Institute of Parallel and Distributed Systems

University of Stuttgart
UniversitatsstraBBe 38
D-70569 Stuttgart

Master Thesis

Graph sparsification techniques for
triangle counting

Matthias Hermann

Course of Study: Informatik

Examiner: Prof. Dr. Kurt Rothermel
Supervisor: Michael Schramm, M.Sc.
Commenced: October 15, 2019

Completed: September 2, 2020

Abstract

The triangle count of a graph is a key metric in graph analysis. Especially for social networks,
the triangle count is important to assess connectedness of vertices in the graph. However, these
social networks in particular can produce large graphs with trillions of edges. In fact, the size
of graphs appears to grow faster than the computational resources to analyze and process these
graphs. Confronted with similar problems in the past, the solutions for developers of algorithms
were oftentimes approximating algorithms. Research in approximate triangle counting algorithms
has lead to a multitude of various approximating algorithms. Comparing and understanding the
differences in the mechanisms they use to provide faster and more accurate results has therefore
become complicated.

This work presents an analysis on existing triangle counting algorithms to improve understanding
of which mechanisms work best for fast triangle count approximations. In order to further this
understanding even more, an analysis on graph structures and their influence on triangle counts is
presented, as well. Results of this analysis include a method for decentralized coordination and
reducing communication in distributed computations as well as a method for estimating a triangle
count of a graph by using a small sample of vertices and their degree values.

Contents

1 Introduction
1.1 Thesis organizationo e e
2 Background
2.1 Triangle Count
2.2 Estimating triangle counts on sparse graphs
2.3 Bulk Synchronous Parallel, .
2.4 Statistical measures
3 Related work
3.1 Triangle Counting algorithms,
3.2 Approximate Computing & Approximation Algorithms
3.3 Hash functions for coordination Lo,
34 Datasetso e e e e e e
3.5 Contributions of thiswork L o
4 Hash-based Coordination
4.1 Random Oracle Model & cryptographic hash functions
4.2 Cryptographic hash functions & graph sparsification
4.3 Reducing communication with randomoracles.
44 Effectonperformance.
5 Analysis
5.1 Contextand Goal
5.2 Experimentalsetup
53 Findings e
54 Conclusion e
6 Degree-assisted Estimation
6.1 Local triangle count extrapolation
6.2 Quality of estimates
7 Conclusion and future work
Bibliography

15
16

19
19
20
21
23

25
25
29
30
31
32

35
35
36
37
40

45
45
46
50
63

65
65
67

71

73

List of Figures

2.1
22

4.1

5.1
5.2
53
54
5.5
5.6

6.1

Difference between a triangle and an open triple. 20
Exemplary execution of a computation in the Bulk Synchronous Parallel model . 22
Runtimes comparison of triangle counting algorithms implemented using random

oracles for graph sparsification. oL oL 41
Plots of summed triangle counts (y-axis) of vertices with given degree (x-axis). . 51
Plots of average local triangle counts (y-axis) of vertices with given degree (x-axis). 53
Percentage of vertex pairs forming a triangle (y-axis) by degree product (x-axis). . 55
Shares of algorithms’ runtime being used for messaging, counting and other tasks (I10) 57
Runtimes of algorithms for different samplerates. 59
Triangle count estimates of algorithms for different sample rates. 62

Average local triangle counts for varying vertex degrees and sample rates (blue)
and the corresponding linear (green) and cubic (orange) regression functions of the
graph NotreDame. e e 69

List of Tables

3.1

5.1
5.2

6.1

Graphs used in the experiments . .

Correlation between vertex degree and local triangle count at that vertex.
Correlation between vertex degree and average local triangle count at that vertex.

Excerpt of degree-assisted triangle count estimates with relative deviation from

regular VertexSampling estimates.

31

50
52

67

List of Algorithms

3.1
3.2
33
4.1

NodeIterator i i i i i i e e e e e e e e 26
Edgelterator i i e e e 26
Forward e 26
NodeIterator (BSP) o i i i e e e e e e e 38

11

List of Abbreviations

BSP Bulk Synchronous Parallel. 21
DAE degree-assisted estimation. 67
PRNG pseudorandom number generator. 36

RNG random number generator. 36

13

1 Introduction

The evolution of sizes of social networks caused a need for processing huge graphs with billions
of vertices and trillions of edges [CEK+15]. Han et al. [HZZ+15] analyzed the user network of
Weibo, a Chinese social network, to detect communities, explore structural properties, and compare
them with Twitter’s network. Retailers, such as Walmart and eBay, or websites like Twitter use
graph processing in order to give better recommendations to customers and users [GJL+18; Neol5;
Neol9]. In the finance industry, graph analysis is used to perform fraud detection in financial
transactions [Neol7]. However, not only large and well known companies process huge graphs.
Even small companies may have the need to process graphs with more than one billion edges, as a
survey of Sahu et al. [SMS+17] found out.

Many graph processing tasks depend on graph properties like clustering coefficient or transitivity
ratio to calculate their results [TKMFO09]. Triangle counting is used in order to calculate these
properties and perform graph analysis with them [New03]. As a result, triangle counting is used in
several domains. Aggarwal et al. [AS14] analyze networks and their evolution over time, which
requires the triangle count as a metric. Becchetti et al. [BBCGO08] could detect sources of spam or
judge content quality in networks by counting triangles. Eckmann and Moses showed that triangle
counting can also be used for analyzing the internet and detecting topics in its structure [EMO02].

Processing large graphs results in a need of large amounts of computing power. However, the
amounts of data to be processed grow faster than the computational resources available to process
this data, according to an industry study sponsored by EMC (now Dell EMC) [GR11; Mitl6].
Efficiency of algorithms in terms of runtime and computational resources will therefore only increase
in importance. Even nowadays the size of web scale graphs, such as the Yahoo web graph [Res19],
causes issues due to the super-linear runtime complexity of some algorithms used for analysis of
those graphs [SWW+12]. Due to these issues the following challenges result. Firstly, keeping the
runtime of algorithms in the order of minutes instead of hours or even days. Analysis on graphs is
oftentimes required to be performed in a timely manner, as information extracted from a graph may
be needed in real-time [GJL+18]. Secondly, the size of graphs will certainly grow even further and
therefore measures need be taken in order to be able to manage even larger graphs [Sch19].

Historically, similar challenges have been solved in several ways. The rise of distributed systems
originated from the need to distribute load off of a single processor and enabled computing resources
to be clustered together in order to build powerful clusters capable of more complex computations
than single processor machines [Pea72]. Many graph processing frameworks nowadays such
as Gunrock [WRO+17], Apache Giraph [Apa] or GraphLab [LBG+12] already use distributed
processing to perform analysis on large graphs, which do not fit into the memory of a single machine
or would take too long to process otherwise. Code optimizations do help in making algorithms more
efficient, however, there is the limitation of runtime complexity restricting how much an algorithm
can be optimized. In algorithm research, approximations have therefore been a research topic for a
long time. Approximations allow a trade-off between runtime of an algorithm and accuracy of its

15

1 Introduction

results. Such a trade-off allows to define a margin of error, which is tolerable, in order to reduce
consumption of computational resources. Depending on the problem, using an approximation may
give sufficiently good results while saving large amounts of computational resources [Joh73].

Approximating algorithms are commonly used in combinatorics on commonly known NP-complete
problems such as the set cover problem or the boolean satisfiability problem [Joh73]. In numerical
analysis Runge-Kutta methods have been in use for a long time to calculate approximate solutions
of differential equations with computers [Mar58]. First steps in using approximation techniques
in graph processing were taken by Iyer et al. [[PV+18]. Their GAP system uses sparsification of
the input graph to reduce the amount of data to be processed. Sparsification of a graph is usually
performed by sampling certain vertices or edges of a graph and ignoring all others. Schramm [Sch19]
reinterpreted graph sparsification as dropping of messages, which are exchanged between vertices
during the execution of an algorithm. The goal of approximation techniques is to reduce overall
execution time of an algorithm, as well as its resource consumption. This effect may be achieved by
reducing the time and memory requirements for materializing the graph structure in memory or
by reducing the overall amount of calculations to be performed. In distributed graph processing,
the overhead caused by communication between computers participating in a calculation may be
reduced by limiting the amount or size of messages exchanged in order to speed up processing and
limiting network usage.

In order to further improve upon approximating algorithms for triangle counting, the central parts
of this work are an analysis of structures in graphs, which may correlate with triangle counts, and
an analysis of preexisting triangle counting algorithms. Both aim at generating insights into how
triangle counting can be made more efficient by understanding which structures in graphs and
features of algorithms can be used to improve estimates and runtimes. As a result of this analysis, a
new method for estimating triangle counts in graphs using a small sample of local triangle counts of
vertices and structural properties is presented. Furthermore, a method for decentralized coordination
and reducing communication in distributed computations using cryptographic hash functions is
presented. While the latter does not improve upon estimates, it may reduce runtime by reducing
resource usage caused by communication between processes in a distributed computation. All
algorithms covered in this work were implemented using the graph processing framework Apache
Giraph [Apa] such that comparisons are done using a common baseline. The graphs used for
analysis and algorithm comparisons are chosen from various domains to reflect the diversity of
real-world graphs.

1.1 Thesis organization

This work is structured as follows. Chapter 2 introduces all the background knowledge required for
comprehension of this work. This includes the problem of triangle counting, estimating triangle
counts in sparse graphs, the computational model used by Apache Giraph — the graph processing
framework used in this work —, and statistical measures used in the analysis.

Chapter 3 presents related work in the context of triangle counting — especially algorithms —,
approximate computing in general, and the use of hash functions for coordination tasks. It closes
with the contributions of this work.

16

1.1 Thesis organization

Chapter 4 presents a method of decentralized coordination and reducing runtime for distributed
computations, which helped with the implementation of a triangle counting algorithm used in the
algorithm comparisons.

Chapter 5 contains the analysis of graph structures and their correlation with triangle counts as well
as performance comparisons of existing triangle counting algorithms.

Chapter 6 presents a new method of estimating a triangle count in a graph with the assistance of
structural properties of the graph.

Chapter 7, the last chapter, concludes this work with a summary of its results and contributions as
well as possible starting points for future work.

17

2 Background

It is necessary to first present the definition of triangle counting used in this work before algorithms
on triangle counting and other related works are presented. In addition to that definition, the general
approach of computing a triangle count estimate using a sparse graphs is presented. This is followed
by an overview of the graph processing framework used in this work alongside its underlying
computational model. At the end of the chapter, a selection of correlation coefficients are presented,
which are used for statistical evaluations later on.

2.1 Triangle Count

The triangle count is a property of a graph G(V, E) with V = {vy, ..., v, } being the set of vertices
and E C {(u,v) | u,v € V} being the set of edges. A triangle in a graph G(V, E) is a set of three
vertices u, v, w € V, which are connected to each other by one edge each, i.e.

{u,v,w} is a triangle in G(V, E)
@{M,V,W} CVA {(ua V)9 (M,W), (V’ W)} CE.

Let N(v) ={u € V| (v,u) € E } be the neighborhood of a vertex v, i.e. the set of vertices which
v is connected to by an edge and d(v) be the degree of a vertex v, i.e. the size of its neighborhood
|N(v)| or the amount of out-going edges incident to that vertex v. In order for a vertex v to be part
of a triangle it must hold that d(v) > 2. Furthermore, only vertices u, w € N(v) can form a triangle
{u,v,w} with v.

Triangles are to be distinguished from open triples, which are missing any one of the three edges
required to form a triangle as depicted in figure 2.1. An open triple is said to be centered around a
vertex v, if it is the vertex in the open triple connected to the other two vertices, i. e.

{u,v,w} is an open triple in G(V, E) centered around vertex v
e{u,v,w} SV A{(u,v), v,w)} € EA{(u,w), (w,u)} £ E.

The definition of “triangle” in this work extends to both, directed and undirected graphs. Edges in
undirected graphs are interpreted as two separate, directed edges between the same two vertices with
opposite directions, i. e. the undirected graph is interpreted as directed graph. Edges in a directed
graph are duplicated with opposite direction, such that for every directed edge (u, v) another edge
(v, u) with opposite direction is added but without introducing duplicate edges.

Triangle counting is the task of counting how many distinct triangles are contained in a graph
G(V,E). This is not to be confused with obtaining the local triangle count of a vertex, which
represents the number of distinct triangles that vertex is a part of. Unless specified otherwise,
triangle counting in this work refers to obtaining a count of triangles in the complete graph. Besides

19

2 Background

2 3

(a) A simple triangle consisting of three vertices (b) An open triple centered around vertex 1.
1,2, and 3.

Figure 2.1: Difference between a triangle and an open triple.

merely counting all triangles in a graph, i.e. producing a single value indicating the amount of
triangles, one can also enumerate all triangles, i. e. produce a set of vertex triples, which correspond
to the triangles found in the graph. However, since enumerating triangles in a sparse graph could
lead to confusing interpretation of results when comparing with results of the complete graph, this
work focuses on merely counting triangles.

When counting triangles, most of the time only distinct triangles are considered. Borrowing the
notation of Hasan and Dave [HD17], let T(G) be the set of all triangles contained in a graph
G(V,E) and vert(t) and edg(t) are the sets of vertices and edges forming a triangle ¢, respectively.
Then, the set of distinct triangles A is defined as:

Vii,t €eT(G) :t1 € AN € A = vert(ty) # vert(ty) V edg(t1) # edg(ts)

The result of enumerating all triangles in a graph is the set of distinct triangles A, whereas the result
of merely counting all triangles in a graph is the size of the set of distinct triangles |A|. This implies
that an algorithm able to enumerate all triangles in a graph can also produce a count of all triangles,
but not the other way round.

2.2 Estimating triangle counts on sparse graphs

Evaluating the triangle count A of a graph can be achieved by simply running any exact triangle
counting algorithm on the graph. In the case of sparse graphs, which are produced by removing
parts of a graph, the triangle count A produced by running a triangle counting algorithm on the
sparse graph has to be corrected for the amount of triangles missed due to sparsification of the
graph. A triangle count estimate A, for the original graph is therefore produced from the triangle
count Ay of the sparse graph by applying a correction factor cy to it as follows:

A=A, =cp* A 2.1

The value of this correction factor ¢, always depends on the method of sparsification of the original
graph.

Many sparsification techniques discussed later on in section 3.1.2 are Bernoulli processes, i. e. they
are built based on a series of random and independent decisions regarding which edges, vertices or
triples to sample or to drop [FEHP10]. Some of them focus, for example, on triangles as a set of

20

2.3 Bulk Synchronous Parallel

three edges from which edges are kept with probability p and removed with probability 1 — p. In
order to produce a correct estimate of the total amount of triangles present in the original graph, the
amount of triangles not counted due to not sampling the corresponding edges has to be accounted
for. If an algorithm only samples and counts a third of all triangles in the graph, the resulting count
would have to be multiplied by a correction factor of three to receive a correct estimate of the
triangle count in the original graph. In the case of Bernoulli processes, however, determining the
correction factor is more complicated than multiplying by a constant factor.

When sampling edges of a triangle independently of one another, every edge of a triangle has the
same probability p of being sampled. Sampling of edges in a triangle can therefore be seen as a
Bernoulli process of length n = 3 and with success probability p. Let X be the random variable
modeling the amount of edges sampled from a triangle. The probability of sampling & edges from
the set of three edges forming a triangle is given by the probability mass function of the binomial
distribution with n = 3 and p being the sampling probability:

P(X=k) = (Z) « pk s (1 - p)>k (2.2)

The correction factor for such sampling procedures extrapolates the amount of triangles found
in the sample to an estimate of triangles in the complete graph. It is given by the multiplicative
inverse of the probability for sampling all vertices or edges required to count a triangle in the sparse
graph. Assuming an algorithm requires all three edges of a triangle to be sampled in order for it to
be counted, the correction factor would be ¢y = P(X = 3)~! = p~3. In the case of an algorithm
requiring at least two out of three edges of a triangle to be sampled, the correction has to account
for both cases, k = 2 and k = 3. The resulting correction factor is given by:

1

= PX 32 @.3)

CA
with:

P(X22)=(i)*P3*(1—P)0+(;)*P2*(1—P)1

= —2p3 + 3p2

These formulas are all fit for use in combination with sampling procedures which are based on
Bernoulli processes. Note that not all algorithms have to use a Bernoulli process to sample a graph.
If that is the case, however, the parameters n and k of the binomial distribution as well as threshold
value for the random variable X have to be chosen with care, such that these parameters correctly
model the sampling process.

2.3 Bulk Synchronous Parallel

Bulk Synchronous Parallel (BSP) is a computing model describing the execution of a computation
in the context of multiple separate components working together in parallel and communicating
using messages. It was developed to model parallel and distributed computations, which previous
models such as the von Neumann architecture alone were unable to [Val90]. This section first
describes the BSP model, followed by an outline of two implementations of this model in the context
of graph processing, namely Pregel and Apache Giraph.

21

2 Background

2.3.1 The model

Process A g A (cont.) > A (cont.)
Process B B (halt.) B (cont.)
Process C C (cont.) C (cont.)
Process D > D (cont.) D (halt.)
Process E ><: E (cont.) E (halt.)

Figure 2.2: Exemplary execution of a computation in the Bulk Synchronous Parallel model

The way in which sequential computers with a single CPU and main memory work is described by
the von Neumann architecture [Neu93]. It is an abstract bridging model describing the way in which
a computation, i. e. the execution of a program, would run on computers implementing that model.
Similarly, the BSP model has been proposed by Leslie Valiant [Val90] for modeling computations
on parallel computers. Such a model allows abstractions of a concrete hardware platform to be
made when designing algorithms with available capabilities in mind.

In the BSP model, as it is proposed by Valiant [Val90], there exist multiple components responsible
for performing computations and acting as memory storage. Communication is enabled by a
router delivering messages between components. Additionally, components are synchronized
completely or partially at regular intervals. The segments between two synchronization points
are called supersteps. During such a superstep each component receives messages, performs
local computations, and sends messages to other components. However, messages sent in one
superstep are available at the receiver for processing earliest in the following superstep. Note that
this model does not use shared memory. Instead, shared memory would need to be simulated using
messaging.

Figure 2.2 visualizes a potential execution of a computation in the BSP model. The processes A to E
each perform computations, exchange messages, and are synchronized at regular intervals, which is
indicated by the black barriers in the figure. At the beginning of the computation, all processes are
active and can autonomously decide to become inactive. Once they receive a message, an inactive
process becomes active again. The computation is terminated once all processes become inactive
and no message is in transit.

2.3.2 Pregel & Apache Giraph

In the field of graph processing, Pregel [MAB+10] is a framework for large-scale computations on
graph data and is based on the BSP model. It follows the “Think-like-a-vertex”” approach in which
the computation is formulated from a vertex’s point of view, i. e. a graph’s vertex corresponds to a
component in the BSP model.

22

2.4 Statistical measures

Pregel assumes directed graphs, in which edges are associated with their source vertex. Every vertex
has an identifier used for messaging and a user-modifiable value, which acts as output value of that
vertex. Within each superstep of a BSP computation, every vertex executes the same user-defined
compute ()-function. In that function, a vertex may perform local computations, change its value
or the value of outgoing edges, receive messages sent by other vertices in the previous superstep,
send messages to other vertices of which their identifier is known, and even change the structure of
the graph. A computation proceeds as long as at least one vertex is still active. All vertices are
active at the start of a computation. They can become inactive by voting to halt and become active
again when they receive a message. The computation is considered terminated when all vertices are
inactive and no message is in transit.

Apache Giraph [Apa] is the open source implementation of this Pregel model of graph processing
in the Hadoop ecosystem. Apache Hadoop is a framework for performing distributed computations
on large datasets. Giraph was built using the Hadoop framework with parallelization and fault
tolerance in mind to enable computations on large graphs using commodity hardware. A Giraph
computation can be run on a regular Hadoop cluster. Reading inputs and writing outputs is done
using the Hadoop File System (HDFS), which is a distributed file system designed for storage of
large amounts of data for processing by Hadoop clusters. Martella et al. [MSL15] further explain
the details of processing graphs using Apache Giraph on a Hadoop cluster.

Apache Giraph in version 1.2.0, which is the latest stable release at the time of writing, is the graph
processing framework used in this work for analyzing triangle counting algorithms. The most
important reasons for this choice are the BSP programming model and its free availability. The
programming model is easy to understand and to program for but also allows for easy analysis
of how algorithms operate. Additionally, an analysis performed by Varbanescu et al. [VVL+15]
showed that performance of graph processing is strongly influenced by the executed algorithm and
the input graph. Guo et al. [GBV+14] could find no clear winner among the frameworks they have
tested. Therefore, the overall performance of the graph processing framework had less weight than
an easy implementation of algorithms and easy analysis of algorithms’ behavior when choosing the
framework to be used.

2.4 Statistical measures

Detecting a provable correlation, i. e. a statistical relationship, between two variables in a bivariate
dataset can indicate that predictions of one variable using the other variable may be possible [ZTS03].
Measures to define the strength of such a correlation are called correlation coefficients. They take
into account all datapoints of the available bivariate data and produce a number, which specifies
how closely the two variables of the data follow a certain type of statistical relationship. There are
three correlation coefficients used in this work: Pearson’s correlation coefficient, which is the most
commonly-used one and can detect linear relationships in bivariate data, Spearman’s correlation
coefficient, which is slightly more robust and can detect monotonic, non-linear relationships, and
the so called distance correlation coefficient, which is able to detect more general relationships in
data.

The simplest kind of such a relationship is a linear one, in which the data can ideally be described
by a linear equation or a straight line. Pearson’s correlation coefficient » detects a linear relationship
between two variables X and Y in the data and measures its strength. It is defined by the covariance

23

2 Background

of the two variables X and Y divided by the product of their respective standard deviations [DE12;
MBL+12]: . _
Cov(X,7Y) 1 (Xe = X) = (Y; = Y)

r= =

XY VE (X = X2 S0, (7, - 7)2

Values around 0 indicate no relationship between the two variables, while values near +1 indicate a
perfect linear relationship [MBL+12].

2.4)

A disadvantage of Pearson’s r is its restriction to linear relationships. For non-linear relationships
which can be described by a monotonic function, Spearman’s rank correlation coefficient can be
used. It does not use the actual values of the variables X and Y, but the rank of those values, i. e.
the smallest value of a variable receives a rank of one, the next biggest value of that variable — no
matter the difference between those two values — receives a rank of two etc. Using the ranks of
each datapoint instead of the datapoints themselves, the correlation coefficient is calculated using
the same equation (2.4) as for Pearson’s . By ignoring the actual differences between values and
just examining their rank, Spearman’s r can detect non-linear relationships of the form of e. g. a
monotonic and cubic polynomial or sigmoid functions. [DE12]

The last correlation coefficient used in this work is the so called distance correlation coefficient.
The name is derived from the distance of the joint characteristic function fx y to the product of
the marginal characteristic functions fx and fy of two random vectors X and Y, i.e. the measures
for which the correlation coefficient is calculated. Detailed explanations on how this measure
is calculated can be found in the work of Szekely et al. [SRBO7]. This correlation coefficient
is even more general and is defined for arbitrary random vectors with finite first moments, i.e.
finite expectation. As a result, any correlation not detected by Pearson’s or Spearman’s correlation
coeflicients should be detected by the distance correlation coefficient.

24

3 Related work

In this chapter, results of prior research are discussed. First and foremost this includes a selection of
existing triangle counting algorithms, both exact and approximate. This is followed by research on
approximate computing in general and use cases of hash functions for coordination tasks. This
chapter closes with the contributions this work provides.

3.1 Triangle Counting algorithms

There are several types of algorithms for counting triangles, which can be categorized by assumed
access restrictions on the input data. In the following, the focus lies on algorithms assuming random
access on the input data, i. e. the input graph is available as a whole. These algorithms can in turn
be grouped into exact algorithms, which consider every single triangle present in a graph, and
approximate algorithms, which only consider parts of a graph and calculate an estimate of the total
amount of triangles present in the graph.

3.1.1 Exact triangle counting algorithms

Schank and Wagner [SWO05] compare in their work the most common exact triangle counting
algorithms found in literature. The simplest algorithm for enumerating triangles is the NodeIterator
algorithm (see algorithm 3.1), which iterates over all vertices of the graph. For every vertex v the
algorithm checks for all distinct pairs of neighbors of v, whether both neighbors are connected by
an edge. If such a pair of neighbors is connected, a triangle is found consisting of the two neighbor
vertices and the vertex v itself. The runtime complexity of this algorithm is ®(|V| d2,,.) with
dmax being the maximum vertex degree in the input graph G(V, E). The EdgeIterator algorithm
(see algorithm 3.2) is very similar, but iterates over edges instead of vertices. Triangles are formed
by intersecting the adjacency lists, i. e. the lists of neighbors, of both vertices incident to the current
edge. Every common neighbor of both vertices forms a triangle with them. Its runtime complexity
is commonly stated as @(m%), which is equivalent to the runtime complexity of the NodeIterator
algorithm and the proven optimum for enumeration of triangles [SWO05].

Another enumerating algorithm, is the so called Forward algorithm (see algorithm 3.3). It was
developed by Schank and Wagner [SWO05] and improves upon the EdgeIterator algorithm. At
the beginning, the set of edges is sorted by the degree of the source vertex in increasing order.
All edges (u,v) € E for which the degree of the source vertex u is larger than the degree of the
destination vertex v are ignored. The data structure A(v) of a vertex v € V is initially empty, but
will be filled during execution with all neighboring vertices with a lower or equal degree. For
the remaining edges (u,v) € E, the common neighbors w € A(u) N A(v) of the vertices u and v
form triangles {u, v, w} with the two vertices. These triangles are then output as the result of the

25

3 Related work

Algorithm 3.1 NodeIterator
Input: G(V,E)
Output: A
T —0
for allv € V do
for all (u,w) € N(v) X N(v) do
if (u,w) € E Au # w then
T —TU{{u,v,w}}
end if
end for
end for

Algorithm 3.2 EdgeIterator
Input: G(V,E)
Output: A
T—20
for all (u,v) € E do
for all w € N(u) N N(v) do
T —TU{{u,v,w}}
end for
end for

algorithm. Alternatively, the same triangle enumeration can be achieved using preprocessing by
first removing all edges starting at vertices with a higher degree and ending in vertices with a lower
degree and then using the regular EdgeIterator algorithm. The runtime complexity is @(m%), as
well; however, it is still significantly faster due to not counting triangles redundantly.

Algorithm 3.3 Forward
Input: G(V,E)
Output: A
T —0
E; « SORT(E)
forallv e Vdo
A(v) « 0
end for
for all (u,v) € Eg do
if DEG(u#) < DEG(v) then
forallw e A(u) N A(v) do
T —TU{{u,v,w}}
end for
A(v) « A(v) U {u}
end if
end for

26

3.1 Triangle Counting algorithms

Another exact triangle algorithm commonly found in literature is the AYZ algorithm developed by
Alon, Yuster and Zwick [AYZ97]. Kolountzakis et al. note memory requirements to be an issue
even for medium-sized graphs, due to the algorithm being based on matrix multiplications. Because
of this practical obstacle, the algorithm will not be used in analysis and comparisons in this work.
However, the conceptual idea behind the algorithm is still worth mentioning. In the AYZ algorithm,
the set of vertices are split into two sets of high-degree and low-degree vertices according to a
threshold A. The low-degree vertices execute the algorithm NodeIterator. Low-degree vertices
do not have to check many pairs of neighbors to find all triangles and since NodeIterator scales
quadratically in the vertices’ degrees it is best to avoid high-degree vertices executing NodeIterator.
For the remaining high-degree vertices, a fast matrix multiplication is used instead. It is therefore
an early example of improving runtime of triangle counting algorithms by taking vertices’ degrees
into account.

3.1.2 Approximate triangle counting algorithms

Exact triangle counting algorithms, which count all triangles in a graph, cannot be more efficient
in terms of runtime complexity than those described in the previous section [SWO05]. However,
obtaining a count of triangles can be improved upon by using sparsification techniques and
approximating the result. In order to speed up a computation, small errors in the results are assumed
to be tolerated. Results are not exact anymore when using sparsification techniques, but estimates of
a graph’s triangle count using these methods can still be fairly accurate. In general, when applying
sparsification techniques, parts of the graph or messages exchanged during the computation are
removed in a probabilistic manner.

Tsourakakis et al. [TKMFQ9] proposed such an approximating triangle counting algorithm called
DOULION. In the first step of DOULION, edges of the input graph G(V, E) are sampled with probability
p and removed with probability 1 — p to form a sparse graph G;. The second step of DOULION
consists of executing an exact triangle counting algorithm on this sparse graph G. In order to
estimate the triangle count in G, it is necessary to know how many triangles are lost in the process
of sparsification. Finding a triangle in G requires for all three edges of the triangle to be sampled,
which happens with probability p each. In total, there is a probability of p3 for a triangle in G to
remain in G and therefore the triangle count of G can be obtained by multiplying the triangle count
in G with a correction factor of p~.

Etemadi et al. [ELT16] improved upon DOULION in order to increase the chance of counting a triangle
of G in Gy. For lack of a better name, that algorithm is referred to in this work as ELT. Similarly to
DOULION, algorithm ELT samples edges in G with probability p and removes them with probability
1 — p. However, when an open triple is encountered in the sparse graph Gy, ELT checks whether the
missing edge to form a triangle is present in the original graph G and still counts the triangle, if that
edge does exist. As a result, only two edges of a triangle have to remain in G in order for it to be
counted. The correction factor in this case is (—2p> + 3p?)~! due to triangles with two and three
sampled edges being counted. A detailed explanation on how to arrive at this correction factor can
be found in section 2.2.

Pagh and Tsourakakis [PT12] propose a different method for sampling a graph called “colorful
triangle sampling”. Every vertex in the graph is assigned one of N colors, with % =N € Nand
p being the sampling probability of an edge. An edge is sampled, if both incident vertices have

27

3 Related work

the same color, i.e. if the edge is monochromatic. As a consequence, if a triangle has already
two monochrome edges connecting the vertices, then all three vertices must have the same color
and therefore the third edge must be monochrome, as well. Similar to ELT, two out of three edges
of a triangle being sampled by this coloring scheme are therefore enough to ensure a triangle is
counted. However, the correction factor in this case is p~2. The reason for this is that if a triangle
has two monochrome edges, which happens with probability p?, it is directly implied that it is the
case for the third edge, as well. While sampling a similar portion of the graph, the advantage of
ColorfulTriangleSampling over ELT is that the former does not require the original graph G to be
accessed again.

Instead of sampling triangles, another class of triangle counting approximations samples triples
and estimates the graph’s transitivity ratio v, i.e. the ratio of closed triples to the total number
of triples. Important to these schemes is uniform sampling of triples, which may not be trivial
depending on the degree distribution of the vertices, in order to obtain an unbiased estimate of the
transitivity ratio [HD17]. Al Hasan [Has16] describes a methodology to allow for correction of
biased triple sampling to allow for simple sampling techniques to be used. Such a simple technique
would be to sample a vertex v uniformly at random and then select two of its neighbors uniformly at
random, as well. Triple sampling as described in the work of Hasan and Dave [HD17] with that
sampling correction is used in this work for further comparisons. It is referred to as TripleSampling
and the count of triangles produced by it has to be multiplied with a correction factor of % to
arrive at the final estimate. Similarly, probabilistic versions of NodeIterator and EdgeIterator have
been proposed, which sample a fraction of vertices or edges, respectively [HD17; RH13]. The
probabilistic version of NodeIterator, which randomly samples vertices from a graph, is referred to
as VertexSampling in the following. It uses a correction factor of %, as well. A probabilistic version
of EdgeIterator is not considered any further, as an implementation in Apache Giraph would be
nearly identical to an implementation of the algorithm DOULION.

In scenarios with restricted access, algorithms based on random walks can be used to sample the
graph. However, these algorithms can only estimate the transitivity ratio, i. e. the number of triples
in the graph must be known in order to estimate the triangle count. Hasan and David [HD17]
discuss two types of random walk: walking over vertices and walking over triples. Random walks
over vertices work similar to sampling algorithms described in the previous paragraph. For each
vertex, a pair of neighboring vertices is sampled and the walk continues on to a neighboring vertex
according to some stationary probability distribution. Similarly, the restrictions for estimating an
unbiased transitivity ratio also apply with random walks over vertices, however, the same correction
method described by Al Hasan [Has16] can be used to correct for any bias. Random walks over
triples differ from a random walk over vertices only in that they consider triples as a whole, not
single vertices. A corresponding neighborhood definition for triples must be determined in order
to find the next step in the walk. One such definition could be: two triples are neighbors, if they
have two out of three vertices in common. Sampling triples uniformly still has to be accounted for,
details of which can be found in the work of Rahman and Al Hasan [RH14].

In the context of limited main memory, streaming algorithms allow processing graphs, which do
not fit into main memory. Instead of materializing the graph structure in memory, the edges of the
graph are streamed in arbitrary order and processed immediately. Multiple passes over the data,
however, are possible. Much of research on triangle counting algorithms in the last years focused on
streaming algorithms, which is likely due to flexible memory consumption. Buriol et al. [BFL+06]
describe a simple streaming algorithm, which requires three passes over the list of edges. In the

28

3.2 Approximate Computing & Approximation Algorithms

first pass, given a graph G (V, E), the number of edges |E| is counted. In the second pass, an edge
e = (a,b) € E and a vertex v € V {a, b} are sampled uniformly from the graph. In the third pass,
the algorithm checks, whether v connects to @ and b to form a triangle and returns 8 = 1 if that
is the case or 8 = 0 otherwise. Buriol et al. [BFL+06] also describe a version of their algorithm
requiring only one pass over the edge list of the input graph. Jha et al. [JSP13] also developed
a single pass algorithm combining ideas of triple sampling with reservoir sampling in streaming
scenarios, which is able to outperform the algorithm of Buriol et al. [BFL+06].

The research on triangle counting algorithms produced a wide range of algorithms. However, not
all of them can be covered, compared and analyzed in this work. The approximating algorithms
used for further comparisons and experiments are therefore chosen to be the ones operating
without any access restrictions, i. e. DOULION, ELT, ColorfulTriangleSampling, TripleSampling, and
VertexSampling, in order to cover the most general case.

3.2 Approximate Computing & Approximation Algorithms

Approximating results of computations is not only relevant to triangle counting or graph processing
in general. Sparsh Mittal [Mit16] summarizes in his survey paper reasons, applications, and
methods for approximate computing. According to him, efforts made in recent years in the field of
approximate computing are motivated primarily by the requirements for computational power, which
grow faster than available hardware is able to supply in the long run. Therefore, if an exact solution
to a problem is not required, a trade-off between quality of results and usage of computational
resources is a possibility. In these cases, allowing for small errors may already significantly reduce
resource usage for many problems.

Mittal [Mit16] also notes certain pitfalls of analyzing the feasibility of approximating a computation.
For example, approximating all parts of a computation equally (uniform approximation) does not
usually work. Careful choice of approximable portions of data or parts of a computation is required
instead. These choices are application-specific and may not prove useful for other computations.
Additionally, finding the right balance between introduced error and efficiency gain requires a
quality metric for assessing results. Such a quality metric can furthermore allow for configuration
of an approximate algorithm to change quality levels based on current needs.

Some of the concrete methods used in approximate computing according to the survey [Mit16]
include the following:

* precision scaling: reducing precision/bit-width of variables

* memoization: saving method results for later executions with same inputs

* load value approximation: prediction of what value a memory read would have returned
* loop perforation: skipping some iterations of a loop

* omitting portions of input data

Some of these techniques are used for example in designing inexact electronic circuits [KGE11] or
avoiding performance degradation caused by branch diversion in Single-Instruction-Multiple-Data
(SIMD) architectures [SK13].

29

3 Related work

Similarly, Du et al. [DKH12] describe several strategies to use when developing approximation
algorithms in the field of optimization problems. The first one is restriction of the problem by
introducing additional constraints, e. g. solving the Steiner Tree Problem, which is NP-hard, by
restricting the solution to be a minimum spanning tree, which can efficiently be calculated [DKH12].
Another strategy is using a divide-and-conquer approach by partitioning inputs and building a
solution of the complete input by combining solutions of the partitions, which may cause inaccurate
results depending on the problem. Relaxation is a strategy contrary to restriction and attempts to
make a computation more efficient by removing constraints. When using relaxation, the solution of
the relaxed problem may not be a feasible solution to the original problem and must be transformed
first. An example for this strategy is relaxing an integer linear program to a regular linear program,
which is not restricted to integer values and can be solved more efficiently. The solution of the linear
program must then be transformed to only use integer values such that it can be interpreted as a
valid but not necessarily optimal solution to the original integer linear program.

3.3 Hash functions for coordination

Computations, which run on several distinct computing nodes, always require some resources to be
used for coordination. In the case of graph processing, for example, a partitioning step is always
required to split the input graph into several parts, which are distributed to the nodes. Therefore,
efforts have been made to make coordination of tasks less resource intensive using hash functions.

Aarag and Jennings [AJOS] propose using network address translation based on a hash function for
evenly distributing incoming connections across servers in a network. Connections in their system
are forwarded to another server based on a “mark”, which is calculated by applying a hash function
to a value derived from the source IP address and TCP port. That mark is then used to identify the
server in the network to which the connection should be forwarded to such that load is distributed
evenly across the cluster.

Klots et al. [KGBO01] patented a method for mapping objects in a distributed system to nodes by
applying a hash function to the name of an object. The mapping of such an object to a node is solely
determined by the name of the object and therefore does not require further communication to
coordinate where that object is saved. Changing the mapping due to changes in the system is done
by changing the hash function. Consequently, creating and updating the mapping can be achieved
with reduced network usage.

Similarly, Joshi et al. [JTN+14] patented the concept of a distributed object-to-node mapping in
distributed systems. In their system, every node maintains a local copy of the system’s state. This
state holds information regarding which nodes are online, as well as other parameters influencing
the mapping. Nodes are resolved based on applying a hash function to that local state information.
In order to achieve consistency, this local state information is exchanged with neighbors from
time to time such that every node remains updated and can therefore produce a mapping, which is
consistent with its neighbors. The advantage of this “soft-state” approach is that a node’s failure
does not cause the whole cluster to be locked until it becomes synchronized through message-based
coordination again, which could cause minutes of downtime for large clusters.

30

3.4 Datasets

All of these methods have in common that some object, e. g. a file to be stored or a packet to be
routed, is assigned to some destination, e. g. a certain node. They also rely on the mapping to be
random, such that objects are distributed evenly across the available resources. However, these
approaches do not consider decisions on whether to accept or drop a given object in the first place,
which would be of interest in regards to graph sparsification.

3.4 Datasets

Name | VI IE| AL 1Al/IVI IAI/IE] |
roadNet-CA [BMSW12] 1,957,027 2,760,388 120,492 0.06 0.04
road-usa [BMSW12] | 23,947,347 28,854,312 438,804 0.02 0.02
enron-email-dynamic [Coh] 86,978 297,456 1,180,387 13.57 3.97
mouse-retina-1 [ALB+13] 1,076 90,811 3,289,057 3,056.74 36.22
youtube [MMG+07] 495957 1,936,748 2,443,886 4.93 1.26
copresence-InVS15 [Soc] 219 16,725 7,130,020 | 32,557.17 426.31
NotreDame [AJB99] 325,729 1,090,108 8,910,005 27.35 8.17
WormNet-v3 [CSH+14] 16,347 762,822 15,279,134 934.68 20.03
psmigri [SIa83] 3,140 410,781 25,298,991 8,057.00 61.59
livejournal [MMG+07] | 4,033,137 27,933,062 83,552,703 20.71 2.99
HepTh [LKFO05] 22,908 2,444,798 191,358,360 | 8,353.34 78.27
coauthors-dblp [BMSW12] 540,486 15,245,729 444,095,058 821.66 29.13
uk-2005 [BRSV11] 129,632 11,744,049 837,885,720 | 6,463.57 71.35
clique 108,716 11,143,165 247,668,082 | 2,278.12 22.23

Table 3.1: Graphs used in the experiments

The results of the experiments performed in this work should be applicable to as many real-world
graphs as possible in order to allow conclusions for general use of triangle count approximations.
The graphs used to run those experiments on are therefore selected in such a way that they represent
various fields and properties. All the graphs are taken from Network Repository [RA15]. They are
preprocessed to filter out duplicate edges, remove self-loops and ensure that for every edge there
exists an edge connecting the same two vertices in the opposite direction. As a consequence, vertex,
edge and triangle counts may vary from the original source. This preprocessing is done to improve
comparability of results with other works in the field.

Table 3.1 contains the list of graphs used for the experiments. The table also contains the amount of
vertices, edges, and distinct triangles in the graph after preprocessing. Graphs included in the list
are road networks (roadNet-CA, road-usa), social networks (youtube, livejournal), web graphs
(NotreDame, uk-2005), biological networks (mouse-retina-1, WormNet-v3), interaction networks
(enron-email-dynamic, HepTh, coauthors-dblp), an infection network (copresence-InVS15) and a
network of inter-county migration in the US (psmigr1).

The last graph in the list, clique, is an artificially generated graph consisting only of cliques of
sizes one to 200, such that there are at least 500 vertices of each degree. It is intended solely for
examining runtime behavior of the various algorithms depending on vertex degrees in a later chapter.

31

3 Related work

Using cliques of various sizes allows to observe with a fine granularity how the algorithms scale
with increasing vertex degree. A lower limit of the number of vertices with a certain degree ensures
that enough runtime measurements are available to filter out outliers caused by the operating system
or memory management.

Using this diverse set of graphs to analyze runtime behavior of algorithms should allow for
transferring insights resulting from the experiments to other graph datasets. The variety of fields
the graphs are taken from should result in a balanced representation of real-world graphs.

3.5 Contributions of this work

Various algorithms have been developed for triangle counting. Both exact and approximate
algorithms have received attention; efforts were made towards developing fast and accurate
algorithms. However, while direct comparisons in terms of runtime and accuracy exist, in-depth
analysis on why some algorithms perform better than others are hard to find. Knowing which
methods and strategies work better is nevertheless essential, when trying to derive new and
potentially better algorithms.

Analysis of algorithm behavior and issues in implementing one of the presented algorithms lead to
the first contribution, a concept of decentralized coordination and for reducing communication in
distributed computations, such as triangle counting, by using cryptographic hash functions. This
concept reduces the need for message-based communication between processes in a distributed
computation by allowing pseudorandom decisions, e. g. sampling edges, to be deterministically
calculated by every process. As a result, the results of these decisions would not have to be
communicated explicitly.

Influence on triangle counting performance, however, is not limited to coordination and commu-
nication overhead. The input graph significantly affects runtime and accuracy of approximated
results. Since it is hard to gain insights into the way the input graph’s structure influences algorithm
results, the second contribution of this work is the examination of how a graph’s structure correlates
with triangle counting results on various graphs. The focus lies on analyzing relationships between
structural properties of a graph and its vertices’ local triangle counts, which could allow for
improving triangle count estimates.

In an effort to better understand the effects of algorithm design choices on the algorithm’s runtime
behavior, the third contribution of this work is a qualitative analysis of the exact and approximate
triangle counting algorithms discussed in this chapter, except for those algorithms based on streaming
or random walks. This exception is due to assuming no access restrictions being the more general
case and the computational model of Apache Giraph being a better fit for these algorithms. The
analysis examines design choices of algorithms and the effects they have on algorithm execution
and results. One part examines the runtime behavior of algorithms on the level of subroutines the
algorithms consist of. The other part examines the effects an algorithm’s design choices have on
overall runtime and results of the algorithm.

Based on that analysis, a new approach for computing triangle count estimates is presented. Enabled
by insights into the structural properties of graphs, the third contribution is a method of using
structural properties of a graph to calculate triangle count estimates from a sample of vertices of a
graph.

32

3.5 Contributions of this work

These contributions are made using Apache Giraph as graph processing framework and results
may therefore vary in other scenarios using other frameworks, although many results are generally
applicable. Lastly, the contributions of this work are also evaluated, discussed and put into context
at the end of this work. Before that, however, the following chapter covers a method for reducing
communication in distributed computations.

33

4 Hash-based Coordination

Communication between single computing nodes in distributed computations is required for
exchanging intermediate results, synchronization, joint termination or coordination in general.
Communication is, however, always bound to require some overhead and cause latency. Reducing
communication could therefore speed up computations the same way an algorithmic optimization
could. This chapter investigates the possibilities of using cryptographic hash functions as so called
“Random Oracles” to reduce communication in a distributed triangle counting computation.

However, the aim of this chapter is not only to present a method of reducing communication but
also show how this method can be used for implementing graph sparsification. The motivation
for this stems from the algorithm ELT’s requirement to access the original graph when checking
whether triples in the sparse graph form triangles in the original graph. As a consequence, edges
cannot be actually removed when running ELT but have to be marked instead. The issue with
this is that, in contrast to removing edges, Apache Giraph does not allow modifying edges in the
input phase of a computation. A different method for distinguishing sampled and dropped edges is
required because of that. Therefore, this chapter also describes the use of random oracles with the
intention of enabling random decisions of whether an edge should be marked as “dropped”, which
are consistent across all processes executing the computation, in order to be able to implement the
algorithm ELT efficiently using Apache Giraph.

4.1 Random Oracle Model & cryptographic hash functions

In cryptography, the Random Oracle Model (ROM) is a theoretical model describing computations
with access to a certain type of oracle, the so called random oracle. Given a query x, a random
oracle returns an element from its set of output values uniformly at random. The random oracle
remembers this output value such that everytime it is presented with the same query x it will return
the same output value. Bellare and Rogaway [BR93] formalize a random oracle R to be a mapping
from the set of finite binary strings to the set of infinite binary strings, i. e.

R:{0,1}* = {0, 1}.

The value of R(x) is chosen uniformly at random for every input x. Due to output values being
random, two similar input values produce independent and completely different output values.

In reality, such true random oracles do not exist. Instead, cryptographic hash functions are commonly
used in implementations as a substitute for a random oracle. A cryptographic hash function A,,(-) is
a deterministic function producing pseudorandom, fixed-length output values of length n for any
given input bit string. It can be formally defined as:

Bt {0,1} — {0, 1}

35

4 Hash-based Coordination

Similar to a random oracle, it aims to always produce unpredictable output values, which are always
the same given the same input.

The key difference between a cryptographic hash function and a true random oracle is that
cryptographic hash functions are not truly random but merely pseudorandom due to being
deterministic. There has been some controversy in the past regarding security weaknesses in
cryptographic signature and encryption schemes caused by substituting random oracles with a
cryptographic hash functions, as Koblitz and Menezes [KM15] outline. However, the scope of
this work does not include protecting the scheme against maliciously crafted input graphs, which
would cause triangle count estimates to be wrong by exploiting weaknesses in cryptographic hash
functions. Instead, the focus is on reducing communication overhead by utilizing deterministically
computed and pseudorandom hash values without considering malicious manipulation of inputs.

4.2 Cryptographic hash functions & graph sparsification

The triangle counting algorithms discussed in this work use random sampling of parts of graphs as
sparsification technique. They rely on unbiased sampling in order to provide accurate estimates.
Sampling more or less edges than anticipated would therefore directly cause estimates to be less
accurate. Moreover, having edges sampled in a non-uniform manner could cause estimates to be
wrong in hardly predictable ways such that correcting estimates becomes complicated. That is why
sampling graphs with a good source of randomness is vital for producing good estimates of triangle
counts. However, in order to achieve our goal of reducing communication using random oracles
we furthermore need the ability to reproduce randomly made decisions on different processes or
machines such that decisions are made consistently across those processes and machines. The way
in which cryptographic hash functions solve these issues sufficiently and the reasons why other
methods do not work as well are covered in this section.

Computers are deterministic machines and can therefore not generate truly random values. There
exists a class of dedicated hardware devices, which purpose it is to observe certain physical
processes and interpret these observations as a stream of random numbers. For example, Thomas
Tkacik [Tka03] developed such a hardware-based random number generator (RNG), which uses the
randomly varying periods of two independent ring oscillators to generate random numbers. Some
CPU manufacturers include similar hardware-based RNGs into their CPU designs nowadays [Adv17;
MI18]. However, while providing good randomness, these solutions cannot be used as a random
oracle across multiple machines, since every machine would independently generate different
random numbers using such devices.

Using the same sequence of random numbers in multiple processes or machines, would require to
transfer those random numbers, causing communication overhead, or deterministically generate
them where they are needed. The latter approach can be realized by using a pseudorandom number
generator (PRNG). A PRNG starts with a random seed value given as input and deterministically
generates a sequence of numbers, which appears to be random, although only its seed value may
be truly random. An example of such a PRNG is based on the stream cipher ChaCha20 orginally
developed by Daniel J. Bernstein [Ber0O8] and is used in the Linux-Kernel since version 4.8 [Muel8].
Using the same randomly generated seed value in all processes and machines allows for the same
sequence of random numbers to be generated in all of them. That alone is impractical, however, as
it would be necessary to coordinate the sampling decisions to be made with the generated random

36

4.3 Reducing communication with random oracles

numbers, i. e. when using a random number to decide whether to drop an edge, the same edge must
be processed using the same random number in every process. It would be much less coordination
effort, if the randomness used to decide on whether to drop an edge would depend on properties of
that edge in addition to a seed value. If that was the case, the decision to drop an edge could be
made consistently, be repeated, and reproduced later on.

That is the conceptual advantage of a random oracle compared to a random number generator and
the reason why a cryptographic hash function, as a substitute for a random oracle, needs to be used
over PRNGs for consistent random decisions across processes without the coordination overhead
that would be necessary when using mere PRNGs. A random oracle accepts a query, i. e. the input
value, which determines the oracle’s random output value. When sampling edges, this random
oracle query can be constructed from the description of an edge e by using the vertex IDs of both
vertices adjacent to that edge e. In the implementation, the input for the cryptographic hash function
substituting the random oracle would additionally include a randomly chosen seed value. This seed
allows the calculated hash values to be different for subsequent computations on the same graph but
is otherwise just a regular part of the input. It can be distributed to all processes participating in a
computation alongside all other inputs to that computation. For the decision on whether to drop
an edge or not, a pseudorandom hash value can be calculated for every edge e = {u, v} € E as
follows:

h(seed || u || v). 4.1)

Here, || denotes the concatenation of the byte representations of the values in this equation. Based
on this pseudorandom hash value a decision to drop an edge can be made consistently across
process and machine boundaries without additional coordination, since hash functions are computed
deterministically.

The only aspect left to examine is the pseudorandomness of cryptographic hash functions, as
sampling edges of a graph should happen as randomly as possible. Fortunately, the pseudorandom
outputs of cryptographic hash functions are random enough for them to be actually used to construct
PRNGs. Implementations of “SHA1PRNG”, which is a pseudorandom number generator used in
the Java programming language and is based on the SHA1 cryptographic hash function, produce
pseudorandom numbers by repeatedly calculating SHAT1 hash values using a truly random seed
value and an incrementing counter as input [Ora20]. Tests performed by Wang and Nicol [WN15]
show that newer cryptographic hash functions of the SHA2 and Keccak (SHA3) families show
similar randomness properties for their output values. As a result, cryptographic hash functions can
generate pseudorandom values with the same randomness as the alternative, a PRNG, would in
many cases provide.

Having established the reasoning behind the choice of cryptographic hash functions for use in the
sparsification of graphs, the next step is to actually describe how to use them for this purpose in
more detail, which is done in the next section.

4.3 Reducing communication with random oracles

Components in the Bulk Synchronous Parallel (BSP) model communicate using messages. In
distributed computations, sending messages via network can cause a significant overhead due to
message construction, protocol overhead for reliably sending messages and wait times caused by

37

4 Hash-based Coordination

Algorithm 4.1 NodeIterator (BSP)
Input: G(V,E)
Output: A,

1: function COMPUTE(V)

2 if superstep == 1 then

3 for allu € N(v) do

4 forallw € N(v),w # u do

5: SENDMESSAGE(u, W)

6 end for

7 end for

8 else if superstep == 2 then

9 for all m € RECEIVEDMESSAGES do
10 if DOESEDGEEXIST(m.neighbor) == True then
11: T—T+1

12: end if
13: end for
14: else
15: OuTtpuT(T)
16: end if

17: end function

network latency. Even when performing a computation on a single machine there is still some
overhead caused by message construction and inter process communication, if multiple processes
are used for harnessing parallelism on multi-core machines. Reducing communication in such
computations can therefore be seen as a way of improving algorithm runtimes in addition to existing
optimizations and approximation techniques. The previous section already presented a hint on how
this could be achieved using cryptographic hash functions. This section will elaborate on this idea
and describe in detail how cryptographic hash functions can be used to reduce communication in
triangle counting computations.

The algorithm DOULION [TKMFO09] will be used as an example to illustrate the idea. DOULION samples
a subset of edges E’ uniformly at random from the original graph G(V, E) and then executes an
exact triangle counting algorithm, for example NodeIterator, on the sampled graph G(V, E’).
Instead of using a local PRNG on a machine to sample the edges, the pseudorandom output of
a cryptographic hash function can be used to decide whether an edge should be sampled or not.
An encoding of an edge is used as input to the cryptographic hash function in order to base that
decision on each edge individually.

Using the algorithm NodeIterator as basis for DOULION, the first consideration is its implementation.
It can be implemented in the BSP model using the “Think-like-a-vertex” approach of Apache
Giraph as follows. In the first superstep, every vertex v sends messages to all its neighbors u;
asking whether they share an edge with another vertex u; neighboring v, which would let those
three vertices form a triangle. In the second superstep, every vertex processes those messages by
checking whether the requested edge exists and increments its local triangle count by one if it does
exist. The pseudocode of this algorithm NodeIteratorBSP can be seen in algorithm 4.1.

38

4.3 Reducing communication with random oracles

Having established an implementation reference, sparsification of a graph using cryptographic
hash functions works as follows. The sampling of edges of a graph G(V, E) is not done using
a PRNG but for every edge ¢ = (u,v) € E a pseudorandom hash value with a length of n bit is
calculated using such a cryptographic hash function £, (-) and an encoding function c¢(-). The
encoding function transforms an edge into a byte sequence, which can then be used as input for
h,(+). Let ¢(+) be defined as follows:

Yu, v € V:c(u,v) = min(u, v)|p || max(u, v)|p, 4.2)

where || is the concatenation operator for sequences of bytes, u|, is a representation of vertex u in
bytes, and vertices are ordered by their IDs. The two vertices are concatenated in order of their IDs
to guarantee that a pair of directed edges between two vertices u and v is always consistently sampled
or not. Otherwise, it could happen that an edge (u, v) would be sampled while the corresponding
reverse-edge (v, u) would not be sampled, which would conflict with the input interpretations
mentioned in section 2.1.

An edge e is sampled with a sample rate of p € (0, 1], if the following condition is satisfied:
hn(c(e)) < p = (2" 1) (4.3)

The term p = (2" — 1) splits the range of the hash function in two parts. Assuming the output values
of the cryptographic hash function 4,,(-) are uniformly distributed on the interval [0, 2" — 1], which
would be the case for an ideal cryptographic hash function, the value of 4, (c(e)) will be in the
interval [0, p = (2" — 1)] with probability p. The condition will therefore sample an edge with
probability p, if the pseudorandom hash values are distributed uniformly across the range of the
cryptographic hash function. In reality, the hash values of cryptographic hash functions can be
distinguished from the uniform distribution [WN15] but, as explained earlier, the regular PRNG
implementation of Java — SHA1PRNG - would not be better.

Using the construction described above every vertex can check the existence of the edge in question
before sending a request to its neighbor by calculating /4, (c(e)). The hash function A, (-) is
deterministic, i. e. given the same input it will always produce the same output. If an edge has not
been sampled based on its hash value, every vertex can independently confirm this without the need
of communication by calculating the hash value by itself. In that case, the vertex already knows the
edge in question does not exist and does not need to send the corresponding request. However, if
the hash value determines that an edge between two vertices u and v would have been sampled,
the corresponding request has to be sent. This is due to the hash value being unable to determine
whether an edge (u, v) actually exists. It can determine only whether an edge between u and v
would be sampled or not. In case of the algorithm ELT, this approach allows the algorithm to check
whether edges are sampled without having to mark edges in the complete graph on all machines
taking part in a computation.

So far, every run of a computation using the same input would always produce the same sampling.
When using regular PRNGs, this problem is avoided by using varying seed values. A seed is
an additional input to a PRNG from which a PRNG generates its sequence of random numbers.
Differing seed values therefore produce completely different sequences of random numbers. Seed
values can be used in a similar way with cryptographic hash functions, as even small changes
in inputs to a cryptographic hash function generally produce completely different output values.
Changing equation (4.3) to accept a seed value, as in equation (4.4), allows a user to add a randomly

39

4 Hash-based Coordination

chosen seed value as an additional input to a computation, which is to be used in all hash function
evaluations.
hn(seedy || ¢(e)) < p (2"~ 1) (4.4)

The result of this change are completely different hash values and therefore different pseudorandom
decisions, e. g. sampling of edges, made in each execution of an algorithm, if differing seed values
are used.

Constructions similar to the one described in this section can be employed in other situations,
in which pseudorandomness is needed, as well. Using deterministic hash functions allows to
coordinate decisions across processes and machines, as long as they are based on inputs, which are
available to every process. In the case of triangle counting this is the case for vertex IDs, as every
vertex knows all their neighbors’ IDs and only direct neighbors can participate in a triangle.

4.4 Effect on performance

In order for this construction to be viable for use in implementations of algorithms, the runtime
speedup gained from reducing communication must outweigh the computational overhead caused
by having to evaluate a cryptographic hash function. The following section describes a comparison
between the regularly implemented algorithms NodeIterator and EdgeIterator as well as imple-
mentations of the algorithms ELT and DOULION using random oracles based on cryptographic hash
functions for sampling edges.

As described in the beginning of this chapter, the algorithm ELT is not trivial to implement using
Apache Giraph, due to its need to access the original graph after sparsification. Therefore, actual
removal of edges is not a possibility under these circumstances. Instead, the process of sampling
edges of the algorithm ELT is implemented using equation (4.4) with a randomly chosen seed value
and SHA-256 as the chosen cryptographic hash function. If an edge should not be sampled according
to this sampling procedure, the algorithm does not remove it, but ignore it in all situations, in which
it does not intend to access the complete graph.

The algorithm DOULION does not need to access the original graph after sparsification and could
therefore be implemented using an input filter, which can simply skip and ignore edges randomly
during the input phase of a computation. However, in order to measure the effects of avoiding
computations and reducing communication and not the effect of loading a smaller portion of the
graph into memory, for the purpose of this experiment, the complete graph is loaded into memory
and instead of actually dropping edges they are merely ignored during the computation. Similarly to
ELT, the sampling process of the algorithm DOULION is implemented using the SHA-256 hash function
as source of randomness. This modified version of DOULION will be referred to as RO-DOULION to
avoid confusion with the regular implementation of DOULION.

These two implementations of ELT and RO-DOULION are compared to the standard triangle counting
algorithms NodeIterator and EdgeIterator, which constitute points of reference for the comparison.
For the purpose of performance analysis, these four algorithms are executed on the real-world
graphs described in section 3.4. The sample rates used for the approximating algorithms ELT and
RO-DOULION range from 107 to 10° in increments of one order of magnitude. Figure 4.1 shows the
resulting runtimes of these algorithms on the 13 real-world graphs.

40

4.4 Effect on performance

250 30
4.0k
200 2 3.5k
3.0k
_ 20 —_
é 150 g g 2.5k
Z gy £ 2.0¢
2 100 2 2
7777777 10 1.5k
/‘/ 1.0k
501 * s
500 _ 3
0 4 0 - = =
To-e To-5 1o+ To2 To-2 Tot Too To-s To-5 To-+ To-2 To-2 Tot 100 10°° 10 107 103 102 101 100
Sample Rate Sample Rate Sample Rate
(a) WormNet-v3 (b) mouse-retina-1 (¢) HepTh
200
18k 8
175 /
15k
150
6
1.2k _
= = 7 125
P P o
'g 1.0k E E 100
s S54 S
2 H E
750 75
500
2 50
250 25
0 -6 -5 -4 -3 -2 -1 0 0 0 4
10 10 10 10 10 10 10 10-6 10-5 104 10-3 10-2 101 100 107 10°° 10~ 107* 102 107! 10°
Sample Rate Sample Rate Sample Rate
(d) coauthors-dblp (e) copresence-InVS15 (f) psmigri
50 / 70
10
60
40
L 50
E 30 g . E 40
5 g 530
2 H 2
20 a
,,, 20
10 mmmmmm e e 2
10
0 0 0
10 10 10 102 107 107 10° 10 10 10 10@ 107 107 10° 10 10 10 10 102 100 10°
Sample Rate Sample Rate Sample Rate
(g) enron-email-dynamic (h) roadNet-CA (i) road-usa
1.6k
1.6k
1.4k LAk 500
12k 1.2k
: 400
T 1.0 T Lok =
£ H)
Z 800 g 800 z
s s s
H 2 &
600 200
400 400
100
200 200
0 0 0
107° 10 107 1073 1072 1077 10° 10°° 10°® 107* 1073 1072 1071 10° 10°° 107 107t 107? 1072 107! 10°
Sample Rate Sample Rate Sample Rate
. . .
(J) Livejournal (k) youtube (1) NotreDame
1.4k
1.2k
1.0k —— D O U LI O N
¢ 800 —— E LT
2
£ 600
¢ ——- Edgelterator
400
—-—- Nodelterator
200 -
0

10°% 1073

Sample Rate

102

(m) uk-2005

(n) Legend

Figure 4.1: Runtimes comparison of triangle counting algorithms implemented using random
oracles for graph sparsification.

41

4 Hash-based Coordination

The results show that both ELT and RO-DOULION perform very similar in terms of runtime. Both
algorithms show a significant overhead for sample rates of 1, i.e. when all edges are sampled
and the algorithms basically mimic an exact triangle counting algorithm while still performing all
computations required for the sampling process. This leads to the assumption that the algorithmic
differences of ELT and DOULION are of rather minor importance for this comparison, as both algorithms
already work fairly similar. The significant difference between ELT and DOULION is ELT’s additional
check for the existence of non-sampled, triangle-closing edges in the original graph, which does not
appear to significantly increase runtimes of ELT. Furthermore, reducing the sample rate below 0.1
appears to have hardly any effect on runtimes, which may be due to the computational overhead
caused by the graph processing framework dominating the overall runtime for small sample rates.
The only variations in runtime for small sample rates are sudden spikes, which can be seen for
graphs coauthors-dblp, enron-email-dynamic, NotreDame, and uk-2005. These spikes are likely
caused by unfortunate sampling of high degree vertices, as they regularly appear in algorithm runs
for varying sample rates.

When comparing these random-oracle based implementations of ELT and RO-DOULION with the exact
algorithms NodeIterator and Edgelterator, it can be seen that the former can actually reduce
runtimes by avoiding computations based on random oracle decisions. Both ELT and RO-DOULION
can outperform NodeIterator, the algorithm on which basis they were implemented due to ease
of implementation, on most graphs for sample rates below 1. However, they are both unable to
outperform EdgeIterator on almost all graphs, which is likely due to EdgeIterator already being
significantly faster in this setting than NodeIterator, such that the runtime saved by sampling edges
cannot compensate for using NodeIterator as basis for implementation. Nonetheless, this shows
that the method of using a cryptographic hash function for sampling edges can in principle actually
speed up computations.

While skipping parts of computations works to make them faster, triangle counting is not the
best example to showcase the potential of this method. When a vertex checks whether an edge
exists and evaluates the cryptographic hash function to check whether it is sampled, the amount of
computations that can be skipped, if it is not sampled, is fairly small. The potential savings in terms
of computations for every evaluation of a cryptographic hash function is limited to not sending
a message via the non-sampled edge and the vertex, which would have received that message,
not having to check whether a requested vertex is its neighbor. The benefits of this method are
therefore expected to be more pronounced in computations, in which each decision to skip parts
of the computation can cause a larger portion of the whole computation to be skipped than is the
case for triangle counting, as this would reduce the relative overhead of evaluating a cryptographic
hash function. Tests performed on the server cluster used for all experiments, in which 100 000 000
SHA-256 hash values of integers were calculated and 100 000 000 random numbers were generated,
show that evaluating the SHA-256 hash function takes on average approximately 100 times longer than
generating a random number. The overhead of evaluating a hash function compared to generating
a random number should therefore be considered, especially if the potential savings in terms of
computations for every hash function evaluation are small.

In conclusion, cryptographic hash functions can be a valuable and effective tool for implementing
pseudorandom decisions which need to be made deterministically based on their input. This method
can be used for making triangle counting algorithms faster by using it for graph sparsification, as
can be seen in the implementation of RO-DOULION. However, it is advised to prefer using regular
pseudorandom number generators over cryptographic hash functions where possible due to the

42

4.4 Effect on performance

significant overhead of evaluating such a cryptographic hash function. Because of this method
it was possible to implement the algorithm ELT in Apache Giraph without additional messaging
overhead for deciding which edges to sample. Having thus a viable implementation of the algorithm
ELT fit for comparison with the other algorithms discussed in chapter 3 on related work, the next
chapter continues with an analysis of structural properties relevant for triangle counting and further
comparisons of triangle counting algorithms.

43

5 Analysis

The first prerequisite for improving upon the state-of-the-art algorithms is understanding which
aspects of triangle counting influence runtime and results of said algorithms. This chapter aims
at generating a deeper understanding on how the presented algorithms operate and how structural
properties of the input graphs can influence results. In order to achieve that, the experiments of this
chapter are designed to measure runtimes of algorithms and their subroutines as well as statistical
relationships between structures of the input graph and local triangle counts.

This chapter is divided into two parts. The first part describes the experiment setup with which
the behavior and results of algorithms is analyzed. The second part reports on findings and results
gained from these experiments.

5.1 Context and Goal

In regard to the experiment setup, this section will describe the existing constraints, aims, and the
configuration used to produce the results described in the next section as well as cover the reasoning
behind choices.

Starting with the constraints of triangle counting, the sole requirement for a triangle to exist is to
have three distinct vertices being fully connected to each other with edges. Therefore, only vertices
in the direct neighborhood N (v) of a vertex v can influence the local triangle count of that vertex v.
A vertex u ¢ N(v) can therefore be ignored for the purpose of finding triangles in which the vertex
v is part of. As a result, only properties of a vertex v itself and its direct neighbors can influence the
local triangle count of v. As long as no further application-specific knowledge about the structure
of the graph is assumed, e. g. values associated with vertices or edges, such properties can only be
concerned with the existence of edges. This is due to the existence of a triangle being determined
purely by structural properties of the graph it is contained in, i. e. which vertices are connected by
edges. The only remaining measure able to possibly indicate the amount of triangles at a vertex is
therefore its degree, i. e. the amount of adjacent edges.

Including a vertex’s degree in the input graph is implicitly done, if an input format representing
an adjacency list is used, in which each vertex is directly followed by a list of its neighbors. A
vertex’s degree could then be derived from the number of its neighbors. However, the majority
of graph data available on the Stanford Network Analysis Project (SNAP) [LK14] and Network
Repository [RA15] is provided in formats based on edge lists. Therefore, the input format for the
following experiments is assumed to be a list of edges and information about vertices’ degrees
is only available after the graph is materialized in memory. In order to minimize assumptions,
a simple input procedure, which can only construct the graph structure in memory and sample
edges individually based on the IDs of the adjacent vertices, is assumed to be used. A vertex at the
beginning of a an Apache Giraph computation would therefore only know its own degree and its

45

5 Analysis

neighbor’s IDs but would have no further knowledge about the neighbors themselves. If accessing
properties of a neighboring vertex, such as their degree, would be required at the beginning of
a computation, it could cause a significant overhead in generating the graph structure, as degree
values of all vertices would have to be communicated to their neighbors via messages.

Most triangle counting algorithms presented in section 3.1 actually rely on exploiting solely
structural properties of a graph for performance improvements. The algorithm Forward (3.3), for
example, reduces the degree of high-degree vertices in order to lessen the disproportional runtime
cost of vertices with high degree. In order for the algorithm Forward to be more efficient than
EdgeIterator, however, the vertices’ degrees need to differ from the average vertex degree in the
graph to some extent [Sch07]. Another example for the described constraints being considered are
the probabilistic estimations of the algorithm DOULION [TKMFO09]. They acknowledge that only
direct neighbors of a vertex v can form a triangle with it by considering no structures larger than a
single triple of vertices.

The aim of the following experiments is to improve understanding of the problem of triangle
counting. In order to achieve this, the topic of statistical relationships between vertices’ degrees and
the average amount of triangles vertices are a part of is examined. Furthermore, the way in which
algorithms utilize different design choices in order to improve performance is examined, as well.
Resulting from the considerations above, the specific questions at hand are therefore:

* How does the degree distribution of a graph correlate with local triangle count distribution?

* How do degrees in a pair of vertices influence the share of neighbors both vertices have in
common?

* How is runtime usage divided up among the algorithms’ subroutines?
* What are the key elements for performance improvements in state-of-the-art algorithms?

These questions will be addressed by the following experimental setups.

5.2 Experimental setup

Having established the questions to be researched, this section will explain the experimental setup
used to answer these questions. The algorithms used for these experiments are described in
section 3.1. All algorithms were implemented using Apache Giraph as graph processing framework.
Reimplementing those algorithm in the same framework is expected to enable better comparisons
between algorithms by means of having a common baseline for all algorithms. Execution of all
experiments was performed on a cluster of five servers with two AMD Epyc 7401 CPUs each and
1.1 TB of main memory in total.

5.2.1 Correlation of a vertex’s degree & triangle count

The first step of identifying structural properties of a graph which can be used to improve existing
triangle counting algorithms is to understand how differences in input affect the output. As explained
in section 5.1, only structural properties of a graph, i.e. which pairs of vertices are connected by
edges, can have an effect on the triangle count. A vertex’s degree is defined as the number of edges

46

5.2 Experimental setup

incident to that vertex and thus the number of vertices it is connected to. It is the simplest structural
measure in this context, cheap to compute and easily available in Apache Giraph’s computational
model. This first experiment therefore measures the statistical relationship between vertices’ degrees
and the local triangle counts of those vertices. If no such relationship would exist, simple heuristics
considering only a single vertices’ degrees could not be used to improve results of triangle counting
algorithms, as that measure could not indicate anything in regard to distributions and amount of
triangles.

The existence of a relationship between the degrees of vertices and their local triangle counts
is examined on a variety of real-world graphs described in section 3.4. The relationships are
evaluated using the three different correlation measures described in section 2.4. They are used to
detect different kinds of statistical relationships: Pearson’s correlation coeflicient [MBL+12] for
linear relationships, Spearman’s rank correlation coefficient [DE12] for monotonic, (non-)linear
relationships and distance correlation [SRB07] used for linear and non-linear relationships.

5.2.2 Correlation of a vertex pair’s degrees & triangle count

The next step of finding properties of a graph which can be used to improve existing triangle
counting algorithms is to examine the degrees of two neighboring vertices. Having the degrees of
two neighboring vertices, estimating the number of common neighbors to form triangles with based
on those degree values would allow for a cheap approximation of triangle counts. Therefore, the
aim of this experiment is to search for a statistical relationship between the degrees of two vertices
and the share of their neighbors they have in common. In order to analyze such a correlation, the
two degree values of a pair of vertices must be transformed into a single value first.

For this purpose, the degree product is defined with the following considerations in mind. The
degree product is intended to model the notion of a mutual degree of two neighboring vertices. Due
to the interest in the share of common neighbors of two vertices, the individual vertex’s degrees are
multiplied, as this reflects the multiplicative increase in potential common neighbors with increasing
degrees of the individual vertices. Dividing each degree value by the amount of vertices of the
graph is done to normalize the value for comparisons across graphs. The resulting equation for the
degree product dp(u, v) is the following:

dw dv)
vl vl

Yu,v eV :dp(u,v) = 5.1
A strong statistical relationship between the degree product of two vertices and the amount of
neighbors those two vertices have in common would imply that degree products could possibly be
used to estimate triangle counts.

The degree product measure could, of course, be generalized to combine the degree values of three
vertices, as well. However, communicating those additional degree values and estimating triangle
counts based on them would most likely be not much faster than directly counting the triangles
themselves. Because of this, this experiment only considers pairs of vertices but not triples.

47

5 Analysis

5.2.3 Comparison of algorithms’ runtime breakdowns

An important element of understanding algorithm behavior is understanding how much different
parts of the algorithm contribute to the overall runtime of the algorithm and how that changes
with differing inputs. All vertices in Apache Giraph’s “Think-like-a-vertex” model perform the
same computations and significant differences should therefore be caused primarily by the degrees
of vertices. In order to receive a more detailed overview over which parts of a triangle counting
algorithm need the most time to compute or which portions of a graph require the most computations,
a fine-grained approach is required.

This is achieved by implementing the algorithms described in section 3.1 in a modular way
encapsulating different tasks during the computation, e. g. message creation or counting triangles
from messages, into separate subroutines. The vertex-centered “Think-like-a-vertex” model allows
to measure execution times of subroutines on a per vertex basis and therefore allows measuring
runtime as a function of a vertex’s degree. In order to measure these runtime for various degree
values, this experiment runs on an artificial graph consisting of cliques of sizes one to 200. Reliability
of those measurements is improved by having at least 500 vertices of each degree value such
that outliers, which are caused by system processes or memory management, can be filtered out.
These limits were chosen such that the server cluster used for these experiments would not distort
results by spending too much time on memory management, in case the remaining free memory
would be too little for efficient memory allocation. Measuring these subroutine runtimes on such
an artificial graph provides us with insights on which parts of algorithms are the most expensive
computation-wise and how that is influenced by vertices’ degrees.

5.2.4 Effect of algorithm’s design choices on overall runtime & results

When using triangle counting algorithms, probably the most important characteristics are the total
runtime and the accuracy of the results. The different design choices of existing algorithms can
provide further insights into the problem of counting triangles by revealing which approaches work
best for reducing runtime or increasing accuracy. In this experiment, the performance of different
algorithms and their optimizations or approximations is evaluated and compared.

It is analyzed how much overhead operations used for approximations impose and how those
approximations reduce overall runtime. An example of such an overhead would be the generation
of random numbers in order to randomly drop an edge. These differences are compared to exact
triangle counting algorithms, upon which these approximations try to improve. This qualitative
analysis of existing triangle counting algorithms is aimed at revealing insights into design choices
of algorithms and the way in which structural properties of a graph can be used for improvement of
algorithms.

48

5.2 Experimental setup

5.2.5 Notes on algorithm implementations

The implementation of an algorithm strongly influences its performance. In order to allow for fair
comparisons between the algorithms, an efficient implementation is very important. However, the
combination of algorithm’s design choices and abilities of tools and frameworks do cause some
restrictions, which prevent ideal implementations. Due to this, there also have to be some remarks
regarding the way the algorithms were implemented for these experiments.

Apache Giraph allows to define filter classes, which decide for each edge or vertex when loading
the input graph whether they should be ignored or kept for the computation. Sparsification methods,
which do not require structural information, such as a vertex’s degree, can be implemented by
implementing such a filter class and use any exact triangle counting algorithm, e. g. NodeIterator
or Edgelterator. This way of implementation using a filter class is used for DOULION and
ColorfulTriangleSampling. The input filter used for implementing DOULION samples edges randomly
given a sample rate. Since filtering for ColorfulTriangleSampling is aimed at filtering edges but
coloring is done on vertices, the input filter has to ensure that vertices can be colored consistently
when only given edges. The resulting implementation uses the vertex’s ID modulo N, the number
of colors to be used, as vertex color. The vertex IDs have to be permutated randomly beforehand
in order for this to work properly. However, this permutation step is not considered further in the
experiments, as it was considered not to be an issue of the algorithm rather than an issue of the
context of implementation.

An approach using input filters is not possible for the algorithm Forward, as it requires the degrees
of both adjacent vertices of an edge to decide whether to drop or sample that edge. TripleSampling
also cannot be implemented on the basis of dropping single vertices or edges, i. e. the whole graph
needs to be present in memory. Instead, every vertex v in the TripleSampling Giraph computation
samples only a subset of its pairs of neighbors, with which said vertex v forms a triple, to count
its adjacent triangles. VertexSampling cannot be implemented using filters, because it requires all
vertices in the graph to be able to respond to messages and thus be present. The sampling step in
this algorithm is realized by a portion of vertices executing the regular NodeIterator algorithm and
the rest of the vertices going inactive immediately, only reacting to incoming messages.

Similarly as already mention in chapter 4, the algorithm ELT requires the whole graph to be present
in memory, as well, in order to check whether open triples in the sparse graph are triangles in the
original graph. The same implementation of ELT, which is based on the use of a cryptographic hash
function for sampling edges as described in chapter 4, is used for these experiments. However,
the use of a cryptographic hash function for sampling edges adds a significant overhead. For this
reason, comparisons with ELT in terms of runtime use the algorithm RO-DOULION from chapter 4 as
reference, which is an implementation of DOULION similarly using cryptographic hash functions for
sampling edges.

49

5 Analysis

Graph Pearson’s r | Spearman’s r | Distance correlation
copresence-InVS15 0.59 0.76 0.69
mouse-retina- 1 0.69 0.71 0.66
enron-email-dynamic -0.14 -0.41 0.40
psmigrl 0.80 0.80 0.78
roadNet-CA -0.38 -0.41 0.51
road-usa -0.34 -0.35 0.51
WormNet-v3 0.28 0.42 0.39
youtube 0.40 -0.43 0.42
coauthors-dblp -0.64 -0.82 0.81
NotreDame -0.01 -0.33 0.17
livejournal -0.73 -0.92 0.86
HepTh 0.57 0.44 0.44
uk-2005 0.08 0.46 0.30

Table 5.1: Correlation between vertex degree and local triangle count at that vertex.

5.3 Findings

Having presented the approaches of the analysis as well as implementation details of the algorithms,
which are examined, the following sections present the results of this analysis. Each section focuses
on one of the presented experiments. At the end of the chapter, a conclusion is drawn from the
analysis’ results, based on which a new approach for calculating triangle count estimates is derived
in the following chapter.

5.3.1 Correlation of a vertex’ degree & triangle count

Beginning with the simplest of the four examinations, the results for correlations between a vertex’s
degree value and the total amount of triangles containing at least one vertex having that degree
vary quite a bit. Table 5.1 contains all correlation measures <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>