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Abstract

A countless number of models in the natural sciences, engineering and economics are
based on partial differential equations (PDEs). Due to insufficient data or measurement
errors, certain characteristics of the underlying PDE are subject to uncertainty, and are
usually modeled by continuous and/or Gaussian random fields. Although analytically
tractable, the applications of continuous or Gaussian random fields are limited: spatial
and temporal discontinuities cannot be captured and Gaussian distributions notoriously
underestimate the probability of rare events. To this end, the focus of this thesis is on
uncertainty quantification with Lévy-type random fields, a certain class of discontinuous
stochastic objects that provide a significant extension to the existing methodology.
In a nutshell, this dissertation explains how to incorporate Lévy-type random fields
into PDEs and how the corresponding solutions become accessible by the means of
discretization and simulation.

The first main contribution is the introduction of a novel type of random field,
consisting of a Gaussian part and a spatially discontinuous jump field. This Lévy-type
field serves as a coefficient in advection-diffusion equations and allows to model, for
instance, sudden changes in the permeability of a porous medium far more realistically
than state-of-the-art continuous models. In contrast to the few examples in the liter-
ature, the discontinuous random coefficient in this thesis provides a unique flexibility
as it is able to generate virtually any stochastic geometry.

Apart from random PDEs with discontinuous coefficients, hyperbolic transport
equations with Lévy noise as source term are considered. The noise processes take
values in a (infinite-dimensional) Hilbert space and involve temporal discontinuities.
Therefore, heavy-tailed random perturbations are introduced to the transport problem,
and the resulting stochastic equation may be utilized, e.g., as a model for the dynamics
in commodity forward markets. Due to the lack of tractable discretization schemes for
the underlying stochastic PDE, this models have been, up to now, only of theoretical
interest. This thesis paves the way to finally apply the forward model with Lévy noise
in practice, as it provides the first fully discrete scheme for the corresponding stochastic
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ABSTRACT

transport problem.
In both cases, PDEs with random jump coefficients or with Lévy noise as source

term, regularity is inherently low due to the discontinuities and state-of-the-art nu-
merical algorithms are prohibitive. To remedy this issue, several advanced schemes
for discontinuous random problems are introduced that outperform standard methods
in terms of convergence rates and computational effort. A comprehensive numerical
analysis is provided and the superior performance of the new approaches is validated
by numerous numerical experiments.

Moreover, an emphasis is put on the approximation of infinite-dimensional, discon-
tinuous random fields, a crucial part in the discretization of stochastic PDEs. A part of
this thesis covers the sampling of Hilbert space-valued Lévy processes, and introduces
a sampling technique combining truncated Karhunen-Loève expansions with discrete
Fourier inversion. This algorithm stands out as the arguably most flexible of a very
limited number of methods for the approximation and simulation of Lévy fields.
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Zusammenfassung

Unzählige Modelle in Naturwissenschaft, Technik und Ökonomie basieren of partiellen
Differentialgleichungen (PDEs). Aufgrund von Messfehlern oder unvollständigen Daten
sind gewisse Parameter dieser PDEs mit Unsicherheiten behaftet und werden da-
her in der Regel durch stetige und/oder Gaußsche Zufallsfelder modelliert. Obwohl
diese gute analytische Eigenschaften haben, sind die Anwendungen von stetigen oder
Gaußschen Zufallsfeldern limitiert: Sprünge in Zeit oder Ort können nicht abgebildet
werden und Gaußsche Verteilungen unterschätzen oft die Wahrscheinlichkeiten von
extremen Ereignissen. Aus diesen Gründen thematisiert die vorliegende Arbeit Uncer-
tainty Quantification unter Verwendung einer Klasse unstetiger Zufallsfelder, die eine
signifikante Erweiterung der existierenden Theorie darstellen. Konkret wird erklärt wie
man unstetigen Zufallsfelder in PDEs integriert und wie die entsprechenden Lösungen
durch Diskretisierungsmethoden und Simulation approximiert werden können.

Der erste wichtige Beitrag dieser Arbeit ist die Einführung eines neuartigen Zufalls-
feldes, das aus einem Gaußschen Anteil, sowie einem unstetigen Sprungfeld besteht.
Dieses unstetige Zufallsfeld findet dann Verwendung als Koeffizient in Advektions-
Diffusionsgleichungen, beispielsweise um abrupte Änderungen der Permeabilität in
porösen Medien zu simulieren. In der Literatur gibt es bisher nur wenige, sehr spezielle
Beispiele von unstetigen stochastischen Koeffizienten. Im Gegensatz dazu besticht der
Koeffizient in dieser Arbeit durch seine Flexibilität, da er es ermöglicht praktisch jede
Art zufälliger Geometrie abzubilden.

Neben zufälligen PDEs mit unstetigen Koeffizienten werden ebenfalls hyperbolis-
che Transportgleichungen mit einem Lévy-Prozess als Quellterm auf der rechten Seite
betrachtet. Dieser Prozess ist unstetig in der Zeit und nimmtWerte in einem unendlich-
dimensionalen Hilbertraum an. Dadurch erhält die Transportgleichung Störungen mit
sogenannten heavy-tails, also mit hoher Wahrscheinlichkeit für Extremereignisse, und
kann zum Beispiel als Modell für Terminkontrakte in Rohstoffmärkten benutzt wer-
den. Da geeignete Diskretisierungsverfahren für deren Implementierung bisher fehlten,
waren diese Modelle bis jetzt eher von theoretischem Interesse. In dieser Arbeit wird
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ZUSAMMENFASSUNG

zum ersten Mal eine volle Diskretisierung für die zugehörigen stochastischen Transport-
probleme vorgestellt, und dadurch ermöglicht die Lévy-Modelle für Terminkontrakte
auch erstmals in der Praxis anzuwenden.

Ein Problem, das sowohl bei PDEs mit zufälligen unstetigen Koeffizienten, als auch
bei stochastischen PDEs mit Lévy-Rauschen auftritt, ist die niedrige Regularität der
Lösung. Dies macht übliche numerische Verfahren zur Lösung von PDEs ineffizient
und aus diesem Grund werden mehrere spezielle Methoden für Probleme mit zufälligen
Unstetigkeiten entwickelt. Alle Verfahren werden vollständig numerisch analysiert und
zahlreiche Experimenten belegen die besseren Performance im Vergleich zu Standard-
Methoden.

Ein weiterer Schwerpunkt dieser Arbeit ist die Approximation und Simulation von
unendlich-dimensional Lévy-Prozessen, ein essentieller Baustein in der Diskretisierung
von stochastischen PDEs. Dazu wird eine Technik vorgestellt die auf einer Kombination
von abgeschnittenen Karhunen-Loève-Entwicklungen und diskreter Fourier Inversion
besteht. Dieser Algorithmus ragt als die wahrscheinlich flexibelste von sehr wenigen
existieren Methoden zur Simulation von Lévy-Feldern heraus.
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1 Introduction

A vast range of phenomena in the natural sciences, engineering, finance and economics
are modeled by partial differential equations (PDEs). Examples include the description
of porous media and subsurface flows ([68, 107])1, the propagation of aeroacoustic
waves ([200]), turbulent flow models ([180]), phase separation in the mixture of fluids
([150]), the heat distribution on CPUs ([55]), optimal control problems in traffic flow
networks ([95]), aquifer systems to store thermal energy ([141]), epidemic models for the
spreading of diseases ([153]) and parasite populations ([103]), environmental pollution
models ([206]), the metabolism of glucose in the human liver ([183]), the valuation of
financial derivatives ([42, 111]) and assessment of credit risks ([41]) or models of warfare
and pursuit in game theory ([117]). The quantities of interest in these applications are
in general functionals of the solution to the PDE. For instance, in a subsurface flow
model the solution of the underlying system describes a pressure field, and one may
be interested in evaluating the pressure function at specific points in the domain or to
know the average pressure in a certain area.

Due to insufficient data, measurement errors or incomplete information, however,
certain parameters of the PDE may not be known a-priori. In a subsurface flow model,
the permeability of a medium is in general only measured at a discrete set of points and
unknown in between. Another common example is the pricing of stock options, where
the model parameters have to be estimated statistically based on a time series of quoted
market prices. To model this effects more realistically, uncertainty quantification has
become an increasingly important and popular field of research in the last decades. A
common approach in uncertainty quantification is to replace certain characteristics of
a PDE model by stochastic objects, for instance, by considering a random differential
operator, such as in [1, 14, 15, 25, 29, 53, 59, 63, 85, 90, 96, 148, 164, 165, 190, 194],
or to introduce some noise as a function-valued stochastic process, see for instance
[23, 24, 28, 35, 67, 69, 86, 121, 132, 151, 152, 173, 198]. The listed references are

1All references listed in the introduction, in the articles and in the conclusion of this thesis can be
found in the unified bibliography after Chapter 9 at the end of this dissertation.
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1.1. THE CONTRIBUTION OF THIS THESIS

merely a snapshot of the research activity throughout the recent years and are by far
not exhaustive.

Throughout the literature, it is standard practice to model the uncertainty by con-
tinuous random fields (see e.g. [53, 59, 63, 85, 96, 164, 194]). Due to continuity, these
objects have natural representations in terms of Fourier series that may be exploited in
analysis and simulation. The major drawback of continuous random fields is, however,
that applications are drastically limited as temporal and/or spatial discontinuities can-
not be captured. For example, they are not suitable to model flows through porous
media or composite materials where sudden changes of permeability at interfaces oc-
cur. Another shortcoming is that time-continuous stochastic processes essentially follow
Gaussian distributions, which notoriously underestimate the probabilities of extreme
risks. For instance, when applied as a subsurface flow model, Gaussian random fields
may not reflect the presence of peaks and asymmetric distributions in the permeability
appropriately, see [202]. As another example, Gaussian stock return models fail to
match real market data in many cases and are unable to predict the occurrence of rare
events, such as financial crisis, properly (see e.g. [89]).

1.1 The contribution of this thesis

To overcome the aforementioned problems, this thesis focuses on uncertainty quan-
tification involving a certain type of discontinuous random objects, which is referred
to as Lévy-type random fields. In a nutshell, this dissertation explains how to incor-
porate random discontinuous characteristics into PDEs and how the solutions to this
problems become accessible by the means of discretization and simulation. As a conse-
quence, various problems can now be modeled much more realistically, since the severe
restrictions imposed by continuous or Gaussian random objects have vanished. The
corresponding solutions may be simulated with controlled bias and reasonable effort
using the advanced numerical schemes developed in this thesis.

As one of the main contributions, a novel Lévy-type random field with spatial dis-
continuities is introduced. The decisive feature of this jump field is its unique flexibility,
since it allows to model virtually any stochastic geometry. This is achieved by con-
structing the coefficient as the sum of a Gaussian random field and a discontinuous
jump term (for this reason the term Lévy-type is borrowed from stochastic analysis).
Moreover, temporal Lévy processes taking values in an infinite-dimensional Hilbert
space are considered. These objects are function-valued stochastic processes in the
classical sense with discontinuous paths in time. Compared to a standard Gaussian
noise process, a Lévy process allows to introduce more realistic heavy-tailed perturba-

2



CHAPTER 1. INTRODUCTION

tions into a dynamical system. Each kind of Lévy-type random field is utilized as a
stochastic parameter in a PDE, either as random coefficient or source term.

A fundamental part in the discretization of stochastic PDEs is to obtain tractable
closed-form approximations of the underlying random field. While this can be challeng-
ing for continuous Gaussian random fields, all difficulties are amplified when dealing
with more general Lévy-type random objects. As a further contribution, this thesis in-
troduces a new approximation method for general Hilbert space-valued Lévy noises in
Chapter 7. In fact, the proposed algorithm stands out as one among very few methods
for general Lévy noises and is arguably the most flexible one. This is somewhat surpris-
ing at first glance, since there is a vast literature on the numerical analysis of (parabolic)
stochastic PDEs with Lévy noise, see for instance [23, 26, 33, 49, 74, 133]. Therein,
however, the proposed noise approximation either suffers from strong assumptions or,
as in the majority of cases, is completely neglected. Moreover, certain sampling tech-
niques for the space-time Lévy source term are also applicable for the spatial random
jump coefficient, as outlined in Chapters 4 and 5.

Possible applications for PDEs involving Lévy-type random fields are motivated
by irregular, discontinuous structures like fractured or porous media, rock strata with
spherical inclusions, composite materials and alloys. To model flows, charge- or pressure
distributions in this structures, the spatial Lévy-type random field may be utilized as
diffusion- or advection coefficient in a PDE. The literature on PDEs with random
discontinuous coefficients is sparse, with exceptions being [104, 140, 205], and the
analysis is in general tailored to a very specific shape and geometry. In contrast to
this, the Lévy-type random field from this thesis has the ability to represent any desired
stochastic structure and therefore significantly extends the existing methodology.

Another important example are transport equations with Lévy noise, a popular
model for commodity- and interest futures markets (see [24, 52, 173]). So far, this
models have mainly been examined from a theoretical perspective and have not been
applied to valuate forward contracts, since tractable fully discrete approximations have
not been available. Chapter 8 of this thesis closes this gap and stands out as the first
(and to this point only) article containing a complete numerical analysis for the full
discretization of this type of stochastic transport problem. Additionally, all theoretical
findings are confirmed by numerical experiments in scenarios with varying regularity.
Similar results have not yet been provided in the literature: in general, the much simpler
case of finite-dimensional and/or Gaussian noise is investigated and only semi-discrete
schemes are proposed (see e.g. [34, 130, 135, 154] for results on nonlinear hyperbolic
PDES with Lévy- respectively Gaussian noise). On a further note, there seems to be
a general lack of numerical experiments in the literature on SPDEs with Lévy noise.

3
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For both scenarios, PDEs with random jump coefficients as well as stochastic PDEs
with Lévy noise as source term, suitable concepts of solutions are investigated to ensure
well-posedness. The discontinuities entail inherently low regularity and, consequently,
standard numerical algorithms converge, if at all, at very poor rates. Even if conver-
gence is theoretically ensured, oscillations and instabilities may occur and the corre-
sponding schemes are useless in any application. To overcome the issues of common
methods, this thesis introduces a variety of novel algorithms to discretize discontinu-
ous random PDE problems. A comprehensive numerical analysis is provided for each
method and stability is ensured to prevent oscillations in the approximated solutions.
To this end, several new techniques of proof have been developed, as applicability of
existing results is rather limited. For instance, it is crucial to control for stochastic
geometries or simulation biases, effects that naturally do not occur in deterministic
or simpler stochastic problems. The superior performance of our novel approaches
compared to state-of-the-art methods is validated in numerous experiments.

At this point it needs to be emphasized that the considered Lévy-type random ob-
jects provide an actual extension to the current state of research, since the aforemen-
tioned continuous random fields may be recovered as a special case. The most impor-
tant examples for this are log-normal diffusion coefficients as in [53, 54, 96, 98, 108, 194]
and Q-Wiener processes as space-time driving noise, see for instance [132, 136, 198].
Therefore, all results and proposed algorithms of this thesis are universal and may
readily be applied to a large class of important problems in the field of uncertainty
quantification.

1.2 The articles in this thesis

The core of this thesis consists of five independent research articles:

• A study of elliptic partial differential equations with jump diffusion coefficients,

• Numerical analysis for time-dependent advection-diffusion problems with random
discontinuous coefficients,

• A multilevel Monte Carlo algorithm for parabolic advection-diffusion problems
with discontinuous coefficients,

• Approximation and simulation of infinite-dimensional Lévy processes, and

• A stochastic transport problem with Lévy noise: Fully discrete numerical approx-
imation.

4



CHAPTER 1. INTRODUCTION

As the articles have been developed partly in parallel, the order is not strictly chronolog-
ical, but motivated by thematic classification. The first group consists of Chapters 4–6
that consider elliptic/parabolic problems with random Lévy-type coefficients involving
spatial discontinuities. They are connected very closely as Chapter 5 and 6 are build
on its predecessor(s) and were therefore also finished in the given order. It is com-
mon to refer to the type of stochastic equations in Chapters 4–6 as random PDEs to
emphasize that the source of randomness lies within the PDE’s coefficients, and there-
fore in the corresponding differential operator. This is to obtain a distinction from
so-called stochastic PDEs (SPDEs) with deterministic coefficients respectively differ-
ential operators, but a stochastic source term on the right hand side of the equation.
Chapters 7 and 8 constitute the second group of research articles and focus on SPDEs
with Lévy noise as external source of uncertainty. The overarching theme of this thesis,
however, is to introduce Lévy-type objects as stochastic PDE parameters to allow for
more flexibility compared to the state-of-the-art continuous and/or Gaussian random
fields. Simulation and discretization of the PDE problem at hand becomes significantly
more involved due to the discontinuous random structures. Thus, the scientific litera-
ture lacks tractable algorithms and this thesis closes the existing gap for a variety of
problems.

In uncertainty quantification, approximation schemes not only need to include
the discretization of spatial and temporal domains, but also the discretization of the
stochastic domain. While the first part is achieved by modifying schemes for determin-
istic PDEs, the second part involves the approximation of infinite-dimensional random
variables and sampling techniques like Monte Carlo algorithms. As outlined through-
out the central part of this thesis, sampling becomes especially challenging for Lévy-
type random objects. Moreover, depending on whether random PDEs or SPDEs are
considered, some aspects of discretization may differ drastically. In the first case,
path-wise error bounds (similar as for deterministic PDEs) can be exploited, where
path-wise means that this estimates only hold for a specific realization of the prob-
lem. To obtain Lp-estimates with p ≥ 1 and almost sure convergence, it is then still
crucial to control all appearing terms with respect to the entire stochastic domain.
When discretizing SPDEs as in Chapter 8, it is necessary to switch from a path-wise
to a mean-square-type perspective of discretization. The Lévy-noise on the right hand
side of the SPDE is given by an Itô integral with each path involving a possibly in-
finite number of temporal discontinuities. This stochastic integral is in turn defined
as the mean-square-limit of a sequence of simple integrals and, therefore, the mean-
square theory of the corresponding Itô calculus has to be applied (details are given in
Chapter 3 of this thesis). Consequently, path-wise approximation techniques are not

5



1.2. THE ARTICLES IN THIS THESIS

applicable and one is usually bound to L2-type convergence results.
A short overview on discretization methods with regard to uncertainty quantifica-

tion is given in Chapter 2, the specific method for each problem in Chapters 4– 8 is
sketched in the subsequent summary and is found in detail within the corresponding
article.

1.2.1 A. Barth and A. Stein: "A study of elliptic partial differential equa-
tions with jump diffusion coefficients"

We consider an elliptic equation with random coefficient, which may for instance ac-
count for the uncertain permeability of a given medium in a subsurface flow model.
As an extension of this methodology to flows in heterogeneous\fractured\porous me-
dia, we incorporate jumps in the diffusion coefficient. More precisely, we consider a
second order elliptic problem where the random coefficient is given by the sum of a
(continuous) Gaussian random field and a (discontinuous) jump part.

To estimate moments of the solution to the resulting random partial differential
equation, we use path-wise finite element approximations combined with multilevel
Monte Carlo sampling. In order to account for the discontinuities and improve the
convergence of the path-wise approximation, the spatial domain is decomposed with
respect to the jump positions in each sample, leading to path-dependent finite element
grids. Hence, it is not possible to create a sequence of grids which is suitable for each
sample path a-priori. We address this issue by an adaptive multilevel Monte Carlo
algorithm, where the discretization on each level is sample-dependent and fulfills given
refinement conditions.

1.2.2 A. Barth and A. Stein: "Numerical analysis for time-dependent advec-
tion-diffusion problems with random discontinuous coefficients"

In this article we extend the elliptic diffusion problem from Chapter 4 to a time-
dependent parabolic advection-diffusion equation. Specifically, a scenario with coupled
advection and diffusion coefficients that are modeled as sums of continuous random
fields and discontinuous jump components is considered. We employ the same adaptive,
path-wise finite element discretization for the numerical approximation of the solution
as in Chapter 4. In this previous work, we have merely assumed convergence in mean-
square with respect to the H1(D)-norm for the discretization of the spatial domain D
based on our numerical experiments. Here, however, we provide a rigorous proof on the
path-wise and mean-squared convergence rate based on a set of suitable assumptions.

As it turns out, this becomes surprisingly involved, since the order of convergence
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depends on the shape of the discontinuities. Thus, the random geometry has to be
controlled for each sample to obtain bounds on the mean-squared error. To stabilize
the numerical approximation and accelerate convergence, the discrete space-time grid
is chosen with respect to the varying discontinuities in each sample of the coefficients,
leading to a stochastic formulation of the Galerkin projection and the finite element
basis. We provide several numerical experiments to verify our theoretical results and
show that the regime of assumptions cannot be relaxed significantly.

1.2.3 A. Barth and A. Stein: "A multilevel Monte Carlo algorithm for para-
bolic advection-diffusion problems with discontinuous coefficients"

In many applications for elliptic or parabolic random PDEs, such as in the previous two
articles, the aim is to estimate moments of certain quantities of interest (QoIs). Those
QoIs are in general functionals of the corresponding path-wise solution, rather than the
solution itself. As there are only path-wise numerical solutions at hand to which a given
functional may be applied, we obtain a biased version of the true QoI. For instance, in
Chapters 4 and 5 this bias is due to the (adaptive) finite element approximation. It is,
however, often possible to express this bias in terms of the L2(D)-error of the spatial
discretization.

In this article we consider the same problem setting and assumptions as in Chapter 5
and extend the existing a-priori error bounds of the path-wise adaptive discretization
from the H1(D)-norm to the L2(D)-norm. To this end, we solve a time-dependent
parabolic dual problem, and derive an improved decay rate based on our results for
the H1(D)-error in Chapter 5. As expected, the L2(D)-error decays twice as fast on
a given spatial grid, allowing us to bound the path-wise bias for functionals of the
approximated solution. Based on this result, we introduce a multilevel Monte Carlo
algorithm to estimate the moments of a given QoI. A numerical example shows that the
adaptive discretization is superior to a standard finite element approach when applied
to a multilevel Monte Carlo estimator.

1.2.4 A. Barth and A. Stein: "Approximation and simulation of infinite-
dimensional Lévy processes"

The recurring motivation in the first three articles of this thesis was to replace a spa-
tially continuous stochastic object by a more general, discontinuous Lévy-type random
field. We now follow the same idea for time-dependent stochastic objects, and shift our
attention to infinite-dimensional Lévy processes, also called (time-dependent) Lévy
fields. In fact, the random coefficients in Chapters 4–6 can actually be interpreted
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as a spatial and stationary analogue to the classical notion of time-dependent Lévy
processes from stochastic analysis.

As already indicated in the introduction of this thesis, the approximation of Lévy
fields is challenging: For square integrable fields beyond the Gaussian case, it is no
longer given that the one-dimensional distributions in the spectral representation with
respect to the covariance operator are independent. When simulated via a Karhunen-
Loève expansion a set of dependent, but uncorrelated, one-dimensional Lévy processes
has to be generated. The dependence structure among the one-dimensional processes
ensures that the resulting field exhibits the correct point-wise marginal distributions.
To approximate the respective (one-dimensional) Lévy-measures, a numerical method,
called discrete Fourier inversion, is developed. For this method, Lp-convergence rates
can be obtained and, under certain regularity assumptions, mean-square and Lp-
convergence of the approximated field is proved (we emphasize that the Fourier inver-
sion technique has also been applied to sample spatial Lévy-type random coefficients, as
shown in the numerical examples from Chapters 4 and 5). Further, the class of gener-
alized hyperbolic Lévy fields is introduced, where the point-wise marginal distributions
are dependent, but uncorrelated, subordinated Wiener processes. For this specific class
one may derive point-wise marginal distributions in closed form. Numerical examples,
including hyperbolic and normal-inverse Gaussian Lévy fields, demonstrate the effi-
ciency of the approach.

1.2.5 A. Barth and A. Stein: "A stochastic transport equation with Lévy
noise: Fully discrete numerical approximation"

Using the results from Chapter 7 as foundation, we introduce fully discrete schemes for
SPDEs with Lévy noise. A particular interesting example are linear hyperbolic SPDEs,
which serve as a model for the dynamics of interest rate and energy forward markets.
To be more precise, the forward rate is modeled as the solution to a transport equation
with a space-time stochastic process as driving noise. Again, our motivation is to
capture discontinuities in time and allow for heavy-tailed distributions, thus we consider
Hilbert space-valued Lévy fields as driving noise terms. The numerical discretization
of the corresponding SPDE involves several difficulties: Low spatial and temporal
regularity of the solution to the problem entails slow convergence rates and instabilities
for space/time-discretization schemes.

Even if this problem is resolved, a fully discrete approximation has yet to take the
driving noise process into account. The Lévy field admits values in a possibly infinite-
dimensional Hilbert space U , hence projections into a finite-dimensional subspace of
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U for each discrete point in time are necessary. Finally, as mentioned in the previous
Chapter 7, unbiased sampling from the resulting Lévy field is not necessarily possi-
ble. We introduce a fully discrete approximation scheme to address the above issues:
A discontinuous Galerkin approach for the spatial approximation is coupled with a
suitable time stepping scheme to avoid numerical oscillations. Moreover, we use the
Fourier inversion technique combined with truncated Karhunen-Loève expansions from
Chapter 7 to obtain a suitable approximation of the Lévy field. We provide a rigorous
error analysis for the space-time discretization which yields together with the results
from Chapter 7 a bound on the mean-squared overall discretization error. As before,
we confirm our theoretical results by several numerical examples.

1.2.6 Overall structure

In addition to the five articles, the second chapter of this thesis contains a prelimi-
nary discussion on numerical schemes for PDEs and Monte Carlo methods with a view
towards uncertainty quantification. Thereafter, Chapter 3 collects some probabilistic
results on infinite-dimensional random variables, Lévy processes and stochastic inte-
gration. This part provides a theoretical background on random fields and stochastic
processes, especially for Chapters 7 and 8 that consider Lévy driving noise. After the
two introductory parts on discretization techniques and probability theory, Chapters 4–
8 follow as the core of this thesis and contain the articles previously outlined in this
section. Finally, this thesis is concluded by some remarks and perspectives for future
work in Chapter 9.
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2 Discretization techniques in uncertainty
quantification

This chapter gives an overview of numerical schemes for PDEs and Monte Carlo meth-
ods, the discretization techniques applied in the main part of this thesis. A brief
description of the key ideas and a literature review with regard to their applications
in uncertainty quantification is provided. Advantages as well as possible shortcomings
are highlighted and the algorithms of choice are motivated by comparing them to sev-
eral alternative approaches. A more detailed and formal description for each scheme
is then given in Chapters 4–8 for the specific problem at hand.

2.1 Numerical methods for PDEs

This section discusses some standard numerical approximation schemes for PDEs which
are applied in Chapters 4–6 and 8 to PDEs with discontinuous random characteristics.
The limitations of each approach are pointed out in this context and it is indicated
how this problems have eventually been overcome in the forthcoming chapters.

One of the most popular methods for the numerical approximation of PDEs is the
finite element (FE) method, which can be traced back to the works [8, 65, 87, 115, 184,
195]. There is an extensive amount of literature on the FE method with applications
to deterministic PDEs, for instance [47, 58, 102, 177] to just name a few. In the recent
years, FE-based methods have also successfully been applied in all areas of uncertainty
quantification, examples are found in [15, 23, 27, 29, 54, 85].

The basic idea of the FE method may be illustrated by the stationary, elliptic
boundary value problem

−∇ · (a(x)∇u(x)) = f(x), x ∈ D, u(x) = 0, x ∈ ∂D, (2.1)

on a bounded domain D ⊂ Rd. For any real q > 0, let Hq(D) denote the standard
Sobolev space over D with the notational convention H0(D) := L2(D). The suitable
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solution space is given by

H1
0 (D) := {v ∈ H1(D)| γv = 0},

with γ : H1(D) → L2(∂D) being the trace operator. Hence, the weak formulation of
Problem (2.1) is to find u ∈ V := H1

0 (D) such that
∫
D
a(x)∇u(x) · ∇v(x)dx =

∫
D
f(x)v(x)dx, v ∈ V. (2.2)

Existence and uniqueness of a weak solution is guaranteed by the Lax-Milgram lemma
if a satisfies a uniform ellipticity condition and if f is an element of the dual space of
V , i.e. f ∈ V ∗ = H−1(D). For the FE approximation of u, the infinite-dimensional
space V is replaced by a suitable finite dimensional subspace Vh ⊂ V associated to
some refinement parameter h > 0. In general, h > 0 is the maximum diameter of
a tesselation Kh of D and Vh is the space of all continuous functions consisting of
piecewise polynomials with respect to Kh. The (maximum) degree of the polynomials
is given by p ∈ N and each basis function of Vh only has a small local support on a few
elements of Kh. The discrete version of Problem (2.2) is then to find uh ∈ Vh such that

∫
D
a(x)∇uh(x) · ∇vh(x)dx =

∫
D
f(x)vh(x)dx, vh ∈ Vh,

and the discretization error is bounded provided that u is sufficiently regular:

Theorem 2.1.1. [177, Chapter 6.2] Let u be the solution to Problem (2.2) such that
u ∈ Hq(D) for some q > 1. Furthermore, let Vh be the FE space containing all piecewise
polynomials up to degree p ∈ N and let uh be the FE approximation of u. Then, there
is a constant C > 0, independent of u and h, such that

||u− uh||Hm(D) ≤ C‖u‖Hq(D)h
min(p+1,q)−m, m ∈ {0, 1}.

In Chapters 4–6, we investigate a version of Problem (2.1), where the diffusion co-
efficient a is a L2(D)-valued random field. More precisely, a is the sum of a continuous
Gaussian part and a stochastic jump field, hence a is discontinuous on D. The corre-
sponding weak solution u then is a random function with very low path-wise regularity,
in general only u ∈ Hq(D) with q < 3

2 holds almost surely. Therefore, convergence with
respect to h is slow and thus reasonably good approximations become computationally
expensive. This problem is addressed by introducing a modified FE method, which
exploits the higher piecewise regularity of u in between the interfaces of a. We show
that this allows us to recover better convergence rates despite the low global regularity
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of u seems to permit this at first glance.
There are of course several other discretization schemes for PDEs, such as fi-

nite difference (FD)-, finite volume (FV)-, spectral- and collocation methods (see
[14, 51, 81, 143, 144, 177]). These are, however, less suited for PDEs with discon-
tinuous coefficients. The FD method is based on uniformly spaced grids, hence an
adaptive approach to match the given discontinuities of a as described above is out of
reach. Spectral- or collocation methods have in general superior convergence properties
compared to FE, but require high regularity and periodicity of the problem. As these
assumptions are too restrictive for the setting in Chapters 4–6, it can not be expected
that spectral- or collocation approaches outperform the FE method. A discussion of
FV methods for hyperbolic PDEs follows shortly.

The class of hp-finite element methods, see [189], also needs to be mentioned. In this
modification, the FE mesh and/or the polynomial degree is refined/adjusted for certain
areas in the domain based on a-posteriori error estimates. This becomes particularly
useful if the problem at hand is only irregular at certain areas of the domain, but rather
smooth otherwise. Thus, hp-FE methods are actually a promising advancement to the
methodology in Chapters 4–6. They are, however, analytically and computationally
challenging, and their application to PDEs with discontinuous random coefficients is
beyond the scope of this thesis (see also the discussion in Chapter 9).

The FE method turns out to be a suitable spatial discretization to solve diffusion-
dominated elliptic and parabolic problems. In case of advection-dominated and hy-
perbolic PDEs as considered in Chapter 8, however, FE methods become inherently
unstable and oscillating. To circumvent these issues, discontinuous Galerkin (DG)
methods have been developed as a generalization of the FE method. Introduced in the
pioneering works [142, 179] to solve a neutron transport problem, DG methods are, by
now, the state-of-the-art approach for the numerical solution of (non-)linear hyperbolic
PDEs. Comprehensive overviews on DG methods and their applications can be found
for instance in [61, 109, 185]. Although successfully applied to deterministic PDEs,
so far, there are not many applications of the DG method to problems in uncertainty
quantification , notable exceptions include [90, 110, 120].

The DG approach is also based on the weak formulation of the PDE and basically
the same as for the FE method, but the finite-dimensional test function space Vh
now consists of all functions built from piecewise polynomials on Kh. This allows
especially for discontinuous approximations with more degrees of freedom than their
FE counterparts. Since left and right limits of the DG basis differ at the interfaces of
Kh, it is necessary to determine a numerical flux at the discontinuities. This is the key
feature of DG methods, as the numerical flux can be adjusted to the specific problem to
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increase stability of the approximation. Consequently, a DG approach is introduced to
discretize the linear hyperbolic SPDE in Chapter 8 and it is shown that this is indeed
advantageous to standard FE methods.

Another popular discretization scheme for hyperbolic PDEs is the finite volume
(FV) method, see e.g. [81, 143]. Therein, the corresponding equation is integrated over
small volumes and the divergence theorem is applied to obtain integrals over the surface
of each volume. This yields a piecewise constant approximation with discontinuities
across the surface of each volume, and consequently a numerical flux similar as for
the DG method has to be chosen. In contrast to the FD approach, FV schemes may
be applied to irregular domains and non-uniform grids. Moreover, FV methods are
conservative if the underlying PDE is a hyperbolic conservation law. Applied to the
SPDE in Chapter 8, it turns out the FV approach may be recovered as a subclass of
DG methods with piecewise constant basis functions and midpoint quadrature. Hence,
the DG approach is more general and thus expected to perform at least as good as FV
schemes.

To obtain tractable approximations to time-dependent problems, it is still necessary
to consider a discretization of the temporal domain. One possibility is to view time
as an additional spatial variable and apply a FE approach to the (d + 1)-dimensional
space-time domain. This results in a coupling of all spatio-temporal nodal points and
the problem has to be solved simultaneously at all discrete points in time. Thus, the
resulting scheme has no time-stepping or iterative character, and is not applicable to
a large class of time-dependent problems.

To this end, it is more practical to apply a FD approach for time integration,
either based on forward-, backward or symmetric differences. The corresponding time
stepping schemes are the forward respectively backward Euler method and the Crank-
Nicolson scheme. In general, the latter approach has the best convergence properties,
but requires more regularity of the solution, both with respect to time and space.
The backward Euler scheme is unconditionally stable, while pure forward methods
often lead to explosions in the numerical solution. In fact, as linear random/stochastic
PDEs are considered, the FD approaches can also be interpreted as a DG discretization
of the temporal dimension. For a suitably chosen numerical flux, this is equivalent to
using piecewise constant functions in the Euler methods and a piecewise linear DG
basis in the Crank-Nicolson scheme.

The solution to the parabolic problem in Chapters 5 and 6 is smooth in time, but
non-differentiable in space. Hence, Crank-Nicolson schemes entail numerical oscilla-
tions and the only useful time integrator is the backward Euler method. In Chapter 8,
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we consider stochastic integrals acting as source term on the right hand side of a lin-
ear transport problem. Due to their construction as the L2-limit of simple integrals
(see Section 3.3 in the next chapter), their only reasonable approximation is given by
forward differences of the form

∫ ti+1

ti
Ψ(s)dL(s) ≈ Ψ(ti)(L(ti+1)− L(ti)), (2.3)

where L is a Lévy process and Ψ is an admissible integrand for L. Evaluating Ψ on the
right hand side in Eq. (2.3) at any other t ∈ (ti, ti+1] would result in the approximation
of a different type of stochastic integral for which the martingale property and the
Itô isometry from Theorem 3.3.2 do not hold anymore. On the other hand, applying
a forward integration in time to the differential operator is out of the question due
to stability reasons. This results in a mixed backward-forward time stepping scheme,
where a backward Euler or Crank-Nicolson approach is applied on the left hand side
of the PDE and a forward time stepping on the right hand side.

As an alternative time stepping method, exponential integrator schemes have suc-
cessfully been applied to SPDEs, see [129, 198]. They require however, that the under-
lying differential operator is essentially a Laplacian to exploit its spectral basis represen-
tation. Clearly, this is not given in the hyperbolic setting in Chapter 8 and it turns out
that exponential integrators do not perform superior compared to the other discussed
schemes. Neither do higher order temporal approximations such as Runge-Kutta-DG
methods([62]) promise any advantages, as they require high spatio-temporal regularity.
In Chapter 8, the solution to the SPDE is only mean-square Hölder-continuous in time,
at best Lipschitz-continuous in space and the temporal convergence rate is dominated
by the approximation of the stochastic integral on the right hand side anyway. For
further research, however, Runge-Kutta-DG methods might be useful when moving
from linear to nonlinear hyperbolic problems. This is due to the fact that they rely on
fully explicit, stable time stepping schemes and thus avoid solving a nonlinear system
of equations in every time step.

2.2 Monte Carlo methods

The quantities of interest in uncertainty quantification are ultimately statistics of the
stochastic model at hand, including moments or quantiles of the solution itself as well
as of functionals applied to the solution. This problem can always be reformulated to
estimate the mean value of a suitably chosen random variable. Arguably, the most
popular and intuitive approach to achieve this is the Monte Carlo method, dating back
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to Ulam, von Neumann and Fermi. The historical development of the Monte Carlo
method is outlined in [159], a general introduction can be found in [83, 94, 160].

In short, Monte Carlo approaches estimate the expected value of a random variable
X by drawing a large number of independent samples from the distribution of X and
then taking the arithmetic mean over all samples. To illustrate this technique, let
(Ω,F ,P) be a complete probability space and let X : Ω→ R be random variable such
that E(|X|) < +∞. For some M ∈ N, independent samples X(1), . . . , X(M) are drawn
from the distribution of X and the Monte Carlo estimator of E(X) is defined via

EM(X) := 1
M

M∑
i=1

X(i).

Clearly, E(EM(X)) = E(X), and the strong law of large numbers ensures that

lim
M→∞

EM(X) = E(X), P-almost surely.

Moreover, if X is square-integrable, i.e. E(X2) < +∞, the independence and identical
distribution of the samples X(1), . . . , X(M) yield

E((EM(X)− E(X))2) = 1
M2

M∑
i,j=1

E(X(i)X(j))− 2E(X) 1
M

M∑
i=1

E(X(i)) + E(X)2

= 1
M

E(X2) + M(M − 1)− 2M2 +M2

M2 E(X)2

= Var(X)
M

.

In this case, the root-mean-squared error (RMSE) of the Monte Carlo estimator is

RMSE := E((EM(X)− E(X))2)1/2 = Var(X)1/2
√
M

. (2.4)

Monte Carlo methods are easy to implement and straightforward to parallelize, very
robust and mean-square-convergence is ensured as soon as X is square-integrable
from Eq. (2.4). Their major disadvantage is the inherently slow convergence of order
O(M−1/2) for the RMSE. For this reason, estimating E(X) by EM(X) may become
prohibitive if the simulation of X is computationally expensive.

For example, consider the case X = Φ(u) where u is the solution of a (elliptic)
PDE as in Eq. (2.1) with a random diffusion coefficient, i.e. a is a suitable measurable
mapping a : Ω → L∞(D) such that a(ω, ·) : D → (0,∞) holds for almost all ω ∈ Ω.
Moreover, let Φ : V → R be a given functional on the solution space V = H1

0 (D).
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Samples from the exact solution u are in general out of reach, it is, however, possible
to obtain approximate samples uh by the FE method, where h > 0 denotes the mesh
refinement parameter. Hence, samples of Xh := Φ(uh) are available and E(X) may be
estimated via EM(Xh). Assuming that E(‖u‖2

H2(D)) < +∞ and that Φ ∈ V ∗, it follows
by Theorem 2.1.1

E((EM(Xh)− E(X))2)1/2 ≤ |E(Xh −X)|+ E((EM(Xh))− E(Xh))2)1/2

≤ ‖Φ‖V ∗E(‖u− uh‖H1(D)) + Var(Xh)1/2
√
M

≤ C‖Φ‖V ∗
(
E(‖u‖2

H2(D))1/2h+
E(‖u‖2

H2(D))1/2
√
M

)
≤ C

(
h+ 1√

M

)
.

Hence, to obtain a small RMSE, it is necessary to generate many expensive samples
(M ≈ h−2) on a grid with small refinement parameter h > 0. To this end, several
techniques have been developed to increase efficiency, a particularly effective example
is the multilevel Monte Carlo method. Invented by Heinrich in [106] and popularized
by Giles in [92] for the pricing of financial derivatives, multilevel Monte Carlo has been
applied to a vast range of uncertainty quantification problems in the last decade, see
e.g. [28, 29, 54, 66, 120, 194], and Chapters 4 and 6 of this thesis.

To illustrate the main idea behind multilevel Monte Carlo estimation, consider
again the aforementioned example where X = Φ(u) is the functional of a solution to a
random PDE. Rather than a fixed parameter h, we now consider a sequence of decreas-
ing refinements h0 > · · · > hL > 0 with L ∈ N (e.g. h` := 2−`−1) and the associated
hierarchy of approximated random variables X0 := Φ(uh0), . . . , XL := Φ(uhL). With
the convention X−1 := 0, we may express the highest-accuracy approximation XL by
the telescopic sum

XL =
L∑
`=0

X` −X`−1.

Using this representation, each correctionX`−X`−1 is estimated by the standard Monte
Carlo method using a level-dependent number of M` ∈ N independent samples. This
yields the multilevel Monte Carlo estimator

EL(XL) :=
L∑
`=0

EM`
(X` −X`−1) =

L∑
`=0

1
M`

M∑̀
i=1

X
(i,`)
` −X(i,`)

`−1 (2.5)

of E(XL). In Eq. (2.5), it is crucial to actually sample from the distribution of the
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correction term X` − X`−1, meaning the samples X(i,`)
` and X

(i,`)
`−1 must be based on

the same set of random variables. This dependency is emphasized by the second
superscript `, the sampled corrections across the levels are again independent. Since
E(EL(XL)) = E(XL), the RMSE of the multilevel Monte Carlo estimator is bounded
by

E((EL(XL)− E(X))2)1/2 ≤ C
(
hL +

( L∑
`=0

Var(X` −X`−1)
M`

)1/2)
.

Given that the variances Var(X` − X`−1) decay sufficiently fast in ` = 0, . . . , L, one
may generate many inexpensive samples on the lower levels and, due to the lower
variance for large `, it is sufficient to sample only a few expensive corrections on the
higher levels. This yields a fast decreasing sequence M0 > · · · > ML and in the
example above a RMSE of O(2−L) is achieved with L levels, refinements h` ≈ 2−`

and level-dependent numbers of samples decaying from M0 ≈ 22L to ML ≈ L2, as for
instance shown in Chapter 4. To obtain a similar RMSE with a singlelevel Monte Carlo
estimator, M ≈ 22L samples of the high resolution approximation XL with hL ≈ 2−L

are required. Thus, multilevel Monte Carlo approaches can reduce computational time
by several orders of magnitudes compared to standard Monte Carlo estimation, from
months to days, hours and even to minutes. The precise computational gains from
multilevel Monte Carlo are stated under suitable assumptions in the, by now famous,
complexity theorem in [92]. Due to their low requirements and good accessibility,
multilevel Monte Carlo methods are the algorithms of choice to estimate quantities of
interest or moments from PDEs with discontinuous random features.

Apart from sampling-based methods, such as Monte Carlo; other approaches to dis-
cretize the stochastic domain, e.g. stochastic Galerkin (SG) and stochastic collocation
(SC) methods have been developed for uncertainty quantification. Here, the random
PDEs are regarded as a class of high-dimensional parametrized PDEs to exploit certain
structural properties of the problem. A very prominent example is the elliptic diffusion
problem as in Eq. (2.1) with a (strictly) positive random field a : Ω → L∞(D) as
coefficient. It can be shown that a admits the Karhunen-Loève expansion

a = E(a) +
∑
i∈N

ϕiξi (2.6)

with respect to a basis (ϕi, i ∈ N) ⊂ L∞(D) and a sequence (ξi, i ∈ N) of centered
random variables (see also Theorem 3.1.6 in Chapter 3). The corresponding parameter
space is then formed by the range of (ξi, i ∈ N), for instance by [−1, 1]N if the ξi are
uniformly distributed on [−1, 1].

Both, SG and SC methods, have successfully been applied to PDEs with random
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coefficients, see for instance [14, 25, 77, 90, 165] and the references therein. In par-
ticular, the articles [63, 190] need to be mentioned, where the authors show that SG
methods may be superior to sampling-based algorithms, provided the underlying prob-
lem is sufficiently smooth with respect to its stochastic domain. Translated to the
example above, this means essentially that ‖ϕi‖L∞(D) decays fast enough with respect
to the index i. Then, the series in Eq. (2.6) may be cut off after only a few terms
to obtain a reasonably good representation of a. In the jump-diffusion setting from
Chapters 4–6, however, a involves random jumps and hence the decay of ‖ϕi‖L∞(D) is
very slow. Consequently, a large number of terms in the truncated Karhunen-Loève
expansion of a are necessary and SG/SC methods are prohibitive. Moreover, it is still
an open question to find suitable basis functions ϕi and random variables ξi in order
to represent discontinuous coefficients as in Eq. (2.6).

Another popular evolution of the Monte Carlo algorithm is the class of quasi-Monte
Carlo (QMC) methods. In this approach, the pseudo-random samples are replaced
by deterministic low discrepancy sequences to achieve a higher convergence rate of
the RMSE than O(M−1/2) with respect to the number of samples. The estimation
of moments in uncertainty quantification applications is then generally regarded as a
quadrature problem in a high-dimensional parameter space and it is possible to recover
improved rates of order O(M−1+ε) for arbitrary small ε > 0. A detailed introduction
to QMC for integration in high dimensions can be found in [72]. QMC approaches
have been applied to random PDEs with diffusion coefficients as in Eq. (2.6) (see
[88, 137]) under similar regularity assumptions on the coefficients as SG/SC methods.
More recently, however, QMC approaches were also used in the case that a is log-
normal, see [96, 98, 108], and a reasonable truncated series-approximation of a involves
a large number of terms. This development indicates that QMC techniques may also
be promising for random PDEs with discontinuous coefficients, especially since they
may be combined with multilevel Monte Carlo as in [108] (see also the discussion
in Chapter 9). In addition, QMC methods are based on the evaluation of inverse
cumulative density functions and may thus be utilized in the Fourier inversion algorithm
from Chapter 7. Naturally, a further topic for research is then the application of QMC
methods to SPDEs with Lévy noise as in Chapter 8.
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3 Lévy processes and stochastic integrals in
Hilbert spaces

The aim of this chapter is to familiarize the reader with random fields, stochastic
processes and -integration in general Hilbert spaces, concepts that are necessary to un-
derstand the variety of random objects in the core of this thesis. The first part contains
details about covariance operators and spectral expansions, which are recurrently used
in all articles of this thesis. Thereafter, some results on Hilbert space-valued Lévy pro-
cesses and stochastic integration are collected, providing the foundation for the driving
noise processes in Chapters 7 and 8. Thus, the style of this chapter is naturally of more
mathematical-formal and contrasts somewhat the preceding one, where the key ideas
of each discretization method are roughly sketched and followed by a discussion.

The basic concept of Lévy processes in one dimension dates back to Lévy and
Khintchine in [127, 145, 146, 147]. Since then, there has been extensive research on
Lévy processes, well-known standard works include for instance [6, 40, 187]. The
stochastic integrals and the corresponding calculus in Chapter 8 is in the sense of Itô,
who introduced a generalization of the Riemann-Stieltjes integral with a Brownian
motion as integrator in [118, 119]. For a basic review on Itô calculus with respect
to Brownian motions see [125, 168], more general Lévy processes as integrators are
discussed in [6]. The stochastic calculus for the corresponding Hilbert-space valued
processes is investigated in [67, 158, 173]. Lévy processes and stochastic integration
have become two of the most important concepts in probability theory and have been
utilized to model various problems in financial mathematics and the natural sciences,
examples are given in [17, 67, 94, 173, 188] to name just a few.

Throughout this chapter, let T = [0, T ] for T > 0 be a finite time interval and let
(Ω,F , (Ft, t ∈ T),P) be a filtered probability space satisfying the usual conditions, i.e.
F0 is P-complete and (Ft, t ∈ T) is right-continuous. For any separable metric space
(E, ‖ · ‖E), the Borel σ-algebra with respect to E is defined as the smallest σ-algebra
containing all open balls in E and denoted by B(E). Furthermore, let (U, (·, ·)U) be
a separable Hilbert space, let L(U) be the set of all linear operators on U and let
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L+
N(U) ⊂ L(U) be the set of all nonnegative, symmetric, nuclear operators on U . The

space of all Bochner-integrable random variables in U with p-th moment is for any
p ∈ [1,∞) given by

Lp(Ω;U) := {X : Ω→ U is strongly measurable and
∫

Ω
‖X(ω)‖pU < +∞}.

3.1 Covariance operators and spectral expansions

As the L2-theory of random fields is investigated in this chapter, it is natural to consider
covariance operators and the associated spectral expansions. To this end, the first two
moments for square-integrable, U -valued random variables need to be defined.

Definition 3.1.1. For any X ∈ L1(Ω;U), the mean of X is defined by the Lebesgue-
Bochner integral

E(X) :=
∫

Ω
X(ω)dP(ω) ∈ U.

If X ∈ L2(Ω;U), the covariance operator of X is the unique Q ∈ L+
N(U) such that

E((X − E(X), φ)U(X − E(X), ψ)U) = (Qφ, ψ)U , φ, ψ ∈ U.

The following results ensures that the covariance operator Q ∈ L+
N(U) is well-

defined and unique for each square-integrable X:

Lemma 3.1.2. For any X ∈ L2(Ω;U), there is a unique covariance operator Q ∈
L+
N(U).

Proof. For the existence of Q see [138, Chapter 2]. Now assume that there exist two
covariance operators Q, Q̃ ∈ L+

N(U) for X ∈ L2(Ω;U). By Definition 3.1.1 and the
linearity of Q, Q̃ it follows

‖Q− Q̃‖2
L(U) = sup

φ∈U,φ6=0

‖(Q− Q̃)φ‖2
U

‖φ‖2
U

= sup
φ∈U,φ6=0

(Qφ, (Q− Q̃)φ)2
U − (Q̃φ, (Q− Q̃)φ)2

U

‖φ‖2
U

= 0,

and hence Q = Q̃.

By the Hilbert-Schmidt theorem, there is a decreasing sequence of non-negative
eigenvalues η1 ≥ η2 ≥ · · · ≥ 0 of Q with zero as only accumulation point and the
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corresponding eigenfunctions (ei, i ∈ N) form an orthonormal basis of U . Moreover, Q
is nuclear and therefore of trace class, i.e.

Tr(Q) :=
∑
i∈N

(Qei, ei)U =
∑
i∈N

ηi < +∞.

The square-root of Q is defined via

Q1/2φ :=
∑
i∈N

√
ηi(φ, ei)Uei, φ ∈ U.

Since Q1/2 is not necessarily injective, the pseudo-inverse of Q is given by

Q−1/2ϕ := φ, if Q1/2φ = ϕ and ‖φ‖U = inf
ϕ∈U :Q1/2ϕ=φ

{‖ϕ‖U}.

Definition 3.1.3. Let X ∈ L2(Ω;U) with covariance operator Q ∈ L+
N(U). Then, the

set U := Q1/2(U) equipped with the scalar-product

(ϕ1, ϕ2)U := (Q−1/2ϕ1, Q
−1/2ϕ2)U , ϕ1, ϕ2 ∈ U ,

is called the reproducing kernel Hilbert space (RKHS) of X.

It turns out to be more convenient to study the RKHS U rather than Q, as restrict-
ing U to suitable subspaces does not change the RKHS:

Theorem 3.1.4. [173, Theorem 7.4] Let X ∈ L2(Ω;U) with covariance operator
Q ∈ L+

N(U) and let the Hilbert space (U, (·, ·)U) be continuously embedded into an-
other Hilbert space (Ũ , (·, ·)

Ũ
). If Q̃ ∈ L+

N(Ũ) denotes the covariance operator of X
considered as Ũ-valued random variable X ∈ L2(Ω; Ũ), then Q1/2(U) = Q̃1/2(Ũ).

Theorem 3.1.4 becomes particularly useful if X takes values in a Sobolev space and
the corresponding embedding theorems are at hand.

Example 3.1.5. In the important case that U = L2(D) for some compact D ⊂ Rd,
it can be shown that Q and Q1/2 are integral operators with symmetric, nonnegative
definite kernel functions kQ, kQ1/2 : D2 → R, i.e.

Qφ =
∫
D
kQ(x, ·)φ(x)dx, Q1/2φ =

∫
D
kQ1/2(x, ·)φ(x)dx, φ ∈ U,

see e.g. [173, Appendix A]. By Mercer’s theorem, the reproducing kernel kQ may be
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represented in terms of the eigenbasis of Q by

k(x, y) =
∑
i∈N

ηiei(x)ei(y), x, y ∈ D,

and hence kQ(x, ·) = kQ(·, x) ∈ U . Since any ϕ ∈ U is of the form

ϕ = Q1/2φ =
∑
i∈N

√
ηi(φ, ei)Uei

for some φ ∈ U , Mercer’s theorem yields that kQ satisfies for any x ∈ D

(ϕ, kQ(x, ·))U =
∑
i∈N

(Q1/2φ, ηiei)Uei(x)

=
∑
i∈N

(Q1/2φ,Q1/2ei)U
√
ηiei(x)

=
∑
i∈N

√
ηi(φ, ei)Uei(x)

= ϕ(x),

also called the reproducing kernel property. Moreover, the RKHS U is given by

U = {φ ∈ L2(D)|
∑

i∈N, ηi 6=0

(φ, ei)2
U

ηi
< +∞}, (φ, ψ)U =

∑
i∈N, ηi 6=0

(φ, ei)U(ψ, ei)U
ηi

.

To conclude this section, the following useful spectral representation ofX is recorded.

Theorem 3.1.6 (Karhunen-Loève expansion). Let X ∈ L2(Ω;U) with covariance op-
erator Q and denote by ((ηi, ei), i ∈ N) the (ordered) eigenpairs of Q. Then, X admits
the expansion

X = E(X) +
∑
i∈N

ξiei,

where the ξi are real-valued, centered random variables with Cov(ξi, ξj) = ηiδij for
i, j ∈ N. The above series converges in L2(Ω;U) with truncation error bounded by

‖
∞∑
i>N

ξiei‖2
L2(Ω;U) := E

(
‖
∞∑
i>N

ξiei‖2
U

)
=
∑
i>N

ηi, N ∈ N. (3.1)

Proof. As (ei, i ∈ N) is an orthonormal basis in U , X − E(X) is expanded via

X − E(X) =
∑
i∈N

((X − E(X)), ei)Uei.
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Now define ξi := ((X−E(X)), ei)U . It is immediate that the ξi are centered and satisfy

Cov(ξi, ξj) = E((X − E(X)), ei)U(X − E(X)), ej)U) = (Qei, ej)U = ηiδij.

To show the convergence in L2(Ω;U), let XN := ∑N
i=1 ξiei for any N ∈ N and note that

E(‖XN‖2
U) = E

(
‖

N∑
i=1

ξiei‖2
U

)
=

N∑
i,j=1

E((ξiei, ξjej)U) =
N∑
i=1

ηi.

Since Tr(Q) = ∑
i∈N ηi < +∞, XN is a L2(Ω;U)-Cauchy-sequence and thus converges

to the limit X − E(X) by the completeness of L2(Ω;U). Consequently,

E(‖X −XN‖2
U) = E

(
‖
∞∑
i>N

ξiei‖2
U

)
=
∑
i>N

ηi.

Example 3.1.7. If X in Theorem 3.1.6 is Gaussian with mean µ ∈ U and covariance
operator Q ∈ L+

N(U), it holds that

X = µ+
∑
i∈N

√
ηieiZi, (3.2)

where (Zi, i ∈ N) is a sequence of independent, one-dimensional standard normally
distributed random variables (see for instance [3, Chapter 3]). The representation in
Eq. (3.2) becomes particularly useful for the simulation ofX: the sum may be truncated
after a finite number of terms and one then only needs to sample from a one-dimensional
standard normal distribution. For an introduction of Gaussian measures on Banach-
and Hilbert spaces, see [138] or [173, Chapter 3.5].

Remark 3.1.8. Note that the independence for the random variables in the Karhunen-
Loève expansion only holds for the Gaussian case in Example 3.1.7. For general X ∈
L2(Ω;U) as in Theorem 3.1.6, the sequence (ξ, i ∈ N) consists of uncorrelated, but not
independent random variables (see also Proposition 3.2.9). As Q is of trace-class, the
truncation error in Eq. (3.1) depends on the decay of the eigenvalues and can be made
arbitrary small for sufficiently large N . A similar representation as in Eq. (3.2) is also
given for Lévy processes in the next subsection, which is the fundamental observation
for the approximation algorithm introduced in Chapter 7.
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3.2 Lévy random fields

Hilbert space-valued Lévy fields form the basis of the driving noise processes in Chap-
ters 7 and 8. In this section, the class of Lévy processes is introduced and a fundamental
decomposition theorem in terms of Gaussian and compound Poisson processes is given.

Definition 3.2.1. A U -valued stochastic process L = (L(t), t ∈ T) is called Lévy
process if

• L has stationary and independent increments,

• L(0) = 0 P-a.s. and

• L is stochastically continuous, i.e. for all ε > 0 and t ∈ T it holds

lim
s→t, s∈T

P(||L(t)− L(s)||U > ε) = 0.

To obtain a clear distinction from finite-dimensional Lévy processes, L is sometimes
called Lévy field if dim(U) = +∞. Lévy processes have in general discontinuous
trajectories, regardless of the dimensionality of U . It can be shown, however, that
every Lévy process has a modification with càdlàg paths ([173, Theorem 4.3]). The
only exceptional case with continuous trajectories are Hilbert-space valued Brownian
motions or Wiener processes:

Definition 3.2.2. A zero mean Lévy process W on U with continuous trajectories is
called a Wiener process.

As subsequently outlined, every Lévy process is the sum of a continuous Wiener
process and certain discontinuous jump processes. To this end, the following basic
results for Hilbert space-valued Wiener processes are recorded.

Theorem 3.2.3. [67, Proposition 4.1] A Wiener process W on U is a Gaussian,
square-integrable process and W (t) ∼ N (0, tQ), where Q is the covariance operator
of W (1). Moreover, if ((ηi, ei), i ∈ N) are the orthonormal eigenpairs of Q, then W

admits the series expansion

W (t) =
∑
i∈N

(W (t), ei)Uei, t ∈ T,

where ((W (t), ei)U , t ∈ T) are (scaled) independent, real-valued Wiener processes with
covariance Cov((W (t), ei)U , (W (s), ei)U) = min(t, s)ηi.
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Since W is centered Gaussian, the characteristic function of W reads

E(ei(W (t),φ)U ) = exp
(
− t

2(Qφ, φ)U
)
, φ ∈ U. (3.3)

There is also a U -valued version of a compound Poisson process, which will be the
other building block for the Lévy process.

Definition 3.2.4. Let ν̃ be a finite measure on (U,B(U)) with ν̃({0}) = 0. A compound
Poisson process with jump intensity measure ν̃ on U is a càdlàg Lévy process L on U
satisfying

P(L(t) ∈ Û) = e−ν̃(U)t∑
k∈N

tk

k! ν̃
∗k(Û), Û ∈ B(U), t ∈ T.

Above, ν̃∗k denotes the k-fold convolution of ν̃, given by

ν̃∗k(Û) := (ν̃ ∗ · · · ∗ ν̃)(Û), (ν̃ ∗ ν̃)(Û) :=
∫
U
ν̃(Û − φ)ν̃(dφ).

Theorem 3.2.5. [173, Chapter 4.3] Let L be a compound Poisson process on U with
jump intensity measure ν̃.

1. The characteristic function of L is given by

E(ei(L(t),φ)U ) = exp
(
− t

∫
U

1− ei(ψ,φ)U ν̃(dψ)
)
, φ ∈ U, t ∈ T.

2. There is a sequence of i.i.d. U-valued random variables (Ξ, i ∈ N) with law Ξi ∼
ν̃

ν̃(U) and a Poisson process N = (N(t), t ∈ T) with intensity ν̃(U), independent
of (Ξ, i ∈ N), such that

L(t) =
N(t)∑
i=1

Ξi.

3. The compound Poisson process L is integrable if and only if
∫
U
‖φ‖U ν̃(dφ) < +∞.

If L is integrable,
E(L(t)) = t

∫
U
φν̃(dφ), t ∈ T,

and (L(t)− E(L(t)), t ∈ T) is called compensated compound Poisson process.

With the notions of Wiener processes and compound Poisson processes on U , the
most important representation result for Lévy processes, known as the Lévy-Khintchine
decomposition, can now be stated.
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Theorem 3.2.6. [173, Theorem 4.23 (Lévy-Khintchine decomposition)] Every Lévy
process L has the representation

L(t) = µ0t+W (t) +
∑
k∈N

LAk(t)− t
∫
Ak

φν(dφ) + LA0(t), t ∈ T, (3.4)

where

• µ0 ∈ U is a deterministic mean function,

• W is a Wiener process with covariance operator Q ∈ L+
N(U),

• Ak := {φ ∈ U | rk ≤ ‖φ‖U ≤ rk−1} and A0 := {φ ∈ U | ‖φ‖U ≥ r0} for an
arbitrary sequence (rk, k ∈ N) ⊂ R>0, decreasing monotonously to zero,

• ν is a measure on (U,B(U)) such that
∫
U min(‖y‖2

U , 1)dν(y) < +∞ (also called
Lévy measure) and (LAk , k ∈ N) are compound Poisson processes with finite
intensity measures ν̃k := ν|Ak , and

• all summands in Eq. (3.4) are independent stochastic processes on U .

Remark 3.2.7. The Lévy-Khintchine decomposition states that every Lévy process
is the sum of a Wiener process W with drift µ0, a compound Poisson process and a
superposition of compensated compound Poisson processes. It needs to be emphasized
that changing the cutoff treshold r0 in the Lévy-Khintchine decomposition affects the
mean µ0. Hence, the above representation depends on r0 and is a-priori not unique.
As seen in Theorem 3.2.8 below, uniqueness can be achieved by fixing r0 = 1, the cor-
responding representation is also referred to as Lévy-Itô decomposition. If ν(U) < +∞,
then L may be represented by a finite number of (compensated) compound Poisson
processes. In this case, L has almost surely finitely many jumps in every bounded
interval in T and L is said to be of finite activity.

Due to the Lévy-Khintchine decomposition, the following is immediate:

Theorem 3.2.8 (Lévy-Khintchine formula). Let L be a Lévy process on U . Then, the
characteristic function of L(t) is given by

E[exp(i(φ, L(t))U)] = exp(tΨL(φ)), φ ∈ U, t ∈ T,

with characteristic exponent

ΨL(φ) = i(µ, φ)U −
1
2(Qφ, φ)U +

∫
U
ei(φ,ψ)U − 1− i(φ, ψ)U1||ψ||U<1(ψ)ν(dψ).
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Proof. Due to the independence of all terms in Eq. (3.4), the characteristic exponent
is of additive form. The claim follows with the characteristic functions of the Wiener
process and the compound Poisson processes from Eq. (3.3) and Theorem 3.2.5, re-
spectively. Using r0 = 1 in Theorem 3.2.6 yields the indicator function 1||ψ||U<1 in ΨL.
For a more detailed proof, see e.g. [173, Chapter 4] and the references therein.

Compared with the Lévy-Khintchine decomposition, the Lévy-Khintchine formula
assumes a cutoff at r0 = 1 for the non-compensated Poisson process. Hence, the above
representation is unique and L is uniquely determined by (µ,Q, ν), also known as the
characteristic triplet. Similar to the Wiener process, L may be expanded in terms of
an orthonormal basis of U and one-dimensional Lévy processes.

Proposition 3.2.9. [173, Theorem 4.39] If (φi, i ∈ N) is an orthonormal basis of U ,
then L has the series expansion

L(t) =
∑
i∈N

(L(t), φi)Uφi, t ∈ T,

and the processes (L(t), φi)U are real-valued Lévy processes with càdlàg paths. The
above series converges in probability uniformly in T.

If L is square-integrable, the processes (L(t), φi)U are uncorrelated and indepen-
dence only holds in the case that L = W is a Wiener processes on U with the marginals
(L(t), φi)U becoming real-valued Brownian motions. To obtain an expansion with re-
spect to the eigenbasis of the covariance operator of L, it is essential that L is actually
square-integrable. As seen in the next result, the integrability of L depends solely on
the moments of ν.

Theorem 3.2.10. Let L be a U-valued Lévy process with characteristic triplet (µ,Q, ν).
For any t ∈ T and n ∈ N it holds that

E(‖L(t)‖nU) < +∞ ⇔
∫
φ∈U,‖φ‖≥1

‖φ‖nUν(dφ) < +∞.

Moreover, if L is square-integrable, there exits µL ∈ U and QL ∈ L+
N(U) such that for

any s, t ∈ T and φ, ψ ∈ U :

E((L(t), φ)U) = t(µL, φ)U
E((L(t)− tµ, φ)U(L(s)− sµ, ψ)U) = min(t, s)(QLφ, ψ)U

E(‖L(t)− tµL‖2
U) = tTr(QL).
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Proof. The first part of the claim follows from the Lévy-Khintchine decomposition in
the same fashion as for finite-dimensional Lévy processes, see e.g. [6, Theorem 2.5.2].
The second part is given in [173, Theorem 4.44].

Remark 3.2.11. In general, µL and QL above are not identical to µ resp. Q from the
Lévy triplet, but merely µL = µ+µν and QL = Q+Qν , with µν , Qν stemming from the
jump intensity measure ν. However, as QL has an orthonormal eigenbasis (ei, i ∈ N)
with corresponding eigenvalues ηi ≥ 0, L has the series expansion

L(t) =
∑
i∈N

(L(t), ei)Uei, t ∈ T,

where the one-dimensional marginal Lévy processes (L(t), ei)U are uncorrelated and

E((L(t), ei)U) = t(µL, ei)U , and Var((L(t), ei)U) = tηi.

3.3 Stochastic integration

This section provides a construction of stochastic integrals in Itô’s sense with square-
integrable Lévy processes on U as integrator. The fundamental property of the corre-
sponding Itô integrals, an infinite-dimensional version of the Itô isometry, is stated as
the central result at the end of this section. For completeness, it needs to be mentioned
that the class of integrators may be generalized to the space of all square-integrable,
U -valued martingales, see [173, Chapter 8]. However, as only square-integrable Lévy
processes have been considered in Chapters 7 and 8, this section is restricted to the case
that L is a centered and square-integrable Lévy process on U for the sake of brevity.

Let QL be the covariance operator of L, and observe that by Theorem 3.2.10 the
processes L = (L(t), t ∈ T) and (‖L(t)‖2

U − t tr(QL), t ∈ T) are U - and real-valued
martingales, respectively. Furthermore, let U := Q

1/2
L (U) be the RKHS associated to

L and let (H, (·, ·)H) be another separable Hilbert space, not necessarily identical to
U . The set of all linear operators from U to H is given by L(U,H) and LHS(U , H)
denotes the space of all Hilbert-Schmidt operators from U to H.

The construction of the stochastic integral is based on the following class of piece-
wise constant, L(U,H)-valued integrands.

Definition 3.3.1. A L(U,H)-valued process Ψ : T × Ω → L(U,H) is called a simple
process if there are t0, . . . , tm ∈ T, operators Ψj ∈ L(U,H) and events Aj ∈ Ftj for
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j = 0, . . . ,m− 1 such that

Ψ(t) =
m−1∑
j=0

1Aj1[tj ,tj+1)(t)Ψj, t ∈ T.

The set of all L(U,H)-valued simple processes is denoted by S(U,H).

For any simple process Ψ ∈ S(U,H), define the stochastic integral

IΨ(t) =
∫ t

0
Ψ(s)dL(s) :=

m−1∑
j=1

1AjΨj(L(min(t, tj+1))− L(min(t, tj))).

It is straightforward to see that the process (IΨ(t), t ∈ T) is a H-valued, square-
integrable martingale with zero mean (as L is centered). Since L has independent
increments, there holds the Itô isometry for simple integrals given by

‖Ψ‖2
L,t : = E

(
‖
∫ t

0
Ψ(s)dL(s)‖2

H

)
=
∫ t

0
E(‖Ψ(s)‖2

LHS(U ,H))ds

for any t ∈ T. Note that ‖ ·‖L,T defines a seminorm on S(U,H) and let L2
L,T (H) be the

completion of (S(U,H), ‖ · ‖L,T ). With this at hand, the class of admissible integrands
is naturally extended to L2

L,T via

IΨ(t) =
∫ t

0
Ψ(s)dL(s) := lim

n→∞

∫ t

0
Ψn(s)dL(s), Ψ ∈ L2

L,T (H),

where (Ψn, n ∈ N) ⊂ S(U,H) is an approximating sequence of Ψ and the limit is taken
in the L2(Ω;H)-sense. To conclude this chapter, L2

L,T (H) is characterized as the space
of all predictable, LHS(U , H)-valued processes and the Itô isometry is generalized to the
space of all admissible integrands L2

L,T (H):

Theorem 3.3.2. [173, Chapter 8.6] Let L be a square-integrable, zero-mean Lévy pro-
cess on U with covariance operator QL and RKHS given by U = Q

1/2
L (U). Then, the

space of admissible integrands for L is

L2
L,T (H) = {Ψ : T× Ω→ LHS(U , H) |Ψ is square-integrable and predictable}.

Moreover, for any Ψ ∈ L2
L,T (H), the process (IΨ(t), t ∈ T ) is a centered, square-

integrable martingale, and for t ∈ T it holds that

E
(
‖
∫ t

0
Ψ(s)dL(s)‖2

H

)
=
∫ t

0
E(‖Ψ(s)Q1/2

L ‖2
LHS(U,H))ds =

∫ t

0
E(‖Ψ(s)‖2

LHS(U ,H))ds.
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same data that has been used in the corresponding research article.

• As far as possible, notation has been homogenized throughout Chapters 4–8.

• A short comment on the results has been added at the end of Chapters 4 and 6.

• All articles have been reformatted in the style of this thesis.

• A few typos and grammatical errors have been corrected.

• The bibliography for all articles has been unified and is given at the end of this
thesis.

Except for this minor alterations, all articles in Chapters 4–8 are reproductions of
their corresponding published/submitted research papers.

Andreas Stein Stuttgart, August 2020
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Abstract: As a simplified model for subsurface flows elliptic equations may be
utilized. Insufficient measurements or uncertainty in those are commonly modeled by
a random coefficient, which then accounts for the uncertain permeability of a given
medium. As an extension of this methodology to flows in heterogeneous, fractured or
porous media, we incorporate jumps in the diffusion coefficient. These discontinuities
then represent transitions in the media. More precisely, we consider a second order
elliptic problem where the random coefficient is given by the sum of a (continuous)
Gaussian random field and a (discontinuous) jump part. To estimate moments of
the solution to the resulting random partial differential equation, we use a path-wise
numerical approximation combined with multilevel Monte Carlo sampling. In order
to account for the discontinuities and improve the convergence of the path-wise ap-
proximation, the spatial domain is decomposed with respect to the jump positions
in each sample, leading to path-dependent grids. Hence, it is not possible to create
a sequence of grids which is suitable for each sample path a-priori. We address this
issue by an adaptive multilevel algorithm, where the discretization on each level is
sample-dependent and fulfills given refinement conditions.

33

https://epubs.siam.org/doi/abs/10.1137/17M1148888


4.1. INTRODUCTION

4.1 Introduction

Uncertainty quantification plays an increasingly important role in a wide range of prob-
lems in the Engineering Sciences and Physics. Examples of sources of uncertainty are
imprecise or insufficient measurements and noisy data. In the underlying dynami-
cal system this is modeled via a stochastic operator, stochastic boundary conditions
and/or stochastic data. As an example, to model subsurface flow more realistically the
coefficient of an (essentially) elliptic equation is assumed to be stochastic. A common
approach in the literature is to use (spatially) correlated random fields that are built
from uniform distributions or colored log-normal fields. The resulting marginal dis-
tributions of the field are (shifted) normally, resp. log-normally distributed. Neither
choice is universal enough to accommodate all possible types of permeability, espe-
cially not if fractures are incorporated (see [202]), the medium is very heterogeneous
or porous.

The last decade has been an active research period on elliptic equations with random
data. A non-exhaustive list of publications in this field includes [1, 14, 15, 29, 59, 63,
85, 148, 165, 190, 194]. One can find various ways to approximate the distribution
or moments of the solution to the elliptic equation. Next to classical Monte Carlo
methods, their multilevel variants and other variance reduction techniques have been
applied. The concept of multilevel Monte Carlo simulation has been developed in [106]
to calculate parametric integrals and has been rediscovered in [92] to estimate the
expected value of functionals of stochastic differential equations. Ever since, multilevel
Monte Carlo techniques have been successfully applied to various problems, for instance
in the context of elliptic random PDEs in [1, 29, 59, 148, 194] to just name a few. These
sampling algorithms are fundamentally different from approaches using Polynomial
Chaos. The latter suffer from the fact that one is rather restricted when it comes
to possibilities to model the stochastic coefficient. While in the case of fields built
from uniform distributions or colored log-normal fields these algorithms can outperform
sampling strategies, approaches – like stochastic Galerkin methods – are less promising
in our discontinuous setting due to the rather involved structure of the coefficient. In
fact, it is even an open problem to define them in the case that a Lévy-field is used.

Our main objective in this paper is to show existence and uniqueness of the solution
to the elliptic equation when the coefficient is modeled as a jump-diffusion. By that we
mean a field which consists of a deterministic, a Gaussian and non-continuous part. As
we show in the numerical examples, this jump-diffusion coefficient can be used to model
a wide array of scenarios. This generalizes the work in [148] and uses partly [113]. To
approximate the expectation of the solution we develop and test, further, variants of the
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CHAPTER 4. ELLIPTIC PDES WITH JUMP DIFFUSION COEFFICIENT

multilevel Monte Carlo method which are tailored to our problem: namely adaptive
1 and coupled multilevel Monte Carlo methods. Adaptivity is needed in the jump-
diffusion setting, since the coefficient is not continuous. Our analysis shows that the
non-adaptivity in a multilevel setting with non-continuous coefficients entails a larger
error than when an adaptive algorithm is used. This result is not surprising, since the
essence of the multilevel algorithm is that many samples are calculated on coarse grids,
where the distributional error from misjudging jump-locations is high. Adaptivity,
however, comes to the price that in certain scenarios solving the underlying system
of equation becomes computationally expensive. In these settings the advantageous
time-to-error performance of adaptive methods may be worse. As a simplified version of
Multifidelity Monte Carlo sampling (see [171]), we introduce a coupled multilevel Monte
Carlo estimator that reuses samples across levels and is preferred when sampling from a
certain distribution is computationally expensive. The coupled algorithms outperform,
in general, algorithms with a standard sampling strategy of multilevel Monte Carlo, as
it actually reduces the mean square error.

In Section 4.2 we introduce the model problem, define path-wise weak solutions
of random partial differential equations (PDEs) and show almost sure existence and
uniqueness under relatively weak assumptions on the model parameters. The main
contribution of this section is the existence and uniqueness result in Theorem 4.2.5,
which is then readily transferred to the special case of a jump-diffusion problem in
the subsequent sections of this article. In Section 4.3 we define the jump-diffusion
coefficient and construct suitable approximations. Both stochastic parts of the jump-
diffusion coefficient are approximated: The Gaussian one by a standard truncation of its
basis representation, and the jump part (if direct sampling from the jump distribution is
not possible) by a technique based on Fourier Inversion. We show Lp-type convergence
for all existing moments of the approximation. From this result convergence of the
approximated solution follows immediately. The approximated solution has still to
be discretized to actually estimate moments of it (Section 4.4). The Galerkin-type
discretization is directly furthered into an adaptive scheme. Section 4.5 then introduces
the sampling methods that are used, namely Monte Carlo, multilevel Monte Carlo and
a coupled variant of it. An extensive discussion of numerical examples in one and two
dimensions, in Section 4.6, concludes the paper.

1Throughout this chapter, the term "adaptive" refers to finite element grids that are aligned a-
priori to the discontinuities of the diffusion coefficient. This is contrast to the "adaptive finite element
method" which is based on a-posteriori error estimates and in general includes several stages of mesh
refinement. To avoid confusion, the terminology has been changed to "sample-adapted grids" instead of
"adaptive grids" in the next two chapters. For this chapter, however, I decided to keep the terminology
according to the original article and inserted this footnote to clarify.
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4.2 Elliptic boundary value problems and existence of solutions

We consider the following random elliptic equation in a general setting before we specify
in Section 4.3 our precise choice of coefficient function. Let (Ω,F ,P) be a complete
probability space and D ⊂ Rd, for some d ∈ N, be a bounded and connected Lipschitz
domain. In this paper we consider the linear, random elliptic problem

−∇ · (a(ω, x)∇u(ω, x)) = f(ω, x) in Ω×D, (4.1)

where a : Ω × D → R is a stochastic jump-diffusion coefficient and f : Ω × D → R
is a random source function. The Lipschitz boundary ∂D consists of open (d − 1)-
dimensional manifolds which are grouped into two disjoint subsets Γ1 and Γ2 such that
Γ1 6= ∅ and ∂D = Γ1 ∪ Γ2. We impose mixed Dirichlet-Neumann boundary conditions

u(ω, x) = 0 on Ω× Γ1,

a(ω, x) #»n · ∇u(ω, x) = g(ω, x) on Ω× Γ2,
(4.2)

on Eq. (4.1), where #»n is the outward unit normal vector to Γ2 and g : Ω × Γ2 → R,
assuming that the exterior normal derivative #»n · ∇u on Γ2 is well-defined for any
u ∈ C1(D). To obtain a path-wise variational formulation of this problem, we use the
standard Sobolev space H1(D) equipped with the norm

‖v‖H1(D) =
(∫
D
|v|2 + ‖∇v‖2

2dx
)1/2

for v ∈ H1(D),

where ‖ · ‖2 denotes the Euclidean norm on Rd. On the Lipschitz domain D, the
existence of a bounded, linear operator

γ : H1(D)→ H1/2(∂D)

with
γ : H1(D) ∩ C∞(D)→ H1/2(∂D), v 7→ v|∂D

and
‖γv‖H1/2(∂D) ≤ CD‖v‖H1(D) (4.3)

for v ∈ H1(D) and some constant CD > 0, dependent only on D, is ensured by the
trace theorem, see for example [73]. At this point, one might argue that the trace
operator γ needs to be defined path-wise for any ω ∈ Ω, since the Neumann part of
the boundary conditions in Eq. (4.2) may contain a random function g : Ω× Γ2 → R.
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This is true if one works with γ on Γ2 ⊂ ∂D, as the trace γv then has to match the
boundary condition given by g(ω, ·) on Γ2 for P-almost all ω ∈ Ω and v ∈ H1(D). In
our case, for simplicity, we may treat γ independently of ω ∈ Ω, since we only consider
the trace operator on the homogeneous boundary part Γ1 to define V as follows: The
subspace of H1(D) with zero trace on Γ1 is then

V := {v ∈ H1(D)| γv|Γ1 = 0},

with norm
‖v‖V :=

(∫
D
|v|2 + ‖∇v(x)‖2

2dx
)1/2

.

Remark 4.2.1. The condition Γ1 6= ∅ implies that V is a closed linear subspace of
H1(D). We may as well work with non-homogeneous boundary conditions on the
Dirichlet part, i.e. u(ω, x) = g1(ω, x) for g1 : Ω × Γ1 → R. The corresponding trace
operator γ is still well defined if, for P-a.e. ω ∈ Ω, g1(ω, ·) can be extended to a function
g̃1(ω, ·) ∈ H1(D). Then, we consider for P-a.e. ω ∈ Ω the problem

−∇ · (a(ω, x)∇((u− g̃1)(ω, x))) = f +∇ · (a(ω, x)∇g̃1(ω, x)) on D,

(u− g̃1)(ω, x) = 0 on Γ1 and

a(ω, x) #»n · ∇((u− g̃1)(ω, x)) = g(ω, x)− a(ω, x) #»n · ∇g̃1(ω, x) on Γ2.

But this is in fact a version of Problem (4.1) equipped with Eqs. (4.2) where the source
term and Neumann-data have been changed (see also [80, p. 317]).

As the coefficient and the boundary conditions are given by random functions, the
solution u is also a random function. Besides path-wise properties, u may also have
certain integrability properties with respect to the underlying probability measure. To
this end, we introduce the space of Bochner integrable random variables resp. random
functions (see [67] for an overview).

Definition 4.2.2. Let (X , ‖ · ‖X ) be a Banach space and define the norm ‖ · ‖Lp(Ω;X )

for a X -valued random variable ϕ : Ω→ X as

‖ϕ‖Lp(Ω,X ) :=

E(‖ϕ‖pX )1/p for 1 ≤ p < +∞

esssupω∈Ω‖ϕ‖X for p = +∞
.

The corresponding space of Bochner-integrable random variables is then given by

Lp(Ω;X ) := {ϕ : Ω→ X is strongly measurable and ‖ϕ‖Lp(Ω;X ) < +∞}.
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4.2. ELLIPTIC BOUNDARY VALUE PROBLEMS

The following set of assumptions on a, f and g allows us to show existence and
uniqueness of the solution to Eq. (4.1). Consequently, we denote by V ′ the topological
dual of a vector space V .

Assumption 4.2.3. Let H := L2(D). For P-almost all ω ∈ Ω it holds that:

• a−(ω) := infx∈D a(ω, x) > 0 and a+(ω) := supx∈D a(ω, x) < +∞.

• 1/a− ∈ Lp(Ω;R), f ∈ Lq(Ω;H) and g ∈ Lq(Ω;L2(Γ2)) for some p, q ∈ [1,∞] such
that r := (1/p+ 1/q)−1 ≥ 1.

Remark 4.2.4. In Assumption 4.2.3, we did not establish a uniform elliptic bound on a
in Ω (see for example [148]), neither did we assume a certain spatial regularity as in [54,
194]. The relatively weak assumptions are natural in our context, since in Section 4.3 we
model a as a jump-diffusion coefficient and uniform bounds or assumptions on Hölder-
continuity are too restrictive. For the investigation of problem (4.1) with piecewise
Hölder-continuous coefficients we refer to [194]. We may identify H with its dual and
work on the Gelfand triplet V ⊂ H ' H ′ ⊂ V ′. Hence, Assumption 4.2.3 guarantees
that f(ω, ·) ∈ V ′, and, similarly, g(ω, ·) ∈ H−1/2(Γ2) for P-almost all ω ∈ Ω.

For fixed ω ∈ Ω, multiplying the random PDE (4.1) with a test function v ∈ V and
integrating by parts yields the integral equation

∫
D
a(ω, x)∇u(ω, x) · ∇v(x)dx =

∫
D
f(ω, x)v(x)dx+

∫
Γ2
g(ω, x)[Tv](x)dx. (4.4)

Consider the bilinear form Ba(ω)

Ba(ω) : V × V → R, (u, v) 7→
∫
D
a(ω, x)∇u(x) · ∇v(x)dx

and
Fω : V → R, v 7→

∫
D
f(ω, x)v(x)dx+

∫
Γ2
g(ω, x)[Tv](x)dx,

where the integrals in Fω are understood as the duality pairings
∫
D
f(ω, x)v(x)dx = V ′〈f(ω, ·), v〉V and∫

Γ2
g(ω, x)[Tv](x)dx = H−1/2(Γ2)〈g(ω, ·), T v〉H1/2(Γ2).

Equation (4.4) then leads to the path-wise variational formulation of Problem (4.1):
For P-almost all ω ∈ Ω, given f(ω, ·) ∈ V ′ and g(ω, ·) ∈ H−1/2(Γ2), find u(ω, ·) ∈ V
such that

Ba(ω)(u(ω, ·), v) = Fω(v) (4.5)
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for all v ∈ V . A function u(ω, ·) ∈ V that fulfills the path-wise variational formulation
is then called path-wise weak solution to Problem (4.1).

Theorem 4.2.5. If Assumption 4.2.3 holds, then there exists a unique path-wise weak
solution u(ω, ·) ∈ V to Problem (4.5) for P-almost all ω ∈ Ω. Furthermore, u ∈
Lr(Ω;V ) and

‖u‖Lr(Ω;V ) ≤ C(a−,D, p)(‖f‖Lq(Ω;H) + ‖g‖Lq(Ω;L2(Γ2))),

where C(a−,D, p) > 0 is a constant depending only on the indicated parameters.

Proof. Choose ω ∈ Ω such that Assumption 4.2.3 is fulfilled. For all u, v ∈ V , we
obtain by the Cauchy-Schwarz inequality

|Ba(ω)(u, v)| ≤
(∫
D

(a(ω, x))2‖∇u(x)‖2
2dx

∫
D
‖∇v(x)‖2

2dx
)1/2
≤ a+(ω)‖u‖V ‖v‖V .

On the other hand,

Ba(ω)(u, u) ≥ a−(ω)
∫
D
‖∇u(x)‖2

2dx

= a−(ω)
2 (‖∇u‖2

L2(D) + ‖∇u‖2
L2(D))

≥ a−(ω)
2 (‖∇u‖2

L2(D) + C−2
|D|‖u‖

2
L2(D))

≥ a−(ω)
2 min(1, C−2

|D|)‖u‖
2
V ,

where C2
|D| > 0 stems from the constant in Poincaré’s inequality, C|D|, and only depends

on |D|. Hence the bilinear form Ba(ω) : V ×V → R is continuous and coercive. We use
that H ' H ′ ⊂ V ′ and the trace theorem (Equation (4.3)) to bound Fω by

Fω(v) ≤ ‖f(ω, ·)‖V ′‖v‖V + ‖g(ω, ·)‖H−1/2(Γ2)‖Tv‖H1/2(Γ2)

≤ (‖f(ω, ·)‖H + CD‖g(ω, ·)‖L2(Γ2))‖v‖V

This shows that Fω is a bounded linear functional on V (and therefore continuous)
for almost all ω ∈ Ω. The existence of a unique path-wise weak solution u(ω, ·) is
then guaranteed by the Lax-Milgram lemma P-almost surely. If u(ω, ·) is a solution of
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Eq. (4.5) for given f(ω, ·) ∈ H and g(ω, ·) ∈ L2(Γ2), then

a−(ω)
2 min(1, C−2

|D|)‖u(ω, ·)‖2
V ≤ Ba(ω)(u(ω, ·), u(ω, ·))

= Fω(u(ω, ·))

≤ (‖f(ω, ·)‖H + CD‖g(ω, ·)‖L2(Γ2))‖u(ω, ·)‖V .

Using Hölder’s and Minkowski’s inequality together with r = (1/p+ 1/q)−1 ≥ 1 yields

‖u‖Lr(Ω;V ) ≤
2 max(1, CD)
min(1, C−2

|D|)
E
(
a−p−

)1/p
E
(
(‖f‖H + ‖g‖L2(Γ2))q

)1/q

≤ 2 max(1, CD)
min(1, C−2

|D|)
‖1/a−‖Lp(Ω;R)︸ ︷︷ ︸

:=C(a−,D,p)

(‖f‖Lq(Ω;H) + ‖g‖Lq(Ω;L2(Γ2)) < +∞.

In the next section, we introduce the diffusion coefficient a, which allows us to
incorporate discontinuities at random points or areas in D. We show the existence and
uniqueness of a weak solution to the discontinuous diffusion problem by choosing a
such that Assumption 4.2.3 is fulfilled and Theorem 4.2.5 may be applied.

4.3 Discontinuous random elliptic problems

The stochastic coefficient a in a jump-diffusion model should incorporate random dis-
continuities as well as a Gaussian component. We achieve this characteristic form of
a by defining the coefficient as a Gaussian random field with additive discontinuities
on random areas of D. Since this usually involves infinite series expansions in the
Gaussian component or sampling errors in the jump measure, we also describe how to
obtain tractable approximations of a. Subsequently, existence and uniqueness results
for weak solutions of the unapproximated resp. approximated jump-diffusion problem
based on the results in Section 4.2 are proved. We conclude this section by showing
path-wise and Lp-convergence of the approximated solution to the solution u : Ω→ V

to the (unapproximated) discontinuous diffusion problem.

4.3.1 Jump-diffusion coefficients and their approximations

Definition 4.3.1. The jump-diffusion coefficient a is defined as

a : Ω×D → R>0, (ω, x) 7→ a(x) + Φ(W (ω, x)) + P (ω, x),
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where

• a ∈ C1(D;R≥0) is non-negative, continuous and bounded.

• Φ ∈ C1(D;R>0) is a continuously differentiable, positive mapping.

• W ∈ L2(Ω;H) is a (zero-mean) Gaussian random field associated to a non-
negative, symmetric trace class operator Q : H → H.

• λ is a finite measure on (D,B(D)) and T : Ω → B(D), ω 7→ {T1, . . . , Tτ} is a
random partition of D with respect to λ. The number τ of elements in T is a
random variable τ : Ω→ N on (Ω,F ,P) with E(τ) = λ(D).

• (Pi, i ∈ N) is a sequence of non-negative random variables on (Ω,F ,P) and

P : Ω×D → R≥0, (ω, x) 7→
τ(ω)∑
i=1
1{Ti}(x)Pi(ω).

The sequence (Pi, i ∈ N) is independent of τ (but not necessarily i.i.d.).

Remark 4.3.2. The definition of the measure λ on (D,B(D)) in Def. 4.3.1 relates not
only to the average number of partition elements E(τ), but may further be utilized
to concentrate discontinuities of the jump-diffusion coefficient a to certain areas of D.
Choosing, for instance, λ as the Lebesgue measure on D corresponds to uniformly
distributed jumps and on average equally sized partition elements Ti. In contrast,
if λ is a Gaussian measure on D around some center point xC ∈ D, the number of
discontinuities (resp. size of partition elements) will decrease (resp. increase) as one
moves away from xC . We refer to the numerical experiments in Section 4.6, where
we give interpretations of λ to model certain characteristics of different jump-diffusion
coefficients. On a further note, stochastic independence of W and P is not required.

In general, the structure of a as in Def. 4.3.1 does not allow us to draw samples from
the exact distribution of this random function. For an approximation of the Gaussian
field, one usually uses truncated Karhunen-Loève expansions: Let ((ηi, ei), i ∈ N)
denote the sequence of eigenpairs of Q, where the eigenvalues are given in decaying
order η1 ≥ η2 ≥ · · · ≥ 0. Since Q is trace class the Gaussian random field W admits
the representation

W =
∑
i∈N

√
ηieiZi,

where (Zi, i ∈ N) is a sequence of independent and standard normally distributed
random variables. The series above converges in L2(Ω;H) and P-almost surely (see
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i.e. [27]). The truncated Karhunen-Loève expansion WN of W is then given by

WN :=
N∑
i=1

√
ηieiZi,

where we call N ∈ N the cut-off index of WN . In addition, it may be possible that
the sequence of jumps (Pi, i ∈ N) cannot be sampled exactly but only with an intrinsic
bias (see also Remark 4.3.4). The biased samples are denoted by (P̃i, i ∈ N) and the
error which is induced by this approximation is represented by the parameter ε > 0 as
in Assumption 4.3.3. To approximate P using the biased sequence (P̃i, i ∈ N) instead
of (Pi, i ∈ N) we define the jump part approximation

Pε : Ω×D → R, (ω, x) 7→
τ(ω)∑
i=1
1{Ti}(x)P̃i(ω).

The approximated jump-diffusion coefficient aN,ε is then given by

aN,ε(ω, x) := a(x) + Φ(WN(ω, x)) + Pε(ω, x), (4.6)

and the corresponding stochastic PDE with approximated jump-diffusion coefficient
reads

−∇ · (aN,ε(ω, x)∇uN,ε(ω, x)) = f(ω, x) in Ω×D,

uN,ε(ω, x) = 0 on Ω× Γ1,

aN,ε(ω, x) #»n · ∇uN,ε(ω, x) = g(ω, x) on Ω× Γ2.

(4.7)

For ω ∈ Ω and given samples aN,ε(ω, ·), f(ω, ·) and g(ω, ·), we consider the path-wise
weak solution uN,ε(ω, ·) ∈ V to Problem (4.7) for fixed approximation parameters
N ∈ N and ε > 0. The variational formulation of Eq. (4.7) is then analogous to
Eq. (4.5) given by: For almost all ω ∈ Ω with given f(ω, ·), g(ω, ·), find uN,ε(ω, ·) ∈ V
such that for all v ∈ V

BaN,ε(ω)(uN,ε(ω, ·), v) : =
∫
D
aN,ε(ω, x)∇uN,ε(ω, x) · ∇v(x)dx

=
∫
D
f(ω, x)v(x)dx+

∫
Γ2
g(ω, x)[Tv](x)dx

= Fω(v).

(4.8)

The following assumptions guarantee that we can apply Theorem 4.2.5 also in the
jump-diffusion setting and that therefore path-wise solutions u and uN,ε exist.
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Assumption 4.3.3.

(i) The eigenfunctions ei of Q are continuously differentiable on D and there exist
constants α, β, Ce, Cη > 0 such that for any i ∈ N

‖ei‖L∞(D) ≤ 1, ‖∇ei‖L∞(D) ≤ Cei
α and

∞∑
i=1

ηii
β ≤ Cη < +∞.

(ii) Furthermore, the mapping Φ as in Definition 4.3.1 and its derivative are bounded
by

Φ(w) ≥ φ1 exp(−ψ1w
2), |Φ′(w)| ≤ φ2 exp(ψ2|w|), w ∈ R,

where 0 < ψ1 < (2Tr(Q))−1 with Tr(Q) := ∑
i∈N ηi and φ1, φ2, ψ2 > 0 are arbi-

trary constants.

(iii) Given ψ1 and Tr(Q), there exists a q > (1− 2Tr(Q)ψ1)−1 =: (1− η∗)−1 ≥ 1 such
that f ∈ Lq(Ω;H) and g ∈ Lq(Ω; Γ2).

(iv) Finally, for some s̃ ∈ [1,∞), (Pi, i ∈ N) consists of s-integrable random variables,
i.e. Pi ∈ Ls(Ω;R≥0) for all i ∈ N and s ∈ [1, s̃]. Further, there exists a sequence
of approximations (P̃i, i ∈ N) so that the sampling error is bounded, for ε > 0,
by

E(|P̃i − Pi|s) ≤ ε, i ∈ N, s ∈ [1, s̃].

Remark 4.3.4. Assumption 4.3.3 (i) on the eigenpairs of ((ηi, ei), i ∈ N) is natural. For
instance, the case thatW is a Brownian-motion-like random field or that Q is a Matérn
covariance operator are included. The bounds on Φ and the regularity assumptions on
f and g (Assumption 4.3.3 (ii),(iii)) are necessary to ensure that the solution u has
at least finite expectation. The sampling error E(|P̃i − Pi|s) in Assumption 4.3.3 (iv)
may be interpreted in several ways: For instance, it may account for uncertainties in
the distribution of Pi, like parameters for which only confidence intervals are available.
Another possibility is, that realizations of Pi may not be simulated directly or only at
relatively high computational costs, for example by Acceptance Rejection algorithms,
see [9, Chapter II]. In this case, it may be favorable to generate the approximation P̃i by
a more efficient numerical algorithm (i.e. Fourier inversion techniques, see [30]) instead
and to control for the error. The resulting sampling error can then be equilibrated with
the truncation error from the Gaussian field to achieve a desired overall accuracy.
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4.3.2 Existence of solutions

We first show the existence of a weak solution for both, the jump-diffusion problem (4.1)
with a as in Definition 4.3.1, and the approximated problem (4.7).

Lemma 4.3.5. Let a be a jump-diffusion coefficient (as in Def. 4.3.1). If a, f and
g fulfill Assumptions 4.3.3, then the elliptic problem (4.1) has a unique weak solution
u ∈ Lr(Ω;V ), where r ∈ [1, (1/q + η∗)−1) for η∗ := 2Tr(Q)ψ1.

Proof. By Theorem 4.2.5, it is sufficient to show that a, f and g fulfill Assumption 4.2.3.
Clearly, 0 < a−(ω) ≤ a+(ω) < +∞ for almost all ω ∈ Ω, as a and P are non-negative
and we have the lower bound on Φ in Assumption 4.3.3 (ii) by definition. Consequently,
it is sufficient to bound the expectation of (infx∈D Φ(W (x))p, for 1 ≤ p < (η∗)−1, from
below (see also [53, Section 2.3]).

The random variable W (x)−W (y) follows a centered normal distribution for any
x, y ∈ D. To see this, consider the finite sum

W̃M(x, y) :=
M∑
i=1

√
ηi(ei(x)− ei(y))Zi

for M ∈ N and a sequence (Zi, i = 1, . . . ,M) of i.i.d. N (0, 1)-distributed random
variables. Clearly, W̃M(x, y) is normally distributed with zero mean and characteristic
function

φM(t) := E(exp(itW̃M(x, y)) = exp(− t2

M∑
i=1

ηi(ei(x)− ei(y))2), t ∈ R.

Using that Q is trace class with |ei(z)| ≤ 1 for all i ∈ N and z ∈ D, it follows

σ2(x, y) :=
∞∑
i=1

ηi(ei(x)− ei(y))2 ≤ 2Tr(Q) < +∞

and hence
lim
M→∞

φM(t) = exp(− t2

∞∑
i=1

ηi(ei(x)− ei(y))2), t ∈ R,

where the right hand side is the characteristic function of a normal distribution with
zero mean and variance σ2(x, y). By the Lévy continuity theorem this implies that

W (x)−W (y) ∼ N (0, σ2(x, y))

for all x, y ∈ D. Next we show that W has P-almost surely Hölder continuous paths
(see also [53, Proposition 3.4]): Let 0 < b ≤ min(1, β2α) (where α, β are defined in
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Ass. 4.3.3 (i)) and Z ∼ N (0, 1). For x, y,∈ D ⊂ Rd and any k ∈ N we have

E(|W (x)−W (y)|2k) = E(|
√
σ2(x, y)Z|2k)

= (2k)!
2kk!

(∑
i>N

ηi(ei(x)− ei(y))2(1−b)+2b
)k

≤ (2k)!
2kk! 22(1−b)kC2bk

e

(∑
i>N

ηii
2αb
)k
‖x− y‖2bk

2 ,

where 0 < b < β/(2α) and the constant Ce stems from Ass. 4.3.3 (i). The second
equality results from the fact that E(Z2k) = (2k)!/(2kk!) for all k ∈ N and the sum
in the inequality is finite because 2αb < β. For any dimension d ∈ N, we may choose
k > d/(2b) and obtain by the Kolmogorov-Chentsov theorem ([67, Theorem 3.5]) that
W has a Hölder continuous modification with Hölder exponent % ∈ (0, (2bk − d)/2k).
Hence, W is a centered Gaussian process and almost surely bounded on D. By [3,
Theorem 2.1.1] this implies E := E(supx∈DW (x)) < +∞ and

P(sup
x∈D

W (x)− E ≥ c) ≤ exp(− c2

2σ2 ) (4.9)

for all c > 0 and σ2 := supx∈D E(W (x)2). With Assumption 4.3.3 (ii) and since
‖ exp(|W |)‖L∞(D) ≤ exp(‖W‖L∞(D)) we further obtain

E(1/ap−) ≤ E(( inf
x∈D

Φ(W (·, x))−p)

= E(sup
x∈D

Φ(W (·, x))−p)

≤ 1
φp1

E(sup
x∈D

exp(pψ1|W (·, x)|2))

≤ 1
φp1

E(exp(pψ1‖W‖2
L∞(D))).

By Fubini’s Theorem and integration by parts we may bound

E(exp(pψ1‖W‖2
L∞(D))) =

∫ ∞
0

2pψ1c exp(pψ1c
2)P(‖W‖L∞(D) > c)dc

≤ 2pψ1E exp(pψ1E
2)

+ 2
∫ ∞
E

pψ1c exp(pψ1c
2))P(‖W‖L∞(D) > c)dc

≤ 2pψ1E exp(pψ1E
2)

+ 4
∫ ∞
E

pψ1c exp((pψ1 −
1

2σ2 )c2))dc,
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where we have used P(‖W (x)‖L∞(D) > c) ≤ 2P(supx∈DW (x) > c), by the symmetry
of W , and Ineq. (4.9) in the last step. The last expectation is finite if and only if
pψ1 <

1
2σ2 . For this to hold, p < (η∗)−1 is sufficient, since W (x) ∼ N(0,∑∞i=1 ηiei(x))

and thus σ2 ≤ Tr(Q).

Remark 4.3.6. From Lemma 4.3.5 follows immediately that one cannot expect finite
second moments of the solution u for η∗ ≥ 1/2 or q ≤ 2. If we assume that q = 3 we
need η∗ < 1/6 to have finite second moments (in the case of, for instance, a log-normal
Gaussian field). Note that, for all covariance kernels and functionals we use (e.g.
log-Gaussian fields with Matérn class covariance or Brownian-motion like covariance
kernels), ψ1 and η∗ are much smaller than 1/2. If one assumes that f , g and a are
stochastically independent, then the regularity of the solution (in Ω) is at least the
same as the lowest regularity of the data, i.e. f , g or a.

Lemma 4.3.7. Let aN,ε be the approximated jump-diffusion coefficient (as in Eq. (4.6))
and define the random variables

aN,ε,− : Ω→ R, ω 7→ inf
x∈D

aN,ε(ω, x) and aN,ε,+ : Ω→ R, ω 7→ sup
x∈D

aN,ε(ω, x)

on (Ω,F ,P). If Assumption 4.3.3 holds, then, for any N ∈ N and ε > 0, there exists
a unique weak solution uN,ε ∈ Lr(Ω;V ) to Problem (4.7), where r ∈ [1, (1/q + η∗)−1),
for η∗ := 2Tr(Q)ψ1. Furthermore, ‖1/aN,ε,−‖Lp(Ω,R) is bounded uniformly with respect
to ε and N for p ∈ [1, (η∗)−1).

Proof. The proof is carried out identically to Lemma 4.3.5, where we replace a− by
aN,ε,−, a+ by aN,ε,+, σ(x, y)2 by ∑N

i=1 ηi(ei(x) − ei(y))2 and Tr(Q) by ∑N
i=1 ηi. Again,

by Eq. (4.6), aN,ε,+ < +∞ P-almost surely. In the case that η1 = 0, the random field
W is degenerated and equal to zero. Hence, aN,ε(ω, x) ≥ φ1 > 0 for all (ω, x) ∈ Ω×D
and the claim follows immediately. Otherwise, if η1 > 0, we obtain in the fashion of
Lemma 4.3.5

E(1/apN,ε−) ≤ 1
φp1

E
(

exp(pψ1‖WN‖2
L∞(D))

)
≤ 1
φp1

E
(

exp(pψ1‖W‖2
L∞(D))

)
,

which is again finite if p < (η∗)−1. The proof is concluded by noting that the last
estimate is independent of N and ε.

4.3.3 Convergence of the approximated diffusion coefficient

The convergence of the approximated solution uN,ε to u depends on the convergence of
the approximated jump-diffusion coefficient aN,ε to a. We investigate this convergence
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by deriving separately convergence rates of the truncated Karhunen-Loève series and
the approximation of the jump part.

Theorem 4.3.8. If Assumption 4.3.3 holds, then for any p ≥ 1 and N ∈ N we have

‖W −WN‖Lp(Ω;L∞(D)) ≤ CpΞ1/2
N ,

where Cp > 0 is independent of N and ΞN := ∑
i>N ηi < +∞.

In order to prove the bound for the truncation error, we need the following Fernique-
type result.

Theorem 4.3.9. [149, Theorem 2.9] Let (W (x), x ∈ D) with D ⊂ Rd be a centered
Gaussian field. For ε, δ > 0 let

ι(ε) := sup
x∈D, ‖x−y‖2<ε

E((W (x)−W (y))2)1/2 and Θ(δ) :=
∫ ∞

0
ι(δ exp(−y2))dy.

Then for all c > 0

P(sup
x∈D

W (x) > c) ≤ C(Θ−1(1/c))−d exp(− c
2

2σ ),

where Θ−1 is the inverse function of Θ, σ := supx∈D E(W (x)2)1/2 and C > 0 is an
absolute constant.

Proof of Theorem 3.8. With a continuity argument similar to Lemma 4.3.5, we obtain

(W −WN)(x)− (W −WN)(y) ∼ N (0, σ2
N(x, y)),

where σ2
N(x, y) := ∑

i>N ηi(ei(x)− ei(y))2 for all x, y,∈ D. Hence

σ2
N := sup

x∈D
E((W −WN)(x)2) =

∑
i>N

ηiei(x)2 ≤
∑
i>N

ηi = ΞN

and we see by the proof of Lemma 4.3.5 that for ι as in Theorem 4.3.9

ι(ε) ≤ 21−bCb
e

∑
i∈N

ηii
2αb

1/2

εb =: Ce,bεb

for any b ∈ (0,min(β/(2α), 1)) and each ε > 0. We use the estimate on ι to bound Θ
for δ > 0 by

Θ(δ) ≤ Ce,α

∫ ∞
0

δb exp(−y2b)dy = Ce,bδ
b
√
π

2
√
b

.
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Since Θ and Θ−1 are monotone increasing this yields with Theorem 4.3.9 for any c > 0

P(sup
x∈D

(W −WN)(x) > c) ≤ C

(
2
√
b

Ce,b
√
π

)−d/b
cd/b exp(− c2

2σ2
N

)

:= Ce,α,b c
d/b exp(− c2

2σ2
N

).

Using again that P(supx∈D |(W −WN)|(x) > c) ≤ 2P(supx∈D(W −WN)(x) > c) and
Fubini’s Theorem, we have for any p ≥ 1

E(‖W −WN‖pL∞(D)) =
∫ ∞

0
pcp−1P(sup

x∈D
|(W −WN)(x)| > c)dc

≤ 2Ce,α,b p
∫ ∞

0
cp−1+d/b exp(− c2

2σ2
N

)dc

= 21+p/2+d/(2b)Ce,α,b pΓ((p+ d/b)/2)σp+d/bN

≤ 21+p/2+d/(2b)Ce,α,b pΓ((p+ d/b)/2)Tr(Q)d/bΞp/2
N ,

where Γ(·) is the Gamma function and we have used the substitution z = c2/(2σ2
N) in

the second equality. This proves the claim because the above estimate holds for any
b ∈ (0,min(β/(2α), 1)).

Remark 4.3.10. In [53], the author proves a similar error bound for the truncation
error in the Gaussian field, namely

E(‖W −WN‖Lp(Ω;C0,%(D))) ≤ Cb,%,p max
(∑
i>N

ηi , C
2b
e

∑
i>N

ηii
2b
)1/2

.

In the jump-diffusion setting the error bound in Theorem 4.3.8 is advantageous for
several reasons:

• In our setting, a will in general not have Hölder continuous paths, but involves
discontinuities, hence only the error in Lp(Ω;L∞(D)) is of interest.

• In general it is rather easy to calculate the sum ΞN if the first N eigenvalues
are known (or can be approximated), whereas this is not necessarily the case for∑
i>N ηii

2b.

Theorem 4.3.11. Under Assumption 4.3.3, the sampling error is, for all s ∈ [1, s̃],
bounded by

‖P − Pε‖Ls(Ω;L∞(D)) ≤ (λ(D)ε)1/s.
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Proof. For any ω ∈ Ω, we have

‖P (ω, ·)− Pε(ω, ·)‖L∞(D) = max
i=1,...,τ(ω)

|Pi(ω)− P̃i(ω)|s.

By Fubini’s Theorem and integration by parts this yields

‖P − Pε‖sLs(Ω;L∞(D)) =
∫ ∞

0
scs−1P

(
max
i=1,...,τ

|Pi − P̃i| ≥ c
)
dc,

since limc→+∞ P(maxi=1,...,τ |Pi− P̃i| ≥ c) = 0. For fixed c > 0 and i ∈ N, we define the
sets

Ti := {ω ∈ Ω| τ(ω) = i} and Ai := {ω ∈ Ω| |Pi(ω)− P̃i(ω)| ≥ c}

to obtain the identity

P
(

max
i=1,...,τ

|Pi − P̃i| ≥ c
)

= P

⋃
i∈N

Ti ∩ (
i⋃

j=1
Aj)

 .
By the independence of |Pi − P̃i| and τ this yields

P
(

max
i=1,...,τ

|Pi − P̃i| ≥ c
)
≤
∑
i∈N

P

Ti ∩ (
i⋃

j=1
Aj)


=
∑
i∈N

P(Ti)P(
i⋃

j=1
Aj)

≤
∑
i∈N

P(Ti)
i∑

j=1
P(Aj)

and thus by Fubini’s theorem

‖P − Pε‖sLs(Ω;L∞(D)) =
∫ ∞

0

∫ y

0
scs−1dcP(‖P − Pε‖L∞(D) ∈ dy)

=
∫ ∞

0
scs−1P(‖P − Pε‖L∞(D) ≥ c) dc

≤
∫ ∞

0

∑
i∈N

P(τ = i)
i∑

j=1
scs−1P(|Pj − P̃j| ≥ c) dc

=
∑
i∈N

P(τ = i)
i∑

j=1

∫ ∞
0

scs−1P(|Pj − P̃j| ≥ c) dc

=
∑
i∈N

P(τ = i)
i∑

j=1
E(|Pj − P̃j|s)

≤
∑
i∈N

P(τ = i)iε.
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The claim then follows since E(τ) = λ(D) < +∞ by Definition 4.3.1.

With Theorems 4.3.8 and 4.3.11, follows convergence of the approximated diffusion
coefficient:

Theorem 4.3.12. Let Assumption 4.3.3 hold, then there exists C(s,Φ, Q, λ,D) > 0,
depending only on the indicated parameters, such that for any N ∈ N and ε > 0

‖a− aN,ε‖Ls(Ω;L∞(D)) ≤ C(s,Φ, Q, λ,D)
(
Ξ1/2
N + ε1/s

)
.

Hence, aN,ε converges to a in Ls(Ω;L∞(D)) as N →∞ and ε→ 0.

Proof. Let N ∈ N, ε > 0 and (ω, x) ∈ Ω×D be fixed. By the mean-value theorem

a(ω, x)− aN,ε(ω, x) = Φ′(ξN(ω, x))(W (ω, x)−WN(ω, x)) + P (ω, x)− Pε(ω, x),

where ξN(ω, x) ∈ (W (ω, x),WN(ω, x)). With Assumption 4.3.3 (ii) on Φ′ and by the
triangle inequality, we obtain the estimate

|Φ′(ξN(ω, x))| ≤ φ2 exp(ψ2(|WN(ω, x)|+ |W (ω, x)−WN(ω, x)|)).

The random fields WN and W −WN are independent, so for any s ∈ [1,∞) it holds

‖ exp(ψ2(|WN |+ |W −WN |))(W −WN)‖Ls(Ω;L∞(D))

≤‖ exp(ψ2|WN |)‖Ls(Ω;L∞(D))‖ exp(ψ2|W −WN |2)‖Lp1 (Ω;L∞(D))‖(W −WN)‖Lp2 (Ω;L∞(D))

where we have used Hölder’s inequality with p1, p2 > s such that 1/s = 1/p1 + 1/p2.
With Young’s inequality we obtain

‖ exp(ψ2|W −WN |)‖p1
Lp1 (Ω;L∞(D)) ≤ E(exp(ψ2p1‖W −WN‖L∞(D))

≤ exp(ψ2
2p

2
1Tr(Q))E

(
exp

(‖W −WN‖2
L∞(D)

4Tr(Q)
))

=: C2(p1, ψ2, Q).

Since (W−WN)(·, x) ∼ N (0, σ2
N(x)) with σ2

N(x) := ∑
i>N ηiei(x)2 ≤ Tr(Q), we proceed

as in Lemma 4.3.5 to conclude by Fernique’s theorem that C2(p1,Φ, Q) < +∞ and note
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that C2(p1,Φ, Q) is bounded uniformly in N . Similarly,

‖ exp(ψ2|WN |)‖sLs(Ω;L∞(D)) ≤ exp(ψ2
2s

2Tr(Q))E
(

exp
(‖WN‖2

L∞(D)

4Tr(Q)
))

:= C1(s, ψ2, Q) < +∞

for any s and C1(s, ψ2, Q) is is bounded uniformly in N . Altogether, this yields

‖a− aN,ε‖Ls(Ω;R) ≤ φ2C1(s, ψ2, Q))1/sC2(p1, ψ2, Q)1/p1‖W −WN‖Lp2 (Ω;L∞(D)

+ ‖P − Pε‖Ls(Ω;L∞(D))

and the claim follows by Theorems 4.3.8 and 4.3.11.

Corollary 4.3.13. Let Assumption 4.3.3 hold, then there exists a sequence of approx-
imation parameters ((Ni, εi), i ∈ N) in NN × (0,∞)N, depending only on β and s, such
that the error ‖a− aNi,εi‖L∞(D) converges to zero P-almost surely as i→∞.

Proof. For any ε > 0 we get by Markov’s inequality

P(‖aNi,εi − a‖L∞(D) ≥ ε) ≤
‖aNi,εi − a‖sLs(Ω;L∞(D))

εs
.

Using Theorem 4.3.12 and the inequality (a + b)s ≤ 2s−1(as + bs) for a, b > 0, s ≥ 1
this leads to

∑
i∈N

P(‖aNiεi − a‖L∞(D) ≥ ε) ≤ 2s−1C(s, ψ2, Q, λ,D)s
εs

∑
i∈N

Ξs/2
Ni

+ εi

 .
By Assumption 4.3.3, there exists β > 0 such that

ΞNi =
∑
j>Ni

ηjj
βj−β ≤ N−βi

∑
j>Ni

ηjj
β ≤ N−βi

∑
j∈N

ηjj
β ≤ CηN

−β
i .

Now, choosing δ > 2, Ni := diδ/βse and εi := i−δ/2 for i ∈ N yields the estimate

∑
i∈N

P(‖aNi,εi − a‖L∞(D) ≥ ε) ≤ 2s−1C(s, ψ2, Q, λ,D)s
εs

(
Cs/2
η + 1

)∑
i∈N

i−δ/2 < +∞,

and the sequence (aNi,εi , i ∈ N) converges almost surely by the Borel-Cantelli lemma.
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4.3.4 Convergence of the approximated solution

We conclude this section by showing the convergence of uN,ε towards u, given that
aN,ε → a in Ls(Ω;L∞(D)).

Theorem 4.3.14. Let Assumptions 4.3.3 hold such that t := (2/p+ 1/q+ 1/s)−1 ≥ 1,
where p ∈ [1, (η∗)−1) for η∗ as in Lemma 4.3.5. Then uN,ε converges to u in Lt(Ω;V )
as N → +∞ and ε→ 0.

Proof. Existence and uniqueness of weak solutions u ∈ Lr(Ω;V ) resp. uN,ε ∈ Lr(Ω;V ),
for r ∈ [1, (1/q + η∗)−1), is guaranteed by Lemma 4.3.5 resp. Lemma 4.3.7 P-almost
surely. For notational convenience, we omit the argument ω ∈ Ω in the following path-
wise estimates with respect to ‖ · ‖V . With Poincaré’s inequality and aN,ε,−(ω) > 0
P-a.s., we obtain the (path-wise) estimate

‖u− uN,ε‖2
V ≤

1
aN,ε,−

∫
D
aN,ε(|u− uN,ε|2 + ‖∇u−∇uN,ε‖2

2)dx

≤
1 + C2

|D|

aN,ε,−

∫
D
aN,ε‖∇u−∇uN,ε‖2

2dx

where C|D| > 0 denotes the Poincaré constant. Since u and uN,ε are weak solutions of
Problem (4.1) with Eq. (4.2) resp. Eq. (4.7), we have
∫
D
aN,ε∇u · ∇uN,εdx =

∫
D
a‖∇u‖2

2dx and
∫
D
aN,ε‖∇uN,ε‖2

2dx =
∫
D
a∇u · ∇uN,εdx,

almost surely, and hence
∫
D
aN,ε‖∇u−∇uN,ε‖2

2dx =
∫
D

(aN,ε − a)∇u · (∇u−∇uN,ε)dx.

By Hölder’s inequality, V ⊂ L2(D), Eq. (4.3) and Theorem 4.2.5 we have

‖u− uN,ε‖2
V ≤

1 + C2
|D|

aN,ε,−
‖aN,ε − a‖L∞(D)‖∇u‖L2(D)‖∇(u− uN,ε)‖L2(D)

≤
1 + C2

|D|

aN,ε,−
‖aN,ε − a‖L∞(D)‖u‖V ‖u− uN,ε‖V

≤
2(1 + C2

|D|) max(1, CD)(‖f‖H + ‖g‖L2(Γ2))
min(1, C−2

|D|)aN,ε,−a−
‖aN,ε − a‖L∞(D)‖u− uN,ε‖V .

Using t = (2/p+ 1/q + 1/s)−1 ≥ 1, the t-th moment of the path-wise error is bounded
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by

‖u− uN,ε‖Lt(Ω;V ) ≤(1 + C2
|D|)C(a−,D, p)‖1/aN,ε,−‖Lp(Ω;R)

· (‖f‖Lq(Ω;H) + ‖g‖Lq(Ω;L2(Γ2))‖aN,ε − a‖Ls(Ω;L∞(D)),
(4.10)

where C(a−,D, p) > 0 is as in Theorem 4.2.5. The convergence now follows by Theo-
rem 4.3.12, since ‖a−1

N,ε,−‖Lp(Ω;R) is bounded uniformly in N and ε by Lemma 4.3.7.

Corollary 4.3.15. With the Assumptions of Theorem 4.3.14, there exists a sequence
of approximation parameters ((Ni, εi), i ∈ N) in NN × (0,∞)N, depending only on β

and t, such that ‖uNi,εi − u‖V converges to zero P-almost surely as i→ +∞.

Proof. The proof is analogous to the one of Corollary 4.3.13 with Markov’s inequality
applied to the mapping x 7→ xt and Ineq. (4.10). The sequence (Ni, εi, i ∈ N) may then
also be constructed in the same way as in Corollary 4.3.13 where we simply replace s
by t.

Knowing that uN,ε converges to u path-wise and in Lt(Ω;V ), we aim to estimate
moments of u by drawing samples from the distribution of uN,ε. In general, the dis-
tribution of uN,ε is not known. Further, each path-wise solution is an element of the
infinite-dimensional Hilbert space V , which in turn means that we are only able to
simulate path-wise approximations of the functions uN,ε(ω, ·) in a finite-dimensional
subspace of V . Next, we show how to construct these approximations in some appro-
priate subspaces V` of V and how the discretization error may be controlled.

4.4 Adaptive path-wise discretization

The variational problem to Eq. (4.7) is to find for almost all ω ∈ Ω and given f(ω, ·),
g(ω, ·), N and ε a function uN,ε(ω, ·) ∈ V such that

BaN,ε(ω)(uN,ε(ω, ·), v) : =
∫
D
aN,ε(ω, x)∇uN,ε(ω, x) · ∇v(x)dx

=
∫
D
f(ω, x)v(x)dx+

∫
Γ2
g(ω, x)[Tv](x)dx

= Fω(v)

(4.8)

for all v ∈ V . To find suitable approximations of uN,ε(ω, ·), we use a standard Galerkin
approach with a sequence V = (V`, ` ∈ N0) of finite-dimensional subspaces V` ⊂ V .
The corresponding family of refinement sizes is given by a sequence (h`, ` ∈ N0), which
decreases monotonically to zero as `→ +∞. For any ` ∈ N, let d` ∈ N and {v1, . . . , vd`}
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be a basis of V`. The discrete version of the variational formulation (4.8) is then: find
uN,ε,`(ω, ·) ∈ V` such that

BaN,ε(ω)(uN,ε,`(ω, ·), v`) = Fω(v`) for all v` ∈ V`.

The function uN,ε,`(ω, ·) may be expanded with respect to {v1, . . . , vd`} as

uN,ε,`(ω, x) =
d∑̀
i=1

civi(x),

where c1, . . . , cd` ∈ R and c := (c1, . . . , cd`)T is the respective coefficient (column-)
vector. With this, the discrete variational problem in the finite-dimensional space V`
is equivalent to solving the linear system of equations

A(ω)c = F(ω),

with stochastic stiffness matrix (A(ω))ij = BaN,ε(ω)(vi, vj) and load vector (F(ω))i =
Fω(vi) for i, j ∈ {1, . . . , d`}. Since the jump-diffusion coefficient is not continuous, in
general one would not expect the full convergence rate of the Galerkin approximation.

Example 4.4.1. For a polygonal domain D ⊂ Rd, we define by K = (K`, ` ∈ N0) a
sequence of triangulations on D. We denote the minimum interior angle of all triangles
in K` by ϑ` > 0 and assume that there exists some ϑ > 0 such that inf`∈N0 ϑ` ≥ ϑ > 0.
The maximum diameter of each triangulation is defined by

h` := max
K∈K`

diam(K), ` ∈ N0

and the finite-dimensional subspaces are given by

V` := {v ∈ V | v|K ∈ P1, K ∈ K`},

where P1 is the space of all polynomials up to degree one. This yields a sequence
V = (V`, ` ∈ N0) of subspaces in V with refinement parameters (h`, ` ∈ N0). For fixed
` ∈ N0, let {v1, . . . , vd`} be a basis of piecewise linear functions of V`. Given that
uN,ε ∈ L2(Ω;H1+κa(D)) for some κa > 0, the path-wise discretization error is bounded
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by Céa’s lemma P-almost surely by

‖uN,ε(ω, ·)− uN,ε,`(ω, ·)‖V ≤ (1 + C|D|)‖∇(uN,ε(ω, ·)− uN,ε,`(ω, ·))‖L2(D)

≤ Cϑ,D
a+(ω)
a−(ω)‖uN,ε(ω, ·)‖H

1+κa (D)h
min(κa,1)
` ,

where C|D| is the Poincaré constant and Cϑ,D > 0 is deterministic and only depends on
the indicated parameters (see e.g. [102, Chapter 8.3/8.5]). If K is sample-independent
(and thus (h`, ` ∈ N0) is fixed for any ω), a+/a− ∈ L2(Ω;R) and there exists a uniform
bound ‖uN,ε‖L2(Ω;H1+κa (D)) ≤ Cu in N and ε, we readily obtain

‖uN,ε − uN,ε,`‖L2(Ω;V ) ≤ Cϑ,DE
(
a2

+
a2
−

)1/2

Cuh
min(κa,1)
`

by Hölder’s inequality. We note that a uniform a-priori bound may require higher
moments of 1/aN,ε, f and g or even essential bounds on aN,ε which are not ensured by
Assumption 4.3.3.

Remark 4.4.2. For jump-diffusion problems, we obtain, in general, a discretization
error of order κa ∈ (1/2, 1). We cannot expect the path-wise "full" order of convergence
κa = 1 of the finite-dimensional discretization error, since the diffusion coefficient aN,ε
is almost surely discontinuous. Most results that ensure H2(D)-regularity of the path-
wise weak solution uN,ε(ω, ·) need that aN,ε(ω, ·) is continuously differentiable or that
aN,ε(ω, ·) ∈ W 1,∞(D), see for instance [80]. The latter would imply that aN,ε(ω, ·) is
continuous by the Sobolev embedding theorem, which contradicts our setting. As we
consider path-wise regularity, we can rely on results for deterministic elliptic problems
with discontinuous coefficients. We refer to [175] and the references therein, where
the author emphasizes that the regularity of the solution depends on the shape and
magnitude of the discontinuities. For several examples H1+κa-regularity with κa < 1
is shown. In [13] the author states that without special treatment of the interfaces
with respect to the triangulation one, in general, cannot expect a better path-wise
convergence rate than κa = 1/2.

4.4.1 Adaptive triangulations

In view of the previous remark, we aim to increase the order of convergence κa with re-
spect to h`. For this, we employ path-dependent triangulations to match the interfaces
generated by the samples of the jump-diffusion coefficient. Hence, we need to refor-
mulate the discrete problem with respect to ω, since the triangulation and matching
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basis functions may be sample-dependent. Given a fixed ω and `, we consider a finite-
dimensional subspace V̂`(ω) ⊂ V with sample-dependent basis {v̂1(ω), . . . , v̂

d̂`
(ω)} and

stochastic dimension d̂`(ω) ∈ N. As before, we denote by (ĥ`(ω), ` ∈ N0) the sequence of
(random) refinement parameters corresponding to the sequence of subspaces (V̂`(ω), ` ∈
N0). More precisely, for a given random partition T (ω) = (Ti, i = 1 . . . , τ(ω)) of D, we
choose a triangulation K`(ω) of D with respect to T (ω) such that

T (ω) ⊂ K`(ω) and ĥ`(ω) := max
K∈K`(ω)

diam(K) ≤ h` for ` ∈ N0,

where (h`, ` ∈ N0) is a positive sequence of deterministic refinement thresholds, decreas-
ing monotonically to zero. This guarantees that ĥ`(ω)→ 0 almost surely, although the
absolute speed of convergence may vary for each ω. Denoting by ϑ̂`(ω) the minimal
interior angle within K`(ω), we assume similarly to Example 4.4.1 that there exists a
ϑ > 0 such that for P-almost all ω

inf
`∈N0

ϑ̂`(ω) ≥ ϑ > 0. (4.11)

The path-wise discrete variational problem in the sample-adaptive subspace V̂`(ω) now
reads: Find ûN,ε,`(ω, ·) ∈ V̂`(ω) such that

BaN,ε(ω)(ûN,ε,`(ω, ·), v̂`(ω)) = Fω(v̂`(ω)) for all v̂`(ω) ∈ V̂`(ω) ⊂ V .

Since the triangulation is aligned with the discontinuities of aN,ε, this approximation
admits an increase of the (path-wise) order of convergence κa compared to the non-
adaptive, deterministic Galerkin approximations. For piecewise linear basis functions
v̂i, we can expect

‖uN,ε(ω, ·)− ûN,ε,`(ω, ·)‖V ≤ Cϑ,D
a+(ω)
a−(ω)

(
‖uN,ε(ω, ·)‖V

+
τ(ω)∑
i=1
‖∇ · ∇uN,ε(ω, ·)‖L2(Ti(ω))

)
ĥ`(ω)

=: Cϑ,DĈu(ω)ĥ`(ω)

(4.12)

P-a.s. by results from domain decomposition methods for deterministic elliptic prob-
lems (e.g. [36, 39]). We emphasize that with the assumption of Ineq. (4.11) the constant
Cϑ,D > 0 is independent of ω. This estimate holds provided the random partitions are
polygonal and uN,ε(ω, ·) is almost surely piecewise in H2(Ti). In this case, the adaptive
triangulations perfectly fit the random subdomains in D and the order of convergence
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is the same as if uN,ε(ω, ·) ∈ H2(D). If the random partitions are not polygonal but
form C2-interfaces within D, we obtain log-linear rates:

‖uN,ε(ω, ·)− ûN,ε,`(ω, ·)‖V ≤ Cϑ,DĈu(ω)ĥ`(ω)| log(ĥ`(ω))|1/2 (4.13)

with Ĉu(ω) as in Ineq. (4.12), see [56].

Remark 4.4.3. Based on Ass. 4.4.4 and the path-wise estimates in Eqs. (4.12), (4.13),
the question arises whether it is possible to derive estimates in a mean-square sense

‖uN,ε − ûN,ε,`‖L2(Ω;V ) ≤ C̃uE(ĥ2
`)1/2,

where the constant C̃u is independent of N and ε. As the independence of ε is not an
issue, a uniform estimate with respect toN requires further summability conditions (i.e.
β ≥ 2α) on the eigenvalues in Ass. 4.3.3 and would result in a piecewise differentiable
diffusion coefficient a. To illustrate this, we consider the identity

−∇ · (aN,ε(ω, ·)∇uN,ε(ω, ·)) = −∇aN,ε(ω, ·) · ∇uN,ε(ω, ·)− aN,ε(ω, ·)∇ · ∇uN,ε(ω, ·)

= f(ω, ·)

on some partition element Ti(ω). Rearranging terms and taking expectations then
yields by Hölder’s inequality

E
( τ(ω)∑
i=1
‖∇ · ∇uN,ε(ω, ·)‖L2(Ti(ω))

)

≤E(τ)1/2E
(2‖f‖2

H + 2‖∇(a+ Φ(WN))‖2
L∞(D)‖∇uN,ε‖2

H

a2
N,ε,−

)
.

If f and 1/a− have sufficiently high moments and the eigenvalues ηi decay fast enough,
the right hand side may be bounded uniformly with respect toN , and it is then straight-
forward to derive the corresponding L2(Ω;V )-estimates. These assumptions, however,
exclude the important cases where the covariance operator ofW is of Brownian-motion-
type or exponential. Practically, as we show in Section 4.6, the path-wise adaptive
convergence rates may also be recovered for the L2(Ω, V )-error if a has only piecewise
Hölder-continuous trajectories.

In view of the preceding remarks and Example 4.4.1, we make the following as-
sumption on the mean-square discretization error:
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Assumption 4.4.4. There exist constants Cu,a, Cu,n, κa, κn > 0, such that for any
N, ` ∈ N0 and ε > 0, the finite-dimensional approximation errors of uN,ε in the sub-
spaces V̂` resp. V` are bounded by

‖uN,ε − ûN,ε,`‖L2(Ω;V ) ≤ Cu,aE(ĥ2κa
` )1/2 resp. ‖uN,ε − uN,ε,`‖L2(Ω;V ) ≤ Cu,nh

κn
` .

The constants Cu,a, Cu,n may depend on a, f and g, but are independent of ĥ`, h`, κa
and κn.

Note that in general 1 ≥ κa > κn > 0 by the previous observations. We consider
E(ĥ2κa

` )1/2 instead of hκa` as both quantities depend to a great extend on the geom-
etry introduced by a. The parameter h` has been merely introduced to ensure that
lim`→+∞ E(ĥ2

`) = 0.

4.5 Estimation of expectations by Monte Carlo methods

As we are able to generate samples from uN,ε and control for the discretization error in
each sample, we may estimate the expected value E(u) of the weak solution to Eq. (4.1).
We focus on multilevel Monte Carlo estimators as they are easily implemented and do
not require much regularity of u. Monte Carlo estimators introduce an additional
statistical bias besides the error contributions of aN,ε and the path-wise discretization
error from Section 4.4. However, this error can be controlled under natural assumptions
and it may be equilibrated according to the other error terms. In this section, we first
recall briefly standard Monte Carlo and multilevel Monte Carlo methods to estimate
E(u) and then control for the mean-squared error in both algorithms. We also suggest
a modification of the multilevel Monte Carlo estimation to increase computational
efficiency before we verify our results on several numerical examples in Section 4.6.

4.5.1 Monte Carlo and multilevel Monte Carlo estimators

Consider a sequence (u(i), i ∈ N) of i.i.d. copies of the V -valued random variable u.
For M ∈ N independent samples, the Monte Carlo estimator of E(u) is defined as

EM(u) := 1
M

M∑
i=1

u(i).

Since we are only able to draw samples of the approximated discrete solution ûN,ε,`

as introduced in Section 4.4, we aim to control the root mean-squared error (RMSE)
‖E(u)−EM(ûN,ε,`)‖L2(Ω;V ). For notational convenience, we focus only on the adaptive
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discretization ûN,ε,` with mean-square refinement E(ĥ2
`)1/2 and converge rate κa in this

section. However, all results also hold in the non-adaptive case with E(ĥ2
`)1/2 and

κa replaced by h` and κn. To derive a bound for the RMSE, we need the following
standard result.

Lemma 4.5.1. Let M ∈ N and u ∈ L2(Ω;V ). Then

‖E(u)− EM(u)‖L2(Ω;V ) ≤
‖u‖L2(Ω;V )√

M
and ‖EM(u)‖L2(Ω;V ) ≤ ‖u‖L2(Ω;V ).

Theorem 4.5.2. Let Assumptions 4.3.3 and 4.4.4 hold such that t := (2/p + 1/q +
1/s)−1 ≥ 2, where p ∈ [1, (η∗)−1) for η∗ as in Lemma 4.3.5. Then, for any M,N ∈ N
and ε > 0,

‖E(u)− EM(ûN,ε,`)‖L2(Ω;V ) ≤ CMC

(
1√
M

+ Ξ1/2
N + ε1/s + E(ĥ2κa

` )1/2
)
,

where CMC > 0 is a constant independent of M,ΞN , ε and ĥ`.

Proof. We apply the triangle inequality to obtain

‖E(u)− EM(ûN,ε,`)‖L2(Ω;V ) ≤ ‖E(u)− EM(u)‖L2(Ω;V ) + ‖EM(u− uN,ε)‖L2(Ω;V )

+ ‖EM(uN,ε − ûN,ε,`)‖L2(Ω;V ).

By the first part of Lemma 4.5.1 and Theorem 4.2.5, we bound the first term by

‖E(u)− EM(u)‖L2(Ω;V ) ≤ C(a−,D, p)
‖f‖Lq(Ω;H) + ‖g‖Lq(Ω;Γ2)√

M
.

The second part of Lemma 4.5.1 yields with the estimate of Theorem 4.3.14

‖EM(u− uN,ε)‖L2(Ω;V ) ≤ C̃(a, f, g,D)‖a−1
N,ε‖Lp(Ω;R)‖a− aN,ε‖Ls(Ω;L∞(D))

≤ C(a, f, g,D)(Ξ1/2
N + ε1/s)

where C̃(a, f, g,D) > 0 and C(a, f, g,D) > 0 are independent of N and ε, because by
Lemma 4.3.7 ‖1/aN,ε,−‖Lp(Ω;R) is bounded uniformly with respect to these parameters.
Finally, Assumption 4.4.4 and Lemma 4.5.1 yield for the third term

‖EM(uN,ε − ûN,ε,`)‖L2(Ω;V ) ≤ Cu,aE(ĥ2κa
` )1/2

where Cu,a is also independent of N and ε by assumption.
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Remark 4.5.3. The estimate in Theorem 4.5.2 suggests that all four error contribu-
tions should be equilibrated to obtain a RMSE of order E(ĥ2κa

` )1/2. For this, we may
choose M,N and ε such that

M−1 ' ΞN ' ε2/s ' E(ĥ2κa
` ).

While this is straightforward for M and usually also for ε, the choice of the trunca-
tion index N involves a few difficulties. In general, the eigenvalues (ηi, i ∈ N) of the
covariance operator Q : H → H will not be available in closed form. The decay pa-
rameter β > 0 may be unknown and only be bounded from below, which would result
in an overestimation of the term ΞN . One possibility to find N is applicable if Q is an
integral operator of the form

(Qϕ)[x] = v
∫
D
kQ(x, y)ϕ(y)dy, ϕ ∈ H,

with some nonnegative, symmetric and bounded kernel function kQ : D2 → R and
v > 0. In this case, the eigenvalues of Q fulfill the identity v

∫
D dx = ∑

i∈N ηi (see
[79, 203]). Operators with this property are widely used in practice and include for
instance Matérn class, Brownian motion and rational quadratic covariance functions
(see [178]). The first eigenvalues of Q have to be, in any case, determined (numerically)
to approximate the Gaussian field W , so we select N such that

ΞN = v
∫
D
dx−

N∑
i=1

ηi
!' E(ĥ2κa

` ).

In most cases, the sampling of aN,ε and uN,ε,` for given boundary data will be
computationally expensive: If the eigenvalues of Q decay slowly, it is necessary to
include a large number of terms in the Karhunen-Loève expansion to achieve ΞN '
E(ĥ2κa

` ). In addition, sampling of the sequence (P̃i, i ∈ N) might also be time-consuming
if a small error E(|P̃i − Pi|s) ≤ ε is desired. Given a sample of aN,ε, one has then to
rely on numerical integration schemes to calculate the entries of the stiffness matrix
A(ω) and the load vector F(ω), and solve a possibly large system of linear equations.
This motivates the use of advanced Monte Carlo techniques, such as multilevel Monte
Carlo, to achieve essentially the same accuracy with reduced computational effort. We
briefly recall the idea of the multilevel Monte Carlo sampling in the following.

For L ∈ N we consider finite-dimensional subspaces V̂0 ⊂ · · · ⊂ V̂L of V with
refinement sizes ĥ0 > · · · > ĥL > 0 and approximation parameters N0 < · · · < NL and
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ε0 > · · · > ε`. We define uN−1,ε−1,−1 := 0 and expand the “finest level approximation”
ûNL,εL,L into a telescopic sum to obtain

E(ûNL,εL,L) =
L∑
`=0

E(ûN`,ε`,` − ûN`−1,ε`−1,`−1).

Instead of estimating the left hand side by the ordinary Monte Carlo method, we esti-
mate the expected corrections E(ûN`,ε`,`− ûN`−1,ε`−1,`−1) by generating M` independent
realizations û(i,`)

N`,ε`,`
− û(i,`)

N`−1,ε`−1,`−1 on each level and calculating the Monte Carlo esti-
mator EM`

(ûN`,ε`,` − ûN`−1,ε`−1,`−1). The multilevel Monte Carlo estimator of uNL,εL,L
is then defined as

EL(ûNL,εL,L) : =
L∑
`=0

EM`
(ûN`,ε`,` − ûN`−1,ε`−1,`−1)

=
L∑
`=0

1
M`

M∑̀
i=1

û
(i,`)
N`,ε`,`

− û(i,`)
N`−1,ε`−1,`−1

(4.14)

To achieve a desired target RMSE of εRMSE > 0, this estimator requires less compu-
tational effort than the standard Monte Carlo approach under certain assumptions.
This, by now, classical result was proven in [92, Theorem 3.1]. The proof is rather gen-
eral and may readily be transferred to the problem of estimating moments of random
PDEs (see [29]).

Theorem 4.5.4. Let Assumptions 4.3.3 and 4.4.4 hold such that t := (2/p + 1/q +
1/s)−1 ≥ 2, where p ∈ [1, (η∗)−1) for η∗ as in Lemma 4.3.5. For L ∈ N, let ĥ` > 0,
M`, N` ∈ N and ε` > 0 be the level-dependent approximation parameters for any ` =
0, . . . , L such that ĥ`, ε` are decreasing and N` is increasing with respect to `. Then the
multilevel Monte Carlo estimator admits the bound

‖E(u)− EL(ûNL,εL,L)‖L2(Ω;V ) ≤C
(

Ξ1/2
NL

+ ε
1/s
L + E(ĥ2κa

L )1/2 + 1√
M0

+
L−1∑
`=0

Ξ1/2
N`

+ ε
1/s
` + E(ĥ2κa

` )1/2
√
M`+1

)
,

where C > 0 is independent of L and the level-dependent approximation parameters.

Proof. Using the triangle inequality and Jensen’s inequality for expectations, we ob-
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serve that

‖E(u)− EL(ûNL,εL,L)‖L2(Ω;V )

≤‖E(u)− E(ûNL,εL,L)‖L2(Ω;V ) + ‖E(ûNL,εL,L)− EL(ûNL,εL,L)‖L2(Ω;V )

≤‖u− uNL,εL‖L2(Ω;V ) + ‖uNL,εL − ûNL,εL,L‖L2(Ω;V )︸ ︷︷ ︸
:=I

+ ‖E(ûNL,εL,L)− EL(ûNL,εL,L)‖L2(Ω;V )︸ ︷︷ ︸
:=II

.

Theorem 4.3.14 and Assumption 4.4.4 give a bound for the first term by

I ≤ C(a, f, g,D)(Ξ1/2
NL

+ ε
1/s
L ) + Cu,aE(ĥ2κa

L )1/2,

where C(a, f, g,D) > 0 is an independent constant. For the second error term, the
definition of EL in Eq. (4.14) together with Lemma 4.5.1 yield

II ≤
L∑
`=0
‖E(ûN`,ε`,` − ûN`−1,ε`−1,`−1)− EM`

(ûN`,ε`,` − ûN`−1,ε`−1,`−1)‖L2(Ω;V )

≤
L∑
`=0

1√
M`

‖ûN`,ε`,` − ûN`−1,ε`−1,`−1‖L2(Ω;V )

≤
L∑
`=0

( 1√
M`

‖ûN`,ε`,` − u‖L2(Ω;V ) + 1√
M`

‖u− ûN`−1,ε`−1,`−1‖L2(Ω;V )

)
.

Now, the terms ‖ûN`,ε`,` − u‖L2(Ω;V ) may be treated analogously to I:

‖ûN`,ε`,` − u‖L2(Ω;V ) ≤ C(a, f, g,D)(Ξ1/2
N`

+ ε
1/s
` ) + Cu,aE(ĥ2κa

` )1/2. (4.15)

The remaining term ‖u− ûN−1,ε−1,−1‖L2(Ω;V ) is bounded by Theorem 4.2.5 via

‖u− ûN−1,ε−1,−1‖L2(Ω;V ) = ‖u‖L2(Ω;V ) ≤ C(a−,D, p)(‖f‖Lq(Ω;H) + ‖g‖Lq(Ω;Γ2)). (4.16)

Substituting the bounds from Ineq. (4.15) and Ineq. (4.16) in II and adding the esti-
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mate on I, we finally arrive at

I + II ≤ C(a, f, g,D)
(

Ξ1/2
NL

+ ε
1/s
L +

L∑
`=1

Ξ1/2
N`

+ ε
1/s
` + Ξ1/2

N`−1 + ε
1/s
`−1√

M`

)

+ Cu,a

(
E(ĥ2κa

L )1/2 +
L∑
`=1

E(ĥ2κa
` )1/2 + E(ĥ2κa

`−1)1/2
√
M`

)

+ C(a−,D, p)(‖f‖Lq(Ω;H) + ‖g‖Lq(Ω;Γ2))√
M0

≤ C
(

Ξ1/2
NL

+ ε
1/s
L + E(ĥ2κa

L )1/2
)

+ C
( L−1∑
`=0

Ξ1/2
N`

+ ε
1/s
` + E(ĥ2κa

` )1/2
√
M`+1

+ 1√
M0

)
.

For the last inequality, we have used ΞN` ≤ ΞN`−1 , ε` ≤ ε`−1 and E(ĥ2κa
` )1/2 ≤ E(ĥ2κa

`−1)1/2

together with the constant

C := max(2C(a, f, g,D), 2Cu,a, C(a−,D, p)(‖f‖Lq(Ω;H) + ‖g‖Lq(Ω;Γ2))).

Regarding a single realization of the approximation ûN`,ε`,`, we want the path-wise
error ‖u(ω, ·) − ûN`,ε`,`(ω, ·)‖V to decrease as ` increases, so naturally the parameters
ε` and E(ĥ2κa

` )1/2 should decrease in ` and N` increase in `. For example, by using a
sequence of refining grids, the refinement parameter E(ĥ2

`)1/2 may be divided roughly
by a factor of two in each level, i.e. 2E(ĥ2

`)1/2 ≈ E(ĥ2
`−1)1/2 for any ` ∈ N. Similar

refining factors may be imposed for the sum of the remaining eigenvalues ΞN` and the
sampling errors ε`. One advantage of the multilevel Monte Carlo estimator is that we
are now able to even out the error contributions of the sampling bias ‖ûN`,ε`,`−u‖V and
the statistical error (with respect to M`) on each level. This is achieved by generating
relatively few of the accurate, but expensive, samples for large ` and generating more
of the cheap, but less accurate, samples on the lower levels.

Corollary 4.5.5. Let the assumptions of Theorem 4.5.4 hold. For L ∈ N and given
refinement parameters E(ĥ2κa

0 )1/2 > · · · > E(ĥ2κa
L )1/2 > 0 choose N` ∈ N and ε` > 0

such that
ΞN` ' ε

2/s
` ' E(ĥ2κa

` ) for ` = 0, . . . , L,

and M` ∈ N such that for some arbitrary ν > 0 and ` = 1, . . . , L

M−1
0 ' E(ĥ2κa

L ) and M−1
` ' E(ĥ2κa

L )−1E(ĥ2κa
`−1)(`+ 1)−2(1+ν).
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The RMSE of the multilevel Monte Carlo estimator is then of order E(ĥ2κa
L )1/2:

‖E(u)− EL(ûNL,εL,L)‖L2(Ω;V ) = O(E(ĥ2κa
L )1/2).

Proof. With the approximation parameters N`, ε` and Theorem 4.5.4, we obtain

‖E(u)− EL(ûNL,εL,L)‖L2(Ω;V ) ≤ C
(

4E(ĥ2κa
L )1/2 +

L−1∑
`=0

E(ĥ2κa
` )1/2
√
M`+1

)

≤ C
(

4E(ĥ2κa
L )1/2 + E(ĥ2κa

0 )1/2E(ĥ2κa
L )1/2

+
L∑
`=1

E(ĥ2κa
L )1/2(`+ 1)−1−ν

)
≤ C

(
3 + E(ĥ2κa

0 )1/2 + ζ(1 + ν)
)
E(ĥ2κa

L )1/2,

where ζ(·) is the Riemann zeta function.

For the level-dependent choice of N` and ε` we refer to Remark 4.5.3. In the
remainder of this section, we introduce a modification of the multilevel Monte Carlo
method to further reduce computational complexity.

4.5.2 Coupled multilevel Monte Carlo

Recall the multilevel Monte Carlo estimator

EL(ûNL,εL,L) =
L∑
`=0

1
M`

M∑̀
i=1

(
û

(i,`)
N`,ε`,`

− û(i,`)
N`−1,ε`−1,`−1

)

of E(u) as in Eq. (4.14), where the terms in the second sum are independent copies of
the corrections ûN`,ε`,`− ûN`−1,ε`−1,`−1. In total, one has to generate M` +M`+1 samples
of ûN`,ε`,` for each ` = 0, . . . , L (where we have setML+1 := 0). This could be expensive
even in low dimensions d. We can reduce this effort if we “recycle” the already available
samples and generate the differences

û
(i,`)
N`,ε`,`

− û(i,`)
N`−1,ε`−1,`−1 and û

(i,`)
N`+1,ε`+1,`+1 − û

(i,`)
N`,ε`,`

based on the same realization û
(i,`)
N`,ε`,`

for ` = 0, . . . , L. That is, we drop the second
superscript ` in û(i,`)

N`,ε`,`
and arrive at the coupled multilevel Monte Carlo estimator

EL
C(ûNL,εL,L) :=

L∑
`=0

1
M`

M∑̀
i=1

û
(i)
N`,ε`,`

− û(i)
N`−1,ε`−1,`−1.

64



CHAPTER 4. ELLIPTIC PDES WITH JUMP DIFFUSION COEFFICIENT

This entails generating M` realizations of the random variable ûN`,ε`,` instead of M` +
M`+1. The samples u(i)

N`,ε`,`
are then independent in i, but not anymore across all levels

` for a fixed index i, and thus coupled with respect to `. This estimator is unbiased,
i.e E(EL

C(ûNL,εL,L)) = E(ûNL,εL,L), and it holds

lim
L→+∞

E(EL
C(ûNL,εL,L)) = lim

L→+∞
E(EL(ûNL,εL,L)) = lim

L→+∞
E(uNL,εL) = E(u).

The introduced modification is a simplified version of the Multifidelity Monte Carlo
estimator (see [171]). Under suitable assumptions on the variance of u, it is shown
in [171] that the Multifidelity Monte Carlo approach achieves the same rate of con-
vergence as the standard multilevel Monte Carlo method with reduced computational
effort. The coupled estimator corresponds to a Multifidelity Monte Carlo estimator
where the weighting coefficients for all level corrections ûN`,ε`,` − ûN`−1,ε`−1,`−1 are set
equal to one.

We emphasize that the error bounds derived in Thm. 4.5.4 and Cor. 4.5.5 do not re-
quire independence of the sampled differences ûN`,ε`,`− ûN`−1,ε`−1,`−1 across the levels `.
Thus, the asymptotic order of convergence also holds for the coupled estimator. How-
ever, we have now introduced additional correlation across the levels, which may entail
higher variance, and thus slower convergence of the coupled method. The variance of
the standard multilevel Monte Carlo estimator is easily calculated as

Var(EL(ûNL,εL,L)) =
L∑
`=0

Var(ûN`,ε`,` − ûN`−1,ε`−1,`−1)
M`

,

whereas

Var(EL
C(ûNL,εL,L)) = Var

( L∑
`=0

1
M`

M∑̀
i=1

û
(i)
N`,ε`,`

− û(i)
N`−1,ε`−1,`−1

)

= Var
(M0−M1∑

i=1

û
(i)
N0,ε0,0

M0

+
M0−M2∑

i=M0−M1+1

û
(i)
N1,ε1,1 − û

(i)
N0,ε0,0

M1
+
û

(i)
N0,ε0,0

M0
+ . . .

+
M0∑

i=M0−ML+1

L∑
`=0

û
(i)
N`,ε`,`

− û(i)
N`−1,ε`−1,`−1

M`

)

=
L∑
`=0

(M` −M`+1)Var
(∑̀
k=0

ûNk,εk,k − ûNk−1,εk−1,k−1

Mk

)
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In case that the differences ûN`,ε`,` − ûN`−1,ε`−1,`−1 are positively correlated across
the levels, we trade in simulation time for a possibly higher RMSE, where the ratio of
this trade is problem-dependent and hard to access beforehand. Nevertheless, we will
compare this modified estimator with the standard multilevel Monte Carlo estimator
in different scenarios to show its advantages.

4.6 Numerical examples

Throughout this section, we plot the error rates against the smallest estimated root-
mean-squared refinement size E(ĥ2

L)1/2. For the standard, non-adaptive algorithms this
corresponds to the preset deterministic refinement size hL and all error contributions
may be equilibrated a-priori as in Corollary 4.5.5. In the adaptive algorithm, to align
the discretization error with the error contributions of ∑i>N ηi, ε and the statistical
error, we sample a few realizations of the diffusion coefficient before the start of the
Monte Carlo loop. This allows us to estimate the values of E(ĥ2

`)1/2 for each ` = 0, . . . , L
and choose N , ε and the number of samples on each level accordingly. All numerical
examples are implemented with MATLAB and calculated on a workstation with 16
GB Memory and Intel quadcore processor with 3.4 GHz.

4.6.1 Numerical examples in 1D

For all test scenarios in this subsection, we consider the diffusion problem (4.1) in the
one dimensional domain D = (0, 1) with homogeneous Dirichlet boundary conditions,
i.e. Γ1 = ∂D, and source term f ≡ 1. The deterministic part of the diffusion coefficient
is a ≡ 0 and we consider a log-Gaussian component, i.e. Φ(w) = exp(w), where the
Gaussian field W is characterized by either the Brownian motion covariance operator
QBM : H → H with

[QBMϕ](y) :=
∫
D
min(x, y)ϕ(x)dx, ϕ ∈ H

or the squared exponential covariance operator

[QSEϕ](y) := σ2
∫
D

exp
(
−|x− y|2

2ρ2

)
ϕ(x)dx, ϕ ∈ H
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with variance parameter σ2 > 0 and correlation length ρ > 0. The eigenbasis of QBM

is given by

ηi =
( 2

√
2

(2i+ 1)π

)2
, ei(x) = sin

((2i+ 1)πx
2

)
, i ∈ N0,

see for example [6, p. 46 ff.], where the spectral basis of QSE may be efficiently
approximated by Nyström’s method, see [178]. The number of partition elements is
given by τ = P + 2, where P is a Poisson-distributed random variable with intensity
parameter 10. On average, this splits the domain in 12 disjoint intervals and the
diffusion coefficient has almost surely at least one discontinuity. The random positions
of the τ − 1 jumps x1, . . . , xτ−1 ⊂ D in the interior of D are uniformly distributed
over D, generating the random partition T = {(0, x1), (x1, x2), . . . , (xτ−1, 1)} for each
realization of τ and the jump positions x1, . . . , xτ−1. This fits into our framework of the
jump-diffusion coefficient by setting λ = 12Λ, where Λ denotes the Lebesgue measure
on ((0, 1),B(0, 1)): The uniform distribution of the discontinuities on D corresponds
to a distribution with respect to Λ on D and the multiplication with 12 ensures that
E(τ) is as desired. In the subsequent examples we vary the distribution of the jump
heights Pi.

To obtain path-wise approximations of the samples uN,ε(ω, ·), we use non-adaptive
and adaptive piecewise linear elements and compare both approaches. In addition, we
combine each discretization method with regular and coupled multilevel Monte Carlo
sampling, so in total we compare four different algorithms. The adaptive triangulation
is based on each sampled partition T (ω) as described in Section 4.4, see Fig. 4.1
and 4.3. In the graphs below, we plot the RMSE of the adaptive algorithms against
the inverse estimated refinement size E(ĥ2

`)−1/2, for the non-adaptive algorithms this
corresponds to the (deterministic) parameters h−1

` . The entries of the stiffness matrix
are approximated by the midpoint rule, which ensures a path-wise error of order h3

` on
each simplex K. To ensure that this is sufficiently precise, we repeated our experiments
with a five-point Gauss-Legendre quadrature, which did not entail significant changes.
In the multilevel Monte Carlo algorithm, the non-adaptive triangulations are generated
with refinement h` = 2−`−1, whereas we set the same threshold as maximum refinement
size h` = h` = 2−`−1 in the adaptive algorithm. As realized and maximal values of
ĥ` may differ significantly, we set ΞN` = ε` = E(ĥ2

`) for ` = 0, . . . , L and choose the
number of samples as M0 = dE(ĥ2

L)−1e, M` = dE(ĥ2
L)−1E(ĥ2

`)`2(1+ν)e with ν = 0.01 for
` = 1, . . . , L. The same error equilibration is used for the non-adaptive method, only
with E(ĥ2

`) replaced by h2
` . To subtract samples uN`,ε`,` and uN`−1,ε`−1,`−1 in the MLMC
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estimator and add samples of the same refinement level (but on possibly different
stochastic triangulations), we prolong the samples onto a reference grid with refinement
size (E(ĥ2

`))1/2. We consider the test cases with L = 0, . . . , 7 and use EL(ûNL,εL,L) with
L = 9, as a reference estimate for E(u). The RMSE ‖EL(ûNL,εL,L) − E(u))‖L2(Ω;V )

is then estimated by averaging 20 samples of the error ‖EL(ûNL,εL,L)− E9(uN9,ε9,9)‖2
V

for L = 0, . . . , 7. To calculate the RMSE, we use a reference grid with 103 equally
spaced points in D, thus the error stemming from the interpolation\prolongation may
be neglected.
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Figure 4.1 Sample of the diffusion coefficient with Brownian motion covariance and uniformly
distributed jumps.

As our first numerical example, we use the Brownian motion covariance operator
QBM and i.i.d uniformly distributed jump heights Pi ∼ U([0, 10]), hence the sampling
error ε` is equal to zero on every level and may be omitted for this scenario. A sample
of the corresponding diffusion coefficient with illustrated adaptive and non-adaptive
finite element(FE)-basis is given in Fig. 4.1. Fig. 4.2 indicates that the adaptive al-
gorithm converges considerably faster than the estimator with non-adaptive FE basis.
Asymptotically, we see that both adaptive RMSE curves decay with rate nearly one,
whereas the non-adaptive methods only show a rate of κ ≈ 0.75. One sees that the
adaptive multilevel Monte Carlo estimator also has a better time-to-error ratio, so it
is possible to reduce the RMSE significantly using a little more computational effort
to adjust the FE basis in each sample. Surprisingly there is little difference in the
convergence speed whether or not we use a coupled algorithm combined with adaptive
resp. non-adaptive FE. Here one would expect at least a slightly higher RMSE of the
coupled algorithms, but in this example, the error of both coupled estimators is even
lower compared to their non-coupled alternatives. Naturally, coupling the samples
decreases computational time (see Fig. 4.2).
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Figure 4.2 Left: RMSE with U([0, 10])-distributed jumps, Right: Time-to-error plot.

In the next example, we consider the squared exponential covariance operator QSE

with σ2 = 0.1, ρ = 0.05 and a more involved distribution of jump heights, where
sampling is rather expensive and may not be realized in a straightforward manner.
The jump heights Pi now follow a continuous generalized inverse Gaussian (GIG)
distribution with density

fGIG(x) = (ψ/χ)λ/2
2Kλ(

√
ψχ)x

λ−1 exp(−1
2(ψx+ χx−1)), x > 0

and parameters χ, ψ > 0, λ ∈ R, where Kλ is the modified Bessel function of the
second kind with λ degrees of freedom, see [19, 20]. As shown in [11], sampling this
distribution by Acceptance-Rejection is possible, but expensive when λ < 0, since the
vast majority of outcomes has to be rejected. We rather generate approximations P̃i
of Pi by a Fourier inversion technique such that E(|P̃i − Pi|2) ≤ ε` for a given ε` >

0. For details on the Fourier inversion algorithm, the sampling of GIG distributions
and the corresponding error bounds we refer to [30]. The GIG parameters are set
as ψ = 0.25, χ = 9 and λ = −1, the resulting density fGIG and a sample of the
diffusion coefficient are given in Fig. 4.3. The error curves show a similar behavior
compared to the first example, with asymptotic error rates of 1 resp. 0.75 for the
adaptive resp. non-adaptive algorithms, see Fig. 4.4. Again, coupling tends to produce
a slightly lower RMSE. The expensive sampling from the GIG distribution causes
increased computational times, which entails that the coupled estimator is even more
favorable in a setting with a rather challenging jump height distributions.

The Gaussian random field W : Ω×D → R with the Brownian motion covariance
operator is almost surely not differentiable in a.e. x ∈ D, but only Hölder continuous. In
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Figure 4.3 Left: GIG density, right: sample of the diffusion coefficient with log-squared
exponential covariance and GIG distributed jumps.
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Figure 4.4 Left: RMSE of the example with GIG-distributed jumps, Right: Time-to-error
plot.

addition, the covariance of the random variables W (·, x1) and W (·, x2), where x1, x2 ∈
D is given by the kernel function min(x1, x2). For a fixed distance between x1 and x2,
this implies that the correlation in the random field increases as one moves to the right
boundary of the domain. In some applications, however, one might instead want a
random field with stationary correlation structure and/or more spatial regularity. This
can be achieved with the introduced jump-diffusion coefficient by using, for instance,
QSE or another Matérn class covariance operator. These covariance operators generate
random stationary correlated random fields and also increase the regularity of W in
D. It is further possible to vary the position and magnitude of the discontinuities of
a to model certain desirable characteristics of the diffusion. For example, one could
enforce only one jump per sample which is concentrated in some small neighborhood
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located around a single point in D. The corresponding jump heights on each partition
may then also be chosen concentrated around certain values to model, for instance,
transitions in heterogeneous or fractured media.

4.6.2 Numerical results in 2D

In the two-dimensional setting, we work on the domain D = (0, 1)2, with homogeneous
Dirichlet or mixed Neumann-Dirichlet boundary conditions and we assume that the
deterministic part of the drift coefficient is zero (ā ≡ 0). The Gaussian part of a is
given by the Karhunen-Loève expansion with spectral basis

ηi := σ2 exp(−π2i2ρ2), ei(x) := sin(πix1) sin(πix2),

with correlation length ρ > 0 and total variance σ2 > 0. This basis is related to the
two-dimensional heat kernel

G(t, x, y) : [0,∞)×D2 → R+, (t, x, y) 7→ 1
4πt exp(−‖x− y‖

2
2

4t )

in the sense that it solves the associated integral equation for t = ρ2/2:

σ2
∫
D

exp(−‖x− y‖
2
2

2ρ2 )ei(y)dy = ηiei(x), i ∈ N

with the boundary condition ei = 0 on ∂D, see [99]. Compared with a Gaussian field
generated by a squared exponential covariance operator, this field shows a very similar
behavior, except that it is zero on the boundary. It, further, has the advantage, that all
expressions are available in closed form and we forgo the numerical approximation of
the eigenbasis. For all experiments in this section we use the parameters σ2 = 0.25 and
ρ = 0.02. As before, we consider a log-Gaussian random field, meaning Φ(w) = exp(w).
To illustrate the flexibility of a jump-diffusion coefficient a as in Def. 4.3.1, we vary
the random partitioning of D for each example and give a detailed description below.
Again, we approximate the entries of the stiffness matrix by the midpoint rule on
each simplex K. To ensure that this is sufficient, we also tested a four-point Gauss-
Legendre quadrature rule for triangular domains, which did not change the outcomes
significantly. As in the previous subsection, we prolong linearly on a fixed grid to
add and subtract the generated samples of the multilevel Monte Carlo estimator. The
reference grid for the RMSE consists of 400× 400 equally spaced points in the domain
D = (0, 1)2, which yields a negligible interpolation error. The multilevel approximation
parameters are identical to the 1D example, except that h` = h` = 2

52−` and we now
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calculate the reference solution on level 7 to estimate the RMSE (by averaging 10
independent multilevel Monte Carlo estimations) up to level L = 4 or L = 5, depending
on the example. All RMSE curves are plotted against the inverse estimated refinement
E(ĥ2)−1/2 on the abscissa.

In the first 2D example, the partitions T of D are generated by random lines
through the domain. More precisely, we sample independent Poisson random variables
Px,Py ∼ Poi(1) and a total of 2(Px+Py+2) independent U([0, 1])-distributed random
variables U1, . . . , U2(Px+Py+2). The first Px + 1 uniform random variables represent the
jump positions on (0, 1) × {0}, the second set UPx+2, . . . , U2Px+2 are the positions of
the discontinuities on the opposing axis (0, 1) × {1} in ∂D. We connect opposing
points in ascending order by straight lines to obtain a vertical random partition of D.
Analogously, the horizontal splitting is achieved by distributing and connecting the
remaining 2Py + 2 uniform random variables on the sets {0} × (0, 1) and {1} × (0, 1).
As we obtain an average of E((Px + 2)(Py + 2)) = 9 partition elements of uniformly
distributed size and location, λ may be set as λ = 9Λ in this example, where Λ is the
Lebesgue measure on (D,B(D)).

To each of the (Px + 2)(Py + 2) random quadrangles we assign a jump height Pi,
where the sequence (Pi, i ∈ N) is i.i.d. U([0, 5])-distributed. This specific structure of
a may be used, for example, to model stationary flows through heterogeneous media,
where the hydraulic conductivity varies on sub-domains of the medium. We assume

Figure 4.5 Left: Sample of the 2D diffusion coefficient in heterogeneous media. Right:
Approximated FE solution to the sample of a.

homogeneous Dirichlet-boundary conditions on Γ1 = ∂D and f ≡ 1 as source term.
A sample of the diffusion coefficient and the FE approximation is given in Fig. 4.5.
Compared to a solution with constant coefficient, the influence of the discontinuous
diffusion is clearly visible in the contour of the approximated solution.

72



CHAPTER 4. ELLIPTIC PDES WITH JUMP DIFFUSION COEFFICIENT

Fig. 4.6 shows that the adaptive multilevel Monte Carlo and non-adaptive multilevel
Monte Carlo algorithm perform quite similar, where the asymptotic error rate of the
nonadaptive methods is slightly lower with 0.85. Compared to that, we recover a
convergence rate of 0.9 and lower absolute errors for the adaptive method. In both
cases, coupled and normal multilevel Monte Carlo sampling produces almost identical
errors which results in the best time-to-error ratio of the adaptive coupled multilevel
Monte Carlo estimator, see Fig. 4.6.
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Figure 4.6 Left: RMSE of the heterogeneous media example, Right: Time-to-error plot.

In the second 2D example, we aim to mimic the structure of a fractured porous
medium. To this end, we set λ = 5Λ and sample accordingly τ = 5 uniformly dis-
tributed random points x1, . . . , x5 on the domain D. Then, for each point xi, a random
length li with distribution U([0.5, 1.5]) is generated. We sample, further, five random
angles α1, . . . , α5 with uniform distribution on the set [−π

9 ,−
π
36 ] ∪ [ π36 ,

π
9 ]. We define

xi as the center of a line with length li rotated by αi, where three of the five lines
are orientated horizontally and the remaining two lines are vertical. Finally, the line
segments outside of D are removed and each random line is assigned a positive pre-
set width of 0.04, which results in a "trench structure" of the diffusion coefficient as
depicted in Fig. 4.7. On the trenches, we set the jump height to P1 = 100, while the
jump heights on the remaining quadrangles of the partition is set to 1. Fixing the
jump heights captures increasing permeability in the cracks of a certain medium, the
Gaussian field still accounts for some uncertainty within each partition element of the
domain. The source function is given as f ≡ 5. We split ∂D by Γ1 := {0, 1}× [0, 1] and
Γ2 := (0, 1) × {0, 1} and impose the (path-wise) mixed Dirichlet-Neumann boundary
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conditions

u(ω, ·) =

0.1 on {0} × [0, 1]

0.3 on {1} × [0, 1]
and a(ω, ·) #»n · ∇u(ω, ·) = 0 on Γ2 (4.17)

for each ω ∈ Ω. A sample of the approximated solution is displayed in Fig. 4.7.

Figure 4.7 Left: Sample of the fractured porous medium diffusion coefficient with adaptive
triangulation. Right: Approximated FE solution to the sample of a.

Compared to the first 2D example, there is now a larger gap between the RMSE
curves of the adaptive and non-adaptive estimators, see Fig. 4.8. The asymptotic rate
for the error is again close to order one for both adaptive methods, while we obtain
0.6 for the non-adaptive algorithms. This is possibly due to the higher magnitude of
the discontinuities in the diffusion coefficient compared to the first example. Coupling
the samples now leads to a higher RMSE in each algorithm and this effect is more pro-
nounced in the adaptive setting. Asymptotically, the rates of both coupled estimators
remain comparable to standard multilevel Monte Carlo. An adaptive triangulation for
samples of this particular diffusion coefficient often entails very fine meshes, even if
the desired maximum diameter of each triangle is comparably high, as Fig. 4.7 and
Fig. 4.8 illustrate. Due to this increase in complexity when using adaptive FE, the
simulation times for the respective estimators are now considerably longer as in the
previous scenario, see Fig. 4.8. Nevertheless, the adaptive methods still have signifi-
cantly better time-to-error ratios, but now the standard adaptive method outperforms
the corresponding coupled estimator.

As a last 2D example, we discuss a medium with inclusions. To this end, we sample
a discrete uniformly-distributed random variable τ where τ ∈ {1, 2, 3, 4} and define
λ := E(τ)

0.64 Λ|(0.1,0.9)2 . Scaling and restricting the Lebesgue measure on (0.1, 0.9)2 means
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Figure 4.8 Left: RMSE of the fractured porous media example, Right: Time-to-error plot.

that we now draw τ -many uniformly distributed points within the the sub-domain
(0.1, 0.9)2 ⊂ D. To each of this points we assign a circle of random radius. The radii
are U([0.075, 0.1])-distributed. On each circle we assign a jump height of 1, while this
parameter is set to 20 outside of the circles. We assume the same Neumann–Dirichlet
boundary conditions as in our second 2D-example (see Eq. (4.17)) and set f ≡ 10 as
source term. A sample of this jump-diffusion coefficient with corresponding FE solution
is shown in Fig. 4.9.

Figure 4.9 Left: Sample of the diffusion coefficient of a medium with inclusions with adaptive
triangulation. Right: Approximated FE solution to the sample of a.

As Fig. 4.10 indicates, we obtain a similar behavior of convergence as in the previous
example: The RMSE of the adaptive estimators is again significantly lower on all levels
and the non-adaptive has again an asymptotic RMSE of order 0.6. For the adaptive
methods, we obtain log-linear error decay of order O(h| log(h)| 12 ). This corresponds
to the expected path-wise rate for an adaptive FE solution of this diffusion problem,
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as the discontinuities have C2-boundaries. Bootstrapping slightly reduces the RMSE
of the non-adaptive method, but has little effect on the adaptive multilevel Monte
Carlo estimator. The computational complexity of this scenario is comparable to the
heterogeneous media example and thus significantly lower as in case of the fractured
porous medium. Finally, the adaptive algorithms again attain better time-to-error
with the coupled estimator slightly outperforming the standard adaptive method, see
Fig. 4.10.
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Figure 4.10 Left: RMSE of the example for a medium with inclusions, Right: Time-to-error
plot.
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COMMENTS

Comments by A. Stein on "A study of elliptic partial differential
equations with jump diffusion coefficients":

In the first numerical experiment in one dimension from Subsection 4.6.1 we see a
converge rate of order κa ≈ 1 with respect to the spatial refinement h. These results
are theoretically based on Assumption 4.4.4 that requires the same rate of convergence
for the strong error in the L2(Ω;V )-norm, i.e. for the second moment of the FE
discretization error. This is somehow puzzling in view of the following chapter, since we
have used a log-Brownian motion on (0, 1) as continuous part of the diffusion coefficient.
According to Theorem 5.4.3 in Chapter 5, a strong error of order κa = 1 can only be
ensured for a piecewise Lipschitz-continuous diffusion coefficient. For a piecewise log-
Brownian motion as in Subsection 4.6.1, one would only expect an error decay of order
κa = 1/2, which is actually confirmed in the numerical experiments in the next chapter.

To explain this, we keep in mind that we measure the RMSE between the expec-
tation of the solution u and its multilevel Monte Carlo estimator in Subsection 4.6.1.
Then, the RMSE more resembles a weak error estimate, i.e. the norm of the expected
bias, rather than the strong error, i.e. the second moment of the path-wise bias. Un-
der the term bias, we have aggregated the truncation error in the Gaussian field and
the FE discretization error in space. It seems that the low mean-square regularity
and corresponding truncation error in the log-Brownian motion does not dominate the
overall RMSE in this case, given that all other discretization parameters, i.e. spatial
refinement and number of samples, are aligned to order κa = 1. This also indicates
that the there might be room for improvement regarding the error bounds that involve
the truncation error Ξn in the Gaussian random field.

On a further note, we remark that the second 2D-example in Subsection 4.6.2 is in
line with the findings from the next chapter, although the stochastic geometry contains
non-convex shapes. The reentrant corners of the trenches only affect spatial regularity
on comparably small areas of D in each sample. Therefore, they have only little effect
on the overall regularity in D which yields again a rate of κa ≈ 1 in this example.
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5 Numerical analysis for time-dependent
advection-diffusion problems with
random discontinuous coefficients

Andreas Stein and Andrea Barth
Submitted to "Stochastics and Partial Differential Equations: Analysis and
Computations" July 2020, Springer, currently in the first stage of review.

Abstract: Subsurface flows are commonly modeled by advection-diffusion equa-
tions. Insufficient measurements or uncertain material procurement may be accounted
for by random coefficients. To represent, for example, transitions in heterogeneous
media, the parameters of the equation are spatially discontinuous. Specifically, a sce-
nario with coupled advection- and diffusion coefficients that are modeled as sums of
continuous random fields and discontinuous jump components are considered. For the
numerical approximation of the solution, a sample-adapted, path-wise discretization
scheme based on a finite element approach is introduced. To stabilize the numerical
approximation and accelerate convergence, the discrete space-time grid is chosen with
respect to the varying discontinuities in each sample of the coefficients, leading to a
stochastic formulation of the Galerkin projection and the finite element basis.

5.1 Introduction

In this paper we are concerned with the well-posedness of a solution to a time-dependent
advection-diffusion equation with discontinuous random coefficients and its numerical
discretization. The random coefficient function is modeled by a continuous part and
a discontinuous part, inspired by the unique characterization of the Lévy-Khinchine
formula for Lévy processes. We adopt this idea to spatial domains, meaning we pro-
pose jumps occurring on lower-dimensional submanifolds. The numerical discretization
method has to account for these discontinuities of the coefficient functions, as otherwise
(spatial) convergence rates decline.
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CHAPTER 5. RANDOM DISCONTINUOUS PARABOLIC PROBLEMS

This work is a generalization to the elliptic setting which has drawn attention over
the last decades. While many publications focus on numerical methods for continuous
stochastic coefficients (see, e.g., [1, 12, 14, 15, 16, 29, 59, 63, 85, 112, 148, 164, 165, 190,
194, 204]), the literature on stochastic discontinuous coefficients or stochastic interface
problems is sparse (see, e.g., [104, 140, 205]). The reasons are twofold: On one hand a
Gaussian random field is a well defined mathematical object and its properties are well
studied, on the other hand there is no general definition and approximation method for
a (discontinuous) Lévy field. A (centered) Gaussian random field is fully characterized
by its covariance operator. Discretization methods range from spectral approximations
to Fourier methods (see, e.g., [98, 139, 193]). While we also need an approximation for
the continuous (Gaussian) part of the coefficient function, drawing samples from differ-
ent jump distributions may also introduce a bias. Our main contribution is therefore,
to provide a well-posedness result for a parabolic equation with general jump-diffusion
and jump-advection coefficient and provide analysis of a numerical approximation. Be-
sides the approximation of the coefficient itself, we prove convergence of a path-wise
sample-adapted space-time approximation. Naturally, for path-wise adapted schemes,
convergence rates are also random. However, in our setting an upper bound on the
mean-squared error can be derived but sampling has to be adopted accordingly.

The paper is structured as follows: In Section 5.2 we state the problem and show a
general existence result for path-wise solutions under mild assumptions on the data. In
the following section we define the random coefficient functions and show convergence
of approximations in appropriate norms. These approximations are used to develop
in Section 5.4 path-wise adapted discretization schemes for the solution. Our main
contribution is a convergence result for this approximation. We close with one- and
two-dimensional numerical experiments, that confirm our theoretical findings.

5.2 Parabolic initial boundary value problems and solutions

Let (Ω,F ,P) be a complete probability space, let T := [0, T ] a time interval for some
T > 0 and let D ⊂ Rd, d ∈ {1, 2}, be a bounded and convex Lipschitz domain. In this
paper we consider the linear, random initial-boundary value problem

∂tu(ω, x, t) + [Au](ω, x, t) = f(ω, x, t) in Ω×D × (0, T ],

u(ω, x, 0) = u0(ω, x) in Ω×D × {0},

u(ω, x, t) = 0 on Ω× ∂D × T,

(5.1)
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5.2. INITIAL BOUNDARY VALUE PROBLEMS

where f : Ω × D × T → R is a random source function and u0 : Ω × D denotes the
random initial condition of the partial differential equation (PDE). Furthermore, A is
the second order partial differential operator given by

[Au](ω, x, t) = −∇ · (a(ω, x)∇u(ω, x, t)) + b(ω, x) · ∇u(ω, x, t)

for (ω, x, t) ∈ Ω×D × T with

• a stochastic jump-diffusion coefficient a : Ω×D → R and

• a discontinuous random convection term b : Ω×D → Rd.

We could extend the above model problem by including time-dependent diffusion
and/or advection coefficients. If a and b are sufficiently smooth with respect to t,
i.e. continuously differentiable in T, the temporal convergence rates in Section 5.4
are not affected. The focus of this article, however, is on the numerical analysis of
Problem (5.1) with coefficients that involve random spatial discontinuities, hence we
assume for the sake of simplicity that a and b are time-independent. We base the
analysis of Problem (5.1) on the Sobolev space Hk(D) equipped with the norm

‖v‖Hk(D) :=
( ∑
|ν|≤k

∫
D
|Dνv(x)|2dx

)1/2
for k ∈ N,

where Dν := ∂ν1
x1 . . . ∂

νd
xd

is the mixed partial weak derivative (in space) with respect to
the multi-index ν ∈ Nd

0. The corresponding seminorm to Hk(D) is denoted by

|v|Hk(D) :=
( ∑
|ν|=k

∫
D
|Dνv(x)|2dx

)1/2
.

The fractional order Sobolev spaces Hs(D) for s > 0 are defined by the norm

‖v‖Hs(D) := ‖v‖Hbsc(D) + |v|Hs−bsc(D), |v|2Hs−bsc(D) :=
∫
D

∫
D

|v(x)− v(y)|2
|x− y|d+2(s−bsc)dxdy,

where | · |Hs−bsc(D) is the the Gagliardo seminorm, see [71], and

b·c : R→ Z, s 7→ max(k ∈ Z, k ≤ s)

is the floor operator. Further, we define H := L2(D) and denote by C a generic
positive constant which may change from one line to another. Whenever necessary, the
dependence of C on certain parameters is made explicit.
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On D, the existence of a bounded, linear operator γ : Hs(D)→ Hs−1/2(∂D) with

γ : Hs(D) ∩ C∞(D)→ Hs−1/2(∂D), v 7→ γv = v|∂D

and
‖γv‖Hs−1/2(∂D) ≤ C‖v‖Hs(D) (5.2)

for s ∈ (1/2, 3/2), v ∈ Hs(D) is ensured by the trace theorem, see for example [73].
The constant C = C(s,D) > 0 in Ineq. (5.2) is only dependent on s and D. Since
we only consider homogeneous Dirichlet boundary conditions on ∂D, we may treat γ
independently of ω and define the suitable solution space V as

V := H1
0 (D) = {v ∈ H1(D)| γv ≡ 0},

equipped with the H1(D)-norm ‖v‖V := ‖v‖H1(D). Due to the homogeneous Dirich-
let boundary conditions, the Poincaré inequality ‖v‖H ≤ C|v|H1(D) holds with C =
C(|D|) > 0 for all v ∈ V , hence the norms ‖ · ‖H1(D) and | · |H1(D) are equivalent on
V . We work on the Gelfand triplet V ⊂ H ⊂ V ′ = H−1(D), where V ′ denotes the
topological dual of any vector space V . As the coefficients a and b are given by random
functions, any solution u to Problem (5.1) is in general a time-dependent V -valued
random variable. To investigate the integrability of u with respect to T and the un-
derlying probability measure P on (Ω,F), we need to introduce the space of Bochner
integrable functions.

Definition 5.2.1. Let (Y,Σ, µ) be a σ-finite and complete measure space, let (X , ‖·‖X )
a Banach space and define the norm ‖ · ‖Lp(Y ;X ) for a any function ϕ : Y → X by

‖ϕ‖Lp(Y ;X ) :=


( ∫

Y ‖ϕ(y)‖pXµ(dy)
)1/p

for 1 ≤ p < +∞

ess sup
y∈Y

‖ϕ(y)‖X for p = +∞
.

The corresponding space of Bochner integrable random variables is then given by

Lp(Y ;X ) := {ϕ : Y → X is strongly measurable and ‖ϕ‖Lp(Y ;X ) < +∞}.

Furthermore, the space of all continuous functions is defined as

C(T;X ) := {ϕ : T→ X is continuous and max
t∈T
‖ϕ(t)‖X < +∞}.

We are interested in the two particular cases that
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• (Y,Σ, µ) = (T,B(T), µT), where B(T) is the Borel σ-algebra over T and µT is the
Lebesgue-measure on B(T),

• (Y,Σ, µ) = (Ω,F ,P).

The space Lp(Ω;X ) is commonly referred to as the space of Bochner integrable random
variables. For ϕ ∈ L1(T;X ) we denote by ∂tϕ ∈ L1(T;X ) the weak time derivative of
ϕ if for all ξ ∈ C∞0 (T;R)

∫ T

0
∂tξ(t)ϕ(t)dt = −

∫ T

0
ξ(t)∂tϕ(t)dt

holds, where ∂tξ is the classical time derivative (in a strong sense) of ξ. The set
C∞0 (T;R) contains all infinitely differentiable functions ξ : T → R with compact sup-
port in (0, T ). We record following useful Lemma for the calculus in L2(T;H).

Lemma 5.2.2. [80, Theorem 2, Chapter 5.9] Let H = L2(D) and ϕ, ∂tϕ ∈ L2(T;H).
Then, the mapping ϕ : T→ H is continuous,

ϕ(t2) = ϕ(t1) +
∫ t2

t1
∂tϕ(t)dt, for all 0 ≤ t1 ≤ t2 ≤ T ,

and it holds for C = C(T ) > 0 that

max
t∈T
‖ϕ(t)‖2

H ≤ C(‖ϕ‖2
L2(T;H) + ‖∂tϕ‖2

L2(T;H)).

Remark 5.2.3. We may as well consider non-homogeneous boundary conditions, that
is u(ω, x, t) = g1(ω, x, t) for g1 : Ω× ∂D×T→ R. The corresponding trace operator γ
is still well-defined provided that g1(ω, ·, ·) can be extended almost surely to a function
g̃1(ω, ·, ·) ∈ L1(T;H1(D)) with ∂tg̃1(ω, ·, ·) ∈ L1(T;H−1(D)). Then, u − g̃1 ∈ L1(T;V )
may be regarded as a solution to the modified problem

∂t(u− g̃1)(ω, x, t) + [A(u− g̃1)](ω, x, t) = f(ω, x, t)− [Ag̃1](ω, x, t)

− ∂tg̃1(ω, x, t) on Ω×D × (0, T ],

(u− g̃1)(ω, x, 0) = u0(ω, x)− g̃1(ω, x, 0) on Ω×D × {0},

(u− g̃1)(ω, x, t) = 0 on Ω× ∂D × T.

But this is in fact a version of Problem (5.1) with modified source term and initial
value (see also [80, Chapter 6.1]).

We introduce the bilinear form associated to A in order to derive a weak formulation
of the initial boundary value Problem (5.1). For fixed ω ∈ Ω, multiplying Eq. (5.1)
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with a test function v ∈ V and integrating by parts yields the variational equation
∫
D
∂tu(ω, x, t)v(x)dx+Bω(u(ω, ·, t), v) = Fω,t(v), t ∈ T. (5.3)

The bilinear form Bω : V × V → R is given by

Bω(u, v) =
∫
D
a(ω, x)∇u(x) · ∇v(x) + b(ω, x) · ∇u(x)v(x)dx

= (a(ω, ·),
d∑
i=1

∂xiu∂xiv) + (b(ω, ·) · ∇u, v),

where (·, ·) denotes the L2(D)-scalar product. The source term is transformed into the
right hand side functional

Fω,t : V → R, v 7→
∫
D
f(ω, x, t)v(x)dx, t ∈ T,

and the integrals with respect to ∂tu and f are understood as the duality pairings
∫
D
∂tu(ω, x, t)v(x)dx = V ′〈∂tu(ω, ·, t), v〉V ,∫
D
f(ω, x, t)v(x)dx = V ′〈f(ω, ·, t), v〉V .

Definition 5.2.4. For fixed ω ∈ Ω, the path-wise weak solution to Problem (5.1) is a
function u(ω, ·, ·) ∈ L2(T;V ) with ∂tu(ω, ·, ·) ∈ L2(T;V ′) such that for t ∈ T

V ′〈∂tu(ω, ·, t), v〉V +Bω(u(ω, ·, t), v) = Fω,t(v), for all v ∈ V ,

and u(ω, ·, 0) = u0(ω, ·).

The following set of assumptions allows us to show existence and uniqueness of a
path-wise weak solution to Eq. (5.1):

Assumption 5.2.5.

• For almost all ω ∈ Ω it holds that

a−(ω) := ess inf
x∈D

a(ω, x) > 0 and a+(ω) := ‖a(ω, ·)‖L∞(D) < +∞.

• f ∈ Lp(Ω;L2(T;V ′)), u0 ∈ Lp(Ω;H) and 1/a− ∈ Lq(Ω;R), for some p, q ∈ [1,∞]
such that 1/p+ 1/q ≤ 1.

• There are constants b1, b2 ≥ 0 such that ‖b(ω, x)‖∞ ≤ min(b1a(ω, x), b2) holds for
almost all ω ∈ Ω and almost all x ∈ D.
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We note that for any v ∈ H1(D) it holds that

( d∑
i=1
|∂xiv(x)|

)2
≤ 2d−1

d∑
i=1

(∂xiv(x))2, x ∈ D, (5.4)

and hence ‖∑d
i=1 |∂xiv|‖2

H ≤ 2d−1|v|2H1(D).

Theorem 5.2.6. Under Assumption 5.2.5 there exists almost surely a unique path-
wise weak solution u(ω, ·, ·) ∈ L2(T;V )∩C(T;H) to Problem (5.1). Furthermore, u is
bounded for any r ∈ [1, (1/p+ 1/q)−1] by

E
(

sup
t∈T
‖u‖r∗,t

)1/r
≤ C(1 + ‖1/a−‖Lq(Ω;R))

(
‖u0‖Lp(Ω;H) + ‖f‖Lp(Ω;L2(T;V ′))

)
< +∞,

(5.5)

with C = C(b, T, q) > 0 and the path-wise parabolic norm defined by

‖u(ω, ·, ·)‖∗,t :=
(
‖u(ω, ·, t)‖2

H +
∫ t

0
|u(ω, ·, r)|2H1(D)dr

)1/2
.

Moreover, if f ∈ Lp(Ω;L2(T;H)), then for any r ∈ [1, (1/p+ (1/(2q))−1]

E
(

sup
t∈T
‖u‖r∗,t

)1/r
≤ C(1 + ‖1/a−‖1/2

Lq(Ω;R))
(
‖u0‖Lp(Ω;H) + ‖f‖Lp(Ω;L2(T;H))

)
< +∞.

Proof. For fixed ω ∈ Ω, the existence and uniqueness of a path-wise weak solution
u(ω, ·, ·) ∈ L2(T;V )∩C(T;H) to Problem (5.1) is proved identically as for deterministic
parabolic problems, see for instance [80, Chapter 7.1] or [177, Chapter 11]. To show
the parabolic estimate (5.5), we fix ω ∈ Ω, t ∈ T, test against v = u(ω, ·, t) ∈ V (in
the variational Problem (5.3)) and obtain

V ′〈∂tu(ω, ·, t), u(ω, ·, t)〉V +Bω(u(ω, ·, t), u(ω, ·, t)) = Fω,t(u(ω, ·, t)).

As u(ω, ·, ·) ∈ L2(T;V ) it holds that

V ′〈∂tu(ω, ·, t), u(ω, ·, t)〉V = 1
2
d

dt
‖u(ω, ·, t)‖2

H ,
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see i.e. [80, Chapter 5.9]. Rearranging the terms yields

1
2
d

dt
‖u(ω, ·, t)‖2

H + (a(ω, ·),
d∑
i=1

(∂xiu(ω, ·, t))2) = −(b(ω, ·) · ∇u(ω, ·, t), u(ω, ·, t))

+ Fω,t(u(ω, ·, t))

=: I + II.

(5.6)

We bound I with Young’s inequality, Assumption 5.2.5 and Ineq. (5.4) via

I ≤ 21−d

4b1
‖‖b(ω, ·)‖1/2

∞

d∑
i=1
|∂xiu(ω, ·, t)|‖2

H + 2d−1b1‖‖b(ω, ·)‖1/2
∞ u(ω, ·, t)‖2

H

≤ 1
4(a(ω, ·),

d∑
i=1

(∂xiu(ω, ·, t))2) + 2d−1b1b2‖u(ω, ·, t)‖2
H .

By the Poincaré inequality it holds that ‖u‖H ≤ C|u|H1(D) and we estimate

II ≤ (1 + C2)‖f(ω, ·, t)‖2
V ′

a−(ω) + a−(ω)
4(1 + C2)‖u(ω, ·, t)‖2

V

≤ (1 + C2)‖f(ω, ·, t)‖2
V ′

a−(ω) + a−(ω)
4 |u(ω, ·, t)|2H1(D)

≤ (1 + C2)‖f(ω, ·, t)‖2
V ′

a−(ω) + 1
4(a(ω, ·),

d∑
i=1

(∂xiu(ω, ·, t))2)

Hence, Eq. (5.6) implies

d

dt
‖u(ω, ·, t)‖2

H + (a(ω, ·),
d∑
i=1

(∂xiu(ω, ·, t))2) ≤ C
(‖f(ω, ·, t)‖2

H

a−(ω) + ‖u(ω, ·, t)‖2
H

)
.

We now use Grönwall’s inequality to bound

‖u(ω, ·, t)‖2
H + a−(ω)

∫ t

0
|u(ω, ·, z)|2H1(D)dz

≤‖u(ω, ·, t)‖2
H +

∫ t

0
(a(ω, ·),

d∑
i=1

(∂xiu(ω, ·, z))2)dz

≤ exp(CT )
(
‖u0(ω, ·)‖2

H +
‖f(ω, ·, ·)‖2

L2(T;V ′)

a−(ω)

)
,

where we emphasize that the last estimate is independent of t. If a−(ω) ≤ 1 holds for
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fixed ω, we obtain the path-wise parabolic estimate

sup
t∈T
‖u(ω, ·, ·)‖2

∗,t ≤ exp(CT )
(‖u0(ω, ·)‖2

H + ‖f(ω, ·, ·)‖2
L2(T;V ′)

a2
−(ω)

)
.

On the other hand, if a−(ω) > 1, it follows that

sup
t∈T
‖u(ω, ·, ·)‖2

∗,t ≤ exp(CT )
(
‖u0(ω, ·)‖2

H + ‖f(ω, ·, ·)‖2
L2(T;V ′)

)
.

With the inequalities
√
c1 + c2 ≤

√
c1 + √c2 and (c1 + c2)r ≤ 2r−1(cr1 + cr2) for

c1, c2 ≥ 0, r ≥ 1, and by taking expectations this yields for any r ∈ [1, (1/p+ 1/q)−1]

E
(

sup
t∈T
‖u‖r∗,t

)
≤ CE

(‖u0‖rH + ‖f‖rL2(T;H)

ar−
1{a−≤1} + (‖u0‖rH + ‖f‖rL2(T;V ′))1{a−>1}

)
≤ C(1 + ‖1/a−‖rLq(Ω;R))

(
‖u0‖rLp(Ω;H) + ‖f‖rLp(Ω;L2(T;V ′))

)
,

where we have used Assumption 5.2.5 and Hölder’s inequality for the last estimate.
For the second part of the claim, given that f ∈ Lp(Ω;L2(T;H)), we may bound

II via
II ≤ 1

2‖f(ω, ·, t)‖2
H + 1

2‖u(ω, ·, t)‖2
H

and proceed as for the first term, using Grönwall’s inequality, to obtain

‖u(ω, ·, t)‖2
H + a−(ω)

∫ t

0
|u(ω, ·, z)|2H1(D)dz ≤ C

(
‖u0(ω, ·)‖2

H + ‖f(ω, ·, ·)‖2
L2(T,H)

)
.

Finally, with Hölder’s inequality it follows for any r ∈ [1, (1/p+ 1/(2q))−1] that

E
(

sup
t∈T
‖u‖r∗,t

)1/r
≤ C(1 + ‖1/a−‖1/2

Lq(Ω;R))
(
‖u0‖Lp(Ω;H) + ‖f‖Lp(Ω;L2(T;H))

)
.

To incorporate discontinuities at random submanifolds of D, we introduce the jump-
diffusion coefficient a and jump-advection coefficient b in the following section. The
introduced coefficients allow us to apply Theorem 5.2.6 and derive existence, uniqueness
and regularity results on the corresponding solution to the parabolic problem with
discontinuous coefficients.
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5.3 Random parabolic problems with discontinuous coefficients

To obtain a stochastic jump-diffusion coefficient representing the permeability in a sub-
surface flow model, we use the random coefficient a from the elliptic diffusion problem
in [31] consisting of a (spatial) Gaussian random field with additive discontinuities on
random submanifolds of D. The specific structure of a may be utilized to model the
hydraulic conductivity within heterogeneous and/or fractured media and is thus con-
sidered time-independent (see also Remark 5.2.3). The advection term in this model
should then be driven by the same random field and inherit the same discontinuous
structure as the diffusion term. Thus, we consider the coefficient b as an essentially
linear mapping of a. Since the coefficients usually involve infinite series expansions
in the Gaussian field and/or sampling errors in the jump measure, we also describe
how to obtain tractable approximations of a and b. Subsequently, existence and sta-
bility results for weak solutions of the unapproximated resp. approximated parabolic
problems based on Theorem 5.2.6 are proved. We conclude this section by showing
that the approximated solution converges to the solution u of the (unapproximated)
advection-diffusion problem in a suitable norm.

5.3.1 Jump-diffusion coefficients and their approximations

Definition 5.3.1. The jump-diffusion coefficient a is defined as

a : Ω×D → R>0, (ω, x) 7→ a(x) + Φ(W (ω, x)) + P (ω, x),

where

• a ∈ C1(D;R≥0) is non-negative, continuous and bounded.

• Φ ∈ C1(R;R>0) is a continuously differentiable, positive mapping.

• W ∈ L2(Ω;H) is a (zero-mean) Gaussian random field associated to a non-
negative, symmetric trace class operator Q : H → H.

• T : Ω → B(D), ω 7→ {T1, . . . , Tτ} is a random partition of D, i.e. the Ti are
disjoint open subsets of D with D = ⋃τ

i=1 T i. The number τ of elements in T is
a random variable τ : Ω → N on (Ω,F ,P). Associated to T is a measure λ on
(D,B(D)) that controls the position of the random elements Ti.
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• (Pi, i ∈ N) is a sequence of non-negative random variables on (Ω,F ,P) and

P : Ω×D → R≥0, (ω, x) 7→
τ(ω)∑
i=1
1{Ti}(x)Pi(ω).

The sequence (Pi, i ∈ N) is independent of τ (but not necessarily i.i.d.).

Based on a, the jump-advection coefficient b is given for b̃1, b̃2 ∈ L∞(D)d by

b : Ω×D → Rd, (ω, x) 7→ min(a(ω, x)b̃1(x), b̃2(x)).

Remark 5.3.2. The dependence of a and b in Definition 5.3.1 may be interpreted in
the way that advection and diffusion are both mainly influenced by the same discon-
tinuous geometry. For instance, in a subsurface flow model, the diffusion coefficient a
represents an uncertain permeability that is subject to sudden changes due to cracks,
inclusions or other discontinuous structures. Of course, this geometry should also be
reflected in the advective forces in the model, and to this end we make the simplifying
assumption that b is an (essentially) linear transformation of a. As b̃1 is only required
to be bounded vector field, there is still some flexibility in modeling of b. This entails
particularly that b can admit additional (deterministic) discontinuities. The defini-
tion of the advection coefficient immediately implies Assumption 5.2.5 in the sense
that ‖b(ω, x)‖∞ ≤ min(b1a(ω, x), b2) holds with suitable constants b1, b2 for almost all
ω ∈ Ω and almost x ∈ D. The upper bound with respect to b2 is due to technical
reasons and not restrictive in practical applications, as b2 may be arbitrary large (see
also the numerical examples in Section 5.5).

In general, the structure of a as in Def. 5.3.1 does not allow us to draw samples
from the exact distribution of this random function. We remark that λ may be used
to concentrate the submanifolds that generate T on certain areas in D, see Section 5.5
for examples. For an approximation of the Gaussian field, one usually uses truncated
Karhunen-Loève expansions: Let ((ηi, ei), i ∈ N) denote the sequence of eigenpairs of
Q, where Q : H → H is the covariance operator of the Gaussian field W and the
eigenvalues are given in decaying order η1 ≥ η2 ≥ · · · ≥ 0. Since Q is trace class, the
Gaussian random field W admits the representation

W =
∑
i∈N

√
ηieiZi,

where (Zi, i ∈ N) is a sequence of independent and standard normally distributed
random variables. The series above converges in L2(Ω;H) and almost surely (see
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e.g. [27]). The truncated Karhunen-Loève expansion WN of W is then given by

WN :=
N∑
i=1

√
ηieiZi,

where we call N ∈ N the cut-off index of WN . In addition, it may be possible that
the sequence of jumps (Pi, i ∈ N) cannot be sampled exactly but only with an intrinsic
bias (see [31, Remark 3.4]). The biased samples are denoted by (P̃i, i ∈ N) and the
error which is induced by this approximation is represented by the parameter ε > 0 as
in Assumption 5.3.3. To approximate P using the biased sequence (P̃i, i ∈ N) instead
of (Pi, i ∈ N) we define the jump part approximation

Pε : Ω×D → R, (ω, x) 7→
τ(ω)∑
i=1
1{Ti}(x)P̃i(ω).

The approximated jump-diffusion coefficient aN,ε is then given by

aN,ε(ω, x) := a(x) + Φ(WN(ω, x)) + Pε(ω, x), (5.7)

and the approximated jump-advection coefficient bN,ε via

bN,ε(ω, x) := min(aN,ε(ω, x)b̃1(x), b̃2(x)).

Substituting the approximated jump coefficients into the parabolic model prob-
lem (5.1) yields

∂tuN,ε(ω, x, t) + [AN,εuN,ε](ω, x, t) = f(ω, x, t) in Ω×D × (0, T ],

uN,ε(ω, x, 0) = u0(ω, x) in Ω×D × {0}

uN,ε(ω, x) = 0 on Ω× ∂D,

(5.8)

where the approximated second order differential operator AN,ε is given by

[AN,εu](ω, x, t) = −∇ · (aN,ε(ω, x)∇u(ω, x, t)) + bN,ε(ω, x) · ∇u(ω, x, t).

The path-wise variational formulation of Eq. (5.8) is then analogous to Eq. (5.3):
For almost all ω ∈ Ω with given f(ω, ·), find uN,ε(ω, ·, ·) ∈ L2(T;V ) with weak time
derivative ∂tuN,ε(ω, ·, ·) ∈ L2(T;V ′) such that it holds, for t ∈ T

V ′〈∂tuN,ε(ω, ·, t), v〉V +BN,ε
ω (uN,ε(ω, ·, t), v) = Fω,t(v), for all v ∈ V , (5.9)
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where the approximated bilinear form is given by

BN,ε
ω (v, w) =

∫
D
aN,ε(ω, x)∇v(x) · ∇w(x) + bN,ε(ω, x) · ∇v(x)w(x)dx, v, w ∈ V.

The following assumptions guarantee that we can apply Theorem 5.2.6 also in the
jump-diffusion setting and that therefore path-wise solutions u and uN,ε exist.

Assumption 5.3.3.

(i) The eigenfunctions ei of Q are continuously differentiable on D and there exist
constants α, β, Ce, Cη > 0 such that for any i ∈ N

‖ei‖L∞(D) ≤ Ce, max
j=1,...,d

‖∂xjei‖L∞(D) ≤ Cei
α and

∞∑
i=1

ηii
β ≤ Cη < +∞.

(ii) Furthermore, the mapping Φ as in Definition 5.3.1 and its derivative are bounded
for any w ∈ R by

φ1 exp(φ2w) ≥ Φ(w) ≥ φ1 exp(−φ2w), | d
dx

Φ(w)| ≤ φ3 exp(φ4|w|),

where φ1, . . . , φ4 > 0 are arbitrary constants.

(iii) There exists p > 1 such that f ∈ Lp(Ω;L2(T;V ′)) and u0 ∈ Lp(Ω;H). The
sequence (Pi, i ∈ N) consists of nonnegative and bounded random variables Pi ∈
[0, P ] for some P > 0. In addition, for s > 1 such that 1/p+ 1/s < 1 there exists
a sequence of approximations (P̃i, i ∈ N) ⊂ [0, P ]N so that the sampling error is
bounded, for some ε > 0, by

E(|P̃i − Pi|s) ≤ ε, i ∈ N.

Remark 5.3.4. The exponential bounds on Φ and its derivative imply that u ∈
Lr(Ω;L2(T;V )) for any r ∈ [1, p). That is, the integrability of u with respect to Ω only
depends on the stochastic regularity of f and u0. In fact, Theorem 5.2.6 shows that far
weaker assumptions on a (resp. Φ) are possible to achieve u ∈ Lr(Ω;L2(T;V )), at the
cost that r then also depends on the integrability of a−. At this point we refer to [31],
where the regularity of an elliptic diffusion problem with a as in Definition 5.3.1, but
less restricted functions Φ and P is investigated. However, Assumption 5.3.3 includes
the most important case that Φ(W ) is a log-Gaussian random field and the bounds
on Φ are merely imposed for a clear and simplified presentation of the results. On a
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further note, the assumptions on the eigenpairs (ηi, ei, i ∈ N) are natural and include
the case that Q is a Matérn-type or Brownian-motion-type covariance function.

Lemma 5.3.5. Let Assumption 5.3.3 hold and define

aN,ε,− := inf
x∈D

aN,ε(ω, x), aN,ε,+ := sup
x∈D

aN,ε(ω, x).

Then, 1/a−, 1/aN,ε,−, a+, aN,ε,+ ∈ Lq(Ω;R) for any q ∈ [1,∞) and there exists C =
C(q, φ1, φ2) > 0, independent of N and ε, such that

‖1/a−‖Lq(Ω;R), ‖1/aN,ε,−‖Lq(Ω;R), ‖a+‖Lq(Ω;R), ‖aN,ε,+‖Lq(Ω;R) ≤ C < +∞.

Proof. Let the parameters N ∈ N and ε > 0 be fixed. From [31, Lemma 3.5], we have
that W and WN are centered, almost surely bounded Gaussian random fields on D
which implies E := E(supx∈DW (x)) < +∞ as well as

P(sup
x∈D

W (·, x)− E ≥ c) ≤ exp(− c2

2σ2 ) (5.10)

for all c > 0 and σ2 := supx∈D E(W (·, x)2) ≤ Tr(Q). Furthermore,

P(‖W (x)‖L∞(D) > c) ≤ 2P(sup
x∈D

W (·, x) > c) (5.11)

by the symmetry of W . With ‖ exp(|W |)‖L∞(D) ≤ exp(‖W‖L∞(D)) and Assump-
tion 5.3.3 (ii), we then obtain for arbitrary q ∈ [1,∞)

E(1/aq−) ≤ E
((

inf
x∈D

Φ(W (·, x)
)−q)

= E
(

sup
x∈D

Φ(W (·, x))−q
)

≤ 1
φq1

E(sup
x∈D

exp(qφ2|W (·, x)|))

≤ 1
φq1

E(exp(qφ2‖W‖L∞(D))).

By Fubini’s Theorem, integration by parts and Ineqs. (5.11), (5.10) this yields

E(exp(qφ2‖W‖L∞(D))) =
∫ ∞

0
qφ2 exp(qφ2c)P(‖W‖L∞(D) > c)dc

≤ qφ2 exp(qφ2E) + 2
∫ ∞
E

qφ2 exp(qφ2c))P(sup
x∈D

W (·, x) > c)dc

≤ qφ2 exp(qφ2E) + 2
∫ ∞
E

qφ2 exp(qφ2c−
1

2σ2 c
2)dc.
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The last estimate on the right hand side is finite for each q ∈ R which proves the claim
for a−. To bound the expectation of a+, we proceed in the same way by noting that

‖a+‖Lq(Ω) ≤ ‖a‖L∞(D) + E
(
| sup
x∈D

Φ(W (x))|q
)

+ P

≤ ‖a‖L∞(D) + φ1E
(

sup
x∈D

exp(qφ2|W (·, x)|)
)1/q

+ P

by Assumption 5.3.3 (ii). Analogously, the claim follows for aN,ε,−, aN,ε,+ with the same
bounds from above as for a−, a+ respectively, because

σ2
N := sup

x∈D
E(WN(x)2) ≤

N∑
i=1

ηi ≤ Tr(Q).

Theorem 5.3.6. Under Assumption 5.3.3 there exists almost surely a unique weak
solution u to Problem (5.1) and a unique weak solution uN,ε to Problem (5.8) for each
N ∈ N and ε > 0. For r ∈ [1, p), the weak solutions satisfy the parabolic estimate

E
(

sup
t∈T
‖u‖r∗,t

)1/r
, E

(
sup
t∈T
‖uN,ε‖r∗,t

)1/r
≤ C

(
‖u0‖Lp(Ω;H) + ‖f‖Lp(Ω;L2(T;V ′))

)
,

where C = C(r, a, b, T ) > 0 is independent of N and ε.

Proof. To apply Theorem 5.2.6, we need Assumption 5.2.5 to hold. By Definition 5.3.1
and Eq. (5.7)

a−(ω), aN,ε,−(ω) > 0 and a+(ω), aN,ε,+(ω) < +∞

holds almost surely. The corresponding advection coefficients are bounded with Re-
mark 5.3.2 via

‖b(ω, x)‖∞ ≤ min(b1a(ω, x), b2) and ‖bN,ε(ω, x)‖∞ ≤ min(b1aN,ε(ω, x), b2),

respectively. We further obtain from Lemma 5.3.5 1/a−, 1/aN,ε,− ∈ Lq(Ω;R) for any
q ∈ [1,∞) and that ‖1/aN,ε,−‖Lq(Ω;R) is bounded uniformly with respect to N and ε.
For given r ∈ [1, p), we then choose q = (1/r− 1/p)−1 < +∞ and the claim follows by
Theorem 5.2.6.

Having shown the existence and uniqueness of the weak solutions u and uN,ε, we
may bound the difference between both solutions in the (expected) parabolic norm with
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respect to the approximation parameters N and ε. For this, we record the following
estimate on the approximation error a− aN,ε.

Theorem 5.3.7. [31, Theorem 3.12] Under Assumption 5.3.3, it holds that

‖a− aN,ε‖Ls(Ω;L∞(D)) ≤ C
(
Ξ1/2
N + ε1/s

)
,

where ΞN := ∑
i>N ηi and C > 0 is independent of N ∈ N and ε > 0.

The final result of this section shows the convergence uN,ε → u in Lr(Ω;L2(T ;V ))
as N → +∞ and ε→ 0.

Theorem 5.3.8. Under Assumption 5.3.3, for any r ∈ [1, (1/s+ 1/p)−1), the approx-
imation error of u is bounded in the parabolic norm by

E
(

sup
t∈T
‖u− uN,ε‖r∗,t

)1/r
≤ C

(
Ξ1/2
N + ε1/s

)
.

Proof. By Theorem 5.3.6, existence of solutions u and uN,ε to the Problems (5.3), (5.9)
is guaranteed almost surely, hence for almost all ω ∈ Ω, t ∈ T and v ∈ V

V ′〈∂tu(ω, ·, t), v〉V +Bω(u(ω, ·, t), v) = V ′〈∂tuN,ε(ω, ·, t), v〉V +BN,ε
ω (uN,ε(ω, ·, t), v).

This identity may be reformulated to the variational problem to find u−uN,ε ∈ L2(T;V )
such that for all t ∈ T and v ∈ V

V ′〈∂t(u(ω, ·, t)− uN,ε(ω, ·, t)), v〉V +Bω(u(ω, ·, t)− uN,ε(ω, ·, t), v)

=V ′〈f̃(ω, ·, t), v〉V ,

:=((aN,ε − a)(ω, ·),∇uN,ε(ω, ·, t) · ∇v) + ((bN,ε − b)(ω, ·) · ∇uN,ε(ω, ·, t), v),

with initial value (u − uN,ε)(ω, ·, 0) ≡ 0 holds almost surely. Definition 5.3.1 and
Remark 5.3.2 imply

‖f̃(ω, ·, ·)‖L2(T;V ′) ≤ (1 + b1)‖(a− aN,ε)(ω, ·)‖L∞(D)‖
d∑
i=1
|∂xiuN,ε(ω, ·, ·)|‖L2(T;H),
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and by Ineq. (5.4) and Theorem 5.3.6 we know that for r ∈ [1, p)

‖
d∑
i=1
|∂xiuN,ε|‖Lr(Ω;L2(T;H)) ≤ 2d/2−1/2E

(
‖uN,ε‖r∗,T

)1/r

≤ C
(
‖u0‖Lp(Ω;H) + ‖f‖Lp(Ω;L2(T;V ′))

)
< +∞.

We may now choose p ∈ [1, (1/s + 1/r)−1] and obtain by Hölder’s inequality and
Theorem 5.3.7

‖f̃(ω, ·, ·)‖Lp(Ω;L2(T;V ′)) ≤ (1 + b1)‖(a− aN,ε)(ω, ·)‖Ls(Ω;L∞(D))‖
d∑
i=1

∂xiuN,ε‖Lr(Ω;L2(T;H))

≤ C
(
Ξ1/2
N + ε1/s

)
for C > 0 independent of N and ε. The claim now follows with Lemma 5.3.5 and by
applying Theorem 5.2.6 on u− uN,ε for

q = (1/r − 1/s− 1/p)−1 < (1/r − 1/s− 1/p)−1 < +∞.

To draw samples of uN,ε, we need to employ further numerical techniques since
uN,ε(ω, ·, ·) takes almost surely values in the infinite-dimensional Hilbert space L2(T;V ).
Hence, we have to find path-wise approximations of uN,ε in finite-dimensional subspaces
of L2(T;V ) by discretizing the spatial and temporal domain. Next, we construct suit-
able approximation spaces of V , combine them with a time stepping method and control
for the discretization error.

5.4 Path-wise discretization schemes

In the previous section we demonstrated that u may be approximated by uN,ε for
sufficiently large N ∈ N resp. small ε > 0. Nevertheless, even uN,ε(ω, ·, ·) will in general
not be accessible analytically for fixed ω,N and ε, thus we need to find pathwise finite-
dimensional approximations of uN,ε(ω, ·, ·). In the first part of this section we explain
how a semi-discrete solution may be obtained by approximating V with a sequence
of sample-adapted Finite Element (FE) spaces. By sample-adaptedness we mean that
the FE mesh is aligned a-priori with the discontinuities of P in each sample, i.e. the
grid changes with each ω ∈ Ω. This is in contrast to adaptive FE schemes based

94



CHAPTER 5. RANDOM DISCONTINUOUS PARABOLIC PROBLEMS

on a-posteriori error estimates that may require several stages of remeshing in each
sample, see e.g. [70, 78, 131]. We analyze the discretization error for the pathwise
sample-adapted strategy and further emphasize its advantages compared to a standard,
sample-independent FE basis. In the second part we combine the spatial discretization
with a backward time stepping scheme in T, with the time step chosen accordingly to
the sample-dependent FE basis. Finally, we derive the mean-square error between the
unbiased solution u and the fully discrete approximation of uN,ε.

5.4.1 Sample-adapted spatial discretization

To find approximations of uN,ε(ω, ·, t) ∈ V for fixed ω ∈ Ω and t ∈ T, we use a stan-
dard Galerkin approach based on a sequence Vω = (V`(ω), ` ∈ N0) of finite-dimensional
and sample-dependent subspaces V`(ω) ⊂ V . An obvious choice for V` is the space of
piecewise linear Finite Elements with respect to some triangulation of D. We follow
the same approach as in [31] and utilize path-dependent meshes to match the inter-
faces generated by the jump-diffusion and -advection coefficients: For a given random
partition T (ω) = (Ti, i = 1 . . . , τ(ω)) of D, we choose a triangulation K`(ω) of D such
that

T (ω) ⊂ K`(ω) and h`(ω) := max
K∈K`(ω)

diam(K) ≤ h` for ` ∈ N0.

Above, diam(K) is the longest side length of the triangle K and (h`, ` ∈ N0) is a
positive sequence of deterministic refinement thresholds, decreasing monotonically to
zero. This guarantees that h`(ω) → 0 almost surely, although the absolute speed of
convergence may vary for each ω. Given that T splits the domainD into a finite number
of piecewise linear polygons (see Assumption 5.4.1 below), such a triangulation K` with
T (ω) ⊂ K`(ω) always exists for any prescribed refinement h` > 0. Consequently, V`(ω)
is chosen as the space of continuous, piecewise linear functions with respect to K`(ω):

V`(ω) := {v`,ω ∈ C0(D)
∣∣∣ v`,ω|∂D = 0 and v`,ω|K ∈ P1(K), K ∈ K`(ω)} ⊂ V.

The set P1(K) denotes the space of all linear polynomials on the triangle K, and
{v1,ω, . . . , vd`(ω),ω} is the nodal basis of V`(ω) that corresponds to the vertices in K`.
As discussed in [31, Section 4], the adjustment of K` to the discontinuities of a and b
accelerates convergence of the spatial discretization compared to a fixed, non-adapted
FE approach. The semi-discrete version of Problem (5.9) is then to find uN,ε,`(ω, ·, ·) ∈
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L2(T;V`(ω)) with ∂tuN,ε,`(ω, ·, ·) ∈ L2(T; (V`(ω))′) such that for t ∈ T and v`,ω ∈ V`(ω)

V ′〈∂tuN,ε,`(ω, ·, t), v`,ω〉V +BN,ε
ω (uN,ε,`(ω, ·, t), v`,ω) = Ft,ω(v`,ω),

uN,ε,`(ω, ·, 0) = u0,`(ω, ·),
(5.12)

In Eq. (5.12), u0,`(ω, ·) ∈ V`(ω) is a suitable approximation of u0(ω, ·), see also Re-
mark 5.4.4. The function uN,ε,`(ω, ·, t) may be expanded with respect to the basis
{v1,ω, . . . , vd`(ω),ω} as

uN,ε,`(ω, x, t) =
d`(ω)∑
j=1

cj(ω, t)vj,ω(x), (5.13)

where the coefficients c1(ω, t), . . . , cd`(ω, t) ∈ R depend on (ω, t) ∈ Ω × T and the
respective coefficient column-vector is defined as c(ω, t) := (c1(ω, t), . . . , cd`(ω, t))T .
With this, the semi-discrete variational problem in the finite-dimensional space V`(ω)
is equivalent to solving the system of ordinary differential equations

d

dt
c(ω, t) + A(ω)c(ω, t) = F(ω, t), t ∈ T,

for c with stochastic stiffness matrix (A(ω))jk = BN,ε
ω (vj,ω, vk,ω) and time-dependent

load vector (F(ω, t))j = Ft,ω(vj,ω) for j, k ∈ {1, . . . , d`(ω)}. To ensure the well-
posedness of Eq. (5.12) and derive error bounds of the numerical approximation of
u in a mean-square sense, we need to modify Assumption 5.3.3:

Assumption 5.4.1.

(i) The eigenfunctions ei of Q are continuously differentiable on D and there exist
constants α, β, Ce, Cη > 0 such that 2α ≤ β and for any i ∈ N

‖ei‖L∞(D) ≤ Ce, max
j=1,...,d

‖∂xjei‖L∞(D) ≤ Cei
α and

∞∑
i=1

ηii
β ≤ Cη < +∞.

(ii) Furthermore, the mapping Φ as in Definition 5.3.1 and its derivative are bounded
for w ∈ R by

φ1 exp(φ2w) ≥ Φ(w) ≥ φ1 exp(−φ2w), | d
dx

Φ(w)| ≤ φ3 exp(φ4|w|),

where φ1, . . . , φ4 > 0 are arbitrary constants.

(iii) There exists p > 2 such that f, ∂tf ∈ Lp(Ω;L2(T;H)) and u0 ∈ Lp(Ω;V ). Fur-
thermore, u0 and f are stochastically independent of T . The sequence (Pi, i ∈ N)
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consists of nonnegative and bounded random variables Pi ∈ [0, P ] for some P > 0.
In addition, for s > 2 such that 1/p+1/s < 1/2 there exists a sequence of approx-
imations (P̃i, i ∈ N) ⊂ [0, P ]N so that the sampling error is bounded, for some
ε > 0, by

E(|P̃i − Pi|s) ≤ ε, i ∈ N.

(iv) The partition elements Ti(ω) are polygons with piecewise linear boundary for
almost all ω ∈ Ω and E(τ q) < +∞ for any q ∈ [1,∞).

(v) There is a constant κ ∈ (0, 1] such that for all N ∈ N, ε > 0, t ∈ T, almost all
ω ∈ Ω and i = 1, . . . , τ(ω) it holds that uN,ε|Ti(ω, ·, t) ∈ H1+κ(Ti). Moreover,
there is C > 0, independent of N, ε and t ∈ T, such that for some rκ > 2

E(sup
t∈T

max
i=1,...,τ

‖uN,ε(·, ·, t)‖rκH1+κ(Ti)) ≤ C < +∞.

(vi) Let 2V the power set of V . For all ` ∈ N0, the correspondence Ω→ 2V , ω 7→ V`(ω)
admits non-empty values and is weakly measurable, i.e. for each open subset
Ṽ ⊂ V it holds that

{ω ∈ Ω| V`(ω) ∩ Ṽ 6= ∅} ∈ F .

(vii) Conformity: In dimension d = 2, let K1, K2 ∈ K`(ω) for some fixed ` ∈ N0 and
ω ∈ Ω. Then, the intersection K1 ∩ K2 is either empty, a common edge or a
common vertex of K`(ω).

(viii) Shape-regularity: Let ρK,out and ρK,in denote the radius of the outer respectively
inner circle of the triangle K. Then, there is a constant ρ > 0 such that

ess sup
ω∈Ω

sup
`∈N0

sup
K∈K`(ω)

ρK,out
ρK,in

≤ ρ < +∞.

Remark 5.4.2. We discuss Assumption 5.4.1 in the following:

• Assumption 5.4.1(i) implies for all x ∈ D and i = 1, . . . , d that

E(|∂xiWN(x)|2) = E(|
n∑
j=1

√
ηj∂xiej(x)jZj|2) ≤ Ce

N∑
j=1

ηjj
2α ≤ Ce

N∑
j=1

ηjj
β,

hence there exists a L2(Ω;R)-limit ∂xiW (·, x) := limN→+∞ ∂xiWN(·, x). Essen-
tially, this means that 2α ≤ β ensures mean-square differentiability (or path-wise
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Lipschitz-continuity) of the Gaussian field W . This guarantees that the piece-
wise regularity parameter κ > 0 in Assumption 5.4.1(v) is solely influenced by
the jump field P . If W only has Hölder continuous paths with Hölder exponent
% < 1, then the piecewise regularity is at most uN,ε(ω, ·, t) ∈ H1+%(Ti) on each
partition element.

• Assumption 5.4.1(iii) essentially ensures that we are able to find a suitable initial
data approximation u0,` and also control the error of a temporal discretization
scheme. The nodal basis functions vj,ω are solely determined by T (ω) and since
f, u0 are stochastically independent of T , we may expand the sample-adapted
semi-discrete solution via Eq. (5.13), i.e. obtain a separation of spatial and
temporal variables. Furthermore, the condition 1/p + 1/s < 1/2 enables us to
derive all errors in a mean-squared sense.

• Assumption 5.4.1(iv,v) allows us to derive convergence of order O(hκ` ) of the
sample-adapted FE discretization. In dimension d = 2, the regularity parameter
κ > 0 is highly dependent on the geometries generated by P , and a thorough
analysis of the parameter κ is beyond the scope of this article. Instead, we
refer to a discussion of the related elliptic interface problems, for instance in
[161, 162, 163, 174, 175], where regularity results in (weighted) Sobolev spaces
are derived and illustrated on several examples.

• On a further note, the condition E(τ q) < +∞ allows for the important case
that τ is Poisson-distributed. In practical applications, one would rather assume
that τ is a bounded random variable to avoid very large values of τ for small
probabilities. This, however, has no effect on the theoretical results in this section
or the remaining assumptions.

• Assumption 5.4.1(vi) on the correspondence ω 7→ V`(ω) guarantees the (strong)
measurability of the approximated solution uN,ε,` : Ω→ L2(T;V ), and the corre-
sponding error estimates in the Lebesgue-Bochner spaces are well-defined.

• Finally, conformity and uniform shape-regularity in Ω of the FE mesh allow us
to control the constants in the FE error analysis.

Our main result provides an error bound of the semi-discrete sample-adapted FE
approximation.

Theorem 5.4.3. Let Assumption 5.4.1 hold and let uN,ε,` be the sample-adapted FE
approximation of uN,ε as in Eq. (5.12) with refinement h` ≤ 1. If the initial data
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approximation u0,` satisfies ‖u0 − u0,`‖Lp(Ω;H) ≤ Ch` and ‖u0,`‖Lp(Ω;V ) ≤ C‖u0‖Lp(Ω;V )

with C > 0 independent of `(see Remark 5.4.4), it holds that

E
(

sup
t∈T
‖uN,ε − uN,ε,`‖2

∗,t

)1/2
≤ Ch

κ

` .

Remark 5.4.4. By Assumption 5.4.1, u0 ∈ Lp(Ω;V ) and hence u0(ω, ·) ∈ V almost
surely. One possibility to approximate the initial data is via u0,` := ∑d`

i=1(u0, ṽi)ṽi,
where {ṽ1, . . . , ṽd`(ω)} is a H-orthonormal basis of V`(ω). That is, u`,0 is the path-wise
H-orthogonal projection of u0(ω, ·) into V`(ω). On the other hand, if the paths of u0 are
almost surely continuous, we might as well define u0,` as the nodal interpolation with
respect to the FE basis, i.e. u0,`(ω, ·) := ∑d`

i=1 u0(ω, xi)vi,ω, where x1, . . . , xd`(ω) ∈ D are
the nodal points corresponding to {v1, . . . , v`,ω}. Either way, we obtain by standard
FE theory (see for instance [177, Theorem 3.4.2]) the error bound ‖u0− u0,`‖Lp(Ω;H) ≤
C‖u0‖Lp(Ω;V )h`. We note that this error bound with respect to ‖ · ‖H remains valid
also for a non-adapted standard FE discretization of V . Moreover, in both cases the
assumption ‖u0,`‖Lp(Ω;V ) ≤ C‖u0‖Lp(Ω;V ) holds.

To prove Theorem 5.4.3, we treat the path-wise triangulation as a special case of
the Mortar Finite Element method, where the basis functions of the approximation
spaces V`(ω) are continuous across the interface of two adjacent partition elements Ti
and Tj. In general, Mortar FE methods for deterministic elliptic and parabolic prob-
lems only enforce a "weak continuity condition" on the interfaces, which allows to mesh
each partition element of the domain independently but introduces an additional con-
sistency error (see e.g. [36],[39],[201]). To prove Theorem 5.4.3, we need the following
intermediate result.

Lemma 5.4.5. Let Assumption 5.4.1 hold and assume there is a C > 0 such that
‖u0,`‖Lp(Ω;V ) ≤ C‖u0‖Lp(Ω;V ) for any ` ∈ N0. Then, for any r ∈ [1, p)

∥∥∥‖∂tuN,ε‖L2(T;H)) + sup
t∈T
‖uN,ε(·, ·, t)‖V

∥∥∥
Lr(Ω;R)

≤ C
(
‖u0‖Lp(Ω;V ) + ‖f‖Lp(Ω;L2(T;H))

)
,∥∥∥‖∂tuN,ε,`‖L2(T;H)) + sup

t∈T
‖uN,ε,`(·, ·, t)‖V

∥∥∥
Lr(Ω;R)

≤ C
(
‖u0‖Lp(Ω;V ) + ‖f‖Lp(Ω;L2(T;H))

)
,

where C > 0 is independent of N, ε and `.

Proof. We use the first part of the proof from [80, Chapter 7.1, Theorem 5] to obtain
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the path-wise estimate

‖∂tuN,ε(ω, ·, ·)‖2
L2(T;H) + sup

t∈T

∫
D
aN,ε(ω, x, t)∇uN,ε(ω, x, t) · ∇uN,ε(ω, x, t)dx

≤
∫
D
aN,ε(ω, x, t)∇uN,ε(ω, x, 0) · ∇uN,ε(ω, x, 0)dx

+
∫ T

0
‖bN,ε(ω, x, t) · ∇uN,ε(ω, ·, t)‖2

Hdt+ ‖f(ω, ·, ·)‖2
L2(T;H)

≤aN,ε,+(ω)‖u0(ω, ·)‖2
V + aN,ε,+(ω)b12d−1‖u(ω, ·, ·)‖2

T,∗ + ‖f(ω, ·, ·)‖2
L2(T;H).

In the last step, we have used that ‖bN,ε(ω, x)‖∞ ≤ b1a(ω, x) (see Remark 5.3.2) as
well as Ineq. (5.4). On the other hand, we have the lower bound

‖∂tuN,ε(ω, ·, ·)‖2
L2(T;H) + sup

t∈T

∫
D
aN,ε(ω, x)∇uN,ε(ω, x, t) · ∇uN,ε(ω, x, t)dx

≥‖∂tuN,ε(ω, ·, ·)‖2
L2(T;H) + aN,ε,−(ω) sup

t∈T
|uN,ε(ω, ·, t)|2H1(D).

Since the norms |·|H1(D) and ‖·‖H1(D) = ‖·‖V are equivalent by the Poincaré inequality,
we treat aN,ε,− once more in the fashion of Theorem 5.2.6 to arrive at the estimate

‖∂tuN,ε(ω, ·, ·)‖2
L2(T;H) + sup

t∈T
‖uN,ε(ω, x, t)‖2

V

≤C(1 + 1/aN,ε,−(ω))aN,ε,+(ω)
(
‖u0(ω, ·)‖2

V + ‖u(ω, ·, ·)‖2
T,∗ + ‖f(ω, ·, ·)‖2

L2(T;H)

)
.

The first claim follows with aN,ε,−, aN,ε,+ ∈ Lq(Ω;R) for arbitrary large q ∈ [1,∞),
Hölder’s inequality and Theorem 5.2.6. The proof for uN,ε,` follows analogously.

We conclude this subsection with the proof of our main result.

Proof of Theorem 5.4.3. For fixed ω ∈ Ω, t ∈ T, Assumption 5.4.1(v) states that
uN,ε(ω, ·, t) ∈ H1+κ(Ti) for all i = 1, . . . , τ(ω) and some κ ∈ (0, 1]. Since d ≤ 2
and the partition elements Ti are polygons with Lipschitz boundary, [174, Lemma 3.1]
yields that uN,ε(ω, ·, t) ∈ Hϑ(D) for ϑ = min(1+κ, 3/2−ε) and any ε > 0. This in turn
implies with the fractional Sobolev inequality, e.g. [71, Theorem 6.7], that uN,ε(ω, ·, t)
is continuous on D. Thus, the interpolation I`uN,ε(ω, ·, t) ∈ V`(ω) is well-defined, where
the linear interpolation operator with respect to V`(ω) is given by

I` : C0(D)→ V`(ω), f 7→
d`(ω)∑
i=1

f(xi)vi,ω.
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We define the error θ` := uN,ε − uN,ε,` and observe that Eqs. (5.12) and (5.9) yield

V ′〈∂tθ`(ω, ·, t), v`,ω〉V +BN,ε
ω (θ`(ω, ·, t), v`,ω) = 0

θ`(ω, ·, 0) = (u0 − u0,`)(ω, ·),

for all v`,ω ∈ V`(ω). We then test against v`,ω = I`uN,ε(ω, ·, t) − uN,ε,`(ω, ·, t) and
integrate over [0, t] to obtain

1
2‖θ`(ω, ·, t)‖

2
H +

∫ t

0
(aN,ε(ω, ·),

d∑
i=1

(∂xi(θ`(ω, ·, z))2)dz

=1
2‖θ`(ω, ·, 0)‖2

H +
∫ t

0 V ′〈∂tθ`(ω, ·, z), (1− I`)uN,ε(ω, ·, z)〉V dz

+
∫ t

0
BN,ε
ω (θ`(ω, ·, z), (1− I`)uN,ε(ω, ·, z))dz

−
∫ t

0
(bN,ε(ω, ·) · ∇θ`(ω, ·, z), θ`(ω, ·, z))dz

= : 1
2‖θ`(ω, ·, 0)‖2

H + I + II + III.

(5.14)

Lemma 5.4.5 implies that ∂tθ`(ω, ·, ·) ∈ L2(T;H) and with Young’s inequality

I =
∫ t

0
(∂tθ`(ω, ·, z), (1− I`)uN,ε(ω, ·, z))dz

≤ 1
2

∫ t

0
h

2κ
` ‖∂tθ`(ω, ·, z)‖2

H + h
−2κ
` ‖(1− I`)uN,ε(ω, ·, z))‖2

Hdz.

We then use the Cauchy-Schwarz inequality and Ineq. (5.4) to bound the second term

II =
∫ t

0
(aN,ε(ω, ·),∇θ`(ω, ·, z) · ∇(1− I`)uN,ε(ω, ·, z))dz

+
∫ t

0
(bN,ε(ω, ·) · ∇θ`(ω, ·, z), (1− I`)uN,ε(ω, ·, z))dz

≤
∫ t

0

(
aN,ε(ω, ·)

( d∑
i=1

(∂xiθ`(ω, ·, z))2
)1/2

,
( d∑
i=1

(∂xi(1− I`)uN,ε(ω, ·, z))2
)1/2

)
dz

+
∫ t

0
2d/2−1/2

(
‖bN,ε(ω, ·)‖∞

( d∑
i=1

(∂xiθ`(ω, ·, z))2
)1/2

, |(1− I`)uN,ε(ω, ·, z)|
)
dz,
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and Young’s inequality yields

II ≤
∫ t

0

1
4(aN,ε(ω, ·),

d∑
i=1

(∂xiθ`(ω, ·, z))2) + aN,ε,+(ω)|(1− I`)uN,ε(ω, ·, z)|2H1(D)dz

+
∫ t

0

1
4(aN,ε(ω, ·),

d∑
i=1

(∂xiθ`(ω, ·, z))2) + 2d−1 b
2
1aN,ε,+(ω)‖(1− I`)uN,ε(ω, ·, z)‖2

Hdz

≤ 1
2

∫ t

0
(aN,ε(ω, ·),

d∑
i=1

(∂xiθ`(ω, ·, z))2)dz + CaN,ε,+(ω)
∫ t

0
‖(1− I`)uN,ε(ω, ·, z)‖2

V dz.

Similarly, we bound the last term by

III ≤ 1
4

∫ t

0
(aN,ε(ω, ·),

d∑
i=1

(∂xiθ`(ω, ·, z))2)dz + 2d−1b1b2

∫ t

0
‖θ`(ω, ·, z)‖2

Hdz.

We now plug in the estimates for I − III in Eq. (5.14) and proceed in the fashion of
Theorem 5.2.6 with Grönwalls inequality to arrive at

sup
t∈T
‖θ`‖2

t,∗ ≤ C(1 + 1/aN,ε,−(ω))
(
‖θ`(ω, ·, 0)‖2

H + h
2κ
` ‖∂tθ`(ω, ·, ·)‖2

L2(T;H)

+ h
−2κ
` ‖(1− I`)uN,ε(ω, ·, ·)‖2

L2(T;H)

+ aN,ε,+(ω)‖(1− I`)uN,ε(ω, ·, ·)‖2
L2(T;V )

)
.

Let rκ > 2 be as in Assumption 5.4.1(v) and let q := (1/2 − 1/r)−1 for some r ∈
(2,min(rκ, p)). Taking expectations and using Hölder’s inequality yields

E(sup
t∈T
‖θ`‖2

t,∗)1/2 ≤ C
(
‖θ`(·, ·, 0)‖Lp(Ω;H) + h

κ

` ‖∂tθ`‖Lr(Ω;L2(T;H))

+ h
−κ
` ‖(1− I`)uN,ε‖Lr(Ω;L2(T;H))

+ ‖(1− I`)uN,ε‖Lr(Ω;L2(T;V ))

)
≤ C

(
h
κ

` + h
−κ
` ‖(1− I`)uN,ε‖Lr(Ω;L2(T;H))

+ ‖(1− I`)uN,ε‖Lr(Ω;L2(T;V ))

)
.

(5.15)

For the first inequality, we have used Lemma 5.3.5, the second bound follows by
Lemma 5.4.5, the assumption ‖u0 − u0,`‖Lp(Ω;H) ≤ Ch` and since h` ≤ 1.

To bound the interpolation error, we first consider for fixed ω and i = 1, . . . , τ(ω)
the partition element Ti. Given that uN,ε(ω, ·, t) ∈ H1+κ(Ti) for any t ∈ T by Assump-
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tion 5.4.1(v), the interpolation error is bounded for m ∈ {0, 1} by

‖(1− I`)uN,ε(ω, ·, t)‖Hm(Ti) =
∑
K∈Ti
‖(1− I`)uN,ε(ω, ·, t)‖Hm(K)

≤ Ch1+κ−m‖uN,ε(ω, ·, t)‖H1+κ(Ti),

with C = C(ρ,m, s, d) > 0 independent of Ti, see for instance [102, Chapter 8.5]. Note
that these estimates hold due to the pathwise construction of V`(ω) and the piecewise
regularity assumption uN,ε(ω, ·, t) ∈ H1+κ(Ti), and are not valid for arbitrary FE spaces
over D. Since (1− I`)uN,ε(ω, ·, t) ∈ H1(D) we further estimate

‖(1− I`)uN,ε(ω, ·, t)‖Hm(D) =
τ(ω)∑
i=1
‖(1− I`)uN,ε(ω, ·, t)‖Hm(Ti)

≤ Ch1+κ−m
τ(ω)∑
i=1
‖uN,ε(ω, ·, t)‖H1+κ(Ti).

Assumption 5.4.1(vi,v) and Hölder’s inequality for qκ := (1/r − 1/rκ)−1 < +∞ yields

E(‖(1− I`)uN,ε‖Lr(Ω;L2(T;Hm(D))))

≤E
(( ∫ T

0
C2h

2(1+κ−m)
`

( τ(ω)∑
i=1
‖uN,ε(·, ·, t)‖H1+κ(Ti)

)2)r/2)1/r

≤Ch1+κ−m
` E

(( ∫ T

0
τ 2 max

i=1,...,τ
‖uN,ε(·, ·, t)‖2

H1+κ(Ti)

)r/2)1/r

≤Ch1+κ−m
`

√
TE

(
τ r max

i=1,...,τ
‖uN,ε(·, ·, t)‖rH1+κ(Ti)

)1/r

≤Ch1+κ−m
` E(τ qκ)1/qκE

(
max
i=1,...,τ

‖uN,ε(·, ·, t)‖rκH1+κ(Ti)

)1/rκ
.

Plugging this estimate into Ineq. (5.15) proves the assertion since h` ≤ 1.

5.4.2 Temporal discretization

In the remainder of this section, we introduce a stable temporal discretization for the
semi-discrete Problem (5.12) and derive the corresponding mean-squared error. To
this end, we fix ω ∈ Ω and let uN,ε,`(ω, ·, ·) again denote the sample-adapted semi-
discrete approximation of uN,ε(ω, ·, ·) from Eq. (5.12). For a fully discrete formulation
of Problem (5.12), we consider a time grid 0 = t0 < t1 < · · · < tn = T in T for some
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n ∈ N. The temporal derivative at ti is approximated by the backward difference

∂tuN,ε,`(ω, ·, ti) ≈
uN,ε,`(ω, ·, ti)− uN,ε,`(ω, ·, ti−1)

ti − ti−1
, i = 1, . . . , n.

This yields the fully discrete problem to find (u(i)
N,ε,`(ω, ·), i = 0, . . . , n) ⊂ V`(ω) such

that for all v`,ω ∈ V`(ω) and i = 1, . . . , n

1
ti − ti−1

(u(i)
N,ε,`(ω, ·)− u

(i−1)
N,ε,` (ω, ·), v`,ω) +BN,ε

ω (u(i)
N,ε,`(ω, ·), v`,ω) = Fti,ω(v`,ω)

u
(0)
N,ε,`(ω, ·) = u0,`(ω, ·).

(5.16)

For convenience, we assume the temporal grid is equidistant with fixed time step ∆t :=
ti − ti−1 > 0. The fully discrete solution is now given by

u
(i)
N,ε,`(ω, x) =

d∑̀
j=1

ci,j(ω)vj,ω(x), i = 1, . . . , n,

where the coefficient vector ci(ω) = (ci,1(ω), . . . , ci,d`(ω))T solves the linear system of
equations

(M(ω) + ∆tA(ω))ci(ω) = ∆tF(ω, ti) + M(ω)ci−1(ω)

in every discrete point ti. The mass matrix consists of the entries (M(ω))jk :=
(vj,ω, vk,ω), the stiffness matrix and load vector are given by (A(ω))jk = BN,ε

ω (vj,ω, vk,ω)
and (F(ω, ti))j = Fti,ω(vj,ω), respectively for j, k ∈ {1, . . . , d`(ω)}, as in the semi-
discrete case. The initial vector c0 consists of the basis coefficients of u0,` ∈ V` with
respect to {v1,ω, . . . , vd`(ω),ω}. To extend the discrete solution (u(i)

N,ε,`(ω, ·), i = 0, . . . , n)
to T, we define the linear interpolation

uN,ε,`(ω, ·, t) := (u(i)
N,ε,`(ω, ·)− u

(i−1)
N,ε,` (ω, ·))

(t− ti−1)
∆t + u

(i−1)
N,ε,` (ω, ·), t ∈ [ti−1, ti],

for i = 1, . . . , n and are, therefore, able to estimate the resulting error with respect to
the parabolic norm.

Theorem 5.4.6. Let Assumption 5.4.1 hold, let (u(i)
N,ε,`, i = 0, . . . , n) be the fully dis-

crete sample-adapted approximation of uN,ε as in Eq. (5.16) and let uN,ε,` be the linear
interpolation in T. Then,

E
(

sup
t∈T
‖uN,ε,` − uN,ε,`‖2

∗,t

)1/2
≤ C∆t.

Proof. We start by investigating the temporal regularity of uN,ε,`. For fixed ω ∈ Ω
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and 0 ≤ ti−1 < ti ≤ T note that wi(ω, ·, t) := uN,ε,`(ω, ·, t)− uN,ε,`(ω, ·, ti−1) solves the
variational problem

V ′〈∂twi(ω, ·, t), v`,ω〉V +BN,ε
ω (wi(ω, ·, t), v`,ω) = V ′〈f(ω, ·, t)− f(ω, ·, ti−1), v`,ω〉V

for t ∈ [ti−1, ti] and v`,ω ∈ V`(ω) with initial condition w(ω, ·, ti−1) = 0. Therefore, in
the fashion of Theorem 5.2.6, we obtain the pathwise parabolic estimate

sup
t∈[ti−1,ti]

‖wi(ω, ·, t)‖2
H +

∫ t

ti−1
|wi(ω, ·, z)|2H1(D)dz

≤C(1 + 1/aN,ε,−(ω))
∫ ti

ti−1
‖f(ω, ·, z)− f(ω, ·, ti−1)‖2

Hdz

=C(1 + 1/aN,ε,−(ω))
∫ ti

ti−1
‖
∫ z

ti−1
∂tf(ω, ·, z̃)dz̃‖2

Hdz

=C(1 + 1/aN,ε,−(ω))
∫ ti

ti−1
‖
∫ ti

ti−1
1[ti−1,t](z̃)∂tf(ω, ·, z̃)dz̃‖2

Hdz

≤C(1 + 1/aN,ε,−(ω))
∫ ti

ti−1
(z − ti−1)dz

∫ ti

ti−1
‖∂tf(ω, ·, z)‖2

Hdz

=C(1 + 1/aN,ε,−(ω))∆t2
2 ‖∂tf(ω, ·, ·)‖2

L2([ti,ti−1];H).

(5.17)

For the first identity we have used Lemma 5.2.2, the second estimate follows with
Hölder’s inequality. Now let uN,ε,` be the temporal linear interpolation of the semi-
discrete solution uN,ε,` at the nodes t0, . . . , tn and consider the splitting

E
(

sup
t∈T
‖uN,ε,` − uN,ε,`‖2

∗,t

)1/2
≤ E

(
sup
t∈T
‖uN,ε,` − uN,ε,`‖2

∗,t

)1/2

+ E
(

sup
t∈T
‖uN,ε,` − uN,ε,`‖2

∗,t

)1/2

=: I + II.

By Ineq. (5.17) it follows that

sup
t∈T
‖uN,ε,` − uN,ε,`‖2

∗,t ≤ max
i=1,...,n

sup
t∈[ti−1,ti]

‖wi(ω, ·, t)‖2
H + 2

n∑
i=1

∫ ti

ti−1
‖wi(ω, ·, t)‖2

H1(D)dt

≤ C(1 + 1/aN,ε,−(ω))∆t2
2 ‖∂tf(ω, ·, ·)‖2

L2(T;H).

Thus, by Assumption 5.4.1, Hölder’s inequality and Lemma 5.3.5 with q = (1/2−1/p)−1

I ≤ C∆t(1 + ‖1/aN,ε,−‖Lq(Ω;R))‖∂tf‖Lp(Ω;L2(T;H) ≤ C∆t.
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Now let θ(i)(ω, ·) := uN,ε,`(ω, ·, ti)− u(i)
N,ε,`(ω, ·) denote the pathwise time discretization

error at ti. For any t ∈ [ti−1, ti], we observe that (uN,ε,` − uN,ε,`)(·, ·, t) is a convex
combination of θi and θi−1, and therefore

II ≤ E( max
i=1,...,n

‖θ(i)‖2
H + ∆t

i∑
j=1
|θ(j)|2H1(D))1/2. (5.18)

Hence, it is sufficient to control the error θ(i) at each node ti. Combining Eq. (5.16)
and Eq. (5.12) yields for i = 1, . . . , n

V ′〈θ
(i)(ω, ·)− θ(i−1)(ω, ·), v`,ω〉V +

∫ ti

ti−1
BN,ε
ω (θ(i)(ω, ·), v`,ω)dt

=
∫ ti

ti−1
BN,ε
ω (uN,ε,`(ω, ·, ti)− uN,ε,`(ω, ·, t), v`,ω) + V ′〈f(ω, ·, t)− f(ω, ·, ti), v`,ω〉V dt

:=
∫ ti

ti−1
V ′〈f i(ω, ·, t), v`,ω〉V dt,

and initial condition θ(0)(ω, ·) = uN,ε,`(ω, ·, 0) − u
(0)
N,ε,`(ω, ·) = 0. We test against

v`,ω = θ(i)(ω, ·), sum over i and use the discrete Grönwall inequality to obtain (as
in Theorem 5.2.6) the discrete estimate

max
i=1,...,n

‖θ(i)(ω, ·)‖2
H + ∆t

i∑
j=1
|θ(j)(ω, ·)|2H1(D)

≤C(1 + 1/aN,ε,−(ω))
n∑
i=1
‖f i(ω, ·, ·)‖2

L2([ti,ti−1];V ′)

≤C(1 + 1/aN,ε,−(ω))
(
aN,ε,+(ω)2

n∑
i=1

∫ ti

ti−1
|uN,ε,`(·, ·, t)− uN,ε,`(·, ·, ti)|2H1(D)dt

+
n∑
i=1
‖f(ω, ·, t)− f(ω, ·, t1)‖2

Hdt
)
.

Proceeding as for Ineq. (5.17), this implies

max
i=1,...,n

‖θ(i)(ω, ·)‖2
H + ∆t

i∑
j=1
|θ(j)(ω, ·)|2H1(D)

≤C(1 + 1/aN,ε,−(ω))aN,ε,+(ω)2∆t2‖∂tf(ω, ·, ·)‖2
L2(T;H).

We use Assumption 5.4.1, Hölder’s inequality and Lemma 5.3.5 for the bound

E
(

max
i=1,...,n

‖θ(i)‖2
H + ∆t

i∑
j=1
|θ(j)|2H1(D)

)
≤ C∆t2‖∂tf‖2

Lp(Ω;L2(T;H)) ≤ C∆t2,
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and the claim finally follows by Ineq. (5.18).

To conclude this section, we record a bound on the overall approximation error,
which is an immediate consequence of Theorems 5.3.8, 5.4.3 and 5.4.6.

Corollary 5.4.7. Let Assumption 5.4.1 hold, let uN,ε,` be the linear interpolation of
the fully discrete approximation of (u(i)

N,ε, i = 0, . . . , n) and let u0,` satisfy the bounds
‖u0 − u0,`‖Lp(Ω;H) ≤ Ch` and ‖u0,`‖Lp(Ω;V ) ≤ C‖u0‖Lp(Ω;V ). Then,

E
(

sup
t∈T
‖u− uN,ε,`‖2

∗,t

)1/2
≤ C

(
Ξ1/2
N + ε1/s + h

κ

` + ∆t
)
.

5.5 Numerical experiments

In all of our numerical experiments we measure the root mean-squared error

RMSE := E(‖u(·, ·, T )− uN,ε,`(·, ·, T )‖2
V )1/2.

For each given FE discretization parameter h`, we align the error contributions of N, ε
and ∆t such that Ξ1/2

N ' ε1/s ' ∆t ' h`. Hence, the dominant source of error is
the spatial discretization and Corollary 5.4.7 yields RMSE ≤ Ch

κ

` . This allows us to
measure the value of κ from Assumption 5.4.1 in the estimated error in our examples.
While the choices of ∆t and ε are usually straightforward for given h`, we refer to [31,
Remark 5.3], where we describe how to achieve Ξ1/2

N ' h` for common examples of
covariance operators Q. To emphasize the advantage of the sample-adapted FE algo-
rithm introduced in Section 5.4, we also repeat all experiments with a standard FE
approach and compare the resulting errors. For the non-adapted FE algorithm, we use
for a given triangulation diameter h` the same approximation parameters ∆t, N and ε
as for the corresponding sample-adapted method. This ensures that the weaker perfor-
mance of this non-adapted method is due to the mismatch between FE triangulation
and the discontinuities of a and b. We approximate the entries of the stiffness matrix
for both FE approaches by the midpoint rule on each triangle. If the triangulation
is aligned to the discontinuities in a and b, this adds an additional term of order h`
to the error estimate in Corollary 5.4.7, see for instance [54, Proposition 3.13]. Thus,
the bias stemming from the midpoint rule does not dominate the overall order of con-
vergence in the sample-adapted algorithm. In the other case, we cannot quantify the
quadrature error due to the discontinuities on certain triangles but suggest based on
our experimental observations an error of order h1/2

` .
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5.5.1 Numerical examples in 1D

For all test scenarios in this subsection, we consider the advection-diffusion Prob-
lem (5.1) in the domain D = (0, 1), with T = 1, u0(x) = sin(πx)/10 and source
term f ≡ 1. The continuous part of the diffusion coefficient a is given by a ≡ 0 and
Φ(w) = exp(w), where the Gaussian field W is characterized by the Matérn covariance
operator

QM : H → H, [QMϕ](y) :=
∫
D
σ2 21−ν

Γ(ν)

(√
2ν |x− y|

ρ

)ν
Kν

(√
2ν |x− y|

ρ

)
ϕ(x)dx

for ϕ ∈ H, with smoothness parameter ν > 0, variance σ2 > 0 and correlation length
ρ > 0. Above, Γ denotes the Gamma function and Kν is the modified Bessel function
of the second kind with ν degrees of freedom. It is known that W is mean square
differentiable if ν > 1 and, moreover, the paths of W are almost surely in Cbνc,%(D;R)
with % < ν − bνc for any ν ≥ 1/2, see [96, Section 2.2]. The spectral basis of QM

may be efficiently approximated by Nyström’s method, see for instance [193]. In our
experiments, we use the covariance parameters ν = 3/2, σ2 = 1 and ρ = 0.05.

The number of partition elements is given by τ = P + 2, where P is Poisson-
distributed with intensity parameter 5. On average, this splits the domain in 7 disjoint
intervals and the diffusion coefficient has almost surely at least one discontinuity. The
position of each jump is sampled according to the measure λ, which we set as the
Lebesgue measure λL on (D,B(D)). More precisely, let (x̃i, i ∈ N) be a i.i.d. sequence
of U(D)-random variables that are independent of τ . We take the first τ − 1 points of
this sequence, order them increasingly and denote the ordered subset by 0 < x1 < · · · <
xτ−1 < 1. This generates the random partition T = {(0, x1), (x1, x2), . . . , (xτ−1, 1)}
for each realization of τ . Conditional on the random variable τ = P + 2 ≥ 2, the
distribution of each xi for i = 1, . . . , τ − 1 is then given by

P(xi ≤ c |τ) = (τ − 1)!
(τ − i)!(i− 1)!c

τ−i(1− c)i−1, c ∈ D = (0, 1).

With the law of iterated expectations, this can be utilized to derive further statistics,
such as the average interval width of T given by

E(E(x1|τ)) = E(1/τ) =
∞∑
k=0

5ke−5

k!
1

k + 2 ≈ 0.1603

with corresponding variance E(1/(τ + 1)) − E(1/τ)2 ≈ 0.1102. This also shows that
increasing the Poisson parameter in P resp. τ would yield a longer average computa-
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tional time, as more and therefore smaller intervals would be sampled. The order of
spatial convergence of the sample-adapted FE scheme on the other hand remains un-
affected of the distribution of T . In the subsequent examples we vary the distribution
of the jump heights Pi and use the advection coefficient given by

b(ω, x) := 2 sin(2πx)a(ω, x), ω ∈ Ω, x ∈ D.

Note that we did not impose an upper deterministic bound b2 on b.
To obtain path-wise approximations of the samples uN,ε(ω, ·, ·), we use non-adapted

and sample-adapted piecewise linear elements and compare both approaches. The FE
discretization parameter is given by h` = 2−`/4 and we consider the range ` = 0, . . . , 6.
We approximate the reference solution u for each sample using sample-adapted FE
and set uref := uN8,ε8,8(·, ·, T ), where we choose ∆t8 ' Ξ1/2

N8 ' ε
1/2
8 ' 2−10. The RMSE

is estimated by averaging 100 samples of ‖uref − uN,ε,`(·, ·, T )‖2
V for ` = 0, . . . , 6. To

subtract adapted\non-adapted approximations from the reference solution uref , we
use a fixed grid with 210 + 1 equally spaced points in D, thus the error stemming from
interpolation\prolongation may be neglected.

In our first numerical example, we use i.i.d uniformly distributed jump heights
Pi ∼ U([0, 5]), hence the sampling error ε is equal to zero and may be omitted for this
scenario. A sample of the corresponding PDE coefficients with illustrated adapted\non-
adapted FE basis and of the corresponding solution is given in Fig. 5.1. As expected,
Fig. 5.1 shows that the sample-adapted FE approximation converges with rate κ ≈ 1,
whereas the non-adapted FE method only has rate ≈ 0.55.

In Remark 5.4.2, we stated that the condition 2α ≤ β on the decay of the eigen-
values of Q entails mean square differentiability of W , and thus does not affect the
convergence rate of order κ in the sample-adapted method. We suggested that this
rate will deteriorate if the paths ofW are only Hölder continuous with exponent % < 1.
To illustrate this, we repeat the first experiment with a changed covariance operator.
We now consider the Brownian motion covariance operator

QBM : H → H, [QBMϕ](y) :=
∫
D
min(x, y)ϕ(x)dx for ϕ ∈ H,

with eigenbasis given by ηi = (8/((2i+ 1)π))2 and ei(x) = sin((2i+ 1)πx/2) for i ∈ N0.
The paths of W generated with QBM are Hölder-continuous with % = 1/2 − ε for
any ε > 0 because β = 1 − ε and α = 1. A sample of the coefficients and the
approximated solution is given in Fig. 5.2. The sample-adapted RMSE is smaller than
the non-adapted curve, but both errors now decay at rate κ ≈ 0.5 due to the lack of
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Figure 5.1 First numerical example in 1D with Matérn covariance operator and uniformly
distributed jumps. Top left: Diffusion/advection coefficient and adapted/non-adapted FE
basis, top right: FE solution corresponding to the sample on the left and the given sample-
adapted FE basis, bottom: estimated RMSE vs. inverse spatial refinement size.

(piecewise) spatial regularity of a and b. In general, given that % ≤ 1/2, it is of course
highly problem-dependent if the sample-adapted resp. non-adapted FE algorithm is
favorable.

For the last one-dimensional example, we use again the Matérn covariance operator
QM and consider a more involved distribution of jump heights which entails a positive
sampling bias ε > 0. The jump heights Pi now follow a generalized inverse Gaussian
(GIG) distribution with density

fGIG(x) = (ψ/χ)λ/2
2Kλ(

√
ψχ)x

λ−1 exp
(
− 1

2(ψx+ χx−1)
)
, x > 0,

and parameters χ, ψ > 0, λ ∈ R, see [19]. Unbiased sampling from this distribution
may be rather expensive, hence we generate approximations P̃i of Pi by a Fourier
inversion technique which guarantees that E(|P̃i−Pi|2) ≤ ε for any desired ε > 0. This
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Figure 5.2 Second numerical example in 1D with Brownian motion covariance operator and
uniformly distributed jumps. Top left: Diffusion/advection coefficient and adapted/non-
adapted FE basis, top right: FE solution corresponding to the sample on the left and the
given sample-adapted FE basis, bottom: estimated RMSE vs. inverse spatial refinement size.

allows us to adjust the sampling bias ε > 0 with h` (and the corresponding ∆t and
ΞN) for any ` ∈ N0. Details on the Fourier inversion algorithm, the sampling of GIG
distributions and the corresponding L2(Ω;R)-error may be found in [30]. The GIG
parameters are set as ψ = 0.25, χ = 9 and λ = −1, the resulting density fGIG and
a sample of the coefficients are given in Fig. 5.3. As wee see in Fig. 5.3, the RMSE
curves behave similarly as in the first example in this section. The sample-adapted
algorithm converges again with rate κ ≈ 1, meaning the sampling error of the GIG
jump heights is aligned to the remaining error contributions. Not surprisingly, the
non-adapted method again converges with a rate of 0.55.
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Figure 5.3 Third numerical example in 1D with Matérn covariance operator and GIG dis-
tributed jumps. Top left: Diffusion/advection coefficient and adapted/non-adapted FE basis,
top right: FE solution corresponding to the sample on the left and the given sample-adapted
FE basis, bottom left: GIG density function and parameters, bottom right: estimated RMSE
vs. inverse spatial refinement size.

5.5.2 Numerical examples in 2D

In two spatial dimensions, we work on D = (0, 1)2 with T = 1, initial data u0(x1, x2) =
1

100 sin(πx1) sin(πx2), source term f ≡ 1 and assume again that ā ≡ 0. The Gaussian
part of a is given by the Karhunen-Loève expansion

W (x) =
∑
i∈N

√
ηiei(x)Zi, x ∈ D, Zi

i.i.d.∼ N (0, 1),

with spectral basis given by ηi := σ2 exp(−π2i2ρ2) and ei(x) := sin(πix1) sin(πix2) for
i ∈ N. Again, the parameters ρ, σ2 > 0 denote the correlation length and total variance
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ofW respectively. It can be shown that the above eigenpairs solve the integral equation

σ2
∫
D

1
4πt exp

(
− −‖x− y‖

2
2

2ρ2

)
ei(y)dy = ηiei(x), i ∈ N,

with ei = 0 on ∂D, see [99]. Compared with a Gaussian field generated by a squared ex-
ponential covariance operator, this field shows a very similar behavior, except that it is
zero on the boundary. It, further, has the advantage, that all expressions are available
in closed form and we forgo the numerical approximation of the eigenbasis. The eigen-
values decay exponentially fast with respect to i, hence Assumption 5.4.1 is fulfilled
and we use the parameters σ2 = 0.25 and ρ = 0.02 for all experiments in this section.
As before, we consider a log-Gaussian random field, meaning Φ(w) = exp(w). To illus-
trate the flexibility of a jump-diffusion coefficient a as in Def. 5.3.1, we vary the random
partitioning of D for each example and give a detailed description below. We set the
spatial discretization parameter to h` = h` = 2

52−` and consider the cases ` = 0, . . . , 5.
To estimate the RMSE, we sample similar to the one-dimensional case the reference
solution uref := uN7,ε7,7(·, ·, T ) with ∆t7 ' Ξ1/2

N7 ' ε
1/2
7 ' 2

52−7 and average again 100
independent samples of ‖uref − uN,ε,`(·, ·, T )‖2

V . For interpolation/prolongation we use
a reference grid with (28 + 1) × (28 + 1) equally spaced points in D. The advection
coefficient is in each scenario given by

b(ω, x, y) = 5 sin(πx) sin(πy)a(ω, x, y)
1

1

 , ω ∈ Ω, x ∈ D.

Again, we did not need to impose an upper bound b2 on b for the simulation.
In our first 2D example, we aim to imitate the structure of a heterogeneous medium.

For this, we divide the domain by two horizontal and vertical lines. We assume that
the horizontal resp. vertical lines do not intersect each other and thus obtain τ ≡ 9.
The remaining four intersection points of the lines in D are uniformly distributed in
(0.2, 0.8)2. This is realized by setting λ as the two-dimensional Lebesgue-measure
restricted to (0.2, 0.8)2 ⊂ D. Finally, we assign i.i.d. jump heights Pi ∼ U(0, 10)
to each partition element Ti. Fig. 5.4 shows a sample of the advection- and diffusion
coefficient for the heterogeneous medium together with the associated (sample-adapted)
FE approximation of u. As before, the sample-adapted method is advantageous and
converges with rate κ ≈ 1, suggesting that the choice of P in this example ensures
(almost) piecewise H2-regularity on the partition elements. If we use non-adapted FE,
we may still recover a convergence rate of 0.66, which is actually slightly better than
the expected rate of 0.5.
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Figure 5.4 First numerical example in 2D (heterogeneous medium). Top left: sample of the
diffusion coefficient and sample-adapted triangulation, top right: sample of the advection
coefficient with sample-adapted triangulation, bottom left: FE solution at T corresponding
to the samples and triangulations on the top, bottom right: estimated RMSE vs. inverse
spatial refinement size.

The comparably high value of κ in the previous example may be due to the fact that
the jump discontinuities are (on average) not very steep, and in addition all partition
elements are convex by construction. As another test for the sample-adapted method,
we now investigate an example with reentrant corners and comparably high jumps at
the interfaces. To this end, we sample one U([0.4, 0.6]2)-distributed center point in
D and assign a horizontal and vertical strip with a preset width of 0.3 to this point.
Hence, τ ≡ 5 and λ may be interpreted as the Lebesgue-measure restricted to [0.4, 0.6]2

that controls for the position of the center point. This results in a cross-shaped polygon
with four reentrant corners and random center in D, see Fig. 5.5). Within the cross
we assign a jump height of Pi = 0, in the remaining four quadrangles we set Pi = 20.
A sample of the jump-diffusion- and advection coefficient with corresponding sample-
adapted FE solution is shown in Fig. 5.5.
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Figure 5.5 Second numerical example in 2D (cross-shaped inclusion). Top left: sample of
the diffusion coefficient and sample-adapted triangulation, top right: sample of the advection
coefficient with sample-adapted triangulation, bottom left: FE solution at T corresponding
to the samples and triangulations on the top, bottom right: estimated RMSE vs. inverse
spatial refinement size.

The convergence rate of the sample-adapted FE method now deteriorates, but we
obtain a rate of κ ≈ 0.8. This is due to the fact that we can only expect piecewise
H5/3-regularity of u in the cross-shaped partition element, see [102, Chapter 9.1]. We
suggest that a better rate of convergence may be achieved by adaptive h-finite element
methods (see [187]), i.e. by refining the sample-adapted mesh in the reentrant corners.
A thorough analysis of this approach for general random geometries is, however, rather
involved and subject to further research. To conclude, we remark that the RMSE-curve
of the non-adapted FE discretization in Fig. 5.5 shows a decay rate of only 0.5, hence
the sample-adapted approach might also be beneficial in cases where we expect lower
piecewise spatial regularity.
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Abstract: The Richards’ equation is a model for flow of water in unsaturated soils.
The coefficients of this (nonlinear) partial differential equation describe the permeabil-
ity of the medium. Insufficient or uncertain measurements are commonly modeled by
random coefficients. For flows in heterogeneous, fractured or porous media, the co-
efficients are modeled as discontinuous random fields, where the interfaces along the
stochastic discontinuities represent transitions in the media. More precisely, the ran-
dom coefficient is given by the sum of a (continuous) Gaussian random field and a
(discontinuous) jump part. In this work moments of the solution to the random partial
differential equation are calculated using a path-wise numerical approximation com-
bined with multilevel Monte Carlo sampling. The discontinuities dictate the spatial
discretization, which leads to a stochastic grid. Hence, the refinement parameter and
problem-dependent constants in the error analysis are random variables and we derive
(optimal) a-priori convergence rates in a mean-square sense.
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6.1 Introduction

We consider a linear (diffusion-dominated) advection-diffusion equation with random
Lévy fields as coefficients. Adopting the term from stochastic analysis, by a Lévy field
we mean a random field which is built from a (continuous) Gaussian random field and
a (discontinuous) jump part (following a certain jump measure). In the last decade
various ways to approximate the distribution or moments of the solution to a random
equation were introduced. Next to classical Monte Carlo methods, their multilevel
variants and further variance reduction techniques have been applied. Due to their
low regularity constraints, multilevel Monte Carlo techniques have been successfully
applied to various problems, for instance in the context of elliptic random PDEs in
[1, 29, 31, 59, 148, 194] to just name a few. These sampling approaches differ funda-
mentally from Polynomial-Chaos-based methods. The latter suffer from high regularity
assumptions. While in the case of continuous fields these algorithms can outperform
sampling strategies, approaches – like stochastic Galerkin methods – are less promising
in our discontinuous setting. In fact, it is even an open problem to define them for
Lévy fields. While Richards’ equation formulated as a deterministic interface problem
was considered in numerous publications (see [68, 82] and the references therein), there
is up-to-date no stochastic formulation.

After introducing the necessary basic notation, in this paper we show in Sec-
tion 6.2 existence and uniqueness of a path-wise weak solution to the random advection-
diffusion equation and prove an energy estimate which allows for a moment estimate.
Next to space- and time-discretizations, the Lévy field has to be approximated, result-
ing in an approximated path-wise weak solution. In Section 6.3 we show convergence
of this approximated path-wise weak solution, before we introduce a sample-adapted
(path-wise) Galerkin approximation. Only if the discretization is adapted to the ran-
dom discontinuities can we expect full convergence rates. As the main result of this
article, we prove the error estimate of the spatial discretization in the L2-norm. To
this end, we utilize the corresponding results with respect to the H1-norm from [32]
and consider the parabolic dual problem. Finally, we combine the sample-adapted
spatial discretization with a suitable time stepping method to obtain a fully discrete
path-wise scheme. The path-wise approximations are used in Section 6.4 to estimate
quantities of interest using a (coupled) multilevel Monte Carlo method. Naturally, the
optimal sample numbers on each level depend on the sample-dependent convergence
rate. The term coupled refers to a simplified version of Multifidelity Monte Carlo sam-
pling (see [171]) that reuses samples across levels and is preferred when sampling from a
certain distribution is computationally expensive. In Section 6.5, a numerical example
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COEFFICIENTS

confirms our theoretical results from Section 6.3 and shows that the sample-adapted
strategy vastly outperforms a multilevel Monte Carlo estimator with a standard Finite
Element discretization in space.

6.2 Parabolic problems with random discontinuous coefficients

Let (Ω,A,P) be a complete probability space, T = [0, T ] be a time interval for some
T > 0 and D ⊂ Rd, d ∈ {1, 2}, be a polygonal and convex domain. We consider the
linear, random initial-boundary value problem

∂tu(ω, x, t) + [Lu](ω, x, t) = f(ω, x, t) in Ω×D × (0, T ]),

u(ω, x, 0) = u0(ω, x) in Ω×D × {0},

u(ω, x, t) = 0 on Ω× ∂D × T,

(6.1)

where f : Ω × D × T → R is a random source function and u0 : Ω × D denotes
the initial condition of the above PDE. Furthermore, L is the second order partial
differential operator given by

[Lu](ω, x, t) = −∇ · (a(ω, x)∇u(ω, x, t)) + b(ω, x)1T∇u(ω, x, t) (6.2)

for (ω, x, t) ∈ Ω×D × T with ∇ operating on the second argument of u. In Eq. (6.2),
we set 1 := (1, . . . , 1)T ∈ Rn, such that 1T∇u = ∑n

i=1 ∂xiu, and consider

• a stochastic jump-diffusion coefficient a : Ω×D → R and

• a random discontinuous convection term b : Ω×D → R coupled to a.

Throughout this article, we denote by C a generic positive constant which may
change from one line to the next. Whenever helpful, the dependence of C on certain
parameters is made explicit. To obtain a path-wise variational formulation, we use the
standard Sobolev spaceHs(D) with norm ‖·‖Hs(D) for any s > 0, see for instance [2, 71].
Since D has a Lipschitz boundary, for s ∈ (1/2, 3/2), the existence of a bounded, linear
trace operator γ : Hs(D)→ Hs−1/2(∂D) is ensured by the trace theorem, see [73]. We
only consider homogeneous Dirichlet boundary conditions on ∂D, hence we may treat
γ independently of ω ∈ Ω and define the suitable solution space V as

V := H1
0 (D) = {v ∈ H1(D)| γv ≡ 0},

equipped with the H1(D)-norm ‖v‖V := ‖v‖H1(D). With H := L2(D), we work on
the Gelfand triplet V ⊂ H ⊂ V ′ = H−1(D), where V ′ denotes the topological dual
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of V , i.e. the space of all bounded, linear functionals on V . In the variational ver-
sion of Problem (6.1), ∂tu denotes the weak time derivative of u. Throughout this
article, we may as well consider ∂tu as derivative in a strong sense (also with regard
to its approximation at the end of Section 6.3) as we will always assume sufficient
temporal regularity. As the coefficients a and b are random functions, any solution u
to Problem (6.1) is a time-dependent V -valued random variable. To investigate the
regularity of the solution u with respect to T and the underlying probability measure
P on Ω, we need to introduce the corresponding Lebesgue-Bochner spaces. To this
end, let p ∈ [1,∞) and(X , ‖ · ‖X ) be an arbitrary Banach space. For Y ∈ {T,Ω}, the
Lebesgue-Bochner space Lp(Y ;X ) is defined as

Lp(Y ;X ) := {ϕ : Y → X is strongly measurable and ‖ϕ‖Lp(Y ;X ) < +∞},

with the norm

‖ϕ‖Lp(Y ;X ) :=


( ∫

T ‖ϕ(t)‖pXdt
)1/p

for Y = T,

E(‖ϕ‖p)1/p =
( ∫

Ω ‖ϕ(ω)‖pXdP(dω)
)1/p

for Y = Ω.
.

The bilinear form associated to L is introduced to derive a weak formulation of the
initial-boundary value problem (6.1). For fixed ω ∈ Ω and t ∈ T, multiplying Eq. (6.1)
with a test function v ∈ V and integrating by parts yields

V ′〈∂tu(ω, ·, t), v〉V +Bω(u(ω, ·, t), v) = V ′〈f(ω, ·, t), v〉V . (6.3)

The bilinear form Bω : V × V → R is given by

Bω(u, v) =
∫
D
a(ω, x)∇u(x) · ∇v(x) + b(ω, x)1T∇u(x)v(x)dx,

and V ′〈·, ·〉V denotes the (V ′, V )-duality pairing.

Definition 6.2.1. For fixed ω ∈ Ω, the path-wise weak solution to Problem (6.1) is a
function u(ω, ·, ·) ∈ L2(T;V ) with ∂tu(ω, ·, ·) ∈ L2(T;V ′) such that, for t ∈ T,

V ′〈∂tu(ω, ·, t), v〉V +Bω(u(ω, ·, t), v) = V ′〈f(ω, ·, t), v〉V , for all v ∈ V
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and u(ω, ·, 0) = u0(ω, ·). Furthermore, we define the path-wise parabolic norm by

‖u(ω, ·, ·)‖∗,t : =
(
‖u(ω, ·, t)‖2

H +
∫ t

0

∫
D
∇u(ω, x, z) · ∇u(ω, x, z)dxdz

)1/2

=
(
‖u(ω, ·, t)‖2

H + ‖‖∇u(ω, x, z)‖2‖2
L2([0,t];H)

)1/2
,

where ‖ · ‖2 is the Euclidean norm on Rd.

To represent the (uncertain) permeability in a subsurface flow model, we use the
random jump coefficients a, b from the elliptic/parabolic problems in [31, 32]. The
diffusion coefficient is then given by a (spatial) Gaussian random field with additive
discontinuities on random areas of D. Its specific structure may be utilized to model
the hydraulic conductivity within heterogeneous and/or fractured media and thus a is
considered time-independent. The advection term in this model is driven by the same
random field and inherits the same discontinuous structure as the diffusion, hence we
consider the coefficient b as a linear mapping of a.

Definition 6.2.2. The jump-diffusion coefficient a is defined as

a : Ω×D → R>0, (ω, x) 7→ a(x) + Φ(W (ω, x)) + P (ω, x),

where

• a ∈ C1(D;R≥0) is non-negative, continuous, and bounded.

• Φ ∈ C1(R;R>0) is a continuously differentiable, positive mapping.

• W ∈ L2(Ω;H) is a (zero-mean) Gaussian random field associated to a non-
negative, symmetric trace class operator Q : H → H.

• T : Ω → B(D), ω 7→ {T1, . . . , Tτ} is a random partition of D, i.e. the Ti are
disjoint open subsets of D such that |Ti| > 0 and D = ⋃τ

i=1 T i, and B(D) denotes
the Borel-σ-algebra on D. The number of elements in T , τ , is a random variable
on (Ω,A,P), i.e. τ : Ω→ N.

• (Pi, i ∈ N) is a sequence of non-negative random variables on (Ω,A,P) and

P : Ω×D → R≥0, (ω, x) 7→
τ(ω)∑
i=1

1{Ti}(x)Pi(ω).

The sequence (Pi, i ∈ N) is independent of τ (but not necessarily i.i.d.).
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Based on a, the jump-advection coefficient b is given for b1, b2 ∈ L∞(D) by

b : Ω×D → R, (ω, x) 7→ min(b1(x)a(ω, x), b2).

The definition of the random partition T above is rather general and does not
yet assume any structure on the discontinuities. A more specific class of random
partitions is considered in our numerical experiment in Section 6.5. We assumed in
Definition 6.2.2 that τ and Pi are independent due to technical reasons, i.e. to control
for a possible sampling bias in Pi, see [31, Theorem 3.11]. On a further note, we do
not require stochastic independence of W and P . In general, our aim is to estimate
moments of a quantity of interest (QoI) Ψ(ω) := ψ(u(ω, ·, ·)) of the weak solution,
where ψ : L2(T;V ) → R is a deterministic functional. To ensure existence and a
certain regularity of u, and therefore of Ψ, we fix the following set of assumptions.

Assumption 6.2.3.

1. Let η1 ≥ η2 ≥ · · · ≥ 0 denote the eigenvalues of Q in descending order and
(ei, i ∈ N) ⊂ H be the corresponding eigenfunctions. The ei are continuously
differentiable on D and there exist constants α, β, Ce, Cη > 0 such that 2α ≤ β

and for any i ∈ N

‖ei‖L∞(D) ≤ Ce, max
j=1,...,d

‖∂xjei‖L∞(D) ≤ Cei
α and

∞∑
i=1

ηii
β ≤ Cη < +∞.

2. Furthermore, the mapping Φ as in Definition 6.2.2 and its derivative are bounded
by

φ1 exp(φ2|w|) ≥ Φ(w) ≥ φ1 exp(−φ2|w|), | d
dx

Φ(w)| ≤ φ3 exp(φ4|w|), w ∈ R,

where φ1, . . . , φ4 > 0 are arbitrary constants.

3. For some p > 2, f, ∂tf ∈ Lp(Ω;L2(T;H)), u0 ∈ Lp(Ω;H2(D) ∩ V ) and u0 and f
are stochastically independent of T .

4. The partition elements Ti are almost surely polygons with piecewise linear bound-
ary and E(τn) < +∞ for all n ∈ N.

5. The sequence (Pi, i ∈ N) consists of nonnegative and bounded random variables
Pi ∈ [0, P ] for some P > 0.
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6. The functional ψ is Lipschitz continuous on L2(T;H), i.e. there exists Cψ > 0
such that

|ψ(v)− ψ(w)| ≤ Cψ‖v − w‖L2(T;H) ∀v, u ∈ L2(T;H).

Remark 6.2.4. The above assumptions are natural and cannot be relaxed significantly
to derive the results in Section 6.3. The condition 2α ≤ β implies that W has almost
surely Lipschitz continuous paths on D, thus a is piecewise Lipschitz continuous. This
is in turn necessary to derive the error estimates of orders O(hκ` ) and O(h2κ

` ) in The-
orem 6.3.3 and Theorem 6.3.4, respectively, for some κ ∈ (1/2, 1] that is independent
of W . The parameter h` denotes the Finite Element (FE) refinement and κ should
only be influenced by the law of the random jump field P . If any of this assump-
tions were violated, however, κ may depend on other parameters of the random PDE.
For instance, if β/2α < κ ≤ 1, we would only obtain an error of approximate order
O(hβ/2α` ) in Theorem 6.3.3, see [32] for a detailed discussion. The remaining points
in Assumption 6.2.3 ensure that all estimates hold in the mean-square sense, i.e. the
second moments of all estimates exist and can be bounded with respect to h`.

We have the following estimate on a and its piecewise Lipschitz norm.

Lemma 6.2.5. [32, Lemmas 3.6 and 4.8] Let Assumption 6.2.3 hold and define

a−(ω) := ess inf
x∈D

a(ω, x) and a+(ω) := ess sup
x∈D

a(ω, x).

Then, for any q ∈ [1,∞)

1/a−, a+, max
i=1,...,τ

d∑
j=1
‖∂xja‖L∞(Ti) ∈ Lq(Ω;R).

Theorem 6.2.6. Under Assumption 6.2.3 there exists almost surely a unique path-wise
weak solution u(ω, ·, ·) ∈ L2(T;V ) to Problem (6.1) satisfying the estimate

sup
t∈T
‖u(ω, ·, ·)‖2

∗,t ≤ C/a−(ω)
(
‖u0(ω, ·)‖2

H + ‖f(ω, ·, ·)‖2
L2(T ;H)

)
< +∞. (6.4)

In addition, for any r ∈ [1, p) (with p as in Ass. 6.2.3), u is bounded in expectation by

E
(

sup
t∈T
‖u‖r∗,t

)1/r
≤ C‖1/a−‖Lq̃(Ω;R)

(
‖u0‖Lp(Ω;H) + ‖f‖Lp(Ω;L2(T;V ′))

)
< +∞. (6.5)

with C = C(r) and q̃ := (1/r − 1/p)−1. Furthermore, it holds Ψ ∈ Lr(Ω;R).
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Proof. The estimates in Ineq. (6.4) and (6.5) follow from [32, Theorem 3.7]. To show
that Ψ ∈ Lr(Ω;R), we use Assumption 6.2.3 to see that ψ fulfills the linear growth
condition |ψ(v)| ≤ C(1 + ‖v‖L2(T;H)) for some deterministic constant C = C(ψ) > 0
and all v ∈ L2(T;H). Hence, we have

E(Ψr) ≤ E
(
Cr(1 + ‖u‖L2(T;V ))r

)
≤ Cr2r−1

(
1 + E

(
sup
t∈T
‖u‖r∗,t

))
< +∞.

6.3 Numerical approximation of the solution

In general, the (exact) weak solution u to Problem (6.1) is out of reach and we have to
find tractable approximations of u to apply Monte Carlo algorithms for the estimation
of E(Ψ). A common approach is to use a FE discretization of V combined with a time
marching scheme to sample path-wise approximations of u. For this, however, it is
necessary to evaluate a and b at certain points in D. This is in general infeasible, since
the Gaussian field W usually involves an infinite series and/or the jump heights Pi
might not be sampled without bias. The latter issue may arise if Pi has non-standard
law, e.g. the generalized inverse Gaussian distribution, for more details we refer to
[31, 32]. We may circumvent this issue by constructing suitable approximations of
a and b, for instance by truncated Karhunen-Loève expansions ([53, 54]), circulant
embedding methods ([97, 139]) or Fourier inversion techniques for the sampling of Pi
([30, 31]). Hence, we obtain a modified problem with approximated coefficients which
may then be discretized in the spatial and temporal domain. To increase the order of
convergence in the spatial discretization, we introduce a FE scheme in the second part
of this section where we choose the FE grids adapted with respect to the discontinuities
in each sample of a and b. Under mild assumptions on the coefficients we then derive
errors on the semi- and fully discrete approximations of u.

6.3.1 Approximated diffusion coefficients

As discussed above, there are several methods available to obtain tractable approxi-
mations of the diffusion coefficient a, thus we consider a rather general setting here.
For some ε > 0, let aε : Ω × D → R>0 be an arbitrary approximation of the diffusion
coefficient and let (according to Definition 6.2.2)

bε : Ω×D → R, (ω, x) 7→ min(b1(x)aε(ω, x), b2(x)),
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be the canonical approximation of b. Substituting aε and bε into Problem (6.1) yields

∂tuε(ω, x, t) + [Lεuε](ω, x, t) = f(ω, x, t) in Ω×D × (0, T ],

uε(ω, x, 0) = u0(ω, x) in Ω×D × {0}

uε(ω, x, t) = 0 on Ω× ∂D × T,

(6.6)

where the approximated second order differential operator Lε is given by

[Lεu](ω, x, t) = −∇ · (aε(ω, x)∇u(ω, x, t)) + bε(ω, x)1T∇u(ω, x, t).

The path-wise variational formulation of Eq. (6.6) is then (analogous to Eq. (6.3))
given by: For almost all ω ∈ Ω with given f(ω, ·, ·), find uε(ω, ·, ·) ∈ L2(T;V ) with
∂tu(ω, ·, ·) ∈ L2(T;V ′) such that, for t ∈ T,

V ′〈∂tuε(ω, ·, t), v〉V +Bε,ω(uε(ω, ·, t), v) = Fω,t(v), (6.7)

holds for all v ∈ V with respect to the approximated bilinear form

Bε,ω(v, w) :=
∫
D
aε(ω, x)∇v(x) · ∇w(x) + bε(ω, x)1T∇v(x)w(x)dx, v, w ∈ V.

The following assumption guarantees existence and uniqueness of uε and allows us
to bound u− uε in a mean-square sense.

Assumption 6.3.1. Let Assumption 6.2.3 hold and let aε : Ω × D → R>0 be an
approximation of a for some fixed ε > 0. Define aε,−(ω) := ess infaε(ω, x) and aε,+(ω) :=
ess supx∈Daε(ω, x). Assume that for some s > (1/2− 1/p)−1 and any q ∈ [1,∞), there
are constants Ci > 0, for i = 1, . . . , 4, independent of ε, such that

• ‖a− aε‖Ls(Ω;L∞(D)) ≤ C1ε,

• ‖1/aε,−‖Lq(Ω;R) ≤ C2‖1/a−‖Lq(Ω;R) < +∞,

• ‖aε,+‖Lq(Ω;R) ≤ C3‖a+‖Lq(Ω;R) < +∞ and

• ‖ max
i=1,...,τ

∑d
j=1 ‖∂xjaε‖L∞(Ti)‖Lq(Ω;R) ≤ C4‖ max

i=1,...,τ

∑d
j=1 ‖∂xja‖L∞(Ti)‖Lq(Ω;R) < +∞.

At this point we remark that Assumption 6.3.1 is natural and essentially states that
aε has the same regularity as a. Furthermore, the moments of a− aε are controlled by
the parameter ε and we may achieve an arbitrary good approximation by choosing ε
sufficiently small. This holds for instance (with C2 = C3 = C4 = 1) if W is approx-
imated by a truncated Karhunen-Loève expansion (see [31, 32]) or if aε stems from
linear interpolation of discrete sample points of W as we explain in Section 6.5.
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Theorem 6.3.2. Let Assumption 6.3.1 hold and let uε be the weak solution to Prob-
lem (6.6). Then, the root-mean-squared approximation error is bounded by

E
(

sup
t∈T
‖u(·, ·, t)− uε(·, ·, t)‖2

∗,t

)1/2
≤ Cε.

Proof. By Theorem 6.2.6, we have existence of unique solutions u and uε to Eqs. (6.3)
resp. (6.7) almost surely. Thus, we obtain the variational problem: Find u − uε such
that

V ′〈∂t(u(ω, ·, t)− uε(ω, ·, t)), v〉V +Bω(u(ω, ·, t)− uε(ω, ·, t), v) = V ′〈f̃(ω, ·, t), v〉V

for all t ∈ T and v ∈ V with initial condition (u− uε)(·, ·, 0) ≡ 0 and right hand side

f̃(ω, ·, t) := ∇ · ((aε − a)(ω, ·)∇uε(ω, ·, t)) + (bε − b)(ω, ·)1T∇uε(ω, ·, t) ∈ V ′.

By Hölder’s inequality it holds

‖f̃(ω, ·, ·)‖L2(T;V ′) ≤ ‖(a− aε)(ω, ·)‖L∞(D)‖‖∇u(ω, ·, ·)‖2‖L2(T;H)

+ ‖(b− bε)(ω, ·)‖L∞(D)‖1T∇u(ω, ·, ·)‖L2(T;H)

≤ C(1 + ‖b1‖L∞(D))‖(a− aε)(ω, ·)‖L∞(D)‖‖∇u(ω, ·, ·)‖2‖L2(T;H),

which yields using Assumption 6.3.1 and Theorem 6.2.6

‖f̃(ω, ·, ·)‖Lp1 (Ω;L2(T;V ′)) ≤ C(1 + ‖b1‖L∞(D))‖(a− aε)‖Ls(Ω;L∞(D))E
(

sup
t∈T
‖u‖r∗,t

)1/r

≤ Cε

for r ∈ ((1/2−1/s)−1, p) and p1 := (1/s+ 1/r)−1 > 2. We may now use Theorem 6.2.6
with q = (1/2− 1/p1)−1 to estimate u− uε via

E
(

sup
t∈T
‖u− uε‖2

∗,t

)1/2
≤ C‖1/a−‖Lq(Ω;R)‖f̃‖Lp1 (Ω;L2(T;V ′)) ≤ Cε.

6.3.2 Semi-discretization by sample-adapted finite elements

Given a suitable approximation aε of the diffusion coefficient, we discretize the (ap-
proximate) solution uε in the spatial domain. As a first step, we replace the (infinite-
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dimensional) solution space V by a sequence V = (V`, ` ∈ N0) of finite dimensional
subspaces V` ⊂ V . In general, V` are standard FE spaces of piecewise linear functions
with respect to some given triangulation K` of D and h` represents the maximum di-
ameter of K`. As indicated in [31, 32] using standard FE spaces will not yield the full
order of convergence with respect to h` due to the discontinuities in aε and bε. Thus,
we follow the same approach as in [31] for Problem (6.7) and utilize path-dependent
meshes to match the interfaces generated by the jump-diffusion and -advection coeffi-
cients. As this entails changing varying approximation spaces V` with each sample of
aε resp. bε, we have to formulate a semi-discrete version of problem (6.7) with respect
to ω ∈ Ω:

Given a fixed ω ∈ Ω and ` ∈ N0, we consider a (stochastic) finite dimensional sub-
space V`(ω) ⊂ V with sample-dependent basis {v1(ω), . . . , vd`(ω)} ⊂ V and stochastic
dimension d` = d`(ω) ∈ N. For a given random partition T (ω) = (Ti, i = 1 . . . , τ(ω))
of polygons on D, we choose a conforming triangulation K`(ω) such that

T (ω) ⊂ K`(ω) and h`(ω) := max
K∈K`(ω)

diam(K) ≤ h` for ` ∈ N0,

holds almost surely. The inclusion T (ω) ⊂ K`(ω) states that the triangles in K`(ω) are
chosen to match and fully cover the polygonal partition elements in T (ω). Furthermore,
(h`, ` ∈ N0) is a sequence of positive, deterministic refinement thresholds, decreasing
monotonically to zero. This guarantees that h`(ω) → 0 for ` → ∞ almost surely,
although the absolute speed of convergence varies for each ω. We assume shape-
regularity of the triangulation uniform in Ω, i.e. there exist a ϑ ∈ (0, 1) such that

0 < ϑ ≤ sup
`∈N0

sup
K∈K`(ω)

diam(K)
ιK

≤ ϑ−1 < +∞ almost surely.

In Ineq. (6.3.2), ιT denotes the diameter of the inscribed circle of the triangle K. For
given {v1(ω), . . . , vd`(ω)}, the semi-discrete version of the variational formulation (6.7)
is then to find uε,`(ω, ·, t) ∈ V`(ω) such that for t ∈ T and v`(ω) ∈ V`(ω)

V ′〈∂tuε,`(ω, ·, t), v`(ω)〉V +Bε,ω(uε,`(ω, ·, t), v`(ω)) = V ′〈f(ω, ·, t), v`(ω)〉V ,

uε,`(ω, ·, 0) = u0,`(ω, ·),
(6.8)

where u0,`(ω, ·) ∈ V`(ω) is a suitable approximation of u0(ω, ·), for instance the nodal
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interpolation of u0 in V`(ω). The function uε,`(ω, ·, t) may be expanded as

uε,`(ω, ·, t) =
d`(ω)∑
j=1

cj(ω, t)vj(ω),

where the coefficients c1(ω, t), . . . , cd`(ω, t) ∈ R depend on (ω, t) ∈ Ω × T and the
respective coefficient (column-)vector is c(ω, t) := (c1(ω, t), . . . , cd`(ω, t))T . With this,
the semi-discrete variational problem in the (stochastic) finite dimensional space V`(ω)
is equivalent to solving the system of ordinary differential equations

d

dt
c(ω, t) + A(ω)c(ω, t) = F(ω, t), t ∈ T (6.9)

for c with stochastic stiffness matrix (A(ω))jk = Bε,ω(vj(ω), vk(ω)) and time-dependent
load vector (F(ω, t))j = V ′〈f(ω, ·, t), vj(ω)〉V for j, k ∈ {1, . . . , d`(ω)}. The following
result gives an error estimate in the energy norm for uε − uε,`.

Theorem 6.3.3. [32, Theorem 4.7] Let Assumption 6.3.1 hold such that for some
κ ∈ (1/2, 1] it holds that E(maxi=1,...,τ ‖u‖2

H1+κ(Ti)) < +∞. Let uε,` be the semi-discrete
sample-adapted approximation of uε as in Eq. (6.8) and let ‖(u0 − u`,0)(ω, ·)‖H ≤
C‖u0(ω, ·)‖V h` almost surely for all ` ∈ N0. Then, there holds almost surely the path-
wise estimate

sup
t∈T
‖(uε − uε,`)(ω, ·, ·)‖∗,t ≤ C/(aε,−(ω))1/2

(
‖f(ω, ·, ·)‖L2(T;H) + ‖u0(ω, ·)‖V

)
h
κ

`

and, for any r ∈ [1, p) (with p as in Ass 6.2.3), the expected parabolic estimate

E(sup
t∈T
‖uε − uε,`‖r∗,t)1/r ≤ C(‖f‖Lp(Ω;L2(T;H)) + ‖u0‖Lp(Ω;V ))h

κ

` .

The above statement gives a bound on the error in the L2(T;V )-norm. The func-
tional Ψ however is defined on L2(T;H), thus it is favorable to derive an error bound
with respect to the weaker L2(T;H)-norm.

Theorem 6.3.4. Let Assumption 6.3.1 hold such that for some κ ∈ (1/2, 1] there
holds E(maxi=1,...,τ ‖u‖2

H1+κ(Ti)) < +∞ and let ‖(u0−u`,0)(ω, ·)‖H ≤ C‖u0(ω, ·)‖H2(D)h
2
`

almost surely. Then,

E(‖uε − u`,ε‖2
L2(T;H))1/2 ≤ Ch

2κ
` .

Proof. For fixed ω, we consider the path-wise parabolic dual problem to find w(ω, ·, ·) ∈
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L2(T;V ) with ∂tw(ω, ·, ·) ∈ L2(T;V ′) such that, for t ∈ T,

V ′〈∂tw(ω, ·, t), v〉V +Bε,ω(w(ω, ·, t), v) = V ′〈g(ω, ·, t), v〉V , for all v ∈ V, (6.10)

where w(ω, ·, 0) = w0(ω, ·) := 0 and g(ω, ·, t) := (uε−uε,`)(ω, ·, T−t) ∈ V almost surely
for any t ∈ T by Theorem 6.2.6. Hence, we may test against v = g(ω, ·, t) in Eq. (6.10)
to obtain

‖g(ω, ·, t)‖2
H = V ′〈∂tw(ω, ·, t), g(ω, ·, t)〉V +Bε,ω(w(ω, ·, t), g(ω, ·, t)). (6.11)

Furthermore, for any v`(ω) ∈ V`(ω) it holds by Eqs. (6.7),(6.8)

V ′〈∂t(uε − uε,`)(ω, ·, t), v`(ω)〉V = −Bε,ω((uε − uε,`)(ω, ·, t), v`(ω)) (6.12)

and thus

Bε,ω(g(ω, ·, t), w(ω, ·, t)) = V ′〈∂tg(ω, ·, t), v`(ω)− w(ω, ·, t) + w(ω, ·, t)〉V
+Bε,ω(g(ω, ·, t), w(ω, ·, t)− v`(ω)),

(6.13)

where we have used the that ∂tg(ω, ·, t) = −(∂tuε−∂tuε,`)(ω, ·, T − t) by the chain rule.
Substituting Eq. (6.13) in Eq. (6.11) and integrating over T yields

‖g(ω, ·, ·)‖2
L2(T;H) =

∫ T

0 V ′〈∂tw(ω, ·, t), g(ω, ·, t)〉V + V ′〈∂tg(ω, ·, t), w(ω, ·, t)〉V dt

+
∫ T

0 V ′〈∂tg(ω, ·, t), v`(ω)− w(ω, ·, t)〉V dt

+
∫ T

0
Bε,ω(g(ω, ·, t), w(ω, ·, t)− v`(ω))dt

=: I + II + III.

Integration by parts and the path-wise estimate in Theorem 6.2.6 yield for I

I = (w(ω, ·, T ), g(ω, ·, T ))H − (w0(ω, ·), g(ω, ·, 0))H
≤ ‖w(ω, ·, T )‖H‖u0(ω, ·)− u0,`(ω, ·)‖H

≤ C
1

aε,−(ω)‖g(ω, ·, ·)‖L2(T;H)‖u0(ω, ·)‖H2(D)h
2
` ,

where we have used ‖(u0−u`,0)(ω, ·)‖H ≤ C‖u0(ω, ·)‖H2(D)h
2
` in the last step. To bound

the second term, we choose v` = v`(ω, ·, t) to be the semi-discrete FE approximation of
w(ω, ·, t) in V`(ω). Since w0 ≡ 0, there is no approximation error in the initial condition
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and with the path-wise estimate from Theorem 6.3.3 it follows that

II ≤ ‖∂tg(ω, ·, ·)‖L2(T;V ′)‖v`(ω, ·, ·)− w(ω, ·, ·)‖L2(T;V )

≤ C
1

(aε,−(ω))1/2‖∂tg(ω, ·, ·)‖L2(T;V ′)‖g(ω, ·, ·)‖L2(T;H)h
κ

` .

From Eq. (6.12) and Theorem 6.3.3 we also see that

‖∂tg(ω, ·, ·)‖L2(T;V ′) ≤ C
aε,+(ω)

(aε,−(ω))1/2

(
‖f(ω, ·, ·)‖L2(T;H) + ‖u0(ω, ·)‖V

)
h
κ

`

and thus

II ≤ C
aε,+(ω)
aε,−(ω)

(
‖f(ω, ·, ·)‖L2(T;H) + ‖u0(ω, ·)‖V

)
‖g(ω, ·, ·)‖L2(T;H)h

2κ
` .

Similarly, we bound the last term again with Theorem 6.3.3 via

III ≤ Caε,+(ω)‖g(ω, ·, ·)‖L2(T;V )‖v`(ω, ·, ·)− w(ω, ·, ·)‖L2(T;V )

≤ C
aε,+(ω)
aε,−(ω)

(
‖f(ω, ·, ·)‖L2(T;H) + ‖(u0(ω, ·)‖V

)
‖g(ω, ·, ·)‖L2(T;H)h

2κ
` .

The estimates on I − III now show that

‖g(ω, ·, ·)‖L2(T;H) ≤ C
aε,+(ω)
aε,−(ω)

(
‖f(ω, ·, ·)‖L2(T;H) + ‖(u0(ω, ·)‖H2(D)

)
h

2κ
` .

and the claim follows by Assumption 6.3.1 and Hölder’s inequality.

Remark 6.3.5. We remark that the additional condition on the initial data approx-
imation in Theorem 6.3.4 is fulfilled if u0 has almost surely continuous paths and u`,0
is chosen as the path-wise nodal interpolation with respect to the sample-adapted FE
basis.

6.3.3 Fully discrete pathwise approximation

For a fully discrete formulation of Problem (6.8), we consider a time grid 0 = t0 <

t1 < · · · < tn = T in T for some n ∈ N and assume the grid is equidistant with fixed
time step ∆t := ti − ti−1 > 0. The temporal derivative at ti is approximated by the
backward difference

∂tuε,`(ω, ·, ti) = (uε,`(ω, ·, ti)− uε,`(ω, ·, ti−1))/∆t, i = 1, . . . , n.
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We emphasize again that in our model problem the weak and strong temporal derivative
of uε,` coincide due to the temporal regularity of the solution. Hence, the backward
difference as an approximation scheme in a strong sense is justified. This yields the fully
discrete problem to find (u(i)

ε,`(ω, ·), i = 0, . . . , n) ⊂ V`(ω) such that for all v`(ω) ∈ V`(ω)
and i = 1, . . . , n

((u(i)
ε,` − u

(i−1)
ε,` )(ω, ·), v`(ω))H

∆t +Bε,ω(u(i)
ε,`(ω, ·), v`(ω)) = V ′〈f(ω, ·, ti), v`(ω)〉V ,

u
(0)
ε,` (ω, ·) = u0,`(ω, ·).

The fully discrete solution is given by

u
(i)
ε,`(ω, ·) =

d`(ω)∑
j=1

ci,j(ω)vj(ω), i = 1, . . . , n,

where the coefficient vector ci(ω) = (ci,1(ω), . . . , ci,d`(ω))) solves the linear system of
equations

(M + ∆tA(ω))ci(ω) = ∆tF(ω, ti) + Mci−1(ω)

in every discrete point in time ti, and A and F are as in Eq. (6.9). The mass matrix is
given by (M)jk := (vj(ω), vk(ω))H and c0 consists of the basis coefficients of u0,` ∈ V`(ω)
with respect to {v1(ω), . . . , vd`(ω)}. We extend the discrete solution to the whole
temporal domain by the linear interpolation

uε,`(·, ·, t) := (u(i)
ε,` − u

(i−1)
ε,` )(t− ti−1)

∆t + u
(i−1)
ε,` , t ∈ [ti−1, ti], i = 1, . . . , n.

Theorem 6.3.6. [32, Theorem 4.12] Let Assumption 6.3.1 hold, let (u(i)
ε,`, i = 0, . . . , n)

be the fully discrete sample-adapted approximation of uN,ε, and let uε,` be the linear
interpolation of (u(i)

ε,`, i = 0, . . . , n) in T. Then, for C > 0 independent of ε, h` and ∆t,
it holds

E(sup
t∈T
‖uε,` − uε,`‖2

∗,t)1/2 ≤ C∆t.

The final corollary on the overall approximation error is now an immediate conse-
quence of Theorems 6.3.2, 6.3.4 and 6.3.6 and the Lipschitz condition on ψ.

Corollary 6.3.7. Let Assumption 6.3.1 hold such that for some κ ∈ (1/2, 1] there
holds E(maxi=1,...,τ ‖u‖2

H1+κ(Ti)) < +∞ and let ‖(u0−u`,0)(ω, ·)‖H ≤ C‖u0(ω, ·)‖H2(D)h
2
`

almost surely. The (fully) approximated QoI is defined by Ψε,`,∆t := ψ(uε,`). Then, there
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holds the error bound

E(|Ψ−Ψε,`,∆t|2)1/2 ≤ C(ε+ h
2κ
` + ∆t).

Given a sequence of discretization tresholds h` > 0 for ` ∈ N0, one should adjust ε
and ∆t such that h2κ

` ' ε ' ∆t to achieve an error equilibrium. Hence, we denote the
adjusted parameters on level ` by ε` and ∆t` and assume that all errors are equilibrated
in the sense that ch2κ

` ≤ ε`,∆t` ≤ Ch
2κ
` holds for constants c, C > 0 independent of `.

We further define Ψ` := Ψε`,`,∆t` = ψ(uε`,`) and obtain with Corollary 6.3.7

E(|Ψ−Ψ`|2)1/2 ≤ Ch
2κ
` . (6.14)

6.4 Estimation of moments by multilevel Monte Carlo methods

As we are able to generate samples from Ψ` = ψ(uε`,`) and control for the discretization
error in each sample, we may estimate the expectation E(Ψ) by Monte Carlo methods.
For convenience, we restrict ourselves to the estimation of E(Ψ), but we note that
all results from this section are valid when estimating higher moments of Ψ, given
that u ∈ Lr(Ω;L2(T;V )) for sufficiently high r (cf. Theorem 6.2.6). Our focus is on
multilevel Monte Carlo (MLMC) estimators, since they are easily implemented, do not
require much regularity of Ψ and are significantly more efficient than standard Monte
Carlo estimators. The main idea of the MLMC estimation has been developed in [106]
and later been rediscovered and popularized in [92]. In this section, we briefly recall
the MLMC method and then show how we achieve a desired error rate by adjusting
the number of samples on each level to the discretization bias. We also suggest a
modification of the MLMC algorithm to increase computational efficiency before we
verify our results in Section 6.5.

Let L ∈ N be a fixed (maximum) discretization level and assume that the approxi-
mation parameters on each level ` = 0, . . . , L satisfy h2κ

` ' ε` ' ∆t` (see Section 6.3).
This yields a sequence Ψ0, . . . ,ΨL of approximated QoIs, hence the MLMC estimator
of E(ΨL) is given by

EL(ΨL) =
L∑
`=0

1
M`

M∑̀
i=1

Ψ(i,`)
` −Ψ(i,`)

`−1 , (6.15)

where we have set Ψ−1 := 0. Above, (Ψ(i,`)
` −Ψ(i,`)

`−1 , i ∈ N) is a sequence of independent
copies of Ψ` − Ψ`−1 and M` ∈ N denotes the number of samples on each level. To
achieve a desired target root mean-squared error (RMSE), this estimator requires less
computational effort than the standard Monte Carlo approach under certain assump-
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tions. This, by now, classical result was proven in [92, Theorem 3.1] for functionals of
stochastic differential equations. The proof is rather general and may readily be trans-
ferred to other applications, for instance the estimation of functionals or moments of
random PDEs, see [29, 93].

Theorem 6.4.1. Let Assumption 6.3.1 hold such that for some κ ∈ (1/2, 1] there holds
E(maxi=1,...,τ ‖u‖2

H1+κ(Ti)) < +∞ and let h`−1 ≤ C1h` for some C1 > 0 for all ` ∈ N0.
For L ∈ N and given refinement parameters h0 > · · · > hL > 0 choose ∆t`, ε` > 0
such that ε`,∆t` ≤ C2h

2κ
` holds for fixed C2 > 0 and ` = 0, . . . , L. Furthermore, let

(ρ`, ` = 1, . . . , L) ∈ (0, 1)L be a set of positive weights such that ∑L
`=1 ρ` = Cρ, with a

constant Cρ > 0 independent of L, and set

M−1
0 := dh4κ

L e and M−1
` := dh

4κ
L

h
4κ
`

ρ−2
` e for ` = 1, . . . , L.

Then, there is a C > 0, independent of L and κ, such that

‖E(Ψ)− EL(ΨL)‖L2(Ω;R) ≤ Ch
2κ
L .

Proof. As all error contributions ε`,∆t` are adjusted to h`, we obtain by the triangle
inequality and Eq. (6.14)

‖E(Ψ)− EL(ΨL)‖L2(Ω;R) ≤ ‖E(Ψ)− E(ΨL)‖L2(Ω;R) + ‖E(ΨL)− EL(ΨL)‖L2(Ω;R)

≤ ‖Ψ−ΨL‖L2(Ω;R)

+ ‖
L∑
`=0

E(Ψ` −Ψ`−1)− 1
M`

M∑̀
i=1

(Ψ(i,`)
` −Ψ(i,`)

`−1 )‖L2(Ω;R)

≤ Ch
2κ
L +

L∑
`=0

1√
M`

‖Ψ` −Ψ`−1‖L2(Ω;R).

At this point we emphasize that we did not use the independence of Ψ(i,`)
` −Ψ(i,`)

`−1 across
the levels ` = 1, . . . , L in the last inequality. We note that

‖Ψ` −Ψ`−1‖L2(Ω;R) ≤ ‖Ψ−Ψ`‖L2(Ω;R) + ‖Ψ−Ψ`−1‖L2(Ω;R) ≤ C(1 + C1)h2κ
`

for ` ≥ 1 and hence

‖E(Ψ)− EL(ΨL)‖L2(Ω;R) ≤ Ch
2κ
L + ‖Ψ0‖L2(Ω;R)h

2κ
L + C(1 + C1)h2κ

L

L∑
`=1

ρ` ≤ Ch
2κ
L .
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We remark that Cρ > 0 may act as a normalizing constant if MLMC estimators
based on different discretization techniques are compared, an example is provided in
Section 6.5. To conclude this section, we briefly present a modified MLMC method
to accelerate the estimation of E(ΨL). In the definition of the MLMC estimator from
Eq. (6.15), the terms in the second sum are independent copies of the corrections
Ψ` − Ψ`−1. Hence, one has to generate a total of M` + M`+1 samples of Ψ` for each
` = 0, . . . , L (where we have setML+1 := 0). This effort may be reduced if we “recycle”
the already available samples and generate the differences Ψ(i,`)

` −Ψ(i,`)
`−1 and Ψ(i,`)

`+1−Ψ(i,`)
`

based on the same realization Ψ(i,`)
` . That is, we drop the second superscript ` above

and arrive at the coupled MLMC estimator

EL
C(ΨL) :=

L∑
`=0

1
M`

M∑̀
i=1

Ψ(i)
` −Ψ(i)

`−1. (6.16)

Instead of M` + M`+1 realizations of Ψ`, the coupled MLMC estimator requires only
M` samples of Ψ`. The copies Ψ(i)

` are still independent in i, but not anymore across
all levels ` for a fixed index i. Clearly, E(EL

C(ΨL)) = E(ΨL), and it holds

lim
L→+∞

E(EL
C(ΨL)) = lim

L→+∞
E(EL(ΨL)) = lim

L→+∞
E(ΨL) = E(u).

The introduced modification is a simplified version of the Multifidelity Monte Carlo
estimator (see [171]), where the weighting coefficients for all level corrections Ψ`−Ψ`−1

are set equal to one. An estimator similar to (6.16) with coupled correction terms has
also been introduced in the context of SDEs in [181]. As we mentioned in the proof
of Theorem 6.4.1, independence of the sampled differences Ψ` − Ψ`−1 across ` is not
required for the error estimate, thus, the asymptotic order of convergence also holds
for the coupled estimator. To compare RMSEs of the estimators from Eq. (6.15) and
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(6.16), we calculate

Var(EL
C(ΨL)) = Var

( L∑
`=0

M∑̀
i=M`+1+1

∑̀
k=0

Ψ(i)
k −Ψ(i)

k−1
Mk

)

=
L∑
`=0

(M` −M`+1)Var
(∑̀
k=0

Ψk −Ψk−1

Mk

)

=
L∑
`=0

(M` −M`+1)
( ∑̀
k=0

Vk

M2
k

+ 2
∑̀
k=0

k−1∑
j=0

Cj,k

MjMk

)

=
L∑
k=0

( Vk

M2
k

+ 2
k−1∑
j=0

Cj,k

MjMk

) L∑
`=k

(M` −M`+1)

= Var(EL(ΨL)) + 2
L∑
k=0

k−1∑
j=0

Cj,k

Mj

,

where Vk := Var(Ψk − Ψk−1) and Cj,k := Cov(Ψj − Ψj−1,Ψk − Ψk−1). Hence, the
coupled estimator introduces a higher RMSE if the corrections Ψ`−Ψ`−1 are positively
correlated across the levels. In this case, we trade in variance for simulation time and
the ratio of this trade-off is problem-dependent and hard to assess in advance.

6.5 Numerical results

For our numerical experiment we consider D = (0, 1)2 with T = 1, initial data
u0(x1, x2) = 1

10 sin(πx1) sin(πx2), source term f ≡ 1 and set ā ≡ 0. The covariance
operator Q of W is given by the by the Matérn covariance function

[Qϕ](y) :=
∫
D
σ2 21−ν

Γ(ν)

(√
2ν ‖x− y‖2

χ

)ν
Kν

(√
2ν ‖x− y‖2

χ

)
ϕ(x)dx, ϕ ∈ H,

with smoothness parameter ν > 0, variance σ2 > 0 and correlation length χ > 0.
Above, Γ denotes the Gamma function, ‖ · ‖2 is the Euclidean norm in R2 and Kν is
the modified Bessel function of the second kind with ν degrees of freedom. We set
the covariance parameters as ν = 1.5, σ = 0.5 and χ = 0.1, hence Assumption 6.2.3 is
fulfilled, see [96]. To approximate the Gaussian field, we use the circulant embedding
method from [97] to draw samples of W at a grid of discrete points in D and then use
linear interpolation to obtain an extension to D. We choose a maximum distance of ε >
0 for the grid points and denote the corresponding approximation byWε. Furthermore,
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we set Φ(·) = exp(·) and observe that for any s ∈ [1,∞)

‖Φ(W )− Φ(Wε)‖Ls(Ω;L∞(D)) ≤ CE
(( d∑

j=1
‖∂xjΦ(W )‖L∞(D)ε

)s)1/s
≤ Cε

holds by the path-wise Lipschitz regularity of W and Lemma 6.2.5 (cf. Assump-
tion 6.3.1).

For the discontinuous random field P , we denote by U((c1, c2)) the uniform distri-
bution on the interval (c1, c2) ⊂ R, sample four i.i.d. U((0.2, 0.8))-distributed random
variables U1, . . . , U4 and assign one Ui to each side of the square ∂D. We then connect
the points on two opposing edges by a straight line to obtain a random partition T
consisting of τ = 4 convex quadrangles. Finally, we assign independent jump heights
P1, P2 ∼ U((0, 1)), P3 ∼ U((5, 6)) and P4 ∼ U((10, 11)) to the partition elements, such
that two adjacent elements do not have the same jump distribution. This guarantees
rather steep discontinuities across the interfaces in T , see Figure 6.1. We do not need
any approximation procedure for P and obtain aε := exp(Wε) +P . Clearly, aε satisfies
Assumption 6.3.1 and we define bε := max(−2aε,−5). The QoI is given by

Ψ(u) :=
∫
D
u(x) exp(−0.25‖(0.25, 0.75)− x‖2

2)dx.

For the sample-adapted FE approach, we set the refinement parameters to h(a)
` =

1
42−`/2 for ` ∈ N0 and choose ε(a)

` = ∆t(a)
` = (h(a)

` )2. While this choice gives an error
equilibrium for κ = 1, it ensures that for any κ < 1 the RMSE is dominated solely
by the spatial discretization error. Thus, we may infer the true value of κ from the
numerical experiment. We also consider a non-adapted FE method with fixed and
deterministic triangulations on D. For given approximation parameters ε, h(na)

` and ∆t
in the non-adapted setting, we may not expect a better error bound than

E(|Ψ−Ψε,`,∆t|2)1/2 ≤ C(ε+ h
(na)
` + ∆t)

in Corollary 6.3.7. This is due to the fact that the standard FE method for ellip-
tic problems with discontinuous coefficients does not converge at a better rate than
O((h(na))1/2) in the V -norm, see [31, Remark 4.2]. Thus, if we consider again the dual
problem as in Theorem 6.3.4, we may not expect a better rate than O(h(na)) with re-
spect to the H-norm. We choose the non-adapted FE grid with diameter h(na)

` := 1
42−`

and set accordingly ε(na)
` = ∆t(na)

` = h
(na)
` . In both FE methods, we use the midpoint

rule on each triangle to approximate the entries of the stiffness matrix. The resulting
quadrature error is of order O(h2

`) with respect to the H-norm in the sample-adapted
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case and hence does not dominate the overall approximation error, see [98, Section 2].
For non-adapted FE, no a-priori estimate on the quadrature error is possible due to
the discontinuities in a and b, but our results suggest that this bias also in line with the
overall approximation error. As ε`−1 = 2ε`, the circulant embedding grids (to sample
Wε) are nested and we may achieve the MLMC coupling by first generating the discrete
set of points on level ` and then taking the appropriate subset of points for level `− 1.

In the sample-adapted MLMC algorithm, we choose the number of samples via

(M (a)
0 )−1 = d(h(a)

L )4e and (M (a)
` )−1 = d14

(h(a)
L )4

(h(a)
` )4

( (`+ 1)−1.001∑L
k=1(k + 1)−1.001

)−2
e

for ` = 1, . . . , L, whereas, we choose

(M (na)
0 )−1 = d(h(na)

L )2e and (M (na)
` )−1 = d(h

(na)
L )2

(h(na)
` )2

( (`+ 1)−1.001∑L
k=1(k + 1)−1.001

)−2
e

in the non-adapted MLMC approach. Basically, we choose 1/M` proportional to V` =
Var(Ψ` − Ψ`−1) on each level and thus distribute the errors equally across all levels.
Another possibility would be to distribute the computational effort equally (see [93]),
which requires estimates on the cost of a single sample on each level. The sequence
(`−c, ` ∈ N) decreases rapidly for c > 1 and sums up to ζ(c) < +∞, where ζ(·) is the
Riemann ζ-function. Hence, the above choice of ρi ensures that only a few expensive
samples on high levels are necessary and, due to the uniform bound∑L

`=1 ρ` < ζ(c), it is
well suited to compare estimators for a varying choice of L. In terms of Theorem 6.4.1,
we have chosen Cρ = 2 for the number of samples in the sample-adapted method,
whereas Cρ = 1 for standard FE. Similar calculations as in Theorem 6.4.1 show that this
choice leads to ‖Ψ−EL(ΨL)‖L2(Ω,R) ≤ C(2−2−L) in either case, where the constant C is
the same for adapted and non-adapted FE. Hence, Cρ is merely a normalizing constant
and the above choice of M` ensures that both approaches produce a comparable error
for fixed L. Finally, we calculate a reference QoI Ψref := EL(ΨL) with L = 7 and the
sample-adapted method and estimate the relative RMSE ‖Ψref −EL(ΨL)‖L2(Ω,R)/Ψref

for L = 0, . . . , 5 based on 50 independent samples of EL(ΨL) for the sample-adapted
and non-adapted MLMC algorithm. For each approach, we use adapted/non-adapted
FE combined with a standard/coupled MLMC estimator, thus we compare a total of
four algorithms regarding their error decay and efficiency.

Figure 6.1 confirms our theoretical results from Section 6.3, i.e. the sample-adapted
spatial discretization yields rate O(h2

`) compared to O(h`) in the non-adapted setting.
Hence, we are able to choose coarser spatial grids in the first approach which entails a
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Figure 6.1 Top: Sample of the diffusion coefficient with sample-adapted FE grid (left) and
FE solution at T = 1 (right). Bottom: RMSE vs. refinement (left) and RMSE vs. simulation
time (right).

better time-to-error ratio for both sample-adapted methods. The results also indicate
that κ ≈ 1 holds for this particular example, otherwise we would see a lower rate of
convergence than O(h2

`) for the sample-adapted methods. While the sample-adapted
FE grids have to be generated new for each sample, the L + 1 deterministic grids for
the non-adapted FE method are generated and stored before the Monte Carlo loop.
However, as we see from the time-to-error plot, the extra work of renewing the FE
meshes for each sample in the sample-adapted method is more than compensated by
the increased order of convergence. The computational cost of the sample-adapted
MLMC estimators are (roughly) inversely proportional to the squared errors, which
is the best possible results one may achieve with MLMC, see [93] and the references
therein. To conclude, we remark that the coupled MLMC estimator yields a slight
gain in efficiency if combined with non-adapted FE, whereas it produces similar results
when using the sample-adapted discretization. We emphasize that there are scenarios
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where the coupled estimator outperforms standard MLMC and, on the other hand,
there are examples were coupling performs worse due to high correlation terms Cj,k

(for both, we refer to numerical examples in [31].) Hence, even though performance
is similar to standard MLMC, it makes sense to consider the coupled estimator in our
scenario. As we have mentioned at the end of Section 6.4, this behavior may not be
expected a-priori.
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COMMENTS

Comments by A. Stein on "A multilevel Monte Carlo algorithm
for parabolic advection-diffusion problems with discontinuous
coefficients":

In Definition 6.2.2, we have introduced the advection coefficient b via

b : Ω×D → R, (ω, x) 7→ min(max(b1a(ω, x),−b2), b2)

for some constants b1, b2 > 0. This ensures the uniform boundedness of b in Ω×D by
b2 > 0. Therefore, the advection term in the random PDE in this chapter admits the
slightly unusual form

b1T · ∇u = b
d∑
i=1

∂xiu.

This is in contrast to the previous chapter ([32]), which is the foundation of this article
and where we have introduced the more general advection coefficient as a random
vector

b : ω ×D → Rd, (ω, x) 7→ a(ω, x)b̃(x),

in Definition 5.3.1 with b̃ ∈ L∞(D)d. The corresponding advection term in Chapter 5
is then of the common form b · ∇u. After the first stage of review of [32]/Chapter 5,
it turned out that the latter representation is sufficient to derive all error estimates
and we did not see any changes in the numerical experiments. Hence, changing to a
vector-valued coefficient b(ω, x) = a(ω, x)b̃(x) would not affect the results from this
chapter qualitatively, but only allow for a slightly more general advection term. At the
point of writing, however, Chapter 6 was already accepted for publication in its current
form. Therefore, I decided to keep the contents of this chapter as originally accepted by
the conference proceedings and added this comment to explain the different advection
coefficients in this chapter and Chapter 5.

139



7 Approximation and simulation of
infinite-dimensional Lévy processes

Andreas Stein and Andrea Barth
First published in "Stochastics and Partial Differential Equations: Analysis and

Computations", 2018, Springer, volume 6, issue 2, pp. 286–334.
URL: https: // link. springer. com/ article/ 10. 1007/ s40072-017-0109-2 .
Copyright c©Springer Science+Business Media, LLC. Unauthorized reproduction of

this article is prohibited.

Abstract: In this paper approximation methods for infinite-dimensional Lévy pro-
cesses, also called (time-dependent) Lévy fields, are introduced. For square integrable
fields beyond the Gaussian case, it is no longer given that the one-dimensional dis-
tributions in the spectral representation with respect to the covariance operator are
independent. When simulated via a Karhunen-Loève expansion a set of dependent
but uncorrelated one-dimensional Lévy processes has to be generated. The depen-
dence structure among the one-dimensional processes ensures that the resulting field
exhibits the correct point-wise marginal distributions. To approximate the respective
(one-dimensional) Lévy-measures, a numerical method, called discrete Fourier inver-
sion, is developed. For this method, Lp-convergence rates can be obtained and, under
certain regularity assumptions, mean square and Lp-convergence of the approximated
field is proved. Further, a class of (time-dependent) Lévy fields is introduced, where the
point-wise marginal distributions are dependent but uncorrelated subordinated Wiener
processes. For this specific class one may derive point-wise marginal distributions in
closed form. Numerical examples, which include hyperbolic and normal-inverse Gaus-
sian fields, demonstrate the efficiency of the approach.
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CHAPTER 7. INFINITE-DIMENSIONAL LÉVY PROCESSES

7.1 Introduction

Uncertainty quantification plays an increasingly important role in a wide range of prob-
lems in the Engineering Sciences and Physics. Examples of sources of uncertainty are
imprecise or insufficient measurements and noisy data. In the underlying dynami-
cal system this is modeled via a stochastic operator, stochastic boundary conditions
and/or stochastic data. As an example, to model subsurface flow more realistically the
coefficients of an (essentially) elliptic equation are assumed to be stochastic. A com-
mon approach in the literature is to use (spatially) correlated random fields that are
built from uniform distributions or colored log-normal fields. The resulting point-wise
marginal distributions of the field are (shifted) normally, resp. log-normally distributed.
Neither choice is universal enough to accommodate all possible types of porosity, espe-
cially not if fractures are incorporated (see [202]). In some applications it might even
be necessary that the point-wise marginal distribution of the (time-dependent) random
field is a pure-jump process (see [24]). Here, we denominate by point-wise marginal
distributions the distributions resp. processes one obtains by evaluation of the random
field at a fixed spatial point. On a note, these are in general the distributions that may
be measured in applications.

In the case of a (time-dependent) Gaussian random field, the approximation and
simulation via its Karhunen-Loève (KL) expansion is straightforward. Almost sure and
Lp-convergence in terms of the decay of the eigenvalues has been shown for truncated
KL-expansions in [26]. For infinite-dimensional Lévy processes, also called Lévy fields,
the approximation may still be attempted via the KL expansions: On a separable
Hilbert space (U, (·, ·)U) with orthonormal basis (ei, i ∈ N), a square-integrable Lévy
field L = (L(t) ∈ U, t ≥ 0) admits the expansion

L(t) =
∑
i∈N

(L(t), ei)Uei,

The sequence ((L(·), ei)U , i ∈ N) consists of one-dimensional, real-valued Lévy pro-
cesses. In contrast to a Gaussian field, the one-dimensional processes ((L(t), ei)U , t ≥ 0)
in the spectral representation are not independent but merely uncorrelated. If one were
to use independent Lévy processes, the resulting field would not have the desired point-
wise marginal distributions and the KL expansion would, therefore, not converge to
the desired Lévy field. To circumvent this issue, we approximate L by truncating the
series after finite number of terms and generate dependent but uncorrelated processes
((L(t), ei)U , t ≥ 0).

This entails, however, the simulation of one-dimensional Lévy processes. A common
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way to do so, is to employ the so called compound Poisson approximation (CPA)
(see [10, 84, 155, 186, 188] or the references therein). Mean-square convergence results
for the CPA are available in some cases, but require rather strong assumptions on the
underlying process. In addition, the obtained convergence rates are comparably low
with respect to the employed time discretization, which implies that the CPA may not
be suitable to sample processes involving computationally expensive components. As
one of the main contributions in this paper, we develop a novel approximation method
for one-dimensional Lévy processes. This new approach, based on Lévy bridge laws and
Fourier inversion, addresses the abovementioned problems. We prove Lp- and almost
surely convergence of the approximation under relatively weak assumptions and derive
precise error bounds. We show mean-square convergence of the approximation to a
given infinite-dimensional Lévy process by combining the Fourier inversion method
with an appropriate truncation of the KL expansion.

To obtain a set of dependent but uncorrelated one-dimensional processes, we utilize
multi-dimensional time-changed Brownian motions. The underlying variance process
is represented by a positive and increasing Lévy process, a so-called subordinator. As a
class of subordinated processes, we consider generalized hyperbolic (GH) Lévy processes,
that are based on the generalized hyperbolic distribution and cover for example normal
inverse Gaussian (NIG) and hyperbolic processes. These processes are widely used in
applications such as Mathematical Finance, Physics and Biology (see, for instance, [18,
24, 43, 75, 76]). With its fat-tailed distribution a GH-field may also be of value in the
modeling of subsurface flows (see [202]). For an overview on subordinated, Hilbert
space-valued Lévy processes we refer to [49, 172], where this topic is treated in a
rather general setting. Among other subordinated Wiener processes, the construction
of an infinite-dimensional NIG process can be found in [38]. As a further contribution
of this paper, we approximate the corresponding GH Lévy fields via truncated KL
expansions with dependent but uncorrelated GH-distributed one-dimensional processes
and show that the approximation converges to an infinite-dimensional GH process.
From a simulatory point of view this entails the generation of a certain number of
one-dimensional processes with a given set of parameters. Conversely, we introduce a
second approach, where we derive the dependence structure of the multi-dimensional
GH process to obtain admissible sets of parameters such that the one-dimensional
marginal GH processes are decorrelated and follow a desired distribution. Using the
Fourier inversion method we are able to simulate GH fields efficiently, even if a large
number of one-dimensional GH processes is necessary.

This article is structured as follows: Section 7.2 contains preliminaries on Lévy
processes taking values in Hilbert spaces and the main convergence theorem for the
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approximation. In Section 7.3, we present a new approach for the approximation
of one-dimensional Lévy processes by Lévy bridge laws and prove Lp- and almost
sure convergence. To be able to apply the algorithm in a very general setting, we
introduce an extension by using Fourier inversion techniques and show how to control
the Lp-error. We proceed by investigating the class of GH Lévy processes and state
the necessary conditions for the approximated field to have point-wise GH distributed
marginals. In Section 7.5, we remark on some implementational details of the algorithm
and conclude with NIG- and hyperbolic fields as numerical examples.

7.2 Preliminaries

Throughout this paper, we consider a time interval T := [0, T ], with T > 0, and a
filtered probability space (Ω,F , (Ft, t ≥ 0),P) satisfying the usual conditions. Let
(U, (·, ·)U) be a separable Hilbert space and (U,B(U)) a measurable space, where B(U)
denotes the Borel σ-algebra on U . A Lévy process taking values in (U, (·, ·)U) is defined
as follows (see [173]):

Definition 7.2.1. A U -valued stochastic process L = (L(t), t ∈ T) is called Lévy
process1 if

• L has stationary and independent increments,

• L(0) = 0 P-almost surely and

• L is stochastically continuous, i.e. for all ε > 0 and t ∈ T holds

lim
s→t,s∈T

P(||L(t)− L(s)||U > ε) = 0.

The characteristic function of a Lévy process is then given by the Lévy-Khintchine
formula:

E[exp(i(h, L(t))U)] = exp(tΨL(ψ)), for ψ ∈ U,

where the exponent is of the form

ΨL(ψ) = i(ιU , ψ)U −
1
2(ΣUψ, ψ)U

+
∫
U

exp(i(ψ, y)U)− 1− i(ψ, y)U1||y||U<1νU(dy)
(7.1)

1In the case that U is an infinite-dimensional Hilbert space, sometimes L is also called Lévy field
to have a clear distinction from finite-dimensional Lévy processes.
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(see [173, Thm. 4.27]). In Eq. (7.1), ιU ∈ U , ΣU is a symmetric, non-negative and
nuclear operator on U and νU : B(U) → [0,∞) is a non-negative, σ-finite measure on
B(U) satisfying

νU({0}) = 0 and
∫
U

min(1, ||y||2U) ν(dy) < +∞.

The triplet (ιU ,ΣU , νU) is unique for every Lévy process L and called the characteristic
triplet. For the special case of a one-dimensional Lévy process ` = (`(t), t ∈ T), the
Lévy-Khintchine formula simplifies to

E[exp(iu`(t))] = exp
(
t
(
ιui− σ2

2 u
2 +

∫
R

exp(iuy)− 1− iuy1|y|<1dν(y)
))
, (7.2)

for u ∈ R, where ι ∈ R, σ2 > 0 and ν is a (σ-finite) measure on B(R) satisfying

ν({0}) = 0 and
∫
R

min(1, y2)ν(dy) < +∞,

see for instance [22] or [187]. The notation ` for finite-dimensional Lévy processes
is introduced to have a clear distinction from the possibly infinite-dimensional Lévy
process L.

If W is a U -valued Lévy field with characteristic triplet (0,ΣU , 0), then W is
called ΣU -Wiener process. If, further, ΣU is symmetric, non-negative and nuclear
(see Eq. (7.1)) it admits, by the Hilbert-Schmidt theorem, the spectral decomposition

ΣU êi = η̂iêi.

Here, ((η̂i, êi), i ∈ N) is the sequence of eigenpairs of ΣU , where the eigenvalues η̂i
are positive with zero as their only accumulation point and the sequence (êi, i ∈ N)
forms an orthonormal basis of U . For convenience, we assume that the sequence of
eigenvalues (η̂i, i ∈ N) is given in decaying order. The ΣU -Wiener process W admits
then a unique expansion (also called Karhunen–Loève expansion)

W (t) =
∑
i∈N

√
η̂iêiwi(t),

where (wi, i ∈ N) is a sequence of independent, one-dimensional, real-valued Brownian
motions. An obvious way to approximateW is, therefore, given by the truncated series

WN(t) :=
N∑
i=1

√
η̂iêiwi(t).
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It can be shown that the approximations (WN , N ∈ N) converge in L2(Ω;U) and almost
surely to the ΣU -Wiener process W (see for instance [27]). For the approximation of
general (non-continuous) processes L, we aim to apply a similar approach. We assume
L is square-integrable, as otherwise L does not admit a KL expansion. For series
representations of cylindrical Lévy processes we refer to [7], KL expansions for white
noise Lévy fields may be found in [74]. A U -valued stochastic process (L(t), t ∈ T)
is said to be square-integrable if ||L(t)||L2(Ω;U) := E(||L(t)||2U) < +∞ for all t ∈ T.
Obviously, mean-square convergence can only be well-defined for processes with his
property.

Theorem 7.2.2. ([173, Theorem 4.44]) Let L be a square-integrable Lévy process on
U . Then there exists a m ∈ U and a non-negative, symmetric trace class operator Q
on U such that for all ψ1, ψ2 ∈ U and s, t ∈ (0, T ]

• E((L(t), ψ1)U) = t(m,ψ1)U ,

• E((L(t)−mt, ψ1)U(L(s)−ms, ψ2)U) = min(t, s)(Qψ1, ψ2)U

• E(||L(t)−mt||2U) = t Tr(Q),

where Tr(Q) denotes the trace of Q. The operator Q is also called covariance operator
of L and m is called mean.

Note that Q in Theorem 7.2.2 is not necessarily equal to the operator ΣU from
the Lévy-Khintchine formula (7.1). They are only equal if the measure νU is zero,
meaning the process L has no “jump component”2. The operator Q admits a spectral
decomposition with a sequence ((ηi, ei), i ∈ N) of orthonormal eigenpairs with non-
negative eigenvalues. Thus, L has the spectral expansion

L(t) =
∑
i∈N

(L(t), ei)Uei,

where the one-dimensional Lévy processes ((L(t), ei)U , t ∈ T) are not independent, but
merely uncorrelated (see [173, Section 4.8.2]). For the approximation of L we employ
one-dimensional Lévy processes (√ηi`i, i ∈ N), so that √ηi`i(t) is equal to (L(t), ei)U
in distribution for all t ∈ T and all i ∈ N, and define, for N ∈ N, the truncated sum

LN(t) :=
N∑
i=1

√
ηiei`i(t).

2This results in L being a drifted U -valued Gaussian process.
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If the spectral basis ((√ηiei), i ∈ N) of U is given, the approximation of L by LN

reduces to the simulation of dependent but uncorrelated one-dimensional processes `i.
In general, the processes `i have infinite activity, i.e. P-almost all paths of the process
(`i(t), t ∈ T) have an infinite number of jumps in every compact time interval. Popular
examples of Lévy processes with infinite activity are normal inverse Gaussian processes
or hyperbolic processes, see [75]. As it is not possible to simulate infinitely many jumps,
we need to find a suitable approximation ˜̀

i of `i and define

L̃N(t) :=
N∑
i=1

√
ηiei ˜̀i(t).

In the following, we derive a condition on the approximations ˜̀i that ensures conver-
gence of L̃N to L in L2(Ω;U) uniformly on T. Throughout this paper, we construct
approximations ˜̀i from a skeleton of discrete realizations at fixed and equidistant points
in T. To this end, we introduce, for given n ∈ N, a time increment ∆n := T/2n and
the set Θn := {tj := j∆n, j = 0, . . . , 2n}. By ˜̀(n)

i we denote some piecewise-constant
càdlàg approximation of the process ˜̀i (for a construction see Section 7.3).

Theorem 7.2.3. Let L = (L(t), t ∈ T) be a square-integrable, U-valued Lévy pro-
cess. The covariance operator Q of L admits a spectral decomposition by a sequence
of (orthonormal) eigenpairs ((ηi, ei), i ∈ N). Assume that, for n ∈ N, there exists a
sequence of approximations ( ˜̀(n)

i , i ∈ N) of the one-dimensional processes (`i, i ∈ N) on
the interval T, such that the L2(Ω;R)-approximation error can be bounded by

sup
t∈T

E(|`i(t)− ˜̀(n)
i (t)|2) ≤ C`∆n, (7.3)

where the constant C` > 0 is independent of i. If, for all i ∈ N, the processes √η
i
`i are

in distribution equal to (L(·), ei)U then the sequence of approximations (L̃N(t), N ∈ N)
converges in mean-square-sense to L(t), for each t ∈ T, and the error is bounded by

sup
t∈T

E(||L(t)− L̃N(t)||2U)1/2 ≤
(
T

∞∑
i=N+1

ηi
)1/2

+
(
C`∆n

N∑
i=1

ηi
)1/2

.

Proof. We may assume without loss of generality that the process L has zero mean.
Using the triangle inequality, the error term E(||L(t)− L̃N(t)||2U) can be split into

E(||L(t)− L̃N(t)||2U)1/2 ≤ E(||L(t)− LN(t)||2U)1/2 + E(||LN(t)− L̃N(t)||2U)1/2.

The square-integrability of L guarantees that Q is trace class and has positive eigen-
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values, i.e. Tr(Q) = ∑
i∈N ηi < +∞. L(t) has covariance tQ, which yields for the first

error term

E(||L(t)− LN(t)||2U) = E(||L(t)||2U) + E(||LN(t)||2U)− 2E((L(t), LN(t))U)

= t Tr(Q) + E
( N∑
i,j=1

(
(L(t), ei)Uei, (L(t), ej)Uej

)
U

)

− 2E
( N∑
i=1

(L(t), (L(t), ei)Uei)U
)

= t
∞∑
i=1

ηi +
N∑
i=1

E
(
(L(t), ei)2

U

)
− 2

N∑
i=1

E
(
(L(t), ei)2

U

)

= t
∞∑
i=1

ηi −
N∑
i=1

E
(
(L(t), ei)2

U

)
.

With Theorem 7.2.2 we obtain

E((L(t), ei)2
U) = t(Qei, ei)U = tηi,

and hence
sup
t∈T

E(||L(t)− LN(t)||2U) = sup
t∈T

t
∞∑

i=N+1
ηi = T

∞∑
i=N+1

ηi.

As Q is a trace class operator, the sum on the right hand side becomes arbitrary small
as N → +∞. This implies that LN converges in L2(Ω;U) uniformly on T to L.

For the second error term, we derive with the assumption that √η
i
`i
L= (L(·), ei)U

for all i ∈ N and Ineq. (7.3)

sup
t∈T

E(||LN(t)− L̃N(t)||2U) = sup
t∈T

N∑
i,j=1

E
(√

ηiηj(`i(t)− ˜̀(n)
i (t))(`j(t)− ˜̀(n)

j (t))(ei, ej)U
)

=
N∑
i=1

ηi||ei||2U sup
t∈T

E(|`i(t)− ˜̀(n)
i (t)|2)

≤ C`∆n

N∑
i=1

ηi,

which proves the claim. Above and for the remainder of the paper we express equality
in distribution by the relation L=.

Remark 7.2.4. Theorem 7.2.3 states that the approximation L̃N converges in L2(Ω;U)
to L uniformly on T, for N → +∞ and in the case that Ineq. (7.3) holds with a
constant C` in the limit ∆n → 0. We may equilibrate both error contributions by

147



7.2. PRELIMINARIES

choosing N ∈ N such that

T
∞∑

i=N+1
ηi ≈ C`∆n

N∑
i=1

ηi. (7.4)

The sum of the eigenvalues, Tr(Q), is often known a priori (for example if Q is a
covariance operator of the Matérn class, see Section 7.5). Then, only the first N
eigenvalues have to be determined until Eq. (7.4) is fulfilled. Further, optimal values
for ∆n and N may be chosen for given C` and (ηi, i ∈ N).

Theorem 7.2.3 may be generalized in an Lp-sense (the supremum is omitted for
simplicity).

Corollary 7.2.5. Let the assumptions of Theorem 7.2.3 be fulfilled and, for p ≥ 2,
E(||L(t)||p) < +∞ for each t ∈ T, ∑i∈N η

p/2
i < +∞ and

E(|`i(t)− ˜̀(n)
i (t)|p) ≤ Cp,`∆n,

for some Cp,` > 0 independent of i. Then, the Lp(Ω;H)-error is bounded by

E(||L(t)− L̃N(t)||pU)1/p ≤
( ∑
i>N

ηi
)1/2−1/p

( ∑
i>N

η
p/2
i E(|`i(t)|p)

)1/p

+
( N∑
i=1

ηi
)1/2−1/p(

C`,p∆n

N∑
i=1

η
p/2
i

)1/p
.

Proof. The proof follows closely the one of Theorem 7.2.3. We split the error into

E(||L(t)− L̃N(t)||pU)1/p ≤ E(||L(t)− LN(t)||pU)1/p + E(||LN(t)− L̃N(t)||pU)1/p.

For the first we obtain

E(||L(t)− LN(t)||pU) = E((||L(t)− LN(t)||2U)p/2) = E
(( ∑

i>N

(L(t), ei)2
U

)p/2)
.

Since E(||L(t)||p) < +∞, LN converges to L(t) in Lp(Ω;U) by the Monotone Conver-
gence Theorem. Moreover, using (L(t), ei) L=

√
ηi`i(t) and Jensen’s inequality we may

bound the above error via

E(||L(t)− LN(t)||pU) = E
(( ∑

i>N

ηi`i(t)2
)p/2)

≤
( ∑
i>N

ηi
)p/2−1 ∑

i>N

η
p/2
i E(|`i(t)|p),

where we have used that E(|(L(t), ei)U |p) = η
p/2
i E(|`i(t)|p) and E(||L(t)||p) < +∞.

Compared to the case p = 2 with E(ηp/2i |`i(t)|p) = ηi, one needs additional assumptions
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on the p-th moment of `i to obtain an explicit bound. In a similar fashion, the second
error contribution is then bounded by

E(||LN(t)− L̃N(t)||pU) = E
(( N∑

i=1
ηi|`i(t)− ˜̀(n)

i (t)|2
)p/2)

≤
( N∑
i=1

ηi
)p/2−1 N∑

i=1
η
p/2
i E(|`i(t)− ˜̀(n)

i (t)|p)

≤ C`,p∆n

( N∑
i=1

ηi
)p/2−1 N∑

i=1
η
p/2
i .

By a Borel–Cantelli-type argument almost sure convergence follows from Theo-
rem 7.2.3.

Corollary 7.2.6. Let the assumptions of Theorem 7.2.3 hold and the eigenvalues of Q
fulfill ∑i∈N ηi(i− 1) < +∞. If for each N ∈ N, n(N) ∈ N is chosen such that

∆n(N) ≤
T
∑
i>N ηi

C`
∑N
i=1 ηi

, N ∈ N,

(see Remark 7.2.4) the approximated Lévy process L̃N converges almost surely to L in
U as N → +∞, where the convergence is uniform in T.

Proof. By Markov’s inequality and Theorem 7.2.3, we obtain for any ε > 0 and t ∈ T

P(||L(t)− L̃N(t)||U > ε) ≤ E(||L(t)− L̃N(t)||2U)
ε2

≤ 1
ε2

((
T
∑
i>N

ηi
)1/2

+
(
C`∆n(N)

N∑
i=1

ηi
)1/2

)2
.

With ∆n(N) as above this yields

∑
N∈N

P(||L(t)− L̃N(t)||U > ε) ≤ 4T
ε2

∑
N∈N

∑
i>N

ηi = 4T
ε2

∑
i>N

ηi(i− 1) < +∞.

The claim follows by the Borel-Cantelli Lemma and by the fact that the sum on the
right hand side in the inequality is independent of t.

For the approximation

L̃N(t) =
N∑
i=1

√
ηiei ˜̀i(t)
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of L, we required that the one-dimensional Lévy processes ( ˜̀i, i = 1, . . . , N) are un-
correlated but not independent. Several questions may arise regarding this truncated
sum:

1. How can we efficiently simulate suitable one-dimensional approximations ˜̀i of `i
and determine the constant C` to apply Theorem 7.2.3?

2. Is LN again a Lévy field for arbitrary one-dimensional processes (`i, i ∈ N)
and can the point-wise marginal distribution of LN(t) for a given spectral ba-
sis ((√η

i
ei), i ∈ N) and fixed N ∈ N be determined?

3. Is it possible to construct LN in a way such that its point-wise marginal processes
follow a desired distribution?

In the next chapter we address the first question and present a novel approach for
the approximation of arbitrary one-dimensional Lévy processes `i. We derive explicit
error bounds and convergence results in Lp(Ω;R), hence we are able to determine C`
or at least bound this constant from above. The last two questions on the distribution
properties of LN are then investigated in Section 7.4 for an important subclass of
Lévy fields. We discuss distributional features of LN so as to use the approximation
methodology developed in Section 7.3 to efficiently draw samples of the field L̃N .

7.3 Simulation of Lévy processes by Fourier inversion

The simulation of an arbitrary one-dimensional Lévy process ` = (`(t), t ∈ T) is not
straightforward, as sufficiently many discrete realizations of ` in T are needed and the
distribution of the increment `(t + ∆n) − `(t) for some small time step ∆n > 0 is not
explicitly known in general. A well-known and common way to simulate a Lévy pro-
cess with characteristic triplet (ι, σ2, ν) (see Equation (7.2)) is the compound Poisson
approximation (CPA) suggested in [186] and [188]. All jumps of the process larger than
some ε > 0 are approximated by a sum of independent compound Poisson processes
and the small jumps by their expected values resp. by a Brownian motion. For details
and convergence theorems of this method we refer to [10, 186, 188]. Although the CPA
is applicable in a very general setting, in the sense that only the triplet (ι, σ2, ν) has to
be known for simulation, it has several drawbacks. It is possible to show that the CPA
converges under certain assumptions in distribution to a Lévy process with character-
istic triplet (ι, σ2, ν), and even strong error rates for CPA-type approximation schemes
are given, for instance in [74, 84, 155]. The derived Lp-error rates are, however, rather
low with respect to the time discretization, only available for p ≤ 2 and/or require

150



CHAPTER 7. INFINITE-DIMENSIONAL LÉVY PROCESSES

strong assumptions on the moments of the Lévy measure ν. Furthermore, if the cumu-
lated density function (CDF) of ν is unknown, numerical integration with respect to ν
is necessary. Evaluating the density of ν at sufficiently many points to obtain a good
approximation might be time consuming, especially if this involves computationally
expensive components (e.g. Bessel functions). It is, further, a-priori not clear how to
discretize the measure ν (we refer to a discussion on this matter in [188, Chapter 8]).
One could choose for example equidistant or equally weighted points, but this choice
might have a significant impact on the precision and the speed of the simulation, and is
impossible to be assessed beforehand. The disadvantages of the CPA method motivate
the development of an alternative methodology.
In the following, we introduce a new sampling approach which approximates the pro-
cess ` by a refining sequence of piecewise constant càdlàg processes (`(n)

, n ∈ N). We
show its asymptotic convergence in Lp(Ω;R)-sense and almost surely. This approxima-
tion suffers from the fact that the necessary conditional densities from which we have
to sample are not available for many Lévy processes. For a given refinement parameter
n, we develop, therefore, an algorithm to sample an approximation ˜̀(n) of `(n) for which
the resulting error may be bounded again in Lp(Ω;R)-sense. This technique is based on
the assumption that the characteristic function of ` is available in closed form, which
is true for a broad class of Lévy processes. We exploit this knowledge by so-called
Fourier inversion to draw samples of the process’ increments over an arbitrary large
time step ∆n > 0. In Section 7.5, we then apply the described method to simulate GH
Lévy fields.

7.3.1 A piecewise constant approximation

Throughout this chapter, we consider a one-dimensional Lévy process ` = (`(t), t ∈ T)
with characteristic function φ` : R→ C. For any t ∈ T, we denote by Ft the CDF of `(t)
and by ft the corresponding density function, provided that ft exists. Note that in this
case Ft and ft belong to the probability distribution with characteristic function (φ`)t.
To obtain a refining scheme of approximations of `, we introduce a sampling algorithm
for ` based on the construction of Lévy bridges. In our context, a Lévy bridge is
the stochastic process (`(t)|t ∈ (t1, t2)) pinned to given realizations of the boundary
values `(t1) and `(t2) for 0 ≤ t1 < t2 ≤ T . It has been shown, for instance in [114,
Proposition 2.3], that these bridges are Markov processes. Assuming that the density
ft exists for every t ∈ T (see also Remark 7.3.8), the distribution of the increment
`(t) − `(t1) conditional on `(t2) is well-defined whenever ft2−t1(`(t2)) ∈ (0,+∞). Its
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density function is then given as

f t1,t2t (x) := ft−t1(x)ft2−t(`(t2)− x)
ft2−t1(`(t2)) , (7.5)

with conditional expectation

E(`(t)|`(t1), `(t2)) = `(t2)− `(t1)
t2 − t1

(t− t1),

see [114, 156]. This motivates the following sampling algorithm for a piecewise constant
approximation of `:

Algorithm 7.3.1. Let n ∈ N and generate a sample of the random variable X0,1 with
density fT . Set X0,0 := 0, i := 1 and ∆0 := T .
1: while i ≤ n do
2: Define ∆i = T

2i .
3: for j = 0, 2, . . . , 2i do
4: Set Xi,j = Xi−1,j/2.
5: end for
6: for j = 1, 3, . . . , 2i − 1 do
7: Generate the (conditional) increment Xi,j −Xi,j−1 in [ (j−1)T

2(i−1) ,
jT

2(i−1) ].
8: That is, sample the random variable X : Ω→ R with density
9:

x 7→ f∆i
(x)f∆i

(Xi,j+1 − x)
f∆i−1(Xi,j+1)

10: and set Xi,j := X + Xi,j−1

11: end for
12: i = i+ 1
13: end while

Define the piecewise constant process

`
(n)(t) := Xn,2n1{T}(t) +

2n∑
j=1
Xn,j−11{[(j−1)T/2n,jT/2n)}(t).

Eventually, the sequence (`(n)
, n ∈ N) of càdlàg processes admits a pointwise limit

in Lp(Ω;R) which corresponds to the process `:

Theorem 7.3.2. Let φ` be a characteristic function of an infinitely divisible probability
distribution. For any t ∈ T, assume the probability density ft corresponding to (φ`)t

exists. Further, for n ∈ N, let `(n) be the process generated by Algorithm 7.3.1 and ft
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on (Ω, (Ft, t ≥ 0),P). If
∫
R |x|pf1(x)dx < +∞ for some p ∈ [1,+∞), then

lim
n→+∞

E(|`(n)(t)− `(t)|p) = 0,

where ` is a Lévy process with characteristic function φ` on (Ω, (Ft, t ≥ 0),P).

Proof. For any n ∈ N and t ∈ T we have that

E[|`(n+1)(t)− `(n)(t)|p]

=E
(∣∣∣ 2n+1∑

j=1
Xn+1,j−11{[(j−1)T/2n+1,jT/2n+1)}(t)−

2n∑
j=1
Xn,j−11{[(j−1)T/2n,jT/2n)}(t)

∣∣∣p)

=E
(∣∣∣ 2n∑

j=1
(Xn+1,2j−1 −Xn+1,2j−2)1{[(2j−1)T/2n+1,2jT/2n+1)}(t)

∣∣∣p)

Since the increments Xn+1,j+1−Xn+1,j are i.i.d. with characteristic function (φ`)T/2
n+1

by construction, this yields

E[|`(n+1)(t)− `(n)(t)|p] ≤ C`,T2−n−1
∫
R
|x|pf1(x)dx = C`,T,p2−n−1,

where C`,T resp. C`,T,p are positive constants that are independent of n. Hence, for
any m,n ∈ N with m > n it follows

E[|`(m)(t)− `(n)(t)|p]1/p ≤ C
1/p
`,T,p

m∑
i=n+1

2−i/p = C
1/p
`,T,p

2−n/p − 2−m/p
21/p − 1 ,

meaning that (`(n)(t), n ∈ N) is a Lp(Ω;R)-Cauchy sequence and, therefore, admits a
limit. The characteristic function of `(n)(t) is given by

(φ`)bt2
n/T cT/2n n→∞→ (φ`)t.

The claim follows since the distribution with characteristic function φ` is infinitely
divisible, hence the limit process ` = (`(t), t ∈ T) is in fact a Lévy process.

Corollary 7.3.3. Under the assumptions of Theorem 7.3.2 with p = 1, `(n) converges
to ` P-almost surely as n→ +∞, uniformly in T.

Proof. For any t ∈ T and ε > 0, we get by Markov’s inequality

P(|`(n)(t)− `(t)|) ≤ E(|`(n)(t)− `(t)|)
ε

≤ C`,T,p
ε

∞∑
i=n

2−i = C`,T,p2−n+1

ε
.
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The claim then follows by the Borel-Cantelli Lemma since

∞∑
n=1

P(|`(n)(t)− `(t)|) ≤ 2C`,T,p
ε

∞∑
n=1

2−n < +∞.

Although Algorithm 7.3.1 has convenient properties in terms of convergence, it
may only be applied for a small class of Lévy processes. For a general Lévy process `,
the conditional densities in Eq. (7.5) will be unknown and thus simulating from this
distributions is impossible. A few exceptions where “bridge sampling” of Lévy processes
is feasible include the inverse Gaussian ([182]) and the tempered stable process ([128]).
However, if we consider a fixed parameter n, sampling from the bridge distributions is
equivalent to the following algorithm:

Algorithm 7.3.4.

1: For n ∈ N, fix ∆n,Θn as in Section 7.2 and generate 2n i.i.d random variables
X1, . . . , X2n with density f∆n .

2: Set `(n)(t) = 0 if t ∈ [0, t1), `(n)(t) = ∑j
k=1Xk if t ∈ [tj, tj+1) for j = 1, . . . , 2n − 1

and `(n)(T ) = ∑2n
j=1Xj.

The equivalence is in the sense that both processes are piecewise constant, càdlàg
and all intermediate points follow the same conditional Lévy bridge distributions. Note
that `(n) coincides with `(n) from Algorithm 7.3.1 where the initial value has been chosen
as X0,1 = `(n)(T ) = ∑2n

j=1Xj. The advantage of Algorithm 7.3.1 is that 2n independent
samples from the same distribution have to be generated, instead of 2n random vari-
ables from (different) conditional distributions. As we will see in the following section,
sampling from the distribution with density f∆n may be achieved if the characteristic
function φ` is available. In addition, we are still able to use the Lp(Ω;R) error bounds
from Theorem 7.3.2 for a fixed n ∈ N.

7.3.2 Inversion of the characteristic function

For a one-dimensional Lévy process ` with characteristic function φ`, the characteristic
function of any increment `(t+ ∆n)− `(t) can be expressed via

E[exp(iu(`(t+ ∆n)− `(t)))] = E[exp(iu(`(∆n)))] = (φ`(u))∆n
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for any time step ∆n > 0. If F∆n denotes again the CDF of this increment, we obtain
by Fourier inversion (see [91])

F∆n(x) = 1
2 −

∫
R

(φ`(u))∆n

2πiu exp(−iux)du. (7.6)

Using the well-known inverse transformation method (see also [9]) to sample from the
CDF, allows us to reformulate Algorithm 7.3.4:

Algorithm 7.3.5.

1: For n ∈ N, fix ∆n,Θn and generate i.i.d. samples U1, . . . ,U2n , where Uj ∼ U([0, 1])
on (Ω,F ,P).

2: Determine Xj := inf{x ∈ R|F∆n(x) = Uj} for j = 1, . . . , 2n.
3: Set `(n)(t) = 0 if t ∈ [0, t1), `(n)(t) = ∑j

k=1Xk if t ∈ [tj, tj+1) for j = 1, . . . , 2n − 1
and `(n)(T ) = ∑2n

j=1Xj.

The evaluation of F is crucial and may, in general, only be done numerically. To
approximate the integral in Eq. (7.6), we employ the discrete Fourier inversion method
introduced in [116]. With this method the approximation error can be controlled
with relatively weak assumptions on the characteristic function. Hence, the resulting
algorithm is applicable for a broad class of Lévy processes. An alternative algorithm
to approximate the CDFs of subordinating processes based on the inversion of Laplace
transforms is described in [196]. Although this approach seems promising in terms of
computational effort, here we only consider the Fourier inversion technique. The latter
is also applicable to Lévy processes without bounded variation and yields uniform error
bounds on the approximated CDF.

Assumption 7.3.6. The distribution with characteristic function (φ`)∆n is continuous
with finite variance and CDF F∆n . Furthermore,

• there exists a constant R > 0 and ϑ > 1 such that F∆n(−x) ≤ R|x|−ϑ and
1− F∆n(x) ≤ R|x|−ϑ for all x > 0.

• there exists a constant B > 0 and θ > 0 such that |(φ`(u))∆n| ≤ B| u2π |
−θ for all

u ∈ R.

In case of infinite variance, we consider bounds on the density function instead:

Assumption 7.3.7. The distribution with characteristic function (φ`)∆n is continuous
with density f∆n . Furthermore,
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• there exists a constant R > 0 and ϑ > 1 such that |f∆n(x)| ≤ R|x|−ϑ for all
x ∈ R.

• there exists a constant B > 0 and θ > 0 such that |(φ`(u))∆n| ≤ B| u2π |
−θ for all

u ∈ R.

Remark 7.3.8. In the case that θ > 1, we have that

∫
R
|(φ`(u))∆n|du ≤ 2 + 2B

∫ ∞
1

(
u

2π

)−θ
< +∞,

which already implies the existence of a continuous density f∆n in both scenarios, see
for example [187, Proposition 28.1]. Usually, F∆n or f∆n are unknown, but only the
characteristic function (φ`)∆n is given. To obtain R and ϑ, one can choose

R = (−1)k d
2k

du2k ((φ`(u))∆n)
∣∣∣
u=0

and ϑ = 2k in Ass. 7.3.6, resp.

R = 1
2π

∫
R
| d

k

duk
((φ`(u))∆n)|du

and ϑ = k in Ass. 7.3.7, where k is any non-negative integer such that the derivatives
exist (see [116, Lemma 12 and 13]). For example, in the first set of assumptions, the
finite variance ensures that we can use ϑ = 2 and R equal to the second moment of
the distribution with characteristic function (φ`)∆n .

As an approximation of F∆n as in Eq. (7.6) we introduce the function F̃∆n given by

F̃∆n(x) :=
M/2∑

k=−M/2
qk exp(i2πkx/J),

for x ∈ R, where

qk :=


1/2 for k = 0
1−cos(2πκk)

i2πk (φ`(−2πk/J))∆n for 0 < |k| < M/2

0 for k = M/2

,

M is an even integer and κ, J > 0 are parameters which are determined below. Note
that qk = q−k, where z denotes the complex conjugate for z ∈ C. The Hermitean
symmetry also holds for the function k 7→ exp(i2πkx/J). This ensures that, for every
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x ∈ R, we have

F̃∆n(x) = 1
2 +

M/2−1∑
k=1

qk exp(i2πkx/J) + qk exp(i2πkx/J)

= 1
2 + 2Re

(M/2−1∑
k=1

qk exp(i2πkx/J)
)

and hence F̃∆n(x) ∈ R for any real-valued argument x. The last identity should
be exploited during the simulation to save computational time as here only half the
summation is required. Lastly, we denote by ζ(z, s) := ∑∞

k=0(k+ s)−z for s, z ∈ C with
Re(s) > 0 and Re(z) > 1 the Hurwitz zeta function and define as in [116]

V1(κ, ϑ) := (κ/2)−ϑ + 2ζ(ϑ, 1− κ

2 ) + ζ(ϑ, 1 + κ

2 ) + ζ(ϑ, 1− 3κ
2 ),

V2(κ, ϑ) := 2ϑ−1κ1−ϑ

ϑ− 1 + κ

2

(
2ζ(ϑ, 1− κ

2 ) + ζ(ϑ, 1 + κ

2 ) + ζ(ϑ, 1− 3κ
2 )
)
.

The expressions V1(κ, ϑ) and V2(κ, ϑ) establish conditions on the choice of the (not yet
determined) parameter κ in Theorem 7.3.9. For a given domain parameter D > 0 and
accuracy ε > 0 the approximation F̃∆n should fulfill the error bound

|F̃∆n(x)− F∆n(x)| < ε for x ∈ [−D/2, D/2].

Once κ is determined, this can be achieved by choosing a sufficiently large parameter
J and, based on this J , a sufficiently large number of summands M . Admissible values
for κ, J and M depend on D, ε and the constants in Assumption 7.3.6 resp. 7.3.7.

Theorem 7.3.9. ([116, Theorem 10 and 11]) Let D > 0 and ε > 0. If Assump-
tion 7.3.6 holds, choose κ, J and M such that

0 < κ <
2
3 and κϑV1(κ, ϑ) ≤ 2ϑ+1,

J ≥ D

κ
and J ≥

(3RV1(κ, ϑ)
2ε

)1/ϑ
,

and
M ≥ 2 + 2J

( 6B
επθ

)1/θ
.

If Assumption 7.3.7 holds, choose κ, J and M such that

0 < κ <
2
3 and κϑ−1V2(κ, ϑ) ≤ 2ϑ

ϑ− 1 ,
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J ≥ D

κ
and J ≥

(3RV2(κ, ϑ)
2ε

)1/(ϑ−1)
,

and
M ≥ 2 + 2J

( 6B
επθ

)1/θ
.

This yields, for either case, that |F∆n(x)− F̃∆n(x)| < ε for all x ∈ [−D/2, D/2] and it
is always possible to find a κ that meets the given conditions.

Remark 7.3.10. In [116], by

J ≥ 2
κ

(3R
ε

)1/ϑ
resp. J ≥ 2

κ

(
3R

ε(ϑ− 1)

)1/(ϑ−1)

in fact stricter conditions are imposed on J . The proofs of Theorems 10 and 11 in [116]
still give immediately a proof for Theorem 7.3.9. The advantage of the bounds in
Theorem 7.3.9 is that they produce a smaller approximation error in the following
analysis (see also Remark 7.3.17). We refer to [116] for an optimal choice of κ depending
on ϑ. Once κ is determined, it is favorable to choose D and ε in a way such that none
of the parameters has a dominant effect on the resulting number of summations M .
This is ensured if the two lower bounds on J are equal, meaning for fixed D > 0 we set

ε = 3
2RV1(κ, ϑ)κϑD−ϑ resp. ε = 3

2RV2(κ, ϑ)κϑ−1D−ϑ+1

if the first resp. second set of assumptions holds.

Since the error |F̃∆n(x)−F∆n(x)| is only bounded for x ∈ [−D/2, D/2], we have to
modify the third step in Algorithm 7.3.5:

Algorithm 7.3.11.

1: For n ∈ N, fix ∆n,Θn and generate i.i.d. samples (Uj ∼ U([0, 1]), j = 1, . . . , 2n) on
(Ω,F ,P).

2: Set, for j = 1, . . . , 2n and I
F̃ ,D

:= F̃∆n([−D/2, D/2])

X̃j =


−D/2 if Uj < min(I

F̃ ,D
)

D/2 if Uj > max(I
F̃ ,D

)

inf{x ∈ [−D/2, D/2]
∣∣∣F̃∆n(x) = Uj} if Uj ∈ IF̃ ,D

.

3: Set ˜̀(n)(t) = 0 if t ∈ [0, t1), ˜̀(n)(t) = ∑j
k=1 X̃k if t ∈ [tj, tj+1) for j = 1, . . . , 2n − 1

and ˜̀(n)(T ) = ∑2n
j=1 X̃j.
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Intuitively, if we choose D large and ε small enough, the atoms in the distribution
of X̃i at ±D/2 disappear. The function F̃∆n is then sufficiently close to the CDF F∆n ,
hence the generated random variables X̃i will have a distribution similar to F∆n . From
here on, we define X as the random variable which is generated from U ∼ U([0, 1]) by
inversion of the (exact) CDF F∆n and X̃ as the random variable generated from U by
inversion of the approximated CDF F̃∆n .

Theorem 7.3.12. Let F̃∆n be the approximation of F∆n which is valid for parameters
D > 0 and ε > 0 in the sense of Theorem 7.3.9. Then X̃ converges in distribution to
a random variable X with CDF equal to F∆n as D → +∞ and ε→ 0.

Proof. First, note that F̃∆n is not necessarily monotone and might admit arbitrary
values outside of [−D/2, D/2], thus cannot be regarded as a CDF. Since X̃ only admits
values in the desired interval, we obtain probability zero for the event that |X̃| > D/2.
With this in mind we construct the CDF of X̃ and show its convergence in distribution
using Portmanteau’s theorem. We define the function

F̂ : R→ [0, 1], x 7→


0 if x < −D/2

min(1,mD(x))1{mD(x)>0} if x ∈ [−D/2, D/2]

1 if x > D/2

,

where mD(x) := maxy∈[−D/2,x] F̃∆n(y). The continuity of F̃∆n guarantees that mD(x)
is well-defined for each x ∈ [−D/2, D/2]. Clearly, F̂ is monotone increasing and

P(X̃ ≤ x) = F̂ (x)

if |x| > D/2. For |x| ≤ D/2 we have that

P(X̃ ≤ x) = P(inf{|y| ≤ D/2 | F̃∆n(y) ≥ U} ≤ x)

= P( max
y∈[−D/2,x]

F̃∆n(y) ≥ U)

= min(1,mD(x))1{mD(x)>0} = F̂ (x),

hence F̂ is the CDF of X̃. With the monotonicity of F∆n and |F∆n − F̃∆n| < ε on
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[−D/2, D/2] we get

F̂ (x) = min(1,mD(x))1{mD(x)>0}

≤ min(1, max
y∈[−D/2,x]

F̃∆n(y))

≤ min(1, max
y∈[−D/2,x]

F∆n(y) + ε)

= min(1, F∆n(x) + ε),

for x ∈ [−D/2, D/2] and analogously

F̂ (x) ≥ min(1, max
y∈[−D/2,x]

F∆n(y)− ε)1{ max
y∈[−D/2,x]

F∆n (y)−ε>0} = max(F∆n(x)− ε, 0),

thus
|F̂ (x)− F∆n(x)| ≤ ε.

We choose sequences (Dk, k ∈ N) with limk→∞Dk = +∞ and (εm,m ∈ N) with
limm→∞ εm = 0 and denote by F̂k,m the CDF of the random variables X̃k,m corre-
sponding to each Dk and εm. For every x ∈ R there is some k∗ ∈ N such that
x ∈ [−Dk/2, Dk/2] for all k ≥ k∗, hence

lim
m→∞

lim
k→∞
|F̂k,m(x)− F∆n(x)| ≤ lim

m→∞
εm = 0

and the claim follows by Portmanteau’s theorem.

Remark 7.3.13. Before showing the convergence of X̃ to X in Lp(Ω;R), we have to
make sure that the random variables X̃ generated by Algorithm 7.3.11 are actually
defined on the same probability space (Ω, (Ft, t ≥ 0),P) as X. Since X represents the
increment of a Lévy process ` on (Ω, (Ft, t ≥ 0),P) with CDF F∆n , we may define the
mapping U := F∆n ◦ X : Ω → [0, 1]. It is then easily verified that U is a U([0, 1])-
distributed random variable. For fixed parameters D, ε > 0 and an approximation
F̃∆n of F∆n we define the pseudo inverse of F̃∆n (as in Algorithm 7.3.11 with I

F̃ ,D
:=

F̃∆n([−D/2, D/2])) as

F̃−1
∆n

: [0, 1]→ R, u 7→


−D/2 if u < min(I

F̃ ,D
)

D/2 if u > max(I
F̃ ,D

)

inf{x ∈ [−D
2 ,

D
2 ]
∣∣∣F̃∆n(x) = u} if u ∈ I

F̃ ,D

.

We note that F̃−1
∆n

is a piecewise continuous, thus measurable, mapping which implies
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that X̃ = F̃−1
∆n
◦F∆n ◦X : Ω→ [−D/2, D/2] is a random variable on (Ω, (Ft, t ≥ 0),P).

Under additional, but natural, assumptions, it is possible to show stronger conver-
gence results of the approximation for both sets of assumptions.

Theorem 7.3.14. (Lp(Ω;R)-convergence I) Let F∆n be continuously differentiable on
R with density f∆n (see Remark 7.3.8) and (φ`)∆n be bounded as in Assumption 7.3.6
with ϑ > 1. Furthermore, assume that the approximation parameters D and ε fulfill
D = Cε−d for C, d > 0. If d < 1

p
, then for all p ∈ [1, ϑ)

E(|X̃ −X|p)→ 0 as ε→ 0.

Proof. Let ε > 0, D = Cε−d and p ∈ [1, ϑ) be as in the claim. We split the expectation
in the following way

E(|X̃ −X|p) = E(|X̃ −X|p1{|X|>D/2}) + E(|X̃ −X|p1{|X|≤D/2}),

and show the convergence for each term on the right hand side. Recall that X̃ ∈
[−D/2, D/2] by construction. We obtain for the first term

E(|X̃ −X|p1{|X|>D/2}) ≤
∫ ∞
D/2
| −D/2− x|pf∆n(x)dx+

∫ −D/2
−∞

|D/2− x|pf∆n(x)dx

=
∫ ∞
D/2

(D/2 + x)p(f∆n(x) + f∆n(−x))dx

=
∫ ∞
D/2

∫ D/2+x

0
pyp−1dy(f∆n(x) + f∆n(−x))dx.

Using the identity

(x, y) ∈ (D/2,+∞)× (0, D/2 + x)

⇔(x, y) ∈
(
(D/2,+∞)× (0, D/2)

)
∪
(
(y,+∞)× (D/2,+∞)

)
for the domain of interest, we may use Fubini’s theorem to exchange the order of

161



7.3. SIMULATION BY FOURIER INVERSION

integration and rewrite

E(|X̃ −X|p1{|X|>D/2}) ≤
∫ ∞
D/2

∫ D/2+x

0
pyp−1dy(f∆n(x) + f∆n(−x))dx

=
∫ D/2

0

∫ ∞
D/2

(f∆n(x) + f∆n(−x))dxpyp−1dy

+
∫ ∞
D/2

∫ ∞
y

(f∆n(x) + f∆n(−x))dxpyp−1dy

=
∫ D/2

0
(1− F∆n(D/2) + F∆n(−D/2))pyp−1dy

+
∫ ∞
D/2

(1− F∆n(y) + F∆n(−y))pyp−1dy.

With the bounds on F∆n from Assumption 7.3.6 we then have

E(|X̃ −X|p1{|X|>D/2}) ≤ 2R(D/2)−ϑ
∫ D/2

0
pyp−1dy + 2Rp

∫ ∞
D/2

yp−1

yϑ
dy

= 2R(D/2)p−ϑ + 2Rpζ(ϑ+ 1− p,D/2).

Note that the Hurwitz zeta function ζ is well-defined (as ϑ > p, D/2 > 0) and converges
to 0 as D → +∞.

For the second term, consider two realizations of the random variables X(ω) and
X̃(ω) for some ω ∈ Ω, where |X(ω)| ≤ D/2. F∆n is continuously differentiable by
assumption, hence

F∆n(X(ω))− F∆n(X̃(ω)) = f∆n(ξ(ω))(X(ω)− X̃(ω)),

with ξ(ω) lying in between X(ω) and X̃(ω), meaning |ξ(ω)| ≤ D/2 and consequently

1{|X(ω)|≤D/2}(ω) ≤ 1{|ξ(ω)|≤D/2}(ω).

For ε̃ := C−1εd+1 > 0 we split the expectation once more into

E(|X̃ −X|p1{|X|≤D/2}) ≤E(|X̃ −X|p1{|ξ|≤D/2})

≤E(|X̃ −X|p1{|ξ|≤D/2,f(ξ)≥ε̃}) + E(|X̃ −X|p1{|ξ|≤D/2,f(ξ)<ε̃})

:=I + II.
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In case that f∆n(ξ(ω)) ≥ ε̃, we can rearrange the terms to

|X̃(ω)−X(ω)|p = |F∆n(X̃(ω))− F∆n(X(ω))|p
f∆n(ξ(ω))p .

If X and X̃ are generated by U ∼ U([0, 1]) and F̂∆n denotes again the CDF of X̃, this
yields

|X̃(ω)−X(ω)|p = |F∆n(X̃(ω))− F̂∆n(X̃(ω))|p
f∆n(ξ(ω))p <

εp

f∆n(ξ(ω))p ,

where we have used in the second step that U(ω) = F∆n(X(ω)) = F̂∆n(X̃(ω)) and
|F∆n(X̃(ω))− F̂∆n(X̃(ω))| < ε (see Theorem 7.3.12). This gives a bound for I:

I < εp E(f∆n(ξ)−p1{|ξ|≤D/2,f∆n (ξ)≥ε̃})

= εp
∫ D/2

−D/2
1{f∆n (ξ)≥ε̃}f∆n(ξ)1−pdξ

≤ εp

ε̃p−1

∫ D/2

−D/2
1{f∆n (ξ)≥ε̃}dξ.

(7.7)

If f∆n(ξ(ω)) < ε̃, we obtain by |X̃(ω)−X(ω)|1{|X(ω)|≤D/2} ≤ D

II ≤ Dp E(1{|ξ|≤D/2,f∆n (ξ)<ε̃})

= Dp
∫ D/2

−D/2
1{f∆n (ξ)<ε̃}f∆n(ξ)dξ

< Dp ε̃
∫ D/2

−D/2
1{f∆n (ξ)<ε̃}dξ

(7.8)

and hence by Eqs. (7.7), (7.8) and ε̃ = C−1ε1+d

E(|X̃ −X|p1{|X|≤D/2}) ≤ I + II

< Dp ε̃
( ∫ D/2

−D/2
1{f∆n (ξ)≥ε̃}dξ +

∫ D/2

−D/2
1{f∆n (ξ)<ε̃}dξ

)
= Dp+1ε̃.

With the estimate for E(|X̃−X|p1{|X|>D/2}), D = Cε−d and ε̃ = C−1ε1+d this leads to

E(|X̃ −X|p) ≤ 2Rpζ(ϑ+ 1− p,D/2) + 2R(D/2)p−ϑ +Dp+1ε̃

= 2Rpζ(ϑ+ 1− p,D/2) + 2R(D/2)p−ϑ + C1/dDp−1/d,
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and since 0 < d < 1
p
and ϑ > p by assumption, E(|X̃ −X|p)→ 0 as ε→ 0.

Remark 7.3.15. The relation ε̃ = C−1ε1+d is chosen such that the factors preceding
the integrals in Eqs. (7.7) and (7.8) are equilibrated. As only the sum of the two
integrals is known a-priori, this leads to a better error estimation compared to non-
equilibrated factors.

Theorem 7.3.16. (Lp(Ω;R)-convergence II) Let F∆n be continuously differentiable
on R with density f∆n and (φ`)∆n be bounded as in Assumption 7.3.7 with ϑ > 2.
Furthermore, assume that the approximation parameters D and ε fulfill D = Cε−d for
C, d > 0. If d < 1

p
, then for all p ∈ [1, ϑ)

E(|X̃ −X|p)→ 0 as ε→ 0.

Proof. Let ε > 0, D = Cε−d and p ∈ [1, ϑ− 1). Again, we split the expectation into

E(|X̃ −X|p) = E(|X̃ −X|p1{|X|>D/2}) + E(|X̃ −X|p1{|X|≤D/2}),

and show convergence for the first term only, as the second term can be treated anal-
ogously to Theorem 7.3.14. In the same way as in Theorem 7.3.14, we may write for
the first term

E(|X̃ −X|p1{|X|>D/2}) ≤
∫ ∞
D/2

(D/2 + x)p(f∆n(x) + f∆n(−x))dx,

and further, by Assumption 7.3.7, follows
∫ ∞
D/2

(D/2 + x)p(f∆n(x) + f∆n(−x))dx ≤ 2R
∫ ∞
D/2

(D/2 + x)px−ϑdx

= 2p+1R
∫ ∞

0

(D/2 + x/2)p
(D/2 + x)ϑ dx

< 2p+1Rζ(ϑ− p, Cε−d/2),

which tends to zero as ε→ 0, because ϑ > p+ 1.

Remark 7.3.17. As expected, the admissible range of values for d and ϑ narrows
as the rate of convergence p increases. For example, to obtain L2(Ω;R)-convergence,
we need d < 1

2 and ϑ > 2 in Theorem 7.3.14 and ϑ > 3 in Theorem 7.3.16. Recall
Remark 7.3.10, where we have concluded that optimal relations between D and ε are
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given by

D = κ (3/2RV1(κ, ϑ))1/ϑ ε−1/ϑ if Assumption 7.3.6 holds and

D = κ (3/2RV2(κ, ϑ))1/(ϑ−1) ε−1/(ϑ−1) if Assumption 7.3.7 holds.

For Lp(Ω;R)-convergence, we need in both cases D = Cε−d, where C > 0 and d ∈
(0, 1/p). Hence, we can simply use C = κ(3/2RV1(κ, ϑ))1/ϑ and d = 1/ϑ < 1/p
in the first scenario and C = κ(3/2RV2(κ, ϑ))1/ϑ and d = 1/(ϑ − 1) < 1/p for the
second set of assumptions. This explains the bounds on J (see also Remark 7.3.10): In
Theorem 7.3.14, we obtain the expression CϑDp−ϑ as a term of the overall error. If we
had used the restrictions on J as in [116], we would have used C = 2(3R)1/ϑ instead of
the choice above and this would have resulted in an error term CϑDp−ϑ being nearly
twice as large (the argumentation works analogously for Theorem 7.3.16).

Example 7.3.18. The conditions ϑ > p in Theorem 7.3.14 and ϑ > p − 1 in Theo-
rem 7.3.16 can not be relaxed as the following examples show: First, we investigate
the Student’s t-distribution with 3 degrees of freedom and density function

f t3(x) = ΓG(2)√
3πΓG(3/2)

(
1 + x2

3

)−2

,

where x ∈ R and ΓG(·) is the Gamma function. As shown in [126], this distribution is
infinitely divisible and has characteristic function

φt3(u) := exp(−
√

3|u|)(
√

3|u|+ 1),

hence we can define a Lévy process (`t3(t), t ∈ T) with φt3(u) as characteristic function.
For simplicity we set ∆n = 1. In this case the (symmetric) distribution of the increment
`t3(t+ ∆n)− `t3(t) has zero mean, finite variance, and its CDF F1 can be bounded for
any x > 0 by

F1(−x) = 1− F1(x) =
∫ −x
−∞

f t3(y)dy

<
ΓG(2)√

3πΓG(3/2)

∫ −x
−∞

32

y4dy

=
√

3ΓG(2)√
πΓG(3/2)x

−3

=: Rx−3.
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Thus, this yields ϑ = 3. The bounds for φt3 are also straightforward:

|φt3(u)| ≤ (2π)−1 max
û>0

exp(−
√

3û)(
√

3û2 + û)| u2π |
−1 =: B| u2π |

−1,

where the maximum in B is found by differentiation giving û = (1 +
√

5)/(2
√

3). Now,
all requirements for L3-convergence except ϑ > 3 are fulfilled. But the t-distribution
with 3 degrees of freedom does not admit a third moment, hence we cannot have
L3(Ω;R)-convergence although ϑ = 3.

For the second case we consider the (standard) Cauchy process with characteristic
function (φC(u))t = exp(−t|u|). It can be shown that the increment over time ∆n > 0
is again Cauchy-distributed with density

fC∆n
(x) = ∆n

π(∆2
n + x2) .

This means the CDF of the increment is continuously differentiable and the bounds as
in Assumption 7.3.7 are easily found by fC∆n

(x) ≤ (∆n/π)|x|−2 for x ∈ R and

|(φC(u))∆n| ≤ (2π)−1 max
u∈R

u exp(−∆n|u|)|
u

2π |
−1 = (2π∆n)−1 exp(−1)| u2π |

−1

for u ∈ R. But clearly, Lp(Ω;R)-convergence in the sense of Theorem 7.3.16 for any
p ≥ 1 is impossible, as the Cauchy process does not have any finite moments.

From Lp-convergence follows almost sure convergence by a Borel–Cantelli-type ar-
gument, given ϑ in Assumptions 7.3.6 and 7.3.7 is large enough.

Corollary 7.3.19. Under the assumptions of Theorem 7.3.14, set

τ1 := min (dϑ, 1− d) ,

let m ∈ N and set ε = εm = m−q, with q > τ−1
1 . If (X̃m,m ∈ N) is generated based

on the sequence (εm,m ∈ N) (and the corresponding Dm = Cε−dm ), then (X̃m,m ∈ N)
converges to X P-almost surely.

Proof. If the assumptions of Theorem 7.3.14 with ϑ > 1 hold, we can ensure at least
L1(Ω;R) convergence. Note that the Hurwitz zeta function

ζ(ϑ+ 1− p,D/2) = ζ(ϑ+ 1− p, C/2ε−d)

is of order O(εd(ϑ+1−p)) as ε→ 0. With Markov’s inequality, p = 1 and the given error
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bounds, we get that for each ε̂ > 0 and m ∈ N

P(|X̃m −X| > ε̂ ) ≤ E(|X̃m −X|)
ε̂

≤ C̃

ε̂

(
εdϑm + ε1−d

m

)
≤ 2C̃

ε̂
ετ1m,

(recall that 1 > τ1 > 0 and εm ≤ 1) where the constant C̃ > 0 depends on R, ϑ and C.
But this means

∞∑
m=1

P(|X̃m −X| > ε̂) ≤ 2C̃
ε̂

∞∑
m=1

ετ1m = 2C̃
ε̂

∞∑
m=1

m−qτ1 < +∞,

since qτ1 > 1 by construction. The claim then follows by the Borel-Cantelli lemma.

Corollary 7.3.20. Under the assumptions of Theorem 7.3.16, set

τ2 := min (d(ϑ− 1), 1− d) ,

let m ∈ N and set ε = εm = m−q, with q > τ−1
2 . If (X̃m,m ∈ N) is generated based

on the sequence (εm,m ∈ N) (and the corresponding Dm = Cε−dm ), then (X̃m,m ∈ N)
converges to X P-almost surely.

We can now combine the error estimates for any increment over time ∆n > 0 with
the piecewise approximation error from Algorithm 7.3.1 to bound the overall error
`(t)− ˜̀(n)(t).

Theorem 7.3.21. Let ` be a Lévy process on (Ω, (Ft, t ≥ 0),P) with characteristic
function φ`, CDF Ft and density ft for any t ∈ T. Assume for n ∈ N and fixed ∆n

there are constants R, ϑ,B, θ > 0 such that either Ass 7.3.6 or Ass. 7.3.7 holds. Let˜̀(n) be the piecewise constant approximation of ` generated by Algorithm 7.3.11 and
the approximation F̃∆n of F∆n. There are parameters Dn, εn for F̃∆n such that for any
p ∈ [1, ϑ) resp. p ∈ [1, ϑ− 1) the approximation error is bounded by

E(|`(t)− ˜̀(n)(t)|p)1/p ≤ C`,T,p,R,ϑ∆1/p
n , t ∈ T,

where the constant C`,T,p,R,ϑ > 0 only depends on the indicated parameters.

Proof. By Theorem 7.3.2 we may regard ` as the (point-wise) Lp(Ω;R)-limit process
of the sequence (`(n)

, n ∈ N) generated by Algorithm 7.3.1. For fixed n, we may then
identify `(n) with `(n) from Algorithm 7.3.5 to obtain

E(|`(t)− ˜̀(n)(t)|p)1/p ≤ E(|`(t)− `(n)(t)|p)1/p + E(|`(n)(t)− ˜̀(n)(t)|p)1/p.
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The first term is bounded by

E(|`(t)− `(n)(t)|p)1/p ≤ C
1/p
`,T,p

∞∑
i=n+1

2−i/p =
C

1/p
`,T,p2−n/p

21/p − 1 .

For the treatment of the second term, we define for j = 1, . . . , 2n the random vari-
ables Xj := F−1

∆n
(Uj) L= `(∆n). Here, U1, . . . ,U2n is the i.i.d sequence of U([0, 1])

random variables on (Ω, (Ft, t ≥ 0),P) from Algorithm 7.3.5. The increments of the
approximation ˜̀(n) are then given by X̃j := F̃

(−1)
∆n

(Uj) which yields

|`(n)(t)− ˜̀(n)(t)| ≤
2n∑
j=1
|Xj − X̃j|.

The differences (Xj − X̃j, j = 1, . . . , 2n) are i.i.d. by construction, hence

E
(
|`(n)(t)− ˜̀(n)(t)|p

)1/p
≤

2n∑
j=1

E(|Xj − X̃j|p)1/p ≤ 2nE(|X1 − X̃1|p)1/p.

Now let F̃∆n be the approximation of F∆n for some ε ∈ (0, 1] and D = Cε−d. For the
first set of assumptions, we apply the error estimates of Theorem 7.3.14 to obtain

E
(
|`(n)(t)− ˜̀(n)(t)|p

)
≤ 2nE(|X1 − X̃1|p)1/p

≤ 2n
(
2Rpζ(ϑ+ 1− p, Cε−d/2) + 2R(Cε−d/2)p−1/d + Cpε1−dp

)
≤ 2nCR,ϑ,pετ(p),

where τ(p) := min (d(ϑ+ 1− p), 1− dp) and CR,ϑ,p > 0 depends on C and the in-
dicated parameters. An error of order ∆1/p

n in the last inequality is then achieved
by choosing ε = εn = 2−(np+n)/τ(p) and Dn = Cε−dn . The proof for the second
set of assumptions is carried out identically with the only difference that τ(p) :=
min (d(ϑ− p), 1− dp).

Remark 7.3.22. For an efficient simulation one would choose R based on (φ`)∆n as
in Remark 7.3.8 and then C based on R as suggested in Remark 7.3.17. Note that in
this case R = O(∆n) and

C = κ (3/2RV1(κ, ϑ))1/ϑ = O(∆1/ϑ
n ) resp.

C = κ (3/2RV2(κ, ϑ))1/(ϑ−1) = O(∆1/(ϑ−1)
n ).
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This has to be considered in the simulation of ˜̀(n) for different ∆n as we point out in
the setting of Ass. 7.3.6: As shown in Theorem 7.3.21, the Lp-error E(|`(t)− ˜̀(n)(t)|p)
is bounded by

E(|`(t)− ˜̀(n)(t)|p)1/p ≤ 2n
(
2Rpζ(ϑ+ 1− p, Cε−d/2) + 2R(Cε−d/2)p−1/d + Cpε1−dp

)1/p

+
C

1/p
`,T,p2−n/p

21/p − 1 .

By substituting ε = C1/dD−1/d, d = 1/ϑ (see Remark 7.3.17) and 2n = T/∆n one
obtains

E(|`(t)− ˜̀(n)(t)|p)1/p ≤ (2Rpζ(ϑ+ 1− p,D/2) + 2R(D/2)p−ϑ + CϑDp−ϑ)1/p

T−1∆n

+
C

1/p
`,T,p2−n/p

21/p − 1

(7.9)

With R = O(∆n) and C = O(∆1/ϑ
n ) this implies with Ineq. (7.9)

E(|`(t)− ˜̀(n)(t)|p)1/p = O(D(p−ϑ)/p∆1/p−1
n ) +O(∆1/p

n ).

To equilibrate both error contributions, one may choose D := Dn = ∆p/(p−ϑ)
n in the

simulation which leads to an Lp-error of order O(∆1/p
n ).

As mentioned in the end of Section 7.2, the one-dimensional processes ( ˜̀i, i =
1, . . . , N) in the spectral decomposition are not independent, but merely uncorrelated.
In the next section we introduce a class of Lévy fields for which uncorrelated processes
can be obtained by subordinating a multi-dimensional Brownian motion. Furthermore,
for the simulation of these processes the Fourier inversion method may be employed
and a bound for the constant C` (see Theorem 7.2.3) can be derived.

7.4 Generalized hyperbolic Lévy processes

Distributions which belong to the class of generalized hyperbolic distributions may be
used for a wide range of applications. GH distributions have been first introduced
in [18] to model mass-sizes in aeolian sand (see also [19]). Since then they have been
successfully applied, among others, in Finance and Biology. Giving a broad class
the distributions are characterized by six parameters, famous representatives are the
Student’s t, the normal-inverse Gaussian, the hyperbolic and the variance-gamma dis-
tribution. The popularity of GH processes is explained by their flexibility in modeling
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various characteristics of a distribution such as asymmetries or heavy tails. A further
advantage in our setting is, that the characteristic function is known and, therefore,
the Fourier Inversion may be applied to approximate these processes. This section
is devoted to investigate several properties of multi-dimensional GH processes which
are then used to construct an approximation of an infinite-dimensional GH field. In
contrast to the Gaussian case, the sum of two independent and possibly scaled GH
processes is in general not again a GH process. We show a possibility to approximate
GH Lévy fields via Karhunen-Loève expansions in such a way that the approximated
field is itself again a GH Lévy field. This is essential, so as to have convergence of
the approximation to a GH Lévy field in the sense of Theorem 7.2.3. Furthermore, we
give, for N ∈ N, a representation of a N -dimensional GH process as a subordinated
Brownian motion and show how a multi-dimensional GH process may be constructed
from uncorrelated, one-dimensional GH processes with given parameters. This may
be exploited by the Fourier inversion algorithm in such a way that the computational
expenses to simulate the approximated GH fields are virtually independent of the trun-
cation index N .

Assume, for N ∈ N, that λ ∈ R, α > 0, β ∈ RN , δ > 0, µ ∈ RN and Γ is a
symmetric, positive definite (spd) N × N -matrix with unit determinant. We denote
by GHN(λ, α, β, δ, µ,Γ) the N -dimensional generalized hyperbolic distribution with
probability density function

fGHN (x;λ, α, β, δ, µ,Γ) = γλαN/2−λ

(2π)N/2δλKλ(δγ)
Kλ−N/2(αg(x− µ))
g(x− µ)N/2−λ exp(β′(x− µ))

for x ∈ RN , where
g(x) :=

√
δ2 + x′Γx, γ2 := α2 − β′Γβ

and Kλ(·) is the modified Bessel-function of the second kind with λ degrees of freedom.
The characteristic function of GHN(λ, α, β, δ, µ,Γ) is given by

φGHN (u;λ, α, β, δ, µ,Γ) := exp(iu′µ)
(

α2 − β′Γβ
α2 − (iu+ β)′Γ(iu+ β)

)λ/2
· Kλ(δ(α2 − (iu+ β)′Γ(iu+ β))1/2)

Kλ(δγ) ,

(7.10)

where A′ denotes the transpose of a matrix or vector A. For simplicity, we assume that
the condition

α2 > β′Γβ (7.11)
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is satisfied3. If N = 1, clearly, Γ = 1 is the only possible choice for the "matrix param-
eter" Γ, thus we omit it in this case and denote the one-dimensional GH distribution
by GH(λ, α, β, δ, µ). Barndorff–Nielsen obtains the GH distribution in [19] as a normal
variance-mean mixture of aN -dimensional normal distribution and a (one-dimensional)
generalized inverse Gaussian (GIG) distribution with density function

fGIG(x; a, b, p) = (b/a)p
2Kp(ab)

xp−1 exp(−1
2(a2x−1 + b2x)), x > 0,

and parameters a, b > 0 and p ∈ R4. To be more precise: Let wN(1) be aN -dimensional
standard normally distributed random vector, Γ a spd N × N -structure matrix with
unit determinant and `GIG(1) a GIG(a, b, p) random variable, which is independent of
wN(1). For µ, β ∈ RN , we set δ = a, λ = p, α =

√
b2 + β′Γβ and define the random

variable `GHN (1) as

`GHN (1) := µ+ Γβ`GIG(1) +
√
`GIG(1)ΓwN(1). (7.12)

Then `GHN (1) is GHN(λ, α, β, δ, µ,Γ)-distributed, where
√

Γ denotes the Cholesky de-
composition of the matrix Γ. With this in mind, one can draw samples of a GH dis-
tribution with given parameters by sampling multivariate normal and GIG-distributed
random variables, as a = δ > 0 and b =

√
α2 − β′Γβ > 0 is guaranteed by the condi-

tions on the GIG parameters (this results in Ineq. (7.11) being fulfilled).
As noted in [75, Section 5], for general λ ∈ R, we cannot assume that the increments

of the GH Lévy process (resp. of the subordinating process) over a time length other
than one follow a GH distribution (resp. GIG distribution). If N = 1, however, the
(one-dimensional) GH Lévy process `GH has the representation

`GH(t) L= µt+ β`GIG(t) + w(`GIG(t)), for t ≥ 0,

where w is a one-dimensional Brownian motion and `GIG a GIG process independent
of w (see [57]). This result yields the following generalization:

Lemma 7.4.1. For N ∈ N, the N-dimensional process `GHN = (`GHN (t), t ∈ T), which
is GHN(λ, α, β, δ, µ,Γ)-distributed, can be represented as a subordinated N-dimensional

3If α2 = β′Γβ and λ < 0, the distribution is still well-defined, but one has to consider the limit
γ → 0+ in the Bessel functions, see [43, 186].

4The notation of the GIG distribution varies throughout the literature, we use the notation
from [188].
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Brownian motion wN via

`GHN (t) L= µt+ Γβ`GIG(t) +
√

ΓwN(`GIG(t)),

where (`GIG(t), t ∈ T) is a GIG Lévy process independent of wN and
√

Γ is the Cholesky
decomposition of Γ.

Proof. Since the GHN(λ, α, β, δ, µ,Γ) distribution may be represented as a normal
variance-mean mixture (see Eq. (7.12)), we have, that

`GHN (1) L= µ+ Γβ`GIG(1) +
√

Γ`GIG(1)wN(1) L= µ+ Γβ`GIG(1) +
√

ΓwN(`GIG(1)),

where `GIG(1) ∼ GIG(δ,
√
α2 − β′Γβ, λ) and wN is a N -dimensional Brownian motion

independent of `GIG(1). The characteristic function of the mixed density is given by

φGHN (u;λ, α, β, δ, µ,Γ) = eiu
′µMGIG(iu′Γβ − 1

2u
′Γu; δ,

√
α2 − β′Γβ, λ),

whereMGIG denotes the moment generating function of `GIG(1) (see [21]). The GIG
distribution is infinitely divisible, thus this GIG Lévy process `GIG = (`GIG(t), t ∈ T)
can be defined via its characteristic function for t ∈ T:

E(exp(iu`GIG(t))) =
(
MGIG(iu; δ,

√
α2 − β′Γβ, λ)

)t
.

The infinite divisibility further yields

E
(

exp(iu′`GHN (t))
)

= E
(

exp(iu′`GHN (1))
)t

= (φGH(u;λ, α, β, δ, µ,Γ))t

= eiu
′µt
(
MGIG(iu′Γβ − 1

2u
′Γu; δ,

√
α2 − β′Γβ, λ)

)t
.

The expression above is the characteristic function of another normal variance-mean
mixture, with a GIG-subordinator `GIG and characteristic function

E(exp(iu`GIG(t))) =
(
MGIG(iu; δ,

√
α2 − β′Γβ, λ)

)t
.

Hence, `GHN (t) can be expressed as

`GHN (t) L= µt+ Γβ`GIG(t) +
√

ΓwN(`GIG(t)).
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Remark 7.4.2. In the special case of λ = −1
2 one obtains the normal inverse Gaussian

(NIG) distribution. The mixing density is, in this case, the inverse Gaussian (IG)
distribution. We denote the N -dimensional NIG distribution by NIGN(α, β, δ, µ,Γ).
This is the only subclass of GH distributions which is closed under convolutions in the
sense that

NIGN(α, β, δ1, µ1,Γ) ∗NIGN(α, β, δ2, µ2,Γ) = NIGN(α, β, δ1 + δ2, µ1 + µ2,Γ)

(see [167]). For λ ∈ R, the sum of independent GH random variables is in general
not GH-distributed. This implies further, that one is in general not able to derive
bridge laws of these processes in closed form, meaning we need to use the algorithms
introduced in Section 7.3.2 for simulation.

As shown in [20], the GH and the GIG distribution are infinitely-divisible, thus
we can define the N -dimensional GH Lévy process `GHN = (`GHN (t), t ∈ T) with
characteristic function

E(exp(iu`GHN (t)) = (φGHN (u;λ, α, β, δ, µ,Γ))t.

Remark 7.4.3. If λ = −1
2 , the corresponding NIG Lévy process (`NIGN (t), t ∈ T) has

characteristic function

E[exp(iu`NIGN (t))] = (φGHN (u;−1
2 , α, β, δ, µ,Γ))t = φGHN (u;−1

2 , α, β, tδ, tµ,Γ).

This is due to the fact that the characteristic function φIG(u; a, b) of the mixing IG
distribution fulfills the identity

(φIG(u; a, b))t = φIG(u; ta, b)

for any t ∈ T and a, b > 0 (see [188]).

We consider the finite time horizon T = [0, T ], for T < +∞, the probability space
(Ω, (Ft, t ≥ 0),P), and a compact domain D ⊂ Rs for s ∈ N to define a GH Lévy field
as a mapping

LGH : Ω×D × T→ R, (ω, x, t) 7→ LGH(ω)(x)(t),
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such that for each x ∈ D the point-wise marginal process

LGH(·)(x)(·) : Ω× T→ R, (ω, t) 7→ LGH(ω)(x)(t),

is a one-dimensional GH Lévy process on (Ω, (Ft, t ≥ 0),P) with characteristic function

E
(

exp(iuLGH(x)(t))
)

= (φGH(u;λ(x), α(x), β(x), δ(x), µ(x)))t,

where the indicated parameters are given by continuous functions, i.e. λ, β, µ ∈
C(D;R) and α, δ ∈ C(D;R>0). We assume that condition (7.11), i.e. α(x)2 > β(x)2,
is fulfilled for any x ∈ D to ensure that LGH(x)(·) is a well-defined GH Lévy process.
This, in turn, means that LGH takes values in the Hilbert space U = L2(D) and is
square integrable as

E(||LGH(t)||2U) ≤ TE(||LGH(1)||2U) ≤ T max
x∈D

E(LGH(x)(1)2)VD,

where VD denotes the volume ofD. The right hand side is finite since every GH distribu-
tion has finite variance (see for example [157, 188]), the parameters of the distribution
of LGH(x)(1) depend continuously on x and D ⊂ Rs is compact by assumption. We
use the Karhunen-Loève expansion from Section 7.2 to obtain an approximation of a
given GH Lévy field. For this purpose, we consider the truncated sum

LGHN (x)(t) :=
N∑
i=1

ϕi(x)`GHi (t) L=
N∑
i=1

ϕi(x)
(
µit+ βi`

GIG
i (t) + wi(`GIGi (t))

)
,

whereN ∈ N and ϕi(x) = √ηiei(x) is the i-th component of the spectral basis evaluated
at the spatial point x. For each i = 1, . . . , N , the processes `GHi := (`GHi (t), t ∈ T) are
uncorrelated but dependent GH(λi, αi, βi, δi, µi) Lévy process. From Theorem 7.2.3
follows that LGHN converges in L2(Ω;U) to LGH as N → +∞. With given µi, βi ∈ R,
we have that

`GHi (t) L= µit+ βi`
GIG
i (t) + wi(`GIGi (t)), (7.13)

where for each i, the process (`GIGi (t), t ∈ T) is a GIG Lévy process with parameters
ai = δi, bi = (α2

i − β2
i )1/2 > 0 and pi = λi ∈ R. In addition, (wi(t), t ∈ T) is

a one-dimensional Brownian motion independent of `GIGi and all Brownian motions
w1, . . . , wN are mutually independent of each other, but the processes `GIG1 , . . . , `GIGN

may be correlated. We aim for an approximation (LGHN (x)(t), t ∈ T) which is a GH
process for arbitrary ϕi and x ∈ D. Remark 7.4.2 suggests that this cannot be achieved
by the summation of independent `GHi , but rather by using correlated subordinators
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`GIG1 , . . . , `GIGN . Before we determine the correlation structure of the subordinators,
we establish a necessary and sufficient condition on the `GHi to achieve the desired
distribution of the approximation.

Lemma 7.4.4. Let N ∈ N, t ∈ T and (`GHi , i = 1 . . . , N) be GH processes as defined in
Eq. (7.13). For a vector a = (a1, . . . , aN) with arbitrary numbers a1, . . . , aN ∈ R \ {0},
the process `GH,a defined by

`GH,a(t) :=
N∑
i=1

ai`
GH
i (t) =

N∑
i=1

ai(µi + βi`
GIG
i (t) + wi(`GIGi (t)))

is a one-dimensional GH process, if and only if the vector

`GHN (1) := (`GH1 (1), . . . , `GHN (1))′

is multivariate GHN(λ(N), α(N), β(N), δ(N), µ(N),Γ)-distributed with the set of parame-
ters λ(N), α(N), δ(N) ∈ R, β(N), µ(N) ∈ RN and structure matrix Γ ∈ RN×N .

The entries of the coefficient vector a in `GH,a are later identified with the basis
functions ϕi(x) for x ∈ D to show that LGHN (x)(·) is a one-dimensional Lévy process
and the approximation LGHN is a U -valued GH Lévy field.

Proof of Lemma 7.4.4. We first consider the case that

`GHN (1) ∼ GHN(λ(N), α(N), β(N), δ(N), µ(N),Γ).

It is sufficient to show that `GH,a(1) is a GH-distributed random variable, the infi-
nite divisibility of the GH distribution then implies that (`GH,a(t), t ∈ T) is a GH
process. Since the entries of the coefficient vector a1, . . . , aN are non-zero, there ex-
ists a non-singular N × N matrix A, such that `GH,a(1) is the first component of
the vector A`GHN (1). If `GHN (1) is multi-dimensional GH-distributed, then follows
from [43, Theorem 1], that A`GHN (1) is also multi-dimensional GH-distributed and
that the first component of A`GHN (1), namely `GH,a(1), follows a one-dimensional
GH distribution (the parameters of the distribution of `GH,a(1) depend on A and on
λ(N), α(N), β(N), δ(N), µ(N),Γ and are explicitly given in [43] and below).
On the other hand, assume that `GH,a(1) is a GH random variable (with arbitrary
coefficients), but `GHN (1) is not N -dimensional GH-distributed. This means there is
no representation of `GHN (1) such that

`GHN (1) L= µ+ Γβ `GIG(1) +
√

ΓwN(`GIG(1))
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with µ, β ∈ RN , Γ ∈ RN×N spd with determinant one, a GIG random variable `GIG(1)
and a N -dimensional Brownian motion wN independent of `GIG(1). This implies that
`GH,a(1) = (A`GHN (1))1 has no representation

`GH,a(1) = (Aµ)1 + (AΓβ)1`
GIG(1) + (A

√
ΓwN(`GIG(1)))1

L= (Aµ)1 + (AΓβ)1`
GIG(1) +

√
`GIG(1)A[1]ΓA′[1]w

1(1),

where A[1] denotes the first row of the matrix A and w1(1) ∼ N (0, 1). For the last
equality we have used the affine linear transformation property of multi-dimensional
normal distributions and that Γ is positive definite. Since cA := A[1]ΓA′[1] > 0, we
can divide the equation above by √cA and obtain that c−1/2

A `GH,a(1) cannot be a
GH-distributed random variable, as it cannot be expressed as a normal variance-mean
mixture with a GIG-distribution. But this is a contradiction, since `GH,a(1) is GH-
distributed by assumption and the class of GH distributions is closed under regular
affine linear transformations (see [43, Theorem 1c]).

Remark 7.4.5. The condition ai 6= 0 is, in fact, not necessary in Lemma 7.4.4. If, for
k ∈ {1, . . . , N − 1}, k coefficients ai1 = · · · = aik = 0, then the summation reduces to

`GH,a(t) =
N∑
i=1

ai`
GH
i (t) =

N−k∑
l=1

ajl`
GH
jl

(t),

where the indices jl are chosen such that ajl 6= 0 for l = 1, . . . , N − k. If P ∈ RN×N is
the permutation matrix with

P`GHN (1) = P (`GH1 (1), . . . , `GHN (1))′

= (`GHj1 (1), . . . , `GHjN−k(1), `GHi1 (1), . . . , `GHik (1))′,

then P`GHN is again N -dimensionally GH-distributed and by [43, Theorem 1a] the
vector (`GHj1 (1), . . . , `GHjN−k(1)) admits a (N − k)-dimensional GH law. Thus, we only
consider the case where all coefficients are non-vanishing.

The previous proposition states that the KL approximation

LGHN (x)(t) =
N∑
i=1

ϕi(x)`GHi (t),

can only be a GH process for arbitrary (ϕi(x), i = 1, . . . , N) if the `GHi are correlated
in such a way that they form a multi-dimensional GH process. This rules out the
possibility of independent processes (`GHi , i = 1, . . . , N), because if `GHN (1) is multi-
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dimensional GH-distributed, it is not possible that the marginals `GHi (1) are indepen-
dent GH-distributed random variables (see [43]). The parameters λi, αi, βi, δi, µi of each
process `GHi should remain as unrestricted as possible, so we determine in the next step
the parameters of the marginals of a GHN(λ(N), α(N), β(N), δ(N), µ(N),Γ) distribution
and show how the subordinators (`GIGi , i = 1, . . . , N) might be correlated. The follow-
ing result allows us to determine the marginal distributions of a N -dimensional GH
distribution.

Lemma 7.4.6. (Masuda [157], who refers to [44], Lemma A.1.) Let

`GHN (1) = (`GH1 (1), . . . , `GHN (1))′ ∼ GHN(λ(N), α(N), β(N), δ(N), µ(N),Γ),

then for each i we have that `GHi (1) ∼ GH(λi, αi, βi, δi, µi), where

λi = λ(N), αi = Γ−1/2
ii

[
(α(N))2 − β′−i

(
Γ−i,22 − Γ−i,21Γ−1

ii Γ−i,12
)
β−i

]1/2
βi = β

(N)
i + Γ−1

ii Γ−i,12β−i, δi =
√

Γiiδ(N)
i , µi = µ

(N)
i ,

together with

β−i := (β(N)
1 , . . . , β

(N)
i−1 , β

(N)
i+1 , . . . , β

(N)
N )′,

Γ−i,12 := (Γi,1, . . . ,Γi,i−1,Γi,i+1, . . . ,Γi,N), Γ−i,21 := Γ′−i,12

and Γ−i,22 denotes the (N − 1)× (N − 1) matrix which is obtained by removing the i-th
row and column of Γ.

Assume that `GHN (1) ∼ GHN(λ(N), α(N), β(N), δ(N), µ(N),Γ), since this is a neces-
sary (and sufficient) condition so that the (truncated) KL expansion is a GH process.
Lemma 7.4.6 gives immediately, that for all i = 1, . . . , N , the parameters λi = λ(N)

have to be identical, whereas the drift µi may be chosen arbitrary for each process `GHi .
Furthermore, the expectation and covariance matrix of `GHN (1) is given by

E(`GHN (1)) = µ(N) + δ(N)Kλ(N)+1(δ(N)γ(N))
γ(N)Kλ(N)(δ(N)γ(N)) Γβ(N) (7.14)

and

Var(`GHN (1)) = δ(N)Kλ(N)+1(δ(N)γ(N))
γ(N)Kλ(N)(δ(N)γ(N)) Γ +

(
δ(N)

γ(N)

)2
(Γβ(N))(Γβ(N))′

·

Kλ(N)+2(δ(N)γ(N))
Kλ(N)(δ(N)γ(N)) −

K2
λ(N)+1(δ(N)γ(N))
K2
λ(N)(δ(N)γ(N))

, (7.15)
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where γ(N) := ((α(N))2 − β(N)′Γβ(N))1/2 (see [157]).

Example 7.4.7. Consider the case that the processes `GH1 , . . . , `GHN are generated by
the same subordinating GIG(a, b, p) process `GIG, i.e.

`GHi (t) = µit+ βi`
GIG(t) + wi(`GIG(t)).

Then `GHi (1) ∼ GH(λ, αi, βi, δ, µi), where λ = p, δ = a are independent of i and
αi = (b2 + β2

i )1/2. If µ(N) := (µ1 . . . , µN)′, β(N) := (β1, . . . , βN)′ and Γ is the N × N
identity matrix, then

`GHN (t) = (`GH1 (t), . . . , `GHN (t))′ L= µt+ β`GIG(t) + wN(`GIG(t))

= µt+ Γβ`GIG(t) +
√

ΓwN(`GIG(t)),

where wN is a N -dimensional Brownian motion independent of `GIG. Hence, `GHN (t)
is a multi-dimensional GHN(λ, α(N), β(N), δ, µ(N),Γ) process with α(N) =

√
b2 + β′β.

One checks using Lemma 7.4.6 that the parameters of the marginals of `GHN (1) and
`GHi (1) coincide for each i, and that expectation and covariance of `GHN (1) are given
by Eq. (7.14) and Eq. (7.15). By Lemma 7.4.4, the Karhunen-Loève expansion

LGHN (x)(t) =
N∑
i=1

ϕi(x)`GHi (t)

in this example is a GH process for each x ∈ D and an arbitrary basis (ϕi, i = 1, . . . , N).

Remark 7.4.8. Lemma 7.4.6 dictates that the subordinators (`GIGi , i = 1, . . . , N)
cannot be independent. In Example 7.4.7 fully correlated subordinators were used. A
different way to correlate the subordinators, so that Lemma 7.4.6 is fulfilled, would lead
to a correlation matrix, just being multiplied with Γ. For simplicity, in the remainder of
the paper, especially for the numerical examples in Section 7.5, we use fully correlated
subordinators.

As shown in [43, Theorem 1c] the class of N -dimensional GH distributions is closed
under regular linear transformations: If N ∈ N, `GHN (1) ∼ GHN(λ, α, β, δ, µ,Γ), A is
an invertible N × N -matrix and b ∈ RN , then the random vector A`GHN (1) + b has
distribution

GHN(λ, ||A||−1/Nα, (A−1)′β, ||A||1/Nδ, Aµ+ b, ||A||−2/NAΓA′),

where ||A|| denotes the absolute value of the determinant of A. With this and the as-
sumption `GHN (1) ∼ GHN(λ(N), α(N), β(N), δ(N), µ(N),Γ), we are also able to determine
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the point-wise law of LGHN for given ϕ1(x), . . . , ϕN(x).

Lemma 7.4.9. Let `GHN (1) ∼ GHN(λ(N), α(N), β(N), δ(N), µ(N),Γ) and for x ∈ D let
(ϕi(x), i = 1, . . . , N) be a sequence of non-zero coefficients (see Remark 7.4.5). Then
(LGHN (x)(t), t ∈ T) is a GH Lévy process with parameters depending on x.

Proof. It is again sufficient to show that LGHN (x)(1) follows a GH law, the resulting
parameters are given below. For x ∈ D, define the N ×N matrix A(x) via

A(x)ij :=

ϕj(x) if i = 1 or if i = j

0 elsewhere
.

The matrix A(x) is invertible with determinant ∏N
i=1 ϕi(x) 6= 0 and inverse A(x)−1

given by

A(x)−1
ij :=


−ϕ1(x)−1 if i = 1 and j ≥ 2

ϕi(x)−1 if i = j

0 elsewhere

.

Then, LGHN (x)(1) = ∑N
i=1 ϕi(x)`GHi (1) becomes the first entry of the random vec-

tor A(x)`GHN (1). By the affine transformation property of the GH distribution and
Lemma 7.4.6 it follows that LGHN (x)(1) is one-dimensional GH-distributed. Now define
Γ̃ := A(x)ΓA(x)′, the partition

Γ̃ =
 Γ̃11 Γ̃′2,1

Γ̃2,1 Γ̃2,2


such that Γ̃2,1 ∈ RN−1 and Γ̃2,2 ∈ R(N−1)×(N−1) and the vector

β̃ :=
(
β

(N)
2 ϕ2(x)−1 − β(N)

1 ϕ1(x)−1, . . . , β
(N)
N ϕN(x)−1 − β(N)

1 ϕ1(x)−1
)′
∈ RN−1.
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The parameters λL, αL(x), βL(x), δL(x) and µL(x) of LGHN (x) are then given by

λL = λ(N),

αL(x) = Γ̃−1/2
11

[
(α(N))2 − β̃′(Γ̃2,2 − Γ̃−1

11 Γ̃2,1Γ̃′2,1)β̃
]1/2

,

δL(x) = δ(N)
√

Γ̃11 = δ(N)
( N∑
i,j=1

ϕi(x)ϕj(x)Γij
)1/2

,

βL(x) = β
(N)
1 ϕ1(x)−1 + Γ̃−1

11 Γ̃′2,1β̃ and

µL(x) = [A(x)µ(N)]1 =
N∑
i=1

ϕi(x)µ(N)
i .

To ensure L2(Ω;R) convergence as in Theorem 7.2.3 of the series

L̃GHN (x)(t) =
N∑
i=1

√
ηiei(x) ˜̀GHi (t),

we need to simulate approximations of uncorrelated, one-dimensional GH processes
`GHi with given parameters `GHi (1) ∼ GH(λi, αi, βi, δi, µi). To obtain a sufficiently
good approximation of the Lévy field, N is coupled to the time discretization of T and
the decay of the eigenvalues of Q (see Remark 7.2.4). The simulation of a large number
N of independent GH processes is computationally expensive, so we focus on a differ-
ent approach. Instead of generating N dependent but uncorrelated, one-dimensional
processes, we generate one N -dimensional process with decorrelated marginals. For
this approach to work we need to impose some restrictions on the target parameters
λi, αi, βi and δi.

Theorem 7.4.10. Let (`GHi , i = 1 . . . , N) be one-dimensional GH processes, where,
for i = 1, . . . , N , `GHi (1) ∼ GH(λi, αi, βi, δi, µi). The vector `GHN := (`GH1 , . . . , `GHN )′ is
only a N-dimensional GH process if there are constants λ ∈ R and c > 0 such that

λi = λ and δi(α2
i − β2

i )1/2 = c

for any i. If, in addition, the symmetric matrix U ∈ RN×N defined by

Uij :=

δ
2
i if i = j

Kλ+1(c)2−Kλ+2(c)Kλ(c)
Kλ+1(c)Kλ(c)

βiδ
2
i βjδ

2
j

c
if i 6= j

,

is positive definite, it is possible to construct a N-dimensional GH process `GHN ,U with
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uncorrelated marginals `GH,Ui and

`GH,Ui (1) L= `GHi (1) ∼ GH(λi, αi, βi, δi, µi).

Proof. We start with the necessary condition to obtain a multi-dimensional GH distri-
bution. Let `GHN be a N -dimensional GH process with

`GHN (1) ∼ GHN(λ(N), α(N), β(N), δ(N), µ(N),Γ).

If the law of the marginals of `GHN is denoted by `GHi (1) ∼ GH(λi, αi, βi, δi, µi), then
one sees immediately from Lemma 7.4.6 that λi = λ(N) and µi = µ

(N)
i for all i =

1, . . . , N . With the equations for βi and δi from Lemma 7.4.6, we derive for Γβ(N)

(Γβ(N))i = Γiiβ(N)
i +

N∑
k=1,k 6=i

Γikβ(N)
k = Γiiβ(N)

i + Γii(βi − β(N)
i ) =

( δi
δ(N)

)2
βi, (7.16)

which leads to

α2
i = Γ−1

ii (α(N))2 − Γ−1
ii

N∑
k=1,k 6=i

β
(N)
k

N∑
l=1,l 6=i

Γklβ(N)
l +

(
Γ−1
ii

N∑
k=1,k 6=i

Γikβ(N)
k

)2

=
(δ(N)α(N)

δi

)2
−
(δ(N)

δi

)2 N∑
k=1,k 6=i

β
(N)
k ((Γβ(N))k − Γikβ(N)

i ) + (βi − β(N)
i )2

=
(δ(N)α(N)

δi

)2

−
N∑

k=1,k 6=i
β

(N)
k

δ2
k

δ2
i

βk +
(δ(N)

δi

)2
β

(N)
i ((Γβ(N))i − Γiiβ(N)

i ) + β2
i − 2βiβ(N)

i + (β(N)
i )2

=
(δ(N)α(N)

δi

)2
−

N∑
k=1

β
(N)
k

δ2
k

δ2
i

βk + β2
i .

The last equation is equivalent to

δ2
i (α2

i − β2
i ) = (δ(N)α(N))2 −

N∑
k=1

β
(N)
k δkβk︸ ︷︷ ︸

=(δ(N))2(Γβ(N)
k

)

= (δ(N))2
(
(α(N))2 − β(N)′Γβ(N)

)
,

(7.17)

and since the right hand side does not depend on i, we get that δ2
i (α2

i − β2
i ) > 0 has to

be independent of i.
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Now assume we have a set of parameters ((λi, αi, βi, δi, µi), i = 1, . . . , N) with

δi
√
α2
i − β2

i = c > 0 and λi = λ ∈ R,

where c and λ are independent of the index i. Furthermore, let the matrix U as defined
in the claim be positive definite. We show how parameters λ(U), α(U), β(U), δ(U), µ(U) and
Γ(U) of a N -dimensional GH process `GHN ,U may be chosen, such that its marginals are
uncorrelated with law `GH,Ui (1) ∼ GH(λ, αi, βi, δi, µi). Clearly, we have to set λ(U) := λ

and µ(U) := (µ1, . . . , µN)′. Eq. (7.16) and Eq. (7.17) yield the conditions

(δ(U))2(Γ(U)β(U))i = δ2
i βi

and
δ(U)

√
(α(U))2 − β(U)TΓ(U)β(U) = δi

√
α2
i − β2

i = c.

If (δ(U))2Γ(U) fulfills the identity (δ(U))2Γ(U) = U , we get by Eq. (7.15) for i 6= j

Cov(`GH,Ui (1), `GH,Uj (1)) = Kλ+1(c)
cKλ(c)

(δ(U))2Γ(U)
ij + Kλ+2(c)Kλ(c)−K2

λ+1(c)
c2Kλ(c)2

· ((δ(U))2Γ(U)β(U))i((δ(U))2Γ(U)β(U))j

= Kλ+1(c)
cKλ(c)

Uij + Kλ+2(c)Kλ(c)−K2
λ+1(c)

c2Kλ(c)2 δ2
i βiδ

2
jβj

= 0,

hence all marginals are uncorrelated. To obtain a well-defined N -dimensional GH
distribution, we still have to make sure that Γ(U) is spd with unit determinant. If
we define δ(U) := (det(U))1/(2N), then δ(U) > 0 (since det(U) > 0 by assumption)
and Γ(U) = (δ(U))−2U is spd with det(Γ(U)) = 1. It remains to determine appropriate
parameters α(U) > 0 and β(U) ∈ RN . For β(U), we use once again Lemma 7.4.6 to
obtain the linear equations

βi = βi + (Γ(U)
ii )−1 ∑

k=1,k 6=i
Γ(U)
ik β

(U)
k ,

for i = 1, . . . , N . The corresponding system of linear equations is given by


(Γ(U)
11 )−1

. . .
(Γ(U)

NN)−1

Γ(U)β(U) =


β1
...
βN

 ,
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and has a unique solution β(U) for any right hand side (β1, . . . , βN)′, because Γ(U) as
constructed above is invertible with positive diagonal entries. Finally, we are able to
calculate α(U) via Equation (7.17) as

α(U) =
( N∑
k=1

δ2
kβkβ

(U)
k +

( c

δ(U)

)2
)1/2

=
(
β(U)′Γ(U)β(U) +

( c

δ(U)

)2
)1/2

and obtain the desired marginal distributions.

Note that the KL-expansion LGHN (x)(·) generated by (`GH,Ui , i = 1 . . . , N) in The-
orem 7.4.10 is a GH process for each x ∈ D by Lemma 7.4.9, whereas this is not
the case if the processes (`GHi , i = 1, . . . , N) are generated independently of each
other: By Lemma 7.4.4 we have that LGHN (x)(1) is only GH distributed if the vec-
tor (`GH1 (1), . . . , `GHN (1))′ admits a multi-dimensional GH law. As noted in [43] after
Theorem 1, this is impossible if the processes (and hence (`GHi (1), i = 1, . . . , N)) are
independent. Whenever Theorem 7.4.10 is applicable, we are able to approximate a
GH Lévy field by generating a N -dimensional GH processes, where N is the trunca-
tion index of the KL expansion. To this end, Lemma 7.4.1 suggests the simulation of
GIG processes and then subordinating N -dimensional Brownian motions. With this
simulation approach the question arises on why we have taken a detour via the sub-
ordinating GIG process instead of using the characteristic function a of GH process
in Equation (7.10) for a “direct” simulation. This has several reasons: First, the ap-
proximation of the inversion formula (7.6) can only be applied for one-dimensional
GH processes, where the costs of evaluating φGH or φGIG are roughly the same. In
comparison, the costs of sampling a Brownian motion are negligible. Second, in the
multi-dimensional case, we need that all marginals of the GH process are generated
by the same or correlated subordinator(s), which leaves us no choice but to sample
the underlying GIG process. In addition, the simulation of a GH field requires in
some cases only one subordinating process to generate a multi-dimensional GH process
with uncorrelated marginals (see Theorem 7.4.10). This approach is in general more
efficient than sampling a large number of uncorrelated, one-dimensional GH processes
for the KL expansion. As we demonstrate in the following section, it is a straightfor-
ward application of the Fourier inversion algorithm to approximate a GIG process `GIG

with given parameters, since all necessary assumptions are fulfilled and the bounding
parameters ϑ,R, θ and B may readily be calculated.
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7.5 Numerics

In this section we provide some details on the implementation of the Fourier inversion
method. Thereafter, we apply this methodology to approximate a GH Lévy field and
conclude with some numerical examples.

7.5.1 Notes on implementation

Suppose we simulate a given one-dimensional Lévy process ` which fulfills Assump-
tion 7.3.6 resp. Assumption 7.3.7, using the step size ∆n > 0 and characteristic function
(φ`)∆n . Usually the parameter ϑ cannot be chosen arbitrary high (as for the GIG pro-
cess), but it may be possible to choose ϑ within a certain range, for instance ϑ ∈ (1, 2]
for the Cauchy process in Example 7.3.18. As a rule of thumb, ϑ should always be
determined as large as possible, as the convergence rates in Theorems 7.3.14 and 7.3.16
directly depend on ϑ. In addition, we concluded in Remark 7.3.22 that D ' ∆p/(p−ϑ)

n

is an appropriate choice to guarantee an Lp-error of order O(∆1/p
n ). This means that

for a given p, D decreases as ϑ increases. Since the number of summations M in Algo-
rithm 7.3.7 depends on D (see Theorem 7.3.9), an increasing parameter ϑ also reduces
computational time. Once ϑ is determined, we derive R by differentiation of (φ`)∆n as
in Remark 7.3.8. Similarly to ϑ, it is often possible to choose between several values of
θ > 0, but it is difficult to give a-priori a recommendation on how θ should be selected.
One rather calculates for several admissible θ the constant Cθ := maxu∈R |uθ(φ`(u))∆n|
numerically and deducts Bθ = (2π)−θCθ. Each combination of (θ, Bθ) then results in
a valid number of summations Mθ in the discrete Fourier Inversion algorithm. Since θ
and Bθ are only necessary to determineMθ, we may simply use the smallestMθ for the
simulation. To find X̃ with F̃ (X̃) = U in Algorithm 7.3.11, we use a globalized Newton
method with backtracking line search, also known as Armijo increment control. The
step lengths during the line search are determined by interpolation, which is a robust
technique if combined with a standard Newton method. Details on the globalized New-
ton method with backtracking may be found, for example, in [166], an example how
the algorithm is used is given in [176]. Although convergence of this root finding algo-
rithm is ensured by the increment control, its efficiency depends heavily on the choice
of the initial value X̃0. Clearly, X̃0 should depend on the sampled U ∼ U([0, 1]) and be
related to the target distribution with characteristic function (φ`)∆n . This means we
should determine X̃0 implicitly by F (0)(X̃0) = U , where F (0) is a CDF of a distribution
similar to the target distribution, but which can be inverted efficiently.
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7.5.2 Approximation of a GH field

We consider a GH Lévy field on the (separable) Hilbert space U = L2(D) with a
compact spatial domain D ⊂ Rs. The operator Q on U is given by a Matérn covariance
operator with variance σ2 > 0, correlation length ρ > 0 and a positive parameter χ > 0
defined by

[Qh](x) := σ2
∫
D
kχ(x, y)h(y)dy, for ψ ∈ U,

where kχ denotes the Matérn kernel. For χ = 1
2 , we obtain the exponential covariance

function and for χ → +∞ the squared exponential covariance function. For general
χ > 0, the Matérn kernel

kχ(x, y) := 21−χ

ΓG(χ)

(√2χ|x− y|
ρ

)χ
Kχ

(√2χ|x− y|
ρ

)

fulfills the limit identity kχ(x, x) = limy→x kχ(x, y) = 1, which can be easily seen by
[169, Eq. (10.30.2)]. Here ΓG(·) is the Gamma function. As shown in [79], this implies

Tr(Q) =
∞∑
i=1

ηi = σ2
∫
D
dx, (7.18)

where (ηi, i ∈ N) are the eigenvalues of the Matérn covariance operator Q. In general,
no analytical expressions for the eigenpairs (ηi, ei) of Q will be available, but the spec-
tral basis may be approximated by numerically solving a discrete eigenvalue problem
and then interpolating by Nyström’s method. For a general overview of common co-
variance functions and the approximation of their eigenbasis we refer to [178] and the
references therein.

Now let LGHN be an approximation of a GH field by a N -dimensional GH process
(`GHN (t), t ∈ T) with fixed parameters λ, α, δ ∈ R, β, µ ∈ RN and Γ ∈ RN×N . The
parameters are chosen in such a way that the multi-dimensional GH process has un-
correlated marginal processes, hence the generated KL expansions

LGHN (x)(t) =
N∑
i=1

ϕi(x)`GHi (t)

are again one-dimensional GH processes for any spectral basis (ϕi, i ∈ N) and x ∈ D.
This in turn means, that we may draw samples of `GHN by simulating a GIG process
`GIG with parameters a = δ, b = (α2 − β′Γβ)1/2 and p = λ using Fourier inversion
and then subordinating a N -dimensional Brownian motion (see Lemma 7.4.1). The
characteristic function of a GIG Lévy process (`GIG(t), t ∈ T) with (fixed) parameters
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a, b > 0 and p ∈ R is given by

φGIG(u; a, b, p) := E[exp(iu`GIG(1))] = (1− 2iub−2)−p/2Kp(ab
√

1− 2iub−2)
Kp(ab)

.

The GIG distribution corresponding to (φGIG)∆n with ∆n = 1 is continuous with finite
variance (see [188]), which implies that these properties hold for all distributions with
characteristic function (φGIG)∆n , for any ∆n > 0. The constants as in Assumption 7.3.6
are derived in the following. For k ∈ N, the k-th moment of the GIG distribution is
given as

0 < E
(
(`GIG(1))k

)
=
(a
b

)kKp+k(ab)
Kp(ab)

< +∞.

For any ϑ = 2k we are, therefore, able to calculate the bounding constant R via

R = (−1)k d
2k

du2k ((φGIG(u; a, b, p))∆n)
∣∣∣
u=0

,

because the derivatives of φGIG evaluated at u = 0 are

(φGIG(0; a, b, p))(k) = i−kE
(
(`GIG(1))k

)
= i−k

(a
b

)kKp+k(ab)
Kp(ab)

.

The calculation of the ϑ-th derivative can be implemented easily by using a version of
Faà di Bruno’s formula containing the Bell polynomials, for details we refer to [124].
The bounding constants θ and B may be determined numerically as described in Sec-
tion 7.5.1 (e.g. by using the routine fminsearch in MATLAB). The derivation of
the bounds implies that we can ensure Lp convergence of the approximated GIG pro-
cess in the sense of Theorem 7.3.21 for any p ≥ 1, because it is possible to define ϑ
as any even integer and then obtain R by differentiation. We observe that the tar-
get distribution with characteristic function (φGIG(u; a, b, p))∆n and ∆n > 0 is not
necessarily GIG, except for the Inverse Gaussian (IG) case where p = −1/2 and
(φIG(u; a, b))∆n = φIG(u; ∆na, b)(see Remark 7.4.3). This special feature of the IG
distribution is exploited to determine the initial values X̃0 in the Newton iteration by
moment matching: Consider an IG(a0, b0) distribution with mean a0/b0 and variance
a0/b

3
0, where the parameters a0, b0 > 0 are “matched” to the target distribution’s mean

and variance via

a0

b0
= i

d

du
((φGIG(u; a, b, p))∆n)

∣∣∣
u=0

,

a0

b3
0

= (−1) d
2

du2 ((φGIG(u; a, b, p))∆n)
∣∣∣
u=0
−
(
i
d

du
((φGIG(u; a, b, p))∆n)

∣∣∣
u=0

)2
.
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If F IG
∆n

denotes the CDF of this IG(a0, b0) distribution, the initial value of the globalized
Newton method is given implicitly by F IG

∆n
(X̃0) = U . The inversion of F IG

∆n
may be

executed numerically by many software packages like MATLAB.
With our approach, this results in the approximation of a GIG process ˜̀GIG at discrete
times tj ∈ Θn. The N -dimensional GH process `GHN may then be approximated at tj
for j = 0, . . . , n by the process ˜̀GHN with ˜̀GHN (t0) = 0 and the increments

˜̀GHN (tj)− ˜̀GHN (tj−1) = µ∆n + Γβ( ˜̀GIG(tj)− ˜̀GIG(tj−1))

+
√

( ˜̀GIG(tj)− ˜̀GIG(tj−1))ΓwNj (1),

for j = 1, . . . , n, where the wNj (1) are i.i.d. NN(0,1N×N)-distributed random vectors.
To obtain the process ˜̀GHN at arbitrary times t ∈ T, we interpolate the samples
( ˜̀GHN (tj), j = 0 . . . , n) piecewise constant as in Algorithm 7.3.11. With this, we are
able to generate an approximation of LGHN at any point (x, t) ∈ D × T by

L̃GHN (x)(t) :=
N∑
i=1

ϕi(x) ˜̀GHi (t).

The knowledge of Tr(Q) enables us to determine the truncation index N and the con-
stant C` as in Remark 7.2.4: For N ∈ N, let ( ˜̀GHi , i = 1, . . . , N) be the approximations
of the processes (`GHi , i = 1, . . . , N), where the random vector (`GH1 (1), . . . , `GHN (1)) is
multivariate GH-distributed by assumption. Hence, for every N ∈ N, we obtain the
parameters a(N), b(N), λ(N) of a corresponding GIG subordinator `GIG,N , which is
approximated through a piecewise constant process ˜̀GIG,N as above. With Eq. (7.9)
we calculate the error

Ep
GIG,N := sup

t∈T
E(|`GIG,N(t)− ˜̀GIG,N(t)|p). (7.19)

for p ∈ {1, 2}. If β ∈ RN and Γ ∈ RN×N denote the GH parameters corresponding to
(`GH1 (1), . . . , `GHN (1)), the L2(Ω;R) approximation error of each process `GHi is given by

C̃`,i := sup
t∈T

E(|`GHi (t)− ˜̀GH
i (t)|2)

∆n

=
E2
GIG,N(Γβ)2

i + E1
GIG,N

√
Γ[i]Γ′[i]

∆n

,

where Γ[i] indicates the i−th row of Γ. Starting with N = 1, we compute the first N
eigenvalues and the difference

T
(
Tr(Q)−

N∑
i=1

ηi

)
− max

i=1,...,N
C̃`,i∆n

N∑
i=1

ηi,
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and increase N by one in every step until this expression is close to zero. If a suitable
N is found, we define C` := maxi=1,...,N C̃`,i and thus have equilibrated truncation and
approximation errors by ensuring Eq. (7.4). For simplicity, we have implicitly assumed
here that the processes `GHi were normalized in the sense that Var(`GHi (t)) = t. This
is due to the fact that ηi`i (here with `i = `GHi ) in Theorem 7.2.3 represents the scalar
product (L(t), ei)U with variance ηit. In case we have unnormalized processes, one
can simply divide `GHi by its standard deviation (see Formula (7.15)) and adjust the
constants C̃`,i and C` accordingly.

7.5.3 Numerical results

As a test for our algorithm, we generate GH fields on the time interval T = [0, 1]
with step size ∆n = 2−6, on the spatial domain D = [0, 1]. For practical aspects,
one is usually interested in the L1-error E(|`(t) − ˜̀(n)(t)|) and the L2-error (E(|`(t) −˜̀(n)(t)|2))1/2. Upper bounds for both expressions depend on ϑ and D and are given
by Ineq. (7.9). To obtain reasonable errors, we refer to the discussion on the choice of
D in Remark 7.3.22 and set D = ∆1/(1−ϑ)

n . This ensures that the L1-error is of order
O(∆n) and is a good trade-off between simulation time and the size of the L2-error for
most values of ϑ in the GIG example below. Choosing for example D = ∆2/(2−ϑ)

n would
reduce the L2-error to orderO(∆n), but does not have a significant effect on the L1-error
and results in a higher computational time. For the Matérn covariance operator Q we
use variance σ2 = 1, correlation length ρ = 0.1 and χ ∈ {1

2 ,
3
2}, where a higher value of χ

increases the regularity of the field along the x-direction. For the fixed GH parameters
we choose α = 5, β = µ = 0N , δ = 4 and Γ = 1N , the shape parameter λ will vary
throughout our simulation and admits the values λ ∈ {−1

2 , 1}, which results in NIG
resp. hyperbolic GH fields. This parameter setting ensures that the multi-dimensional
GH distribution has uncorrelated marginals, hence the truncated KL expansion LGHN
of LGH is itself an infinite-dimensional GH Lévy process. Further, for every N ∈ N,
the constant C̃`,i from Section 7.5.2 is independent of i = 1, . . . , N , thus the truncation
index N can easily be determined to balance out the Fourier inversion and truncation
error for each combination of λ and χ. To examine the impact of ϑ on the efficiency of
the simulation, we set ϑ ∈ {4, 6, 8, 10} and the constant R as suggested in Section 7.5.2
for each ϑ. For fixed ϑ and R, we choose θ ∈ {1, 1.5 . . . , 99.5, 100} and calculate for
each θ the constant Bθ as in Section 7.5.1. This results in up to 199 different values for
the number of summations Mθ, which all guarantee the desired accuracy ε, meaning
we can choose the smallest Mθ for our simulation. The optimal value θopt which leads
to the smallest Mθ depends highly on the GH parameters and may vary significantly
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with ϑ. For λ = 1, we found that θopt ranges from 34 to 68.5, varying with each choice
of ϑ ∈ {4, 6, 8, 10}. In contrast, in the second example with λ = −1/2, we found
that θopt = 11 independent of ϑ. We generate 1.000 approximations L̃GHN for several
combinations of λ, χ and ϑ, allowing us to check if the generated samples actually
follow the desired target distributions. To this end, we conduct Kolomogorov–Smirnov
tests for the subordinating GIG process as well as for the distribution of the GH field
at a fixed point in time and space and report on the corresponding p-values.
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Figure 7.1 Sample (left) and empirical distribution at x = t = 1 (right) of a hyperbolic field
with parameters λ = 1, χ = 1/2, ϑ = 10 and truncation after N = 132 terms.
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Figure 7.2 Sample (left) and empirical distribution at x = t = 1 (right) of a NIG field with
parameters λ = −1/2, χ = 3/2, ϑ = 10 and truncation after N = 18 terms.

Figures 7.1 and 7.2 show samples of approximated GH random fields: Along the
time axis we see the characteristic behavior of the (pure jump) GH processes for every
point x ∈ D. For a fixed point in time t, the paths along the x-axis vary according to
their correlation, depending on the covariance parameter χ. As reported in [178], the
eigenvalues of Q decay slower if χ becomes smaller, meaning we need a higher number
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of summations N in the KL expansion so that the error contributions are equilibrated.
This effect can be seen in Tables 7.1 and 7.2, where the truncation index N changes
significantly with χ. If the KL expansion, however, can be sampled by a N -dimensional
GH process as suggested in Theorem 7.4.10, the number of summations N has only a
minor impact on the computational costs of the KL expansion. This is due to the fact
that in this case the time consuming part, namely simulating the subordinator, has to
be done only once, regardless of N . Compared to these costs, the costs of subordinating
a Brownian motion of any finite dimension are negligible. The histograms in Figures 7.1
and 7.2 show the empirical distribution of the approximation L̃GHN (x)(t) at time t = 1
and x = 1. The theoretical distribution at time 1 and an arbitrary point x ∈ D is
again GH, where the parameters are given in Lemma 7.4.9. Obviously, the empirical
distributions fit the target GH distributions from Lemma 7.4.9. To be more precise, we
have conducted a Kolmogorov-Smirnov test for both, the subordinating GIG process
and the GH field at time t = 1 and for the latter at x = 1. We know the law of both
processes at x ∈ D and are able to obtain their CDFs sufficiently precise for the tests
by numerical integration. The test results for 1.000 samples of the hyperbolic resp. the
NIG field with covariance parameters χ = 1

2 resp. χ = 3
2 are given in Tables 7.1 and 7.2

above and do not suggest that the generated samples follow another distribution than
the expected one.

We denote by E1
GIG,N and E2

GIG,N the approximation error of the subordinator as in
Eq. (7.19), which we have listed in absolute terms in Tables 7.1 and 7.2. The first error
bound is also given relative to ∆n to show that it is in fact of magnitude O(∆n). While
the L1(Ω;R)-error E1

GIG,N is relatively constant for each ϑ, the L2(Ω;R)-error E2
GIG,N

is rather high for ϑ = 4, but has an acceptable upper bound for ϑ ≥ 6. This is not
surprising, sinceD = ∆1/(1−ϑ)

n only guarantees that E(|`GIG(t)− ˜̀GIG(t)|) = O(∆n). We
emphasize that the (theoretic) error bounds in Tables 7.1 and 7.2 are very conservative
as the triangle inequality and similar "coarse" estimates were used repeatedly in their
estimation in Theorem 7.3.14 and 7.3.21. The truncation index N is highly sensitive to
χ, but has small or no variations for fixed χ and varying ϑ. Since we choose t ∈ [0, 1],
the expression E(||LGH(1)− L̃GHN (1)||2U) in Tables 7.1 and 7.2 is an upper bound for the
L2(Ω;U)-error supt∈[0,1] E(||LGH(t)−L̃GHN (t)||2U). Note that this error is small in relative
terms, since by our choice of Q and Eq. 7.18 we have E(||LGH(1)||2U) = Tr(Q) = 1.

The p-value of the GH distribution varies if different N are chosen for the KL
expansion, which is natural due to statistical fluctuations. More importantly, the
null hypothesis, namely that the samples follow a GH distribution with the expected
parameters, is never rejected at a 5%-level. As expected, the speed of the simulation
heavily depends on ϑ.
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ϑ E1
GIG,N E1

GIG,N/∆n E2
GIG,N E[||LGH(1)− L̃GHN (1)||2U ]

4 0.0143 0.9166 0.2584 0.0646
6 0.0138 0.8835 0.0749 0.0635
8 0.0138 0.8824 0.0601 0.0634
10 0.0140 0.8975 0.0806 0.0636
ϑ N p-value GH abs. time rel. time
4 130 0.8246 0.1945 sec. 100.00%
6 133 0.3077 0.1093 sec. 56.19%
8 133 0.3077 0.0851 sec. 43.78%
10 132 0.2873 0.0759 sec. 39.04%

Table 7.1 Errors, p-values and average simulation times per field based on 1.000 simulations.
Stepsize ∆t = 2−6 and D = ∆t1/(1−ϑ). GH process: λ = 1, α = 5, β = 0N , δ = 4, µ =
0N ,Γ = 1N×N . Covariance parameters: χ = 1/2, ρ = 0.1 and σ2 = 1. The KS test for the
GIG subordinator returns a p-value of 0.5498 for each ϑ ∈ {4, 6, 8, 10}.

ϑ E1
GIG,N E1

GIG,N/∆n E2
GIG,N E[||LGH(1)− L̃GHN (1)||2U ]

4 0.0132 0.8443 0.2079 0.0619
6 0.0128 0.8170 0.0584 0.0608
8 0.0127 0.8155 0.0456 0.0608
10 0.0129 0.8252 0.0589 0.0611
ϑ N p-value GH abs. time rel. time
4 18 0.9223 0.1039 sec. 100.00%
6 18 0.9223 0.0628 sec. 60.43%
8 18 0.9223 0.0460 sec. 44.29%
10 18 0.9223 0.0380 sec. 38.59%

Table 7.2 Errors, p-values and average simulation times per field based on 1.000 simulations.
Stepsize ∆t = 2−6 and D = ∆t1/(1−ϑ). GH process: λ = −1/2, α = 5, β = 0N , δ = 4, µ =
0N ,Γ = 1N×N . Covariance parameters: χ = 3/2, ρ = 0.1 and σ2 = 1. The KS test for the
GIG subordinator returns a p-value of 0.6145 for each ϑ ∈ {4, 6, 8, 10}.

Looking at the results for ϑ = 4, one might argue that the Fourier inversion method
is only suitable for processes where this parameter can be chosen high, i.e. for distribu-
tions which admit a large number of finite moments. To qualify this objection, we con-
sider once more the t-distribution with three degrees of freedom and the corresponding
Lévy process `t3 from Example 7.3.18. Since E(`t3(∆n)) = 0 and Var(`t3(∆n)) =

√
3∆n,

we can choose ϑ = 2 and hence R =
√

3∆n. The characteristic function of `t3(∆n) is
given by

(φt3(u))∆n = exp(−
√

3∆n|u|)(
√

3|u|+ 1)∆n

and B and θ are estimated in the same way as for the GIG process. Using again ∆n =
2−6 and D = ∆1/(1−ϑ)

n , the number of summations in the approximation is M = 12.924
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for θ = 19
2 . The simulation time for one process ˜̀t3 with (∆n)−1 = 26 increments

in the interval [0, 1] is on average 0.0655 seconds, where the initial values have been
approximated by matching the moments of a normal distribution (the Kolmogorov-
Smirnov test for a t-distribution at t = 1 based on 1.000 samples returns a p-value of
0.5994). In the GIG example, we needed M = 79.086 terms in the summation if ϑ = 4
is chosen and still M = 33.030 terms for ϑ = 10. This shows that the Fourier Inversion
method is also applicable for low values of ϑ and that the GIG (resp. GH) process is
a computationally expensive example of a Lévy process.
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8 A stochastic transport problem with Lévy
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currently in the second stage of review.

Abstract: Semilinear hyperbolic stochastic partial differential equations have vari-
ous applications in the natural and engineering sciences. From a modelling point of view
the Gaussian setting can be too restrictive, since phenomena as porous media, pollution
models or applications in mathematical finance indicate an influence of noise of a differ-
ent nature. In order to capture temporal discontinuities and allow for heavy-tailed dis-
tributions, Hilbert space valued-Lévy processes (or Lévy fields) as driving noise terms
are considered. The numerical discretization of the corresponding SPDE involves sev-
eral difficulties: Low spatial and temporal regularity of the solution to the problem
entails slow convergence rates and instabilities for space/time-discretization schemes.
Furthermore, the Lévy process admits values in a possibly infinite-dimensional Hilbert
space, hence projections into a finite-dimensional subspace for each discrete point in
time are necessary. Finally, unbiased sampling from the resulting Lévy field may not be
possible. We introduce a fully discrete approximation scheme that addresses these is-
sues. A discontinuous Galerkin approach for the spatial approximation is coupled with
a suitable time stepping scheme to avoid numerical oscillations. Moreover, we approx-
imate the driving noise process by truncated Karhunen-Loéve expansions. The latter
essentially yields a sum of scaled and uncorrelated one-dimensional Lévy processes,
which may be simulated with controlled bias by Fourier inversion techniques.
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8.1 Introduction

In many applications in the natural sciences and financial mathematics partial dif-
ferential equations (PDEs) are utilized to model dynamics of the underlying system.
Often, the dynamical systems are subject to uncertainties for instance due to noisy
data, measurement errors or parameter uncertainty. A common approach to capture
this behavior is to model the source of uncertainty by continuous Gaussian processes,
which are analytically tractable and straightforward to simulate. It turns out, however,
that Gaussian random objects are unfit to capture the impact of spatial and temporal
discontinuities, for example in flows through fractured porous media or composite ma-
terials. Furthermore, Gaussian distributions notoriously underappreciate rare events,
thus heavy-tailed, discontinuous Lévy-processes are better suited to model stock re-
turns, interest rate dynamics and energy forward markets. However, replacing Gaus-
sian distributions by a more general class of random objects comes at the cost of lower
regularity (both, path-wise and in a mean-square sense) and more advanced sampling
techniques are required.

In this article we consider semilinear first order stochastic partial equations (SPDEs)
with a random source term. The noise is modeled by a space-time Lévy process tak-
ing values in some infinite-dimensional Hilbert space U . Existence and uniqueness of
weak solutions to this type of equations is ensured but in general no closed formulas
or distributional properties are available. Thus, we need to rely on numerical dis-
cretization schemes to estimate moments or statistics of the solution. The numerical
approximation of SPDEs has been an active field of research in the last decade. Most
publications focus on second order parabolic equations, i.e. stochastic versions of the
heat or Allen-Cahn equation, see for instance [27, 28, 69, 100, 101, 121, 129, 132, 136]
and the references therein. In this setting, Lévy fields as driving noise of the SPDE have
been investigated, among others, in [26, 33, 49, 74, 173]. Results on second order hy-
perbolic SPDEs may be found, e.g., in [5, 64, 133, 173, 197] and the references therein,
nonlinear hyperbolic SPDES are the subject of interest, for example, in [45, 135]. To
model the dynamics in financial markets, however, it is more common to consider first
order linear hyperbolic SPDEs, for example in the Heath-Jarrow-Morton model with
Musiela parametrization for interest rate forwards, see [46, 52, 105]. Another example
can be found in [24, 37], where the authors motivate a stochastic framework to model
energy forward markets perturbed by infinite-dimensional noise. The underlying SPDE
is a semilinear hyperbolic transport problem, where the nonlinearity stems from a no-
arbitrage condition and directly depends on the volatility in the market, meaning the
diffusion term of the SPDE. Naturally, the numerical treatment then becomes more
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involved than in the parabolic case, as we face lower regularity of the solution and the
transport semigroup is not analytic. Consequently, there is very little literature on the
numerical analysis of stochastic transport problems as for example [23, 134].

Our contribution is a rigorous regularity analysis and a fully discrete approxima-
tion scheme for a stochastic transport equation driven by trace class Lévy noise L. We
derive mean-square temporal continuity and spatial regularity in terms of fractional
Sobolev norms of the solution under mild assumptions. The degree of spatial smooth-
ness depends on the regularity of L and is made explicit and outlined in detail for the
important special case that L is associated to a Matérn covariance function. Further-
more, we consider the transport problem on a bounded domain with suitable inflow
boundary conditions rather than on Rd. This is of more practical interest in terms of
modeling and simulation, but the boundary naturally limits the maximal regularity of
the solution even for smooth noise and initial conditions. To approximate the solution,
we couple a stable time stepping scheme with a discontinuous Galerkin approach for
the spatial domain. This method has been proven to be more suitable for deterministic
hyperbolic problems than continuous finite elements, but, to the best of our knowledge,
has not yet been applied in the discretization of SPDEs. Finally, to sample the paths
of L and to obtain a fully discrete scheme, we combine truncated Karhunen-Loève ex-
pansions with an arbitrary approximation algorithm for the one-dimensional marginal
Lévy processes. In each step we provide bounds on the strong mean-squared error and
give an estimate of the overall error between the unbiased solution and its fully discrete
numerical approximation.

In Section 8.2 we introduce SPDEs with Lévy noise in a rather general setting
and state existence and uniqueness results for mild/weak solutions. The next section
deals with the stochastic transport equation as a special case in the framework from
Section 8.2. We introduce the stochastic transport problem corresponding to a first
order differential operator and formulate the necessary assumptions to ensure well-
posedness. Thereafter, we establish the spatial Sobolev-regularity as well as the mean-
square temporal regularity of the solution, which enables us to provide a rigorous
error control in the forthcoming sections. In Section 8.4 we then introduce an Euler-
type time stepping scheme which we combine with a discontinuous Galerkin spatial
discretization in Section 8.5. Thereafter, we derive the weak problem with respect to
the spatio-temporal discretization, estimate the approximation error and outline the
advantages of the discontinuous Galerkin approach over regular finite elements. The
next part contains the sampling procedure of the infinite-dimensional driving noise
and we provide an overall mean-squared error containing temporal, spatial and noise
approximation. Finally, we discuss several numerical examples in Section 8.7 to confirm

195
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our theoretical results.

8.2 Stochastic partial differential equations with Lévy noise

Let (Ω,F , (Ft, t ≥ 0),P) be a filtered probability space satisfying the usual conditions
and let T = [0, T ] be a finite time interval for some 0 < T < +∞. Furthermore, let
(U, (·, ·)U) and (H, (·, ·)H) be two separable Hilbert spaces and let L(U,H) and L(H)
denote the set of linear bounded operators O : U → H and O : H → H, respectively.
The space of Hilbert-Schmidt operators on U is given by

LHS(U,H) := {O ∈ L(U,H)| ‖O‖2
LHS(U ;H) :=

∑
i∈N
‖Oui‖2

H < +∞},

where (ui, i ∈ N) is an arbitrary orthonormal basis of U . The Lebesgue-Bochner space
of all square-integrable, H-valued random variables is defined as

L2(Ω;H) := {Y : Ω→ H is strongly measurable, ‖Y ‖L2(Ω;H) := E(‖Y ‖2
H)1/2 < +∞}.

For the remainder of this article, we omit the stochastic argument ω ∈ Ω for notational
convenience. Solutions to the SPDEs are characterized by path-wise identities that
hold almost surely, see Definition 8.2.4 below. Therefore, unless stated otherwise, all
appearing equalities and estimates involving stochastic terms are in the path-wise sense
and are assumed to hold almost surely. We denote by C a generic positive constant
which may change from one line to another. Whenever necessary, the dependency of C
on certain parameters is made explicit. Our focus is on stochastic partial differential
equations with Lévy noise, meaning the driving noise is a (possibly infinite-dimensional)
square-integrable Lévy process defined as follows.

Definition 8.2.1. A U -valued stochastic process L = (L(t), t ∈ T) is called Lévy
process if

• L has stationary and independent increments,

• L(0) = 0 almost surely and

• L is stochastically continuous, i.e. for all ε > 0 and t ∈ T holds

lim
s→t,
s∈T

P(‖L(t)− L(s)‖U > ε) = 0.

L is called square-integrable if E(‖L(t)‖2
U) < +∞ holds for any t ∈ T.
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We consider the SPDE

dX(t) = (AX(t) + F (t,X(t)))dt+G(t,X(t))dL(t), X(0) = X0, (8.1)

on T, where X0 is a H-valued random variable and A : D(A) ⊂ H → H is an
unbounded, linear operator generating a semigroup S = (S(t), t ≥ 0) ⊂ L(H) on H.
The driving noise is modeled by a square-integrable, U -valued Lévy process L with
non-negative, symmetric and trace class covariance operator Q ∈ L(U), satisfying the
identity

E((L(t)− E(L(t)), φ)U(L(t)− E(L(t)), ψ)U) = t(Qφ, ψ)U , φ, ψ ∈ U, t ∈ T.

By the Hilbert-Schmidt theorem, the ordered eigenvalues η1 ≥ η2 ≥ · · · ≥ 0 of Q are
non-negative and have zero as their only accumulation point. Moreover, the corre-
sponding eigenfunctions (ei, i ∈ N) ⊂ U form an orthonormal basis of U and we define
the square-root of Q via

Q1/2φ :=
∑
i∈N

√
ηi(φ, ei)Uei, φ ∈ U.

Since Q1/2 is not necessarily injective, the pseudo-inverse of Q1/2 is given by

Q−1/2ϕ := φ, if Q1/2φ = ϕ and ‖φ‖U = inf
ϕ∈U :Q1/2ϕ=φ

{‖ϕ‖U}.

With this, we are able to define the reproducing kernel Hilbert space associated to L.

Definition 8.2.2. Let L be a square-integrable, U -valued Lévy process with non-
negative, symmetric, trace class covariance operator Q ∈ L(U). Then, the set U :=
Q1/2(U) equipped with the scalar-product

(ϕ1, ϕ2)U := (Q−1/2ϕ1, Q
−1/2ϕ2)U , ϕ1, ϕ2 ∈ U ,

is called the reproducing kernel Hilbert space (RKHS) of L.

Note that (√ηiei, i ∈ N) forms an orthonormal system in the RKHS U and hence
the norm on the space of Hilbert-Schmidt operators LHS(U , H) is given by

‖O‖2
LHS(U ,H) =

∑
i∈N

ηi‖Oei‖2
H , O ∈ LHS(U , H).

The drift- and diffusion-term in Eq. (8.1) are possibly non-linear and measurable map-
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pings F : T×H → H and G : T×H → LHS(U , H), respectively. Sufficient conditions
to ensure that G is actually an admissible integrand for L are discussed below.

Example 8.2.3. An important special case is if U = L2(D), where D ⊂ Rd is an open
and bounded spatial domain for d ∈ N and Q is the Matérn covariance operator with
parameters ν, ρ > 0 given by

[Qφ](x) :=
∫
D

21−ν

Γ(ν)
(√

2ν ‖x− y‖
ρ

)ν
Kν

(√
2ν ‖x− y‖

ρ

)
φ(y)dy, φ ∈ U, x ∈ D. (8.2)

Above, Γ is the Gamma function, Kν is the modified Bessel function of the second kind
with ν degrees of freedom and ‖ · ‖ is an arbitrary norm on Rd, usually the Euclidean
norm. We refer to ρ > 0 as the correlation length of Q, while ν > 0 controls the spatial
regularity of the paths generated byQ. More precisely, it holds that L(t)(·) ∈ Cdνe−1(D)
almost surely for each t ∈ T.

To characterize solutions of Problem (8.1), we follow the definitions from [173,
Chapter 9]:

Definition 8.2.4. The predictable σ-algebra PT is the smallest σ-field on Ω × T con-
taining all sets of the form A×(s, t], where A ∈ Fs and s, t ∈ T with s < t. A H-valued
stochastic process Y : Ω × T → H is called predictable if it is a PT-B(H)-measurable
mapping. The set of all square-integrable, H-valued predictable processes is denoted
by

XT := {Y : Ω× T→ H|Y is predictable and sup
t∈T

E(‖Y (t)‖2
H) < +∞}.

A process X ∈ XT is called a mild solution to Eq. (8.1) if

X(t) = S(t)X0 +
∫ t

0
S(t− s)F (s,X(s))ds+

∫ t

0
S(t− s)G(s,X(s))dL(s) (8.3)

holds almost surely for all t ∈ T. In Eq. (8.3) S : T→ L(H) is the semigroup generated
by A, thus S(t) = etA and Eq. (8.3) may be interpreted as a variation-of-constants
formula.

Furthermore, X ∈ XT is called a weak solution to Eq. (8.1) if

(X(t), v)H = (X0, v)H +
∫ t

0
(X(s), A∗v)H + (F (s,X(s)), v)Hds

+
∫ t

0
(G(s,X(s))∗v, dL(s))U

holds almost surely for all v ∈ D(A∗) and t ∈ T, where A∗ : D(A∗) → H, G(s, v)∗ ∈
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L(H,U) are the adjoint operators to A : D(A)→ H and G(s, v) ∈ LHS(U , H), respec-
tively.

In the definition of weak solutions, we use the identification LHS(U ,R) = U . Hence,
the integrand s 7→ G∗(s,X(s))∗v may be interpreted as a LHS(U ,R)-valued process
and we obtain

∫ t

0
(G(s,X(s))∗v, dL(s))U :=

∫ t

0
G(s,X(s))∗vdL(s) =

(
v,
∫ t

0
G(s,X(s))dL(s)

)
H

for any v ∈ D(A∗), see [173, Chapter 9.3]. The solutions to Problem (8.1) are infinite-
dimensional processes, i.e. X : Ω × T × D → R, where D ⊂ Rd for some d ∈ N.
Therefore, in general H ⊂ U = L2(D). To ensure that mild resp. weak solutions
to (8.1) as in Definition 8.2.4 are well-defined and unique, we fix the following set of
assumptions.

Assumption 8.2.5.

i) L is a centered, square integrable, U -valued Lévy process with trace class covari-
ance operator Q.

ii) X0 ∈ L2(Ω;H) is a F0-measurable random variable.

iii) A : D(A) ⊂ H → H is the infinitesimal generator of a C0-semigroup S = (S(t), t ≥
0) of bounded, linear operators on H.

iv) The mappings F (·, v) : T → H and G(·, v) : T → LHS(U , H) are measurable for
each v ∈ H and there is a constant C > 0 such that for all t ∈ T and v, w ∈ H

‖F (t, v)− F (t, w)‖H + ‖G(t, v)−G(t, w)‖LHS(U ,H) ≤ C‖v − w‖H .

Remark 8.2.6.

• We focus on mean-square type convergence results in this article and only consider
square-integrable processes L. As one sees in Lemma 8.2.9, this enables us to
use a version of the Itô isometry for stochastic integrals with respect to Hilbert
space-valued Lévy processes. Details on non-square integrable martingales as
integrator can be found in [173, Section 8.8].

• If L is of non-zero mean, then E(L(t)) = tφ for some mean function φ ∈ U .
Hence, we can always assume that E(L(t)) = 0 and incorporate φ as part of the
nonlinearity F if desired.
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• Under Assumption 8.2.5, the Bochner integrals and stochastic integrals appearing
in Definition 8.2.4 are well-defined, see [173, Remark 9.6].

• The global Lipschitz-type condition (iv) with respect to the second argument is
necessary to ensure existence and uniqueness of mild solutions. Throughout the
literature (e.g. in [151],[173]), often slightly weaker assumptions of the form

‖S(t)(F (s, v)− F (s, w))‖H ≤ bF (t, s)‖v − w‖H , s, t ∈ (0, T ]

for a function bF ∈ L2(T × T) are imposed. For the numerical analysis in the
forthcoming chapters, however, we utilize the weak solution of the SPDE, and it
is therefore advantageous to assume Lipschitz continuity of F and G as above.
We note that this condition on F and G implies the global linear growth bound

‖F (t, v)‖H + ‖G(t, v)‖LHS(U ,H) ≤ C(1 + ‖v‖H), v ∈ H, t ∈ T.

Theorem 8.2.7. Under Assumption 8.2.5, there exists a unique mild solution X ∈ XT

to Problem (8.1). Furthermore, X is also the unique weak solution and there exists
C = C(T) > 0, independent of X0, such that

‖X(t)‖L2(Ω;H) ≤ C(1 + ‖X0‖L2(Ω;H)), t ∈ T.

Proof. Existence and uniqueness of a mild solution as in Eq. (8.3) is proven in detail
in [173, Theorem 9.29]. Therefore, we only sketch the main idea here. Let β > 0 be
arbitrary and define the norm ‖Y ‖β := e−βT supt∈T E(‖Y (t)‖2

H)1/2 for any Y ∈ XT.
With this, (XT, ‖ · ‖β) is a Banach space, and, using X0 as initial value, on (XT, ‖ · ‖β)
a sequence of fixed-point iterations is for n ∈ N0 given by

Xn+1 = Ψ(Xn) := S(t)X0 +
∫ t

0
S(t− s)F (s,Xn(s))ds+

∫ t

0
S(t− s)G(s,Xn(s))dL(s).

Under Assumption 8.2.5, and by choosing β > 0 large enough, it can then be shown
that Ψ is a contraction mapping. Hence, existence and uniqueness of mild solutions
follow by Banach’s fixed-point theorem. The equivalence of weak and mild solutions
follows from [173, Theorem 9.15].

To conclude this section, we record a lemma on C0-semigroups and an infinite-
dimensional version of the Itô isometry.

Lemma 8.2.8. [170, Chapter 1.2] Let S = (S(t), t ≥ 0) be a C0-semigroup with
infinitesimal generator A on a Banach space (Y , ‖ · ‖Y). Then, there are constants
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C1, C2 > 0 such that for all φ ∈ Y and t ≥ 0

‖S(t)φ‖Y ≤ C1e
C2t‖φ‖Y .

Lemma 8.2.9. (Itô isometry, [173, Corollary 8.17]) Let (Ĥ, (·, ·)
Ĥ

) be a separable
Hilbert space, let κ : Ω×T→ LHS(U ; Ĥ) be a predictable, square integrable process and
let L satisfy Assumption 8.2.5(i). Then, κ is an admissible integrand for L, and for
all t ∈ T it holds that

E
(
‖
∫ t

0
κ(s)dL(s)‖2

Ĥ

)
= E

(∫ t

0
‖κ(s)‖2

LHS(U ;Ĥ)ds
)

= E

∫ t

0

∑
i∈N

ηi‖κ(s)ei‖2
Ĥ
ds

 .
So far, all results of this section hold in a rather general setting, namely that A

is the generator of an arbitrary C0-semigroup. In the remainder of this article, we
investigate the case where A is a first order differential operator and Eq. (8.1) is a
(hyperbolic) transport equation with Lévy noise. The next section establishes the
spatial and temporal regularity of X in this scenario to pave the way for a numerical
analysis of the stochastic transport problem in Sections 8.4-8.6.

8.3 The Stochastic transport equation

Let us regard Eq. (8.1) with respect to a convex spatial domain D ⊂ Rd with d ∈ N,
i.e. the solution X is a H-valued process with H = L2(D). We denote for k ∈ N the
standard Sobolev space Hk(D) equipped with the norm resp. seminorm

‖v‖Hk(D) :=
 ∑
|α|≤k

∫
D
|Dαv(x)|2dx

1/2

, |v|Hk(D) :=
 ∑
|α|=k

∫
D
|Dαv(x)|2dx

1/2

,

where Dα = ∂α1
x1 . . . ∂

αd
xd

is the mixed partial weak derivative (in space) with respect to
the multi-index α ∈ Nd

0. The fractional order Sobolev spaces Hq(D) for any q > 0 are
defined by the norm

‖v‖2
Hq(D) = ‖v‖2

Hbqc(D) + sup
|α|=bqc

|Dαv|2H(q−bqc)(D)

:= ‖v‖2
Hbqc(D) + sup

|α|=bqc

∫
D

∫
D

|Dαv(x)−Dαv(y)|2
|x− y|d+2(q−bqc) dxdy,

where the last term is the the Gagliardo seminorm, see [71]. Let A = a · ∇, for a fixed
vector a ∈ Rd in Eq. (8.1) be the first order differential operator such that we obtain
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the stochastic transport problem

dX(t) = (a · ∇X(t) + F (t,X(t)))dt+G(t,X(t))dL(t), X(0) = X0. (8.4)

The inflow boundary of D is given by

∂D+ := {x ∈ ∂D : a · #»n (x) > 0},

where #»n is the exterior normal vector to ∂D and the outflow boundary is ∂D− := ∂D \
∂D+. We equip Eq. (8.4) with the homogeneous inflow boundary condition X(t) = 0
on ∂D+ for all t ∈ T.

Remark 8.3.1. The restriction to homogeneous inflow boundary conditions is for
notational convenience, and not restrictive in our setting. In our numerical examples
in Section 8.7, we examine an energy forward model with nonzero, but constant inflow
boundary condition X(t) = c > 0 on ∂D+ for all t ∈ T. To see how this fits in our
setting, let X0, F,G and L be given, and let X : Ω×T→ H be a solution to Eq. (8.5)
with X(t) = 0 on ∂D+. For any constant c ∈ R we define Xc(t) := X(t) + c, as well as
the modified coefficients

Fc(s, v) := F (s, v − c), Gc(s, v) := G(s, v − c).

Note that if F and G satisfy Assumption 8.2.5(iv), the same holds for Fc and Gc. It is
then readily verified that Xc satisfies X(t) = c on T× ∂D+ and

dXc(t) = (a · ∇Xc(t) + Fc(t,Xc(t))dt+Gc(t,Xc(t))dL(t), Xc(0) = X0 + c.

To derive a weak formulation of Eq. (8.4), we note that for any v, w ∈ H1(D)
Green’s identity yields

(−Av,w)H = (−a · ∇v, w)H = (v, a · ∇w)H −
∫
∂D
a · #»nvwdz = (v, A∗w)H .

Thus, D(A∗) = H1(D) and A induces for arbitrary small ε > 0 the bilinear form

B : H1/2+ε(D)×H1(D)→ R, (v, w) 7→ (v, a · ∇w)H −
∫
∂D
a · #»nvwdz.

The restriction toH1/2+ε(D) for the first argument of B is to ensure that its trace on ∂D
is well-defined. Note that B is positive semi-definite on the set {v ∈ H1(D)| v|∂D+ = 0}
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and defines the seminorm

‖v‖2
a,∂D− := 2B(v, v) = −

∫
∂D−

a · #»nv2(z)dz ≥ 0,

for all v ∈ H1(D) that vanish at the inflow boundary. The weak formulation of Eq. (8.4)
is then to find X : Ω× T→ H such that for all v ∈ D(A∗)

(X(t), v)H +
∫ t

0
B(X(s), v)ds = (X0, v)H +

∫ t

0
(F (s,X(s)), v)Hds

+
∫ t

0
(G(s,X(s))∗v, dL(s))U .

(8.5)

The numerical schemes to approximate X and the corresponding error estimates in
this article are mainly based on the weak formulation from Eq. (8.5). As we will see in
Theorem 8.3.6, however, mild solutions to Eq. (8.4) are convenient to investigate the
spatial regularity of X. The operator A = a · ∇ with homogeneous outflow boundary
conditions is the infinitesimal generator of a semigroup S on H, namely the shift
semigroup given by

[S(t)v](x) :=

v(at+ x) if at+ x ∈ D

0 if at+ x /∈ D
. (8.6)

Lemma 8.3.2. The family of operators (S(t), t ≥ 0) defined in Eq. (8.6) forms a C0-
semigroup of bounded linear operators on H. Furthermore, the infinitesimal generator
of S is given by A = a · ∇.

Proof. By the definition of S, it is immediate that ‖S(t)v‖H ≤ ‖v‖H , S(0) = I and
S(t+ s) = S(t)S(s) for t, s ∈ T. Hence, (S(t), t ≥ 0) is a semigroup of bounded linear
operators on H. To see that (S(t), t ≥ 0) is strongly continuous, let v ∈ C0

c (D) ⊂ H

be a compactly supported, continuous function on D. Furthermore, let ṽ ∈ C0
c (Rd) be

the zero-extension of v on Rd given by

ṽ(x) :=

v(x) if x ∈ D

0 if x ∈ Rd \ D
.

This yields

lim
t→0
‖S(t)v − v‖2

H = lim
t→0

∫
D
(ṽ(at+ x)))− ṽ(x))2dx =

∫
D

lim
t→0

(ṽ(at+ x)))− ṽ(x))2dx = 0.

Note that the interchange of limit and integral is justified, since ṽ is bounded uniformly
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on Rd. The last identity holds due to the continuity of ṽ on Rd. By the density of
C0
c (D) in H, it follows that S is a C0-semigroup on H.
To see that A is the generator of S, let v ∈ C2(D) and note that for any x ∈ D,

there is a tx > 0 such that at + x ∈ D for all t ∈ (0, tx). Hence, for fixed x ∈ D, the
multidimensional Taylor expansion yields

lim
t→0

[S(t)v](x)− v(x)
t

= lim
t→0

v(at+ x)− v(x)
t

= a · ∇v(x) = [Av](x).

As C2(D) is dense in H1(D), the limit also exists for every v ∈ H1(D), in the sense
that ‖Av‖H < +∞, and hence D(A) = H1(D).

The mild solution to Eq. (8.6) reads

X(t) = S(t)X0 +
∫ t

0
S(t− s)F (s,X(s))ds+

∫ t

0
S(t− s)G(s,X(s))dL(s). (8.7)

From this, we see that the shift by S may introduce (spatial) discontinuities if X0, F

and G do not vanish near the inflow boundary. Hence, Assumption 8.2.5 has to be
modified to guarantee a certain regularity of X.

Assumption 8.3.3. Let q > 1/2 and let the set Hq
0,+(D) contain all v ∈ Hq(D) such

that

• v|∂D+ = 0,

• there is an extension ṽ ∈ Hq(Rd) of v with ṽ|D = v and ‖ṽ‖Hq(Rd) ≤ C‖v‖Hq(D),
and

• there exists a bounded, convex set O ⊂ Rd such that D ⊂ O, ∂D+ ⊂ ∂O and
ṽ|O ∈ Hq

0(O).

It holds that:

i) L is a square integrable, U -valued Lévy process with zero mean and trace class
covariance operator Q. The eigenvalues (ηi, i ∈ N) of Q are given in decreasing
order and decay at rate ηi ≤ Ci−α for some α > 1.

ii) X0 ∈ L2(Ω;Hq(D)) is a F0-measurable random variable with X0(ω, ·) ∈ Hq
0,+(D)

almost surely.

iii) F : T×H → H and G : T×H → LHS(U , H) are Hölder continuous with exponent
1
2 on T and globally Lipschitz on H, i.e. for all v, w ∈ H and s, t ∈ T it holds that

‖F (t, v)− F (s, v)‖H + ‖G(t, v)−G(s, v)‖LHS(U ,H) ≤ C|t− s|
1
2‖v‖H ,
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and

‖F (t, v)− F (t, w)‖H + ‖G(t, v)−G(t, w)‖LHS(U ,H) ≤ C‖v − w‖H .

iv) Let (ei, i ∈ N) ⊂ U denote the orthonormal eigenfunctions of Q that correspond
to the decreasing sequence of eigenvalues (ηi, i ∈ N). For any v ∈ Hq

0,+(D), i ∈ N
and t ∈ T, it holds that F (t, v), G(t, v)ei ∈ Hq

0,+(D). Moreover, there are constants
0 < β < (α − 1)/2α (where α is from part i)) and C > 0, independent of v ∈
Hq

0,+(D) and t ∈ T, such that

‖F (t, v)‖Hq(D) ≤ C(1 + ‖v‖Hq(D)),

and
‖G(t, v)ei‖Hq(D) ≤ C(1 + ‖v‖Hq(D))η−βi .

Remark 8.3.4.

• Since D is a Lipschitz domain, there is always an extension ṽ with ‖ṽ‖Hq(Rd) ≤
C‖v‖Hq(D) and ṽ|O ∈ Hq

0(O) with bounded and open O ⊂ Rd (see [71, Theorem
5.4]). The crucial part in the definition of Hq

0,+(D) is that ∂D+ ⊂ ∂O to ensure
control of the smoothness at the inflow boundary.

• Assumption 8.3.3(iii) on the Hölder continuity with respect to T is necessary
to ensure the rate of convergence of the time stepping scheme introduced in
Section 8.4. Note that this condition also implies that F and G are measurable
in T.

• Let us recall Example 8.2.3 with U = L2(D), Q as the Matérn covariance operator
from Eq. (8.2) with smoothness parameter ν > 0 and assume for any q < ν that

‖G(s, v)ei‖Hq(D) ≤ C(1 + ‖v‖Hq(D))‖ei‖Hq(D). (8.8)

By [96, Proposition 9], Assumption 8.3.3(i) holds with α = 1 + 2ν/d > 1. Hence
the parameter β from part (iv) has to satisfy 0 < β < (α− 1)/2α = ν/(d+ 2ν).
Moreover, if ν > d/2, the proof of [96, Proposition 9] yields for all q, q̃ such that
0 ≤ q ≤ q̃ < d+ 2ν the estimate

‖ei‖Hq(D) ≤ Cη
−q/q̃
i .

Now let q = ν − ε1 and q̃ = d + 2ν − ε2, where ε1 > 0 is arbitrary small and
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ε2 ∈ (0, ε1(d/ν + 2)). By construction, β := q/q̃ satisfies 0 < β < (α − 1)/2α =
ν/(d+ 2ν) and Ineq. (8.8) yields

‖G(s, v)ei‖Hq(D) ≤ C(1 + ‖v‖Hq(D))η−βi .

Regarding the eigenpairs of Q, Assumption 8.3.3 is therefore satisfied for any
q < ν if ν > d/2 in the Matérn case, and we may infer the (maximum) spatial
regularity of X directly from ν (see Theorem 8.3.6).

To derive the spatial regularity of X, we record the following result:

Lemma 8.3.5. Let q > 1/2 and v ∈ Hq
0,+(D), with Hq

0,+(D) ⊂ Hq(D) defined as in
Assumption 8.3.3. Then, there is a constant C = C(q,D, d) > 0 such that for any
t ∈ T it holds that ‖S(t)v‖Hq(D) ≤ C‖v‖Hq(D).

Proof. Let ṽ ∈ Hq(Rd) be the extension of v and O ⊂ Rd be the bounded, convex
set such that ṽ|O ∈ Hq

0(O) as in Assumption 8.3.3. Fix x ∈ D and t ∈ T such that
at+ x /∈ D. Since D and O are convex with ∂D+ ⊂ ∂O, it follows that at+ x /∈ O. As
ṽ vanishes outside of O, this yields [S(t)v](x) = ṽ(at+ x) and therefore

‖S(t)v‖Hq(D) ≤ ‖ṽ‖Hq(Rd) ≤ C‖v‖Hq(D).

Theorem 8.3.6. Under Assumption 8.3.3, there exist unique solutions X to Eq. (8.5)
and Eq. (8.7), respectively. Moreover, both solutions coincide almost surely and

sup
t∈T
‖X(t)‖2

L2(Ω;Hq(D)) ≤ C(1 + ‖X0‖2
L2(Ω;Hq(D))) < +∞.

Proof. Existence, uniqueness and equivalence of a weak resp. mild solutionX : Ω×T→
H follow by Theorem 8.2.7, since Assumption 8.3.3 implies Assumption 8.2.5. To
derive the spatial regularity, we consider the mild solution X given by the variation-
of-constants formula

X(t) = S(t)X0 +
∫ t

0
S(t− s)F (s,X(s))ds+

∫ t

0
S(t− s)G(s,X(s))dL(s),

and estimate each term on the right hand side separately. By Lemma 8.3.5 and As-
sumption 8.3.3(ii)

‖S(t)X0‖2
L2(Ω;Hq(D)) ≤ C‖X0‖2

L2(Ω;Hq(D)) < +∞.
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Jensen’s inequality and Assumption 8.3.3(iv) yield similarly

‖
∫ t

0
S(t− s)F (s,X(s))ds‖2

L2(Ω;Hq(D)) ≤
∫ t

0
‖S(t− s)F (s,X(s))‖2

L2(Ω;Hq(D))ds

≤ C
∫ t

0
1 + ‖X(s)‖2

L2(Ω;Hq(D))ds.

Moreover, the Itô isometry from Lemma 8.2.9 shows the identity

‖
∫ t

0
S(t− s)G(s,X(s))dL(s)‖2

L2(Ω;Hq(D)) = E
( ∫ t

0
‖S(t− s)G(s,X(s))‖2

LHS(U ,Hq(D))ds
)

= E
( ∫ t

0

∑
i∈N

ηi‖S(t− s)G(s,X(s))ei‖2
Hq(D)ds

)
.

With Lemma 8.3.5 and Assumption 8.3.3(iv) this gives the estimate

‖
∫ t

0
S(t− s)G(s,X(s))dL(s)‖2

L2(Ω;Hq(D)) ≤ C
∑
i∈N

η1−2β
i

∫ t

0
1 + ‖X(s)‖2

L2(Ω;Hq(D))ds

≤ C
∑
i∈N

i−α(1−2β)
∫ t

0
1 + ‖X(s)‖2

L2(Ω;Hq(D))ds.

Since α(1− 2β) > 1 by Assumption 8.3.3(iv), it holds that ∑i∈N i
−α(1−2β) < +∞, and

we obtain

‖X(t)‖2
L2(Ω;Hq(D)) ≤ C

(
1 + ‖X0‖2

L2(Ω;Hq(D)) +
∫ t

0
‖X(s)‖2

L2(Ω;Hq(D))ds
)
,

where C > 0 is finite and uniformly bounded in T. The claim then follows by Grönwall’s
inequality.

Theorem 8.3.7. Let Assumption 8.3.3 hold with q ≥ 1. Then, there is a C > 0 such
that for all s, t ∈ T

E(‖X(t)−X(s)‖2
H) + E(‖X(t)−X(s)‖2

a,∂D−) ≤ C|t− s|.

Proof. We first show the claim with respect to ‖ · ‖H . To this end, consider the weak
formulation (8.5) to obtain for fixed s, t ∈ T with t ≥ s and v ∈ D(A∗) = H1(D)

(X(t)−X(s), v)H = −
∫ t

s
B(X(r), v)dr +

∫ t

s
(F (r,X(r)), v)Hds

+
∫ t

s
(G∗(r,X(r))v, dL(r))U .

By Theorem 8.3.6, X(t) ∈ H1(D) almost surely for each t ∈ T since q ≥ 1. Thus, we
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test against v = X(t)−X(s) ∈ H1(D) and take expectations to obtain

E(‖X(t)−X(s)‖2
H) = −

∫ t

s
E(B(X(r), X(t)−X(s)))dr

+
∫ t

s
E((F (r,X(r)), X(t)−X(s))H)ds

+ E
(
(
∫ t

s
G∗(r,X(r))(X(t)−X(s)), dL(r))U

)
=: I + II + III.

By definition, B(v, w) = (−a · ∇v, w) for v, w ∈ H1(D) and we estimate the first term
with Hölder’s inequality and Theorem 8.3.6 via

I ≤ C
∫ t

s
E(‖X(r)‖2

H1(D))1/2E(‖X(t)−X(s)‖2
H)1/2dr

≤ C(t− s)(sup
r∈T

E(‖X(r)‖2
H1(D))1/2)E(‖X(t)−X(s)‖2

H)1/2

≤ C(t− s)E(‖X(t)−X(s)‖2
H)1/2.

Similarly, we obtain with Assumption 8.3.3(iii)

II ≤
∫ t

s
E(‖F (r,X(r))‖2

H)1/2E(‖X(t)−X(s)‖2
H)1/2dr

≤ (t− s)(1 + sup
r∈T

E(‖X(r)‖2
H)1/2)E(‖X(t)−X(s)‖2

H)1/2

≤ C(t− s)E(‖X(t)−X(s)‖2
H)1/2.

The last term is bounded by Lemma 8.2.9 and Assumption 8.3.3(iii):

III ≤ E
(
‖
∫ t

s
G(r,X(r))dL(r)‖2

H

)1/2
E(‖X(t)−X(s)‖2

H)1/2

≤
( ∫ t

s
E(‖G(r,X(r))‖2

LHS(U ,H))dr
)1/2

E(‖X(t)−X(s)‖2
H)1/2

≤ (t− s)1/2(1 + sup
r∈T

E(‖X(r)‖2
H)1/2)E(‖X(t)−X(s)‖2

H)1/2

≤ C(t− s)1/2E(‖X(t)−X(s)‖2
H)1/2,

which shows that
E(‖X(t)−X(s)‖2

H) ≤ C(t− s). (8.9)

For the second part, let (Xn(t)−Xn(s), n ∈ N) ⊂ C∞(D) be a smooth approximat-
ing sequence of X(t)−X(s) ∈ H1(D). By the density of C∞(D) in H1(D), this implies
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in particular

E(‖Xn(t)−Xn(s)‖2
H1(D)) ≤ CE(‖X(t)−X(s)‖2

H1(D)) < +∞, (8.10)

and by Ineq. (8.9)

E(‖Xn(t)−Xn(s)‖2
H) ≤ CE(‖X(t)−X(s)‖2

H) ≤ C(t− s),

where the constant C > 0 is in both cases independent of n ∈ N. As Xn(t)−Xn(s) is
smooth, we may test against v = −a ·∇(Xn(t)−Xn(s)) ∈ H1(D) in Eq. (8.5) to obtain

− E((X(t)−X(s), a · ∇(Xn(t)−Xn(s)))H)

=
∫ t

s
E(B(X(r), a · ∇(Xn(t)−Xn(s)))dr

−
∫ t

s
E((F (r,X(r)), a · ∇(Xn(t)−Xn(s)))Hdr

− E
(
(
∫ t

s
(G(r,X(r)))dL(r), a · ∇(Xn(t)−Xn(s)))H

)
=: IV − V − V I.

(8.11)

It follows immediately by Theorem 8.3.6, Assumption 8.3.3(iii) and Ineq. (8.10) that

IV ≤ C
∫ t

s
E(‖X(r)‖2

H1(D))1/2drE(‖Xn(t)−Xn(s)‖2
H1(D))1/2 ≤ C(t− s),

as well as

|V | ≤ C
∫ t

s
E(1 + ‖X(r)‖2

H)1/2drE(‖Xn(t)−Xn(s)‖2
H1(D))1/2 ≤ C(t− s).

To bound the last term, we use Green’s identity to rewrite V I as

V I = E
(
(
∫ t

s
G(r,X(r))dL(r), a · ∇(Xn(t)−Xn(s)))H

)
= −E

(
(a · ∇

∫ t

s
G(r,X(r))dL(r), Xn(t)−Xn(s))H

)
+ E

( ∫
∂D−

a · #»n
∫ t

s
G(r,X(r))dL(r)(Xn(t)−Xn(s))dz

)
.

Applying Young’s inequality to the inner products over D and ∂D+ yields

|V I| ≤ C
(
E(‖

∫ t

s
G(r,X(r))dL(r)‖2

H1(D)) + E(‖Xn(t)−Xn(s)‖2
H)
)

+ E(‖
∫ t

s
G(r,X(r))dL(r)‖2

a,∂D−) + 1
4E(‖Xn(t)−Xn(s)‖2

a,∂D−).
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Moreover, for any v ∈ H1(D), we obtain by the trace theorem

‖v‖a,∂D− ≤ C‖v‖L2(∂D) ≤ C‖v‖H1/2+ε(D) ≤ C‖v‖H1(D).

Together with the Itô isometry from Lemma 8.2.9 this yields

|V I| ≤ C
(
E(‖

∫ t

s
G(r,X(r))dL(r)‖2

H1(D)) + E(‖Xn(t)−Xn(s)‖2
H)
)

+ 1
4E(‖Xn(t)−Xn(s)‖2

a,∂D−)

≤ C
( ∫ t

s

∑
i∈N

ηiE(‖G(r,X(r))ei‖2
H1(D))dr + E(‖Xn(t)−Xn(s)‖2

H)
)

+ 1
4E(‖Xn(t)−Xn(s)‖2

a,∂D−)
(∗)
≤ C

(
(1 + sup

r∈T
E(‖X(r)‖2

H1(D)))
∑
i∈N

i−α(1−2β)
∫ t

s
dr + E(‖Xn(t)−Xn(s)‖2

H)
)

+ 1
4E(‖X(t)−X(s)‖2

a,∂D−)

≤ C(t− s) + 1
4E(‖Xn(t)−Xn(s)‖2

a,∂D−).

For the bound (∗), we have used Assumption 8.3.3(iv) on G. The last estimate follows
since α(1− 2β) > 1 by Assumption 8.3.3(iv) and from Ineq. (8.10). We substitute the
estimates on IV − V I in Eq. (8.11) and rearrange terms to obtain

−E((X(t)−X(s), a · ∇(Xn(t)−Xn(s)))H)− 1
4E(‖Xn(t)−Xn(s)‖2

a,∂D−) ≤ C(t− s).

Note that the constant C > 0 on the right hand side is independent of n. Therefore,
the claim follows with

‖X(t)−X(s)‖2
a,∂D− = 2B(X(t)−X(s), X(t)−X(s))

= −2(X(t)−X(s), a · ∇(X(t)−X(s)))H

and a density argument by taking the limit n→ +∞.

In most cases, it is impossible to access X analytically as the paths of X are time-
dependent random functions taking values in the infinite-dimensional Hilbert space
H. The time dependency of each sample may be reflected in the coefficients of a
suitable basis expansions, but in general no tractable representations are available.
Even if closed form solutions with respect to X0 and a given path of L were known,
it would still be unclear how to sample the infinite-dimensional Lévy process L. We
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address these issues by introducing suitable time stepping schemes and a discontinuous
Galerkin spatial discretization in Sections 8.4 and 8.5, respectively. Moreover, we show
in Section 8.6 how to obtain approximate samples of L which finally yields a fully
discrete approximation scheme for the stochastic transport problem.

8.4 Temporal discretization

To discretize T, we use m+1 equidistant time points 0 = t0 < · · · < tm = T and define
∆t := T/m > 0. We employ a backward Euler (BE) approximation for the linear part
of Eq. (8.5), i.e.

∫ ti

ti−1
B(X(s), v)ds ≈ ∆tB(X(ti), v), i = 1, . . . ,m.

The nonlinear part with respect to F and the stochastic integral are approximated by
the forward differences∫ ti

ti−1
(F (s,X(s)), v)Hds ≈ (F (ti−1, X(ti−1))∆t, v)H ,( ∫ ti

ti−1
G(s,X(s))dL(s), v

)
H
≈ (G(ti−1, X(ti−1))∆L(i), v)H ,

(8.12)

where ∆L(i) := L(ti) − L(ti−1). As the stochastic integral on the left hand side in
Eq. (8.12) is an Itô integral, it is crucial to use a forward difference in order to preserve
the martingale property of the driving noise. For the nonlinearity F on the other hand,
we could have chosen a backward difference or midpoint rule, but with the scheme (8.12)
we avoid solving a nonlinear system in every time step and do not affect the overall
order of convergence. The time-discrete version of the weak problem is then to find
(X(i), i = 0, . . . ,m) ⊂ H such that X(0) = X0 and for any v ∈ D(A∗) and i = 1, . . . ,m

(X(i)−X(i−1), v)H+∆tB(X(i), v) = ∆t(F (ti−1, X
(i−1)), v)H+(G(ti−1, X

(i−1))∆L(i), v)H .
(8.13)

We are able to bound the error of the time-stepping scheme with the results from the
previous section:

Theorem 8.4.1. Let Assumption 8.3.3 hold with q ≥ 1. Then, for sufficiently small
∆t,

E
(
‖X(T )−X(m)‖2

H + ∆t
m∑
i=1

E(‖X(ti)−X(i)‖2
a,∂D−)

)1/2
≤ C∆t1/2.
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Proof. Let ψ(i) := X(ti)−X(i) and note that by Eqs. (8.5) and (8.13) for all v ∈ H1(D)

(ψ(i) − ψ(i−1), v) +
∫ ti

ti−1
B(X(s)−X(i), v)

=
∫ ti

ti−1
(F (s,X(s))− F (ti−1, X

(i−1)), v)Hds

+
∫ ti

ti−1
([G(s,X(s))−G(ti−1, X

(i−1))]∗v, dL(s))U .

We test against v = ψ(i) ∈ H1(D) and take expectations to obtain

E
(
(ψ(i) − ψ(i−1), ψ(i))H +

∫ ti

ti−1
B(X(s)−X(i), ψ(i))ds

)
= E

( ∫ ti

ti−1
(F (s,X(s))− F (ti−1, X

(i−1)), ψ(i))Hds
)

+ E
( ∫ ti

ti−1
([G(s,X(s))−G(ti−1, X

(i−1))]∗ψ(i), dL(s))U
)

=: I + II.

(8.14)

Applying the identities

(ψ(i) − ψ(i−1), ψ(i))H = 1
2
(
‖ψ(i)‖2

H − ‖ψ(i−1)‖2
H + ‖ψ(i) − ψ(i−1)‖2

H

)
,

B(X(s)−X(i), ψ(i)) = B(X(s)−X(ti), ψ(i)) +B(ψ(i), ψ(i))

= B(X(s)−X(ti), ψ(i)) + 1
2‖ψ

(i)‖2
a,∂D+ ,

on the left hand side of Eq. (8.14), and rearranging some terms, yields

E
(1

2(‖ψ(i)‖2
H − ‖ψ(i−1)‖2

H) + ∆t‖ψ(i)‖2
a,∂D−

)
=I + II − E

( ∫ ti

ti−1
B(X(s)−X(ti), ψ(i))ds

)
− 1

2E(‖ψ(i) − ψ(i−1)‖2
H)

= : I + II − III − 1
2E(‖ψ(i) − ψ(i−1)‖2

H).

(8.15)

For the first term, we obtain with Young’s inequality

I ≤ 1
2

∫ ti

ti−1
E(‖F (s,X(s))− F (ti−1, X

(i−1))‖2
H)ds+ ∆t

2 E(‖ψ(i)‖2
H)

=: 1
2(Ia + ∆tE(‖ψ(i)‖2

H)),
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and we split Ia once more by Jensen’s inequality to obtain

Ia ≤ 3
∫ ti

ti−1
E(‖F (s,X(s))− F (ti−1, X(s)‖2

H)ds

+ 3
∫ ti

ti−1
E(‖F (ti−1, X(s))− F (ti−1, X(ti−1)‖2

H)ds

+ 3
∫ ti

ti−1
E(‖F (ti−1, X(ti−1))− F (ti−1, X

(i−1))‖2
H)ds

≤ C
(
∆t2 +

∫ ti

ti−1
E(‖X(s)−X(ti−1)‖2

H)ds+ ∆t‖ψ(i−1)‖2
H

)
≤ C∆t

(
∆t+ ‖ψ(i−1)‖2

H

)
.

We have used Assumption 8.3.3(iii, iv) together with ψ(i−1) = X(ti−1)−X(i−1) for the
second inequality and Theorem 8.3.7 for the last estimate. Hence,

I ≤ C∆t
(
∆t+ E(‖ψ(i)‖2

H) + E(‖ψ(i−1)‖2
H)
)
.

To bound II, we observe that by Young’s inequality, the independent increments of L
and Lemma 8.2.9

II = E
(( ∫ ti

ti−1
G(s,X(s))−G(ti−1, X

(i−1))dL(s), ψ(i) − ψ(i−1)
)
H

)
+ E

(( ∫ ti

ti−1
G(s,X(s))−G(ti−1, X

(i−1))dL(s), ψ(i−1)
)
H

)
≤ 1

2E
(
‖
∫ ti

ti−1
G(s,X(s))−G(ti−1, X

(i−1))dL(s)‖2
H

)
+ 1

2E(‖ψ(i) − ψ(i−1)‖2
H)

+
(
E
( ∫ ti

ti−1
G(s,X(s))−G(ti−1, X

(i−1))dL(s)
)
,E(ψ(i−1))

)
H

= 1
2

∫ ti

ti−1
E(‖G(s,X(s))−G(ti−1, X

(i−1))‖2
LHS(U ,H))ds+ 1

2E(‖ψ(i) − ψ(i−1)‖2
H)

≤ C∆t
(
∆t+ ‖ψ(i−1)‖2

H

)
+ 1

2E(‖ψ(i) − ψ(i−1)‖2
H).

In the second equality, the third term has vanished since the Itô integral is of zero
mean. The last estimate follows analogously to I using the Lipschitz- and Hölder-
type conditions on G from Assumption 8.3.3. The last term is bounded by Young’s
inequality and Theorem 8.3.7 via

|III| ≤ 1
2

∫ ti

ti−1
E(‖X(s)−X(ti−1)‖2

a,∂D−)+E(‖ψ(i)‖2
a,∂D−)ds ≤ C∆t2+∆t

2 E(‖ψ(i)‖2
a,∂D−).

We then substitute the estimates on I−III into Eq. (8.15), observe that ψ(0) = 0, and
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sum over i to obtain

E
(
‖ψ(m)‖2

H + ∆t
m∑
i=1
‖ψ(i)‖2

a,∂D−
)
≤ C∆t

( m∑
i=1

∆t+ E(‖ψ(i)‖2
H)
)
.

Now define y(i) := E
(
‖ψ(i)‖2

H + ∆t∑i
j=1 ‖ψ(i)‖2

a,∂D−
)
for i = 1, . . . ,m and observe that

y(m) ≤ C∆t
( m∑
i=1

∆t+ E(‖ψ(i)‖2
H)
)
≤ C∆t

( m∑
i=1

∆t+ y(i)
)
.

The claim then follows for ∆t ∈ (0, 1/C) by the discrete Grönwall inequality.

Remark 8.4.2. In case that Eq. (8.4) admits additive noise, i.e. G(s, v) = G(s),
one may replace the BE approach by a Crank-Nicolson (CN) time stepping scheme
to achieve a higher order of convergence. That is, we use the trapezoidal rule to
approximate the linear term of Eq. (8.5) via

∫ ti

ti−1
B(X(s), v)ds ≈ ∆t

2 (B(X(ti), v) +B(X(ti−1), v)), i = 1, . . . ,m.

Under the additional requirement that F and G are also Lipschitz continuous on T,
meaning

‖F (t, v)− F (s, v)‖H + ‖G(t, v)−G(s, v)‖LHS(U ,H) ≤ C|t− s|‖X‖H ,

we would then expect faster convergence with respect to ∆t. Intuitively, the mean-
squared error should be of order O(∆tγ) for this discretization, where γ = γ(q) is
increasing in q with γ(q) ∈ [1

2 , 1] for any q ≥ 1. The derivation of γ under suitable
assumptions is subject to future work, our numerical experiments in Section 8.7 suggest,
however, that γ(q) ≈ 2q

3 is possible.

8.5 Discontinuous Galerkin spatial discretization

In this section we discretize Eq (8.13) with respect to the spatial domain. To this
end, let h > 0 be a refinement parameter and let Kh be a uniform triangulation of D
with maximum diameter h. For simplicity, we assume that D is a polygonal domain
with piecewise linear boundary and may thus omit errors due to the piecewise linear
approximation of ∂D. As a suitable finite-dimensional subspace of H, we choose the
corresponding discontinuous Galerkin (DG) space Vh ⊂ H of piecewise linear polyno-
mials given by

Vh := {v ∈ H : v|K ∈ P1(K), K ∈ Kh}.
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The elements of Vh are piecewise linear on the simplices K, but allow for jumps at
the interfaces of the triangulation. Hence, the space of continuous, piecewise linear
finite elements is contained in Vh, and, as we will see throughout this section, the
DG approach yields additional stability with a suitably chosen numerical flux over the
discontinuities. In contrast to standard finite element spaces, the weak derivatives ∂xivh
are elements of the dual space H−1(D) of H1(D), but in general ∂xivh /∈ L2(D). Thus,
we need to work with the "broken version" of the H-scalar product and the induced
norm with respect to Kh given by

(v, w)H,h :=
∑
K∈Kh

(v, w)L2(K), ‖v‖H,h := (v, v)H,h. (8.16)

This guarantees that ‖∂xivh‖H,h < +∞ even if ∂xivh /∈ L2(D) and, moreover, (·, ·)H,h
and (·, ·)H coincide on H. Analogously, we define the broken Sobolev norms and semi-
norms for any q > 0 via

‖v‖Hq(D),h :=
∑
K∈Kh

‖v‖Hq(K), |v|Hq(D),h :=
∑
K∈Kh

|v|Hq(K).

On each K ∈ Kh, the space-time discrete weak solution Xh = (X(i)
h , i = 0, . . . ,m) ⊂ Vh

should then satisfy

(X(i)
h , vh)L2(K) = (X(i−1)

h , vh)L2(K) + ∆t(a · ∇X(i)
h , vh)L2(K)

+ (F (ti−1, X
(i−1)
h )∆t, vh)L2(K) + (G(ti−1, X

(i−1)
h )∆L(i), vh)L2(K)

= (X(i−1)
h , vh)L2(K) −∆t(X(i)

h , a · ∇vh)L2(K) + ∆t( #»n · aX(i)
h , vh)L2(∂K)

+ (F (ti−1, X
(i−1)
h )∆t, vh)L2(K) + (G(ti−1, X

(i−1)
h )∆L(i), vh)L2(K),

(8.17)

for any vh ∈ Vh and i = 1, . . . ,m. As X(i)
h and vh are not uniquely defined on ∂K,

we need to introduce a numerical flux across each boundary ∂K and denote by Eh
the set of all faces of Kh. Now, let two simplices K+, K− share a common interior
face E ∈ Eh with E ∩ ∂D = ∅. The outward normal vectors of K+ and K− on E

are denoted by #»n+ and #»n−, respectively. Similarly, for a scalar\vector-valued function
ψ : K+∪K− → Rd, we define by ψ+ the trace of ψ|K+ on E, and ψ− is the trace of ψ|K−
on E. We denote the jump [[·]] resp. average {{·}} across E of any scalar\vector-valued

215



8.5. DISCONTINUOUS GALERKIN SPATIAL DISCRETIZATION

function ψ : K+ ∪K− → Rd by

[[ψ]] :=


#»n+ · ψ+ + #»n− · ψ− if d ≥ 2
#»n+ψ+ + #»n−ψ− if d = 1

, {{ψ}} := ψ+ + ψ−

2 .

As numerical flux on E, we then use the upwind flux given by

( #»n · av, w)L2(E) :=
∫
E

({{av}}+ |
#»n · a|

2 [[v]])[[w]]dz, v, w ∈ H, (8.18)

and define the scalar product

( #»n · av, w)Eh := ( #»n · av, w)L2(∂D−) +
∑

E∈Eh,E∩∂D=∅
( #»n · av, w)L2(E).

Summing over all K in Eq. (8.17) and using vh|∂D+ = 0, we obtain the problem to find
a weak solution Xh : Ω× {t0, . . . , tm} → Vh such that for all vh ∈ Vh and i = 1, . . . ,m

(X(i)
h −X

(i−1)
h , vh)H,h + ∆tBh(X(i)

h , vh) = (F (ti−1, X
(i−1)
h )∆t, vh)H,h

+ (G(ti−1, X
(i−1)
h )∆L(i), vh)H,h,

(8.19)

where we have introduced the discrete bilinear form

Bh : H1/2+ε
h (D)×H1

h(D)→ R, (vh, wh) 7→ (vh, a · ∇wh)H,h − ( #»n · avh, wh)Eh . (8.20)

The broken Sobolev spaces are given for any q ≥ 0 by

Hq
h(D) := {v ∈ L2(D)

∣∣∣ for all K ∈ Kh: v|K ∈ Hq(K)},

hence Vh × Vh ⊂ H
1/2+ε
h (D) ×H1

h(D). Note that the use of the broken scalar product
(·, ·)H,h in Eq. (8.20) allows us apply Bh on Vh×Vh, despite Vh 6⊂ H1(D). The gradient
wh is considered piecewise on each simplex K via ‖ · ‖H,h in Eq. (8.16) and we account
for the discontinuities on the interfaces by the upwind flux from Eq. (8.18). For trial
and test functions in Vh ∩ H1(D) the bilinear forms Bh and B correspond since the
jump discontinuities vanish on each interior interface E, i.e.

Bh(vh, wh) = B(vh, wh), wh, vh ∈ Vh ∩H1(D).

Since we consider a DG approximation, however, we have to employ the discrete bilinear
form Bh for the numerical analysis in this chapter. For simplicity, we assume that
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X
(0)
h := PhX0, where Ph : H → Vh denotes the orthogonal projection with respect to

(·, ·)H,h onto Vh. Using once more partial integration in Eq. (8.20) for the first term on
the right hand side yields the alternative representation

Bh(vh, wh) = −(a · ∇vh, wh)H,h +
∑
K∈Kh

∫
∂K

#»n · avhwhdz − ( #»n · avh, wh)Eh

= −(a · ∇vh, wh)H,h +
∑
E∈Eh

∫
E

[[avh]]{{wh}}+ [[awh]]{{vh}}dz

− ( #»n · avh, wh)Eh
= −(a · ∇vh, wh)H,h +

∑
E∈Eh,E∩∂D=∅

∫
E

[[awh]]{{vh}}

− |
#»n · a|

2 [[vh]][[wh]]dz − ( #»n · av, w)L2(∂D−).

Thus, with #»n · a ≤ 0 on ∂D−, we obtain the discrete seminorm

‖vh‖a,Eh := 2Bh(vh, vh) =
∑
E∈Eh

∫
E
| #»n · a|[[vh]]2dz ≥ 0.

Note that ‖v‖a,∂D− = ‖v‖a,Eh if v ∈ H is continuous across all interior faces in Eh. We
record an interpolation result in DG spaces and an inverse estimate for Vh as central
tools for our error analysis. For a proof we refer to [109, Chapter 4] and the references
therein.

Lemma 8.5.1. Let v ∈ Hq(K) for q > 1/2 and any K ∈ Kh. Then, for some C > 0
independent of h and v it holds that

‖v − Phv‖H,h ≤ C|v|Hq(D),h h
min(2,q).

Moreover, there is some C > 0 independent of h and vh such that for any vh ∈ Vh

‖vh‖L2(∂K) + h1/2‖vh‖H1(K) ≤ Ch−1/2‖vh‖L2(K).

Lemma 8.5.1 yields for v ∈ Hq(D)

‖v − Phv‖Eh,a ≤ 2
∑
K∈Kh

‖v − Phv‖L2(∂K) ≤ C|v|Hq(D),h h
min(2,q)−1/2, (8.21)

which already gives us an indication of the spatial convergence rate with respect to h.

Theorem 8.5.2. Let Assumption 8.3.3 hold with q ≥ 1, let Kh be an arbitrary (fixed)
triangulation of D with meshwidth h > 0 and denote by X and X(·)

h the solutions to
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Problem (8.5) and Problem (8.19), respectively. Then, for sufficiently small ∆t,

E
(
‖X(T )−X(m)

h ‖2
H,h + ∆t

m∑
i=0
‖X(ti)−X(i)

h ‖2
Eh,a

)1/2
≤ C(∆t1/2 + hq−1/2).

The term ∆t∑m
i=0 ‖X(ti)−X(i)

h ‖2
Eh,a above represents the additional stability that

we achieve by the DG approach with upwind flux in contrast to continuous finite
elements. In the latter case, the jump integrals over the interior edges in Eh vanish,
leaving only the outflow boundary term ‖X(ti) − X

(i)
h ‖2

a,∂D− instead. Therefore, the
DG method results in a stable approximation in contrast to a standard finite element
method, even though X has continuous spatial paths under the assumption that q > 1
for d = 1, 2.

of Theorem 8.5.2. Let i = 1 . . . ,m be fixed, define φ(i) := X(ti)−PhX(ti) and ψ(i) :=
PhX(ti)−X(i)

h . Lemma 8.5.1 and Ineq. (8.21) yield with Theorem 8.3.6

E
(
‖φ(m)‖2

H,h + ∆t
m∑
i=0
‖φ(i)‖2

Eh,a

)
≤ C sup

t∈T
E(|X(t)|2Hq(D))h2q−1 ≤ Ch2q−1. (8.22)

Let vh ∈ Vh and consider a simplex K ∈ Kh such that vh|K ∈ H1(K). Since vh
is linear on K, there exists for any ε > 0 a smooth approximation vε,K : Rd → R
of vh|K with compact support Uε,K ⊂ Rd such that vh = vK,ε on K. Furthermore,
the remaining area of Uε,K is bounded by |Uε,K \ K| ≤ Cε (where |Θ| denotes the
area of any Θ ⊂ Rd), and vε,K converges to vh|K almost everywhere on K as ε → 0.
For instance, vε,K can be chose as the mollification of vh|K , see [80, Appendix C]. To
localize the weak solution X to each simplex K ∈ Kh, we test against vε,K |D ∈ H1(D)
in Eq. (8.5), and take the limit ε → 0 with respect to ‖ · ‖H . As vK,ε → vh almost
everywhere on K, and vK,ε → 0 almost everywhere on Rd \K for ε→ 0, this yields for
any vh ∈ Vh and i = 1, . . . ,m

(X(ti), vh)L2(K) = (X(ti−1), vh)L2(K) +
∫ ti

ti−1
(a · ∇X(s), vh)L2(K)ds

+
∫ ti

ti−1
(F (s,X(s)), vh)L2(K)ds+

( ∫ ti

ti−1
G(s,X(s))dL(s), vh

)
L2(K)

= (X(ti−1), vh)L2(K) −
∫ ti

ti−1
(X(s), a · ∇vh)L2(K)ds

−
∫ ti

ti−1
( #»n · aX(s), vh)L2(∂K)ds

+
∫ ti

ti−1
(F (s,X(s)), vh)L2(K)ds+

( ∫ ti

ti−1
G(s,X(s))dL(s), vh

)
L2(K)

.
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Summing over all K ∈ Kh then shows conformity of the DG formulation, i.e., for all
vH ∈ Vh we have

(X(ti)−X(ti−1), vh)H,h = −
∫ ti

ti−1
Bh(X(s), vh)ds+

∫ ti

ti−1
(F (s,X(s)), vh)H,hds

+
( ∫ ti

ti−1
G(s,X(s))dL(s), vh

)
H,h
.

(8.23)

To estimate ψ(i), we combine Eqs. (8.19) and (8.23) to obtain

(ψ(i) − ψ(i−1), vh)H,h = −(φ(i) − φ(i−1), vh)H,h

−
∫ ti

ti−1
Bh(X(s)−X(ti) + φ(i) + ψ(i), vh)ds

+
∫ ti

ti−1
(F (s,X(s))− F (ti−1, X

(i−1)
h ), vh)H,hds

+
( ∫ ti

ti−1
(G(s,X(s))−G(ti−1, X

(i−1)
h ))dL(s), vh)H,h.

Since φ(·) = (1−Ph)X(·), it holds that (φ(i)−φ(i−1), vh)H,h = 0 for all vh ∈ Vh. Testing
against vh = ψ(i) ∈ Vh, taking expectations, and rearranging terms yields

1
2E
(
‖ψ(i)‖2

H,h − ‖ψ(i−1)‖2
H,h + ∆t‖ψ(i)‖2

a,Eh

)
=−

∫ ti

ti−1
E(Bh(X(s)−X(ti) + φ(i), ψ(i)))ds

+
∫ ti

ti−1
E((F (s,X(s))− F (ti−1, X(ti−1)), ψ(i))H,h)ds

+
∫ ti

ti−1
E((F (ti−1, X(ti−1))− F (ti−1, X

(i−1)
h ), ψ(i))H,h)ds

+ E
(( ∫ t2

t1
G(s,X(s))−G(ti−1, X(ti−1)), dL(s), ψ(i))H,h

)
+ E

(( ∫ t2

t1
G(ti−1, X(ti−1))−G(ti−1, X

(i−1)
h )dL(s), ψ(i))H,h

)
− 1

2E(‖ψ(i) − ψ(i−1)‖2
H,h)

= : I + II + III − 1
2E(‖ψ(i) − ψ(i−1)‖2

H,h).

We now bound the terms I − III for each i, and then use a telescopic sum to estimate
ψ(m), using that ψ(0) = 0. To bound I, we use Young’s inequality to together with
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Theorem 8.3.7 and Ineq. (8.21)

I ≤ C
∫ ti

ti−1
E(‖X(s)−X(ti)‖2

a,∂D−)ds+ C∆tE(‖φ(i)‖2
a,Eh) + ∆t

4 E(‖ψ(i)‖2
a,Eh)

≤ C
(
∆t2 + ∆tE(|X(ti)|2Hq(D))h2q−1

)
+ ∆t

4 E(‖ψ(i)‖2
a,Eh)

≤ C∆t(∆t+ h2q−1) + ∆t
4 E(‖ψ(i)‖2

a,Eh)

We proceed in the same fashion as in the proof of Theorem 8.4.1 and bound the
remaining terms by the triangle inequality and Assumption 8.3.3(iii) via

II ≤ C∆t
(
∆t+ E(‖X(ti−1)−X(i−1)

h ‖2
H,h) + E(‖ψ(i)‖2

H,h)
)
,

and

III ≤ C∆t
(
∆t+ E(‖X(ti−1)−X(i−1)

h ‖2
H,h)

)
+ 1

2E(‖ψ(i) − ψ(i−1)‖2
H,h).

Hence, substituting the estimates on I − III and summing over i yields

E
(
‖ψ(m)‖2

H,h + ∆t
m∑
i=0
‖ψ(i)‖2

Eh,a

)
≤ C

(
∆t+ h2q−1 + ∆t

m−1∑
i=0

E(‖X(ti)−X(i)
h ‖2

H,h)

+ ∆t
m∑
i=0
‖ψ(i)‖2

H,h

)
.

By applying the discrete Grönwall inequality as in the proof of Theorem 8.4.1 we obtain
for any ∆t ∈ (0, 1/C)

E
(
‖ψ(m)‖2

H,h + ∆t
m∑
i=0
‖ψ(m)‖2

Eh,a

)
≤ C

(
∆t+ h2q−1 + ∆t

m−1∑
i=0

E(‖X(ti)−X(i)
h ‖2

H,h)
)
.

(8.24)
The claim follows by substituting the estimates (8.22) and (8.24) in the right hand side
of

E
(
‖X(T )−X(m)

h ‖2
H,h + ∆t

m∑
i=0
‖X(ti)−X(i)

h ‖2
Eh,a

)
≤2E

(
‖φ(m)‖2

H,h + ∆t
m∑
i=0
‖φ(i)‖2

Eh,a

)
+ 2E

(
‖ψ(m)‖2

H,h + ∆t
m∑
i=0
‖ψ(i)‖2

Eh,a

)
,

using that X(0)
h = PhX0 with Lemma 8.5.1 and applying once more the discrete Grön-
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wall inequality.

Remark 8.5.3. To conclude this section we remark that the estimate of O(hq−1/2)
in Theorem 8.5.2 corresponds to the rate of convergence for the linear DG method
applied to a deterministic transport problem, first shown in [123] for d = 2. In fact,
for a general triangulation of the domain, this is the best result one may achieve. In
[60], however, the authors show that for deterministic transport problems a rate of
O(hk) is possible, provided the solution is in Hk(D) with k ∈ N and the meshes satisfy
certain conditions with respect to the flow vector a. If d = 1, these conditions are
automatically fulfilled, hence, we expect to see mean-squared errors of order O(hq) for
q ≥ 1, which is confirmed by our experiments in Section 8.7.

8.6 Noise approximation

After discretizing the temporal and spatial domain of Problem (8.5), it is in general
necessary to derive a numerically tractable approximation of the infinite-dimensional
driving noise L. For this, we will utilize a series representation of L and truncate
the expansion after a finite number of terms. Since the covariance operator Q of L is
symmetric and of trace class, L admits the Karhunen-Loève expansion

L(t) =
∑
i∈N

(L(t), ei)Uei, t ∈ T. (8.25)

The scalar products (L(t), ei)H are one-dimensional uncorrelated, but not independent,
Lévy processes with zero mean and variance ηi (see [173]). In general, infinitely many
of the eigenvalues ηi will be strictly greater than zero, hence we truncate the series in
Eq. (8.25) after N ∈ N terms to obtain the truncated Karhunen-Loève expansion

LN(t) :=
N∑
i=1

(L(t), ei)Uei, t ∈ T.

It can be shown, see for example [30], that LN converges to L in mean-square uniformly
on T with the truncation error bounded by

E(‖LN(t)− L(t)‖2
U) ≤ T

∑
i>N

ηi, t ∈ T.

When simulating LN , it is vital to generate (L(t), e1), . . . , (L(t), en) as uncorrelated, but
stochastically dependent Lévy processes for fixed N . Besides the truncation, another
bias may occur when sampling the one-dimensional processes ((L(t), ei)H , t ∈ T). For
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ηi > 0, consider the normalized processes

`i = (`i(t), t ∈ T) := ((L(t), ei)U , t ∈ T)
√
ηi

, (8.26)

with unit variance such that the identity

LN(t) L=
N∑
i=1

√
ηi`i(t)ei

holds with respect to probability law of LN(t). For a general one-dimensional Lévy
process `i, it is not possible to sample from the exact distribution of `i(t) for arbitrary
t ∈ T. There are a few important exceptions, for instance normal-inverse Gaussian
(NIG) or variance Gamma (VG) processes (see [188]), in any other case, however, one
is forced to use approximate simulation algorithms. The most popular technique is
the compound Poisson approximation (CPA), see for instance [10, 74, 84, 186], which
usually guarantees weak convergence. A drawback of the CPA methods is that it re-
quires rather strong assumptions on the one-dimensional Lévy processes `i to bound
the approximation error in a mean-square sense and is difficult to implement. Another
approach is to use the Fourier inversion (FI) technique introduced in [30], which ensures
error control in a Lp(Ω;R)-sense under relatively weak assumptions on `i. With the
FI method, we are able to approximate very general types of Lévy noise and control
the mean-squared error, for instance if L stems from the important class of gener-
alized hyperbolic (GH) Lévy processes introduced in [18, 19]. To allow for arbitrary
approximation techniques, we formulate the following assumption.

Assumption 8.6.1. Let ˜̀i be arbitrary approximations of `i (based on CPA, FI,
etc.) such that the processes ( ˜̀i, i ∈ N) are jointly uncorrelated, but stochastically
dependent, and let

L̃N(t) :=
N∑
i=1

√
ηi ˜̀i(t)ei

be the approximated U -valued Lévy field. There is a constant εL > 0 such that for all
i ∈ N and t ∈ T

E(| ˜̀i(t)− `i(t)|2) ≤ εL.

Remark 8.6.2. Assumption 8.6.1 yields that the overall noise approximation error is
bounded by

E(‖L(t)− L̃N(t)‖2
U) ≤ T

∑
i>N

ηi + εL
N∑
i=1

ηi, t ∈ T, (8.27)

hence we have a separation between the truncation error with respect to N and the
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simulation bias εL. Often, an arbitrary small error εL may be achieved with suffi-
cient computational effort and it is possible to reduce the noise approximation error in
Eq. (8.27) to any desired amount by increasing the number of terms in the expansion
and decreasing εL. This is for instance the case for GH Lévy fields approximated by
FI as in [30]. Moreover, we are able to achieve an equilibration between both types of
errors in the sense that

E(‖L(t)− LN(t)‖2
U) = T

∑
i>N

ηi ≈ εL
N∑
i=1

ηi = E(‖LN(t)− L̃N(t)‖2
U)

Substituting L by L̃N in Eq. (8.19) yields the problem to find (X̃(i)
h,N , i = 1, . . . ,m) ⊂

Vh such that for all vh ∈ Vh and i = 1, . . . , n it holds

(X̃(i)
h,N − X̃

(i−1)
h,N , vh)H,h + ∆tBh((X̃(i)

h,N , vh) = (F (ti−1, X̃
(i−1)
h,N )∆t, vh)H,h

+ (G(ti−1, X̃
(i−1)
h,N )∆L̃(i)

N , vh)H,h,
(8.28)

where X(0)
h,N := PhX0 and ∆L̃(i)

N := L̃N(ti)− L̃N(ti−1). To complete the error analysis,
we derive the overall approximation error between X̃(·)

h,N and the unbiased weak solution
X to Eq. (8.5).

Theorem 8.6.3. Under Assumption 8.3.3 with q ≥ 1 and Assumption 8.6.1, it holds
for sufficiently small ∆t that

E(‖X̃(m)
h,N −X(T )‖2

H,h)1/2 ≤ C
(
∆t1/2 + hq−1/2 +

( ∑
i>N

ηi
)1/2

+
(
εL

N∑
i=1

ηi
)1/2

).

Proof. We start by estimating the error E(‖X̃(m)
h,N −X

(m)
h ‖2

H) and define ψ̃(i)
N := X̃

(i)
h,N −

X
(i)
h ∈ Vh. Testing against ψ̃(i)

N in Eqs. (8.19) and (8.28), we obtain

E(‖ψ̃(i)
N ‖2

H,h − ‖ψ̃
(i−1)
N ‖2

H,h + ∆t‖ψ̃(i)
N ‖2
Eh,a)

= 2∆tE
(
(F (ti−1, X

(i−1)
h )− F (ti−1, X̃

(i−1)
h,N ), ψ̃(i)

N )H,h
)

+ 2E
(
(G(ti−1, X

(i−1)
h )∆Li −G(ti−1, X̃

(i−1)
h,N )∆L̃(i)

N , ψ̃
(i)
N )H,h

)
− E(‖ψ̃(i)

N − ψ̃
(i−1)
N ‖2

H,h)

=: 2(I + II)− E(‖ψ̃(i)
N − ψ̃

(i−1)
N ‖2

H,h).

We use Assumption 8.3.3(iii) and Young’s inequality to bound the first term by

I ≤ C∆tE
(
‖X(i−1)

h − X̃(i−1)
h,N ‖H,h‖ψ̃

(i)
N ‖H,h

)
≤ C∆tE(‖ψ̃(i−1)

N ‖2
H + ‖ψ̃(i)

N ‖2
H).
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Similar to Theorem 8.4.1, we use for II that ∆L(i) and ∆L̃(i)
N are independent of ψ̃(i)

N

and that

E
(
G(ti−1, X

(i−1)
h )(∆Li −∆L̃(i)

N )
)

= E
(
(G(ti−1, X

(i−1)
h )−G(ti−1, X̃

(i−1)
h,N ))∆L̃(i)

N

)
= 0

to obtain

II = E
(
(G(ti−1, X

(i−1)
h )(∆Li −∆L̃(i)

N ), ψ̃(i)
N )H,h

)
+ E

(
((G(ti−1, X

(i−1)
h )−G(ti−1, X̃

(i−1)
h,N ))∆L̃(i)

N , ψ̃
(i)
N )H,h

)
= E

(
(G(ti−1, X

(i−1)
h )(∆Li −∆L̃(i)

N ), ψ̃(i)
N − ψ̃

(i−1)
N )H,h

)
+ E

(
((G(ti−1, X

(i−1)
h )−G(ti−1, X̃

(i−1)
h,N ))∆L̃(i)

N , ψ̃
(i)
N − ψ̃

(i−1)
N )H,h

)
≤ E

(
‖G(ti−1, X

(i−1)
h )‖2

LHS(U ,H)‖∆Li −∆L̃(i)
N ‖2

U

)
+ 1

4E(‖ψ̃(i)
N − ψ̃

(i−1)
N ‖H,h

)
+ E

(
‖G(ti−1, X

(i−1)
h )−G(ti−1, X̃

(i−1)
N,h )‖2

LHS(U ,H)‖∆L̃
(i)
N ‖2

U

)
+ 1

4E(‖ψ̃(i)
N − ψ̃

(i−1)
N ‖H,h

)
.

Then, the independence of X(i−1)
h from ∆L(i) and ∆L̃(i)

N yields together with Assump-
tion 8.3.3(iii), Ineq. (8.27) and Theorem 8.2.7

II ≤ E(‖G(ti−1, X
(i−1)
h )‖2

LHS(U ,H))E(‖∆Li −∆L̃(i)
N ‖2

U)

+ E(‖G(ti−1, X
(i−1)
h )−G(ti−1, X̃

(i−1)
N,h )‖2

LHS(U ,H))E(‖∆L̃(i)
N ‖2

U)

+ 1
2E(‖ψ̃(i)

N − ψ̃
(i−1)
N ‖H,h)

≤ C(1 + sup
i=1,...,m

E(‖X(i−1)
h ‖2

H))∆t(
∑
i>N

ηi + εL
N∑
i=1

ηi) + ∆tCE(‖ψ̃(i−1)
N ‖2

H,h)

+ 1
2E(‖ψ̃(i)

N − ψ̃
(i−1)
N ‖H,h)

≤ C∆t(
∑
i>N

ηi + εL
N∑
i=1

ηi) + ∆tCE(‖ψ̃(i−1)
N ‖2

H,h) + 1
2E(‖ψ̃(i)

N − ψ̃
(i−1)
N ‖H,h).

Summing over i and the discrete Grönwall inequality then give the final estimate

E(‖X̃(m)
h,N −X

(m)
h ‖2

H) ≤ C
( ∑
i>N

ηi + εL
N∑
i=1

ηi

)
,

and the claim follows with the triangle inequality and Theorem 8.5.2.
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8.7 Numerical results

For our numerical examples we consider the spatial domain D = (0, 1) with time interval
T = [0, 1], take U = L2((0, 1)) and let Q be given by the Matérn covariance operator
from Example 8.2.3

[Qφ](x) :=
∫ 1

0

21−ν

Γ(ν)
(√

2ν |x− y|
ρ

)ν
Kν

(√
2ν |x− y|

ρ

)
φ(y)dy, φ ∈ U, x ∈ (0, 1).

We fix the correlation length to ρ = 1/8 and vary the smoothness parameter ν > 0
throughout our experiments. The eigenpairs ((ηi, ei), i ∈ N) of Q may be approximated
by solving a discrete eigenvalue problem and interpolating, see [178, Chapter 4.3].
Remark 8.3.4, that relates the spectral basis of the Matérn kernel to Assumption 8.3.3,
shows that ν > 1 is required to achieve q = 1, which is in turn necessary to apply the
error estimates from Sections 8.4 – 8.6. As supplement to the theoretical framework
that holds for ν > 1, we will also investigate cases where ν ≤ 1. We consider GH Lévy
fields, i.e. the one-dimensional processes (`i, i ∈ N) from Eq. 8.26 are uncorrelated
GH Lévy processes. More importantly, for each N ∈ N the vector-valued process
(GHN(t), t ∈ T) := ((`1(t), . . . , `N(t)), t ∈ T) is a N -dimensional GH Lévy process with
parameters λ̂ ∈ R, α̂ > 0, δ̂ > 0, β̂ ∈ Rn, µ̂ ∈ RN and Γ̂ ∈ RN×N , where α̂2 > β̂ · Γ̂β̂
and the matrix Γ̂ is symmetric, positive definite with unit variance. The characteristic
function of GHN is given for u ∈ RN by

E(eiu·GH(t)) = eiu·µ̂t
(

α̂2 − β̂ · Γ̂β̂
α̂2 − (iu+ β̂) · Γ̂(iu+ β)

)λ̂t/2K
λ̂
(δ̂(α̂2 − (iu+ β̂) · Γ̂(iu+ β̂))1/2)t

K
λ̂
(δ̂(α̂2 − β̂ · Γ̂β̂)1/2)t

.

We achieve a zero-mean process by setting β̂ = µ̂ = (0, . . . , 0). An important class
of the GH family are normal inverse Gaussian (NIG) processes, where λ̂ = −1/2.
For more details on multidimensional GH distributions and the simulation of GH
Lévy fields we refer again to [30] and the references therein. In all subsequent ex-
periments, we use a NIG Lévy field with α̂ = 10, δ̂ = 1, β̂ = µ̂ = (0, . . . , 0) and
Γ̂ = 1N for each truncation index N . The choice of NIG fields is motivated by the re-
sults from [4], where the authors pointed out that this class of Lévy fields is well-suited
to fit empirical log-returns in electricity forward markets. We are able to simulate mul-
tidimensional NIG processes without bias, i.e. Assumption 8.6.1 holds with εL = 0. To
measure the error in each example, we generate a reference solution Xref on a very fine
spatio-temporal resolution and with sufficiently high cutoff index N , and then sample
approximations X̃(m)

h,N based on the same path of L. The overall root-mean-squared
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error (RMSE) from Theorem 8.6.3 is estimated by averaging 500 independent samples
of Xref (T )− X̃(m)

h,N , i.e.,

E(‖X(T )− X̃(m)
h,N‖2

H) ≈ 1
500

500∑
k=1
‖(Xref (T )− X̃(m)

h,N )k‖2
H ,

where the subscript k denotes the k-th Monte Carlo sample. The actual approximation
parameters ∆t, h and N for X̃(m)

h,N and Xref vary for each example and are given below.
As our first experiment, we consider the stochastic transport problem

dX(t, x) = 1
2∂xX(t, x)dt+ 1

10

(
X(t, x)3

X(t, x)2 + 1 +(1−x)
)
dL(t, x), x ∈ D, t ∈ T, (8.29)

with X0(x) := x(1−x) and homogeneous inflow boundary conditions X(t, 1) = 0. This
SPDE has a genuine nonlinearity in the diffusion coefficient, given by

[G(t,X(t))ϕ](x) = 1
10

(
X(t, x)3

X(t, x)2 + 1 + (1− x)
)
ϕ(x), ϕ ∈ U .

Note that G(t, ·) is Lipschitz in LHS(U ;H), where the Lipschitz constant is bounded
uniformly in T. Let X̃0 be the zero-extension of X0 to R and observe that X̃0 ∈
H3/2−ε(R) for any ε > 0. Moreover, for any q ∈ (1/2, 3/2) and v ∈ Hq

0,+ it holds
that G(t, v) ∈ Hq

0,+. The linear growth bound in Assumption 8.3.3(iv) on G for
q ∈ (1/2, 3/2) is derived in Appendix 8.8 for the reader’s convenience. Hence, As-
sumption 8.3.3 is satisfied with q < ν for any given ν ∈ (1/2, 3/2), see Remark 8.3.4.
Thus, spatial regularity of q ∈ (1/2, ν) as in Theorem 8.3.6 is ensured. Since the noise
is multiplicative (G depends on X), we couple the DG spatial discretization with a
BE time stepping scheme. We use ν ∈ {0.5, 0.75, 1, 1.1, 1.2} to investigate also cases in
which Assumption 8.3.3 with q ≥ 1 is violated. A sample of the driving noise and the
corresponding approximation of X for ν = 1.1 is given in the top row of Figure 8.1.
In the lower left plot in Figure 8.1, we clearly see the discontinuities in time if we
plot X at the outflow boundary, in contrast to the (spatially) continuous paths of
X(T, ·) : D→ R. Remark 8.5.3 suggests that the overall discretization error satisfies

E(‖X̃(m)
h,N −X(T )‖2

H,h)1/2 ≤ C
(
∆t1/2 + hq +

∑
i>N

ηi
)

since we gain additional convergence of order h1/2 as d = 1. We equilibrate all errors
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Figure 8.1 First numerical example (sine function): driving noise with ν = 1.1 (top left) and
the corresponding BE-DG-solution to Eq. (8.29) on [0, 1]2 (top right). The path of solution
at T resp. ∂D− is given at the bottom left and the RMSE vs. the inverse spatial refinement
h−1 as well as the estimated convergence rates q are depicted on the bottom right. In the
bottom right plot, the bars on each RMSE curve indicate the 95-% confidence interval of the
estimated error.

for given ∆t using q ≈ ν and by choosing h and N such that

∆t1/2 =
( ∑
i>N

ηi
)1/2

= hν . (8.30)

The time steps are of size

∆t = 2−m, m = d2 log2(16)νe, . . . ,min(b16νc, 15),

and we use ∆tref = 2−min(b20νc,18) with Nref , href according to Eq. (8.30) for the ref-
erence solution. To measure the actual rate of convergence q, we observe that with
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Eq. (8.30)

log
(
E(‖X(T )− X̃(m)

h,N‖2
H,h)1/2

)
≈ log(Chq) = q log(h) + log(C).

Thus, we estimate q by a linear regression with response variable log(E(‖X(T ) −
X̃

(m)
h,N‖2

H,h)1/2) and log(h) as regressor, the results are depicted in Figure 8.1 (bottom
right). First of all, for ν ∈ {1, 1.1, 1.2}, we observe converge rates of q = ν − ε

with ε ≈ 0.1, which confirms our theoretical findings from Section 8.5 as well as Re-
mark 8.5.3. More surprisingly, we also observe convergence rates close to q ≈ ν for
ν ∈ {0.5, 0.75}, meaning that the BE Euler scheme also seems to converge with rate
∆t1/2 in practice if q < 1. As G is multiplicative, we cannot expect better temporal
convergence by using CN times stepping instead of BE, but only if we used a higher
order approximation of the stochastic integral, for instance a Milstein scheme as in
[26].

To investigate an example with additive noise, we use the energy forward model
from [24] given by

dX(t, x) = ∂xX(t, x) + e−2αxσ(t, x)2dt+ e−αxσ(t, x)dL(t, x), x ∈ D, t ∈ T. (8.31)

We set α = 2, choose the volatily function

σ : T× D→ R0
+, (x, t) 7→ (1− x)(x+ t),

and matching initial/inflow boundary conditions given by

X0(x) = e−αx + σ(0, x)2K0(α̂)
απ

(1− e−αx), X(t, 1) = e−α.

The coefficients F (t,X) := e−2α·σ(·, t)2 and G(t,X) := e−α·σ(·, t) in Eq. (8.31) are
independent of X and, moreover, globally Lipschitz continuous with respect to T. If σ̃
denotes the zero-extension of σ(t, ·) on (0,∞) for some t ∈ T, then σ̃ ∈ H3/2−ε((0,+∞))
for any ε > 0 and σ̃, ∂xσ̃ ∈ L∞((0,+∞)). Therefore, it holds that F (t, v), G(t, v)ei ∈
Hq

0,+ for any q ∈ (1/2, 3/2) and v ∈ Hq
0,+(D). In addition, e−α·σ(·, t) ∈ C∞(D) and

‖e−α·σ(·, t)‖C∞(D) is bounded uniformly in T. Hence, Assumption 8.3.3 is satisfied for
any q ∈ (1/2,min(ν, 3/2)). Samples of the driving noise and the approximated solution
for ν = 1 and ν = 2 are given in Figure 8.2.

We use the CN scheme as in Remark 8.4.2 in order to achieve a convergence rate
of O(∆tγ(q)) with γ(q) > 1/2 for varying ν ∈ {0.5, 0.75, . . . , 4}, time steps ∆t =
2−4, . . . , 2−9 and ∆tref = 2−12. As we cannot (yet) adjust the DG discretization to ∆t
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Figure 8.2 Second numerical example (forward model): the driving noises (left column) and
CN-DG-solutions (right column) to Eq. (8.31) with ν = 1 (top) and ν = 2 (bottom).

to obtain equilibrated errors, we use a fixed spatial grid with h = href = 2−11 in every
scenario. Furthermore, the maximal rate of convergence is expected to be γ(q) ≈ 1,
thus we choose the truncation index N such that ∑i>N ηi ≤ ∆t2 for each ∆t and ν.
The decay rate γ is estimated by linear regression of the RMSE against ∆t as in the
first example and we plot the RMSE vs. the inverse temporal refinement ∆t−1 as well
as the estimated γ vs. ν in Figure 8.3

We see that γ(q) seems to be growing linearly in q with roughly γ(q) ≈ 2/3q,
where q := min(ν, 3/2) − ε for arbitrary small ε > 0. This confirms our expectations
from Remark 8.4.2, where we stated that γ should be increasing in q, and reach the
maximum of one for any ν > 3

2 . This observation allows us to equilibrate again all
error terms and we repeat the above experiment with ∆t = 2−7, . . . , 2−12,∆tref = 2−14

and by setting h and N such that

∆t2q/3 = hq = (
∑
i>N

ηi)1/2 ⇒ h = ∆t2/3,
∑
i>N

ηi = ∆t4q/3.

229



8.8. APPENDIX
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Figure 8.3 Second numerical example (forward model): RMSE vs. inverse temporal refine-
ment ∆t−1 (left) and estimated convergence rates of CN time stepping scheme for Eq. (8.31)
(right). In the left plot, the bars on each RMSE curve indicate the 95-% confidence interval
of the estimated error. The results have been generated with a fixed spatial discretization of
h = 2−11 and dimension truncation error

∑
i>N ηi ≤ ∆t2

We estimate q by regression of the RMSE on h and plot the results for every ν in
Figure 8.4.

Again, the error decay with respect to h is of order q ≈ min(ν, 3/2) as in the first
example with multiplicative noise. Hence, for problems with additive noise it is advan-
tageous to use a CN-DG discretization scheme to reduce computational complexity. If,
for instance, q = 1 and we want to achieve an RMSE of magnitude ε, we need to employ
a DG grid with roughly ε−2d nodal points and choose N such that ∑i>N ηi = O(ε2),
regardless of the time stepping scheme. In the BE method, however, the number of
timesteps needs to be of order ε−2, while we require only ε−3/2 time steps in the CN
method. In addition, this number can be further reduced if we have higher spatial
regularity of q > 1, whereas we are bound to order ∆t1/2 for any q ≥ 1 in the BE
scheme.

8.8 Appendix

In this appendix, we derive the linear growth bound on G as in Assumption 8.3.3(iv)
for the first numerical example in Section 8.7. To this end, let i ∈ N and ei be
any eigenfunction of Q. Define the rational function g(x) := x3

x2+1 for x ∈ R, and
observe that the derivative g′(x) = x4+3x2

(x2+1)2 is bounded on R. First, we consider the case
q ∈ (1/2, 1). As d = 1, we have the Sobolev embedding Hq(D) ↪→ C0,q−1/2(D) (see,
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Figure 8.4 Second numerical example (forward model): RMSE vs. inverse spatial refinement
∆t−1 (left) and estimated convergence rates of the CN-DG discretization for Eq. (8.31) (right).
In the left plot, the bars on each RMSE curve indicate the 95-% confidence interval of
the estimated error. The results have been generated with adjusted spatio temporal grid
h = ∆t2/3 and dimension truncation error

∑
i>N ηi ≤ ∆t4q/3.

e.g., Theorem 8.2 in [71]), which yields with the triangle inequality

‖G(t,X(t))ei‖2
Hq(D)

≤C
∫
D

∫
D

([G(t,X(t))ei](x)− [G(t,X(t))ei](y))2

|x− y|d+2q dxdy

≤C
(
‖g(X(t, ·)) + (1− ·)‖2

Hq(D)‖ei‖2
L∞(D) + ‖g(X(t, ·)) + (1− ·)‖2

L∞(D)‖ei‖2
Hq(D)

)
≤C

(
1 + ‖g(X(t, ·))‖2

Hq(D) + ‖X(t, ·)‖2
L∞(D)

)
‖ei‖2

Hq(D).

In the last estimate, we have used that |g(x)| ≤ x for any x ∈ R, ‖ · ‖L∞(D) = ‖ · ‖C0(D)

on C0(D) and Hq(D) ↪→ C0,q−1/2(D). As |g′(x)| ≤ C with C > 0 independent of x, the
the mean-value theorem yields

‖g(X(t, ·))‖2
Hq(D) =

∫
D

∫
D

|g(X(t, x))− g(X(t, y))|2
|x− y|d+2q dxdy ≤ C‖X(t, ·)‖2

Hq(D),

which shows that for q ∈ (1/2, 1)

‖G(t,X(t))ei‖Hq(D) ≤ C(1 + ‖X(t, ·)‖Hq(D))‖ei‖2
Hq(D).
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8.8. APPENDIX

To treat the case q = 1, we use the product rule to take the derivative ofG(t,X(t))ei:

∂x
(
G(t,X(t))ei

)
= ∂x

(
(g(X(t, ·)) + (1− ·))ei

)
= (g(X(t, ·)) + (1− ·))∂xei + (∂xX(t, ·)g′(X(t, ·))− 1)ei.

(8.32)

Hölder’s inequality then yields

‖G(t,X(t))ei‖H1(D)

≤C
(
‖g(X(t, ·)) + (1− ·)‖L∞(D)‖ei‖H1(D) + ‖g(X(t, ·)) + (1− ·)‖H1(D)‖ei‖L∞(D)

)
≤C

(
(1 + ‖X(t, ·)‖L∞(D))‖ei‖H1(D)

+ (1 + ‖X(t, ·)‖H + ‖∂xX(t, ·)g′(X(t, ·))‖H)‖ei‖L∞(D)

)
≤C(1 + ‖X(t, ·)‖H1(D))‖ei‖H1(D).

The last estimate holds again since ‖ · ‖L∞(D) = ‖ · ‖C0(D) on C0(D) and H1(D) ↪→
C0,1/2(D) for d = 1.

For the case q ∈ (1, 3/2), there are no L∞(D)-estimates at hand for ∂xX(t, ·), ∂xei ∈
Hq−1(D). Instead, we make use of the following Lemma on compositions and products
in fractional Sobolev spaces

Lemma 8.8.1. [48, Theorem 1.1. and Corollary 6.2], 1.) Let f ∈ C2(R) such that
f(0) = 0 and f ′, f ′′ ∈ L∞(R). Then, for any 1 ≤ q < +∞ and v ∈ Hq(D) ∩ L2q(D) it
holds that f(v) ∈ Hq(D) and there is a C = C(f, q,D) such that

‖f(v)‖Hq(D) ≤ C‖v‖Hq(D).

2.) Let 1 < q < +∞, f1 ∈ Hq(D) ∩ L∞(D) and let f2 ∈ Hq−1(D) ∩ L2q(D). Then
f1f2 ∈ Hq−1(D) and

‖f1f2‖Hq−1(D) ≤ C
(
‖f1‖L∞(D)‖f2‖Hq−1(D) + ‖f1‖1−1/q

Hq(D)‖f1‖1/q
L∞(D)‖f2‖L2q(D)

)
.

Remark 8.8.2. The estimates in Lemma 8.8.1 are originally stated with respect to
Hq(Rd) instead of Hq(D) in [48]. Nevertheless, the above statement remains true since
D ⊂ Rd is a bounded Lipschitz domain. For any v ∈ Hq(D), this in turn guarantees the
existence of an extension ṽ ∈ Hq(Rd) such that v = ṽ|D and ‖ṽ‖Hq(Rd) ≤ C‖v‖Hq(D),
see [71, Theorem 5.4]. The last estimate then allows to consider Sobolev spaces with
respect to the domain D ⊂ Rd.

Since q > 1/2, we have that X(t, ·) ∈ L∞(D) ⊂ L2q(D). As all derivatives of g are
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bounded on R, the first part of Lemma 8.8.1 yields

‖g(X(t, ·))‖Hq(D) + ‖g′(X(t, ·))‖Hq(D) ≤ C‖X(t, ·)‖Hq(D). (8.33)

In addition, by taking f1 = g′(X(t, ·)) and f2 = ∂xX(t, ·), we obtain by the second part
of Lemma 8.8.1

‖∂xX(t, ·)g′(X(t, ·))‖Hq−1(D) ≤ C‖X(t, ·)‖Hq(D)
(
‖∂xX(t, ·)‖Hq−1(D) + ‖∂xX(t, ·)‖L2q(D)

)
≤ C‖X(t, ·)‖Hq(D)‖∂xX(t, ·)‖Hq−1(D).

(8.34)

In the last estimate, we have used the fractional Sobolev inequality from Theorem 6.5
in [71] that shows Hq−1(D) ↪→ L2q(D) for q ∈ (1, 3/2) and d = 1. Finally, we apply
Lemma 8.8.1 to both terms in Eq. (8.32) and obtain with Ineqs. (8.33) and (8.34)

‖∂xG(t,X(t))ei‖Hq−1(D) = ‖g(X(t, ·)) + (1− ·))∂xei‖Hq−1(D)

+ ‖∂xX(t, ·)g′(X(t, ·))− 1)ei‖Hq−1(D)

≤ C(1 + ‖X(t, ·)‖Hq(D))‖ei‖Hq(D).
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9 Conclusions and outlook

This thesis has motivated the approach of uncertainty quantification with Lévy-type
random fields from a perspective of modeling, computation and simulation. The poten-
tial of models with discontinuous stochastic structures has been unfolded by tractable
algorithms and, therefore, the results from this thesis mark the starting point for the
exploration of a still underappreciated topic in the field of uncertainty quantification.

The main contributions can be summarized as follows: A new type of discontinuous
Lévy-type random field, capable of modeling arbitrary stochastic geometries, has been
introduced. Utilized in stationary and time-dependent random PDEs, this stochastic
coefficient paves the way for a broad range of possible applications. As any state-of-the-
art continuous random coefficient may be recovered as a special case of this model, this
is a significant extension of the common methodology in uncertainty quantification.
Moreover, an algorithm for the approximation and simulation of general Lévy fields
has been developed. The Fourier inversion approach in Chapter 7 differs drastically
from the standard simulation algorithms and is, therefore, more flexible and easier to
implement. Finally, a fully discrete scheme for a stochastic transport problem with
Lévy noise has been presented, the first of his kind for this particular problem. Thus,
it is finally possible to apply models based on transport equations with Lévy noise in
practice, for instance to valuate commodity forward contracts. For each of the vari-
ous random PDEs and SPDEs in this thesis, a well-posed analysis has been provided,
tractable approximations of the random field have been discussed and suitable algo-
rithms for the numerical discretization have been derived. All of the steps have turned
out to be rather challenging, since existing results could only be applied to a limited
extend.

It is my opinion that the contents of this thesis will shift the attention towards
the novel approach of uncertainty quantification with Lévy-type random fields. The
research on random PDEs with (log-) Gaussian coefficients tends towards its saturation
and the discontinuous fields of this thesis provide the natural extension to this termi-
nology. In fact, the results from Chapter 4–6 have already motivated ongoing research
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on the probabilistic structure of Lévy-type random fields, as well as their applications
in nonlinear conservation laws and inverse problems. Also, I believe that Chapters 7
and 8 form the basis for the actual implementation of forward models with heavy-tailed
source terms. So far, the existing models have only been recognized from a theoretical
perspective and their application has been, until this point, neglected.

There are, of course, still several open questions and various topics for further re-
search. First of all, as indicated in Chapter 2, the proposed schemes could be improved
by advanced numerical algorithms. For instance, the adaptive, sample dependent grids
in Chapters 4–6 may become computationally expensive for very detailed and irregular
stochastic geometries. Here, hp-finite element methods ([189]) may be a valid alterna-
tive, since the refinement is not based on the sample of the diffusion coefficient but on
a-posteriori-error estimates in each sample. This hp-adaptive schemes could then be
incorporated in the recently developed continuous level Monte Carlo estimator from
[70]. As a generalization of the multilevel Monte Carlo method, this approach allows
for stochastic refinement parameters that occur naturally in the jump-diffusion setting.

Furthermore, coupling multilevel Monte Carlo with quasi-Monte Carlo (QMC) sam-
pling (see Section 2.2 and the references therein) seems promising for random PDEs
with discontinuous coefficients. In the recent work [108], the authors introduce a novel
multilevel QMC algorithm based on so-called product weights for random PDEs with
log-normal diffusion coefficients. The key assumption therein is that the basis functions
in the Karhunen-Loève expansion of the underlying random field are locally supported.
However, this assumption holds by definition for the jump part of the coefficients in
Chapters 4–6, so a natural next step is to investigate similar algorithms in the general
jump-diffusion setting. Moreover, QMC methods have not yet been applied to estimate
moments or functionals of SPDEs, thus there is a lot of potential for further research.

The contemporary successes of Deep Learning shows that deep neural networks
(DNNs) may change the field of scientific computing, not only with regard to uncer-
tainty quantification. Of particular interest are the approaches in [122, 191, 192, 199],
where the authors show that DNNs are able to solve very high-dimensional (paramet-
ric) PDEs. This immediately applies to the solution of random PDEs (see [191]), but
DNNs have yet to be tested for problems with discontinuous Lévy-type objects. Fi-
nally, the latest development to use DNNs for the sampling of complex discontinuous
microstructures, such as porous rock or alloys, has to be mentioned (see [50] and the
references therein). In the setting of this thesis, it would be interesting to investigate
the possibility of sampling Lévy-type objects by DNNs. This could open the door to
generate even more complex geometries and eliminate several bottlenecks of current
techniques, such as approximating the eigenbasis in a Karhunen-Loève expansion.
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