2
dµ(y)

) 1
2

+ (T ∨ 1)

(∫ 1

0

(fxn (y))2 dµ(y)

) 1
2

≤ C
1
2
8 r

n
2
max + (T ∨ 1) r

−ndH
2

max r
− dH

2
min ν

−n
2

min.

Choose n = 1. As the right-hand side of the last inequality does not depend on
(t, x) ∈ [0, T ]×K, the assertion follows for x ∈ K.

Recall that [0, 1] \K =
⋃∞
i=1(ai, bi) (see (18)). For x ∈ [0, 1] \K, let i ∈ N such

that x ∈ (ai, bi). By the linearity of ϕbk on (ai, bi) for k ∈ N it follows that

P b
t (x, y) =

x− ai
bi − ai

(
P b
t (bi, y)− P b

t (ai, y)
)
, (t, y) ∈ [0, T ]× [0, 1].

Since ai, bi ∈ K, we obtain the result.

5.3 Existence, uniqueness and continuity

Let b ∈ {N,D}, T > 0 and q ≥ 2. We prove continuity properties of vi, i = 1, 2, 3,
which are defined for v0 ∈ Sq,T and (t, x) ∈ [0, T ]× [0, 1] by

v1(t, x) :=

∫ t

0

∫ 1

0

P b
t−s(x, y)f(s, v0(s, y))ξ(s, y)dµ(y)ds, (74)

v2(t, x) := Sbtu1(x), (75)

v3(t, x) := Cb
tu0(x). (76)

We will use the following lemma.
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Lemma 5.7: Let a < 0, b > a. Then, there is a constant Ca,b ≥ 0 such that for all
t ∈ [0,∞) ∑

k∈N

ka−1 ∧ tkb−1 ≤ Ca,bt
−a
b−a∧1.

Proof. See [42, Lemma 5.2].

We start with proving Hölder continuity properties of v2 and v3.

Proposition 5.8: There exists a constant C10 > 0 such that for all i ∈ {2, 3},
s, t ∈ [0, T ], x, y ∈ [0, 1], we have

|vi(t, x)− vi(t, y)| ≤ C10|x− y|
1
2 ,

|vi(s, x)− vi(t, x)| ≤ C10|s− t|(2−(2+δ)γ)∧1.

Proof. First, we treat the spatial continuity. Let t ∈ [0, T ], x, y ∈ K. By Lemma
4.3, Lemma 5.4, Lemma 5.5 and the Lipschitz continuity of the resolvent density,∣∣∣∣∫ 1

0

P b
t (x, z)u1(z)dµ(z)−

∫ 1

0

P b
t (y, z)u1(z)dµ(z)

∣∣∣∣2
≤
∫ 1

0

(
P b
t (x, z)− P b

t (y, z)
)2
u2

1(z)dµ(z)

≤ sup
z∈[0,1]

(
u2

1(z)
) ∫ 1

0

(
P b
t (x, z)− P b

t (y, z)
)2
dµ(z)

= sup
z∈[0,1]

(
u2

1(z)
)

lim
n→∞

∫ 1

0

(
Sbt (fxn − f yn) (z)

)2
dµ(z)

≤ sup
z∈[0,1]

(
u2

1(z)
)
C̄8 lim

n→∞

∫ 1

0

∫ 1

0

ρb1(z1, z2)(fxn (z1)− f yn(z1))(fxn (z2)

− f yn(z2))dµ(z1)dµ(z2)

= sup
z∈[0,1]

(
u2

1(z)
)
C̄8

(
ρb1(x, x)− 2ρb1(x, y) + ρb1(y, y)

)
≤ 2L1C̄8 sup

z∈[0,1]

(
u2

1(z)
)
|x− y|. (77)

For i ∈ N and x ∈ (ai, bi), recall that we evaluate the D2
µ-representative of ϕbk for

each k ∈ N. We thus have

P b
t (x, y) = P b

t (ai, y) +

(
x− ai
bi − ai

)(
P b
t (bi, y)− P b

t (ai, y)
)
, y ∈ [0, 1]
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and therefore

v2(t, x) =

∫ 1

0

P b
t (x, z)u1(z)dµ(z)

=

∫ 1

0

(
P b
t (ai, y) +

(
x− ai
bi − ai

)(
P b
t (bi, y)− P b

t (ai, y)
))

u1(z)dµ(z)

= v2(t, ai) +

(
x− ai
bi − ai

)
(v2(t, bi)− v2(t, ai)) .

Hence, for all t ∈ [0, T ], x, y ∈ [0, 1]

|v2(t, x)− v2(t, y)|2 ≤ 2L1C̄8 sup
z∈[0,1]

(
u2

1(z)
)
|x− y|.

To deal with v3, for k ≥ 2, we set ũN0,k :=
√
λNk u

N
0,k. Then, for t ∈ [0, T ], x ∈ [0, 1],

CN
t u0(x) = uN0,1 +

∑
k≥2

cos

(√
λNk t

)
uN0,kϕ

N
k (x)

= uN0,1 +
∑
k≥2

cos
(√

λNk t
)

√
λNk

ũN0,kϕ
N
k (x).

It holds
∑

k≥2 ũ
N
0,kϕ

N
k ∈ D

((
−∆b

µ

) 1
2

)
. We can now proceed in the same way as in

the proof for v2. For Dirichlet boundary conditions, the proof works similarly.

For the temporal estimate, let s, t ∈ [0, T ] with s < t and x ∈ [0, 1]. Then, there
is a constant C ′10 > 0 such that

∣∣(SNt − SNs )u1(x)
∣∣

≤ (t− s)|uN1,0|+
∞∑
k=2


∣∣∣sin(√λNk t

)
− sin

(√
λNk s

)∣∣∣√
λNk

 |uN1,kϕNk (x)|

≤ (t− s)|uN1,0|+
∞∑
k=2

2 ∧
(√

λNk t−
√
λNk s

)
√
λNk

 |uN1,kϕNk (x)|

≤ C ′10

∞∑
k=2

k
δ
2
− 1
γ ∧

(
|t− s|k

δ
2
− 1

2γ

)
.
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Recall that γδ < 1. We have

δ

2
− 1

γ
+ 1 <

1

2γ
− 1

γ
+ 1 < 1− 1

2γ
≤ 0. (78)

We can thus choose a := δ
2
− 1

γ
+ 1 and b := δ

2
− 1

2γ
+ 1 in Lemma 5.7 to get

∣∣(SNt − SNs )u1(x)
∣∣ ≤ C ′10Ca,b|t− s|(2−(2+δ)γ)∧1.

By similar methods, there is a constant C ′′10 > 0 such that

∣∣(CN
t − CN

s

)
u0(x)

∣∣ ≤ C ′′10

∞∑
k=2

k
δ
2
− 1
γ ∧

(
|s− t|k

δ
2
− 1

2γ

)
,

which leads to

∣∣(CN
t − CN

s

)
u0(x)

∣∣ ≤ C ′′10Ca,b|t− s|(2−(2+δ)γ)∧1.

The calculation for Dirichlet boundary conditions can be done in the same way.

The estimates for v1 are more complicated to derive.

Proposition 5.9: Assume Condition 5.2 with q ≥ 2. Then, there exists a constant
C11 > 0 such that for all v0 ∈ Sq,T it holds that v1 is well-defined, predictable and
for all s, t ∈ [0, T ], x, y ∈ [0, 1],

E [|v1(t, x)− v1(t, y)|q] ≤ C11

(
1 + ‖v0‖qq,T

)
|x− y|

q
2 ,

E [|v1(s, x)− v1(t, x)|q] ≤ C11

(
1 + ‖v0‖qq,T

)
|s− t|q

(
dH+1+

log νmin
log rmax

)−1

.

Proof. For fixed x ∈ [0, 1], (t, y) 7→ P b
t (x, y) is measurable and deterministic and

thus predictable. Further, f and v0 are predictable, according to the assumption.
Consequently, the integrand in (74) is predictable. By Hypothesis 5.2, for (t, x) ∈
[0, T ]× [0, 1], q ≥ 2,

|f(t, v0(t, x))|q ≤ 2q−1 |M(t)|q + 2q−1Lq |v0(t, x)|q , (t, x) ∈ [0, T ]× [0, 1] (79)
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and thus

E
[∫ t

0

∫ 1

0

P b
t−s(x, y)2 (f(s, v0(s, y)))2 dµ(y)ds

]
≤ 2 sup

s∈[0,T ]

‖M(s)‖2
L2(Ω) + 2L2 ‖v0‖2

q,T

∫ t

0

∫ 1

0

P b
t−s(x, y)2dµ(y)ds

≤ 2 sup
s∈[0,T ]

‖M(s)‖2
L2(Ω) + 2L2T ‖v0‖2

q,T sup
(s,x)∈[0,T ]×[0,1]

∫ 1

0

P b
s (x, y)2dµ(y),

which is uniformly bounded for (t, x) ∈ [0, T ] × [0, 1], due to Lemma 5.6. Conse-
quently, v1(t, x) is well-defined.

Spatial estimate: Let t ∈ [0, T ], x, y ∈ [0, 1]. Using (79), the Burkholder-Davis-
Gundy inequality and Minkowski’s integral inequality, there exists C(q) > 0 such
that

E [|v1(t, x)− v1(t, y)|q]

= E
[∣∣∣∣∫ t

0

∫ 1

0

(
P b
t−s(x, z)− P b

t−s(y, z)
)
f(s, v0(s, z))ξ(s, z)dµ(z)ds

∣∣∣∣q]
≤ C(q)E

[∣∣∣∣∫ t

0

∫ 1

0

(
P b
t−s(x, z)− P b

t−s(y, z)
)2
f(s, v0(s, z))2dµ(z)ds

∣∣∣∣
q
2

]

≤ C(q)

∣∣∣∣∫ t

0

∫ 1

0

(
P b
t−s(x, z)− P b

t−s(y, z)
)2

(E [|f(s, v0(s, z))|q])
2
q dµ(z)ds

∣∣∣∣
q
2

≤ 2q−1C(q)
(
‖M‖qq,T + Lq‖v0‖qq,T

) ∣∣∣∣∫ t

0

∫ 1

0

(
P b
s (x, z)− P b

s (y, z)
)2
dµ(z)ds

∣∣∣∣
q
2

. (80)

We proceed by estimating the integral term in (80). As in (77), we get∫ t

0

∫ 1

0

(
P b
s (x, z)− P b

s (y, z)
)2
dµ(z)ds ≤ 2TL1C̄8|x− y|ds

and thus

E [|v1(t, x)− v1(t, y)|q] ≤ 2
3q
2
−1T

q
2C(q) (L1)

q
2
(
‖M‖qq,T + Lq‖v0‖qq,T

)
|x− y|

q
2 .

This proves the spatial estimate.
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Temporal estimate: We adapt ideas from [43, Proposition 4.3]. Let s, t ∈ [0, T ]

with s < t and x ∈ K be fixed. As before, we get

E [|v1(t, x)− v1(s, x)|q]

≤ 2q−1C(q)
(
‖M‖qq,T + Lq‖v0‖qq,T

) ∣∣∣∣ ∫ t

0

∫ 1

0

(
P b
t−u(x, y) (81)

− P b
s−u(x, y)1[0,s](u)

)2
dµ(y)du

∣∣∣∣ q2 .
We split the above integral into its parts [0, s] and (s, t] and consider the first part.
Let n ∈ N. By Lemma 5.5 and the triangle inequality for u ∈ [0, s],

(∫ 1

0

(
P b
t−u(x, y)− P b

s−u(x, y)
)2
dµ(y)

) 1
2

−
(∫ 1

0

((
Sbt−u − Sbs−u

)
fxn (y)

)2
dµ(y)

) 1
2

≤
(∫ 1

0

(
P b
t−u(x, y)− P b

s−u(x, y)−
(
Sbt−u − Sbs−u

)
fxn (y)

)2
dµ(y)

) 1
2

≤
(∫ 1

0

(
Sbt−uf

x
n (y)− P b

t−u(x, y)
)2
dµ(y)

) 1
2

+

(∫ 1

0

(
Sbs−uf

x
n (y)− P b

s−u(x, y)
)2
dµ(y)

) 1
2

≤ 2C
1
2
8 r

n
2
max

and by resorting and squaring,∫ 1

0

(
P b
t−u(x, y)− P b

s−u(x, y)
)2
dµ(y)

≤ 2

∫ 1

0

((
Sbt−u − Sbs−u

)
fxn (y)

)2
dµ(y) + 8C8r

n
max.

Hence, by integration,∫ s

0

∫ 1

0

(
P b
t−u(x, y)− P b

s−u(x, y)
)2
dµ(y)du

≤ 2

∫ s

0

∫ 1

0

((
Sbt−u − Sbs−u

)
fxn (y)

)2
dµ(y)du+ 8C8sr

n
max.
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We consider the integral term on the right-hand side of the previous inequality.
Applying Lemma 5.3,∫ s

0

∫ 1

0

(
Sbt−uf

x
n (y)− Sbs−ufxn (y)

)2
dµ(y)du =

∫ s

0

∥∥(Sbt−u − Sbs−u) fxn∥∥2

µ
du

≤ T ‖fxn‖
2
µ (t− s)2.

We turn to the second part and get in the same way as before,∫ t

s

∫ 1

0

(
P b
t−u(x, y)

)2
dµ(y)du

≤ 2

∫ t

s

∫ 1

0

(
Sbt−uf

x
n (y)

)2
dµ(y) + 2C8r

n
maxdu

= 2

∫ t

s

∫ 1

0

(
Sbt−uf

x
n (y)

)2
dµ(y)du+ 2C8(t− s)rnmax.

Again, we give an upper bound for the integral term. By Lemma 5.3,∫ t

s

∥∥Sbt−ufxn∥∥2

µ
du =

∫ t

s

∥∥(Sbt−u − Sb0) fxn∥∥2

µ
du

≤ ‖fxn‖
2
µ

∫ t

s

(t− u)2du

=
1

3
‖fxn‖

2
µ (t− s)3.

Further, by (54),

‖fxn‖
2
µ < r−dHmin r

−ndH
max ν−nmin.

Consequently, there exist C > 0 and C ′ > 0 such that for all s, t ∈ [0, T ], x ∈ K,
n ∈ N∫ t

0

∫ 1

0

(
P b
t−u(x, y)− P b

s−u(x, y)1[0,s](u)
)2
dµ(y)du ≤ C(t− s)2r−ndHmax ν−nmin + C ′rnmax

≤ C(t− s)2r−ndHmax ν−nmin + C ′′rnmax,

where C ′′ := max
{
C ′, C(t− s)2

(
dH + log νmin

log rmax

)}
. In order to find the minimum in

n, we define

f(y) := C(t− s)2e
y log( 1

rmax
)
(
dH+

log νmin
log rmax

)
+ C ′′e− log( 1

rmax
)y.
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By differentiating,

f ′(y) = C(t− s)2 log

(
1

rmax

)(
dH +

log(νmin)

log(rmax)

)
e
y log( 1

rmax
)
(
dH+

log(νmin)

log(rmax)

)

− C ′′ log

(
1

rmax

)
e− log( 1

rmax
)y

and by setting zero,

e
y log( 1

rmax
)
(
dH+

log(νmin)

log(rmax)
+1

)

=
C ′′ log

(
1

rmax

)
C(t− s)2 log

(
1

rmax

)(
dH + log(νmin)

log(rmax)

) =
C ′′

C(t− s)2
(
dH + log(νmin)

log(rmax)

) .
By logarithmising we obtain

y log

(
1

rmax

)(
dH +

log(νmin)

log(rmax)
+ 1

)
= log

 C ′′

C(t− s)2
(
dH + log(νmin)

log(rmax)

)
 .

Solving this equation for y yields

y =
1

log
(

1
rmax

)(
dH + log(νmin)

log(rmax)
+ 1
) log

 C ′′

C(t− s)2
(
dH + log(νmin)

log(rmax)

)
 ,

which we denote by y0. This value does not need to be an integer, but there is an
integer n such that n ∈ [y0, y0 + 1). It is elementary to see that y0 is the unique
minimum on R. Hence, f is increasing on [y0,∞). It follows that there exists C ′′′ > 0

such that ∫ t

0

∫ 1

0

(
P b
t−u(x, y)− P b

s−u(x, y)1[0,s](u)
)2
dµ(y)du ≤ f (y0 + 1) .
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We calculate

f (y0 + 1)

= C(t− s)2

(
1

rmax

)(
dH+

log(νmin)

log(rmax)

)(
1

rmax

) log

 C′′

C(t−s)2
(
dH+

log(νmin)
log(rmax)

)


log( 1
rmax )

dH+
log(νmin)
log(rmax)

dH+1+
log(νmin)
log(rmax)

+ C ′′rmax

(
1

rmax

) log

 C′′

C(t−s)2
(
dH+

log(νmin)
log(rmax)

)


log( 1
rmax )

−1

dH+1+
log(νmin)
log(rmax)

= C(t− s)2

(
1

rmax

)(
dH+

log(νmin)

log(rmax)

) C ′′

C(t− s)2
(
dH + log(νmin)

log(rmax)

)


dH+
log(νmin)
log(rmax)

dH+1+
log(νmin)
log(rmax)

+ C ′′rmax

 C ′′

C(t− s)2
(
dH + log(νmin)

log(rmax)

)
 −1

dH+1+
log(νmin)
log(rmax)

= C ′′′(t− s)
2

dH+1+
log(νmin)
log(rmax) .

The case x ∈ [0, 1] \ K follows as before by using the linearity of ϕbk on [ai, bi] for
i, k ≥ 1.

Corollary 5.10: Assume Condition 5.2 with q ≥ 2 and let v0 ∈ Sq,T . Then, vi, i =

1, 2, 3, defined as in (74)-(76), are elements of Sq,T .

Proof. By setting s = 0 in Proposition 5.8 and Proposition 5.9, we obtain ‖vi‖q,T <
∞, i = 1, 2, 3. We need to show that v1 is predictable. For n ∈ N, (t, x) ∈
[0, T ]× [0, 1], let

vn1 (t, x) :=
2n−1∑
i,j=0

v1

(
i

2n
T,

j

2n

)
1( i

2n
T, i+1

2n
T ](t)1( j

2n
, j+1
2n ](x).

Evidently, ‖vn1 ‖q,T <∞. To prove that vn1 is predictable, we show that vn1 is the Sq,T -
limit of a sequence of simple processes. To this end, for N ≥ 1, (t, x) ∈ [0, T ]× [0, 1],
let

vn,N1 (t, x) := ((−N) ∨ vn1 (t, x)) ∧N, t ∈ [0, T ], x ∈ [0, 1].
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This defines a simple process as
(
(−N) ∨ v1

(
i

2n
T, j

2n

))
∧N is F iT

2n
-measurable and

bounded for 0 ≤ i, j ≤ 2n−1. Further, it converges in Sq,T to vn1 as N →∞. Indeed,
we have

lim
N→∞

∥∥∥vn1 (t, x)− vn,N1 (t, x)
∥∥∥
q,T

≤ lim
N→∞

2n−1∑
i,j=0

∥∥∥∥v+
1

(
i

2n
T,

j

2n

)
−
(
v+

1

(
i

2n
T,

j

2n

)
∧N

)∥∥∥∥
q,T

+

∥∥∥∥v−1 ( i

2n
T,

j

2n

)
−
(

(−N) ∨ v−1
(
i

2n
T,

j

2n

))∥∥∥∥
q,T

= lim
N→∞

2n−1∑
i,j=0

∥∥∥∥v+
1

(
i

2n
T,

j

2n

)
−
(
v+

1

(
i

2n
T,

j

2n

)
∧N

)∥∥∥∥
Lq(Ω)

+

∥∥∥∥v−1 ( i

2n
T,

j

2n

)
−
(

(−N) ∨ v−1
(
i

2n
T,

j

2n

))∥∥∥∥
Lq(Ω)

= 0,

where the last equation follows by the monotone convergence theorem. We conclude
that vn1 is predictable for n ∈ N. By Proposition 5.9,

‖v1 − vn1 ‖q,T ≤ sup
|s−t|<T

n

sup
|x−y|< 1

n

‖v1(s, x)− v1(t, y)‖Lq(Ω)

≤ sup
|s−t|<T

n

sup
x∈[0,1]

‖v1(s, x)− v1(t, x)‖Lq(Ω)

+ sup
t∈[0,T ]

sup
|x−y|< 1

n

‖v1(t, x)− v1(t, y)‖Lq(Ω)

≤
(
C11

(
1 + ‖v0‖qq,T

)) 1
q

(Tn
) 1

dH+1+
log νmin
log rmax

+

(
1

n

) 1
2

→ 0, n→∞.

Hence, v1 is predictable. The predictability of v2 and v3 follows from the fact that
they are measurable and deterministic.

Theorem 5.11: Assume Condition 5.2 with q ≥ 2. Then the SPDE (71) has a
unique mild solution in Sq,T .

Proof. Uniqueness: Let u, ũ ∈ Sq,T be mild solutions to (71). Then v := u−ũ ∈ S2,T .
Setting G(t) := supx∈[0,1] E [v2(t, x)], t ∈ [0, T ] and using Walsh’s isometry yields for
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(t, x) ∈ [0, T ]× [0, 1]

E
[
v(t, x)2

]
= E

[(∫ t

0

∫ 1

0

P b
t−s(x, y) (f(s, u(s, y))− f (s, ũ(s, y))) ξ(s, y)dµ(y)ds

)2
]

= E
[∫ t

0

∫ 1

0

P b
t−s(x, y)2 (f(s, u(s, y))− f (s, ũ(s, y)))2 dµ(y)ds

]
≤ L2E

[∫ t

0

∫ 1

0

P b
t−s(x, y)2v(s, y)2dµ(y)ds

]
≤ L2

(∫ t

0

sup
z∈[0,1]

E
[
v2(s, z)

] ∫ 1

0

P b
t−s(x, y)2dµ(y)ds

)

≤ L2T sup
t∈[0,T ]

∥∥P b
t (x, ·)

∥∥2

µ

∫ t

0

sup
z∈[0,1]

E
[
v2(s, z)

]
ds

≤ L2T sup
t∈[0,T ]

∥∥P b
t (x, ·)

∥∥2

µ

∫ t

0

G(s)ds

and thus

G(t) ≤ L2T sup
t∈[0,T ]

∥∥P b
t (x, ·)

∥∥2

µ

∫ t

0

G(s)ds.

Since G is continuous on [0, T ] (by Proposition 5.9 with v0 := v), we can apply
Gronwall’s lemma to derive G(s) = 0 for s ∈ [0, T ]. Therefore, u(t, x) = ũ(t, x)

almost surely for every (t, x) ∈ [0, T ]× [0, 1].

Existence: We follow the methods in the proof of [41, Theorem 7.5] and use
Picard iteration to find a solution. For that, let u2 := 0 ∈ Sq,T and for n ≥ 2,
(t, x) ∈ [0, T ]× [0, 1],

un+1(t, x) := Ctu0(x) + Stu1(x)

+

∫ t

0

∫ 1

0

P b
t−s(x, y)f(s, un(s, y))ξ(s, y)dµ(y)ds.

(82)

Proposition 5.8 and Proposition 5.9 imply that un ∈ Sq,T for each n ≥ 3. We prove
that (un)n≥2 is a Cauchy sequence in Sq,T . Let n ≥ 2, (t, x) ∈ [0, T ]× [0, 1] and let
wn := un+1−un ∈ Sq,T . Using the Burkholder-Davis-Gundy inequality, the Lipschitz
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property of f as well as Minkowski’s integral inequality leads to

E [|wn+1(t, x)|q]

= E
[∣∣∣∣∫ t

0

∫ 1

0

P b
t−s(x, y) (f(s, un+1(s, y))− f (s, un(s, y))) ξ(s, y)dµ(y)ds

∣∣∣∣q]
≤ C(q)E

[∣∣∣∣∫ t

0

∫ 1

0

P b
t−s(x, y)2 (f(s, un+1(s, y))− f (s, un(s, y)))2 dµ(y)ds

∣∣∣∣
q
2

]

≤ C(q)LqE

[∣∣∣∣∫ t

0

∫ 1

0

P b
t−s(x, y)2w2

n(s, y)dµ(y)ds

∣∣∣∣
q
2

]

≤ C(q)Lq
(∫ t

0

∫ 1

0

P b
t−s(x, y)2 (E [|wn(s, y)|q])

2
q dµ(y)ds

) q
2

≤ C(q)Lq sup
s∈[0,T ]

∥∥P b
s (x, ·)

∥∥q
µ

(∫ t

0

sup
y∈[0,1]

(E [|wn(s, y)|q])
2
q ds

) q
2

.

Let n ≥ 2 and Hn(t) := supx∈[0,1] (E [|wn(t, x)|q])
2
q . Then, there is a constant κn such

that |Hn(t)| ≤ κn for all t ∈ [0, T ]. By Lemma 5.6, for (t, x) ∈ [0, T ]× [0, 1],

(E [|wn+1(t, x)|q])
2
q ≤ C(q)

2
qL2C2

9 sup
t∈[0,T ]

∫ t

0

Hn(s)ds

and thus

Hn+1(t) ≤ C(q)
2
qL2C2

9 sup
t∈[0,T ]

∫ t

0

Hn(s)ds.

With κ := C(q)
2
qL2C2

9 , we see that H3(t) ≤ κκ2t and deduce inductively

Hn+2(t) ≤ κ2
(κt)n

n!
, n ≥ 1.

The series
∑

n≥2H
1
2
n (t) is uniformly convergent on [0, T ], which can be verified by

the ratio test using that
√

Hn+1(t)
Hn(t)

≤
√

κt
n+1

for n ≥ 2. We conclude

sup
t∈[0,T ]

H
1
2
n (t)→ 0, n→∞,

which implies the same for ‖wn‖q,T . Hence, (un)n≥2 is a Cauchy sequence in Sq,T
and we denote the limit by u. To check that u satisfies (72), let (t, x) ∈ [0, T ]× [0, 1]

be fixed and take the limit in Lq(Ω) for n→∞ on both sides of (82). We get u(t, x)
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on the left-hand side. For the right-hand side, note that

E
[∣∣∣∣∫ t

0

∫ 1

0

P b
t−s(x, y) (f(s, u(s, y))− f (s, un(s, y))) ξ(s, y)dµ(y)ds

∣∣∣∣q]
≤ C(q)Lq

(∫ t

0

∫ 1

0

P b
t−s(x, y)2 (E [|u(s, y)− un(s, y)|q])

2
q dµ(y)ds

) q
2

,

which goes to zero as n tends to infinity with the same argumentation as before.

Propositions 5.8 and 5.9 provide different temporal Hölder exponents, so they need
to be compared. Recall that δ = maxi=1,...,N

log µi
log((µiri)γ)

and νmin = mini=1,...,N
µi

r
dH
i

.

Lemma 5.12: We have(
dH + 1 +

log νmin

log rmax

)−1

≤ 2− (2 + δ)γ.

Proof. We calculate

mini=1,...,N log µi − log rdHi
maxi=1,...,N log ri

− (1− dH) + 2

≥ max
i=1,...,N

log µi − log rdHi
log ri

− (1− dH) + 2

= max
i=1,...,N

log µi − log ri + (1− dH) log ri
log ri

− (1− dH) + 2

= max
i=1,...,N

log µi − log ri
log ri

+ 2.

It follows (
dH + 1 +

log νmin

log rmax

)−1

≤
(

max
i=1,...,N

log µi − log ri
log ri

+ 2

)−1

= min
i=1,...,N

(
log µi − log ri

log ri
+ 2

)−1

= min
i=1,...,N

log ri
log µi + log ri

= min
i=1,...,N

(
1− log µi

log µi + log ri

)
= 1− max

i=1,...,N

log µi
log µi + log ri

= (1− γδ)
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Figure 7: Temporal Hölder exponent graph for the stochastic wave equation

and since γ ≤ 1
2 (

dH + 1 +
log νmin

log rmax

)−1

≤ (1− γδ) ≤ 2− 2γ − γδ.

Using this lemma and the established Hölder continuity properties, the main result
of this chapter is a direct consequence of Kolmogorov’s continuity theorem.

Theorem 5.13: Assume Condition 5.2 with q ≥ 2. Then, the mild solution u to
the SPDE (71) has a version ũ such that the following holds:

(i) If q > 2 and t ∈ [0, T ], ũ(t, ·) is ess. 1
2
− 1

q
-Hölder continuous on [0, 1].

(ii) If q > 2∨
(
dH + 1 + log νmin

log rmax

)
and x ∈ [0, 1], ũ(·, x) is ess.

(
dH + 1 + log νmin

log rmax

)−1

−1
q
-Hölder continuous on [0, T ].

(iii) If q > 4 ∨
(

2
(
dH + 1 + log νmin

log rmax

))
, ũ is ess.

((
dH + 1 + log νmin

log rmax

)−1

∧ 1
2

)
− 2

q
-

Hölder continuous on [0, T ]× [0, 1].

Proof. Using Propositions 5.8 and 5.9 and Lemma 5.12, this can be proven in the
same way as Theorem 4.16.

Example 5.14: If µ is not the natural measure onK, then νmin 6= 0. As an example,
consider the classical Cantor set given by the IFS consisting of S1(x) = x

3
, S2(x) =

2
3

+ x
3
, x ∈ [0, 1] with weights µ1, µ2 ∈ (0, 1). If u0, u1 and f satisfy Assumption 5.2

and f is uniformly bounded, q can be chosen arbitrarily large. We obtain(
dH + 1 +

log νmin

log rmax

)−1

=

(
log 2

log 3
+ 1− log µmin + log 2

log 3

)−1

=

(
1− log µmin

log 3

)−1

for the essential temporal Hölder exponent. Figure 7 shows the corresponding graph.
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5.4 Weak intermittency

Let b ∈ {N,D}. We consider

u(t, x) = Cb
tu0(x) +

∫ t

0

∫ 1

0

P b
t−s(x, y)f(s, u(s, y))ξ(s, y)dµ(y)ds (83)

for (t, x) ∈ [0,∞)× [0, 1]. Recall that the upper moment Lyapounov exponents are
defined by

γ̄(p, x) = lim sup
t→∞

1

t
logE [|u(t, x)|p] , p ∈ (0,∞), x ∈ [0, 1].

Let ε ≥ 0. According to [13], we call u weakly intermittent on [ε, 1− ε] if

γ̄(2, x) > 0, γ̄(p, x) <∞, p ∈ [2,∞), x ∈ [ε, 1− ε].

Henceforth, we make additional assumptions.

Assumption 5.15: We assume that Condition 5.2(i) holds. Furthermore, we as-
sume that f is predictable and fulfills the following Lipschitz and linear growth con-
dition: There exists a constant L > 0 such that for all (w, t, x, y) ∈ Ω× [0, T ]× R2

|f(ω, t, x)− f(ω, t, y)| ≤ L|x− y|,

|f(ω, t, x)| ≤ L(1 + |x|).

First, we establish an upper bound.

Proposition 5.16: There exist constants C12, C13 > 0 such that for all p ∈ [1, q],
(t, x) ∈ [0,∞)× [0, 1]

E [|u(t, x)|p] ≤ C12e
C13p2t.

Proof. v3 is uniformly bounded on [0,∞)× [0, 1]. This can be verified by the same
methods as in the proof of Proposition 5.8. For example, for b = D and (t, x) ∈
[0,∞)× [0, 1],

CD
t u0(x) =

∣∣∣∣∣
∞∑
k=1

cos

(√
λDk t

)
ϕDk (x)uD0,k

∣∣∣∣∣ ≤
∞∑
k=1

c2C6k
δ
2k−

1
γ = c2C6

∞∑
k=1

k
δ
2
− 1
γ ,

where the sum is finite due to δ
2
− 1

γ
< 0 (see (78)). Hence, there is a constant K > 0

such that sup(t,x)∈[0,∞)×[0,1] |v3(t, x)| = K. Now, let p ∈ [2, q]. By the Burkholder-
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Davis-Gundy inequality and Minkowski’s integral inequality, for (t, x) ∈ [0,∞) ×
[0, 1]

e−αt (E [|u(t, x)|p])
1
p

≤ e−αtK +

(
E
[∣∣∣∣∫ t

0

∫ 1

0

e−αtP b
t−s(x, y)f(s, u(s, y))ξ(s, y)dµ(y)ds

∣∣∣∣p])
1
p

≤ e−αtK + 2
√
p

(∫ t

0

∫ 1

0

e−2αtP b
t−s(x, y)2 (E [|f(s, u(s, y))|p])

2
p dµ(y)ds

) 1
2

≤ e−αtK + L2
√
p

(∫ t

0

∫ 1

0

e−2αtP b
t−s(x, y)2 sup

z∈[0,1]

(
1 + (E [|u(s, z))|p])

1
p

)2

dµ(y)ds

) 1
2

and further, by Lemma 5.6,∫ t

0

∫ 1

0

e−2α(t−s)P b
t−s(x, y)2 sup

z∈[0,1]

(
e−αs + e−αs (E [|u(s, z))|p])

1
p

)2

dµ(y)ds

≤ sup
(s,z)∈[0,T ]×[0,1]

(
e−αs + e−αs (E [|u(s, z))|p])

1
p

)2
∫ t

0

∫ 1

0

e−2α(t−s)P b
t−s(x, y)2dµ(y)ds

≤

(
1 + sup

(s,z)∈[0,T ]×[0,1]

e−αs (E [|u(s, z))|p])
1
p

)2

C2
9

∫ t

0

e−2α(t−s)ds

≤ C2
9

2α

(
1 + sup

(s,z)∈[0,T ]×[0,1]

e−αs (E [|u(s, z))|p])
1
p

)2

.

Let α := 8C2
9L

2p. Then, L2
√
pC9√

2α
= 1

2
and thus

(E [|u(t, x)|p])
1
p ≤ 2K + eαt = 2K + e8C2

9L
2pt.

It remains to check the case p ∈ [1, 2). For (t, x) ∈ [0,∞)× [0, 1] and p ∈ [1, 2), we
have

(E [|u(t, x)|p])
1
p ≤

(
E
[
|u(t, x)|2

]) 1
2 ≤ 2K + e16C2

9L
2t ≤ 2K + e16C2

9L
2pt.

We immediately obtain for p ≥ 1

γ̄(p) = lim sup
t→∞

1

t
sup
x∈[0,1]

logE [|u(t, x)|p] ≤ lim sup
t→∞

logC12

t
+ C13p

2 = C13p
2.
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For the lower bound, we deal with

u(t, x) := Cb
tu0(x) +

∫ t

0

∫ 1

0

P b
t−s(x, y)f(u(s, y))ξ(s, y)dµ(y)ds (84)

for (t, x) ∈ [0,∞) × [0, 1]. That is, we let u1 = 0 and f be not time-dependent in
(71). We assume the following conditions.

Assumption 5.17: Let Condition 5.2(i) hold. Furthermore, let f : R → R satisfy
the following Lipschitz and linear growth conditions: There exists L > 0 such that
for all (x, y) ∈ R2

|f(x)− f(y)| ≤ L|x− y|,

|f(x)| ≤ L(1 + |x|).

Proposition 5.18: Assume Lf := inf
x∈R\{0}

∣∣∣∣f(x)

x

∣∣∣∣ > 0.

(i) Let b = N and infx∈[0,1] u0(x) > 0. Then, there exists a constant κ > 0 such
that γ̄(2, x) ≥ κ for all x ∈ [0, 1].

(ii) Let b = D, ε > 0 and infx∈[ε,1−ε] u0(x) > 0. Then, there exists a constant
κε > 0 such that γ̄(2, x) ≥ κε for all x ∈ [ε, 1− ε].

Proof. Let ε ≥ 0, infx∈[ε,1−ε] u0(x) > 0, x ∈ [ε, 1 − ε]. It suffices to find a constant
βε > 0 such that ∫ ∞

0

e−βtE
[
u(t, x)2

]
dt =∞ for all β ≤ βε (85)

(compare the proof of [13, Theorem 3.2]). Using Walsh’s isometry and the zero-mean
property of the stochastic integral yields for t ∈ [0,∞)

E
[
u(t, x)2

]
dt = v3(t, x)2 +

∫ t

0

∫ 1

0

P b
t−s(x, y)2E

[
f(u(s, y))2

]
dµ(y)ds

+ v3(t, x)E
[∫ t

0

∫ 1

0

P b
t−s(x, y)f(u(s, y))ξ(s, y)dµ(y)ds

]
= v3(t, x)2 +

∫ t

0

∫ 1

0

P b
t−s(x, y)2E

[
f(u(s, y))2

]
dµ(y)ds
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and thus, by Laplace transformation for β > 0,∫ ∞
0

e−βtE
[
u(t, x)2

]
dt =

∫ ∞
0

e−βtv3(t, x)2dt

+

∫ ∞
0

e−βt
∫ t

0

∫ 1

0

P b
t−s(x, y)2E

[
f(u(s, y))2

]
dµ(y)dsdt.

In order to bound the first term on the right-hand side from below, note that
v3(0, x) = u0(x) ≥ infy∈[ε,1−ε] u0(y) > 0. By Proposition 5.8, v3 is Hölder con-
tinuous in t uniformly for all x ∈ [0, 1]. We thus obtain the existence of a constant
t0 > 0 such that v3(t, x) > u0

2
, (t, x) ∈ [0, t0] × [ε, 1 − ε]. Let Kβ :=

u20
16β

. Then, for
x ∈ [ε, 1− ε]∫ ∞

0

e−βtE
[
u(t, x)2

]
dt

≥ Kβ + L2
f

∫ ∞
0

e−βt
∫ t

0

∫ 1

0

P b
t−s(x, y)2E

[
u(s, y)2

]
dµ(y)dsdt

and for (t, y) ∈ [0,∞)× [ε, 1− ε] with P b(x, y) : [0,∞)→ R, t 7→ P b
t (x, y),∫ t

0

P b
t−s(x, y)2E

[
(u(s, y)2

]
ds =

(
P b(x, y) ∗ E

[
u(·, y)2

])
(t),

where ∗ denotes the time convolution. It holds Lβ(f ∗ g) = Lβf · Lβg, where L
denotes the Laplace transformation. Hence,∫ ∞

0

e−βt
∫ t

0

∫ 1

0

P b
t−s(x, y)2E

[
u(s, y)2

]
dµ(y)dsdt

=

∫ 1

0

∫ ∞
0

e−βt
∫ t

0

P b
t−s(x, y)2E

[
u(s, y)2

]
dsdtdµ(y)

=

∫ 1

0

∫ ∞
0

e−βtP b
t (x, y)2dt

∫ ∞
0

e−βsE
[
u(s, y)2

]
dsdµ(y).

Let Mβ(x) :=
∫∞

0
e−βsE [u(s, x)2] ds. Then,

Mβ(x) ≥ Kβ + L2
f

∫ 1

0

∫ ∞
0

e−βtP b
t (x, y)2Mβ(y)dtdµ(y). (86)
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If b = N , we set ε := 0 and have for all (t, x) ∈ [0,∞)× [0, 1]

∥∥PN
t (x, ·)

∥∥2

µ
= t2 +

∑
k≥2

sin2
(√

λNk t
)

λNk

(
ϕNk
)2

(x)

≥ t2

and thus ∫ ∞
0

∫ 1

0

e−βtPN
t (x, y)2Kβdµ(y)dt = Kβ

∫ ∞
0

e−βt
∥∥PN

t (x, ·)
∥∥2

µ
dt

≥ Kβ

∫ ∞
0

e−βtt2dt

= 2Kββ
−3.

By iterating this in (86), we obtain for all x ∈ [0, 1]

Mβ(x) ≥ Kβ

∞∑
n=0

(
2L2

fβ
−3
)n
.

This sum diverges if and only if β ≤ 3

√
2L2

f , which verifies (85).

Now, let b = D, ε > 0 and c′ := infx∈[ε,1−ε] ϕ
D
1 (x)2. As ϕD1 (x) 6= 0, x ∈ (0, 1)

(see [29, Proposition 2.5]), we have c′ > 0. Then,

∫ ∞
0

∫ 1

0

e−βtPD
t (x, y)2Kβdµ(y)dt ≥ Kβ

∫ ∞
0

e−βt
∞∑
k=1

sin2
(√

λDk t
)

λDk

(
ϕDk
)2

(x)dt

≥ Kβ

∫ ∞
0

e−βt
sin2

(√
λD1 t
)

λD1

(
ϕD1
)2

(x)dt

≥ Kβ

∫ ∞
0

e−βt
sin2

(√
λD1 t
)

λD1
c′dt

=
Kβc

′

(λD1 )
3
2

∫ ∞
0

e
− β√

λD1

t

sin2(t)dt

=
Kβc

′

(λD1 )
3
2

2(
β√
λD1

)3

+ 4

(
β√
λD1

) > 0.
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By iterating this in (86) we obtain

Mβ(x) ≥ Kβ,ε

∞∑
n=0

 2c′
(
λD1
)− 3

2 L2
f(

β√
λD1

)3

+ 4

(
β√
λD1

)

n

.

Let β̄ := β√
λD1

. The above sum is equal to ∞ for all β such that β̄3 + 4β̄ ≤

2c′
(
λD1
)− 3

2 L2
f . This verifies (85).

We directly obtain the main result of this section.

Corollary 5.19: Let Lf > 0 and let u be given by (84).

(i) Let b = N and infx∈[0,1] u0(x) > 0. Then, u is weakly intermittent on [0, 1].

(ii) Let b = D, ε > 0, infx∈[ε,1−ε] u0(x) > 0. Then, u is weakly intermittent on
[ε, 1− ε].
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A Some Technical Details

Let µ be an atomless Borel probability measure on [0, 1] such that 0, 1 ∈ supp(µ)

and let K := supp(µ) 6= [0, 1]. Recall that [0, 1] \K =
⋃∞
i=1(ai, bi) (see (18)),

D1 =
{
f : [0, 1]→ R : there exists f ′ ∈ L2

(
[0, 1], λ1

)
:

f(x) = f(0) +

∫ x

0

f ′(y)dy, x ∈ [0, 1]
}

and that F is defined to be the space of all L2([0, 1], µ)-equivalence classes possessing
a D1-representative.

Lemma A.1: Let f ∈ F . Then, there exists a unique continuous representative g
in the equivalence class of f such that g is for i ≥ 1 linear on [ai, bi] and g ∈ D1.

Proof. The uniqueness is clear. For the proof of existence, let f̄ be aD1-representative
of f . We define a function h : [0, 1]→ R by

h(x) :=

f̄ ′(x) if x ∈ K,
f̄(bi)−f̄(ai)

bi−ai if x ∈ (ai, bi), i ≥ 1

and g : [0, 1]→ R by

g(x) := f̄(0) +

∫ x

0

h(y)dy, x ∈ [0, 1].

For i ≥ 1, g is obviously linear on [ai, bi]. Further, let x ∈ K and Jx := {i ≥ 1 : bi ≤
x}. Then, for x ∈ K,∫ x

0

h(y)dy =

∫
K∩[0,x]

h(y)dy +
∑
i∈Jx

∫ bi

ai

h(y)dy

=

∫
K∩[0,x]

f̄ ′(y)dy +
∑
i∈Jx

f̄(bi)− f̄(ai)

=

∫
K∩[0,x]

f̄ ′(y)dy +
∑
i∈Jx

∫ bi

ai

f̄ ′(y)dy

=

∫ x

0

f̄ ′(y)dy.

For x ∈ K, it follows that g(x) = f̄(x). It remains to show that h ∈ L2 ([0, 1], λ1).

113



By the Cauchy-Schwarz inequality, we have for a, b ∈ [0, 1]

|f̄(b)− f̄(a)|2 ≤ |b− a|
∫ b

a

(
f̄ ′)(x)

)2
dx

and thus, for i ≥ 1,∫ bi

ai

h2(x)dx =
(f̄(bi)− f̄(ai))

2

(bi − ai)
≤
∫ bi

ai

(
f̄ ′(x)

)2
dx.

We conclude ∫ 1

0

h2(x)dx =
∑
i∈N

∫ bi

ai

h2(x)dx+

∫
K

h2(x)dx

≤
∑
i∈N

∫ bi

ai

(
f̄ ′(x)

)2
dx+

∫
K

(
f̄ ′(x)

)2
dx

=

∫ 1

0

(
f̄ ′(x)

)2
dx,

which is finite due to f̄ ∈ D1.

Lemma A.2: Let b ∈ {N,D}, ψ : L2([0, 1], µ)→ L2(K,µ), u 7→ u|K and

∆̃b
µ(u) := ψ∆b

µψ
−1u, D

(
∆̃b
µ

)
:= ψ

(
D
(
∆b
µ

))
.

Then,

(i)
(

∆̃b
µ,D

(
∆̃b
µ

))
is self-adjoint and dissipative. In particular, ∆̃b

µ is the gen-

erator of a unique strongly continuous semigroup
(
T̃ bt

)
t≥0

. Further, u is an

eigenfunction of ∆̃b
µ for the eigenvalue λ if and only if ψ−1u is an eigenfunction

of ∆b
µ for the eigenvalue λ.

(ii) Ẽ (ũ, ṽ) := E(ψ−1ũ, ψ−1ṽ), ũ, ṽ ∈ F̃ := ψ(F) defines a Dirichlet form, which
is associated to ∆̃N

µ and Ẽ (ũ, ṽ) , ũ, ṽ ∈ F̃0 := ψ(F0) defines a Dirichlet form
associated to ∆̃D

µ .

Proof. (i) First, we show that ∆̃b
µ is self-adjoint. We denote the inner product on

L2(K,µ) also by 〈·, ·〉µ. Let ũ ∈ D
(

∆̃b
µ

)
and u := ψ−1ũ. D

(
∆b
µ

)
is dense in

L2([0, 1], µ). Therefore, for any u ∈ L2([0, 1], µ), there is a sequence (un)n∈N

with un ∈ D
(
∆b
µ

)
, n ∈ N such that ‖un − u‖µ → 0 for n → ∞. Because of
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‖un − u‖µ = ‖ψun − ũ‖µ for all n ∈ N and ψun ∈ D
(

∆̃b
µ

)
, D

(
∆̃b
µ

)
is dense

in L2(K,µ).

Now, let ũ, ṽ ∈ D
(

∆̃b
µ

)
and u := ψ−1ũ, v := ψ−1ṽ. It is straight forward

to check that v 7→
〈
u,∆b

µv
〉
µ
is a linear continuous mapping on D

(
∆b
µ

)
if

and only if ṽ 7→
〈
ũ, ∆̃b

µṽ
〉
µ
is linear and continuous on D

(
∆̃b
µ

)
, which yields

D
(

∆̃b
µ

)
=D

((
∆̃b
µ

)∗)
. Further, for all ũ, ṽ ∈ D

(
∆̃b
µ

)
〈

∆̃b
µũ, ṽ

〉
µ

=
〈
ψ∆b

µψ
−1ψu, ψv

〉
µ

=
〈
ψ∆b

µu, ψv
〉
µ

=
〈
∆b
µu, v

〉
µ

=
〈
u,∆b

µv
〉
µ

=
〈
ψu, ψ∆b

µψ
−1ψv

〉
µ

=
〈
ũ, ∆̃b

µṽ
〉
µ
.

The self-adjointness of ∆b
µ follows. The dissipativity of ∆̃b

µ implies the dissi-
pativity of ∆b

µ since 〈
∆̃b
µũ, ũ

〉
µ

=
〈
∆b
µu, u

〉
µ
≤ 0.

The self-adjointness along with the dissipativity implies that ∆̃b
µ generates a

strongly continuous semigroup
(
T̃ bt

)
t≥0

(see [48, Theorem B.2.2]). It remains

to verify the statement about eigenvalues and eigenfunctions of ∆̃b
µ. For that,

let λ < 0, u ∈ D
(
∆b
µ

)
. The bijectivity of ψ implies that

(
∆b
µ − λ

)
u = 0 if and

only if ψ
(
∆b
µ − λ

)
u = 0. The results about eigenvalues and eigenfunctions

follow.

(ii) Again, let ũ, ṽ ∈ D
(

∆̃N
µ

)
and u = ψ−1ũ, v = ψ−1ṽ. The density of F̃ in

L2(K,µ) can be checked exactly like the density of D
(

∆̃N
µ

)
in L2([0, 1], µ).

Further, it is obvious that Ẽ defines a positive definite, symmetric bilinear
form. We verify that, with α > 0 and Ẽα (ũ, ṽ) := Ẽ (ũ, ṽ) + α 〈ũ, ṽ〉µ,

(
F̃ , Ẽα

)
is a Hilbert space. Note that Ẽα (ũ, ṽ) = Eα(u, v), which implies that Ẽα
defines an inner product. Now, let (ũn)n∈N be a Cauchy sequence in F̃ . Then,
un = ψ−1ũn, n ∈ N is a Cauchy sequence in F with limit, say u. Since
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‖ũn − ψu‖µ = ‖un − u‖µ for all n, ψu is the limit of (ũn)n∈N in F̃ . For the
Markov property, we calculate

Ẽ (0 ∨ ũ ∧ 1) = E (0 ∨ u ∧ 1) ≤ E(u) = Ẽ (ũ) .

To verify that ∆̃N
µ is associated to Ẽ , we apply the correspondence between

∆N
µ and E to get

−
〈

∆̃N
µ ũ, ṽ

〉
µ

= −
〈
∆N
µ u, v

〉
µ

= E(u, v) = Ẽ (ũ, ṽ) .

The case b = D works similarly.

B Directions for Further Research

Remark B.1: Consider the heat equation (9) with initial value given by the Delta
distribution δy : g 7→ g(y) for y ∈ supp(µ). Then, the heat kernel

pbt(x, y) =
∑
k≥1

e−λ
b
ktϕbk(x)ϕbk(y), (t, x) ∈ [0,∞)× [0, 1]

solves the equation in the distributional sense. The heat kernel is of particular
importance in the context of the associated Markov process (compare the remark
below) and stochastic partial differential equations (compare Section 4). It is an
open question whether weak measure convergence implies convergence of the corre-
sponding heat kernels in an appropriate sense.

Remark B.2: The operator ∆b
µ on L2([0, 1], µ) is the infinitesimal generator of a

Markov process, called a quasi-diffusion (compare e.g. [47, 53–55]). Convergence
of semigroups raises the question whether the associated Markov processes also
converge weakly. If µn ⇀ µ, our results imply that for each f ∈ (C[0, 1])bµ, t ∈ [0,∞)

and each starting point x ∈ [0, 1]

E
[
f
(
Xb
n(t)

)]
= T bt,nf(x)→ T bt f(x) = E

[
f
(
Xb(t)

)]
, n→∞,

whereXb is associated to ∆b
µ andXb

n is associated to ∆b
µn . A direct argument extends

this to all continuous functions on [0, 1]. Then, a modification of the corresponding
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proof in [14] gives convergence of all finite-dimensional distributions. The tightness
would be required to establish that Xb

n → Xb weakly in the Skorokhod space of
càdlàg functions.

Remark B.3: Let µ be of full support. Consider the wave equation

∂2u

∂t2
(t) = ∆b

µu(t), t ∈ [0,∞) (87)

on L2([0, 1], µ). This hyperbolic equation describes the motion of a vibrating string
with mass distribution µ such that, if it is deflected, a tension force drives it back
towards its state of equilibrium. If µ were not of full support, the string would have
massless parts. It is not clear how to interpret massless parts of a string. We suppose
that the motion of such a string behaves approximately like the motion of a string
with very little mass on these gaps, analogous to our results about the diffusion of
heat.
Assume that u(0) ∈ D

(
∆b
µ

)
and, for reasons of simplicity, that the initial velocity

vanishes. Then, there exists a unique solution to (87) in L2([0, 1], µ) given by u(t) =

Cb
tu(0), t ≥ 0, where

(
Cb
t

)
t≥0

denotes the strongly continuous cosine family of ∆b
µ

(compare Section 5.1). We have already shown that µn ⇀ µ implies strong resolvent
convergence of the corresponding operators restricted to continuous functions. It
is well-known that this implies convergence of the corresponding cosine families(
Cb
t,n

)
t≥0

, which implies convergence of the solutions to the corresponding wave
equations, provided that there exist M > 0 and w ≥ 0 such that for all n ≥ 1,
t ≥ 0

∥∥Cb
t,n

∥∥ ≤ Mewt (see [39]). Proving that the restriction of Cb
t to (C[0, 1])bµ for

t ≥ 0 is the cosine family of ∆̄b
µ (and analogously for µn) and verifying the above

estimate would be a way to establish the desired convergence of solutions to the
wave equations.

Remark B.4: We have shown that under some regularity conditions, the mild
solution to a stochastic heat equation given by (68) satisfies the upper moment
bound

(E [|u(t, x)|p])
1
p ≤

(
2 ‖u0‖q + 1

)
eC4p

1
1−γδ t.

for a constant C4 > 0. We conjecture that there are constants C13, C14 > 0 such
that for all (t, x) ∈ [0,∞)× [0, 1], p ≥ 1 we have

(E [|u(t, x)|p])
1
p ≥ C13e

C14p
1

1−γδ t,
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where we probably have to assume further regularity conditions, as f(t, x) = 0, g(t, x) =

x, u0(x) = 1, (t, x) ∈ [0,∞)× [0, 1], which leads to the so-called parabolic Anderson
model. Comparable results are known for the parabolic Anderson model defined by
the standard Laplacian (compare e.g. [3, Theorem 2.6]). The proof relies on the fact
that the moments of the mild solution can be expressed in terms of the local times of
Brownian motion. We suppose that a generalization of this concept to Cantor-like
sets would lead to the desired lower moment bound.

Treating the same problem for the stochastic wave equation is probably even more
difficult as there is no such lower bound known for the stochastic wave equation
defined by the standard one-dimensional Laplacian, according to the knowledge of
the author.

Remark B.5: The investigation of stochastic heat and wave equations raises the
question of further stochastic PDEs defined by ∆b

µ, such as the stochastic Burgers
equation

∂

∂t
u(t, x) = ∆b

µu(t, x) + f(t, u(t, x))− u(t, x)
∂

∂x
u(t, x) + ξ(t, x). (88)

for (t, x) ∈ [0, T ]× [0, 1]. It is known (see e.g. [4]) that, assuming sufficient regularity
and appropriate initial data, the mild solution to (88) for µ = λ1 possesses a version
that is essentially 1

2
-Hölder continuous in space and essentially 1

4
-Hölder continuous

in time, which coincides with our results concerning the regularity of the stochastic
heat equation. This suggests the assumption that one could establish the same
Hölder exponents for the mild solution to (88) as for the stochastic heat equation
defined by ∆b

µ. However, as the proof in [4] makes use of stochastic calculus, it seems
that our results are not trivially generalizable to this equation.
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