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Abstract

On the basis of the Born–Oppenheimer approximation it is possible to define a
potential energy surface (PES), which describes the potential energy of a chemical
system dependent on the positions of the atoms.

Precise knowledge of the PES is crucial for many simulations in computational
chemistry, as it defines, for example, equilibrium and transition structures, the
energetics of chemical reactions as well as the forces acting on the atoms in a given
structural configuration. Unfortunately, obtaining accurate information on the PES
during a simulation requires computationally highly demanding quantum chemical
computations, which increase the computational and time effort of a simulation
drastically.

Thus, efficient approaches for obtaining an accurate description of the PES
a priori are of high interest, since they significantly accelerate the simulation
process and thereby enable the investigation of complex systems. A well established
approach is to employ parameterized, physically motivated potentials like force
fields. Alternatively it has become popular to employ a surrogate model of a PES
which was constructed with machine learning methods. One approach which has
become popular in current scientific studies is to employ artificial neural networks
(NN) for this task. In contrast to force fields this approach isn’t based on a physically
motivated approximation of the PES, but it results in a solely mathematical model.

The process in which surrogate models are constructed with NNs on the basis
of reference data is called training. During the training process highly flexible
functions are adjusted such that the resulting model of the PES is optimal in the
sense that it minimizes a pre-defined error measure of the approximation given
by the so called loss function. The conventional approach to train these machine
learned models is based on the accuracy of energy predictions made by the NN-PES
alone. Thus, it will be called energy training approach in the remainder of this

vi



thesis. This training approach is particularly well suited for applications in which
the potential energy of a system is of high interest. However, the applicability of
these potentials to simulations that require predictions of atomic forces or even
Hessians is often limited due to a lack of accuracy.

In order to train NN-PESs with the energy training approach such that highly
accurate predictions of derivatives of the underlying PES are possible, it is necessary
to perform the training with a sufficiently large reference data set. This data set has
to sample the area of phase space that is of interest for the subsequent simulation
very thoroughly to allow for precise force- and Hessian predictions. On the one
hand this introduces a significant computational overhead to the construction of
NN-potentials as a large number of computationally demanding quantum chemical
computations has to be performed in order to obtain the reference data set. On
the other hand a thorough sampling of the phase-space is highly non-trivial for
systems with a large number of atoms due to the high dimensionality of the PES.

Alternatively one can construct NN-PESs suited for the prediction of forces and
Hessians by adding information on the derivatives of the PES to the reference data
set and training on energy, force and, if required, Hessian information. In contrast
to many other fields of machine learning, where including information on gradients
in the reference data set increases the computational effort for the construction of
the reference data set significantly, is the increase in computational effort for the
machine learning problem at hand comparatively low. This is due to the fact that
the effort for computing the gradient of the PES by quantum chemical calculations
is comparable to the one for computing an energy at the same level of theory.
Including information on the gradient, however, increases the information density
in the reference data set significantly. Given a N dimensional PES such a reference
data set contains for each chemical structure N + 1 pieces information that can be
used for training as the gradient is a N dimensional vector and the energy a scalar
quantity.

Due to the high information density, it is possible to construct precise NN-
PESs on the basis of a reference data set that is significantly smaller than the
ones required to reach similar accuracy by employing energy training. Thus, the
computational effort for constructing these reference data sets is comparatively
low since the reference data set is rather small and gradient information can be
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obtained efficiently.
This thesis deals with training approaches for NN-potentials that allow for

accurate approximations of PESs and the respective atomic forces and, if required,
even Hessians. In this thesis it is demonstrated that including quality measures for
energy, force and Hessian predictions of the NN-potential into the loss function yields
excellent descriptions of the PES and its derivatives. NN-potentials constructed by
this direct force training approach can even be employed in simulations which are
highly sensitive to errors in the Hessian information, such as instanton reaction
rate constant computations.

It is shown that the calculation of reaction rate constants by the instanton
method on a coupled-cluster level of theory is possible when a NN-PES is employed
in rate constant calculations. On the basis of reaction rate constants, which were
obtained from the surrogate model for various deuteration patterns of the reaction
CH3OH + H → CH2OH + H2, a good qualitative explanation for the unexpectedly
high deuteration of methanol in the interstellar medium (ISM) can be found.

Moreover, a detailed derivation of an algorithm to perform direct force training
for atomic neural networks is given.

Furthermore, it is shown that the predictions of forces cannot only be improved
by direct force training, but also in a computationally significantly less demand-
ing manner by employing a novel Taylor expansion based approach. This novel
approach reduces the computational effort of training a NN with force information
by introducing this information indirectly to the reference data. For this purpose,
additional training data is generated from existing training examples. New struc-
tures are generated by slightly displacing atoms in a subset of the original training
examples and extrapolating the energy of the newly generated structures with a
first order Taylor series expansion scheme.

The predictive power of NN-potentials trained with this approach is compared
to the predictive power of NN-PESs trained with the direct force training approach
and the conventional energy training approach. As a test case predictions of
potential energies and atomic forces for a multitude of structures of a cluster made
up of six water molecules is investigated.

It is demonstrated that the Taylor expansion based approach yields a signifi-
cant improvement of the predicted atomic forces in comparison to atomic forces
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obtained by training NN-potentials with the conventional energy training approach.
By comparing this approach to direct force training it is found that the direct
force training approach yields the most accurate force predictions for the water
cluster. However, employing the approximate Taylor expansion based force training
approach yields about 50% of the improvement gained by direct force training at a
significantly lower computational cost.

The software developed for the Taylor expansion based and direct force training
approach is open source and was implemented in the software package ænet.
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Zusammenfassung

Auf Basis der Born–Oppenheimer Näherung ist es möglich die Potentialenergieflä-
che (PES) eines Systems zu definieren. Die der PES zugrundeliegende Funktion
beschreibt die potentielle Energie eines chemischen Systems abhängig von seiner
Geometrie.

Eine exakte Kenntnis der PES ist für viele Simulationsanwendungen in der
Computerchemie unabdingbar, da sie unter anderem die Energetik chemischer
Reaktionen, sowie die atomaren Kräfte bestimmter Molekülgeometrien beschreibt.
Darüber hinaus definieren die stationären Punkte der PES die Gleichgewichts- und
Übergangszustands-Geometrien des Systems und ihre zugehörigen Energien.

Allerdings ist die exakte Bestimmung der PES während einer Computersimula-
tion sehr rechenintensiv, da sie die Durchführung komplexer quantenchemischer
Berechnungen erfordert. Daher wird durch dieses Vorgehen der mit der Simulation
verbundene Rechen- und Zeitaufwand signifikant erhöht, was die Anwendbarkeit
eines solchen Simulationsansatzes auf komplexe Systeme stark einschränkt, bis hin
zur Unmöglichkeit der Beschreibung des Systems.

Aufgrund dessen ist es von großem Interesse Ansätze zu entwickeln, die a priori
eine akkurate Beschreibung der PES erlauben, um den Rechenaufwand während
der Simulation zu minimieren. Ein fest etablierter Ansatz dieser Problematik
zu begegnen ist die Verwendung physikalisch motivierter und parametrisierter
Potentiale wie beispielsweise die klassischen Kraftfelder, die in biochemischen
Simulationen verwendet werden. Als Alternative zu diesem Vorgehen hat sich die
Verwendung von Ersatzmodellen (engl. surrogate models) der PES etabliert, die
mit Methoden des maschinellen Lernens konstruiert werden.

Ein typische Vorgehensweise die PES mittels eines solchen Ersatzmodells zu appro-
ximieren ist die Konstruktion von PESn mittels künstlicher neuronaler Netze (NN).
Im Gegensatz zu klassischen Kraftfeldern ist dieser Ansatz rein mathematisch und
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das Resultat ist nicht physikalisch motiviert.
Den Prozess in dem Ersatzmodelle mittels NNs auf Basis von Referenzdaten

konstruiert werden bezeichnet man als Training. Während des Trainings werden
sehr flexible Funktionen so angepasst, dass die Approximation der zugrundelie-
genden PES optimal ist. Dabei wird dasjenige Modell als optimal betrachtet,
das ein vorgegebenes Fehlermaß, die so genannte Kostenfunktion, minimiert. Die
Kostenfunktion, die zur Konstruktion solcher NN-PESn in konventionellen Trai-
ningsverfahren verwendet wird bewertet üblicherweise ausschließlich den Fehler,
den das NN bei Energie-Vorhersagen macht. Aus diesem Grund sind die resultie-
renden NN-Potentiale zwar im Allgemeinen exzellent für Simulationsanwendungen
für die die potentielle Energie von großem Interesse ist geeignet, allerdings ist
ihre Verwendbarkeit für die Vorhersage atomarer Kräfte oder gar Hesse-Matrizen
aufgrund mangelnder Genauigkeit stark eingeschränkt.

Um eine verlässliche Vorhersage von Ableitungen der PES, z.B. der Kräfte,
mittels dieses Trainingsverfahrens zu erhalten, ist es im Allgemeinen nötig einen
Referenzdatensatz für den Trainingsprozess zu verwenden, der den Bereich des
Phasenraums, der für die spätere Simulationsanwendung relevant ist, detailiert
beschreibt. Die resultierende große Anzahl an Referenzstrukturen und damit die
große Anzahl quantenchemischer Berechnungen, die zur Generierung des Referenz-
datensatzes benötigt werden, ist unvorteilhaft, da sie einen großen Mehraufwand
bei der Konstruktion von NN-Potentialen bedeutet. Abgesehen davon erfordert eine
hinreichend engmaschige Beschreibung des Phasenraums für komplexe chemische
Systeme mit einer großen Anzahl von Atomen aufgrund der hohen Dimensionalität
der PES komplexe Samplingverfahren.

Alternativ können NN-Potentiale, die sich zur Vorhersage von Kräften und
Hesse-Matrizen eignen, konstruiert werden, indem man dem Referenzdatensatz
Informationen zu den Ableitungen der PES hinzufügt und beim Training Informa-
tionen zu Energine, Kräften und, wenn nötig, auch Hesse-Matrizen berücksichtigt.
Im Gegensatz zu vielen anderen Problemstellungen im Bereich des maschinellen
Lernens, bei denen die Berechnung der Gradienten für die Generierung des Referenz-
datensatzes mit einem hohen Rechenaufwand verbunden ist, ist der Mehraufwand
für diese Problemstellung verhältnismäßig gering. Dies rührt daher, dass die quan-
tenchemische Berechnung eines Gradienten mit einem Rechenaufwand verbunden
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ist, der vergleichbar ist mit dem Aufwand für die Berechnung der Energie mit der
selben quantenchemischen Methode. Das Erweitern des Referenzdatensatzen mit
Informationen zum Gradienten erhöht jedoch dessen Informationsdichte drastisch.
Angenommen die zu approximierende PES ist N dimensional, dann enthält der
Referenzdatensatz für jede chemische Struktur N + 1 Informationen, die im Trai-
ningsprozess genutzt werden können, da der Gradient ein N dimensionaler Vektor
und die Energie eine skalare Größe ist.

Aufgrund der hohen Informationsdichte des Referenzdatensatzes ist es möglich
akkurate NN-Potentiale auf Basis eines Referenzdatensatzes zu konstruieren, der
deutlich kleiner ist als diejenigen, die bei der Anwendung des Energietrainings
für eine vergleichbare Genauigkeit benötigt werden. Daher ist der Rechenaufwand
für die Generierung eines solchen Referenzdatensatzes verhältnismäßig gering, da
der Referenzdatensatz verhältnismäßig klein ist und Gradienten effizient berechnet
werden können.

Diese Doktorarbeit beschäftigt sich mit Trainingsverfahren für NN-PESn, die
exakte Approximationen der PES und der zugehörigen Kräfte und, falls gefordert,
Hesse-Matrizen ermöglichen. Im Rahmen dieser Arbeit wird zunächst demonstriert,
dass die Berücksichtigung der Energie-, Kraft- und Hesse-Matrix-Vorhersagen in
der Kostenfunktion, eine exzellente Approximation der PES und ihrer Ableitungen
durch NN-Potentiale ermöglicht. Verfahren dieser Art werden im Folgenden als
direkte Kraft-Trainingsverfahren (engl. direct force training approach) bezeich-
net. Diese NN-Potentiale, die durch direktes Trainieren der Kräfte und höheren
Ableitungen konstruiert werden, können selbst für Simulationsanwendungen ver-
wendet werden deren Vorhersagen sehr empfindlich für Fehler in der Beschreibung
der Hesse-Matrix sind. Ein Beispiel für eine solche Simulationsanwendung ist die
Berechnung von Reaktionsratenkonstanten mit der Instantonmethode.

In dieser Doktorarbeit wird aufgezeigt, dass eine Berechnung von Reaktionsra-
tenkonstanten mit der Instantonmethode auf Coupled-Cluster-Niveau möglich ist,
wenn ein NN-Potential der Ratenkonstantenberechnung zugrunde gelegt wird.
Darüber hinaus wird dargelegt, dass es möglich ist auf Basis von Reaktions-
ratenkonstanten, die für eine Vielzahl von Deuterierungsmustern der Reaktion
CH3OH + H → CH2OH + H2 mittels NN-Potentialen berechnet wurden, eine
gute qualitative Erklärung für die unerwartet starke Deuterierung von Metha-

xii



nol in vielen Regionen des interstellaren Mediums (ISM) zu finden. Daraufhin
erfolgt eine detaillierte Herleitung eines im Rahmen dieser Arbeit entwickelten
Algorithmus für das direkte Kraft-Trainingsverfahren. Zudem wird demonstriert,
dass die Vorhersage von Kräften nicht nur durch direktes Krafttraining, sondern
auch mittels eines neuen, auf einer Taylorentwicklung der potentiellen Energie
basierenden Verfahrens verbessert werden kann, das deutlich weniger rechenintensiv
ist. Dieses Trainingsverfahren reduziert den mit dem Krafttraining verbundenen
Rechenaufwand indem es Informationen zu den atomaren Kräften lediglich indi-
rekt berücksichtigt. Um Kraftinformationen indirekt in den Trainingsdatensatz
einzubeziehen, werden zusätzliche Trainingsdaten generiert. Dazu werden die Atom-
positionen von Strukturen des Referenzdatensatzes mit bekannter Energie und
vollständiger atomarer Kraftinformation geringfügig verändert und die Energie der
resultierenden Struktur wird mittels einer Taylorentwicklung erster Ordnung der
potentiellen Energie der Ursprungsstruktur berechnet.

Im Rahmen der Diskussion des taylorentwicklungsbasierten Trainingsverfahrens
werden die Energie- und Kraftvorhersagen, die man mittels dieses Trainingsverfah-
rens erhält mit Energie- und Kraft-Vorhersagen, die durch direktes Krafttraining
oder mittels des konventionellen Energietrainings erhalten werden können, vergli-
chen. Dabei beschreibt die zugrundeliegende PES, die durch alle Trainingsverfahren
approximiert werden soll, ein Cluster von sechs Wassermolekülen.

Die Untersuchung des taylorentwicklungsbasierten Trainingsverfahrens zeigt, dass
dieses Verfahren im Vergleich zum konventionellen, allein auf Energieinformation ba-
sierenden Trainingsverfahren, deutlich akkuratere Vorhersagen der atomaren Kräfte
ermöglicht, wenn beide Verfahren den selben Referenzdatensatz zum Training ver-
wenden. Ein Vergleich dieses Trainingsverfahrens mit direktem Krafttraining ergibt,
dass direktes Krafttraining die akkuratesten Kraftvorhersagen ermöglicht. Aller-
dings können etwa 50% dieser durch direktes Krafttraining erreichten Verbesserung
deutlich weniger rechenintensiv durch Anwendung des taylorentwicklungsbasierten
Trainingsverfahrens erreicht werden.

Alle Algorithmen, die im Rahmen dieser Doktorarbeit entwickelt wurden, sind
Open Source, d.h. quelltextoffen, und im Programmpaket ænet implementiert.
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Outline

Part I - Introduction

In the beginning of Chapter 1 a general introduction to theoretical chemistry is
given. In the course of this introduction the concept of a potential energy surface
(PES) is introduced and its properties as well as its applications in computational
chemistry are discussed. At the end of this chapter a general motivation for fitting
potential energy surfaces with machine learning methods is given.

Part II - Literature Review

Chapter 2 summarizes the fundamentals of instanton theory and how it can be
used to compute reaction rate constants. A special focus is put on the discussion of
the properties of an approximate PES that are necessary for accurate predictions
of rate constants with the instanton method.

Chapter 3 is subdivided into two main parts. The first part focuses on neu-
ral networks (NNs) in general and their mathematical background. A general
definition of machine learning is given and the basic terminology to describe NNs
and their training is introduced. Further, the mathematical background of NNs
is summarized. Thereafter, it is explained in detail how feedforward NNs can be
trained and how the generalization of the predictions to structures unknown to the
NN can be tested. In this context the concept of overfitting is introduced and a
method to diagnose overfitting is discussed. In the second part of this chapter details
on the application of NNs to the regression of PESs are discussed. Two different
kinds of machine learning models, namely structure neural networks (SNNs) and
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atomic neural networks (ANNs), are introduced. The chapter concludes with a
detailed outline of work flows facilitating the design of appropriate neural network
architectures. This includes a discussion of possible structural descriptors and loss
functions as well as promising pre-conditioning techniques that can accelerate the
training process.

Part III - Novel Methods and Algorithms

In Chapter 4 an extensive description of the direct force and Hessian training
approach is made for SNNs as well as ANNs. Further, the algorithm for direct
force training with ANNs, that was developed and implemented into the software
package ænet by the author is outlined. It is demonstrated how a formulation of
the derivatives with matrix equations allows for an efficient computation of all
additional derivatives of the loss function which are not required by conventional
energy training approaches. All matrix equations defining the derivatives of the
forces predicted by the NN with respect to the NN’s weight and bias parameters
are given for a NN with two hidden layers.

In Chapter 5 the novel, Taylor expansion based force training approach, which
was developed as part of the author’s work presented in this thesis, is introduced.
First the general idea behind the approach, which as developed in collaboration
with N. Artrith and A. Urban from Columbia University, is discussed. Therein two
possible variants of this training approach, that differ in the displacement scheme
employed, are explained in detail. Lastly the workflow of training NNs with this
indirect force training approach is described.

Part IV - Applications and Results

In Chapter 6 it is demonstrated that employing NN-PESs trained with the direct
force and Hessian training approach for the prediction of reaction rate constants
with instanton theory is highly efficient and yields outstandingly accurate rate con-
stant predictions. In the course of this chapter it is outlined how the unexpectedly
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high deuteration of methanol which was observed in many regions of the interstellar
medium can be qualitatively explained on the basis of reaction rate constants
for various deuteration patterns of the reaction CH3OH + H → CH2OH + H2.
Unimolecular reaction rate constants as well as the respective kinetic isotope ef-
fects are given down to temperatures of 30K. Moreover, bimolecular reaction rate
constants obtained from a microcanonical formalism are given in order to describe
low-pressure bimolecular processes appropriately.

Chapter 7 shows that employing the novel Taylor expansion based force training
approach drastically improves the predictions of atomic forces by NN-potentials,
especially for small reference data sets, in comparison to the predictions obtained
by conventional energy training. On top of that a comparison of the energy training
approach to direct force training and the Taylor expansion based force training
approach is made. On the basis of this comparison the optimal fields of application
for the two force training approaches are discussed.

In Chapter 8 a final discussion of all methods and applications discussed in
Chapters 4–7 is given.
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Part I.

Introduction



1. The Potential Energy Surface in
Theoretical Chemistry

The aim of theoretical chemistry is to provide theoretical methods to explain
chemical processes and experimental observations. However, theoretical chemistry
is not limited to explaining experimental findings a posteriori. Its methods can, for
example, be used to design novel compounds with a defined set of chemical and
physical properties or to study chemical processes, like astrochemical processes, for
which measurements are highly complicated and error-prone.

The methods of theoretical chemistry are very diverse. While some methods are
based on the description of chemical systems by analytical mathematical theory
as well theoretical physics alone, other methods make use of additional empirical
parameters fitted to experimental results.

Computer simulations have become essential tools in theoretical chemistry since
they enable solving problems which are due to their complexity unsolvable without
computers.

A realistic description of many chemical properties and processes, requires
a quantum mechanical description. Further, purely quantum mechanical effects
like atom tunneling can only be simulated by applying quantum theory. The
basis of non-relativistic quantum chemical simulations is the Schrödinger equation.
Theoretically any chemical property can be predicted from the analytical solution
of the Schrödinger equation. Unfortunately, analytical solutions for this partial
differential equation aren’t readily available for most chemical systems. Today
analytical solutions are only available for very simple chemical systems like atoms
with a single electron such as the hydrogen atom or hydrogen-like ions like He+ or
Li2+.
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In order to find at least approximate solutions of the Schrödinger equation,
approximations are introduced. One fundamental approximation is that the motion
of atomic nuclei and electrons can be treated separately since the time scales of
their motion differ strongly due to the great difference in the mass of nuclei and
electrons. This is known as the Born–Oppenheimer approximation. It can be used
to rewrite the Schrödinger equation into two separate differential equations, one
describing the electrons and one describing the nuclei. This enables solving the
electronic Schrödinger equation first, which requires the positions of the nuclei as
fixed parameters and then solving the Schrödinger equation for nuclear motion.

By applying the Born-Oppenheimer approximation and solving the electronic
Schrödinger equation for varying nuclear positions one can define a mapping
between the positions of the nuclei and the corresponding electronic energy. This
mapping defines the effective potential in which the nuclei move and is therefore
called potential energy surface (PES). For each electronic state of a chemical system
such a PES can be defined, however, in the following the term potential energy
surface will be used synonymously with potential energy surface of the electronic
ground state.

The decoupling of nucleic and electronic motion drastically accelerates quantum
chemical simulations. Unfortunately, solving the electronic Schrödinger equation
even approximately can be very time consuming. Therefore, the time required for
finding this approximate solution determines the problems that can be solved with
computer simulations. Thus, the development of efficient methods for approximating
solutions of this differential equation is one of the main focuses of computational
chemistry.

Depending on the scientific problem, it is also possible to describe the motion of
nuclei by classical or semi-classical equations of motion, which in general reduces the
computational effort of the simulation. If, for example, the movement of a number
of particles or molecules, like the folding or unfolding process of a protein, is to be
studied, it is sufficient to describe the atomic motion fully classically by Newton’s
laws of motion. This is done in several simulation methods like molecular dynamics
or in Monte Carlo simulations. These simulations, however, require information on
how the energy of the system under study changes with the positions of the nuclei, as
this determines the interactions and, thus, the movement of the atoms. In contrast
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1. The Potential Energy Surface in Theoretical Chemistry

to standard quantum chemical simulations where this information is obtained by
solving the electronic Schrödinger equation during the simulation, a molecular
dynamics simulation commonly obtains this information from an empirical force
field. These force fields are tailored to describe the potential energy of the chemical
system well and are often constructed on the basis of data from quantum chemical
computations as well as experimental findings. Thus, force fields themselves are
not purely classical and implicitly describe quantum mechanical effects since they
approximate the solution of the electronic Schrödinger equation, i.e. the PES.

Unfortunately, standard force fields require a fixed topology of the molecular
structures simulated, which implies that it is impossible to describe bond formation
or bond breaking with them. There is a class of force fields, the so called reactive
force fields, that is capable of describing bond breaking and formation [1, 2].
However, usually reactive force fields, like most force fields, cannot be applied
directly to a system of interest but have to be reparametrized to ensure an accurate
description of the system.

Alternatively, it is also possible to employ a fitted PES in order to define a
potential that allows for the description of bond formation and bond breaking.
These fitted PESs can be constructed such that their transferability to other systems
is straight forward and doesn’t require a reparametrization. One example for easily
transferable potentials are NN-PESs constructed with atomic neural networks, see
section 3.6.2.

1.1. Properties of the Potential Energy Surface
The PES defines many physical and chemical properties which are of interest in
computational chemistry. In the following some important examples for such prop-
erties defined are given. Minima on the PES correspond to equilibrium structures
and saddle points of first order correspond to transition structures. A chemical
reaction is determined by a set of equilibrium structures that define the reactants
and products and the corresponding transition state structures. Thus, the potential
energy surface determines the reaction kinetics, as the energy differences between
reactants and transition states determines if and how fast a chemical reaction can
take place. Further, the gradient of the PES with respect to the atomic positions
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defines the forces acting on the atoms for a given atomic configuration. The infor-
mation on the PES and its gradient with respect to the atomic positions is used
for geometry optimizations, which are performed to determine equilibrium and
transition structures. On top of that the atomic forces can be used to simulate
the motion of the nuclei and the potential energy corresponding to a given spatial
configuration of atoms in atomistic simulations like molecular dynamics or Monte
Carlo simulations.

1.2. Motivation for Fitting Potential Energy Surfaces
The use of a fitted PES can greatly accelerate simulations. Evaluating such a PES
for a given atomic configuration is significantly faster than solving the electronic
Schrödinger equation in quantum chemical simulations. Therefore, once a fitted
PES is available, quantum chemical simulations can be accelerated drastically by
employing the fitted potential instead of solving the electronic Schrödinger equation
during the simulation run. Given a potential surface is available, this enables the
study of chemical systems that are too large or problems that are too complex for
conventional simulation approaches. Normally defining the PES by a fit of energies
obtained from quantum chemical simulations is more favorable than employing a
force field as on the one hand it allows for the description of bond-formation and
bond breaking and on the other hand the description of the potential energy is
more precise.

However, if a PES is not already available for the chemical system of interest,
fitting a PES introduces a large overhead to the simulation process. Obtaining a func-
tional description of the PES requires solving the electronic Schrödinger equation for
a dense grid of configurations and interpolating the energies between the grid points.
The PES is for non-linear molecules a 3N − 6 dimensional hypersurface with N

being the number of nuclei. Due to the PES being so high-dimensional, a thorough
description of a PES requires the solution of the electronic Schrödinger equation
for a vast number of atomic configurations in order to sample the configurational
space reasonably well. Therefore, the interpolation of a PES is computationally
very expensive and the interpolation of global potential energy surfaces is only
possible for elemental materials [3–11] and small molecules [12–18]. Even a local
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description of a PES that only describes a confined area of configurational space
requires significant computational effort, but can be done for chemical systems with
hundreds of atoms [7]. A second disadvantage of classical mathematical methods
for interpolating PESs is that many of the conventional methods require a lot of
human effort and often do not allow for an easy transfer of the fitted model to
similar systems.

The prospect of accelerating and improving the predictive power of chemical simu-
lations by employing fitted PESs without standard mathematical fitting procedures
inspired the approximation of PESs with machine leaning methods.

The idea is to use a machine learning algorithm to learn the potential energy
surface from a training data set or training set, i.e. a set of chemical structures
for which the potential energy was obtained by a quantum chemical simulation.
One advantage of machine learning a PES is that the functions used for fitting are
very flexible, which allows for a highly precise and, if required, complex description
of the PES based on the training data. A second advantage is that a minimal
human effort has to be put into the fitting process, since it is sufficient to define
the general functional form used for the fit and a small number of parameters, like
the optimizer used for the parameter optimization. The two most common classes
of machine learning methods used to approximate PESs are kernel methods and
artificial neural networks (NNs). These methods learn to approximate the PES by
performing a regression of the training data. Detailed information on how NNs can
be used to approximate PESs is given in chapter 3.

Unfortunately, even though energy predictions by NN-potentials trained with
conventional NN training procedures are reliable, such NN-PESs only have limited
applicability to simulations which require accurate force predictions. This is due
to the fact that conventional training approaches measure the NNs performance
on the basis of predictions of structural energies alone. Therefore, these training
approaches will be referred to as energy training approaches in the following. In
order to ensure reliable force predictions, it is usually required to sample the phase-
space extensively and thereby generate a huge amount of reference data. Therefore,
generating these reference data sets introduces a significant computational overhead
to the NN training process, as for every reference structure a computationally
expensive quantum chemical simulation has to be performed. The prediction of

6



1.2. Motivation for Fitting Potential Energy Surfaces

Hessians and higher derivatives of the PES with respect to spatial coordinates
require even more extensive sampling of the phase-space, which renders reliable
predictions of these higher derivatives of the PES for most systems impossible.

To overcome these restrictions, it is usually beneficial to include force information
and, if required, information on higher derivatives, like Hessians, into the training
process to ensure reliable predictions. Employing these so called force training
approaches also allows the use of smaller reference data sets in the training process
in order to obtain reliable information on atomic forces and higher derivatives of
the PES. This reduces the computational overhead of the NN training process
drastically, however, force training approaches are in general computationally more
expensive than the conventional energy training approaches.

Instead of incorporating information on the derivatives of the PES directly into
the training process it is also possible to include force information indirectly. This
idea was suggested for conventional molecular force filed optimization by Vlcek et
al. [19], but was applied to NN-potentials for the first time in the work presented
in this thesis. In this method the reference data set size is increased by displacing
atoms in known reference structures and computing the corresponding energy not
by quantum mechanical methods but on the basis of a first order Taylor expansion
of the original structure’s energy. This process implicitly includes force information
into the training process by transforming force information to energy information.

The core research question discussed in this thesis is if direct or indirect force
training approaches can be used to construct NN-potentials that can be employed
in simulations that are highly sensitive to errors in atomic forces or Hessians. The
second focus point of this thesis is to investigate the novel Taylor expansion based
force training approach and compare it to conventional force training as well as
energy training.
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2. Fundamentals of Instanton
Theory

The quantum mechanical tunnel effect influences reaction rate constants. It allows
for chemical reactions even if the system under study does not have the energy
to overcome the respective barrier and thus, a reaction is impossible in classical
transition state theory. While the influence of tunneling on the reaction rate
constant is rather small at high temperatures, as reaction barriers are overcome
by the system’s thermal energy, it dominates the reaction rate constants at low
temperatures. Therefore, it is vital to consider the tunnel effect in rate constant
calculations for astrochemical reactions that take place in regions of the interstellar
medium where temperatures are very low.

Instanton theory [20–27] is a semi-classical theory, that allows for the computation
of reaction rate constants including the quantum mechanical tunnel effect. In
instanton theory the Feynman path integral formulation [28] is employed. In order
to compute reaction rate constants, first the instanton, i.e. the tunneling path
with the highest statistical weight, is located by discretizing the Feynman path
and finding a saddle point of first order in the space of discretized Feynman
paths [29, 30]. The instanton can be determined even for high-dimensional systems
highly efficiently by a modified Newton-Raphson method[29, 31], which converges
quadratically to the solution. In order to compute the reaction rate constant,
fluctuations around the instanton path are taken into account up to quadratic
order. The reaction rate constant kinst is given by [29, 31]:

kinst =

√
S0

2πh̄

√
P

βh̄

∏NP
l=N0+1

√
λRS
l∏NP

l=N0+2

√
|λinst
l |

exp
(
−SE

h̄

)
. (2.1)
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2. Fundamentals of Instanton Theory

Here β = 1/kBT is the inverse temperature, with kB being the Boltzmann constant.
h̄ is the reduced Planck’s constant. N is the number of degrees of freedom and
N0 represents the number of translational and rotational degrees of freedom. P
is the number of discretization points, also called images, of the Feynman path.
Furthermore, SE is the Euclidean action of the instanton path and S0 is the
corresponding shortened action [29]. λinst

l and λRS
l are the eigenvalues of the matrix

of all second derivatives of the Euclidean action with respect to the coordinates of
all images for the reactant state (λRl S) and instanton (λinst

l ). Thereby, the second
derivative matrix is given by

∂2SE

∂yci∂y
d
j

=
P

βh̄
δc,d(2δi,j − δi−1,j − δi,j−1) +

βh̄

P
δi,j

∂2E

∂yci∂y
d
j

, (2.2)

where yci stands for the mass-weighted coordinate component c of image i.
From the expression in equation (2.2) it can be seen that the second derivatives,

i.e. the Hessians, of the potential energy with respect to all coordinates of each
image i, ∇i∇iE = ∂2E/(∂yci∂y

d
i ), are required to compute kinst. Unfortunately,

computing these Hessian matrices on-the-fly during a simulation by quantum
chemical methods is very time-consuming. Therefore, computing reaction rate
constants with instanton theory is limited to rather small chemical systems and
restricted to employing a computationally efficient quantum chemical method for
the determination of the Hessian. Therefore, usually density-functional theory
(DFT) is employed to keep the computational effort at bay.

The endeavor to describe the PES, and thus the Hessian, more accurately by
employing computationally more expensive quantum chemical methods, like coupled
cluster methods, as well as the aspiration to enable the application of instanton
theory to large chemical systems inspired the use of NN-potentials. Employing
NN-PESs can significantly accelerate instanton path optimizations and instanton
reaction rate constant computations. This is due to the fact that Hessians of the
PES don’t have to be computed by quantum chemical methods during the computer
simulation but can be determined by evaluating the NN-PES.

The time- and computational effort for evaluating a neural network is negligible
in comparison to the effort of a standard quantum mechanical simulation of the
electronic structure. In order to make reliable predictions for reaction rate constants
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on the basis of a NN-PES, it is crucial that the NN-potential describes the Hessians
accurately and as a smooth function of all coordinates.

How NN-PESs can be used to perform reliable instanton reaction rate compu-
tations on a coupled cluster level of theory is one of the main research questions
studied in this thesis. A detailed discussion of this research question is given in
chapter 6 .

An important restriction of instanton theory is that it is only applicable for
the prediction of reaction rate constants at temperatures below the crossover
temperature Tc = h̄ωTS/2πkB, where ωTS is the absolute value of the imaginary
frequency at the transition structure. This restriction is especially of interest if
several isotopologues are to be studied, since the crossover temperature is mass-
dependent due to ωTS being mass-dependent.

Further, instanton theory is intrinsically overestimating reaction rate constants
at temperatures lower than but close to the crossover temperature [26]. However,
methods to correct for this non-physical effect exist [32, 33] and were applied in
the work presented in this thesis.
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3. Artificial Neural Networks
Defining Machine Learning
Potentials

In this chapter a detailed review of neural networks (NNs) and how they can be
employed as surrogate models for potential energy surfaces (PESs) is given.

Section 3.3, follows the line of thought of the book Deep Learning by Goodfel-
low, Bengio and Courville [34] and the description of atomic neural networks in
section 3.6.2 summarizes the articles [3] and [35]. In both cases I summarized the
explanations given and amended them by further aspects to facilitate comprehensi-
bility.

3.1. Machine Learning - A Definition

In 1997 Mitchell gave in his book Machine Learning [36] a broad definition of
machine learning:

Definition 1. A computer program is said to learn from Experience E with respect
to some class of tasks T and performance measure P , if its performance at tasks T ,
as measured by P , improves with experience E.

Mitchell further states that a machine learning problem is well posed if and only
if the three features E, T and P are well-defined.

A mathematically rigorous definition of these three features is non-trivial and
does not facilitate the understanding of how machine learning is to be understood
in the context of this thesis. To demonstrate that the machine learning problem
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investigated in this thesis, i.e. regression of high dimensional functions, is well-posed,
the meaning of E, T and P in this context will be discussed in the following.

In this thesis NNs are used to interpolate the PES for a given chemical system.
Thus, the the task T is to approximate the PES, i.e. the function m∗ that maps from
the coordinates x of a chemical structure to the corresponding ground state energy
y := m(x). The experience E is given by a data set of chemical structures for which
the potential energy and its derivatives of interest are known. The performance
measure P is given by the loss function of the NN. Often the root mean square error
of the NN’s predictions is used to define the loss function, but other performance
measures are possible, see section 3.7.3.

3.2. Basic Architecture of Neural Networks
A NN is built up from simple compute units, the neurons. A schematic representation
of a neuron is given in figure 3.3. Neurons that process data at the same time are
combined into so called layers. Each layer is, in general, made up of several neurons,
where the number of neurons in the layer defines its width.

A NN is then constructed by interconnecting multiple layers with each other and
assigning parameters, the so called weights, to each connection. In general neural
networks are structured as follows: In the first layer, the input layer, the reference
data is represented. The following layers are called hidden layers, since the output
values of the neurons, the so called activations, in these layers are a priori not
known, i.e. hidden. The number of these hidden layers is a model parameter, that
can be adjusted to the problem under study and to the computational resources
available. The final layer is the output layer that contains the prediction that the
NN makes for the given input. The total number of layers in an artificial NN defines
the depth of the network. Figure 3.2 a) shows a feedforward NN with 2 hidden
layers.

Depending on the way in which the layers are interconnected different kinds of
NNs are obtained. In general there are no restrictions to the ways in which two
layers can be interconnected. If all neurons from one layer are connected to all
neurons in the subsequent layer then a NN is called fully connected. NNs that
are defined by a mapping in which input information is processed unidirectional
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from the input to the output and, thus, there are no feedback loops, are called
feedforward neural networks. This kind of NNs is the most commonly used one for
regression tasks and will therefore be discussed in detail in this chapter.

3.3. Mathematical Background of Neural Networks

In this section the mathematical background required to understand NNs and their
training is presented. First some basic notation is introduced. Subsequently the
concept of Maximum likelihood is explained. Then it is discussed how the principle
of maximum likelihood for linear regression yields the mean square error as optimal
performance measure P . Finally it is outlined how to extend the methods discussed
to nonlinear models by applying the kernel trick and how the kernel trick can be
employed for training NNs.

3.3.1. Notation

In the remainder of this thesis the following basic notation will be used: Vectors are
given as lower-case bold and italic symbols v. Matrices are given as upper case bold
and italic symbols A. Random variables are given as upright bold symbols x and
the i-th value of a random variable shall be given by x(i). Further, || · || indicates
the L2 norm of a vector.

3.3.2. Maximum Likelihood

Let X = {x(1), . . . ,x(m)} be a set of m independent training examples drawn from
the probability distribution pdata(x). Let further pmodel(x,θ) be a parametric family
of probability distributions over the same space as pdata(x), indexed by θ. This
means that pmodel(x,θ) maps x to a real number that approximates pdata(x).

With these definitions the maximum likelihood estimator for θ is given by:

θML = argmax
θ

m∏
i=1

pmodel(x
(i),θ) (3.1)

The product in equation (3.1) can cause numerical instabilities arising from under-
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flow errors caused by the repeated multiplication of small numbers. Therefore, it
is numerically more stable to solve the following equivalent optimization problem,
which is obtained by taking the logarithm:

θML = argmax
θ

m∑
i=1

log(pmodel(x
(i),θ)) (3.2)

The maximum likelihood estimator can be generalized such that it estimates the
conditional probability P (y|x;θ).

For X representing all inputs and Y being the corresponding target values, the
conditional maximum likelihood estimator is given by

θML = argmax
θ

m∑
i=1

log(P (y(i)|x(i);θ)) (3.3)

if the examples are independent and identically distributed (i.i.d.). This conditional
maximum likelihood estimator is the basis of most supervised machine learning
algorithms.

3.3.3. Linear Regression and Maximum Likelihood

Performing linear regression with a computer can be seen as a simple machine
learning procedure. From one perspective the aim of linear regression is to build
a model that maps a vector x ∈ R

n to the scalar target value y ∈ R, where the
target value is a linear function of the input. We define ŷ as the value that linear
regression predicts for x:

ŷ = wTx, (3.4)

where w ∈ R
n is a vector of model parameters, the so called weights, used for the

regression. Thus, ŷ is an approximation of the target value y.
The task T of this machine learning problem is to predict ŷ ≈ y for x by

employing the model ŷ = wTx. The experience E is defined by the observation of
the training set (X(train),y(train)). Here X(train) is a matrix that contains all training
examples x(i) and y(train) is the vector of all respective target values y(i). Employing
the mean square error of the training set (MSEtrain) as the performance measure P
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a well-posed machine learning problem is obtained. This machine learning problem
can be solved by minimizing MSEtrain with respect to the weights w. A closed form
for the optimal weight parameters is given by the normal equations. From

∇wMSEtrain = 0 (3.5)

the deduction of the optimal choice of w, that minimizes MSEtrain, is straight
forward and yields the normal equations:

w = (X(train)T X(train))−1X(train)Ty(train). (3.6)

The evaluation of equation (3.6) defines linear regression, a simple machine
learning algorithm.

Another perspective on linear regression is to view it as a maximum likelihood
procedure. From this standpoint linear regression is a model that produces a
conditional distribution p(y|x). The aim of the machine learning procedure is to fit
p(y|x) to all values y that are possible for the input x. To derive the same linear
algorithm as in the first part of this section, the posterior is defined by a normal
distribution as p(y|x) = N (y, ŷ(x;w), σ2), where the variance σ2 is assumed to be
a user-defined constant and ŷ(x;w) is the normal distribution’s mean.

If the m training examples in X = {x(1), . . . ,x(m)} are i.i.d. the conditional
log-likelihood defined in equation (3.3) is given by:

WML =
m∑
i=1

log(p(y(i)|x(i);W )) (3.7)

= −m log(σ)− m

2
log(2π)−

m∑
i=1

||ŷ(i) − y(i)||2

2σ2
. (3.8)

From equation (3.8) it can be directly obtained that maximizing the conditional
log-likelihood with respect to the weights w is equivalent to minimizing the mean
square error of the training set given by

MSEtrain =
1

m

m∑
i=1

||ŷ(i) − y(i)||2. (3.9)
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Thus, the optimal parameters w are obtained by maximizing the conditional
log-likelihood, which is equivalent to minimizing MSEtrain.

3.3.4. The Kernel Trick and Neural Networks

The learning algorithms discussed in this thesis are based on estimating p(y|x) by
employing a maximum likelihood estimation of the parameters w for p(y|x;w), a
parametric family of probability distributions.

As seen in section 3.3.3 linear regression corresponds to the parametric family

p(y|x : w) = N (y;wTx, σ2). (3.10)

In order to apply the methods introduced so far to the definition of nonlinear
machine learning methods, the formalism has to be extended. One way to obtain
nonlinear models is to employ the so called kernel trick. The kernel trick can only be
applied if the machine learning algorithm can be rewritten such that it is exclusively
composed of inner products between training examples.

Standard linear regression and even its extended form ŷ = wTx + b can be
rewritten in such a way:

ŷ = wTx+ b = b+
m∑
i=1

αix
Tx(i), (3.11)

where α is a vector of the parameters αi and x(i) is the i-th training example.
In this formulation of linear regression x can be replaced by a feature function

φ(x). The inner product in equation (3.11) is then given by a kernel k(x,x(i)) =

φ(x) ·φ(x(i)). The actual inner product that is used to define the kernel depends on
the feature space. For example in infinite dimensional feature spaces inner products
that are defined by integration have to be used instead of standard inner products
for vectors in R

n.
An intuitive interpretation of φ is that it is a function which defines a set of

features that describe x and thereby provides a new representation of this training
example.

In this formulation the machine learning algorithm can make predictions ŷ = m(x)
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based on the following equation:

m(x) = b+
m∑
i=1

αik(x,x
(i)). (3.12)

This equation defines a machine learning model that is in general nonlinear in
x. However, the model defined by m(x) is still linear in φ(x) and α. Thus, this
nonlinear machine learning model is equivalent to first applying φ(·) to all inputs
x in a preprocessing step and subsequently learning a linear model in the space
defined by φ(·) .

Under the assumption that φ is fixed, the kernel trick allows for the efficient
training of nonlinear machine learning with convex optimizations techniques.

Having discussed the key ideas behind the kernel trick it is still unclear how one
actually should define the feature function φ(x).

In principle φ can be manually chosen and fine tuned, which is a sophisticated
and time consuming task. Another option is to choose a generic φ, which does not
require a lot of human interaction, however often results in models that generalize
poorly to examples not included in the training set.

The strategy used in NNs is to learn φ. The model that is used in deep learning is
y = m(x;θ,w) =: φ(x;θ)>w. This implies that we have two kinds of parameters:
w that map from φ(x) to the target values y and θ that are used to learn the feature
function φ from a broad class of functions. This model represents a feedforward NN
with one hidden layer, where x is the input to the NN and φ defines the hidden
layer.

The disadvantage of learning φ is that the convexity of the machine learning
problem is lost. Therefore, the efficient convergence of optimizing algorithms that
are specially made for convex problems is not guaranteed anymore. Nevertheless,
the benefits outweigh the harms since this approach to machine learning allows
for the use of a very general family of feature functions φ(x;θ), which has a large
capacity. This ansatz further enables the user to make use of prior knowledge on
the properties that the resulting machine learning model must have by choosing a
family of functions that has these respective properties.

Now that the mathematical background of feedforward NNs with one hidden
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layer has been discussed in detail, the evaluation of feedforward NNs with an
arbitrary number of hidden layers and their training will be discussed.

The following sections focus less on a statistical view on NNs but more on a
description of NNs from a computer-science perspective, since this view facilitates
the understanding of the general functional principles of NNs.

3.4. Training Feedforward Neural Networks

NNs are trained by employing an iterative optimization scheme. A flow chart
describing the training process is given in figure 3.1.

Figure 3.1.: Flowchart of the training process. The forward propagation step
is shown in green, the backpropagation step is shown in blue.

The iterative optimization is usually done in two phases: during the first phase,
the forward propagation step, the NN is evaluated for a set of training examples
and the error of the NN’s predictions, the so called loss, is calculated. In the second
phase, the backpropagation step, the weight parameters are optimized such that
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the loss is expected to decrease in the next iteration. The execution of a forward
propagation and a subsequent backward propagation step together defines one full
iteration of the training process, which is commonly called a training epoch. The
NN is trained for several epochs until either a convergence criterion or a predefined
number of training epochs is reached. Possible convergence criteria are that the
NN’s loss falls below a certain threshold Lthresh or that the loss has not changed for
a given number of epochs, which suggests that further optimization of the weights
will not improve the NN’s predictions anymore.

The following sections give a deeper insight into the two phases of a training epoch.
In section 3.4.1 the forward propagation step is described, the backpropagation
step is explained in section 3.4.2.

3.4.1. The Forward Propagation Step

Assume that the quantum mechanical PES is given by y = m∗(x). The feedforward
neural network, which is employed as a surrogate model of the PES, defines
a mapping ŷNN = m(x,W ). The NN-PES maps a chemical structure x to an
approximation of the corresponding potential energy ŷNN. The weight parameters
or weights, which are assumed to be collected in the matrix W , are optimized
during training and are chosen such that m(x,W ) is a good approximation to
m∗(x). This section explains how this mapping m(x,W ) is done by applying
forward propagation.

The mapping m(x;W ) defined by a feedforward NN can be rewritten as a
composite function. Assume the depth of the NN is L, then the mapping can be
written by a composition of L− 1 functions:

m(x,W ) = (m(L−1)(m(L−2)(. . .m(1)(x; 1W ); L−2W ); L−1W ). (3.13)

where m(l)(·, lW ), l ∈ {1, 2, . . . , L− 1} , defines the activations, i.e. the output, of
layer l + 1, and lW ∈ R

D(l−1)×D(l) are the weight parameters of the connections
pointing to layer l+ 1, which are learned from the training set X. Here D(l) defines
the width of layer l.

The mapping m(x,W ) can be associated with a directed acyclic graph which
describes the composition of the functions m(l). In figure 3.2 a) the graph for a
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Figure 3.2.: Schematic representations of a feedforward neural network.
a) shows a detailed representation of a feedforward neural network
with 2 hidden layers where each neuron is shown as one node in the
graph. Bias neurons and their corresponding weights are shown in blue.
b) shows a simplified representation of the same NN where each node
represents a whole layer.

fully connected feedforward NN with two hidden layers is given. Every node of this
graph represents a neuron and the weights on the edges of the graph are defined
by the weight parameters of the neural network. In figure 3.2 b) a more compact
representation of the same NN is given by a graph where every node represents the
activation of a layer. This representation is particularly useful for medium sized
and large NNs for which a detailed graph showing all neurons would be confusing.

In order to define the functions m(l), first the evaluation of a single neuron will
be described in detail. The following description is valid for neurons in the hidden
layers and the output layer. The value of neurons in the input layer is defined by
the inputs x to the NN alone.

A schematic representation of a neuron and its functional principle is given in
figure 3.3. Since the feedforward NN is fully connected each neuron k in layer l + 1

is connected to all neurons in layer l. Neuron k in layer l + 1 obtains from each of
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Figure 3.3.: Schematic representation of a neuron.

the neurons in layer l an input value lnα. These input values are multiplied by the
weight lwk

α of the corresponding edge of the graph and subsequently the sum of
all weighted inputs,

∑
α
lnα

lwk
α, is calculated. This aggregated sum is also called

preactivation.
The output of neuron k, l+1nk, is obtained in the activation step by the evaluation

of a so called activation function or transfer function l+1f(·) for the respective layer:
l+1nk :=

l+1f(
∑

α
lnα

lwk
α). The activation function is a mathematical function that

adds non-linearity to the NN, i.e. it has the role of a feature function φ as seen in
section 3.3.4. A detailed list of possible activation functions is given in section 3.7.2.
For all neuron under consideration that are not in the output layer, the neuron’s
activation l+1nk is sent to all neurons in layer l + 2.

In order to allow for a more flexible mapping,a standard approach is to introduce
additional bias neurons. Usually one adds one neuron per hidden layer and in the
input layer. The activation of bias neurons is kept constant at 1 during training.
In a fully connected NN bias neurons are, as any other neuron, connected to all
neurons in the subsequent layer. The bias neurons introduce additional weight
parameters, that can be used to shift the preactivation and thereby influence a
neuron’s activation f(1 · lwk

bias +
∑

α
lnα

lwk
α) . In the following bias neurons will

be denoted as lnD(l) and the respective bias parameter pointing to the neuron with
index k in layer l + 1 will be called l+1wk

D(l) .
Now the activationsm(l) can be defined on the basis of the activations of individual

neurons:
Let the function value of m(l) : RD

(l−1)×(D(l−1)×D(l−1)) → R
D(l) be

ln := m(l)(m(l−1); l−1W ). (3.14)
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The vector of activations is defined as ln :=
(
ln1, . . . ,

lnD(l)

)T
by the outputs of

the neurons lnk in layer l.
With the expression for the activations of a layer l given in equation (3.14),

equation (3.13) can be used to evaluate the NN by subsequently calculating the
activations of individual layers starting from the first hidden layer to the output
layer.

Since the output of the NN is obtained by propagating the input information
forward, i.e. from the input to the output layer, through the NN, this process is
called forward propagation.

In the forward propagation step of a training epoch the NN is evaluated for a
subset of the training data set X̃train ⊆ Xtrain. The errors in the predictions that
the NN makes for each of the training examples xtrain ∈ X̃train are quantified by
the loss function L(W ). After the forward propagation step is completed, the
backpropagation step is executed. For evaluating a trained NN-potential in order to
obtain the energy for a given molecular structure , only a single forward propagation
step is required. If on top of the energy also atomic forces or higher derivatives of
the PES are required, they have to be computed by backpropagation.

3.4.2. The Backpropagation Step

The aim of a training algorithm for NNs is to optimize the weight parameters W
such that the loss function L(W ) is minimized. For the minimization of the loss
function most optimization algorithms require its the gradient with respect to all
weight parameters ∇WL(W ).

Thus, the backpropagation step can be subdivided into two phases: the first
phase in which the actual backpropagation of information is performed and a
second phase in which the weights and biases are optimized.

During the backpropagation phase information on the loss function is propagated
backwards from the output layer through all hidden layers to the input layer in order
to calculate the gradient of the loss function with respect to all weight parameters
∇WL(W ).

The calculation of ∇WL(W ) by backpropagation is straight forward and compu-
tationally efficient as it is based on the generalized chain rule of calculus. Assuming

23



3. Artificial Neural Networks Defining Machine Learning Potentials

that x ∈ R
m and y ∈ R

n and that the functions f and g are defined as follows
g : Rm → R

n, f : Rn → R with f(y) = z, g(x) = y the chain rule defines the
gradient of z with respect to x

∇xz =

(
∂y

∂x

)T
∇yz, (3.15)

where ∂y/∂x is the Jacobi matrix of g.
In backpropagation one usually has to deal with tensors instead of vectors.

Therefore, it is a common approach to reformulate the problem as a vector valued
problem. Then one can apply the chain rule as defined in equation (3.15) and
subsequently reshape the obtained gradient to match the original tensor.

∇WL(W ) depends on the functional form of the loss function used in the
training process. However, independent of the loss function’s functional form, the
computation of ∂ŷNN/∂

lW with a backpropagation algorithm is always an integral
part of computing the loss function’s gradient with respect to the weights. For
a NN with depth L ∂ŷNN/∂

lW is computed by applying the generalized chain
rule for all layers l, starting for the weights defining the output layer’s activation
(l = L− 1) and subsequently moving layer by layer backward through the NN, i.e.
they are calculated in the order ∂ŷNN/∂

L−1W , ∂ŷNN/∂
L−2W , . . . , ∂ŷNN/∂

1W .

In the following it is shown how ∇WL(W ) can be calculated for a NN with one
hidden layer.

Example: ∇WL(W ) for a Neural Network with one hidden layer

This section gives an example how backpropagation can be used to compute the
derivative of the loss function with respect to the weights. Assume that the NN
has one hidden layer, i.e. it’s depth L is 3, and that the mean average error for a
training set with m examples is used as loss function:

L(W ) =
1

m

m∑
i=1

|y(i) − ŷ
(i)
NN|,

where ŷ
(i)
NN is the prediction made by the NN for the training example x(i) and y(i)

is the corresponding target value. Then the derivative of the loss function with
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respect to a weight w ∈ W is given by

∂L(W )

∂w
= − 1

m

m∑
i=1

(y(i) − ŷ
(i)
NN)

|y(i) − ŷ
(i)
NN|

∂ŷ
(i)
NN

∂w

Thus, computing ∂ŷ
(i)
NN/∂w for all weights w is essential for computing ∇WL(W ).

With

ŷ
(i)
NN = 2n1 =

2f 1

D(1)∑
k=1

2w1
k
1nk

 ,

1nk =
1fk

D(0)∑
j=1

1wk
j
0nj

 ,

0nj = x
(i)
j ,

where lfk is the activation function of node k in layer l, and x
(i)
j is the j-th

component of the feature vector describing training example x(i), the derivatives of
ŷ
(i)
NN with respect to the weights can be calculated:

∂ŷ
(i)
NN

∂
2
w1
α

= 2f
′

1
1nα

∂ŷ
(i)
NN

∂
1
wβ
α

= 2f
′

1
2w1

β
1f

′

βx
(i)
α ,

where α and β are indices of neurons.

Once the gradient ∇WL(W ) is obtained by backpropagation it can be used to
minimize the loss function with standard optimizers. Often Quasi-Newton methods
like the L-BFGS algorithm [37–39], or methods that depend on the gradient alone
like stochastic gradient descent [40] are employed. There are even optimizers like
Adam [41] or AMSGrad [42] that were specifically designed for training NNs.
However, the choice of the optimizer usually depends on the problem at hand their
availability in the software package used for training.
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3.5. Testing Neural Networks and Overfitting

In the last two sections it was discussed how to train a NN to make reliable
predictions for training examples in a given reference data set Xtrain. However,
a good performance for the training data does not necessarily imply that the
NN will make reliable predictions for examples that were not included in the
training process, since NNs are known to be particularly unreliable extrapolators.
Therefore, accurate predictions can in general only be expected for examples
that are reasonably close to training examples. In order to estimate how well the
NN generalizes to unknown examples which are reasonably close to the training
examples, the trained NN is evaluated for a set of test examples Xtest that follows
the same probability distribution as the training data set but is independent of
Xtrain, i.e. Xtest ∩ Xtrain = ∅. For each test example in the test set Xtest the loss is
computed via the loss function used for training.

If the loss of the test set Ltest(W ) is similar to the loss obtained for the training
examples, it can be assumed that the NN generalizes well to unknown structures,
which are reasonably similar to the training examples. If the error of the predictions
for the test examples is significantly larger than the loss of the training set, overfitting
has occurred. This means that the training examples were fitted very exactly at
the cost of the loss of generalization for unseen structures. Overfitting can occur,
for example, if the reference data set is very small or noisy. Moreover, employing a
too complex model, i.e. a NN with too many weights, or a descriptor describing
features that are irrelevant for the machine learning problem are common issues
that cause overfitting.

In figure 3.4 an example for overfitting is given. Assume that the target values
of the training examples should linearly increase with the quantity given on the x
axis of the graph and the exact description of the reference data is given by the
green straight line. Furthermore assume that the training examples were obtained
by a method that introduces some noise to the target values.

If the model obtained by the machine learning algorithm is given by the high-
order polynomial shown in blue, the loss of the training set is zero, as all training
examples are reproduced exactly by the model. It is obvious that the polynomial is
overfitting the training data since the loss of a general test set can be assumed to
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Figure 3.4.: Example for overfitting. Training data (black points) that behaves
nearly linear is fitted by a linear model (green) and a high-order
polynomial (blue). The polynomial is overfitting the data strongly by
meeting all training points exactly but compromising the predictive
quality of the model for points not included in the fitting process.

be notably lager than zero due to the fact that the high-order polynomial is not a
good approximation of the straight line that describes the noise free data exactly.

If the loss of test set Ltest is computed during the training process, one can
identify overfitting by comparing the learning curves of the training- and the test
set. The learning curves are defined by the loss as a function of the training epoch.
The model is overfitting if during training Ltest increases but the loss of the training
examples Ltrain continues to decrease. An example for learning curves for a training
process in which overfitting occurs is given in figure 3.5. In this graph it can be seen
that overfitting occurs after about 1700 training epochs as Ltest starts increasing
while Ltrain continues decreasing.

It is to be expected that a NN reproduces the training examples better than
unknown examples. Therefore, it is non-trivial to formally define which deviations
of Ltrain(W ) from Ltest(W ) should be considered as overfitting. This is especially
difficult if the loss of the test set does not start to increase but continues decreasing
at a significantly lower rate in comparison to the loss of the training set. This
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Figure 3.5.: Diagnosing overfitting with learning curves. Overfitting occurs
after about 1700 training epochs where Ltest starts increasing but Ltrain
decreases monotonously.

behavior can still lead to a huge discrepancy of the NN’s predictive power for
training- and test examples.

If several NNs are available for the problem at hand, the NN whose weights W
minimize Ltest(W ) should be used to allow for optimal generalization. Nevertheless,
it has to be verified that for this seemingly optimal choice of weights overfitting is
negligible by comparing the losses of the training- and test set.

3.6. Neural Networks for Regression of Potential
Energy Surfaces of Chemical Systems

So far the mathematical background of NNs and the general principles of training
feedforward NNs was explained in detail. In the following it will be shown how
feedforward NNs can be used for the regression of PESs. Since the PES defines
a mapping of chemical structure to the corresponding potential energy, the NN
should perform the same mapping.

A naive approach to construct NN-PESs is explained in section 3.6.1. In this
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approach an entire chemical structure is mapped to its potential energy. An
alternative and more flexible approach is to construct NN-potentials for each
chemical element of interest and to map each atom and its environment to the
energy this atom contributes to the total potential energy of the respective chemical
structure. Details on this approach are given in section 3.6.2.

3.6.1. Structure Neural Networks

This section deals with NNs that map an entire chemical structure to its respective
ground state potential energy. This class of NNs will be in the following referred to
as structure neural networks (SNNs). This approach to training a NN is excellently
suited for the description of PESs of small molecules. The first PES fitting with a
structure NN was done by Doren et al. in 1995 [43]. Since then this method was
used for the description of many chemical systems.

In the context of SNNs it is common to use internal coordinates to describe
chemical structures in the input layer. For this choice of a structural descriptor,
however, the computational effort for the evaluation, and thus the training, of a
SNN increases strongly with the number of atoms in the system. The reason for
the strong increase is that the dimension of the descriptor, depends linearly on
the number of atoms in the structure. This implies, however, that the width of
the input layer scales linearly with the number of atoms in the structure. This is
due to the fact that for each element of the descriptor vector there has to be a
neuron in the input layer representing it. Since the network is fully connected this
implies a quadratic increase in the number of weights between the input and the
first hidden layer. This effect is amplified further as a wider input layer generally
implies that the width of the hidden layers has to be increased in order to allow
for sufficient flexibility of the NN model to fit the training data well.

The consequential increase in the number of weight parameters makes training
more difficult as the dimensionality of the weight optimization problem increases.
Due to the high complexity of the optimization problem, any convergence criterion
on the loss of the network will be met after a larger number of epochs than for
the optimization of a simpler model. This issue of the model complexity increasing
with system size can be solved by employing descriptors of fixed dimension.
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Another disadvantage of SNNs is that the knowledge learned for a specific
chemical system cannot be transferred to other systems. Assume that a SNN was
trained to predict the potential energy for a water dimer. This SNN-PES cannot
be used to describe other, even very similar systems like water trimers. This is
due to the fact that the dimension of the descriptor for a water trimer differs
from the one for the water dimer and thus, the NN-PES can’t be evaluated. This
non-transferability of obtained knowledge is very undesirable since the slightest
change in the chemical system under study implies that a new NN has to be trained
from scratch in a time consuming manner.

3.6.2. Atomic Neural Networks

Figure 3.6.: Schematic representation of an atomic neural network de-
scribing one water molecule. For each atom i the descriptor σi is
computed. The σi are then used as an input for the atomic NNs for
the respective element. There is a unique NN for each chemical species,
NNO for oxygen (blue) and NNH for Hydrogen (green). For atoms of
the same chemical species identical NNs are used.

The motivation behind the use of atomic neural networks (ANNs) is twofold.
On one hand ANNs allow for the regression of high-dimensional PESs describing
large molecules and on the other hand they enable the straight-forward transfer of
knowledge obtained by the ANNs to other chemical systems with similar atomic
interaction. ANNs were introduced by Behler and Parinello in 2007 [3].

To employ ANNs it has to be assumed that the total potential energy of a chemical
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system Etot can be represented exactly by a sum of atomic energy contributions

Etot =
∑
i

Ei. (3.16)

This is an assumption that is not unique to this ansatz but is commonly used to
define classical force fields. Making use of this assumption an individual NN is
constructed for each chemical element that is observed in the system under study.
These NNs predict the energy contribution of an atom of this species to the total
energy of the training example. The architecture of the NNs is fixed for each species,
but can differ from element to element.

Training individual NNs for different chemical species is motivated by the obser-
vation that the interaction between two atoms is always the same under a fixed
set of outside conditions. Thus, it should be possible to transfer the interaction of
an atom i of element ei in a given chemical environment, which is defined by the
positions and species of surrounding atoms that interact with atom i, to another
atom j of the same element in an equal or at least similar chemical environment.

Atomic NNs map a description of an atom and its chemical environment to the
atom’s energy contribution Ei to the total energy of the chemical system under
study. The atom i for which the ANN is evaluated in the forward propagation step
is often referred to as the central atom. It is called the central atom since the central
atom’s environment is defined by all atoms within a cutoff sphere around it. All
atoms within this sphere are considered to be relevant to describe the interaction of
the central atom with its surroundings, while all atoms not included in this cutoff
sphere are neglected.

Due to the fixed architecture of the ANNs the width of the input layer has to be
independent of the coordination of the central atom in order to allow for making
predictions for all atoms of this element. This independence can be ensured by
using a descriptor that has a fixed dimension, defining the width of the ANN’s
input layer. Details on descriptors that can be used in this context are given in
section 3.7.1.

The dimensionality of descriptors for atomic environments can vary for different
atomic species. The fixed architecture of ANNs allows for an efficient training with
large chemical structures. The computational effort for training scales linearly with
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system size as in each epoch for each atom the respective ANN has to be evaluated.
The fixed architectures of the ANNs also allow for a straight-forward transfer

of previously obtained knowledge to other systems if an appropriate descriptor is
employed.

The training of ANNs is done in accordance to the description given in section 3.4.
However, the workflow of the training process has to be altered slightly, since the
atomic energy contributions Ei are in general not known from ab initio computations.
Therefore, first the total potential energy of the structure as predicted by the ANNs,
ENN

tot , is computed from the atomic energy contributions Ei and subsequently the
loss function is evaluated. The weights of ANNs describing different elements are
independent from each other and therefore the backpropagation step is analogous
to the description given in section 3.4.

3.7. Design of Neural Network Frameworks

To complete the picture on how NNs can be used in theoretical chemistry to regress
PESs, this sections gives detailed insights into the design process of a neural network
framework. First three standard descriptors are introduced, then common choices
for activation functions as well as the loss function are presented. Subsequently the
process employed for the definition of the width and depth of the NN is described.
This section concludes with a summary of preconditioning techniques that can be
used to accelerate the training process.

3.7.1. Descriptors

In order to successfully train a NN it is required to extract features from the input
data that contain information which is relevant for the task that the NN should
perform. The features that describe a training example are collected in a feature
vector, which will be synonymously referred to as descriptor in the following.

In the context of regressing PESs a descriptor defines a set of coordinates. A
good descriptor makes use of physical properties like invariances or symmetries in
order to facilitate learning and improve the transferability of the model. Important
invariances that should be accounted for by a descriptor are the invariance of the
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energy with respect to rotations and translations of the whole system. Further, it is
important that exchanging the positions of two atoms of the same element does not
change the descriptor as this is an operation under which the total energy remains
unchanged. Descriptors also have to be continuously differentiable functions of
the spatial coordinate in order to allow for a calculation of forces on the PES.
On top of that it is beneficial if descriptors decay to zero for large interatomic
distances, since physical interactions between the atoms will be negligible for large
distances. It is advantageous if the feature vector is independent of the order in
which the atoms are given in the training or test examples, because the order in
which the atoms are given is arbitrary. If a descriptor that does not have this
property is used, it has to be ensured that the atoms are always given in the same
order, which makes a transfer of the learned information to other chemical systems
significantly more difficult as the correct order of the atoms has to be known. For
small chemical systems the incorporation of symmetry information into the feature
vector can accelerate the training process. However, since most large systems have
C1 symmetry, including symmetry into descriptors is not needed for most tasks.
An important property of a good descriptor for molecular structures is that similar
structures should be described by similar descriptors, but descriptors of chemically
different structures should significantly differ from each other. If this property is
not given, it is practically impossible for the NN to learn the difference in energy
between those chemically different structures for which the descriptors is similar as
contradictory data is used to train the NN.

For small chemical systems with up to about 20 degrees of freedom it is the
standard approach to use internal coordinates as a descriptor, since they are in-
variant with respect to translations and rotations of the whole system. Common
choices are either a description by elongations along normal modes or descriptions
based on a set of interatomic distances. For larger chemical systems such a de-
scription is infeasible because the number of internal degrees of freedom, and thus
the dimension of the feature vector, increases at least linearly with system size. A
high-dimensional descriptor, however, increases the computational effort of training
and evaluating the NN. Employing ANNs reduces the computational effort for train-
ing and evaluating NN-potentials for medium sized and large systems drastically.
ANNs require a description of an atom’s environment as an input. In the context
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of ANNs it is common to use a localized description of an atom’s environment by
only considering interactions within a spherical cutoff around the central atom.
Any interactions with atoms outside this cutoff sphere are neglected. Especially for
direct force training this approach reduces the computational effort drastically. For
large systems the scaling of the scaling of the computational effort is reduced from
a quadratic scaling to a linear scaling in the number of atoms. However, the the
prefactor Nloc that is defined by the average number of atoms within two times
the cutoff radius [44] is still large. ANNs require an input of constant size, which
implies that the dimension of the descriptor has to be independent of the number
of atoms in the cutoff sphere.

In the following two state of the art descriptors for ANNs will be described
in detail. First the Behler and Parinello symmetry function descriptor [3] will be
discussed and subsequently the more recently developed Chebyshev polynomial
based descriptor by Artrith et al. [35] will be described in detail.

Symmetry Functions

Behler and Parinello developed ANNs and the symmetry function descriptor was
constructed specifically for this application [3, 6].

The aim of symmetry functions is to describe an atom and its environment, i.e.
the position and elements of all neighboring atoms within the cutoff sphere. The
environment is described by a constant number of functions M , which ensures that
the dimensionality of the descriptor is independent of the number of atoms in the
cutoff sphere. These functions are many body functions that, in general, depend
on all atoms in the cutoff sphere.

There are two kinds of symmetry functions: radial- and angular symmetry
functions. Radial symmetry functions are two body functions that describe the
radial distribution of neighboring atoms, whereas angular symmetry functions are
three body functions which specify the angular arrangement of atoms.

Behler and Parinello proposed in [6] three radial (G1
i − G3

i ) and two angular
symmetry functions (G4

i −G5
i ). These functions are employed as a basis to span

the feature space.
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G1
i =

∑
j

fc(Rij) (3.17)

G2
i =

∑
j

exp(−η(Rij −Rs)
2)fc(Rij) (3.18)

G3
i =

∑
j

cos(κRij)fc(Rij) (3.19)

G4
i =21−ζ

∑
j,k 6=i

(1 + λ cos(θijk)ζ) exp(−η(R2
ij +R2

ik +R2
jk))

· fc(Rij)fc(Rik)fc(Rjk) (3.20)

G5
i =21−ζ

∑
j,k 6=i

(1 + λ cos(θijk))ζ exp(−η(R2
ij +R2

ik))fc(Rij)fc(Rik) (3.21)

where η, κ and ζ ∈ R as well as λ ∈ {−1, 1} are tunable parameters. Further, θijk
is defined as θijk := arccos(Rij ·Rik/(Rij ·Rik)). The cutoff function fc which was
used in the original definition of the symmetry functions is

fc(Rij) =


1
2

(
cos(πRij

Rc
) + 1

)
, Rij ≤ Rc

0 , Rij > Rc.
(3.22)

Symmetry functions meet all requirements for a good descriptor that were stated
before. Firstly symmetry functions are continuously differentiable functions that
decay to zero for large distances. This descriptor is defined by the distance of
the neighboring atoms to the central atom as well as the elements of these atoms
alone. Therefore, translations and rotations of the whole molecular structure do
not change the descriptor. Further, swapping the positions of two atoms of the
same element does not change the descriptor either and the order at which the
atoms are given in the training or test examples is irrelevant. Symmetry functions
and their first derivatives decay to zero for large interatomic distances. However,
the proposed cutoff function has the disadvantage that its second derivative with
respect to the interatomic distance at r = Rc is discontinuous. This discontinuity
implies that the atomic forces might not be a continuous function of the interatomic
distances for atoms that enter or leave the cutoff sphere. These jumps in the force
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values violate energy conservation, which can, in principle, impair the reliability
of simulations significantly. The discontinuity of the forces, however, becomes less
significant if sufficiently large cutoff radii are used. The effect of the discontinuity
in the forces is usually negligible for cutoff radii bigger than 6Å [45].

The symmetry function descriptor was extended by Smith et al. to allow for
a more flexible description of molecular structure by introducing more versatile
angular symmetry functions [46].

In order to construct a descriptor for a chemical system of interest, one transforms
the Cartesian coordinates of the reference structures into a basis defined by M

symmetry functions. This selection of M symmetry functions and the choice of their
intrinsic parameters can be verified by expanding the atomic radial and angular
distribution functions in the basis of a these symmetry functions. An expansion
that represents the radial and angular distribution functions well can be assumed
to be a good descriptor of the system. Unfortunately, the number of symmetry
functions needed to define a reliable descriptor increases strongly with the number
of species in the chemical system under study, since the interaction of each pair (in
radial symmetry functions) or triplet (in angular symmetry functions) of atomic
species has to be treated individually. Due to this restriction it is computationally
very inefficient to use symmetry functions as a descriptor for large systems with
more than 4 species [44].

Expansion of the Radial and Angular Distribution Function in a Complete
Basis

Due to the strong scaling of its complexity with the number of species, the appli-
cation of the symmetry function descriptor is limited to chemical systems with a
small number of chemical species. In order to allow for the description of chemical
systems with a larger number of chemical species, a descriptor that scales less
strongly with the number of chemical species is required.

One descriptor that can be used for systems with many chemical species was
proposed by Artrith et al.. This descriptor is based on the expansion of the atomic
radial and angular distribution functions in a complete basis [35]. They could
demonstrate that the computational effort for training ANNs does not necessarily
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have to increase with the number of chemical species in the system. In their work
they show that their descriptor allows the description of transition-metal oxide
compounds as well as biomolecules by a feature vector of constant dimension for
systems with 3-11 species. This descriptor defines the local atomic environment
σi ⊂ σ of an atom i in a chemical structure σ by two invariant sets of coordinates:
one describing the atomic positions R of the atoms within the cutoff sphere, Rσi,
and one describing the chemical species t of the atoms within the cutoff radius,
tσi. The descriptor of the local atomic environment is defined as the union of these
two sets of coordinates: σi = Rσi ∪ tσi.

The structural descriptor Rσi is constructed from expansion coefficients obtained
by expanding the atom centered radial (RDF) and angular (ADF) distribution
functions in a complete basis {ϕα} for all atoms in the reference data set:

RDFi(r) =
∑
α

crαϕα(r), 0 ≤ r ≤ Rc (3.23)

ADFi(θ) =
∑
α

caαϕα(θ), 0 ≤ θ ≤ π. (3.24)

tσi is defined by the expansion coefficients of the RDF and ADF as well. However,
the individual atomic contributions are weighted by a weight factor depending on
the atom’s species.

Rewriting the RDF in terms of discrete delta functions that are centered at the
bond lengths Rij between the central atom i and each of its neighboring atoms
j and reformulating the ADF employing discrete delta functions centered at the
bond angle θijk enclosed by Rij and Rik one obtains

RDFi(r) =
∑
Rj∈σi

δ(r −Rij)fc(Rij)ωtj (3.25)

ADFi(θ) =
∑

Rj ,Rk∈σi

δ(θ − θijk)fc(Rij)fc(Rik)ωtjωtk . (3.26)

The cutoff function is given in equation (3.22).
The weight parameters ωtj and ωtk are defined such that their values are depen-

dent on the species of the atom. For the structural descriptor all weight parameters
are 1. Artrith et al. suggest using a pseudospin convention to define the weight
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parameters for the compositional descriptor tσi: ωt· = 0,±1,±2,±3, . . . . The value
0 is omitted if the number of species is even.

Choosing a complete and orthonormal basis, the expansion coefficients can be
readily calculated:

crα =
∑
Rj∈σi

ϕα(Rij)fc(Rij)ωtj (3.27)

caα =
∑

Rj ,Rk∈σi

ϕα(θijk)fc(Rij)fc(Rik)ωtjωtk . (3.28)

The expansion of the RDF is truncated at order N r and the expansion of the ADF
is truncated at order Na. The order of the expansion determines the resolution of
the feature vector as well as its dimension:

σi = (cr,R1 , . . . , cr,RNr , c
a,R
1 , . . . , ca,RNa , c

r,t
1 , . . . , cr,tNr , c

a,t
1 , . . . , ca,tNa), (3.29)

where cr,Ri and ca,Ri are the expansion coefficients for the structural descriptor
Rσi and cr,ti as well as ca,ti are the expansion coefficients for the compositional
descriptor tσi. Since the feature vector is constructed from both the information of
the structural descriptor and the information of the compositional descriptor, it is
2(N r +Na) dimensional.

The advantage of this descriptor is that it can be systematically improved by
in creasing the order of the expansion N r or Na, which increases the descriptors
resolution, since the basis used for the expansion of the RDF and ADF is complete.

In principle any orthonormal basis functions that form a complete basis could
be used to construct a descriptor by expanding the atom centered RDF and ADF.
However, basis functions that can be evaluated with minimal computational cost
and for which the derivative with respect to spatial coordinates can be computed
efficiently are to be preferred to keep the computational effort minimal. Therefore,
Artrith et al. suggest the use of normalized Chebyshev polynomials of the first kind
because the polynomials as well as their derivatives can be computed efficiently
from a simple recurrence relation.
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3.7.2. Activation Functions
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Figure 3.7.: Common activation functions and their derivatives

Since the 1950s when NNs were introduced, a vast multitude of activation
functions for neurons has been employed and tested.

A selection of four of the most common activation functions used in the context
of regressing high-dimensional functions like a PES with NNs is given in figure 3.7.

Even though there are many choices for activation functions available, most
activation functions have the following two properties: Firstly, activation functions
usually are differentiable, as this is required if the backpropagation algorithm is to
be applied. Secondly, often monotonic increasing activation functions are used as
these lead in many cases to a faster convergence of the weights during training.

It was shown that for NNs with one hidden layer the use of a monotonic activation
function implies that the loss L(W ) is convex [47], which allows for an efficient
minimization of the loss. However, the use of non-monotonic functions is possible.

The functional form of individual activation functions is driven by problem
specific or intuitive restrictions.

The hyperbolic tangent or the sigmoid function 1/(1 + exp (−x)) were initially
chosen as activation functions with the idea of a biological neuron in mind, which
has a defined maximum signal strength and only sends a signal to other neurons if
a certain activation potential is reached in the neuron.
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However, the saturation of the hyperbolic tangent or the sigmoid function can
cause the gradients of the loss function to vanish. If a neuron’s activation is well in
the saturation regime of the activation function, the neuron responds significantly
less sensitively to changes in the preactivation induced by an optimization of the
weights pointing to this neuron. On top of that the saturation of the hyperbolic
tangent and the sigmoid function restricts the values for the activation of the
neurons to a fixed range (fsigmoid(x) ∈ [0, 1], ftanh(x) ∈ [−1, 1]).

Both activation functions are not used in deep NNs as they in general reduce
the gradient of the loss with respect to the weight parameters due to the fact that
f ′(x) < 1 for almost all preactivations x. This property of the activation function’s
derivative leads to a vanishing of the gradient which aggravates with increasing
depth of a NN. Therefore, activation functions which saturate are commonly solely
used for comparatively shallow NNs with just a few hidden layers, where the
vanishing of the gradient is minimal and does not affect the training procedure
significantly.

In order to overcome the vanishing gradient problem often the rectified linear
unit (ReLU) is used as an activation function as its derivative for preactivations
x > 0 is 1. The advantages of employing this activation function are that both
the activation function and its derivative are monotonically increasing and that
the activation function is straight-forward to evaluate, as it is defined by a simple
relation: f(x) = max(0, x). The ReLU activation function is differentiable at all
points x except from x = 0. Although this activation function is not differentiable
at x = 0, it is successfully used in training procedures where backpropagation is
employed by defining f ′(x = 0) arbitrarily. The ReLU allows for activations of
arbitrarily high value, but its minimum value is 0, which restricts the activations
to non-negative values.

Whenever arbitrary activations are required, employing a non-saturating activa-
tion function is necessary. This requirement applies for example to the neurons in
the output layer if the target values can take on arbitrarily small or large values.
In order to predict arbitrary values an activation function that maps to all real
numbers is needed. One such activation function that is commonly used is a linear
activation function f(x) = x. Since it has a non-vanishing derivative f ′(x) = 1

and its evaluation and differentiation does not involve any computational cost, it
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is an activation function that allows for the efficient training of NNs. However,
since the derivative is constant, backpropagation leads to a constant gradient of
the loss with respect to the weights that point to a neuron with a linear activation
function, which impedes weight optimization. Further, it is not possible to use only
linear activation functions if a non-linear model shall be trained, since NNs that
use solely linear activation functions always perform a linear transformation of the
input, no matter how many hidden layers are used. Using non-linear activation
functions like the hyperbolic tangent for the neurons in the hidden layers of a NN
and applying a linear activation function in the output layer’s neurons allows for
training a non-linear model that can regress target values of arbitrary absolute
value.

3.7.3. Loss Functions

Loss functions are used as a performance measure for NNs. For the regression of
PESs the computational demand of computing the loss function depends on the
physical quantities included in the loss function. If only energy information is used
for training, the loss function measures the deviation of the energy predicted for a
set of reference structures {ŷ(i)NN} from the corresponding reference energies given in
the training set {ŷ(i)}. In this case the loss function can be computed by a single
forward propagation step and the computational cost for training scales linearly
with the number of atoms (ANNs) or structures (SNNs).

However, if not only energy information but also information on the atomic forces
or Hessians is used for training, the computation of the loss function requires a
forward propagation step and an additional backward propagation step. The addi-
tional backward propagation step is needed, since the atomic forces or the Hessian
aren’t outputs of the NN, but are calculated by deriving the predicted energy ana-
lytically by the spatial coordinates. This computation increases the computational
demand for calculating the loss function. Formally computing the atomic forces, i.e.
the negative gradient of the energy with respect to the spatial coordinates, scales
quadratic with the number of atoms in a given reference structure. This, however,
implies that the computational demand for training scales quadratically with the
number of atoms in the reference data set. If a localized descriptor is used, the
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quadratic scaling can be reduced for large or periodic structures to a linear scaling
with a potentially large prefactor, see section 3.7.1.

The loss functions used for the studies described in this thesis are given in the
computational details sections of the respective projects.

In the following two of the most commonly used loss functions used for the
regression of high-dimensional functions will be described and compared. The
discussion of the advantages and disadvantages of the methods summarizes the
findings in [48].

Mean Absolute Error

The mean absolute error

LMAE(W ) =
1

N

N∑
i=1

|ŷ(i) − ŷ
(i)
NN| (3.30)

is a loss function which is used if the focus of the training approach is on reducing
the average error made by the machine learning model fast, and outliers, i.e. training
examples with large errors, are of less importance than reducing the average error.
This means that the maximum error of a model trained with LMAE(W ) can be
significantly higher than a model trained with a loss that penalizes large deviations
stronger like LRMSE(W ). An important advantage of the mean absolute error is
it’s straight forward interpretation as, in contrast to other common loss functions
like the mean squared error or the root mean squared error, it mirrors the average
performance of the model directly.

A disadvantage of using the mean absolute error as a loss function is that it is
not differentiable at its minimum, which can hinder the minimization of the loss
significantly.
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Mean Square Error and Root Mean Square Error

For regression problems it is common to use the root mean square error LRMSE(W )

or the mean squared error LMSE(W ) to measure the model’s loss.

LRMSE(W ) =

√√√√ 1

N

N∑
i=1

|ŷ(i) − ŷ
(i)
NN|2 (3.31)

LMSE(W ) =
1

N

N∑
i=1

|ŷ(i) − ŷ
(i)
NN|

2 (3.32)

In an ideal case where the target values are normally distributed and the training
examples are i.i.d. using the (root) mean squared error is equivalent to maximizing
the log-likelihood of the model if it can be expressed as a linear regression model.
Making use of the kernel trick, this applies to NNs, at least if they have exactly
one hidden layer, see sections 3.3.3 and 3.3.4.

However, even if these conditions are not met by the training set, the mean
square error and root mean square error are commonly used loss functions if the
avoidance of large errors for individual training examples is more important than
reducing the average error fast. The high sensitivity with respect to large errors
makes training difficult if there is a small number of training examples for which
the NN predictions have large errors. This is due to the fact that the large errors
obtained for these training examples dominates the loss function. Thus, improving
predictions for the majority of training examples for which the prediction error is
comparatively low is deferred significantly.

A disadvantage of employing the mean square error and the root mean square
error as a loss function is that their interpretation is non trivial. As demonstrated
by Willmott and Matsuura [48] the root mean square error is not a good measure
for the average model error. They argue that, since the root mean square error
does not only depend on the mean average error but also on the variability in the
error magnitudes as well as the square root of the number of training examples

√
N

considered, it is without further information, like knowledge on the mean absolute
error, hard to tell from the RMSE value alone how well the error describes average
model behavior. From the findings in this article it can be concluded that the root
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mean square error is particularly bad for the comparison of two different models,
even if they were trained and tested with the same number of training examples
as the variability of the magnitudes of errors will in general differ from model to
model. Similar arguments are valid for the mean square error.

If models with small maximum errors are to be trained by NNs, it is recommended
to train the NN using LRMSE or LMSE as large errors are penalized strongly.
Nevertheless, it is advisable to also compute LMAE, which is more appropriate for
comparing different models and measuring a model’s average performance.

3.7.4. Defining Depth of the Network and the Width of
Hidden Layers

The architecture of a NN directly influences its flexibility to adjust to a task. In
regression, the introduction of additional neurons and layers allows for a more
flexible fitting of the training examples and thus, can reduce the loss of the NN.
However, introducing too many weights, i.e. fitting parameters, leads to overfitting
and compromises the transferability of the NN’s predictions to unseen examples.
Therefore, it is necessary to identify a NN architecture that is well-suited for the
task at hand. One way to identify an appropriate NN architecture is to perform an
empirical parameter study. Thereby the loss of a NN is computed after a fixed small
number of training epochs for a given training set Xtrain using NNs with varying
width of the hidden layers and with varying depth. If the weight parameters are
initialized randomly, it is necessary to train several NNs with the same architecture
in order to sample the statistics of the resulting losses obtained for this network
architecture. Subsequently the network architecture which yields on average the
lowest loss is used for constructing models required for the actual application. This,
of course, is a rather non-formal way of optimizing a network’s architecture, however,
it is often sufficient to obtain reasonable machine learned surrogate models.

Instead of performing the aforementioned manual parameter study it is also pos-
sible to determine a suitable network architecture by learning the NN architecture
with the help of recurrent NNs [49] or by heuristically searching for architectures
starting from a simple network architecture [50]. Further, the application of genetic
algorithms for the search of neural network architectures was suggested [51–53].
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However, the application of these methods is computationally very demanding and,
thus, often not efficient enough to be employed in practical applications. Therefore,
to keep the computational demand at bay, the architecture of all NNs studied in
this thesis was determined by an empirical parameter study.

3.7.5. Pre-Conditioning Techniques

In order to accelerate the convergence of the training process it is beneficial to
pre-condition the feature vectors used as input to the NNs as well as the outputs.

It has been shown that centering the output values of the neurons in each layer
around zero facilitates the training process as a non-zero average introduces a bias
to the direction of weight updates [54].

To ensure that all features defined by the feature vector are learned by the NN
at a similar rate, all feature vectors of the neural network can be scaled such that
all elements have the same covariance for a given reference data set. In order to
ensure a non-vanishing gradient of the loss function with respect to the weights in
the input layer, the covariance of the input values should be chosen such that the
values of the input neurons are in the range of activations for which the activation
functions of the neurons in the first hidden layer is not constant. For example the
covariance should be 1 for the hyperbolic tangent to allow for optimal training.

In all NNs discussed in this thesis the identity was used as an activation function
in the output layer to allow for the prediction of arbitrary energy values. Therefore,
it does not seem to be necessary to scale the output values. However, in order to
prevent a large difference in scale of the weights pointing to the output neuron in
comparison to the other weights, which can cause numerical instabilities during
training, it is common to shift and scale the output values in the same way as the
input values such that they are zero-centered and have the same covariance as the
inputs.

Another set of parameters whose initial values influence the efficiency and success
of the training procedure as well as the generalization behavior of NNs strongly
are the weights and biases. Therefore, techniques to choose initial weights and
biases such that training the NN is efficient and the resulting NN generalizes well
to unknown data are of high interest.
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However, even though these techniques ensure an advantageous initialization of
the weights, it is in most cases unclear under which circumstances these beneficial
properties of the weights are preserved during the training process. On the other
hand the initial choice of weights has to be optimized with respect to two different
properties, namely the efficiency of the training process and the generalization
behavior of the resulting NNs. This is because initial parameters that lead to
NNs that generalize well do not necessarily imply that for the construction of the
surrogate a small number of training epochs necessary and vice versa. According
to Goodfellow et al. [34] there is practically no knowledge about how the choice of
initial weights affects the generalization of NNs. They further claim that the only
property of initial weights that is known for sure to be beneficial for training and
generalization is that the weights and biases need to break the symmetry between
different neurons. They argue that if two neurons with the same activation function
are connected to the same inputs, the weights pointing from these two neurons
to the respective next layer should not be equal. This is due to the fact that if
these weights would be identical, i.e. symmetry is not broken, using a deterministic
optimization algorithm for the weights as well as a deterministic loss function
implies that the activations of these neurons is always identical and thus, one of
these neurons is redundant.

In order to allow for an initialization of the weights and biases such that it
requires minimal computational cost and to ensure that symmetry is broken between
different neurons, it is common to initialize weights and biases with random numbers.
Commonly the initial weights and biases are drawn from either a Gaussian or a
uniform distribution and the choice of the type of random distribution used for
the initialization does not seem to influence the resulting NN significantly [34].
However, the scale of the distribution and thus of the initial values of the weights
influences the training success and generalization of NNs strongly. Therefore, the
scale is a meta-parameter which has to be chosen to fit the NN framework.

Following the line of reason outlined for the rescaling of the feature vectors, it
can be said that it should be avoided to initialize the weights with too large or too
small values to ensure that the activation functions do not saturate and there’s
a non-vanishing gradient of the activation function. Therefore, the most simple
approach to initialize the weights is to draw them from a uniform distribution which
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matches the respective activation function’s shape. For the hyperbolic tangent as
activation function it is therefore beneficial to employ a zero-centered uniform
distribution with a standard deviation of 1. However, this approach does not take
into account that there are in general several inputs to each neuron and thus, in
order to ensure in a more precise way that the activation function is not saturating,
it can be beneficial to normalize the distribution with the number of neurons.

Assume that the NN is fully connected and that the number of neurons in the
previous layer, i.e. the number of inputs to each neuron in the current layer, is
m. LeCun et al. suggest in [54] to obtain a standard deviation of the output of
each neuron of about 1 to initialize the weights by drawing them randomly from a
zero-centered distribution with a standard deviation of σw = 1/

√
m, given that the

standard deviation of the activation function is 1 as well.
There are various other methods suggesting more sophisticated standard de-

viations for the random distributions to ensure a beneficial initialization of the
weights [55–57]. Unfortunately, most of these expressions are derived assuming that
the NN defines a linear model, which implies that for a general non-linear model
these choice of initial weights might not be optimal. Nevertheless, according to
Goodfellow et al. [34] it is often the case that strategies designed for linear models
perform also well for non-linear models. Another drawback of these initialization
rules in which the standard deviation of the random distribution is scaled by a
factor that depends on the inverse of the width of a layer is that for wide layers
the actual values of the weights are initially close to zero, which is, as discussed
before, unfavorable and can cause numerical instabilities during training.

It is common to make use of prior knowledge on properties of the reference data
in order to define initial values of biases, which mainly influence the overall scale
of a neuron’s preactivation. For example, in the study employing SNNs to compute
reaction rate constants presented in this thesis, the bias on the output neuron was
initialized with the average energy value of the training examples, to ensure that
the scale of the output value is close to the target values.
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4. Direct Force and Hessian Training

In order to ensure a reliable prediction of atomic forces or Hessians without sampling
configurational space very densely, it is required to include the force- or Hessian
information in the training process. The straight forward way to include this
information is to introduce a term depending on the atomic forces or Hessians in
the loss function L(W ).

In the following it is discussed how direct force training can be performed for
SNNs and ANNs. For SNNs it is further shown how Hessian information can be
included into the training process.

4.1. Direct Force and Hessian Training for Structure
Neural Networks

The program that was used to train the SNNs studied in this thesis was implemented
by Philipp Hallmen as a part of his master’s thesis. For the work presented in this
thesis the training algorithm was accelerated and some minor corrections were
made by the author and J. Kästner.

The program can train SNNs with two hidden layers. The training was performed
on the basis of the loss function

L(W) =
1

nE + nG + nH

[
AE

nE∑
i=1

(iENN(W )− iEREF)2

+AG

nG∑
j=1

| jgNN(W )− jgREF
j |2 + AH

nH∑
k=1

D(0)∑
a,b

| kHNN
ab (W )− kHREF

ab |2
 ,

(4.1)
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where nE, nG and nH are the number of training examples for which information
on the energy, gradient or Hessian is available. AE, AG and AH are scaling factors,
that can be used to weight the relative importance of the errors.

The SNNs were trained as described in section 3.4. The detailed expressions for
the derivative of the loss function with respect to the weight and bias parameters,
which are required for the backpropagation step are given in the appendix of this
thesis.

Since the direct force training approach ensures reliable Hessian- and force
predictions by the NN it is excellently suited to approximate PESs that shall be
used for the computation of reaction rate constants, which requires highly accurate
Hessians which are a smooth function of all spatial coordinates.

In order to accelerate convergence it can be exploited, that the energy as well
as its gradients and Hessians with respect to the spatial coordinates is linear in
the bias and the weight parameters acting on the output layer. Therefore, it is
possible to first perform a linear optimization of these parameters while keeping
the remaining weight and bias parameters fixed and to subsequently optimize the
remaining weight and bias parameters with a non-linear optimization algorithm
like the L-BFGS algorithm [37–39] while keeping the weights and biases acting
on the output layer fixed. This acceleration method was employed for training all
SNNs presented in this thesis.

The direct force and Hessian training method for SNNs was employed to construct
surrogate models that allow for the efficient computation of reaction rate constants
for the reaction: CH3OH+H → CH2OH + H2 on coupled cluster level of theory.
Details on this application are given in chapter 6.

4.2. Direct Force Training for Atomic Neural
Networks

The direct force training algorithm for ANNs, that will be presented in the following,
was developed and implemented by the author. The algorithm is part of the open-
source package ænet[58]. To allow for a maximal efficient training process, all
relevant computations are, if possible, implemented as matrix-vector or matrix-
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matrix operations, which can be executed highly efficiently. Further, the force
training algorithm is, as the whole ænet[58] program package, parallelized with
MPI, which allows for an even more efficient training procedure. Due to the local
descriptors used for ANNs, which only represent the interactions of a central atom
with atoms that lie within a cutoff sphere, the formal scaling of this algorithm is for
large chemical systems linear in the total number of atoms. However, the prefactor
of the scaling is rather large as it is given by the average number of atoms within
a sphere with a radius twice as big as the cutoff radius Rc. For chemical systems
with just a few atoms, where the local description still contains nearly all or all
atoms, the scaling is quadratic with the number of atoms in the system.

In the following sections first all relevant notation will be introduced, then the
expressions for the ANN energy, the corresponding gradients and the loss function
are given. Finally the derivatives of the loss function with respect to the weight
parameters are discussed in detail and the novel algorithm for computing the
derivative of the ANN forces with respect to the weight parameters is outlined in
detail.

4.3. Notation
This section introduces all additional notation required for the upcoming derivations.
All vectorial quantities are given as bold symbols. ≡ indicates that both symbols
are used synonymously. In order to facilitate the lookup of symbols, the symbols
are presented in an alphabetic list.

– 0 a null matrix, all entries of this matrix are 0.

– 1 identity matrix.

– α(l) index enumerating all neurons in layer l, where l = 0 denotes the input
layer

– c ∈ {x, y, z} denotes a Cartesian coordinate direction.

– cϕ denotes the Cartesian coordinate c of atom ϕ

– D
(l)
t ≡ D(l) width of layer l for ANN of species t

51



4. Direct Force and Hessian Training

– EREF
s is the energy of structure s obtained from quantum chemical simulations.

– ENN
s is the energy predicted by the ANN for structure s.

– s
tENN
ϕ ≡ sENN

ϕ is the atomic energy of atom ϕ in structure s predicted by the
ANN for species t.

– l
ϕfα(l) ≡ lfα(l) is the value of the transfer function of node α in layer l if the
corresponding ANN is evaluated for atom ϕ.

– F REF
ϕ is the ab initio force acting on atom ϕ. FREF

c,ϕ is the force component
acting along c.

– F NN
ϕ is the prediction of the force acting on atom ϕ by the ANN. FNN

c,ϕ is the
force component along c

– sgNN is the gradient of the energy for structure s, where sgNN
c is the derivative

of the NN-PES with respect to c for structure s .

– nstrucs is the number of structures in the training set.

– natoms is the number of atoms in a given structure s.

– l
ϕnα(l) ≡ lnα(l): values of neuron α(l) in layer l if the corresponding atomic NN
is evaluated for atom ϕ. l=0

ϕnα(0) denotes the α(0)-th element of the feature
vector describing atom ϕ.

– l
tw

a
b : weight from neuron b in layer l − 1 to neuron a in layer l for the ANN

for species t.

– l
tW ∈ R

l×(l−1) is the matrix of all weights l
tw

a
b in layer l
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4.4. Expression for the Energy and its Gradient
obtained from an Atomic Neural Network

To employ ANNs it has to be assumed that the total energy of a structure s is
given by the sum of atomic energy contributions

sENN =
natoms∑
ϕ=1

s
tENNϕ

. For an atomic NN with L hidden layers s
tENNϕ is defined recursively:

s
tENNϕ = L+1

ϕnα(L+1) (4.2)

with

0
ϕnα(0) = σϕα(0)

l
ϕnα(l) =

l
ϕfα(l)

 D(l−1)∑
α(l−1)=1

l
tw

α(l)
α(l−1)

l−1
ϕnα(l−1)

 , 1 ≤ l ≤ L+ 1. (4.3)

Thereby σϕα(0) is the α(0)-th element of the feature vector. Note that in equation (4.3)
the biases l

tw
α(l)

D(l−1) are included and by definition l−1
ϕnD(l−1) = 1 holds for any bias

neuron.

In all applications discussed in this thesis ANNs with two hidden layers were
employed. Therefore, the expressions for the energy and atomic forces are given in
detail for an ANN with two hidden layers.
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For an ANN with two hidden layers the atomic energies tENNϕ are

tENNϕ = 3
ϕf 1

 D(2)∑
α(2)=1

3
tw

1
α(2)

2
ϕnα(2)

 ,

2
ϕnα(2) =

2
ϕfα(2)

 D(1)∑
α(1)=1

2
tw

α(2)
α(1)

1
ϕnα(1)

 ,

1
ϕnα(1) =

1
ϕfα(1)

 D(0)∑
α(0)=1

1
tw

α(1)
α(0)

0
ϕnα(0)

 .

The corresponding derivative sgNN
c of the NN-PES for structure s with respect to c

is given by

sgNN
c =

∂ sENN

∂c

=
natoms∑
ϕ=1

∂ s
tENNϕ
∂c

=
natoms∑
ϕ=1

D(0)∑
α(0)=1

∂ 0
ϕnα(0)

∂c

D(1)∑
α(1)=1

D(2)∑
α(2)=1

3
ϕf

′

1
3
tw

1
α(2)

2
ϕf

′

α(2)
2
tw

α(2)
α(1)

1
ϕf

′

α(1)
1
tw

α(1)
α(0).

In order to simplify the equations and improve their readability the index ϕ on
the node values l

ϕnα(l) and the values of the transfer functions l
ϕfα(l) will be omitted

in the following.

4.5. The Loss Function and its Derivative with
Respect to the Weight Parameters

The loss function used for direct force training with ANNs is:

L(w) =
nstrucs∑
s=1

NEAE | sEREF − sENN(w)|2 +NGAG | sgREF − sgNN(w)|2︸ ︷︷ ︸
=:Γ

, (4.4)
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where

Γ =
natoms∑
ϕ=1

(
sFREF

x,ϕ − sFNN
x,ϕ

)2
+
(
sFREF

y,ϕ − sFNN
y,ϕ

)2
+
(
sFREF

z,ϕ − sFNN
z,ϕ

)2
. (4.5)

The normalization factors are chosen as follows: NE := 1/(2 natoms) and
NG := 1/(2(3 natoms)2). With the expression for Γ we get:

L(w) =
nstrucs∑
s=1

[
NEAE

∣∣sEREF − sENN(w)
∣∣2

+NGAG

natoms∑
ϕ=1

∑
c

(
sFREF

c,ϕ − sFNN
c,ϕ (w)

)2]
. (4.6)

Deriving the loss function with respect to the weight l
tw

a
b we get:

∂L(w)

∂ l
tw

a
b

=
nstrucs∑
s=1

[
2NEAE

(
sEREF − sENN(w)

)(
−∂ sENN(w)

∂ l
tw

a
b

)

+2NGAG

natoms∑
ϕ=1

∑
c

(
sFREF

c,ϕ − sFNN
c,ϕ (w)

)(
−
∂ sFNN

c,ϕ (w)

∂ l
tw

a
b

)
︸ ︷︷ ︸

=:Φ

 . (4.7)

In order to simplify notation further, the superscript s specifying the structure
will be omitted. Further, the dependence of the energy and forces predicted by the
ANN on the weights and biases will be implied and not stated explicitly.

From the expression for the force component of atom ϕ along c

FNN
c,ϕ = −

natoms∑
ψ=1

∂ENN
ψ

∂cϕ

= −
natoms∑
ψ=1

D(0)∑
α(0)=1

∂ENN
ψ

∂σψα(0)

∂σψα(0)
∂cϕ
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4. Direct Force and Hessian Training

we can calculate Φ as follows

Φ = −
∂FNN

c,ϕ

∂ l
tw

a
b

=
natoms∑
ψ=1

D(0)∑
α(0)=1

∂2ENN
ψ

∂σψα(0)∂
l
tw

a
b

∂σψα(0)
∂cϕ

.

4.6. Computing ∂FNN
c,ϕ /∂ l

tw
a
b for Atomic Neural

Networks

The derivative ∂FNN
c,ϕ /∂

l
tw

a
b can be computed during a training epoch with the

generalized chain rule during a backpropagation step. Let 0ni := σϕi for atom ϕ.
For an ANN with L hidden layers the derivative is

−
∂FNN

c,ϕ

∂ l
tw

a
b

=
∑
i

∂ 0ni
∂cϕ


∑

α(1)...α(L)


L∏
j=1

∂
(
L+1f ′

1
L+1

tw
α(L+1)
α(L)

)
∂ l
tw

a
b

jf ′
α(j)

j
tw

α(j)
α(j−1)︸ ︷︷ ︸

=:Ω

+
L∑
j=l

(
L+1∏
k=j+1

j−1∏
m=1

jf ′
α(k)

k
tw

α(k)
α(k−1)

∂ jf ′
α(j)

∂ l
tw

a
b

j
tw

α(j)
α(j−1)

mf ′
α(m)

m
tw

α(m)
α(m−1)

)

+
L+1∏
j=l+1

l−1∏
k=1

jf ′
α(j)

j
tw

α(j)
α(j−1)

lf ′
α(l)

∂ l
tw

α(l)
α(l−1)

∂ l
tw

a
b

kf ′
α(k)

k
tw

α(k)
α(k−1)


 , (4.8)

where α(L + 1) = 1 as there is exactly one neuron in the output layer. Further,
it has been used that for any sequence of numbers (an)n∈N we have for n > m∏m

n an = 1 and
∑m

n an = 0. In this case the sum is the empty sum and the product
is the empty product as the set of indices n, for which the respective arithmetic
operation is performed, is empty.

The first summand on the right hand side, Ω, vanishes trivially for all NNs
studied in this thesis since the activation function acting on the output layer is the
identity L+1f 1(x) = x, which has a vanishing second derivative.

The algorithm for computing ∂FNN
c,ϕ /∂

l
tw

a
b that was implemented into the software
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package ænet[58] is capable of computing these derivatives for an arbitrary number
of hidden layers. A sketch of a naive algorithm to compute the derivatives of the
atomic forces with respect to the weight parameters is given in algorithm 1. This

Algorithm 1 Naive computation of ∂FNN
c,ϕ /∂

l
tw

a
b

1: for int i = L; i > 0; i++ do
2: for int j = L; j >= i; j++ do
3: for each a ∈ {1, 2, . . . , D(i) − 1} do
4: for each b ∈ {1, 2, . . . , D(i−1)} do
5: compute ∂ jf ′/∂ i

tw
a
b

6: if j == i then
7: compute ∂ j

tw
αj
αj−1/∂

i
tw

a
b

8: end if
9: end for

10: end for
11: end for
12: end for

naive algorithm computes each term contributing to the derivative consecutively.
In order to accelerate the training process, it is desirable not to apply this naive
algorithm but to compute the derivatives ∂FNN

c,ϕ /∂
l
tw

a
b for all possible combinations

of a and b at once. Further, it is more time efficient to compute the derivatives
of all three force components (Fx,ϕ, Fy,ϕ, Fz,ϕ) simultaneously. These methods to
accelerate the naive direct force training algorithm can be applied by rewriting
equation (4.8) in matrix form. A sketch of the resulting algorithm is given in 2.

Algorithm 2 Computation of ∂F NN
ϕ /∂ l

tW by matrix equations
1: for int i = L; i > 0; i++ do
2: for int j = L; j >= i; j++ do
3: compute ∂F NN

ϕ /∂ l
tW

4: end for
5: end for
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4.7. Computing ∂FNN
c,ϕ /∂ l

tw
a
b for an Atomic Neural

Network with Two Hidden Layers

In the following it will be demonstrated how ∂FNN
c,ϕ /∂

l
tw

a
b can be computed for an

ANN with two hidden layers. The overall approach, however, is exemplary for an
ANN with an arbitrary depth.

Let α(0) =: i, α(1) =: j, α(2) =: k be the indices enumerating the neurons in
the layer l ∈ {0, 1, 2, 3}, where α(3) = 1. Further, we define the width of the layers
accordingly by D(0) =: I, D(1) =: J , D(2) =: K and note that D(3) = 1. In the
following expression each line represents one specific partial derivative, which is

indicated by a comment of the form
∣∣∣∣∂A(w)

∂ l
tw

a
b
.

−
∂FNN

c,ϕ

∂ 3
tw

1
b

=
I∑
i=1

∂ 0ni
∂cϕ︸ ︷︷ ︸

C

 J∑
j=1

K∑
k=1

3f
′′

1
3
tw

1
k︸ ︷︷ ︸

O∗

2nb︸︷︷︸
Ib

2f
′

k
2
tw

k
j
1f 1

j
1
tw

j
i︸ ︷︷ ︸

S−

∣∣∣∣ ∂ 3f
′
1

∂ 3
tw

1
b

+
J∑
j=1

3f
′

1︸︷︷︸
Ω

2f
′

b
2
tw

b
j︸ ︷︷ ︸

B∗∗
−

1f
′

j
1
tw

j
i︸ ︷︷ ︸

S−

 ∣∣∣∣∂ 3
tw

1
k

∂ 3
tw

1
b

−
∂FNN

c,ϕ

∂ 2
tw

a
b

=
I∑
i=1

∂ 0ni
∂cϕ︸ ︷︷ ︸

C

 J∑
j=1

K∑
k=1

3f
′′

1
3
tw

1
k︸ ︷︷ ︸

O∗

3
tw

1
a
2f

′

a︸ ︷︷ ︸
Ia

1nb︸︷︷︸
Ib

2f
′

k
2
tw

k
j
1f

′

j
1
tw

j
i︸ ︷︷ ︸

S−

∣∣∣∣ ∂ 3f
′
1

∂ 2
tw

a
b

+
J∑
j=1

3f
′

1
3
tw

1
a︸ ︷︷ ︸

B+

2f
′′

a
2
tw

a
j︸ ︷︷ ︸

O

1nb︸︷︷︸
Ib

1f
′

j
1
tw

j
i︸ ︷︷ ︸

S−

∣∣∣∣ ∂ 2f
′

k

∂ 2
tw

a
b

+3f
′

1
3
tw

1
a︸ ︷︷ ︸

B+

2f
′

a︸︷︷︸
Ω

1f
′

b
1
tw

b
i︸ ︷︷ ︸

B∗∗
−

 ∣∣∣∣∂ 2
tw

k
j

∂ 2
tw

a
b
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−
∂FNN

c,ϕ

∂ 1
tw

a
b

=
I∑
i=1

∂ 0ni
∂cϕ︸ ︷︷ ︸

C


J∑
j=1

K∑
k=1

3f
′′

1
3
tw

1
k︸ ︷︷ ︸

O∗

K∑
τ=1

3
tw

1
τ
2f

′

τ
2
tw

τ
a
1f

′

a︸ ︷︷ ︸
Ia

0nb︸︷︷︸
Ib

2f
′

k
2
tw

k
j
1f

′

j
1
tw

j
i︸ ︷︷ ︸

S−

∣∣∣∣ ∂ 3f
′

k

∂ 1
tw

a
b

+
J∑
j=1

K∑
k=1

3f
′

1
3
tw

1
k︸ ︷︷ ︸

S+

2f
′′

k
2
tw

k
j︸ ︷︷ ︸

O

2
tw

k
a
1f

′

a︸ ︷︷ ︸
Ia

0nb︸︷︷︸
Ib

1f
′

j
1
tw

j
i︸ ︷︷ ︸

S−

∣∣∣∣ ∂ 2f
′

k

∂ 1
tw

a
b

+
K∑
k=1

3f
′

1
3
tw

1
k︸ ︷︷ ︸

S+

2f
′

k
2
tw

k
a︸ ︷︷ ︸

B+

1f
′′

a
1
tw

a
i︸ ︷︷ ︸

O

0nb︸︷︷︸
Ib

∣∣∣∣ ∂ 1f
′
j

∂ 1
tw

a
b

+
K∑
k=1

3f
′

1
3
tw

1
k︸ ︷︷ ︸

S+

2f
′

k
2
tw

k
a︸ ︷︷ ︸

B+

1f
′

a︸︷︷︸
Ω

δb,i︸︷︷︸
D∗∗

b

 ∣∣∣∣∂ 1
tw

j
i

∂ 1
tw

a
b

Groups of factors that are be represented by the same matrix are marked in the
same color and the corresponding matrix name is given below the respective terms.
Matrices with different names but the same color have the same basic structure,
but differ in the index ranges of the quantities defining the matrix elements.

If a is the index of a bias neuron, any derivative ∂FNN
c,ϕ /∂

l
tw

a
b will vanish as there

are no weight parameters that point to bias neurons. For the same reason matrices
marked with the superscript ∗∗, e.g. B∗∗

− , are zero if b is the index of a bias neuron.
Matrices with the superscript ∗, e.g. O∗, vanish trivially as the transfer function
used in the innermost hidden layer, i.e. the second hidden layer in this example, is
always chosen to be f(x) = x, which has a vanishing second derivative.

4.7.1. Computing ∂FNN
c,ϕ /∂ l

tw
a
b Based on Matrix Equations

In this section the matrices required for the calculation of all terms ∂FNN
c,ϕ /∂

l
tw

a
b

will be given. To increase efficiency the partial derivatives will be calculated for all
neurons a in layer l − 1 and all neurons b in layer l as well as for all 3 Cartesian
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coordinates at once. In order to do so all terms depending on index a are collected in
a matrix A and all terms depending on index b are collected in B. The derivatives
of interest are obtained by multiplying matrix A and B employing either the
standard matrix product(×) or the Kronecker product(⊗). If the product to be
used is not explicitly stated the standard matrix product is implied.

Since the number of terms to be calculated increases with decreasing layer index l,
the derivatives are given in descending order, starting at the output layer(l = 3) to
facilitate comprehensibility.

Computing ∂FNN
c,ϕ /∂ 3

tw
1
b

All partial derivatives ∂ 3f
′
1/∂

3
tw

1
b vanish trivially as O∗ is the null matrix 0.

1) Computing ∂ 3
tw

1
k/∂

3
tw

1
b

Calculation of A:

Since the output layer has only a single neuron a = 1, A is a real number. Let
A := S+B+ΩIa, where

S+ = 1 ∈ R,

B+ = 1 ∈ R,

Ia = 1 ∈ R,

Ω = 3f
′

1 ∈ R.

Thus, we get
A = 3f

′

1.

60



4.7. Computing ∂FNN
c,ϕ /∂

l
tw

a
b for an Atomic Neural Network with Two Hidden Layers

Calculation of B

Define B := IbB−S−C, where

Ib = 1 ∈ R
K×K ,

B− =


2f

′
1
2
tw

1
1 . . . 2f

′
1
2
tw

1
J

... ...
2f

′
K

2
tw

K
1 . . . 2f

′
K

2
tw

K
J

 ∈ R
K×J ,

S− =


1f

′
1
1
tw

1
1 . . . 1f

′
1
1
tw

1
I

... ...
1f

′
J
1
tw

J
1 . . . 1f

′
J
1
tw

J
I

 ∈ R
J×I ,

C =


∂ 0n1

∂xc
. . . ∂ 0n1

∂zc... ...
∂ 0nI

∂xc
. . . ∂ 0nI

∂zc

 ∈ R
I×3,

With this information B is obtained:

B =


∑I

µ=1

∑J
ν=1

2f
′
1
2
tw

1
ν
1f

′
ν
1
tw

ν
µ
∂ 0nµ

∂xc
. . .

∑I
µ=1

∑J
ν=1

2f
′
1
2
tw

1
ν
1f

′
ν
1
tw

ν
µ
∂ 0nµ

∂zc... ...∑I
µ=1

∑J
ν=1

2f
′
K

2
tw

K
ν

1f
′
ν
1
tw

ν
µ
∂ 0nµ

∂xc
. . .

∑I
µ=1

∑J
ν=1

2f
′
K

2
tw

K
ν

1f
′
ν
1
tw

ν
µ
∂ 0nµ

∂zc

 ∈ R
K×3.

A⊗B yields all terms ∂ 3
tw

1
k/∂

3
tw

1
b .

Computing ∂FNN
c,ϕ /∂ 2

tw
a
b

All partial derivatives ∂ 3f
′

k/∂
2
tw

a
b vanish as O∗ = 0.
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1) Computing ∂ 2
tw

k
j/∂

2
tw

a
b

Calculation of A:

Let diag(v) =: M denote a diagonal matrix with the non-zero elements being
defined by the vector v, where the i-th element of v defines the diagonal element
in the i-th row and column Mii. Using this notation we define A := S+B+ΩIa by
the matrices

S+ = 1 ∈ R

B+ =
(
3f

′
1
3
tw

1
1, . . . , 3f

′ 3
tw

1
K

)
∈ R

1×K ,

Ω = diag
(
2f

′

1, . . . , 2f
′

K

)
∈ R

K×K ,

Ia = 1 ∈ R
K×K .

Therefore, we obtain

A =
(
3f

′
1
3
tw

1
1
2f

′
1, . . . , 3f

′
1
3
tw

1
K

2f
′
K

)
∈ R

1×K .

Calculation of B:

Let B := IbB−S−C with

Ib = 1 ∈ R
J×J

B− =


1f

′
1
1
tw

1
1 . . . 1f

′
1
1
tw

1
I

... ...
1f

′
J
1
tw

J
1 . . . 1f

′
J
1
tw

J
I

 ∈ R
J×I ,
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S− = 1 ∈ R
I×I ,

C =


∂ 0n1

∂xc
. . . ∂ 0n1

∂zc... ...
∂ 0nI

∂xc
. . . ∂ 0nI

∂zc

 ∈ R
I×3,

B =


∑I

µ=1
1f

′
1
1
tw

1
µ
∂ 0nµ

∂xc
. . .

∑I
µ=1

1f
′
1
1
tw

1
µ
∂ 0nµ

∂zc... ...∑I
µ=1

1f
′
J
1
tw

J
µ
∂ 0nµ

∂xc
. . .

∑I
µ=1

1f
′
J
1
tw

J
µ
∂ 0nµ

∂zc

 ∈ R
J×3.

A⊗B yields all partial derivatives of the form ∂ 2
tw

k
j

∂ 2
tw

a
b
.

2) Computing ∂ 2f
′

k/∂
2
tw

a
b

Calculation of A

With

S+ = 1 ∈ R,

B+ =
(
3f

′
1
3
tw

1
1, . . . , 3f

′
1
3
tw

1
K

)
∈ R

1×K ,

O =


2f

′′
1
2
tw

1
1 . . . 2f

′′
1
2
tw

1
J

... ...
2f

′′
K

2
tw

K
1 . . . 2f

′′
K

2
tw

K
J

 ∈ R
K×J ,

Ia = 1 ∈ R
J×J ,
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computing A := diag(S+B+)OIa gives

A =


3f

′
1
3
tw

1
1
2f

′′
1
2
tw

1
1 . . . 3f

′
1
3
tw

1
1
2f

′′
1
2
tw

1
J

... ...
3f

′
1
3
tw

1
K

2f
′′
K

2
tw

K
1 . . . 3f

′
1
3
tw

1
K

2f
′′
K

2
tw

K
J

 ∈ R
K×J .

Calculation of B

Define B := Ib ⊗ (B−S−C) with

Ib =
(
1n1, . . . , 1nJ+1

)
∈ R

1×(J+1),

B− = 1 ∈ R
J×J ,

S− =


1f

′
1
1
tw

1
1 . . . 1f

′
1
1
tw

1
I

... ...
1f

′
J
1
tw

J
1 . . . 1f

′
J
1
tw

J
I

 ∈ R
J×I ,

C =


∂ 0n1

∂xc
. . . ∂ 0n1

∂zc... ...
∂ 0nI

∂xc
. . . ∂ 0nI

∂zc

 ∈ R
I×3.

Thus, we obtain

B =
((

1n1B−S−C
)

. . .
(
1nJ+1B−S−C

))
∈ R

J×3(J+1).
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B is a block matrix with each block 1niB−S−C being defined as follows:
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Matrix multiplication A×B yields all partial derivatives ∂ 2f
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k
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4.7.2. Computing ∂FNN
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The partial derivatives ∂ 3f
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b vanish as O∗ = 0.
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Calculation of A
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Calculation of B

Define B := IbB−S−C with

Ib = 1 ∈ R
I×I ,

B− = 1 ∈ R
I×I ,

S− = 1 ∈ R
I×I ,
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Calculating the Kronecker product A⊗B yields all partial derivatives ∂ 1
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Calculation of B

Define B := Ib ⊗ (B−S−C), with

Ib =
(
0n1, . . . , 0nI+1

)
∈ R

1×(I+1),

B− = 1 ∈ R
I×I ,
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where B is a block matrix with the individual blocks being defined as follows:

0niB−S−C =
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Since we derive the activation function of node k in layer 2 with respect to the
weights in layer 1, the calculation of B+ and B− can be omitted.

Calculation of A
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Writing Ia column wise into diagonal matrices and arranging these matrices in the
order in which they occur in Ia as blocks of Ĩa we get:
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Thus, we obtain a block matrix for ĨaO

ĨaO =
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Let >block be an operator for transposing a block matrix block wise without
changing the blocks’ internal structures:

ĨaO =


I1

...
IJ

 ∈ R
(JK)×J ,

(
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Calculation of B

Defining B := Ib ⊗ S−C with
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The novel Taylor expansion based force training method presented in this chapter
was developed and implemented into the software package ænet by the author
under the supervision of A. Urban and N. Artrith (Columbia University, NY). This
chapter’s description of the algorithm is based on the article [59]. This novel training
approach will in the following be referred to as the Taylor expansion approach.

As discussed before, direct force training is an effective training approach to
ensure that a NN-PES represents atomic forces accurately. However, due to its
high computational effort, this approach can only be employed for the construction
of NN-potentials for chemical systems with a small number of atoms. Thus, for
larger chemical systems an alternative force training approach is required.

The Taylor expansion based force training approach presented here tries to make
use of the advantages of both the energy- and the direct force training approach: By
employing a loss function that solely depends on the error of the energy predictions
(see equation (3.31)) it is computationally almost as efficient as the conventional
energy training method. However, instead of requiring a vast number of electronic
structure calculations this novel training approach includes force information into
the training process indirectly by transforming information on atomic forces into
energy information, which improves the accuracy of force predictions obtained from
the NN-PES even for comparatively small training sets.

This idea of translating force information to energy information was inspired by
an article of Vlcek et al. [19], who optimized conventional molecular force-fields by
a similar approach.
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In the novel Taylor expansion approach additional structures σ′ = {R′
i} are

created from structures σ = {Ri} of the training set by slightly displacing atoms.
The energy E(σ′) of the additional structure is approximated by a Taylor expansion
around E(σ):

E(σ′) = E(σ) +
∑
i

(R
′

i −Ri)∇iE(σ) + . . . .

Truncating the Taylor series after the first order term results in:

E(σ′) ≈ E(σ)−
∑
i

δiFi(σ), (5.1)

where δi = R
′
i −Ri and ∇iE(σ) = −Fi(σ).

E(σ) and F (σ) are known a priori since σ is a structure from the training set.
Thus, no further electronic structure calculations, are required for extending the
training set. The additionally created structures aid the prediction of forces by
providing a better description of configurational space.

In this thesis two different strategies to displace atoms were studied. Both
displacement strategies will be discussed in detail in the following.

5.1. Displacements along Cartesian Coordinate Axes

Vlcek et al. suggested to generate additional structures by selecting one atom of a
given training set structures and create six additional structures by displacing only
this atom by a small displacement ±δ along all 3 Cartesian spatial directions.

Assume that atom i of structure σ = {R1, . . . ,RN} was chosen. Displacing
atom i for example along the unit vector ey in the Cartesian y direction, yields an
additional structure σ′ and its corresponding energy E(σ′) is computed as follows:

σ′ = {R1, . . . ,Ri − δey, . . . ,RN}. (5.2)

E(σ′) = E(σ)− δF y
i (σ), (5.3)

where F y
i is the projection of the force acting on atom i on ey. The other structure-

energy pairs obtained for displacements in the remaining 5 coordinate directions are
computed accordingly. In the following this displacement strategy will be referred
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to as displacement strategy (C).

5.2. Random Displacements

This alternative displacement approach was developed and implemented into ænet
by N. Artrith and A. Urban. The author tested this displacement strategy exten-
sively and compared the accuracy of atomic forces obtained by both displacement
strategies, see chapter 7.

The motivation for introducing another displacement strategy was to allow for
a more flexible sampling of configurational space by the additional structures as
displacing one atom at a time along the directions of the Cartesian coordinate
axes samples many very similar structures. Therefore, displacing each atom i by a
small displacement δi, defined by a random vector, was suggested as an alternative
displacement strategy. Thereby the displacement vectors where chosen such that
|δi| < δmax for all atoms i. A translation of the entire structure does not change
the structure’s potential energy. In order to account for this, the center-of-mass
displacement caused by δi is subtracted from the total displacement. The energy
corresponding to the displaced structure is computed by equation (5.1).

This displacement strategy will be referred to as displacement strategy (R) in
the following.

5.3. Training Neural Networks with the
Taylor Expansion Approach

In order to train NNs with the Taylor expansion approach, the standard workflow of
direct force training and energy training has to be altered by adding an additional
step in which the displaced structures are generated and their corresponding energies
are computed. A flowchart depicting the work flow of Taylor force training is given
in figure 5.1.

The performance of this force training method will depend on the choice of the
displacement δ in displacement strategy (C) or the maximum displacement δmax

in displacement strategy (R). The displacement is a parameter that has to be
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Taylor
Expansion
Approach

Figure 5.1.: Workflow for force training with the Taylor expansion ap-
proach. The training set is extended by generating additional training
structures from known training structures by displacing atoms. The
corresponding energy is approximated by a Taylor expansion of first
order. After generating additional structures the workflow is identical
to the workflow of force training: first structures are represented by
descriptors and then a NN is trained to map the structure as described
by the descriptor to its potential energy.

optimized to ensure accurate predictions of atomic forces.

The number of additional structures σ′ which are generated by displacing atoms
is defined by the user defined multiple a, where a = X means that nσ′ = X · nref,
where nσ′ is the number of additional structures and nref is the number of structures
in the original training data set. The total number of structures in the training data
set is given by ntrain = nσ′ + nref. Thus, a is a parameter that has to be optimized,
because the approximation of the energy for σ′ introduces additional noise to the
training data set. Thus, including too many approximate data points can potentially
diminish the predictive power of the NN. On the other hand, including too few
approximate data points will not improve the prediction of atomic forces. Further, it
is desirable to choose a as small as possible as the computational effort for training
the NN scales linearly with the number of atoms in the training set. Thus, a value
for a has to be determined that balances these three counteracting aspects.

The formal scaling of training ANNs employing the Taylor expansion approach to
force training with the number of atoms in the reference data set is linear as is the
scaling of conventional energy training with ANNs. However, generating additional
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structures increases the computational effort for training. This additional effort,
however, is negligible in comparison to additional electronic structure calculations
required to extend a training set such that a NN-potential obtained by conventional
energy training can be employed for the accurate prediction of atomic forces.

75



Part IV.

Applications and Results



6. Reaction Rate Constants for
CH3OH + H → CH2OH + H2

In this chapter it is demonstrated how a NN-potential trained with energy, force
and Hessian information can be used to compute highly accurate reaction rate
constants applying instanton theory. The content presented in this chapter is based
on published work of the author [60, 61].

6.1. Introduction
Methanol is observed very frequently in the interstellar medium (ISM). It was
detected in various regions of the ISM, where it was found to be present in ices
as well as in the gas phase [62]. Knowledge on relative abundances of differently
deuterated species allows for the characterization of local physical quantities.
Therefore, methanol has been studied extensively by experiments and simulations.
Towards IRAS 16293-2422 CH2DOH was found to be almost as abundant as
CH3OH with an abundance ratio of [CH2DOH]/[CH3OH] = 0.9 ± 0.3. Especially
the abundance of triply deuterated methanol CD3OH being 1.4% of the abundance
of CH3OH is unexpectedly high in the proximity of these protostars [63]. Taking
into account that the cosmic abundance of elemental D is about 1.5 × 10−5 the
abundance of H [64], the relative abundance of triply deuterated methanol is 13
orders of magnitude higher than expected from purely statistical exchange of H
and D.

Methanol was found to be heavily deuterated at the methyl group, whereas such
a preference was not observed for the deuteration at the OH group [63, 65–68].
Several attempts to explain why methanol is unexpectedly strongly deuterated
in various regions of the ISM have been made and a discussion of the reasons
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for the preferential deuteration at the C atom is given in previous work [69, 70].
Since the strong deuteration was found solely for the methyl group and not at the
oxygen atom, explanations for the strong deuteration based on high local [D]/[H]
abundance ratios are insufficient.

Also the attempt to explain it by comparing the zero-point vibrational energy
(ZPE) of different methanol isotopes falls short. It was shown that the ZPE of
D3OH is lower than the ZPE of CH3OH, which could be a hint for deuterated
species being favored over CH3O. This argument, however, is not sufficient, since
most deuterium is stored in the ISM in the form of HD, which has an even lower
ZPE than D3OH [69, 70].

A promising approach to shed light on the reason for the unexpectedly strong
deuteration of methanol at the methyl group is the investigation of H-D exchange
reactions in solid methanol [67, 69, 70]. Therefore, the investigation of rate constants
of H-D exchange reactions for a variety of methanol isotopes was the focus of the
work presented in this chapter. In these simulations a dust grain’s ice mantle on
which the reaction is supposed to take place was mimicked by an implicit surface
description.

This approach yields an intuitive qualitative explanation for the D-enrichment
of methanol since the rate constant for abstracting H is significantly higher than
for abstracting D [67, 69, 70]. Further, since elemental D or H can be added to a
hydroxymethyl radical barrierless, the rate at which methanol is formed is almost
equally fast for D and H addition.

In a preceding article Goumans and Kästner studied hydrogen abstraction
reactions from methanol at the CH3 and OH group and computed reaction rate
constants based on density functional theory (DFT) for temperatures between
about 500K and 30K [67]. The work presented here aims at improving the results
obtained in the aforementioned article by treating the problem with coupled cluster
theory. Further, this study provides kinetic isotope effects (KIEs) and reaction rate
constants for various deuteration patterns not studied in previous work, which can
be incorporated in astrochemical models to enhance their predictive power. Since
the article by Goumans and several other studies found that a hydrogen abstraction
at the CH3 group of methanol is significantly more likely than an abstaction at the
OH group [65–68], abstractions at the OH group are not investigated.
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Reaction rate constants were computed for all H/D isotope patterns on the
C atom of methanol and the incoming hydrogen atom (H or D) explicitly. On top
of that KIEs are given for all isotope patterns. Further, the heavy-atom 12C/13C
and 16O/18O KIEs are discussed for an incoming H atom.

The different deuteration patterns under study determine the following hydrogen
abstraction reactions that were investigated, where the incoming atom X can be
H or D. In reactions R 1 to R 3 H is abstracted by the incoming atom X, whereas
reactions R 4 to R 6 involve D abstractions. Reactions R 7 to R 8 were investigated
to obtain the heavy-atom KIEs.

CH3OH+ X → CH2OH+ XH (R1)

CH2DOH+ X → CHDOH+ XH. (R 2)

CHD2OH+ X → CD2OH+ XH. (R 3)

CDH2OH+ X → CH2OH+ XD. (R 4)

CD2HOH+ X → CDHOH+ XD. (R 5)

CD3OH+ X → CD2OH+ XD. (R 6)

13CH3 OH+ H → 13CH2 OH+ H2 (R 7)

CH3
18OH+ H → CH2

18OH+ H2 (R 8)

Since H-D exchange reactions in solid methanol were to be simulated, unimolec-
ular reaction rate constants are reported, as they describe how a pre-reactive
complex between the incoming hydrogen atom and a methanol molecule on an ice
surface decays in a Langmuir-Hinshelwood process [71]. The presence of a surface
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potentially influences the reaction under study in the following ways: Firstly, it
allows for the dissipation of excess energy from the reaction. Secondly, on a surface
a higher concentration of reactive species than in the gas phase is to be expected,
which facilitates chemical reactions. Thirdly, a surface can, in principle, influence
reaction rate constants directly by increasing or decreasing reaction barriers. Finally,
surfaces restrict rotations and translation of the molecules adsorbed to it, which
has to be considered when computing reaction rate constants.

In the work presented here an implicit surface model was employed to represent
the influence of the surface on the hydrogen abstraction reaction from methanol.
This comparatively simple representation allows for the description of surface
reactions by a gas-phase structural model. In this implicit surface model the
restrictions of translations and rotations of a methanol molecule that is adsorbed
to the surface is mimicked by keeping the rotational and translational partition
functions of methanol constant between the reactant and the instanton. It was
shown previously that such an implicit surface model can represent the restrictions
of rotations and translations caused by a surface successfully [71].

The dissipation of the excess energy by the surface and the higher concentration
of reactive species present on a surface are implicitly included in the reaction rate
constants, since a thermalized ensemble is assumed in our approach and canonical
reaction rate constants are computed, which are independent of the concentration
of reactants.

Especially for the comparatively apolar ice surfaces on which methanol is expected
to be found, like dirty CO ices, catalytic effects of the surface are assumed to be
minimal. Even the catalytic effect of a water ice surface, that is in comparison to
CO ices highly polar, was found to be small [71–75].

6.2. Computational Details

6.2.1. Neural Network Potentials

The NN-PESs employed in the two studies presented in this chapter were obtained
by training SNNs with 2 hidden layers. The architecture of these NNs is 15-50-50-1.
The number of neurons in the input layer is 15 since elongations along all 15 normal
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modes of the system were used as a descriptor of the molecular structures. The
number of neurons per hidden layer (50) was found by a parameter study. In this
parameter study the width of both hidden layers was assumed to be equal to reduce
the dimensionality of the parameter space in which the optimization has to be
performed. In the parameter study widths of 1-100 neurons per hidden layer were
tested to ensure a thorough sampling of the parameter space. For each choice of
the width of the hidden layers 10 NNs were trained. For all NNs trained for the
same width of the hidden layers the average of the RMSE of the energy predictions
that were made by the NN for the test set was computed. The width that lead on
average to the smallest error in the test set was considered to be optimal.

In all neurons in the hidden layers the hyperbolic tangent was used as activation
function. For the output neuron the identity was chosen as activation function.

The loss function that was used for training is given in equation (4.1) and
quantifies the RMSE of the energy, its gradient and its Hessian. Thereby the scaling
parameters AE, AG and AH were chosen as follows: AE = 1.0, AG = 0.1 and
AH = 5.0, where all parameter values are given in atomic units. Again, as for the
optimization of the width of the hidden layers, a parameter study in which multiple
NNs were trained for various values of the scaling parameters, was performed to
find optimal values for the scaling parameters.

The initial weight and bias parameters were drawn from a uniform random
distribution, with the initial values being restricted to the lie interval [−0.5, 0.5].
The bias on the output node 3W 1

0 was initialized with the average of the target
values for the energies defined by training set. All NNs were trained for 5000 epochs
to ensure a sufficient convergence of the loss function.

To accelerate the training process a linear optimization of the bias and weights
acting on the output layer was performed and subsequently the remaining weight
and bias parameters were optimized with the non-linear L-BFGS algorithm [37–39].
Details on this optimization approach are given in section 4.1.

Incorporating gradient and Hessian information into the training process increases
the computational effort of the training process itself drastically. Apart from
that, this training approach also introduces a significant computational overhead
to the NN training procedure since the computational effort for the generation
of the reference data is significantly higher. This is due to the fact that the
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computation of gradients and Hessians in addition to the potential energy is time-
consuming, especially if the training- and test set data is constructed by employing
a highly accurate, but computationally expensive, electronic structure method.
Nevertheless, obtaining a NN-PES, which was trained with energy gradient and
Hessian information, that allows for the computation of reaction rate constants is
often computationally feasible, since only a small section of the underlying PES
has to be regressed by the NN-PES.

A local description of the PES is sufficient because, as explained in chapter 2, in
instanton theory only harmonic deviations from the instanton, i.e. the most likely
tunneling path, are considered. This implies that the computation of reaction rate
constants on the basis of a NN-PES requires only an accurate description of the
proximity of the transition state and the reactant state.

Since a local NN-PES is sufficient, comparatively few training data points are
required to allow for an accurate regression of the PES in the area of interest. Thus,
the number of ab initio electronic structure calculations required for generating the
training- and test set is therefore manageable even for highly accurate quantum
chemical methods.

The chosen level of theory at which energies as well as gradients and Hessians are
to be computed is unrestricted explicitly correlated coupled-cluster theory including
single and double excitations and considering triple excitations perturbatively,
UCCSD(T)-F12/VTZ-F12, on a restricted Hartree-Fock basis [76–78].

Since the area of the PES which is of interest for reaction rate computations
is defined by the proximity of instanton paths and the proximity of the reactant
minimum, it seems to be a natural approach to first locate instantons at varying
temperatures, as well as the reactant well on the PES and then choose structures
in this area to construct the training- and test set.

Generation of the Training and Test Set

Due to the fact that computing instantons on UCCSD(T)-F12/VTZ-F12 level of
theory for various temperatures is computationally infeasible, the training and
test sets were generated in an iterative process, where first the reactant state as
well as two instantons for the temperatures 285K and 200K were computed for
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reaction H-R 1 employing density functional theory on BB1K/6-311+G** level of
theory[79].

It was shown previously that the classical transition structure obtained at
BB1K/6-311+G** level of theory is close to the one obtained from UCCSD(T)
calculations that were extrapolated to a complete basis set [67]. All DFT calculations
were performed in ChemShell [80, 81] using NWchem [82].

Along each of the first two instanton paths 20 geometries were chosen, where the
structures along the instanton at 285K were used as training examples and the
remaining 20 structures along the instanton at 200K were chosen as test examples.
Further, the structure of the pre-reactive van der Waals minimum and the classical
transition state were incorporated in the training set.

In order to obtain a NN-potential that describes the PES at UCCSD(T)-F12/VTZ-
F12 level of theory, energies, gradients and Hessians were computed for each training-
and test example at this level of theory in Molpro 2012.1 [83] via ChemShell [80, 81]
with an energy threshold of 10−10 Hartree. Gradients and Hessians were computed
in DL-FIND [84] via Chemshell [80, 81] by finite differences of energies.

Thus, the initial training set was made up of 22 training examples, which
corresponds in total to 2992 = 22 × (1 + 15 + 0.5 × (15 × 16)) unique pieces of
information as the structure was described by elongations along its 15 normal
modes and the Hessian matrix is symmetric.

With this initial training set several NNs were trained, where each training
started from different choices for the initial weight and bias parameters, but the
architecture was always identical with the one given in section 6.2.1. In a second
step instanton path optimizations were preformed on these NN-PESs for a large
temperature range from 285K down to ≤30K.

Since for the definition of the initial training- and test set instantons at compar-
atively high temperature were used, it was necessary to add further data points
to the training- and test set because the instanton path elongates with decreasing
temperatures, which caused the instantons to extend into areas of the PES that
were not yet well described by these training and test sets. These additional training-
and test examples ensure that the NN-PES can describe tunneling correctly over
the whole temperature range of interest and especially for low temperatures, where
tunneling is expected to dominate the reaction rate constants. Thus, especially
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structures along instantons computed for the medium to low temperature regime
were added to the reference data.

By iterating this process of first training several NNs to approximate the PES
and subsequently adding new examples to the training- and test set, that allow for
a more accurate regression of the PES in the section of interest, the final training-
and test set were constructed. However, in order to make accurate predictions for
unimolecular reaction rate constants, in addition to reference data along instantons,
also information on the immediate vicinity of the pre-reactive van der Waals complex
is required as it is not sufficiently well described by structures along instantons.
Therefore, training examples describing structures that were selected along paths
obtained from energy minimizations starting from the end point of the instanton
at 30K, which is comparatively close to the pre-reactive complex, were added to
the training- and test set.
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Figure 6.1.: Distribution of training- and test set structures on the PES
(open symbols). Instanton paths are shown as lines, stationary points
are given as filled symbols. All coordinates are given along normal
modes 1 and 11.
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Figure 6.2.: Normal modes 1 and 11, on which the geometries are projected to
result in figure 6.1. Taken from [60].

The final training- and test set differs slightly between the two articles [60] and
[61]. In [60] the final training set was made up from 66 training examples defining
66 different structures and the corresponding total potential energy as well as all
gradients and Hessians. This means that the training set contains 8976 unique
pieces of information, that are available for training. The final test set, which
consists of 18 test examples contains 2448 pieces of information. This final training
set contains not only structures in the proximity of instantons and the reactant
minimum, but also 5 structures in the proximity of the product minimum. This
training- and test set was used in the work presented in section 6.3.1.

In [61] some slight adjustments have been made with respect to the training
set used in [60]: firstly redundant structures, whose coordinates differed by less
than 10−2 Bohr and the 5 structures in the proximity of the product minimum
were deleted, since it is to be expected that these structures do not improve the
regression of the PES by NN-potentials. On top of that, additional structures in the
direct vicinity of the reactant were added to the training set to further improve the
description of the reactant minimum. In total the final training set in [61] consists
of 70 structures, i.e. 9520 unique pieces of information. The test set is identical in
both articles. This revised training set was used to compute the rate constants and
KIEs given in section 6.3.2.

The distribution of the final training- and test set structures on the PES is shown
in figure 6.1 together with instantons for reaction H-R 1 at 285K, 181K and 65K,
that were obtained from a NN-potential trained with the final training set. In order

85



6. Reaction Rate Constants for CH3OH + H → CH2OH + H2

to facilitate the visualization of the structures not the full 15 dimensional location
of the training- and test examples on PES but the projection of all coordinates of
the training- and test examples as well as the three instantons on the two normal
modes mode 1 and mode 11 that correspond to the movement of H2 in the hydrogen
abstraction reaction, which are depicted in figure 6.2, is shown.

Averaging Neural Network Potentials

Since the initial weight and bias parameters are chosen randomly, two NN-PES will
differ from another even if all other parameters influencing the training process like
the network architecture or the loss function are the same. This effect and the fact
that during training weights are optimized not globally but with an optimization
algorithm that searches local optima, the resulting NN-potentials will differ from
each other even if tight convergence criteria and a sufficiently large training set is
used.

Unfortunately it is a priori not obvious which NN-PES is the best approximation
of the underlying PES at the target level of theory, especially since slightly different
NN-PESs will often only differ slightly in the loss computed for either the test or
the training set, which makes a decision for a specific NN-PES on the basis of the
loss rather difficult.

However, since reaction rate constants are very sensitive with respect to changes
in the curvature of the PES, small differences in the approximation of the PES can
lead to comparatively large differences in the predictions of reaction rate constants.
To investigate the local accuracy of the machine learned model and to obtain
the best possible approximation of the PES, an average NN-PES was computed
by calculating the arithmetic average of N NN-potentials. This means that the
average NN-PES represents the mean energy predicted for each structure, but also
its corresponding mean gradients and Hessians.

This mean NN-PES was employed for reaction rate constant calculations with
the instanton method. In order to estimate how well different NN-potentials agree
with each other, the standard error in the energy was computed for each structure
σ along the instanton for reaction H-R 1 at 65K, see figure 6.3. The standard error
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is defined as follows:

sĒ(σ) =

√∑N
n+1

(
ENN
n (σ)− ĒNN

n (σ)
)2

N(N − 1)
, (6.1)

where ENN
n (σ) is the energy predicted by the n-th individual NN-PES and ĒNN

n (σ)

is the arithmetic average of the energies predicted by all N NN-PESs for structure
σ.

If there are regions of the PES with particularly large values of sĒ, additional
training points have to be added and a new set of NN-potentials has to be con-
structed, since a strong disagreement of different NN-potentials indicate that the
NN-potentials are extrapolating energies for structures in this area of the PES due
to a lack of training data.

Given that the standard error is small, averaging NN-PESs can also serve as
a way to regularize NN-potentials. Averaging can regularize NN-PESs since local
errors of a single NN-PES, are averaged out if the majority of the other NN-PESs
entering the average make more accurate predictions in that region. In section 6.3.1
it is demonstrated that averaging several NN-PESs indeed improves the prediction
of reaction rate constants.

6.2.2. Reaction Rate Constants

In order to take the quantum mechanical tunnel effect into account, reaction rate
constants were computed using instanton theory [20–27]. Details on instanton
theory are given in chapter 2 of this thesis.

In the work presented in this chapter instantons were, if not stated differently,
discretized by 200 images. The instanton was located by employing a convergence
criterion ensuring a gradient of the Euclidean action SE with respect to mass-
weighted coordinates of less than 5.0 × 10−11 atomic units. The applicability of
such a tight convergence criterion ensures that the noise of the NN-PES and its
derivatives is negligible, since such a small threshold is generally only achievable
for extraordinarily smooth potentials.

Unimolecular rate constants were calculated for all isotope patterns under study
using an implicit surface model in order to model Langmuir-Hinshelwood pro-
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cesses [71]. Further, bimolecular gas phase reaction rate constants were computed
for H-R 1. The bimolecular thermal rate constants were obtained from rate con-
stants computed by employing a microcanonical formulation of instanton theory
[21, 22, 24, 25], which allows for the description of a system in the low-pressure limit
where the assumption of the pre-reactive complex being in thermal equilibrium is
not valid. The microcanonical rate constants were obtained by solving the stability
matrix differential equation [85].

6.3. Results and Discussion

In this section first a proof of concept is outlined in which it is demonstrated
that obtaining reaction rate constants from NN-potentials is highly efficient and
allows for predictions of rate constants with outstanding accuracy, see section 6.3.1.
Subsequently in section 6.3.2 the work on the actual research question of this
project aiming at an explanation for the unexpectedly high deuteration of methanol
in various regions of the ISM is discussed in detail.

6.3.1. Bimolecular Canonical Reaction Rate Constants from
Average Neural Network Potentials

The results presented in this section are published in [60]. In order to demonstrate
how averaging NN-potentials can enhance the predictive power of NN-PESs, reaction
rate constants for reaction R 1 were computed on several average NN-PESs.

Averaging several NN-potentials only improves predictions if this process reg-
ularizes, i.e. smooths, the resulting NN-PES. Since it is a priori not clear if the
potential hyper surfaces are reasonably similar, the standard error of all NN-PESs
entering the average NN-potential was studied. In total 103 NN-PESs were trained.
In figure 6.3 the average potential energy and its corresponding standard error as
defined in equation (6.1) is given along the instanton at 65K.

The error was computed at the 200 images used to discretize the path. In
figure 6.3 the standard error was multiplied by 20 to make differences in the very
small standard errors visible. The first observation that can be made is that all PESs
are very similar since the standard error is very small along the whole instanton.
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Figure 6.3.: Average potential energy (black) ± 20 standard errors (red)
along the instanton at T = 65K. The energy is given relative to the
energy of the first image. Energy predictions from all 103 NN-PESs
entered the average potential as well as the standard error. Taken from
[60].

The maximum standard error is only about 0.027 kJ/mol.

It can further be seen that all NN-potentials agree best in the proximity of
the transition structure, i.e. at path lengths of about 80 a.u., where the energy
is maximal. The standard error at the transition structure is 0.016 kJ/mol and
increases towards both ends of the instanton. Since there are only five training
examples in the vicinity of the product minimum, the standard error is, as expected,
greatest towards that end of the instanton, i.e. the right end of the instanton
depicted in figure 6.3.

A similar behavior is observed towards the left end of the instanton, which is
closest to the reactant minimum. However, since a comparatively large number of
training examples represent the proximity of the reactant minimum, the standard
error at this end of the reaction path is with about 0.018 kJ/mol smaller than the
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standard error at the product end of the instanton.
It is expected that predictions of reaction rate constants will be highly accurate

on the average NN-potential, since the standard error is very small along the whole
instanton.

So far only differences of the NN-PESs in the predicted potential energy was
studied but neither the differences in the predicted gradients nor the Hessians
was discussed. Unfortunately, it is not guaranteed that a good agreement of the
NN-potentials in the predicted energies implies a good agreement in the respective
gradients and Hessians along the instanton as the error is studied at discrete points
along the instanton and not continuously along the path. Thus, it is a priori unclear
if the gradient and Hessian of the average NN-potential is a smooth function of the
atom coordinates.

Instead of computing standard errors for all Hessian and gradient components an
indirect evaluation of the deviations of the Hessians and gradients between individual
NN-potentials was done by investigating how strong reaction rate constants obtained
from individual NN-PESs contributing to the average potential differ from the rate
constants obtained from the average NN-potential.

A graph comparing bimolecular reaction rate constants calculated on individ-
ual NN-potentials to reaction rate constants computed on the average NN-PES,
constructed from all 103 individual NN-potentials is given in figure 6.4.

From this graph it can be seen that in general the reaction rate constants obtained
from individual NN-potentials agree well for high temperatures , whereas with
decreasing temperature the deviations in the reaction rate constants increases to
differences of about a factor 5. Further, it can be seen that for some individual
NN-PESs the temperature dependence of the reaction rate constant is unexpectedly
rather uneven, and therefore somewhat unphysical. On the other hand it can be
seen that averaging all 103 NN-potentials leads to a smooth and physically plausible
description of the reaction rate constant’s temperature dependence.

It is a priori not guaranteed that the predictive power of the average NN-potential
is independent of the selection of individual NN-PESs that enter the average. To
investigate the influence of that choice on the prediction of reaction rate constants
on the average NN-PES, three different subsets of NN-potentials were chosen to
construct average NN-PESs:
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Figure 6.4.: Comparison of bimolecular reaction rate constants for a rep-
resentative selection of individual NN-potentials (gray) to the rate
constants obtained for the average NN-PES obtained by averaging over
all 103 NN-PESs available.

Set 1 All NN-potentials for which at least one instanton optimization converged
(103 NN-PESs).

Set 2 All NN-potentials for which the instanton optimization converged for all
temperatures T with 30 ≤ T ≤ 285K (63 NN-PESs).

Set 3 All NN-potentials for which the instanton optimization converged for all
temperatures tested and for which a product state geometry could be obtained
by geometry optimization (33 NN-PESs).

The largest set of NN-potentials, set 1, serves as a point of reference, since
no preselection of individual NN-PESs is required, which ensures that this set
represents an unbiased selection of NN-potentials. The selection of NN-potentials
in set 2 ensures that only those NN-PESs which describe the shape of the barrier
and the vicinity of the pre-reactive complex well are considered in the average. The
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selection criterion for set 3 ensures all properties of the potentials chosen for set
2 and further ensures that the vicinity of the product state is described well by
the potentials entering the average. In set 1 and set 2 are several potential hyper
surfaces contained for which the product channel leads to a deep energy valley
instead of a shallow van der Waals minimum. The reason for this is probably the
scarcity of training data in the proximity of the product minimum. However, since
for the computation of reaction rate constants no information on the PES in the
proximity of the product minimum is required, the third set should in principle
not improve the predictions of reaction rate constants obtained from an average
NN-PES.

For the three sets of NN-potentials described above, reaction rate constants
were computed temperatures between 30K and 285K. The reaction rate constants
obtained from the three average NN-PESs constructed from set 1-3 were found
to be nearly identical for the whole temperature range. A comparison of the
reaction rate constants at 65K for all 3 sets is given in table 6.1. Further, this

Table 6.1.: Reaction rate constants for different representations of the PES and
deviations from the CC reference. All values at T = 65K and with 60
images.
Representation Rate constant Deviation from
of the PES [10−19 cm3/s] the CC reference[%]

CC reference 2.00 —
NN-PES set 1 2.03 1.50
NN-PES set 2 1.95 −2.50
NN-PES set 3 2.11 5.50

table also shows how the reaction rates obtained for the average NN-PESs compare
to rate constants obtained from an instanton, which was computed directly with
UCCSD(T)-F12/VTZ-F12, i.e. without a precomputed PES by calculating all
energies, gradients and Hessians at this level of theory on-the-fly at T = 65K. In
the following this reaction rate constant will be referred to as the CC reference.
However, since the computational effort for such an instanton optimization and the
subsequent reaction rate computation is immense, the discretization of the instanton
was restricted to 60 images. To allow for a direct comparison of the reaction rate

92



6.3. Results and Discussion

constants, the ones obtained from the three average NN-PESs constructed from
set 1-3 at 65K given in table 6.1 were recomputed for a discretization of the
instanton by 60 images.

From the results given in table 6.1 it can be seen that all reaction rate constants
are very similar to the CC reference, with the deviations to the CC reference
being just a few percent. All errors reported are much smaller than the expected
intrinsic error of the semiclassical approximation in instanton theory or the error
caused by the remaining inaccuracies of the UCCSD(T)-F12 approach. Since all
average NN-PESs yield similar results, in the following only the results for the
average NN-PES constructed from all 103 NN-potentials available, i.e. set 1, will
be discussed.

The fact that a NN-PES trained with energy, gradient and Hessian information
allows for highly accurate reaction rate constant computations is very desirable,
since the time effort for rate constant calculations is drastically reduced when
they are obtained from NN-potentials. In comparison to performing conventional
instanton computations the requirement of computational time for a rate constant
calculation is reduced by about 5 orders of magnitude, if the NN-PES is readily
available. For the construction of the training- and test set 84 Hessians were
computed (66 for the training set and 18 for the test set). The computational
effort for computing these 84 Hessians is comparable to the computational effort
required for the calculation of one instanton reaction rate constant at a single fixed
temperature T, where all required information on the PES is computed on-the-fly
for an instanton that is discretized by 60 images if 20 optimization steps for locating
the instanton are required. Under these assumptions 30 Hessian- and 20× 30 = 600

gradient calculations are required. Thus, employing a NN-PES for the calculation
of reaction rate constants is highly time efficient. Once a NN-potential is obtained,
it allows for the discretization of the instanton to many images, like the 200 images
used in the work presented here. Moreover, the optimization of instantons at
more than a single temperature involves minimal additional computational cost in
comparison to computing a single rate constant with the conventional approach.
This approach for obtaining rate constants also enables the efficient computation
of reaction rate constants for different isotopologues, because the PES is invariant
with respect to the masses of the atoms and thus the same NN-PES can be utilized
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to compute rate constants for all isotopologues of interest.

6.3.2. Reaction Rate Constants and Kinetic Isotope Effects

So far it was shown that obtaining reaction rate constants from NN-potentials
that were trained with energy, gradient and Hessian information is in comparison
to conventional instanton rate computations highly efficient and enables excellent
predictions of reaction rate constants at coupled cluster level.

Unimolecular Reaction Rate Constants and Kinetic Isotope Effects

In order to investigate if H-D exchanges in solid methanol could cause the unex-
pectedly high deuteration of methanol in various regions of the ISM, temperature-
dependent unimolecular reaction rate constants for the 12 H/D combination defined
by reactions R 1-R 6 were computed. In contrast to the results shown so far, no
average NN-PES but a single NN-PES which was found to be well-suited for the
prediction of unimolecular rate constants was used.

Graphs of the rate constants are given in figure 6.5 and 6.6. Numbers for rate
constants and KIEs at some temperatures are given in tables 6.4 and 6.5. Rate
constant values for various temperatures are given in tables 6.2 and 6.3.

Firstly, it can be observed that the unimolecular rate constants are nearly
temperature-independent below 40K for all reactions under study. This temperature-
independence is due to the fact that below 40K all reactions are dominated by
tunneling from the ground state of the reactant-state complex. Secondly, it was
found that primary KIEs are substantial: Replacing the abstracted H by D reduces
the rate constant significantly by a factor of about 3000 to 4000 at 30K, depending
on the H/D pattern of the other atoms. On the other hand, changing the abstracting
atom from H to D also decreases the rate constant by a significantly smaller factor
of about 6 to 9. Thus, the rate constant depends on the mass of the abstracting
atom but to a much lesser extent than on the mass of the abstracted atom. This
comparatively small influence can be reasoned as follows: on one hand tunneling
decreases the rate constant for the hydrogen abstraction from the methyl group
by an incoming D atom due to its higher mass, on the other hand, however, the
vibrational zero-point energy increases the rate constant because the activation
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6. Reaction Rate Constants for CH3OH + H → CH2OH + H2
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Figure 6.5.: Rate constants for reactions R 1-R 6 for an incoming H atom. Taken
from [61].

Table 6.4.: Data for the reactions R 1 to R8 for an incoming H atom. Euni,act
refers to the unimolecular activation energy including ZPE, Tc is the
crossover temperature. The KIE is given with respect to H-R 1, values
in parentheses refer to powers of 10.

Reactions Euni,act Tc KIE w.r.t. H-R1 k at 30 K
(kJ/mol) (K) 105 K 30 K (s−1)

R 1: CH3OH + H 33.1 357 7.22(3)
R 2: CH2DOH + H 33.2 356 2.11 2.24 3.23(3)
R 3: CHD2OH + H 33.4 355 5.50 5.96 1.21(3)
R 4: CDH2OH + H 37.9 269 1850 4170 1.73(0)
R 5: CD2HOH + H 38.1 269 1310 3230 2.23(0)
R 6: CD3OH + H 38.3 268 1180 3000 2.41(0)
R 7: 13CH3 OH + H 33.1 356 1.06 1.08 6.69(3)
R 8: CH3

18OH + H 33.1 357 1.00 0.998 7.24(3)
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Figure 6.6.: Rate constants for reactions R 1-R 6 for an incoming D atom. Taken
from [61].

Table 6.5.: Data for the reactions R 1 to R8 for an incoming D atom. Euni,act
refers to the unimolecular activation energy including ZPE, Tc is the
crossover temperature. The KIE is given with respect to D-R 1, values
in parentheses refer to powers of 10.

Reactions Euni,act Tc KIE w.r.t. D-R1 k at 30 K
(kJ/mol) (K) 105 K 30 K (s−1)

R 1: CH3OH + D 30.3 353 8.97(2)
R 2: CH2DOH + D 30.4 351 2.08 2.30 3.90(2)
R 3: CHD2OH + D 30.5 350 5.44 6.41 1.40(2)
R 4: CDH2OH + D 35.0 265 1130 3380 2.66(−1)
R 5: CD2HOH + D 35.2 264 791 2740 3.27(−1)
R 6: CD3OH + D 35.4 263 709 2660 3.37(−1)
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6. Reaction Rate Constants for CH3OH + H → CH2OH + H2

Figure 6.7.: Instanton path for H-R 1 at 30K. The red atom positions refer
to the reactant state CH3OH + H, whereas the blue atom positions
refer to the turning point of the instanton path closest to the product,
CH2OH+H2. The molecule is displayed such that the OH group is
located at the bottom of the image.

energy for reaction H-R 1 is with 33.1 kJ/mol higher than the one of reaction D-R 1,
which is 30.3 kJ/mol. Thereby the increased mass of the abstracting atom has
nearly no influence on the ZPE of the reactant, where this atom is bound only
weakly, but it considerably reduces the ZPE of the transition state. In contrast to
the significance of primary KIEs, secondary KIEs are notably less substantial. For
example the rate constant of abstracting a H atom from CH3OH by a H atom at
30K is only about 6 times higher than the rate constant for abstracting H from
CHD2OH at the same temperature. From this difference in the rate constants, a
factor of 3 originates solely from the rotational symmetry factor, which accounts
for the fact that there are three H atoms that could abstracted by the incoming
H atom in CH3OH, but there is only one H atom in CHD2OH. Thus, the effect of
the different masses causes a difference in the rate constants of a factor of about 2.

In order to explain why exchanging the abstracted H atom by D leads to a
substantial KIE, while exchanging the abstracting H atom by D does not change
the rate constants nearly as much, one can investigate the instanton path length
of the individual atoms involved in the reaction. Making use of the fact that the
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Figure 6.8.: Instanton paths for H-R 1 at Different Temperatures. The
changes in the C–H and H–H distances of the abstraction are dis-
placed.

instanton path is a closed Feynman path, that retraces itself between its two turning
points, it is possible to study the movement of atoms during a reaction dominated
by tunneling by studying the change of the molecular structures corresponding to
the individual images used to discretize the instanton along the instanton path.
A picture visualizing the motion of the atoms along the instanton is given in
figure 6.7. In this figure the red atom positions refer to the turning point of the
instanton closest the reactant, while the blue atom positions correspond to the
instanton’s turning point close the product valley. The energy of both turning
points of the instanton is equal. Figure 6.7 shows clearly that all atoms contribute
to the tunneling path for reaction H-R 1 at 30K.

It is expected that the length of the instanton path changes with temperature.
While at low temperatures the path length of the instanton becomes large such
that one of its turning points gets close to the reactant minimum, the turning
point will be significantly further away from the reactant minimum for large
temperatures. This is due to the fact that for large temperatures the path length
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Figure 6.9.: Instanton paths for different mass combinations at 260K.

of the instanton gets short and the instanton is located in the direct vicinity of the
classical transition structure. This temperature dependence of the instanton path is
depicted in figure 6.8. At 30K the path length of the abstracted H atom is 0.92Å,
while the path length of the incoming H atom is 1.31Å. The path lengths of the
secondary hydrogen atoms are considerably smaller being 0.18Å, 0.2Å and 0.32Å
respectively. This difference in the path lengths of the hydrogen atoms can also be
observed in figure 6.7. If an atom is replaced by a heavier isotope its contribution to
the instanton path is reduced and its respective path length is effectively shortened.

In figure 6.9 it is shown how deuterium substitution influences the C-H and H-H
distances along the instanton. This figure confirms that increasing the mass indeed
shortens the path. Especially the H-H distance in the proximity of the reactant
state (top left) is significantly reduced by increasing the mass.

This effective shortening of the path does not raise the energy a lot in case of the
incoming hydrogen atom because the PES is rather flat in this area. Changes to the
path of the abstracted atom, however, imply a significant influence on the energy.
This is the reason for the KIE with respect to exchanging the abstracted H atom
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by D being huge, as the rate constant changes by about 3.5 orders of magnitude,
but the KIE for exchanging the incoming H atom by D being comparatively small,
due a change in the rate constant of about 1 order of magnitude.

Heavy-Atom Kinetic Isotope Effects
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Figure 6.10.: Heavy-atom KIEs for the title reaction, 12C/13C in green, 16O/18O
in orange. Taken from [61].

On top of KIEs for H-D exchanges also heavy-atom KIEs were computed. Of
course these are, as expected, much smaller than the KIEs for H-D exchanges. In
figure 6.10 the 12C/13C and 16O/18O KIEs are given for temperatures between 25K
and 200K. From table 6.4 it can be seen that exchanging 16O by 18O has nearly
no effect even at temperatures as low as 30K. At 30K even an inverse KIE of
0.9974 is predicted by our model. On top of that it was found that the oxygen atom
barely moves during the reaction, having an instanton path length of merely 0.03Å.
Exchanging 12C with 13C, however, leads to a KIE of 1.0786 at 30K. This KIE is,
even though the masses of the carbon isotopes are very similar, larger than the one
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6. Reaction Rate Constants for CH3OH + H → CH2OH + H2

for exchanging the oxygen atom by another isotope. This is due to the fact that the
carbon atom is involved in the tunneling process enabling the hydrogen abstraction
reaction since it moves during the abstraction towards the abstracted hydrogen
atom. After the reaction it returns to its original position. In reaction H-R 1 at
30K the path length of the carbon atom is with 0.15Å comparatively long.

Bimolecular Reaction Rate Constants from a Microcanonical Formulation

So far unimolecular rate constants, which describe a thermalized surface process,
were presented. These unimolecular rate constants correspond to a Langmuir-
Hinshelwood mechanism [71] on the surface. However, in principle the abstraction
reaction might also take place in the gas phase. In canonical instanton theory
reactions with a pre-reactive minimum lead to technical difficulties, as it would be
assumed implicitly that the corresponding pre-reactive complex is thermalized [85].
This assumption, however, is not valid at low pressure as under such conditions
a thermalization of the pre-reactive complex is unlikely. In order to describe low-
pressure bimolecular processes appropriately, microcanonical rate constants, i.e.
cumulative reaction probabilities, have to be computed. These microcanonical rate
constants can subsequently be used to compute thermal rate constants by using a
thermal ensemble of the separated reactants. Bimolecular reaction rate constants
computed with this approach are given in table 6.6 and the corresponding graphs
are shown in figure 6.11. Thereby the bimolecular reaction rate constants were
computed on the same NN-PES as the unimolecular rate constants.

From the graph in figure 6.11 it can be seen that the rate constants steeply
decrease with decreasing temperature until the crossover temperature of 357K is
reached. At about this temperature tunneling sets in, which causes the reaction
rate constant to become nearly constant for temperatures below 60K. At very low
temperature it can be seen, that the rate constants slightly increase for decreasing
temperatures.

This unintuitive increase of the rate constant was observed for many bimolecular
processes and is caused by a delicate balance between the additional vibrational
degrees of freedom that arise when the two reactants form a single transition
state and the loss of rotational and translational degrees of freedom during the
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6.3. Results and Discussion

transition state formation. At high temperature the bimolecular instanton rate
constants shown by the solid line in figure 6.11 are in good agreement with the
experimental data by Meagher et al. [86] and the data by Baulch et al. [87], which
are experiment-based.

Table 6.6.: Bimolecular rate constants for R1 with incoming H, obtained from a
microcanonical formalism.

T (K) Rate Constant (cm3s−1)

343.1 2.604 ·10−15

72.4 1.561 ·10−18

41.3 1.325 ·10−18

28.4 1.467 ·10−18

21.7 1.759 ·10−18

17.6 2.174 ·10−18

14.7 2.694 ·10−18

12.8 3.268 ·10−18

11.2 3.936 ·10−18

10.0 4.660 ·10−18

Apart from experimental data, it is also possible to compare the instanton rate
constants to simulation data from literature, which is only available at the high-
temperature regime. To our knowledge prior to this work, no data on reaction
rate constants below 180K was available. Comparing the reaction rate constants
presented in this work to other published rate constants obtained from simulations
like the VTST/ZCT data by Carvalho et al. [88], data from quantum dynamics
simulations by Kerkeni and Clary [66], as well as the expression by Meana-Pañeda
et al. [68] and DFT-based instanton data [67], shows that all rate constants obtained
by simulation considered are in general in rather good agreement with each other.

In order to estimate the influence of the H-D exchange in methanol on its
deuterium fractionation, in [60] a small chemical network was studied in which
the rate constants for reactions R 1-R 6 as well as secondary KIEs and surface
diffusion were taken into account. A scheme of the proposed network is shown
in figure 6.12. Unfortunately, relating the deuterium fractionations of methanol
obtained from this rather simplistic model to the availability of H in comparison
to the availability of D on the surface can’t explain experimental observations
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Figure 6.11.: Bimolecular rate constants for H-R 1 obtained from a microcanon-
ical formulation (solid line). Experimental data is shown as black point,
simulation data from literature is given as red points.

Figure 6.12.: Kinetic model to explain the contribution of the hydrogen abstrac-
tion reaction from the C atom of methanol to the deuteration of
methanol in the ISM. Taken from [61].
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6.3. Results and Discussion

towards IRAS 16293-2422 or towards the prototypical pre-stellar core L1544, as
they would correspond to unexpectedly high D/H ratios. Nevertheless, the model
predicts trends in the abundances of deuterated species of methanol correctly. A
detailed description and discussion of the kinetic model can be found in [60].

6.3.3. Summary

In the work presented in this chapter the kinetics of H+CH3OH → H2+CH2OH
and all H/D isotope patterns on the CH3 group were studied. In order to allow for
an efficient computation of reaction rate constants and KIEs it was shown that
incorporating information on the energy, its gradient and Hessian into the training
of NN-potentials enables the computation of extraordinarily accurate reaction rate
constants on the basis of NN-PESs that were trained to highly accurate coupled
cluster reference data. Employing NN-PESs trained with UCCSD(T)-F12/VTZ-F12
data, unimolecular rate constants, which describe reactions on a surface by means
of a Langmuir-Hinshelwood process, were computed down to temperatures as low
as 25K. Further, KIEs obtained from unimolecular rate constants are given for
all studied isotope pattern at 105K and 30K. It has been shown that primary
KIEs are substantial for all isotope patterns. The most significant KIEs were found
for exchanging the abstracted H atom at the CH3 group by D, which reduces the
reaction rate constants at 30K by as much as a factor of 3000 to 4000, depending
on the isotope pattern of the other atoms. On the other hand it was shown that
exchanging the incoming H atom by D has a significantly smaller influence on
the reaction rate constant, with KIEs at 30K being between 6 and 9. Further,
heavy-atom KIEs were computed. It was found that exchanging 16O by 18O has
a negligible influence on the reaction rate constant, however, exchanging 12C by
13C leads to a KIE of 1.0786 at 30K. Apart from that secondary KIEs as well as
bimolecular rate constants, which are relevant for the description of reactions in
the gas phase in the low pressure limit, are given.
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7. Predicting Correct Forces for
Small Water Clusters

In this chapter it is discussed how the predictive power of NN-potentials for atomic
forces is influenced by the different training approaches introduced so far. For the
three training approaches discussed the accuracy of energy- and force predictions
is compared. Further, this chapter aims at providing insight into which training
approach should be employed given a certain well-defined problem of interest. This
chapter is based on published work of the author [59].

7.1. Introduction
As mentioned previously, many quantum chemical simulations require accurate
information on the PES. An important property of a surrogate model of a PES
is that it describes the underlying PES such that energy conservation is ensured
during simulations if it applies. Often energy conservation is not guaranteed by
conventional NN-potentials obtained by energy training approaches. This is due to
the fact that their force predictions are not necessarily smooth functions of the atom
coordinates. Discontinuities in the predicted atomic forces, however, cause sudden,
non-physical jumps in the atomic forces, which violates energy conservation.

Employing the direct force training approach can, as demonstrated in the previ-
ous chapter, ensure smooth force and Hessian surfaces and thus energy conservation.
However, the computational demand for direct force training is significantly higher
than the demand for standard energy training approaches, which limits its applica-
bility to rather small molecular systems.

In order to overcome this limitation the author developed in cooperation with
N. Artrith and A. Urban, who are the co-authors of the article [59] on which this
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chapter is based on, an alternative force training approach. It includes information
on the atomic forces indirectly by generating additional structures, which are added
to the training data set. These structures are generated by displacing atoms in
reference structures and extrapolating the energy of the displaced structure from
the energy and forces of the original structure by employing a first order Taylor
expansion of the energy. Details on this force training method are given in chapter 5.

The aim of this chapter is to provide an in-depth insight into force training by a
comparison of the accuracy of force predictions obtained from NNs trained with
the conventional energy training approach as well as the Taylor expansion based
and direct force training approach. To provide a thorough review of each training
approach, the predictive power of NNs is studied in detail for each training method
individually. Further, the energy- and force predictions obtained by employing the
different training approaches are compared and subsequently the most suitable fields
of application for each of the three training approaches under study is discussed.

Figure 7.1.: Exemplaric water cluster

In order to allow for a thorough
study and comparison of all three
training approaches, a cluster of six
water molecules was studied in de-
tail. This system was chosen since
it is a comparatively small chemical
system for which all three training
approaches can be employed with
reasonable computational and time
effort. A picture of a representative
water cluster is shown in figure 7.1.

The article [59] covers in addition to the author’s results presented in this chapter
work by N. Artrith and A. Urban, who employed the Taylor expansion force training
approach for training NN-potentials for more complex chemical systems as well
as an analytical Lennard-Jones test system. This chapter, however, focuses on the
author’s work alone.

In the following fist the computational details on the NN training process, the
training-, test- and validation set generation as well as the error measure employed
to quantify the error in the atomic forces predicted by the NN-potentials under
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7. Predicting Correct Forces for Small Water Clusters

study are provided. Subsequently the results obtained from all training approaches
are discussed in detail and compared.

7.2. Computational Details

7.2.1. Error Measures for Atomic Forces Predicted by Neural
Networks

A vector is uniquely defined by its absolute value and its direction. Making use of
this property two different error measures were used to quantify the accuracy of
forces F NN

ϕ predicted by NN-potentials.
The first error measure quantifies the absolute error in the predicted absolute

value of the predicted force: ∆Fabs = ||F REF
ϕ |− |F NN

ϕ ||, where F REF
ϕ is the reference

obtained from ab initio electronic structure calculations.
In order to measure the error in the prediction of the direction of the force vector

the angle enclosed by F REF
ϕ and F NN

ϕ was considered, see figure 7.2.

Figure 7.2.: Error in direction of predicted force vector acting on atom ϕ.
The angle α enclosed by the reference force vector F REF

ϕ (black) and
the force vector predicted by the NN F NN

ϕ (green) is used as one error
measure for force predictions.

7.2.2. Neural Network Potentials

In the work presented ANNs with 2 hidden layers were trained to define NN-
potentials. Since water clusters were studied, ANNs for two atomic species, H and
O, were trained.
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As a descriptor for the molecular structures symmetry functions by Behler and
Parinello [3, 6] were used. The parameters defining the descriptor for water were
taken from an article by T. Morawietz et al. [89]. The architecture of the ANNs
is given by Nsymm-10-10-1, where Nsymm is the dimension of the feature vector.
According to the parameters by T. Morawietz et al. Nsymm was defined as follows:
Nsymm=30 for hydrogen and Nsymm=27 for oxygen atoms. The width of the hidden
layers was found by a parameter study, which was performed analogously to the
parameter study preformed for defining the width of the hidden layers of SNNs in
section 6.2.1.

The weight and bias parameters were initialized by assigning random values
drawn from a uniform random distribution such that the output values of each
network layer follow a zero-centered distribution with a standard deviation of 1.

For all neurons in the two hidden layers the hyperbolic tangent was used as
activation function and for the output neuron the activation function was chosen
to be the identity. In order to investigate the influence of the size of the refer-
ence data set on the predictive power of NN-potentials three reference data sets
train_0500, train_1000 and train_2000 of different size were generated. Details
on the reference data sets are discussed in the following section.

The loss functions were chosen as follows: For the direct force training approach
the loss function given in equation (4.6) was used. The parameters AE and AG were
optimized for each reference data set independently. The parameter optimization
was performed analogously to the parameter optimization which was performed to
define the width of the hidden layers. The optimal values for all three reference
data sets are AE = 100 and AG = 10.

In order to obtain statistics on the accuracy of the prediction of atomic forces
for the three different training approaches, the potential training was repeated for
each training approach ten times starting from different random initial weight and
bias parameters.

For training the respective reference data set was divided randomly into a
training- and test set, where 90% of the reference structures were used as training
set and the remaining 10% of the structures as test set. All NNs were trained
for 5000 epochs, however, a early stopping criterion was employed which stopped
the training process whenever the loss function converged. Thereby conversion is
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assumed if the loss of the training set is not changing for three consecutive epochs.
All weight and bias parameters were optimized with the L-BFGS algorithm [37–39].

The computation of the feature vectors, the NN training and the evaluation of
the resulting NN-potentials was done with the program package ænet [58].

Generation of the Training, Test and Validation Set

The reference data set was generated in an iterative process. In a first step three ab
initio molecular dynamics simulations (AIMD) were performed in DL_POLY [90]
via Chemshell [80, 81]. As ab initio method the semiempirical GFN-xTB [91, 92]
method was used. In total a time of 30 ps was simulated employing a time step of
0.5 fs. The simulations were performed in the NVT ensemble. In two of these simu-
lations a temperature of 300K was simulated, whereas the temperature simulated
in the third AIMD simulation was 800K. For all MD simulations performed for
this work the temperature was controlled by a Nosé-Hoover thermostat. In order to
retain a cluster of water molecules, a harmonic restraint was applied on all atoms
to keep the molecules confined to a sphere with a radius of about 5Å. For the
restraint a harmonic force was applied to every atom that is more than 0.0005Å
away from the central atom, which was defined to be the first atom in the structure
file. The force constant of the harmonic force was chosen as 190.5 eV. For each
reference structure obtained from the MD trajectories a single point calculation
of the energy and atomic forces at BLYP-D3/def2-TZVP [93–95] level of theory
was performed to obtain a more precise description of the energy and forces. The
single point computations were done in Turbomole [96] via Chemshell [80, 81]. In
order to ensure maximum decorrelation of the reference data, the training examples
were chosen from the trajectory at regular time intervals. Due to the small number
of reference structures available, additional structures of a single water molecule
with varying bond angle and bond lengths were added to the preliminary data
set to ensure that the NN-PES predicts physically reasonable structures of the
water molecules. The 170 artificial structures describing the energy- and force
change induced by varying the bond angle of a single water molecule was generated
by varying the bond angle in constant steps of 10◦ between 10◦ and 180◦. The
15 artificial structures describing the energy difference for varying the O-H bond
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length for a water molecule were generated by fixing the length of both O-H bonds
to the same value and varying the bond length between 0.7Å and 2.1Å in constant
steps of 0.1Å. To match the reference data obtained from MD-simulations for each
of these artificial, i.e. non-physical, structures the energies and atomic forces were
computed in Turbomole [96] via Chemshell [80, 81] at BLYP-D3/def2-TZVP level
of theory. By this approach a first reference data set consisting of 3335 structures
and the respective target energies and forces was generated.

In a second step this reference data was used for training two NNs, to obtain a first
estimate of the NN-potential for a cluster of six water molecules at temperatures
of about 300K. Employing these NN-potentials to describe the energetics and
forces further MD simulations were run at 300K for 75 ps to obtain additional
structures for the reference data set. Apart from that all other parameters for the
MD simulation were chosen as described before. The energies and forces of the newly
obtained structures along the MD trajectories were, again, re-computed at BLYP-
D3/def2-TZVP level of theory. By iterating the process of obtaining a preliminary,
incrementally improved NN-PES and obtaining additional reference data by running
MD simulations employing the NN-potential several times, a reference data set
consisting of 7755 structures was constructed. Due to the size of this reference data
set it was not necessary anymore to include reference data on single water molecules
in order to ensure a realistic representation of individual water molecules in the
cluster. Therefore, these artificial structures were removed from the reference data
set. Thus, a final reference data set consisting of 7570 structures and their respective
energies and atomic forces was obtained. From this pool of data three reference
data sets were assembled: train_0500 consisting of 471, train_1000 consisting of
943 and train_2000 consisting of 1886 training examples. Thereby the training
sets were constructed such that train_0500 ( train_1000 ( train_2000.

Further, an independent validation set consisting of 2000 reference structures
not included in any of the three training sets train_0500 - train_2000 was
constructed.
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7.3. Results

7.3.1. Force Predictions from Neural Networks Trained with
the Energy Training Approach

If the energy training approach is employed, the common approach to improve the
reliability of force predictions by NN-PESs is to increase the size of the reference
data set. The influence of the reference data set’s size on the predictive power
of NN-PESs is investigated by training NN-potentials with the energy training
approach using one of the three training sets and quantifying the error in the force
predictions by employing the error measures introduced in section 7.2. If not stated
differently, all errors are reported for the independent validation data set.

In figure 7.3 the distribution of the error in the absolute value of the energies of
the structures in the validation data set is shown. This figure displays the error
distribution as a histogram. To allow for a straight forward comparison of the three
histograms shown, the histograms were computed employing the same bins and
are scaled such that the overall maximum frequency of occurrence is 1. In this
chapter all graphs of error distributions of the absolute value of the energy or of
the absolute force are scaled in the same way.

As expected figure 7.3 shows that the absolute value of the energies of the
structures in the validation data set improves systematically with increasing training
set size. However, all errors in the energy reported in this graph are very small and
well below chemical accuracy, which is 1.0 kcal/mol ≈ 0.04 eV.

The error in the force predictions are shown in figure 7.4 and figure 7.5.
From figure 7.4 it can be deduced that employing the energy training approach

with the smallest training set train_0500 leads to a wide distribution of errors
in the predicted absolute values of atomic forces. The pronounced tail of this
error distribution is particularly unfavorable as it implies that the error in the
predicted absolute value of the force is for a large number of atoms more than
1.0 eV/Å. Fortunately, it can be seen that the tail of the error distribution is
reduced significantly if the training set size is increased and that the accuracy of the
predicted absolute value of the force can be systematically improved by increasing
the size of the training set.
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Figure 7.3.: Distribution of the error in the absolute value of the energy
for training on all three training sets applying the energy training
approach.
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Figure 7.4.: Distribution of the error in the absolute force for training on
all three training sets applying the energy training approach.
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In figure 7.5 a heat map of the error in the direction of the predicted atomic
forces is shown. In this heat map the relative frequency of the angle α enclosed by
the reference force vector obtained from ab initio electronic structure calculations
and the force vector predicted by the NN-PES is given as a function of the absolute
value of the reference force vector. This description of the error has been chosen,
since for forces with small absolute values even tiny fitting errors can lead to
large angles α ≈ 180◦ while the same fitting error will lead to small α ≈ 0 if the
force’s absolute value is sufficiently large. Thus, this depiction helps to estimate
how drastic the fitting errors in the predicted direction are. In the heat maps high
relative frequencies are shown in red and yellow, whereas low relative frequencies
are colored in shades of gray, with white indicating relative frequencies of about 0.
In order to allow for a more detailed investigation of the force error also the mean
absolute error (MAE) of the atomic forces is reported to facilitate the discussion of
the findings since the differences in the heat maps are often subtle.
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Figure 7.5.: Distribution of the error in the force direction for training on
all three training sets applying the energy training approach. Taken
from [59].

Figure 7.5 shows that the predictive power of NN-PESs concerning the force
vector’s direction increases with increasing absolute value of the force vector. This
is reflected in the fact that the relative frequencies for large values of α, i.e. large
errors, are drastically decreasing with increasing absolute values of the force vectors.
Assuming that all force predictions are made with similar errors this is expected. For
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train_0500 the error distribution exhibits a shallow maximum between 0◦ and 25◦

depending on the absolute value of the force vector. For forces with small absolute
values of less than 1 eV/Å, however, the errors in the direction scatter strongly and
are in some cases almost 180◦. The heat maps for the two larger training data sets
train_1000 and train_2000 show that the scattering in the predicted directions
of the force vectors, especially for forces with small absolute values, is notably
reduced. This is also mirrored in the fact that the relative frequency of α ≤ 15◦

is significantly increased, especially for forces with absolute values between about
0.5 eV/Å and 1.75 eV/Å. The relative improvement of the force predictions can
also be observed when comparing the MAE of the atomic forces. The MAE is
maximal for the smallest training set with a value of 0.73 eV/Å and minimal for
the largest training data set, with the MAE being 0.4 eV/Å, which is 45% smaller
than the MAE obtained for train_0500.

All results presented so far show that the conventional approach of increasing
the size of the reference data set indeed improves the accuracy of energy- and force
predictions from NN-potentials for the water cluster under study.

7.3.2. Force Predictions from Neural Networks Trained with
the Taylor Expansion Based Approach

Meta-Parameters for the Taylor expansion Approach

In order to apply the Taylor expansion force training approach its optimal meta-
parameters defining the number of additionally created structures as well as the
displacement δ or δmax have to be determined. The number of additional structures
is defined by the multiple a, which was defined in section 5.3. For example, if the
train_0500 training set consisting of 471 structures is used then a = 10 means
that 10 · 471 = 4710 structures will be generated by displacing structures of the
train_0500 training set.

For the parameter optimization of the multiple a values a ∈ {1, 5, 11, 22, 32, 54}
were considered. For the displacement strategy (R) δmax was varied between 0.0005Å
and 0.08Å and for displacement strategy (C) displacements δ between 0.005Å and
0.08Å were studied.
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For the three training data sets all possible choices of the parameter pair (a,δ)
and (a,δmax) were studied. Ten NNs were trained for each parameter pair to obtain
insight into the statistics of the resulting NN-potentials’ performance. In figure 7.6
the MAE of the atomic forces obtained from 10 NN-PESs trained with the Taylor
expansion approach employing displacement strategy (R) and training on the
train_0500 reference data set is shown. The MAE reported in the figure is given
relative to the MAE obtained from 10 NN-potentials trained with the energy
training approach.
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Figure 7.6.: Relative mean absolute error (MAE) of the atomic forces for
different force training parameters. The MAE is reported relative
to the MAE obtained by energy training (solid red line). Results are
shown for displacement strategy (R) applied to reference data set
train_0500. The dashed red line indicates the MAE obtained by
direct force training. Taken from [59].

Figure 7.6 shows that the displacements δmax which lead to the greatest reduction
of the MAE are independent of a and about δmax = 0.01Å. The increase of the
MAE for large displacements is caused by the fact that the first-order Taylor
expansion breaks down under these conditions. It can be observed that the MAE
decreases for increasing a if a ≤ 22. For multiples a bigger than 22 no notable
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Table 7.1.: Optimal meta-parameters for applying the Taylor expansion approach
Reference data set Displacement strategy (C) Displacement strategy (R)

δ [Å] multiple a δmax [Å] multiple a

train_0500 0.03 11 0.008 22
train_1000 0.04 32 0.010 32
train_2000 0.04 32 0.010 32

further improvement could be detected. The MAE probably does not decrease
further since a further increase of a increases the number of reference structures.
This should in principle improve the predictions made by NNs but, since the Taylor
expansion approach introduces noise to the reference data, also the amount of noisy
data in the reference data set is increased, which inhibits a further reduction of
the MAE. Analogous analyses have been performed for the two larger training
sets train_1000 and train_2000 as well as for all three reference data sets if
NN-potentials are trained by employing displacement strategy (C). The optimal
choices for the displacement and the multiple a are summarized in table 7.1.

For the water cluster studied here, the optimal multiple a for displacement
strategy (C) is smaller or equal to the optimal a for the random displacement
strategy (R). This trend, however, does not apply in general. In [59] it is shown
that for increasing structure size the optimal multiple a increases more rapidly for
displacement strategy (C) than for displacement strategy (R).

Force Predictions Obtained from the Taylor expansion Approach

This section deals with a detailed analysis of the force predictions that can be
obtained from NN-PESs trained with the Taylor expansion force training approach.
First the force predictions obtained from NN-potentials trained with the Taylor
expansion approach are compared for different displacement strategies. For this com-
parison ten NN-PESs were trained for each reference data set and each displacement
strategy using the respective optimized meta-parameters for the displacement and
multiple a. From these NN-potentials atomic force predictions were obtained and
subsequently the improvement of the force predictions was quantified by comparing
these forces to forces obtained from NN-potentials trained with the energy training

117



7. Predicting Correct Forces for Small Water Clusters

approach.
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Figure 7.7.: Distribution of the error in the absolute force for training on the
train_0500 training set applying the energy training approach (gray)
and approximate force training by the Taylor expansion approach
employing the Cartesian (green) and random (blue) displacement
strategy.

In figure 7.7 the distributions of the errors in the predicted absolute values of
the atomic forces for the validation set are shown. NN-potentials that were used
for the force predictions presented in this graph were trained with the train_0500
reference data set. From this graph it can be seen that the distribution obtained
by employing the energy training approach is significantly broader than the error
distributions obtained from Taylor expansion based force training. Thus, the errors
in the absolute force are drastically reduced by employing the Taylor expansion
approach for both displacement strategies. This notable improvement of the force
predictions is also mirrored in a reduction of the MAE of the atomic forces given
for displacement strategy (R) in figure 7.8 with respect to the MAEs given in
figure 7.5. Comparing the MAEs for each training set individually shows that
the most significant relative improvement of the force predictions is found for the
smallest training set train_0500. For this training set the MAE of the atomic
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forces is reduced by training with the Taylor expansion approach from 0.53 eV/Å
obtained by energy training to 0.42 eV/Å, which implies an error reduction of
about 42%. For train_1000 employing the Taylor expansion approach leads to
a reduction of the MAE by 29% and for train_2000 the mean absolute error is
reduced by 20%. It can further be seen that for both displacement strategies there
are hardly any atoms with absolute force errors of more than 1.0 eV/Å, which is
mirrored in the fact that the tail of error distributions, which is very pronounced
in case of energy training, has nearly disappeared. Further, it can be observed
that the distribution of the error in the predicted absolute value of the force does
not depend strongly on the displacement strategy. However, it can be seen that
the random displacement strategy (R) leads, at least for the system under study,
to slightly better force predictions. Therefore, in the following the discussion of
the Taylor expansion approach will imply that displacement strategy (R) is used.
On top of that it can be observed that the prediction of the direction of the
force vectors is notably improved if the Taylor expansion approach is used by
comparing the results obtained for energy training shown in figure 7.5 to the results
obtained employing the Taylor expansion force training approach given in figure 7.8.
Comparing these heat maps and the respective MAEs of the forces one can observe
that training NN-PESs with the smallest training set train_0500 employing the
Taylor expansion approach results in force predictions which are of similar quality
than the force predictions obtained from NN-potentials trained with the energy
training approach with the four times larger train_20000 reference data set. This
finding can also be interpreted such that the Taylor expansion based force training
approach reduces the number of reference data points required for a given target
accuracy of the force predictions.

In order to quantify the influence of the noise in the energy information introduced
into the reference data set by employing the Taylor expansion approach, the
distribution of the error in the prediction of the absolute energy values obtained
for structures in the training set shown in figure 7.9 a) is compared to the same
error distribution obtained for the validation set given in figure 7.9 b). In figure 7.9
a) it is shown that the Taylor expansion based force training approach introduces,
as expected, some noise into the reference data, which is mirrored in the fact
that the distributions of the absolute error in the energy obtained by training
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Figure 7.8.: Distribution of the error in the force direction for training on
all three training sets applying the Taylor expansion training approach
employing the random displacement strategy. Taken from [59].

NN-potentials with the Taylor expansion approach have maxima which are shifted
slightly to the right in comparison to the error distribution obtained from energy
training. This slight negative effect on the energy predictions, however, is limited
to structures from the training set. The data shown in figure 7.9 b) demonstrates
that there is almost no difference between the error distributions of the absolute
error in the energy obtained from the two training approaches for the validation
set. Thus, the noise introduced by this force training approach can be considered
insignificant since it influences only structures in the training set and does not
affect the NN-potentials predictive power for general chemical structures. Moreover,
even the errors obtained for the training set are well below chemical accuracy.

7.3.3. Force Predictions from Neural Networks Trained with
the Direct Force Training Approach

As a second point of reference the results obtained with the direct force training
approach shall be discussed and compared to the results obtained from the Taylor
expansion- and energy training approach.

In figure 7.10 the distribution of the error in the absolute force is given for all three
reference data sets. This graph shows that the error distribution is nearly identical
for all three training data sets. This trend was also found for the distribution of
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Figure 7.9.: Distribution of the absolute error in the energy predictions
obtained by training on the train_0500 training set applying the
energy training approach (gray) and the Taylor expansion approach
employing the Cartesian (green) and random (blue) displacement
strategy. Panel a) shows the distribution for the training set, panel b)
shows the distribution for the validation set.
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Figure 7.10.: Distribution of the error in the absolute force for training on
all three training sets applying the direct force training approach.

the error in the direction of the predicted force vectors given in figure 7.11. The
distributions of the error in the direction are practically identical for all reference
data sets tested and even a zoomed in version of the graphs given in panel b), which
limits the errors in the direction to the range between 0◦ − 60◦, shows that there is
no significant change in the distribution of the errors from one reference data sets
to another. The fact that the MAE of the predicted atomic forces is nearly constant
for all three training data sets further underlines that the size of the training set
does not influence the predictive power of NN-potentials significantly. This indicates
that for the system under study it is sufficient to use the train_0500 reference
data set for training in order to minimize the computational effort. In figure 7.12
the distribution of the absolute error in the energy is shown. It can be seen that
the errors for the two largest reference data sets train_1000 and train_2000 are
very similar. However, it can be observed that the peak of the error distribution
of the train_0500 reference data set is lower, indicating a slightly broader error
distribution than the one obtained for the other training sets. This can also be
seen from the MAEs of the energy which are about 1.05meV/atom for training
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b)

a)

Figure 7.11.: a) Distribution of the error in the force direction for training
on all three training sets applying the direct force training approach.
Panel b) shows a zoomed in version of the graphs given in panel a)
to show that the error distribution is really nearly independent of the
reference data set. Panel a) taken from [59].

set train_0500 and about 1.04meV/atom for train_1000 and train_2000. Since
the errors in the energy are very small and well below chemical accuracy it is still
well justified to make use of the NN-potentials trained with the smallest reference
data set for simulation applications.

In figures 7.13 and 7.14 the results obtained by direct force training are compared
to the results obtained by employing the Taylor expansion force training approach
and the conventional energy training approach. In figure 7.13 the distribution of the
error in the absolute force is given for NN-potentials trained with the train_0500
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Figure 7.12.: Distribution of the absolute error in the energy for training
on all three training sets applying the direct force training approach.

reference data set. From this graph it can be seen that the distribution obtained by
the conventional energy training approach is, as expected, the broadest distribution.
As discussed before, this distribution has a rather pronounced tail indicating a
rather large number of atoms for which the errors in the force predictions are
unfavorably large. Further, it can be seen that the direct force training approach
performs best since the distribution obtained for this training approach is by far
the narrowest distribution with a peak, which is furthest to the left at about
0.04 eV/Å. The error distribution obtained by direct force training indicates that
for most atoms the predicted errors in the absolute force are between 0 eV/Å and
0.25 eV/Å. As discussed before, Taylor-force training leads to an improvement of
the force prediction in comparison to the energy training approach, however, the
respective error distribution shows that a significantly greater improvement of the
force prediction can be obtained by employing the direct force training approach
instead. This result was to be expected since direct force training directly includes
force information into the training process. Therefore, it ensures an excellent
force prediction, whereas force information is only included implicitly into the
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Figure 7.13.: Distribution of the error in the absolute force for training on
the train_0500 training set applying the energy training approach
(gray), the direct force training approach (black) and approximate
force training by the Taylor expansion approach employing the Carte-
sian (green) and random (blue) displacement strategy.

training procedure by the Taylor expansion force training approach in which force
information is transferred to energy information.

In table 7.2 the MAEs of the atomic forces for all three validation sets are
summarized for the energy training approach, the Taylor expansion based force
training approach employing displacement strategy (R) and the direct force training
approach. In general it can be observed that the improvement obtained by employing
both force training approaches studied is greatest for the smallest reference data
set train_0500. In comparison to the MAE of the atomic forces for the validation
set obtained by energy training the Taylor expansion approach leads to a reduction
of the MAE by 42.5%. Employing the direct force training approach reduces the
MAE by 73%. For the largest training set train_2000 the relative improvement of
the MAE is smallest. The MAE of the forces is reduced by 20% by employing the
Taylor expansion force training approach and for the direct force training approach
the MAE is reduced by 52%. Again, the improvement is reported relative to the
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Figure 7.14.: Distribution of the error in the energy predictions for train-
ing on the train_0500 training set applying the energy training
approach (gray), the direct force training approach (black) and ap-
proximate force training by the Taylor expansion approach employing
the Cartesian (green) and random (blue) displacement strategy.

Table 7.2.: MAE of the atomic forces for all training approaches and all refer-
ence data sets. For the Taylor expansion based approach displacement
strategy (R) was employed.

Training approach MAE of the atomic forces (eV/Å)
train_0500 train_1000 train_2000

Energy training 0.73 0.51 0.40
Taylor expansion based 0.42 0.36 0.32
Direct force training 0.19 0.19 0.19

MAE obtained by energy training.

In contrast to the distribution of the error of the absolute force, the distribution
of the absolute error in the energy per atom given in figure 7.14 does not show an
improvement of the energy prediction if the Taylor expansion approach is employed.
The energies predicted by NN-PESs trained with the Taylor expansion approach
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are of about the same accuracy as the energies obtained from NN-potentials trained
with the conventional energy training approach. Direct force training, however,
enhances the predictive power of NN-PESs with respect to the energy drastically.
Figure 7.14 shows that the error distribution obtained by employing direct force
training is significantly narrower, indicating overall smaller errors and especially
a decrease of the number of atoms with comparatively large errors. However, as
discussed before, all errors in the energy reported are well below chemical accuracy.

7.4. Summary and Discussion

Summarizing the work presented it can be stated that employing the Taylor
expansion approach improves force predictions notably in comparison to predictions
based on NN-PESs trained by employing the energy training approach. Moreover,
this indirect force training approach fortunately does not reduce the accuracy of
energy predictions obtained from NN-PESs trained with this force training approach
even though it introduces some noise into the extended reference data set’s energies.
At the same time the improvements of the force predictions gained by employing
the direct force training approach are significantly bigger than the ones obtained
by employing the Taylor expansion approach. On top of that, it was seen that
direct force training, in contrast to the Taylor expansion approach, also notably
improves the accuracy of energy predictions obtained from NN-potentials. However,
direct force training is computationally very expensive, since its computational
effort scales quadratically for small systems and linearly with a large prefactor,
given by the average number of atoms in two-times the volume of the cutoff ball,
for larger systems. Further, even though its formal derivation is straight forward,
an efficient implementation of the algorithm is rather tedious and error-prone. It
was shown that for the smallest training set train_0500, for which the influence of
both force training approaches on the predictive power of NN-PESs is greatest, the
improvement relative to the force predictions obtained by energy training that were
found by preforming Taylor expansion based force training is already about 58% of
the improvement obtained by direct force training. This significant improvement is
remarkable since the Taylor expansion approach is an approximate force training
method. Its linear scaling of the computational effort with system size, where the
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prefactor is the number of atoms within a single cutoff ball, is also notably more
favorable than the scaling behavior of direct force training. Further, it should
be noted that the implementation of the Taylor expansion based force training
approach is straightforward, which facilitates an implementation of this method in
other machine learning libraries for training ANNs.

In order to reduce the computational effort of direct force training, an alternative
approach was suggested. In this approach direct force training is employed to a
small subset of atoms in the training set and for all other atoms in the training
set the energy training approach is employed. It was shown that this training
approach yields significantly improved force predictions even if the direct force
training approach is applied to as few as 10% or less of the atoms [44, 97–99].

In the following a first estimate of the relative computational effort of direct force
training applied to all atoms, direct force training applied to 10% of the atoms
and Taylor force training will be made. The computational effort is estimated for
training NN-PESs with the reference data introduced before describing a cluster of
six water molecules.

This cluster of water molecules is a rather small chemical system. This implies that
for most atoms all atoms of the water cluster are within the cutoff sphere. Thus, the
computational demand can be assumed to increase quadratically with the number of
atoms (Natoms) in the reference data with a prefactor of 1, i.e. it scales likeO(N2

atoms).
The Taylor expansion based approach is accordingly assumed to scale like O(Natoms).
Since the effects of force training were most prominent for the smallest reference data
set train_0500 consisting of 471 structures ≡ 8478 atoms this reference data set is
considered in the following. Under the aforementioned assumptions it is possible to
estimate the number of operations required for a single training iteration: Since 10%
of the structures in the reference data set were used as test set, the training set was
made up of 424 structures ≡ 7632 atoms. The computationally most demanding
approach is the direct force training approach applied to all atoms. The number of
operations required is Ndirect-all = (7632)2 = 58247424 ≈ 5.825 · 107. If direct force
training would be employed for 10% of the atoms the number of operations required
is Ndirect-10% = (763)2+(7632− 763) = 589038 ≈ 5.890 · 105. Employing the Taylor
expansion approach for a = 22 with displacement strategy (R) required 471 · 22 =

10362 additional structures, i.e. 186516 additional atoms, for optimal performance.
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Thus, the number of operations required is NTaylor = 7632 + 186516 ≈ 1.941 · 105.
Under these assumptions the computational effort for Taylor force training is still
67% lower than the effort of direct force training applied to 10% of the atoms.
However, Taylor force training requires about 25 times as many operations than
energy training, since the number of operations required for energy training is
NEnergy = 7632.

On top of the findings presented in this thesis it was shown by N. Artrith and
A. Urban in the article discussed in this section [59] that employing the Taylor
expansion force training approach can ensure energy conservation in cases where
the energy is not conserved for NN-potentials trained for the same training set
employing the energy training approach. Employing force training approaches can,
if the cutoff function is chosen carefully, ensure energy conservation by reinforcing
continuous and physically representative forces. Thus, force training in general
enhances the applicability of NN-PESs to real world simulation problems.

Therefore, it can be concluded that if it is affordable the direct force training
approach should be the method of choice, since it leads to the most reliable
predictions of atomic forces and energies. However, due to its high computational
cost, direct force training, at least if applied to all atoms, will be computationally
not feasible for systems with more than a few atoms. If a larger system is to be
studied or direct force training routines are not readily available, then employing
the Taylor expansion based force training approach is recommended as this indirect
force training approach still leads to a significant improvement of the atomic forces
predicted by NN-PESs at minimal additional computational cost in comparison to
training ANNs with the energy training approach.
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8. Conclusion

Obtaining information on the PES and its derivatives from electronic structure
calculations during a simulation is computationally very demanding. The evaluation
of a NN-PES, however, allows for fast predictions of the energy and its derivatives
at insignificant computational cost. Therefore, the computational demand of many
chemical simulations can be significantly reduced by employing a NN-PES. In order
to ensure accurate results, precise surrogate models of the actual PES have to be
employed. Thus, the goal of the studies presented in this thesis was to investigate
how potential energy surfaces can be approximated by a NN-potential that allows
for accurate energy-, force- and Hessian predictions.

It was shown that directly including force- and Hessian information into the
training process, i.e. direct force training, yields highly accurate surrogate mod-
els. Their precision even allows for the application of these models in computer
simulations which are highly sensitive to errors in the derivatives of the PES, like
instanton reaction rate constant calculations.

In the work presented the direct force training approach was employed to obtain
reaction rate constants for a hydrogen abstraction from methanol by an incoming
hydrogen atom. The reaction rate constants were computed for various deuteration
patterns. On the basis of these rate constants it was demonstrated that this approach
to obtain reaction rate constants yields an excellent qualitative explanation for
the unexpectedly high deuteration of methanol molecules in various regions of the
interstellar medium.

A quantitative comparison to experimental results on the basis of a simplistic
kinetic model didn’t lead to satisfactory results. However, this lack of agreement
was to be apprehended due to the simplicity of the kinetic model, in which strong
assumptions, like a steady-state approximation, were made and rather few chemical
reactions were included. A promising approach to obtain a better quantitative

130



description in future work would be to employ a more sophisticated kinetic model
incorporating a larger number of chemical reactions and making use of weaker
assumptions in the kinetics. Nevertheless, the qualitative results are in excellent
agreement with various simulation- and experimental results found in the literature.

In this context it was found that the computational effort of computing a
rate constant at one single temperature employing the standard approach in
which information on the PES is obtained from quantum chemical calculations is
comparable to the effort required for the construction of the reference data set.
The construction of the reference data set, however, is the most time consuming
step required for training a NN-potential. Thus, the computation of reaction rate
constants on NN-potentials is highly efficient, especially if rate constants are to be
calculated at various temperatures and for different isotopologues.

The direct force training approach is highly effective, but also computationally
very demanding. Therefore, in the course of the work presented in this thesis a
novel, indirect force training approach based on generating additional training data
and approximating the energy of these additional training examples by a first order
Taylor expansion of the energy, was developed and tested. The proposed force
training approach was studied and compared to conventional energy training as
well as direct force training. For this comparison NN-PESs describing a cluster of
six water molecules were trained with each of the training approaches.

The computational effort of this novel force training approach is significantly
lower than the one of direct force training and comparable to the one of energy
training.

The Taylor expansion based force training approach was found to yield a sig-
nificant improvement of the force predictions in comparison to the predictions
obtained by employing the conventional energy training approach. As expected,
this approach is less accurate than direct force training due to its approximate
nature. However, since its computational demand is considerably lower than the
one of direct force training, it allows for the application of force training even to
complex systems where direct force training can’t be applied.

Alternatively, it has been suggested to employ the direct force training approach
to a subset of atoms in the training set and to employ conventional energy training
for the remaining atoms in order to reduce the computational effort for training.
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8. Conclusion

This training approach was shown to improve force predictions even if as few as
10% or less of the atomic force vectors were included in the training process [44,
97–99]. Unfortunately this form of direct force training is not yet implemented
into ænet. Therefore, a direct comparison with force training results obtained by
employing direct force training to a subset of atoms is impossible. In future work
it might also be interesting to investigate an alternative force training approach
in which direct force training is employed to a subset of atoms and the Taylor
expansion based force training approach is applied to the remaining atoms. This
approach might further reduce the number of atoms that have to be treated with
the direct force training approach to ensure accurate force predictions and thus,
lower the computational effort of the training procedure. However, it has been
discussed in this thesis that applying direct force training to a small fraction of
atoms will often still be computationally more expensive than employing the Taylor
expansion based approach.

In summary, it is possible to state that the Taylor expansion based approach
is expected to be in most cases computationally less demanding than direct force
training approaches, and thus allows for an efficient treatment of large systems by
still yielding a significant improvement of the force predictions. As a consequence
employing the Taylor expansion based approach can be considered to be a promising
force training method, especially if a low computational effort of the training
procedure is required. Nevertheless, due to its significantly higher accuracy, it is
advisable to employ direct force training whenever possible.
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Part V.

Appendix



A. Direct Force and Hessian
Training for Structure Neural
Networks

In the following all derivatives required for employing direct force and Hessian
training for SNNs are reported for a SNN with two hidden layers. The notation used
in the expressions reported is consistent with the notation introduced in section
4.1.

A.1. Gradient and Hessian of the Energy with
Respect to the Input Coordinates

The gradient of the energy with respect to the i-th descriptor element of atom ϕ
0ni := σϕi is given by:

gNN
i :=

∂ENN

∂ 0ni
=

D(2)∑
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∂ENN

∂ 2nk
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A.2. Derivatives of E, g, H with Respect to Weights and Biases

The Hessian with respect to the input coordinates 0ni,
0na is

∂2ENN

∂ 0ni∂ 0na
=
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 .

Thereby f l′c denotes component c of the total differential of the activation function
f l of a neuron in layer l.

A.2. Derivatives of E, g, H with Respect to Weights
and Biases

With lf ′
c denoting component c of the total differential of the activation function

lf , the derivative of the loss function L(W ) with respect to a weight or bias ω is
given by:

∂L(W )

∂ω
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A. Direct Force and Hessian Training for Structure Neural Networks

To calculate ∂L(W )/∂ω the following partial derivatives are needed:
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A.2. Derivatives of E, g, H with Respect to Weights and Biases
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where for lwa
b a ∈ {1, . . . , D(l)} and b ∈ {1, . . . , D(l−1) − 1}. The terms for the bias

parameters (b=D(l−1)) are given separately.
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