
Auto-Tuning and Performance Portability
on Heterogeneous Hardware

Von der Fakultät 5 Informatik, Elektrotechnik und Informationstechnik

der Universität Stuttgart zur Erlangung der Würde eines Doktors der

Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

David Pfander

aus Herrenberg

Hauptberichter: Prof. Dr. rer. nat. Dirk Pflüger

Mitberichter: Prof. Dr. rer. nat. Hans-Joachim Bungartz

Tag der mündlichen Prüfung: 28.11.2019

Institut für Parallele und Verteilte Systeme der Universität Stuttgart

2019

Abstract

In high-performance computing, excellent node-level performance is required for the

efficient use of supercomputers. However, manual optimization is a tedious process that

commonly needs to be repeated for every hardware platform targeted. Auto-tuning has

been developed as an approach to partially automate the optimization process, generally

by tuning parameterized compute kernels. Through auto-tuning, both high performance

on a single hardware platform and performance portability can be achieved.

In this work, we present the auto-tuning framework AutoTuneTMP that leverages

two features: just-in-time (JIT) compilation and C++ template metaprogramming. JIT

compilation enables a tight integration of auto-tuning into an application and reduces

the time required for auto-tuning. Template metaprogramming enables a design focused

on ease-of-integration, maintainability and extensibility. It further forms the basis for

optimization templates that support the development of auto-tunable compute kernels.

Additionally, our framework provides search strategies for performing parameter tuning.

To demonstrate the applicability and usefulness of our framework, we use Auto-

TuneTMP to auto-tune three algorithms that require excellent performance. The first

algorithm is matrix multiplication. Whereas many implementations are manually op-

timized or even use assembly, we rely on template metaprogramming for a high-level

approach. Across four hardware platforms, we achieved up to 91% of the peak perfor-

mance and are, therefore, competitive with vendor libraries such as Intel’s MKL.

Sparse grid regression is well-suited for machine learning in moderate-dimensional big

data scenarios. However, large datasets necessitate high-performance algorithms. We

introduce two auto-tuned high-performance algorithms for this application: the unified

streaming algorithm and the subspace algorithm. These algorithms serve as the second

and third example for auto-tuning with AutoTuneTMP. The unified streaming algorithm

is written in OpenCL and targets a wide range of architectures including GPUs. The

subspace algorithm was developed for processor platforms only, but has a lower time

complexity. Due to these auto-tuned algorithms and a new approach for the spatial

adaptivity of sparse grids, speedups of up to 13x were measured compared to the state-

of-the-art surplus-refined masked streaming approach. Furthermore, we demonstrate

that both new algorithms are performance-portable.

Apart from auto-tuning, we investigate the performance portability of a new dis-

tributed variant of the sparse grid clustering method. As a density-based clustering

method, it relies on a sparse grid density estimation to compute density functions for

3

large datasets of moderate dimensionality in linear complexity in the size of the dataset.

The algorithm consists of four major components: two density compute kernels and two

compute kernels for creating and pruning a k-nearest-neighbor graph. All components

were written using OpenCL and MPI. On the node-level, we reached on average 79%

of the achievable peak performance of one processor and four GPUs. In distributed

experiments on two supercomputers, Hazel Hen and Piz Daint, we measured up to

352 TFLOPS using 128 nodes. As a similar fraction of peak performance was achieved

on both supercomputers and because of the high node-level efficiency, we can demon-

strate the performance portability of the algorithm.

Our work shows that performance portability is a realistic goal for scientific applica-

tions on modern hardware. By using JIT compilation and template metaprogramming,

the tightly-integrated auto-tuning approach presented reduces the effort required for

optimization without compromising on performance.

Acknowledgments

This work would not have been possible without many helpful suggestions, technical

discussions and friendly conversations. Firstly, I want to thank my supervisor Dirk

Pflüger for his valuable input on all aspects of the research project that became this

thesis. Furthermore, at the Simulation of Large Systems chair and, later on, the Sim-

ulation Software Engineering chair, I was fortunate to have many great colleagues that

pointed me to fruitful new technical approaches, often over a cup of coffee (Gregor, Stef-

fen, Fabian, Florian, Michael, Caro, Theresa, Miriam and others). Additionally, I was

given the opportunity to spend three enlightening months at Louisiana State University

with Hartmut Kaiser and his amazing team (Adrian, Zack and many more). There,

Hartmut taught me proper C++. Finally, my parents and, of course, Anna supported

me in facing all the challenges that awaited me. They helped me to stay balanced and

motivated—and enabled me to focus during the months of writing.

4

Zusammenfassung (German Abstract)

Im wissenschaftlichen Hochleistungsrechnen ist eine exzellente Nutzung der Rechenleis-

tung einzelner Rechenknoten notwendig, um Supercomputer effizient nutzen zu können.

Allerdings ist die manuelle Leistungsoptimierung ein mühsamer Prozess, der gewöhnlich

für jede unterstützte Hardwareplattform wiederholt werden muss. Auto-Tuning wurde

als ein Ansatz für die teilweise Automatisierung des Optimierungsprozesses entwickelt.

Verbreitete Ansätze nutzen eine automatisierte Bestimmung der Leistungsparameter von

leistungskritischen Programmabschnitten. Durch Auto-Tuning kann eine hohe Leistung

auf einzelnen Hardwareplattformen und auch Leistungsportabilität erreicht werden.

In dieser Arbeit präsentieren wir das Framework AutoTuneTMP. AutoTuneTMP be-

sitzt zwei zentrale Eigenschaften, die effizientes Auto-Tuning ermöglichen: just-in-time

(JIT) Kompilation und C++ Template-Metaprogrammierung. JIT Kompilation ermöglicht

eine enge Integration von Auto-Tuning in eine Applikation und reduziert die für das

Auto-Tuning benötigte Zeit. Template-Metaprogrammierung verbessert die Integrierbar-

keit, Wartbarkeit und Erweiterbarkeit. Weiterhin ist es die Basis für Optimierungstem-

plates, welche die Entwicklung von Algorithmen unterstützen, die mittels Auto-Tuning

optimiert werden können. Zudem stellt AutoTuneTMP Suchstrategien zur Verfügung,

die zur automatischen Parameterwahl genutzt werden können.

Um die Anwendbarkeit und den Nutzen von AutoTuneTMP nachzuweisen, zeigen

wir, dass Auto-Tuning die Leistung von drei Algorithmen verbessert. Bei allen drei Al-

gorithmen ist das Erreichen einer hohen Leistung für akzeptable Laufzeiten notwen-

dig. Als ersten Algorithmus betrachten wir die Matrixmultiplikation. Hochleistungs-

Implementierungen für diesen Algorithmus werden oft manuell optimiert oder in As-

sembler programmiert. Anstatt ebenfalls auf niedriger Abstraktionsebene zu arbeiten,

nutzen wir Template-Metaprogrammierung für eine Implementierung auf einer höheren

Abstraktionsebene – und natürlich Auto-Tuning. In einer Evaluation über vier Hardwa-

replattformen hinweg konnten bis zu 91% der theoretischen Maximalleistung der Hard-

ware gemessen werden. Damit erreicht der vorgestellte Ansatz das Leistungsniveau von

hochoptimierten Herstellerbibliotheken wie Intels MKL.

Dünne Gitter sind gut geeignet für das maschinelle Lernen von moderat-dimensionalen

Datensätzen im Umfeld von Big Data. Allerdings erfordern große Datensätze entspre-

chende Hochleistungsalgorithmen. Wir stellen zwei derartige Algorithmen für dünn-

gitterbasierte Regression vor: den Unified-Streaming-Algorithmus und den Subspace-

Algorithmus. Da beide Algorithmen Auto-Tuning mittels AutoTuneTMP unterstützen,

5

dienen sie als zweites und drittes Beispiel für die Verwendung von AutoTuneTMP. Der

Unified-Streaming-Algorithmus wurde in OpenCL geschrieben und unterstützt eine Viel-

zahl von Hardwareplattformen inklusive Grafikprozessoren. Der Subspace-Algorithmus

wurde ausschließlich für Prozessoren entwickelt, er hat dafür jedoch eine bessere Zeit-

komplexität. Durch diese beiden Algorithmen und einem neuen Ansatz für die räumliche

Adaptivität von dünnen Gittern konnte eine bis zu 13-fache Beschleunigung erreicht

werden. Als Vergleich diente der moderne Masked-Streaming-Algorithmus mit einem

überschussverfeinerten dünnen Gitter. Die Ergebnisse zeigen weiterhin, dass beide neu-

en Algorithmen leistungsportabel sind.

Zusätzlich zu den Auto-Tuning-Beiträgen wird die Leistungsportabilität einer neuen

verteilten Variante des Clusteringalgorithmus für dünne Gitter untersucht. Diese dichte-

basierte Clusteringmethode nutzt eine Dünngitter-Dichteschätzung, um Dichtefunktio-

nen für große Datensätze von moderater Dimensionalität zu bestimmen. Im Vergleich zu

anderen Algorithmen besitzt die dünngitterbasierte Dichteschätzung eine lineare Kom-

plexität in der Größe des Datensatzes. Dünngitterbasiertes Clustering besteht aus vier

Unteralgorithmen: zwei für die Dichteschätzung und zwei für das Erstellen und Redu-

zieren eines k-nächste-Nachbarn Graphs. Für die Implementierung wurde auf OpenCL

und MPI zurückgegriffen. Auf der Ebene einzelner Rechenknoten erreichten wir durch-

schnittlich 79% der erreichbaren Maximalleistung in Experimenten auf einem Prozessor

und vier Grafikkarten. In verteilten Experimenten auf zwei Supercomputern, Piz Daint

und Hazel Hen, maßen wir bis zu 352 TFLOPS bei Nutzung von 128 Rechenknoten.

Die ähnliche hohe Effizienz hinsichtlich der Maximalleistung auf beiden Supercompu-

tern und die hohe Effizienz auf einzelnen Rechenknoten zeigt die Leistungsportabilität

des Algorithmus.

Diese Arbeit zeigt, dass Leistungsportabilität ein realistisches Ziel für wissenschaftliche

Anwendungen auf moderner Hardware ist. Der präsentierte eng-verzahnte Auto-Tuning-

Ansatz ermöglicht durch JIT Kompilation und Template-Metaprogrammierung einen

geringeren Aufwand für die Optimierung, ohne dabei Kompromisse bei der erreichbaren

Leistung zu machen.

6

Contents

1. Introduction 11

I. Performance Portability and Auto-Tuning for Modern Hard-

ware Platforms 15

2. Performance Portability and Auto-Tuning 19

2.1. Performance Portability . 19

2.1.1. Why Performance Portability? . 22

2.1.2. Approaches to Performance Portability 23

2.1.3. Limits of Performance Portability 28

2.2. Auto-Tuning . 29

2.2.1. Auto-Tuning for Productivity and Performance 30

2.2.2. Auto-Tuning for Performance Portability 33

2.2.3. Approaches to Auto-Tuning . 34

3. Modern Hardware Platforms 43

3.1. Trends in Hardware . 43

3.2. The Intel Skylake Architecture . 47

3.3. The Nvidia Pascal Architecture . 49

3.4. Hardware Platforms Overview . 51

II. AutoTuneTMP 55

4. AutoTuneTMP: Leveraging C++ for Performance and Productivity 59

4.1. The AutoTuneTMP Optimization Process 60

4.2. JIT Compilation for Runtime Code Generation 63

4.3. The CPPJIT Kernel Type . 64

4.3.1. CPPJIT: A JIT Compilation Library for C++ 64

7

Contents

4.3.2. Auto-Tuning a Matrix-Vector Multiplication Kernel 66

4.3.3. Auto-Tuned Kernels and Optimization Templates 69

4.4. Generalized Kernels and OpenCL . 71

4.5. Parameter Spaces and Search Strategies 75

4.6. Evaluating the Contribution of Auto-Tuning 80

5. A High-Level Auto-Tuned Matrix Multiplication 83

5.1. Cache Blocking . 85

5.2. Parallelization . 88

5.3. Vectorization and Register Blocking . 90

5.4. Further Considerations and Parameter Overview 94

5.5. Evaluation . 96

5.5.1. Experimental Setup . 96

5.5.2. Performance Results . 99

5.5.3. Search Strategies and Auto-Tuning 101

5.5.4. A Closer Look at the Auto-Tuners 105

III. Auto-Tuned and Distributed Data Mining on Sparse Grids 109

6. An Introduction to Sparse Grids 113

6.1. Sparse Grids . 113

6.2. Spatially-Adaptive Sparse Grids . 120

7. Least-Squares Regression on Sparse Grids 127

7.1. The Streaming Algorithm for Regression 129

7.1.1. Unified Streaming for the Linear and Modified-Linear Basis . . . 130

7.1.2. Implementing the Unified Streaming Algorithm 133

7.1.3. Other Approaches for the Modified-Linear Basis 138

7.1.4. Performance Analysis . 140

7.2. The Subspace Algorithm for Regression 141

7.2.1. Subspace Skipping and Blocking 143

7.2.2. Parallelization and Vectorization 147

7.2.3. Reusing Intermediate Results . 148

7.2.4. Transposed Multi-Evaluation . 149

7.2.5. Memory Requirements . 151

8

Contents

7.2.6. Implementation and Parameter Overview 152

7.2.7. The Subspace Algorithm on GPU? 154

7.3. Evaluation . 154

7.3.1. Datasets and Experimental Setup 154

7.3.2. Performance and Portability of the Unified Streaming Algorithm . 157

7.3.3. Auto-Tuning the Unified Streaming Algorithm 163

7.3.4. Performance and Portability of the Subspace Algorithm 172

7.3.5. Auto-Tuning the Subspace Algorithm 176

7.4. Summary . 184

8. Clustering on Sparse Grids 185

8.1. Estimating Densities on Sparse Grids . 188

8.2. k-Nearest-Neighbor Graph Creation . 191

8.3. Pruning the k-Nearest-Neighbor Graph 193

8.4. Connected Component Detection . 194

8.5. Implementation Methodology . 195

8.5.1. Parallelization Approach and Node-Level Implementation 195

8.5.2. Distributed Implementation . 198

8.6. Parameter Selection . 200

8.7. Evaluation . 202

8.7.1. Datasets and Experimental Setup 202

8.7.2. Node-Level Clustering on Regular Sparse Grids 204

8.7.3. Distributed Clustering on Regular Sparse Grids 208

8.7.4. Spatial Adaptivity for Higher Dimensions 213

8.8. Summary . 216

9. Conclusion 219

A. AutoTuneTMP 223

A.1. Metaprogramming for OpenCL Abstractions 223

A.2. Auto-Tuning the STREAM Triad . 224

B. Sparse Grids 227

B.1. The Unified Streaming Algorithm and Double Precision 227

B.2. Auto-Tuned Parameter Values of the Unified Streaming Algorithm 230

B.3. Auto-Tuned Parameter Values of the Subspace Algorithm 232

B.4. An Auto-Tunable High-Level Multi-Evaluation 233

9

1. Introduction

In earlier days of high-performance computing (HPC), less sophisticated compilers and

hardware with comparably low performance necessitated labor-intensive manual perfor-

mance optimization. However, as compilers and hardware platforms have become more

sophisticated, certain types of optimizations are no longer or only rarely needed. For

example, compiler heuristics for loop unrolling perform loop unrolling automatically.

Additionally, superscalar processors can overlap instructions of the loop with instruc-

tions in the loop body. Thus, manual loop unrolling is rarely beneficial.

However, despite clear progress, efficiently using the resources of modern hardware

platforms still entails tedious manual optimization. This issue is most pressing with

regard to the multi-layer cache hierarchy implemented by basically all modern high-

performance architectures. Despite caches being invisible in an application code, data

locality is required for the cache to effectively reduce the reads and writes to the main

memory. However, rewriting an algorithm into a form that is semantically equivalent

but expresses sufficient data locality is generally beyond the scope of modern compilers.

Apart from high performance on a single platform, performance portability is often

a highly-desirable property. We preliminarily define it as achieving high performance

across a set of hardware platforms considered. Performance portability is important,

as most scientific applications are run on different hardware platforms. For example,

applications are usually run on future generations of server processors. Furthermore,

graphics processors (GPUs) and other types of accelerators are now widely used and,

therefore, need to be efficiently supported by applications. However, the microarchitec-

ture of GPUs is more different from a processor than, for example, a processor and its

next-generation successor. Consequently, performance portability across standard server

processors and GPUs has proven to be a challenging requirement.

There is a tension between high node-level performance and performance portability.

Applications that achieve excellent node-level performance are usually heavily optimized.

To be effective, these optimizations target specific low-level features of the underlying

hardware platform. However, performance portability entails high-performance across

11

1. Introduction

hardware platforms with different low-level characteristics. To address this issue, a

common approach is the creation of multiple code paths for each hardware platform.

While it is clear that with enough effort performance portability can be achieved with

this approach, the disadvantages are rather obvious as well: the resulting application

is more difficult to maintain, more difficult to extend and each additional hardware

platform might require yet another implementation. For these reasons, a single code

path is generally preferable.

In this work, we show that high node-level performance and performance portability

can both be achieved through auto-tuning. Through auto-tuning, applications can adapt

to the underlying hardware platforms automatically in order to maximize performance.

Again, this definition should be considered preliminary, we introduce auto-tuning in more

detail in Sec. 2.2. Our work extends a well-known basic approach for auto-tuning: the

writing of portable compute kernels that expose parameters which are tuned by param-

eter tuners that implement search strategies. By auto-tuning parameterized compute

kernels, only a single code path is needed. As the parameterization makes a compute

kernel more adaptable, supporting additional hardware platforms might only require

an automated run of the parameter tuners. Or, if the compute kernel needs to be ad-

justed, the improved compute kernels might exhibit improved performance for already

supported other platforms as well. Therefore, auto-tuning enables high-performance and

performance portability at reduced development effort, especially with regard to the ef-

fort for supporting additional hardware platforms and, more general, maintainability

and extensibility.

Having argued that auto-tuning provides significant advantages, this raises the ques-

tion of how to enable auto-tuning in applications. To that end, we introduce the auto-

tuning framework AutoTuneTMP. AutoTuneTMP supports two types of auto-tuning

which are both investigated in this thesis. A just-in-time-compiled (JIT-compiled) C++-

based approach that not only tunes compute kernels, but also provides an approach for

writing parameterized compute kernels using template metaprogramming. As writing

parameterized compute kernels is a non-trivial task, this addresses a major obstacle

towards a wide-spread adoption of auto-tuning. The second type of compute kernel con-

sidered in this thesis are compute kernels written in OpenCL. For this compute kernel

type, AutoTuneTMP primarily acts as a parameter tuner. By implementing compute

kernels in OpenCL, we can write compute kernels with arguably the widest-possible

portability compared to other runtimes and languages available. Thereby, we can show

the usefulness of auto-tuning across a wide range of hardware platforms that include pro-

12

cessors as well as graphics cards. While we differentiate between these approaches, we

remark that the OpenCL 2.2 standard includes C++ as a compute kernel language [147].

With the availability of implementations of this version of the OpenCL standard, it

will be possible to merge both types of auto-tuning. Compared to prior approaches,

AutoTuneTMP provides a further benefit. Thanks to C++ template metaprogramming

and JIT compilation, it allows for a seamless integration of auto-tuning into an appli-

cation. This is a major advantage especially compared to prior approaches that rely on

external tuning programs. The tight integration of auto-tuning with an application con-

tributes to improved developer productivity, maintainability and extensibility. Finally,

as we employ JIT compilation, compute kernels can be tuned at application runtime,

i.e., AutoTuneTMP supports online auto-tuning. Online auto-tuning is supported by

few auto-tuning frameworks, as we discuss in Sec. 2.2.

We present three auto-tuned algorithms that achieve excellent performance relative

to their competitors or a performance model. Further, we show that all of them are

performance-portable. These algorithms are intended to demonstrate the usefulness and

applicability of AutoTuneTMP. As the first algorithm, we consider an auto-tuned dense

matrix multiplication. The auto-tuned matrix multiplication has the most challenging

parameter space of the algorithms considered. Thus, we use it to evaluate different

search strategies built into AutoTuneTMP.

As further auto-tuned algorithms, we present one extended and one new algorithm

for sparse grid regression. The sparse grid method is a grid-based approach for spatial

discretization that mitigates the curse of dimensionality. While sparse grid regression

is well-suited for learning large moderate-dimensional datasets, achieving near-optimal

performance is still paramount, as the ever-increasing sizes of datasets are challenging

even for methods with competitive time complexity. We show that auto-tuning enables

the desired level of performance. Both algorithms we present not only serve as exam-

ples for auto-tuning, we show that they improve on the state-of-the-art in sparse grid

regression as well. As the first algorithm, we present an extended variant of the sparse

grid streaming algorithm. Due to its design and the use of OpenCL, this algorithm is

suited for processors and GPUs. The second algorithm is called the subspace algorithm

and was designed for processor platforms. Its lower complexity enables higher perfor-

mance compared to the streaming algorithm, but for a more limited range of hardware

platforms.

In addition to showing the value of AutoTuneTMP, we further present the distributed

sparse grid clustering algorithm as a study in performance portability. This algorithm

13

1. Introduction

is a new distributed high-performance variant of the sparse grid clustering algorithm

by Peherstorfer et al [114]. Algorithmically, it is a density-based clustering method

that employs a sparse grid density estimation for efficiently targeting higher-dimensional

datasets. By using OpenCL and MPI, we demonstrate performance portability across

two supercomputers and five node-level platforms.

Beyond optimization and performance portability, we introduce a new datadriven ap-

proach for constructing spatially-adaptive sparse grids called support refinement. Com-

monly, sparse grids are refined by iteratively extending an initial grid. These approaches

solve the targeted problem in each step of the refinement process. With support refine-

ment the problem only needs to be solved once, as it is a solverless refinement approach.

We show that support refinement accelerates both sparse grid regression and clustering

compared to the state-of-the-art surplus refinement approach.

As the last step of this introduction, we briefly outline the structure of this thesis. In

Part I, we define performance portability (Chapter 2.1) and auto-tuning (Chapter 2.2);

and we describe approaches to both of these concepts. As achieving high-performance

is a goal of all the algorithms discussed in this thesis, we give a brief overview of recent

trends in node-level hardware and discuss concepts important in node-level optimization

on modern processor and graphics card platforms (Chapter 3).

In Part II, we introduce our auto-tuning framework AutoTuneTMP (Chapter 4). As

part of its introduction, we compare it to other auto-tuning frameworks. The auto-tuned

matrix multiplication is introduced and evaluated thereafter (Chapter 5).

Part III brings together auto-tuning, performance portability and sparse grids. We

first introduce the basic sparse grid theory and spatially-adaptive sparse grids (Chap-

ter 6). Then, we consider sparse grid regression and the two auto-tuned regression

algorithms (Chapter 7) Finally, we investigate the performance portability of the dis-

tributed sparse grid clustering algorithm (Chapter 8). At the very end, in Chapter 9,

we summarize the results of this thesis and discuss directions of future research.

14

Part I.

Performance Portability and

Auto-Tuning for Modern Hardware

Platforms

15

In the following two chapters, we lay the foundation for the remainder of this the-

sis. We define important terms and describe the state-of-the-art in both performance

portability and auto-tuning. As auto-tuning enables a partial automation of performance

optimization, we further describe modern hardware platforms and how high performance

can be achieved on these platforms.

Chapter 2 introduces both performance portability and auto-tuning. We first define

performance portability and describe approaches for enabling performance portability

in applications. Furthermore, we report on some aspects of software and hardware that

limit performance portability. We proceed by defining auto-tuning and explain why

auto-tuning is useful—especially in HPC. Then, we give an overview of the approaches

to auto-tuning that are described in the literature.

In Chapter 3, we describe the architecture of modern hardware platforms with a

focus on aspects that are relevant for performance optimization. We consider trends in

hardware in the last two decades and their implications for performance optimization.

Afterwards, we discuss two specific microarchitectures relevant in HPC: the Intel Skylake

architecture and the Nvidia Pascal architecture. Finally, we describe the hardware

platforms we used for evaluating our algorithms.

17

2. Performance Portability and

Auto-Tuning

2.1. Performance Portability

An intuitive definition of performance portability is the ability of an application to per-

form well on a wide range of hardware platforms. However, performance portability

is rarely defined concisely and definitions vary in the literature. Even in research on

performance-portable software and performance portability frameworks, either the in-

tuitive definition is used or a definition is provided with little discussion [133, 42, 117,

130, 52, 107, 43, 80, 115, 165, 125, 43]. Only few papers discuss the concept of per-

formance portability in detail [116, 167]. In the following, we present the definition of

performance portability by Pennycook, Sewall and Lee in slightly rephrased form [116],

as their attempt at defining the basic concept seems to be the most advanced. Then,

we describe our position towards performance portability.

For performance portability to be possible, functional portability is a prerequisite.

Pennycook et al. define this software property as follows:

Definition 2.1.1 (Functional Portability). The ability of an application a to execute a

problem p correctly on a given set of platforms H.

Throughout this work, we will refer to functional portability simply as portability.

Other definitions in the literature stress the effort required to make an application run

correctly on a different hardware platform or operating system, cf. Tanenbaum et al [142].

The definition by Pennycook et al. instead requires the specification of a set of platforms

on which an application actually runs.

Apart from portability, we further need to define performance.

Definition 2.1.2 (Performance). A measurement of an application’s correct execution

of a problem p on a platform h using a given performance metric.

19

2. Performance Portability and Auto-Tuning

A performance metric can be anything measurable about a program, including stan-

dard HPC performance metrics like application runtime, floating-point operations rate

and achieved memory bandwidth.

The following definition of performance portability attempts to capture the general

use of performance portability.

Definition 2.1.3 (Performance Portability). For a given application a portable across

platforms H for problem p, a performance is achieved on all platforms that satisfies

stated performance goals or is useful for a given purpose.

This definition restricts the scope of portability claims to what can actually be eval-

uated, e.g., a set of problems and a specific set of platforms. It thereby highlights that

abstract performance portability claims for applications or across an unspecified range of

devices are extrapolations. Because performance portability has been used for different

purposes, the criterion to accept a level of performance as “good enough” is intentionally

left to be defined in the specific work. This reflects that acceptable performance can vary

widely. It can be required to reach a similar time-to-solution, a similar floating-point

rate or a similar memory bandwidth. For a given metric, what constitutes a similar per-

formance must be further specified. In other contexts, acceptable performance might be

just barely fast enough for an application scientist to consider the application applicable

to a scientific problem.

Because this definition in itself is not measurable and in part subjective, Pennycook

et al. further introduce a measurable and objective performance portability score.

Definition 2.1.4 (Performance Portability Score). For a given application a portable

across platforms H for problem p and a performance efficiency map e, the performance

portability score Pa,p,H,e is given by

Pa,p,H,e :=
|H|∑

h∈H
1

e(a,p,h)

. (2.1)

This definition calculates the harmonic mean of an achieved performance efficiency.

A performance efficiency map e is a performance metric normalized to [0, 1].

Definition 2.1.4 uses the harmonic mean in contrast to the arithmetic mean for av-

eraging across H. By using the harmonic mean P approaches zero if the performance

on a single hardware platform approaches zero. Therefore, it is more challenging to

achieve performance portability scores close to one. If the arithmetic mean would be

20

2.1. Performance Portability

used instead, performance portability would only be reduced by 1
|H| , hiding the fact that

an application it not actually performance-portable across H.

Pennycook et al. give two examples of performance efficiency maps: architectural ef-

ficiency and application efficiency. Architectural efficiency refers to the performance

relative to limitations of the hardware. For example, for a maximum floating-point

throughput fmax
h on platform h and an actual floating-point throughput fa,p,h the archi-

tectural efficiency can be defined as

earch(a, p, h) :=
fa,p,h
fmax
h

. (2.2)

Notably, as fmax
h is application-dependent, it can be much smaller than the peak floating-

point throughput. To make use of architectural efficiency, a performance model that

estimates an upper bound for the performance of an application is usually required.

Architectural efficiency should only be used if the application uses algorithms that fit

well to the hardware architecture, i.e., the application runtime is competitive compared

to other algorithmic choices on each hardware platform. Otherwise, it would be possible

to generate artificially inflated performance portability scores, e.g., by doing redundant

floating-point computations.

As an alternative to architectural efficiency, Pennycook et al. introduce application

efficiency. Application efficiency compares the observed performance relative to the best

observed performance measured on each platform. The best observed performance might

have been achieved with a different application and different algorithms. Therefore, com-

pared to architectural efficiency, application efficiency can account for different optimal

algorithms across hardware platforms. To ensure that the comparison across algorithms

and platforms is fair, the performance metric should only depend on the application and

the measured runtime. For example, time-to-solution can be used directly and “rays per

second” could be relevant for a ray-tracing application; many more examples are given

by Satish et al [135].

Pennycook et al. showed that the performance portability score according to Def. 2.1.4,

when retrospectively applied to published performance portability research, tracks well

the performance portability claims of the authors whose published results were used [116].

This provides evidence that the proposed performance portability score actually captures

performance portability as used by other researchers.

The given definition of performance portability does not pose any restrictions on the

type of device for which performance portability is considered. An application can

21

2. Performance Portability and Auto-Tuning

be performance-portable for H ranging from processors to GPUs to FPGAs to dif-

ferent types of accelerators. Or, it can be performance-portable across different micro-

architectures of processors. Both might be valid ranges of devices, as even closely-related

hardware can exhibit major performance differences. For example, the Intel Haswell mi-

croarchitecture implements two vector pipelines for fused-multiply-add (FMA) instruc-

tions, doubling the vector arithmetic throughput compared to its predecessor. This can

be used to obtain a 2x speedup for a well-optimized GEMM kernel. Therefore, even

closely-related hardware platforms can be an interesting field of study in performance

portability research.

In this work, we generally make use of the definitions presented by Pennycook et

al. with, however, one exception: we do not compute the performance score Pa,p,H,e.
Instead, we provide per-device performance measurements, e.g., in GFLOPS or in ad-

justed fraction of achieved peak performance, and draw qualitative conclusions from the

provided data. We recognize that a qualitative discussion has the drawback of being

subjective. However, a critical analysis of the assessment is possible as the per-device

results are provided. We argue that the performance portability score does not provide

a clear benefit over this approach. As an example for the usefulness of this metric,

Pennycook et al. themselves only mention that Pa,p,H,e can be used to assess changes to

one of the variables, such as changing H. Indeed, that qualitative discussions are the

state-of-the-art in analyzing performance portability might indicate that researchers so

far see no benefit in the aggregate metrics proposed.

2.1.1. Why Performance Portability?

Performance portability is important whenever performance is relevant and more than

one hardware platform is targeted by an application. This is generally the case in fields

such as machine learning, image processing and, of course, HPC. Performance portability

is important for two central reasons: to support a range of current hardware platforms

efficiently and to be forward-compatible with future hardware. We address these reasons

from an HPC perspective.

Supercomputers use a wide range of different hardware architectures. For example,

the Top500 list of December 2018 includes standard x86 processors, PowerPC, SPARC

and more exotic HPC-specific platforms like the Sunway SW26010. Many systems are

heterogeneous and use accelerators, often graphics cards like Nvidia’s Tesla V100, but

also pure compute accelerators like the Matrix-2000 employed by the Tianhe-2A super-

computer [151]. HPC applications are written so that they are portable across a range of

22

2.1. Performance Portability

hardware platforms. However, performance is the very requirement that all HPC appli-

cations share. Therefore, what is actually needed is high performance across the range

of supported devices. That is to say that applications should be performance-portable.

Furthermore, computer hardware changes faster than software (argued for example by

Püschel et al [126]). Software is often used productively for decades, whereas hardware

is upgraded every few years. Consequently, it is a common requirement for software that

it should be usable on upcoming and future hardware platforms. Again, the application

needs to be portable and, for it to be useful, it needs to achieve high performance. That

is, performance portability to future hardware platforms is strongly desired.

HPC applications might not be portable or performance-portable immediately. In-

stead, applications usually require adjustments for supporting additional hardware plat-

form. Especially challenging is the addition of support for future hardware. This is only

possible in rare cases, e.g., if an emulator is available. While minor adjustments are

acceptable with respect to the effort required, rewriting major parts of an application

is generally not. As developers are aware of this issue, applications are often structured

so that they are not too dependent on platform specifics. This again leads to considera-

tions relevant for performance portability. For example, programmers need to consider

whether the vector width can be changed for a future architecture. Or, whether a cache

blocking approach will work on a memory hierarchy that is structurally different.

2.1.2. Approaches to Performance Portability

In this section, we introduce four common strategies for achieving performance porta-

bility. First, directly implementing a performance-portable application to enable per-

formance portability for a specific application. Second, by providing a domain-specific

language (DSL) that has some performance portability across a range of platforms for a

whole class of problems. Third, highly-portable languages and language extensions that

provide some degree of performance portability. And fourth, performance portability

frameworks and parallel runtime systems that enable application developers to create

performance-portable software. Runtime systems for distributed environments can be

considered an important subclass of the last category. In the remainder of this section,

we discuss these approaches in more detail.

Performance portability can be achieved through direct implementation of an applica-

tion using standard tools and libraries. Well-known examples for this class of approach

are the BLAS library ATLAS [158] and the FFT library FFTW [57]. Both use auto-

tuning to achieve optimal performance and contributed to the recognition of auto-tuning

23

2. Performance Portability and Auto-Tuning

as a useful approach in HPC. Three other examples for this type of approach are the

BLAS libraries PHiPAC, clBLAS and BLIS. PHiPAC was an early pioneer in auto-tuning

and featured performance portability across hardware platforms of the late 1990s [18].

As the name suggests, clBLAS is a portable BLAS library implemented in OpenCL [33].

Due to the use of OpenCL it supports a wide range of devices. BLIS is a BLAS im-

plementation for processors that achieves performance portability through model-based

parameter selection [96]. Both, clBLAS and BLIS are recommended (and seem to be

partially developed) by AMD.

The performance and performance portability achieved with this type of approach is

usually excellent. However, performance-portable applications that use the direct imple-

mentation approach often are technically highly-complex. As implementation strategies,

some applications use multiple code paths for different architectures, possibly even using

different programming languages. Other applications adjust the source code to specific

hardware platform through extensive conditional compilation. These techniques can

increase the effort required to maintain, extend and test performance-portable applica-

tions.

In recent year, many DSLs have been proposed for a wide range of fields ranging

from source code analysis [89] to landscape dynamics modeling [48] to machine learn-

ing [139]. A number of DSLs have been developed with performance portability as an

explicit goal. Many of these DSLs implement languages expressing stencils that occur

when solving (partial) differential equations, examples for this type of application are

OPS [130], Liszt [39], OP2 [107] (and PyOP2 [129]), PATUS [31], Pochoir [143] and

STELLA [67]. Stencils occur in other applications as well. For example, Halide is a

performance-portable DSL that generates stencils for image processing [127]. Of course,

some performance-portable DSLs target different domains entirely. Spiral generates

highly-optimized and performance-portable signal processing algorithms, newer version

of Spiral use a DSL called OL [126, 55]. Others help application researchers to more

generally express mathematical ideas at a higher level, so that efficient, i.e., parallel and

cache-aware, code can be generated automatically. Examples of this category include

Sequoia [52] and ∇ [27].

To achieve performance portability, different DSLs use different strategies. Some DSLs

introduce their own languages [52, 39, 31, 127, 27]. Others appear as libraries written

in a standard programming language [143, 107, 129, 130, 67]. Even of the DSLs written

in a standard programming language, most are implemented with a custom compiler

to generate code and perform optimization on the abstract-syntax-tree (AST) level. In

24

2.1. Performance Portability

contrast, STELLA uses C++ template metaprogramming to generate efficient code [67].

Embedding a DSL into standard languages like C++ can make it easier to integrate

the DSL into a project. Specifically, C++ template metaprogramming has been used to

implement the API of the DSLs Pochoir [143], OPS [130] and STELLA [67].

Some mentioned DSLs provide performance portability in a distributed setting [52,

39, 107, 67, 55]. OP2 in particular addresses challenges in distributed computing like

communication cost and the locality of data. However, most performance-portable DSLs

focus on node-level performance challenges.

Highly-portable languages and language extensions support application developers

in writing performance-portable applications. OpenMP is probably the most widely-

used threading framework in scientific computing [112]. With version 4.0, OpenMP

has been further extended to support vectorization through the #pragma omp simd-

construct. The same version of the OpenMP standard added support for offloading

work to accelerators. By using these features, OpenMP supports the implementation of

portable, parallelized and vectorized applications. Unfortunately, more-recent OpenMP

features like offloading were not fully adopted by major compilers at the time of writing.

OpenCL is likely the most portable language available, with implementations on plat-

forms ranging from x86 standard processors to GPUs to the Intel Knights Corner Xeon

Phi accelerator and even FPGAs. For this reason, OpenCL is a promising candidate

for developing performance-portable application. Research has shown that OpenCL pro-

vides some degree of performance portability [49, 115, 40, 117, 165, 130, 125]. While early

evaluations gave mixed result for OpenCL’s performance portability, McIntosh-Smith et

al. argue that OpenCL’s performance portability has improved over the last years with

more mature OpenCL implementations [103]. OpenCL has been used to implement

many applications. Well-known examples include Bullet, GROMACS, LAMMPS and

CLBlast [109].

There are few alternatives to OpenCL’s portability if the target platforms include

not only processors, but also accelerators. Herdman et al. argue that OpenACC is a

viable alternative to OpenCL, as it offers higher productivity and has some degree of

portability [78]. For example, the OpenARC compiler is an OpenACC implementation

that enables the use of OpenACC across platforms of most hardware vendors relevant

in HPC, though at this point it is not publicly available [94, 134].

The Intel SPMD Program Compiler (ISPC) creates a thread- and vector-parallel pro-

gram from a language close to a scalar C program [123]. It is similar to OpenCL and

OpenACC in its ability to leverage thread- and vector-level parallelism. ISPC supports

25

2. Performance Portability and Auto-Tuning

all major vector extensions of the x86 ISA. As ISPC only targets standard processor ar-

chitectures, it can be easily integrated with programs built using standard programming

languages. For example, ISPC can directly operate on memory allocated in C.

Since C++11 was introduced, performance portability frameworks and language ex-

tensions of C++ have been developed. Notable examples for this type of frameworks are

RAJA [80] and Kokkos [43], In their features sets, RAJA and Kokkos are very simi-

lar. RAJA focuses on the expression of parallelism on a higher level, so that low-level

thread management is handled internally by RAJA’s C++ templates. These templates

can be considered extensions of the C++ standard template library’s (STL) algorithm

header. The developers stress the usefulness of C++ lambdas, as they allow for the sep-

aration of a loop body and the management of the index set of a loop. RAJA supports

multiple back-ends for portability with minimal code modification. It also provides

abstractions for different memory layouts, including support for tiled memory access

patterns. Kokkos focuses on data structures for efficient memory accesses. To that

end, Kokkos implements high-performance data structures for HPC application, e.g., for

efficiently iterating a multi-dimensional data structure that resides in a linear address

space. Kokkos chooses the type of memory layout to be used at compile-time depending

on the hardware platform. The data structures that Kokkos implements are intended

to be used with parallel algorithms that are also provided by Kokkos. Similar to RAJA,

these parallel algorithms extend the functionality of C++’s STL.

While RAJA and Kokkos explicitly focus on performance portability in general, several

frameworks focus on portable parallelization and vectorization. Intel Cilk Plus is a C++

runtime and language extension for thread- and vector-level parallelization [131]. It

is built upon Cilk which only supported thread-level parallelism [20]. Intel Threading

Building Blocks (TBB) is a runtime system for thread-level parallelism that provides

a collection of parallel algorithms [132]. Very similar to TBB are the Parallel Pattern

Library (PPL) and C++AMP, both developed by Microsoft. TBB and PPL only support

processors, whereas C++AMP works on GPUs and processors [65]. A research project

with a similar scope and support for GPUs and processors is SkePU [44]. Nvidia’s Thrust

provides host-callable algorithms that exclusively run on GPUs [15]. These frameworks

either implement STL-like algorithms or use a functional style using C++’s lambdas.

Furthermore, all of them appear as C++ libraries to the programmer.

As vectorization has proven challenging to address at high levels of abstractions, li-

braries for portable vectorization have been developed. Vc [92, 91] and Boost.SIMD [46]

are both C++ libraries for explicit vectorization. Both are portable in the sense that

26

2.1. Performance Portability

they can infer the native vector width from compiler settings and trigger the compiler

to generate SIMD code. Both libraries expose an API that is very close to scalar C++

and both provide means for handling vector-conditionals elegantly. Vc and Boost.SIMD

target processor architectures only.

Performance Portability in a Distributed Setting

In this work, we primarily consider node-level performance portability challenges. Per-

formance portability across distributed systems leads to widely different problems to be

solved: interconnect bandwidth and latency, network topology and data placements on

specific nodes all have to be considered. For comparison, excellent node-level perfor-

mance requires a high utilization of the available compute resources, cores and vector

units, and a consideration of memory bandwidth and memory latency. Furthermore, as

modern supercomputers consist of many smaller nodes with (more or less) commodity

hardware, performance portability on individual nodes is foundational to performance

portability across supercomputers. However, because performance portability is an im-

portant challenge in distributed computing, we briefly describe how is can be achieved.

MPI is the most commonly used library for developing distributed applications [105].

Two of the major MPI implementations, OpenMPI and MPICH, both target portability

and high performance [113, 106]. Porting MPI applications to new hardware platforms

tends to require some adjustments, often due to differences in interconnects and a de-

viating network topology. However, some scalability can be expected without major

application rewrites. Therefore, MPI can generally be considered performance-portable

with respect to process-level parallelization and scalability.

An increasingly important class of frameworks in distributed settings are asynchronous

many task systems (AMTs). Modern AMTs like HPX [85] and CHARM++ [86, 2] can be

used for portable applications that scale from small mobile systems to large distributed

systems such as supercomputers [77]. AMTs create a task graph that describes de-

pendencies between tasks. The details of the execution are determined by the runtime

system. This might include the order in which tasks are processed or the selection of

the node that executes the task. Another key concept of AMTs is the mostly uniform

treatment of local and distributed data, thereby residing on a higher level of abstraction

compared to MPI. Research on AMTs is a highly-active field. STAPL [26], LEGION [13]

and StarPU [10] are all competitors of HPX and CHARM++ with similar features.

27

2. Performance Portability and Auto-Tuning

2.1.3. Limits of Performance Portability

Even high-performance application codes that utilize the hardware resources to the

extent possible explicitly or implicitly make assumptions about the architecture of the

hardware platforms targeted. If these assumptions are invalid on an additional hardware

platform, even an application that displayed excellent performance portability might be

significantly less efficient. As an example, we consider the porting of an astrophysical

application from the Intel Haswell to the Intel Knights Landing platform - a porting

effort to which the author of this thesis contributed [121]. The application, called Octo-

Tiger, simulates the merger of binary star systems. In astrophysics, these mergers are

highly important, as they lead to supernovae of type Ia, luminous red novae and the

formation of R Coronae Borealis stars [156, 32, 152]. The computationally most intensive

components of this application are a set of three compute kernels that are part of the

fast-multipole method (FMM) that Octo-Tiger uses.

Before our porting effort, the execution of these kernels consisted of three steps: a

gather step that aggregated data from memory into arrays, many arithmetic instructions

on these arrays and, finally, a scatter step for writing the data back to memory. The

compute kernels ran efficiently on Intel’s Haswell platform, despite the potentially ex-

pensive gather and scatter steps. On this platform, the kernels were primarily bound by

the arithmetic instructions and achieved a significant fraction of the peak performance.

The Knights Landing platform is superficially similar to the Haswell platform, as it

implements nearly the same x86-based instruction set. Therefore, one could assume rea-

sonable performance on the Knights Landing platform. However, the microarchitecture

of the Knights Landing differs in critical aspects. Relevant for Octo-Tiger was the much

lower scalar performance of the Knights Landing architecture due to a lower frequency,

smaller caches, fewer out-of-order resources and other factors. As a consequence, the

original algorithm achieved less than 5% of the floating-point peak performance, despite

the compute kernels being compute bound. On this platform, the scatter and gather

steps turned out to be the primary cause for the low performance, as these were imple-

mented as many scalar MOV instructions. Note that address indirections precluded the

use of the more efficient AVX512 gather/scatter instructions that are supported by the

Knights Landing architecture.

In our effort to establish performance portability, we redesigned the compute ker-

nels. The new kernels employ a stencil approach with a very large 1074-element stencil.

This stencil approach eliminates the gather and scatter steps. The new algorithmic

approach enabled an approximately 5x speedup for the FMM kernels compared to the

28

2.2. Auto-Tuning

prior approach. Incidentally, the continuous memory access patterns of the revised ker-

nels improved performance on the Haswell platform as well.

This example shows that an algorithmic approach that was efficient on a class of

hardware platforms, multiple generations of Intel Xeon processors, still cannot guarantee

high performance even on a related platform. However, it also shows how a modification

of the algorithm again enabled performance portability across the extended range of

platforms. In further work, we showed that the same stencil approach could even be

reused in GPU kernels. As a result, Octo-Tiger could be run at scale on the GPU-based

supercomputer Piz Daint [35].

2.2. Auto-Tuning

Auto-tuning, sometimes known as empirical optimization or self-tuning, can be defined

as follows.

Definition 2.2.1 (Auto-Tuning). Auto-tuning is the ability of an application to adjust

itself automatically to the underlying hardware platform or input features in order to

maximize some metric, usually performance.

While there are different approaches to auto-tuning, there is a common basic strategy.

Generally, variants of applications or compute kernels of applications are considered.

These variants are either specified through a set of parameters or they are given by

a set of (code) transformation rules and an initial problem statement. The goal of

the auto-tuning process is to discover the variants that maximize performance. As the

performance characteristics of the variants often cannot be inferred analytically, all or a

subset of variants are investigated empirically. The set of variants can be considered as

a search space and the discovery of the highest-performance variants can be formulated

as an optimization problem. As the search spaces can be vast, search strategies are

employed that, if effective, consider only few relevant variants.

Performance, of course, can refer to different quantities of interest. It, however, usually

refers to time-to-solution or a metric related to time-to-solution such as GFLOPS (for

a fixed hardware platform and input). While rare in the literature, goals other than

performance have been considered. For example, Anzt et al. performed auto-tuning to

maximize power efficiency [8].

In the remainder of this section, we first describe the two issues that auto-tuning

addresses. We explain how auto-tuning can improve performance and reduce the effort

29

2. Performance Portability and Auto-Tuning

for performance optimization. Then, we consider auto-tuning as a means for developing

performance-portable algorithms. Having stated our goals, we proceed by introducing

the most important approaches to auto-tuning. Finally, we characterize the search spaces

and search strategies commonly used.

2.2.1. Auto-Tuning for Productivity and Performance

There are two widely-used strategies to create high-performance implementations: rely-

ing on an optimizing compiler and optimizing manually. We argue that these strategies

either do not yield optimal performance or lead to an often unacceptably high effort.

By using auto-tuning techniques, performance can be improved with reduced effort.

Optimizing compilers have made significant progress in the last decades. As a result,

programmers are often advised not to manually optimize their programs, as this step

is handled by the compiler. However, especially in high-performance computing the

performance obtained by simply using an optimizing compiler is not sufficient. Compiler

are subject to constraints when deciding whether performance optimizations can be

applied.

• Compiler optimizations need to preserve semantics as specified in the language

description.

• Compilers have to be conservative if the correctness or benefit of an optimization

cannot be proven.

• Optimizations have to be effective, i.e., actually improve performance, even for

unexpected or unusual input.

• In standard programming languages, performance-critical knowledge might not be

represented in the program.

These constraints limit what compilers can achieve and, as a result, certain critical

optimizations are generally not performed.

Pointer aliasing in C++ highlights some of the issues compiler face because of the

constraints stated above. In C++, pointers are allowed to point to the same memory

address (though some restrictions apply) [162]. As an example, we assume two pointers

that point to the same address and the value pointed to is changed through the first

pointer by a store instruction. If the value pointed to is held in a processor register

because of a read access through the second pointer, the value needs to be reloaded,

30

2.2. Auto-Tuning

as the register now contains the incorrect former value. Generally, whether a reload is

required needs to be inferred by the compiler through alias analysis. Ruling out pointer

aliasing can lead to significantly faster code because of fewer generated load and store

instructions. However, if the absence of aliasing cannot be proven, the compiler has to

be conservative and the generated code might exhibit lower performance, i.e., it misses

an optimization.

C99 introduced the restrict keyword, which enables programmers to explicitly state

that pointers do not alias [161]. However, there is no comparable feature in the C++

standard [162]. Thus, pointer aliasing in C++ is one of the cases where details relevant

for optimal performance cannot be represented in the programming language.

In addition to the stated constraints, optimizing compilers are limited by more prac-

tical requirements:

• Languages that are compiled ahead-of-time only allow for static analysis.

• The compiler might only see parts of the program and therefore only optimizes

the program locally.

• The compilation itself should be fast. This is especially important for just-in-time

compiled languages.

These requirements all make it more difficult for a compiler to create near-optimal code

and therefore help to explain why performance might be lower than expected. However,

research and implementation efforts for techniques such as profile-guided optimization

and link-time optimization might resolve or mitigate these issues in future compilers.

The costs of missed optimizations depend on the optimizations considered and can be

very high, especially for HPC compute kernels. For example, matrix multiplication on

modern x86 processors can be implemented so that the innermost loop uses vector fused-

multiply-add (FMA) instructions. Modern compilers can in some cases perform auto-

vectorization. However, a compiler might not auto-vectorize a matrix multiplication

implementation and instead use scalar instructions. On modern processors such as

Intel’s Skylake-SP series, performance can be reduced by a factor of up to 32 (double

precision) or 64 (single precision) [93].

Missing memory optimizations can be even worse, as an efficient use of the memory

often is a prerequisite for other optimizations like vectorization to be effective. As an

example, we consider memory latency. Memory latency seems to no longer decrease,

in fact it even increases by ≈ 4% per year [102]. If a value can be cached in the L1

31

2. Performance Portability and Auto-Tuning

cache of a Intel Skylake processor, it requires four cycles to move this value into a

(vector) register [54]. However, if the value instead gets loaded from memory more than

a hundred cycles can be needed, resulting in significantly lower performance.

Because of the impact of important missed optimizations like cache blocking or vec-

torization, manual optimization is still commonplace in HPC. However, the downsides

of manual optimization are rather obvious. The effort to optimize compute kernels can

be very high. Expert knowledge on the hardware platform and high-performance pro-

gramming might be needed for the optimizations to be effective. Moreover, the next

generation of hardware can require the optimization process to be repeated.

In performance engineering, it is often clear that a compute kernel benefits from a

certain optimization. Still, it is a time-consuming task to figure out how to exactly

implement an optimized algorithm, as optimizations often expose performance-critical

parameters that need to be tuned. For example, cache blocking requires the dimensions

of the blocks to chosen carefully, as they strongly affect whether the optimization actually

improves performance. Too small dimensions might lead to too little reuse of data loaded

into the cache for overall reduced performance. If the dimensions are too large, data

that is still needed might get evicted from the cache, affecting performance as well.

In case of manual optimization, a developer adjusts one or multiple parameters, recom-

piles the application and then evaluates whether the change led to improved performance.

With auto-tuning, the optimization loop can be partially automated by providing search

strategies and means to integrate auto-tuning into an application. Thereby, the amount

of work needed is reduced.

Because experimenting with parameter values can be highly time-consuming, perfor-

mance engineers often cannot explore all relevant or technically-plausible parameteri-

zations. Furthermore, while an optimization expert might find parameter values close

in performance to the optimal values, it is possible that a systematic search approach

might find less intuitive, but higher-performance parameter values. Both these factors

can explain why manually-optimized code might make use of subpar parameter choices

and, therefore, delivers lower-than-possible performance. Therefore, an auto-tuning ap-

proach that systematically explores the search space with an appropriate search strategy

can discover higher performance parameter values.

Furthermore, auto-tuning can bridge the knowledge gap between a programmer and

an optimizing compiler or a second programmer. The compiler is generally not aware

of the input of a function, e.g., a function might be called with matrices with widely

varying dimensions. Consequently, the compiler might generate low-performance code

32

2.2. Auto-Tuning

for a specific input. Similarly, the developer of a library might not know how a library

routine is actually used. This can lead to a highly-optimized implementations that still

displays low performance for a given input. With auto-tuning, the parameterization

can be deferred to when the application is actually used. At this point, input repre-

sentative of the actual use of the application can be made available to the auto-tuner.

This enables the auto-tuner to adapt the application to the given input for improved

performance. Some auto-tuning frameworks are even able to perform tuning during ap-

plication runtime, i.e., they perform online auto-tuning. Thereby, even widely different

input characteristics during an application run can be considered without the need to

manually providing many variants of a compute kernel.

2.2.2. Auto-Tuning for Performance Portability

In Sec. 2.1, we introduced what performance portability is, why it is important and how

it can be achieved. In this section, we explain how auto-tuning can be used to achieve

performance portability across sets of different and even future hardware platforms.

We argued in the previous section that optimizations expose parameters that require

tuning for optimal performance on a given hardware platform. This parameter tuning

approach for optimization can also be used to support related hardware platforms. If

two hardware platforms are similar enough, selecting slightly different parameter values

through auto-tuning can already be sufficient to enable performance portability. For

example, between the Intel’s Broadwell and Skylake generation, the size of the L2 cache

was increased from 256 kB to 1 MB. If a compute kernel implements parameterized cache

blocking, adjusting the related parameters for larger caches is feasible purely by changing

parameters. Thus, generational changes of processors can be taken into consideration.

With auto-tuning it is even possible to implement applications that achieve high per-

formance on platforms of different vendors. Auto-tuned parameters that target common

architectural features might immediately apply to a different platform. Because of trends

of convergence in HPC hardware is has become more likely that if an optimization is

needed on a specific platform, it is needed on a different platform as well. For exam-

ple, modern x86 architectures like Intel Skylake and AMD Zen share most performance

critical architectural features. They implement superscalar out-of-order cores with wide

vector units, simultaneous multithreading (SMT) and a multi-layer cache hierarchy.

Both platforms support (nearly) identical instruction sets as well. There are, however,

many quantitative differences, e.g., differently-sized caches or differences in the width of

the vector units. Fortunately, quantitative differences can be addressed by auto-tuning

33

2. Performance Portability and Auto-Tuning

parameter values. As we elaborate in Chapter 3, even processors and GPUs have many

shared characteristics. A compute kernel that is portable across these architectures can

therefore benefit from the auto-tuning of its parameters as well.

2.2.3. Approaches to Auto-Tuning

Auto-tuning was originally introduced as a feature of applications. Early examples from

the late nineties include the BLAS implementation ATLAS [157] and the FFT library

FFTW [57]. A slightly later well-known auto-tuned application is sparse matrix-vector

multiplication library OSKI [155]. Because of the success of the earlier auto-tuned

applications, the generalization of auto-tuning has become a topic of research.

Apart from applications, DSLs have been proposed that implement auto-tuning, fol-

lowing the example set by Spiral [126]. Some DSLs target the generation of efficient

algorithms for stencil applications for solving partial differential equations, in computa-

tional fluid dynamics and in image processing [87, 31, 166, 98, 127]. Other DLSs more

generally target the development of high performance and performance-portable com-

pute kernels [52, 163, 7, 153]. Related to general compute DSLs are auto-tuning-enabled

language extensions like HMPP [64] and OpenARC [134]. As auto-tuning can be used

to enable performance portability there is a strong overlap between the DSLs mentioned

here and those presented in Chapter 2.1.2.

As most implementations of auto-tuning rely on parameter tuning, several auto-tuning

frameworks provide search strategies and abstractions for managing search spaces. Ac-

tive Harmony possibly was the first parameter tuning framework created [144]. A ma-

jor feature of Active Harmony is its ability to perform distributed auto-tuning, i.e.,

evaluating different parameterizations of an application on different nodes simultane-

ously. Another notable parameter tuner is OpenTuner, which is able to deal with search

spaces with more than 200 dimensions [6]. Other parameter tuning frameworks are the

Periscope Tuning Framework (PTF) and BEAST. The Periscope Tuning Framework

(PTF) is notable for its extensibility [12], whereas BEAST can be used to optimize for

energy efficiency [8, 97]. There are other frameworks that have slightly different goals.

For example, SkePU focuses on selecting an appropriate parallelization backend from a

list of predefined backends [44, 36].

Some auto-tuning frameworks not only tune parameters, but provide a code transfor-

mation approach to support the development of auto-tunable compute kernels. Active

Harmony has been used together with CHiLL, which is a source-to-source compiler that

acts as the code transformation component [29, 148, 150]. CHiLL implement loop trans-

34

2.2. Auto-Tuning

formations like tiling and loop unrolling. Insieme is an auto-tuning framework and uses a

source-to-source compiler to enable parameterized code transformations similar to those

of CHiLL [84]. Apollo is an auto-tuning extension of the performance portability layer

RAJA and uses machine learning instead of search heuristics to select the algorithm

best-suited for a given input [14].

The Kokkos framework abstracts from the underlying hardware and promises to en-

able performance portability. In recent work, it has been extended with an auto-tuning

component [62]. Kokkos uses C++ template metaprogramming for enabling the imple-

mentation of portable high-performance applications.

OpenCL has been combined with auto-tuning in many instances [109, 98, 153, 134, 64,

36, 138, 125, 90, 42, 133, 40, 117, 165]. In part because OpenCL exposes parameters (the

structure of the grid, the size of the work group) that affect performance and need to be

chosen with care. Furthermore, though OpenCL achieves some performance portability

immediately, auto-tuning has also been used to bridge the remaining performance gap.

To that end, three different strategies have emerged. Either a direct implementation

strategy where parameters control conditional compilation, e.g., implemented with C

preprocessor statements. This methodology is used by the CLBlast project [109]. Al-

ternatively, code generators are employed that emit OpenCL source code, e.g., by Du

et al [42]. These code generators expose parameters that can be tuned. A technically

more sophisticated approach is employed by some DSLs and language extensions that

support OpenCL as a back-end language. These DSLs use source-to-source compilation

and therefore a compiler-level approach to create OpenCL kernels [98, 153, 134, 64, 138,

40].

Parameterized Types and Auto-Tuning Objectives

As the next step, we give an overview of the types of parameters that are targeted by

auto-tuning. We discuss three types of parameters that are related to optimization. Ad-

ditionally, we describe an auto-tuning approach that cannot be categorized as parameter

tuning, but is relevant, as successful auto-tuned frameworks use it.

The first and most common parameter type controls performance optimizations. Ex-

amples for auto-tuned optimizations are

• cache blocking [109, 157, 158, 87, 31, 165, 98, 52, 7, 163, 134, 64, 149, 150, 148,

29, 138, 38, 125, 42, 95, 159, 166, 8, 68],

• register blocking [109, 157, 158, 87, 149, 38, 159, 68] and software pipelining [158,

35

2. Performance Portability and Auto-Tuning

159],

• loop unrolling [109, 157, 158, 31, 163, 134, 64, 149, 150, 148, 29, 133, 159, 68],

• loop interchange [163, 64, 149, 150, 29, 125, 159],

• selecting the data layout (array-of-structs/struct-of-arrays [165, 98], sparse matrix

formats [155, 159], row-major/column-major matrix layout [165] and others [7,

125, 117]) and

• selecting the vector width, e.g., for OpenCL kernels [109, 138, 133, 42, 153], or

choosing whether to vectorize a dimension [127].

For cache blocking, the dimensions of the block can be tuned. Register blocking requires

parameter values for the block sizes as well, but has a different goal from cache blocking.

By keeping data in the registers as much as possible the number of memory references

can be reduced for improved performance.

Parameterized loop unrolling allows for the unrolling factor to be tuned or in a sim-

plified version whether a loop should be unrolled fully or not at all. Multiple loops

are perfectly-nested if the loop body of an outer loop only consists of the next inner

loop. Perfectly-nested loops with independent iterations allow changing the order of the

loops without affecting correctness. Interchanging loops can improve performance. For

example, memory references can be made more efficient if loops can be arranged so that

memory addresses are accessed linearly.

When designing algorithms, selecting an appropriate data layout is critical to perfor-

mance. Compute kernels have been implemented with usually binary parameters that

enable switching between (two) different types of data layout.

OpenCL offers vector types with different widths. Compute kernels have been written

that allow for the vector width to be adjusted. Whether to vectorize at all can be a

auto-tunable decision as well. The source-to-source compiler of the DSL Halide can tune

whether to vectorize individual loops of a loop nest [127].

Less well-studied optimizations are: whether to parallelize a loop or a loop nest [7,

64], choosing the precision of floating-point computations [155, 117] and whether to

generate prefetch instructions [159]. For GPU-based auto-tuner the use of the shared

memory [165, 42] and the texture cache [42, 166] have been implemented as param-

eterized optimizations. While the mentioned optimizations apply to a wide range of

applications, there are domain-specific optimizations as well. For example, the halo

36

2.2. Auto-Tuning

size of stencils [98] or the permutation of matrix rows and columns for certain matrix

operations [155].

The second type of parameter is exposed by runtime systems and programming lan-

guages. In OpenCL and CUDA, the dimensions of the index space (NDRange in

OpenCL) of the compute kernel and the size of the work groups have been tuned in

different studies [109, 90, 38, 125, 133, 95, 40, 117]. In CUDA terms these are referred

to as grid and thread block, respectively. Similar runtime parameters are exposed by

other languages as well. For example, Chen et al. tune parameters of the tasking system

of the Chapel language [30]. The OpenACC standard specifies a parameterized tiling

directive and a directive for mapping data to the shared memory [146]. This shows that

optimization and runtime system parameters can overlap.

A third parameter type selects algorithms. Different algorithm might be optimal for

different hardware platforms. And for a given hardware platform, different algorithms

might be optimal depending on the input of a compute kernel. The frameworks Apollo

and Insieme and the DSLs PetaBricks and Sequoia have been developed to manage

different implementations of an algorithm and to select an appropriate implementation

for a given input [52, 7, 14, 84].

A quite different objective of auto-tuning is the creation of optimal algorithms from

building blocks. The goal is not only the selection of an optimal value, but the creation

of a schedule that describes the final algorithm. Spiral creates algorithms for digital

signal transforms where different factorization options for the matrices are explored via

auto-tuning [126]. FFTW combines highly-optimized code fragments called codelets

to generate FFT algorithms with different performance characteristics [57]. Steuwer et

al. use rewrite-rules to replace expressions in a source-to-source compiler by equivalent

expressions with potentially improved performance. Their rewrite-rules mainly target

parallelization, vectorization and cache blocking [138]. The DSL Halide implements a

similar approach for the optimization of image processing kernels [127].

Search spaces

The number of parameters and the value ranges of the individual parameters determine

which search strategies are appropriate for the auto-tuning of an application. In general,

auto-tuning has to deal with parameter spaces that are high-dimensional and contain

a vast number of parameter-value tuples. Similar to the previous section, a distinction

can be made between projects that do classical parameter tuning and approaches that

create a schedule.

37

2. Performance Portability and Auto-Tuning

For optimization parameters, a search space with less than 10 dimensions is common,

as can be seen in Tab. 2.1. Furthermore, parameterized optimizations often only involve

choices between very few valid values. For example, whether a loop is to be parallelized

is a binary choice. Similarly, a parameter that addresses the vectorization width might

consider only powers of two between one and 16—for only five values. Runtime param-

eters and, even more so, algorithm-selection parameters tend to have similarly small

value ranges.

Projects like Spiral, Halide and FFTW that create a schedule imply very different

search spaces. These projects not only parameterize transformations, they select the

type of transformation applied and the order in which transformations are applied as

well. These additional degrees of freedom dramatically increase the size of the parameter

spaces.

Few projects in the literature give a precise estimate of the size of the parameter space.

To give an idea of parameter space size in past and current auto-tuning, we classified

search spaces as large or small. As a criterion we used whether an exhaustive search

seems to be feasible within a reasonable amount of time. That translates to whether

the number of parameter combinations was less than a few thousands or larger. We

are forced to use this rather vague criterion because of differences in the projects, their

search spaces and how the search spaces are documented. As is shown in Tab. 2.1, this

classification mostly mirrors whether the auto-tuning involves the creation of a schedule

or not. However, there are a few outliers.

The OpenTuner project is a general auto-tuner that has been applied to widely differ-

ent applications. This includes the tuning of hundreds of compiler flags and the creation

of schedules for the DSL Halide. The parameter spaces involved have up to 106328 pos-

sible configurations [6]. Ansel et al. state that OpenTuner was specifically designed for

complex search spaces. OpenTuner seems to be unique in being able to deal with vast

search spaces while being domain-independent.

Furthermore, there are three examples demonstrating that large parameter spaces in

classical optimization and runtime tuning scenarios can occur. CLBlast’s GEMM kernel

has at least 14 parameters for millions of possible configurations [109]. Similarly, Datta

et al.’s stencil code generator exposes 10 parameters for another large parameter space.

And finally, Grauer-Gray et al. extend HMPP, a directive-based language for GPUs, so

that it can apply five types of transformations to the loops of a kernel [64]. While the

number of parameters for the individual experiments is not documented, as up to six

loops are considered, it is plausible that the resulting parameter space is large.

38

2.2. Auto-Tuning
P

ro
je

ct
/
A

u
th

o
rs

T
y
p

e
A

p
p

ro
a
ch

T
u

n
in

g
O

b
je

ct
iv

e
O

n
li
n

e
S

ea
rc

h
S

tr
a
te

g
ie

s
M

a
x
.

P
a
r.

S
ea

rc
h

S
.

F
F

T
W

[5
7
]

F
F

T
li
b

ra
ry

so
u

rc
e-

to
-s

o
u

rc
e

sc
h

ed
u

le
7

d
y
n

a
m

ic
p

ro
g
.

h
ig

h
la

rg
e

C
L

B
la

st
[1

0
9
]

B
L

A
S

im
p

l.
d

ir
ec

t
im

p
l.

o
p

ti
m

iz
a
ti

o
n

/
ru

n
ti

m
e

7
ra

n
d

o
m

/
ex

h
a
u

st
iv

e
≥

1
4

la
rg

e
A

T
L

A
S

[1
5
7
]

B
L

A
S

im
p

l.
co

d
e

g
en

er
a
ti

o
n

o
p

ti
m

iz
a
ti

o
n

7
ex

h
a
u

st
iv

e
≥

4
sm

a
ll

A
T

L
A

S
[1

5
8
]

B
L

A
S

im
p

l.
co

d
e

g
en

er
a
ti

o
n

o
p

ti
m

iz
a
ti

o
n

7
ex

h
a
u

st
iv

e
≥

1
3

sm
a
ll

O
S

K
I

[1
5
5
]

S
p

M
V

li
b

ra
ry

d
ir

ec
t

im
p

l.
o
p

ti
m

iz
a
ti

o
n

o
n

li
n

e
N

/
A

N
/
A

N
/
A

K
a
m

il
et

a
l.

[8
7
]

st
en

ci
l

D
S

L
so

u
rc

e-
to

-s
o
u

rc
e

o
p

ti
m

iz
a
ti

o
n

7
ex

h
a
u

st
iv

e
1
2

sm
a
ll

P
A

T
U

S
[3

1
]

st
en

ci
l

D
S

L
so

u
rc

e-
to

-s
o
u

rc
e

o
p

ti
m

iz
a
ti

o
n

7
ex

h
./

g
en

et
ic

/
..

.
li
k
el

y
lo

w
N

/
A

Z
h

a
n

g
et

a
l.

[1
6
6
]

st
en

ci
l

D
S

L
so

u
rc

e-
to

-s
o
u

rc
e

o
p

ti
m

iz
a
ti

o
n

7
ex

h
a
u

st
iv

e
5

sm
a
ll

P
A

R
T

A
N

S
[9

8
]

st
en

ci
l

D
S

L
so

u
rc

e-
to

-s
o
u

rc
e

o
p

ti
m

iz
a
ti

o
n

p
a
rt

ia
ll
y

ex
h

./
h

il
l

cl
im

b
./

b
in

a
ry

4
sm

a
ll

H
a
li
d

e
[1

2
7
]

st
en

ci
l

D
S

L
co

m
p

il
er

o
p

ti
m

iz
a
ti

o
n

/
sc

h
ed

u
le

7
g
en

et
ic

h
ig

h
la

rg
e

S
p

ir
a
l

[1
2
6
]

D
S

P
D

S
L

so
u

rc
e-

to
-s

o
u

rc
e

sc
h

ed
u

le
7

g
en

./
h

il
l

cl
im

b
./

..
.

h
ig

h
la

rg
e

S
eq

u
o
ia

[5
2
]

co
m

p
u

te
D

S
L

so
u

rc
e-

to
-s

o
u

rc
e

a
lg

o
ri

th
m

/
o
p

ti
m

iz
a
ti

o
n

7
m

a
n
u
a
l

N
/
A

N
/
A

P
et

a
B

ri
ck

s
[7

]
co

m
p

u
te

D
S

L
so

u
rc

e-
to

-s
o
u

rc
e

a
lg

o
ri

th
m

/
o
p

ti
m

iz
a
ti

o
n

7
n

-a
ry

/
g
en

et
ic

li
k
el

y
lo

w
sm

a
ll

B
O

A
S

T
[1

5
3
]

co
m

p
u

te
D

S
L

co
d

e
tr

a
n

sf
o
rm

a
ti

o
n

o
p

ti
m

iz
a
ti

o
n

7
ex

h
a
u

st
iv

e
6

sm
a
ll

P
O

E
T

[1
6
3
]

co
m

p
u

te
D

S
L

so
u

rc
e-

to
-s

o
u

rc
e

o
p

ti
m

iz
a
ti

o
n

7
si

m
p

le
x
/
ra

n
d

o
m

5
sm

a
ll

O
p

en
A

R
C

[1
3
4
]

d
ir

ec
ti

v
es

so
u

rc
e-

to
-s

o
u

rc
e

o
p

ti
m

iz
a
ti

o
n

/
ru

n
ti

m
e

7
ex

h
a
u

st
iv

e
≥

8
sm

a
ll

H
M

P
P

[6
4
]

d
ir

ec
ti

v
es

co
d

e
tr

a
n

sf
o
rm

a
ti

o
n

o
p

ti
m

iz
a
ti

o
n

7
ra

n
d

o
m

>
1
0

la
rg

e
A

ct
iv

e
H

a
rm

o
n
y
/
C

H
iL

L
[1

4
9
]

fr
a
m

ew
o
rk

tu
n

a
b

le
a
p

p
li
ca

ti
o
n

d
ev

.
o
p

ti
m

iz
a
ti

o
n

7
si

m
p

le
x

7
sm

a
ll

A
.

H
a
rm

o
n
y
/
C

H
iL

L
/
R

o
se

[1
5
0
]

fr
a
m

ew
o
rk

tu
n

a
b

le
a
p

p
li
ca

ti
o
n

d
ev

.
o
p

ti
m

iz
a
ti

o
n

7
si

m
p

le
x

6
sm

a
ll

A
.

H
a
rm

o
n
y
/
C

H
iL

L
[1

4
8
]

fr
a
m

ew
o
rk

tu
n

a
b

le
a
p

p
li
ca

ti
o
n

d
ev

.
o
p

ti
m

iz
a
ti

o
n

o
n

li
n

e
si

m
p

le
x

6
sm

a
ll

A
ct

iv
e

H
a
rm

o
n
y

[1
4
4
]

fr
a
m

ew
o
rk

p
a
ra

m
et

er
tu

n
in

g
o
p

ti
m

iz
a
ti

o
n

7
ra

n
d

o
m

/
si

m
p

le
x

3
sm

a
ll

O
p

en
T

u
n

er
[6

]
fr

a
m

ew
o
rk

p
a
ra

m
et

er
tu

n
in

g
co

m
p

.
fl

a
g
s/

sc
h

ed
u

le
cl

a
im

ed
en

se
m

b
le

/
g
en

et
ic

/
..

.
h
u

n
d

re
d

s
la

rg
e

B
E

A
S

T
[8

,
9
7
]

fr
a
m

ew
o
rk

p
a
ra

m
et

er
tu

n
in

g
o
p

ti
m

iz
a
ti

o
n

/
ru

n
ti

m
e

7
ex

h
a
u

st
iv

e
1
5

sm
a
ll

P
T

F
[1

2
,

1
0
4
]

fr
a
m

ew
o
rk

p
a
ra

m
et

er
tu

n
in

g
co

m
p

il
er

fl
a
g
s

7
in

d
iv

id
u

a
l

5
sm

a
ll

A
p

o
ll
o

[1
4
]

fr
a
m

ew
o
rk

a
lg

o
ri

th
m

se
le

ct
io

n
a
lg

o
ri

th
m

p
a
rt

ia
ll
y

m
a
ch

in
e

le
a
rn

in
g

2
sm

a
ll

In
si

em
e

[8
4
]

fr
a
m

ew
o
rk

so
u

rc
e-

to
-s

o
u

rc
e

o
p

ti
m

iz
a
ti

o
n

7
g
en

et
ic

3
sm

a
ll

C
H

iL
L

[2
9
]

fr
a
m

ew
o
rk

so
u

rc
e-

to
-s

o
u

rc
e

o
p

ti
m

iz
a
ti

o
n

7
g
re

ed
y

w
.

b
a
ck

tr
a
ck

.
≥

7
sm

a
ll

S
k
eP

U
[3

6
]

fr
a
m

ew
o
rk

p
a
ra

ll
el

is
m

li
b

ra
ry

d
ev

ic
e

se
le

ct
io

n
/
ru

n
ti

m
e

7
g
en

et
ic

5
sm

a
ll

S
te

u
w

er
et

a
l.

[1
3
8
]

st
u

d
y

so
u

rc
e-

to
-s

o
u

rc
e

o
p

ti
m

iz
a
ti

o
n

/
sc

h
ed

u
le

7
ex

h
a
u

st
iv

e
h

ig
h

la
rg

e
D

a
tt

a
et

a
l.

[3
8
]

st
u

d
y

co
d

e
g
en

er
a
ti

o
n

o
p

ti
m

iz
a
ti

o
n

/
ru

n
ti

m
e

7
ex

h
a
u

st
iv

e/
ra

n
d

o
m

>
1
0

la
rg

e
P

ri
ce

et
a
l.

[1
2
5
]

st
u

d
y

co
d

e
g
en

er
a
ti

o
n

o
p

ti
m

iz
a
ti

o
n

/
ru

n
ti

m
e

7
g
en

et
ic

8
N

/
A

K
o
m

a
ts

u
et

a
l.

[9
0
]

st
u

d
y

d
ir

ec
t

im
p

l.
ru

n
ti

m
e

7
ex

h
a
u

st
iv

e
1

sm
a
ll

D
u

et
a
l.

[4
2
]

st
u

d
y

co
d

e
g
en

er
a
ti

o
n

o
p

ti
m

iz
a
ti

o
n

7
ex

h
a
u

st
iv

e
1
0

sm
a
ll

R
u

l
et

a
l.

[1
3
3
]

st
u

d
y

co
d

e
g
en

er
a
ti

o
n

o
p

ti
m

iz
a
ti

o
n

/
ru

n
ti

m
e

7
ex

h
a
u

st
iv

e
3

sm
a
ll

L
i

et
a
l.

[9
5
]

st
u

d
y

co
d

e
g
en

er
a
ti

o
n

o
p

ti
m

iz
a
ti

o
n

/
ru

n
ti

m
e

7
ex

h
a
u

st
iv

e
6

sm
a
ll

S
a
m

u
el

W
il
li
a
m

s
[1

5
9
]

st
u

d
y

co
d

e
g
en

er
a
ti

o
n

o
p

ti
m

iz
a
ti

o
n

7
ex

h
a
u

st
iv

e
8

sm
a
ll

D
o
lb

ea
u

et
a
l.

[4
0
]

st
u

d
y

d
ir

ec
t

im
p

l.
ru

n
ti

m
e

7
ex

h
a
u

st
iv

e
2

sm
a
ll

P
en

n
y
co

o
k

et
a
l.

[1
1
7
]

st
u

d
y

d
ir

ec
t

im
p

l.
o
p

ti
m

iz
a
ti

o
n

/
ru

n
ti

m
e

7
ex

h
a
u

st
iv

e
2

sm
a
ll

Z
h

a
n

g
et

a
l.

[1
6
5
]

st
u

d
y

d
ir

ec
t

im
p

l.
o
p

ti
m

iz
a
ti

o
n

7
ex

h
a
u

st
iv

e
3

sm
a
ll

C
h

en
et

a
l.

[3
0
]

st
u

d
y

p
a
ra

m
et

er
tu

n
in

g
cu

st
o
m

/
ru

n
ti

m
e

7
si

m
p

le
x

3
sm

a
ll

T
a
b

a
ta

b
a
ee

et
a
l.

[1
4
0
]

st
u

d
y

se
a
rc

h
st

ra
te

g
y

a
p

p
li
ca

ti
o
n

sp
ec

ifi
c

7
si

m
p

le
x

v
a
ri

a
n
ts

3
sm

a
ll

P
ri

m
eT

il
e

[6
8
]

lo
o
p

ti
li
n

g
to

o
l

so
u

rc
e-

to
-s

o
u

rc
e

o
p

ti
m

iz
a
ti

o
n

7
ex

h
a
u

st
iv

e
3

sm
a
ll

T
ab

le
2.

1.
:

A
su

m
m

ar
y

of
th

e
d

iff
er

en
t

ap
p

ro
ac

h
es

to
au

to
-t

u
n

in
g

an
d

th
ei

r
m

os
t

im
p

or
ta

n
t

p
ro

p
er

ti
es

.

39

2. Performance Portability and Auto-Tuning

Search strategies

The type of search strategies employed reflects the size of the search spaces. In projects

with smaller search spaces, an exhaustive search strategy is used [133, 42, 40, 117, 98,

31, 134, 165, 38, 68, 18, 87, 95, 138, 159, 8, 165, 125, 90, 158, 157]. Though it might

increase the duration of the auto-tuning, it guarantees the optimal result. This property

makes an exhaustive search attractive where feasible.

Many projects that use exhaustive search combine it with constraints to prune the

search space [38, 87, 138, 159, 8, 157, 165]. This of course accelerates the tuning process,

as an exploration of the whole search space can be avoided. Additionally, pruning the

search space can be necessary to ensure that only valid parameter combinations are

evaluated. Tiwari et al. generalize the constraint-limited search approach by introducing

a DSL to model constraints [148]. In addition to constraints, there are other approaches

to pruning the search space. Hardware information can be used to rule out certain

parameter values, thereby reducing the value set of individual parameters. Similarly,

if highly different platforms are targeted, e.g., GPUs and processors, there are often

parameters that only apply to a certain platform type (cf. Datta et al. [38] or Kamil et

al [87]). Another strategy is the reduction of the dimensionality of the search space by

tuning parameters in a specific order or in disjoint subsets. These two approaches have

been employed to generate plausible initial parameter, before the whole search space is

considered. By using these techniques, and noticing again that the value ranges of the

parameters are often small, exhaustive search can be successfully applied to moderately-

sized parameter spaces.

Other search strategies are needed for larger search spaces. A simple, yet popular

search strategy is Monte Carlo search or random search [109, 64, 144]. While unlikely to

find a global optimum in a vast parameter space, this search approach at least guarantees

that the search does not get stuck in a local optimum. The Active Harmony group

uses variants of Nelder-Mead simplex search [144, 31, 149]. They developed a parallel

variant of the simplex search algorithm called parallel rank-ordering (PRO) [150, 148].

Another type of search strategy often used in the literature are genetic or evolutionary

search strategies [7, 31, 127, 125]. Further strategies used are n-ary search [98, 7], hill

climbing [98] and line search (Powell search) [31]. Individual search is employed by

Bajrovic et al. and can be considered a variant of line search [12].

These search strategies do not have to be used on their own. CLBlast uses random

search to generate a set of likely high-performance parameter combinations. For these

candidates, a localized exhaustive search is performed [109]. OpenTuner uses a search

40

2.2. Auto-Tuning

strategy they call ensemble search. Ensemble search is a meta-search approach where

multiple search strategies run in parallel. Search strategies with promising results get

more time allocated [6].

CLBlast is one of few applications that can avoid search entirely. This project main-

tains a database of parameter values for numerous hardware platforms. This database

can be downloaded and, if results for the current hardware platform are available, tuned

parameter values are available immediately [109]. Another approach for avoiding search

is implemented by the auto-tuner Apollo. It uses machine learning techniques to train

a model in an offline phase and then query the trained model at runtime [14].

Online vs. Offline Auto-Tuning

Auto-tuning approaches can be classified as online or offline. Online auto-tuning takes

place during the runtime of the application, whereas offline auto-tuning implies that

separate runs of the application are performed. Through online auto-tuning, perfor-

mance can sometimes be improved beyond what is possible with offline approaches, as

it enables adapting to input characteristics that are only known at runtime.

The principle requirement for online auto-tuning to be useful is the minimization of

the overhead incurred on the application runtime. As for auto-tuning in general, its

usefulness depends on whether the costs of tuning can be amortized by the improved

performance enabled by auto-tuning. Furthermore, many auto-tuners are implemented

as separate applications that execute the tuned application with varied parameter values.

OpenTuner and the Periscope Tuning Framework both implement this approach [6, 104].

Other frameworks like BEAST [8, 97] might implement such an approach, because they

use a different programming language for the auto-tuner and the tuned application, but

the literature does not document it clearly. For online auto-tuning, it is advantageous

to integrate the auto-tuner with the application. Thereby, the overhead introduced by

restarting the application can be avoided. This overhead can be significant, for example

if a checkpoint file or a large dataset needs to be read from disk.

A Tab. 2.1 shows, most auto-tuning approaches in the literature can be classified as

offline approaches . Only four projects have at least some online auto-tuning capabilities.

Tiwari et al. showed that the auto-tuner Active Harmony can be combined with the

code transformation framework CHiLL [29] for an online approach [148]. They designed

a DSL for specifying constraints on parameters and implemented a JIT compilation

approach to enable online search. The approach itself is language agnostic. However, it

relies on two DSLs: the DSL to model the constraints and CHiLL’s DSL for specifying

41

2. Performance Portability and Auto-Tuning

code transformations.

The sparse matrix-vector library OSKI has online auto-tuning capabilities [155]. OSKI

adjusts parameters every time an OSKI function is called until the end of the tuning

phase is reached. They argue that such an approach is necessary to adapt to the input

which is only known at runtime.

Two of the auto-tuners investigated use a mixed approach that includes an online

and an offline phase. As stated above, the auto-tuner Apollo uses machine learning to

learn the performance characteristics of the search space. This happens in an offline

phase. Then, at runtime, it uses the model to select a high-performance algorithm

depending on input characteristics [14]. The stencil DSL PARTANS tunes the number

and types of GPUs and how work is mapped to the GPUs in an offline phase. Then,

during runtime, the halo size of the stencils is varied [98]. Thus, it splits the parameter

space into parameters that are tuned offline and a parameter tuned online. OpenTuner is

advertised as an online auto-tuning framework [6]. However, in their published literature

they provide no evaluation of this feature.

42

3. Modern Hardware Platforms

A wide range of different hardware architectures have been used to build supercomputers

and high-performance workstations. In the late nineties, x86 processors were adopted

more and more widely. Today, x86 processors are the prevailing processor architecture

in HPC, data centers and high-performance workstations. To be competitive, these pro-

cessors have adopted multi-core architectures, added large vector units and generally

saw multiple extensions of their instruction sets. However, especially in HPC and ma-

chine learning graphics cards and other accelerators have come more and more to the

forefront.

In this chapter, we describe the most important technical aspects of modern processors

and graphics cards. To that end, we first consider the global trends over the last two

decades. Then, we focus on an Intel Skylake-SP processor as an example for a modern

processor and Nvidia’s P100 graphics card that represents a modern GPU. Both these

devices and closely-related models are widely used in HPC. Finally, we summarize the

hardware platforms that were used in the experiments conducted for this thesis.

3.1. Trends in Hardware

The performance of processors and similar computing architectures has improved over

time. To more-deeply investigate how performance developed over the two last decades,

we show trends for some performance-related metrics of compute devices in Fig. 3.1.

To that end, we compiled publicly-available product information for a wide range of

hardware architectures. Our database includes most processors of Intel’s Xeon series,

Intel’s Xeon Phi series as well as AMD’s Opteron and Epyc product lines. As GPUs have

become more and more relevant for computationally- and memory-intensive tasks, we

further added most GPUs of Nvidia’s Tesla as well as AMD’s FirePro and Vega series.

Our dataset covers hardware released between 1998 and 2017. Especially for the older

devices, documentation is sparse and minor errors are difficult to rule out. However, the

overall trends are clear and consistent.

43

3. Modern Hardware Platforms

2000 2004 2008 2012 2016

Release Date

100

101

102

103

104

G
F

L
O

P
S

Peak GFLOPS (Single Precision)

part released

trend (exp.)

2000 2004 2008 2012 2016

Release Date

100

101

102

103

104

G
F

L
O

P
S

Peak GFLOPS (Double Precision)

part released

trend (exp.)

2000 2004 2008 2012 2016

Release Date

100

101

102

103

G
B

s−
1

Memory Bandwidth

part released

trend (exp.)

2000 2004 2008 2012 2016

Release Date

10−1

100

B
y
te

s/
F

L
O

P

Machine Balance (Single Precision)

part released

trend (exp.)

2000 2004 2008 2012 2016

Release Date

103G
H

z

Frequency

part released

trend (exp.)

2000 2004 2008 2012 2016

Release Date

100

101

C
or

es

Number of Cores

part released

trend (exp.)

Figure 3.1.: Development of different hardware parameters over time (1998–2017). The
data used encompasses Intel Xeon, Intel Xeon Phi, AMD Opteron and AMD
Epyc processors. It further includes data on Nvidia Tesla, AMD FirePro and
AMD Vega graphics cards. While some data points are missing, most pro-
cessors and graphics processors of these series are included. There is some
uncertainty about the older processors, as documentation of these prod-
ucts is no longer fully available. The data is based on public manufacturer
product information.

44

3.1. Trends in Hardware

A major focus of this work is performance of scientific computing. In this area, two

important characteristics are peak floating-point performance and peak memory band-

width. Both clearly improved exponentially over time. The highest-performance device

in this survey is the Nvidia Tesla V100 GPU, which achieves a peak single-precision per-

formance of 15 TFLOPS. For comparison, the highest-performance standard processor

in this survey, the Intel Xeon Platinum 8180, achieves 4.1 TFLOPS. The more special-

ized Intel Xeon Phi processors, which were designed for HPC, achieve up to 6.9 TFLOPS.

Generally, GPUs are approximately three to five years ahead in their floating-point per-

formance compared to standard processors. Similarly, GPUs have offered significantly

higher memory bandwidths since they have become available for general computations.

By dividing peak performance by the memory bandwidth, we can compute the ma-

chine balance of the devices. The machine balance is a useful metric for two reasons.

First, if an algorithm does less floating-point operations per byte read from memory

(writes could also be considered), peak performance is no longer achievable. Instead,

performance is limited to a fraction of the peak performance. A commonly-used tool

to estimate the achievable performance is the roofline model [160]. Second, it is often

possible to rewrite algorithms so that they require less memory reads. A widely-used

technique for this purpose is cache blocking. On machines with worse machine bal-

ance, such techniques are of greater importance. As Fig. 3.1 shows, over time machine

balance got exponentially worse. A modern high-performance Xeon Platinum 8180 pro-

cessor has a machine balance of 0.029 F/B. That is, an algorithm needs to perform 35

single-precision floating-point operations for every byte read from memory. A conclusion

drawn from this observation is that cache-efficient algorithms are becoming ever more

important. However, as cache-efficient algorithm do not exist for all relevant problems,

it has generally become more difficult to achieve peak performance.

The development of processor clock speed and the number of cores show two important

further trends. While clock frequency improved exponentially until about 2003, there

have been only minor improvements since then. Though there are still data points that

suggest small improvements in frequency, these higher frequencies are generally achieved

by parts that employ fewer cores and overall offer less floating-point performance. Re-

markably, GPUs achieved far lower frequencies than processors for a long time. However,

their frequencies increased throughout the last years to slightly below 2 GHz, whereas

the clocks of the highest-performance processors decreased to frequencies slightly above

2 GHz. For example, the Xeon Platinum 8180 has a rated turbo frequency of 2.3 GHz

under heavy (AVX512) floating-point load. Its base frequency under the same condi-

45

3. Modern Hardware Platforms

tions is only 1.7 GHz. These frequencies are only relevant for programs that make heavy

use of SIMD instructions. If a program only uses scalar instructions and only stresses

a single core, this processor can increase the frequency of the utilized core to 3.8 GHz.

Dynamic frequency adjustments according to load, power dissipation and temperature

introduce further challenges for writing efficient software, modeling the performance of

algorithm and accurately measuring performance.

While performance increased, the clocks roughly remained the same. This, of course,

requires an explanation. In the last paragraph, we alluded to one major factor: the

number of cores increased from a single core to up to 28 cores on processor platforms.

The more specialized many-core Xeon Phis implement up to 72 cores. Architecturally,

GPUs can be considered many-core processors as well, though they are programmed

through different programming models. For instance, the Tesla V100 GPU consists of

80 cores called shader multiprocessors [111].

The implementation of increasingly wider vector units is a second major factor that

explains why performance increased. For discussing the development of SIMD capa-

bilities, we focus on a single processor core. Earlier processors in this survey had no

SIMD capabilities and achieved 1 F/cycle. Intel’s SSE extensions introduced 2-wide

vectors, though earlier implementations did not implement the full vector size in hard-

ware. The Intel Core 2 processor already achieved 8 FLOPS/cycle doing single-precision

floating-point calculations. In 2011, Intel introduced AVX which improved performance

to 16 FLOPS/cycle. Vector performance was again doubled to 32 FLOPS/cycle in 2013

when FMA instructions where added. Note that FMA instructions are commonly

counted as two floating-point operations with the multiplication and the addition being

counted separately. Vector capabilities were again improved to 64 FLOPS/cycle with

the introduction of Skylake-SP in 2017.

GPU shader multiprocessors implement similar SIMD capabilities, though their vec-

tor units are even wider. For example, Nvidia GPUs have two 32-wide vector units

per shader multiprocessor. When FMA operations are scheduled, this translates to

128 FLOPS/cycle. Compared to a decade ago, processors have nearly caught up to

GPUs with respect to their SIMD capabilities. However, as processors strongly reduce

their frequencies when fully using their vector units and as they still implement fewer

SIMD-enabled cores, there is still a major difference in performance.

Both an increased number of cores and improved SIMD capabilities pose further chal-

lenges to developers of algorithms for high-performance hardware. To achieve a signif-

icant fraction of the peak performance of a device, it has become critical to develop

46

3.2. The Intel Skylake Architecture

parallel and vectorized algorithms. The increasing number of cores has introduced the

node-level scalability of an algorithm as a serious issue. This is especially the case

for heterogeneous nodes that combine one or two processors with often multiple GPUs.

Furthermore, SIMD-level parallelization is more limited than thread-level parallelization.

Threads can execute different instruction stream. Using masking techniques, individ-

ual components of a SIMD vector can execute divergent code paths as well. However,

masking generally leads to serial execution of the different code paths and therefore a

reduction in performance. GPUs implement a form of automatic masking that allows

developers to write scalar codes that are guaranteed to be vectorized. However, if mask-

ing is employed performance is still affected, a phenomenon known as warp divergence

on Nvidia GPUs. On x86 processors, the AVX512 instruction set added hardware sup-

port for masking so that programming languages and frameworks can be designed that

simplify the development of efficiently-vectorized code even for very wide vector units.

3.2. The Intel Skylake Architecture

The Intel Xeon Platinum 8180 is a 28-core x86 processor. It is one of the highest-

performance models of the Skylake-SP series and uses the Skylake microarchitecture.

This processor has 6 memory controllers that can support DDR4 clocked at up to

2666MHz, leading to a theoretical maximum memory bandwidth of 125GB/s. The

cores are interconnected by a mesh, compared to one or multiple ring buses that were

used in prior generations of Intel processors. This approach incurs a somewhat higher

latency if further away cores are accessed compared to the ring approach. Next to each

core resides a slice of the L3 cache with a size of 1.375MB [93].

On the core level, the Intel Skylake-SP processor has a L1 data cache with a size

of 32kB, the L1 code cache has the same size. The L1 data cache can be accessed

with a latency of 4 cycles. The size of the L2 cache was increased to 1MB, which is

a major change, as the L2 cache had a size of 256kB since the introduction of the Ne-

halem microarchitecture in 2008. With Skylake-SP, Intel introduced a new set of vector

instructions called AVX512. AVX512 extends the vector registers and vector instruc-

tions from 256 bit to 512 bit. This translated to a doubling of the vector performance

of the high-end models compared to the Broadwell generation. However, the lower-end

Skylake-SP models only have a single FMA unit. Because of this and because prior gen-

erations offered two FMA units, some Skylake-SP processors only achieve the same peak

floating-point performance as their AVX2-implementing predecessors. As is common for

47

3. Modern Hardware Platforms

x86 processors, the prior vector instruction sets MMX, SSE, AVX and AVX2 are still

supported, though for optimal performance AVX512 has to be used (except for models

with one FMA unit) [93].

To achieve maximum floating-point instruction throughput on a Skylake-SP processor

with two FMA units, both FMA units needs to kept busy by filling the two floating-

point pipelines with a new floating-point instruction every cycle. At an AVX512 boost

frequency of 2.3 GHz, the Xeon Platinum 8180 achieves a peak single-precision peak

performance of 4.2 TFLOPS – and 2.1 TFLOPS for double precision.

On a Skylake-SP processor the instruction latency for addition, multiplication and

FMA is 4 cycles. Assuming a model with two FMA units such as the Platinum 8180,

8 independent floating-point operations need to be in-flight for maximum throughput.

Because of the number of in-flight micro-operations required, any code that attempts

to achieve a large fraction of the peak performance needs to provide a high degree of

instruction-level parallelism that can be leveraged by the hardware. While most codes

exhibit some instruction-level parallelism, a full saturation of the floating-point vector

pipelines usually needs significant optimization effort.

A processor implementing this architecture can load 2x64B per cycle, two cache lines,

from the L1 cache and store up to 64B. This enables a streaming of one or two instruction

operands from the L1 cache alleviating the pressure on the register file, which has 32

512 bit registers [54, 93].

As described in Sec. 3.1, cache blocking is a critical optimization due to the machine

balance of modern hardware platforms. However, the memory poses further challenges.

For example, outside the register level, data movement happens at cache line granularity.

A Skylake-SP processor has a cache line size of 64 B. An implication of doing memory

transactions at the size of cache lines is that scalar accesses that are not accompanied by

further scalar accesses to the same cache lines are very expensive. To access a single 8 B

variable, 64 B have to be moved, in this case up to 56 B or 7
8
≈ 88% of the bandwidth can

be wasted. Therefore, for optimal throughput the data of accessed cache lines should be

fully utilized by the program. This also explains why gather-scatter patterns on modern

processors and GPUs are often very expensive1.

A related issue is the necessity of efficient prefetching. As the memory latency on

a modern hardware platform can be hundreds of cycles, a large fraction of pipeline

slots might remain empty if memory is not properly prefetched. This precludes any

memory efficiency for algorithms that randomly access memory, as such accesses cannot

1With the exception of accessing only data from few memory streams.

48

3.3. The Nvidia Pascal Architecture

be prefetched by definition. To combine cache-line utilization with efficient prefetching,

recommended access patterns are unit-stride accesses, which generally are optimal, or

strided accesses with fixed, predictable strides.

The hardware features discussed are often performance-critical for HPC applications.

Of course, this brief outline is in no way complete. Unfortunately, whether a feature is

critical for high performance strongly depends on the application. As modern hardware is

complex, we cannot exhaustively cover the many aspects of modern hardware platforms

that can become relevant.

3.3. The Nvidia Pascal Architecture

At the time of writing, the Nvidia Tesla P100 GPU was one of Nvidia’s strongest GPUs

for scientific computing. Only the slightly faster and otherwise similar Tesla V100 offered

higher performance for scientific workloads that make use of double-precision arithmetic.

The architectural details described in the following make use of documentation made

available by Nvidia [110, 111].

The Tesla P100 implements Nvidia’s Pascal architecture and became available in 2016.

This GPU consists of 56 shader multiprocessors. As mentioned, each shader multipro-

cessor roughly correspond to a core of a standard processor. It can execute instructions

independently of other shader multiprocessors and consists of execution resources such

as ALUs, a register file and caches.

The P100 GPU uses eight HBM2 memory controllers to access four HBM2 stacks

with 4 GB each for a total of 16 GB of memory. In total, the eight memory controllers

have a 4096 bit-wide access path to the HBM2 memory. Due to the very wide memory

interface, the peak memory bandwidth of the device is 732 GB/s.

Each shader multiprocessor of a Pascal GPU has 64 so-called CUDA cores. While

they process scalar threads from a programmer’s point of view thanks to the CUDA

programming model, the hardware actually executes 32-wide floating-point vector in-

structions. This explains why a shader multiprocessor can be viewed as a SIMD core

with two 32-wide floating-point vector units. A shader multiprocessor additionally has 8

load-store units to transfer data from and to the register file and 8 special function units

that are used to calculate less common instructions such as transcendental functions.

GPUs are often specified by their overall number of CUDA cores, computed by mul-

tiplying the number of shader multiprocessors with the SIMD-width per shader multi-

processors. Counted with this approach, the P100 GPU employs 3584 CUDA cores. At

49

3. Modern Hardware Platforms

a frequency of 1.3 GHz and one FMA operation performed every cycle by each CUDA

core, this results in a peak single-precision performance of 9.5 TFLOPS. As the P100

can do double-precision arithmetic at half the rate of single-precision instructions, its

peak double-precision performance is 4.8 TFLOPS.

The P100 GPU groups 32 threads into a warp which resides on a single shader mul-

tiprocessor. Instructions are executed on the warp-level with a paradigm that is called

Single-Instruction-Multiple-Threads (SIMT) by Nvidia. The SIMT paradigm extends

the SIMD approach by permitting every vector element to behave as if it had an in-

dividual program counter. This greatly simplifies vectorization, as it makes it possible

for an individual thread (i.e. vector element) to execute an individual instruction, as

if it were an actual scalar thread. The hardware implements this so that threads exe-

cute instructions jointly by default. If a branch instruction is encountered and different

threads take different paths, the execution of the branches is serialized. The threads

of the diverged warp now make progress at a slower rate, as masking is used to apply

the now diverged instruction stream only to the appropriate elements. An important

benefit of this approach is that a program is parallelized and vectorized at the same

time. Thus, vectorization as an additional implementation step is not required on the

P100 and other GPUs.

A major difference between CPU and GPU designs is the register file. While processors

generally only expose few registers in their ISA, each shader multiprocessor on the P100

has 65536 32 bit registers. For the representation of double-precision values, two registers

are used. Generally, GPUs implement smaller caches compared to competing processors.

The P100 only has a 24 kB L1 cache, and the L2 cache, which acts as the last-level cache

for the whole chip, only has a size of 4 MB. However, there is an additional 64 kB shared

memory attached to each shader multiprocessor. The shared memory acts as a user-

controlled cache and is generally used to share data between groups of threads residing

on a shader multiprocessor. Such a group of cooperating threads is called a thread block

in CUDA terminology.

Despite the higher memory bandwidth compared to processors, algorithms with excel-

lent data locality are critical, as peak performance requires 13 floating-point operations

performed for every byte read from or written to memory. Apart from reusing data

stored in the per-thread registers, the shared memory is critical for improving data lo-

cality. We remark that modern GPUs use DRAM as main memory that is similar, in

some cases even identical, to that used by processors. All considerations related to cache-

line utilization and efficient memory access patterns, as described in Sec. 3.2, apply to

50

3.4. Hardware Platforms Overview

GPUs as well.

GPUs execute many threads simultaneously. The Tesla P100 supports up to 2048

threads per shader multiprocessor and therefore up to 114688 threads overall. On a

shader multiprocessor, the high number of threads relative to the 64 CUDA cores are

used to hide memory and instruction latencies. This approach is made possible by zero-

latency switching between warps, which in turn is enabled by statically allocating the

resources of threads such as the register space and part of the shared memory. This

approach strongly contrasts to CPUs, where low instruction latencies and low-latency

caches are used to address the same issues and context switches between threads (beyond

SMT) are expensive.

The number of threads needed on a shader multiprocessor to hide all relevant latencies

varies with the algorithm used. Generally, it is disadvantageous to use more threads than

needed, as this limits the number of registers available per thread. Apart from using

threading to hide latency, instruction-level parallelism can also be used [154]. The P100

warp scheduler can schedule up to 2 instructions to a warp in a single clock cycle.

Work on GPUs is scheduled in form of thread blocks which have a configurable size.

As the work is internally executed by warps, the thread block size should be a multiple

of the warp size. All warps of a thread block reside on the same shader multiprocessor.

Within a thread block, synchronization is possible as well as sharing data through the

shared memory. Synchronization between thread blocks is possible through a feature

called cooperative groups, but requires additional effort by the developer. Compared

to processors, the limited synchronization capabilities can be significant challenge for

adapting codes for GPUs.

3.4. Hardware Platforms Overview

In this work, we use 11 different devices: five GPUs and six processors. The charac-

teristics of these devices are summarized in Tab. 3.1. These devices implement a wide

range of hardware architectures and therefore are a challenging target for studying per-

formance portability. Most devices in our selection were considered high-performance

devices when they were released. The sole exception is the AMD A10-7850K, which is

a low-cost desktop processor. As this selection spans multiple generations of compute

hardware, there are of course major differences in performance.

The GPU devices encompass two different hardware architectures. Both AMD devices

are based on the GCN architecture, though the Vega VII uses a modernized variant of

51

3. Modern Hardware Platforms

D
ev

ice
C

ores/
S

h
ad

ers
F

req
u

en
cy

P
eak

(S
P

)
M

em
.

B
an

d
w

.
M

ach
in

e
B

alan
ce

D
P

ratio

G
rap

h
ics

P
ro

cessors
N

v
id

ia
T

esla
P

100
3584

1.3
G

H
z,

b
o
ost

9.5
T

F
732

G
B
/s

13.0
F
/B

1/2
N

v
id

ia
Q

u
ad

ro
G

P
100

3584
1.5

G
H

z,
b

o
ost

11.2
T

F
732

G
B
/s

15.2
F
/B

1/2
A

M
D

V
ega

V
II

3840
1.75

G
H

z,
b

o
ost

13.4
T

F
1024

G
B
/s

13.1
F
/B

1/4
N

v
id

ia
G

T
X

1080
T

i
3584

1.8
G

H
z,

b
o
ost

12.9
T

F
484

G
B
/s

27
F
/B

1/32
A

M
D

F
ireP

ro
W

8100
2560

0.8
G

H
z,

m
ax

4.2
T

F
320

G
B
/s

13.2
F
/B

1/2
P

ro
cessors

A
M

D
E

p
y
c

7551P
32

2.5
G

H
z,

tu
rb

o
1.3

T
F

170
G

B
/s

7.5
F
/B

1/2
A

M
D

A
10-7850K

4
3.7

G
H

z
0.1

T
F

34
G

B
/s

3.5
F
/B

1/2
In

tel
2x

X
eon

E
5-2670

16
3.0

G
H

z,
A

V
X

tu
rb

o
0.8

T
F

102
G

B
/s

7.5
F
/B

1/2
In

tel
2x

X
eon

E
5-2680v

3
24

2.8
G

H
z,

A
V

X
tu

rb
o

2.2
T

F
137

G
B
/s

15.7
F
/B

1/2

In
tel

2x
X

eon
G

old
5120

28
1.6

G
H

z,
A

V
X

512
tu

rb
o

2.2
G

H
z,

A
V

X
2

tu
rb

o
1.4

T
F

2.0
T

F
230

G
B
/s

8.6
F
/B

6.2
F
/B

1/2

In
tel

X
eon

P
h

i
7210

64
1.5

G
H

z,
A

V
X

512
tu

rb
o

6.1
T

F
≥

400
G

B
/s

15
F
/B

1/2

T
ab

le
3.1.:

A
su

m
m

ary
of

th
e

p
erform

an
ce

ch
aracteristic

of
all

n
o
d

e-level
h
ard

w
are

p
latform

s
u

sed
in

th
is

w
ork

.
N

ote
th

at
all

p
latform

s
vary

th
eir

freq
u

en
cy

accord
in

g
p

ow
er,

tem
p

eratu
re

an
d

w
ork

load
.

F
loatin

g-p
oin

t
p

erform
an

ce
is

given
in

sin
gle-p

recision
T

F
L

O
P

S
.

52

3.4. Hardware Platforms Overview

it. The FirePro W8100 is five years older than the Vega VII, which explains its lower

performance. All three Nvidia GPUs implement the Pascal architecture. Apart from a

minor difference in frequency, the Tesla P100 and the Quadro GP100 are identical. A

P100 is built into each node of Piz Daint, one of the supercomputers used for this work.

As a consumer-grade Pascal GPU, the GTX 1080 Ti has a lower memory bandwidth

and double-precision arithmetic is practically disabled. Still, it offers higher single-

precision floating-point performance compared to the P100. We investigate multi-GPU

performance on a node with eight GTX 1080 Ti GPUs.

The AMD Epyc 7551P processor implements the Zen architecture which is a major

redesign compared to its Bulldozer-derived predecessors. We included one Bulldozer

derivate in our survey in form of the A10-7850K.

Each Intel device implements as different microarchitecture. The Xeon E5-2670 is

part of Intel’s Sandy Bridge generation, whereas the Xeon E5-2680v3 is a Haswell part.

We provide results for another supercomputer, Hazel Hen, which uses the E5-2680v3

processor in its nodes. The Xeon Gold 5120 is part of Intel’s more modern Skylake-SP

generation. All three Xeon processors, but not the Xeon Phi, are used in dual-socket

configurations in all experiments.

Finally, the Xeon Phi 7210 is a many-core processor that implements the Knights

Landing architecture. While the three Xeon processors employ related architectures,

the Xeon Phi has an entirely different foundation. Its cores are based on Intel’s low-

power low-performance Atom line-up and use an extended variant of the Silvermont

architecture. The most important difference compared to these low-performance parts

is the addition of two 512 bit vector units per core [82]. However, if instructions other

than vectorized floating-point instructions are executed, the (scalar) performance of the

Xeon Phi processor is much lower compared to all other processors in this collection.

Because of this and because it has the highest number of cores, this architecture is

particularly difficult to optimize for.

53

Part II.

AutoTuneTMP

55

In the following two chapters, we introduce the auto-tuning framework AutoTuneTMP

and the first auto-tuned application. In Chapter 4, we present the basic optimization

loop of AutoTuneTMP and two types of auto-tuned compute kernels: the CPPJIT and

the generalized kernel type. For the introduction of AutoTuneTMP, we consider only

minimal examples, as these are most helpful for illustrating the API.

To demonstrate the applicability and usefulness of AutoTuneTMP in general and the

CPPJIT kernel type in particular, we consider matrix multiplication as a challenging ap-

plication in Chapter 5. Due to the large, higher-dimensional search space, we further use

this application to compare the different search strategies provided by AutoTuneTMP.

Two additional auto-tuned kernels that make use of the CPPJIT kernel type are

presented in the appendix. In Sec. A.2, we describe and evaluate an auto-tuned variant

of the triad routine which is part of the STREAM benchmark [101]. Furthermore, we

present the sparse grid streaming algorithm in Sec. 7.1. An auto-tuned variant of this

algorithm that uses the CPPJIT kernel type can be found in Sec. B.4.

Published Work

The following chapters extend the paper “AutoTuneTMP: Auto-Tuning in C++ With

Runtime Template Metaprogramming” written by the author of this thesis [118].

57

4. AutoTuneTMP: Leveraging C++

for Performance and Productivity

AutoTuneTMP is an auto-tuning framework written in C++ as a header-only library.

The foremost goal of AutoTuneTMP is the auto-tuning of compute kernels in order to

maximize performance on a given hardware platform and for given input data. It is a

general auto-tuning framework in that it is not tied to a specific application or domain.

Like many of the approaches presented in Sec. 2.2, AutoTuneTMP uses parameter

tuning where a set of parameter values represents a variant of a compute kernel. A

major difference to most other approaches is the use of JIT compilation to create compute

kernel variants at runtimes. JIT compilation is key for reducing the time required for

tuning in offline settings and for enabling online auto-tuning. Our framework improves

on the state-of-the-art by introducing an approach that requires little changes to the

application to be tuned and that can also be retrofitted to existing applications with

only local changes. This is enabled by the use of C++ template metaprogramming, hence

the name of the framework.

The architecture of AutoTuneTMP is shown in Fig. 4.1. The search strategies and the

parameters together enable general parameter tuning. Search strategies are implemented

against sets of parameters with shared properties. Parameter sets store arbitrarily-typed

parameters compatible with the shared parameter interface of a parameter set. A search

strategy explores the search space spanned by a parameter set and returns the highest-

performance parameter value combination it encountered.

AutoTuneTMP currently supports two different kernel types, which are different ap-

proaches for integrating auto-tuning into an application. The CPPJIT kernel type uses

JIT-compiled C++ and was designed to work with a collection of optimization templates.

The optimization template collection facilitates the development of auto-tunable com-

pute kernels, as parameters that are exposed by the templates can be tuned by the

parameter tuners. We call the second type of compute kernel the generalized com-

pute kernel type. For this kernel type, AutoTuneTMP acts as a parameter tuner and

59

4. AutoTuneTMP: Leveraging C++ for Performance and Productivity

AutoTuneTMP

Search Parameters

Kernel Types

CPPJIT Generalized

Basic,
Parallel,
Group

Par. Types,
Set-Types

Optimization
Templates

OpenCL
Support

Parameter Tuning

Figure 4.1.: The architecture of AutoTuneTMP. AutoTuneTMP implements two types
of compute kernels and the functionality needed for the parameter tuning
of these compute kernel types.

the details of the kernel need to be handled through a different framework. We use

the generalized kernel type to auto-tune OpenCL kernels. For auto-tuning OpenCL

kernels, AutoTuneTMP provides classes and functions that support the integration of

AutoTuneTMP.

In the following, we first introduce the optimization loop that AutoTuneTMP im-

plements and justify our runtime code generation approach in more detail. Then, we

present the CPPJIT kernel type and a first example for applying AutoTuneTMP to a

matrix-vector multiplication compute kernel. Afterwards, we describe the generalized

kernel type and our approach for supporting OpenCL compute kernels. Having de-

scribed both kernel types, we look closer at the search strategies and parameter types.

Finally, we describe how we assess the contribution of auto-tuning to the performance

of a compute kernel by defining a challenging baseline.

4.1. The AutoTuneTMP Optimization Process

AutoTuneTMP implements an optimization approach that requires four input param-

eters for a three-step optimization process. This process is displayed in Fig. 4.2 and

constitutes a loop between three components: the tuner, the JIT compiler and the eval-

uation component. The inputs to the optimization process are the compute kernel,

the description of the parameters, a search strategy and input data for the compute

kernel. As the object of tuning, the compute kernel is a parameterized JIT-compiled

function. The search space is spanned implicitly by the description of the parameters,

60

4.1. The AutoTuneTMP Optimization Process

Tuner

JIT Compilation Evaluate

validate para.

para. candidate

compiled kernel

adjust para. test result

return value

and perf.

repeat or finish

kernel input

kernel

parameter desc.

strategy

cached?
Yes

No

Figure 4.2.: The approach to auto-tuning that AutoTuneTMP implements. Central to
the approach is the optimization loop that is controlled by the tuner compo-
nent. After JIT compilation a parameter value combination gets evaluated.
A cache prevents the tuner from repeatedly evaluating the same parame-
ter combinations, as evaluations can be costly. Optional functors can be
registered to more finely control the auto-tuning process (green boxes).

for which AutoTuneTMP provides parameter types. The search strategies, or tuners,

of our framework enable an exploration of the search space. As AutoTuneTMP was

designed for extensibility, the use of custom search strategies and parameter types is

possible as well.

Whenever an auto-tuned compute kernel gets called, it is used just like a standard

C++ function. Therefore, unless it has an empty argument list, input data is required

to call the kernel. As the compute kernel gets called repeatedly during tuning, some

important restrictions apply. Kernels that accept arguments by-reference should not

modify the input data. Alternatively, if the kernel implements pass-by-value semantics,

it can modify the input data, but the input data needs to be copyable. Compute kernels

should generally avoid side effects.

As the next step, we describe an iteration of the optimization loop, starting at the

tuner component. The configured search strategy that the tuner component manages

chooses the next set of parameter values to consider. These parameter values are then

applied to the compute kernel and the compute kernel gets JIT-compiled. Then, the

compute kernel gets called with the supplied kernel input data and the performance of

the current kernel variant is measured. Based on the internal state of the search strategy,

61

4. AutoTuneTMP: Leveraging C++ for Performance and Productivity

it either selects the next set of parameter values or finishes the tuning process returning

the best parameter combination encountered during tuning.

Some search strategies might attempt to evaluate the same set of parameter values

more than once. As a kernel call can be expensive, a cache component stores the

measured performance of prior evaluations. These prior evaluation results are returned

in case of a cache hit. Thereby, the implementation of search strategies is simplified, as

duplicate evaluations are cheap.

AutoTuneTMP allows for functors to be registered that can be used to further cus-

tomize the auto-tuning process, these functors are optional (green boxes in Fig. 4.2).

Generally, the search space is obtained by computing the cross product of the value

ranges of the parameters. Often, parameter value combinations imply kernels that would

return incorrect results or not even compile successfully. However, it can be challenging

to span parameters spaces that only contain valid parameter value combinations. For

these cases, it can be convenient to adjust the parameter values before evaluation, so

that they are as close as possible to the original parameter values and valid. By set-

ting up an adjust-parameters functor, this adjustment can be implemented. How the

best-fitting valid parameter values for given invalid parameter values are to be chosen,

of course, depends on the application. We use this approach in most of the auto-tuned

compute kernels throughout this thesis, e.g., in Sec. 7.2.

In other cases, it is more convenient to span a parameter value space with invalid

parameter value sets, but skip invalid parameter combinations whenever they are en-

countered. The validate-parameters functor receives the candidate parameter values as

its input and returns a Boolean that indicates whether the candidate values should be

skipped. If the parameter values are discarded, control is handed back to the tuner com-

ponent. This approach was chosen for the auto-tuned unified streaming compute kernel

that is presented in Sec. 7.1.1. It has two parameters for which a lesser-than relation

gets tested through the validate-parameters functor.

The search space of a parameterized compute kernel can be vast. Because of this, it is

difficult to guarantee that all compute kernels with valid parameter values do actually

compute a correct result. The issue of guaranteeing correctness can be addressed, or

at least mitigated, by specifying a test-result functor. This functor gets called with

the result of a compute kernel call after the compute kernel was evaluated and can

test whether the computed result is in fact correct. Thereby, erroneous compute kernel

variants can be detected. An error in this functor is not necessarily critical and the

search strategy can continue the tuning process. For the purpose of this functor, the

62

4.2. JIT Compilation for Runtime Code Generation

result of a compute kernel is defined as the return value of the kernel. Like the two other

functors, we use the test-result functor throughout this thesis.

4.2. JIT Compilation for Runtime Code Generation

Though we have mentioned that we use JIT compilation, so far we have not sufficiently

justified why JIT compilation is a central component of AutoTuneTMP. We use a JIT

compilation approach, because it is an effective means for runtime code generation and

it seems to be the only common runtime code generation approach. We provide three

reasons for employing JIT compilation and, more generally, runtime code generation.

Two advantages of JIT compilation are advantages relative to a common approach

for auto-tuning. Some auto-tuning frameworks are implemented as external applica-

tions and are not integrated with the application that is tuned, e.g., OpenTuner [6].

These frameworks tune an application by repeated recompilation or at least application

restarts. However, the compilation of large applications can be expensive. Even if the

build system only rebuilds parts of the application that are affected by the changed

parameterization, it can still be assumed that the compilation is significantly more ex-

pensive than locally recompiling a single compute kernel. Furthermore, as the whole

application gets restarted, all time not spend in the compute kernel to tune can be

considered overhead. This overhead can be significant. For example, if an application

loads a dataset at start-up or if other compute kernels need to be executed before the

tuned compute kernels is reached. As a runtime code generation approach does not need

application restarts and only compiles compute kernel variants that get evaluated, faster

auto-tuning can be expected.

A further issue is the integration of auto-tuning into the application. External auto-

tuners are, by design, not tightly integrated with the compute kernel, as the compute

kernel and the external tuner are two separate software components. With runtime code

generation, we can more tightly integrate the auto-tuning of the compute kernel with the

compute kernel. That is, the description of the parameter space, the configuration of the

search strategies, the configuration of the JIT compilation and the compute kernel itself

are all integrated. Thereby, we provide a straightforward path for adding auto-tuning to

applications, as only local changes to a compute kernel are required. Furthermore, as the

auto-tuned compute kernel can be considered a single (C++) component, maintainability

is improved.

Finally, runtime code generation is required for online auto-tuning of compute kernels.

63

4. AutoTuneTMP: Leveraging C++ for Performance and Productivity

As online auto-tuning implies that auto-tuning occurs during application runtime, the

application cannot be restarted or recompiled. Therefore, there are two options: either

many compute kernel variants have been precompiled into the application at compile

time or compute kernels variants are generated at runtime. A precompilation approach

is only feasible for tens to possibly hundreds of compute kernel variants, but not for

vast parameter spaces due to excessive time required for compilation and the size of

the resulting binaries. For tiny parameter spaces, this approach has been explored by

Beckingsale et al [14]. In contrast, runtime code generation only needs to compile kernel

variants that are evaluated and the resulting size of the program is generally not an

issue.

4.3. The CPPJIT Kernel Type

In the following subsections, we first describe the C++ JIT compilation framework CP-

PJIT. Then, we provide a first auto-tuning example where we tune a single parameter of

a matrix-vector multiplication implementation to illustrate the API. As presented, the

API of search strategies, parameters set types and parameters applies to the generalized

kernel type as well.

4.3.1. CPPJIT: A JIT Compilation Library for C++

CPPJIT is AutoTuneTMP’s component for JIT-compiling C++ compute kernels. It is not

a compiler, instead it instruments standard C++ compilers such as GCC or Clang. From

an implementation perspective, CPPJIT is a header-only library. Before we describe

CPPJIT’s internal workings, we first briefly introduce how it is used.

Listing 4.1 shows how a CPPJIT kernel is declared and called. In the global scope of

the application, the macro AUTOTUNE KERNEL is used to declare the JIT-enabled compute

kernel. Its parameters are the signature of the kernel using C++’s standard function type

syntax, the name of the kernel function to be declared and a string that specifies the

location of the compute kernel source files. As a result of the macro, the namespace

autotune gets populated with an object named according to the supplied symbol name

of the kernel. The type of the object is an instantiation of an (internal) template for

managing CPPJIT kernels. This wrapper object represents the kernel and has a call

operator operator() through which the compute kernel can be called. When the kernel

is called for the first time, the JIT compilation is triggered. Consecutive calls then reuse

64

4.3. The CPPJIT Kernel Type

Listing 4.1: Declaration and compilation of a JIT-compiled kernel.

1 /∗ g l o b a l scope ∗/
2 AUTOTUNE KERNEL(vector<double>(vector<double> &) , square ,
3 ” k e r n e l s r c d i r ”)
4 /∗ l o c a l scope ∗/
5 // JIT compile and run with g iven vec to r o
6 vector<double> r = autotune : : square (o) ;

Listing 4.2: The implementation of a JIT-compiled kernel. JIT compilation requires the
macro AUTOTUNE EXPORT before the return type. The kernel language is
standard C++.

1 #inc lude ” auto tune ke rne l . hpp”
2

3 AUTOTUNE EXPORT vector<double> square (vector<double> &o) {
4 vector<double> r (o . s i z e ()) ;
5 f o r (s i z e t i = 0 ; i < o . s i z e () ; i++)
6 r [i] = o [i] ∗ o [i] ;
7 re turn r ;
8 }

the result of the first JIT compilation (unless parameters of the kernel have changed).

The signature of the call operator is that of the compute kernel as submitted to the

AUTOTUNE KERNEL macro. Thus, the wrapper object behaves as if it were a standard C++

function. We argue that this contributes to the usability of CPPJIT.

Having shown how a compute kernel can be declared and called, we illustrate the

implementation of a compute kernel next. Listing 4.2 shows a compute kernel com-

patible with the example from List. 4.1. To mark a function for JIT compilation, the

AUTOTUNE EXPORT macro needs to be written before the return-type of the kernel. Fur-

thermore, the name of the file the kernel is stored in needs to be the same as the kernel,

i.e., in this case square.cpp. The macro AUTOTUNE EXPORT is defined in the header

autotune kernel.hpp.

Internally, CPPJIT uses a standard C++ compiler and the functions dlopen, dlsym

and dlclose, as defined by the POSIX standard [145]. With these functions, shared

libraries can be loaded into an application, symbols can be located and, of course, the

shared library can be closed after use. CPPJIT first uses the configured C++ compiler

to compile and link the compute kernel into a shared library. It then locates the sym-

bol of the compiled compute kernel using the POSIX API. Lastly, it sets up a function

65

4. AutoTuneTMP: Leveraging C++ for Performance and Productivity

Listing 4.3: Customizing the JIT compilation of a CPPJIT kernel by changing the com-
pilations flags of the compiler and linker.

1 us ing c p p j i t : : b u i l d e r : : gcc ;
2 autotune : : square . g e t b u i l d e r<gcc >() . s e t c p p f l a g s (
3 ”−Wall −Wextra −fopenmp −std=c++17 −O3 −march=nat ive ”
4 ” −mtune=nat ive − f f a s t−math”) ;
5 autotune : : square . g e t b u i l d e r<gcc >() . s e t l i n k f l a g s (”−fopenmp”) ;

pointer, so that the loaded symbol gets called whenever the call operator of the wrap-

per object is called. The use of dlopen/dlsym/dlclose also explains why the macro

AUTOTUNE EXPORT is needed. As the POSIX API used is a C API, a kernel requires

C (and not C++) linkage for our approach to work. The AUTOTUNE EXPORT macro en-

sures that the kernel has C linkage. By not using export "C" directly the internal

implementation of CPPJIT can be changed without necessarily requiring changes to the

kernels.

By default, during JIT compilation the compute kernel is compiled using GCC and the

flags “-fPIC -fno-gnu-unique”. The resulting object file is then linked with the flags “-

shared -fno-gnu-unique”. While “-fPIC” and “-shared” are standard flags for compiling

and linking shared libraries, at the time of writing the “-fno-gnu-unique” flag was critical

on Linux systems. This flag needs to be set to ensure that the symbol can be unloaded

properly when the kernel is recompiled during auto-tuning, otherwise dlclose calls get

ignored and the kernel is not properly replaced by a different kernel variant. The above

compile flags are obviously not sufficient to generate fast code, at least some optimization

flags are usually needed. CPPJIT provides an API for extending the compile and link

flags that is shown in List. 4.3. The required flags mentioned above are always implicitly

added. The GCC builder class provides similar functions for customizing the include

path, the library paths and for specifying libraries required at link time.

Though we exclusively use the GCC compiler with this kernel type, the compiler can

be exchanged with any compiler that is application binary interface (ABI) compatible

with the application (and POSIX-compatible). Furthermore, for building more complex

kernels CPPJIT can invoke a build system such as CMake.

4.3.2. Auto-Tuning a Matrix-Vector Multiplication Kernel

Having described how CPPJIT can be used to implement JIT-compiled kernels, we

now describe our approach for auto-tuning CPPJIT compute kernels by the example of

66

4.3. The CPPJIT Kernel Type

Listing 4.4: Auto-tuning of a matrix-vector multiplication compute kernel with a single
parameter for cache blocking.

1 AUTOTUNE KERNEL(vector<double>(vector<double> &, vector<double> &) ,
2 mv kernel , ” k e r n e l s r c d i r ”)
3 /∗ with in funct ion , the d e c l a r a t i o n o f m and v i s not shown ∗/
4 enumerated set parameters ;
5 /∗ d e l e g a t e s to the parameter con s t ruc to r
6 l og parameter : par . name , i n i t i a l value , base , min , max ∗/
7 parameters . emplace<log parameter >(”BLOCKING” , 1 , 2 , 1 , 1 6) ;
8 // c r e a t e tuner and tune parameters
9 tuners : : b r u t e f o r c e tuner (autotune : : mv kernel , parameters) ;

10 enumerated set optimal = tuner . tune (m, v) ;
11 // use optimal parameters
12 mv kernel . s e t pa r amet e r va l u e s (opt imal) ;
13 vector<double> r e s u l t = mv kernel (m, v) ;

a matrix-vector multiplication compute kernel. This compute kernel exposes a single

parameter BLOCKING that, as the name suggests, controls cache blocking.

In List. 4.4, we provide a minimal example for auto-tuning this kernel. As we use CP-

PJIT for JIT compilation, the kernel mv kernel is declared using the AUTOTUNE KERNEL

macro. In Line 4, a parameter set of the enumerated set type is declared. It stores

parameters that implement a certain interface and, through the properties of the stored

parameters, implicitly spans the search space. In case of the enumerated set class, the

parameter interface is of the enumerated parameter type. This interface manages pa-

rameters with finite enumerable value ranges. The enumerated set class has a member

emplace to add parameters to the set. This member function constructs the parameters

in-place in the set. Its argument list is that of the constructor of the parameter type.

In the example, a log parameter type was used. The arguments of the constructor of

the log parameter class are the name of the parameter, the initial value, the base, the

minimum value and the maximum value. This parameter type iterates the exponent

for a given base in the interval limited by the supplied minimum and maximum value.

If the value of the parameter is accessed, it returns the result of the exponentiation.

Therefore, the parameter in the example enumerates powers of two between 1 and 16.

As the next step, a search strategy is set up to auto-tune the compute kernel. The

tuners namespace contains templates that implement search strategies. In the exam-

ple, a brute-force tuner was chosen that exhaustively iterates the search space. It gets

instantiated with the compute kernel and the parameter set that spans the search space.

67

4. AutoTuneTMP: Leveraging C++ for Performance and Productivity

Listing 4.5: AutoTuneTMP kernels offer an API for exchanging the objective of the
auto-tuning process.

1 void s e t d u r a t i o n f u n c t o r (std : : funct ion<double ()> f) ;
2 bool h a s d u r a t i o n f u n c t o r () ; // to check whether a func to r was s e t
3 double g e t dura t i on () ; // used to measure performance i n t e r n a l l y

All tuners use template metaprogramming to adapt to the signature of the compute

kernel. For example, the call to the tune method in Line 10 has the same argument list

as the compute kernel. This was derived in the instantiation of the tuner template from

the type of the compute kernel.

The tune method performs the auto-tuning. It returns the best parameters discovered

by the search strategy. During auto-tuning, the tuner calls the compute kernel whenever

a combination of parameter values needs to be evaluated. However, to call the kernel its

arguments need to specified. By using the same argument list as the compute kernel,

input data for the compute kernel can be conveniently specified as arguments to the tune

method. As mentioned, arguments should be either not modified during kernel execution

(pass-by-reference) or they should be copyable (pass-by-value). After the auto-tuning,

the returned parameter values get assigned to the compute kernel (Line 12). Further

calls of the compute kernel will now use the auto-tuned parameters.

By default, AutoTuneTMP minimizes the runtime of a tuned compute kernel. To

specify a different tuning objective, AutoTuneTMP uses three functions whose signa-

tures are shown in List. 4.5. The set duration functor function can be used to set

up any function that measures performance in a user-defined metric. As the function

returns a double-precision floating-point value, AutoTuneTMP currently requires the

objective to be represented as a double value. During kernel performance evaluations,

AutoTuneTMP checks whether a duration functor was set and, if true, the search strat-

egy minimizes its returned value. For generality, the parameter list of the duration

functor is empty. Therefore, runtime information of the kernel needs to be provided as

state. For example, if the duration functor is implemented as a lambda function, it can

access data written by the kernel through its capture list.

Other extension points further customize the auto-tuning process. Through the

set valid parameter combination functor method, which is an extension point of the

compute kernel, the validate-parameters functor can be set. As the name suggests, the

set adjust parameters functor method allows for specifying the adjust-parameters

functor, though it is a method of the tuner. Finally, the set test functor method of

68

4.3. The CPPJIT Kernel Type

Listing 4.6: A compute kernel for blocked matrix-vector multiplication. The blocking
parameter allows for a reusage of the loads from v even if v is too large for
the cache.

1 #inc lude ” auto tune ke rne l . hpp”
2

3 AUTOTUNE EXPORT vector<double> mv kernel (vector<double> &m,
4 vector<double> &v) {
5 const s i z e t N = v . s i z e () ;
6 vector<double> r e s u l t (N, 0 . 0) ;
7 f o r (s i z e t i = 0 ; i < N; i += BLOCKING)
8 f o r (s i z e t j = 0 ; j < N; j++)
9 f o r (s i z e t k = 0 ; k < BLOCKING; k++)

10 r e s u l t [i + k] += m[(i + k) ∗ N + j] ∗ v [j] ;
11 re turn r e s u l t ;
12 }

the tuner enables setting the test-result functor.

4.3.3. Auto-Tuned Kernels and Optimization Templates

The most straightforward (but inconvenient) approach for implementing an auto-tunable

kernel is shown in List. 4.6. This matrix-vector multiplication compute kernel imple-

ments a blocking approach that, instead of iterating single matrix rows, iterates a number

of matrix rows simultaneously. If the vector v is large enough to not fit into the caches,

the blocking approach can improve the performance of this memory-bound algorithm by

up to 2x.

AutoTuneTMP sets up parameters as C preprocessor definitions (#define)1. These

definitions are included via the autotune kernel.hpp header which is updated right

before JIT compilation to reflect the specified parameter values.

As the compute kernel in List. 4.6 shows, even a single parameter can increase the

technical complexity of a compute kernel significantly. Because of this, AutoTuneTMP

offers a collection of parameterized C++ templates that simplify the development of

auto-tunable compute kernels. We refer to this approach as the optimization template

approach.

The optimization template approach delegates parts of the optimization process to a

library and thereby shifts parts of the technical burden from the compute kernel devel-

1While not currently implemented, constexpr-variables could be used to realize type-checked param-
eters.

69

4. AutoTuneTMP: Leveraging C++ for Performance and Productivity

Listing 4.7: A template for blocked loop exchange. A index range of the outer loop,
controlled by the blocking parameter, is executed for each iteration of the
inner loop.

1 s t r u c t l oop spec {
2 s i z e t s ta r t , stop , s tep ;
3 l o op spec (s i z e t s ta r t , s i z e t stop , s i z e t s tep)
4 : s t a r t (s t a r t) , stop (stop) , s tep (s tep) {}
5 l o op spec (s i z e t s ta r t , s i z e t stop) : s t a r t (s t a r t) , stop (stop) ,
6 s tep (1) {}
7 } ;
8 template < s i z e t b lock ing , typename F> void blocked exchange (
9 const l oop spec &outer , const l oop spec &inner , F body) {

10 f o r (s i z e t i = outer . s t a r t ; i < outer . stop ; i += block ing)
11 f o r (s i z e t j = inner . s t a r t ; j < i nne r . stop ; j += inner . s tep)
12 f o r (s i z e t i i = 0 ; i i < b lock ing ; i i += outer . s t ep)
13 body (i + i i , j) ;
14 }

oper to the developer of the library. From a high-level perspective, we therefore use a

common pattern. However, while there are many libraries that provide high-performance

application-specific building blocks for applications, few target the development of com-

pute kernels in general. AutoTuneTMP combines C++ metaprogramming for general

optimization with auto-tuning. Compared to frameworks that use template metapro-

gramming for a similar purpose, parameters of optimization templates do not need to

be chosen statically with an optimal value by the application developer. Instead, the

template parameters can be tuned at runtime. Because of this, we call this a runtime

template metaprogramming approach. We consider this a significant improvement over

approaches that solely rely on C++ metaprogramming and a standard C++ compiler.

As an illustration of the optimization template approach, we reimplement the matrix-

vector multiplication from List. 4.6 with a simple optimization template. The template,

shown in List. 4.7, implements a blocked loop exchange to perform the same task as the

manual loop exchange shown in List. 4.6. Its first two arguments are the boundaries of

the loops. Depending on the template parameter BLOCKING, a number of iterations of

the outer loop are moved into the inner loop. The third argument to the template is a

callable, i.e., the loop body. It gets called for each index pair of the outer loops.

Listing 4.8 shows how the blocked loop exchange template can be used for reimple-

menting the matrix-vector multiplication kernel. The BLOCKING parameter of the com-

pute kernel is now used to control the blocking as implemented by the template. Because

70

4.4. Generalized Kernels and OpenCL

Listing 4.8: A matrix-vector kernel that uses the loop exchange template from List. 4.7.

1 AUTOTUNE EXPORT vector<double> matr ix vec to r (vector<double> &m,
2 vector<double> &v) {
3 const s i z e t N = v . s i z e () ;
4 vector<double> r e s u l t (N, 0 . 0) ;
5 blocked exchange<BLOCKING>({0 , N} , {0 , N} ,
6 [&] (s i z e t i , s i z e t j) {
7 r e s u l t [i] += m[i ∗ N + j] ∗ v [j] ;
8 }) ;
9 re turn r e s u l t ;

10 }

of uniform initialization, the loop boundaries can be specified in curly braces. The loop

body is implemented as a lambda function. By using this template, the implementation

of the loop exchange is delegated to a library implementation and the intention of the

optimization is explicit through the type of template chosen.

For more complex compute kernels, the template approach is often more readable,

as functionality that would otherwise be implemented by the compute kernel can be

replaced by library functionality. This will (hopefully) become apparent when we de-

scribe our auto-tuned matrix multiplication in Chapter 5. In general, by using a highly-

optimized library the level of performance achieved can surpass that of a manually-

optimized compute kernel, especially if time or node-level optimization knowledge are

limited.

4.4. Generalized Kernels and OpenCL

The generalized compute kernel concept can be used to auto-tune compute kernels that

do not fit the CPPJIT approach described above. As shown in List. 4.9, they are declared

similarly to a CPPJIT kernel by specifying the signature of the kernel and a symbol name

for it. However, to fully set up the generalized kernel, two functors need to be registered.

First, through the set kernel functor method of the kernel object the implementation

of the compute kernel has to be set. Any std::function object that implements the

signature of the kernel can be registered. Second, the set apply parameters functor

method needs to be used to set up a functor that applies parameter values to the kernel.

This functor gets called whenever the parameter values of the kernel are changed, e.g.,

right before the evaluation step during tuning. With the kernel fully set up, it can be

71

4. AutoTuneTMP: Leveraging C++ for Performance and Productivity

Listing 4.9: The macro for declaring a generalized kernel with the same signature as the
CPPJIT square kernel from List. 4.1. Two functors of the kernel need to
be set up before use.

1 AUTOTUNE GENERALIZED KERNEL(vector<double>(vector<double >) , square)
2 /∗ f u n c t i o n s to s e t up the mandatory f u n c t o r s ∗/
3 void s e t k e r n e l f u n c t o r (std : : funct ion<R(Args . . .) > f) ;
4 void s e t a p p l y p a r a m e t e r s f u n c t o r (
5 std : : funct ion<void (pa ramete r va lue s e t &)> f) ;

tuned just like a CPPJIT compute kernel.

In this work, we use the generalized compute kernel type for the auto-tuning of

OpenCL kernels. OpenCL implementations both provide their own JIT compiler and,

currently, do not use C++ as a kernel language. By extending auto-tuning to OpenCL

kernels, we can use our framework to auto-tune GPU devices in particular, though the

auto-tuning of other OpenCL devices is possible as well. The most recent version of

the OpenCL standard specifies C++ as a kernel language [147]. Thus, in the near future

OpenCL implementations with C++ as a kernel language should become available. This

will allow for a use of optimization templates in OpenCL kernels.

In the following paragraphs, we describe the core features of OpenCL. For further

details we refer to the OpenCL standard [147]. From a high-level perspective, OpenCL

is very similar to Nvidia’s CUDA. OpenCL is more general, as it can be used not only

on GPUs but also on processors, accelerators and even FPGAs. And, of course, it is not

tied to a single vendor. Because of its generality, the mapping of OpenCL abstractions

to hardware features is not prescribed by the OpenCL standard.

At the beginning of the execution of an OpenCL kernel, many work-items are started

that all execute the same compute kernel. A work-item can be thought of as analogous

to a thread, as each work-item behaves as if it executes an individual instruction stream.

However, its mapping to the hardware depends on the hardware platform. Each work-

item has a unique index that can be used to assign an individual task to a work-item. The

indices of the work-items are generated through a rectangular one-to-three-dimensional

index space called NDRange. An NDRange needs to be specified whenever a kernel gets

scheduled for execution.

Work-items are not executed individually, instead they are grouped into work-groups.

Work-groups are groups of several hundreds or even thousands of work-items. During

execution, work-items can collaborate by exchanging data within a work-group. Syn-

chronization on the work-group level is possible as well. However, global synchronization

72

4.4. Generalized Kernels and OpenCL

between work-groups is not supported.

Vectorizing OpenCL implementations execute multiple work-items simultaneously by

mapping work-items to individual SIMD lanes. These implementations generally employ

masking so that individual work-items can execute or skip instructions. All OpenCL

implementations used in this work are vectorizing implementations. Thus, we can write

scalar compute kernels which still get vectorized, as vectorization is handled on the

framework level. For this type of implementation, avoiding branches is important, as

branches affect the effectiveness of the masking approach. Generally, if work-items do

not agree on whether to take a branch, both outcomes are executed with the SIMD

lanes partially masked in each case. However, branches with the same outcome across

work-items do not incur a significant performance penalty. Such branches occur, for

example, if the condition of the branch depends on shared data only.

Having described some core features of the execution model, we briefly look at the

memory model of OpenCL. The OpenCL memory model specifies multiple types of

memory. Most important are the global memory, which usually is the main memory

of a device, and the work-group-level local memory [147]. The local memory generally

has a size in the kilobyte range and is managed manually. On devices where the local

memory is not only an OpenCL abstraction but realized in hardware, its performance

matches the performance of a fast cache. GPU devices physically implement a local

memory and it is usually highly advantageous to use it, as some GPUs do not have L1

caches and no or only small L2 caches. Furthermore, OpenCL assumes separate address

spaces for devices executing the kernels and the host, i.e., where the OpenCL framework

runs. This necessitates transfers of data between the host and the devices. However,

on some more recent platforms, shared virtual memory reduces the cost for copying the

data. Shared virtual memory automates the transfer between the address spaces.

Abstracting from OpenCL

As part of this work, we created a set of abstractions for OpenCL that are made available

through AutoTuneTMP. The most important feature is an OpenCL manager abstrac-

tion that greatly simplifies the management of multiple OpenCL devices simultaneously.

Additionally, it can be used to specify the parameters of auto-tuned OpenCL kernels.

An example of the OpenCL abstraction layer is shown in List. 4.10. In this example,

we configure an OpenCL kernel with a one-dimensional grid and a work-group size of

128. For selecting the OpenCL devices to be used, a configuration file is supplied to

the constructor of the manager object. Then, the OpenCL kernel gets compiled. As

73

4. AutoTuneTMP: Leveraging C++ for Performance and Productivity

Listing 4.10: An example use of the OpenCL abstractions provided by AutoTuneTMP.
A configuration is used to select the desired devices and a kernel is built.
Then, multiple threads set up a buffer for their respective device, move the
buffer data to the device and finally run a compute kernel.

1 constexpr s i z e t g r id 1d = . . . ;
2 constexpr s i z e t g r o u p s i z e = 128 ;
3

4 openc l : : manager t manager (” c o n f i g . c f g ”) ;
5 // bu i ld ke rne l f o r a l l c on f i gu r ed d e v i c e s
6 vector<c l k e r n e l> k e r n e l s =
7 manager . b u i l d k e r n e l (s r c s t r , ” kernel name ” , c p p f l a g s) ;
8 // each OpenCL dev i ce i s c o n t r o l l e d by one host p ro c e s s o r thread
9 #pragma omp p a r a l l e l f o r

10 f o r (s i z e t i = 0 ; i < manager−>g e t d e v i c e s () . s i z e () ; i += 1) {
11 auto &dev i ce = manager−>g e t d e v i c e (i) ;
12 auto &d e v i c e k e r n e l = k e r n e l s [i] ;
13 openc l : : managed buffer<double> b u f f e r (device , 1000) ;
14 b u f f e r . t o d e v i c e (hos t data) ;
15 openc l : : apply arguments (d e v i c e k e r n e l , bu f f e r−>get ()) ;
16 openc l : : run ke rne l 1d (device , d e v i c e k e r n e l , gr id 1d , g r o u p s i z e) ;
17 }

the manager object is aware of the configured devices, it can compile the kernel for

all necessary devices. In the example, the implementation of the kernel is provided

as a source string. After the compilation has finished, a managing thread for each

device is started on the host. Each thread sets up an array of doubles on the devices

through the managed buffer abstraction. This class manages the resources of a device

buffer, i.e., it performs memory allocation, reallocation and deallocation. To transfer

data from the host to the device, the to device method is called. In OpenCL, the

arguments of the kernel need to be set before execution which is achieved by the call

to the apply arguments function. In the example, a kernel with a single argument

was assumed. The implementation of apply parameters can be found in Sec. A.1,

as applying arguments with the basic OpenCL API proves to be surprisingly tedious.

After the argument is applied, the kernel is executed by the call to the run kernel 1d

function. This function executes the kernel, halts the host thread until execution has

finished and checks whether an error occurred.

As the selection of OpenCL devices and platforms is cumbersome, AutoTuneTMP

simplifies the configuration through hierarchical key-value configuration files that use

the JSON file format. An example is shown in List. 4.11. In the example, two OpenCL

74

4.5. Parameter Spaces and Search Strategies

platforms from different vendors are configured. Each platform has one type of device.

The configuration specified that exactly two GTX 1080 Ti GPUs are to be used through

the COUNT key. As the configuration of the Xeon Gold does not have this key, all available

devices of this type are used. However, multi-socket systems are treated as one device

by the Intel OpenCL implementation. Therefore, there can only be a single device of

this type.

Each OpenCL device of each platform can be set up with different parameter val-

ues for each compute kernel. The parameters are interpreted by the kernel and their

meaning therefore depends on the specific kernel. However, there are some parame-

ters that are common to all kernels. The OpenCL manager class can be set to re-

port on its tasks through the VERBOSE parameter—a feature useful for debugging. The

OPTIMIZATION FLAGS key is yet another example. Its value gets forwarded to the JIT

compiler of the OpenCL platform when the OpenCL kernel is built. The COUNT key

is also part of the configuration framework, though it operates on the device and not

on the kernel level. There are further options, e.g., for displaying the build log after

compilation.

All OpenCL kernels in this work were configured through the presented JSON-based

configuration approach. The configuration shown is based on one of the actual con-

figuration files used for evaluating the unified streaming algorithm that we describe in

Sec. 7.1.1.

4.5. Parameter Spaces and Search Strategies

Having described the two types of compute kernels, we next describe the parameter

types and search strategies supported by AutoTuneTMP. Note that we do not model

general application parameters, but attempt to model parameters common in perfor-

mance optimization, e.g., related to optimizations such as cache blocking or paralleliza-

tion. Considering our auto-tuned kernels2 and the auto-tuning literature, as discussed

in Sec. 2.2.3 and summarized in Tab. 2.1, we observed some shared characteristics of pa-

rameters and search spaces. Parameters are generally discrete-valued. The value ranges

are usually small, there are often less than 20 values, and the dimensionality of the

search spaces is low to moderately-high. In our experiments, we tuned compute kernels

with at most 11 parameters. Considering Tab. 2.1, parameter tuning approaches were

used for auto-tuning problems with at most 15 dimensions. We further observed that

2For the parameter specifications see Tab. 5.1, Tab. 7.2 and Tab. 7.4

75

4. AutoTuneTMP: Leveraging C++ for Performance and Productivity

Listing 4.11: An example of the hierarchical configuration approach for managing
OpenCL devices and setting up parameters of compute kernels. This JSON
configuration file is interpreted by the manager class.

1 {
2 ”PLATFORMS” : {
3 ” I n t e l (R) OpenCL” : {
4 ”DEVICES” : {
5 ” I n t e l (R) Xeon(R) Gold 5120 CPU @ 2.20GHz” : {
6 ”KERNELS” : {
7 ” Regre s s i onUn i f i ed ” : {
8 // not a l l k e rne l parameters shown
9 ”KERNEL DATA BLOCK SIZE” : ”8” ,

10 ”KERNEL GRID SPLIT” : ”8” ,
11 ”LOCAL SIZE” : ”128” ,
12 ”OPTIMIZATION FLAGS” : ” . . . ” ,
13 ”VERBOSE” : ” t rue ”
14 }
15 }
16 }
17 }
18 } ,
19 ”NVIDIA CUDA” : {
20 ”DEVICES” : {
21 ”GeForce GTX 1080 Ti” : {
22 ” Regre s s i onUn i f i ed ” : {
23 . . .
24 }
25 // i f omitted : use a l l d e v i c e s
26 ”COUNT” : ”2”
27 }
28 }
29 }
30 } ,
31 ”OCL MANAGER VERBOSE” : f a l s e ,
32 ”SHOW BUILD LOG” : f a l s e
33 }

76

4.5. Parameter Spaces and Search Strategies

many parameters were independent of the other parameters. If a parameter was not

independent, it often only depended on a small subset of parameters.

Based on these observations, we primarily use three discrete-valued parameter types

throughout this work: enumerated parameters, log parameters and set parameters. All

are implemented as classes in AutoTuneTMP. An enumerated parameter has a minimum,

a maximum and a fixed step size to span a discrete value range. The log parameter,

which we already encountered in Sec. 4.3.2, does the same as the enumerated parameter,

but iterates the exponent of a given base. Its value is the result of the exponentiation

of the base with the current exponent value. The set parameter is specified with a fixed

set of values.

We use one additional parameter type that serves a special purpose: the constant

parameter. Constant parameters are useful for values that are chosen at runtime, but

nevertheless have a single fixed value. For example, in the regression kernels we present

in Chapter 7, the dimensionality is problem-dependent, but fixed for a given problem. By

describing the dimensionality as a parameter, it becomes a constant from the perspective

of the JIT compiler which sometimes enables additional optimization, e.g., because a

loop trip count is known.

AutoTuneTMP implements a set of heuristics as search strategies. We have already

encountered brute-force search, or exhaustive search, in List. 4.3.2. However, this strat-

egy is not an option for most compute kernels and primarily useful for testing. Fur-

ther strategies implemented in AutoTuneTMP are line search, neighborhood search and

Monte Carlo search. Line search considers the values in one dimension at a time and

optimizes it independently of the other parameter values. As the optimal value of one

parameter might change after a different value was chosen for another parameter, a de-

pendency between the parameters, the parameter set is iterated multiple times. Due to

the caching approach implemented by AutoTuneTMP, it is possible to perform repeated

iterations of the parameter set until no further yet unseen parameter combination is

to be tested. The search can be aborted early by specifying a maximum number of

parameters to iterate. This search strategy needs to be supplied with initial values for

the parameters.

Neighborhood search considers “neighboring” values of the current parameter values

in all dimensions. What is considered to be a “neighbor” value depends on the type of

parameter used, as compatible parameters need to implement prev and next functions.

To improve the current parameter values, neighborhood search evaluates all neighbors

and then selects the highest-performance parameter values for the next search iteration.

77

4. AutoTuneTMP: Leveraging C++ for Performance and Productivity

This is repeated until an improvement is no longer possible or a maximum number of

search steps is reached. Similar to line search, this search strategy requires a set of initial

parameter values.

AutoTuneTMP implements two variants of the basic neighborhood search algorithm.

The first variant, simply called neighborhood search, considers all neighbors with exactly

one parameter changed. The second variant, which we call full neighborhood search, con-

siders the cross product of three possible values per parameter: the “previous” value,

the current value and the “next” value. Full neighborhood search is better suited for

parameters with interdependencies. For d parameters and a single search step, neigh-

borhood search considers 2 · d neighbors. Full neighborhood search, however, iterates

3d − 1 parameter value combinations. Consequently, full neighborhood search can only

be applied to low-dimensional search problems.

A further search strategy is Monte Carlo search, which repeatedly draws random pa-

rameter combinations—as the name suggests. We primarily employ this search strategy

to evaluate the directed search strategies. Furthermore, it is useful for assessing the

difficulty of a search problem. For example, data collected over a tuning run allow for

an approximation of the expected performance of the search space.

In our experiments, we noticed that modifying the search space proved to be a more

straightforward solution than moving to more complex search strategies. AutoTuneTMP

currently provides two means for reducing the complexity of the search space: the adjust-

parameters functor and the group tuner. The adjust-parameters functor can be used to

eliminate dependencies between parameters. We use it for that purpose in Sec. 7.2, as a

padding parameter needs to be set properly depending on a parameter that controls loop

unrolling. Without the parameter adjustment, neighborhood or line search could not

explore relevant parts of the parameter space, as they only modify a single parameter

at a time.

The group tuner is a meta search strategy. With this tuner, it is possible to split

the parameters into smaller groups that are tuned independently. Thereby, irrelevant

search dimensions from the perspective of a group of parameters do not need to be

considered when tuning a specific parameter group. Each group of parameters gets

tuned by a provided search strategy and the group tuner manages the updating of the

parameters between the parameter groups. We generally use the same search strategy

for all parameter groups and refer to the resulting tuner by the name of the subordinate

search strategy with the prefix “split”, e.g., split line search for a group-tuned line search.

To further improve auto-tuning performance, AutoTuneTMP adds variants of search

78

4.5. Parameter Spaces and Search Strategies

strategies that perform the compilation step in parallel. Parallel compilation can be

immediately used with CPPJIT kernels and the standard provided builders. However,

parallel compilation of generalized kernels requires that the compilation step is designed

for parallel compilation by the application developer, as the compilation of a kernel of

this type is not controlled by AutoTuneTMP. Currently, there are parallel line search,

parallel neighborhood search and parallel full neighborhood search. All address the

same issue. With our standard GCC builder the compilation is a single call to GCC

and therefore a serial operation. As the compilation of a single C++ kernel source file

can take up to multiple seconds, the time required for compilation can be significant.

The parallel tuners bundle all compute kernel variants scheduled for evaluation by the

search strategy and compile them simultaneously. Note that the evaluation step is still

performed serially, as the compute kernels might use parallelization internally.

Adding Parameter Types and Search Strategies

To handle applications that require parameter types not covered by the types described

above, AutoTuneTMP can be easily extended. Search strategies are implemented against

parameter interfaces. Listing 4.12 shows the enumerated parameter interface. The core

components of this parameter interface are the methods for moving from the current

value to the next and the previous value, i.e., next and prev. These methods return

false if the current value already is the maximum or minimum value, respectively.

Furthermore, the set min method resets a parameter to a value that can be used to

enumerate the whole value range using the next method. The count values method

returns the number of values of the parameter. All parameter classes are furthermore

required to implement copy constructors.

Because the parameter sets use type-erasure, essentially duck-typing through template

instantiation, parameter types do not need to inherit the parameter interface types. This

improves maintainability, as otherwise parameters would need to inherit the interface

types of all parameter sets they are to be used with. Extensibility is improved as well,

as a new parameter type only needs to implement the correct methods, but does not

depend (through inheritance) on any AutoTuneTMP class. Similarly, because of the

parameter set types as intermediates between parameters and search strategies, new

search strategies can be added by implementing them against the parameter interfaces

of the parameter sets. Thereby, all parameter types compatible with the parameter set

type are immediately compatible with the new search strategy.

79

4. AutoTuneTMP: Leveraging C++ for Performance and Productivity

Listing 4.12: The parameter interface used by the enumerated set parameter set type.

1 c l a s s enumerated parameter {
2 pub l i c :
3 v i r t u a l std : : s t r i n g get name () const = 0 ;
4 v i r t u a l std : : s t r i n g g e t v a l u e () const = 0 ;
5 v i r t u a l bool next () = 0 ;
6 v i r t u a l bool prev () = 0 ;
7 v i r t u a l void set min () = 0 ;
8 v i r t u a l s i z e t count va lue s () const = 0 ;
9 } ;

4.6. Evaluating the Contribution of Auto-Tuning

To highlight the benefit of auto-tuning and to demonstrate the usefulness of Auto-

TuneTMP, we need a baseline for the performance results obtained through auto-tuning.

This baseline should reflect the performance of the kernel with auto-tuning disabled or

not even implemented. In general, certain parameter value combinations might perform

much worse than even a naive implementation. By using such parameter value combina-

tions as the baseline, speedups could be artificially inflated. This eliminates the obvious

choice of comparing the best-performing parameterization to the worst-performing pa-

rameterization.

Alternatively, one could approximate the expected performance by random sampling

of the search space, i.e., a Monte Carlo approach. Then, we could compare the perfor-

mance result obtained through auto-tuning to the expected performance. The speedup

computed from this approach reflects the composition of the search space. Generally,

we cannot assume that the number of fast and slow parameter combinations average

out to some plausible performance baseline. Instead, a search space might be heavily

biased towards either fast or slow combinations. Therefore, the measured performance

does not necessarily correspond to a variant of the kernel without auto-tuning.

Instead of these approaches, we use an application-dependent baseline with all parame-

ters set to a value that approximates the same compute kernel without the optimizations

associated with the parameters. As AutoTuneTMP is not a parallelization or vectoriza-

tion framework, parallelization and vectorization are both enabled in the baseline pa-

rameter combination. The baseline therefore is parallel, vectorized and non-optimized.

We refer to such a parameterization as a PVN parameterization. Because parallelization

and vectorization are enabled, this is baseline can be considered challenging.

For the selection of parameter values that put optimizations in a neutral state, there is

80

4.6. Evaluating the Contribution of Auto-Tuning

no application-independent strategy. A neutral value depends on the type of parameter

and the compute kernel. Therefore, neutral parameter values need to be defined for each

compute kernel individually. To demonstrate that a well-chosen PVN combination was

used in the experiments discussed in this work, we will state the PVN parameter values

in the evaluation sections of the auto-tuned applications.

81

5. A High-Level Auto-Tuned Matrix

Multiplication

In this chapter, we more deeply investigate the CPPJIT approach for auto-tuning and

writing compute kernels. We have already presented the basic approach in the last chap-

ter. However, we so far have only covered a simple matrix-vector multiplication example

intended to showcase the optimization loop and API of AutoTuneTMP. In the following

sections, we demonstrate that the auto-tuning approach provided by AutoTuneTMP

can achieve near-optimal performance. To that end, we focus on an auto-tuned matrix

multiplication kernel. We use double-precision arithmetic throughout this chapter.

The multiplication of dense matrices is one of the most basic operators for solving

linear algebra problems. In the following, we consider the matrix multiplication of two

real-valued matrices C = A · B. We assume the matrices C, A and B with dimension-

alities Nx × Ny, Nx × Nk and Nk × Ny, respectively. Though algorithms with better

complexity exist [34, 61], commonly matrix products of dense matrices are computed

using the standard O(n3) operations algorithm that computes each component of C

directly by calculating ci,j =
∑Nk

k=1 ai,kbk,j. We focus on this algorithm because of its

relevancy and because it is a common optimization test case in HPC, e.g., as part of

LINPACK [41].

Dense matrix multiplication is a popular object of study. Developing a implementa-

tions of the standard O(n3) algorithm with near-optimal performance proves to be chal-

lenging, as the literature for high-performance implementation approaches shows [66,

63, 96, 76]. One could (naively) assume that modern compilers can deliver a substantial

fraction of the peak performance of a modern processor. We can test this assumption

by considering the naive implementation displayed in List. 5.1. As compilers do not

perform parallelization, OpenMP is used so that at least in principle all resources of the

processor can be used. We executed this algorithm on a modern processor with four

Intel Skylake cores clocked at 4 GHz with all relevant optimization flags1. However, the

1GCC 7 was used with the flags -O3 -march=native -mtune=native -ffast-math -fopenmp

83

5. A High-Level Auto-Tuned Matrix Multiplication

Listing 5.1: A naive implementation of the standard O(n3) matrix multiplication algo-
rithm that uses OpenMP for parallelization.

1 #pragma omp p a r a l l e l f o r
2 f o r (i n t i = 0 ; i < N; i++)
3 f o r (i n t j = 0 ; j < N; j++)
4 f o r (i n t k = 0 ; k < N; k++)
5 C[i ∗ N + j] += A[i ∗ N + k] ∗ B[k ∗ N + j] ;

resulting performance disappoints. For square N × N matrices with N = 4096, out of

256 GFLOPS only 0.67 GFLOPS are achieved. This equals approximately 0.3% of the

peak performance of the processor.

On most modern hardware platforms, including Intel’s Skylake cores, an FMA-only

kernel is assumed for the calculation of the peak performance. As most modern hardware

platforms achieve their optimal performance performing FMA instructions and because

the arithmetic intensity of this algorithm is high enough, peak performance is an upper

bound for the achievable performance on most platforms. However, even the best im-

plementations achieve slightly lower performance. Necessary steps for high-performance

implementations, especially cache blocking, introduce cycles spent performing instruc-

tions other than FMAs.

For a high-performance variant of the basic algorithm, a range of optimization is-

sues need to be addressed. Though matrix multiplication offers ample opportunity for

reusing data in the cache, a careful ordering of the arithmetic operations is required

for the available memory bandwidth to be sufficient. This is commonly addressed by a

cache blocking approach. Of course, as the targets are multi- and many-core platforms,

the implementation needs to be parallelized. Furthermore, as all relevant hardware ar-

chitectures in HPC implement wide vector units, the algorithm needs to be vectorized.

And finally, on multi-socket machines the limited inter-socket bandwidth needs to be

considered.

In the remainder of this chapter we present and evaluate an auto-tuned matrix mul-

tiplication algorithm written using only high-level constructs. We use our optimization

template collection to implement the cache-level and register-level blocking, OpenMP

for parallelization and the C++ library Vc for vectorization. The resulting compute ker-

nel exposes 11 parameters that are tuned by AutoTuneTMP. We will demonstrate that

the obtained implementation is competitive with the best implementations available,

even those that were (likely) hand-written in assembly. Thereby, we show that Au-

84

5.1. Cache Blocking

Figure 5.1.: Rewriting of a row-major matrix into tiles. The tiled matrix improves spatial
data locality for accesses within a tile.

toTuneTMP is applicable for the optimization of challenging compute kernels without

compromising on performance. And, as optimization templates are an essential tool for

the approach to be high-level, we demonstrate their usefulness.

In Sec. 5.1, we present the approach for addressing issues related to the memory

hierarchy . Parallelization is covered in the subsequent section, i.e., Sec. 5.2. In Sec. 5.3,

we address core-level issues such as vectorization and register blocking. We discuss

our approach for the remaining minor performance issues and give an overview of the

auto-tunable parameters exposed by the compute kernel in Sec. 5.4. Having presented

our auto-tuning-enabled algorithm, we proceed with an evaluation on four hardware

platforms in Sec. 5.5. As part of the evaluation, we compare six of the search strategies

provided by AutoTuneTMP.

5.1. Cache Blocking

Our cache-blocked algorithm uses a matrix tiling approach to improve data locality.

Tiling changes the order of the elements of an array so that memory addresses within

potentially higher-dimensional subarrays access a contiguous range of memory addresses.

Figure 5.1 shows how a row-major matrix is reordered into square two-dimensional tiles.

Of course, the shape and dimensionality of the tiles need to be adjusted for a given

problem. Unfortunately, the nomenclature in the literature is not consistent. We refer

to cache blocking as all schemes that improve data locality by reordering operations. In

our nomenclature, tiling always refers to approaches that reorder the data itself.

Tiling can offer multiple benefits over pure cache blocking approaches, mainly because

a smaller array stride is used for accessing data within a tile compared to the overall

array. Firstly, as a tile is contiguous in memory, the number of entries required in the

85

5. A High-Level Auto-Tuned Matrix Multiplication

translation-lookaside buffer (TLB) is minimized, as the number of pages is minimized.

Without tiling each accessed row might require a TLB entry, even if a tile would fit

into a single page. For arrays with large strides, this case unfortunately is realistic.

Secondly, assuming that the stride of the tile is smaller than the size of the cache-tags,

tiling helps avoiding cache conflict misses for large strides that are (multiples of) powers

of 2. Lastly, the prefetchers only need to prefetch a single chunk of memory for higher

memory bandwidth and more easily detectable prefetching patterns.

AutoTuneTMP provides a set of templates for tiling. The make tiled template creates

a tiled copy of a matrix and is designed for C++’s std::vector. Its sole template

parameter is the dimensionality of the tiles. At runtime, it receives the array to tile

as its input, as well as the dimensionalities of both the tiles and the array. Listing 5.2

shows how the make tiled template is used to obtain a matrix of 2 × 4 tiles from an

overall N ×N matrix. The undo tiling template implements the inverse operation of

the make tiled template and is shown in the last line of List. 5.2. The function template

iterate tiles performs a row-wise iteration of the tiles and facilitates performing per-

tile operations. Analogously to the make tiled template, its one template parameter

is the dimensionality of the iteration space. As runtime arguments, it requires the tiled

array, the tiling configuration and, lastly, a function that is called for each tile iterated.

The lambda that is used as the operation to execute by the iterate tiles template

shows yet another helpful template. Its single argument is an instance of the tile view

class. This class provides a view on a tile as if the tile were a standalone array, thereby

simplifying the tile indexing. In the example, the tile view is set up automatically by

the iterate tiles template.

An illustration of our cache-blocking scheme is displayed in Fig. 5.2. We chose two

layers of cache blocking. The outer blocking approach is controlled by the three variables

xout, yout and kout. xout and yout split the result matrix into rectangular blocks. From the

perspective of each block, the input matrices now consist of two relevant bands. Through

the kout parameter, the bands in the input matrices are again split into equally-sized

blocks. As a result of this classical scheme, the blocks in the input matrices as well as

the block in the result matrix have a size that no longer depends on the overall size of

the matrices. Consequently, if xout, yout and kout are chosen properly, the blocks can

fit into the cache. The operations on the block-level are multiplications of block-sized

matrices of dimensionalities xout × yout, xout × kout and kout × yout. Therefore, each

block performs 2xoutyoutkout arithmetic operations for xoutyout + xoutkout + koutyout data

elements. We observe that the xout × kout submatrix of A is reused yout-times and the

86

5.1. Cache Blocking

Listing 5.2: A two-dimensional array is converted into a tiled representation of 2×4 tiles.
The tiles are then iterated and a per-tile operation is performed. Finally,
the original matrix layout is restored.

1 vector<double> m = . . . ;
2 opttmp : : t i l i n g c o n f i g u r a t i o n conf = {{2 , N} , {4 , N}} ;
3 auto t i l e d = opttmp : : make t i l ed<2>(m, conf) ;
4 opttmp : : i t e r a t e t i l e s <2>(t i l e d , conf ,
5 [] (opttmp : : t i l e v i e w <2> &view) {
6 f o r (s i z e t i = 0 ; i < 2 ; i++) {
7 f o r (s i z e t j = 0 ; j < 4 ; j++) {
8 view [i ∗ 4 + j] = . . . ;
9 }

10 }
11 }) ;
12 m = opttmp : : undo t i l i n g <2>(t i l e d , conf) ;

kout × yout submatrix of B is reused xout-times. Note that entries of the submatrix of

C are reused less, as during the computation of a component the result value can be

kept in the registers. Therefore, updating C requires only one read and one write per

component for each of the Nk/kout band pieces.

The second inner blocking layer replicates the idea of the outer blocking layer with

xin, yin and kin for the blocking dimensions. By employing two layers of cache blocking,

the algorithm can adapt to a multi-level cache hierarchy. Fitting into the L1 and L2

caches requires relatively small matrices for less reuse. The outer blocking layer allows

for reuse in the L3 cache (where available) with larger submatrices. As each blocking

layer has three parameters, there are overall six parameters related to cache blocking.

The resulting blocking scheme, written in C++, is shown in List. 5.3. Because of the

two layers of blocking, the loop nest employed for cache blocking is six loops deep. The

register-blocked inner part of the compute kernel is presented in the next section, as it

implements a set of further optimizations. While the conversion of the input matrices

into a tiled representation happens before the operation is called, List. 5.3 shows the use

of tile view instances to move to different tiles of the input matrices. The dimensions

of the tiles match the dimensions of the blocks implied by the inner blocking layer. That

is, the input matrix A is tiled into xin × kin tiles and the input matrix B is converted

to a representation with kin × yin-sized tiles. Note that C is initially set to zero and

therefore does not need to be adjusted. However, as the algorithm assumes a tiled

representation of C, C gets converted to row-major representation after the loop nest.

87

5. A High-Level Auto-Tuned Matrix Multiplication

·=
xout

y in

k out

k out

x in

yout

k in

k in

y in

yout

xout
x in

C A B

Figure 5.2.: The two cache-blocking layers of the matrix multiplication. Though square
in the illustration, rectangular shapes are allowed. In the actual implemen-
tation, the left input matrix A is transposed.

In the implementation, A is used transposed in an attempt to improve prefetching. As

the resulting performance improvement is minimal, we do not discuss this in further

detail.

For the approach shown in List. 5.3 to be correct, certain constraints need to be

fulfilled. The matrices need to be padded according to xout, yout and kout. Furthermore,

each inner blocking variables needs to divide the corresponding variable of the next outer

layer. For example, xin needs to divide xout. We describe further constraints, introduced

by register blocking, in Sec. 5.3.

5.2. Parallelization

Listing 5.3 not only shows the cache blocking approach, but indicates the parallelization

approach as well. By using OpenMP’s collapse clause, the outer two loops are run

thread-parallel, i.e., the outer blocks of C are the unit of parallelization.

Two parameters change the behavior of OpenMP. In order for the algorithm to en-

able or disable SMT, the number of threads is configurable. A further parameter was

added to adjust OpenMP’s scheduling behavior, motivated by an observed performance

difference between static and dynamic scheduling. Static scheduling distributes work

packages evenly across the threads as soon as the parallel region is entered. Dynamic

scheduling uses a load-balancing scheme with threads fetching additional work after

having processed their currently assigned work [112].

88

5.2. Parallelization

Listing 5.3: The loop nest that implements the two-layer cache blocking. The two out-
ermost loops are collapsed into a single index range by OpenMP and used
to parallelize the algorithm. Instances of the tile view class facilitate the
multiplication of submatrices. The vectorized register-level kernel is imple-
mented by the register blocked kernel function, its implementation is
displayed in List. 5.5.

1 // three outer loops , p a r a l l e l i z e in x , y−dimensions
2 #pragma omp p a r a l l e l f o r c o l l a p s e (2) , num threads (OMP THREADS) , \
3 schedu le (SCHEDULE)
4 f o r (s i z e t out x = 0 ; out x < X s i z e ; out x += xout) {
5 f o r (s i z e t out y = 0 ; out y < Y s i z e ; out y += yout) {
6 auto A view = opttmp : : make view<2>(A trans , t i l e s p e c A) ;
7 auto B view = opttmp : : make view<2>(B, t i l e s p e c B) ;
8 auto C view = opttmp : : make view<2>(C, t i l e s p e c C) ;
9 f o r (s i z e t out k = 0 ; out k < K size ; out k += kout) {

10 // three inner l oops
11 f o r (s i z e t i n x = out x ; i n x < out x + xout ; i n x += xin) {
12 f o r (s i z e t i n y = out y ; i n y < out y + yout ; i n y += yin) {
13 C view . m o v e t o t i l e ({ in x , i n y }) ;
14 f o r (s i z e t i n k = out k ; i n k < out k + kout ;
15 i n k += kin) {
16 A view . m o v e t o t i l e ({ in k , i n x }) ; // A was transposed
17 B view . m o v e t o t i l e ({ in k , i n y }) ;
18 r e g i s t e r b l o c k e d k e r n e l (. . .) ;
19 }
20 }
21 }
22 }
23 }
24 }

89

5. A High-Level Auto-Tuned Matrix Multiplication

5.3. Vectorization and Register Blocking

Fully utilizing all available resources of each core is critical for achieving close to peak

performance. On most modern hardware architectures this entails that one or more

vectorized FMA instructions are executed every cycle. Floating-point pipelines have

a latency greater than one, e.g., the FMA latency of AMD’s Zen architecture is five

cycles [53]. Therefore, further independent instructions need to be scheduled after the

first instruction has started to execute. On the Intel Knights Landing platform there

are two pipelines that have a latency of 6 cycles for FMA instructions [53]. Therefore,

12 independent vector instructions need to be in-flight for optimal performance.

A second issue on the core level is the limited bandwidth to the caches, primarily

the L1 cache. The x86 FMA3 instructions we use have three operands and compute

c += a � b, with the componentwise multiplication �, for 4-wide SIMD vectors a, b

and c. On many modern hardware platforms, at most two vector loads and one vector

store can be performed. Computing an FMA3 instruction entirely in (cached) memory

would require three loads and one store. This issue can be addressed by keeping data

as much in the registers as possible.

For matrix multiplication, keeping values of C in the registers is a straightforward

approach for reducing the required load and store bandwidths. By iterating the k direc-

tion, new values of A and B are required, but the same component of C is updated. As

loads are needed for moving the component of C from the cache into a register and stores

to write it back into the memory, the loop in the k direction should be long-running

to minimize these additional loads and stores. For hardware platforms with a single

FMA pipeline, keeping vectors of C in the registers might be sufficient. However, most

hardware platforms implement two vector pipelines. Therefore, the L1 load and store

bandwidth is still not sufficient as four L1 loads would be needed if components of A

and B are streamed from memory each cycle.

To reduce the required cache bandwidth even further, we first observe that for a given

k the components of one row of C share the same input value from A. Similarly, for

a given k components of one column of C share the same input value from B. This

motivates a two-dimensional register-blocking scheme analogously to the cache-blocking

scheme with individual column and row slices from A and B—and a tiny submatrix of C.

If the submatrix of C has enough entries, the register-blocking approach simultaneously

addresses pipeline latency and limited load/store bandwidth. This is illustrated by

Fig. 5.3 for a 4× 2 register-blocking scheme and a SIMD-width of two. As the example

90

5.3. Vectorization and Register Blocking

C in registersA:

B:

load

xreg

yreg=2⋅y reg,base

FMA

FMA

FMA

FMA

FMA

FMA

FMA

FMA

broadcast

Figure 5.3.: The register-blocking scheme uses one row and column slice of each input
matrix to update the whole register block. Shown is a 4 × 2 register block
that is being updated; a SIMD width of 2 is assumed.

shows, for updating the 2× 4 block 16 (scalar) FMAs are performed and only 8 values

are loaded. Assuming that two FMAs with a width of two can be executed per cycle,

8 (scalar) values need to be loaded in 4 cycles. On platforms that support two vector

loads per cycles, this blocking configuration would be sufficient for an algorithm that is

not bound by L1 bandwidth. After four cycles, k is incremented to update the same

submatrix of C with the next input values. As we require the prior FMA results for

the next update, a pipeline latency of up to four can be tolerated. We denote the rows

of a register block by xreg and the columns by yreg,base. yreg,base counts the columns in

SIMD registers instead of double-precision values. From yreg,base, we can compute yreg

by multiplying it with the SIMD-width of the architecture. To ensure correctness, xreg

needs to divide xin and yreg needs to divide yin.

For vectorization, we use the vectorization library Vc as the basic building block [92,

91]. Vc implements a C++ approach for writing vectorized code independent of the vector-

length and is portable across a wide range of hardware architectures. It mimics how

scalar arithmetic is expressed in C++ and therefore offers a highly-convenient interface

for vectorized codes. As scalar values and scalar constants get broadcasted to vector

registers transparently, the resulting vectorized code is often identical to scalar code,

except for the types2. For our matrix multiplication code, we use the double v type of

2By necessity, Vc cannot treat branches as in the scalar case and instead uses a masking approach.

91

5. A High-Level Auto-Tuned Matrix Multiplication

Listing 5.4: Declaration and use of register-blocked variables. The example shows how
blocks of vectorized expressions can be written similar to scalar expressions.

1 us ing r e g a r r a y =
2 r e g i s t e r a r r a y<double v , 5>;
3 r e g a r r a y a (data ptr , Vc : : v e c t o r a l i g n e d) ;
4 r e g a r r a y b = 2 . 0 ;
5 r e g a r r a y r = 3.141 ∗ (a − b) ;

Vc which represents a vector of doubles.

In order to facilitate the implementation of register blocking, AutoTuneTMP provides

the register array template. It mirrors Vc’s scalar-like interface but works on an

array of variables representing SIMD vectors. An example is shown in List. 5.4. In

the example, first an alias for a register array instantiation with five vector entries

is declared. The base type is double v. Therefore, each entry is a vector of doubles.

In Line 3, a chunk of contiguous data is loaded from memory into a register array

variable. Assuming an aligned pointer, we can use aligned loads by specifying the flag

Vc::vector aligned. The scalar literal in Line 4 is broadcasted to the whole array

of vector variables, highlighting the scalar-like interface of the register array class

(and Vc). The last line provides a second example for the scalar-like interface. The

subtraction between two register array instances can be written as in the scalar case.

Again, a literal gets automatically broadcasted to the whole array of vector variables.

In List. 5.5, we show the inner register-blocked kernel of our matrix multiplication.

Due to the high-level approach, we show the full C++ implementation. In the first line

of List. 5.5, we declare an alias for the register-array type for register blocking with a

row-width of yreg,base-many vector registers. The two loops in Line 5 and 6 iterate the

inner cache blocks of C in register-block steps. For a two-dimensional blocking approach,

we declare an array of reg array instances (Line 8). acc represents the tiny submatrix

of C shown in Fig. 5.3 and is kept in the registers. The loop ranging from Line 10 to

Line 17 implements the arithmetic operations required for the matrix multiplication.

For each increment of k, xreg × yreg,base vector FMAs are performed. To that end, a row

slice of B with the width of register block is loaded (Line 12). In Line 13, the rows of

the register block are iterated and Line 15 performs the FMAs on a row of the register

block. For each FMA operation, we need a single scalar from A per row. The scalar is

broadcasted to a double v vector. After the computational loop, acc gets added to the

Fortunately, matrix multiplication is branch-free.

92

5.3. Vectorization and Register Blocking

Listing 5.5: Implementation of the register-level matrix multiplication kernel.

1 constexpr s i z e t yreg = yreg,base ∗ double v : : s i z e () ;
2 us ing r e g a r r a y = opttemp : : r e g i s t e r a r r a y<double v , yreg,base>
3

4 // r e g i s t e r b lock ing loops in x and y dimensions
5 f o r (s i z e t x = 0 ; x < xin ; x += xreg) {
6 f o r (s i z e t y = 0 ; y < yin ; y += yreg) {
7 // submatrix / accumulators , s t o r ed in xreg · yreg,base r e g i s t e r s
8 std : : array<r eg ar ray , xreg> acc ;
9 // submatrix m u l t i p l i c a t i o n

10 f o r (s i z e t k = 0 ; k < kin ; k += 1) {
11 // s to r ed in yreg,base−many r e g i s t e r s , u s u a l l y cached in L1
12 r e g a r r a y b(B view . po in t e r (k ∗ yin + y) , Vc : : v e c t o r a l i g n e d) ;
13 f o r (s i z e t r = 0 ; r < xreg ; r += 1) {
14 // broadcast from memory , u s u a l l y cached in L1 or L2
15 acc [r] += double v (A view [k ∗ xin + x + r]) ∗ b ;
16 }
17 }
18 // update r e g i s t e r−l e v e l submatrix o f C
19 double ∗ r e s p t r = C view . po in t e r (x ∗ yin + y) ;
20 s i z e t o f f s e t = 0 ;
21 f o r (s i z e t r = 0 ; r < xreg ; r += 1) {
22 r e g a r r a y r e s v a l u e (r e s p t r + o f f s e t , Vc : : v e c t o r a l i g n e d) ;
23 r e s v a l u e += acc [r] ;
24 r e s v a l u e . memstore (r e s p t r + o f f s e t , Vc : : v e c t o r a l i g n e d) ;
25 o f f s e t += yin ;
26 }
27 }
28 }

submatrix of C in the Lines 19 to 26. The overhead for adding the computed results to

the submatrix of C further highlights that kin should be chosen relatively large, so that

the overhead for updating C is minimized.

Together with the loop nest shown in List. 5.3 this is (nearly) the entire implementa-

tion of the algorithm. Immediately showing a benefit of the high-level approach. Though

low-level considerations are required for maximizing performance, the implementation is

located on a higher level of abstraction, especially compared to high-performance matrix

multiplications implemented using intrinsics or even assembly. Furthermore, the opti-

mization templates and frameworks used are not specific to the matrix multiplication

algorithm, which suggests applicability beyond this specific algorithm.

Lastly, we look at the code generated by the compiler, in this instance GCC 7 with

93

5. A High-Level Auto-Tuned Matrix Multiplication

AVX512 as the target instruction set. Listing 5.6 shows the inner loop that iterates

k in List. 5.5. As can be seen by the generated code, the compiler implements the

register-blocking scheme as intended. The VMOVAPD instruction loads the row-slice from

B, whereas the VBROADCASTSD instruction broadcasts scalar values of A into a vector

register. As a 4 × 4 blocking was chosen (by the auto-tuner), 16 FMAs are performed

in total. The additional scalar instructions implement the loop header and the indexing

of A and B. From the generated assembly, we can expect close-to-optimal performance,

as most architectures considered can perform up to (approximately) four instructions

per cycles. For this reason, the additional VMOVAPD and VBROADCASTSD instructions do

not affect performance on most platforms. Counting the memory references, we see that

for 16 FMAs only eight memory-related instructions are required—as expected. This

highlights that the critical loop does indeed run mostly within the registers.

5.4. Further Considerations and Parameter Overview

To guarantee proper alignment of all addresses we use Boost’s aligned allocator tem-

plate to allocate the matrices. By using this allocator and because of the divisibility

constraints described in Sec. 5.1 and Sec. 5.3, all loads and stores are guaranteed to be

aligned. This avoids a potential performance pitfall, as loads and stores across cache line

boundaries require multiple cache lines to be accessed and thereby put more pressure

on the main memory and the read and write ports of the caches.

Furthermore, our implementation assumes that the matrix dimensions divide the outer

loop block sizes. We therefore pad the matrices to the next larger valid matrix size before

the compute kernel is executed.

Finally, to maximize the potential performance on NUMA machines, we added a

parameter that, if enabled, copies the matrices A and B to the NUMA nodes before

performing the matrix multiplication. Thereby, potential performance degradation due

to limited inter-socket bandwidth can be alleviated. For this measure to be effective,

additionally threads get pinned to a NUMA node. For measuring runtimes, we neither

add the potential copying between NUMA nodes nor the padding of the input matrices to

the overall runtime, as our sole goal is achieving near-optimal floating-point throughput.

The parameters of the compute kernel are summarized in Tab. 5.1. As the table

shows, there are overall 11 parameters for a challenging higher-dimensional parameter

space. The chosen value ranges imply 629 million distinct parameter combinations and

were chosen to accommodate architectures with different cache sizes, cache hierarchy

94

5.4. Further Considerations and Parameter Overview

Listing 5.6: AVX512 assembly of the register-blocked innermost loop. As 4x4 blocking
was chosen by the auto-tuner, 16 FMAs are performed per iteration. Four
vector variables need to be read, additionally four scalar values get broad-
casted.

k_loop:

vbroadcastsd zmm0 ,QWORD PTR [rdx]

add rax ,0x100

vmovapd zmm4 ,ZMMWORD PTR [rax -0x100]

vmovapd zmm3 ,ZMMWORD PTR [rax -0xc0]

vmovapd zmm2 ,ZMMWORD PTR [rax -0x80]

vfmadd231pd zmm16 ,zmm4 ,zmm0

vmovapd zmm1 ,ZMMWORD PTR [rax -0x40]

vfmadd231pd zmm18 ,zmm3 ,zmm0

vfmadd231pd zmm17 ,zmm2 ,zmm0

vfmadd231pd zmm19 ,zmm1 ,zmm0

vbroadcastsd zmm0 ,QWORD PTR [rdx+0x8]

vfmadd231pd zmm14 ,zmm4 ,zmm0

vfmadd231pd zmm8 ,zmm3 ,zmm0

vfmadd231pd zmm13 ,zmm2 ,zmm0

vfmadd231pd zmm7 ,zmm1 ,zmm0

vbroadcastsd zmm0 ,QWORD PTR [rdx+rsi *8]

vfmadd231pd zmm20 ,zmm4 ,zmm0

vfmadd231pd zmm15 ,zmm3 ,zmm0

vfmadd231pd zmm12 ,zmm2 ,zmm0

vfmadd231pd zmm6 ,zmm1 ,zmm0

vbroadcastsd zmm0 ,QWORD PTR [rdx+rcx *8]

add rdx ,0x400

cmp rax ,r9

vfmadd231pd zmm11 ,zmm4 ,zmm0

vfmadd231pd zmm5 ,zmm3 ,zmm0

vfmadd231pd zmm9 ,zmm2 ,zmm0

vfmadd231pd zmm10 ,zmm1 ,zmm0

jne k_loop

95

5. A High-Level Auto-Tuned Matrix Multiplication

xreg, yreg,base xin, yin, kin xout, yout, kout NUMA schedule SMT

min 1 8 64 {on,
off}

{static,
dynamic}

{4-way (Phi),
2-way, off}max 5 128 512

step 1 8 64

Table 5.1.: The matrix multiplication kernel exposes eleven parameters to be tuned. The
parameters are grouped according to register blocking and the inner and outer
loop nests. The last three parameters control whether the matrices are copied
on each NUMA node before executing the kernel, the OpenMP schedule type
and the number of threads, respectively.

and vector instruction sets. As 4-way SMT is only supported by a single platform used

in the evaluation, an Intel Xeon Phi processor, the related value of the SMT parameter

is only used on this hardware platform.

5.5. Evaluation

In this section, we evaluate the presented auto-tuning-enabled matrix multiplication

algorithm. We first describe the setup of the experiments, i.e., the hardware platforms

used and the input matrices. Then, we present the achieved performance for a set of

different auto-tuners and the time required for auto-tuning. To evaluate whether the

parameters tuned did actually contribute to the achieved performance, we look at the

contribution of the parameters for the best-performing search strategies. Finally, we

look closer at the tuning process on a single hardware platform.

5.5.1. Experimental Setup

To evaluate the matrix multiplication algorithm, auto-tuning experiments were con-

ducted on four hardware platforms. As the first platform, we used an AMD Epyc 7551P

with 32 cores supporting AVX2. Though it is a single socket platform, the Epyc 7551P

consists of four NUMA domains with eight cores each. Each core has four 128 bit vector

units that can perform one 256 bit-wide FMA per cycle. The second platform has two

Intel Xeon Gold 5120 processors with 28 cores overall; it supports AVX512 and has a

single FMA-enabled vector unit. Representing the slightly older Sandy Bridge processor

generation, we included a dual-socket Intel Xeon E5-2670 platform that only supports

AVX(1). This processor has two 256 bit vector pipelines per core, one for additions and

one for multiplications. The Xeon E5-2670 is the only processor that does not support

96

5.5. Evaluation

FMA operations. Finally, we included the Intel Xeon Phi 7210 many-core processor

with its 64 Silvermont-derived cores. As mentioned in Sec. 3.4, this architecture is

an especially difficult optimization target. The cores are less capable compared to the

other processors in most regards, yet the vector units have the highest throughput at

two 512 bit FMAs per cycle. As this description shows, only two processors implement

the same vector AVX512 instruction set3. Thanks to Vc and AutoTuneTMP, we can

nevertheless target all four processors with the same compute kernel.

To evaluate the matrix multiplication algorithm described in the previous sections, we

consider square matrices with N = 8192. The components of all matrices were drawn

uniformly from the interval [0, 1]. This matrix size was chosen as the matrices are too

large to be cached. Furthermore, the size is large enough to allow reasonably accurate

measurements of the performance—even on the 64-core Xeon Phi platform. For this

matrix size, we get approximately two digits of accuracy for the measured performance.

Accurate measurements are highly important for the auto-tuner to choose the correct

parameterization. These measurement difficulties are primarily an effect of dynamic

frequency scaling and other power saving measures.

As a baseline for auto-tuning, we use a parallelized-vectorized non-optimized (PVN)

approach as described in Sec. 4.6. Thus, we require reference parameter values that

mostly disable the optimizations associated with the parameters. As the PVN param-

eterization, we chose the minimal values for all block sizes, as shown in Tab. 5.1. We

further set SMT to off, NUMA-copy to off and chose static scheduling for OpenMP. As

the minimal values of the outer and inner loop blocking are 8 and 64, respectively, even

the initial parameterization still allows for improved cache utilization compared to a

truly naive implementation. Therefore, this PVN parameterization still underestimates

the speedup enabled by auto-tuning.

To ensure correctness of the executed compute kernels, we use AutoTuneTMP’s pa-

rameter value adjustment functionality. Before a parameterized compute kernel is in-

stantiated, the configured parameter values get hierarchically adjusted to the “closest”

valid combination. This is required to fulfill the divisibility constraints described in

Sec. 5.1 and Sec. 5.3. The register-blocking parameters are never adjusted. However,

the inner blocking parameters are adjusted so that they divide the register-blocking

parameters. The outer cache-blocking parameters in turn are adjusted according to

the already adjusted inner cache-blocking parameters. We furthermore supplied a test

3The Xeon Gold and Xeon Phi actually implement slightly different instructions sets. However, both
processors implement the AVX512F sub-standard, which our kernel utilizes.

97

5. A High-Level Auto-Tuned Matrix Multiplication

functor that validates each run by using a reference result matrix computed before the

auto-tuning was started.

To compare the search strategies available in AutoTuneTMP, we performed auto-

tuning using six search strategies with different properties. We consider serial-compilation

and parallel-compilation search strategies. Furthermore, we use group tuners to split the

search space into smaller subspaces. The group tuners were configured to iterate over

their subordinate tuners three times. For the group tuners, the parameters are grouped

into a register-blocking parameter group, an inner cache-blocking parameter group and

an outer cache-blocking parameter group (as in Tab. 5.1). The remaining parameters

are grouped into an other-parameters group.

All search strategies run until they encounter a local or global runtime minimum. As

Monte Carlo does not converge to a minimum, it is stopped after 50 search steps. Apart

from Monte Carlo, we considered three variants of line search: (serial-compilation) line

search, parallel line search and split parallel line search. The split parallel line search uses

the group tuner with parallel line search tuners as its subordinate tuners. These three

search strategies implement a very similar approach and are compared to show the effect

of parallel compilation and of splitting up the search space into multiple smaller search

spaces. Further experiments were conducted using the parallel neighborhood search and

split parallel full neighborhood search. The parallel full neighborhood search can only

be used as a subordinate tuner, as the curse of dimensionality prevents its application

in a 11-dimensional parameter space: there are (theoretically) up to 311− 1 “neighbors”

compared to 2 · 11 “neighbors” for the non-full neighborhood search.

To put the achieved performance in context, we provide results for two reference

implementations. On the Intel platforms, we used the Intel MKL 2019 library, a BLAS

implementation by Intel. As this implementation is heavily optimized by the vendor, we

consider it a realistic upper bound for the achievable performance. On the Epyc platform,

we use a BLAS implementation called BLIS [96], which is recommended by AMD. As

both BLAS implementations do not resize the matrices, we measured the performance

for N = 8208 to avoid reduced performance likely due to aliasing issues. Furthermore, for

the MKL library Intel recommends an interleaved allocation policy on NUMA machines

that distributes the pages of an allocation across the NUMA nodes. Thus, our reference

performance results were computed using numactl --interleave=0,1. Set to four

nodes, the same approach improved performance of BLIS on the AMD platform as well.

As our reference results, we report the best observed performance averaged across 10

repetitions on all platforms except the Xeon Phi. The Xeon Phi platform required a

98

5.5. Evaluation

different procedure.

On the Xeon Phi a fair comparison is most difficult, as close to peak performance is

not even achieved by Intel’s own implementation and not achievable in principle. Fur-

thermore, the performance of the MKL was not consistent even with 20 repetitions of

the multiplication task. Therefore, we state the highest and lowest measured perfor-

mance. As variations in performance are likely an effect of throttling from 1.5 GHz to

≈ 1.4 GHz, the lower bound is more realistic for long-running tasks.

5.5.2. Performance Results

In Fig. 5.4, we show the achieved performance of the search strategies considered. The

black dotted line is the device peak performance, which is the upper bound of the

achievable performance on all platforms except for the Xeon Phi. The best overall result

of a device is indicated by a red-colored device name. The overall best results show that

our auto-tuned high-level implementation achieves a performance nearly identical to that

of Intel’s MKL on the dual-socket Xeon Gold platform as well as the dual-socket Xeon

E5 platform. Both Intel’s MKL as well as our auto-tuned implementation achieve near-

peak performance on both of these platforms. On the Xeon Gold platform, we achieved

653 GFLOPS or 91% of the peak performance using line search as the search strategy.

Similarly, on the Xeon E5 platform a performance of 308 GFLOPS was measured which

corresponds to 80% of the peak performance. This result was achieved with split parallel

line search. The best result for the AMD Epyc platform was achieved using the same

search strategy. On this platform a performance of 556 GFLOPS or 87% of the peak

performance was measured. This is higher than the 501 GFLOPS we measured for the

BLIS library.

The observed performance on the Xeon Phi platform was slightly lower. Line search

achieved the best overall result with 1215 GFLOPS or 42% of the peak performance.

While this might seem rather low, even Intel’s MKL achieves only 55% to 62% of the

peak performance. To explain the performance on this platform, a closer look at the

hardware architecture is needed.

The Xeon Phi 7210 processor is an essentially two-wide architecture, as it can decode

two instructions per cycle and has no other source for decoded instructions such as a

micro-op cache or a loop buffer. As it has two vector pipelines, instructions other than

arithmetic instructions replace arithmetic instruction and the performance is lowered

by the fraction of non-arithmetic instructions. For example, the assembly displayed in

List. 5.6 implement the innermost loop using 16 FMAs, 4 loads, 4 broadcasts and four

99

5. A High-Level Auto-Tuned Matrix Multiplication

Epy
c

75
51

P

2x
G

ol
d

51
20

2x
E5-

26
70

Phi 71
20

0

500

1000

1500
G

F
L

O
P

S

2.2s
1.8s

4.5s

1.1s

N = 8192, Monte Carlo

arch. lim.

w/o codegen issue

perf.

BLIS/MKL min/max

Epy
c

75
51

P

2x
G

ol
d

51
20

2x
E5-

26
70

Phi 71
20

0

500

1000

1500

G
F

L
O

P
S

2.0s
1.6s

3.7s

0.9s

N = 8192, Line Search

arch. lim.

w/o codegen issue

perf.

BLIS/MKL min/max

Epy
c

75
51

P

2x
G

ol
d

51
20

2x
E5-

26
70

Phi 71
20

0

500

1000

1500

G
F

L
O

P
S

4.0s
2.7s

4.2s

1.0s

N = 8192, Par. Neigh. Search

arch. lim.

w/o codegen issue

perf.

BLIS/MKL min/max

Epy
c

75
51

P

2x
G

ol
d

51
20

2x
E5-

26
70

Phi 71
20

0

500

1000

1500

G
F

L
O

P
S

2.1s
1.7s

3.8s

1.0s

N = 8192, Par. Line Search

arch. lim.

w/o codegen issue

perf.

BLIS/MKL min/max

Epy
c

75
51

P

2x
G

ol
d

51
20

2x
E5-

26
70

Phi 71
20

0

500

1000

1500

G
F

L
O

P
S

2.1s
1.7s

3.7s

0.9s

N = 8192, Split Par. F. N. Search

arch. lim.

w/o codegen issue

perf.

BLIS/MKL min/max

Epy
c

75
51

P

2x
G

ol
d

51
20

2x
E5-

26
70

Phi 71
20

0

500

1000

1500

G
F

L
O

P
S

2.0s
1.7s

3.6s

1.0s

N = 8192, Split Par. L. Search

arch. lim.

w/o codegen issue

perf.

BLIS/MKL min/max

Figure 5.4.: Duration and performance of the auto-tuned kernel for multiple search
strategies. The dotted lines indicate the theoretical peak performance of the
hardware platforms. MKL and BLIS are used as reference implementations
on the Intel and AMD platforms. Except for the Xeon Phi platform, the
performance achieved by the line search variants matches that of the vendor
implementation. The best overall result for each platform is emphasized by
a red-colored device name.

100

5.5. Evaluation

scalar instructions (for indexing/loop header). Therefore, on the Xeon Phi platform this

implementation can only achieve up to 57% of the peak performance.

The Xeon Phi implements the AVX512F instruction set which allows for embedded

broadcast instructions. By embedding a broadcast instruction into an operand of an, in

our case, FMA instruction, the number of instructions can be reduced. As instructions

compete for decoder bandwidth, using embedded broadcasts is an important optimiza-

tion on the Xeon Phi. In the assembly shown in List. 5.6 there are four broadcasts

(xreg-many) in the innermost loop which could be avoided. Unfortunately, neither GCC7

nor GCC9 were able to generate assembly that make use of embedded broadcasts. By

eliminating the broadcasts, this loop would be limited to 67% of the peak performance.

Even better, by choosing a larger 5 × 5 blocking scheme the theoretical performance

limit further improves to 74% of the peak performance. In Fig. 5.6, the dotted orange

lines extrapolate the performance of a 5 × 5 register-blocking scheme with embedded

broadcasts from the blocking scheme detected by the auto-tuner. As the graphs show,

this issue alone explains a large part of the gap between our implementation and that

of Intel’s MKL. We suspect that similar code generation issues explain the remaining

gap. Note that all two-dimensional blocking schemes are bound by the yreg,base-many

loads to approximately 83% of the peak performance assuming no scalar instruction in

the innermost loop (partially achievable through unrolling).

The other architectures (Zen, Sandy Bridge and Skylake) are not affected by this

issue as all of them are at least 4-wide architectures. These architectures can execute

the arithmetic vector instructions and simultaneously handle the loop overhead, loads

and the broadcasts.

5.5.3. Search Strategies and Auto-Tuning

As Fig. 5.4 provides an overview of the auto-tuning results across the different tuners, we

can use these results to compare the search strategies. There are two basic types of search

strategies that achieved results within margin of error. Those are the line search variants

and split parallel full neighborhood search. Both Monte Carlo search and parallel neigh-

borhood search failed to get similarly close to the optimal performance. Neighborhood

search seems to get stuck in a local minimum. Compared to line search, this search

strategy cannot jump along an axis in the parameter space and requires a “smoother”

tuning objective. On the other hand, by considering a larger neighborhood, though for

fewer parameters at a time, the split parallel full neighborhood search does not seem to

be affected by this issue. The strong results of split parallel full neighborhood search

101

5. A High-Level Auto-Tuned Matrix Multiplication

Epyc 7551P, SPLS

2xGold
5120, LS

Phi 7210, LS

2xE5-2670, SPLS

1

2

3

4

5

6

S
p

ee
d

u
p

ov
er

P
V

N

N = 8192

speedup

0

5

10

15

20

D
u

ra
ti

on
(s

)

PVN

best

Figure 5.5.: The speedup of the best search results for each device compared to the
respective performance of the PVN parameter combination.

furthermore illustrate the usefulness of the group tuner approach, as a full neighborhood

search approach would be infeasible. As Monte Carlo search performed a fixed number

of 50 search steps, it was at a disadvantage. For comparison, split parallel line search

required 174 evaluations on the AMD Epyc platform. However, as Monte Carlo is an

undirected search strategy, choosing the number of search steps appropriately can be

challenging in itself.

To give an idea of the benefit of auto-tuning for this compute kernel, we compare

the best detected parameterization of each device to the performance measured for the

PVN parameterization. The results of this comparison are displayed in Fig. 5.5. Overall,

speedups of 3.4x to 4.5x were observed. This shows that competitive performance was

only achieved after auto-tuning. We emphasize that the PVN parameterization still

benefited from cache blocking to a degree.

To further investigate the utility of the parameters, we performed additional experi-

ments. Starting with the best parameterization, we set parameters to their PVN value

or the closest value that results in a correct kernel. The blocking parameters were mod-

ified in groups, the remaining parameters were set to their PVN value individually. For

correctness, the outer cache-blocking parameters were reset to the inner cache-blocking

parameters. Similarly, the inner cache-blocking parameters were reset to the register-

blocking parameters. As the resulting parameter combination is not necessarily valid,

it was further adjusted using the same approach as was used during tuning. For each

device, we report the speedup of the best parameterization over the partial PVN pa-

102

5.5. Evaluation

xre
g,
yre

g,b
ase

x in
, y in

, k in

xout,
yout,

kout

NUMA
co

py

OMP
sch

ed
.

SMT

0

1

2

3

4

S
p

ee
d

u
p

v
s

P
V

N

Maximum Contribution, Split Par. L. Search

Figure 5.6.: The maximum contribution of individual parameters and parameter groups
to the performance of the fastest parameterization across all devices. For
this comparison, the results of split parallel line search were used.

rameterization. To assess the general usefulness of a parameter, we take the maximum

speedup over all devices. As the search strategy, we chose split parallel line search, as it

achieved excellent performance results across all hardware platforms.

Figure 5.6 shows the results of the partial PVN comparison. To reduce variability, 10

runs were averaged. All parameters turned out to provide at least a small benefit, with

some parameters strongly improving performance. The register-blocking parameters and

the inner cache-blocking parameter were the most critical parameters for high perfor-

mance. NUMA-copy only significantly improved performance on the Epyc platform,

the only platform with four NUMA nodes. Similarly, the OpenMP scheduling parame-

ter improved performance only on the Xeon Phi platform, which is consistent with the

fact that this platform has the highest number of cores and relatively weak per-core

performance. Consequently, this platform can be expected to be most susceptible to

scheduling issue. The outer cache blocking turned out to provide only a negligible per-

formance improvement. Disabling SMT yielded a small performance increase on some

platforms.

The best parameter values that were detected through auto-tuning are stated in

Tab. 5.2. We can draw further conclusions from these auto-tuned parameter values.

The parameters were chosen so that the inner blocking scheme can run entirely in the

L1 cache on these four platforms. Similarly, the outer blocking fits into the L2 cache on

103

5. A High-Level Auto-Tuned Matrix Multiplication

Epyc 7551P 2xGold 5120 Phi 7210 2xE5-2670

Search Strategy Split Par. Line S. Line S. Line S. Split Par. Line S.
Duration (s) 2.0 1.6 0.9 3.6

GFLOPS (DP) 557 674 1215 308
xreg 4 5 5 3

xreg,base 3 5 5 3
xin 16 110 55 120
yin 12 40 40 12
kin 128 64 72 72
xout 256 110 55 360
yout 252 200 80 516
kout 128 64 72 72

NUMA copy 1 1 0 1
OMP sched. 0 1 1 1

SMT 32 56 256 16
Data (in, kB) 14 31 29 17

Data (out, kB) 347 128 53 497
F/B (out) 46 (> 3.8) 21 (> 4.3) 12 (> 7.5) 53(> 3.8)

Table 5.2.: Runtime, performance, search strategy and the parameter values of the best
overall parameter combination of each device. The inner blocking parameters
were chosen so that the data fits into the L1 cache of the architectures.
Finally, the arithmetic intensity of the outer blocking scheme is high enough
to overcome the memory bandwidth limitations.

all platforms, except for the Xeon E5-2670 where it fits into the L3 cache.

For the algorithm to be compute bound, the outer blocking scheme needs to perform

enough computations on a loaded block. Of course, from the performance results we

could already conclude that this is the case. The arithmetic intensity computed from

the parameters (in F/B) is consistent with this observation. For this calculation, it

was assumed (pessimistically) that all three submatrices get reloaded when the next

multiplication of submatrices is performed.

As the next step, we consider the time required for auto-tuning. To that end, we look

at the overall runtime of the tuner and the fraction required for the JIT compilation.

To investigate whether the optimal parameter combination is detected early or late in

the tuning process, we further provide the time required until the optimal parameter

combination was encountered.

Fig. 5.7 gives an overview of the time required for tuning using the different search

strategies on each device. The Monte Carlo tuner is mainly listed for completeness, as

104

5.5. Evaluation

its fixed number of search steps makes it not really comparable to the other results.

Of the search strategies used, only Monte Carlo and line search did not use parallel

compilation. Consequently, these tuners require a larger fraction of their runtime for

compilation. Comparing line search with parallel line search, parallel compilation re-

duced the time required for compilation significantly on all platforms. Generally, parallel

compilation was most important for the Xeon Phi platforms, due to the weak single-

thread performance of the Atom-derived cores that only run at 1.4 GHz. On the Xeon

Phi platform, parallel compilation reduced the runtime for line search from 3312 s to

666 s. Note that parallel compilation still could not use all cores most of the time, as

only occasionally more than 10 compute kernels were to be considered in the next search

step.

Considering the performance of the best parameter combination and time required for

auto-tuning, split parallel full neighborhood search could be considered the best overall

search strategy. The achieved performance was very close to the overall best performance

across all devices and tuning was significantly faster than the other search strategies on

three out of four devices.

5.5.4. A Closer Look at the Auto-Tuners

As the final step of this evaluation, we look more closely at the behavior of the auto-

tuners during the tuning process. First, we consider the tuners that achieved the highest

performance on each device. For these tuners, the runtimes of kernel variants consid-

ered during tuning are shown in Fig. 5.8. In all four cases, performance was strongly

improved in the first steps. As both tuners are variants of line search, this corresponds

to adjusting the register-blocking parameters and the inner cache-blocking parameters.

On the Xeon Gold and the Xeon Phi platform, only slightly improved parameter combi-

nations were found after 80 search steps. However, on the other two platforms significant

improvements were still observed after more than a 100 search steps.

Figure 5.9 shows the Monte Carlo tuner on the Xeon Gold platform. The tuning results

show a major disadvantage of this tuner compared to the other tuners. As the parameter

values are randomly selected, the runtimes of kernel variants do not decrease throughout

search. We compare this behavior to the split parallel full neighborhood search strategy

on the same platform shown in Fig. 5.10. After expensive initial evaluations, further

evaluations are comparably cheap. Faster overall tuning could likely be achieved by a

few Monte Carlo steps for providing an initial guess to be used by the directed search

strategies.

105

5. A High-Level Auto-Tuned Matrix Multiplication

L
in

e
S
.

M
o
n
te

C
a
rl

o

P
a
r.

L
in

e
S
.

P
a
r.

N
ei

g
h
b

o
r

S
.

S
p
li
t

P
a
r.

F
.

N
.

S
.

S
p
li
t

P
a
r.

L
in

e
S
.

0

1000

2000

3000

D
u

ra
ti

o
n

(s
)

fi
x
ed

it
s.

Epyc 7551P, N = 8192

reach best

total

compile

L
in

e
S
.

M
o
n
te

C
a
rl

o

P
a
r.

L
in

e
S
.

P
a
r.

N
ei

g
h
b

o
r

S
.

S
p
li
t

P
a
r.

F
.

N
.

S
.

S
p
li
t

P
a
r.

L
in

e
S
.

0

500

1000

1500

2000

2500

3000

D
u

ra
ti

o
n

(s
)

fi
x
ed

it
s.

2xGold 5120, N = 8192

reach best

total

compile

L
in

e
S
.

M
o
n
te

C
a
rl

o

P
a
r.

L
in

e
S
.

P
a
r.

N
ei

g
h
b

o
r

S
.

S
p
li
t

P
a
r.

F
.

N
.

S
.

S
p
li
t

P
a
r.

L
in

e
S
.

0

1000

2000

3000

4000

5000

D
u

ra
ti

on
(s

)

fi
x
ed

it
s.

2xE5-2670, N = 8192

reach best

total

compile
L

in
e

S
.

M
o
n
te

C
a
rl

o

P
a
r.

L
in

e
S
.

P
a
r.

N
ei

g
h
b

o
r

S
.

S
p
li
t

P
a
r.

F
.

N
.

S
.

S
p
li
t

P
a
r.

L
in

e
S
.

0

2000

4000

6000

8000

D
u

ra
ti

on
(s

)

fi
x
ed

it
s.

Phi 7210, N = 8192

reach best

total

compile

Figure 5.7.: The time required for auto-tuning the matrix multiplication kernel. We
provide the total time required and the fraction used for compilation. Ad-
ditionally, we state the duration until the best parameter combination was
encountered. The results for the Xeon Phi platform are very different from
the other platforms, as the lower single-core performance of this platform
leads to more time required for (parallel) compilation. Parallel compilation
is advantageous on all platforms.

106

5.5. Evaluation

0 50 100 150 200 250 300 350

Search Step

0

2

4

6

8

K
er

n
el

D
u

ra
ti

o
n

(s
)

opt.: 1.91s

Epyc 7551P, Split Par. Line S.

running min.

samples

improve

best

0 40 80 120 160 200 240 280

Search Step

0

1

2

3

4

5

K
er

n
el

D
u

ra
ti

o
n

(s
)

opt.: 1.63s

2xGold 5120, Line S.

running min.

samples

improve

best

0 50 100 150 200 250 300 350

Search Step

0.0

2.5

5.0

7.5

10.0

12.5

K
er

n
el

D
u

ra
ti

on
(s

)

opt.: 3.56s

2xE5-2670, Split Par. Line S.

running min.

samples

improve

best

0 25 50 75 100 125 150 175 200 225

Search Step

0

1

2

3

4

5

K
er

n
el

D
u

ra
ti

on
(s

)

opt.: 0.88s

Phi 7210, Line S.

running min.

samples

improve

best

Figure 5.8.: Performance throughout the auto-tuning process for the auto-tuners that
achieved the best overall performance on all devices.

107

5. A High-Level Auto-Tuned Matrix Multiplication

0 6 12 18 24 30 36 42 48

Search Step

0

1

2

3

4

K
er

n
el

D
u

ra
ti

o
n

(s
)

opt.: 1.77s

2xGold 5120, Monte Carlo

running min.

samples

improve

best

Figure 5.9.: Monte Carlo search on the dual-socket Xeon Gold 5120 platform. Through-
out search relatively expensive evaluations need to be performed.

0 15 30 45 60 75 90 105 120 135

Search Step

0

1

2

3

4

5

K
er

n
el

D
u

ra
ti

on
(s

)

opt.: 1.69s

2xGold 5120, Split Par. F. N. S.

running min.

samples

improve

best

Figure 5.10.: Split parallel full neighborhood search performs few expensive evaluations
after expensive evaluations in the first search steps.

108

Part III.

Auto-Tuned and Distributed Data

Mining on Sparse Grids

109

In the following chapters, we investigate auto-tuning and performance portability of

several sparse grid algorithms. The sparse grids method is a grid-based spatial discretiza-

tion approach that is well-suited for higher-dimensional problems. While the sparse grids

method has many applications, we focus on sparse grid data mining for regression in

Chapter 7 and clustering problems in Chapter 8. For both types of data mining problems,

this work introduces new algorithms that achieve excellent performance on a wide range

of hardware platforms. These algorithms were designed for spatially-adaptive sparse

grids, as spatial adaptivity allows for a reduced error or reduced runtimes—sometimes

even both simultaneously.

The two regression algorithms we introduce both support auto-tuning. We show that

the auto-tuning using AutoTuneTMP significantly improves performance in both cases.

In the clustering chapter, the focus is on performance portability. We present node-level

results as well as results for two supercomputers. All algorithm presented and evaluated

in the following chapters have been implemented in the sparse grids library SG++.

Contributions to Sparse Grids

In this work, we introduce a new auto-tuning-enabled variant of the streaming algo-

rithm for sparse grid regression by Heinecke and Pflüger [74]. Our algorithm extends

the basic streaming algorithm with auto-tuning capabilities and auto-tuned optimiza-

tions to improve performance and multi-GPU scalability. As a complexity-optimal ap-

proach, we further present the subspace algorithm that targets processor platforms and

is auto-tuning-enabled as well. For processor platforms, the subspace algorithm strongly

improves performance over the state-of-the-art streaming algorithm.

Furthermore, we introduce a high-performance sparse grid clustering algorithm that

extends prior work by Peherstorfer et al [114]. Our extended algorithm has been designed

for high performance, performance portability and supports a wide range of GPUs and

processors efficiently. Furthermore, the results for two supercomputers presented in

Sec. 8.7.3 are the first demonstration of sparse grid clustering at scale.

As an additional contribution to sparse grid data mining, we make use of a new

datadriven solverless refinement approach for spatially-adaptive sparse grids called sup-

port refinement. This refinement approach significantly improves runtimes over prior

surplus-based refinement strategies for a given fixed error. The new algorithms as well

as the new refinement approach significantly enhance the utility of sparse grids in big

data settings.

111

Contributions to Auto-Tuning and Performance Portability

This work introduces two new auto-tuned algorithms that are analyzed in detail. As both

regression algorithms use AutoTuneTMP for auto-tuning, these applications provide

further evidence for the applicability of AutoTuneTMP. Furthermore, the results show

that auto-tuning significantly improves performance and therefore provide evidence for

the usefulness of auto-tuning in general and AutoTuneTMP in particular. In addition to

auto-tuning, performance portability is analyzed for the regression algorithms as well as

the clustering algorithm. Performance portability is achieved for all three algorithms, in

case of sparse grid clustering even across two supercomputers with different node-level

hardware architecture.

Published Work

The following chapters extend three published papers written by the author of this work:

• “A New Subspace-Based Algorithm for Efficient Spatially Adaptive Sparse Grid

Regression, Classification and Multi-evaluation” [120],

• “Heterogeneous Distributed Big Data Clustering on Sparse Grids” [119], and

• “AutoTuneTMP: Auto-Tuning in C++ With Runtime Template Metaprogram-

ming” [118].

112

6. An Introduction to Sparse Grids

Grid-based discretization approaches generally suffer from the so-called curse of dimen-

sionality, as the number of grid points required grows exponentially with increasing

dimensionality of the domain [16]. The sparse grid method is a method for spatial

discretization that uses a grid, but mitigates the curse of dimensionality to an extent.

Sparse grids were originally introduced by Christoph Zenger for the solution of partial

differential equations [164]. A thorough description of the basic theory has been given

by Bungartz and Griebel [23].

The purpose of the next sections is to summarize the sparse grid theory needed for

sparse grid data mining. To that end, we introduce the basic theory in Sec. 6.1, i.e.,

the sparse grid function space and the two types of basis functions we use. Sparse grids

support spatial adaptivity for adjusting the resolution of the grid in subvolumes of the

domain. We use spatial adaptivity in several data mining scenarios to achieve a given

error with reduced effort. In Sec. 6.2, we first describe the concept of spatial adaptivity

and then present three strategies for enabling it. Two of the presented refinement

strategies are newly introduced in this work.

6.1. Sparse Grids

In order to define sparse grids, some related concepts need to be introduced before-

hand. First, we define d-dimensional anisotropic grids with equidistantly-spaced grid

points. Then, we introduce a hierarchical representation of these grids and describe a

function space spanned by basis functions at the locations of the grid points. Sparse

grids are obtained through a modification of the hierarchical representation—essentially

by excluding (many) grid points.

As a first step, we define a one-dimensional grid with the interval [0, 1] as domain.

Given a discretization level n ∈ N, we define the mesh width hn := 2−n. By using hn,

113

6. An Introduction to Sparse Grids

we can specify the locations of the grid points

Ωfull
n := {ihn : i ∈ {1, . . . , 2n − 1}}. (6.1)

Note that the grid points are equidistantly-spaced. Furthermore, this grid has 2n − 1

grid points and no grid points on the domain’s boundary. We only use grids without

boundary grid points in this work and therefore focus on this grid type. Whenever a

non-zero boundary is needed, we make use of function spaces that linearly extrapolate

towards the boundary. Nevertheless, we remark that the basic theory supports boundary

grid points.

Next, we extend the one-dimensional grid approach to higher dimensions. As the

domain, we choose the d-dimensional hypercube Ω := [0, 1]d. We require the grid to be

anisotropic and therefore need a different discretization level per dimension. Thus, we

use a tuple of discretization levels n := (n1, . . . , nd) ∈ Nd. Given n, we define a tuple of

mesh widths hn := (hn1 = 2−n1 , . . . , hnd
= 2−nd) and obtain the desired anisotropic grid

with grid points

Ωfull
n := {(i1hn1 , . . . , idhnd

) : i ∈ {1, . . . , 2n1 − 1} × · · · × {1, . . . , 2nd − 1}}. (6.2)

This type of grid has
∏d

j=1(2nj − 1) grid points. It is fully affected by the curse of

dimensionality if there is at least one nj > 1 for j ∈ {1, . . . , d}, as the number of

grid points depends on the dimensionality exponentially in this case. We refer to this

approach as the full grid approach.

The hierarchical representation of a full grid breaks up the full grid into a set of

anisotropic subgrids with different discretization levels. We start by defining an in-

dex set Il that enumerates the grid points on a d-dimensional anisotropic subgrid of

discretization level l:

Il := {(i1, . . . , id) : 0 < ik < 2lk , ik odd, k ∈ {1, . . . , d}}. (6.3)

With this index set, we define the subgrids

Ωl := {xl,i := (i1hl1 , . . . , idhld) : i ∈ Il}, (6.4)

with the coordinates of the grid points xl,i. Essentially, a subgrid is an anisotropic grid

as in the full grid approach, but with the even grid indices skipped.

Each grid point xl,i has an associated basis function φl,i. In data mining on sparse

114

6.1. Sparse Grids

l=1

l=2

l=3

ϕ1,1

ϕ2,1 ϕ2,3

ϕ3,1 ϕ3,3 ϕ3,5 ϕ3,70

0

0 1

1

1

1

1

1

Figure 6.1.: The linear basis functions of different discretization levels for one-
dimensional grids.

grids, linear, polynomial, B-spline and other types of basis functions have been used [122].

We use linear and modified-linear basis functions in this work; the latter are defined at

the end of this section. Both types of basis functions have been successfully applied to

data mining tasks in the past [60, 72, 73, 120, 119, 122].

The scaled and translated one-dimensional piecewise-linear basis functions, also known

as hat functions, are defined as

φhat
l,i (x) := max(0, 1− |2lx− i|). (6.5)

Although they are piecewise linear, we refer to this type of basis function as a linear basis

function in the remainder of this work. The linear basis functions for one-dimensional

grids are shown in Fig. 6.1 for different discretization levels.

Using a tensor-product approach, we obtain the higher-dimensional linear basis func-

tions

φhat
l,i (x) :=

d∏
j=1

φhat
lj ,ij

(xj). (6.6)

Of course, because of the tensor-product approach, these basis functions are only

piecewise linear if all but one dimension are held constant.

For each subgrid, we define a subspace that is spanned by basis functions φl,i as

Wl := span{φl,i : i ∈ Il}. (6.7)

To illustrate the subspaces, Fig. 6.2 shows the linear basis functions φhat
l,i of the subspaces

115

6. An Introduction to Sparse Grids

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2
0.4

0.6
0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) The subspace l = (1, 1)

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2
0.4

0.6
0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) The subspace l = (2, 2)

Figure 6.2.: The linear basis functions of the subspaces l = (1, 1) and l = (2, 2).

ϕ3,1 ϕ3,3 ϕ3,5 ϕ3,7ϕ3,2 ϕ3,6ϕ3,40 1

(a) A 1d grid in nodal basis

ϕ3,1 ϕ3,3 ϕ3,5 ϕ3,7ϕ2,1 ϕ2,3ϕ1,10 1

(b) A 1d grid in the hierarchical basis

Figure 6.3.: The hat basis functions of a 1d grid of level l = 3 using both the nodal and
the hierarchical basis. Both representations span the same piecewise-linear
function space.

l = (1, 1) and l = (2, 2).

Given the subspaces Wl, we can define the full grid function space using the hierar-

chical approach as

Vn :=
⊕
|l|∞≤n

Wl, (6.8)

with
⊕

representing the direct sum. An example for a one-dimensional full grid with

linear basis functions in both the nodal basis and the hierarchical basis is shown in

Fig. 6.3. The nodal and the hierarchical representation of this n = 3 grid use the

same grid points and span the same piecewise-linear function space. For the hierarchical

representation, the three discretization levels from Fig. 6.1 are combined.

To obtain a sparse grid, we select a different set of subspaces:

V (1)
n :=

⊕
|l|1≤n+d−1

Wl. (6.9)

116

6.1. Sparse Grids

l1=1 l1=2 l1=3

l0=1

l0=2

l0=3

0

1

0

1

0

1

0 1 0 1 0 1

0 1

0

1

Figure 6.4.: Two-dimensional subgrids of an l = 3 sparse grid (left) and the l = 3 sparse
grid itself (right). The dotted lines in the subgrid scheme outline the support
of linear basis functions centered at the grid points. Grayed-out grid points
and subgrids indicate the corresponding full grid.

Figure 6.4 shows the subgrids of a two-dimensional sparse grid on the left and the sparse

grid obtained by superimposing the subgrids on the right-hand side. To illustrate the

difference between a sparse grid (black) and a full grid, the corresponding full grid is

indicated as well (gray). As Fig. 6.4 shows, the choice of subspaces of a sparse grid

corresponds to a diagonal cut in the subgrid tableau. Given the definition of a sparse

grid, it follows that in the one-dimensional case, sparse grids and full grids are identical.

However, sparse grids employ fewer grid points for d > 1 and n > 1, i.e., for grids that

are affected by the curse of dimensionality.

It has been shown that for a sufficiently smooth function u, a sparse grid interpolant

f (1) ∈ V
(1)
n and linear basis functions, the interpolation error ||f (1) − u||L2 is slightly

increased from O(h2
n) to O(h2

n(log h−1
n)d−1). However, the number of grid points is

significantly reduced from O(h−dn) to O(h−1
n (log h−1

n)d−1) [23]. Therefore, compared to a

full grid, sparse grids achieve a similar error using fewer grid points.

Sparse grid functions are linear combinations of basis functions. Therefore, an indi-

vidual sparse grid function f (1) ∈ V (1)
n is given as

f (1)(x) =
∑

|l|1≤n+d−1

∑
i∈Il

αl,iφl,i(x). (6.10)

Commonly, the coefficients α are referred to as surpluses. Some sparse grid data mining

algorithms do not exploit the hierarchical structure of the sparse grid. To simplify

117

6. An Introduction to Sparse Grids

the description of these algorithms, we introduce an additional notation that linearly

enumerates the grid points. For a sparse grid with N grid points, we therefore define

the short-hand notation

f (1)(x) =
N∑
j=1

αjφj(x) (6.11)

for Eq. 6.10.

For some algorithms, it is convenient to represent the grid points as a set of level-index

tuples. We therefore define

Ω′n :=
⋃

|l|1≤n+d−1

{(l, i) : i ∈ Il}, (6.12)

as the level-index representation of a sparse grid function space.

Modified-Linear Basis Functions

Modified-linear basis functions were introduced by Bungartz, Pflüger and Zimmer [24,

122]. They are standard linear basis functions inside the domain. However, the basis

functions next to the domain boundary extrapolate, again linearly, towards the bound-

ary. The one-dimensional modified-linear basis functions are defined as

φmod
l,i (x) :=

1 l = 1 ∧ i = 1,2− 2lx x ∈ [0, 2hl]

0 else
l > 1 ∧ i = 1,2lx+ 1− i x ∈ [1− 2hl, 1]

0 else
l > 1 ∧ i = 2l − 1,

max
(
0, 1−

∣∣2lx− i∣∣) else.

(6.13)

For the one-dimensional case, the modified-linear basis functions are depicted in Fig. 6.5

for three discretization levels.

We extend the modified-linear basis functions to higher dimensions once again using

a tensor-product approach. Because modified-linear basis functions are non-zero on the

boundary, they can be used as an alternative to boundary grid points. For datadriven

problems, this is often a significant advantage if data points are located close to the

domain boundary. Figure 6.6 shows the modified-linear basis functions of the subspaces

l = (1, 3) and l = (3, 3).

118

6.1. Sparse Grids

l=1

l=2

l=3

ϕ1,1

ϕ2,1 ϕ2,3

ϕ3,1 ϕ3,3 ϕ3,5 ϕ3,7

0 10 1

0 1

0 1

1

2

1

2

1

2

Figure 6.5.: The one-dimensional modified-linear basis functions of the subspaces l = 1,
l = 2 and l = 3.

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2
0.4

0.6
0.8

1.0

0.0

0.5

1.0

1.5

2.0

(a) The subspace l = (1, 3)

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2
0.4

0.6
0.8

1.0

0

1

2

3

4

(b) The subspace l = (3, 3)

Figure 6.6.: The modified-linear basis functions of the subspaces l = (1, 3) and l = (3, 3).

119

6. An Introduction to Sparse Grids

These basis functions were originally introduced in the form given in Eq. 6.13. How-

ever, motivated by an algorithmic perspective, we present a second equivalent represen-

tation:

φmod
l,i (x) =

1 l = 1 ∧ i = 1,

2 · φhat
l−1,0(x) l > 1 ∧ i = 1,

2 · φhat
l−1,2l−1(x) l > 1 ∧ i = 2l − 1,

φhat
l,i (x) else.

(6.14)

This second notation directly leads to a branch-free implementation, as we can encode

the branches in the level and index parameters of the hat functions. We expand on this

idea in Sec. 7.1.1.

6.2. Spatially-Adaptive Sparse Grids

We generally cannot assume that datasets are homogeneously distributed throughout

the domain. As a consequence, an adjusted resolution of regions of the domain is often

useful. We address this issue by using adaptive sparse grids. To differentiate adaptive

sparse grid from sparse grids without adaptivity, the latter are commonly called regular

sparse grids. The description of spatially-adaptive sparse grids in this section builds on

work of Dirk Pflüger [122].

We define a spatially-adaptive sparse grid through the level-index representation. A

spatially-adaptive sparse has the grid points Ω′ ⊆ Ω′n, for an adaptive sparse grid with

an arbitrary but fixed set of grid points and a large-enough n. However, for convenience

we mostly extend a given, possibly already adaptive, sparse grid by adding grid points.

Algorithms that determine which grid points to add are called refinement criteria. Con-

versely, coarsening criteria enable the removal of grid points from the grid.

Dimensional adaptivity is a second common approach for adaptive sparse grids [60,

122]. This type of adaptivity allows for the addition (or removal) of entire subgrids.

Thus, it constitutes a more coarse-grained refinement approach compared to spatial

adaptivity. Through dimensional adaptivity, problems with varying resolution require-

ments in different dimensions can be solved more efficiently compared to regular sparse

grids. However, dimensional adaptivity does not allow for an adjusted resolution in a

specific region of the domain. As we target data mining applications with inhomoge-

neously distributed data points in this work, we employ spatial adaptivity.

We further limit ourselves to spatially-adaptive sparse grids that are consistent [60,

120

6.2. Spatially-Adaptive Sparse Grids

122, 124]. For defining this property, a sparse grid needs to be viewed as a directed

graph. A parent grid point xl,i has two hierarchical successors (or children) in dimension

j: a “left” successor with x
(j)
lj+1,2·ij−1 and a “right” successor with x

(j)
lj+1,2·ij+1. The other

components are the same as in the parent grid point. Note that a child grid point

generally has multiple parent grid points. A sparse grid is consistent if for every grid

point all hierarchical parents of that grid point are themselves part of the grid. This

is trivially true for the (root) grid point with l = (1, . . . , 1) and i = (1, . . . , 1), as

it has no parent grid points. A grid point is a leaf node of the graph if none of its

hierarchical successors are part of the grid. We employ consistent grids for two reasons.

Firstly, consistency simplifies the handling of the refinement process, e.g., with respect

to handling potential duplicate grid points. Secondly, the structure of a consistent grid

can be exploited to enable faster algorithms, as is the case for the regression algorithm

we introduce in Sec. 7.2.

So far, we have not described the refinement and coarsening criteria that we use. In

the following, we present three heuristics for choosing the grid points of a spatially-

adaptive sparse grid: surplus refinement, weight-support coarsening and support refine-

ment. Both, weight-support coarsening and support refinement are newly introduced in

this work.

Surplus Refinement

As a high absolute surplus value indicates a greater contribution to the overall function

than smaller surplus values, this refinement approach first refines the grid points with

the highest absolute surplus values [122]. That is, we infer the potential contribution of

the child grid points from the contribution of the parent grid point. As for all refinement

heuristics we present, examples can be constructed where this approach fails.

Surplus refinement first sorts the grid points according to the absolute value of the

surpluses. Then, the rp ∈ N grid points with the highest absolute surplus values are

refined by adding all 2d hierarchical children of the grid point to the grid. Apart from

the parameter rp, surplus refinement has a second parameter rs ∈ N which determines

how often the surplus refinement process is repeated. Note that before each surplus

refinement step, the surpluses of grid points that were added in the last refinement step

need to be computed. Some applications even require all surpluses to be recomputed.

As obtaining the surpluses generally requires a solution of the underlying problem (inter-

polation, data mining, solving a partial differential equation, . . .), the refinement steps

can be expensive. Surplus refinement has been applied successfully to a wide range of

121

6. An Introduction to Sparse Grids

l1=1

l0=1

l1=2 l1=3

l0=2

l0=3

Figure 6.7.: The subgrids of a d-dimensional spatially-adaptive sparse grid that was cre-
ated from an already adaptive sparse grid. Only grid points that are part of
the spatially-adaptive sparse grid are shown. Three grid points were refined
in two refinement steps. The resulting sparse grid is displayed in the lower
right corner.

regression and classification problems [122].

Figure 6.7 illustrates the surplus refinement approach. Starting from a regular sparse

grid with l = 2, the grid is refined two times. In the first refinement step, two grid points

are refined (red). This leads to eight grid points being added to the sparse grid. The

brown grid point in subgrid (2, 2) additionally requires the blue grid point in subgrid

(2, 1) to be added to ensure consistency. During the second iteration, one grid point

gets refined (green) and, consequently, four further grid points are added to the sparse

grid. The spatially-adaptive sparse grid that results from the two refinement iterations

is shown in the lower-right corner of the figure.

Weight-Support Coarsening

Generally, coarsening attempts to remove grid points from the grid that do not contribute

significantly to the overall solution. To preserve consistency, we only allow grid points to

be removed that are leaf nodes in the corresponding graph. A straightforward approach

to coarsening is the removal of grid points with small absolute surplus values (which is

available in SG++). However, this surplus-based coarsening approach again requires the

surplus values, and therefore the underlying problem to be solved.

122

6.2. Spatially-Adaptive Sparse Grids

In this work, we propose a new weight-support coarsening approach for datadriven

problems. Given the level-index representation Ω′ of an adaptive sparse grid, a weight-

support coarsening threshold tws ∈ R and a dataset T (c) := {xi ∈ [0, 1]d}mi=1 with m data

points. We define the grid points to be removed as

WStws,T (c),Ω′ :=

(l, i) ∈ Ω′ :
∑

x∈T (c)

φl,i(x) < tws ∧ (l, i) is leaf

 (6.15)

This criterion was designed for basis functions such as linear basis functions, where the

position of the data points on the support allows inferring whether the grid point is

relevant for the sparse grid function. A straightforward use-case are grid points without

data points on the support. Depending on the application, such grid points might be

much less important, or even entirely irrelevant, compared to grid points with many

data points on the support.

For this coarsening criterion, the sums
∑

x∈T (c) φl,i(xk) need to be computed. As we

will show in Sec. 8.1, these sums are needed for the sparse grid density estimation. There,

they appear as the right-hand side of the system of linear equations to be solved. We

provide details on how this sum can be computed efficiently in the same section.

Support Refinement

The new support refinement approach considers the support of the basis functions and

iteratively adds basis functions to the grid that have at least tsupp ∈ N data points on

their support. The initial grid is a level n = 1 grid. We introduce nmax ∈ N as a second

parameter to control the refinement process, as the support constraint alone can lead to

very large grids, especially if improperly chosen. nmax is the maximum allowed level as

computed by the criterion nmax < |l|1−d and limits the maximum depth of the iterative

refinement process. Through this approach, a less deeply-refined grid is used in regions

with few data points. Conversely, more grid points are spent where there are many

data points, i.e., where there is potential for a more complex structure that needs to be

represented.

For tsupp > 1 and if there are no duplicate data points, the support refinement approach

will lead to a grid of finite size, as the volume of the support is halved whenever a

hierarchical successor of a grid point is considered. Furthermore, if the supports of the

hierarchical successors partition the support of the parent basis function, sparse grids

created with this adaptivity approach are guaranteed to be consistent. This applies to

123

6. An Introduction to Sparse Grids

the linear and modified-linear basis functions we use.

Algorithm 1 shows the support refinement approach in more detail. As each refinement

iteration needs to iterate the dataset for each candidate (in the count support function),

the support refinement is moderately expensive. To reduce the associated cost, the

algorithm was implemented in OpenCL so that (multiple) GPUs can be used. By testing

the support of a group of candidate grid points simultaneously, i.e., blocking of the loop

that iterates the hierarchical successors, the algorithm becomes cache efficient. In our

implementation, a candidate grid point is assigned to each OpenCL work-item. As a

work-group jointly iterates the dataset, loaded data points get shared efficiently through

the shared memory.

Algorithm 1: Support refinement creates a spatially-adaptive sparse grid for
a given dataset. The successors function computes the set of all hierarchical
successors of a set of grid points. The count support function counts the number
of data points on the support.

Input : Dataset T (c) := {xi ∈ [0, 1]d}mi=1, maximum level nmax, threshold tsupp

Output: Spatially-adaptive sparse grid Ω′ in level-index representation
1 if |T (c)| < tsupp then
2 Ω′ ← {}
3 return

4 Ω′ ← {(1,1)}
5 Ω(c) ← {(1,1)} // successors are candidates

6 for i = 2 . . . nmax do

7 Ω
(c)
next ← ∅ // successors are candidates in next iteration

8 for (l, i) ∈ successors(Ω(c)) do
9 if count support(T (c), l, i) > tsupp then

10 Ω′ ← Ω′ ∪ {(l, i)}
11 Ω

(c)
next ← Ω

(c)
next ∪ {(l, i)}

12 Ω(c) ← Ω
(c)
next

In Fig. 6.8, we show a spatially-adaptive sparse grid created through support refine-

ment. As the figure shows, the data points are inhomogeneously distributed in the

square [0.1, 0.9] × [0.1, 0.9]. Through support refinement, the grid points are primarily

spent in regions with a high number of data points.

124

6.2. Spatially-Adaptive Sparse Grids

0.0 0.2 0.4 0.6 0.8 1.0

x0

0.0

0.2

0.4

0.6

0.8

1.0

x
1

Support Refinement, nmax = 10, tsupp = 40

Figure 6.8.: The spatially-adaptive sparse grid obtained through support refinement for
an inhomogeneously distributed 2d dataset.

125

7. Least-Squares Regression on Sparse

Grids

Given a potentially noisy dataset

T (r) := {(xi, yi) : xi ∈ [0, 1]d, yi ∈ R}mi=1 (7.1)

that was normalized to the hypercube [0, 1]d with m data points.

The tuples (xi, yi) can be interpreted as function evaluations of an unknown function

f : [0, 1]d → R that is to be reconstructed by a least-squares approach.

With an ansatz function space V , the least-squares regression problem is given by

f̂ := arg min
u∈V

(
1

m

m∑
i=1

(yi − u(xi))
2 + λC(u)

)
. (7.2)

The first term minimizes the mean-squared error (MSE) and thereby ensures closeness to

the data points. As only minimizing the MSE can lead to overfitting, the regularization

term C(u) introduces a smoothness constraint. The regularization is controlled by the

regularization parameter λ ∈ R. Whereas least-squares regression has been well-known

for a long time, the sparse grid regression method was introduced by Garcke et al. in

2001 [59, 60].

In this work, we select the sparse grid function space V
(1)
n for the function space V .

Furthermore, we use a weight-decay regularization approach [19, 122]. Therefore, we

choose

C(u) :=
N∑
i=1

α2
i , (7.3)

with the surpluses α of the sparse grid function u ∈ V
(1)
n . These choices lead to the

system of linear equations (
1

m
BTB + λI

)
α =

1

m
BTy, (7.4)

127

7. Least-Squares Regression on Sparse Grids

with Bij = φj(xi) [19].

As the result of BTB has the dimensionality N × N , the system matrix is too large

to be stored directly. To address this issue, we solve the system of linear equations with

a conjugate gradient (CG) solver [136]. The CG solver requires the application of a

vector to the system matrix. To avoid assembling the system matrix, we formulate the

algorithm as two matrix-vector products that need to be computed in each CG iteration:

v := Bα and v′ := BTv. As B can be large as well, we use an implicit approach for

storing B and recompute components of B when they are accessed. We remark that the

computation of vi =
∑N

j=1 αjφj(xi) is a sparse grid function evaluation. Thus, Bα is

referred to as the multi-evaluation operator. Conversely, BTv is called the transposed

multi-evaluation operator.

For spatially-adaptive sparse grids, different algorithms have been proposed to com-

pute both matrix-vector products. In this work, we explore three algorithms: the re-

cursive algorithm, the streaming algorithm and the subspace algorithm. We use the

recursive algorithm as a performance baseline and only provide a brief description of

its multi-evaluation operator. The other two algorithms are introduced in detail. In

Sec. 7.1, we present an auto-tuning-enabled variant of the streaming algorithm called

unified streaming that targets GPUs as well as processor architectures. The auto-tuned

subspace algorithm, which targets processor architectures, is introduced in Sec. 7.2.

Apart from the supported hardware platforms, the streaming algorithm and the sub-

space algorithm differ in their complexity. The streaming algorithm has a worse complex-

ity, but it maps very well to modern hardware architectures. Conversely, the subspace

algorithm has a better complexity, yet is challenging to implement efficiently even on pro-

cessor architectures. In the evaluation of both algorithms, in Sec. 7.3, we investigate this

trade-off by analyzing the performance of both algorithms. As both algorithms support

auto-tuning, we investigate the contribution of auto-tuning to the achieved performance

as well.

For other types of sparse grids, specifically regular grids and dimensionally-adaptive

grids, further high-performance algorithms exist [108, 25]. These algorithms make use

of the fact that in both cases the subspaces are full, i.e., contain all possible grid points.

As these algorithms cannot be used in the context of spatially-adaptive sparse grids,

they are not covered in this work.

128

7.1. The Streaming Algorithm for Regression

The Recursive Algorithm for Multi-Evaluation Operator

The recursive algorithm makes use of the hierarchical structure of the grid to avoid

the evaluation of basis functions outside of their support. It was originally proposed

by Bungartz, Pflüger and Zimmer [24]. For simplicity, we consider a one-dimensional

example. If φl,i(x) > 0, then either φl+1,2i−1(x) > 0 or φl+1,2i+1(x) > 0. The case where

the evaluation happens on the support’s boundary of the successor grid points can be

handled by arbitrarily choosing the left or right successor, as the basis functions of both

successor grid points will evaluate to zero. The recursive algorithm follows the path of

non-zero evaluations until the grid point of the highest-level subgrid has been processed.

In case of spatially-adaptive sparse grids, a successor grid point might not be part of

the grid. Due to the consistency requirement and because the supports of the successor

grid points partition the support of the parent grid point, the recursion can be safely

aborted if a relevant successor grid point is missing.

For dimensionality d > 1, grid points can have multiple parents. We use a variant of

the algorithm that ensures that each child grid point is only considered once—based on

the so-called unidirectional principle [122]. For m data points and a sparse grid of level

n, a multi-evaluation operator that uses the recursive algorithm to evaluate individual

data points has a time complexity of O(mdnd) [122].

7.1. The Streaming Algorithm for Regression

The streaming algorithm for sparse grid multi-evaluation, regression and classifica-

tion [74] was developed by Heinecke and Pflüger. The core idea of this algorithm is to

disregard the structure of the grid and treat the grid as a set of independent level-index

tuples that represent the grid points. As the algorithm evaluates every basis function

for every data point, its complexity is O(Nmd). Note that the streaming algorithm is

not linear in d, as N ∈ O(h−1
n (log h−1

n)d−1) = O(2nnd−1). Thus, the complexity can be

stated as O(Nmd) = O(2nnd−1md), which is worse than that of the recursive algorithm.

Despite the worse complexity, it was shown that the streaming approach achieves

higher performance than the recursive approach, as it can be implemented efficiently

for modern hardware architectures. Furthermore, the complexity assumes a regular

sparse grid. However, spatially-adaptive sparse grids with few grid points per subgrid

mitigate the complexity disadvantage [120]. Heinecke et al. showed that the streaming

approach outperforms the recursive approach with speedups of 1.23x to 14x on a Xeon

X5650 processor. Speedups obtained on many other processor platforms were similar.

129

7. Least-Squares Regression on Sparse Grids

Furthermore, it is well-suited for modern HPC architectures including GPUs and pro-

cessors with wide vector units [74, 72]. In this work, we further extend their algorithm

with auto-tuning capabilities and add optimizations to better utilize modern hardware

platforms.

Algorithm 2 shows the computation of v := Bα, i.e., the multi-evaluation operation.

The two outer loops together iterate the components of the matrix B. To compute

the components of the matrix, another iteration in the dimensionality is required (the

product in Alg. 2). The evaluation of the basis functions is computationally expensive,

with the exact cost depending on the type of basis function employed.

Algorithm 2: The streaming algorithm for the multi-evaluation operation v :=
Bα.

Input : T (c) := {xj : xj ∈ [0, 1]d}mj=1, spatially-adaptive sparse grid in
level-index representation Ω′ stored in array, surpluses α stored in
array with same indexing as sparse grid

Output: v with |v| = m stored in array with same indexing as the dataset
1 for j = 1 . . .m do
2 vj ← 0;
3 for i′ = 1 . . . N do
4 l, i← Ω′[i′]

5 vj += α[i′]
∏dim

d=1 φld,id(x
(d)
j)

The streaming algorithm for the transposed multi-evaluation operation is displayed in

Alg. 3. Compared to the multi-evaluation algorithm the two loops are swapped. Now,

the outer loop iterates the grid points and the inner loop iterates the data points. The

operations in the product that iterates the dimension are the same.

Despite the simple algorithmic structure of both operators, we will see that high-

performance variants of the streaming algorithm are significantly more complex. In

the following sections, we first describe our new high-performance variant, the unified

streaming algorithm, and afterwards introduce a prior approach which we call the masked

streaming algorithm. In the evaluation, the latter variant is used as a performance

baseline for the unified streaming algorithm.

7.1.1. Unified Streaming for the Linear and Modified-Linear Basis

To efficiently evaluate linear and modified-linear basis functions, we use a new unified

approach. As we will describe, with some pre- and postprocessing, the modified-linear

130

7.1. The Streaming Algorithm for Regression

Algorithm 3: The streaming algorithm for the transposed multi-evaluation op-
eration v′ := BTv

Input : T (c) := {xj : xj ∈ [0, 1]d}mj=1, spatially-adaptive sparse grid in
level-index representation Ω′n stored in array, v with |v| = m stored in
array with same indexing as the dataset

Output: v′ with |v′| = N stored in array with same indexing as the sparse grid
1 for i′ = 1 . . . N do
2 l, i← Ω′[i′]
3 v′[i′]← 0;
4 for j = 1 . . .m do

5 v′[i′] += v[j]
∏dim

d=1 φld,id(x
(d)
j)

l=3

ϕ3,1 ϕ3,3 ϕ3,5 ϕ3,70 1

1

2

Figure 7.1.: For the modified-linear basis, the basis functions on the boundary can be
treated as hat functions, as the domain is limited to [0, 1]d.

basis functions can be computed with the same approach as the linear basis functions.

To that end, we note that the basis functions on the boundary can be treated as hat

functions, as all evaluations happen inside the domain, as illustrated by Figure 7.1.

Therefore, we compute most one-dimensional basis functions as hat functions. However,

two issues remain: the constant basis function for l = 1 requires special treatment and

the hat functions centered on the boundary need to be scaled.

In the definition of the hat function in Eq. 6.5, the level l is only used in the expression

h−1
l = 2l. As the level only appears in the one-dimensional basis function evaluations,

we replace it by the derived value 2l. To handle the different cases of a basis function

evaluation by a single arithmetic expression, we map l and i to l′ and i′ and modify the

definition of the hat function to

φ′l′,i′ = max(0, 1− |l′x− i′|). (7.5)

Table 7.1 shows the mapping of a level-index pairs (l, i). Note that the l = 1 case is

handled properly by the modified hat function as φ′0,0(x) = 1. The d > 1 case is obtained

by applying the same approach in each dimension.

To scale the basis d-dimensional basis functions φ′l′,i′ , we notice that only the boundary

131

7. Least-Squares Regression on Sparse Grids

Table 7.1.: Mapping of l and i of a modified-linear basis function to l′ and i′ of the unified
evaluation approach. The values can be precomputed solely from the sparse
grid.

Condition l′ i′

l = 1 ∧ i = 1 0 0
l > 1 ∧ i = 1 2l−1 0

l > 1 ∧ i = 2l − 1 2l−1 2l−1

else 2l i

points need to be scaled. Therefore, we introduce the scaling factors

sl,i :=

2 l > 1 ∧ (i = 1 ∨ i = 2l − 1),

1 else.
(7.6)

Given the mapping in Tab. 7.1, the evaluation of a d-dimensional modified-linear basis

function can be written as

φmod
l,i =

d∏
j=1

slj ,ijφ
′
l′j ,i
′
j

=
d∏
j=1

slj ,ij︸ ︷︷ ︸
=:sl,i

d∏
j=1

φ′l′j ,i′j = sl,i

d∏
j=1

φ′l′j ,i′j . (7.7)

As Eq. 7.7 shows, sl,i is a single value for each d-dimensional basis function. For the

whole grid, we therefore obtain a vector of scaling factors s with one factor sl,i per

grid point. Each scaling factor sl,i is itself a product of one-dimensional scaling factors

calculated as shown above.

As a result of the use of scaling factors, the multi-evaluation operator v := Bα with

linearly-enumerated basis functions instead of level-index notation can be stated as

v = B′(s�α), (7.8)

with B′ij := φ′i(xj), the scaling factors s for the grid points and the componentwise

multiplication �. Thus, applying the scaling factors becomes a vector-vector operation

that can be computed before the more expensive matrix-vector product. Analogously,

the transposed multi-evaluation operator v′ := BTv becomes

v′ = s� (BTv). (7.9)

132

7.1. The Streaming Algorithm for Regression

Here, the application of the scaling vector can be treated as a post-processing step.

The vector s itself only needs to be computed once for a sparse grid. Similarly, all

required adjusted level and index values are computed once for a sparse grid. Overall,

with the presented approach the use of modified-linear basis functions incurs a negligible

overhead compared to linear basis functions.

Adjusting the same algorithm so that it can process linear basis functions is straight-

forward. We use the original level and index values, i.e., l′ = 2l and i′ = i for all

one-dimensional basis functions. The componentwise vector-vector multiplications with

the scaling vector are simply omitted.

The cost of the multi-evaluation operator can be further reduced. During the com-

putation of the basis functions, all evaluations of one-dimensional basis functions with

lj = 1 can be skipped due to φ′(0,0)(x) = 1. In the multi-evaluation case, this does

not lead to issues with respect to the vectorization and significantly reduces the run-

times. This approach cannot be applied to the transposed operator, as we vectorize the

algorithm over the grid points and therefore cannot easily skip one-dimensional basis

function evaluations.

7.1.2. Implementing the Unified Streaming Algorithm

The unified streaming approach was implemented in OpenCL. Algorithm 4 outlines

the implementation of the high-performance OpenCL multi-evaluation operator. Some

technical details are not shown, for example the padding required if m is not evenly

divisible in the outermost loop, or the buffer management that OpenCL requires. In the

remainder of this section, we first describe the OpenCL implementation of both operators

in more detail, then the multi-GPU approach and finally summarize the parameters of

the compute kernels.

Work-items are generated by splitting the matrix in both dimensions. As we use

OpenCL, this simultaneously addresses thread-level parallelism, vector-level parallelism

and instruction-level parallelism. Each component of v can be computed independently.

Therefore, we assign ranges of components of the result vector v to work-groups, i.e., we

split the matrix along the rows. The size of these ranges is controlled by the parameter

local-size, which specifies the size of the work-groups.

Because we can assign more than one result vector component to a work-item, the

data-block parameter further modifies the size of the range processed by a work-group.

By interleaving the computation of the components, this leads to consecutive instructions

that are independent. Thus, instruction-level parallelism is increased. In our implemen-

133

7. Least-Squares Regression on Sparse Grids

Algorithm 4: The multi-evaluation operation v := Bα of the streaming algo-
rithm with some optimizations and the mapping to OpenCL concepts indicated.

Input : T (c) := {(xj) : xj ∈ [0, 1]d}mj=1, spatially-adaptive sparse grid in
level-index representation Ω′ stored in array, surpluses α stored in
array with same indexing as sparse grid

Output: v with |v| = m stored in array with same indexing as the dataset
1 v← 0
// Specification of OpenCL grid

// Split rows, parallelization

2 for wg-index = 1; wg-index ≤ m; wg-index += local-size · data-block do
// Split columns, parallelization

3 gs-range← N
grid-split

4 for gs-index = 1; gs-index ≤ N/gs-range; gs-index += 1 do
// OpenCL-kernel level, implicitly vectorized

// Blocking for ILP

5 for block-index = wg-index; block-index <
wg-index + local-size · data-block; block-index += data-block do

6 for j = 1; j ≤ data-block; j += 1 do

7 v
(acc)
j ← 0 // Thread-private accumulator

// Iterate assigned grid point range

8 for i = gs-index · gs-range; i ≤ (gs-index + 1) · gs-range; i += 1 do
9 l′, i′ ← Ω′[i] // array access, local-memory cached

10 for j = 1; j ≤ data-block; j += 1 do
11 tempj ← α[i] // array access, local-memory cached

// Unrolled depending on parameter

12 for d = 1; d ≤ dim; d += 1 do
13 for j = 1; j ≤ data-block; j += 1 do

// x
(d)
block-index+j is stored in registers

14 tempj ← tempj · φ′l′d,i′d(x
(d)
block-index+j)

15 for j = 1; j ≤ data-block; j += 1 do

16 v
(acc)
j += tempj

17 for j = 1; j ≤ data-block; j += 1 do
// Required due to column split

18 atomic add(vblock-index+j, v
(acc)
j)

134

7.1. The Streaming Algorithm for Regression

tation, we keep the level and index values in the private memory. The private memory

gets mapped primarily to the L1 cache on processor architectures and to the register file

on GPUs. If data-block is increased, the memory required per work-item increases. On

GPUs, the register memory is statically partitioned according to the memory require-

ments of the work-groups that are currently executed. Therefore, a too high value of

data-block can lead to fewer work-groups executed simultaneously.

To better support larger machines with many GPUs (and for smaller data sets), the

matrix B is further split in the column direction. This second split of the matrix in-

creases the number of work-groups and therefore helps to better utilize available parallel

resources. The parameter grid-split controls into how many ranges the matrix is split in

the column direction. Because the column-split approach leads to multiple work-groups

updating the same result vector components, additional synchronization is required when

v is written to. As is indicated in Alg. 4, this synchronization was realized using atomic

operations. Each work-item of a work-group performs one atomic-add operation. Due

to the relative infrequency of the atomic-add operations, there are only m · grid-split of

them, the synchronization has no measurable impact on the overall performance.

Apart from exposing parallelism, a critical optimization for GPU-like architectures is

the use of OpenCL’s shared memory abstraction. As the sparse grid does not change

during the execution of the multi-evaluation kernel, the (l, i)-tuples can be shared across

a work-group. To that end, additional work-group-level synchronization in the loop

iterating the grid points is required. Our compute kernels support two parameters that

have an effect on how the shared memory is used. The first parameter controls whether

to use local memory at all. The second parameter, prefetch-size, specifies how many

grid points are loaded from the global memory into the shared memory. By grouping

the global memory accesses, they get combined into fewer instructions that access more

memory (coalescing). As memory accesses have the granularity of a cache line, this

enables achieving a higher memory bandwidth. To keep Alg. 4 more readable, the

loading of the grid points into the shared memory is not shown.

In Alg. 5, we show the implementation of the transposed operator. Because of the

transposition of the matrix B, splitting the matrix in the row direction is now a par-

allelization over the grid points instead of the data points. Analogously, the splitting

in column direction creates ranges of data points. Two parameters are consequently

renamed: data-block becomes grid-block and grid-split becomes data-split. Generally,

column splitting is more important for the transposed operator than it is for the multi-

evaluation operator. Under the (realistic) assumption that N � m, row splitting alone

135

7. Least-Squares Regression on Sparse Grids

would not expose enough parallel work. However, because of the large datasets targeted,

adding the column splitting approach yields enough parallel work to saturate even wide

hardware architectures.

Another consequence of the matrix transposition is that different data is kept in the

registers and shared through local memory. For the transposed operator, each thread

has a grid point assigned. Therefore, the (l, i)-tuple is kept in the registers. Conversely,

the data points are iterated. As a work-group jointly iterates the data set, analogously

to the multi-evaluation operator, the data points can be shared efficiently through the

shared memory. However, more memory is required to store the (l, i)-tuple compared

to a data point. Thus, the transposed operator requires more registers per thread on

GPUs. This can affect performance if the dimensionality increases, as more registers

translate to reduced occupancy.

For supporting regression using multiple OpenCL devices, our implementation splits

the matrix a second time in row direction. As the ranges of the result vector can be

computed independently, this enables a communication-free multi-device approach. The

parameter transfer-whole-dataset of the multi-evaluation operator has an effect on how

memory transfers in multi-device scenarios are managed. If the parameter is set to

true, the whole dataset is transferred to all devices independent of the ranges that the

devices process. Conversely, if the parameter is disabled, only the range processed next

by a device is transferred to the device. Transferring the whole dataset might entail

the transfer of data that is never accessed. However, because the data can be kept on

the devices throughout runtime of the CG solver, many transfers of small ranges can

be skipped. For the transposed operator, the transfer-whole-grid parameter allows the

analogous choice.

As we implemented the unified streaming algorithm before AutoTuneTMP, it provides

an example for the integration of AutoTuneTMP into an application. The “untuned”

implementation was written as a class that wraps all OpenCL calls and takes care of

kernel details such as padding. To integrate auto-tuning, we use the generalized compute

kernel type. As described in Sec. 4.4, the use of the generalized kernel type requires two

functors to be set up: the kernel functor and the apply parameters functor. The kernel

functor instantiates the “untuned” implementation and then forwards the arguments of

the kernel functor to the method that calls the OpenCL kernel. During instantiation, the

parameter values are read from a JSON file which was set up by the apply parameters

functor. Overall, the required wrapper functions and the specification of the parameters

as AutoTuneTMP parameter types required less than 100 lines of C++ code per operator.

136

7.1. The Streaming Algorithm for Regression

Algorithm 5: The transposed multi-evaluation operation v′ := BTv of the
streaming algorithm with some optimizations and the mapping to OpenCL con-
cepts indicated.

Input : T (c) := {xj : xj ∈ [0, 1]d}mj=1, spatially-adaptive sparse grid in
level-index representation Ω′ stored in array, v with |v| = m stored in
array with same indexing as the dataset

Output: v′ with |v′| = N stored in array with same indexing as the sparse grid
1 v← 0
// Specification of OpenCL grid

// Split rows, parallelization

2 for wg-index = 1; wg-index ≤ N ; wg-index += local-size · grid-block do
// Split columns, parallelization

3 ds-range← N
data-split

4 for ds-index = 1; ds-index ≤ m/ds-range; ds-index += 1 do
// OpenCL-kernel level

// Blocking for ILP

5 for block-index = wg-index; block-index <
wg-index + local-size · grid-block; block-index += grid-block do

6 for i = 1; i ≤ grid-block; i += 1 do

7 v
(acc)
i ← 0 // Thread-private accumulator

8 l′, i′ ← Ω′[i] // Stored in registers

// Iterate assigned data point range

9 for j = ds-index · ds-range; j ≤ (ds-index + 1) · ds-range; j += 1 do
10 x← T (r)[j] // Array access, local-memory cached

11 for i = 1; i ≤ grid-block; i += 1 do
12 tempi ← v[block-index + i]

// Unrolled depending on parameter

13 for d = 1; d ≤ dim; d += 1 do
14 for i = 1; i ≤ grid-block; i += 1 do
15 tempi ← tempi · φl′d,i′d(x(d))

16 for i = 1; i ≤ grid-block; i += 1 do

17 v
(acc)
i += tempi

18 for i = 1; i ≤ grid-block; i += 1 do
// Required due to column split

19 atomic add(v′block-index+i, v
(acc)
i)

137

7. Least-Squares Regression on Sparse Grids

Name (/Transposed) Description Value Range

use-local-memory enable local memory {true, false}
local-size work-group size {64, 128, 256}

data-block/grid-block improve ILP {1, 2, 4, 8}
grid-split/data-split more work-groups {1, 2, 4, 8}

max-dim-unroll pipeline efficiency {1, 2, 4, 10}
prefetch-size local memory required {16, 32, 64, 128}

transfer-whole-dataset/transfer-whole-grid for multi-GPU {true, false}

Table 7.2.: Parameters of both operators of the unified streaming algorithm. All param-
eters are replicated for both operators. However, the data-block, grid-split
and transfer-whole-dataset parameter were renamed for the transposed op-
erator, reflecting the transposition of the matrix.

The auto-tunable parameters exposed by both operators of the unified streaming

algorithm are listed in Tab. 7.2. As both operators use an independent set of parameters,

most parameters are duplicated. Three parameters change their names because of the

matrix transposition. The value ranges of the parameters were chosen to be plausible

relative to the characteristics of the hardware platforms used in the evaluation. Based

on the value ranges stated, the parameter spaces span 3072 parameter combinations

each. The number of valid combinations is slightly smaller, as local-size needs to

be greater than or equal to prefetch-size. That this is the case is tested through a

validate-parameters functor.

7.1.3. Other Approaches for the Modified-Linear Basis

Modified-linear basis functions can be evaluated by simply implementing the four-way

conditional as stated in Eq. 6.13. However, this approach is inefficient on modern hard-

ware, as the conditionals lead to non-vectorized code on processors. As GPUs can

dynamically mask threads at runtime that do not take a specific branch, vectorization

still happens on these platforms. Still, this automatic masking leads to the evaluation of

all branches that are taken by at least one SIMD element. For example, the SIMD width

on Nvidia GPUs is 32, on AMD GPUs it is 16. Therefore, taking multiple branches is

likely and, consequently, this approach is inefficient on GPUs as well.

To enable vectorization on processors and improve the efficiency of basis function eval-

uations, Heinecke et al. developed a masking approach that superimposes the branches

and realizes individual branches by additional data associated with the grid points [75,

72]. Instead of only level and index, the masking approach uses four values to represent

138

7.1. The Streaming Algorithm for Regression

Table 7.3.: Mapping of l and i of a modified-linear basis function to the four values
needed for the evaluation using the masked evaluation approach. The values
only depend on the sparse grid and can therefore be precomputed.

Condition lmask imask amask omask

l = 1 ∧ i = 1 0 0 0x0 1
l > 1 ∧ i = 1 −2l 0 0x0 2

l > 1 ∧ i = 2l − 1 2l i 0x0 1
else 2l i 0x80. . . 0 1

a grid point: lmask, imask, amask and omask. The values lmask and imask are adjusted values

of the level l and index i of a basis function. Through the bit pattern amask, it is deter-

mined whether an absolute value is computed or not. The value omask is an offset value

used for scaling the basis function. The map for computing these values depending on

the four cases can be found in Tab. 7.3.

Given the mapping in Tab. 7.3, a basis function can now be computed with

φmod
l,i (x) = max(orbit(l

mask · x− imask, amask) + omask, 0). (7.10)

By plugging in the mapped values of the four cases, it can be verified that the masking

approach is equal to Eq. 6.13. To achieve an efficient implementation, the four values

needed for the masking approach are precomputed for each grid point and used instead

of l and i.

Compared to the unified approach, the masked approach requires double the data to

represent a grid point. While this does not strongly affect performance on processors,

it leads to worse utilization on GPUs, as more data per thread leads to fewer threads

being scheduled. Furthermore, as the data required to store grid points scales linearly

in the dimensionality, the unified approach allows for higher-dimensional problems to be

solved before performance is noticeably affected. Additionally, the masking algorithm

lacks most parameters compared to the unified streaming approach. It can, however,

use the shared memory similar to the unified streaming algorithm. In the results we

report, the use of the shared memory was enabled in all cases. Apart from lacking auto-

tuning capabilities and most parameterization options, the masked algorithm shares its

implementation approach with the unified streaming algorithm.

139

7. Least-Squares Regression on Sparse Grids

7.1.4. Performance Analysis

To assess the performance of the streaming algorithms, we count the number of floating-

point operations. For linear basis functions, a single CG iteration of the unified streaming

algorithm requires

2 · m ·N︸ ︷︷ ︸
matrix size

· d · 6 F︸ ︷︷ ︸
basis eval.

(7.11)

floating-point operations. The same number of floating-point operations is required

by the masked streaming algorithm in case of both linear and modified-linear basis

functions.

Similarly, for modified-linear basis functions, the transposed operator of the unified

streaming algorithm requires the same number of floating-point instructions as the trans-

posed operator for linear basis functions. However, the multi-evaluation operator skips

one-dimensional basis functions with lj = 1. Therefore, we define N1d
lj>1 to represent the

remaining one-dimensional basis functions with lj > 1 (note the implicit factor d). As a

result, the multi-evaluation operator requires m ·N1d
lj>1 · 6 F floating-point operations.

As the data related to the sparse grid and the dataset can both be efficiently cached

in the shared and private memories, the arithmetic intensity is high enough for the algo-

rithms to be entirely bound by capabilities of the floating-point units. Nevertheless, the

achievable performance is below peak performance. Most modern hardware platforms

support FMA instructions and peak performance is only achieved for FMA instructions.

Other common floating-point instructions run at half the performance of FMA instruc-

tions, many instructions, e.g., those for transcendentals, run at even lower speed. A

one-dimensional basis function evaluation consists of six arithmetic operations. As two

arithmetic operations can be implemented as one FMA instruction, the compiled kernel

consists of five floating-point instructions. Accounted for FMAs, the achievable perfor-

mance can be approximated with 4
5
· 1

2
+ 1

5
· 1 = 60% of the peak performance on most

hardware platforms.

On AMD GPUs, computing the absolute value can be embedded in other instruc-

tions [1]. Therefore, a one-dimensional basis function evaluation only requires four in-

structions. Additionally, GPUs of this vendor can compute double-precision additions at

the same rate as single-precision additions [4]. Most other double-precision instructions

on this platform run at half the single-precision speed. Accounting for these issues, on

GPUs of this vendor a single-precision bound of 62.5% and a double-precision bound of

75% is obtained.

140

7.2. The Subspace Algorithm for Regression

7.2. The Subspace Algorithm for Regression

For a given data point, the streaming algorithm always evaluates all basis functions,

even if the data point is outside of the support of a basis function. From a time-

complexity perspective, the recursive algorithm can resolve this issue. However, Heinecke

et al. showed that the recursive algorithm does not map to modern hardware platforms

efficiently and is therefore overall significantly slower [72]. The subspace algorithm for

regression has the same complexity as the recursive algorithm, as it evaluates at most one

grid point per subspace. Additionally, it was designed so that it can be parallelized and

vectorized efficiently. It, therefore, combines the advantages of both other algorithms.

Due to more complex synchronization, the subspace algorithm so far could only be

implemented competitively for processors. We remark on the state of an experimental

GPU implementation in Sec. 7.2.7.

In its basic form, the multi-evaluation operator of the subspace algorithm is shown in

Alg. 6. For each data point xj, the algorithm iterates the subspaces. On each subspace,

the index i of the grid point to evaluate can be computed from the data point xj and the

current level l. The subspace algorithm stores the surpluses in a d-dimensional array per

subspace. For accessing the surplus of the current grid point, a linear index is calculated

from the multi-index i (flat index). As the sparse grid can be spatially-adaptive, a

computed grid point might not be part of the sparse grid. To detect missing grid points,

their surpluses are set to NaN values in the surplus array. If the surplus is not a NaN

value and therefore the corresponding grid point is part of the grid, the basis function

φl,i gets evaluated and the result vector v is updated. The algorithm is compatible with

a wide range of basis functions, we use it with linear and modified-linear basis functions.

An important aspect of the algorithm is an efficient computation of the index value

ik in dimension k. A grid point has the location x
(k)
lk,ik

= hlkik and a data point always

has support on the basis function of the closest grid point or no support at all, at least

for linear and modified-linear basis functions. Therefore, by solving for ik, plugging

in the data point x(k) and rounding, the index ik of the nearest grid point can be

computed. If x(k) ∈ [hlkik, hlk(ik + 1)[, i.e., to the right of the searched-for grid point,

computing b2lkx(k)c immediately gives the index ik in dimension k. In case of x(k) ∈
[hlk(ik−1), hlkik[, the value ik−1 gets computed. With a conditional addition the correct

index is calculated in both cases, as is shown in Alg. 6. Overall, the d-dimensional index

i can be computed in 5d arithmetic instructions. Note that the rounding approach does

not work correctly for x(k) = 1. Therefore, the domain was restricted to [0, 1[d for this

141

7. Least-Squares Regression on Sparse Grids

Algorithm 6: The basic subspace algorithm for the multi-evaluation operation
v := Bα.

Input : T (c) := {(xj) : xj ∈ [0, 1[d}mj=1, a spatially-adaptive sparse grid with
subgrids L ⊂ Nd, surpluses αl for each subgrid l ∈ L, subgrids stored as
arrays with NaN-values to signal missing grid points

Output: v
1 def calculate index(l,x):
2 for k ∈ {1, . . . , d} do

// cond. add: bitXOR returns one if b2lkxkc is even

3 ik ← b2lkxkc+bitXOR(bitAND(1, b2lkxkc), 1)
4 return i

5 def flat index(l, i):
// divisions: even indices are used in the surplus array

6 iflat ← i1
2

7 for k ∈ {2, . . . , d} do
8 iflat ← iflat2

lk−1 + ik
2

9 return iflat

10 for j ∈ {1, . . . ,m} do
11 vj ← 0
12 for l ∈ L do
13 i←calculate index(l,xj)
14 iflat ←flat index(l, i)
15 αl,i ←fetch surplus(αl, iflat) // array access

16 if ¬isNaN(αl,i) then
17 vj += αl,iφl,i(xj)

142

7.2. The Subspace Algorithm for Regression

algorithm. Still, our implementation accepts dataset with the larger domain, but sets

data points with x(k) = 1 to the largest floating-point value < 1. Given this approach,

the restricted domain should not be of practical relevance.

Another moderately-expensive step is the calculation of the flat index for i. The flat

index is used to access the d-dimensional array that contains the surpluses of the sub-

space. Algorithm 6 shows the Horner scheme we employ to compute the flat index. In

our highly-optimized implementation, the index calculation, the index flattening and

the one-dimensional basis function evaluation are combined. The divisions and expo-

nentiations are implemented as integer bitshifts for improved efficiency. Flooring is

implemented as a double-to-integer conversion.

The basic subspace algorithm has a complexity of O(mdnd), as it evaluates one d-

dimensional basis function per subspace and data point—just like the recursive algo-

rithm. In Sec. 7.2.3, we present an approach for partially reclaiming the factor d.

For the subspace algorithm to be competitive with the streaming approach, further

measures were necessary. Firstly, we present subspace skipping to not consider subspaces

which cannot contribute to the solution. Secondly, we explain our parallelization and

vectorization approach to better exploit hardware capabilities. Thirdly, an approach for

avoiding computations is presented that makes use of the order in which subspaces are

processed. Finally, we describe the transposed multi-evaluation operator, which uses the

same approach as the multi-evaluation operator—with some adjustments.

7.2.1. Subspace Skipping and Blocking

For a consistent sparse grid, we know from the definition of a consistent grid that the

parent grid points are part of the sparse grids. That implies that if a parent grid point

does not exist, its (recursive) child grid points cannot exist either. From an algorithmic

standpoint, we would therefore like to track which grid points did not exist and mark all

subspaces where child grid points would be evaluated so that they can be disregarded.

However, the time required to keep track of the subspaces to skip should not exceed the

amount of work saved by avoiding evaluations.

An approach for skipping subspaces at a low-enough cost is obtained by ordering

the subspaces lexicographically by level. By building an algorithm that iterates the

subspaces always in that order, subspaces can be skipped along the order of iteration.

Analogously to the hierarchical relationship between grid points, we define a parent-child

143

7. Least-Squares Regression on Sparse Grids

relation between subspaces with levels l′ and l:

l′ is a child subspace of the parent l ⇐⇒ ∀k ∈ {1 . . . d} : l′k ≥ lk. (7.12)

We notice that due to the consistency criterion, it holds that if a required grid point

did not exist on the parent subspace, all of the child subspaces can be skipped. As the

skipping criterion, we jump to the next subspace in the order of iteration that is not

a child subspace of the current subspace. Given that criterion, the skip targets can be

annotated to the subspace, as they are now a property of the grid. Therefore, the skip

targets can be calculated in a precomputation step, which is algorithmically cheap as it

only requires an iteration through the subspaces.

In Fig. 7.2, we show the skip targets of a two-dimensional spatially-adaptive sparse

grid and the subspaces evaluated for a specific evaluation point. The black arrows in

Fig. 7.2a indicate the order in which the subspaces are iterated whereas the red arrows

point to the skip target. Red arrows that do not point to a subspace indicate that the

evaluation is finished if a grid point is missing on such a subspace. The grid used in the

example has three opportunities to skip subspaces that save at least one basis function

evaluation. Figure 7.2b shows an evaluation of a sparse grid function at the location

indicated by the red dot. The black arrows connect the subspaces that are actually

iterated. As the figure shows, two subspaces can be skipped.

The subspace algorithm with subspace skipping is displayed in Alg. 7. Compared

to Alg. 6, this algorithm iterates the dataset in chunks of data points. Each chunk

iterates the subspaces. To enable subspace skipping, the indices of data points that do

not evaluate a basis function on the current subspace are filtered. The variable Valid

contains the remaining indices of data points that evaluate on the current subspace. To

implement this filtering approach, each data point is associated with a variable nextj

that holds the linear index (in the order of iteration) of the next subspace to evaluate.

After the basis function evaluation, nextj is either incremented or updated with the skip

target of the current subspace.

Whether to enable subspace skipping is controlled by another auto-tuned parameter

of the algorithm called enable-subspace-skipping. Note that subspace skipping is only

advantageous for spatially-adaptive sparse grids and yields no benefits in the regular

case. Furthermore, due to the overhead that subspace skipping introduces, it generally

is more beneficial for deeply-refined sparse grids.

Iterating the dataset in chunks improves performance. As it improves performance

144

7.2. The Subspace Algorithm for Regression

(a) Target subspaces for subspace skipping
(red arrows) for each subspace.

(b) Example evaluation of a data point (red
dot) with two subspaces skipped.

Figure 7.2.: A two-dimensional spatially-adaptive sparse grid with the black and gray
arrows highlighting the order in which the subspaces are processed by the
subspace algorithm. This sparse grid offers three opportunities to avoid
unnecessary work. Figure 7.2a shows to which subspace a skip leads. In
Fig. 7.2b, the sparse grid is evaluated at a data point (red dot), leading
to two skips. Because of subspace skipping, only four instead of six basis
functions get evaluated.

145

7. Least-Squares Regression on Sparse Grids

Algorithm 7: The multi-evaluation operator v := Bα of the subspace algorithm
with subspace skipping, parallelization and vectorization outlined. All input and
output data structures are assumed to be padded.

Input : T (c) := {xj : xj ∈ [0, 1[d}mj=1, a spatially-adaptive sparse grid with
subgrids L ⊂ Nd, surpluses αl for each subgrid l ∈ L, subgrids as arrays
with NaN-values to signal missing grid points

Output: v
1 v← 0
2 next← 1 // track next subspace to evaluate, per data point

// parallelized with OpenMP

3 for j := 1; j < m; j += chunk-size do
// iterate the spatially-adaptive sparse grid

4 for k ∈ {1, . . . , |L|} do
// filter data point indices (for skipping)

5 Valid← {j′|j′ ∈ {j, . . . , j + chunk-size− 1} ∧ nextj′ = k}
6 l← Lk

// loop gets vectorized

7 for o ∈ Valid do
8 i←calculate index(l,xo) // O(d) operations, vectorized

9 e←evaluate basis(l,xo) // O(d) operations, vectorized

10 iflat ←flat index(l, i) // O(d) operations, vectorized

// remainder does not get vectorized; scalar operations

11 αl,i ←fetch surplus(αl, iflat)

12 if ¬isNaN(αl,i) then
13 vo += e · αl,i

14 nexto += 1

15 else
16 nexto ←skip target(l) // precomputed

146

7.2. The Subspace Algorithm for Regression

by improving data locality, it constitutes a cache-blocking approach. By evaluating

many data points per subspace, the associated surplus array is accessed many times.

This enables reusing data already loaded into the cache. For very small subspaces,

the whole subspace might get loaded into the cache—with repeated accesses to the

surpluses. Large subspaces can be processed faster as well, as they tend to be only

sparsely populated. Due to the filtering step, remaining surplus accesses can coincide

on the same grid points. The chunk-size parameter that controls the size of the chunks

needs to be chosen carefully. Larger values improve data locality. However, if too large

a value was chosen, the associated data might no longer fit into the L1 cache.

7.2.2. Parallelization and Vectorization

In order to fully utilize modern hardware platforms, the subspace algorithm needs to

be parallelized and vectorized. Parallelization is straightforward, as we can use the

same approach used for the streaming algorithm, namely parallelization over the data

points. Due to the blocking approach described in the previous section, we parallelized

the algorithm by assigning chunks to threads. Algorithm 7 indicates this outermost loop

parallelization approach.

Vectorization is slightly more complicated, as it interacts with the subspace-skipping

approach. In principle, we would like to vectorize all work associated to a chunk. How-

ever, due to the filtering step, vectorization cannot be implemented on the chunks di-

rectly. Instead, the filtered indices are processed with vector instructions. In the in-

ner loop, which iterates Valid in Algorithm 7 (Line 7), the most expensive steps are

well-suited for vectorization. Therefore, the calculation of the d-dimensional index, the

evaluation of the associated basis functions and the computation of the linear indices

for accessing the surplus array were vectorized.

Two scalar steps remain. After the filter step, the remaining data points are not

in contiguous memory. Therefore, to enable efficient vectorization the remaining data

points get copied into contiguous memory. Due to the fixed, small size of the chunks,

the gather step takes place within the cache which reduces its cost. Secondly, the isNaN

testing as well as the updating of v0 and nexto are performed with scalar instructions

due to the unpredictability of the branch. While vectorization cannot result in a perfect

speedup due to the remaining scalar fraction, the vectorized functions each perform O(d)

operations. Therefore, most instructions in the inner loop get vectorized.

Vectorization benefits from high values of the chunk-size parameter. If too few data

points evaluate on a subspace to fully populate a vector, a padding approach is used.

147

7. Least-Squares Regression on Sparse Grids

Therefore, higher values of chunk-size increase the probability that enough work is avail-

able for the vectorization to be efficient. An additional parameter, unroll-vectorization,

controls unrolling of the vectorized loop. If set to true, two interleaved vectorized iter-

ations of the vectorized loop are performed simultaneously. This can improve pipeline

utilization, as more independent instructions are available for scheduling. Finally, the

parameter vector-padding is needed to ensure that the data structures are padded cor-

rectly. It pads to four components if unrolling is disabled and to eight components if

unrolling is enabled.

A final aspect of the vectorization approach is the handling of the different types of

basis functions. For linear basis function, we can vectorize directly by replacing the

instructions with vector instructions. Modified-linear basis functions have to be handled

less efficiently. As the index i is computed and not loaded, the precomputation scheme

of the unified streaming algorithm cannot be used. However, as the algorithm is less

limited by the performance of the arithmetic units, we use a scalar implementation with

four branches that directly implements the mathematical definition from Eq. 6.13. We

show in the evaluation that this approach is only slightly more costly than evaluating

linear basis functions.

7.2.3. Reusing Intermediate Results

The subspace iteration scheme described in Sec. 7.2.1 enables another type of optimiza-

tion. When moving from one subspace to the next, some computed values can be reused.

For example, we consider an evaluation first on the l = (1, 1, 1, 1) subspace and then

proceed with the l′ = (1, 1, 1, 2) subspace. We further assume the indices of the basis

functions to be i = (1, 1, 1, 1) and i′ = (1, 1, 1, 3), respectively. For a given data point x,

the basis function evaluations become

φl,i(x) = φ1,1(x(1))φ1,1(x(2))φ1,1(x(3))φ1,1(x(4)) (7.13)

and

φl′,i′(x) = φ1,1(x(1))φ1,1(x(2))φ1,1(x(3))φ1,3(x(4)). (7.14)

Therefore, in this example three terms are recomputed redundantly.

This observation is generalized by annotating the subspaces with a number that de-

scribes which dimension changed from the last subspace in the order of iteration, i.e.,

148

7.2. The Subspace Algorithm for Regression

lexicographically sorted by level. For the example above, we would annotate the value

four. Reusing these values is implemented by storing all products of one-dimensional

basis function evaluations up to a certain dimension, for dimension d′ this approach

therefore computes the expression

d′∏
k=1

φl,i(x
(k)). (7.15)

As these intermediate results get computed anyway, this approach does not introduce

additional arithmetic work. Of course, additional storage space is required. In case of

the basis function evaluations, d entries per element in a chunk are needed.

The same ideas as for the basis functions can be applied analogously to the calcu-

lation of the index i and for the computation of the linear index iflat. Consequently,

the algorithm avoids many redundant one-dimensional computations when iterating the

subspaces. Whether partial results are reused is controlled by the Boolean parameter

reuse-intermediates.

7.2.4. Transposed Multi-Evaluation

For the transposed multi-evaluation operator v′ := BTv, we choose a similar approach

as for the multi-evaluation operator. To obtain an efficient algorithm, we again want

to exploit the grid structure. However, due to the transposition of the matrix, the grid

structure is now located in the column direction instead of the row direction. Therefore,

our algorithm for the transposed operator iterates the rows.

Figure 7.3 illustrates the approach we propose for a regular two-dimensional l = 2

sparse grid and a dataset with five data points. In the figure, the rows are sorted

according to the subspaces. Because of this, we can observe an evaluation-like structure

in the individual columns. As the grid points partition the support, in the index range

of a subspace one evaluation per column needs to be performed (blue). We furthermore

see that if we traverse a column, the same component from the vector v is multiplied to

the matrix component. For each subspace, we can compute the index of the grid point

to evaluate. However, we then need to update the corresponding result component in

the vector v′. As there is a result component for each grid point, we again use the d-

dimensional subspace arrays. Before, the subspace arrays were used to efficiently locate

the surplus values αl,i. We now use the same data structure to update the correct

component of v′.

149

7. Least-Squares Regression on Sparse Grids

∑BT

ϕi

x j

v1⋅ v 2⋅ v 3⋅ v 4⋅ v5⋅

(1,1)

(1,1)

(1,3)

(1,1)

(3,1)

i : l :

(1,2)

(2,1)

}

}
(1,1)

}

v '

⏞

Figure 7.3.: The transposed multi-evaluation operator for a 2d regular sparse grid of level
2 and a dataset with 5 data points. By sorting the grid points according to
their subspace, ranges of rows of the matrix correspond to evaluations on
the same subspace (delimited by the red lines). Per column and subspace
range, there is one non-zero evaluation (blue). Each column has one value
vj that is multiplied to the basis function evaluation at the component. As
the algorithm operates column-wise, v′ is stored in per-subspace arrays.

The transposed operator in its high-performance form is outlined in Alg. 8. To high-

light the hierarchical storage, the result values are denoted by v′l,i and the arrays by

v′l. Due to the parallelization over the data points and because we employ the same

optimizations as for the multi-evaluation operator, the resulting algorithm is very sim-

ilar to the multi-evaluation operator at first glance. There are, however, two notable

differences. As we use d-dimensional arrays to store the results during the computation,

the v′l,i that correspond to a grid point get initialized to zero in the beginning. Potential

other array entries get once again set to NaN. After the computation, the final results

are extracted from the arrays and v′ gets stored in a flat array. Furthermore, because

of the column-parallelization approach, synchronization is needed to avoid race condi-

tions whenever v′l,i values are updated. We use a mutex to lock the subspace currently

processed by a thread. This is realized in Alg. 8 by the calls to lockSubspace and

unlockSubspace. Still, the first few subspaces in iteration order cannot be handled at

optimal performance. Synchronization is especially problematic for the very first sub-

space with level 1, as all threads start with this subspace and want to update the same

result value v′1,1 (see Fig. 7.3). After a few subspaces where some threads needed to wait

until they could acquire a lock, the threads are spread-out enough for synchronization

to become cheap. However, compared to the multi-evaluation operator a slightly lower

150

7.2. The Subspace Algorithm for Regression

performance is expected.

Algorithm 8: Transposed operator v′ := BTv of the subspace algorithm. All
input and output data structures are assumed to be padded.

Input : T (c) := {xj : xj ∈ [0, 1[d}mj=1, a spatially-adaptive sparse grid with
subgrids L ⊂ Nd and in level-index notation Ω′, multi-evaluation result
v

Output: v′

1 zero arrays(Ω′, {v′l : l ∈ L}) // zero existing grid points

2 next← 1 // track next subspace to evaluate, per data point

// parallelized with OpenMP

3 for j := 1; j < m; j += chunk-size do
// iterate the spatially-adaptive sparse grid

4 for k ∈ {1, . . . , |L|} do
// filter indices, others skip current subspace

5 Valid← {j′|j′ ∈ {j, . . . , j + chunk-size− 1} ∧ nextj′ = k}
6 l← Lk
7 lock subspace()

// loop gets vectorized

8 for o ∈ Valid do
9 i←calculate index(l,xo) // O(d) operations, vectorized

10 e←evaluate basis(l,xo) // O(d) operations, vectorized

11 iflat ←flat index(l, i) // O(d) operations, vectorized

// remainder does not get vectorized; scalar operations

12 v′l,i ←fetch surplus(v′l, iflat)

13 if ¬isNaN(v′l,i) then
14 αl,i += e · vo
15 nexto += 1

16 else
17 nexto ←skip target(l) // precomputed

18 unlock subspace()

// extract values for existing grid point into vector

19 v′ ←extract from arrays(Ω′, {v′l : l ∈ L})

7.2.5. Memory Requirements

A potential disadvantage of the subspace algorithm compared to both the recursive and

the streaming algorithm is the amount of memory required. The subspace algorithm

stores each subspace as a d-dimensional array with 2|l|1−d elements. This is not a dis-

151

7. Least-Squares Regression on Sparse Grids

advantage for regular sparse grids. For this type of grid, the array structure is actually

more efficient in storing surpluses than a level-index storage, as a grid point is stored

using a single floating-point variable and the level only needs to be stored on a per-

subspace basis. However, in case of spatial adaptivity very deeply refined grids can

result in high memory requirements. For example, starting with an n = 1 regular grid

and performing 20 surplus refinement steps, it is possible to reach a subspace l with

|l|1 = 21 and therefore up to 221−d grid points. For even more deeply-refined sparse

grids, memory requirements can become problematic.

To mitigate this issue, our implementation avoids storing memory-intensive subspaces

as arrays and instead stores the grid points as a vector of indices. The vector of indices

of a subspace is unpacked into an array when the subspace is processed by a chunk of

data points. Therefore, a single array is required that is large enough to represent the

subspace maxl∈L 2|l|1−d, i.e., the largest subspace. Because of the parallelization, our

implementation uses one such array per thread. Whether to store a subspace as an

index list is controlled by how well the subspace is utilized. To assess the utilization,

we compute the ratio of the grid points on the subspace and the number of grid points

the full subspace would contain. The parameter list-ratio controls how subspaces are

represented. If the utilization is below the value of the list-ratio parameter, the subspace

is stored as an index list.

The subspace algorithm only is less memory efficient compared to other algorithms

if large subspaces exist that are sparsely populated. However, these subspaces can be

efficiently stored in lists of indices as described above. Assuming a most deeply-refined

subspace lmax with |lmax|1 − d ≤ 30, memory consumption per thread for the one large

array is limited to feasible 8 GB. We have not observed high memory utilization in any

of our experiments.

7.2.6. Implementation and Parameter Overview

In the implementation, the code was parallelized with OpenMP. For vectorization,

AVX2 vector intrinsics were used. Both the multi-evaluation and the transposed multi-

evaluation kernel were auto-tuned with AutoTuneTMP and its CPPJIT pipeline. Note

that our implementation predates AutoTuneTMP’s optimization template collection.

Thus, parameterization of the two compute kernels was implemented using conditional

compilation controlled by C preprocessor variables.

The subspace algorithm is not limited by either the floating-point throughput or mem-

ory bandwidth. In measurements on an Intel i7 6700K with four Skylake cores, the

152

7.2. The Subspace Algorithm for Regression

Name Description Value Range

chunk-size data point blocking {16, 32, 64, 128, 256, 512}
enable-subspace-skipping skip subspace {true, false}

reuse-intermediates avoid redundant 1d operations {true, false}
unroll-vectorization unroll vectorized loop {true, false}

vector-padding 8 required if unrolling {4, 8}
list-ratio limit memory requirements {0.1, 0.2, 0.3}

Table 7.4.: Parameters and their values for the subspace algorithm. The same param-
eters are replicated for both the multi-evaluation and the transposed multi-
evaluation operator.

subspace algorithm achieved 2.4 instructions per cycle and core. This includes vector

as well as scalar instructions. Overall, this shows that the algorithm efficiently uses the

available execution resources. On the instruction level, the most expensive instructions

access the surplus arrays. However, memory bandwidth requirements of the algorithm

are generally low due to the effective blocking approach. Memory latency is a minor

bottleneck, as is expected due to the quasi-random memory access patterns of the algo-

rithm. Mispredicted branches incur a significant performance penalty. Unfortunately,

the most problematic branches test whether a retrieved surplus is NaN and are, as men-

tioned, unpredictable. Because of this analysis, we provide results for this algorithm

from a runtime perspective and not for other performance metrics.

In Tab. 7.4, an overview of the parameters and their value ranges is given. We chose

fixed sets of values for all parameters. Of course, the Boolean parameters have two valid

values. The vector padding parameter only has two valid choices as well, as it needs to

be set depending on the value of the loop unrolling parameter. The chunk-size parame-

ter has a fairly wide value range and only needs to divide the effective SIMD width, i.e.,

four or eight. If the subspace utilization falls below the value of the list-ratio parameter,

the grid points of this subspace are stored in index-vector format. As we tune for per-

formance and not for minimizing memory use in our auto-tuning experiments, it should

not have an influence on the auto-tuning results. Given these parameter ranges and

constraints, there are 144 possible parameter combinations. The dependency between

the unroll-vectorization parameter and the vector-padding parameter was implemented

through an adjustment functor. Thereby, only valid parameter value combinations are

considered.

153

7. Least-Squares Regression on Sparse Grids

7.2.7. The Subspace Algorithm on GPU?

A proof-of-concept variant of the subspace algorithm for Nvidia GPUs has been created

in joined work with Maximilian Luz [100]. It can perform subspace skipping and has

a thread-level blocking approach, but lacks the caching of intermediate values. The

intermediate values need to be stored in the registers on the GPU, so that they can

be accessed at the required level of performance. This leads to high per-thread register

requirements. In contrast, on modern processor platforms the large caches help to avoid

this issue. Despite this important optimization still missing, first experiments indicate

that the performance is competitive with that of the streaming algorithm on the same

platform [100]. However, as we do not consider the work on the subspace algorithm for

GPUs to be mature yet, we do not include it in the evaluation.

7.3. Evaluation

In this section, we evaluate both the streaming and the subspace algorithm. We first

describe the datasets that we used and the configurations of the sparse grids. Then,

we present results that cover performance, performance portability and the effect of

auto-tuning for the unified streaming algorithm. Afterwards, we show the same types of

results for the subspace algorithm. The evaluation of the subspace algorithm additionally

includes a comparison of the different algorithms with the recursive algorithm as the

baseline.

7.3.1. Datasets and Experimental Setup

To evaluate both auto-tuned regression algorithms, we use two datasets: the DR5 dataset

and the Friedman1 dataset. The DR5 dataset is a real-world dataset that is based on

the fifth data release of the Sloan Digital Sky Survey [3]. We use a postprocessed version

of the original dataset as described by Dirk Pflüger [122]. The DR5 dataset contains

measurements from five optical filters, the target value is the spectral redshift. Through

the redshift the distance to the measured galaxies can be calculated. To give an idea

of the spatial structure of the postprocessed dataset, we provide projections onto the

coordinate planes for the five measured dimensions in Fig. 7.4.

In our experiments, we learn the DR5 dataset at a fixed mean-squared error and

compare the runtimes and derived performance metrics. To learn the DR5 dataset, we

use spatially-adaptive sparse grids based on two refinement strategies: surplus refinement

154

7.3. Evaluation

Figure 7.4.: Projections onto the coordinate planes of the DR5 dataset. For this illus-
tration 2000 data points were uniformly sampled.

and support refinement. The target error values and the configuration of the surplus-

refined sparse grids are based on experiments by Dirk Pflüger [122]. We chose the

configuration that minimized the error in these experiment. By selecting parameters

for support refinement that achieve the same error as the surplus experiments, a fair

comparison of the refinement strategies is possible.

The Friedman1 dataset is a 10-dimensional synthetic dataset that was generated by

uniformly sampling the function

fried1(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ε, (7.16)

with ε representing normally distributed noise given by the normal distribution ε ∼
N (0, 1). Due to the construction of the dataset, five dimensions are purely noise. This

dataset has been originally presented by Jerome Friedman [56]. It has been shown

that sparse grids can learn the Friedman1 function to a low error using only 400 grid

points and modified-linear basis functions [72]. However, due to its synthetic nature,

the size can be arbitrarily chosen. We can therefore use this dataset for weak-scaling

experiments and for experiments that demonstrate the maximum performance potential

of the regression algorithms.

As the Friedman1 dataset is only used for performance testing, we chose a sparse grid

large enough so that the hardware platforms under test are fully utilized. Furthermore,

155

7. Least-Squares Regression on Sparse Grids

Name DR5-Sur-S DR5-Supp-S/DR5-Supp-D Fried1-S/Fried1-D

Basis mod.-lin. mod.-lin. mod.-lin.
Precision single single/double single/double

λ 10−5 10−5 10−5

n/nmax 6 10 7
CG iterations 500 500/300 100/100

Ref. type surplus support regular
Config. rs = 7, rp = 200 tsupp = 500 -

Final grid size 34568 51293 397825
Data points 371908 371908 2 · 105 per device

MSE 4.9 · 10−4 4.9 · 10−4 -

Table 7.5.: The regression configurations for both datasets. For surplus refinement, the
settings were chosen so that they are comparable to prior results by Dirk
Pflüger and Alexander Heinecke [122, 72]. Support refinement was configured
to reproduce the same error as surplus refinement. As the Friedman1 derived
Fried1-S dataset is used purely for performance testing, a regular sparse grid
was chosen.

a regular sparse grid was chosen. As we learn the DR5 dataset with spatially-adaptive

sparse grids, this allows for a comparison of the effect of the different grid types on the

performance.

Table 7.5 shows the parameters of the experiments. The DR5 experiments are split

into two categories for the two refinement criteria. Additionally, support refinement ex-

periments were conducted using both single and double-precision arithmetic. To achieve

the same error, the single-precision experiments required more CG iterations. The mean-

squared errors for the DR5 dataset as shown in Tab. 7.5 were computed by predicting

the values of a separate 6 · 105 data points test dataset that was not used for training.

Both the unified streaming algorithm and the subspace algorithm support linear as

well as modified-linear basis functions. As the modified-linear approach allows for a lower

error of 4.9 · 10−4 without any grid points on the boundary, our experiments focus on

modified-linear basis functions. However, if linear basis functions are used with otherwise

identical parameters, for the DR5 dataset an MSE of 5.8·10−4 was computed. This result

immediately highlights the advantage of using modified-linear basis functions.

In all auto-tuning experiments, we averaged the runtime measurements across five

kernel executions per search step. Thereby, we tried to mitigate the effect of power-

saving features of the hardware platforms.

156

7.3. Evaluation

7.3.2. Performance and Portability of the Unified Streaming

Algorithm

In several experiments, we investigate performance and node-level scalability of the

unified streaming algorithm. We further demonstrate that support refinement allows for

a significantly lower time-to-solution compared to surplus refinement. Afterwards, we

evaluate the performance portability of the unified streaming algorithm. In the third and

final part of this section, we look at the differences between the multi-evaluation and the

transposed multi-evaluation operator. For evaluating the unified streaming algorithm,

we only make use of modified-linear basis functions, as this type of basis function enabled

a lower error and is algorithmically slightly more challenging.

As a first step of this evaluation, we consider a node with eight GeForce GTX 1080 Ti

graphics processors. On this node, we conducted the single-precision experiments shown

in Tab. 7.5 using up to eight GPUs. The restriction to single-precision arithmetic reflects

the limitation of GeForce GTX 1080 Ti graphics processor which does not support

double precision efficiently (see Tab. 3.1). As the size of the DR5 dataset is fixed,

it was used for strong-scaling experiments. We used the configurable-size Friedman1

dataset for weak-scaling with 2 · 105 data points per GPU to expose enough parallelism.

The DR5 experiments allow for an analysis of the performance in a realistic setting,

whereas the Friedman1 experiments are intended to showcase maximal performance. As

we varied the refinement strategies, we further use the DR5 experiments to compare

support refinement and surplus refinement.

In all experiments in this section, we use an auto-tuned set of parameters that was

obtained using line search. The auto-tuning itself is detailed in Sec. 7.3.3. In tuning for

the DR5 experiments, we took the number of devices into account by performing auto-

tuning for eight devices simultaneously. Thereby, we can account for the lower available

per-device work at high device counts. As the Friedman1 experiments guarantee enough

work per device due to the larger sparse grid and larger generated dataset, we used the

parameters tuned for a single device in the multi-device context.

Strong-Scaling and Refinement

We consider two algorithms, the unified streaming algorithm and the masked stream-

ing algorithm, and combine them with two refinement criteria, support refinement and

surplus refinement. Figure 7.5 shows the duration and achieved performance of the

experiments with the DR5 dataset. On a single device, the slowest combination was

157

7. Least-Squares Regression on Sparse Grids

2 4 6 8

Number of Devices

0

100

200

300

400
D

u
ra

ti
o
n

(s
)

Regression Duration, DR5

support, modmask

support, unified

surplus, modmask

surplus, unified

2 4 6 8

Number of Devices

5

10

15

20

25

T
F

L
O

P
S

Regression Performance, DR5

support, modmask

support, unified

Figure 7.5.: Strong scaling using one to eight Nvidia GTX 1080 Ti GPUs. In these
experiments, the DR5 dataset was learned. Both support refinement and the
auto-tuned unified streaming algorithm individually contribute to improved
performance. The best result is obtained by combining support refinement
with the unified streaming algorithm. As the performance of the surplus-
based refinement approach varies throughout the refinement steps, it is not
shown.

the combination of the masked streaming algorithm and surplus refinement. It required

424 s to complete the experiment. The fastest combination was the unified streaming

algorithm together with support refinement. This combination required only 73 s. There-

fore, the two new components, the unified streaming algorithm and support refinement,

achieve a speedup of 5.8x on a single device compared to the prior approach.

Increasing the number of devices, the unified streaming algorithm together with sup-

port refinement consistently outperform the other combinations. Using all eight devices,

this combination only required 18 s, whereas the combination of the masked streaming

algorithm and surplus refinement took 235 s. Therefore, the new components achieve a

speedup of 13.1x compared to the prior approach. Note that support refinement only

required 0.3 s using eight devices and its runtime is therefore insignificant relative to

that of the solver.

The better performance of a single device is explained by the improved vectorization

approach and auto-tuning. However, the unified streaming algorithm displays better

scalability as well. While the implementations are not identical and the improved scala-

bility is partially due to technicalities such as avoiding allocations, one parameter has a

strong effect. Due to the small size of the grid, the row-splitting parallelization approach

158

7.3. Evaluation

controlled by the data-split parameter was chosen with a value of 8 by the auto-tuner.

Thereby, there was eight times the parallel work available for the transposed operator

compared to the masked algorithm.

As we targeted the same error, we can compare the achieved performance to older

results by Alexander Heinecke [72]. Alexander Heinecke used the DR5 dataset with

the same surplus refinement configuration that we used in a strong-scaling setting. He

reported approximately 13 TFLOPS for the masked streaming algorithm on 128 nodes

with two Xeon E5-2680 processors each. In his experiments, he employed double preci-

sion whereas we use single precision. However, due to the increased number of iterations

required to achieve the same error, this is inconsequential. Overall, due to a new re-

finement criterion, the auto-tuned unified streaming algorithm and modern GPUs, we

achieve a 2x speedup over this configuration using only a single node.

Weak-Scaling

The results of the weak-scaling experiments using the Friedman1 experiments are shown

in Fig. 7.6. Similar to the results for the DR5 dataset, the auto-tuned unified streaming

algorithm is significantly faster at all device counts. Using a single device, a speedup of

4.8x is achieved. If eight devices are used, the speedup slightly increases to 5.8x. These

results show that while the unified streaming algorithm is significantly faster than the

masked streaming algorithm, if enough work is available the masked algorithm scales

only slightly worse.

While the masking algorithm achieved 13 TFLOPS using eight GPUs, the unified

streaming algorithm achieved 50 TFLOPS or 48% of the GPU peak performance of

the node assuming boost frequencies of 1.8 GHz. Given a limit of 60% of the peak

performance due to the instruction mix, this corresponds to 80% of the achievable peak

performance.

Performance Portability

To investigate performance portability, we performed the DR5 and Friedman1 experi-

ments on four GPUs and one processor platform. The GPUs we used were a FirePro

W8100, a Vega VII, a GeForce GTX 1080 Ti and a Tesla P100. Our processor platform

had two Xeon Gold 5120 processors. The results of these experiments are shown in

Fig. 7.7. We provide both the duration of the experiments and the measured perfor-

mance in TFLOPS. The dotted lines in the performance charts indicate the theoretically

achievable performance. With regard to the runtimes, it is important to remember that

159

7. Least-Squares Regression on Sparse Grids

2 4 6 8

Number of Devices

100

200

300

400

500

600

D
u

ra
ti

o
n

(s
)

Regression Duration, Friedman1

modmask

unified

2 4 6 8

Number of Devices

0

10

20

30

40

50

T
F

L
O

P
S

Regression Performance, Friedman1

modmask

unified

Figure 7.6.: Weak scaling using one to eight Nvidia GTX 1080 Ti. We used Friedman1
datasets with 2 · 105 data points per device. A regular sparse grid with level
7 (0.5M grid points) was used, i.e., the size of the grid to process is fixed.
The unified streaming algorithm displays near-optimal scalability at a high
absolute performance, achieving 48% (of a maximum of 60%) of the peak
performance of eight devices.

the DR5 experiments compute more CG iterations in the single-precision case compared

to the double-precision case (500 vs 300 iteration). Thus, devices supporting double

precision at half the single-precision rate achieve similar runtimes in both cases. On

the other hand, the Friedman1 experiments use the same number of iterations. There-

fore, most devices require double the time to finish the Fried1-D experiment. The Vega

VII GPU is the exception, as it has a double-precision rate that is a quarter of its

single-precision rate.

The runtimes displayed fit the theoretical performance of the different devices. As

the dual-socket Xeon Gold 5120 and the older FirePro W8100 have the lowest peak

performance, the Tesla P100, the GeForce GTX 1080 Ti and the Vega VII achieve

much higher performance. For the Vega VII, as the most recent device, the lowest

single-precision runtimes were measured. As the Tesla P100 is the highest-performance

double-precision device in our survey, the best double-precision runtimes were measured

for this device.

Furthermore, the performance results show that we achieved a major fraction of the

achievable peak performance on all devices in the comparison. The worst result was

obtained for the 2xXeon Gold 5120 platform at 38% of the peak performance. Adjusted

for the performance model described in Sec. 7.1.4, this corresponds to 64% of the achiev-

160

7.3. Evaluation

2x
51

20

W
81

00
P10

0

10
80

Ti

Veg
a

V
II

0

200

400

600

D
u

ra
ti

o
n

(s
)

DR5, Duration

DR5-Supp-S

DR5-Supp-D

2x
51

20

W
81

00
P10

0

10
80

Ti

Veg
a

V
II

0

2

4

6

8

T
F

L
O

P
S

DR5, Performance

arch. lim.

DR5-Supp-S

DR5-Supp-D

2x
51

20

W
81

00
P10

0

10
80

Ti

Veg
a

V
II

0

200

400

600

800

D
u

ra
ti

on
(s

)

Friedman1, Duration

Fried1-S

Fried1-D

2x
51

20

W
81

00
P10

0

10
80

Ti

Veg
a

V
II

0

2

4

6

8

T
F

L
O

P
S

Friedman1, Performance

arch. lim.

Fried1-S

Fried1-D

Figure 7.7.: Duration and performance of the unified streaming algorithm for the DR5
and Friedman1 datasets across different hardware platforms. Missing items
are due to device or OpenCL platform limitations. The dotted lines in the
two performance charts indicate the achievable performance limited by the
architecture.

161

7. Least-Squares Regression on Sparse Grids

able peak performance. The different GPU platforms achieved not only a much higher

performance than the processor platform, but also generally a better utilization of the

computational resources. At the low end, when processing the Fried1-D experiment the

FirePro W8100 achieved 38% peak performance or 67% of the achievable peak perfor-

mance. At the high end, the Vega VII achieved 58% of the raw peak performance or

78% of the achievable peak performance in the Fried1-D experiment. The best device

utilization was achieved for the Tesla P100 which reached 96% achievable peak in the

Fried1-S experiment.

Excluding the FirePro W8100, between 64% and 96% of the achievable performance

was measured across all experiments. Therefore, the experiments show that our auto-

tuned implementation approach facilitates achieving a large fraction of the peak perfor-

mance on these modern GPU devices. The utilization reported likely underestimates

the actual utilization, as the performance was calculated based on the highest clock

frequency for each device. Especially the FirePro W8100 tends to reduce its frequency

under heavy load, which we did not account for in these experiments. However, this is

investigated for sparse grid clustering in Sec. 8.7.2.

While the durations vary between the two datasets, similar performance was measured

for both datasets. This highlights that the DR5 experiments offer enough parallel work

to fully utilize a single device.

In Fig. 7.7, some results are missing. The OpenCL platform used on the Xeon Gold

5120 platform does not implement support for double-precision atomics even though the

hardware itself supports it. As this feature is needed for the matrix column splitting

approach, the algorithm would need adjustments to be supported on that platform. As

stated earlier, the GeForce GTX 1080 Ti only supports double precision at a rate too

low to be usable for our data mining purposes.

Multi-Evaluation and the Transposed Operator

So far, we evaluated the multi-evaluation and the transposed multi-evaluation operator

combined. However, as there are performance differences between the two operators, we

investigate those in the following.

For the performance of the individual operator, we conducted experiments where we

performed a single call to each operator. These experiments were repeated five times

and the measurements averaged. To show that the behavior is similar on all hardware

platforms, we considered the same hardware platforms as for the performance portability

experiments. As we could not measure a qualitatively different behavior for double-

162

7.3. Evaluation

Name (/Transposed) Description PVN value

data-block/grid-block improve ILP 1
grid-split/data-split more thread blocks 1

max-dim-unroll pipeline efficiency 1
prefetch-size local memory required 16

transfer-whole-dataset/transfer-whole-grid for multi-GPU true
use-local-memory enable local memory false

local-size work-group size 64

Table 7.6.: The PVN parameter combination for both operators of the unified streaming
algorithm used as the parallelized and vectorized baseline.

precision arithmetic, we only show results for single-precision arithmetic.

The results of these experiments for both datasets are shown in Fig. 7.8. A first glance

at the runtimes shows that the runtimes of the two operators differ remarkably. The lower

runtimes of the multi-evaluation operator are an effect of the unified streaming algorithm

skipping all one-dimensional evaluation with lj = 1. In separate experiments with

linear basis functions for which the results are not shown, we measured nearly identical

performance of both operators. As one-dimensional evaluations cannot be skipped for

linear basis function, the performance matched that of the transposed operator in the

depicted modified-linear case.

7.3.3. Auto-Tuning the Unified Streaming Algorithm

In this section, the benefits of auto-tuning the unified streaming algorithm are investi-

gated. First, we show that performance significantly improves through auto-tuning for

both regression operators on all hardware platforms. Then, we examine the contribution

of the individual parameters across all hardware platforms. Lastly, we compare different

search strategies and discuss the total time required for auto-tuning on the Tesla P100

platform.

Benefit of Auto-Tuning

To assess the benefit of auto-tuning, we use a PVN parameterization approach. That is,

the baseline is parallelized and vectorized and parameter values are chosen to disable the

corresponding optimizations to the extent possible. The values of the PVN combination

used in the experiments in this section are shown in Tab. 7.6.

As a first step, we compare the performance of the PVN parameter combination on

163

7. Least-Squares Regression on Sparse Grids

2x
51

20

W
81

00
P10

0

10
80

Ti

Veg
a

V
II

0.0

0.2

0.4

0.6

0.8

D
u

ra
ti

o
n

(s
)

Single Call, Duration, DR5-Supp-F

multi-eval

transposed

2x
51

20

W
81

00
P10

0

10
80

Ti

Veg
a

V
II

0

2

4

6

T
F

L
O

P
S

Single Call, Performance, DR5-Supp-F

multi-eval

transposed

2x
51

20

W
81

00
P10

0

10
80

Ti

Veg
a

V
II

0

1

2

3

4

5

D
u

ra
ti

on
(s

)

Single Call, Duration, Fried1-F

multi-eval

transposed

2x
51

20

W
81

00
P10

0

10
80

Ti

Veg
a

V
II

0

2

4

6

8

T
F

L
O

P
S

Single Call, Performance, Fried1-F

multi-eval

transposed

Figure 7.8.: The performance of the two operators for modified-linear basis functions. As
lj = 1 basis function evaluations can be skipped in the modified-linear case,
the multi-evaluation operator is significantly faster. The performance differ-
ences between the regular Friedman1 experiments and the spatially-adaptive
DR5 experiments show that the performance of the multi-evaluation oper-
ator in part depends on the structure of the sparse grid.

164

7.3. Evaluation

each hardware platform to the performance of the auto-tuned parameter combinations.

We used two experimental setups, the DR5-Supp-S and Fried1-S experiments, and two

search strategies: line search and neighborhood search. These experiments were con-

ducted on the same hardware platforms as the performance experiments. We measured

the runtimes of individual kernel calls and report the mean runtime over five kernel calls

to reduce the effect mainly of frequency scaling. In this section, we only discuss the

single-precision results, as using double-precision arithmetic yielded no deeper insights.

For completeness, double-precision results can be found in Sec. B.1.

Figure 7.9 shows the results of the experiments described above. The figure shows both

the speedups achieved over the PVN parameter combination (bars) and the duration

ofs the kernel calls (red and green dots). Overall, both line search and neighborhood

search can strongly improve performance and achieved similar kernel runtimes after

auto-tuning.

The observed speedup varied strongly depending on the hardware platform. On the

dual-socket Xeon Gold 5120 platform, the least benefit from auto-tuning was measured

with speedups ranging from 1.04x to 1.86x. In contrast, the strongest improvements were

measured on the older FirePro W8100 platform with speedups ranging from 2.40x to

6.29x. With respect to the different search strategies, with one exception no significant

differences could be measured in the achieved performance. In auto-tuning for the DR5-

Supp-S experiment on the Tesla P100 platform, the line search strategy achieved a

significantly higher performance. The kernel runtimes suggest that the search strategies

detected the same or an equivalent optimum. In manual experiments, the achieved

runtimes could not be further improved. This suggests that the achieved performance

is the global maximum or very close to it.

Generally, both operators show strong benefits from auto-tuning. However, on most

platforms the multi-evaluation operator could be improved further than the transposed

operator. The underlying reason is the difference in the amount of registers used by

the operators. As storing a level-index tuple in the register file of a GPU requires twice

the registers compared to a data point, register pressure on GPUs was higher for the

transposed operator.

Parameter Contribution

We have shown that auto-tuning strongly improves performance. As the next step,

we investigate the contribution of the individual parameters using the same approach

as in Sec. 5.5. That is, we reset individual parameters of the parameter combination

165

7. Least-Squares Regression on Sparse Grids

2x
G
ol
d

51
20

W
81

00

P
10

0

10
80

T
i

Veg
a

V
II

1

2

3

4

5

6

7

8

S
p

ee
d

u
p

ov
er

P
V

N

DR5-Supp-S, Line S., Float

multi-eval

trans.

0.0

0.5

1.0

1.5

D
u

ra
ti

on
(s

)

PVN

best

2x
G
ol
d

51
20

W
81

00

P
10

0

10
80

T
i

Veg
a

V
II

1

2

3

4

5

6

7

S
p

ee
d

u
p

ov
er

P
V

N

DR5-Supp-S, Neighbor. S., Float

multi-eval

trans.

0.0

0.5

1.0

1.5

D
u

ra
ti

on
(s

)

PVN

best

2x
G
ol
d

51
20

W
81

00

P
10

0

10
80

T
i

Veg
a

V
II

1

2

3

4

5

6

7

8

S
p

ee
d

u
p

ov
er

P
V

N

Fried1-S, Line S., Float

multi-eval

trans.

0

5

10

15

D
u

ra
ti

on
(s

)

PVN

best

2x
G
ol
d

51
20

W
81

00

P
10

0

10
80

T
i

Veg
a

V
II

1

2

3

4

5

6

7

8

S
p

ee
d

u
p

ov
er

P
V

N

Fried1-S, Neighbor. S., Float

multi-eval

trans.

0

5

10

15

D
u

ra
ti

on
(s

)

PVN

best

Figure 7.9.: The performance improvements of auto-tuning the unified streaming algo-
rithm. Results are shown for both datasets and two search strategies: line
search (left) and neighborhood search (right). Speedups between 1.04x and
6.29x were obtained over PVN initial parameter values (bars). The dura-
tions shown are for a single operation execution (dots).

166

7.3. Evaluation

obtained through auto-tuning to their PVN combination value. Then, we measure the

modified parameter combination and compare its performance to that of the unmodified

auto-tuned parameter combination. For these experiments, we used the auto-tuned

parameters obtained through line search. As parameters are useful if they improve

performance on at least one hardware platform, we report the maximum contribution

of a parameter across all five hardware platforms.

The results of these experiments are shown in Fig. 7.10 for both datasets. The blocking

parameters and the local-memory-related parameters provide the largest benefits. This

shows that improving instruction-level parallelism and utilizing the local memory are

critical, the latter of course on GPUs. On the Xeon Gold platform, where a local

memory is not implemented physically, the use-local-memory parameter had a negligible

effect on performance. The parameters with the highest contribution in the DR5-Supp-S

scenario proved even more beneficial in the Fried1-S scenario. Conversely, parameters

that contributed less to the DR5-Supp-S performance had an even lower contribution

in the Fried1-S scenario. This is explained by the different grid sizes of the scenarios.

The Fried1-S scenario uses a larger sparse grids and therefore parameters that increase

the amount of available parallelism are less beneficial as enough “raw” parallelism is

available.

For the two operators, the parameters behave differently. The blocking and split pa-

rameters are all more beneficial in the multi-evaluation case. These parameters improve

performance at the cost of a higher register pressure. However, as the transposed op-

erator needs to store double the data in the register files of GPUs, register pressure is

already higher for the transposed operator. Therefore, there was less of an opportunity

for improved performance.

The max-dim-unroll parameter only proved to be useful in one case: multi-evaluation

of the DR5 dataset. Still, this parameter improved performance by up to 19%. The

prefetch-size parameters mainly act as supporting parameters for local memory use.

From these results, we can conclude that the additional pending memory requests only

yield small benefits, in this case of up to 8%. The local-size parameters, which control

the size of the work-groups, have no effect on performance. A larger work-group would

allow a more efficient use of the memory bandwidth, as data can be shared between more

threads. However, memory bandwidth seems to be sufficient so that more and smaller

work-group have no negative effect. Finally, the transfer-whole-dataset and transfer-

whole-grid parameters can improve performance if work is split across multiple GPUs.

As these experiments only used a single GPU, improved performance was not expected.

167

7. Least-Squares Regression on Sparse Grids

da
ta

-/
gr

id
-b

lo
ck

gr
id

-/
da

ta
-s
pl

it

m
ax

-d
im

-u
nr

ol
l

pr
ef
et

ch
-s
iz
e

tr
an

s.
-w

ho
le

us
e-
lo

ca
l-m

em
or

y

lo
ca

l-s
iz
e

0.0

0.5

1.0

1.5

2.0

S
p

ee
d

u
p

v
s

P
V

N

Maximum Contribution, DR5-Supp-S

multi-eval

trans.

(a) Parameter contributions for the DR5-Supp-S experiment

da
ta

-/
gr

id
-b

lo
ck

gr
id

-/
da

ta
-s
pl

it

m
ax

-d
im

-u
nr

ol
l

pr
ef
et

ch
-s
iz
e

tr
an

s.
-w

ho
le

us
e-
lo

ca
l-m

em
or

y

lo
ca

l-s
iz
e

0

1

2

3

S
p

ee
d

u
p

v
s

P
V

N

Maximum Contribution, Fried1-S

multi-eval

trans.

(b) Parameter contributions for the Fried1-S experiment

Figure 7.10.: Contribution of individual parameters to the performance of the best pa-
rameter combination obtained through line search. The charts show the
maximum benefit of a parameter for any of the hardware platforms.

168

7.3. Evaluation

Auto-Tuning on a Tesla P100 GPU

As the last step in the evaluation the unified streaming algorithm, we investigate auto-

tuning on the Tesla P100 platform in more detail. Figure 7.11 shows the runtimes of

the operators during the auto-tuning process, i.e., for different parameterizations. In

addition to line search and neighborhood search, we provide results for the Monte Carlo

search strategy, as it gives an idea of the difficulty of the search problem. For this search

strategy, we do not use the PVN combination as it draws random parameter values.

As Fig. 7.11 shows, line search and Monte Carlo search achieve the same level of

performance. The final performance of the neighborhood search is competitive for the

transposed operator, but worse for the multi-evaluation operator. The Monte Carlo

search approach achieved competitive performance in both cases, but required more

search steps until a near-optimal parameter combination was found. Additionally, it

needed to evaluate the most low-performance parameter combinations. Only the line

search approach reached a near-optimal minimum within few search steps.

Finally, we consider the total time required for the auto-tuning process. The durations

shown in Fig. 7.12 include the five kernel executions per search step. The compilation of

a kernel only took 1× 10−4 s on average on the P100 platform. This illustrates a major

advantage of using the OpenCL C kernel language for auto-tuning: compilation is not

an impediment for fast auto-tuning.

As Fig. 7.12 shows, using a directed search strategy is generally beneficial. We have

seen above that the Monte Carlo tuner was able to find a near-optimal parameter com-

bination in all four cases. However, in two of the four cases line search found its best

overall combination faster, in one case they performed similar and only in one case was

the Monte Carlo approach faster. Additionally, overall duration for tuning was high-

est for the Monte Carlo approach, though this is an effect of the fixed iteration count.

Neighborhood search took significantly longer than line search for the multi-evaluation

operator. For the transposed operator the durations were similar. Overall, line search

was the most consistent search strategy of the three strategies evaluated. In three out

of four cases, it took the least time for tuning and in all cases found a near-optimal pa-

rameter combination. In the appendix (Sec. B.2), we display the best parameter values

of all search strategies for this device.

169

7. Least-Squares Regression on Sparse Grids

0 4 8 12 16 20 24 28 32

Search Step

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
K

er
n

el
D

u
ra

ti
on

(s
)

opt.: 0.08s

Line S., Multi-E., Float

running min.

samples

improve

best

0 3 6 9 12 15 18 21 24 27

Search Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

K
er

n
el

D
u

ra
ti

on
(s

)

opt.: 0.13s

Line S., Trans., Float

running min.

samples

improve

best

0 6 12 18 24 30 36 42 48 54

Search Step

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

K
er

n
el

D
u

ra
ti

on
(s

)

opt.: 0.13s

Neighbor. S., Multi-E., Float

running min.

samples

improve

best

0 2 4 6 8 10 12

Search Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

K
er

n
el

D
u

ra
ti

on
(s

)

opt.: 0.12s

Neighbor. S., Trans., Float

running min.

samples

improve

best

0 10 20 30 40 50 60 70 80 90

Search Step

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

K
er

n
el

D
u

ra
ti

on
(s

)

opt.: 0.08s

Monte Carlo, Multi-E., Float

running min.

samples

improve

best

0 15 30 45 60 75 90

Search Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

K
er

n
el

D
u

ra
ti

on
(s

)

opt.: 0.13s

Monte Carlo, Trans., Float

running min.

samples

improve

best

Figure 7.11.: Auto-tuning of the unified streaming algorithm on the Tesla P100 platform
for the DR5-Supp-S setup. Shown is the performance at each search step
for the multi-evaluation (left) and the transposed operator (right). The
directed search strategies use a PVN parameterization as initial parameter
values.

170

7.3. Evaluation

Line S. Neighbor. S. Monte Carlo
0.0

2.5

5.0

7.5

10.0

12.5

15.0

D
u

ra
ti

on
(s

)

fixed its.

P100, DR5-Supp-S, Multi-E.

reach best

total

Line S. Neighbor. S. Monte Carlo
0

5

10

15

20

D
u

ra
ti

on
(s

)

fixed its.

P100, DR5-Supp-S, Trans.

reach best

total

Line S. Neighbor. S. Monte Carlo
0

20

40

60

80

100

120

140

D
u

ra
ti

on
(s

)

fixed its.

P100, Fried1-S, Multi-E.

reach best

total

Line S. Neighbor. S. Monte Carlo
0

20

40

60

80

100

D
u

ra
ti

on
(s

)

fixed its.

P100, Fried1-S, Trans.

reach best

total

Figure 7.12.: The total time required for auto-tuning the unified streaming kernels for
the DR5-Supp-S and Fried1-S setups and the time to reach the best over-
all parameter combination. Runtimes were measured on the Tesla P100
platform. The durations include five executions of each kernel variant.

171

7. Least-Squares Regression on Sparse Grids

7.3.4. Performance and Portability of the Subspace Algorithm

To assess the performance of the subspace algorithm, we use the DR5-Supp-D and

Fried1-D setups as described in Tab. 7.5. To demonstrate performance portability, we

compare the subspace algorithm to the streaming algorithm and the recursive algorithm

on four processor platforms. We chose two platforms by AMD, one with an A10-7850K

and one with an Epyc 7551P processor, and two dual-socket Intel platforms. The Intel

platforms use Xeon Gold 5120 processors and Xeon E5-2670 processors, respectively.

The AMD A10-7850K is a two-module processor that is equivalent to a dual-core CPU

regarding floating-point performance. In contrast, the Epyc 7551P is a high-performance

32-core processor based on the Zen microarchitecture. The Intel platforms cover two

different high-performance microarchitectures as well. The Xeon Gold 5120 is based on

the Skylake architecture, whereas the Xeon E5-2670 is a Sandy Bridge processor. We

(again) used AutoTuneTMP with line search as the search strategy to obtain auto-tuned

parameters that were used for the experiments in this section.

In addition to results for modified-linear basis functions, we further provide results for

linear basis functions. The purpose of these experiments is to show that for the subspace

algorithm the type of basis function only has a minor effect on performance. In these

experiments, we used the same settings as in the experiments with modified-linear basis

functions, only the basis functions themselves were changed.

Unfortunately, of the hardware platforms considered, a high-performance OpenCL

implementation was only available for the Intel devices. On other platforms, no vendor

implementation was available and more generic implementations such as POCL were

not able to vectorize our OpenCL kernels. For a comparison across multiple hardware

platforms, we therefore could not use the unified streaming algorithm. Instead, we

used two implementations of the streaming algorithm built with AVX intrinsics for

vectorization and OpenMP for parallelization, one for linear and one for modified-linear

basis functions. These implementations were optimized manually and achieve nearly the

same performance on the dual-socket Xeon Gold 5120 system as the OpenCL streaming

algorithms.

Figure 7.13 shows the results for the DR5 experiments. The baseline for the speedups

in the performance charts are the results of the recursive algorithm on each platform.

On all four hardware platforms used, a similar pattern can be observed. The recursive

approach is slowest in all cases, the streaming approach is faster and the subspace algo-

rithm is again faster than the two other algorithms. For modified-linear basis functions

on the Xeon Gold platform, the recursive algorithm took 2782 s, whereas the stream-

172

7.3. Evaluation

ing variant required only 701 s. The subspace algorithm reduces the duration to only

230 s. Therefore, on this platform the streaming algorithm is 4.0x faster than the recur-

sive approach and the subspace algorithm is 3.0x faster than the streaming algorithm.

Using linear basis functions on the same platform, the streaming algorithm achieves a

speedup of 3.9x over the recursive algorithm. The subspace algorithm achieves a 3.5x

speedup over the streaming algorithm. Generally, performance is slightly higher if linear

basis functions are used. This is an effect of the vectorized one-dimensional basis func-

tion evaluations. Overall, the subspace algorithm is a substantial improvement over the

streaming approach, comparable to the increased performance the streaming algorithm

achieved over the recursive algorithm.

Furthermore, the subspace algorithm enables processors to be more competitive with

GPU devices. For the unified streaming algorithm, the Vega VII GPU turned out to be

the fasted device for both datasets. It required 73 s for the DR5-Supp-S setup. Achieving

the same error on the Xeon Gold platform using the subspace algorithm took 231 s.

Therefore, while the Xeon Gold platform took 8.5x longer using the unified streaming

algorithm, the subspace algorithm narrows the gap to a 3.2x difference in runtimes.

All results for the DR5 dataset use support refinement and therefore benefit from

the improved performance of this refinement approach (as was shown in Sec. 7.3.2). A

comparison of the subspace algorithm with support refinement to the masked streaming

algorithm with surplus refinement would yield an even higher speedup.

The results for the Fried1-D setup are displayed in Fig. 7.14. While the ranking of the

algorithms is the same, there are significant quantitative differences. As the sparse grid in

these experiments is regular and the recursive as well as the subspace algorithm benefit

from the regular structure of the sparse grid, these two algorithms performed better

compared to the DR5 experiment. Relative to the recursive algorithm, the subspace

algorithm is 45x faster on the AMD Epyc platform for linear basis functions and 43x

faster for modified-linear basis functions. Across all platforms and the two types of basis

functions, a speedup of ≈ 30x is observed. Compared to the streaming approach, the

subspace algorithm achieves a speedup of 12x on the Epyc platform using modified-

linear basis function. For linear basis functions, the speedup increases to 14x on the

same platform.

As described in Sec. 7.2.6, we profiled the subspace algorithm on a platform with Intel

Skylake cores which led to the conclusion that the algorithm runs efficiently on this archi-

tecture. Furthermore, we measured that the streaming intrinsics kernel runs efficiently

on all hardware platforms in our survey. Therefore, the similar relative performance of

173

7. Least-Squares Regression on Sparse Grids

2xGold
5120

Epyc 7551P

2xE5-2670

A10-7850K

103

104

D
u

ra
ti

o
n

(s
)

Duration, DR5-Supp-D, Mod.-Lin.

recursive

streaming intrin.

subspace

2xGold
5120

Epyc 7551P

2xE5-2670

A10-7850K

0

5

10

15

20

25

S
p

ee
d

u
p

Speedup, DR5-Supp-D, Mod.-Lin.

recursive

streaming intrin.

subspace

2xGold
5120

Epyc 7551P

2xE5-2670

A10-7850K

103

104

D
u

ra
ti

on
(s

)

Duration, DR5-Supp-D, Linear

recursive

streaming intrin.

subspace

2xGold
5120

Epyc 7551P

2xE5-2670

A10-7850K

0

10

20

30

S
p

ee
d

u
p

Speedup, DR5-Supp-D, Linear

recursive

streaming intrin.

subspace

Figure 7.13.: A comparison of the subspace, streaming and recursive algorithms using
the DR5-Supp-D setup. The experiments with linear basis functions used
the same settings as those with modified-linear basis functions, except for
the type of basis function. While the masked streaming algorithm is clearly
faster than the recursive algorithm, the subspace algorithm is much faster
than either of them.

174

7.3. Evaluation

2xGold
5120

Epyc 7551P

2xE5-2670

A10-7850K

103

104

D
u

ra
ti

o
n

(s
)

Duration, Fried1-D, Mod.-Lin.

recursive

streaming intrin.

subspace

2xGold
5120

Epyc 7551P

2xE5-2670

A10-7850K

0

10

20

30

40

S
p

ee
d

u
p

Speedup, Fried1-D, Mod.-Lin.

recursive

streaming intrin.

subspace

2xGold
5120

Epyc 7551P

2xE5-2670

A10-7850K

103

104

D
u

ra
ti

on
(s

)

Duration, Fried1-D, Linear

recursive

streaming intrin.

subspace

2xGold
5120

Epyc 7551P

2xE5-2670

A10-7850K

0

10

20

30

40

S
p

ee
d

u
p

Speedup, Fried1-D, Linear

recursive

streaming intrin.

subspace

Figure 7.14.: Investigating the performance of the recursive, streaming and subspace
algorithm for the Friedman1 dataset. Again, the experiments with linear
basis functions used the same settings as those with modified-linear basis
functions, except for the type of basis function. As the sparse grid used is
regular, the streaming algorithm performs relatively worse. The subspace
algorithm benefits from its lower complexity.

175

7. Least-Squares Regression on Sparse Grids

2x
G

ol
d

51
20

Epy
c

75
51

P

2x
E5-

26
70

A
10

-7
85

0K

0.0

0.2

0.4

0.6
D

u
ra

ti
o
n

(s
)

Single Call, Duration, DR5-Supp-D, Mod.-Lin.

multi-eval

transposed

2x
G

ol
d

51
20

Epy
c

75
51

P

2x
E5-

26
70

A
10

-7
85

0K

0.0

0.5

1.0

1.5

2.0

D
u

ra
ti

o
n

(s
)

Single Call, Duration, Fried1-D, Mod.-Lin.

multi-eval

transposed

Figure 7.15.: Durations of a single call of each operator for both datasets across all
processor platforms.

the algorithms on each hardware platform suggests that the subspace algorithm runs

efficiently on the other hardware platforms as well. As there are substantial differences

between the hardware platforms, the subspace algorithm can be considered performance

portable.

Multi-Evaluation and the Transposed Operator

To analyze possible performance differences between the multi-evaluation and the trans-

posed multi-evaluation operator, we look at a single call of each operator. Results for

this type of experiment are shown in Fig. 7.15 for both datasets. The transposed oper-

ator is slightly faster on all platforms. However, we suspect that the observed difference

in performance is an effect of slightly different implementations and not a fundamental

difference between the algorithms. These results show that the synchronization required

by the transposed operator does not affect performance.

7.3.5. Auto-Tuning the Subspace Algorithm

In this section, we investigate auto-tuning of the subspace algorithm. To that end, we

apply the same approach as in the evaluation of the unified streaming algorithm. First,

we show the significant performance improvements obtained by auto-tuning both regres-

sion operators on multiple platforms. Then, we examine the contribution of individual

parameters across all hardware platforms. Afterwards, auto-tuning on a dual-socket

Xeon Gold 5120 platform is analyzed in detail. Finally, we discuss the time required for

176

7.3. Evaluation

Name Description PVN value

chunk-size data point blocking 16
enable-subspace-skipping skip subspace false

reuse-intermediates avoid redundant 1d operations false
unroll-vectorization unroll vectorized loop false

vector-padding 8 required if unrolling 4
list-ratio limit memory requirements 0.1

Table 7.7.: PVN parameter combination for the multi-evaluation and the transposed
multi-evaluation operator used as the parallelized and vectorized baseline.

auto-tuning on the same platform.

Benefit of Auto-Tuning

To assess the benefit of auto-tuning, we compare the parameter combination obtained

through auto-tuning to the PVN parameter combination, the usual thread- and vector-

parallel baseline. The parameter values for the PVN combination are shown in Tab. 7.7.

For these experiments, we again used line search and neighborhood search.

In Fig. 7.16, we show the results of the PVN comparison on four hardware platforms for

both the DR5-Supp-S as well as the Fried1-S setup. The advantage of the auto-tuned

approach versus the PVN parameter combination is given as a speedup (bars). We

further provide the absolute runtimes of the kernels (green and red dots). To account

for frequency scaling and cache effects, we used five kernel executions to smooth the

kernel runtimes. The runtimes shown are the average of a single kernel call. We omitted

the runtimes for the AMD A10-7850K processor, as its absolute performance was much

lower compared to the other devices.

Through auto-tuning the performance of the two operators is improved in all cases

and speedups of 2x to 4.2x are achieved. Generally, both operators strongly benefit

from auto-tuning. In most cases, the search strategies found a minimum with (nearly)

the same performance. Only in one case, optimizing the transposed operator for the

Fried1-D setup on the Xeon Gold platform, did the neighborhood search not achieve the

same performance as the line search.

The runtimes show that the PVN performance of the transposed operator was worse

compared that of the multi-evaluation operator. For the transposed operator, a lock

needs to be acquired before the subspace can be processed. However, the cost of syn-

chronization can be lowered by choosing a larger value for chunk-size, as the acquired

lock is used more efficiently. The multi-evaluation operator does not require any syn-

177

7. Least-Squares Regression on Sparse Grids

2xGold
5120

Epyc 7551P

2xE5-2670

A10-7850K

1

2

3

4

5

S
p

ee
d

u
p

ov
er

P
V

N

DR5-Supp-D, Line S., Mod.-Lin.

multi-eval

trans.

0.0

0.5

1.0

1.5

2.0

2.5

D
u

ra
ti

on
(s

)

PVN

best

2xGold
5120

Epyc 7551P

2xE5-2670

A10-7850K

1

2

3

4

5

S
p

ee
d

u
p

ov
er

P
V

N

DR5-Supp-D, Neighbor. S., Mod.-Lin.

multi-eval

trans.

0.0

0.5

1.0

1.5

2.0

2.5

D
u

ra
ti

on
(s

)

PVN

best

2xGold
5120

Epyc 7551P

2xE5-2670

A10-7850K

1

2

3

4

5

S
p

ee
d

u
p

ov
er

P
V

N

Fried1-D, Line S., Mod.-Lin.

multi-eval

trans.

0

2

4

6

8

D
u

ra
ti

on
(s

)

PVN

best

2xGold
5120

Epyc 7551P

2xE5-2670

A10-7850K

1

2

3

4

5

S
p

ee
d

u
p

ov
er

P
V

N
Fried1-D, Neighbor. S., Mod.-Lin.

multi-eval

trans.

0

2

4

6

8

D
u

ra
ti

on
(s

)

PVN

best

Figure 7.16.: The performance improvements achieved through auto-tuning the subspace
algorithm. Results are shown for both datasets and two search strategies:
line search (left) and neighborhood search (right). Speedups between 2.0x
and 4.2x were obtained over PVN initial parameter values (bars). The
durations shown are for a single operation execution (dots). Durations for
the A10-7850K are not shown due to the low absolute performance of the
device compared to the other devices.

178

7.3. Evaluation

chronization and is therefore initially faster.

Similar to the unified streaming algorithm, we attempted to manually improve on the

parameter values obtained through auto-tuning. However, we were not able to further

improve performance. Therefore, we consider the auto-tuned parameter values to be

the global optimum or very close to it. Overall, auto-tuning strongly improved the

performance of the subspace algorithm for both datasets and on all hardware platforms.

Parameter Contribution

To quantify the contribution of individual parameters additional experiments were per-

formed. Again, we reset individual parameters to their PVN combination value. The

performance of the thereby generated parameter combination was measured and com-

pared to the auto-tuned parameter combination. As the auto-tuned parameterization,

we used the parameter values returned by line search.

The results for both datasets are displayed in Fig. 7.17. It is straightforward to

identify the two most important parameters. The chunk-size parameter and the reuse-

intermediates parameter strongly improved performance, both enabling an up to ≈3x

speedup. The speedups of these two parameters show that a more simplistic variant of

the subspace algorithm, e.g., as shown in Sec. 7.2, would actually not be competitive

with the streaming algorithm (for spatially-adaptive sparse grids).

The other parameters had a negligible effect on the performance for the Fried1-D setup,

but a significant effect in case of the DR5-Supp-D experiment. In case of the DR5-Supp-

D setup, the subspace-skipping parameter as well as the unroll-vectorization parameter

were important. The subspace-skipping parameter enables an up 1.2x speedup, whereas

the unroll-vectorization parameter enables an up to 1.4x speedup. Note that the unroll-

vectorization parameter is tied to the vector-padding parameter to ensure correctness.

The list-ratio parameter optimizes memory usage. As these experiments only targeted

optimal performance and the two scenarios investigated have low memory requirements,

this parameter cannot contribute to the overall performance.

The results in Fig. 7.17 highlight that the type of grid, regular or spatially-adaptive,

leads to different performance characteristics. In published work, we showed that for

the DR5 dataset subspace skipping becomes more important for a more-deeply refined

grid. In those experiments, subspace skipping enabled a 1.8x speedup [120].

179

7. Least-Squares Regression on Sparse Grids

ch
un

k-
si
ze

en
ab

le
-s
ub

.-s
ki

p.

re
us

e-
in

te
r.

un
ro

ll-
ve

c.
/v

ec
.-p

ad
.

lis
t-
ra

ti
o

0

1

2

3

S
p

ee
d

u
p

v
s

P
V

N

Maximum Contribution, DR5-Supp-D

multi-eval

trans.

ch
un

k-
si
ze

en
ab

le
-s
ub

.-s
ki

p.

re
us

e-
in

te
r.

un
ro

ll-
ve

c.
/v

ec
.-p

ad
.

lis
t-
ra

ti
o

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
p

ee
d

u
p

v
s

P
V

N

Maximum Contribution, Fried1-D

multi-eval

trans.

Figure 7.17.: The charts show the maximum benefit of a parameter for any of the hard-
ware platforms used (see Fig. 7.16). Results are shown for the DR5-Supp-D
setup (upper) and the Fried1-D setup (lower). The differences between the
two datasets are explained by different types of sparse grid used. For this
comparison, the results of line search were used.

180

7.3. Evaluation

Auto-Tuning on a Dual-Socket Xeon Gold 5120 Platform

For a deeper look at auto-tuning of the subspace algorithm, we investigate auto-tuning

on the dual-socket Xeon Gold 5120 platform. Figure 7.18 shows the time required

for executing the compute kernel variants with different parameterizations throughout

the parameter search. The results shown are for both operators and the DR5-Supp-D

experiment. In addition to line search and neighborhood search, we (again) provide

results for the Monte Carlo approach as well.

The results show that all three search strategies can find a near-optimal solution

quickly. Line search proved to be more consistent compared to neighborhood search

requiring around 10 search steps to find a near-optimal parameter combination. Neigh-

borhood search required more search steps. In case of the transposed operator 24 search

steps were needed. Even the Monte Carlo approach is able to find a good solution within

10 search steps. This indicates that the search space is not too difficult to learn. We

show the best parameter values of all search strategies for this device in the appendix

(Sec. B.3).

Lastly, we consider the overall time required for auto-tuning on the Xeon Gold plat-

form. Figure 7.19 shows the time required to find the best parameter combination as

well as the time required until the tuner finished. Due to the fixed number of search

steps used, the Monte Carlo tuner again had the longest runtimes. It sometimes found

a near-optimal solution quickly, as for the DR5-Supp-D experiments and the transposed

operator, but in other cases it took longest.

Line search and neighborhood search generally required similar amounts of time both

to converge to a local minimum and to finish the search. In three out of four cases the

line search had a slight edge on the neighborhood search. More than 200 s were needed

only in one case.

In the line search experiments, the compilation of a single kernel took on average 1.7 s.

This could be reduced by a search method with support for parallel compilation such

as AutoTuneTMP’s parallel line search. The number of repetitions used for averaging

could be reduced as well, but of course at a trade-off with respect to tuning quality.

181

7. Least-Squares Regression on Sparse Grids

0 4 8 12 16 20 24 28 32

Search Step

0.0

0.2

0.4

0.6

0.8

K
er

n
el

D
u

ra
ti

on
(s

)

opt.: 0.29s

Line S., Multi-E., Mod.-Lin.

running min.

samples

improve

best

0 3 6 9 12 15 18 21 24 27

Search Step

0.00

0.25

0.50

0.75

1.00

1.25

1.50

K
er

n
el

D
u

ra
ti

on
(s

)

opt.: 0.39s

Line S., Trans., Mod.-Lin.

running min.

samples

improve

best

0 5 10 15 20 25 30 35 40 45

Search Step

0.0

0.2

0.4

0.6

K
er

n
el

D
u

ra
ti

on
(s

)

opt.: 0.29s

Neighbor. S., Multi-E., Mod.-Lin.

running min.

samples

improve

best

0 4 8 12 16 20 24 28 32

Search Step

0.00

0.25

0.50

0.75

1.00

1.25

K
er

n
el

D
u

ra
ti

on
(s

)

opt.: 0.38s

Neighbor. S., Trans., Mod.-Lin.

running min.

samples

improve

best

0 8 16 24 32 40 48 56 64 72

Search Step

0.0

0.2

0.4

0.6

0.8

K
er

n
el

D
u

ra
ti

on
(s

)

opt.: 0.29s

Monte Carlo, Multi-E., Mod.-Lin.

running min.

samples

improve

best

0 8 16 24 32 40 48 56 64 72

Search Step

0.00

0.25

0.50

0.75

1.00

1.25

K
er

n
el

D
u

ra
ti

on
(s

)

opt.: 0.39s

Monte Carlo, Trans., Mod.-Lin.

running min.

samples

improve

best

Figure 7.18.: Auto-tuning of the subspace algorithm for the 2xXeon Gold 5120 plat-
form using the DR5-Supp-D experimental setup. The results for the multi-
evaluation (left) and transposed operator (right) show that a fast parame-
terization is located quickly. Only the neighborhood search required more
than 10 search steps.

182

7.3. Evaluation

Line S. Neighbor. S.Monte Carlo
0

50

100

150

200

250

300

D
u

ra
ti

on
(s

)

fixed its.

2xGold 5120, DR5-Supp-D, Multi-E., Mod.-Lin.

reach best

total

compile

Line S. Neighbor. S. Monte Carlo
0

100

200

300

400

500

D
u

ra
ti

on
(s

)

fixed its.

2xGold 5120, DR5-Supp-D, Trans., Mod.-Lin.

reach best

total

compile

Line S. Neighbor. S. Monte Carlo
0

200

400

600

800

D
u

ra
ti

on
(s

)

fixed its.

2xGold 5120, Fried1-D, Multi-E., Mod.-Lin.

reach best

total

compile

Line S. Neighbor. S. Monte Carlo
0

200

400

600

800

1000

1200

D
u

ra
ti

on
(s

)

fixed its.

2xGold 5120, Fried1-D, Trans., Mod.-Lin.

reach best

total

compile

Figure 7.19.: The total time required for auto-tuning the subspace kernels for the DR5-
Supp-D and Fried1-D setups and the time to reach the best overall pa-
rameterization in each case. Runtimes were measured on the 2xXeon Gold
5120 platform. As shown, the durations include all JIT compilations and
five executions of each compute kernel variant.

183

7. Least-Squares Regression on Sparse Grids

7.4. Summary

Throughout the previous sections, we presented and evaluated two auto-tuned sparse

grid regression algorithms. The unified streaming algorithm achieved close-to-optimal

performance on a wide range of hardware architectures. We showed that it significantly

improves on the state-of-the-art masked streaming approach. The subspace algorithm

was compared to both the recursive and the masked streaming algorithm on multiple

hardware platforms. On four processor platforms, it was shown to be a strong improve-

ment compared to both competing algorithms.

To obtain these results, we used AutoTuneTMP’s generalized kernel approach to

integrate AutoTuneTMP with the OpenCL implementation of the unified streaming

algorithm. The subspace algorithm was implemented with AutoTuneTMP’s CPPJIT

approach, though without using the optimization templates. Both algorithms bene-

fited strongly from auto-tuning. In case of the unified streaming algorithm, auto-tuning

enabled an up to 6.29x speedup with generally high speedups except for the single

processor-based platforms. For the subspace algorithm, strong improvements could be

measured on all hardware platforms with speedups between 2.0x and 4.2x.

As part of the evaluation of the unified streaming algorithm, we showed that support

refinement can be a better approach to spatial adaptivity in datadriven problems than

the commonly-used surplus refinement approach. In our experiments, it enabled a better

than 2x speedup for the DR5 dataset. By combining the unified streaming algorithm

with support refinement, a 5.8x speedup over the masked streaming approach together

with surplus refinement was measured.

184

8. Clustering on Sparse Grids

In this chapter, we present the distributed sparse grid clustering algorithm. As first steps,

we define clustering and consider some approaches to clustering. Then, we introduce

the sparse grid clustering algorithm from a high-level perspective. After the high-level

introduction, we describe the further structure of this chapter.

Estivill-Castro argued that the data mining task of clustering is notoriously hard to

define [47]. We therefore only give an informal definition of clustering:

Definition 8.0.1 (Clustering). Clustering, or cluster analysis, partitions a dataset ac-

cording to a given measure of similarity. The partitions returned by the algorithms are

called clusters.

Clustering is one of the most important operations in data mining. Because of this, a

wide range of clustering algorithms have been proposed. A classic approach to clustering

is the k-means algorithm [69]. This algorithm starts with an initial guess of k cluster

centers. In an iterative process, assignment of data points to cluster centers and the

location of the cluster centers is improved. Many extensions of k-means exist that

improve the basic algorithm. Kanungo et al. proposed a variant that uses k-d-trees

to reduce the number of comparisons [88]. Arthur et al. use an improved scheme for

guessing the initial cluster centers [9].

Another class of clustering algorithms use a density-based approach. DBSCAN is a

widely-used clustering method that was originally proposed by Ester et al [45]. DBSCAN

spans an ε-sphere around the data points. Clusters are extended by joining overlapping

spheres that contain a sufficient number of data points. It was originally stated that

the complexity of DBSCAN is O(m logm) for a dataset with m data points. However,

Gan et al. showed that it is at least Ω(m4/3) [58]. DENCLUE is a second example of a

density-based clustering algorithm [79]. It uses a kernel density estimation approach.

Notable further clustering algorithms include spectral clustering [99] and clustering

using neural networks [168]. Many more clustering algorithms are described in the

literature [69, 47].

185

8. Clustering on Sparse Grids

As sparse grid clustering has been implemented for heterogeneous platforms and can

make use of distributed resources, we briefly address the literature in GPU-accelerated

and distributed clustering. In 2006, and therefore before the age of CUDA and OpenCL,

Takizawa and Kobayashi presented a GPU-accelerated k-means algorithm [141]. Further

GPU-enabled k-means variants have been developed since then [50, 83, 17, 51]. GPU-

enabled variants of the DBSCAN algorithm have been developed as well. CUDA-DClust

uses spatial partitioning to reduce the number of distance calculations [21]. G-DBSCAN

operates without spatial partitioning and therefore has a quadratic complexity in the

number of data points [5].

As a distributed k-means variant, k-means++ was able to utilize a Hadoop cluster

with 1968 nodes clustering a dataset with 4.8 million data points [11]. Distributed

map-reduce variants of the DBSCAN algorithm are implemented by MR-DBSCAN and

RP-DBSCAN. MR-DBSCAN could cluster 1.9 billion data points using 128 nodes [70].

RP-DBSCAN was able to compute the clusters of a dataset with 4.4 billion data points

using 12 nodes [137].

CUDA-DClust, MR-DBSCAN and RP-DBSCAN use spatial partitioning to avoid a

quadratic dependency on m. However, the k-d-tree-like data structure employed by

CUDA-DClust should become less effective for higher dimensionalities. Similarly, the

partitioning schemes used by MR-DBSCAN is affected by the curse of dimensionality.

However, RP-DBSCAN implements a spatially-adaptive partitioning approach that en-

ables the processing of slightly higher-dimensional datasets.

The distributed sparse grids clustering algorithm is a density-based clustering algo-

rithm. It uses sparse grid function spaces as ansatz spaces for a density estimation of

the data points. Given a dataset T (c) := {xi ∈ [0, 1]d}mi=1, sparse grid clustering is a

four-step algorithm:

1. Compute a sparse grid density estimation.

2. Create a k-nearest-neighbor graph (an approximate solution can be sufficient).

3. Use the density estimation to prune low-density nodes and edges.

4. Find the weakly-connected components of the graph and return them as clusters.

These steps are illustrated in Fig. 8.1 for a 2-dimensional dataset with slightly overlap-

ping clusters. By pruning low-density nodes and edges, connections between clusters

get removed. Therefore, the desired clusters are obtained through the connected com-

ponent search. Of course, what is considered a low density depends on the application;

186

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) The dataset for cluster analysis

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

−0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

(b) A sparse grid density estimation of the 2d
dataset.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

−0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

(c) After calculation of the kNN graph

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

−0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

(d) The kNN graph after pruning

Figure 8.1.: The sparse grid clustering algorithm is used to cluster a two-dimensional
dataset with three slightly overlapping clusters. A kNN graph is calculated
and then pruned by using a sparse grid density estimation to remove nodes
and edges in low-density regions. After the pruning step, three clusters
remain.

this property is shared with other density-based clustering algorithms. We provide

manually-optimized OpenCL algorithms for each step of the algorithm, except for the

connected component search. For distributed environments such as supercomputers, we

implemented a manager-worker approach using MPI.

In the following sections, we introduce the steps of the algorithm in more detail and

then evaluate the algorithm. We present the sparse grid density estimation in Sec. 8.1.

Afterwards, we introduce our approach for computing the k-nearest-neighbor graph

(Sec. 8.2), describe the pruning step (Sec. 8.3) and finally the connected component

search (Sec. 8.4). Having introduced the algorithms for the steps of the clustering algo-

rithm, the node-level and distributed implementation of these components is presented

in Sec. 8.5. The sparse grid clustering algorithm exposes parameters that determine

the obtained solution. Our approach for choosing these parameters and for measuring

187

8. Clustering on Sparse Grids

clustering quality is described in Sec. 8.6. In the evaluation in Sec. 8.7, we consider

the node-level as well as the distributed case. We demonstrate performance portability

across a set of node-level platforms and two supercomputers. For most of the evalua-

tion, we use regular sparse grids and several 10-dimensional datasets. As the last part

of the evaluation, we consider spatial adaptivity for three datasets with 5, 10 and 20

dimensions.

8.1. Estimating Densities on Sparse Grids

To obtain a density estimation, we use a sparse grid density estimation approach. The

underlying density estimation idea is based on work by Hegland et al [71]. Their approach

was first applied to sparse grids by Peherstorfer et al [114].

The density estimation approach by Hegland et al. uses an initial density guess fε that

is smoothed using a spline-smoothing approach:

f̂ = arg min
u∈V

∫
Ω

(u(x)− fε(x))2dx + λC(u). (8.1)

The term
∫

Ω
(u(x)− fε(x))2dx ensures that f̂ approximates the initial density guess fε.

The regularization term C(u) introduces a smoothness constraint and is controlled by

the regularization parameter λ ∈ R.

In our work, we use the initial density guess proposed by Hegland et al.:

fε :=
1

m

m∑
i=1

δxi
. (8.2)

This approach centers a Dirac delta function δxi
at each data point xi.

For estimating densities, we choose the same regularization strategy as for regression.

That is, we again employ a weight-decay regularization approach [19]. As the underlying

function space, we choose the sparse grid function space V
(1)
n . Therefore, the problem

to solve becomes

f̂ = arg min
u∈V (1)

n

∫
Ω

(u(x)− fε(x))2dx + λ
N∑
i=1

α2
i . (8.3)

As was shown, this approach leads to a system of linear equations

(B̂ + λI)α = b, (8.4)

188

8.1. Estimating Densities on Sparse Grids

with B̂ij = (φi, φj)L2 , the identity matrix I and bi = 1
m

∑m
j=1 φi(xj) [114].

The system of linear equations shows a highly useful property of this density estimation

approach: the data points only appear on the right-hand side. As the right-hand side

linearly depends on the dataset, the whole density estimation algorithm is linear in m.

Consequently, the algorithm is well-suited for big data scenarios. Of course, the method

further benefits from the use of a sparse grid function space as described in Sec. 6.

B̂ has the dimensionality N × N . It is too large to be stored directly if more than

≈ 105 grid points are required. We address this issue analogously to how the related

issue of sparse grid regression was addressed. That is, we employ a CG solver [136]. By

using a CG solver, the matrix-vector product v′ = (B̂ + λI)v needs to be computed in

every iteration. Therefore, we can again use an implicit approach to store the matrix B̂

and recalculate components of B̂ when they are accessed.

To compute components of B̂ the L2-norm of pairs of basis functions needs to be

computed efficiently. We notice that the d-dimensional integral leads to a series of

one-dimensional integrals that need to be solved

(φl,i, φl′,i′)L2 =

∫
Ω

φl,i(x)φl′,i′(x)dx, (8.5)

=

∫ 1

0

φl1,i1(x1)φl′1,i′1(x1)dx1· · ·
∫ 1

0

φld,id(xd)φl′d,i′d(xd)dxd. (8.6)

Throughout this chapter, we use linear basis functions. For this type of basis function,

the one-dimensional integrals can be computed directly:

∫ 1

0

φl,i(x)φl′,i′(x)dx =

2
3
hl, xli = xl′i′ ,

hl′φl,i(xl′i′) + hlφl′i′(xli), else.
(8.7)

To illustrate the effect of the regularization parameter λ, Fig. 8.2 shows a density

estimation for a small dataset with four data points and varied λ. For smaller values,

the density estimation more closely resembles the initial density guess. Because our reg-

ularization approach penalizes large surpluses, an increasingly larger λ leads to function

values close to zero throughout the domain.

For a high-performance density estimation, both the calculation of the right-hand

side b and the matrix-vector product v′ = (B̂ + λI)v need to be calculated efficiently.

Calculating the right-hand side requires O(mN) operations, whereas calculating v′ re-

quires O(N2) operations. At first glance, the calculation of the right-hand side might

seem more expensive, as N � m is a reasonable assumption for learning large datasets.

189

8. Clustering on Sparse Grids

x

0.0
0.2

0.4
0.6

0.8
1.0

y
0.0

0.2
0.4

0.6
0.8

1.0

0

2

4

6

8

10

dataset

λ = 0.05

x

0.0
0.2

0.4
0.6

0.8
1.0

y
0.0

0.2
0.4

0.6
0.8

1.0

0

2

4

6

8

10

dataset

λ = 0.1

x

0.0
0.2

0.4
0.6

0.8
1.0

y
0.0

0.2
0.4

0.6
0.8

1.0

0

2

4

6

8

10

dataset

λ = 0.5

Figure 8.2.: The effect of the regularization parameter λ on a 2d dataset with four data
points. The function becomes smoother for higher values of λ.

However, as we use a CG solver, the matrix-vector product gets computed repeatedly.

Algorithm 9 shows the basic approach for computing the right-hand side. As every

outer loop iteration computes a single component of b, these iterations are all inde-

pendent. The outer loop can therefore be executed in parallel. Furthermore, as linear

basis functions can be evaluated without branches, the algorithm is straightforward to

vectorize.

Algorithm 9: Calculating the right-hand side b.

Input : dataset T (c) = {xi ∈ [0, 1]d}mi=1, sparse grid basis functions φ1 . . . φN
with φi =

∏dim
d=1 φ

(d)
i

Output: b
1 for i ∈ {1, . . . , N} do
2 bi ← 0
3 for j ∈ {1, . . . ,m} do

4 bi +=
∏dim

d=1 φ
(d)
i (x

(d)
j)

5 bi ← 1
m
bi

The algorithm for computing the matrix-vector product v′ is shown in Alg. 10. Again,

the outer loop iterations are independent as they compute individual components of v′.

Therefore, this algorithm can be parallelized by executing the outer loop iterations in

different threads as well. Vectorization is not quite as straightforward, as the two cases

of the one-dimensional integral from Eq. 8.7 need to be differentiated. Because hl gets

precomputed, calculating 2
3
hld is only a single multiplication. As the xli = xl′i′ case is

very cheap to compute, we always compute both cases and then select the appropriate

result. To choose the correct integration case, we use OpenCL’s select function. As

190

8.2. k-Nearest-Neighbor Graph Creation

the condition is a simple comparison, on modern compute architectures the select

statement can be compiled to a conditional move that is a single instruction.

Algorithm 10: Calculating the matrix-vector product v′ = (B̂ + λI)v

Input : v, sparse grid basis functions φ1 . . . φN with φi =
∏dim

d=1 φ
(d)
i ,

hi = (h
(1)
i , . . . , h

(dim)
i) and grid points xi = (x

(1)
i , . . . , x

(dim)
i)

Output: v′

1 for i ∈ {1, . . . , N} do
2 v′i ← 0
3 for j ∈ {1, . . . , N} do
4 r ← 1
5 for d ∈ {1, . . . , dim} do
6 req ← 2

3
hi

7 relse ← h
(d)
j φ

(d)
i (x

(d)
j) + h

(d)
i φ

(d)
j (x

(d)
i)

8 r ·= select(req, relse, x
(d)
i = x

(d)
j)

9 v′i += r · vj
10 v′i += λ · vi

Our algorithmic approach might seem wasteful, as the support of the pair of basis

functions might be disjoint for an integration result of zero. However, computing a one-

dimensional integral requires only few arithmetic operations and checking whether the

support overlaps is, relative to the integration, quite costly. Furthermore, skipping the

current integration introduces a branch to a vectorized loop. This would only effectively

reduce the cost of the operation if all SIMD lanes detect a disjoint support in the same

iteration. Otherwise, the same computations are performed with some SIMD lanes

disabled through masking.

8.2. k-Nearest-Neighbor Graph Creation

The goal of the k-nearest-neighbor graph creation is to construct a directed graph G =

(V ′, E). Each node vi ∈ V ′ corresponds to a data point xi ∈ T c so that |V ′| = m. For

the edges (vi, vj) ∈ V ′×V ′ and the Euclidean distances di,j := ||xi−xj||2, we define the

sets F(vi,vj):

F(vi,vj) := {(vi, vj′)|vj′ ∈ V ′ ∧ (di,j′ < di,j ∨ (di,j′ = di,j ∧ j′ < j))}. (8.8)

191

8. Clustering on Sparse Grids

F(vi,vj) contains all outgoing edges of vi with shorter distances that (vi, vj). In case of

multiple edges with the same distance as dij, we add all edges with lower index value j′.

Now, we can define the set of edges E of the k-nearest-neighbor graph, so that it only

contains the k edges with the smallest distances between the corresponding data points:

E := {(vi, vj)|vi, vj ∈ V ′ ∧ |F(vi,vj)| < k}. (8.9)

If m ≥ k, exactly k edges per node are obtained, as we ordered the same-distance edges

by their index.

The sparse grid clustering solution is unchanged as long as the weakly-connected

components of the k-nearest-neighbor graph are unchanged. Therefore, missing edges

do not affect the solution unless they further split a connected component. Additionally,

as the graph pruning step removes low-density nodes and edges, the overall algorithm is

tolerant with respect to edges that introduce additional connectivity between connected

components. These two reasons motivate our use of an approximate k-nearest-neighbor

graph algorithm.

The naive k-nearest-neighbor graph algorithm performs O(kdm2) comparisons to re-

turn the k-nearest neighbors. It compares all pairs of nodes and keeps track of the k

nodes with the smallest distance (and potentially lower index). We implemented a bin-

ning variant of this algorithm that is shown in Alg. 11. This algorithm implicitly divides

the dataset into b partitions. For each data point, the nearest neighbor in each bin gets

computed. Of these b nearest neighbors, the k neighbors with the smallest distance are

selected.

Through binning, the complexity of the algorithm is slightly reduced from O(kdm2)

to O(dm2), as only a single comparison is required in the innermost loop. Furthermore,

as it is linear in the dimensionality d, this algorithm is not affected by the curse of

dimensionality. This property is helpful for the higher-dimensional problems we target.

A drawback, of course, is the quadratic dependency on m.

Similar to the density estimation algorithms, this algorithm maps well to modern

hardware platforms. The outermost loop iterations are independent and the algorithm

therefore is embarrassingly parallel. Furthermore, there is only a single branch that can

be vectorized through masking.

The parameters of this algorithm are the number of bins b and number of neighbors k.

k can be small, but should be large enough so that a large connected component is not

split into many smaller ones. In our experiments, we did not observe any improvements

192

8.3. Pruning the k-Nearest-Neighbor Graph

Algorithm 11: A binning O(dm2) variant of the naive k-nearest-neighbor al-
gorithm. The extract nearest k function selects the k bins with the smallest
computed distance to the currently processed data point.

Input : dataset T (c) = {xi ∈ [0, 1]d}mi=1

Output: k-nearest-neighbor graph g as neighborhood list
1 for c ∈ {1, . . . , b} do
2 distsc ← 0

3 for i ∈ {1, . . . ,m} do
4 c← 0 // c iterates the bins

5 for j ∈ {1, . . . ,m} do
6 dist← distance(xi,xj) // iterates d
7 if dist < distsc+1 then
8 binsc+1 ← j
9 distsc+1 ← dist

10 c← (c+ 1) mod b

11 gi ← extract nearest k(dists, bins)

for k > 6.

Of course, b needs to be larger than k, so that k neighbors can be returned for each

data point. Furthermore, b should be as large as possible to minimize the error of the

k-nearest-neighbor graph. Finally, it should be small enough, so that the bins fit into

the fastest memory of the device. That is, the bins should fit in the register on a GPU

and into the L1 cache (or even the registers) on a CPU. In all of our experiments, we

set b to 16, as this choice seems to neither significantly affect the detected clusters nor

the measured performance.

8.3. Pruning the k-Nearest-Neighbor Graph

Given a sparse grid density estimation and an approximate k-nearest-neighbor graph,

we now remove nodes that reside in low-density regions and edges that intersect low-

density regions. As what is considered “low-density” depends on the application, a

density threshold t is a parameter of the clustering algorithm. To decide whether a node

resides in a low-density region, the density estimation is evaluated at the location of the

node. Outgoing edges get pruned if the density estimation evaluated at the midpoint of

the edge returns a value below t. Viewed from the perspective of the edges, overall each

edge gets evaluated at three locations: the two endpoints and the midpoint.

193

8. Clustering on Sparse Grids

Algorithm 12 shows our pruning approach as a streaming algorithm. The algorithm

iterates the dataset. For each data point, first the density at the location of the data point

is checked. If the node was not pruned, the midpoints of the line segments between a node

and its k nearest neighbors are considered. They are computed by the load midpoints

function. The evaluations of f̂ imply iterations of the grid points for a complexity of

O(mkNd). Structurally, iterations of the outermost loop are once again independent,

which leads to a straightforward parallelization approach. Furthermore, the algorithm is

mostly branch-free, even though the pruning of nodes and edges occurs within a branch.

Overall, there are O(mk) branches to be processed. Because the calls to prune edge are

cheap and the density estimation evaluations have a higher complexity, the overhead for

the conditionals is low.

Algorithm 12: The k-nearest-neighbor graph is pruned by evaluating the density
estimation and removing nodes and edges with density below a threshold t. The
i-th node is denoted by gi, gi,j refers to the j-th edge of the i-th node.

Input : k-nearest-neighbor graph g as neighborhood list, dataset
T (c) = {xi ∈ [0, 1]d}mi=1, density estimation f̂(x) =

∑N
j=1 αjφj(x),

threshold t
Output: pruned k-nearest-neighbor graph g

1 for i ∈ {1, . . . ,m} do

2 if f̂(xi) < t then
3 prune node(gi)
4 continue

5 p1, . . . ,pk ← load midpoints(T, gi)
6 for j ∈ {1, . . . , k} do

7 if f̂(pj) < t then
8 prune edge(gi,j)

8.4. Connected Component Detection

Algorithm 13 detects the connected components in the pruned k-nearest-neighbor graph.

First, the pruned k-nearest-neighbor graph is converted to an undirected graph. To that

end, we simply add all inverted edges. Note that the nodes of the resulting graph can

vary in the number of edges they have. In the undirected graph, we perform depth-first

searches starting from every node that was not already visited. The starting node of a

depth-first search and all nodes that are reachable from it form a cluster. All nodes that

194

8.5. Implementation Methodology

were reached during the searches are marked as visited.

Algorithm 13: A O(km) algorithm to detect the connected components in the
pruned k-nearest-neighbor graph. Ei are the edges of the node with index i.

Input : pruned directed k-nearest-neighbor graph G
Output: connected components/clusters C

1 Function search cluster (i, E,v):
2 if vi then return ∅
3 vi ← true
4 return {i} ∪ (

⋃
(i,j)∈Ei

search cluster(j, E,v))

5 G′ = (V ′, E)← make undirected (G) // adds inverted edges

6 v← (false, . . . , false) // keeps track of visited nodes, |v| = m
7 for i ∈ {1, . . . , |V ′|} do
8 Ci = search cluster(i, E,v)

9 drop empty (C)

As this algorithm has a complexity of O(km), it can be significantly faster pro-

cessed than any of the other clustering steps. Because of this, a shared-memory-parallel

processor-only implementation is used. To avoid NUMA-related issues, our implementa-

tion only uses the processor cores of a single socket. As this algorithm is not performance-

critical compared to the other sparse grid clustering steps, we do not describe the imple-

mentation of the connected component search in more detail. However, we report the

runtimes of the connected component detection in the evaluation section for one of the

supercomputers.

8.5. Implementation Methodology

So far, we have primarily focused on an algorithmic perspective. In the following, we

first describe the general parallelization approach and the OpenCL-based node-level

implementation. Afterwards, we introduce the MPI-based distributed implementation.

8.5.1. Parallelization Approach and Node-Level Implementation

Analogously to the steps of the algorithm, sparse grid clustering consists of four OpenCL

kernels. The first two compute the sparse grid density estimation: one calculates the

right-hand side and one computes the matrix-vector products. The third implements

the k-nearest-neighbor graph creation and the fourth performs the graph pruning.

195

8. Clustering on Sparse Grids

In Alg. 14, we display the loop structure of the compute kernel that computes the

right-hand side of the density estimation to illustrate our parallelization approach. The

outer loop iterating the grid points is split three times for three layers of parallelization:

inter-node, thread-level and vector-level. As iterations of the outer loop are independent

in all four OpenCL kernels, we use an analogous loop splitting approach for the other

compute kernels. In our OpenCL implementation, chunkpar becomes the OpenCL work-

size. Consequently, this level of parallelization is mapped to a one-dimensional grid of

work-groups. As we do not make use of the explicit vector types in OpenCL (float4,

float8, . . .), the vectorization level is implicit in the OpenCL implementation. Most

modern OpenCL platforms, especially those that target GPUs, can do vectorization

across work-items. Our algorithms were designed to be (mostly) branch-free in their in-

nermost loops. As a result, all four compute kernels vectorize effectively on the hardware

platforms we considered.

Algorithm 14: The loop structure of the parallel, vectorized and distributed
calculation of b. It is assumed that the dataset and sparse grid have been padded
so that all chunk sizes are evenly divisible.

Input : dataset T (c) = {xi ∈ [0, 1]d}mi=1, sparse grid basis functions φ1 . . . φN
Output: b

1 chunkdis ← N/nodes // per-node chunk size

2 chunkpar ← . . . // For thread-like parallelization, e.g., 256

3 chunkvec ← . . . // SIMD width per core, e.g., 32

4 for idis = 0; idis < N ; idis += chunkdis do
5 for ipar = idis; ipar < idis + chunkdis; ipar += chunkpar do

// implemented by the auto-vectorizer

6 for ivec = ipar; ivec < ipar + chunkpar; ivec += chunkvec do
// this loop gets vectorized (and thereby removed)

7 for i = ivec; i < ivec + chunkvec; ivec += 1 do
8 bi ← 0
9 for j = 0 . . .m do

10 bi +=
∏dim−1

d=0 φ
(d)
i (x

(d)
j)

11 bi ← 1
m
bi

Apart from parallelization and vectorization, all algorithms use the shared memory of

the OpenCL devices. Thereby, performance is improved on devices that implement the

shared memory physically, i.e., GPUs. The usage of the shared memory is analogous for

all four compute kernels: the data that is streamed in the innermost loop is cached in

196

8.5. Implementation Methodology

Kernel FP ops./complexity Arith. int. (ws=1) Arith. int. (ws=128)

dens. right-hand side N ·m · d · 6 1.5 F/B 192 F/B
dens. matrix-vector CG-iter. ·N2 · d · 14 1.2 F/B 149 F/B

create graph m2 · d · 3 1.0 F/B 129 F/B
prune graph m ·N · (k + 1) · d · 6 4.5 F/B 576 F/B

Table 8.1.: The complexity and the arithmetic intensity of the clustering OpenCL ker-
nels. Through local memory caching and a sufficiently large work-group size,
the algorithms become compute-bound.

the shared memory. Though for reasons of readability not shown directly, we illustrate

our approach again using the density kernel depicted in Alg. 14. In the algorithm, j

iterates the data points (Line 9). As all work-items process the same data points (but a

different grid point), data points can be shared through the shared memory. This entails

work-group-level synchronization to ensure that indeed the work-items of a work-group

always work on the same values for j.

Table 8.1 lists the complexity and highlights the benefit of using the shared memory.

Compared to the machine balance of modern node-level architectures, the arithmetic

intensity of a work-group with a single item would be too low to fully utilize all available

resources (see 3.1 for the machine balance of modern hardware platforms). However,

as the streamed data gets shared across the work-group, the algorithms are compute-

bound on all commonly used node-level architectures. For this calculation, sharing of

data across a work group with 128 work-items was assumed.

To give a reasonable upper bound for the performance of these compute-bound com-

pute kernels, we consider the instruction mix. Using the same approach as was used

for the unified streaming algorithm in Sec. 7.1.4, we consider full-speed instructions,

FMAs, and half-speed instructions. As Tab. 8.2 shows, every compute kernel can be

implemented with at least one FMA instruction. For example, the innermost loop of

the density matrix-vector multiplication kernel can be implemented with 12 instructions

including two FMA instructions. Assuming that non-FMA instructions run at half the

speed of FMA instructions, the instruction mix limits the achievable performance to
2
12
· 1 + 10

12
· 0.5 = 58.3% of the peak performance. As computing the absolute value can

be embedded into operands on AMD GPUs, the achievable performance on devices of

this vendor is slightly higher.

197

8. Clustering on Sparse Grids

Kernel Hottest Inst. FMAs Peak lim. (%) Peak lim. AMD (%)

dens. right-hand side 5 1 60% 62.5%
dens. matrix-vector 12 2 58.3% 59.1%

create graph 2 1 75% 75%
prune graph 5 1 60% 62.5%

Table 8.2.: The peak limit implied by the instruction mix in the innermost and therefore
hottest loop if it is assumed that FMA instructions run at double the speed
of all other instructions. All numbers apply to single-precision arithmetic.

8.5.2. Distributed Implementation

In order to use sparse grid clustering on distributed machines such as supercomputers, we

implemented a manager-worker scheme using MPI. In the previous section, we showed

the loop structure of the density right-hand-side kernel (Alg. 14) and described how we

use the independence of the outer loop iterations to obtain all layers of parallelism. This

includes the inter-node parallelism required for distributed computing. In the example

in Alg. 14, the iterations over N are split into equally sized chunks, so that every node

computes an index range of the same size. This approach is a form of static load

balancing. Our clustering implementation supports both single and double-precision

arithmetic. For the communication of floating-point data, 8 B per value are used in both

cases. Because the datasets can be large, all indices are 8 B as well.

We hold a copy of the sparse grid and the dataset on all nodes which limits the

maximum size of the dataset that can be processed. This approach has the advantage

that after an initial communication phase, the remainder of the algorithm requires little

communication. In some steps only the cheap communication of index ranges is needed.

To explain our distributed approach, we describe it from the perspective of the man-

ager node. The steps of the algorithm, as it is executed by the manager node, are shown

in Fig. 8.3. We list the cost of the communication steps in bytes in Tab. 8.3. The

assignment of index ranges is omitted due to the low cost of these communication steps.

At the beginning, the manager node reads the dataset and creates a sparse grid of

the requested discretization level. It then broadcasts the dataset and the created grid

to all worker nodes. As soon as the data is distributed, the manager node triggers

the computation of the density estimation. To that end, it assigns index ranges to the

worker nodes for the computation of b, i.e., the computation of the right-hand side of the

density system of linear equations. The manager node then waits until it has received

all chunks of b from the worker nodes. The next step is the computation of the density

198

8.5. Implementation Methodology

I/O

M

(a) Load
dataset

M

W W W

(b) Broadcast
grid and
dataset

M

W W W

(c) Receive b

M

W W W

(d) Broadcast
v, receive
v′ (each
CG step)

M

W W W

(e) Receive
pruned
subgraphs

I/O

M

(f) Find com-
ponents

Figure 8.3.: The manager node controls the clustering process. It does not execute the
clustering kernels itself, except for the connected component search. The
manager perspective highlights the major communication tasks.

Communication Step Bytes Transferred Repeated per

Broadcast dataset md · 8 B worker
Broadcast grid 2Nd · 8 B worker
Aggregate b N · 8 B -
Broadcast v N · 8 B worker and CG it.

Recv. v′ N · 8 B worker and CG it.
Broadcast α N · 8 B worker

Recv. pruned kNN graph mk · 8 B -

Table 8.3.: The communication cost in bytes transferred for the steps of the distributed
clustering algorithm. Under realistic conditions (N � m), the initial broad-
cast of the dataset is most expensive with regard to communication.

199

8. Clustering on Sparse Grids

matrix-vector product. At the beginning of each CG iteration, the input vector v is

sent to all nodes. Then, the nodes get index ranges assigned for the computation of v′.

At the end of each CG step, the manager node gathers all chunks of v′. These steps

are repeated for every CG iteration, which of course leads to further communication.

After the last CG step, the computation of the density estimation is finished, as the

surpluses of the sparse grid function are now available on the manager node. As the

density estimation is used by the nodes, the surpluses α of the sparse grid function get

broadcasted to the nodes.

The next step is the computation and the pruning of the approximate k-nearest-

neighbor graph. Both these steps, from an algorithmic perspective, are implemented

as a single distributed operation. Each node receives an index range and computes the

k-nearest-neighbors for the assigned range of data points. Then, each node prunes the

subgraph that it just computed using the density estimation. Having assigned the index

ranges, the manager node waits until it has received all parts of the pruned k-nearest-

neighbor graph from the workers. In the final step, the manager node computes the

connected components of the pruned graph and returns them as detected clusters.

8.6. Parameter Selection

The sparse grid clustering exposes parameters that need to be chosen carefully, as they

determine the computed solution. We first describe how the parameters of the clustering

algorithm can be chosen in general, so that a “good” clustering result is obtained. Then,

we introduce the Adjusted Rand Index (ARI) as the metric we use in the next sections

to assess the quality of the results of our clustering algorithm.

Table 8.4 summarizes the parameters that need to be chosen for sparse grid clustering.

The number of parameters increases in case a spatially-adaptive sparse grid is used, as

refinement and coarsening need to be set up. Given some measure of quality for the

created clustering, we provide an approach for automatically choosing the regularization

parameter λ and the clustering threshold t. In contrast to the other parameters, these

parameters are more difficult to choose a priori.

For optimal results, the density function should outline the clusters for a certain glob-

ally applicable density value that can be chosen as the threshold value t. Unfortunately,

the density estimation does not guarantee a maximum or minimum (not even positivity).

If a too low value for t is chosen, clusters cannot be appropriately separated. However,

if it is too high, too much of the k-nearest-neighbor graph gets removed. The obtained

200

8.6. Parameter Selection

Name Purpose

Regular and spatially-adaptive sparse grids
n sparse grid discretization level
k connectivity of the k-nearest-neighbor graph
λ regularization for smoothness of the density estimation
ε controls error of CG [136]
t graph pruning threshold value

Spatially-adaptive sparse grids only
rp the number of grid points to refine per step
rs the number of refinement steps
tws threshold for weight-support pruning
tsupp minimum grid points on support for support refinement
nmax maximum grid level for support refinement

Table 8.4.: The parameters needed to control sparse grid clustering. If a spatially-
adaptive grid is used, additional parameters need to be specified.

clusters might therefore be smaller than expected or it might even occur that clusters get

split. Furthermore, as the regularization parameter λ determines the shape and number

of high-density regions, a careful choice it critical as well.

For comparison, as long as k is chosen with a value that is too high, the connectivity

of the connected components is increased, but the same connected components might be

obtained in the end. A similar observation can be made for choosing the discretization

level n too high. Assuming that a proper value for λ was chosen, superfluous grid points

will get a surplus value close to zero.

To automatically select λ and t, we use a two-dimensional adaptive full-grid search

similar to the one used by libsvm [28]. Every grid point of this search algorithm is

associated with a run of the clustering algorithm configured with a specific (λ, t)-tuple.

For both parameters, a minimum and maximum value of the search range has to be

specified. Additionally, the number of intervals per parameter needs to be supplied. This

implies a two-dimensional grid that gets evaluated, i.e., the clustering gets executed for

all (λ, t)-tuples. After an initial grid evaluation, we use a greedy heuristic to span a grid

around the so far best candidate value and its neighbors. This approach is iterated with

smaller and smaller intervals. The greedy heuristic is stopped as soon as the interval

size is below a threshold that needs to be supplied. To tune λ, we use a logarithmic grid

search approach (with base 10), as a wide range of values is plausible for this parameter.

For the threshold t, a linear range proved to be sufficient.

201

8. Clustering on Sparse Grids

Adjusted Rand Index

To assess the quality of the clustering results, we use the adjusted Rand index (ARI),

which is a standard measure in statistics for comparing a pair of partitions [81]. For an

interpretation of the ARI we briefly consider the Rand index [128]. For two partitions, it

sums up two cases. First, it counts all pairs of data points where the pairs are together

in one set in both partitions. Second, it adds all pairs of data points where the pairs are

in different sets in both partitions. These are the two cases were the partitions “agree”,

i.e., the clustering is the same. By using the total number of pairs
(
m
2

)
for normalization,

the (unadjusted) Rand index is obtained. The ARI is a variant of the Rand index that

is corrected for chance.

To calculate the ARI, we assume a dataset T (c) and two partitions P and Q of the

dataset (results of clustering). From that, we compute a |P | × |Q| contingency matrix

M with components Mi,j = |Pi ∩ Qj|. Further, ai :=
∑|Q|

j=1 Mi,j sums up rows in the

contingency table, whereas bj :=
∑|P |

i=1Mi,j does the same for columns in the contingency

table. The ARI can now be defined as

ARI(P,Q) :=

∑|P |
i=1

∑|Q|
j=1

(
Mi,j

2

)
−
(∑|P |

i=1

(
ai
2

)∑|Q|
j=1

(
bj
2

))
/
(
m
2

)
1
2
(
∑|P |

i=1

(
ai
2

)
+
∑|Q|

j=1

(
bj
2

)
)−

(∑|P |
i=1

(
ai
2

)∑|Q|
j=1

(
bj
2

))
/
(
m
2

) . (8.10)

8.7. Evaluation

To evaluate sparse grid clustering, we first describe the experimental setup, i.e., the

parameterization of the algorithm and the datasets. Then, we investigate performance

and performance portability using regular sparse grids, first for the node-level platforms

and then for two supercomputers. Finally, we show that spatial adaptivity can be used

to further improve the runtimes, especially for a 20-dimensional dataset.

8.7.1. Datasets and Experimental Setup

To assess performance and clustering quality of the sparse grid clustering algorithm,

we use several synthetic datasets. These synthetic datasets were created by randomly

drawing from Gaussian distributions that were placed inside the domain [0.1, 0.9]d with

means µi. The standard deviations σ were chosen so that the clusters are unlikely to

overlap. For the same reason, a minimum distance of between the cluster centers µ

was enforced. By ruling out overlapping clusters, we know a reference solution by con-

202

8.7. Evaluation

Name Size Clust. σ Dim. Center Dist. Noise Type

1M-10C 1M 10 0.05 10 7 · σ 2% node
1M-100C 1M 100 0.05 10 7 · σ 2% node
10M-100C 10M 100 0.05 10 7 · σ 2% node
10M-3C 10M 3 0.12 10 3 · σ 0% dist.
100M-3C 100M 3 0.12 10 3 · σ 0% dist.

G5D-100C-5D 0.2M 100 0.05 5 7 · σ 2% adap.
G5D-100C-10D 0.2M 100 0.05 10 (5d distr.) 7 · σ 2% adap.
G5D-100C-20D 0.2M 100 0.05 20 (5d distr.) 7 · σ 2% adap.

Table 8.5.: The datasets used in the node-level, distributed and spatial-adaptivity exper-
iments. Data points were drawn randomly from the Gaussians that represent
the clusters. In case of the node-level experiments, noise was added to make
reconstruction of the clusters more difficult.

struction. Therefore, it is possible for our algorithm to reconstruct this reference cluster

mapping. The datasets used in the node-level and distributed clustering experiments

are shown in Tab. 8.5. All datasets, except those used for adaptivity experiment, have

a dimensionality of 10. However, in the adaptivity experiments we used 5-dimensional

Gaussians embedded in a 5-, 10- and 20-dimensional dataset. To illustrate the 10-

dimensional structure of the datasets and that the clusters are not trivially separable,

we show projections onto the coordinate planes of the 1M-10C and the 1M-100C datasets

in Fig. 8.4. For these illustrations, we did not use the whole datasets, but sampled 2000

points from the data sets. Because more clusters need to be separated, the 100 cluster

datasets are more difficult to learn than the 10 cluster datasets. The figure illustrates

this, as it is much easier to visually separate the clusters of the 1M-10C dataset compared

to doing the same for the 1M-100C dataset.

Peherstorfer et al. showed that sparse grid clustering is competitive with other clus-

tering approaches. Their experiments included real-world datasets [114]. In this work,

we use synthetic datasets for two reasons. First, clustering has no well-defined general

solution [47]. Due to the construction of our synthetic datasets, we have a reference

solution available. By fitting to the reference solution, we can show the “correctness” of

our clustering approach relative to the reference solution. Second, it is possible for data

points of the dataset to reside in a structure of lower dimensionality than the dataset.

Due to the construction of our synthetic datasets, the dimensionality of the embedded

structures matches that of the dataset itself, except for the datasets used in the adap-

tivity experiments. Thus, we can guarantee that an actual higher-dimensional problem

is solved. For a real-world dataset, this would require further analysis.

203

8. Clustering on Sparse Grids

Figure 8.4.: Projections onto the coordinate planes of the 1M-10C (left) and the 1M-
100C (right) dataset. For these illustrations 2000 data points were uniformly
sampled from each dataset.

Table 8.6 shows the parameters used for setting up the sparse grid clustering algorithm

in both the node-level and the distributed case and for the experiments with spatial

adaptivity. In the node-level case, the parameters were chosen so that the ARI suggests

a high-quality solution to make our performance assessment more realistic, whereas the

distributed experiments were designed to purely show the achievable performance with

our approach. For the distributed experiments the threshold was chosen relative to the

maximum surplus values. In case of the adaptivity experiments the size of the grid was

varied, as different adaptivity criteria are employed. Therefore, we cannot provide N in

the table. For the node-level and distributed experiments the level stated is the level of

the regular grid used. In all experiments conducted, we used single-precision arithmetic.

8.7.2. Node-Level Clustering on Regular Sparse Grids

In this section, we present the performance and performance portability result for our

sparse grid clustering algorithm on the node-level. In order to assess the performance, we

conducted the node-level experiments described in the previous section and summarized

in Tab. 8.6. The experiments were conducted on five hardware platforms of which four

are GPU-based. Two of the GPUs are Nvidia devices, the Tesla P100 and the GTX

1080 TI, and two are AMD devices, the FirePro W8100 and the Vega VII. As the final

platform, we used a dual-socket node with two Intel Xeon E5-2680v3 processors. The

204

8.7. Evaluation

Name λ Threshold t Level N CG ε k ARI Type

1M-10C 10−5 667 6 76k 1E-2 6 1.0 node
1M-100C 10−6 556 7 0.4M 1E-2 6 0.89 node
10M-10C 10−5 1167 7 0.4M 1E-2 6 1.0 node
10M-100C 10−6 1000 7 0.4M 1E-2 6 0.90 node
10M-3C 10−6 0.7 ·max(α) 7 0.4M 1E-3 5 - dist.
100M-3C 10−6 0.7 ·max(α) 8 1.9M 1E-3 5 - dist.

G5-100C-5D 10−5 55 - - 1E-2 6 ≥ 0.99 adap.
G5-100C-10D 3 · 10−8 1.3 · 104 - - 1E-2 6 ≥ 0.99 adap.
G5-100C-20D 7.8 · 10−13 7.6 · 108 - - 1E-2 6 ≥ 0.99 adap.

Table 8.6.: The parameters of the sparse grid clustering algorithm for the node-level and
distributed performance experiments with regular sparse grids as well as the
datasets for experiments with spatial adaptivity.

specifications of these platforms are summed up in Tab. 3.1. In all cases, four runs

were averaged to reduce variation due to frequency scaling and power saving measures

implemented the hardware platforms.

We show the results of the node-level experiments with the one million data points

datasets in Fig. 8.5. On the fastest platform, the Vega VII GPU, it took 13 s to process

the 1M-10C dataset. Using the same platform, the cluster analysis of the 1M-100C

required 158 s. As the 1M-100C has more clusters to detect, a higher discretization

level l = 7 was required to obtain a similar ARI. Due to the larger sparse grid the cost

of the density matrix-vector product is significantly higher compared to the 1M-10C

experiments. The fraction of time spend in the individual compute kernels is similar

across all five platforms. For both datasets, the differences in measured runtimes can be

explained by the differences in raw compute power of the devices.

In Fig. 8.6, we provide the results of the node-level experiments for the 10M-10C and

10M-100C datasets. As expected, the runtimes are longer compared to those for the

smaller datasets. Again, the Vega VII GPU achieved the lowest runtimes compared to

the other devices. On this device, processing the 10M-10C dataset took 782 s, whereas

the 10M-100C dataset required 843 s. The runtimes are similar in both cases, as a

sparse grid of the same discretization level was used. Due to less regularization, the

density estimation requires slightly more time for the 10M-100C dataset. Again, the five

platforms displayed runtimes that differ in accordance with their specifications.

Despite the differences in runtime of the kernels in the four experiments, in three out of

four experimental setups the achieved performance was nearly the same. Only in the 1M-

10C experiment lead the smaller sparse grid to slightly lower performance of the density

205

8. Clustering on Sparse Grids

2xE5-2680v3
W8100

P100
1080 Ti

Vega VII

0

20

40

60

80

D
u

ra
ti

on
(s

)

1M Data Points, 10 Clusters, Kernel Duration

dens. right-hand side

sum density mult.

kNN graph

prune graph

(a) λ = 10−5, l = 6, t = 667

2xE5-2680v3
W8100

P100
1080 Ti

Vega VII

0

200

400

600

800

1000

D
u

ra
ti

on
(s

)

1M Data Points, 100 Clusters, Kernel Duration

dens. right-hand side

sum density mult.

kNN graph

prune graph

(b) λ = 10−6, l = 7, t = 556

Figure 8.5.: The duration of the node-level experiments with one million data points
on five node-level platforms. The larger sparse grid used in the 1M-100C
experiment leads to longer runtimes of the density estimation.

2xE5-2680v3
W8100

P100
1080 Ti

Vega VII

0

1000

2000

3000

4000

5000

D
u

ra
ti

on
(s

)

10M Data Points, 10 Clusters, Kernel Duration

dens. right-hand side

sum density mult.

kNN graph

prune graph

(a) λ = 10−5, l = 7, t = 1167

2xE5-2680v3
W8100

P100
1080 Ti

Vega VII

0

1000

2000

3000

4000

5000

6000

D
u

ra
ti

on
(s

)

10M Data Points, 100 Clusters, Kernel Duration

dens. right-hand side

sum density mult.

kNN graph

prune graph

(b) λ = 10−6, l = 7, t = 1000

Figure 8.6.: The duration of the node-level experiments with 10 million data points on
five node-level platforms. Due to the size of the dataset and the quadratic
scaling, the k-nearest-neighbor graph creation takes up most of the runtime.

206

8.7. Evaluation

2xE5-2680v3 W8100 P100 1080 Ti Vega VII
0

2

4

6

8

10

T
F

L
O

P
S

10M Data Points, 10 Clusters, Kernel Performance

freq. adjusted arch. lim.

dens. right-hand side

sum density mult.

kNN graph

prune graph

Figure 8.7.: The node-level performance of the clustering algorithm for the 10M-10C
scenario using single-precision arithmetic. Due to the instruction mix of
these compute-bound kernels, the achievable peak performance is limited to
values below 100%. The achievable limit is indicated by the dotted lines.

estimation kernels. Because there are only minor performance differences, we show the

performance for the 10M-10C experiment only. Figure 8.7 shows the performance of the

compute kernels for the 10M-10C dataset on all five devices. The dotted line above each

bar indicates the maximum achievable performance, given the instruction-mix limits

described in Sec. 8.5.1. The limit is further adjusted by the average frequency of the

devices during the experiments. As the Vega VII GPU did not allow for frequency

measurements, we instead assumed the maximum boost frequency of 1.75 GHz on this

platform.

Overall, at least 36% of the peak performance is achieved across all devices and com-

pute kernels. With regard to the instruction mix limit, at least 57% of the achievable

peak performance was reached in all cases. The best performance was observed for the

prune graph kernel with more than 91% of the achievable peak performance measured for

four of the five devices. This is likely an effect of the implicit instruction-level parallelism

of this kernel, as k + 1 sparse grids function evaluations are processed simultaneously

by each work-item. On the Xeon E5 platform, a performance 2% above the limit was

measured. We attribute this to slight variations in the processor clock, as the frequencies

were measured in a separate run.

On average across all compute kernels and devices, 79% of the achievable performance

207

8. Clustering on Sparse Grids

could be measured. This shows the excellent performance portability of our approach.

With regard to absolute performance, the Tesla P100, the GeForce GTX 1080 Ti and

the Vega VII achieved the highest level of performance. Those are the most modern

devices in the comparison and have the highest theoretical performance. Therefore, the

observed performance nicely fits the theoretical performance expectation with no major

outlier. The Vega VII GPU is the fastest device overall; it was 13% faster than the GTX

1080 Ti and 35% faster than the Tesla P100. Compared to the slower devices, the Tesla

P100 achieved a speedup of 2.23 – 3.29x over the FirePro W8100 and a speedup of 4.41

– 5.49x over the dual-socket Xeon E5-2680v3 node.

While the lower performance of the FirePro W8100 is in part explained by its age, it

also experienced significant throttling. This effect was strongest during the k-nearest-

neighbor graph creation where the frequency was reduced from 824 MHz to only 467 MHz.

However, despite the throttling behavior the FirePro W8100 still achieved a speedup of

1.67 – 1.98x compared to the dual-socket Xeon node.

Because it had the lowest specifications in this survey, the dual-socket Xeon system

displayed the lowest performance compared to the GPU-based platforms. However, the

achieved fraction of peak performance shows that our approach provides competitive

efficiency. Therefore, the performance on this platform illustrates that our sparse grid

clustering approach is performance-portable across processor and GPU architectures.

8.7.3. Distributed Clustering on Regular Sparse Grids

To show that our node-level performance portability translates to portability between

two highly different supercomputers, we show results for two supercomputers with dif-

ferent node-level architectures. The Cray XC40 “Hazel Hen” system was located at the

High-Performance Computing Center (HLRS) in Stuttgart, Germany. Hazel Hen was

set up with 7712 nodes. Each node had two Intel Xeon E5-2680v3 processors with 12

cores running at a base clock of 2.5 GHz. The second system was the Cray XC40/Cray

XC50 “Piz Daint” located at the Swiss National Computing Centre (CSCS) in Lugano,

Switzerland. As a hybrid system, Piz Daint consisted of 1813 XC40 multi-core nodes

and 5704 XC50 accelerator nodes. Each XC50 node that we used was configured with

an Nvidia Tesla P100 graphics card and a single Intel Xeon E5-2690v3 (2.6 GHz, 12

cores). In the following, we present results for distributed strong-scaling experiments as

summarized in Tab. 8.6.

208

8.7. Evaluation

Strong Scaling on Hazel Hen

The results for the strong scaling experiment on Hazel Hen are shown in Fig. 8.8. We dis-

play the runtime of the experiments for both datasets and the performance in TFLOPS.

Additionally, we provide the durations required to detect the connected components, for

loading-and-transferring the dataset and for creating-and-broadcasting the sparse grid.

We first address runtime, shown in Fig. 8.8a, and parallel efficiency. The latter is

computed from the measured runtimes. Clustering of the 10M-3C dataset took 259 s

using 32 nodes and 1583 s using four nodes. Therefore, compared to the four-node run,

a parallel efficiency of 76% could be measured. For the larger 100M-3C a run takes

significantly longer with 4226 s on 128 nodes and 30 380 s using 16 nodes. Relative to

the 16 nodes run, on 128 nodes a parallel efficiency of 90% was achieved, i.e., near-linear

scaling. This indicates that the parallel efficiency of the 10M-3C dataset runs was limited

by the amount of work available per node, despite the lower maximum node count.

The calculation of the right-hand side of the density estimation system of linear equa-

tions depends linearly on both N and m. The density matrix-vector product even

depends quadratically on N . As N � m, we expect limited scalability of the density es-

timation compared to the graph-related operations. This effect is observable in Fig. 8.8a.

As the graph creation quadratically depends on m, the combined graph-creation-and-

pruning step is the best scaling part of the algorithm.

The performance of the runs on Hazel Hen at different node counts is shown in

Fig. 8.8b. On 32 nodes a performance of 23 TFLOPS was achieved for the 10M-3C

dataset. For the 100M-3C dataset and using 128 nodes, a performance of 100 TFLOPS

was measured or 41% of the peak performance.

The time required for operations that are not part of the four major OpenCL compute

kernels is shown in Fig. 8.8c. We consider loading and broadcasting the dataset as well

as creating and broadcasting the sparse grid to be potentially expensive, because of

the communication involved. As the connected component search is done by a single

compute node, it is potentially expensive as well. However, the measured durations

show that the operations related to the dataset and the sparse grid only take up a small

fraction of the overall runtime. The connected component search is more expensive.

Still, for the 10M-3C dataset using 32 nodes the connected component search only took

5.6 s or 2.2% of the total runtime. Similarly, for the 100M-3C dataset and 128 nodes it

took 107 s which translates to 2.5% of the total runtime.

209

8. Clustering on Sparse Grids

4 8 16 32

Nodes

101

102

103

104

D
u

ra
ti

o
n

(s
)

10M-3C

total

dens. right-hand side

sum density mult.

knn and prune

16 32 64 128

Nodes

102

103

104

105

106

D
u

ra
ti

o
n

(s
)

100M-3C

total

dens. right-hand side

sum density mult.

knn and prune

(a) The durations in seconds of the clustering experiments on Hazel Hen

4 8 16 32

Nodes

5

10

15

20

25

T
F

L
O

P
S

10M-3C

avr. whole app.

dens. right-hand side

sum density mult.

knn and prune

16 32 64 128

Nodes

20

40

60

80

100

T
F

L
O

P
S

100M-3C

avr. whole app.

dens. right-hand side

sum density mult.

knn and prune

(b) The performance in TFLOPS of the clustering experiments on Hazel Hen

4 8 16 32

Nodes

2

3

4

5

D
u

ra
ti

on
(s

)

10M-3C

find clusters

load and transfer dataset

create sparse and transfer grid

16 32 64 128

Nodes

20

40

60

80

100

D
u

ra
ti

on
(s

)

100M-3C

find clusters

load and transfer dataset

create sparse and transfer grid

(c) The time required by potentially costly operations that are not major compute kernels.

Figure 8.8.: Strong scaling results for the 10M-3C and 100M-3C datasets on Hazel Hen

210

8.7. Evaluation

Strong Scaling on Piz Daint

The runs on Piz Daint were conducted prior to some final node-level optimizations.

Therefore, the node-level performance was slightly lower compared to the node-level

results presented in Sec. 8.7.2. However, this also implies that scalability might be

slightly overestimated as there is more time spent computing the kernels, whereas the

time required for all communication tasks is the same. Furthermore, a different approach

for the connected component search was used, which is why the duration for this step is

not listed. For our calculation of the duration of the experiments, we added the runtime

of the connected component search as measured on Hazel Hen. We expect this to be a

good approximation, as this operation is only single-socket shared-memory parallelized

and Piz Daint uses a nearly identical processor.

The runtimes of the experiments on Piz Daint are shown in Fig. 8.9a. On Piz Daint,

the 10M-3C experiment took 100 s on 32 nodes. Compared to a baseline of four nodes, a

parallel efficiency of 50% was measured. The experiment with the 100M-3C took 1198 s

using 128 nodes for a parallel efficiency of 66% relative to four nodes. Compared to the

Hazel Hen results, we could use four nodes instead of eight nodes as the base line due to

the higher node-level performance of Piz Daint. The higher node-level performance also

explains the slightly worse parallel efficiency. The GPUs in Piz Daint can complete their

node-level tasks faster, which makes communication and other non-compute tasks more

pronounced in the overall runtime. Furthermore, due to their massively-parallel archi-

tecture, GPUs require a higher amount of work per node to operate at their maximum

performance.

Another effect of the higher node-level performance is the overall higher performance

compared to Hazel Hen. On Piz Daint, a performance of 59 TFLOPS was measured

for the 10M-3C dataset and 32 nodes. For the larger 100M-3C dataset and 128 nodes,

352 TFLOPS were measured. Figure 8.9b displays the performance for the varied num-

ber of nodes and further illustrates that, similar to the Hazel Hen results, the density

estimation offers too little work for the individual nodes at the higher node counts. On

the other hand, the performance of the creation of the k-nearest-neighbor graph-creation

and the embedded graph pruning still scales nearly linearly. This step achieved a per-

formance of 549 TFLOPS or 49% of the peak performance of 128 nodes. For the whole

clustering algorithm, the performance at the highest node count corresponds to 29% of

the device peak performance.

Figure 8.9c displays the time required for loading the dataset and broadcasting it to

the nodes. Additionally, it shows the time required for creating the sparse grid and

211

8. Clustering on Sparse Grids

4 8 16 32

Nodes

101

102

103

104

D
u

ra
ti

o
n

(s
)

10M-3C

total

dens. right-hand side

sum density mult.

knn and prune

4 8 16 32 64 128

Nodes

102

103

104

105

106

D
u

ra
ti

o
n

(s
)

100M-3C

total

dens. right-hand side

sum density mult.

knn and prune

(a) The durations in seconds of the clustering experiments on Piz Daint

4 8 16 32

Nodes

20

40

60

80

100

120

T
F

L
O

P
S

10M-3C

avr. whole app.

dens. right-hand side

sum density mult.

knn and prune

4 8 16 32 64 128

Nodes

0

100

200

300

400

500

T
F

L
O

P
S

100M-3C

avr. whole app.

dens. right-hand side

sum density mult.

knn and prune

(b) The performance in TFLOPS of the clustering experiments on Piz Daint

4 8 16 32

Nodes

1.5

2.0

2.5

D
u

ra
ti

on
(s

)

10M-3C

load and transfer dataset

create sparse and transfer grid

4 8 16 32 64 128

Nodes

10

20

30

40

50

D
u

ra
ti

on
(s

)

100M-3C

load and transfer dataset

create sparse and transfer grid

(c) The time required by potentially costly operations that are not major compute kernels.

Figure 8.9.: Strong scaling results for the 10M-3C and 100M-3C datasets on Piz Daint

212

8.7. Evaluation

Type Dataset Configuration

Support refinement G5D-100C-D5
tsupp = 800, nmax = 15Support refinement G5D-100C-D10

Support refinement G5D-100C-D20
W.-Support coarsen G5D-100C-D5 tws = 7.5 · 10−4, n = 9
W.-Support coarsen G5D-100C-D10 tws = 10−4, n = 11
Surplus refinement G5D-100C-D5 rp = 800, rs = 5, n = 7

Table 8.7.: Configuration of the refinement and coarsening criteria for the G5D datasets.

transferring it to the nodes. Similar to the results from Hazel Hen, the time required is

only a small fraction of the overall runtime. Fluctuations in the time required to load

the dataset are explained by the high-performance filesystem being shared with other

users.

8.7.4. Spatial Adaptivity for Higher Dimensions

So far, we only considered regular sparse grids for clustering. As the last step of the

evaluation of sparse grid clustering, we show that a spatially-adaptive sparse grid for

the density estimation enables the targeting of higher-dimensional datasets at acceptable

runtimes. We compare three approaches to spatial adaptivity: support-based refinement,

weight-support coarsening and surplus refinement. To highlight the differences between

the adaptivity approaches, we use three datasets with 5-dimensional Gaussians embed-

ded in a 5-dimensional, 10-dimensional and 20-dimensional dataset. The construction of

these datasets and the parameters of the clustering algorithm, except for those related

to adaptivity, were described in Sec. 8.7.1. As an illustration we show projections of the

G5-100C-10D dataset in Fig. 8.10. All results presented in this section were computed

on a Quadro GP100.

The configurations of the refinement and coarsening criteria are listed in Tab. 8.7. The

parameters were chosen so that an ARI ≥ 0.99 was achieved in all cases. An attempt was

made to configure the adaptivity criteria so that grid points were not added unnecessarily.

Figure 8.11 shows the results of the refinement and coarsening experiments. We only

display the time required for the density estimation, as the effect on the duration of the

other steps is minimal.

The support refinement approach achieves the best runtimes for the more difficult

datasets with 10 and 20 dimensions. It required more time to create the grid, as it iterates

over the dataset to add grid points. However, the obtained grid is small enough so that

213

8. Clustering on Sparse Grids

Figure 8.10.: Projections onto the coordinate planes of the G5D-100C-D10 dataset. This
dataset was created by sampling 100 5d Gaussians, the additional five
dimensions were set to 0.5.

214

8.7. Evaluation

Support ref. W.-Supp. coars. Surplus ref.
0

10

20

30

40

50

60

70

D
u

ra
ti

on
(s

)

5d

10d

20d

5d

10d

5d

Density estimation, 5d Gaussians, m = 0.2M , ARI≥ 0.99

create grid

dens. right-hand side

sum dens. mult.

Figure 8.11.: Duration of the density estimation of a 5d structure embedded in a 5d, 10d,
and 20d dataset for three different approaches for spatial adaptivity. Sup-
port refinement was the only approach that could process the 20d dataset
within a reasonable timeframe. The missing results for weight-support
coarsening approach and surplus are due to excessive runtimes.

solving the system of linear equations for the density estimation is fast. This approach

was the only refinement approach that could successfully process the G5D-100C-D20

dataset. Furthermore, the runtime only linearly increases with the dimension.

The weight-support coarsening approach displays excellent performance for the G5D-

100C-D5 dataset, as the regular grid that is coarsened is still relatively small. However,

the n = 9 regular grid needed for the G5D-100C-D10 dataset leads to longer runtimes

compared to the support refinement approach. The G5D-100C-D20 could not be pro-

cessed with this approach, as the regular grid to be coarsened would be too large. This

illustrates that weight-support coarsening is better suited for lower dimensional settings

compared to support refinement.

The results of the coarsening approach also outline how an attempt with a regular

sparse grid would fare. The G5D-100C-D5 dataset could be processed quite competi-

tively, as only the density estimation would be slightly more expensive. However, it is

more expensive for the G5D-100C-D10 dataset as well, indicating runtimes that would

not be competitive with support refinement. For the G5D-100C-D20, the same reason-

215

8. Clustering on Sparse Grids

Figure 8.12.: Projections onto the coordinate planes of the refined grids created for the
G5D-100C-10D datasets. Shown are the spatially-adaptive grids for sup-
port refinement (left) and surplus refinement (right). These illustrations
were created from a uniformly drawn sample of 2000 grid points. In con-
trast to surplus refinement, the support refinement approach adapts better
to the relevant dimensions.

ing as for the coarsening approach applies, i.e., the sparse grid would be too large to be

processed within an acceptable timeframe.

The surplus refinement approach was slowest in processing the G5D-100C-D5 dataset.

We gave up on obtaining results even for the 10-dimensional dataset, as we were unable

to find a configuration that achieved an ARI ≥ 0.99 and required less than ≈ 5x the

duration of the G5D-100C-D5 dataset. Due to the regularization and the data-point-

agnostic refinement approach, surplus refinement results in a larger grid with many grid

points in the non-contributing dimensions. To illustrate this issue, we show projections

of sparse grids obtained through support refinement and surplus refinement for the G5D-

100C-D10 dataset in Fig. 8.12. As the illustration shows, support refinement only spends

grid points in the relevant dimensions.

8.8. Summary

We presented a distributed approach for clustering based on the sparse grid density

estimation. By using a sparse grid density estimation, the clustering algorithm is well-

suited for higher-dimensional problems. As presented, our algorithm can be used in

216

8.8. Summary

node-level and distributed settings and was shown to achieve excellent node-level per-

formance in both situations. On Piz Daint, across the compute kernels a performance

of 352 TFLOPS was achieved with more than 549 TFLOPS for the k-nearest-neighbor

graph creation step. Furthermore, the use of OpenCL and an optimized implementa-

tion enabled performance portability across five node-level platforms from three different

vendors. Finally, we showed that a spatially-adaptive sparse grid for the density esti-

mation enables the clustering of a 20-dimensional dataset. Comparing three refinement

approaches, support refinement displayed the best runtimes at a fixed ARI.

217

9. Conclusion

In this work, we introduced the auto-tuning framework AutoTuneTMP and applied it to

three algorithms. Two further auto-tuned compute kernels are evaluated in the appendix

(Sec. A.2 and Sec. B.4). We showed that AutoTuneTMP’s auto-tuning approach is easy

to integrate into applications, productive, maintainable and extensible. By providing

templates for common optimizations, AutoTuneTMP not only tunes compute kernels,

but also supports the writing of auto-tuning-enabled compute kernels. The use of JIT

compilation and the approach for writing compute kernels allow AutoTuneTMP to go

beyond prior approaches.

Applying our auto-tuning approach to the standard matrix multiplication algorithm,

we demonstrated competitive performance with vendor BLAS libraries, achieving up to

91% of the peak performance of four devices and displaying performance portability.

For this performance result, AutoTuneTMP successfully discovered high-performance

parameterizations in an 11-dimensional search space.

We further auto-tuned two sparse grid regression algorithms: the subspace algorithm

and the unified streaming algorithm. In evaluating these algorithms, we demonstrated

that both algorithms are a strong improvement over the state-of-the-art approach and

that both significantly benefit from auto-tuning. Of these two algorithms, the unified

streaming algorithm proves to be more flexible as it can efficiently use GPUs. The

subspace algorithm displayed higher performance than the unified streaming algorithm,

but is limited to processor platforms. On a spatially-adaptive sparse grid, the sub-

space algorithm outperformed the streaming algorithm by a factor of up to 5.4x. While

the subspace algorithm used an auto-tuned C++ implementation approach, the unified

streaming algorithm showed that AutoTuneTMP can be used to auto-tune OpenCL

kernels. OpenCL is a particularly relevant auto-tuning target, as it provides excellent

portability. For the unified streaming algorithm, we showed that near-optimal perfor-

mance was achieved across processors and GPUs. Considering the performance model

provided for this algorithm, the unified streaming algorithm reached up to 96% of the

achievable performance.

219

9. Conclusion

Our distributed sparse grid clustering algorithm contributes both to sparse grid data

mining and performance portability research. Our highly-optimized OpenCL implemen-

tation achieved up to 352 TFLOPS in a strong-scaling scenario using 128 nodes of Piz

Daint. In node-level scenarios, with sufficient work available per node, up to 90% of the

achievable peak performance could be measured. In addition, we introduced support re-

finement for both sparse grid regression and sparse grid clustering. For both regression

and clustering, support refinement was shown to improve performance at the same error

compared to the state-of-the-art surplus refinement approach.

While there is still work to be done until auto-tuning is widely adopted, we showed

in this work that auto-tuning is well-suited to solve the performance and portability

challenges faced by many scientific applications. We identified JIT-compilation, which

was used in all compute kernels in this work, as a key feature towards generally appli-

cable auto-tuning. As parameters are often independent of most other parameters, we

tentatively conclude that search heuristics such as line search tend to be sufficient even

for large higher-dimension search spaces. Finally, we showed that performance porta-

bility is possible across major node-level architectures. Parameterized compute kernels

and auto-tuning were shown to be valuable tools for bridging the gap between different

architectures.

Directions for Future Research

The work presented offers many opportunities for further research. AutoTuneTMP

could be extended with further search strategies and additional optimization templates.

Thereby, compute kernels with different characteristics from those evaluated can be

targeted. Modern hardware platforms are challenging targets for auto-tuning, to a large

extent because of their power-saving features and dynamic frequency variation. Both

make it difficult to obtain accurate performance measurements, which are critical for

auto-tuning. This could be addressed by using the hardware performance counters to

account for frequency variation. Similarly, by disabling power-saving features during

tuning the impact of switching from a low-power to a higher-power performance state

could be mitigated. More accurate measurements of short-running compute kernels

would allow for a reduction of the problem size used during tuning. Thereby, the total

duration of the tuning process could be reduced.

The presented sparse grid algorithms can be further improved as well. More work

on the subspace algorithm for GPUs might yield an overall faster and lower complex-

ity regression approach. Similarly, a lower complexity k-nearest neighbor search algo-

220

rithm would reduce the overall complexity of sparse grid clustering. To that end, a

locality-sensitive hashing algorithm primarily intended for GPUs has already been im-

plemented [37, 22]. While early results are promising, the suitability of this algorithm

requires further investigation and a distributed variant of this algorithm needs to be

designed.

221

A. AutoTuneTMP

A.1. Metaprogramming for OpenCL Abstractions

As another example for the usefulness of template metaprogramming, we consider a

template that implements the application of kernel arguments to an OpenCL kernel. In

OpenCL, applying arguments requires one API call per argument and further calls for

ensuring that no error occurred. The implementation of the recursive variadic template

that simplifies this task as well as an example call are shown in List. A.1. The template

shown not only applies an arbitrary number of arguments to the kernel, it additionally

checks whether an error occurred. In case of an error, an exception is thrown. As the

types of the arguments are inferred individually, the template can be used for kernels

that have arguments with different types. The last line of the example shows that this

template is easy to use.

Listing A.1: A recursive variadic template for applying arguments to OpenCL kernels.

1 namespace d e t a i l {
2 template <i n t 32 t> void apply arguments (c l k e r n e l k e rne l) {}
3 template < i n t 3 2 t arg num , typename T, typename . . . Ts>

4 void apply arguments (c l k e r n e l kerne l , T arg , Ts . . . o t h e r a r g s) {
5 c l i n t e r r = clSetKerne lArg (kerne l , arg num , s i z e o f (T) , &arg) ;

6 check (err , e r r s t r) ;

7 d e t a i l : : apply arguments<arg num + 1>(kerne l , o t h e r a r g s . . .) ;

8 }
9 } // namespace d e t a i l

10 template <typename . . . Ts> void apply arguments (c l k e r n e l kerne l ,

11 Ts . . . a rgs) {
12 d e t a i l : : apply arguments<0>(kerne l , a rgs . . .) ;

13 }
14 // example c a l l

15 openc l : : apply arguments (kerne l , arg1 , arg2 , arg3) ;

223

A. AutoTuneTMP

A.2. Auto-Tuning the STREAM Triad

The STREAM benchmark is a benchmark that measures the throughput of four memory

intensive loops and was originally proposed by John McCalpin [101]. It is still often

used to assess the practically achievable maximum memory bandwidth. We employ it

to further illustrate the usefulness of optimization templates for creating auto-tunable

compute kernels and for the applicability of AutoTuneTMP.

For the purpose of this demonstration, we consider the triad routine of the STREAM

benchmark. It has three input vectors a,b and c with N ∈ N components. Further

assuming a scalar constant q ∈ R, it computes ai := bi + qci for all i ∈ {1, . . . , N}. As

each component of all of the arrays is only touched once, the operation is clearly bound

by the available memory bandwidth for a large enough N .

To achieve close to the practically-achievable memory bandwidth on NUMA machines,

we created a NUMA-aware implementation of the triad routine. This implementation

is displayed in List. A.2. We use a configurable thread pool, which is part of our

optimization templates collection, as well as our register-blocking template. In our

implementation, each thread performs the triad in its own array. The functional f that

implement the per-thread routine is called with the ID of the executing thread. This is

used for the thread to access the array mapped to its NUMA node. We start measuring

the performance as soon as the tasks get assigned to the thread pool. The measuring

ends after the synchronization function of the thread pool returns (Line 25).

This compute kernel exposes three parameters. The first parameter is the number of

threads of the thread pool. As the second parameter, the affinity policy of the thread pool

can be adjusted. Two options are supported: “compact” and “spread”. The “compact”

policy first fills up one NUMA node before placing threads on the second NUMA node.

If the policy is set to “spread”, threads are distributed so that the number of threads

per NUMA node is minimal. For a portable vectorized implementation we again rely on

Vc. To additionally allow for software pipelining, we use the register-blocking template.

Its blocking factor is the third parameter exposed by the compute kernel.

Our target is the AMD Epyc 7551P processor. As this processor consists of four

NUMA domains, achieving optimal memory throughput is slightly more challenging

than on standard dual-socket platforms. The Epyc processor has two memory channels

per NUMA domain. Overall, it offers a theoretical peak memory bandwidth of 171 GB/s.

The values range of the parameters are summarized in Tab. A.1. As the initial parameter

values, we set the register-blocking factor and the number of threads to one. The affinity

224

A.2. Auto-Tuning the STREAM Triad

Listing A.2: An auto-tuned STREAM triad that uses the register-blocking and queue-
thread-pool templates. It exposes three parameters.

1 us ing r e g a r r = opttmp : : r e g i s t e r a r r a y<Vc : : double v , REG BLOCKING>;
2 opttmp : : queue thread poo l<THREADS> pool ;
3 pool . s e t a f f i n i t y (AFFINITY POLICY) ;
4 pool . s t a r t () ;
5 auto f = [&] (s i z e t th r ead id) {
6 // get per−thread array
7 std : : vector<double , a l i g n a l l o c > &a thread = a [th r ead id] ;
8 std : : vector<double , a l i g n a l l o c > &b thread = b [th r ead id] ;
9 std : : vector<double , a l i g n a l l o c > &c thread = c [th r ead id] ;

10 constexpr s i z e t increment = blockreg ∗ Vc : : double v : : s i z e () ;
11 // do per−thread t r i a d
12 f o r (s i z e t i = 0 ; i < N per task ; i += increment) {
13 r e g a r r b reg (&b thread [i] , Vc : : v e c t o r a l i g n e d) ;
14 r e g a r r c r e g (& c thread [i] , Vc : : v e c t o r a l i g n e d) ;
15 temp = b reg + q vec ∗ c r e g ;
16 temp . memstore(&a thread [i] , Vc : : v e c t o r a l i g n e d) ;
17 }
18 } ;
19 auto t i m e r s t a r t = . . . ;
20 f o r (s i z e t i = 0 ; i < KERNEL THREADS; i += 1) {
21 // the thread ID i s s e t up i n t e r n a l l y , value− i n i t i a l i z a t i o n i s
22 // used as p l a c eho lde r
23 pool . enqueue work id (f , {}) ;
24 }
25 pool . f i n i s h () ;
26 auto t imer s top = . . . ;

225

A. AutoTuneTMP

Affinity policy Threads Reg. blocking

Values {compact, spread} {1, 2, 4, 8, 16, 32} {1, 2, 4}

Table A.1.: The STREAM triad kernel exposes three parameters to be tuned.

0 5 10 15 20

Search Step

0

25

50

75

100

125

150

G
B

/
s

Triad/Par. Line Search

running max

samples

improve

best

0 10 20

Search Step

0

25

50

75

100

125

150

G
B

/
s

Triad/Par. Neighborhood Search

running max

samples

improve

best

Figure A.1.: Auto-tuning the STREAM triad with two search strategies: parallel neigh-
borhood search and parallel line search. Both search strategies achieved a
nearly identical maximum bandwidth, though parallel neighborhood search
required more search steps.

policy is set to “compact”.

Results for the parallel neighborhood search and parallel line search are shown in

Fig. A.1. Both search strategies achieve a maximum memory bandwidth of 98 GB/s.

While both search strategies find a best parameter combination with the same perfor-

mance, line search required fewer iterations. This bandwidth was computed assuming

three memory references per iteration. However, as our version of Vc does not support

non-temporal stores, the actual traffic between the processor and the DRAM amount

to 130 GB/s. For comparison, AMD reports a slightly higher memory bandwidth of

149 GB/s for the STREAM triad. The highest-bandwidth run had the affinity policy

set to “spread”, set the number of threads to 32 and specified a register-blocking factor

of 4. However, the blocking did not provide any significant speedup, whereas using at

least 16 threads and the correct affinity policy were critical. This example further illus-

trates the applicability of AutoTuneTMP. And it shows the usefulness of auto-tuning

affinity, through a parameterized thread pool abstraction, in a memory-bound case.

226

B. Sparse Grids

B.1. The Unified Streaming Algorithm and Double

Precision

In Sec. 7.3.3, we provided auto-tuning results for the unified streaming algorithm using

single-precision arithmetic. In the following, we describe auto-tuning of the unified

streaming algorithm using double-precision arithmetic using the same experiments as

for single-precision arithmetic.

First, we address the speedup over the PVN parameter combination. Figure B.1

shows the results of the experiments for three platforms. Fewer platforms were used,

as fewer platforms support double-precision arithmetic (efficiently). Overall, speedups

between 1.5x and 4.9x were achieved. The results for the Tesla P100 and the FirePro

W8100 GPUs are in line with the single-precision results. On the Vega VII GPU, auto-

tuning still improves performance, but less so compared to the single-precision results.

The Vega VII GPU only offers quarter-rate double-precision performance. Due to the

thereby improved machine balance, memory is less of a bottleneck and there is less of

an opportunity for improved performance.

Next, we consider the contribution of individual parameters. For consistency, we

performed the same PVN comparison as described in Sec. 7.3.3. Figure B.2 shows the

results of the experiments for the DR5-Supp-D and Fried1-D experiments. Generally,

the same parameters contribute and the contribution are similar compared to the single-

precision experiments. The differences between the two setups are again explained by

the different sizes of sparse grids. We show the best parameter values obtained through

auto-tuning for the Tesla P100 in the next section.

227

B. Sparse Grids

W
81

00

P
10

0

Veg
a

V
II

1

2

3

4

5

S
p

ee
d

u
p

ov
er

P
V

N

DR5-Supp-D, Line S., Double

multi-eval

trans.

0.0

0.5

1.0

1.5

2.0

2.5

D
u

ra
ti

on
(s

)

PVN

best

W
81

00

P
10

0

Veg
a

V
II

1

2

3

4

5

S
p

ee
d

u
p

ov
er

P
V

N

DR5-Supp-D, Neighbor. S., Double

multi-eval

trans.

0.0

0.5

1.0

1.5

2.0

2.5

D
u

ra
ti

on
(s

)

PVN

best

W
81

00

P
10

0

Veg
a

V
II

1

2

3

4

5

6

7

S
p

ee
d

u
p

ov
er

P
V

N

Fried1-D, Line S., Double

multi-eval

trans.

0

5

10

15

20

D
u

ra
ti

on
(s

)

PVN

best

W
81

00

P
10

0

Veg
a

V
II

1

2

3

4

5

6

S
p

ee
d

u
p

ov
er

P
V

N

Fried1-D, Neighbor. S., Double

multi-eval

trans.

0

5

10

15

20

D
u

ra
ti

on
(s

)

PVN

best

Figure B.1.: The performance improvements of auto-tuning the unified streaming algo-
rithm for both datasets (upper) and two search strategies: line search (left)
and neighborhood search (right). In contrast to Sec. 7.3.3, double-precision
arithmetic was used. Speedups between 1.5x and 4.9x were obtained over
PVN initial parameter values (bars). The durations shown are for a single
operation execution (dots).

228

B.1. The Unified Streaming Algorithm and Double Precision

da
ta

-/
gr

id
-b

lo
ck

gr
id

-/
da

ta
-s
pl

it

m
ax

-d
im

-u
nr

ol
l

pr
ef
et

ch
-s
iz
e

tr
an

s.
-w

ho
le

us
e-
lo

ca
l-m

em
or

y

lo
ca

l-s
iz
e

0.0

0.5

1.0

1.5

2.0

2.5

S
p

ee
d

u
p

v
s

P
V

N
Maximum Contribution, DR5-Supp-D

multi-eval

trans.

da
ta

-/
gr

id
-b

lo
ck

gr
id

-/
da

ta
-s
pl

it

m
ax

-d
im

-u
nr

ol
l

pr
ef
et

ch
-s
iz
e

tr
an

s.
-w

ho
le

us
e-
lo

ca
l-m

em
or

y

lo
ca

l-s
iz
e

0.0

0.5

1.0

1.5

2.0

2.5

S
p

ee
d

u
p

v
s

P
V

N

Maximum Contribution, Fried1-D

multi-eval

trans.

Figure B.2.: Contribution of individual parameter to the performance of the best pa-
rameter combination obtained through line search in the double-precision
experiments. The graph shows the maximum benefit of a parameter for
any of the hardware platforms used. Results are shown for the DR5-Supp-
D setup (top) and the Fried1-D setup (bottom).

229

B. Sparse Grids

Table B.1.: Auto-tuned parameter values of the unified streaming algorithm for the P100
platform and the DR5 dataset.

(a) Exp.: DR5-Supp-S

Operator Multi-Evaluation Transposed
Strategy Line Neighbor Monte C. Line Neighbor Monte C.

transfer-whole-dataset/
transfer-whole-grid

True True True True True True

data-block/grid-block 8 1 8 1 1 2
grid-split/data-split 8 8 8 1 1 8

local-size 256 256 64 64 64 256
max-dim-unroll 2 1 1 4 1 4

prefetch-size 64 32 32 64 16 128
use-local-memory True True True True True True

(b) Exp.: DR5-Supp-D

Operator Multi-Evaluation Transposed
Strategy Line Neighbor Monte C. Line Neighbor Monte C.

transfer-whole-dataset/
transfer-whole-grid

True True True False True False

data-block/grid-block 8 4 8 1 1 1
grid-split/data-split 8 1 8 8 4 4

local-size 64 128 64 256 64 128
max-dim-unroll 1 4 1 10 1 1

prefetch-size 64 16 64 16 64 32
use-local-memory True True True True True True

B.2. Auto-Tuned Parameter Values of the Unified

Streaming Algorithm

To give an idea of the parambeter values obtained through auto-tuning of the unified

streaming algorithm, we provide the best parameter values for the three search strategies

used in the experiments. We limit ourselves to the Tesla P100 platforms due to the high

number of parameter values per device. Table B.1 lists the best parameters discovered

for the DR5 experiments. In Tab. B.3, the same is shown for the Friedman1 experiments.

230

B.2. Auto-Tuned Parameter Values of the Unified Streaming Algorithm

Table B.3.: Auto-tuned parameter values of the unified streaming algorithm for the P100
platform and the Friedman1 dataset.

(a) Exp.: Fried1-S

Operator Multi-Evaluation Transposed
Strategy Line Neighbor Monte C. Line Neighbor Monte C.

transfer-whole-dataset/
transfer-whole-grid

True True True False False True

data-block/grid-block 8 8 8 8 1 8
grid-split/data-split 8 8 8 4 1 8

local-size 256 256 128 256 256 256
max-dim-unroll 10 2 10 1 1 1

prefetch-size 128 128 32 32 32 64
use-local-memory True True True True True True

(b) Exp.: Fried1-D

Operator Multi-Evaluation Transposed
Strategy Line Neighbor Monte C. Line Neighbor Monte C.

transfer-whole-dataset/
transfer-whole-grid

True True True True True False

data-block/grid-block 8 8 8 2 2 4
grid-split/data-split 8 1 8 2 4 8

local-size 64 64 64 64 64 128
max-dim-unroll 10 2 1 1 2 10

prefetch-size 64 64 32 16 16 128
use-local-memory True True True True True True

231

B. Sparse Grids

B.3. Auto-Tuned Parameter Values of the Subspace

Algorithm

In this section, we provide the best auto-tuned parameter values discovered through

auto-tuning of the subspace algorithm using three search strategies. Similar to the

last section, we again limit ourselves to a single device due to the amount of results.

We show the parameters of the dual-socket Xeon Gold 5120 platform. Table B.5 and

Tab. B.6 show the best parameter values for the DR5-Supp-D and Fried1-D experiments,

respectively.

Table B.5.: Auto-tuned parameter values for the DR5-Supp-D experiment on the dual-
socket Xeon Gold platform.

Operator Multi-Evaluation Transposed

Strategy Monte C. Neighbor Line Monte C. Neighbor Line

reuse-intermediates 1 1 1 1 1 1

enable-subspace-skipping 0 0 0 1 0 0

list-ratio 0.3 0.1 0.2 0.1 0.1 0.3

chunk-size 512 512 512 512 512 512

unroll-vectorization 1 1 1 1 0 0

vector-padding 4 4 4 8 4 4

Table B.6.: Auto-tuned parameter values for the Fried1-D experiment on the dual-socket
Xeon Gold platform.

Operator Multi-Evaluation Transposed

Strategy Monte C. Neighbor Line Monte C. Neighbor Line

reuse-intermediates 1 1 1 1 1 1

enable-subspace-skipping 1 1 0 1 0 0

list-ratio 0.2 0.1 0.1 0.3 0.1 0.2

chunk-size 128 64 64 256 16 256

unroll-vectorization 1 0 0 0 0 1

vector-padding 4 4 4 8 4 4

232

B.4. An Auto-Tunable High-Level Multi-Evaluation

Listing B.1: A template for converting an array from array-of-structs into a struct-of-
arrays representation.

1 // std : : vector<double> from AoS (abcabcabc) to SoA (aaabbbccc)
2 opttmp : : s t r u c t o f a r r a y d a t a<DIMS, ENTRIES> data SoA (data) ;
3 // po in t e r to component , f o r cont inuous a c c e s s in same dimension
4 double ∗double = data SoA . po in t e r (d , i) ;

B.4. An Auto-Tunable High-Level Multi-Evaluation

As a further demonstration of AutoTuneTMP’s optimization template collection, we

consider a common sparse grid operation. Following the approach described in Sec. 7.1,

we implemented a streaming multi-evaluation operator for linear basis functions.

For our implementation, we again use OpenMP for parallelization, Vc for vectoriza-

tion and the register-blocking template from AutoTuneTMP’s optimization template

collection. For a vectorized algorithm that does not require (simulated) gather instruc-

tions, we convert the dataset, as read from a file, from array-of-struct into struct-of-array

representation. This is implemented by yet another template of our template collection.

An example of how this template is used is shown in List. B.1.

The implementation of this compute kernel is displayed in List. B.2. For paralleliza-

tion, the dataset is split into chunks processed by individual threads. Similar to the

OpenCL kernels, each thread processes a chunk of data points at a time. The chunk-size

is controlled by the block-data parameter and was realized through the register array

class template. By using this class and Vc, all floating-point operations in the inner

loops are perfectly vectorized. Per iteration of the innermost loop, only two scalar mem-

ory references (for reading level and index) are required. For a SIMD-width s, there

are therefore 6 · s · block-data operations per 16 B read from memory. Consequently, for

larger blocking sizes the algorithm quickly becomes compute-bound. For auto-tuning,

the blocking parameter was set to a value range from one to 15. As the second pa-

rameter, we once again allow the auto-tuner to enable or disable SMT by choosing the

appropriate number of threads for the parallel region. Given these two parameters, the

associated optimization task has a low difficulty. However, the implementation itself

provides further evidence for how an optimized implementation can closely mirror a

scalar implementation given adequate high-level optimization tools.

To evaluate this algorithm, we used the synthetic Friedman1 dataset as described in

Fig. 7.3.1. Thus, the dimensionality of the multi-evaluation task is 10. To fully saturate

a processor-node, we generated a dataset with 2 ·105 data points. Furthermore, we chose

233

B. Sparse Grids

Listing B.2: An auto-tuned multi-evaluation algorithm for linear basis functions imple-
mented with AutoTuneTMP’s optimization templates.

1 us ing namespace opttmp : : v e c t o r i z a t i o n ;
2 us ing r e g a r r a y = r e g i s t e r a r r a y<double v , DATA BLOCKING>;
3 double v one (1 . 0) ; double v zero (0 . 0) ;
4 constexpr s i z e t s tep = DATA BLOCKING ∗ double v : : s i z e () ;
5

6 #pragma omp p a r a l l e l f o r num threads (OMP THREADS)
7 f o r (s i z e t i = 0 ; i < d a t a s e t s i z e ; i += step) {
8 r e g a r r a y r e s u l t (0 . 0) ;
9 f o r (s i z e t j = 0 ; j < alpha . s i z e () ; j += 1) {

10 r e g a r r a y eva l (alpha [j]) ;
11 f o r (s i z e t d = 0 ; d < DIMS; d += 1) {
12 r e g a r r a y data (data SoA . po in t e r (d , i) , Vc : : v e c t o r a l i g n e d) ;
13 double v l e v e l (l e v e l s [j ∗ DIMS + d]) ;
14 double v index (i n d i c e s [j ∗ DIMS + d]) ;
15 // abs−exp r e s s i on converted to DATA BLOCKING−many FMAs
16 eva l ∗= max(one − abs (data ∗ l e v e l − index) , ze ro) ;
17 }
18 r e s u l t += eva l ;
19 }
20 r e s u l t . memstore(& r e s u l t s [i] , Vc : : v e c t o r a l i g n e d) ;
21 }

234

B.4. An Auto-Tunable High-Level Multi-Evaluation

5 10 15

Search Step

0

200

400

600

G
F

L
O

P
S

Multi-Eval, Par. Line Search

running max

samples

improve

best

Figure B.3.: Auto-tuning the sparse grid multi-evaluation implemented with the opti-
mization template collection. Due to the essentially one-dimensional search
problem, a high-performance parameterization is detected easily. The best
parameterization reaches 93% of the achievable performance.

a regular sparse grid of level 7.

We tuned the compute kernel on an AMD Epyc 7551P processor with parallel line

search as the search strategy. The results of this auto-tuning experiment are shown

in Fig. B.3. In this experiment, we achieved up to 456 GFLOPS or 70% of the peak

performance of the device. On this hardware platform, the vector units impose an upper

bound of 75%. We therefore achieve 93% of the achievable peak performance. The upper

bound is computed by taking into consideration that the FMA instruction counts for

two operations and the max (implemented as AND) and the subtraction can be executed

simultaneously, as they occupy different pipelines [53]. The best parameterization had

SMT enabled and chose block-data with seven.

235

Bibliography

[1] “Vega” Instruction Set Architecture. AMD. July 2017. url: https://developer.

amd.com/wp-content/resources/Vega_Shader_ISA_28July2017.pdf.

[2] Bilge Acun et al.
”
Parallel Programming with Migratable Objects: Charm++ in

Practice“. In: Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis. SC’14. New Orleans, Louisana:

IEEE Press, 2014, pp. 647–658. isbn: 978-1-4799-5500-8. doi: 10.1109/SC.

2014.58.

[3] Jennifer K. Adelman-McCarthy et al.
”
The Fifth Data Release of the Sloan Dig-

ital Sky Survey“. In: The Astrophysical Journal Supplement Series 172.2 (2007),

pp. 634–644.

[4] AMD APP SDK OpenCL Optimization Guide. AMD. Aug. 2015. url: http:

//amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_

OpenCL_Programming_Optimization_Guide2.pdf.

[5] Guilherme Andrade et al.
”
G-DBSCAN: A GPU Accelerated Algorithm for Density-

based Clustering“. In: Procedia Computer Science 18 (2013), pp. 369–378.

[6] Jason Ansel et al.
”
OpenTuner: An Extensible Framework for Program Auto-

tuning“. In: 2014 23rd International Conference on Parallel Architecture and

Compilation Techniques (PACT). Aug. 2014, pp. 303–315.

[7] Jason Ansel et al.
”
PetaBricks: A Language and Compiler for Algorithmic Choice“.

In: Proceedings of the 30th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation. PLDI’09. Dublin, Ireland: ACM, 2009, pp. 38–

49. isbn: 978-1-60558-392-1. doi: 10.1145/1542476.1542481.

[8] Hartwig Anzt et al.
”
Experiences in autotuning matrix multiplication for energy

minimization on GPUs“. In: Concurrency and Computation: Practice and Expe-

rience 27.17 (May 2015), pp. 5096–5113. doi: 10.1002/cpe.3516.

237

Bibliography

[9] David Arthur and Sergei Vassilvitskii.
”
K-means++: The Advantages of Careful

Seeding“. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on

Discrete Algorithms. SODA’07. New Orleans, Louisiana: Society for Industrial

and Applied Mathematics, 2007, pp. 1027–1035. isbn: 978-0-898716-24-5.

[10] Cédric Augonnet et al.
”
StarPU: a unified platform for task scheduling on het-

erogeneous multicore architectures“. In: Concurrency and Computation: Practice

and Experience 23.2 (Nov. 2010), pp. 187–198. doi: 10.1002/cpe.1631.

[11] Bahman Bahmani et al.
”
Scalable K-Means++“. In: Proc. VLDB Endow. 5.7

(Mar. 2012), pp. 622–633. issn: 2150-8097.

[12] E. Bajrovic et al.
”
Tuning OpenCL Applications with the Periscope Tuning

Framework“. In: 2016 49th Hawaii International Conference on System Sciences

(HICSS). Jan. 2016, pp. 5752–5761. doi: 10.1109/HICSS.2016.711.

[13] M. Bauer et al.
”
Legion: Expressing locality and independence with logical re-

gions“. In: SC ’12: Proceedings of the International Conference on High Perfor-

mance Computing, Networking, Storage and Analysis. Nov. 2012, pp. 1–11. doi:

10.1109/SC.2012.71.

[14] David Beckingsale et al.
”
Apollo: Reusable Models for Fast, Dynamic Tuning of

Input-Dependent Code“. In: 2017 IEEE International Parallel and Distributed

Processing Symposium (IPDPS). May 2017, pp. 307–316. doi: 10.1109/IPDPS.

2017.38.

[15] Nathan Bell and Jared Hoberock.
”
Thrust: A productivity-oriented library for

CUDA“. In: GPU computing gems Jade edition 2 (2011), pp. 359–371.

[16] Richard Bellman. Adaptive Control Processes: A Guided Tour. ’Rand Corpora-

tion. Research studies. Princeton University Press, 1961.

[17] Janki Bhimani, Miriam Leeser, and Ningfang Mi.
”
Accelerating K-Means Cluster-

ing with Parallel Implementations and GPU Computing“. In: High Performance

Extreme Computing Conference (HPEC), 2015 IEEE. IEEE. 2015, pp. 1–6.

[18] Jeff Bilmes et al. The PHiPAC v1.0 matrix-multiply distribution. Tech. rep. Uni-

versity of California at Berkeley, Oct. 1998.

[19] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information

Science and Statistics). Springer-Verlag New York, Inc., 2006. isbn: 0387310738.

238

Bibliography

[20] Robert D. Blumofe et al.
”
Cilk: An Efficient Multithreaded Runtime System“.

In: Journal of Parallel and Distributed Computing 37.1 (1996), pp. 55–69. issn:

0743-7315. doi: 10.1006/jpdc.1996.0107.

[21] Christian Böhm et al.
”
Density-based Clustering Using Graphics Processors“. In:

Proceedings of the 18th ACM Conference on Information and Knowledge Man-

agement. CIKM’09. Hong Kong, China: ACM, 2009, pp. 661–670. isbn: 978-1-

60558-512-3.

[22] Marcel Breyer.
”
Ein hoch-performanter (approximierter) k-Nächste-Nachbarn Al-

gorithmus für GPU“. Bachelor’s Thesis. University of Stuttgart, Apr. 2018.

[23] Hans-Joachim Bungartz and Michael Griebel.
”
Sparse Grids“. In: Acta Numerica

13 (2004), pp. 1–123.

[24] Hans-Joachim Bungartz, Dirk Pflüger, and Stefan Zimmer.
”
Adaptive Sparse

Grid Techniques for Data Mining“. In: Modelling, Simulation and Optimization

of Complex Processes 2006, Proc. Int. Conf. HPSC, Hanoi, Vietnam. Ed. by H.G.

Bock et al. Springer-Verlag, Aug. 2008, pp. 121–130. isbn: 9783540794080.

[25] Gerrit Buse.
”
Exploiting Many-Core Architectures for Dimensionally Adaptive

Sparse Grids“. PhD thesis. München: Institut für Informatik, Technische Univer-

sität München, May 2015. isbn: 9783843920926.

[26] Antal Buss et al.
”
STAPL: Standard Template Adaptive Parallel Library“. In:

Proceedings of the 3rd Annual Haifa Experimental Systems Conference. SYS-

TOR’10. Haifa, Israel: ACM, 2010, 14:1–14:10. isbn: 978-1-60558-908-4. doi:

10.1145/1815695.1815713.

[27] Jean-Sylvain Camier.
”
Improving Performance Portability and Exascale Soft-

ware Productivity with the ∇ Numerical Programming Language“. In: Proceed-

ings of the 3rd International Conference on Exascale Applications and Software.

EASC’15. Edinburgh, UK: University of Edinburgh, 2015, pp. 126–131. isbn:

978-0-9926615-1-9.

[28] Chih-Chung Chang and Chih-Jen Lin.
”
LIBSVM: A Library for Support Vector

Machines“. In: ACM Trans. Intell. Syst. Technol. 2.3 (May 2011), 27:1–27:27.

issn: 2157-6904. doi: 10.1145/1961189.1961199.

[29] Chun Chen.
”
Model-guided empirical optimization for memory hierarchy“. PhD

thesis. 2007.

239

Bibliography

[30] Ray S. Chen and Jeffrey K. Hollingsworth.
”
Towards fully automatic auto-tuning:

Leveraging language features of Chapel“. In: The International Journal of High

Performance Computing Applications 27.4 (2013), pp. 394–402. doi: 10.1177/

1094342013493198.

[31] M. Christen, O. Schenk, and H. Burkhart.
”
PATUS: A Code Generation and

Autotuning Framework for Parallel Iterative Stencil Computations on Modern

Microarchitectures“. In: 2011 IEEE International Parallel Distributed Processing

Symposium. May 2011, pp. 676–687. doi: 10.1109/IPDPS.2011.70.

[32] G. C. Clayton et al.
”
Very Large Excesses of 18O in Hydrogen-deficient Car-

bon and R Coronae Borealis Stars: Evidence for White Dwarf Mergers“. In: The

Astrophysical Journal 662 (June 2007), pp. 1220–1230. doi: 10.1086/518307.

[33] clBLAS. https://github.com/clMathLibraries/clBLAS. Accessed: 2018-10-

17.

[34] Don Coppersmith and Shmuel Winograd.
”
Matrix Multiplication via Arithmetic

Progressions“. In: Proceedings of the Nineteenth Annual ACM Symposium on

Theory of Computing. STOC ’87. New York, New York, USA: ACM, 1987, pp. 1–

6. isbn: 0-89791-221-7. doi: 10.1145/28395.28396.

[35] Gregor Daiß et al.
”
From Piz Daint to the Stars: Simulation of Stellar Mergers

using High-Level Abstractions“. In: SC’19 (2019). accepted.

[36] Usman Dastgeer, Johan Enmyren, and Christoph W Kessler.
”
Auto-tuning SkePU:

A Multi-Backend Skeleton Programming Framework for Multi-GPU Systems“.

In: Proceedings of the 4th International Workshop on Multicore Software Engi-

neering. ACM. 2011, pp. 25–32.

[37] Mayur Datar et al.
”
Locality-Sensitive Hashing Scheme Based on P-stable Distri-

butions“. In: Proceedings of the Twentieth Annual Symposium on Computational

Geometry. SCG’04. Brooklyn, NY, USA: ACM, 2004, pp. 253–262. isbn: 1-58113-

885-7.

[38] Kaushik Datta et al.
”
Stencil Computation Optimization and Auto-tuning on

State-of-the-Art Multicore Architectures“. In: Proceedings of the 2008 ACM/IEEE

conference on Supercomputing. IEEE Press. 2008.

240

Bibliography

[39] Zachary DeVito et al.
”
Liszt: A Domain Specific Language for Building Portable

Mesh-based PDE Solvers“. In: Proceedings of 2011 International Conference for

High Performance Computing, Networking, Storage and Analysis. SC’11. Seat-

tle, Washington: ACM, 2011, 9:1–9:12. isbn: 978-1-4503-0771-0. doi: 10.1145/

2063384.2063396.

[40] Romain Dolbeau, François Bodin, and Guillaume Colin de Verdière.
”
One OpenCL

to rule them all?“ In: 2013 IEEE 6th International Workshop on Multi-/Many-

core Computing Systems. IEEE, Sept. 2013, pp. 1–6.

[41] J. Dongarra et al. LINPACK Users’ Guide. Society for Industrial and Applied

Mathematics, 1979. doi: 10.1137/1.9781611971811.

[42] Peng Du et al.
”
From CUDA to OpenCL: Towards a performance-portable solu-

tion for multi-platform GPU programming“. In: Parallel Computing 38.8 (2012),

pp. 391–407.

[43] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland.
”
Kokkos: En-

abling manycore performance portability through polymorphic memory access

patterns“. In: Journal of Parallel and Distributed Computing 74.12 (2014), pp. 3202–

3216. issn: 0743-7315. doi: 10.1016/j.jpdc.2014.07.003.

[44] Johan Enmyren and Christoph W. Kessler.
”
SkePU: A Multi-backend Skeleton

Programming Library for multi-GPU Systems“. In: Proceedings of the Fourth

International Workshop on High-level Parallel Programming and Applications.

HLPP’10. Baltimore, Maryland, USA: ACM, 2010, pp. 5–14. isbn: 978-1-4503-

0254-8. doi: 10.1145/1863482.1863487.

[45] Martin Ester et al.
”
A Density-Based Algorithm for Discovering Clusters“. In:

Proceedings of the Second International Conference on Knowledge Discovery and

Data Mining. KDD’96. Portland, Oregon: AAAI Press, 1996, pp. 226–231.

[46] Pierre Estérie et al.
”
Boost.SIMD: Generic Programming for Portable SIMDiza-

tion“. In: Proceedings of the 2014 Workshop on Programming Models for SIMD/Vec-

tor Processing. WPMVP’14. Orlando, Florida, USA: ACM, 2014, pp. 1–8. isbn:

978-1-4503-2653-7. doi: 10.1145/2568058.2568063.

[47] Vladimir Estivill-Castro.
”
Why So Many Clustering Algorithms: A Position Pa-

per“. In: SIGKDD Explor. Newsl. 4.1 (June 2002), pp. 65–75. issn: 1931-0145.

241

Bibliography

[48] Andrew Fall and Joseph Fall.
”
A domain-specific language for models of landscape

dynamics“. In: Ecological Modelling 141.1 (2001), pp. 1–18. issn: 0304-3800. doi:

10.1016/S0304-3800(01)00334-9.

[49] J. Fang, A. L. Varbanescu, and H. Sips.
”
A Comprehensive Performance Com-

parison of CUDA and OpenCL“. In: 2011 International Conference on Parallel

Processing. Sept. 2011, pp. 216–225. doi: 10.1109/ICPP.2011.45.

[50] Wenbin Fang et al. Parallel Data Mining on Graphics Processors. Tech. rep. Hong

Kong Univ. Sci. and Technology, Hong Kong, China, 2008.

[51] Reza Farivar et al.
”
A Parallel Implementation of K-Means Clustering on GPUs“.

English (US). In: Proceedings of the 2008 International Conference on Paral-

lel and Distributed Processing Techniques and Applications, PDPTA 2008. 2008,

pp. 340–345. isbn: 1601320841.

[52] Kayvon Fatahalian et al.
”
Sequoia: Programming the Memory Hierarchy“. In:

Proceedings of the 2006 ACM/IEEE Conference on Supercomputing. SC’06. Tampa,

Florida: ACM, 2006. isbn: 0-7695-2700-0. doi: 10.1145/1188455.1188543.

[53] Agner Fog. Instruction tables. Tech. rep. Technical University of Denmark, 2018.

[54] Agner Fog. The microarchitecture of Intel, AMD and VIA CPUs. Tech. rep. Tech-

nical University of Denmark, 2017.

[55] Franz Franchetti et al.
”
SPIRAL: Extreme Performance Portability“. In: Pro-

ceedings of the IEEE, special issue on “From High Level Specification to High

Performance Code” 106.11 (2018). preprint.

[56] Jerome H. Friedman.
”
Multivariate Adaptive Regression Splines“. In: The Annals

of Statistics 19.1 (1991), pp. 1–67.

[57] Matteo Frigo and Steven G. Johnson.
”
FFTW: an adaptive software architecture

for the FFT“. In: Acoustics, Speech and Signal Processing, 1998. Proceedings of

the 1998 IEEE International Conference on. Vol. 3. May 1998, pp. 1381–1384.

doi: 10.1109/ICASSP.1998.681704.

[58] Junhao Gan and Yufei Tao.
”
DBSCAN Revisited: Mis-Claim, Un-Fixability, and

Approximation“. In: Proceedings of the 2015 ACM SIGMOD International Con-

ference on Management of Data. SIGMOD’15. Melbourne, Victoria, Australia:

ACM, 2015, pp. 519–530. isbn: 978-1-4503-2758-9.

[59] J. Garcke, M. Griebel, and M. Thess.
”
Data Mining with Sparse Grids“. In: Com-

puting 67.3 (2001), pp. 225–253. issn: 0010-485X. doi: 10.1007/s006070170007.

242

Bibliography

[60] Jochen Garcke.
”
Maschinelles Lernen durch Funktionsrekonstruktion mit verall-

gemeinerten dünnen Gittern“. PhD thesis. Universität Bonn, Institut für Nu-

merische Simulation, 2004.

[61] Pawel Gepner, Victor Gamayunov, and David L. Fraser.
”
Effective Implementa-

tion of DGEMM on Modern Multicore CPU“. In: Procedia Computer Science 9

(2012). Proceedings of the International Conference on Computational Science,

ICCS 2012, pp. 126–135. issn: 1877-0509. doi: 10.1016/j.procs.2012.04.014.

[62] Simon Garcia De Gonzalo et al.
”
Revisiting Online Autotuning for Sparse-Matrix

Vector Multiplication Kernels on Next-Generation Architectures“. In: 2017 IEEE

19th International Conference on High Performance Computing and Communi-

cations; IEEE 15th International Conference on Smart City; IEEE 3rd Interna-

tional Conference on Data Science and Systems (HPCC/SmartCity/DSS). Dec.

2017, pp. 72–80. doi: 10.1109/HPCC-SmartCity-DSS.2017.10.

[63] Kazushige Goto and Robert A. van de Geijn.
”
Anatomy of High-performance

Matrix Multiplication“. In: ACM Trans. Math. Softw. 34.3 (May 2008), 12:1–

12:25. issn: 0098-3500. doi: 10.1145/1356052.1356053.

[64] Scott Grauer-Gray et al.
”
Auto-tuning a High-Level Language Targeted to GPU

Codes“. In: Innovative Parallel Computing (InPar). IEEE. 2012, pp. 1–10.

[65] Kate Gregory and Ade Miller. C++ AMP: accelerated massive parallelism with

Microsoft Visual C++. Redmond, WA, USA: Microsoft Press, 2012.

[66] John A. Gunnels, Greg M. Henry, and Robert A. van de Geijn.
”
A Family of High-

Performance Matrix Multiplication Algorithms“. In: Computational Science —

ICCS 2001. Ed. by Vassil N. Alexandrov et al. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2001, pp. 51–60. isbn: 978-3-540-45545-5.

[67] Tobias Gysi et al.
”
STELLA: A Domain-specific Tool for Structured Grid Meth-

ods in Weather and Climate Models“. In: Proceedings of the International Confer-

ence for High Performance Computing, Networking, Storage and Analysis. SC’15.

Austin, Texas: ACM, 2015, 41:1–41:12. isbn: 978-1-4503-3723-6. doi: 10.1145/

2807591.2807627.

[68] Albert Hartono et al.
”
Parametric Multi-level Tiling of Imperfectly Nested Loops“.

In: Proceedings of the 23rd International Conference on Supercomputing. ICS’09.

Yorktown Heights, NY, USA: ACM, 2009, pp. 147–157. isbn: 978-1-60558-498-0.

doi: 10.1145/1542275.1542301.

243

Bibliography

[69] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.

2nd ed. Springer Series in Statistics. Springer-Verlag New York, 2009. isbn: 978-

0-387-84858-7.

[70] Yaobin He et al.
”
MR-DBSCAN: a scalable MapReduce-based DBSCAN algo-

rithm for heavily skewed data“. In: Frontiers of Computer Science 8.1 (2014),

pp. 83–99.

[71] Markus Hegland, Giles Hooker, and Stephen Roberts.
”
Finite Element Thin Plate

Splines in Density Estimation“. In: ANZIAM Journal 42 (2000), pp. 712–734.

[72] Alexander Heinecke.
”
Boosting Scientific Computing Applications through Lever-

aging Data Parallel Architectures“. PhD thesis. Technische Universität München,

Jan. 2014.

[73] Alexander Heinecke and Dirk Pflüger.
”
Emerging Architectures Enable to Boost

Massively Parallel Data Mining Using Adaptive Sparse Grids“. In: International

Journal of Parallel Programming 41.3 (July 2012), pp. 357–399. issn: 1573-7640.

[74] Alexander Heinecke and Dirk Pflüger.
”
Multi- and Many-core Data Mining with

Adaptive Sparse Grids“. In: Proceedings of the 8th ACM International Conference

on Computing Frontiers. CF ’11. Ischia, Italy: ACM, 2011, 29:1–29:10. isbn: 978-

1-4503-0698-0. doi: 10.1145/2016604.2016640.

[75] Alexander Heinecke et al.
”
Demonstrating Performance Portability of a Custom

OpenCL Data Mining Application to the Intel Xeon Phi Coprocessor“. In: Inter-

national Workshop on OpenCL Proceedings 2013. Georgia Tech, May 2013.

[76] Alexander Heinecke et al.
”
Design and Implementation of the Linpack Benchmark

for Single and Multi-node Systems Based on Intel Xeon Phi Coprocessor“. In:

2013 IEEE 27th International Symposium on Parallel and Distributed Processing.

May 2013, pp. 126–137. doi: 10.1109/IPDPS.2013.113.

[77] Thomas Heller et al.
”
Harnessing Billions of Tasks for a Scalable Portable Hydro-

dynamic Simulation of the Merger of Two Stars“. In: The International Journal

of High Performance Computing Applications (IJHPCA) (2018). accepted.

[78] J. A. Herdman et al.
”
Accelerating Hydrocodes with OpenACC, OpenCL and

CUDA“. In: 2012 SC Companion: High Performance Computing, Networking

Storage and Analysis. Nov. 2012, pp. 465–471. doi: 10.1109/SC.Companion.

2012.66.

244

Bibliography

[79] Alexander Hinneburg and Hans-Henning Gabriel.
”
DENCLUE 2.0: Fast Cluster-

ing Based on Kernel Density Estimation“. In: Proceedings of the 7th International

Conference on Intelligent Data Analysis. IDA’07. Ljubljana, Slovenia: Springer-

Verlag, 2007, pp. 70–80. isbn: 978-3-540-74824-3.

[80] Richard D Hornung and Jeffrey A Keasler. The RAJA Portability Layer: Overview

and Status. Tech. rep. Livermore, California: Lawrence Livermore National Lab-

oratory, Sept. 2014.

[81] Lawrence Hubert and Phipps Arabie.
”
Comparing partitions“. In: Journal of

Classification 2.1 (Dec. 1985), pp. 193–218. issn: 1432-1343. doi: 10 . 1007 /

BF01908075.

[82] Intel Xeon Phi Processor Software - Optimization Guide. Intel. Apr. 2017.

[83] Liheng Jian et al.
”
Parallel data mining techniques on Graphics Processing Unit

with Compute Unified Device Architecture (CUDA)“. In: The Journal of Super-

computing 64.3 (June 2013), pp. 942–967. issn: 1573-0484.

[84] H. Jordan et al.
”
A Multi-Objective Auto-Tuning Framework for Parallel Codes“.

In: SC ’12: Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis. Nov. 2012, pp. 1–12. doi: 10.

1109/SC.2012.7.

[85] Hartmut Kaiser et al.
”
HPX: A Task Based Programming Model in a Global Ad-

dress Space“. In: Proceedings of the 8th International Conference on Partitioned

Global Address Space Programming Models. PGAS’14. Eugene, OR, USA: ACM,

2014, pp. 61–611. isbn: 978-1-4503-3247-7. doi: 10.1145/2676870.2676883.

[86] Laxmikant V. Kale and Sanjeev Krishnan.
”
CHARM++: A Portable Concurrent

Object Oriented System Based on C++“. In: SIGPLAN Not. 28.10 (Oct. 1993),

pp. 91–108. issn: 0362-1340. doi: 10.1145/167962.165874.

[87] Shoaib Kamil et al.
”
An Auto-Tuning Framework for Parallel Multicore Sten-

cil Computations“. In: 2010 IEEE International Symposium on Parallel & Dis-

tributed Processing. Apr. 2010, pp. 1–12.

[88] T. Kanungo et al.
”
An Efficient k-Means Clustering Algorithm: Analysis and

Implementation“. In: IEEE Transactions on Pattern Analysis and Machine In-

telligence 24.7 (July 2002), pp. 881–892. issn: 0162-8828.

245

Bibliography

[89] Paul Klint, Tijs van der Storm, and Jurgen Vinju.
”
RASCAL: A Domain Specific

Language for Source Code Analysis and Manipulation“. In: Proceedings of the

2009 Ninth IEEE International Working Conference on Source Code Analysis

and Manipulation. SCAM ’09. Washington, DC, USA: IEEE Computer Society,

2009, pp. 168–177. isbn: 978-0-7695-3793-1. doi: 10.1109/SCAM.2009.28.

[90] Kazuhiko Komatsu et al.
”
Evaluating Performance and Portability of OpenCL

Programs“. In: iWAPT 2010. 2010.

[91] Matthias Kretz.
”
Extending C++ for explicit data-parallel programming via

SIMD vector types“. PhD thesis. 2015.

[92] Matthias Kretz and Volker Lindenstruth.
”
Vc: A C++ library for explicit vec-

torization“. In: Software: Practice and Experience 42.11 (2012), pp. 1409–1430.

issn: 1097-024X. doi: 10.1002/spe.1149.

[93] Akhilesh Kumar and Malay Trivedi. Intel Xeon Scalable Processor Architecture

Deep Dive. June 2017.

[94] S. Lee and J. S. Vetter.
”
OpenARC: Extensible OpenACC Compiler Framework

for Directive-Based Accelerator Programming Study“. In: 2014 First Workshop

on Accelerator Programming using Directives. Nov. 2014, pp. 1–11. doi: 10.1109/

WACCPD.2014.7.

[95] Yinan Li, Jack Dongarra, and Stanimire Tomov.
”
A Note on Auto-tuning GEMM

for GPUs“. In: Computational Science–ICCS 2009. Springer, 2009, pp. 884–892.

[96] Tze Meng Low et al.
”
Analytical Modeling Is Enough for High-Performance

BLIS“. In: ACM Trans. Math. Softw. 43.2 (Aug. 2016), 12:1–12:18. issn: 0098-

3500. doi: 10.1145/2925987.

[97] P. Luszczek et al.
”
Search Space Generation and Pruning System for Auto-

tuners“. In: 2016 IEEE International Parallel and Distributed Processing Sym-

posium Workshops (IPDPSW). IPDPS’16. May 2016, pp. 1545–1554. doi: 10.

1109/IPDPSW.2016.197.

[98] Thibaut Lutz, Christian Fensch, and Murray Cole.
”
PARTANS: An Autotuning

Framework for Stencil Computation on Multi-GPU Systems“. In: ACM Trans-

actions on Architecture and Code Optimization (TACO) 9.4 (Jan. 2013), 59:1–

59:24. issn: 1544-3566. doi: 10.1145/2400682.2400718.

[99] Ulrike von Luxburg.
”
A tutorial on spectral clustering“. In: Statistics and Com-

puting 17.4 (Dec. 2007), pp. 395–416. issn: 1573-1375.

246

Bibliography

[100] Maximilian Luz.
”
Subspace-Optimal Data Mining on Spatially-Adaptive Sparse

Grids“. Bachelor’s Thesis. University of Stuttgart, Nov. 2017.

[101] John D. McCalpin.
”
Memory Bandwidth and Machine Balance in Current High

Performance Computers“. In: IEEE Computer Society Technical Committee on

Computer Architecture (TCCA) Newsletter 2 (Dec. 1995), pp. 19–25.

[102] John D. McCalpin.
”
Memory Bandwidth and System Balance in HPC Systems“.

In: 2016 ACM/IEEE Conference on Supercomputing, Invited talk (2016). url:

https://sites.utexas.edu/jdm4372/2016/11/22/sc16-invited-talk-

memory-bandwidth-and-system-balance-in-hpc-systems/.

[103] Simon McIntosh-Smith et al.
”
On the Performance Portability of Structured Grid

Codes on Many-Core Computer Architectures“. In: Proceedings of the 29th In-

ternational Conference on Supercomputing - Volume 8488. ISC’14. Leipzig, Ger-

many: Springer-Verlag New York, Inc., 2014, pp. 53–75. isbn: 978-3-319-07517-4.

doi: 10.1007/978-3-319-07518-1_4.

[104] Renato Miceli et al.
”
AutoTune: A Plugin-Driven Approach to the Automatic

Tuning of Parallel Applications“. In: Applied Parallel and Scientific Computing.

Ed. by Pekka Manninen and Per Öster. Berlin, Heidelberg: Springer Berlin Hei-

delberg, 2013, pp. 328–342. isbn: 978-3-642-36803-5.

[105] MPI: A Message-Passing Interface Standard. Version 3.1. Message Passing Inter-

face Forum. June 2015. url: https://www.mpi-forum.org/docs/.

[106] MPICH. Accessed: 2018-11-13. 2018. url: https://www.mpich.org/.

[107] G. R. Mudalige et al.
”
OP2: An active library framework for solving unstructured

mesh-based applications on multi-core and many-core architectures“. In: 2012

Innovative Parallel Computing (InPar). May 2012, pp. 1–12. doi: 10.1109/

InPar.2012.6339594.

[108] Alin Muraraşu et al.
”
Fastsg: A Fast Routines Library for Sparse Grids“. English.

In: Procedia Computer Science 9.Complete (2012), pp. 354–363.

[109] Cedric Nugteren.
”
CLBlast: A Tuned OpenCL BLAS Library“. In: Proceedings of

the International Workshop on OpenCL. IWOCL’18. Oxford, United Kingdom:

ACM, 2018, 5:1–5:10. isbn: 978-1-4503-6439-3. doi: 10.1145/3204919.3204924.

[110] Nvidia Tesla P100. Tech. rep. (Whitepaper). Nvidia, 2016.

[111] Nvidia Tesla V100 GPU Architecture. Tech. rep. (Whitepaper). Nvidia, 2017.

247

Bibliography

[112] OpenMP Application Program Interface, Version 4.0. Version 4.0. OpenMP Ar-

chitecture Review Board. July 2013. url: http : / / www . openmp . org / mp -

documents/OpenMP4.0.0.pdf.

[113] OpenMPI. Accessed: 2018-11-13. 2018. url: https://www.open-mpi.org/.

[114] Benjamin Peherstorfer, Dirk Pflüger, and Hans-Joachim Bungartz.
”
Clustering

Based on Density Estimation with Sparse Grids“. In: KI 2012: Advances in Ar-

tificial Intelligence. Ed. by Birte Glimm and Antonio Krüger. Vol. 7526. Lecture

Notes in Computer Science. Springer Berlin Heidelberg, 2012, pp. 131–142. isbn:

978-3-642-33346-0.

[115] S. J. Pennycook and S. A. Jarvis.
”
Developing Performance-Portable Molecu-

lar Dynamics Kernels in OpenCL“. In: 2012 SC Companion: High Performance

Computing, Networking Storage and Analysis. Nov. 2012, pp. 386–395. doi: 10.

1109/SC.Companion.2012.58.

[116] S.J. Pennycook, J.D. Sewall, and V.W. Lee.
”
Implications of a metric for per-

formance portability“. In: Future Generation Computer Systems (2017). issn:

0167-739X. doi: 10.1016/j.future.2017.08.007.

[117] S.J. Pennycook et al.
”
An investigation of the performance portability of OpenCL“.

In: Journal of Parallel and Distributed Computing 73.11 (2013), pp. 1439–1450.

issn: 0743-7315. doi: 10.1016/j.jpdc.2012.07.005.

[118] David Pfander, Malte Brunn, and Dirk Pflüger.
”
AutoTuneTMP: Auto-Tuning

in C++ With Runtime Template Metaprogramming“. In: 2018 IEEE Interna-

tional Parallel and Distributed Processing Symposium Workshops (IPDPSW).

May 2018, pp. 1123–1132. doi: 10.1109/IPDPSW.2018.00172.

[119] David Pfander, Gregor Daiß, and Dirk Pflüger.
”
Heterogeneous Distributed Big

Data Clustering on Sparse Grids“. In: Algorithms 12.3 (2019). issn: 1999-4893.

doi: 10.3390/a12030060.

[120] David Pfander, Alexander Heinecke, and Dirk Pflüger.
”
A New Subspace-Based

Algorithm for Efficient Spatially Adaptive Sparse Grid Regression, Classifica-

tion and Multi-evaluation“. In: Sparse Grids and Applications - Stuttgart 2014.

Springer International Publishing, 2016, pp. 221–246. isbn: 978-3-319-28262-6.

248

Bibliography

[121] David Pfander et al.
”
Accelerating Octo-Tiger: Stellar Mergers on Intel Knights

Landing with HPX“. In: Proceedings of the International Workshop on OpenCL.

IWOCL’18. Oxford, United Kingdom: ACM, 2018, 19:1–19:8. isbn: 978-1-4503-

6439-3. doi: 10.1145/3204919.3204938.

[122] Dirk Pflüger.
”
Spatially Adaptive Sparse Grids for High-Dimensional Problems“.

PhD thesis. Technische Universität München, 2010.

[123] M. Pharr and W. R. Mark.
”
ispc: A SPMD compiler for high-performance CPU

programming“. In: 2012 Innovative Parallel Computing (InPar). May 2012, pp. 1–

13. doi: 10.1109/InPar.2012.6339601.

[124] Leszek Plaskota.
”
The exponent of discrepancy of sparse grids is at least 2.1933“.

In: Advances in Computational Mathematics 12.1 (Jan. 2000), p. 3. issn: 1572-

9044. doi: 10.1023/A:1018900715321.

[125] James Price and Simon McIntosh-Smith.
”
Analyzing and Improving Performance

Portability of OpenCL Applications via Auto-tuning“. In: Proceedings of the

5th International Workshop on OpenCL. IWOCL 2017. Toronto, Canada: ACM,

2017, 14:1–14:4. isbn: 978-1-4503-5214-7. doi: 10.1145/3078155.3078173.

[126] Markus Püschel et al.
”
Spiral: A Generator for Platform-Adapted Libraries of

Signal Processing Algorithms“. In: The International Journal of High Perfor-

mance Computing Applications 18.1 (Feb. 2004), pp. 21–45. doi: 10 . 1177 /

1094342004041291.

[127] Jonathan Ragan-Kelley et al.
”
Halide: A Language and Compiler for Optimizing

Parallelism, Locality, and Recomputation in Image Processing Pipelines“. In:

Proceedings of the 34th ACM SIGPLAN Conference on Programming Language

Design and Implementation. PLDI’13. Seattle, Washington, USA: ACM, 2013,

pp. 519–530. isbn: 978-1-4503-2014-6. doi: 10.1145/2491956.2462176.

[128] William M. Rand.
”
Objective Criteria for the Evaluation of Clustering Methods“.

In: Journal of the American Statistical Association 66.336 (1971), pp. 846–850.

doi: 10.1080/01621459.1971.10482356.

[129] Florian Rathgeber et al.
”
PyOP2: A High-Level Framework for Performance-

Portable Simulations on Unstructured Meshes“. In: 2012 SC Companion: High

Performance Computing, Networking Storage and Analysis. Nov. 2012, pp. 1116–

1123. doi: 10.1109/SC.Companion.2012.134.

249

Bibliography

[130] István. Z. Reguly et al.
”
The OPS Domain Specific Abstraction for Multi-block

Structured Grid Computations“. In: 2014 Fourth International Workshop on

Domain-Specific Languages and High-Level Frameworks for High Performance

Computing. IEEE, Nov. 2014, pp. 58–67. doi: 10.1109/WOLFHPC.2014.7.

[131] Arch D. Robison.
”
Composable Parallel Patterns with Intel Cilk Plus“. In: Com-

puting in Science and Engg. 15.2 (Mar. 2013), pp. 66–71. issn: 1521-9615. doi:

10.1109/MCSE.2013.21.

[132] Arch D. Robison. Intel Threading Building Blocks. Talk at HPCC’07. Houston,

Texas, USA, Sept. 2007.

[133] Sean Rul et al.
”
An Experimental Study on Performance Portability of OpenCL

kernels“. In: 2010 Symposium on Application Accelerators in High Performance

Computing. 2010, pp. 1–3.

[134] Amit Sabne et al.
”
Evaluating Performance Portability of OpenACC“. In: Lan-

guages and Compilers for Parallel Computing. Ed. by James Brodman and Peng

Tu. Cham: Springer International Publishing, 2015, pp. 51–66. isbn: 978-3-319-

17473-0.

[135] Nadathur Satish et al.
”
Can Traditional Programming Bridge the Ninja Perfor-

mance Gap for Parallel Computing Applications?“ In: Proceedings of the 39th

Annual International Symposium on Computer Architecture. ISCA’12. Portland,

Oregon: IEEE Computer Society, 2012, pp. 440–451. isbn: 978-1-4503-1642-2.

[136] Jonathan Richard Shewchuk. An Introduction to the Conjugate Gradient Method

Without the Agonizing Pain. Tech. rep. School of Computer Science, Carnegie

Mellon University, 1994.

[137] Hwanjun Song and Jae-Gil Lee.
”
RP-DBSCAN: A Superfast Parallel DBSCAN

Algorithm Based on Random Partitioning“. In: Proceedings of the 2018 Inter-

national Conference on Management of Data. SIGMOD’18. Houston, TX, USA:

ACM, 2018, pp. 1173–1187. isbn: 978-1-4503-4703-7.

[138] Michel Steuwer, Toomas Remmelg, and Christophe Dubach.
”
Matrix Multipli-

cation Beyond Auto-Tuning: Rewrite-based GPU Code Generation“. In: 2016

International Conference on Compliers, Architectures, and Sythesis of Embedded

Systems (CASES). Oct. 2016, pp. 1–10.

250

Bibliography

[139] Arvind K. Sujeeth et al.
”
OptiML: An Implicitly Parallel Domain-specific Lan-

guage for Machine Learning“. In: Proceedings of the 28th International Conference

on International Conference on Machine Learning. ICML’11. Bellevue, Washing-

ton, USA: Omnipress, 2011, pp. 609–616. isbn: 978-1-4503-0619-5.

[140] V. Tabatabaee, A. Tiwari, and J. K. Hollingsworth.
”
Parallel Parameter Tuning

for Applications with Performance Variability“. In: SC’05: Proceedings of the 2005

ACM/IEEE Conference on Supercomputing. SC’05. Seattle, WA, USA: IEEE,

Nov. 2005. isbn: 1-59593-061-2. doi: 10.1109/SC.2005.52.

[141] Hiroyuki Takizawa and Hiroaki Kobayashi.
”
Hierarchical parallel processing of

large scale data clustering on a PC cluster with GPU co-processing“. In: The

Journal of Supercomputing 36.3 (June 2006), pp. 219–234. issn: 1573-0484.

[142] Andrew S. Tanenbaum, Paul Klint, and Wim Bohm.
”
Guidelines for software

portability“. In: Software: Practice and Experience 8.6 (1978), pp. 681–698. doi:

10.1002/spe.4380080604.

[143] Yuan Tang et al.
”
The Pochoir Stencil Compiler“. In: Proceedings of the Twenty-

third Annual ACM Symposium on Parallelism in Algorithms and Architectures.

SPAA’11. San Jose, California, USA: ACM, 2011, pp. 117–128. isbn: 978-1-4503-

0743-7. doi: 10.1145/1989493.1989508.

[144] Cristian Ţăpuş, I-Hsin Chung, and Jeffrey K. Hollingsworth.
”
Active Harmony:

Towards Automated Performance Tuning“. In: Proceedings of the 2002 ACM/IEEE

Conference on Supercomputing. SC’02. Baltimore, Maryland: IEEE Computer So-

ciety Press, 2002, pp. 1–11.

[145] The Open Group Base Specifications Issue 7, 2018 edition. Version 1003.1-2017.

IEEE and The Open Group. 2018. url: http://pubs.opengroup.org/onlinepubs/

9699919799/.

[146] The OpenACC Application Programming Interface, Version 2.5. Version 2.5.

OpenACC-Standard.org. Oct. 2015. url: http://www.openacc.org/sites/

default/files/OpenACC_2pt5.pdf.

[147] The OpenCL Standard 2.2. Version 2.2. Khronos OpenCL Working Group. Nov.

2019. url: https://www.khronos.org/registry/OpenCL/specs/2.2/pdf/

OpenCL_API.pdf.

251

Bibliography

[148] A. Tiwari and J. K. Hollingsworth.
”
Online Adaptive Code Generation and Tun-

ing“. In: 2011 IEEE International Parallel Distributed Processing Symposium.

May 2011, pp. 879–892. doi: 10.1109/IPDPS.2011.86.

[149] Ananta Tiwari et al.
”
A Scalable Auto-tuning Framework for Compiler Opti-

mization“. In: 2009 IEEE International Symposium on Parallel & Distributed

Processing. IEEE. May 2009, pp. 1–12. doi: 10.1109/IPDPS.2009.5161054.

[150] Ananta Tiwari et al.
”
Auto-tuning full applications: A case study“. In: The In-

ternational Journal of High Performance Computing Applications 25.3 (2011),

pp. 286–294. doi: 10.1177/1094342011414744.

[151] TOP500 List - November 2018. Accessed: 2018-11-20. url: https : / / www .

top500.org/lists/2018/11/.

[152] R. Tylenda et al.
”
V1309 Scorpii: merger of a contact binary“. In: Astronomy &

Astrophysics 528 (Apr. 2011). doi: 10.1051/0004-6361/201016221.

[153] Brice Videau et al.
”
BOAST: A metaprogramming framework to produce portable

and efficient computing kernels for HPC applications“. In: Int. J. High Perform.

Comput. Appl. 32.1 (Jan. 2018), pp. 28–44. issn: 1094-3420. doi: 10.1177/

1094342017718068.

[154] Vasiliy Volkov. Better Performance at Lower Occupancy. Sept. 2010. url: http:

//www.nvidia.com/content/gtc-2010/pdfs/2238_gtc2010.pdf.

[155] Richard Vuduc, James W Demmel, and Katherine A Yelick.
”
OSKI: A library of

automatically tuned sparse matrix kernels“. In: Journal of Physics: Conference

Series 16.1 (2005), pp. 521–530.

[156] R. F. Webbink.
”
Double white dwarfs as progenitors of R Coronae Borealis stars

and Type I supernovae“. In: The Astrophysical Journal 277 (Feb. 1984), pp. 355–

360. doi: 10.1086/161701.

[157] R. Clint Whaley and Jack J. Dongarra.
”
Automatically Tuned Linear Algebra

Software“. In: Proceedings of the 1998 ACM/IEEE Conference on Supercomput-

ing. SC’98. San Jose, CA: IEEE Computer Society, 1998, pp. 1–27. isbn: 0-89791-

984-X.

[158] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra.
”
Automated empirical

optimizations of software and the ATLAS project“. In: Parallel Computing 27.1-2

(2001), pp. 3–35. issn: 0167-8191.

252

Bibliography

[159] Samuel Webb Williams.
”
Auto-tuning Performance on Multicore Computers“.

PhD thesis. EECS Department, University of California, Berkeley, Dec. 2008.

url: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-

164.html.

[160] Samuel Williams, Andrew Waterman, and David Patterson.
”
Roofline: An In-

sightful Visual Performance Model for Multicore Architectures“. In: Commun.

ACM 52.4 (Apr. 2009), pp. 65–76. issn: 0001-0782. doi: 10.1145/1498765.

1498785.

[161] Working Draft, Standard for Programming Language C. N1256. ISO/IEC

JTC1/SC22/WG14. Sept. 2007.

[162] Working Draft, Standard for Programming Language C++. N4700. The C++

Standards CommitteeISO/IEC. Oct. 2017.

[163] Q. Yi et al.
”
POET: Parameterized Optimizations for Empirical Tuning“. In:

2007 IEEE International Parallel and Distributed Processing Symposium. Mar.

2007, pp. 1–8. doi: 10.1109/IPDPS.2007.370637.

[164] Christoph Zenger.
”
Sparse Grids“. In: Notes on Numerical Fluid Mechanics 31

(1991), pp. 241–251.

[165] Yao Zhang, Mark Sinclair, and Andrew A. Chien.
”
Improving Performance Porta-

bility in OpenCL Programs“. In: Supercomputing. Ed. by Julian Martin Kunkel,

Thomas Ludwig, and Hans Werner Meuer. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2013, pp. 136–150. isbn: 978-3-642-38750-0.

[166] Yongpeng Zhang and Frank Mueller.
”
Auto-generation and Auto-tuning of 3D

Stencil Codes on GPU Clusters“. In: Proceedings of the Tenth International Sym-

posium on Code Generation and Optimization. San Jose, California: ACM, 2012,

pp. 155–164. isbn: 978-1-4503-1206-6.

[167] Weirong Zhu, Yanwei Niu, and Guang R. Gao.
”
Performance portability on

EARTH: a case study across several parallel architectures“. In: Cluster Com-

puting 10.2 (June 2007), pp. 115–126. issn: 1573-7543. doi: 10.1007/s10586-

007-0011-1.

[168] Jure Zupan et al.
”
Classification of multicomponent analytical data of olive

oils using different neural networks“. In: Analytica Chimica Acta 292.3 (1994),

pp. 219–234. issn: 0003-2670.

253

