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Abstract

Poyang Lake, China’s largest freshwater lake, undergoes a yearly repeating cycle of drastic in-
undation and subsequent considerable shrinkage. Essentially, as a result of local precipitation
and feedings from its tributaries, as well as a natural water exchange with the Yangtze River,
Poyang Lake experiences such dimensional fluctuations on a annual and interannual scale. The
ongoing change plays a significant role for the surrounding anthropogenic activity and wildlife.
Despite being considered as a hydrological phenomenon, the dynamics of this Chinese water
body set up a hurdle for any accurate documentation of its regime and therefore remains in-
sufficiently studied upon to this day. Further impeding the comprehension of Poyang Lake’s
behavior is the near inaccessibility and nonexistence of in situ data, such as water level mea-
surements and bathymetric maps. Consequently, this study, driven by its aim to analyze the
spatio-temporal behavior of Poyang Lake, focuses solely on satellite observations.

Making use of the cloud computing platform, Google Earth Engine, image time series are used
from Landsat-8 and Sentinel-1 datasets in order to map Poyang Lake’s spatio-temporal behav-
ior on an annual and interannual scale. Produced from the Landsat-8 dataset, results show that
only under circumstances, do techniques, such as the combination of visible and infrared bands
and the calculation of the Normalized Difference Water Index, provide a reasonable approach
for the delineation of continental water bodies. For the study on Poyang Lake, a water body
subject to humid climate and thus frequent cloud coverage, these techniques do not apply very
well. With synthetic aperture radar observations from the Sentinel-1 dataset, dynamic water
masks, involving the removal of certain elevated areas and the classification of water from
thresholding, could be generated. The resulting binary water masks are then merged with a
digital terrain model to create monthly maps of the study area.

The results show an evident correlation between this study’s visual and numeric findings. Al-
though the results are nearly impossible to compare with any in situ data, they show a trend
that annually occurs in Poyang Lake’s hydrological regime. In particular, they reveal the cy-
cle of drastic inundation in rainy summer months and considerable shrinkage in dry winter
months, especially when examining the years prior to 2019. Using SAR imagery for continen-
tal water body delineation, particularly in humid climates, proved to be a suitable technique
and should be considered for future documentations of the lake.
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Chapter 1

Introduction

1.1 Introduction to water body change detection

Water is essential for life. As it feeds living organisms, motorizes physical functions, creates
habitats and serves as means of transportation, water’s omnipresence is vital for Earth’s na-
ture. Water is estimated to make up around 70 percent of the human body which is responsible
for cellular survival and the functioning of various systems, such as respiration, digestion or
muscle movement. By coincidence, water also covers a similar percentage of Earth 1. It oc-
curs in all three states of matter, namely as water vapor in the atmosphere, liquid water in
oceans and continental bodies and ultimately as ice in below freezing temperatures. Mankind
has always urged to exploit and gain control over its occurrence on Earth as it plays such a
fundamental role in human development. Yet the effects are impacting the globe significantly
while climate change intensifies and anthropogenic activity grows. In 2015, permanent surface
water bodies amounted to 2.78 million km2 with ancient lakes, such as Baikal and Tanganyika,
North America’s Great Lakes and the Nordic region’s "thousand lakes" leading this category.
Shockingly, more than 162,000 km2 of water bodies previously considered as permanent have
changed their characteristics over the past three decades. More precisely, around 90,000 km2

have disappeared entirely and over 72,000 km2 have turned into a seasonal state, as detected
and analyzed from multi-temporal orthorectified Landsat 5,7 and 8 imagery. Especially the
Aral Sea and surface water bodies in Iran, Afghanistan and Iraq experienced severe spatial
losses throughout the past decades (Pekel et al., 2016).

Space-based techniques have been run to monitor spatio-temporal behavior of inland water
bodies in order to raise awareness and perhaps minimize such drastic changes. Sneeuw et al.
(2016) create an overview of current and future geodetic satellite missions for global change
monitoring: Altimetry, although initially designed for oceanographic purposes, has proven to
be a practical technique for monitoring inland water levels. As the trend of in situ data avail-
ability is declining, lakes and rivers are increasingly observed from space as well. Moreover,
combining lake levels from altimetry with detected areal variations from optical or SAR-based
images, as well as with knowledge of the lake’s bathymetry, allows a complete monitoring of
absolute lake volumes. In general, for detecting visual changes among inland water bodies,
images acquired from active sensors, such as SAR, and from passive sensors observing re-
flected electromagnetic energy, serve as a straightforward method. Tourian et al. (2014) apply
an unsupervised classification algorithm (ISODATA) on MODIS surface reflectance imagery,
amongst other methods, to visualize the results of desiccation on Lake Urmia in Iran within
the years of 2000 and 2014. Furthermore, indexes derived from optical imagery, automatically

1https://www.nasa.gov/vision/earth/everydaylife/jamestown-water-fs.html
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highlight specific surface features according to their reflectance characteristics. In particular for
water bodies, McFeeters (1996) introduced the Normalized Difference Water Index (NDWI) to
delineate open water features with the use of reflected near infrared and visible green bands.
Ultimately, the importance of water and the continuously increasing scarcity of which, necessi-
tate to analyze and comprehend the occurring behavior as it is in our own interest to preserve
Earth’s aquatic features.

1.2 Problem statement

Poyang Lake has become a very popular study area for several sciences. Beside multiple biolog-
ical fascinations of Poyang Lake, it is also carefully observed within the field of remote sensing.
Its annual cycle leaves many geospatial analysts modeling and acquiring the characteristics of
this Chinese water body. Various studies approximate its surface area and volume, though the
lake’s dynamics remain a hurdle. Constant and time variable monitoring of Poyang Lake de-
mands qualitative and quantitative data from various sources. In this case, in situ data, such as
water level measurements and bathymetric maps are nearly inaccessible or nonexistent. There-
fore, this study, driven by its aim to analyze Poyang Lake’s spatio-temporal behavior, will be
entirely based on satellite observations from the Landsat-8 and Sentinel-1 missions. The main
problem to overcome in this thesis is to define the lake’s dynamic boundaries on a monthly
basis from the available imagery. This especially applies to periods when marshlands emerge
in the study area and weather conditions impede a precise documentation. Solely then, an an-
nual mapping of the study area is realizable. To this regard, the objectives will be expressed in
section 1.4.

1.3 Previous studies

In addition to desiccating water bodies in considerably arid climates, change also occurs in
cycles elsewhere. Poyang Lake, China’s largest freshwater lake, is a case of repeating an-
nual fluctuations resulting in massive floods and extreme subsequent shrinkage. Feng et al.
(2012) quantify and document Poyang Lake’s seasonal patterns, interannual variability and
long-term trend of inundation area by using 11-year MODIS measurements between 2000 and
2013. At both seasonal and interannual scales, they find inundation ratios to range between 2
and 4 which confirm Poyang Lake’s significant fluctuations. Moreover, declining trends in both
the annual mean and minimum inundation areas from 2000 to 2010 were detected (-30.2 km2

yr−1 and -23.9 km yr−1). Assumptions were made that these changes are mainly attributed
to weather fluctuations and partially to modulation by the upstream Yangtze River. Hui et al.
(2008) calculate the Normalized Difference Water Index (NDWI) as well as the Modified Nor-
malized Difference Water Index (MNDWI) for eight cloud-free Landsat Thematic Mapper im-
ages in order to map and examine Poyang Lake’s spatio-temporal changes. As a result of in-
sufficient qualified imagery, due to high cloud coverage over the area, and too little knowledge
of the hydrological processes, spatio-temporal interpolations of existing data were executed to
fill temporal gaps. Nonetheless, for the inundation problem at Poyang Lake, they conclude
rather non-linear approaches should be developed especially taking water boundary informa-
tion extracted from remotely sensed data into account. Considering a similar approach, Ma
et al. (2013) developed a novel water area recognition method involving the interconnection of
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the NDWI and the Normalized Difference Vegetation Index (NDVI) together with mathemat-
ical morphology. NDVI appears to be oversensitive to additional non-water objects whereas
the NDWI method delineates less water bodies than expected. Therefore, interconnecting both
methods with mathematical morphology should improve the qualification of water area recog-
nition at Poyang Lake within March 2011 and December 2012. As a matter of fact, for this case
study, the proposed method achieves an accuracy which is 9.43% higher than NDWI, NDVI
and supervised classification methods. Wang et al. (2019) present the spatial and temporal
variation of the surface water of Poyang Lake during the time period of 1988-2016, particularly
with regard to the construction of the Three Gorges Dam (TGD). Hereby, they process Landsat
data on the cloud computing platform, Google Earth Engine. In their study, it was detected that
a decreasing trend of annual inundation frequency mainly occurred in the post-TGD period.
Spring and autumn proved to be the seasons during which the surface water loss was the most
severe in the post-TGD period compared with the pre-TGD period. Shang et al. (2015) use Spe-
cial Sensor Microwave Imager (SSM/I) passive microwave data to monitor water-saturated
soil and open water areas of the Poyang Lake floodplain from 2001 to 2008. They calculate the
open water area of Poyang Lake from a polarized effective emissivity difference (PEED) with
the help of a linear model. Although in their study a main focus also lies on retrieving the frac-
tional area of water-saturated soil, Poyang Lake’s annual and interannual fluctuations, as well
as a linkage of its behavior with the Three-Gorges-Dam could be determined. Regarding the
aforementioned techniques, multiple factors for the continuous observation and visualization
of Poyang Lake must be taken into account in order to analyze its spatio-temporal changes.

1.4 Objectives

This study is mainly based on the potential and data availability of the cloud computing plat-
form, Google Earth Engine. The aim is to analyze the spatio-temporal behavior of Poyang Lake
via satellite observations. For this matter, the engine provides an archive of various datasets
and the opportunity to run geospatial data, enabling a change detection related research. This
thesis focuses on Poyang Lake’s annual and interannual behavior, namely by depicting de-
tailed spatio-temporal changes and quantifying the results within the years of 2016 and 2019.
The objectives of this study can be arranged as follows:

1. Generating dynamic lake masks by cropping elevation data and subsequently creating
binary water imagery from classification by thresholding

2. Mapping measurement epochs on an annual and interannual scale with the help of a
digital terrain model

3. Quantifying the results from the water masks and visualizing them in time series

4. Demonstrating the potential of Google Earth Engine for water body change detection

1.5 Outline

This thesis is structured into five additional chapters. Poyang Lake will be introduced as the
study area in chapter two. Hereby, the main emphasis lies on a geographical description of the
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lake and an explanation of its hydrological regime. Furthermore, there will be an overview of
the data which has been made of use for the research on Poyang Lake. The two datasets from
the Landsat-8 and Sentinel-1 missions are briefly introduced, as well as their band availability
in Google Earth Engine.

Moving on, chapter three defines an entire section about Google Earth Engine itself. As Google
Earth Engine is rapidly emerging among remote sensing applications and therefore serves as
the computing environment for this research, a tour of its potential appears to be necessary. In
this chapter the focus lies on the description of its idea, the structure of the Earth Engine Data
Catalog followed by a statement on why the engine will be used for the study.

Chapter four is the main body of this thesis. Approaching to generate dynamic lake masks,
optical imagery from Landsat-8 will be used first. To automatically highlight open water fea-
tures, the Normalized Difference Water Index (NDWI) is calculated from the available optical
images and subjected to classification through thresholding. Subsequently, the study finds its
basis with SAR imagery. Image series are created within Google Earth Engine which are then
to be cropped with an SRTM digital elevation model. With a narrowed down study area the
thresholding method is applied again to the SAR images. At last, image stacks resulting from
the classification are exported and merged with a digital terrain model for an annual and in-
terannual mapping of the study area. The results from the dynamic water masks will then be
quantified and visualized in time series.

In chapter five an attempt on validating and assessing this study’s accuracy is made by com-
paring these findings to those of an other study. At last, chapter six summarizes this study’s
steps, discusses the results and provides an outlook.



5

Chapter 2

Case study and data

2.1 Poyang Lake and its hydrological regime

Figure 2.1: East Asia and Poyang Lake

The study area of this thesis is the Poyang Lake. Situated in the northern part of Jiangxi
Province, China, this water body is the largest fresh water lake in the country. Due to consistent
change of precipitation during the annual wet and dry seasons, the lake fluctuates heavily in
its surface area and water level. For this matter, many studies have been undertaken on the
Chinese water body, yet most vary regarding the geographic details. Poyang Lake’s size can
be estimated as a length of about 110 km from 28◦ 45′ N - 29◦ 45′ N and a width of approxi-
mately 89 km spanning from 115◦ 52′ E - 116◦ 44′ E. However, an exact specification can not
be met. Results prove that Poyang Lake expands to a surface area greater than 3000 km2 by the
end of the wet season and rapidly shrinks to less than one third of its previous size at the end
of the dry period (Feng et al., 2012). This phenomenon makes Poyang Lake one of the most
dynamic lakes on Earth and plays a significant role for the surrounding anthropogenic activity
and wildlife. During the dry winter months, several parts of the lake turn into wet marsh-
lands and swamps while the remaining water is to be found in smaller pools and streams. This
drastic topographic change forms a natural sanctuary for migratory Siberian cranes and is a
basis for temporal fertile land 1. Come the rainy months of April to June, Poyang Lake is fed
by a significantly higher amount of precipitation as well as by its main tributaries Gan, Xin,

1https://whc.unesco.org/en/tentativelists/107/
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Xiu, Wu and Rao Rivers. In the north the water body is connected to the Yangtze river via a
channel which creates a natural water exchange. Not only has Poyang Lake been experiencing
fluctuating annual changes, but a shrinkage in size in the long run as well. It is assumed that
the construction of the Three Gorges Dam upstream the Yangtze and the performing of sand
mining on Poyang lake’s banks have lead to an amplification of the long-term shrinkage results
(Wang et al., 2019; de Leeuw et al., 2010). Poyang Lake is a case of constant change impacting
various fields of nature. Consequently, its hydrological regime is to be discussed in several
remote sensing applications.

2.2 Data: Landsat-8 and Sentinel-1

Towards the change detection of Poyang Lake we will at first use Landsat-8 optical imagery.
To be more precise, the USGS Landsat-8 Surface Reflectance Tier 1 dataset will be used for the
process. Landsat-8 is currently the latest ongoing mission by the joint program of United States
Geological Survey (USGS) and National Aeronautics and Space Administration (NASA), ob-
serving the Earth’s surface and providing data since its launch in 2013. The satellite operates
on a sun-synchronous, near-polar orbit 705 km above the Earth’s surface. With an inclination
of 98.2 degrees one orbit is complete after 99 minutes. It captures 30 m resolution imagery
for the entire Earth every 16 days from its two sensors, Operational Land Imager (OLI) and
Thermal Infrared Sensor (TIRS) 2. The available bands and details of USGS Landsat 8 Surface
Reflectance Tier 1 are taken from the Earth Engine Data Catalog and can be observed from table
2.1.

Name Wavelength Description

B1 0.435− 0.451 µm ultra blue
B2 0.452− 0.512 µm blue
B3 0.533− 0.590 µm green
B4 0.636− 0.673 µm red
B5 0.851− 0.879 µm near infrared
B6 1.566− 1.651 µm shortwave infrared 1
B7 2.107− 2.294 µm shortwave infrared 2
B10 10.60− 11.19 µm brightness temperature
B11 11.50− 12.51 µm brightness temperature

sr aerosol Aerosol attributes

Table 2.1: Band details Landsat-8 Surface Reflectance

For the second part of this study we will use the Sentinel-1 Synthetic Aperture Radar Ground
Range Detected dataset (Sentinel-1 SAR GRD) which offers high resolution and cloud free
SAR imagery. The gray-style images are a practical basis for the monitoring of dynamic water
bodies and therefore serve well in this thesis. The Sentinel-1 mission consists of a constellation
of two satellites orbiting the poles sun-synchronously with a 98.18 degree inclination. While
being one of five Sentinel missions, it is part of the Copernicus Program, lead by the European

2https://www.usgs.gov/land-resources/nli/landsat/landsat-8?qt-science_support_page_related_con=0#qt
-science_support_page_related_con
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Commission in partnership with the European Space Agency (ESA). The two satellites were
brought into orbit in 2014 and 2016 operating from a 693 km altitude to obtain data until the
present day. An orbital period for the satellites takes 98.6 minutes with a 12 day repeat cy-
cle. Sentinel-1’s main focus is to provide high resolution data regardless of atmospheric and
sunlight conditions with the help of its dual-polarization C-band Synthetic Aperture Radar in-
strument 3. The bands such as their details are taken from the Earth Engine Data Catalog and
can be observed from table 2.2.

Name X/Y Resolution [m] Frequency Description

HH 10 5.405GHz Single co-polarization, horizontal transmit/horizontal receive
HV 10 5.405GHz Dual-band cross-polarization, horizontal transmit/vertical receive
VV 10 5.405GHz Single co-polarization, vertical transmit/vertical receive
VH 10 5.405GHz Dual-band cross-polarization, vertical transmit/horizontal receive

Table 2.2: Band details Sentinel-1 SAR GRD

Synthetic Aperture Radar (SAR) is an active system which creates high resolution radar im-
agery from a moving platform, whereas real-aperture radar does not take motion into account
and delivers a lower resolution. It is realized in motion, specifically on aircrafts and spacecrafts
while pointing in perpendicular direction of the velocity vector. Radio waves are transmitted,
penetrate atmospheric disturbances and canopies and are partially scattered back towards the
antenna 4. Generally, one differentiates between the polarizations of transmitted and received
waves. They refer to the direction of travel of the electromagnetic wave, which occurs in a
vertical, horizontal or circular motion. The direction of polarization is defined by the orien-
tation of the wave’s electric field, which is always perpendicular to its magnetic field 5. In
SAR imagery polarization plays a significant role as its arrangement with transmission and re-
ception of the radio waves applies to distinctive surface feature detection purposes. Typically
arranged in SAR are: Horizontal transmission, horizontal reception (HH), vertical transmis-
sion, vertical reception (VV), horizontal transmission, vertical reception (HV) and vice versa
(VH). Various applications of the aforementioned arrangements are presented in table 2.3. The
table is a modified version of the table from esa earthnet online 6. While physical apertures
are rather small, a larger synthetic aperture is enabled by the distance the antenna travels dur-
ing transmission and reception of the radio waves. The enlargement of the aperture provides
a higher spatial resolution for the imagery. As the radio pulses are transmitted successively,
multiple backscatter information is saved for the processing. Hereby, the received information
together with various antenna positions are subject to signal processing for the creation of the
high-resolution image 7.

SAR observations, as well as optical imagery are both very commonly used in remote sens-
ing, especially in water body monitoring. For this study, the aforementioned datasets from the
Landsat-8 and Sentinel-1 missions form the basis and will be compared as their techniques and
results strongly differ from one another. Optical imagery is a product of a passive system ob-
serving reflected electromagnetic energy from the infrared and visible spectrum. SAR imagery
though, is a product of an active system which transmits radar pulses and receives a portion of

3https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/sentinel-1
4https://www.sandia.gov/radar/what_is_sar/
5https://nisar.jpl.nasa.gov/mission/get-to-know-sar/polarimetry/
6https://earth.esa.int/handbooks/asar/CNTR1-1-6.html
7https://www.sandia.gov/radar/what_is_sar/
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the backscatterers. Both systems are practical for observing Earth’s surface, but vary in terms
of spatial and temporal resolution. Due to the synthetic aperture, SAR images are known to
have a better spatial resolution of around 10 m or less. In contrast, optical imagery typically
achieves a spatial resolution of only 30 m. Considering this, the quality of SAR images are on
principle higher than those of optical imagery. In terms of temporal resolution however, the
availability of optical imagery is higher than that of SAR images. This is dependent on the
time needed by the satellite to revisit and acquire data for the same location. For monitoring
water bodies, specific bands from the visible and infrared spectrum can be combined in order
accurately delineate the boundaries. For instance, by using near infrared and visible Red, water
bodies can be highlighted in very dark colors in direct contrast to surrounding vibrant-colored
land masses. A visualization as such is attributed to the reflectance characteristics of surface
objects towards the selected bands. Near infrared waves are absorbed almost completely by
water depths, while the visible Red light is reflected intensively by soil and vegetation. How-
ever, waves of both spectra are unable to penetrate clouds and are only present by daylight.
Therefore, in regions which experience frequent precipitation, clear images of the Earth’s sur-
face can not always be acquired. SAR images do not automatically highlight specific surface
features as clear as optical ones, but are independent from atmospheric conditions and day-
light. At any time of the day radio pulses can be transmitted and penetrate clouds and some
canopies due to their longer wavelengths. The high quality imagery from SAR can later be
used for delineating water as also here surface features reflect the emitted pulses differently.
In chapter 4, an approach for each of the two techniques is undertaken to at best define the
dynamic boundaries of Poyang Lake.

Application Polarization

Agriculture VV/VH
Land cover VV/VH
Forestry VV/VH
Soil moisture VV/VH
Snow melt HH/VV
Hydrology VV/VH
Geology HH
Urban mapping HH/HV
Inland water VV
Oceanography VV/HH
Coastal phenomena VV/HH
Sea ice VV/HH
Ship detection HH/HV
Marine meteorology VV/HH
Pollution monitoring VV

Table 2.3: Common applications of polarization in remote sensing

2.3 Additional data: SRTM

In chapter 4, a mask based on a digital elevation model will be applied to the image series.
For generating the mask, a digital elevation model from the Shuttle Radar Topography Mis-
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sion (SRTM) will be used. SRTM is an international project lead by the National Geospatial-
Intelligence Agency (NGA) and NASA collecting topographic data in order to obtain the most
complete near-global high-resolution database of Earth. Mounted on the Space Shuttle En-
deavor, a radar system of two antennas swept the most of Earth’s surface in an eleven day
mission in February 2000 8. In Google Earth Engine the data will be acquired from SRTM Digi-
tal Elevation Data Version 4 which offers 90 meter resolution models.

Figure 2.2: SRTM elevation map of the study area

Figure 2.2 shows an example of a SRTM elevation map of the study area. Elevations equal to
or greater than 60 m are depicted in red, while elevations near 0 m or below are depicted in
blue.

8https://www2.jpl.nasa.gov/srtm/mission.htm
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Chapter 3

Google Earth Engine overview

3.1 Introduction and its potential

As climate and human developments are drastically changing within the 21st century, so are
also various techniques regarding the detection, observation and analysis of the results on
Earth’s surface. Over the past decades several space-based missions have been started for
geospatial purposes in order to obtain data reaching from gravity, onward to radar and lastly
to optical imagery. With the rise of machine and deep learning techniques to detect specific
behaviors and patterns, the online computing platform, Google Earth Engine, is making its ap-
pearance as well. Google Earth Engine (GEE) enables its user to interact with provided datasets
from multiple global missions by running code on an application programming interface (API)
(Gorelick et al., 2017).

3.1.1 Data Catalog

GEE creates an ongoing archive of datasets including imagery since 1984 and other geospatial
data from various missions. The sets are frequently updated to the present day and offer a
decent spatial resolution over specific regions. Its main categories are arranged as presented in
table 3.1.

Climate and Weather Imagery Geophysical

Surface Temperature Landsat Terrain
Climate Sentinel Land Cover

Atmospheric MODIS Cropland
Weather High-Resolution Imagery Other geophysical data

Table 3.1: Google Earth Engine data categories

Climate and Weather is a diverse archive of datasets derived from various sensors and mis-
sions in order to at best cover the phenomena occurring within the troposphere. Data from this
category is produced from numerous sensors including Moderate Resolution Imaging Spec-
troradiometer (MODIS), Advanced Spaceborne Thermal Emission and Reflection Radiome-
ter (ASTER) and Advanced Very High Resolution Radiometer (AVHRR). In Imagery, Google
Earth Engine features various Landsat missions such as Landsat-1 through 5 and Landsat-7
and 8, which are updated frequently with data from their current missions. Furthermore, the
Copernicus Program offers the data catalog all-weather radar images from Sentinel-1A and 1B,
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high-resolution optical imagery from Sentinel-2A and 2B, ocean and land data by Sentinel-3
and at last air quality data from Sentinel-5P. All of the mentioned are updated regularly to the
present day. As opposed to Landsat and Sentinel, MODIS is known for its daily availabil-
ity since 1999. These sensors are mounted on NASA’s Terra and Aqua satellites and capture,
in addition to daily imagery, also 16-day BRDF-adjusted surface reflectance. Moreover, var-
ious MODIS datasets consist of derived products such as water and vegetation indexes and
snow cover. The subcategory of High-Resolution Imagery holds rather fewer datasets, though
thrives in terms of qualitative imagery. The US National Agriculture Imagery Program (NAIP)
for instance, creates aerial images of the entire United States at one-meter resolution every
several years since 2003. In the final section of the dataset categorization, Terrain contains var-
ious Digital Elevation Models (DEMS), many of which are fixed over specific geographic loca-
tions. Commonly used for global DEMs are datasets from Shuttle Radar Topography Mission
(SRTM) at 30 m resolution. Land Cover contains maps of pre-classified physical landscapes
derived mainly from Landsat’s and ESA’s global products. Cropland involves data products
like the USDA NASS Cropland Data Layers and enables users to comprehend the activity
of water consumption and agricultural production. Other geophysical data, which are not
to be categorized elsewhere, can be found in this subcategory. For instance, it also includes
night-time imagery from the Defense Meteorological Satellite Program’s Operational Linescan
System (DMSP-OLS) (Gorelick et al., 2017).

3.1.2 Selection of data

As mentioned in chapter 2, for the monitoring of Poyang Lake we will make use of the USGS
Landsat-8 Surface Reflectance Tier 1 and Sentinel-1 Synthetic Aperture Radar Ground Range
Detected datasets. In Google Earth Engine Landsat-8 datasets are divided among three cate-
gories: Surface Reflectance, Top of Atmosphere and Raw Images. Surface Reflectance offers
atmospherically corrected data from the Landsat-8 OLI/TIRS sensors. Generally, prior to cor-
rections, it measures the fraction of incoming solar radiation reflected from Earth’s surface to
the sensor. Top of Atmosphere is a unitless measurement providing the ratio of radiation re-
flected to the incident solar radiation on a given surface. Raw Images contains scenes from
digital number values representing scaled, calibrated at-sensor radiance. All of the three cat-
egories provide imagery from 2013 to the present day, yet differ in terms of visualization and
band availability. For this study, Surface Reflectance is used mainly due to its atmospheric cor-
rections from the Landsat-8 sensors. Choosing Tier 1 means that for this dataset geometric and
radiometric quality requirements are met. Essentially, Landsat scenes with the highest avail-
able data quality are placed into Tier 1 and are considered suitable for time-series processing
analysis. Furthermore, all Tier 1 Landsat data can be considered consistent and inter-calibrated,
regardless of sensor, across the full collection (Gorelick et al., 2017).

Google Earth Engine’s archive of the Copernicus Program consists of the Sentinel missions
1 through 3 and 5. More precisely, these are: SAR (Sentinel-1), Multispectral Instrument
(Sentinel-2), Ocean and Land Color Instrument (Sentinel-3) and TROPOspheric Monitoring
Instrument (Sentinel-5). Regarding the enhancement of visualizing Poyang Lake’s boundaries
and the gathering of consistent high quality data, Sentinel-1 with its aforementioned dataset is
the most suitable from the Sentinel datasets. Its data availability begins in 2014 and is updated
frequently with the latest dual-polarization C-band SAR imagery (Gorelick et al., 2017).
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3.2 Choice of Google Earth Engine

Google Earth Engine, as a rather new platform for geospatial computations, has become a very
popular environment for various remote sensing applications. Subsection 3.1.1 summarized
the wide coverage the Earth Engine Data Catalog. Consequently for this study, the main cri-
terion to work with this computing platform is the simplicity of direct interaction with a wide
span of datasets and in particular their availability. Google Earth Engine is a vast archive of
data from numerous geospatial missions. Aiming to define the boundaries of Poyang Lake, it
is important to gain easy access to optical and SAR imagery in order to achieve results from
separate sources. In addition to the easy access to qualitative data it must be mentioned that
geospatial analysis can be performed with simple implementation. However, the simplicity of
Google Earth Engine in some cases can rather be a disadvantage. The computing of large data
often exceeds Earth Engine’s capacity, especially from dealing with data with higher resolu-
tions. For instance, collecting pixels within a certain study area with a scale of less than 100 m
oftentimes exceeds the computing capacity. This is especially disadvantageous for quantifying
results as statistical data. Nonetheless, Google Earth Engine is a very practical computing plat-
form for moderately complex applications and can be therefore made use of in various change
detection related studies, such as this thesis.
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Chapter 4

Generating dynamic lake masks

The dynamics of Poyang Lake, in particular its water level and surface area fluctuations, are a
great challenge for the comprehension of its hydrological regime. Especially, the inaccessibility
of reliable in situ data and the lack of knowledge over its dynamic processes further impede a
precise estimation. This study is based entirely on satellite observations from the Landsat-8 and
Sentinel-1 missions. In this chapter we will focus on the approaches towards creating dynamic
lake masks from monthly imagery in order to define the dynamic boundaries of Poyang Lake.
For the process, optical images and SAR observations will be taken into account.

4.1 Optical imagery from Landsat-8

In remote sensing, optical imagery represents observations of Earth’s surface from the visible
and infrared spectrum. This range of the electromagnetic spectrum is especially important for
change detection applications as the human eye is only sensitive to visible light and infrared’s
reflectance characteristics strongly vary depending on the surface structures on Earth. The
wavelengths of visible light range from 3.8× 10−7 m to 7.5× 10−7 m whereas the neighbor-
ing infrared spectrum reaches from 7.5 × 10−7 m to 1.0 × 10−3 m (Elmi, 2019). Among the
two spectra, numerous bands of specific wavelength ranges are useful for distinctive remote
sensing applications. Hereby, the reflectance characteristics of Earth’s surfaces play a decisive
role. In order to make use of optical imagery for change detection related applications, in
particular among water body monitoring, a fundamental step consists in comprehending the
aforementioned reflectance characteristics of various surface features in relation to all bands of
the visible and infrared spectrum. Schimmer (2009) individually explained the bands of the
electromagnetic spectrum in relation to their most suitable use in remote sensing. Table 4.1
briefly summarizes Schimmer’s suggestions to this regard.

From table 4.1 it becomes noticeable that the use of specific bands in optical imagery can be
very beneficial for various scientific purposes, such as vegetation discrimination and health,
the mapping of geologic structures and forests, as well as the detection of clouds, snow and ice.
For water body monitoring it becomes clear that essentially the use of near infrared bands is the
most practical among the spectrum. This is due to the fact that water depths strongly absorb
infrared waves which make them appear very dark in the imagery. Surrounding land masses
with a high representation of vegetation and soil are rather bright. In addition to the near
infrared, visible bands, such as Blue and Green, are also commonly used in order to map depth-
details in water bodies. Therefore, selecting the mentioned bands, or better yet combining some
of which, is an important task for visualizing and highlighting water bodies in optical images.
In figure 4.1 one can see two optical image examples captured of Poyang Lake in July 2019.
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Name Range [µm] Application

Visual Blue 0.45− 0.52 Mapping of depth-details in water-covered areas,
soil-vegetation discrimination, forest mapping and
distinguishing cultural features.

Visual Green 0.50− 0.60 Mapping of depth and sediment in water bodies,
roads and buildings also recognizable in this band.

Visual Red 0.60− 0.70 Distinguishing plant species, as well as soil and geo-
logic boundaries.

Near IR 1 0.70− 0.80 Sensitive to varying vegetation biomass. Also use-
ful for soil-crop and land-water boundary determi-
nation.

Near IR 2 0.80− 1.10 Vegetation discrimination, penetrating haze, and
water-land boundaries.

Short wave IR 1 1.55− 1.74 Determination of water content in plants (thus vege-
tation health). Also useful for distinguishing clouds,
snow and ice.

Short wave IR 2 2.08− 2.35 Mapping of geologic formations and soil boundaries.
Plant and soil moisture content is also detectable

Mid IR 3.55− 3.93 Detects reflected sunlight and Earth-emitted radia-
tion. It is also useful for snow-ice discrimination and
forest fire detection.

Thermal IR 10.40− 12.50 Helps to account for the effects of atmospheric ab-
sorption, scattering, and emission. Useful for crop
stress detection, heat intensity, insecticide applica-
tions, thermal pollution, and geothermal mapping.
Also practical for surface water temperature mea-
surements.

Table 4.1: Electromagnetic bands and their common applications

The comparison of the two optical images in figure 4.1 emphasizes the importance of band
selection in water body detection. On the left is a RGB image representing the visible bands
Red, Green and Blue. In contrast is the image on the right whose band combination consists
of the NIR, SWIR1 and Red bands. While it is difficult to distinguish water areas from land
masses in the RGB image, the one including infrared bands clearly highlights water and land
features. By using the short wave infrared and visible Red bands, land masses containing
vegetation and soil were easily detected as suggested in table 4.1. Here, they are depicted
in a vibrant orange color. Furthermore, the near infrared band plays a significant role in the
combination as the majority of its waves are absorbed by the depths of Poyang Lake. In the
image they appear in a dark blue tone. However, a mutual problem among the two techniques
is the representation of clouds. They are present in both images due to the inability of all the
aforementioned bands to penetrate a cloud covered atmosphere.

Over the past decades new techniques involving the calculation of spectral indexes have been
proposed and studied upon to automatically outline landscape features, such as vegetation,
water, snow, ice and clouds from optical imagery. The idea is to calculate the ratio between
the difference and the sum of two spectral bands. The first index was the so called Normalized
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Figure 4.1: Comparison of two optical images: One using only visible bands (left), the other using NIR, SWIR1
and Red (right)

Difference Vegetation Index (NDVI), proposed by Rouse Jr et al. (1974) to monitor vegetation in
the Great Plains of the United States. Results showed correlations between the ratio and above
ground green biomass on rangelands. Nowadays, the NDVI is commonly used to investigate
the health of plants. Otherwise the index is suitable for detecting water features to a certain
extent and proves to be somewhat responsive to buildings as well (Ma et al., 2013).

NDVI =
NIR− Red
NIR + Red

(4.1)

For the calculation of NDVI, the visible Red band is subtracted from the NIR band in the nu-
merator and added to it in the denominator. The equation can be seen with some modifications
in the other indexes developed in later years as well. Gao (1996) for instance, proposed the Nor-
malized Difference Water Index, which is used to monitor water content of leaves. Hereby, the
visible Red band is taken from the previous equation to be replaced by the short wave infrared
band.

NDWI =
NIR− SWIR
NIR + SWIR

(4.2)

McFeeters (1996) defined a new version of the initial NDWI to delineate open water features
and enhance their presence in remotely-sensed digital imagery. This index makes use of the
visible Green and NIR bands.

NDWI =
Green−NIR
Green + NIR

(4.3)

Xu (2006) explained that the initial NDWI by McFeeters (1996) would mistaken built-up land
noise for extracted water features in urban areas. He therefore developed the Modification
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of Normalized Difference Water Index which could be used in built-up areas using the SWIR
band instead of NIR.

MNDWI =
Green− SWIR
Green + SWIR

(4.4)

Several more spectral indexes, like the Normalized Difference Built-Up Index (NDBI) and the
Normalized Difference Snow Index (NDSI), have been developed to further highlight desig-
nated types of landscapes. For water body monitoring though, the most suitable are the NDWI
proposed by McFeeters (1996), the modified version of it by Xu (2006) and to a certain extent
the NDVI, due to their ability to recognize water surfaces from the calculated ratios. The in-
dexes deliver values ranging from -1 to 1 which serve as an indication for the type of landscape.
Consequently, classification can be realized simply by applying a threshold. Depending on the
given data, a threshold can be either dynamic or static.

4.2 Normalized Difference Water Index (NDWI)

For the first part of this thesis, we will make use of the NDWI developed by McFeeters (1996).
Few of the aforementioned indexes are indeed feasible for water recognition, yet the one by
McFeeters applies best to this case study. Ma et al. (2013) demonstrated that the use of NDVI
in the Poyang Lake district shows oversensitivity towards non-water features. For this reason,
and the fact that it is mainly used for vegetation monitoring, the NDVI will not be utilized in
this study. A final decision between the two remaining water indexes by McFeeters (1996) and
Xu (2006) was made based on the location of Poyang Lake. Both indexes specialize in water
body detection, yet the lake’s size and predominant rural surroundings call for the Normalized
Difference Water Index, as it was proposed by McFeeters (1996).

For the calculation of NDWI the USGS Landsat 8 Surface Reflectance Tier 1 dataset, provided
by the Google Earth Engine Archive, will be used. Prior to the creation of these, it is neces-
sary to define a geometry serving as the image overlapping area and export tile for further
use. Precisely, in this case a rectangle forms an optimal area in which overlapping images are
filtered from the large Landsat-8 collection. The images, subject to export, will then have the
dimensions of the rectangle. Figure 4.2 displays the aforementioned geometry.

After having the collection of Landsat-8 images narrowed down to only those overlapping the
study area, a cloud filter is considered. Optical images are commonly covered with clouds in
specific regions, especially in the tropics. The Jiangxi Province in general has a fairly warm
and humid climate which causes the formation of water droplets, thus clouds. Therefore, the
cloud filter applied to the Landsat-8 collection examines every image property for its cloud
cover percentage. Hereby, images with a cloud cover percentage of less than 20% are extracted
from the previous collection. As Google Earth Engine mosaics the filtered images over the
region of interest, it is important that individual images are not too contaminated. Otherwise,
the concatenation of several images will result in a heavily cloud covered study area. In the
next step, a series of 12 images, one for each month, will be generated. In order to do so, a
function is developed to filter by the designated year and month from the narrowed down
collection. Every individual monthly image will consist of median band values at the given
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Figure 4.2: The study area defined by the GEE geometry tool

pixel location from the available imagery. In other words, pixel by pixel the median band value
of all images is determined for the creation of a single one. This method prevents at best any
outliers and generates the most reliable monthly image. The monthly images can now be used
for the Normalized Difference Water Index. For this, the ratio presented in equation 4.1 will
be calculated, using the visible Green and NIR bands of the Landsat-8 imagery. The process
is performed on pixel by pixel basis. This means that the index value is determined for every
pixel in the image. To comprehend the distribution of the individual results in relation to the
topography of the study area it is necessary to plot NDWI maps of the region.

Figure 4.3 presents NDWI maps for some of the months from 2019. The images from January,
March, July and August are good examples of how the NDWI automatically highlights water
bodies. Areas depicted in vibrant orange and red represent water content with positive ratios,
mostly accumulating around the value 0.5, whereas yellow and turquoise tones represent land
masses with mostly near zero and negative values. Other images, such as from May, Novem-
ber, December and from the remaining months are not ideal for monitoring Poyang Lake. In
these months, no valuable images could be acquired, despite having applied cloud filters to the
image collection. Typically in remote sensing, a very simple but straightforward technique to
extract the highlighted water bodies is the use of a threshold. To later classify water from the
given NDWI images, a decision on a reasonable threshold must be made. In order to find a
suitable one, the histograms of the NDWI images are analyzed prior to the decision making.

Figure 4.4 shows NDWI pixel value histograms of four different months in 2019. These months
were purposely designated as they could be derived from rather valuable data, as opposed to
other images from figure 4.3, and represent different seasonal periods. When comparing the in-
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(a) January 2019 (b) March 2019 (c) May 2019 (d) July 2019

(e) August 2019 (f) September 2019 (g) November 2019 (h) December 2019

Figure 4.3: Series of NDWI maps

dividual histograms, it can be said that there are some variations among the pixel distributions,
which are essentially attributed to the fluctuations of Poyang Lake. However, similarities that
may serve as an indicator for specific surface features, can be detected as well from the pixel
distributions. For example, a high accumulation of pixels can be observed in the range from
approximately -0.1 to -0.8. Pixels above the value 0 do not nearly accumulate as much as in
the aforementioned range. However, there is a slight increase beginning near the values of 0.1
and 0.2. These are crucial findings for the analysis of the plotted histograms. Namely, from
comparing the images from figure 4.3 to the histograms of figure 4.4 it is safe to assume that
land masses, which dominate all images in terms of area, represent the accumulated pixels in
the range below 0. On the contrary, water bodies do not take up as much area as land masses
do in the imagery, but do accumulate to a certain extent. This is especially detectable in the
histograms representing March and July. The valley to be seen around the value of 0 therefore
represents transitional surface features.

Based on these findings, a decision on a specific threshold for classifying water can be made.
Setting a dynamic threshold can extract water bodies precisely as they individually relate to the
images. However, error sources and a complex relationship between water and land in coastal
and marshland areas require the setting of a threshold value to be realized in a supervised man-
ner using visual inspection of the image histogram or manual trial-and-error procedures (Elmi,
2019). Considering the necessary effort and the fact that determining a suitable threshold can
be done based on the findings from the histograms, it appears sufficient to simply use a static
threshold for classifying water in the study area. As mentioned previously, pixels representing
water bodies in the histogram begin to accumulate within the range from 0.1 to 0.2. Therefore,
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(a) January 2019 (b) March 2019

(c) July 2019 (d) December 2019

Figure 4.4: Pixel value histograms of four months in 2019 for the study area

defining a threshold value anywhere within this range would be a reasonable choice. We use
the value 0.2, as it is more likely to exclude several wet marshland features around the lake. By
applying this threshold on the histograms of the images, we automatically classify them into
water content and non-water content.

Figure 4.5 shows a time series of binary images derived from applying a threshold value of
0.2 on the NDWI image histograms. Pixels below the value of 0.2 are classified as non-water
content, whereas those equal to or greater than 0.2 are classified as water content. The results
correlate with those of figure 4.3. On the one hand, images such as (a), (b) and (d), display a
very clean classification of the study area’s water content. Though on the other hand, some im-
ages lack valuable information or even entire tiles from the mosaic. This can be seen in (c), (e)
and (g). Indeed this technique delineates water content from surrounding land masses in some
of the images quite efficiently. This can be observed especially from the Gan-River estuary in
the Southwest. In general, the cycle of inundation and shrinkage can be detected from the re-
sults. In dry winter months, such as December and January, classified water bodies can be seen
as individual pools and streams. Beginning in March, and essentially in summer months, such
as July and August, Poyang Lake experiences massive flooding relative to previous periods.
Mostly all segments of the lake are interconnected and form very broad sections in the main
body. However, these findings can only be detected from the aforementioned valuable images.
In other months, no imagery or only fragments could be provided under the filtering standards
leaving the series incomplete. As a product of optical imagery, cloud contamination provides
problems for the use of the NDWI. This mainly applies to regions which experience frequent
precipitation. In this case study, the missing and incomplete images are attributed to the cloud
contamination in the initial optical data. Consequently, only an approximate trend of the lake’s
fluctuations can be assumed. For a consistent monitoring of Poyang Lake, in which every
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(a) January 2019 (b) March 2019 (c) May 2019 (d) July 2019

(e) August 2019 (f) September 2019 (g) November 2019 (h) December 2019

Figure 4.5: Series of images depicting only water (blue) and non-water content (white)

month of the year should be observed, an approach independent from atmospheric conditions
must attempted.

4.3 Series of SAR images

Beginning with this section, SAR images from the Sentinel-1 SAR GRD dataset will be used
to achieve additional results for the monitoring of Poyang Lake’s spatio-temporal behavior.
Synthetic Aperture Radar is an active microwave-using system that measures the backscatter-
ing coefficient of observed surfaces (Prigent et al., 2007). In remote sensing, SAR images are
oftentimes used in order to delineate water bodies as these appear very dark and therefore dis-
tinguishable from other surface features in the imagery. The smooth surface of water acts like
a mirror for the incident radar pulse and most of the energy is reflected away according to the
law of specular reflection. Consequently, very little energy is scattered back to the radar sen-
sor, which causes the dark appearance of water bodies (Elmi, 2019). On the contrary though,
reflected from land masses, especially where vegetation is present, nonspecular (multiple scat-
tering) returns to the sensor, enhancing the backscattering coefficient (Prigent et al., 2007). In
the imagery these surface features are visualized in brighter tones. Not only are SAR images
very practical to delineate open water bodies, but benefit from high spatial resolutions (10-50
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m). Moreover, from operating at low frequencies, SAR instruments can penetrate clouds and,
to a certain extent, vegetation (Prigent et al., 2007). The capability of penetrating clouds is a
clear advantage over optical imagery, as these are oftentimes highly contaminated. Therefore,
the use of SAR imagery appears to be an appropriate approach for the continuous monitoring
of Poyang Lake.

For the concentration on SAR observations, images from the Sentinel-1 dataset will be nar-
rowed down to those only overlapping the case study. This dataset provides four different
forms of polarization which are important to understand since they are applied for various
purposes. In chapter 2 the most common forms of polarization were presented for a number
of remote sensing applications. From analyzing table 2.3 one can say that certain forms of po-
larization can be used for distinctive remote sensing purposes. In general, any form can be
used to observe the Earth’s surface, yet several features react differently toward the incident
waves. Linearly oriented structures, such as buildings, tend to reflect and preserve the coher-
ence (same linear direction) of the polarimetric signal, whereas randomly oriented structures,
such as tree leaves scatter and depolarize the signal 1. For monitoring inland water bodies,
the VV-polarization is an appropriate use and will thus be chosen for the continuation of this
study. The cropped image collection now contains only one band and applies to the designated
area.

Figure 4.6: Results of smoothening

In order to create a series of monthly SAR images, the function introduced in 4.1, will be ap-
plied to the image collection. It returns one image on a monthly basis from a pixel by pixel
generation of median backscatter values. Prior to this, the collection is smoothened as SAR oc-
casionally displays some speckles. Speckle noise commonly occurs in all coherent imaging sys-
tems like laser, acoustic and SAR imagery and is caused by random interference between the
coherent returns issued from the numerous scatterers from Earth’s surface (Singh and Pandey,
2016). In figure 4.6 there is a noticeable change after smoothening the initial SAR image. Edges
are, as expected, smoother than before, yet continue to be a clear boundary of the image’s fea-
tures. More importantly, speckles from the initial images vanish. By doing so, Earth Engine
applies a focal median filter, which is a morphological reducer, to each individual image. It

1https://nisar.jpl.nasa.gov/mission/get-to-know-sar/polarimetry/
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smoothens the image by taking the median pixel value of a circular kernel. For the kernel a
radius of 100 m is chosen.

Figure 4.7: Series of monthly SAR images in 2019

Figure 4.7 shows a series of SAR images in 2019, each representing a month in chronological
order. As opposed to optical imagery, a consistent series could be achieved, displaying a clear
visualization of the study area. The series is complete as data availability is sufficient and in-
dividual images are not cloud contaminated or lacking fractions. By default, SAR images are
displayed in a gray style, visualizing the backscatter coefficients. Within all images one can
decently tell water content from surrounding land masses as these appear in a fairly dark tone.
Calm water surfaces, such as a lake, act like a mirror for the transmitted waves. More precisely,
once the radio waves reach water bodies, most of them are scattered in direction of the emis-
sion since the antenna is slanted. This leaves the antenna with very few waves being received
and thus with very low backscatter values. In terms of pixels, low values appear dark. In con-
trast to water, land surfaces do not mirror the waves as intensely. Far more waves are scattered
back towards the antenna resulting in significantly higher values. Therefore, land masses ap-
pear brighter than water bodies in SAR images. The backscatter coefficients range somewhere
between -50 and 1. In order to accurately classify water from the given SAR images, it is neces-
sary to comprehend the distribution of pixels among specific backscatter coefficients in relation
to the surface features in the study area. As in section 4.1, this can be done by analyzing the
histograms of pixel distributions. This step will be undertaken in section 4.5.

4.4 Elevation mask

In this section, the focus lies on generating the first mask for the stack of SAR images. Initially,
a stable basis of reliable imagery was created in section 4.3. As of now, it is necessary to reduce
the study area down to a size similar to the lake’s dimensions. This is especially helpful for later
steps as it may exclude potentially false classifications and simplify the decision on a threshold
value. The definition of an appropriate search area is a critical step for deriving accurate water
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masks. The biggest constant inland water bodies, namely lakes and reservoirs, are located in
the lowest possible altitude of the area. These water bodies tend to gather in comparably lower
altitudes due to Earth’s gravity and should thus be taken into consideration when defining
a DEM-based mask. Consequently, pixels located at higher altitudes or steep slopes can be
removed from the search area (Elmi, 2019). To determine at which altitudes pixels should be
removed, an inspection of the study area’s elevation must be made. For this, a digital elevation
model (DEM) is plotted.

Figure 4.8: Digital elevation model of the study area

Figure 4.8 shows a digital elevation model of the study area. Note: Light blue features depicted
in the DEM are a default visualization of the study area’s water content by the provider. Since
there are some mountainous parts in the region, it is difficult to observe small differences in flat
and lower elevated areas. However, from a precise inspection of the DEM, it can be said that
Poyang Lake is elevated at 10 m. Therefore, it is appropriate to remove pixels in the imagery
with elevation data greater than that of the lake. As Poyang Lake heavily fluctuates in size,
an elevation threshold of 15 m is chosen. This establishes a buffer zone mainly for inundation
periods. Having applied the threshold, pixels from the SAR images with an elevation greater
than 15 m are masked.

Figure 4.9 presents the areal remainder of the study area after applying the elevation mask.
Masked areas are displayed gray while the background is a default Earth Engine map. Ap-
plying the DEM-based mask not only reduces the computational effort but also improves the
accuracy of the lake’s boundary extraction. Essentially because, the possibility of assigning iso-
lated pixels far from the lake is reduced by restricting the search area (Elmi, 2019). To demon-
strate the influence of a DEM-based mask, two histograms representing the pixel distributions
among the backscatter coefficients are plotted.
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Figure 4.9: Elevation mask

Figure 4.10 shows two histograms of the pixel distributions from the SAR images in July 2019.
Subfigure (a) presents the distributions before applying the DEM-based mask, whereas subfig-
ure (b) shows those after applying the mask. In both images two peaks can be detected repre-
senting either land masses or water bodies. In subfigure (a) all surface features are present as no
mask has been applied yet. Therefore, the high accumulation of pixels around the backscatter
coefficient of -10 is an indication for the yet existing land masses. The minor peak in the his-
togram represents backscatterers from water. Subfigure (b) shows a significant change in pixel
distributions after applying the DEM-based mask. The major peak is to be found around the
backscatter value of -22, where initially the minor peak of subfigure (a) was. A clear decrease
in pixel distributions from land mass backscatterers is detectable as well. An outcome as such
is comprehensible as most of Poyang Lake’s surrounding land masses are masked due to their
higher elevation. The comparison of histograms highlight the importance of applying a DEM-
based mask on the initial SAR imagery. As it is to be observed in subfigure (b), backscatterers
are better emphasized and therefore simplify the classification of water bodies. This will play
an important role in the next section.

(a) Before elevation mask (b) After elevation mask

Figure 4.10: Comparison between pixel value histograms of July 2019
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4.5 Water masks

In this section we will focus on classifying water from the cropped SAR images. The idea is to
define a threshold, similar to section 4.2, yet in this case based on the backscatter values from
the SAR imagery. In section 4.4 the influence of DEM-based masks on the pixel distributions as
well as the correlation between the study area’s surface features and pixel accumulations was
briefly explained. Now, a decision on a suitable threshold will be made. For this, three addi-
tional monthly histograms are plotted to gain a better understanding of the distributions.

(a) January 2019 (b) April 2019

(c) July 2019 (d) September 2019

Figure 4.11: Pixel value histograms for backscatter coefficients of four months in 2019

In section 4.4 it was suggested that pixel accumulations around the backscatter coefficient of
-22 represent water bodies in the imagery. Although the peaks of these accumulations do not
always pass those representing land masses, for instance in subfigure (a) and (d), they are found
around the same value in all histograms. It is obvious that there are some differences between
the monthly histograms, however essential similarities are crucial for determining a threshold
value. It can be detected that an increase in accumulations of water-representing pixels begins
approximately at the backscatter value of -17. Therefore, defining a threshold with this value
appears appropriate for delineating water bodies in the study area. For the same reason as with
NDWI images, namely the required effort and complexity of dynamic thresholding, a static
one with the value of -17 is applied to the images. Pixels with a backscatter coefficient equal
to or less than -17 are classified as water. Pixels with coefficients greater than the threshold are
simply masked.

In figure 4.12 one can see the results from classification by applying a threshold. At first, bi-
nary images, which depict only water content or non-water content, were generated. To better
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Figure 4.12: Monthly maps of 2019

present the results, the water content is laid over a digital elevation model 2. This method
of classification, namely creating water masks, is an efficient technique to detect water bodies
from SAR images. In general, thresholding is very practical because it is simple to implement
and automatically highlights designated surface features. In particular in water body monitor-
ing, where it is not necessary to determine various landscape classes but simply extract water
content, a threshold fulfills most needs. In some cases however, thresholding can develop error
sources if not defined carefully. A static threshold may not always relate to every measure-
ment epoch which can result in false classifications. For this reason, dynamic thresholding is
oftentimes performed. This however is not as simple to implement and requires the setting of
a threshold value to be realized in a supervised manner using visual inspection of the image
histogram or manual trail-and-error procedures (Elmi, 2019).

(a) Jul 2016 (b) Dec 2016 (c) Jul 2017 (d) Dec 2017 (e) Jul 2018 (f) Dec 2018

Figure 4.13: Maps of water area in years prior to 2019

From the image series of figure 4.12 Poyang Lake’s expected fluctuations become very notice-
able. In addition to the detailed series of maps from 2019, we also plot two monthly represen-
tations of the lake’s surface area in the previous years. Figure 4.13 shows Poyang Lake’s inter-

2https://www.mathworks.com/matlabcentral/fileexchange/36379-readhgt-import-download-nasa-srtm-data-
files-hgt
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annual changes to a certain extent by depicting the surface areas of July and December during
the years of 2016 and 2018. When comparing the remaining water-covered areas from Decem-
ber with the inundation from July, the increasing area of the water body especially stands out.
Within the main inundation period of the spring and summer months, most sections of Poyang
Lake and nearby water bodies are interconnected, forming a large flooded area. As opposed to
the dry winter months, only a small number of land masses remain within the general bound-
aries of the lake. For instance, a large mound to the south of Poyang’s channel remains free
from flooding as well as specific parts of the Gan River estuary south west of the lake. From
the image series a sudden change from August to September can be observed which increases
throughout the winter. By then, a significant shrinkage takes place leaving previously inun-
dated areas in small streams and individual pools. This phenomenon is so intense that even
the lake’s broadest sections can hardly be recognized. To conclude, the results from generating
water masks by means of classification are satisfactory due to a continuous and presumably
accurate delineation of the water bodies as well as a confirmation of the anticipated spatio-
temporal behavior.

4.6 Results

This section focuses on quantifying the results achieved from the dynamic water masks. De-
rived from the classification of water content, Poyang Lake’s surface area will be estimated on
an annual and interannual scale and visualized in a time series. Unfortunately, in situ data,
such as water level measurements and bathymetric maps can not be included to facilitate the
estimation as such data is nearly inaccessible or nonexistent.

Figure 4.14: Polygon (red) to solely contain Poyang Lake’s water content
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Nonetheless, the task of quantifying the lake’s spatio-temporal behavior at best remains. Head-
ing back to Google Earth Engine, the aim is to quantify the pixels classified as water in order to
analyze this study’s findings. Therefor, the monthly images, in which water was classified from
both the NDWI and SAR imagery are used for the quantification. At first, an area is defined
which serves more accurately as Poyang Lake’s water content boundary. When examining the
individual images, one can detect several water features which are not to be considered as a
part of Poyang Lake or its interconnections during flooding. Consequently, such features, for
instance the Gan River estuary in the south west and the Yangtze River segment in the north
west, will be excluded. For the definition of this region, a polygon will manually be fit around
the lake. Hereby, the polygon should refer to the maximal expansion of the lake, thus the in-
undation of either July or August. Note: As Poyang Lake doesn’t have a clear cut regarding
its southern boundaries, the Kangshan basin, Junshan and Qinglan Lakes, will be used as such
since these form a contiguous inundation area during the rainy season.

Figure 4.15: Time series of Poyang Lake’s surface area in 2019 derived from the results of NDWI and SAR

Figure 4.14 depicts the new region of interest for the creation of water mask statistics. The
pixels classified as water are now accumulated on a monthly basis and can subsequently be
calculated into surface area. For the first part, we will focus on Poyang Lake’s spatial behavior
throughout one year. Therefor, time series, derived from the results of NDWI and SAR, are
plotted and visualized in figure 4.15. We will quantify the results from 2019 as image stacks of
this year are already depicted in detail in section 4.5.

January February March April May June July August September October November December

area (NDWI) [km2] 1921.61 137.31 3253.05 118.93 399.03 970.64 3441.91 2851.57 1361.65 181.23 186.19 858.20
area (SAR) [km2] 2084.99 2080.42 3050.73 2469.03 2629.76 3271.31 3431.65 3085.38 1929.87 1852.37 1808.84 1398.49

Table 4.2: Monthly surface areas in 2019 derived from NDWI and SAR

Table 4.2 shows the numeric behavior of Poyang Lake’s surface area in 2019. Google Earth En-
gine collects the pixels classified as water on a 100 m scale (smaller scales exceed Earth Engine’s
capacity) and subsequently counts them on a monthly basis. The area of one pixel is given by
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the square of the scale. From this, the surface area of Poyang Lake can be obtained as the prod-
uct of pixel area and number of pixels. When comparing between the surface areas derived
from NDWI and SAR, very large differences can be detected. The time series derived from the
NDWI shows a few months, such as February, April, May, June, October and November, in
which surface areas do not even reach 1000 km2. In contrast, surface areas derived from SAR
images in the same months amount to incomparably larger numbers. However, from visual
results of this study as well as our knowledge from other research, it can be said that error
sources arise from the NDWI images. In these months, cloud contamination is the main factor
impeding a precise calculation of the index. Consequently, water bodies in the study area are
hardly delineated. Comparably similar surface areas can be detected in January, March, July
and August, which is not surprising as the depicted imagery in section 4.2 shows a clear and
complete visualization of exactly these months. Differences that occur here are attributed to
the technique of water body recognition. In particular the choice of a suitable static threshold
is a crucial step for the determination of Poyang Lake’s surface area. Considering these drastic
variations between both technique’s results, the main emphasis of the analysis will lie on those
derived from SAR imagery, as they deliver a consistent visualization and quantification of the
lake’s surface area.

The numeric results from the SAR images show an interesting trend. As expected, the trend
correlates with the visual results from the previous section when inspecting the numeric behav-
ior in table 4.2 and figure 4.15. Poyang Lake reaches an annual maximum of 3431.65 km2 in July
whereas in December its surface area shrinks considerably down to a minimum of 1398.49 km2.
Moreover, sudden transitions detected in the series of maps become recognizable as well. For
instance, a large surface expansion from February (2080.42 km2) to March (3050.73 km2) as well
as the severe loss of surface area from August (3085.38 km2) to September (1929.87 km2) define
these major findings. Outlying the periodic-looking trend, there is a surprising peak in March
and subsequent valley in April (2469.03 km2) prior to the annual maximum. To conclude, one
can tell the dynamics of this lake when considering these numeric and visual fluctuations.

For the second part we will focus on Poyang Lake’s interannual changes. To demonstrate these,
time series involving the years of 2016, 2017 and 2018 (namely those available to SAR imagery
over the area) are added to the previous statistics using the same methods presented in this
study.

Figure 4.16 presents two time series (from 2016 to 2019) of Poyang Lake’s surface area. As
demonstrated earlier, the upper time series is derived from the results of NDWI images,
whereas the series below is based on those of the SAR imagery. Once again, drastic differences
between the two can be observed, as in particular months, surface areas reach below 1000 km2

in the series from NDWI. It was concluded that these numbers are not a reliable linkage to
the lake’s actual dimensions, but a result from cloud-caused error sources. However, peaks in
summer months, mostly around July, seem numerically similar to one another, which at least
confirm the periodicity of Poyang Lake’s maximal inundation. In both cases, the lake area
reaches more than 3000 km2 in the months of highest inundation with a maximum of 3600.28
km2 in July 2016. When inspecting the entire period, in particular months of lesser surface
area and transitional months, it is more appropriate to focus on the time series derived from
the SAR images. Here, a repeating cycle of minimal surface area in winter months and peaks
in summer months, July and August in particular, stands out the most. Annual variations do
take place in the given years, especially highlighting transitional months such as March, April
and September. However, all curves follow similar time-fixed trends. To stress the contrasting



32 Chapter 4 Generating dynamic lake masks

Figure 4.16: Time series of Poyang Lake’s surface area between 2016 and 2019, derived from the results of NDWI
and SAR

numbers in the observed years, it can be determined that in relation to the maximum inunda-
tion of Poyang Lake, surface areas shrunk by 51% in 2016, 63% in 2017, 49% in 2018 and 59%
in 2019, when minimal areas were reached. To conclude, this study’s main findings from the
visual as well as from the numeric results, confirm the anticipated behavior of Poyang Lake on
an annual and interannual scale. There is an obvious periodicity in shrinkage and inundation
occurring every year, which define this lake’s massive fluctuations.
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Chapter 5

Comparison

In terms of validating the results, a study on the dynamics of Poyang Lake faces a challenge.
As mentioned in chapter 4, with lacking knowledge from in situ data and accurate processes of
the region, it is very difficult to measure the quality of one’s study. On the one hand, compre-
hending the linkage between local precipitation and Poyang Lake’s spatio-temporal behavior
appears to be a reasonable approach considering that annual rainfall is proven to be one of
the main driving forces of the local dynamics (Feng et al., 2012). On the other hand though,
precipitation data only provides an explanatory correlation between cause and effect, instead
of an accurate reference for means of comparison.

Although a precise comparison can not be made in this study, a feasible measure is to gain an
understanding over the lake’s regime from previous observation periods and studies. In their
study to detect water at Poyang Lake, Ma et al. (2013) achieved results for several dates be-
tween March 2010 and December 2011. They proposed a new method involving NDVI, NDWI
and mathematical morphology to improve the qualification of water area recognition. Hereby,
NDVI and NDWI are interconnected to increase the contrast between building and water fea-
tures, as well as to raise the sensibility to small tributary streams. Similar to this study’s demon-
stration of the NDWI in section 4.2, a threshold value is determined to separately extract water
features from both the NDVI and NDWI. Subsequently, the interconnection of the results elim-
inates building features and over extracts water content so that small tributaries are enhanced.
Remaining errors are then to be removed with the help of mathematical morphology in which
either a shape index is calculated or a corrosion-expansion algorithm is performed. An attempt
can be made to compare the numeric results from this study to those of Ma et al. (2013) despite
differing observation epochs. Ma et al. (2013) achieve estimates from counting water-classified
pixels on specific dates in the aforementioned months, whereas in this study, median pixel
images of backscatter coefficients from available imagery are generated. Nonetheless, results
from matching months of both studies will be compared.

Date Area [km2] (Ma et al., 2013) Area [km2] Difference [km2]

2010-03 2615.28 3050.73 435.45
2010-06 3182.31 3271.31 89.00
2010-09 3162.82 1929.87 1232.95
2010-12 1584.54 1398.49 186.05

Table 5.1: Comparison between Ma et al. (2013) and current study

Table 5.1 shows specific numbers achieved by Ma et al. (2013) for the water extraction area
of Poyang Lake in direct comparison with the results from this study. Given the difference
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between both studies, it is difficult to make a statement on the quality of this study’s results.
Spatial differences range between 89 km2 and 1232.95 km2. To this regard, one can say that
the paired numbers vary too heavily for a precise interpretation. Essentially, the main rea-
son for these differences is related to annual fluctuations. A lake with such a dynamic regime
and subject to contrasting precipitation periods, is expected to vary in terms of surface area
on an interannual scale. Moreover, additional differences are evidently attributed to water de-
lineation techniques, the 100 m scale used for the pixel collection in Google Earth Engine and
not to mention the definition of Poyang Lake’s boundaries. When comparing the study area
of this thesis with that of Ma et al. (2013), it becomes noticeable that few nearby water bodies
were not considered in their definition. As opposed to Ma et al. (2013), the Junshan Lake in
the south and the Kangshan basin in the southeast, for instance, are taken into account in this
study as during inundated months they form a contiguous water body together with Poyang
Lake. However, the Gan River estuary and segments of the lake’s other tributaries are excluded
from this case study while these are included by Ma et al. (2013). Therefore, it can be said that,
depending on the intensity of precipitation during the designated observation periods, the in-
clusion or exclusion of water bodies in the study area account for considerable differences in
lake area estimates. Apart from individual numbers, only the trend of less surface area dur-
ing winter months and an annual peak during summer months becomes recognizable in both
studies. From inspecting the generated maps during the years of 2016 and 2019, as well as
the provided knowledge (Ma et al., 2013) of 2010, it can be concluded that heavy spatial fluc-
tuations take place in the Poyang Lake region with similar trends over the years, but varying
annual details.



35

Chapter 6

Conclusion

In this thesis, driven by its aim to analyze Poyang Lake’s spatio-temporal behavior, has it
not only been about visualizing and quantifying the lake’s dynamic regime, but moreover
a demonstration of Google Earth Engine’s potential for remote sensing applications, such as
change detection. In this case, the focus lied on Poyang Lake, China’s largest freshwater lake.
A dynamic water body, which undergoes a yearly repeating cycle of drastic inundation and
subsequent considerable shrinkage, still remains insufficiently studied upon to this day.

6.1 Summary

This study began with collecting optical imagery from Landsat-8. Images overlapping the
study area were extracted in order to later define a reliable basis for delineating Poyang Lake’s
boundaries. In a next step, a cloud filter was applied to the image collection from which only
the portion including images with less than 20 % cloud coverage were used. In optical imagery
this is a very important measure, as visible and infrared waves do not penetrate clouds and
thus leave the imagery contaminated. With the aim to visualize and quantify Poyang Lake’s
spatio-temporal behavior on a monthly basis, images representing a month were generated
from a pixel by pixel determination of median band values. Having narrowed down the image
collection to one fulfilling the filtering standards, an approach to detect water features in the
region was launched by calculating the Normalized Difference Water Index (NDWI). Proposed
by McFeeters (1996), the NDWI is composed of an equation involving reflected near infrared
and visible Green bands in order to delineate open water features. Google Earth Engine it-
self provides various derived datasets, including the NDWI. In this thesis though, the index
was recreated for using it on the dynamic Poyang Lake region. By applying a threshold to the
indexes, binary water images were produced, but delivered only few desirable results. In qual-
itative and complete scenes, this method proved to delineate water content, even in months
with shallow depths and marshlands, quite well. However, these results could not be achieved
on a monthly basis due to high dependence from atmospheric conditions.

Moving on, another approach to better delineate the lake’s boundaries was made with SAR
imagery. From the Sentinel-1 dataset, synthetic aperture radar (SAR) observations delivered
a series of twelve monthly images as desired. Taking advantage over SAR’s penetrative char-
acteristics, cloud-free and qualitative gray-style images could be presented and proved to be
a stable basis for the continuation of this thesis. From gaining knowledge of the lake’s eleva-
tion, the first mask was generated which cropped the images down to areas solely including
elevation below 16 m. This would already exclude potentially false classifications and simpli-
fied the decision on a threshold in the upcoming step. As mentioned, a classification of water
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and non-water content was next to take place. For this, a threshold was applied to the remain-
ing unmasked areas which would generate binary images, namely containing only water or
non-water features. The non-water features were then to be masked again. At last, the results
were exported and laid over a digital terrain model. This was the final step towards creating a
series of maps presenting the spatio-temporal behavior of Poyang Lake. The results were then
quantified and visualized in time series.

6.2 Discussion

The findings of this study reveal Poyang Lake’s spatio-temporal behavior on an annual as well
as on an interannual scale. The series of monthly maps shows how drastically the surface
area of Poyang Lake varies dependent on the time of the year. From accumulating the num-
ber of water-classified pixels, statistics were created for each month, from which the surface
area could easily be obtained. Taking the year of 2019 as an example of the lake’s annual
changes, it was discovered that the surface area reached a high of 3431.65 km2 in July and fell
to a low of 1398.49 km2 by December. To further stress this discovery, it signifies that within
only five months Poyang Lake lost 59% of its surface area. Moreover, sudden transitions were
found, such as from February (2080.42 km2) to March (3050.73 km2) and August (3085.38 km2)
to September (1929.87 km2). Also, the expansion of the lake appeared to have a minor peak
in March and subsequent valley in April (2469.03 km2) which somewhat outlies the periodic-
looking trend of the curve.

From a visual point of view, the results presented in the series of maps are very satisfactory.
A clear delineation of Poyang Lake’s water features, despite its difficult dynamics, took place
and depicted an evident change as later acquired numerically. From a statistical point of view
it was very hard to judge and validate the findings. In situ data such as, water level measure-
ments and bathymetric maps, are nearly inaccessible or nonexistent which further impedes
any judgement. In table 5.1 a comparison to a study from Ma et al. (2013) is shown to examine
whether similar findings are made, especially in terms of areal values. However, it seems that
on a numeric basis, individual monthly values are not relatable, due to annual fluctuations,
detection techniques and varying study regions. Mutually noticeable though, was the trend of
extreme inundation in summer months and considerable shrinkage in winter months. Later,
information from the years of 2016, 2017 and 2018 were added to the time series example of
2019 to analyze the interannual behavior. From this, the aforementioned periodicity of surface
area fluctuations was confirmed. It was determined that in relation to the maximum inunda-
tion, lake surface areas shrunk by 51% in 2016, 63% in 2017, 49% in 2018 and 59% in 2019, when
minimal areas were reached.

6.3 Outlook

This study demonstrated a research based on the possibilities of the computing platform,
Google Earth Engine. It archives various datasets from categories such as Climate and Weather,
Imagery and Geophysical. By interacting with these datasets through programming, it serves
very well for remote sensing applications and should be seen as an opportunity for future
studies. Google Earth Engine is therefore chosen for this study to widen the possibilities in
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research on Poyang Lake, one of the most dynamic lakes in the world. From attempting an
approach with the Normalized Difference Water Index, derived from optical imagery, it was
learned that change detection among water bodies can be conducted with these methods
only under circumstances. For Poyang Lake, atmospheric conditions and unclear topographic
transitions between water and land impede the use of a such method. Perhaps, they are a
reasonable approach in rather arid climates for desiccating water bodies, where atmospheric
conditions do not frequently change and allow clear vision. From changing the focus to
SAR imagery, results showed that these observations are very convenient for water body
change detection when applying a threshold to the images. Cloud contamination no longer is
problematic and data availability is higher for specific filtering standards. Unfortunately for a
research on Poyang Lake, the inaccessibility or nonexistence of in situ data provides difficulties
for most studies. If one were to gain access to some of which, a huge step would be made in
comprehending the dynamics of Poyang Lake by for instance developing models combining
SAR observations and measured data.
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Appendix A

Google Earth Engine: Integrated development
environment (IDE)

As Google Earth Engine is source to petabytes of available geospatial data, the user’s inter-
action with which is key to a successful study with the engine. The interaction takes place
on an integrated development environment (IDE) which divides the web page into four main
compartments. Figure A.1 depicts the structure of Google Earth Engine’s (IDE).

Figure A.1: Earth Engine’s integrated development environment

The top of the webpage consists of three compartments. First, a manager tab provides an
overview of self-written and other accessible scripts, as well as an API documentation for the
understanding of JavaScript functions and GEE methods. Also, an asset manager mainly en-
ables the user to use imports from local folders such as shapefiles and images for the upcoming
coding.

Furthermore, the center defines the coding compartment. By programming in JavaScript, this is
where the user interacts with the provided datasets. Imports such as image/feature collections,
geometries and shapefiles will appear in this section as well when included in the script.
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In addition, the top right section is another interactive compartment. The inspector tab is re-
sponsible for displaying information on the used bands of any of the added layers. The user
simply can move the cursor over the map and select a certain position to receive the details.
For instance, RGB images will display the mentioned band values at this position. Elevation
models provide the height information and radar images show the backscattered value at this
point. This is a useful tab for estimating visualization parameters and thresholds, which will
be important for the programming. Also, there is a console in order to print properties such as
image collections, variables and other user-defined statements. In this case, the console is prac-
tical for showing information on the datasets on demand. For example, the console prints the
temporal resolution over a defined area and delivers any additional properties. To round off
this compartment there is the task manager. Google Earth Engine allows an export of created
tiles from added layers to either Google Drive, Google Cloud storage or to a new Earth Engine
asset. In order to do so, the task manager executes actions like the mentioned.

At last the main compartment is an interactive map. By coding, several images and features
can be added as layers to the map. Here, boundaries can be defined for the layers for instance
by creating geometric features such as rectangles, polygons, lines and points. The interaction
involves zooming, grasping the map and changing visualization parameters. Basically, the
product resulting from the scripts will be displayed on the map.


