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Kurzfassung

Nanokristalle sind Makromoleküle, die als Bausteine so genannter Superstrukturen dienen.

Die Gitterstruktur einer solchen Superstruktur – und damit auch deren Eigenschaften –

hängen von der Art und Weise ab, mit welcher Nanokristalle wechselwirken. Kenntnis

der Mechanismen dieser Wechselwirkungen ermöglicht es, Superstrukturen zu entwerfen,

die maßgeschneiderte Eigenschaften besitzen. Diese Wechselwirkungen sind abhängig von

strukturellen Eigenschaften der Nanokristalle, wie dem Material, aus welchem die Kerne

bestehen, der Kerngröße, der Art der Liganden, sowie der Menge an Liganden, die auf

der Kernoberfläche adsorbiert sind. Weitere Einflussparameter sind Temperatur, Zusam-

mensetzung, Druck sowie die Art des Lösungsmittels. Die Untersuchung der Bildung

von Superstrukturen mittels atomistischer Simulationen ist nicht möglich, da ein einzel-

ner Nanokristall aus mehreren tausend Wechselwirkungszentren bestehen kann und der

Bildungsprozess auf Zeitskalen abläuft, die nicht in atomistischen Simulationen erreicht

werden können. Es müssen somit andere Modellierungsstrategien angewendet werden.

Eine Strategie liegt darin, die Freiheitsgrade des Systems zu reduzieren, indem alle

atomaren Wechselwirkungen in ein effektives Potential zusammengefasst werden, welches

lediglich von den relativen Positionen der Kerne der Nanokristalle abhängt. Im ersten Teil

dieser Arbeit nutze ich diese Strategie zur Untersuchung von Wechselwirkungen zwischen

Nano-kristallen im Vakuum, welche aus einem Goldkern mit Alkylthiolen als Liganden

bestehen. Ohne Lösungsmittel ist das System allein durch die Temperatur charakter-

isiert, während die Struktur der Nanokristalle durch Kerngröße, Anzahl an Liganden und

Ligandenlänge definiert ist. Ich ermittle das effektive Paarpotential in Form des potential

of mean force (PMF) als Funktion der Kern-Abstände aus einer Reihe von Molekular-

dynamik Simulationen. Ein Ergebnis der Studie ist, dass die Temperaturabhängigkeit

des PMF mittels thermodynamischer Störungstheorie abgeleitet werden kann, basierend

auf einer Aufteilung von Wechselwirkungen in rein repulsive und attraktive Beiträge.

Diese beiden Beiträge können aus zwei PMF bei unterschiedlichen Temperaturen ermit-

telt werden. Sind die Beiträge bekannt, können PMF in einem großen Temperaturbereich

extrapoliert werden, was den Simulationsaufwand deutlich verringert. Der entwickelte

Ansatz zeigt gute Übereinstimmung mit Simulationsergebnissen, sowohl für Paare gleich-

artiger Nanokristalle als auch für Paare von Nanokristallen unterschiedlicher Größe.

Betrachtet man einen einzelnen Nanokristall, so bilden die auf der Kernoberfläche

adsorbierten Liganden eine annähernd sphärische Schicht um den Kern. Diese Schicht

wird deformiert, wenn sich ein zweiter Nanokristall in unmittelbarer Nähe befindet, da

die Ligandenschichten beider Kristalle überlappen was zu Bereichen hoher Ligandendichte

führt. Auf Grund dieser lokal hohen Dichte kann die Wechselwirkung mit einem dritten

Kristall nicht allein durch eine Summe an Paarwechselwirkungen beschrieben werden und
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es ist unabdingbar Dreikörper- (bzw. Mehrkörper-) Potentiale zu berücksichtigen. Des

Weiteren beschäftigt sich diese Arbeit deshalb mit der Untersuchung von Nanokristall-

Triplets für welche ich ein Korrekturpotential als Funktion von zwei Kernabständen und

einem Winkel entwickle. Dieses Korrekturpotential ist vorwiegend repulsiv bei kleinen

Abständen und Winkeln und klingt ab wenn die drei Nanokristalle linear angeordnet

sind. Meine Simulationen ergeben, dass das Korrekturpotential nicht von der Temperatur

abhängt und ich schlage auf Grund dieser Erkenntnis ein empirisches Model vor, welches

lediglich auf den repulsiven Zweikörper-Potentialen basiert.

Im zweiten Teil dieser Arbeit untersuche ich fest-flüssig Phasengleichgewichte von

atomistischen und molekularen Systemen mittels Molekulardynamik Simulationen. Wäh-

rend es für Dampf-Flüssigkeits-Gleichgewichte etablierte Methoden und Simulationsabläufe

gibt, können fest-fest sowie fest-flüssig Gleichgewichte oftmals nur durch Kombination

mehrerer unterschiedlicher Methoden bestimmt werden. In dieser Studie wird die Schmelz-

kurve für drei Systeme zunehmender Komplexität bestimmt: Argon, Methanol und Wasser.

Dazu werden die chemischen Potentiale (die absoluten freien Energien) der beteiligten

Phasen ermittelt und gleich gesetzt. Für die absolute freie Energie der Feststoffphasen

stelle ich eine neue Methode vor – eine Kombination aus der extended Einstein crystal

Methode und der Einstein molecule Methode – welche eine effiziente und numerische sta-

bile Berechnung ermöglicht. Ich verwende dabei unterschiedliche freie Energie-Methoden:

Thermodynamische Integration (TI) mit zwei Integrationsschemata, die multistate Ben-

nett acceptance ratio (MBAR) Methode sowie Nichtgleichgewichts-Simulationen. Für

präzise Ergebnisse sind alle Methoden (außer TI mit einem Integrationsschema nach

Simpson) ähnlich effizient. Ich diskutiere die Unterschiede der Methoden hinsichtlich

Anwendungsfreundlichkeit, Konvergenzverhalten sowie der Bewertung von statistischen

Unsicherheiten. Die Schmelzkurve wird durch Simulationen im isothermen-isobaren En-

semble für unterschiedliche Temperaturen und Drücke in Kombination mit Vorhersagen

durch Umgewichtung bestimmt, was trivial parallelisiert werden kann. Die auf diese Weise

ermittelten Schmelzkurven haben eine niedrige statistische Unsicherheit und zeigen gute

Übereinstimmung mit Literaturdaten.
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Abstract

Nano crystals are macro molecules that act as building blocks for so called super struc-

tures. The lattice configuration of such a super structure – and therefore its properties –

depends on the way nano crystals interact with each other which means that knowledge of

the nature of nano crystal interactions enables the design of structures with tailor-made

properties. These interactions are functions of structural properties of the nano crystals

themselves such as the core material and size, the ligand type and the amount of ligands

adsorbed on the core surface but they also depend on system properties like tempera-

ture, composition, pressure and solvent type. Because a single nano crystal can consist

of multiple thousand interaction sites, studying the formation of super structures from

atomistic simulations is not feasible since it occurs on a time-scale that cannot be covered

with atomistic models, so that other modeling strategies have to be applied.

One such strategy is reducing the degrees of freedom of the system by encoding all

atomistic interactions within effective potentials that only depend on relative core po-

sitions of nano crystals. In the first part of this work I follow this strategy and study

interactions between nano crystals in vacuum that consist of icosahedral gold cores on

which alkyl thiol ligands are adsorbed. Without a solvent, the only thermodynamic sys-

tem parameter is the temperature whereas structural parameters are the core size, amount

of ligands, and ligand length. I obtain the effective pair potential – the potential of mean

force (PMF) – as a function of the core to core distance from a sequence of molecular

dynamics simulations. I find that the functional dependence of the PMF on temperature

can be motivated from thermodynamic perturbation theory by dividing interactions into

a repulsive and an attractive contribution. These two contributions can be estimated

from two PMF at different temperatures which allows for extrapolation to a large tem-

perature region which significantly reduces the simulation effort. This approach shows

good agreement with simulation data both for pairs of identical nano crystals as well as

for pairs of different sized nano crystals.

The adsorbed ligands form a corona around the core which is approximately spherical

for a single nano crystal but is deformed when two nano crystals are in close vicinity to

each other because their coronae overlap which leads to regions of high ligand density. As

a consequence, a third nano crystal will interact with the two other crystals in a way that

cannot be described by pair interactions alone and three-body (and in fact multi-body)

interactions have to be considered. I therefore study triplets of nano crystals and develop

a three-body correction as function of the triplet configuration (two distances and one

angle). I find that these corrections are mostly repulsive for small core distances and

angles and quickly decay when approaching a linear configuration of three nano crystals.

My simulations suggest that the three-body correction does not depend on temperature
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and I propose an empirical model which only uses the repulsive contributions of the two-

body PMF based on this observation.

In the second part of this work I study solid-liquid phase equilibria of atomistic and

rigid molecular systems by means of molecular dynamics simulations. As opposed to

vapor-liquid equilibria where well-established methods and workflows for determining

phase equilibria exist, solid-solid and solid-liquid equilibria require the combination of

multiple different methods. I conduct simulations to locate the melting transition line for

three systems with increasing complexity – argon, methanol and water – by computing

and equating the chemical potentials (absolute free energies) of candidate phases. For the

absolute free energy of a solid phase I propose a new calculation method by combining

the extended Einstein crystal and the Einstein molecule method enabling an efficient and

numerically stable free energy pathway. Free energies are determined using different meth-

ods, i.e. thermodynamic integration (TI) with two integration schemes, the multistate

Bennett acceptance ratio (MBAR) method as well as nonequilibrium simulations. I find

that for highly precise results all methods (save Simpson’s rule for TI) are comparably

efficient to use and I discuss differences regarding ease of application, assessment of con-

vergence as well as estimation of statistical uncertainties. The coexistence line is traced

by combining simulations performed in the isothermal-isobaric ensemble for a range of

temperatures and pressures based on estimates from reweighting techniques which can be

done in an embarrassingly parallel fashion. The resulting melting lines have low statistical

uncertainties and show good agreement with data from literature.
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Chapter 1

Introduction

A central property in the field of molecular thermodynamics and also an important prop-

erty of this thesis is the free energy. Free energies are thermodynamic potential functions

and so-called fundamental equations, which means that once the free energy of a system

is known all thermodynamic properties are directly accessible from its partial derivatives.

Knowledge of free energies allows calculating e.g. properties and phase equilibria, bind-

ing affinities and reaction barriers. Being based on principles of statistical mechanics by

means of the partition function, free energies intrinsically encode microscopic informa-

tion and therefore provide a tool to describe thermodynamical, chemical and biological

processes in a systematic way and across different (length) scales.

1.1 Partition functions and free energies

In statistical mechanics, free energies are formulated in terms of their associated partition

functions, e.g. the Helmholtz energy A is formulated in terms of the canonical partition

function Q as

βA(N, V, T ) = − lnQ(N, V, T ) , (1.1)

where β = 1/kT , k is Boltzmann’s constant, T denotes the temperature, N is the number

of molecules and V represents the system volume. N , V and T are control variables and

are defined for a system with constant values. For each control variable there is a response

of the system; for the canonical ensemble these are

• the chemical potential µ =
(
∂A
∂N

)
T,V

,

• the pressure P = −
(
∂A
∂V

)
N,T

,

• and the internal energy U =
(
∂βA
∂β

)
N,V

.
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The type of control variables can be chosen to suit the system, experiment or prop-

erty of interest. Changing control variables can be achieved using a Legendre transform

towards a different thermodynamic potential or a Laplace transform towards a different

partition function.1 For example a transformation of the entropy as function of the amount

of substance N , volume V and internal energy E, S(N, V,E), to the Helmholtz energy,

A(N, V, β), can be performed either via Legendre Transformation by transformation of the

internal energy into the inverse temperature, β, or via Laplace transformation of the mi-

crocanonical partition function Ω(U, V,N). In the same fashion one can derive the Gibbs

energy as function of amount of substance, pressure and temperature, G(N,P, T ), as well

as the Grand potential as function of the chemical potential, volume and temperature,

Ξ(µ, V, T ).

The partition function is the normalization constant of the probability density function

of a microstate for a given set of control variables. The canonical probability density

function, ρ(x,N, V, T ), and partition function, Q(N, V, T ), read

ρ(x,N, V, T ) =
Ce−βH(x)

Q(N, V, T )
(1.2)

Q(N, V, T ) = C

∫
e−βH(x)dx , (1.3)

with the phase space point x = {rN ,pN}, the particle positions and momenta of the

system, rN and pN , respectively, the normalization constant of the partition function

C = C(N, V, T ) and the Hamiltonian H which describes the total energy of the system.

For any function of the phase space coordinates, α(x), the ensemble average can be

computed by integration, as

〈α〉NV T =
C

Q(N, V, T )

∫
α(x)e−βH(x)dx =

∫
α(x)e−βH(x)dx∫
e−βH(x)dx

. (1.4)

Free energies form the basis of a plethora of modern methods that are used to model

and optimize technical processes and fluid properties but also to study mechanisms and

driving forces on a molecular level. Modern equations of state such as the family of SAFT

(Statistical Associating Fluid Theory) equations of state are formulated in terms of addi-

tive Helmholtz energy contributions, each of which is based on intra- or inter-molecular

energies arising e.g. from dispersive, polar or associative interactions.2 Macroscopic prop-

erties can be calculated by combining suitable contributions based on the topology of

the substance or mixture one is interested in and – since all contributions are based on

molecular principles – equations of state of this kind can be used for a wide range of

substances and thermodynamic states in a transferable fashion.

These Helmholtz energy contributions can be derived from a series expansion by in-
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troducing a perturbation – for example within the intermolecular energy function – to

describe molecular fluids with respect to a preferably well-known reference. The expan-

sion terms are integrals over pairs (first order) of particles, 4 particles (second order), and

so forth and contain pair, four-body, etc. correlation functions of the reference fluid.3 In

general these correlation integrals cannot be solved analytically; therefore they are often

supplemented by molecular simulations or parameterized using experimental data which

limits transferability of the equation of state.

Another way to obtain free energies is by means of molecular simulations. Different

from theoretical approaches, in molecular simulations one generates a large number of

representative microstates for a given set of control variables and Hamiltonian. ’Repre-

sentative’ means that microstates are generated according to the probability density of

the ensemble. The two most widely used methods are Monte-Carlo (MC) and Molecu-

lar Dynamics (MD).4,5 MC simulations are stochastic processes where a Markov chain of

microstates is created. In this work, molecular simulations are carried out via MD where

microstates are created by temporal evolution of the system based on integration of an

equation of motion. When microstates are generated according to the ensemble probabil-

ity density, an ensemble or time average of a static property, α(x), can be determined by

simple averaging, i.e.

〈α〉 =
1

n

n∑
i

α(xi) , (1.5)

where n is the total number of microstates generated in the simulation. In contrast to

eq. (1.4), the probability density function enters the average implicitly as it is used in the

creation of microstates.

Similar to equations of state, in molecular simulations one needs a set of functions

that describes energies between interaction sites, which can be atoms or groups of atoms,

in the system. This set of energy functions is called a force field where forces are obtained

by taking the negative spatial derivative of the (scalar) potential functions. In this work,

classical potentials are used to describe intramolecular energies (such as covalent bonds,

angles and torsion) as well as intermolecular interactions (van der Waals and electrostatic).

These potentials are mathematically comparably simple, but combining multiple of these

functions enables simulation of arbitrarily complex systems.

The actual (a priori unknown) probability density function is not needed for a sim-

ulation nor is it generally readily available as a result from a simulation – and as such

neither is the free energy of the system. De facto it is not feasible to compute the absolute

free energy except for very simple model systems. In practice this is rarely a problem

as it is typically sufficient to have information about the free energy difference between

two states. For example, phase equilibria are found where the difference of the Gibbs
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energy between two phases vanishes and likewise the stability of protein conformations or

different solid structures can be assessed based on relative free energies.

1.2 Estimating free energies in molecular simulations

In simulations, free energy differences are obtained by traversing a path between two

systems or states of interest. Only if the absolute free energy of one of the two systems or

states is known, the absolute free energy of the other system or state can be determined

by evaluation of the free energy difference. In many cases, however it is sufficient to know

the free energy difference of two systems. The path connecting both systems or states

may be physically meaningful. For example going from a state with low temperature to a

state with high temperature at constant volume and amount of substance may be realized

in a laboratory experiment by transferring heat to the system. In simulations one can

also choose hypothetical pathways which may be particularly suited or convenient to solve

the problem at hand or to increase efficiency of a simulation. For example, to compute

the free energy of solvation of a large molecule in a dense solvent one can incrementally

grow the molecule or create (and later remove) a cavity in which the molecule can be

inserted.6 Another example are flat histogram Monte-Carlo simulations, where one utilizes

free energy differences (which are estimated during the course of a simulation) to force

the system to visit e.g. predefined volumes (in constant pressure simulations) or numbers

of molecules (in constant chemical potential simulations) with equal probability, making

it possible to observe a liquid and a vapor phase within a single simulation.7–11

One of the oldest and most widely used free energy method is the free energy perturba-

tion (FEP) formalism also known as Zwanzig’s high-temperature expansion or exponential

averaging.12 When using FEP one is interested in the free energy difference between a ref-

erence system or state and the target. For a perturbation of the potential energy one can

formulate the target, U1, as

U1(r) = U0(r) + ∆U(r) , (1.6)

where U0 denotes the reference potential energy and ∆U is the perturbation term. The

free energy difference between both states can be written as a ratio of the configurational

partition functions, Z(N, V, T ), as (omitting the control variables for brevity)

A1 − A0 = ∆01A = −kT ln
Z1

Z0

, (1.7)

where the configurational partition function reads
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Zi(N, V, T ) =

∫
e−βUi(r

N )drN . (1.8)

Here, one assumes that the kinetic free energy contribution is the same in both states

and hence the integrals over all particles’ momenta cancel out when taking the ratio of

the partition functions. Substituting eq. (1.6) into Z1 of eq. (1.7) leads to the following

reformulation

β∆01A = − ln〈e−β∆U〉0 (1.9)

= ln〈eβ∆U〉1 . (1.10)

These equations are exact only if both states’ Boltzmann factors are finite within the

same phase space volume. The index of the angular brackets denotes the ensemble’s

underlying potential energy function, i.e. 〈. . . 〉0 denotes an ensemble average where con-

figurations are generated according to the probability density distribution of the reference

system.

FEP is a convenient method to compute the free energy difference because only a single

simulation is required which – depending on the perturbation ∆U – may even be used to

compute free energy differences for multiple target potentials. In practice, FEP is limited

to small perturbations or more precisely, small variances of the perturbation.13 A large

variance indicates that reference and target only have a small number of representative

configurations in common, or in other words, that they have small overlap of the respective

probability densities. This problem may be alleviated either by combining simulations

from both end states (as discussed below) or by introducing intermediate states granting

a ”slower/finer transition” between reference and target. Repeated evaluation of eq.

(1.9) for all adjacent states can then be used to connect data from multiple intermediate

simulations. However, one has to be careful when parts of the phase space of either

reference or target are inaccessible from the other respective state which e.g. is the

case for a hard sphere as a reference and a Lennard-Jones (LJ) fluid as a target fluid.

For LJ-fluids, distances smaller than the hard sphere diameter may constitute a relevant

contribution to the free energy whereas these configurations have a probability of zero to

be observed within the hard sphere system.

FEP can be considered as limiting case of Bennett’s acceptance ratio (BAR) method.14

Bennett showed that the free energy difference between two states can be formulated in

terms of ensemble averages of a finite function W ({rN}) as
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β∆01A = ln
〈We−βU0〉1
〈We−βU1〉0

, (1.11)

which can be optimized to yield the minimal statistical variance of the free energy estimate

(with respect to W ) resulting in two functions that can be iteratively solved, i.e.

e−β∆01A =
〈(1 + eβ∆U−C)−1〉0
〈(1 + e−β∆U+C)−1〉1

e−C , (1.12)

C = β∆01A+ ln
n1

n0

, (1.13)

where n0 and n1 denote the number of uncorrelated samples as obtained from reference

and target state simulations, respectively. These two equations constitute the acceptance

ratio method and reduce to the FEP formalism when either n0 or n1 is zero. The optimal

choice for W = (1 + eβ∆U−C)−1 is the Fermi function and it was shown to be the best

asymptotically unbiased estimator for the free energy.15,16

A further generalization of BAR is the multistate Bennett acceptance ratio (MBAR)

method.17–19 I argued above that insufficient overlap between states may be alleviated

by conducting additional simulations that act as bridge between the reference and target

state. Chaining evaluations of adjacent states – either using FEP or BAR – allows calcu-

lating the desired free energy difference. However, information of non-adjacent states is

not utilized in such a procedure. The MBAR approach is very similar to BAR where the

free energy between two states, say i and j, is also formulated by introducing ensemble

averages

β∆ijA = ln
〈Wije

−βUi〉j
〈Wije−βUj〉i

, (1.14)

but for a total of K states where W is a K ×K matrix, encoding information between

all pairs of states. Similar to BAR, the goal is to find an optimal solution for W across

all states. The full derivation of the MBAR equation is outside the scope of this brief

introduction but for the Helmholtz energy it reads

βAi = − ln
K∑
j=1

Nj∑
n=1

e−βUi(rnj)

K∑
k=1

NkeβAk−βUk(rnj)

, (1.15)

where the indexes i and j denote thermodynamic states, n counts through single observa-
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tions of a simulation and rnj is the n’th configuration (from a total of Nj configurations)

observed in simulation of state j. While equation (1.15) defines the absolute free energy

it can only be solved (self-consistently) up to an additive constant, which ultimately leads

to free energy differences.

The general form of the MBAR equation for the free energy, F , reads

βiFi = − ln
K∑
j=1

Nj∑
n=1

e−ui(rnj)

K∑
k=1

NkeβFk−uk(rnj)

, (1.16)

where the reduced potential function, ui(rnj), was introduced that reads

ui(rnj) = βi [Ui(rnj) + piV (rnj)− µiN(rnj)] , (1.17)

where Ui is the total potential energy, pi is the pressure, V is the volume and µi and

N are the chemical potential and the number of molecules in the system, respectively.

Depending on the choice of terms considered in the reduced potential function ui(rnj),

different free energies can be evaluated, i.e. using ui = βiUi corresponds to control

variables {N, V, T} and yields the Helmholtz energy, ui = βiUi + βipiV gives the Gibbs

energy and ui = βiUi−βiµiN is used for defined {µ, V, T} and leads to the Grand potential.

To utilize the MBAR formalism, each configuration observed in state i has to be

evaluated for each reduced potential j. This is trivial for the βipiV and βiµiN terms since

one can simply store a time series of volume and number of molecules from a simulation.

Reevaluation for different temperatures, pressures and chemical potentials is then done

by combining (i.e. multiplying) the new state’s control variables with the sampled time

series as a post-processing step. In contrast, the state dependence of a potential energy

function Ui may not be as trivial (i.e. linearly dependent) and – in the worst case –

one has to store all trajectories to facilitate reevaluation of the total potential energy

if the simulation code does not provide mechanisms to perform reevaluations on the

fly. For simple perturbations (or when a perturbation can be separated into linear basis

functions20,21) however, reevaluation of trajectories is rarely needed and MBAR can be

used exclusively as a post-processing step without further simulations.

Note that MBAR is very similar to the weighted histogram analysis method (WHAM).22,23

In WHAM, simulation data is binned into histograms which are then combined. For the

limiting case of zero bin width the WHAM equation reduces to the above shown MBAR

equation (eq. (1.16)).

Another very common method to estimate free energies from molecular simulations is
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thermodynamic integration (TI). Let us reformulate the perturbation potential by intro-

ducing a coupling parameter λ. As an example, one could use linear coupling, i.e.

U(λ) = (1− λ)U0 + λU1 , (1.18)

but in general, any coupling can be used so that when λ runs from zero to unity the

reference potential and the target potential are recovered, respectively. In fact, the way

the coupling is introduced is a degree of freedom for optimizing the procedure and will

vary depending on the system of interest. The free energy difference can be calculated

via

∆01A =

∫ 1

0

dA

dλ
dλ . (1.19)

The derivative with respect to the coupling parameter is

dA

dλ
=

∂

∂λ

[
−kT ln C̃(N, V, T )

∫
e−βU(λ,rN )drN

]
, (1.20)

= − 1

βZ(N, V, T, λ)

∫
∂

∂λ
e−βU(λ,rN )drN , (1.21)

= − 1

βZ(N, V, T, λ)

(
−β
∫
∂U(λ, rN)

∂λ
e−βU(λ,rN )drN

)
, (1.22)

=

〈
dU(λ, rN)

dλ

〉
λ

, (1.23)

so that

∆01A =

∫ 1

0

〈
dU(λ, rN)

dλ

〉
λ

dλ . (1.24)

The constant C̃(N, V, T ) contains an integration over all particle’s momenta which are

unaffected by the perturbation and hence, cancels out. Different from the previously dis-

cussed methods, TI requires one to sample the derivative of the potential energy function

(the slope) with respect to the coupling parameter. Integration can be done by introduc-

ing nodes (values of λ) where simulations are performed. The way the nodes are chosen

depends on the integration scheme. Efficiency of TI depends on the graph of dU
dλ

versus

λ. If the slope is a smooth, slowly changing function of λ, a low number of integration

nodes is needed requiring very little simulation time. Otherwise additional simulations
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have to be added in regions where the slope changes rapidly. Degrees of freedom for op-

timizing the efficiency of the TI application are: the way the coupling parameter λ leads

to a (non-linear) transition between reference and target, equation (1.18), the number of

integration nodes and the integration scheme.

1.3 Potential of mean force

The potential of mean force (PMF) is a free energy profile along a coordinate of inter-

est.13,24,25 This coordinate, R, often called reaction coordinate or collective variable, can

be any function of the configurational degrees of freedom in the system, R = R(rN), e.g.

a distance or angle between molecules or interaction sites. The Helmholtz energy as a

function of R is referred to as potential of mean force, with

βA(N, V, T ;R′) = − lnQ(N, V, T ;R′) (1.25)

= − lnC(N, V, T )

∫
e−βH(x)δ

[
R′ −R(rN)

]
dx , (1.26)

where the accessible phase space is reduced to those states that satisfy R(rN) = R′ by

means of the delta distribution. The PMF can be related to the Helmholtz energy by

taking the exponent and integrating over all possible values of the reaction coordinate

∫
e−βA(N,V,T,R)dR = C(N, V, T )

∫
e−βH(x)dx = e−βA(N,V,T ) . (1.27)

As before, only differences of the PMF are meaningful, that is one can write (omitting

the control variables)
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A(R′1)− A(R′0) =

R′
1∫

R′
0

dA(R′′)

dR′′
dR′′ (1.28)

=

R′
1∫

R′
0

〈
dU(rN)

dR′′

〉
R′′

dR′′ (1.29)

=

R′
1∫

R′
0

〈
dU(rN)

drN
· drN

dR′′

〉
R′′

dR′′ (1.30)

= −
R′

1∫
R′

0

〈
fN · drN

dR′′

〉
R′′

dR′′ , (1.31)

where fN in the last line is the force (hence the name) which is projected along the reaction

coordinate via the dot product with drN

dR′′ . Note that the ensemble average is performed

using the microstate probability density subject to the constraint, i.e.

〈
α(x)

〉
R′′ =

∫
α(x)e−βH(x)δ

[
R′′ −R(rN)

]
dx∫

e−βH(x)δ [R′′ −R(rN)] dx
. (1.32)

In principle the PMF could be obtained from a ”regular” simulation by simply sam-

pling the reaction coordinate during the course of the simulation followed by an estimation

of the probability, P (R), e.g. using a histogram. More often than not such a naive ap-

proach cannot be used because the statistical uncertainty (for the entire PMF-range) is

high. This issue may either arise due to slow dynamics or due to some values of the

reaction coordinate being very improbable to be observed. Both causes can be circum-

vented by forcing the system to visit the entire range of the reaction coordinate either

by introducing restraints (e.g. Umbrella sampling25) or constraints (e.g. SHAKE26 or

RATTLE27).
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Chapter 2

Effective potentials between gold

nano crystals - functional

dependence on the temperature

The content of this chapter is a literal quote of the publication

G. Bauer, A. Lange, N. Gribova, C. Holm and J. Gross, Molecular Simulation, 41

(14), 2015, 1153-1158

A. Lange was involved in preceding work concerning a density functional approach that led

to this study. N. Gribova helped establishing the simulation workflow and performed some

of the presented simulations. C. Holm had an advisory role in setting up simulations.

J. Gross had the role of a daily supervisor and was involved in editing the manuscript.

Additions or deletions compared to the published work are marked with angular brackets.

A method is presented that allows to combine the effective potential between two nano

crystals (NC), the potential of mean force (PMF), as obtained from all-atomistic molecular

dynamics simulations with perturbation theory. In this way, a functional dependence of

the PMF on temperature is derived, which enables the prediction of the PMF in a wide

temperature range. We applied the method to systems of capped gold NCs of different

size. They show very good agreement with data from atomistic simulations.
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2.1 Introduction

Nano crystals (NCs) are building blocks of newly engineered materials that combine opti-

cal and electrical properties in a custom made fashion.1–3 Depending on their shape, the

solvent, and the temperature, nano crystals can form superstructures, each of which is

associated with a particular set of physical properties.4–6

In principle, it should be possible to accurately describe NCs with a capping layer of

the so-called ligands and their corresponding superstructures via molecular simulation.

Determining the superstructure of NCs from atomistic molecular simulations is, however

difficult, because of the large number of interaction sites – up to several 1000 for a single

NC – and most importantly the slow dynamics of the phase transition towards stable

superstructures.

As a consequence, in practice coarse graining strategies have to be applied. We take the

route to first determine the effective pair potential between two NC, the potential of mean

force (PMF), from all-atomistic molecular dynamic (MD) simulations.7 Calculating phase

diagrams of various stable superstructures still becomes tedious, because the PMF for

defined NCs (or mixtures of NCs) depends on the surrounding solvent and temperature.

In this work, we propose a method to predict the PMF between two NCs in vacuum for

different temperatures. Using thermodynamic perturbation theory (TPT) of first order,

we develop a correlation of the free energy as a function of the temperature that simplifies

the practical application considerably. Parameterising the perturbation expression with

results from Molecular Dynamics (MD) simulations enables the prediction of PMF for a

wide range of different temperatures from only two simulated PMF curves.

The method is applied to various systems of gold NCs capped with alkyl chains with

thiol head groups in vacuum. Variables are the core size and the number and length of

attached ligands. The predicted potentials are compared with simulation data and show

very good agreement.

The remainder of the paper is structured as follows. First, we describe the simulation

setup and summarize the TPT. Then, the results for different systems are presented,

followed by a brief conclusion.

2.2 Method

In this section we introduce a method that relates MD simulations to an analytic fluid

theory to predict the temperature dependence of the PMF. First, we review how the PMF,

representing the effective interactions of capped gold nano crystals at fixed distances,

is obtained from molecular simulations. Then we summarize the relevant elements of

thermodynamic perturbation theory (TPT) that are needed to model the underlying
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temperature dependence. For the application of capped NCs, we derive a relation for

calculating the PMF at an arbitrary temperature.

2.2.1 PMF from molecular dynamic simulations

There are different methods to obtain the PMF via computer simulations e.g. configu-

rational-bias Monte Carlo, steered Molecular Dynamics or constraint Molecular Dynamics

simulations. An overview is given by Trzesniak et al.8

In this work we use constraint Molecular Dynamics simulations. We align the centers of

mass of the two NCs with the x-axis of the simulation box. The center of mass distance

is kept constant during a simulation by freezing the gold atoms while we decrease the

distance step-by-step in-between multiple simulations. By freezing the gold cores instead

of only restraining their centers of mass we make the following assumptions: (i) The

rotation of the NCs is negligible within the time frame of a simulation run especially at

distances where the ligand spheres start to overlap.7 (ii) The NC gold cores are modelled

as rigid icosahedra, exposing only (111)-facets9 but there is no orientational effect, i.e.

the orientation in which we freeze the core does not matter and the contributions due

to core-core interactions can be neglected compared to the contributions due to ligand

interactions.10

According to a united-atom approach, we consider SH-, CH2- and CH3-groups in the

ligands as single interaction sites with a force field described in the work of Schapotschnikow

et al.7 Our simulations were performed in the NVT ensemble using the GROMACS sim-

ulation software11. The integrator that also acts as a thermostat is a leap-frog stochastic

dynamics integrator where we set the friction constant to γi = 0.5 ps−1 according to the

suggestion in the GROMACS manual. The integrator step size is ∆t = 0.002 ps. A

simulation (at a specific center of mass distance) consists of an energy minimization run

and a production run. We conduct 5 to 10 runs for every temperature, each with an

equilibration time of 1 ns and a total runtime up to 16 ns.

In general, the size of the simulation box has to be sufficiently large to avoid interac-

tions of the capping layers of the NCs with their periodic images. For our simulations, all

axes of the box are at twice the initial center of mass distance. A convenient choice for

the initial distance r12 is r12 ≥ dc + 2L, where dc ist the diameter of the gold core and L

is the length of an elongated ligand. At r12 = dc + 2L the two NCs start to touch each

other. A larger separation distance ensures that the initial forces on the centers of mass

of both NCs are zero.

To calculate the PMF we measure the average forces acting on the center of mass of

both gold cores, F1 and F2 over the course of a simulation run. The mean force between
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the two NCs is then obtained from

Fm(r12) =
1

2
〈(F2 − F1) · ru〉r12 ,

where ru = r12/r12 is the unit vector connecting two particles and the angular brackets

denote the average in the restrained canonical ensemble. In the last step we integrate the

obtained forces over all distances to get the potential of the mean force, as

Φm(r12) =

∞∫
r12

Fm(s) ds.

2.2.2 Thermodynamic perturbation theory

The complex interactions between particles can successfully be modeled via perturbation

theory.12,13 The starting point is a pair potential between atomistic (or united-atom)

interaction sites. This potential is split into two parts. The first part, representing short

ranged interactions, is the reference and often chosen to describe repulsive interactions.

The second part is referred to as perturbation.

Introducing the coupling parameter λ, the pair potential reads

uλ = uref + λuper , (2.1)

where λ ∈ [0, 1] switches the perturbation on and off. uλ=1 = u is the full pair potential

while uλ=0 = uref is the reference. For any parameter, a Taylor expansion with respect to λ

represents the corresponding perturbation. In equation 2.1 and in the following equations

we have assumed only one type of (united-atom) interaction site. In the current case it is

an average of thiol-, CH2- and CH3-groups of the ligands. It is straight forward to develop

all equations for different individual interaction sites, but this is not necessary here. With

equation 2.1, the Helmholtz energy becomes

Atar = Aref + Aper , (2.2)

where the perturbation is expanded as

Aper =

(
∂A

∂λ

)
λ=0

λ+
1

2

(
∂2A

∂λ2

)
λ=0

λ2 +O(λ3) , (2.3)
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with λ = 1. In first order,

(
∂A

∂λ

)
λ=0

= − 1

β

 1

Z

∂

∂λ

∫
exp(−βUN,λ(rN))drN︸ ︷︷ ︸

=Z


λ=0

(2.4)

=
1

Zref

∫
Uper
N (rN) exp(−βU ref

N (rN))drN , (2.5)

where UN,λ(r
N) is the total potential energy of the system and Z denotes the config-

uration integral and Uper
N is equivalently the total potential energy of the perturbation

part of the potential according to equation 2.1. With the definition of the pair correlation

function gref
αβ(r1, r2), where α and β denote ligand segments of NC1 and NC2 respectively,

one gets

A = Aref +
1

2

∑
α

∑
β

∫∫
ρα(r1)ρβ(r2)gref

αβ(r1, r2)uper(r12)dr1dr2 . (2.6)

Equation (2.6) is the Helmholtz energy (as a functional of the density of ligand seg-

ments) according to first-order perturbation theory. Previous studies showed, that ligand

interactions dominate effective interactions between NCs.10 Only at small distances, core

interactions have to be considered. Therefore, equation 2.6 contains the ligand segment

densities ρα and ρβ only. Ligand interactions can be modeled using a Lennard-Jones

potential as a target potential. We see that it is crucial to choose a suitable reference,

since, to apply perturbation theory, it is necessary to have knowledge of the structure

(i.e. gref
αβ) of the reference fluid. Therefore, we have chosen a system, where all interac-

tion sites are represented by hard-sphere potentials. The reference fluid then represents a

hard-sphere chain (index ’hsc’) fluid, which is well described by Tripathi and Chapman.14

The Helmholtz energy is then

A = Ahsc +
1

2

∑
α

∑
β

∫∫
ρα(r1)ρβ(r2)ghsc

αβ (r1, r2)uper(r12)dr1dr2 . (2.7)

To describe the reference using hard-sphere chains we need to assure that this refer-

ence fluid provides the same Helmholtz energy contribution as the reference part of our

target potential. One option to achieve this is to modify the hard sphere contact distance

by defining an equivalent hard sphere diameter d(T, ρ).15 It is important to note, that the

temperature behavior of d depends on the division of Lennard-Jones potential into refer-

ence and perturbation. Prominent separations were proposed by Barker and Henderson16
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and Weeks, Chandler and Andersen17 and are not shown here.

We will show later that for our method it is not necessary to actually choose a sepa-

ration distance explicitly. For a fairly large temperature range, it is sufficient to assume

a constant hard-sphere diameter.

We write the dimensionless total Helmholtz energy A/kT as

A/kT = Ahsc/kT︸ ︷︷ ︸
6=f(T )

+Aper/kT . (2.8)

In terms of our method, we can simplify this expression and define two functions a

and b that depend on the number of molecules and the volume only.

A/kT = a(N, V ) + b(N, V )/kT , (2.9)

where b(N, V ) is a temperature independent correlation given by the last term of

equation 2.7. The temperature dependence through intramolecular potentials is absorbed

into an ideal gas contribution which can be assumed to be equal for every center-of-mass

distance. Since we are interested in the Helmholtz energy difference, its contribution

vanishes.

To summarize we see that using perturbation theory for a Lennard-Jones system en-

ables us to formulate a very simple temperature dependence of the Helmholtz energy

contributions. This expression assumes a first-order perturbation theory using a constant

equivalent hard sphere diameter.

Up to now, we moved along two different paths. The first one yielded the effective

potential using atomistic MD simulations, the second one provided us with a functional

temperature dependence of the Helmholtz energy for systems with Lennard-Jones inter-

actions. To motivate the connection between these two paths, we consider two distances 1

and 2 of two NCs in vacuum, where both configurations are in equilibrium. We then pull

the centers of mass towards each other. This way, we transfer configuration 1 into config-

uration 2. The work that is needed is the potential of mean force and can be formulated

as Helmholtz energy difference

Φm = A2 − A1 . (2.10)

This expression is a simple case of Jarzynski’s non-equilibrium equality.18,19 It holds

under the condition, that the transfer between configurations happens adiabatically slow.

In other words, every configuration along the path between 1 and 2 has to be in equilibrium

which is exactly what we establish in atomistic MD simulations. We simplify the notation

in 2.10
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Φm(r12) = ∆A(r12) , (2.11)

where r12 denotes the separation distance between centers of mass of the two NCs

analogue to the previous description. Now, we use the derived formula from perturbation

theory 2.8 to formulate the right hand side

Φm(r12)/kT =∆Ahsc(r12)/kT + ∆Aper(r12)/kT (2.12)

=a(r12) + b(r12)/kT . (2.13)

Here, we have made a transition from the variables N, V of equation 2.9 to the sep-

aration distance of two NCs, r12. That is possible, because in equilibrium conditions, a

given r12 uniquely determines the average density field and thus 〈N〉 for a defined V .

a(r12) and b(r12) can be calculated directly from simulations at two different temper-

atures

a(r12) =
Φm(r12, T2)− Φm(r12, T1)

k(T2 − T1)
(2.14)

b(r12) =
T1Φm(r12, T2)− T2Φm(r12, T1)

T1 − T2

. (2.15)

The elegance of this method is that it is not necessary to concern oneself with the

actual decomposition of the target potential or the calculation of the Helmholtz energy

contributions while still being able to utilize the theoretical framework from perturbation

theory to reduce the simulation effort drastically.

2.3 Results

We investigated NCs consisting of 147 and 1415 gold atoms that form the core. Attached

are alkyl thiols with 8 to 12 carbon atoms. For all systems the cores are fully loaded

with ligands.20 For each PMF, the initial separation distance was chosen sufficiently large

to assure that no significant interactions occur between the two NCs. In this region the

PMF is zero. The simulation results were verified in comparison with the results obtained

by Schapotschnikow et al.7

Figure 2.1 presents the PMF from simulations for a system of two NCs consisting of

147 gold atoms with 58 ligands. The ligands consist of alkyl chains with 8 (Figure 2.1a)

and 12 (Figure 2.1b) carbon atoms (notation Au147(SC8)58 and Au147(SC12)58). The

diagrams present the PMF for varying center-of-mass distances for different temperatures.
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Figure 2.1: PMF as function of center of mass separation r12 between two nano crystals
for different temperatures in vacuum. Symbols represent data from constraint MD simu-
lations, dashed lines represent reference PMF and solid lines denote predicted PMF with
the presented method.

Every symbol denotes a total number of 10 simulations. Solid lines represent predicted

potentials using the method presented in section 2.2.2. Dashed lines represent the PMF

used as reference.

The predicted PMF show very good agreement in the whole region of the simulations.

Even though there are minor deviations from simulation data near the minima, all pre-

dicted values lie within error bars. Error bars are exemplarily shown in Figure 2.2. For

the remaining figures we omit error bars for improved clarity. The attractive region of the

potential, where error bars from simulations are small, is predicted with good agreement.

It is noteworthy, that the references should be chosen at temperatures where ligands have

no preferred orientations which occurs in melting and freezing transitions.21,22 Upon freez-

ing, ligands align themselves which leads to rugged potential curves. Such behavior can

be seen in Figure 2.1a for the lowest temperature 300 K. Extrapolated potentials should

therefore be treated with caution since one has to make sure that no phase transition

occurs within the temperature boundaries.

Moving to bigger systems, NCs consisting of 1415 gold atoms and 242 ligands with 12

carbon atoms were simulated. Figure 2.2 shows results for a system of two of these NCs.

Again, the predicted PMF agrees with simulated data.

In order to assess the method for mixed NCs, we investigate a system of strongly

different NC-sizes. Figure 2.3a provides results for the PMF between Au1415(SC12)242

and Au147(SC12)58. In this system, good agreement with simulation data can be observed

up to approximately 4.25 nm which is the distance where perfectly elongated ligands would

start to touch the core of the neighbor NC. In the simulated systems though, bending of

ligands towards regions of lower density starts at slightly higher distances. The position
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Figure 2.2: PMF for Au1415(SC12)242 as function of center of mass separation r12 between
two nano crystals for different temperatures in vacuum.
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(b) Decomposition of the PMF into reference
(a(r12)) and perturbation (b(r12)) contribution.

Figure 2.3: PMF as function of center of mass separation r12 between two nano crystals
of different size (2.3a). According to the theory, the decomposition of the PMF shows a
purely repulsive reference contribution (2.3b).

of the minimum in the PMF is predicted in good agreement at all temperatures.

The proposed method of predicting PMFs is based on a repulsive contribution and an

attractive part to the PMF. Figure 2.3b illustrates both contributions depending on the

NC-distance. The resulting repulsive contribution increases monotonically when reducing

distances, as one would expect. The simulation time of this system was 32 ns for every

distance. A sequence of 61 simulations was conducted to calculate the PMF, which leads

to a simulation time of 1952 ns for a single temperature.

The proposed formalism has here been applied to NCs in vacuum, but should equally

be applicable to treat the PMF for systems with explicit solvent. We would expect the
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repulsive part of the PMF (see Figure 2.3b) to only be mildly changed by a solvent. The

attractive part, in contrast, should strongly be influenced by the presence of a solvent.

2.4 Conclusion

In this article, we propose a simple method to predict the PMF between capped gold NCs

in vacuum at any temperature using data from only two MD simulations. The underlying

dependency of the PMF on the temperature was derived from first-order perturbation

theory where we simplified the reference to be only a linear function of the temperature.

The predicted PMF was compared with results from constraint MD simulations and

showed very good agreement for systems of different sized and shaped NCs.
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Chapter 3

Three-body Effects in Triplets of

Capped Gold Nanocrystals

The content of this chapter is a literal quote of the publication

G. Bauer, N. Gribova, A. Lange, C. Holm and J. Gross, Molecular Physics, 155(9-

12), 2017, 1031-1040

N. Gribova was involved in the simulation setup and performed some of the presented

simulations. A. Lange was involved in the development of the empirical three-body model.

C. Holm had an advisory role in setting up simulations. J. Gross had the role of a daily

supervisor and was involved in editing the manuscript. Additions or deletions compared

to the published work are marked with angular brackets.

Three-body interactions constitute an important part of the effective potential between

nanocrystals (NCs). In this study, molecular dynamics simulations are conducted on gold

NCs capped with alkyl thiol ligands in vacuum. Over the course of a simulation performed

in two- and three-body systems, we measure the forces acting on the cores of the NCs.

These forces are then used to calculate the two- and three-body potentials of mean force

(PMF). The influence of the ligand length, the size of the core, and the temperature are

studied. We find that three-body effects are mainly repulsive. Longer ligand lengths and

bigger core sizes further increase the strength of repulsion. According to our simulation

data, the three-body contribution is independent of the temperature. Furthermore, we

propose an empirical model of the three-body contribution based on the repulsive part of

the two-body PMF.
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3.1 Introduction

Nanocrystals (NCs) are small crystals of metals or semiconductors, often coated with

ligands to prevent aggregation in a solution. They can self-assemble to a wide range of

so-called superstructures. Different superstructures — even if formed from mono disperse

NCs — may have completely different physical properties. The superstructure and thus

the properties depend on the parameters that control the assembling process. It is funda-

mental to understand the assembling process and its parameters when aiming at creating

materials with customized properties. Many studies of the last decades, both experimen-

tal1–5 and theoretical6,7, as well as studies based on computer simulations8–16, reflect the

need for a better understanding of the self-assembling process of NCs.

Because of the large number of atoms that form a NC and because of the slow dy-

namics of the self-assembling process one cannot reproduce a regular lab-experiment on

the formation of superstructures within an atomistic simulation. A common method to

circumvent the problem of too large sizes and too long simulation times is to determine

effective pair potentials from atomistic simulations of two isolated NCs (referred to as

two-body system). The resulting potential of mean force (PMF) represents each NC as

a single interaction site, allowing many-particle simulations that can reach much longer

time scales. However, there are phenomena that cannot be explained by two-body inter-

actions alone. For example, from experiments5 it is known that inter-particle distances in

superstructures are different for varying ligand lengths, yet simulations11 of two-body sys-

tems had shown that the equilibrium distance does not depend on the ligand length. One

possible explanation of these findings is the strong influence of three-body or in general –

multi-body – interactions. Schapotschnikow et al.13 investigated the effect of the ligand

length on the effective three-body potential of gold NCs in vacuum. In their simulations,

they considered three NCs on the corners of equilateral triangles and evaluated the effect

of three-body interactions on the two-body potential. They found that the corrected two-

body potentials have higher equilibrium distances and higher energy minima. According

to their observations, the alignment of three NCs into a chain is energetically favored over

a more compact structure. They argue that a triangular configuration has a disadvantage

due to areas of high ligand density or an interpenetration of overlapping ligand spheres.

Also, they present the so-called Overlap Cone Model (OCM) which is a comparably sim-

ple geometric model to estimate the equilibrium distance between multiple NCs based on

idealized ligand packing.

Very recently, Boles and Talapin investigated the role of ligand arrangement concerning

equilibrium distances within NC superstructures.17 They argue, that many-body effects

arise due to deformations of the ligand layers, an effect that is not captured within the

OCM. The degree of deformation depends on the ratio of ligand length and core size. Also
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the total number of neighbors plays a determining role towards the equilibrium distance.

These studies clearly show that multi-body effects are an important factor concerning

NC systems. Similar to the simulations of Schapotschnikow et al., we present a new

method for obtaining the three-body PMF of gold NCs in vacuum. Furthermore, we

suggest how to parameterize the three-body correction from the two-body PMF which

can then be used within coarse grained simulations in the spirit of conventional three-

body potentials. We discuss, how parameters defining shape and size of NCs including the

ligand layer as well as the temperature affect the PMF. A detailed study of the formation

and stability of superstructures including three-body effects is thus possible and will be

subject of future examinations.

3.2 Methods

In this section we present the general methods of our study. We start with a molecular

description of the NCs. Then, details of the simulation workflow as well as the simulation

parameters are presented. We give a short recapitulation of how two-body PMF are

obtained and expand the theory to systems with three NCs.

3.2.1 NC model

The NCs studied here consist of a gold core and a capping layer of alkyl thiol ligands

(cf. Fig. 3.1). They are defined by three parameters: the core size (i.e., the number

of gold atoms or the core radius or diameter, rc and dc respectively), the number of

ligands and the alkyl type, which can either be specified by the number of carbons or

the ligand length (denoted by l, the length of a ligand when all bond angles are at their

equilibrium value). In literature, the capping layer is often described as spherical corona

and interactions between NCs arise when their coronae interpenetrate.1013

The gold cores are modeled as rigid icosahedrons formed by a well-defined number

of gold atoms. Determining stable structures of the gold cores is still an active field of

research. We chose icosahedral structures because they were found to be stable both, in

experiments18 and in simulations19 for a wide range of core sizes.

In our study, the cores consist of 147 (dc ≈ 1.8 nm) or 1415 gold atoms (dc ≈ 3.7 nm).

The number of ligands adsorbed onto the gold core is maximal; the onset of saturation

depends on the solvent and the temperature. Throughout the paper, we adopt the no-

tation of Schapotschnikow et al.11 abbreviating Au1415(SC12)242, which refers to a core

consisting of 1415 gold atoms with 242 1-dodecanethiol ligands (Fig. 3.1).

To describe the interactions between the ligands and between the ligands and the gold

core we use the united atoms model where the chemical groups SH, CH2, Au and CH3 are
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Figure 3.1: United atom and schematic representation of an Au1415(SC12)242 NC at tem-
perature T = 350 K (molten ligand layer). Brown spheres represent gold atoms, yellow
spheres the thiol head group and cyan lines the carbon chains. From left to right: gold core
with thiol head groups, full NC cut in half, full NC and schematic spherical representation
in terms of core diameter and ligand length.

Table 3.1: Lennard-Jones force field parameters for ligand-ligand as well as ligand-gold
interactions used in this study. All parameters were taken from Ref.12

εij[K] CH3 CH2 SH Au
CH3 108 78 117 108
CH2 78 56 84 88
SH 117 84 126 2795
Au 108 88 2795 -

σij[Å] CH3 CH2 SH Au
CH3 3.76 3.86 4.11 3.54
CH2 3.86 3.96 4.21 3.54
SH 4.11 4.21 4.45 2.65
Au 3.54 3.54 2.65 -

represented as single interaction sites. Intermolecular interactions between said groups

are modeled via a truncated (rc = 12.0 Å) and shifted Lennard-Jones potential. The force

field parameters are taken from Pool et al. (see Table 3.1). Since we model the gold cores

as rigid, we do not include interactions between the gold atoms. Consequently, there are

no interactions between the gold cores. These interactions are small compared to the

ligand interactions and therefore we do not consider them which is an approximation that

is valid as long as the capping layer is intact, with thiols staying on the core surface during

the whole simulation.

Our simulations are performed within a certain temperature range — between 350

K and 450 K. It is noteworthy that, due to the large surface-to-volume ratios, small

cores (147 gold atoms) may undergo a melting transition at those temperatures, which,

according to the studies of Wang and authors20, results in a structural transition from

icosahedral to spherical shapes. We discuss the role of the core shape with respect to the
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PMF in the following section, but we note that a rigid model for the gold core formally

excludes any melting transitions.

3.2.2 Simulation details

The PMF is obtained by integration over the forces between the NCs evaluated at different

center of mass distances and is therefore a function of the core-to-core separation distance.

There are different simulation methods for computing the PMF. For systems of gold NCs, a

comparison of methods is given by Schapotschnikow et. al.11 For a more general discussion

we refer to the work of Trzesniak et. al.21 In the following we give a brief overview.

An unconstrained method, such as umbrella sampling22, controls the separation dis-

tance of the NCs by introducing a biasing function acting on the NCs’ centers of mass.

Often, the whole region of interest (the whole range of separation distances) is divided

in so-called windows. That way, each window can be simulated separately and the whole

region can be restrained to small ranges.23

Monte Carlo methods lead to comparably simple implementations for constraint simu-

lations. In constraint simulations, the distance of the NCs is not varied (within a sampling

period). Within the Monte Carlo framework, only the configurational degree of freedom is

sampled. Configurations are generated via translational displacement and regrow moves

of the ligands via configurational bias methods24 while the whole crystal is able to rotate

around the fixed center of mass position of the core. In MD simulations one enforces

(holonomic) constraints through a set of Lagrange multipliers that must be solved during

the integration. Two widely used methods for determining the Lagrange multipliers by

iteration are the SHAKE25 and the RATTLE26 algorithms, which are both implemented

in many simulation packages. An alternative MD method is steered MD. The basic idea

of steered MD is the transformation of the system between two states by performing work

on the system. It is a non-equilibrium method, where the work performed on the system

is not reversible. The relation between the performed work and the free energy between

the two states of the system is given by Jarzynski’s equality.27,28 For the system of this

study, one could perform simulations where the NCs are pulled towards each other and

the work is sampled over the separation distance. A very good overview of this method

is given in Ref.29.

We now describe the method used to obtain the three-body PMF in this study. The

general work flow is comparable to that of the two-body system described in our earlier

work.30 All of our simulations are performed in a NVT ensemble with the GROMACS

package, version 4.6.31 The setup of a simulation sequence consists of three steps.

First, we create a NC-triplet configuration by manually placing three NCs into a

simulation box. In our work flow, we set NC 1 and NC 2 to a desired center of mass

distance and place the third NC so that the corresponding two-body PMF with NC 1
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and NC 2 are essentially zero [see chapter 2.3].We will refer to the distance, where the

two-body PMF is zero as rij,0. The triplet is arranged in the center of the box, and the

size of the box is chosen so that all distances to periodic images are greater or equal

than rij,0. The initial orientation of the NCs is obtained by random rotations. Only after

performing these rotations the NCs are placed into the simulation box.

The second step is an energy minimization of the configuration conducted with a

steepest descent algorithm.31 Furthermore, we perform short (2 ns) MD runs in the NVT

ensemble to equilibrate the system. In the equilibrated configuration we then reduce the

center of mass distance between the gold cores of NC 2 and NC 3. This is done manually

by shifting all positions of NC 3 along the connecting vector while the orientation of all

NCs and the box stays the same (without rotation when shifting). We then relax the

configuration again using energy minimization and short equilibration. The procedure

is repeated for multiple distances, and the resulting configurations are used as starting

configurations for the production runs.

The last step is the actual MD simulation (in a NVT ensemble). As the starting con-

figurations are created beforehand, all simulations (for every distance) can be performed

by parallel computation (the number of distances equals the number of simulations). For

the production simulation, we use a leap-frog stochastic dynamics integrator which also

acts as a thermostat.31 We use the inverse friction constant τt = 2 ps and the time step

∆t = 0.002 ps in our simulations, in accordance to the GROMACS manual. A simulation

run consists of 5 ns for small systems (Au147) and 10 ns for large systems (Au1415). We

capture the forces within 5 independent runs (one run or sequence consists of steps one

to three) and determine the mean value at every distance. The PMF is then calculated

via integration of the mean values.

In our simulations, the center of mass distances between the three gold cores are kept

constant by freezing the gold atoms. In doing so, we constrain their positions and their

momenta so that, effectively, the equations of motion are only solved for the ligands. Such

an approach is justified by the following assumptions: (a) rotations of the gold cores hap-

pen on a timescale larger than the simulation time; in practice, rotations are inhibited due

to steric interactions of ligands at small separation distances.11 (b) the relative orientation

of the two icosahedral cores does not influence the resulting PMF. In fact, the work of

Tay and Bresme14 suggests that — at least for small ratios of core diameter over ligand

length — the shape does not influence the NC-NC interaction potential. This simulation

method was tested in earlier work [see chapter 2] for two-body systems and led to similar

results compared to those in Ref.11
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Figure 3.2: Schematic representation of a NC triplet. The configuration within the sim-
ulation setup is characterized by the separation distances r12, r23, and the angle θ2.

3.2.3 Three-body configurations and PMF from forces

In a system with two NCs (denoted ’1’ and ’2’) the two-body PMF, φ2b, is calculated by

integration of the mean force ~F 2b
m acting along the separation distance r12 = |~r2 − ~r1|,32

φ2b(r12) =

∞∫
r12

−~F 2b
m · ~e12dr′12 , (3.1)

where ~e12 = ~r12/r
′
12 is the unit vector connecting the centers of mass of the two NCs. The

PMF is a function of the center of mass separation distance r12. To obtain φ2b(r12) from

simulations, we fix two NCs at different separation distances and sample the forces acting

on their centers of mass. The ensemble average of the mean force from simulations is then

integrated according to Eq. (3.1).

We also introduce a third NC (denoted ’3’). To describe the configuration of three

NCs one needs two additional parameters: two separation distances, two angles, or a com-

bination thereof. We start employing the first alternative (i.e., we utilize three separation

distances all together).

The total force acting on ’3’ in a NC triplet is given by the sum of two-body forces

and a three-body force,
~F3 = ~F 2b

3,1 + ~F 2b
3,2 + ~F 3b

3,12 . (3.2)
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~F 2b
3,1 and ~F 2b

3,2 denote the two-body forces on ’3’ induced by ’1’ and ’2’, respectively. ~F 3b
3,12

denotes the three-body force on ’3’ in the presence of ’1’ and ’2’. The three-body force

is given by the negative gradient of the three-body potential, φ3b(r12, r13, r23). Note that

the three-body potential as we defined it above is a ’correction’ potential. It does not

describe the total interaction energy of the triplet configuration, but only an additive

three-body contribution (in addition to the pair potentials). In the following, we refer to
~F 3b

3,12 and φ3b(r12, r13, r23) as three-body force and potential, respectively while ~F 3b
3 and

its integration, φ3, we refer to as total three-body force and potential, respectively. By

applying the chain rule this force can be represented in terms of the two forces, ~F31,2

and ~F32,1, on ’3’ (exerted by ’1’ in presence of ’2’ and exerted by ’2’ in presence of ’1’,

respectively), according to

~F 3b
3,12 = −∂φ

3b

∂~r3

(3.3)

= −∂r13

∂~r3

∂φ3b

∂r13

− ∂r23

∂~r3

∂φ3b

∂r23

(3.4)

= −~e13
∂φ3b

∂r13

− ~e23
∂φ3b

∂r23

(3.5)

= ~F31,2 + ~F32,1 , (3.6)

where ~e13 denotes the unit vector between the centers of mass of ’1’ and ’3’. Finally, the

three-body potential is obtained by integration of Eq. (3.3),

φ3b =

∞∫
~r3

−~F 3b
3,12(~s) d~s . (3.7)

Conceptually, the three-body case is very similar to the two-body case. However,

as configurations are determined by three parameters, the computational effort largely

increases.

In our simulations, we characterize the configuration utilizing another set of param-

eters. We employ the center of mass separation distances, r12, r23, and the angle θ2

(cf. Fig. 3.2). During a simulation run, θ2 and ~r12 are constant. As in the two-body case,

we achieve this by freezing the cores of the NCs. Successively, ’3’ approaches ’1’ and ’2’

within a sequence of simulations. The three-body force on ’3’ is given by

~F 3b
3,12(r23; r12, θ2) = − ∂r23

∂~r3

∂φ3b

∂r23

∣∣∣∣
r12,θ2

(3.8)

= −~e23
∂φ3b

∂r23

∣∣∣∣
r12,θ2

, (3.9)
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where ’3’ moves along the separation distance r23 while r12 and θ2 are kept constant; the

partial derivatives with respect to r12 and θ2 thus vanish. The integration is performed

along d~r23 = d(~e23|~r23|) = ~e23dr23,

φ3b(r23; r12, θ2) =

∫ ∞
r23

−~F 3b
3,12 · ~e23dr′23 . (3.10)

~F 3b
3,12 is the force caused by the three-body potential. This force on ’3’ is not directly

accessible from simulations as one can only calculate the total force ~F3 including two-body

forces. Therefore, we subtract the two-body forces obtained in simulations of two-body

systems,30

φ3b =

∫ ∞
r23

−
(
~F3 − ~F 2b

13 − ~F 2b
23

)
· ~e23dr′23 (3.11)

=

∫ ∞
r23

−~F3 · ~e23dr′23 (3.12)

+

∫ ∞
r23

~F 2b
23 · ~e23dr′23 (3.13)

+

∫ ∞
r23

~F 2b
13 · ~e23dr′23 . (3.14)

The integrand in Eq. (3.11) is the three-body contribution projected onto the connecting

vector ~r23. After calculating the total three-body force, two-body forces are subtracted

and the resulting force is projected onto the direction given by ~r23. Then the projected

force is integrated.

A brief summary of our methodology reads as follows. The two- and total three-body

forces are obtained from sequences of simulations. The center of mass positions of the

NC cores are constraint by freezing the gold atoms. The three-body PMF is calculated

and integrated according to Eq. (3.11). The whole procedure is repeated for different

configurations (values of r12 and θ2) and NC shapes (core size and ligand length) as well

as temperatures.

3.3 Results and discussion

We start with the two-body PMF. In vacuum, the PMF can be divided into two parts:

a short-range repulsion and a long-range attraction. When increasing the temperature,

we observe a shift of the equilibrium distance towards larger separation distances. The

depth of the potential well decreases for higher temperatures, leading to lower slopes of

the attractive and repulsive regions, as Fig. 3.3 (a) shows. However, when changing the

ligand length we do not observe a change of the equilibrium distance (Fig. 3.3 (b)). The
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range of the potential increases towards longer ligands while the slopes of the attractive

and repulsive regions are similar. When comparing NCs of different core size we find

that bigger cores lead to stronger repulsive potentials while the range of the potential is

smaller (in dimensionless scale).
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Figure 3.3: Potentials of mean force between two NCs in vacuum. Here we consider
Au147(SC8)58. The left-hand side panel shows the PMFs for different temperatures. With
increasing temperature (by 50 K), the equilibrium distance of the potential increases while
the steepness of the attractive and repulsive regions decreases. At the lowest tempera-
ture (300 K) the chains of the NC begin to freeze, leading to rugged PMF curves. The
right-hand side panel shows the PMF for different ligand lengths and different core sizes.
Increasing the ligand chain lengths lead to longer ranged PMFs yet similar equilibrium
distances.

For the three-body systems, we explain the generation of the potential curves using

the example in Figure 3.4, which shows simulation data for a triplet of Au147(SC12)58

at T = 350 K. The separation distance r23 (abscissa) of the NCs is plotted against

the PMF (ordinate). Every symbol represents a particular triplet configuration. Symbols

connected by a line represent a specific separation distance between two NCs and a specific

angle at which the third NC approaches the two NCs. The distance between the two

NCs affects the strength of the three-body interaction. The corresponding relationship

is illustrated in Figure 3.4a, where different curves represent different values of r12 at

constant angle θ2 = 60 ◦. For large distances r12, we observe small and purely repulsive

potentials. For smaller distances r12, we observe weak attractive potentials and a steeper

profile, which lead to stronger repulsion for small r23. A similar relationship can be

observed for the approaching angle θ2. For small angles (θ2 = 60 ◦), we observe mildly

attractive and steeply repulsive profiles. For larger angles (θ2 = 90 ◦), the PMF decreases,

and for θ2 = 120 ◦ we see a non-vanishing contribution only at very small distances r23

(cf. Fig. 3.4b).

We can now examine the influence of NC core size and of ligand length on the three-
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(a) (b)

Figure 3.4: Triplets of Au147(SC12)58 simulated for different angles θ2 (= 60◦ left, = 60◦,
= 90◦ and = 120◦ right) at T = 350 K. Different curves represent varying center of mass
distances r12. By increasing r12 or the angle θ2 one decreases the repulsive three-body
energy. For θ2 = 60 ◦ and r23 = 2.50 nm, the three NCs form equilateral triangle. In
this configuration, the contribution of three-body potential to the potential energy of the
triplet is almost 30 %. (For the two-body system, the energy at the equilibrium distance
r12 = 2.50 nm reads φeq = −225 kJ/mol.)

body potential. Figure 3.5 shows the integrated total force and the three-body PMF.

Considered are two NCs of different size covered by equal ligands. The dimensionless

separation distances on the abscissa are scaled as multiples of the core size. One observes

that the scaled range of the potential is smaller for the NCs with the larger core — a

behavior similar to the two-body system. As opposed to the two-body PMF, however, the

resulting three-body PMF has the same magnitude. Consequently, three-body effects are

stronger in a system with larger l
dc

ratio, because their two-body PMFs are comparably

smaller. The influence of the ligand length is shown in Fig. 3.6. Shorter ligands (smaller
l
dc

ratio) lead to weaker three-body effects.

We continue exploring how the three-body potentials depend on the configuration

(r12, r23, θ2) of the three NCs. At separation distances smaller than the core diameter plus

two times the length of the ligands, r12 < dc+2l, the capping layers start to interpenetrate.

We observe that the coronae of the NCs remain almost spherical (ligands pack themselves

without bending) until distances smaller than the core diameter plus the length of the

ligands, r12 < dc + l. Starting at this distance, ligands heavily bend away from the

connecting axis, as Fig. 3.7 shows. For small angles (here 60 degrees), we observe that

ligands form bundles in the region enclosed by the NCs. Going to even more compact

configurations (decreasing r12), ligands are pressed out of the enclosed region between the

NCs completely as can be seen in the rightmost panel of Fig. 3.7.

Fig. 3.8 shows that three-body potentials lead to higher equilibrium distances than

can be explained by only two-body potentials. We analyse the PMF by decomposing the
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Figure 3.5: Three-body potential (solid lines) and total integrated forces (dashed lines)
for two systems with different core size plotted over the separation distance divided by the
core size (dc,1415 = 3.7 nm, dc,147 = 1.8 nm). For both potentials, the angle is θ2 = 60 ◦ and
the separation distances between ’1’ and ’2’ are set to the two-body equilibrium distance
(r12 = req). Like in two-body systems, bigger core sizes reduce the range of the PMF.
The three-body PMF shows a steep repulsion.

different contributions. The solid curve in Fig. 3.8 represents the PMF, φ3b. Symbols

are the projected and integrated forces along ~r23 (denoted by the index “,23”). The

integrated total forces on NC3, φ3,23 (including the two-body contributions, according to

Eq. (3.10)), are given by squares. The integrated two-body forces (the two-body PMFs)

between NC2 and NC3 are given by diamonds and between NC1 and NC3 by triangles.

This decomposition shows that φ3 and the two-body PMF between NC1 and NC 3, φ2b
13,23,

start attaining finite values at the same distance while the two-body PMF between NC2

and NC3 (which is evaluated along ~r23, hence no projection), φ2b
23, remains zero. This

leads to an effective attraction as φ3,23 has a steeper slope.

We investigated the PMF for different temperatures and had an important finding.

Results for simulations at T = 350 K and T = 450 K are shown in Figure 3.9. The results

confirm that the three-body PMF φ3b is independent of the temperature within the range

to good approximation. We note, that the integrated total force strongly varies with

temperature. But this temperature dependence is due to the two-body contributions,

according to Eq. (3.11), whereas the φ3b contribution does not vary with temperature.

A temperature independent three-body contribution is a great simplification in modeling

various stable forms of NC-superstructures, because it makes atomistic molecular simu-

lations of three-NC configurations for every temperature dispensable. We can make an

attempt to provide rational for the nearly temperature independent three-body correc-

tions. The three-body corrections are a result of increased ligand-density between three

particles approaching one another. One can consider the three-body corrections a result
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Figure 3.6: PMFs for NCs with different ligand lengths for the configuration r12 = 2.25 nm
and different angles. Shorter ligands (SC8) lead to smaller and shorter ranged contribu-
tions to the three-body PMF. For θ2 = 90 ◦ the PMF for the small ligands deviates from
zero only for small distances.

of ligand structure. Like other structural properties, say the radial distribution function

or three-particle distribution functions in simple fluids, the structure of the ligand cloud

at sufficiently high density is weakly temperature dependent.

3.4 Parameterization of the three-body PMF

The determination of three-body potentials from atomistic simulations is a tedious task

especially if one is also interested in covering the dependence of the different (molecular)

parameters. We thus strive for a simple analytical model that represents the three-body

PMF φ3b.

We found that the three-body PMF is dominantly repulsive. This observation is

important not only because it relaxes us from the need to determine three-body potentials

for every temperature, but also because it guides us in proposing an empirical model for

the three-body PMF. We assume the three-body PMF term scales with the repulsive

part of the two-body PMF, φ2b
rep. In our previous work [see chapter 2], we proposed

to decompose the two-body potentials φ2b into a repulsive part φ2b
rep and an attractive

portion φ2b
att, by applying a first order expansion of the Helmholtz energy with respect to

the inverse temperature. For our three-body model, we propose a symmetric combination

of those repulsive contributions,
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Figure 3.7: The deformation of the ligand layer increases when NC3 approaches the other
two (fixed) NCs. For clarity, the whole configuration is sliced at the center of mass
position of the cores and ligands of NC1 and NC2 are faded out. All snapshots are taken
from simulations at T = 350 K and r12 = 5.50 nm. From left to right, the distance r23 is
5.00 nm, 4.50 nm, 4.00 nm respectively.

φ3b = A · sin θ1 sin θ2 sin θ3·

×
(
φ2b
rep(r12)φ2b

rep(r13)φ2b
rep(r23)

)α
. (3.15)

Parameters A and α can be determined from three-body simulations. Because with

this ansatz, Eq. (3.15), we treat the three-body PMF as being solely repulsive, we are not

able to reproduce the small attractive contributions we observed within the simulations.

The simulation results presented above were used to determine the model parameters,

A and α. They were determined from the simulated PMF curves using a least squares

method. Some deviation of the model, Eq. (3.15), from the three-body PMF from molec-

ular simulations becomes apparent in the r23-range of 2.5 nm to 2.9 nm. The non-smooth

course of the model is due to the non-smooth repulsive two-body potential φ2b
rep. Given

the wide range of different (r12, r23, θ2)-configurations covered in Fig. 3.10, however, we

assess the agreement of the model with the molecular simulation data as good. We note

also, that the two parameters A and α can be determined from two simulations. We

observed that the results of Eq. (3.15) (and the values of A and α) are not overly sensitive

to the choice of the selected φ3b(rij)-curve for θ2 = 60◦.

3.5 Conclusion

In this work we analysed the existence and influence of three-body effects in the system

of capped gold NCs in vacuum. Our study shows that the three-body effects are mainly
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Figure 3.8: Contributions to the three-body PMF for the configuration r12 = 2.25 nm, θ2 =
60 ◦ at T = 350 K. The black solid curve without symbols represents the resulting three-
body PMF (i.e. the result of equation (3.11)) while the magenta curve with squares is the
result of the integration of the total force measured in the simulation. The red(triangle)
and blue(diamond) lines are the integrated two-body forces, which we subtract from the
total force to get the three-body force. The second subscript ’23’ indicates that the forces
from simulations are projected onto ~r23. There is a small region (r12 > 4.50 nm) where
we observe the three-body PMF to be attractive.

repulsive and arise for short separation distances. We further find that the magnitude

scales with the ligand length and size of the NC core while it is independent of the

temperature. A model to describe the PMF of NC triplets was presented. It is based

on a combination of repulsive potentials which can be extracted from two-body PMF.

Additionally, two model parameters have to be determined by three-body simulations.

To obtain the three-body PMF, we fixed three NCs in appropriate arrangements and

measured the forces acting on their centers-of-mass. We then subtracted two-body PMF

to obtain a correction potential which can be used to describe triplet configurations in

coarse-grained simulations in addition to two-body potentials. We hope that our findings

will facilitate the coarse-grained simulations of superstructure assembly with effective two-

and three-body potentials.

The present study was limited to monodisperse NCs and we did not discuss the influ-

ence of a solvent as well as PMFs between different sized NCs, but the simulation method

can be applied to such systems analogously. Solvents can strongly affect the PMF, and

consequently the resulting superstructure and simulations of NCs in vacuum only provide

a scenario for very poor solvent conditions. Simulations with explicit solvent, however,

are computationally more demanding and the number of parameters grow (solvent type,

density) while implicit solvent simulations lack information such as the arrangement of

solvent molecules around NCs. Simulations for binary PMF in vacuum show to be promis-

46



Figure 3.9: Three-body potentials of an Au147(SC8)58 triplet for two different tempera-
tures. The PMF is temperature independent. The integrated total forces show similar
temperature behavior like the two body system (not shown). Subtracting the two-body
forces eliminates this dependence.

ing in that the two-body PMF can be obtained quite simply from two-body PMFs of pure

components via mixing rules.
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Figure 3.10: Three-body PMF from atomistic simulations (symbols) and modeled via
equation (3.15) (solid lines) for the system Au147(SC12)58 at T = 350 K for varying
angles (3.10a) and distances (for θ2 = 60◦ between NC1 and NC2 (3.10b). To calculate
the model parameters, data from two simulations were used. Model parameters: A =
1.0339 · 10−7 kJ/mol, α = 1.32297.
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Chapter 4

Phase Equilibria of Solid and Fluid

Phases from Molecular Dynamics

Simulations with Equilibrium and

Nonequilibrium Free Energy

Methods

The content of this chapter is a literal quote of the publication

G. Bauer and J. Gross, Journal of Chemical Theory and Computation, 15 (6), 2019,

3778-3792

Additions or deletions compared to the published work are marked with angular brackets.

In this work we present a methodology to determine phase coexistence lines for atomic

and rigid molecular systems with an emphasis on solid-fluid and on solid-solid equilibria.

Phase coexistence points are found by computing the absolute free energy for each candi-

date phase separately. For solid phases a combination of the extended Einstein crystal and

the Einstein molecule method is presented which constitutes a convenient way to compute

the absolute free energy with fixed center of mass. We compare results from equilibrium

methods – thermodynamic integration and reweighting using the multistate Bennett ac-

ceptance ratio estimator (MBAR) – with simulations using a non-equilibrium method and

discuss their advantages and disadvantages. Once absolute free energies of different phases

are available, they are combined with simulations performed in the isothermal isobaric

ensemble and MBAR which enables efficient, iterative tracing of coexistence lines. The

method is applicable to both liquid-solid as well as solid-solid transitions and is compara-

bly simple and convenient to apply since the same method (MBAR) is used to compute
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free energies and to trace the coexistence line. Furthermore, statistical uncertainties can

readily be computed in a transparent manner. We apply the method to an atomic solid

(fcc argon) as well as small molecular systems (methanol and water) using the LAMMPS

simulation package. Our study shows that all methods can be used to reliably compute

the absolute free energy of solid phases while MBAR is the most flexible method with high

statistical efficiency. We find the non-equilibrium method is an attractive choice since it

is simple to setup and to post-process and is, hence, less prone to errors. The presented

workflow provides a flexible, efficient and robust way to compute phase diagrams using

openly available software.
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4.1 Introduction

The knowledge of phase diagrams is of great interest for separation processes, pharmacol-

ogy and material design. In the last decades, the molecular simulation community made

significant advances in computing phase diagrams of vapor and liquid phases.1 Today,

there are established methodologies to compute vapor-liquid and liquid-liquid equilibria

of pure substances as well as multi-component mixtures, namely Gibbs ensemble Monte

Carlo, grand canonical Monte Carlo with multiple histogram reweighting as well as the

Grand equilibrium method and various thermodynamic integration techniques.1–7 In the

field of molecular simulations, phase diagrams are used not only to model and predict

quantities such as phase transition temperatures, pressures and coexistence properties

such as densities and enthalpies but also as a means to evaluate and improve force fields

via parameterization, because phase behavior is very sensitive to the underlying inter-

molecular potentials.4 In comparison to the numerous studies of phase diagrams includ-

ing liquid and vapor phases, studies of phase diagrams including crystalline solids are

comparably scarce.8,9

There are multiple reasons why this is the case. Prior to the computation of a phase

diagram the researcher has to have knowledge about the candidate crystal structure (or

multiple structures) of the components of interest. By itself, the prediction of crystal

structures is a difficult task and a vibrant field of research. Perfect crystals, to which

we simply refer to as solids, consist of periodic repetitions of (often non orthogonal)

unit cells. In comparison to methods used to compute vapor-liquid equilibria, this long

range periodicity induces an inherent difficulty in constructing a reversible path between

a solid and liquid phase. Also, since solids contain multiples of unit cells, the number

of molecules cannot be arbitrarily chosen by the researcher. When comparing two solid

structures, especially for small numbers of unit cells, the number of molecules will usually

be different and it is not easily possible to directly connect systems of different size.

Computational methodologies for phase diagrams including solids (knowing the struc-

ture) can be divided into two steps, (1) finding initial phase coexistence and (2) tracing

the coexistence line starting from the initial point. Despite the above mentioned diffi-

culties there exist a great number of methods to approach the first task. These methods

can be further divided into approaches relying on the computation of free energies which

are used to explicitly solve phase coexistence conditions (equal temperature, pressure and

chemical potential in both phases) using reference state models10–13 or using simulations

where a direct path between both phases is traversed14–17 and direct simulation methods

where both phases are brought into contact within a single simulation. For a comprehen-

sive overview of literature concerning free energy methods, we refer to the review of Vega

and Sanz.8 For the second task, i.e. tracing the coexistence line, mostly the Gibbs-Duhem
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integration method as well as histogram reweighting methods are used.18–21

For both the initial coexistence point as well as the coexistence line, multiple separate

simulations and analysis methods are needed and while there exist established methods

for each step, combining all steps is in practice not always an easy task. In this study

we alleviate these difficulties by choosing a unified simulation and analysis method for all

steps for computing coexistence lines. The proposed method fulfills the following criteria

for determining phase coexistence properties: First, the method is applicable to both

solid-fluid as well as solid-solid equilibria. Second, the method works for both mono-

atomic crystals as well as molecular crystals. Third, the method can be applied with

existing, freely available simulation software without the need to modify the codes. And

finally, the analysis method predicts statistical uncertainties in a robust way. Statistical

uncertainties play an important role in this field of research, because small changes to

free energy differences between phases can lead to very pronounced shifts in the resulting

phase coexistence conditions, so that precision and accuracy of the methods have to be

analyzed carefully.

We use the multistate Bennett acceptance ratio (MBAR) estimator to compute free

energy differences for the reference states and also to efficiently trace phase coexistence

lines.22,23 Like histogram reweighting, MBAR is used to combine data from multiple sim-

ulations to determine free energies continually in parameter space but without the need

to bin data and with comparably higher accuracy. As noted before, histogram reweight-

ing methods were successfully used to compute phase diagrams for solids. Eike et al.

used histogram reweighting to find initial solid-liquid coexistence points by combining

data from simulations in the NpT ensemble with free energies from constrained fluid λ-

integrations17,21 which they then used in conjunction with Gibbs-Duhem integration to

trace the phase coexistence line. Chang et al. utilized reweighting techniques to directly

trace phase coexistence lines by combining absolute free energies from Monte-Carlo sim-

ulations in the extended ensemble with data from NpT simulations.19,20 Only recently,

Schieber et al. used MBAR to study the phase diagram of benzene polymorphs.24 In their

work, they construct the free energy difference between two polymorphs as a function of

temperature and pressure. This is done by combining data from separate simulations

of the respective polymorphs of interest with so called pseudo-supercritical path17,21,25

simulations to compute the free energy difference between the polymorphs at the same

temperature and pressure.

In this study, we first compute the absolute free energies of candidate phases at a ref-

erence state (which can be different for both phases). For solid phases, we propose a com-

bination of the extended Einstein crystal26 and the Einstein molecule method12,27–29 both

of which are modifications of the method originally published by Frenkel and Ladd.10 We

conduct a comprehensive study of different ways to evaluate free energy differences using
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several equilibrium and a non-equilibrium methods. Free energies at reference states are

combined with data from NpT simulations to find the point of phase coexistence. Using

this initial point, we predict coexistence for new states where no simulation data is present

by reweighting existing data using MBAR. In an iterative fashion, short NpT runs at the

new states are performed to improve initial estimates. We demonstrate the methods for

argon (i.e. a Lennard-Jones fluid), as a widely studied system that is simple to reproduce,

as well as for methanol as modeled using the united-atom OPLS (OPLS-UA) force field

(with two solid phases), and for an ice phase of the TIP4P/2005 water model for which

data is available in literature.27,29,30 While the method is presented for rigid molecules, the

work of Li et al. suggests that it should be also applicable to flexible molecules without

modification assuming that free energy contributions due to intramolecular configurations

are identical in all phases.26 The emphasis of this work is to provide (1) a robust free en-

ergy approach to compute phase coexistence lines with (2) a transparent discussion of

possible free energy methods and associated statistical uncertainties, (3) accompanied

with detailed input and post-processing files. In that way, our study is meant to serve as

valuable source for both, experienced practitioners but more importantly novices in this

exciting field.

4.2 Methods

Two phases are in thermodynamic equilibrium if their temperatures, pressures and chem-

ical potentials are equal. Temperature and pressure are control variables that can con-

veniently be imposed on a system so that the task of determining phase coexistence in

molecular simulations really requires computing and equating the chemical potential in

all trial phases. We start with a presentation of the methods we use to calculate free

energies with a focus on the free energy of solid phases. Detailed information about the

free energy path as well as different simulation and evaluation methods is given. Since the

free energies are usually not determined at the phase coexistence state, we then discuss

how phase coexistence is found by combining our results for the reference states with

additional simulations in the isobaric-isothermal ensemble. Using an initial phase coex-

istence point, we explain how the coexistence line can be iteratively traversed combining

free energy estimates utilizing MBAR in conjunction with additional short simulations.

4.2.1 Absolute free energy of the solid phase

We propose to compute the absolute free energy of a solid by combining the extended

Einstein crystal and the Einstein molecule method.12,26 The extended Einstein crystal

method makes use of a reference state, namely a system of “central atoms“ tethered to
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their respective lattice positions with a harmonic potential. The central atoms can be

single atoms or virtual sites of each molecule. In this reference state, no intermolecular

interactions are present and – for rigid molecules – the free energy can be calculated

analytically because each molecule resembles an independent harmonic oscillator. The

extended Einstein crystal method entails a thermodynamic path from this reference state

to the solid of interest in multiple steps. The first step along the pathway is to restrain

the orientation of the molecules by gradually tethering additional atoms of the molecules

to their lattice positions. The path to the solid of interest is completed by turning on

intermolecular interactions and switching off the tethering potential. Different from the

original Einstein crystal method of Frenkel and Ladd10, the system’s center-of-mass is

not constrained along the path. The center-of-mass constraint, originally introduced to

suppress divergence along the integration path, is not needed within Molecular Dynamics

simulations given that (a) the systems’ initial momentum is zero and (b) the propagation

algorithm does not change the systems’ momentum.26 Eliminating the center-of-mass con-

straint greatly reduces the complexity to compute the free energy of the solid, especially

for rigid molecules. However, by introducing a harmonic tethering potential using the

same tether constant for each atom type the second assumption, (b), may not always

hold true.

We modify the extended Einstein crystal approach by introducing the center-of-mass

restraint of the Einstein molecule method.12 In the Einstein molecule method, a single

atom of one of the molecules, called the “carrier“, is frozen along the free energy path

which suppresses translational movement of the crystal as a whole. This way of restraining

the center-of-mass, as compared to a conventional removal of translation, is advantageous

because the contribution to the free energy due to freezing the carrier is easy to compute.

In our view, a shortcoming of the original Einstein molecule method is the reference state

in which all molecules are fully tethered, i.e. their translation as well as their orientation is

restrained. To compute the free energy of this reference state, integration over the phase

space of the tethered molecules is necessary, which can be accomplished e.g. using Monte-

Carlo integration. To do this efficiently however, comparably large tether constants are

needed which then makes the following free energy computations more cumbersome. As

such, we prefer the reference state of the extended Einstein crystal method in combination

with the Einstein molecule method to restrain the center-of-mass. Note that freezing the

carrier only restrains the movement of the system’s center-of-mass, i.e. it will still change

during the course of a simulation. For brevity we will still use the term “fixed center-of-

mass“ in what follows.

The absolute free energy of the solid phase Asol in this work is determined in three

steps, with

Asol = A0 + ∆A0 + ∆A1 (4.1)
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We start with a system of non-interacting molecules where each molecule is tethered to

its lattice position by adding a harmonic tether potential to one of its central atoms (it

is also possible to restrain the center-of-mass of the molecule with a harmonic potential).

A single atom from one of the central atoms in the system acts as carrier and is fixed at

its lattice position r0, instead of having a harmonic potential towards this position. That

keeps the center-of-mass of the system fixed. In this state, the molecules can rotate freely.

The free energy of the so-defined reference state A0 is calculated as

βA0

N
=

1

N

[
ln
NΛ3

V
− 3

2
(N − 1) ln

(
βkΛ2

2π

)]
, (4.2)

where β = 1
kBT

, kB is the Boltzmann constant, T is the temperature, N is the number

of molecules, V is the volume, Λ is the de Broglie thermal wavelength and k is the

tethering constant of the harmonic potential. While the actual value of Λ is a function

of temperature (and determines ideal gas properties such as the heat capacity), we can

use arbitrary values when computing phase coexistence, provided the same value is used

for all reference states. A0 is the free energy of the Einstein molecule for an atomistic

system.12

We then gradually tether additional atoms within each molecule to their respective lat-

tice positions. That constrains the orientation of each molecule, but it also influences the

strength of the positional constraints. As noted by Li et al.26 preferably one would solely

restrain the orientation of molecules but this functionality is usually not implemented in

simulation packages. This free energy difference is equivalent to ∆A0 as presented in the

extended Einstein crystal method. Then, we gradually turn off all tethering potentials

while simultaneously switching on intermolecular interactions, giving a free energy con-

tribution ∆A1. The term A0 + ∆A0 in this work corresponds to the contribution of A0

of the Einstein molecule method28 and the term ∆A1 in our study is analogous to the

terms ∆A1 + ∆A2 of the extended Einstein crystal and the Einstein molecule method in

literature.

To calculate Asol we have to choose a value for the harmonic tether constant k, which

defines the harmonic tethering potential

utether(r) =
k

2
r2 (4.3)

where r = |r − r0| is the instantaneous distance of an atom to its lattice position

r0. In this notation, we omit an index for the individual (central) atoms.The resulting

value for the free energy Asol does – in theory – not depend on the value of the harmonic

constant k. In practice however, the choice of k affects computational expense as well as
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numerical stability. In this work, we follow the route of Eike and Maginn25 to derive k,

i.e. we fit k to match the probability distribution observed during a NV T simulation of

the fully interacting (but not tethered) crystal, with probability density P (r) for position

coordinate r around the lattice position r0 (i.e. the ensemble averaged position) of a

regarded central atom, as

P (r) =

(
βk

2π

)3/2

4πr2 exp(−βk/2 · r2) , (4.4)

which is the normalized probability density (as function of the distance of an atom

from its lattice position, r) of a harmonic oscillator. Generally, we can sample probability

distributions for all atom types that are used to tether the molecule and fit separate

values for the tether constants but for convenience we use the same value for all atoms.

Using equation (4.4), we treat every atom as an independent harmonic oscillator, which is

strictly justified only for atomic crystals. In molecules, especially when they are described

with rigid bonding constraints, atoms do not move independently and as such using the

resulting (mean) k value for each atom will not lead to the correct probability distribution.

It is possible to improve k by conducting additional NV T simulations where atoms are

tethered to their lattice positions and no intermolecular potentials are present. We can

then iteratively adjust k so that the resulting probability distribution of the tethered

ideal gas simulation matches that of the fully interacting system. As we will discuss

in the results, in practice, however, it is completely sufficient to get an estimate of the

magnitude of k, which does not require an iterative procedure.

4.2.2 Free energy methods to compute ∆A0 and ∆A1

We use three different methods to compute the two contributions ∆A0 and ∆A1 of equa-

tion (4.1), namely thermodynamic integration (TI), the multistate Bennett acceptance

ratio estimator method (MBAR) and non-equilibrium simulations. In all methods we

introduce a coupling parameter λ which is used to drive a system from an initial state (0)

to a final state (1). For example, a possible way to introduce λ could read

U(λ) = (1− λ)U0 + λU1 , (4.5)

where λ describes a linear change of the intermolecular energy function, U , going from

the initial energy function, U0, to the final energy function, U1. The free energy difference

due to changing λ (for a generic function U(λ)) reads

∆A = A1 − A0 =

∫ 1

0

〈
∂U

∂λ

〉
λ

dλ , (4.6)
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where 〈∂U
∂λ
〉λ denotes the ensemble average for a given value of λ. We can compute

this free energy difference by choosing a distribution of λ values (depending on the inte-

gration scheme), conducting separate NV T simulations at each λ value and sampling the

integrant of equation (4.6), the ensemble average. This first method for determining free

energy differences is referred to as ‘thermodynamic integration’.31–33 We can then use an

integration rule, here Simpson’s rule and Gauss-Legendre quadrature, to compute ∆A.

The free energy difference depends on the number and the spacing of λ values as well as

the integration method.

A second way to compute free energy differences is to use reweighting techniques. In

this work, we use MBAR.22,23 The general working equation of MBAR reads

∆fi = − ln
K∑
j=1

Nj∑
n=1

exp[−ui(xjn)]∑K
k=1Nk exp[fk − uk(xjn)]

, (4.7)

where fi = F
kBT

is the reduced free energy, F stands for the free energy, the indices

i, j and k denote the states and n counts the observations of a simulation (i.e. the

instantaneous values observed along the Markov chain of a Monte Carlo simulation or the

instantaneous value observed during a molecular dynamics simulation for a configuration

xjn). Further, ui is the reduced potential function which depends on the variables defining

a state. In the example above, a state is entirely defined by the value of λ and the reduced

potential function reads

ui(xjn)) = βU(λi,xjn) . (4.8)

This equation requires the evaluation of a configuration xjn observed in a simulation

performed in the isothermal-isochoric ensemble at λj using the potential function U(λi).

If the potential function has a complex λ dependence, one either has to perform this eval-

uation during the simulation (for all other states of interest) or by storing configurations

which we then reevaluate using the respective potential function. If we, however, choose

the potential function so that it is linearly dependent on λ, i.e. we can write

U(λi,xjn) = f(λi)U(xjn) , (4.9)

reevaluation of the configuration is no longer necessary as f(λi) is merely a scaling

factor.34,35 Using the latter equation, we completely circumvent reevaluation of configu-

rations in this study. For example, for the computation of ∆A1 for the solid phase and as

shown in detail below, we introduce λ as linear scaling factor of both the harmonic teth-

ering potentials as well as the intermolecular potentials, i.e. we turn off the tethers using

(1− λ) and simultaneously turn on the intermolecular potential using λ as linear scaling

factor. Within a simulation it is then sufficient to sample the total, unscaled tethering
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energy as well as the total, unscaled intermolecular energy. To reevaluate a simulation

conducted with λi at a new λj, we evaluate the sampled energies using the respective

scaling factors but with λj instead of λi. In LAMMPS it is directly possible to sample

potential functions that are different from those used to propagate the system and hence

sampling of unscaled energies is trivial. If this is not possible and only scaled energies

are available in a simulation software, rescaling still can be used but additional treatment

of the end states is necessary. Because in the end states either the total scaled tethering

energy (λ = 1) is zero or the total scaled intermolecular energy ((λ = 0) is zero, it is not

possible to directly reweight the energies. For these two states separate reevaluation of

configurations is then necessary.

In general, we can compute free energy differences by choosing suitable control vari-

ables. In the above example we introduce a coupling parameter, using a constant tem-

perature and density along all states. As such, the resulting free energy difference, is the

Helmholtz energy, i.e ∆F = ∆A. We will later discuss how MBAR can also be used

to trace the coexistence lines by defining states in terms of temperature and pressure,

where the analogous free energy difference in equation (4.7) then is the Gibbs free energy

difference (∆F = ∆G).

Equation (4.7) can be iteratively solved to yield free energy differences with respect

to a reference state given that there is sufficient overlap of configuration space between

(at least) adjacent states, i.e. there are configurations in one state that are likely to

occur in the neighboring states (and vice versa). Measuring the amount of phase space

overlap between states provides a systematic way to select the number and distribution

of λ values.

For the third method for determining free energy differences, the non-equilibrium

approach, equation (4.6) can be interpreted as limiting case of a non-equilibrium process,

i.e. as work that is performed to infinitely slowly switch the system from state (0) to

(1) along a switching path given by λ.36 For finite switching rates, the work is no longer

reversible and we can write37

∆A = W̄ − W̄ diss , (4.10)

where W̄ is the mean value of the irreversible work for multiple switching realizations,

that is multiple independent runs using the same switching time and path. The mean

dissipated work W̄ diss is unknown, however, following37,38 we can compute the free energy

difference by conducting simulations in both directions
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∆A =
1

2
[W rev

01 −W rev
10 ] (4.11)

=
1

2
[W̄01 − W̄10 − W̄ diss

10 + W̄ diss
01 ] (4.12)

=
1

2
[W̄01 − W̄10] , (4.13)

where the indices (01) and (10) stand for the forward and backward direction in which

the path is traversed, respectively. Analogously to the equilibrium case we introduce a

λ parameter which continuously changes with simulation time and rate λ̇. Then, we can

write

W 01 =

∫ ts

0

λ̇

(
∂U

∂λ

)
t

dt =
N∑
n

∆λn

(
∂U

∂λ

)
n∆t

, (4.14)

where ts is the switching time, ∆t is the time step, the index n stands for the sim-

ulation time step number and N denotes the total number of time steps. In this work

we follow the simulation protocol developed and implemented in LAMMPS by Freitas

et al.37 That is, a simulation consists of an equilibration phase in the initial state, the

forward switch, another equilibration in the final state, followed by a backward switch.

During the switching process, where the coupling parameter λ is gradually switched from

0 to 1 or vice versa, the summand of equation (4.14) is sampled. The entire procedure

is repeated multiple times to determine the mean values for the forward and backward

work so that the final free energy can be calculated via equation (4.13). The parameters

for the non-equilibrium method are the switching function, λ(t), and the switching time,

ts.

To compute ∆A0 we use the following expression for the λ-dependent potential func-

tion

∆A0 : U(λ) = λ

o∑
i

k

2
∆r2

i +
c∑
i

k

2
∆r2

i , (4.15)

where the sum
∑o

i . . . runs over all atoms that are tethered to restrain the orientation.

The central atoms are coupled using the full tethering potential,
∑c

i . . . , irrespective of the

λ value. ∆ri is the distance of atom i from its equilibrium lattice position. We remind that

during this stage, no intermolecular interactions are present; only the tethering potentials

and intramolecular constraints have to be integrated during the simulation which is com-

putationally very cheap. Simulation times above 600 ns/day can be achieved on a desktop

computer (for 320 methanol molecules, ∆t = 1.0 fs, i7-4770 CPU 3.40GHz, LAMMPS
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(22 Feb 2018) compiled with Intel 16.0) using a single core. Effectively, computation of

∆A0 is about two orders of magnitude faster than ∆A1.

The potential function for ∆A1 reads

∆A1 : U(λ) = (1− λ)
o + c∑
i

k

2
∆r2

i + λUinter , (4.16)

where the sum
∑o + c

i . . . contains all tethered atoms with tethering potentials that

are gradually eliminated while the intermolecular potential, Uinter, is gradually turned

on. Scaling intermolecular interactions (both Lennard-Jones and coulombic) linearly is

sufficient because the harmonic tether potentials prevent atoms from overlapping for small

values of λ and it allows us to perform the reweighting for MBAR (see equation (4.9)) as

post-processing step.

Having determined the Helmholtz energy as described above, the final step is to com-

pute the chemical potential which is the property of interest for phase equilibria. The

chemical potential of the solid is determined from

βµsol =
βAsol

N
+
βpV

N
= βasol +

βpV

N
. (4.17)

Throughout the following discussion of the results we will report the dimensionless

Helmholtz energy per molecule, βa = βA
N

.

4.2.3 Free energy of the liquid phase

The free energy or chemical potential of a liquid can be determined in various ways.39

Most methods rely on insertion of an additional molecule into the bulk phase in the spirit

of the method of Widom40 but other options such as a supercritical path from the ideal

gas are also possible.8 Generally, the method of choice depends on the system and state

point of interest, e.g. for large molecules it may be necessary to traverse a direct path

from the solid21,41 or to create a cavity before inserting a molecule26 to yield accurate

results for the liquid phase.

In this work we use different methods to compute the chemical potential of the liquid

phases. For the argon system, we simply use the analytic Lennard-Jones equation of

state of Thol et al.42. For methanol, we gradually insert a single methanol molecule into

the bulk phase. Starting from a non-interacting molecule we first add van der Waals

interactions using a soft-core Lennard-Jones potential43 before coulombic interactions are

turned on. This is realized using a coupling constant λ just as discussed above. The free

energy is evaluated via MBAR from multiple independent equilibrium NpT simulations.
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For water, we follow the route of Vega et al.8 by computing the free energy difference

between a Lennard-Jones system (for which we can calculate the free energy using the

analytic equation of state of Thol et al.) and the liquid water system by gradually

turning on coulombic interactions using separate equilibrium simulations in conjunction

with MBAR. As a conservative estimate for the uncertainty of the analytic equation of

state we assume the same uncertainty as obtained for the solid phase.

4.2.4 Initial coexistence point

Tm

sol

liq

Tref
liqTref

sol

Figure 4.1: Construction of the coexistence point (purple circle) at constant pressure. The
relative free energy differences (dashed lines) are determined for each phase individually
in regular NpT simulations with respect to reference states (square symbols), here solely
defined by the temperatures T ref

sol and T ref
liq . We use the chemical potentials, µsol (eq. (4.17))

and µliq (sphere symbols), as computed from the absolute free energies of the reference
states to shift the curves (solid lines). The intersection of the solid lines denotes the
coexistence point.

A schematic representation of the method to find the initial phase coexistence point

is shown in FIG. 4.1. In this study, we determine absolute free energies for each phase at

the same pressure which is convenient because that reduces the search space to only the

temperature coordinate. We proceed in three steps. First, we conduct NpT simulations

– separately for each phase – for various temperatures (along a predefined grid of tem-

peratures), choosing the temperature-range to cover the region where phase coexistence

is expected. During each simulation, we sample the system’s internal energy and volume

and evaluate the reduced potential function

ui(xjn)) = βi [U(xjn) + pV (xjn)] , (4.18)
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as a post-processing step. Index i denotes a state point along the grid of predefined

temperatures. Using equation (4.7) with the above reduced energy function, the result-

ing free energy differences along these states are differences in the Gibbs free energy (or

residual chemical potential) for varying temperatures along the predefined grid of tem-

peratures (visualized as dashed lines in FIG. 4.1). Up to this point, the differences in the

Gibbs energy are formulated with respect to the reference states (square symbols, FIG.

4.1). The next step is to shift the free energies to match the values of the absolute free en-

ergies calculated at the reference states (sphere symbols) using the methods we described

before. Finally, the phase coexistence temperature (here the melting temperature Tm) is

found at the intersection of the solid lines.

T

0

Tm

Tm

Figure 4.2: The statistical uncertainty of the melting temperature, δTm, (purple) is found
by intersection of the uncertainties from free energy calculations (green) with the zero
line.

The statistical uncertainty of the coexistence temperature is determined from the

statistical uncertainty of the difference of chemical potentials (between both phases) which

consists of multiple contributions. For brevity of the following discussion we introduce the

abbreviation µ̂ = βµ. The first contribution is the statistical uncertainty of the chemical

potential of each reference state, δµ̂ref
I = δβref

I µ
ref
I , where I denotes the respective phase,

i.e. the liquid phase or a solid phase. Note that the reference temperatures as well as

the number of molecules can be different for each phase. The second contribution is the

statistical uncertainty of the differences of chemical potentials along the path from the

reference state to the equilibrium state, δ∆µ̂I = δ(µ̂I − µ̂ref
I ). These uncertainties are

directly accessible from MBAR. The statistical uncertainty of the difference of chemical

potential between two phases, δβ∆µ (here ∆ denotes the difference between both phases,

not temperatures), at any (inverse) temperature β can be calculated as
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(δβ∆µ)2 = (δ∆µ̂liq)2 + (δµ̂ref
liq)2 + (δ∆µ̂sol)

2 + (δµ̂ref
sol)

2 , (4.19)

where we used a solid and a liquid phase as example. The resulting uncertainty of

the coexistence temperature is then determined from the intersections of the statistical

uncertainties over temperature where the difference of the chemical potential between

both phases, β∆µ, is zero as depicted visually in FIG. 4.2.

4.2.5 Construction of phase coexistence lines

Knowing an initial coexistence point, (T0, p0), we can construct the coexistence line by

changing temperature (or pressure) and searching for the conjugated pressure (or tem-

perature) where the chemical potentials of both phases are equal. This process can be

repeated iteratively to trace the entire coexistence line. The question is, once we choose

a new temperature, how can we sample the pressure-µ space efficiently to find a new

coexistence point? We propose using the simulation data of the NpT simulations al-

ready conducted to construct the initial phase coexistence point. More specifically, we

use MBAR to estimate free energies at additional states for which no simulation data

is present. We select a new temperature and for both phases generate free energies for

a range of pressures to find the equilibrium pressure at equal chemical potentials. The

whole procedure can be performed for several new temperatures always using the initial

coexistence point as reference to estimate the free energy differences from. At the new co-

existence states (temperatures and pressures) found this way, additional NpT simulations

for both phases are performed and used to improve the initial estimate. Since estimated

states (especially for the first iteration) are different from the true coexistence states,

simulations are conducted in the metastable region for at least one phase which could

lead to phase transition occurring during a simulation. It is very important to make sure

that no phase transitions are observed, e.g. by inspecting the radial distribution function

of each phase for the different states.

Uncertainties for new coexistence states are determined using the bootstrap method.

Starting from an initial coexistence point and simulation data at the estimated states,

we use MBAR to construct the phase coexistence line as described above. Next, we

generate bootstrap samples for every state point. This is done by randomly picking data

points (with replacement) from the time series of potential energies and volumes for each

state. These new samples are then evaluated using MBAR to generate a “bootstrapped

coexistence line“. The whole procedure is repeated 100 times and confidence intervals are

obtained from the resulting distribution. Finally, we add the uncertainty of the initial

coexistence state. Note that these statistical uncertainties are meaningful only if at least

neighboring states overlap. If this is not the case, additional simulations have to be
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performed to fill these gaps.

As a consequence of seeding the procedure with an initial coexistence point, its ac-

curacy and precision are critically important. Clearly, the predictive efficiency of this

method is limited to a certain range of temperature (because the phase spaces of the

predicted and the simulated conditions become disjoint) and going to temperatures far

away from the initial phase coexistence point requires multiple iterative prediction and

simulation steps. As shown in the results section, we find that – for the systems studied

in this work – already short NpT simulations of some hundred picoseconds are sufficient

(without the need of a second refinement step) and because NpT simulations at multi-

ple states can be performed in parallel the approach allows for rapid estimation of the

coexistence line. As statistical uncertainties are determined with respect to the initial co-

existence state they increase when moving away from the initial coexistence state, which

is a downside our approach shares with the Gibbs-Duhem integration method.44

Our method of finding phase coexistence is similar in spirit to the work of Schieber

et al. where MBAR was used to combine simulations at different temperatures and pres-

sures to find phase coexistence of benzene polymorphs.24 They also present an analytical

alternative to the bootstrap method to assess statistical uncertainties of phase coexistence

line by directly utilizing MBAR uncertainties which is cheaper than the bootstrap method

although more difficult to apply.

4.3 Simulation details

Simulations are performed using the simulation package Large-scale Atomic/Molecular

Massively Parallel Simulator (LAMMPS, version 22 Feb 2018).45 All input files are pro-

vided in the supplementary information.

The argon systems contain 5324 particles in both the liquid and solid phase. Lennard-

Jones parameters are ε = 0.238122 kcal/mol, σ = 3.405 Å. We use a truncated potential with

a cut-off radius of 6σ = 20.43 Å and add standard long-range corrections.33 We choose

the large system size and cut-off radius to allow for comparison to the work of Mastny et

al.46 in which they showed that both – choosing too small cut-off radii (< 4.5σ for a fcc

Lennard-Jones solid) as well as small system sizes – can lead to systematic errors of the

melting temperature.

The methanol systems contain 300 molecules for the α solid and the liquid phase

and 320 molecules for the β solid phase. Methanol is modeled using the united atom

version of the Optimized Potential for Liquid Simulations (OPLS-UA) force field where

the parameters are taken from Saldago et al.29 Similar to argon, we use a truncated

potential with a cut-off radius of rc = 10.0 Å and add long-range corrections to both

pressure and energy in accordance with Saldago et al.29 Electrostatic interactions are
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calculated using Particle Particle Particle Mesh Ewald.47 The real-space contribution is

truncated at a cut-off distance equal to that of the van der Waals cut-off. Bond lengths

and angles are constrained using the SHAKE algorithm with a tolerance of 10−4 and a

maximum of 50 iterations.48 For the simulations with fixed center-of-mass of the entire

simulation box, the CH3 united-atom site is used as “carrier“. That is, the CH3 site of

exactly one molecule is frozen in place during the course of the simulation. CH3 is also

used as “central atom“, i.e. it is the tethered site for a0. We also performed simulations

using the oxygen atom which yielded identical results.

The water systems contain 432 molecules for both the Ih-solid and the liquid phase.

We use the TIP4P/2005 force field with a cut-off radius of rc = 8.5 Å for both the van

der Waals and Coulombic interactions in accordance with the work of Abascal et al.49 We

use the oxygen atom as “carrier“ and also as “central atom“ for the simulation of ∆a0.

To keep the temperature constant, a Langevin thermostat is used with a damping

constant of 100 fs.50 We also conducted simulations using stochastic velocity rescaling

and found the results to be identical.51 In constant pressure simulations, we use a Nosé-

Hoover barostat.52 For the liquid phase, pressure coupling is performed isotropically while

for the solid we use anisotropic coupling. In all simulations a Velocity-Verlet algorithm

is applied to propagate the system using time steps of 2.0 fs for the liquid and 1.0 fs for

the solid phase.33 Smaller time steps for the free energy computations of the solid phases

are necessary to properly sample the oscillations of tethered atoms especially when large

constants for the tethering potential are used. As we will discuss later, the tether constant

used in this study are comparatively low and as such, time steps of 1.0 ns are sufficient to

properly sample oscillations.

Initial configurations for simulations of the solid phases were created by placing atoms

on the respective lattice sites of the perfect crystal. Then, anisotropic simulations in the

isothermal isobaric ensemble at temperature T ref
sol and target pressure are performed from

which the mean density is obtained. We then perform a simulation at this density (and

shape of the simulation cell) and - after an equilibration phase - pick a random config-

uration as reference lattice. If configurations of the perfect crystal are available for the

target pressure and temperature these configurations can also be used. The same initial

configuration (for the respective phase) is used for all state points. I.e. all simulations for

the free energy computations as well as the NpT simulations for the coexistence lines start

from the lattice positions for the solid phases. For the liquid phase, initial configurations

were created by randomly placing molecules into the simulation cell followed by an energy

minimization and an equilibration in the NpT ensemble using an isotropic barostat as

detailed above.

Besides MBAR, free energy differences for β∆a0 and β∆a1 from equilibrium simula-

tions are computed using thermodynamic integration where we compare two integration
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schemes, Gauss-Legendre quadrature (GLQ) and the method of Simpson. The distribu-

tion of λ-values for GLQ solely depends on the total number of values (the order of the

quadrature). We add additional simulations for λ = 0 and λ = 1 which are needed for

MBAR and the method of Simpson. Additionally, we use a distribution of λ-values sim-

ilar to the switching function of Freitas et al. where differences between adjacent values

are smaller near λ = 0 and λ = 1 similar to the GLQ scheme. We varied the number of

λ-values (up to 100) to verify convergence of the calculated free energies. Utilizing overlap

information from MBAR it is possible to iteratively adjust the number and distribution of

λ-points so that the statistical uncertainties between states are minimized.53 In this work

we did not follow such an optimization approach. Instead, we use overlap information

simply to ensure that all states are connected when the free energy is determined via

MBAR.

As noted before, for non-equilibrium simulations no distribution of λ-values has to

be provided. Instead, we have to specify a switching rate, i.e. the change of λ over the

simulation time. We use the switching function reported and implemented in LAMMPS

by Freitas et al. which results in slow changes of λ at the end states.37

As part of data post-processing, we remove non-equilibrated samples from all equilib-

rium simulations.54 We then extract uncorrelated data evaluating the reduced potential

functions for free energy calculations using the timeseries module of the pymbar python

package (available at https://github.com/choderalab/pymbar). Consequently, the num-

ber of data points used for calculating averages and statistical uncertainties differ between

simulations. As noted before, when evaluating free energies and statistical uncertainties

using MBAR, it is pivotal to make sure that all states have sufficient overlap with neigh-

boring states. For cross validation we also computed standard errors of the free energies

using bootstrapping (500 bootstrap samples) and found errors to be consistent with those

computed via MBAR.55 For free energies of equilibrium simulations computed using Simp-

son and GLQ we estimate the error also using bootstrapping with 500 bootstrap samples.

For non-equilibrium simulations, we follow the protocol of Freitas et al. and perform mul-

tiple independent runs for both forward as well as backward integration. Statistics are

then calculated from the distribution of the free energies according to equation 4.13. The

reported errors (numbers in parenthesis or bars in graphs) represent the 95% confidence

interval. For MBAR this corresponds to twice the estimated statistical uncertainties (two

standard deviations) directly reported from pymbar while the confidence intervals from

bootstrap samples are constructed using the percentile method.55 For the non-equilibrium

simulations we perform n = 10 independent runs to get 10 independent values for the free

energy, x = {βasol,i}, i = 1, . . . , 10. We then compute the standard error of the mean of

the free energy as s(x̄) = s(x)√
n

, where s(x) is the unbiased estimate of the standard devi-

ation as obtained from the independent runs. The confidence interval is then calculated
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as x̄± 2.262 · s(x̄) where the factor 2.262 comes from the t-distribution using 9 (= n− 1)

degrees of freedom.56

4.4 Results

In the following section we present our results. To validate our procedures, comparison to

literature data is shown. We note that a proper comparison to published data concerning

statistical uncertainties and computational efficiency is a non-trivial task because it is

not always clear what error is reported and hence a meaningful comparison is difficult to

ensure. As such we present statistical uncertainties of literature data as published in the

respective studies which might not have the same confidence levels as those used in this

work (and generally not the same simulation times were used) so that uncertainties are

not intended to be directly comparable.

4.4.1 Argon

We start our discussion with the results for the fcc phase of argon. For the solid state, a

reference temperature of T = 83.88 K was chosen. First, an NpT simulation at the refer-

ence temperature and p = 420.0 bar was performed to determine the equilibrium number

density of ρ = 0.02513(1) Å
−3

. In reduced Lennard-Jones units, this state corresponds to

T ∗ = TkB
ε

= 0.7, p∗ = pσ3

ε
= 1.0, which is the reference point of the work of Eike et al.21

Subsequently, to determine the tether constant, we conducted a short simulation in

the NV T ensemble and sampled the probability distribution of atom-displacements with

respect to their equilibrium lattice positions. The simulated probability distribution was

used to fit the value of the tether constant, k = 3.0 kcal/molÅ
2. With the so-determined

tether constant the absolute free energy of the solid phase can be calculated. Because

argon consists only of a single Lennard-Jones interaction site, there is no orientational

contribution, i.e. β∆a0 = 0, and the absolute free energy is calculated as βasol = βa0 +

β∆a1.

With the non-equilibrium method applied to determine β∆a1, only a single simulation

(including equilibration, forward and backward direction) is required. The influence of

the switching time on the free energy is assessed by repeating the procedure using the

same switching function λ(t) for different simulation times.

When equilibrium simulations are used to determine β∆a1, we distribute up to 50

λ-values according to the GLQ scheme and add two additional simulations at λ = 0 and

λ = 1, which are needed for the integration using Simpson’s rule and for MBAR. As

opposed to the ten runs from the non-equilibrium method, only a single free energy is

computed and the statistical uncertainty is estimated using 500 bootstrap resamples for
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GLQ and Simpson while for MBAR, statistical uncertainties are readily available from

pymbar.

Table 4.1: Contributions to the absolute free energy of argon fcc as computed via GLQ,
Simpson’s rule, MBAR and from non-equilibrium simulations at T = 83.88 K and ρ =

0.02513 Å
−3

using a tether constant of k = 3.0 kcal/molÅ
2 and a de Broglie wavelength of

Λ = 3.405 Å.

Method βa0 β∆a1 δβ∆a1 β∆asol δβ∆asol

GLQ 5.2533 -11.4831 0.0004 -6.2298 0.0004
Simpson 5.2533 -11.4827 0.0008 -6.2294 0.0008
MBAR 5.2533 -11.4833 0.0002 -6.2299 0.0002
Non-eq. 5.2533 -11.4832 0.0003 -6.2299 0.0003

Table 4.1 summarizes the results for the absolute free energy of argon. The reported

value for the non-equilibrium method is taken from a switching time of 5 ns.
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Figure 4.3: Absolute free energy of the argon fcc phase as computed from non-equilibrium
simulations for different switching times (green symbols) and equilibrium simulations

using MBAR (orange) at T = 83.88 K, ρ = 0.02512 Å
−3

and a tether constant of k =
3.0 kcal/molÅ

2.

Fig. 4.3 visualizes how the free energy changes with switching time. For comparison

we also show the results obtained from MBAR. For argon, small switching times already

yield good results for the free energy.

The liquid phase of argon at T = 83.88 K and p = 420.0 bar was computed using the

equation of state of Thol et al. which is formulated in terms of the Helmholtz energy

and consequently as function of temperature and density. We obtain the free energy

(or the chemical potential) for a given temperature and pressure by iteratively adjusting

the density until we find the target pressure using Newton’s method. The free energy
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can then directly be obtained for the temperature and the iterated number density (ρ =

0.02269 Å
−3

) as sum of the ideal gas contribution, βaig = −1.11025 using Λ = 3.405 Å = σ

for the de Broglie wavelength, and the residual contribution, βares = −5.10447 to yield

βaliq = βaig + βares = −6.21472.
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Figure 4.4: Chemical potential of argon at p = 420.0 bar for different temperatures with
respect to reference states (dashed lines) and shifted (solid lines) according to the absolute
free energies of the reference states.

To determine the equilibrium between fcc-solid and liquid argon, we performed NpT

simulations at p = 420.0 bar and a range of temperatures around the reference states for

both phases separately. Using MBAR, the free energy differences for the temperature

range were constructed. The free energy of each phase is obtained by adding the absolute

free energies of the reference states as detailed above and visualized in Fig. 4.4.

Fig. 4.5 shows the difference of the dimensionless chemical potential between both

phases for varying temperature. The shaded region is the statistical uncertainty of β∆µ, as

calculated by combining the uncertainties from the absolute free energies of the references

and the uncertainties from the free energy differences over multiple temperatures (with

respect to the reference states) for both phases. The reported melting temperature and

its statistical uncertainty are found at the zero-intersection of the mean value as well as

the upper and lower bound of the confidence interval.

We reuse simulation data that was generated to find the initial phase coexistence point

(data to construct the lines in Fig. 4.4) for calculating a first estimate of the phase coexis-

tence line, see cross symbols in Fig. 4.6. We performed 50 additional simulations for each

phase for these estimates (1 ns including equilibration, cross symbols in Fig. 4.6), which

can be done in parallel, to correct the first estimate (see green line in Fig. 4.6). The num-

ber of additional simulations can be guided by inspecting overlap between adjacent states

e.g. using overlap matrices57 where the degree of overlap depends on the thermodynamic
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Figure 4.5: Melting temperature of argon fcc-solid at p = 420.0 bar. The phase equilibrium
(green sphere) is located where both phases, fcc and liquid, have the same chemical
potential. Uncertainty in the melting temperature is obtained from uncertainties of the
differences of chemical potentials (δβ∆µ) between both phases (dashed vertical lines).

state, the system size24 as well as the phase. Since we use a large system for argon –

which leads to a narrower energy distribution – a comparably large number of simulations

is needed to achieve overlap. The temperature increment was chosen such that there is

sufficient overlap at low temperatures and pressures. For convenience, we chose the same

increment for both phases and for the whole range of thermodynamic states which leads

to large overlap at higher temperatures. It is possible to increase the computational effi-

ciency of this method by selecting thermodynamic states as a function of temperature and

pressure for each phase individually based on overlap information by iteratively adding

or redistributing states. In this work we did not follow such an optimization approach

because we found that already comparably small numbers of uncorrelated data points –

and therefore short simulation times – are sufficient and a stage wise refinement (i.e. an

iterative procedure) is not required. A single iteration already yields precise results, as

confirmed by comparison of the resulting line with literature data46 (shown by orange

circles in Fig. 4.6).

4.4.2 OPLS-UA Methanol

We now present the results of our study of the α and β phases of methanol using the OPLS-

UA forcefield. We chose methanol because, as opposed to argon, it shows features of more

complex molecular structures and at the same time it is well documented in literature.28,29

We followed the same procedure as presented for argon, so that for brevity we limit the

discussion to the central results whereas detailed information of all intermediate steps is
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Figure 4.6: Phase equilibrium line of fcc-solid and liquid for argon. Results from this
work using MBAR (green line) compared to values from literature (orange circles).46 The
purple crosses denote estimations based on MBAR using NpT data only from the initial
coexistence point at p = 420.0 bar and represent the states where additional simulations
were conducted. Error bars are smaller than line width and symbol sizes.

given in the supplementary information.

We use the same reference state for the α and β phase as Saldago et al.29, namely T ref
α =

T ref
β = 150 K, p = 1 bar. NpT simulations yield number densities of ρ = 0.01878(2) Å

−3

and ρ = 0.01882(2) Å
−3

for the α and β phase, respectively. We use a tether constant

of k = 8.0 kcal/molÅ
2 for both phases which is considerably lower than the constant used

in literature (k = 3974.187 kcal/molÅ
2).28 The chemical potential of the liquid phase was

computed at T ref
liq = 298 K, p = 1 bar and found to be βµliq = −12.157(9) using the value

for the de Broglie wavelength Λ = 1 Å. Comparing our results to REF.29, we find good

agreement for the β-phase (βaref
sol = −29.44(1)) and for the α-phase (βaref

sol = −29.55(1)).

Detailed results for the absolute free energies for the α-solid and the β-solid phase for the

different free energy methods are presented in table 4.2.

The choice of the tether constant plays an important role and as mentioned before the

optimal value with regard to statistical efficiency as well as numerical stability depends

on the free energy path that is traversed. In the original Einstein molecule method, a

high value for k is preferable because it allows for efficient sampling of the reference state

(which is done via Monte Carlo integration, see Appendix) and leads to convenient com-

putation of the free energy change due to switching on intermolecular interactions since

molecules are tightly coupled to their lattice positions. On the other hand, high tether

constants limit the time-step that can be used within the simulation since molecules os-

cillate around their lattice positions with high frequency which can lead to numerical

instabilities. To investigate the dependence on the time-step and the value of the tether
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Table 4.2: Contributions to the absolute free energy of the α and β phases of methanol

at T = 150 K and ρα = 0.01878 Å
−3

, ρβ = 0.0194 Å
−3

. The tether constant is k =
8.0 kcal/molÅ

2 and the de Broglie wavelength is set to Λ = 1.0 Å.

Method βa0 β∆a0 δβ∆a0 β∆a1 δβ∆a1 β∆asol δβ∆asol

α-phase
GLQ 2.157 8.270 0.004 -39.999 0.002 -29.571 0.005
Simpson 2.157 8.271 0.003 -39.990 0.008 -29.562 0.008
MBAR 2.157 8.271 0.002 -40.000 0.001 -29.572 0.003
Non-eq. 2.157 8.272 0.004 -40.007 0.001 -29.578 0.004
β-phase
GLQ 2.159 8.294 0.007 -39.879 0.003 -29.426 0.008
Simpson 2.159 8.283 0.006 -39.868 0.012 -29.427 0.013
MBAR 2.159 8.282 0.004 -39.880 0.002 -29.439 0.005
Non-eq. 2.159 8.276 0.003 -39.879 0.001 -29.444 0.003

constant, we conduct additional simulations of the α methanol phase using a tether con-

stant of k = 3974.187 kcal/molÅ
2 as published by Aragones et al. for different time-steps

and compare them with results using k as derived from the probability distribution of

atomistic displacements.28

0.0 0.5 1.0 1.5 2.0
t / fs

29.63

29.62

29.61

29.60

29.59

29.58

29.57

29.56

29.55

29.54

a s
ol

k = 3974.187 kcal / mol / Å2

k = 8.0 kcal / mol / Å2

Figure 4.7: Absolute free energy of the methanol α-phase as computed from non-
equilibrium simulations with switching time of 2 ns for different time-steps and tether
constants, k. For comparison, the result from equilibrium simulations using MBAR with
a simulation time of 5 ns is shown (green dashed line) with uncertainties as shaded region.

In FIG. 4.7 we analyze the effect of the chosen time-step for a given tether constant. For

this purpose, we performed additional, separate simulation runs for the non-equilibrium

method using a switching time of 2 ns. These results suggest that for our method a low

tethering constant is favorable. We find consistent results for time-steps up to ∆t = 1 fs
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while conserving decent precision. For a larger time-step of ∆t = 2 fs the resulting absolute

free energy no longer overlaps with the uncertainties of the equilibrium simulation for the

low tethering constant. Using the tether constant of Aragones et al. with our method we

find larger statistical uncertainties and see a stronger dependence of the free energy on the

time-step. Only with a time-step of ∆t = 0.1 fs (leading to rather excessive computation

times) we were able to match the value for a0 + ∆a0 of the original Einstein molecule

method (see Appendix). We conclude that, for the presented free energy path, it is

advisable to use comparably soft tether constants as obtained from adjusting the harmonic

tether potential to resemble the probability distribution of atomistic displacements in the

solid.
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Figure 4.8: OPLS-UA methanol: Melting point of the α-phase (green line) as compared
to data from literature.29 The orange dashed line represents the difference of chemical
potentials between liquid and the β-solid phase. Uncertainties in the chemical potentials
are visualized as shaded regions.

We calculate the melting point using the absolute free energies of our reference states

as computed via MBAR. In Fig. 4.8 we show the difference of chemical potentials between

α and liquid (green) and β and liquid (orange) phases. Our results predict an α-liquid

transition at Tm = 217.8± 1.5 K at ambient pressure which is in full agreement with the

melting temperatures published by Saldago et al. (Tm = 215 ± 4 K using the Einstein

molecule method, Tm = 220± 5 K from direct coexistence simulations).29 Note that from

experiments the β phase was found to be the stable phase (with the α phase being stable

at lower temperatures). While the OPLS-UA force field is not able to properly describe

the stable phase, Saldago et al. recently presented an new force field for methanol that

correctly predicts the liquid β transition.58 As before, the reported uncertainty of the

melting temperature is given by the intersections of the uncertainties with the zero line

of β∆µ (visualized as dashed lines). The uncertainty of Tm consists of the uncertainties
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from the reference states as well as the uncertainties by reweighting for temperatures away

from the reference states. Note that since the slopes of β∆µ are small, already small

uncertainties of the free energies result in large uncertainties of the melting temperature.
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Figure 4.9: OPLS-UA methanol: Phase coexistence curve for α-solid and liquid using a
single iteration of simulations (green line) at states estimated via MBAR (purple crosses)
compared to data from literature (orange squares).29 Uncertainties of the melting tem-
peratures as obtained from the bootstrap method are visualized as shaded region.

Using the initial phase coexistence, we trace the coexistence line by estimating new

temperatures for a given set of pressures and subsequently performing 9 additional NpT

simulations in both phases (a total of 18 simulations) to refine the results. All additional

NpT simulations are conducted in parallel, without a second refinement step (i.e. iter-

ation). The results of a single iteration are shown in Fig. 4.9 together with results of

Saldago et al. (the error bar for the literature data is ±4 K, i.e. the error of the initial

melting temperature). Due to slightly different initial melting temperatures there is a

small gap between both coexistence lines underpinning the importance to start from a

good initial value. Note also that statistical uncertainty in coexistence temperatures (δT )

increases the farther we move away from the initial value.

4.4.3 Ice (Ih) and liquid phase equilibrium of TIP4P/2005 water

In our third study, we compute the absolute free energy of ice Ih at T ref
sol = 200 K and

p = 1 bar (ρ = 0.03103Å
−3

) using the TIP4P/2005 force field. The absolute free energy

of ice Ih at this state point is well documented in literature via Monte-Carlo as well as

Molecular Dynamics simulations.28

Water adds another aspect of complexity for the calculation of free energies because

it is a symmetric molecule. The oxygen atom acts as “central atom”, i.e. it is initially
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restrained to its lattice position through a harmonic tether potential, while both hydro-

gens are tethered to restrain the orientation (for the calculation of ∆A0). Because we

are tethering each hydrogen to just one lattice position, they become distinguishable.

Furthermore, configurations that would have identical probability (180 degree rotations

about the axis of symmetry) are suppressed and as such an additional contribution to the

free energy A0 is required. For detailed discussion of this topic we refer to the work of

Aragones et al.28
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Figure 4.10: TIP4P/2005 water: probability distribution of oxygen displacement for the
ice Ih phase from unrestrained NV T simulations (green symbols) at T = 200 K and

ρ = 0.03103 Å
−3

. Resulting distribution from fitting k, the constant of the harmonic
tether potential, to match the displacement probability of data (orange line). Proba-
bility distribution from a simulation of non-interacting molecules where all atoms were
restrained using a constant of k = 6.0 kcal/molÅ

2 (purple dashed line).

Table 4.3: TIP4P/2005 water: contributions to the absolute free energy of ice Ih at

T = 200 K and ρ = 0.03103Å
−3

using a tether constant of k = 6.0 kcal/molÅ
2.

Method βa0 β∆a0 δβ∆a0 β∆a1 δβ∆a1 β∆asol δβ∆asol

GLQ 0.206 6.761 0.005 -33.233 0.003 -26.266 0.006
Simpson 0.206 6.762 0.003 -33.233 0.005 -26.265 0.005
MBAR 0.206 6.763 0.003 -33.232 0.003 -26.264 0.004
Non-eq. 0.206 6.762 0.001 -33.236 0.003 -26.269 0.003

As before, we first determine a suitable value of the tethering constant. Fig. 4.10

illustrates the displacement probability of an oxygen atom obtained from an unrestrained

simulation in the NV T ensemble. Fitting the tether constant according to equation

(4.4) yields a value of k = 8.96 kcal/molÅ
2 (orange line). Next, we conduct simulations of

non-interacting molecules that are tethered to their lattice positions using the same k-

values for both oxygen as well as hydrogen. For the final value of k = 6.0 kcal/molÅ
2 (purple
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dashed line) both oxygen as well as hydrogen probability distributions are in good enough

agreement with those from unrestrained simulations.

Results for the free energies are reported in table 4.3. The analytical reference, βa0,

contains two additional contributions due to symmetry, β∆asym
0 = − ln 2, and due to

proton disorder of ice Ih, β∆apd
0 = − ln(3/2).8,28 As before, we find agreement across all

methods.

The absolute free energy of the liquid phase is computed at T = 298 K and p =

1 bar (ρ = 0.03332(1)Å
−3

) as βaliq = −15.6000(13) (see supplementary information for

details). We follow the procedure of Vega et al.8 and use a Lennard Jones system (using

oxygen Lennard-Jones parameters) as reference system for which the free energy is readily

available from the equation of state of Thol et al.42 We then perform multiple equilibrium

simulations in the isobaric isothermal ensemble in which we gradually turn on electrostatic

interactions using linear scaling. The free energy difference is then computed via MBAR.
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Figure 4.11: Melting point of TIP4P/2005 water: solid Ih and liquid phase equilibrium
at p = 1 bar from this study compared to data from literature. The melting temperature
(green sphere) is located where both phases have the same chemical potential. For com-
parison, literature data (table II of REF.59) from free energy calculations (orange) and
direct coexistence simulations (purple) is shown.

Fig. 4.11 shows the melting point as compared to data from literature. Good agreement

is found for our results to literature references, whereby a rather low statistical uncertainty

was here achieved. Fig. 4.12 presents the coexistence line as constructed from estimates

using MBAR and a single iteration of 5 additional NpT simulations for both the liquid

and the solid phase.
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Figure 4.12: Melting line of TIP4P/2005 water: Ih-liquid phase equilibrium from this
study (green line) compared to data from literature. Orange squares represent data from
free energy methods and Gibbs-Duhem integration and are obtained from digitalizing
figure 4 of reference59. Uncertainties of the melting temperatures as obtained from the
bootstrap method are visualized as green shaded region. Purple crosses denote states
where additional NpT were performed.

4.4.4 Discussion of free energy methods

Generally, for the systems we studied in this work, all methods yield similar results to

within statistical uncertainty. This finding is in accordance with the studies of Moustafa

et al. and Tan et al. in which the authors compared equilibrium methods to determine

the absolute free energy of atomistic solids.60,61 The advantage of the GLQ scheme is that

a comparably small number of λ points already yields good estimates of the free energies.

Furthermore in the GLQ scheme the states λ = 1 and λ = 0 are not needed. This is a big

advantage when used in conjunction with the Einstein molecule method. While freezing

the carrier constrains the center-of-mass of the system over the course of a simulation, the

crystal as a whole wiggles quite considerably about its initial center-of-mass position. This

is noticeable in particular when turning off the tethers completely during the calculation of

∆A1 (see supplementary information). As a consequence considerably longer simulations

are needed at this state to collect a sufficient number of uncorrelated samples. Using

the GLQ scheme with a small (< 25) number of λ points alleviates this problem since

the tethers are always active and hence the motion of the crystal is suppressed. For

highly precise results however, the number of integration nodes has to be increased and

the problem also arises using the GLQ scheme. In contrast, using MBAR and Simpson,

endpoints have to be sampled. We found that a distribution of λ points according to

the equation of the switching rate given in the work of Freitas et al. leads to consistent

phase space overlap but typically more intermediate states (> 50) are needed.37 Regions of
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poor overlap can easily be enhanced by adding additional simulations whereas one has to

repeat all simulations when changing the order of the GLQ scheme. We favor MBAR here,

because convergence can be tested more easily by successively adding more states and also

by comparing results with thermodynamic integration via Simpson for which no additional

simulations are needed. In conclusion though, for the same total simulation time (but

different numbers of λ points) we find that statistical uncertainties of MBAR and GLQ

are practically identical. The non-equilibrium method yielded statistical uncertainties

comparable to MBAR for the solids investigated in this study and it turned out to be a

very robust method that is convenient to set up and post-process while convergence as

well as statistical uncertainties are straightforward to determine.

4.5 Conclusion

In this work we study solid-fluid phase equilibria of atomic and rigid molecules. We

propose a method to compute the absolute free energy of a solid phase that combines the

center-of-mass constraint of the Einstein molecule method with the free energy path of

the extended Einstein crystal method. The value for the tether constant (of the harmonic

tether potential) was derived from the probability distribution of atomistic displacements

of the target crystal phase which enables efficient and numerically stable tracing of the

free energy path because comparably large time-steps can be used.

The free energy of the solid phase was evaluated using three different methods: ther-

modynamic integration, reweighting using MBAR and non-equilibrium simulations. All

methods yield the same results within statistical uncertainty. We found MBAR to be

the most flexible method with low statistical uncertainties for all systems investigated in

this study since it can be used to compute free energies of the reference states and can

also be used to construct the coexistence lines using simulations in the isothermal-isobaric

ensemble. In conjunction with an analysis of phase space overlap it provides a systematic

approach to distribute λ values, where λ is the coupling parameter enabling a transition

between an Einstein crystal and a solid structure of full intermolecular interactions. In

literature, thermodynamic integration using a Gauss-Legendre quadrature is often used

which is a good strategy to get an estimate the free energy with comparably small numbers

of λ values. Since the distribution of λ-values is fixed for a given number of points, testing

for convergence is more cumbersome because old simulations cannot be reused. Our study

showed that - using the same total simulation time - non-equilibrium simulations (for the

systems considered in this study) are statistically competitive for calculating free energies

of solids to equilibrium methods. They provide a robust route to perform free energy

computations. Non-equilibrium simulations are appealing because in practice they are

convenient to setup and moreover post-processing and statistical analysis are comparably
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simple to perform. We believe that these are valuable and often underestimated features

of a free energy method where typically several manual (subtle) steps are required.

Combining the absolute free energies of reference states we calculated melting points

for fcc-solid argon, the α-solid phase of OPLS-UA methanol and the ice-Ih phase of

TIP4P/2005 water. All computed melting points have high precision and show good

agreement with literature data. Using initial melting points we presented an effective

method to trace the coexistence line: Based on NpT simulations already available for

identifying an initial melting point, we used MBAR to estimate new coexistence states

at other temperatures and pressures. At the estimated conditions additional simulations

are conducted to refine the results. Formally the procedure is iterative, however, in our

application a single refinement step (using rather short simulation times) yielded good

estimates for phase coexistence lines and allowed moving considerably far along a melting

line.

Appendix

The contributions A0 + ∆A0 of our method are identical to the reference, A0, of the

original Einstein molecule (EM) method.28 In their publication, Aragones et al. compute

the reference by integration over the configurational space of tethered ideal gas molecules

and the carrier which has one frozen atom. The partition function of this system reads

(for rigid molecules)

Q1 =

∫
dn−1r(c) exp

[
−β

n∑
j=2

k

2
∆r

(c)2
j

]

× 1

N

{
1

Λ3

∫
dnr(i) exp

[
−β

n∑
j=1

k

2
∆r2

j

]}(N−1)

, (4.20)

where Λ is the de Broglie thermal wavelength, N is the number of molecules, n is

the number of atoms in a molecule and ∆r2 denotes the squared displacement of an

atom from its lattice position. The first integration is performed over the positions of

the carrier molecule (superindex (c)). The first atom of the carrier is frozen (denoted

by the superindex 1 in Q1) and hence is excluded from the integration. The second

integration is performed for the rest of the molecules that are able to move freely. Since

no intermolecular potentials are present in the reference state, the integral is the same for

each free molecule and therefore only has to be computed once. The factor 1
N

arises from

the number of possible permutations to assign a molecule (its atoms) to a lattice site.12,28

The free energy is then
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Figure 4.13: Free energy of the reference contribution of the α-solid phase of methanol as
obtained from the Einstein molecule method using Monte Carlo integration. The running
mean (green line) is computed from 10 separate integrations and plotted over the number
of Monte Carlo steps. The orange dashed line represents results from non-equilibrium
simulations with a time-step of ∆t = 0.1 fs. Statistical uncertainties across all runs are
visualized as shaded region. The tether constant is k = 3974.187 kcal/molÅ

2.

βA1

N
=

1

N
lnN − 1

N
ln I1 −

(N − 1)

N
ln
I2

Λ3
, (4.21)

where we follow the notation of REF.28 and substitute the first and second integral

of equation (4.20) as I1 and I2, respectively. The final expression for A0 of the Einstein

molecule reads

βA0(EM)

N
=

1

N

[
ln
NΛ3

V
− ln I1 − (N − 1) ln

I2

Λ3

]
. (4.22)

In comparison, the reference of the method used in this work is simply that of an

atomistic EM12

βA0

N
=

1

N

[
ln
NΛ3

V
− 3

2
(N − 1) ln

(
βkΛ2

2π

)]
. (4.23)

To show that A0+∆A0 is equivalent to A0(EM) we conducted Monte Carlo integrations

of I1 and I2 (see figure 4.13) and compared the result with A0 +∆A0 from nonequilibrium

simulations. The results of the simulations are presented in table 4.4.
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Table 4.4: Free energy of the Einstein molecule reference state of α-solid methanol
as computed from non-equilibrium simulations using a tethering constant of k =
3974.187 kcal/molÅ

2 and a timestep of ∆t = 0.1 fs.

time [ns] βa0 β∆a0 δβ∆a0 βa0 + β∆a0 δ(βa0 + β∆a0)
1.0 11.44 17.61 0.02 29.05 0.02
2.0 11.44 17.61 0.01 29.05 0.01
3.0 11.44 17.60 0.01 29.04 0.01
4.0 11.44 17.61 0.01 29.05 0.01
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Chapter 5

Conclusion

In this work I studied the potential of mean force (PMF) between pairs of gold nano

crystals with alkyl thiol ligands in vacuum by means of molecular dynamics simulations

and developed a correction term for three-body contributions. The PMF between nano

crystals was determined from a series of simulations in the canonical ensemble by integra-

tion of the forces acting on the nano crystals’ centers of mass. The procedure was applied

to nano crystals with varying core sizes, ligand lengths as well as temperatures. I showed

that temperature dependence of the two-body PMF can be modeled applying a ther-

modynamic perturbation theory. The model can be efficiently parameterized using two

simulated PMF and it can subsequently be extrapolated to a wide range of temperatures

which drastically reduces the amount of simulations needed. In contrast, the simulated

three-body correction does – to good approximation – not depend on temperature. I

used this finding to develop an empirical model based on the temperature independent

repulsive contribution of the pair PMF.

These findings shed light on some aspects of effective interactions between nano crys-

tals and they may constitute a small stepping stone towards understanding and modeling

of nano crystalline super structures. Effective interactions, however, merely mark the be-

ginning of an elaborate process to develop a bottom-up approach to model the formation

of super structures where the next steps would consist of estimating stable candidate crys-

tal structures as well as actual simulation of said structures to estimate phase transitions

(including multi-body potentials) – both of which are vibrant fields of research on their

own.

Although the initial objective was on determining phase equilibria of nano crystals

based on the effective (temperature dependent) interaction potentials, I realized the need

for research even for simple fluids, which motivates the second part of this study. In the

second part I studied solid-liquid phase equilibria utilizing free energies as obtained from

molecular dynamics simulations. This study proposes combining the ”extended Einstein

crystal” approach and the ”Einstein molecule” method to determine the absolute free
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energy of the solid phase: the extended Einstein crystal method supplied me with the

free energy pathway while I utilized the Einstein molecule method to restrain center of

mass movement of the crystal. In combination with the force constant as obtained from

unrestrained equilibrium simulations, this constitutes a numerically stable and efficient

way to compute the absolute free energy of a solid. In addition, I studied different free

energy methods, i.e. a method based on overlap sampling, thermodynamic integration

as well as a nonequilibrium method, and assessed their ease of applicability, convergence

and statistical uncertainty. Phase coexistence lines were constructed in two steps. First,

I reused simulation data conducted to determine an initial melting point to make an

estimate of additional melting conditions via reweighting. And second, I conducted ad-

ditional, short simulations in the isothermal-isobaric ensemble at the estimated phase

equilibrium states in order to refine the initial estimate through simulations conducted

in parallel. For the systems studied in this work, I found that a single set of additional

simulations was sufficient to trace the coexistence line for a wide range of pressures (or

temperatures). This work included absolute free energies and phase coexistence lines for

three systems of different complexity – argon, methanol and water. For all systems my

results showed good agreement with literature data. The method worked very well for

rigid molecules and while I did not test it for fully flexible molecules it should be directly

applicable as the original extended Einstein crystal study was presented for fully flexible

molecules.

Independent of the actual choice of method (which includes the actual simulation

method and code i.e. the used algorithms as well as parameters and implementation) it

is crucial to make reproduction of the reported results as easy as possible. With ever

increasing complexity and quantity of methods it is getting more and more difficult and

(timely) demanding to gain traction in this exciting field as a new practitioner and it

should be in the interest of the scientific community – more than is currently the case –

to lower this barrier as much as possible.
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Appendix A

Appendix

A.1 Argon

A.1.1 FCC solid phase details

FIG. A.1 shows the probability distribution of atomic displacements used to determine

the tethering constant for the solid phase. The tethering constant is tested by perform-

ing a simulation in which all atoms are tethered while no intermolecular interactions are

present. The resulting probability distribution of atomic displacements can be compared

to unrestrained simulation results. The exact value of the tethering constant is not im-

portant; it is sufficient to estimate the order of magnitude since results should not depend

on the tethering constant that is used. We use the nearest integer value for convenience.
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Figure A.1: Probability distribution of atomic displacement of the argon fcc phase
as determined from unrestrained NV T simulations (green symbols, T = 83.88 K, ρ =

0.02512 Å
−3

). The orange line represents a fit of the tethering constant to match the
probability of simulation data.
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Table A.1: Contributions to the absolute free energy of the fcc solid phase as obtained from

nonequilibrium simulations for different switching times (T = 83.88 K, ρ = 0.02512 Å
−3

,
k = 3.0 kcal/molÅ

2). For an atomistic solid there is no orientational contribution and hence
β∆a0 = 0.0. Confidence intervals are determined from 10 independent simulations. The
reference, βa0, was calculated using the Lennard-Jones diameter as de Broglie wavelength,
Λ = σ.

time [ns] βa0 β∆a1 δβ∆a1 β∆asol δβ∆asol

0.5 5.2533 -11.4832 0.0009 -6.2299 0.0009
1.0 5.2533 -11.4837 0.0008 -6.2304 0.0008
2.0 5.2533 -11.4831 0.0005 -6.2298 0.0005
3.0 5.2533 -11.4834 0.0004 -6.2301 0.0004
4.0 5.2533 -11.4832 0.0003 -6.2299 0.0003
5.0 5.2533 -11.4832 0.0003 -6.2299 0.0003
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Figure A.2: β∆a1 vs. λ of the argon fcc phase from equilibrium simulations at T = 83.88 K

and ρ = 0.02512 Å
−3

using a tether constant of k = 3.0 kcal/molÅ
2.

FIG. A.2 presents the free energy path of β∆a1 as a function of the coupling parameter

λ. Shown here are results for 52 simulations. We used the GLQ scheme to distribute 50

λ-values and added 2 additional values for the end states, λ = 0 and λ = 1, for Simpson

and MBAR. Using a GLQ scheme, typically a smaller number of λ-values of about 25

values is sufficient (for the systems studied here). As shown in FIG. A.2 the free energy

path shows almost linear behavior when plotted versus λ which is advantageous for TI.

To achieve overlap between states, especially when approaching λ → 1 (no tethers), we

found that additional λ-points are necessary for MBAR. However, rather short simulation

times of 1 ns can be used and for the same total simulation time (not necessarily the same

number of λ-values) GLQ and MBAR yield similar statistical uncertainties.
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A.1.2 Center-of-mass movement of the Einstein Molecule

During computation of the absolute free energy of the solid phase, βasol, we observed that

– when turning off the tethers to calculate β∆a1 – the center-of-mass of the whole crystal

moves considerably at the end point λ = 1 (tethers are coupled via (1− λ)utether). While

it is relatively consistent over the course of a simulation, this translational movement of

the whole crystal leads to large displacements of atoms with respect to their equilibrium

lattice positions. This effect is presented in FIG. A.3 for the argon fcc-phase. Using the

regular Einstein molecule (EM) method leads to behavior presented as green line. Because

no tethers are active, it is generally possible for atoms to switch lattice positions which

would lead to large displacements. However, this is not the case here as swaps of positions

would not influence the center-of-mass of the crystal which is what we observed in our

simulations. Freezing additional atoms decreases this effect as the orange (2 fixed atoms)

and purple (3 fixed atoms) lines show. This effect is present also when unconstrained

Monte-Carlo simulations are used (not shown here). To our knowledge, this effect was not

observed or discussed in literature. Often, a GLQ scheme is used to perform integration

of β∆a1 where simulations in the end points still have tethers active. We found that only

when going to comparably large numbers of GLQ nodes (> 30 for argon) tethers in the

end states are small enough to observe this effect. The center-of-mass movement is less

pronounced for molecular crystals, but to ensure convergence of β∆a1 we recommend to

increase simulation time at states where tethers are very weak to make sure that enough

uncorrelated samples can be extracted and also, when using MBAR, to make sure that

there is sufficient overlap in the end states. Our results suggest that – when sufficiently

sampled – GLQ and MBAR can be reliably used to compute the free energy differences

albeit the discussed difficulties.

A.1.3 States for initial phase coexistence and tracing of the co-

existence line

The argon system in this study consists of 5324 particles. The larger the size of a system

the narrower the energy distributions will be and – as a consequence – to achieve overlap

between adjacent states, more thermodynamic states are necessary to cover a certain range

of temperatures and pressures than for smaller systems. To construct the initial phase co-

existence point at p = 420.0 bar we use temperature steps of ∆T = 2 K between 70 K and

100 K leading to a total of 16 simulations for each phase. Additional 50 simulations in both

phases were then added to trace the coexistence line between 420 bar and 7000 bar (a list

of all temperatures and pressures is given in the simulation materials/argon npt states.dat

file of the supporting information).
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Figure A.3: Sum of squared atom displacements with respect to their lattice positions,
(~ri − ~ri,0)2, over simulation time with different numbers of frozen “carrier“ atoms. No
tethers are active in this state, i.e. it represents the end state λ = 1 for β∆a1. Freezing
multiple atoms reduces the translation of the crystal as a whole.

A.1.4 Coexistence temperatures and pressures as compared to

literature

In TABLE A.2 results for fcc-liquid coexistence temperatures and pressures (in Lennard-

Jones units) from this work are compared to literature data.1 Note that uncertainties are

presented as 67% confidence intervals as reported in the reference.

Table A.2: Comparison of argon fcc melting temperatures in Lennard-Jones units with
literature.1 Uncertainties in this table are given as 67% CI as reported in the reference.

P Tm T lit
m

1.0 0.7820(2) 0.7793(4)
5.0 1.0788(2) 1.078(3)
10.0 1.4012(4) 1.399(4)
15.0 1.6916(7) 1.691(2)
20.0 1.972(3) 1.967(2)

A.2 OPLS-UA methanol

A.2.1 α-solid phase details

For methanol, two free energy differences have to be computed. β∆a0, which is the path

from tethered central atoms to restrained (orientational) but non-interacting molecules,
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and β∆a0, which is the path from tethered, non-interacting molecules to the solid of inter-

est. FIG.A.4 visualizes the first contribution while FIG.A.5 depicts the second contribu-

tion in terms of the free energy versus the coupling parameter λ. Statistical uncertainties

for the different contributions are reported in the main manuscript. While the second

contribution, β∆a1, shows almost linear behavior just like the argon case, β∆a0 shows a

steep slope for small values of λ. A distribution of λ values according to the GLQ scheme

for β∆a1 with a total of 25 points is sufficient whereas for β∆a0 more intermediate val-

ues are needed to achieve convergence. Interestingly, a distribution of λ-values using the

switching function from the non-equilibrium method showed the best results for MBAR

and Simpson.2

The behavior of the free energy versus the coupling value shows that the first contri-

bution, restraining the orientation of molecules, also results in larger (absolute) statistical

uncertainties as compared to the second contribution. More simulation time could be

invested to lower the statistical uncertainty of β∆a0 since it is very cheap to compute

because no intermolecular interactions are present in this stage. In this study we did not

follow such an optimization approach and use the same total simulation time for both

contributions which leads to different simulation times for the equilibrium simulations

depending on the number of λ-values that were used.

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

a 0

GLQ: 8.270
Simpson: 8.271
MBAR: 8.271

Figure A.4: Free energy path for β∆a0 over the coupling parameter λ for the α-phase

of OPLS-UA methanol at T = 150 K, ρ = 0.01878 Å
−3

and k = 8.0 kcal/molÅ
2. As limiting

case for convergence of the free energy, 100 λ-values were used. λ = 0 represents the state
of tethered “central atoms“ whereas for λ = 1 orientations of molecules are restrained.

FIG.A.6 shows a comparison between the absolute free energy as obtained via non-

equilibrium simulations and as obtained via MBAR.
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Figure A.5: Free energy path for β∆a1 over the coupling parameter λ for the α-phase

of OPLS-UA methanol at T = 150 K, ρ = 0.01878 Å
−3

and k = 8.0 kcal/molÅ
2. 25 λ-values

were used.

A.2.2 Comparison between CH3 and oxygen as central atom

For methanol it is not clear which interaction site should be used as “central atom“.

To investigate possible differences in the resulting absolute free energies we conducted

simulations using CH3 and oxygen sites as “central atoms“. Results are shown in FIG.A.7

with numerical values given in TABLE A.3, suggesting that for sufficiently long simulation

times the choice of the “central atoms“ does not matter for OPLS-UA methanol.

A.2.3 States for initial phase coexistence and tracing of the co-

existence line

For methanol, we use smaller systems as compared to the study of argon. As a conse-

quence, larger intervals for temperatures and pressures can be chosen when conducting

the simulations in the isobaric-isothermal ensemble. FIG.A.8 depicts the construction of

the initial coexistence point utilizing simulations of the α-solid phase, the β-solid phase

and the liquid phase. These simulations were conducted at p = 1 bar and temperatures

between 150 K and 300 K, where temperature intervals of ∆T = 10 K were sufficient to

achieve phase space overlap.

To compute the phase diagram (only α-liquid transition) up to 7000 bar we carried out

9 additional simulations in both phases. A list of all temperatures and pressures is given

in the simulation materials/methanol npt states.dat file of the supporting information.
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Figure A.6: Absolute free energy of the α-solid phase of OPLS-UA methanol from non-
equilibrium simulations (symbols with error bars) over switching time compared to equi-
librium simulations (MBAR, dashed line with uncertainty as shaded region) at T = 150 K,

ρ = 0.01878 Å
−3

and k = 8.0 kcal/molÅ
2. The de Broglie wavelength is set to Λ = 1.0 Å.

A.3 TIP4P/2005 water

A.3.1 Solid phase details

Analogously to OPLS-UA methanol, FIG.A.9 and FIG.A.10 depict the two contributions

of the absolute free energy of TIP4P/2005 ice Ih. As before, computation of β∆a0

requires more intermediate λ-values than computation of β∆a1. Interestingly, the slope

in the vicinity of λ = 0 is less steep than for methanol which could stem from the fact

that water is a symmetric molecule and the central tether is applied almost at the center-

of-mass position of the molecule. Missing uncertainties in the plots are reported in the

main manuscript.

FIG.A.11 depicts a comparison between the absolute free energy as obtained via non-

equilibrium simulations and as obtained from MBAR.

A.3.2 Liquid phase details

For the free energy of the liquid phase we traverse a path from a Lennard-Jones fluid

(using the full TIP5P/2005 Lennard-Jones parameters for oxygen) to the TIP5P/2005

potential by turning on coulombic interactions introducing a linear coupling parameter λ.

The reference state is calculated from the equation of state of Thol et al.3 For the ideal

gas contribution we use Λ = 1 Å for the de Broglie wavelength. A visualization of the

free energy pathway is presented in FIG.A.12 and an overview of all contributions to the

absolute free energy is given in TABLE A.4.
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Figure A.7: Absolute free energy of the α-solid phase of OPLS-UA methanol from non-
equilibrium simulations for CH3 and oxygen (O) as “central atoms“ (symbols) compared

to equilibrium results via MBAR at T = 150 K, ρ = 0.01878 Å
−3

and k = 8.0 kcal/molÅ
2.

Numerical data of the results are presented in TABLE.A.3.

A.3.3 States for initial phase coexistence and tracing of the co-

existence line

For water it is sufficient to use larger intervals for temperatures and pressures when

conducting the simulations in the isobaric-isothermal ensemble. For simulations at p =

1 bar we use temperature intervals of ∆T = 10 K between 200 K and 300 K. 5 additional

simulations for both phases are conducted to compute the phase diagram up to a pressure

of 6000 bar.
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Table A.3: Absolute free energy of the α-solid of OPLS-UA methanol from non-
equilibrium simulations for CH3 and oxygen as “central atoms“ for different switching
times. Statistical uncertainties are determined from 5 independent runs. Raw simulation
data as well as a post-processing script to generate the results presented here (jupyter note-
book) are given in the simulation material/meoh alpha non equilibrium evaluation folder.

time [ns] βa0 β∆a0 δβ∆a0 β∆a1 δβ∆a1 β∆asol δβ∆asol

CH3
0.5 2.157 8.275 0.016 -40.012 0.008 -29.579 0.018
1.0 2.157 8.272 0.013 -40.006 0.005 -29.577 0.014
2.0 2.157 8.272 0.006 -40.008 0.005 -29.578 0.007
3.0 2.157 8.275 0.008 -40.008 0.004 -29.575 0.009
4.0 2.157 8.272 0.007 -40.003 0.003 -29.574 0.008
5.0 2.157 8.274 0.007 -40.008 0.002 -29.576 0.007
Oxygen
0.5 2.157 8.286 0.025 -40.001 0.007 -29.558 0.026
1.0 2.157 8.283 0.017 -40.001 0.007 -29.561 0.019
2.0 2.157 8.276 0.008 -40.001 0.001 -29.567 0.008
3.0 2.157 8.270 0.005 -40.000 0.001 -29.573 0.005
4.0 2.157 8.272 0.010 -40.002 0.002 -29.573 0.010
5.0 2.157 8.271 0.007 -40.001 0.002 -29.573 0.007

Table A.4: Contributions to the absolute free energy of TIP4P/2005 liquid as computed
via MBAR (β∆a, turning on electrostatic interactions) and the equation of state of Thol

et al. at T = 298 K and ρ = 0.03332Å
−3

. For the free energy of the ideal gas, ln(ρΛ3)−1,
a value for the de Broglie wavelength of Λ = 1 Å was used.

βaig βares β∆aliq βaliq

-4.4016 2.1198 -13.3191(13) -15.6000(13)

150 175 200 225 250 275 300
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Figure A.8: Construction of the initial coexistence point of OPLS-UA methanol via NpT
simulations at p = 1 bar from the liquid (green), α-solid and β-phase.
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Figure A.9: Free energy path for β∆a0 over the coupling parameter λ for the Ih-phase
of TIP4P/2005 water.
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Figure A.10: Free energy path for β∆a1 versus the coupling parameter λ for the Ih-phase
of TIP4P/2005 water. 25 λ-values were used.
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Figure A.11: Absolute free energy of the Ih-phase of TIP4P/2005 water from non-
equilibrium simulations (symbols with error bars) over switching time as compared to
equilibrium simulations (MBAR, dashed line). The de Broglie wavelength is set to Λ =
1.0 Å.
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Figure A.12: Free energy difference between a Lennard-Jones fluid and TIP4P2005 water

at T = 298 K and ρ = 0.03332Å
−3

. The coupling parameter λ turns on coulombic
interactions.
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