
Institute of Architecture of Application Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Deployment-Technology-agnostic
Management of Running

Applications

Tobias Mathony

Course of Study: Softwaretechnik M. Sc.

Examiner: Prof. Dr. Dr. h. c. Frank Leymann

Supervisor: Lukas Harzenetter, M. Sc.,
Michael Wurster, M. Sc.

Commenced: March 30, 2020

Completed: September 30, 2020

Abstract

In recent years, a plethora of technologies emerged to automate the deployment of ap-
plications, which is, if manually performed, a complex and error-prone process. Since
deployment technologies heavily differ in their feature sets, mechanisms, modeling languages,
and deployment models, committing to a technology may result in a lock-in. Further,
enterprises often use multiple deployment technologies for their applications, each fitting
the respective need. However, managing multiple applications deployed with different
technologies is tedious. Due to the aforementioned reasons, it is desirable to provide a
normalized representation of running applications, as well as to enable the management
of applications regardless of the technology used to deploy them. To bridge this gap,
EDMMi is introduced, a normalized model to represent running applications independently
of their deployment technology. Further, this work proposes an approach to retrieve the
instance information of running applications in an automated manner. A mapping between
technology-specific instance data and EDMMi is then used to derive a normalized model
of the retrieved application instance. To gain advantage from standardization, a further
transformation from EDMMi to the TOSCA instance model is provided. Afterwards, the
standardized TOSCA instance model is enriched with additional management functionali-
ties that can be executed on the running application based on the existing Management
Feature Enrichment approach. As a result, the concept presented in this work enables
the enrichment of running applications with standards-based executable workflows for
additional management functionality, regardless of the technology used to deploy them.
With the transformation of technology-specific instance information to a standardized
instance model, also the management of running applications in one single place is enabled,
uncoupled from their deployment technologies. To prove the feasibility of the proposed
concept, a prototypical implementation and an accompanying case study within the EDMM
Transformation Framework and the OpenTOSCA ecosystem is provided.

3

Kurzfassung

In den vergangenen Jahren entstanden eine Vielzahl von Technologien, um die Bereitstel-
lung von Anwendungen zu automatisieren, da diese, wenn sie manuell durchgeführt wird,
komplex und fehleranfällig ist. Da sich solche Technologien jedoch in ihren angebotenen
Funktionen, Mechanismen, Modellierungssprachen und Modellen erheblich unterscheiden,
kann die Wahl einer Technologie einen Lock-In verursachen. Außerdem setzen Unternehmen
oft verschiedene Deployment Technologien ein für verschiedene Anwendungen, was das
ganzheitliche Management dieser Anwendungen weiter erschwert. Um dem entgegen zu
wirken, führt diese Arbeit mit EDMMi ein normalisiertes Modell ein um laufende Anwendun-
gen, deren Komponenten und Konfigurationen abzubilden, unabhängig von der Deployment
Technologie, die für die ursprüngliche Bereitstellung der Anwendung genutzt wurde. Zudem
wird ein Ansatz präsentiert, wie Instanzinformationen von laufenden Anwendungen au-
tomatisiert bezogen und mittels EDMMi normalisiert dargestellt werden können. Mit einer
Transformation von EDMMi zu dem TOSCA Instanzmodell wird des Weiteren demonstri-
ert, wie das normalisierte Modell standardisiert werden kann. Auf dem standardisierten
TOSCA Instanzmodell basierend wird daraufhin der Management Feature Enrichment
Ansatz angewendet, um Anwendungen mit zusätzlichen Management-Funktionalitäten
auszustatten. Daraus resultiert eine standardisierte Darstellung einer laufenden Anwen-
dung in TOSCA, welche automatisiert mit Management-Workflows angereichert wird,
unabhängig von der genutzten Deployment Technologie für die ursprüngliche Bereitstellung.
Des Weiteren ermöglicht die standardisierte Darstellung von laufenden Anwendungen das
Management dieser an einem einzigen Ort, auch wenn verschiedene Deployment Technolo-
gien für die Bereitstellung genutzt wurden. Um den vorgestellten Ansatz zu validieren,
wird zudem eine prototypische Implementierung und ein Validierungsszenario anhand des
EDMM Transformation Frameworks und des OpenTOSCA Ökosystems beschrieben.

4

Contents

1 Introduction 15

2 Foundations 19
2.1 Cloud Application Deployment . 19
2.2 Essential Deployment Metamodel (EDMM) 26
2.3 Technology and Orchestration Specification for Cloud Applications (TOSCA) 28

3 Related Work 35
3.1 Retrieval of Instance Information . 35
3.2 Management of Cloud Applications . 36

4 Approach 39
4.1 Essential Deployment Metamodel instance (EDMMi) 40
4.2 Mapping from Deployment Technologies to EDMMi 43
4.3 Mapping from EDMMi to TOSCA . 48
4.4 Applying Management Feature Enrichment 50

5 Implementation 53

6 Validation 59
6.1 Case Study . 60
6.2 Discussion . 61

7 Conclusion and Future Work 63

Bibliography 65

5

List of Figures

2.1 Declarative deployment approach. 20
2.2 Configuration management approach. 21
2.3 Architecture and control flow of Puppet. 24
2.4 Essential Deployment Metamodel (EDMM) from Wurster et al. [WBF+19]. 27
2.5 Architecture of the Essential Deployment Metamodel (EDMM) modeling

and transformation system from Wurster et al. [WBB+20]. 28
2.6 Composition of a Service Template [Org13b]. 29
2.7 Exemplary Topology Template. 30
2.8 Exemplary Technology and Orchestration Specification for Cloud Applica-

tions (TOSCA) type hierarchy with a Ubuntu Virtual Machine (VM) node
type and a Windows VM node type deriving from a VM supertype. 31

2.9 Overview of the architecture and workflow of the OpenTOSCA ecosystem. . 32
2.10 Overview of the Management Feature Enrichment approach of Harzenetter

et al. [HBL+19]. 33

4.1 Overview of the approach. 39
4.2 The Essential Deployment Metamodel instance (EDMMi). 41
4.3 Mapping of the OpenStack Heat instance metamodel to Essential Deployment

Metamodel instance (EDMMi). 44
4.4 Mapping of the Puppet instance metamodel to EDMMi. 46
4.5 Mapping of the AWS CloudFormation instance metamodel to EDMMi. . . . 47
4.6 Mapping of the Kubernetes instance metamodel to EDMMi. 49
4.7 Mapping of EDMMi to the TOSCA instance metamodel. 50

5.1 Architecture of the extended EDMM transformation framework and the
OpenTOSCA ecosystem. 53

6.1 Validation scenario: Enriching a running application deployed with Puppet
with management functionalities. 59

7

List of Tables

4.1 Excerpt of the mapping of OpenStack Heat resource types to EDMM nor-
mative types. 44

4.2 Excerpt of mapping of Amazon Web Services (AWS) CloudFormation re-
source types to EDMM normative types. 47

4.3 Mapping between EDMM and TOSCA normative types [Org13a]. 51

9

List of Listings

2.1 A simple Heat Orchestration Template (HOT) file that deploys a single
compute instance [Ope20c]. 23

2.2 Simple puppet manifest to copy a file from a master to an agent. 24
2.3 Sample CloudFormation template that deploys an AWS Elastic Compute

(EC)2 instance. 25
5.1 Interface for the implementation of instance information retrieval plugins. . 55
5.2 Excerpt of an EDMMi YAML Ain’t Markup Language (YAML) file as result

of the YAML creation phase. 58

11

Acronyms

API Application Programming Interface.

AWS Amazon Web Services.

BPEL Business Process Execution Language.

BPMN Business Process Model Notation.

CLI Command Line Interface.

CSAR Cloud Service ARchive.

DB Database.

DBaaS Database-as-a-Service.

DBMS Database Management System.

DMMN Declarative Application Management Modeling and Notation.

EC Elastic Compute.

EDMM Essential Deployment Metamodel.

EDMMi Essential Deployment Metamodel instance.

ETG Enterprise Topology Graph.

HOT Heat Orchestration Template.

HTTP Hypertext Transport Protocol.

IP Internet Protocol.

IT Information Technology.

OASIS Organization for the Advancement of Structured Information Standards.

OS Operating System.

PaaS Platform-as-a-Service.

PuppetDB Puppet database.

RAM Random Access Memory.

RDS Relational Database Service.

REST Representational State Transfer.

SaaS Software-as-a-Service.

13

Acronyms

SSH Secure Shell.

TOSCA Technology and Orchestration Specification for Cloud Applications.

UI User Interface.

VM Virtual Machine.

WAR Web Application Resource.

XaaS Everything-as-a-Service.

YAML YAML Ain’t Markup Language.

14

1 Introduction

With the advent of Cloud Computing and the digital era, success of enterprises is often
determined by the efficient operation of Information Technology (IT) applications. Such
applications typically consist of multiple components, making their manual deployment
complex, error-prone, and hardly reusable [Opp03]. Thus, many technologies, called
deployment technologies, emerged to automate their deployment, e. g., Terraform [Has20],
Chef[Che20], or AWS CloudFormation [Ama20a]. Such technologies may be bound to a
specific provider like AWS CloudFormation to AWS; others depend on specific platforms,
for example, Kubernetes [The20b] on Docker [Doc20a], and others, such as Chef [Che20],
require a running infrastructure node with a Chef client installed. Despite their differences,
deployment technologies typically employ declarative deployment models to automate the
deployment of an application. Declarative deployment models describe the desired state of
an application by specifying its structure, i. e., its components and dependencies [WBF+19].
For instance, a declarative deployment model may consist of a Java web application
deployed on an Apache Tomcat [The20a] web server, which is hosted on a VM that is
running on OpenStack [Ope20e]. To automatically deploy an application described in a
declarative deployment model, deployment technologies provide an engine which is able to
interpret such models. In this process, the engine analyzes the described application, its
components, and their structure to derive and execute the steps required to instantiate the
application as specified in an automated manner.

On the contrary, imperative deployment models explicitly define all necessary steps and
their execution order to instantiate an application. Imperative deployment models are
specified and executed as process or workflow [EBF+17] using standardized languages
like Business Process Execution Language (BPEL) [Org07] or Business Process Model
Notation (BPMN) [Obj11]. Although imperative deployment models allow for arbitrary cus-
tomization, research and industry agree on declarative deployment models being the most
appropriate approach for the automation of application deployment [BBF+18; HAW11].
Hence, currently popular deployment technologies employ a declarative model, e. g., Pup-
pet [Pup20b] and OpenStack Heat [Ope20a]. However, typically each deployment technology
builds upon a proprietary modeling language and deployment model [EBF+17; WBF+19].
Furthermore, the feature set and mechanisms between such technologies vary. For in-
stance, AWS CloudFormation only allows the management of infrastructure resources,
while Puppet also supports the deployment and configuration of arbitrary software. Due
to the aforementioned reasons, committing to one deployment technology may result in a
deployment technology lock-in. To reduce the risk of a lock-in, Wurster et al. [WBF+19]
introduced the Essential Deployment Metamodel (EDMM), which adds an abstraction layer
to deployment models to ease the migration between deployment technologies. EDMM is
a normalized metamodel that unifies the essential parts of the deployment models of the
13 most popular deployment technologies [WBF+19]. Further, Wurster et al. [WBB+20]

15

1 Introduction

presented accompanying tooling with the EDMM Modeling and Transformation System to
create technology-agnostic deployment models based on EDMM, which can be transformed
into each of the 13 investigated technologies in an automated manner. This eases the
migration of deployment models, which is, if manually performed, a tedious, error-prone
and complex process [WBB+20; WBF+19]. However, the concept and tooling presented by
Wurster et al. [WBB+20; WBF+19] currently only supports the migration of deployment
models of applications that are not yet deployed, i. e., it lacks a model and transformation
system for running applications. This is required especially since enterprises typically
operate a large set of applications that were already deployed using deployment technolo-
gies. Added to this, different deployment technologies may be used within a company
depending on an application and its needs. For example, Puppet is suitable to deploy
proprietary software, while it is reasonable to choose AWS CloudFormation when deploying
applications that use AWS infrastructure. To manage such a plethora of applications
deployed with different technologies, management activities must be performed separately
for each application, which is inconvenient and time-consuming.

Another issue of deployment technologies is the limited support of automated manage-
ment for applications, especially considering holistic management functionalities address-
ing multiple, possibly distributed components [HBL+19]. Tackling this, Harzenetter et
al. [HBL+19] introduced the Management Feature Enrichment approach to automatically
derive component-specific management operations based on reusable component types.
To enable this, the declarative deployment model of an application is investigated for its
component types. For each identified component type, a repository containing management
operations related to such types is searched. If a matching type is found, the management
functionality is added automatically to the respective component. Based on this, imperative
workflows are generated that orchestrate the enriched management operations according
to their functionality. For example, all management operations concerned with testing an
application are assembled to one holistic testing workflow. Yet, the presented approach
does not support the management feature enrichment of applications that are already
running, but only for normalized deployment models.

To tackle the aforementioned issues, this work proposes a concept to enrich running appli-
cations deployed with arbitrary deployment technologies with management functionalities
by utilizing the existing approach presented by Harzenetter et al. [HBL+19]. To enable
this, EDMM is extended with the Essential Deployment Metamodel instance (EDMMi) to
represent running applications in a normalized, technology-agnostic manner. The suitability
of EDMMi is demonstrated by a mapping between the instance models of popular deploy-
ment technologies and EDMMi, e. g., for Puppet, AWS CloudFormation, and Kubernetes.
Moreover, deployment-technology-specific components like an AWS EC2 server instance
and its properties are mapped to normalized component types to define the semantics of
components in a technology-independent fashion. For example, a normative type Database
comprises all databases, like PostgreSQL or MySQL. Furthermore, this work presents an
approach to automatically derive the normalized EDMMi from technology-specific instance
information of running applications using the Application Programming Interface (API)
of their managing deployment technology. To further decouple from specific deployment
technologies, and to gain advantage from standardization, this work shows how EDMMi can
be transformed to a standardized representation using the Technology and Orchestration
Specification for Cloud Applications (TOSCA) standard which specifies the description of

16

Cloud applications in an interoperable manner [Org13b; Org20]. Based on the obtained
standardized TOSCA instance model, the Management Feature Enrichment approach
presented by Harzenetter et al. [HBL+19] is extended to support the enrichment of running
applications with additional management functionalities. As a result, this work enables
the addition of management features to running applications, regardless of their managing
deployment technology. Since the presented concept derives a normalized and standardized
instance model, this also enables the management of running applications in a single
place, e. g., in a single dashboard, to ease the management of applications for enterprises
that have different deployment technologies in operation. Concludingly, the feasibility
of the presented approach is demonstrated via a prototypical implementation within the
EDMM Transformation Framework [WBB+20] and the OpenTOSCA ecosystem [Bre+16].
The EDMM Transformation Framework is extended to automatically retrieve technology-
specific instance information of a running application. The retrieved instance information
is then transformed to the normalized EDMMi, which is then in turn transformed to a
TOSCA instance model. Eventually, the obtained TOSCA instance model is enriched with
executable management workflows using the OpenTOSCA ecosystem and an extension to
the prototypical implementation of the Management Feature Enrichment approach. By exe-
cuting the generated workflows, an application is manageable with additional management
features, regardless of the technology that was used to deploy it.

Outline

The remainder of this work is divided into the following Chapters:

Chapter 2 – Foundations: Fundamental knowledge for Cloud application deployment,
its deployment models and deployment technologies is introduced.

Chapter 3 – Related Work: Here, research on related methodologies and their differences
to the concept presented in this work are discussed.

Chapter 4 – Approach: This chapter is the main part of this work as it presents the
approach.

Chapter 5 – Implementation: This chapter constitutes the prototypical implementation
of the approach.

Chapter 6 – Validation: The prototypical implementation is validated in an experimental
setting and threats to validity are discussed.

Chapter 7 – Conclusion and Future Work: A conclusion of the work is provided,
followed by an outlook to future work.

17

2 Foundations

This chapter provides the foundations required to understand the remainder of this work.
First, fundamental explanations on Cloud application deployment are provided. Further,
deployment technologies that are used later on for the implementation and validation of
the approach are briefly presented. As the concept of this work is built upon EDMM
and TOSCA, the key aspects of both are outlined, including the EDMM Transformation
Framework and the OpenTOSCA ecosystem. Concludingly, this chapter entails explanations
on the Management Feature Enrichment approach utilized in the concept.

2.1 Cloud Application Deployment

Modern enterprise IT applications are typically characterized by large-scale, heterogeneous,
distributed components, which impedes their management and operation [BBKL14a].
Oppenheimer et al. [Opp03] discovered that a key cause of the unavailability and failure of
such large-scale applications is an operator error. To reduce such errors, Oppenheimer et
al. [Opp03] propose to introduce and use tools that visualize configurations, data flow, and
relationships among components. In addition, system misconfiguration could be prevented
by automatically generating configuration files for components based on a high-level service
architecture [Opp03]. Basically, Oppenheimer et al. [Opp03] describe the early idea of
deployment technologies and their benefits.

Besides the need to eliminate operator errors, the necessity of automated management and
deployment was further reinforced by the introduction and broad adaption of Cloud Com-
puting. Cloud Computing changed the way how IT resources are used and managed: Instead
of buying hardware of software upfront, resources are consumed in a utility-like fashion
with a pay-per-use model [Ley09; MG+11]. To provide Cloud offerings in an economically
feasible manner, Cloud provider pool such resources. However, since the management and
operation of IT resources is one of the biggest cost factors nowadays, Cloud provider need
to automate their deployment and management to enable the essential characteristics of
Cloud Computing such as (i) on-demand self-service, and (ii) rapid provisioning [BBKL14a;
MG+11]. Leveraging Cloud Computing and its essential characteristics is considered to be
a key factor for success of enterprises, but also requires automated management [Gar10].
Especially since Cloud applications typically consist of a large amount of complex, com-
posite, distributed components that interact with each other, their manual management
and operation is a tedious, error-prone and complex process [HBL+19]. As a result, many
technologies emerged that help to deploy Cloud applications in an automated manner to
reduce costs and errors. Although the mechanisms, modeling languages, and features of
such deployment technologies vary, their employed deployment automation strategy can be
categorized into two main approaches: the (i) declarative, and (ii) imperative deployment

19

2 Foundations

Deployment
Engine

Java Web
App

Virtual
Machine

MySQL
database

OpenStack

MySQL
Server

Ubuntu

MySQL
database

Java web
application

OpenStack

Tomcat

Declarative Deployment Model

Instantiated Application

Tomcat

Figure 2.1: Declarative deployment approach.

modeling approach [EBF+17; WBF+19]. In a declarative deployment model, the desired
state of an application is described by specifying its components, their configuration, and
dependencies. Figure 2.1 depicts the approach of declarative deployment. On the left
side, an exemplary deployment model is shown that describes the desired structure of an
application to be deployed in a declarative manner by declaring its component and their
relationships. The shown model expresses that a Java web application needs to be deployed
on a Tomcat web server running on a Ubuntu VM which is provisioned on OpenStack.
Further, it is modeled that the Java web application connects to a MySQL database that
is hosted on the same Ubuntu VM. Another dependency in the illustrated declarative
model is that the MySQL database requires a running MySQL server. To instantiate the
described application, its declarative deployment model is fed into an engine that is able
to interpret it, i. e., that derives the necessary steps required to instantiate the application
as modeled. To determine the order of these steps, the structure is interpreted. In the
depicted example, the Ubuntu VM needs to be deployed on OpenStack, before the Tomcat
web server and the MySQL server can be installed. After the installation of the MySQL
server, the MySQL database is instantiated. Then, the Java web application is deployed
to the Tomcat web server as modeled. Once the database is up and running, the Java
application connects to the database, for example, to retrieve or fetch data. Eventually, the
desired state is achieved as described in the declarative model. Since the required steps to
deploy an application are derived automatically, the declarative approach minimizes manual
configuration and operation steps and thus, significantly eases the deployment. However,
this approach is limited to common, well-known components since deployment engines
cannot support an arbitrary amount of component types. Furthermore, to be able to
interpret declarative models, deployment engines rely on a certain conformity of the model,
thus, custom deployment logic is hardly applicable [BBK+14a; EBF+17]. Concludingly,
declarative deployment is suitable for applications consisting of well-known components
that require few or no individual customization [EBF+17].

In contrast, the imperative deployment approach builds upon a step-by-step specification of
the necessary management tasks to instantiate an application. An imperative deployment
model is a process model that defines (i) all activities to be executed, (ii) the order of
execution, and (iii) the data flow between those activities to deploy an application in an
automated manner [EBF+17]. Once specified, an imperative deployment model can be
executed as process or workflow without involving any human tasks [EBF+17]. Since every

20

2.1 Cloud Application Deployment

execution step is defined explicitly, it is possible to execute arbitrary deployment logic.
Hence, the imperative approach is more suitable for complex applications that require
application-specific customization [EBF+17]. However, such a precise and explicit definition
also requires immense technical knowledge of management technologies [BBK+13].

2.1.1 Deployment Technologies

Deployment technologies aim to automate the deployment of applications. Since industry
and research agree with declarative deployment models being the most appropriate approach
for application deployment and configuration management, this work only focuses on
declarative deployment in the following [HAW11; WBF+19].

Configuration
Management Tool

install:
- Java8
- MySQL 5.5

install all:
- Java8

install Server 2 & 3:
- MySQL5.5

Server 1 Server 2 Server 3

Deployment Model

Figure 2.2: Configuration management approach.

Deployment technologies differ between (i) orchestration technologies and (ii) configuration
management tools [MSK+18; WBF+19]. While orchestration technologies are used to
provision application components such as infrastructure and software, configuration man-
agement tools are mainly used to configure already running components, for example, by
installing or managing software on a server [MSK+18]. Figure 2.2 illustrates the approach
of configuration management: A deployment model is defined that specifies the desired
configuration of one or more servers in a declarative manner. In the depicted example, the
deployment model declares to install Java 8 on all managed servers, and further to install
MySQL 5.5 on two specific servers, i. e., Server 2 and Server 3. The deployment model is
then fed into a configuration management tool, which interprets the model to derive the

21

2 Foundations

configuration on the servers as specified. As illustrated in Figure 2.2, after applying the
configuration, Java 8 is installed on all servers, while MySQL 5.5 is installed on Server 2
and Server 3 as specified in the deployment model.

Besides the categorization into orchestration and management tools, Wurster et
al. [WBF+19] observed during a systematic review that deployment technologies can
be further divided into three categories, i. e., (i) general-purpose deployment technolo-
gies, (ii) provider-specific deployment technologies, and (iii) platform-specific deployment
technologies. General-purpose deployment technologies are characterized by their support
of single, multi, and hybrid Cloud deployments, as well as their support of Everything-
as-a-Service (XaaS) offerings, for example, Software-as-a-Service (SaaS) offerings, and
Platform-as-a-Service (PaaS) offerings [WBF+19]. On the contrary, provider-specific
deployment technologies only support single Cloud deployments as they are offered by a
specific provider, and thus only support services of the respective provider. However, differ-
ent kinds of Cloud service offerings are supported [WBF+19]. Platform-specific deployment
technologies are not restricted to a Cloud provider, but limited in the supported service
offerings and platform bundles as they are bound to a specific platform. For instance,
Kubernetes relies on a container runtime like Docker [Doc20a] to deploy applications. Thus,
only artifacts supported by the specific platform can be deployed [WBF+19].

Based on the categorization of Wurster et al. [WBF+19], one representative deployment
technology of each category is investigated closer in the following. To represent general-
purpose deployment technologies, OpenStack Heat1 was selected as it is open-source and
one of the most popular Cloud computing platforms. Furthermore, it is well documented,
has a large community, and offers a Representational State Transfer (REST) API for
programmatic interaction. Regarding provider-specific deployment technologies, AWS
CloudFormation is investigated closer, since it is bound to one of the most popular Cloud
providers, i. e., AWS, and is largely used in industry. Kubernetes was chosen to cover
platform-specific deployment technologies, since 78% of companies using containers in
production are using it [Clo19]. Since the selected deployment technologies are solely
orchestration tools, Puppet was included additionally to cover configuration management.
In the following, the concepts of the four deployment technologies will be explained briefly.

OpenStack Heat

OpenStack Heat is a general-purpose, declarative deployment technology. It aims to
automate the management of the whole lifecycle of infrastructure and applications within
OpenStack Clouds, i. e., their deployment, management, and termination [Ope20a]. To
enable this, OpenStack Heat employs a declarative deployment model called Heat Orches-
tration Template (HOT) that describes a Cloud application to be deployed by specifying
its infrastructure resources, their configuration, and dependencies. A HOT is in a human-
readable YAML format. Listing 2.1 shows a simple HOT file that deploys a single compute
instance. As depicted, a HOT file specifies resources to be deployed in a declarative manner
by stating their name, type, and properties [Ope20c]. For example, Listing 2.1 declares

1https://wiki.openstack.org/wiki/Heat

22

https://wiki.openstack.org/wiki/Heat

2.1 Cloud Application Deployment

Listing 2.1 A simple HOT file that deploys a single compute instance [Ope20c].

heat_template_version: 2015−04−30

description: Simple template to deploy a single compute instance

resources:

my_instance:

type: OS::Nova::Server

properties:

image: ubuntu−18.04

flavor: m1.small

a single resource called my instance, which is of type OS::Nova::Server, i. e., a server
instance in an OpenStack Cloud. OpenStack Heat supports a wide range of infrastructure
resource types which are available at the OpenStack documentation [Ope20d]. The type of
a resource specifies its semantics, and its configuration is defined by properties [Ope20a;
Ope20c]. In the shown example, the OS::Nova::Server resource features properties that
specify its Operating System (OS) image, and its flavor. Moreover, it is also possible to
define dependencies between resources by declaring that a resource is required by another
resource. For example, to specify that a volume is connected to a server, the server may
feature a required by attribute with the name of the volume as value [Ope20a].

Multiple resources that are logically cohesive and form an application are called stack in
Openstack Heat [Ope20a]. To instantiate a stack, OpenStack Heat provides an orchestration
engine [Ope20a]. To trigger the engine, it is possible to upload a HOT file that describes
the stack either manually or in an automated manner using the provided REST API. Once
the orchestration engine receives the declarative deployment model, the steps required to
deploy the specified resources are derived automatically. For instance, the deployment
model shown in Listing 2.1 triggers operations to instantiate an OS::Nova::Server instance
according to the declared configuration, i. e., a Ubuntu VM with the flavor m1.small.
Since OpenStack Heat allows the management of the whole lifecycle of an application, it is
possible to modify the HOT file of a running application to update it [Ope20b]. Considering
the example of Listing 2.1, it is possible to increase the RAM of the running server instance
by updating the flavor property of the deployment model.

Puppet

Puppet is a general-purpose, declarative configuration management tool. It aims to
automate the configuration and management of running infrastructure like servers [Pup20a].
To enable this, Puppet employs a master-agent architecture, where a master node controls
one or more agent nodes [Pup20a]. The Puppet master stores the declarative deployment
models that describe the desired configuration of its controlled agents. A deployment
model in Puppet is a human-readable text file which is called manifest. A manifest
describes resources to be configured in a declarative manner by specifying the (i) type,
and (ii) properties of each resource [Pup20a]. Listing 2.2 depicts an exemplary Puppet
manifest that copies a file from a Puppet master to a Puppet agent, where file is the

23

2 Foundations

Listing 2.2 Simple puppet manifest to copy a file from a master to an agent.

file { 'sample.war':

path => '/var/lib/tomcat8/webapps/sample.war',

ensure => file,

source => "puppet:///modules/copy_sample/sample.war",

}

resource type which defines the semantics of the resource to be configured [Pup20c]. For
the shown example, the path property declares the target path at the Puppet agent the
file is copied to, while the source property describes the source location of the file at the
Puppet master [Pup20c]. Besides the configuration of files, Puppet supports the automated
management of a plethora of resource types, e. g., package, or exec. For instance, the
package type is used to install packages such as Java, while the exec type is used to
execute commands on a Puppet agent, e. g., to unzip a copied file. To apply the resource
configurations declared in a manifest, the Puppet master employs a main manifest, that
specifies which manifest, i. e., configuration, is applied to which agent. For instance, it is
possible to apply a manifest to all managed agents, or only to a dedicated agent. Based
on the main manifest, the process of applying the configuration is initiated, which is
visualized in Figure 2.3. First, a Puppet agent sends so-called facts about itself that are
required by the Puppet master to apply a configuration, e. g., its hostname which is used
to check whether a manifest applies to an agent. In the second step, the Puppet master
compiles the manifests into a catalog that describes the desired state of the agent in a
declarative manner [Pup20a]. Upon receiving the catalog, the agent translates it into
specific commands to be executed to achieve the state specified in the catalog, e. g., to
copy a file as of Listing 2.2. Per default, Puppet applies the resource declarations in the
order in which they appear in a manifest, but it is also possible to declare relationships
between resources using the required attribute. After the catalog has been applied, a report
is generated indicating whether the desired state was achieved or not. Such reports, as
well as facts and catalogs are stored in the Puppet database (PuppetDB) on the Puppet
master. The Puppet master also exposes an API to query the PuppetDB.

Master

Master

Puppet
DB

Facts1

Catalog

Report
Agent

2

3

Master

Figure 2.3: Architecture and control flow of Puppet.

24

2.1 Cloud Application Deployment

Listing 2.3 Sample CloudFormation template that deploys an AWS EC2 instance.

Resources:

Ec2Instance:

Type: AWS::EC2::Instance

Properties:

ImageId: ami−0ff8a91507f77f867

Amazon Web Services (AWS) CloudFormation

AWS CloudFormation is a provider-specific, declarative deployment technology bound to
the Cloud provider AWS. It aims to automate the management of resources provided by
AWS, e. g., EC2 servers, or AWS Relational Database Services (RDSs). To enable this, AWS
CloudFormation employs a declarative deployment model called AWS CloudFormation
template, or template in short. A template describes an application by specifying its
AWS resources to be deployed and their configuration [Ama20d]. Listing 2.3 displays
such a template that deploys an AWS EC2 server instance. As depicted, a template
declares its resources, their type, and properties in a declarative manner. In the example,
the resource Ec2Instance is of type AWS::EC2::Instance, which specifies the semantics
of the resource [Ama20c]. Further, properties are defined for its configuration, i. e., an
image referring to the OS of the server. Besides attributes to declare its configuration, a
resource may express a dependency via a Depends On attribute, e. g., to describe that a
AWS::EC2::Instance depends on a storage volume.

To instantiate such a template, it is fed to the AWS CloudFormation orchestration engine
which interprets it to derive the steps required to deploy the infrastructure resources as
specified. For instance, when instantiating the template of Listing 2.3, the orchestration
engine derives operations to create a VM in the AWS Cloud with the specified OS image.
Once instantiated, a template is called a stack [Ama20b]. A template can be fed to the
orchestration engine manually via the AWS console, via its provided REST API, or by
using the AWS Command Line Interface (CLI). Further, it is possible to perform updates
on a stack by modifying its template, for example by allocating more RAM to the AWS
EC2 instance to handle increased workload.

Kubernetes

Kubernetes is a platform-specific, declarative deployment technology that orchestrates
the deployment of containerized applications and allows to manage their whole lifecy-
cle [Kub20d]. Kubernetes aims for high availability and scalability by providing interfaces
to easily scale up and down application components, and replicate them [Kub20f]. Similar to
Puppet, Kubernetes follows a agent-master architecture where the master is responsible for
the management of a cluster of nodes, i. e., scheduling applications, maintaining the desired
state of applications, scaling, or updating them [Kub20b]. Such a cluster can be deployed
on a virtual or physical machine [Kub20c]. A node of a cluster is a VM or a physical com-

25

2 Foundations

puter that runs a Kubelet, which is an agent to communicate with the Kubernetes master
and manage the node [Kub20c]. Since Kubernetes base concepts rely on containerized
applications, each node needs to run a container runtime, e. g., Docker2 [Kub20c].

To describe the desired state of a Kubernetes cluster, Kubernetes objects are used, including
pods. Kubernetes objects build an abstraction layer to decouple containers from individual
hosts. Pods are the most basic execution unit of Kubernetes and comprise containers that
operate together to form an application [Kub20e]. Moreover, pods are declared in pod
templates, which are text files in YAML format that describe the desired state of a node in
a Kubernetes cluster. Containers are defined within the spec section of the template and,
among others, contain properties that declare the image of a container, ports, or some
commands to execute within a container.

To make use of the easy scalability of Kubernetes applications, deployments are used to
bundle multiple pods and define their replication strategy. Deployments are defined in
a similar, declarative manner as pods. By using deployments, Kubernetes enables the
creation and management of replication sets of pods to easily adjust to changing workloads
or replace failing pods automatically to ensure high availability. Whenever a pod fails,
Kubernetes makes sure that a new one is started immediately to always have as much
replicas as specified. It is also possible to change a running application, for example, by
increasing or decreasing the number of replicas in the respective deployment model YAML
file to start or destroy a pod.

2.2 Essential Deployment Metamodel (EDMM)

Wurster et al. [WBF+19] conducted a systematic review of the most popular deployment
technologies to provide a basis for the comparison of features and mechanisms to ease the
selection of the most suitable deployment technology. They identified following technolo-
gies as most relevant: (i) Kubernetes [Kub20a], (ii) Chef [Che20], (ii) Ansible [Red20],
(iv) Puppet [Pup20b], (v) Terraform [Has20], (vi) Juju [Can20], (vii) Cloudify [Ltd20],
(viii) OpenStack Heat [Ope20a], (ix) CFEngine [Nor20], (x) Docker Compose [Doc20b],
(xi) Azure Resource Manager [Mic20], (xii) SaltStack [Sal20], and (xiii) AWS CloudForma-
tion [Ama20a]. By extracting the essential parts that are supported by all aforementioned
deployment technologies, Wurster et al. [WBF+19] derived the Essential Deployment Meta-
model (EDMM), which is a normalized deployment metamodel. EDMM aims to provide a
deployment-technology-independent model that eases the migration between deployment
models of different deployment technologies [WBF+19] Figure 2.4 depicts EDMM in its
entirety. The topmost entity of EDMM is a deployment model, which describes the desired
state of an application in a declarative manner by the means of properties and model
entities [WBF+19]. Model entities are composed of a model element, i. e., a component
or relation, and its type. A component is defined as a physical, functional, or logical
unit of an application, for example, a database that stores user data. The semantics
of a component is defined by its component type, an entity that can be reused across
deployment models, e. g., two database components in different deployment models may

2https://www.docker.com/

26

https://www.docker.com/

2.2 Essential Deployment Metamodel (EDMM)

Deployment
Model

Model
EntityProperty Operation

Model
Element Artifact

ComponentRelation

Model Element
Type

Relation
Type

Component
Type

has

has

contains

has

implements

implements
is source of

is target of

is of type

is of type

Figure 2.4: Essential Deployment Metamodel (EDMM) from Wurster et al. [WBF+19].

share the same component type MySQL, but store different data. To provide a normalized
metamodel, Wurster et al. [WBF+19] introduced a set of normative component types for
EDMM. Types included in this set are, for example, Compute, Software Component, or
Database. To model a connection between two components, for instance, between a compo-
nent of type Software Component and a component of type Database, relations are used.
A relation is defined as directed physical, functional or logical dependency between exactly
two components [WBF+19]. Similar to components, relations have types that specify
their semantics. For instance, a software component that retrieves data from a database
must establish a connection to the database to issue queries, i. e., the software component
needs an outgoing relation of type ConnectsTo with the database component as target.
To manage such components and relations, EDMM employs operations. An operation is
defined as executable procedure performed to manage a component or relation [WBF+19].
An example for an operation is an installation script that installs a software component on
a VM. Typically, operations require information about the components to be managed, for
example the IP address of a VM where a software needs to be installed. To express such
information, EDMM features properties. Properties are used to express the desired state,
or the configuration of a component, relation or deployment [WBF+19].

Further, Wurster et al. [WBF+19] presented how the concepts of EDMM can be semantically
mapped to the 13 identified deployment technologies. Also, a mapping of EDMM to
TOSCA was provided as various technologies support the TOSCA standard [WBF+19].
With the introduction of the EDMM Modeling and Transformation System, Wurster et
al. [WBB+20] presented tooling to graphically model applications based on EDMM and
transform deployment models to each of the 13 deployment technologies by the means of
a CLI. The EDMM Modeling and Transformation system consists of (i) a modeling tool
and (ii) a transformation framework as depicted in Figure 2.5. The modeling tool is a
web-based environment to graphically model technology-independent EDMM deployment
models. As depicted, an EDMM model can be exported from Winery as a text file in
YAML format. The exported EDMM model is then fed to the transformer, a CLI tool that
is able to transform EDMM into concrete deployment technologies. The transformer mainly
consists of two parts, (i) the model importer, and (ii) the transformation logic, as depicted

27

2 Foundations

EDMM modeling
tool EDMM model

EDMM transformer

Model
Importer Transformer

Chef Plugin

Puppet
Plugin

...

Puppet model

...

...

Chef model

Winery

YAML
Plugin

...

Figure 2.5: Architecture of the EDMM modeling and transformation system from Wurster
et al. [WBB+20].

in Figure 2.5. To process and prepare the input EDMM YAML file for the transformation,
the model importer implements a YAML plugin. In the following, the processed model is
passed to the transformation logic, which is a plugin-based, easily extendable logical unit
that implements the transformation of EDMM models to concrete deployment technologies.
The output of the transformation is a fully-executable deployment model of the selected
technology, which can be specified when calling the CLI [WBB+20].

2.3 Technology and Orchestration Specification for Cloud
Applications (TOSCA)

Technology and Orchestration Specification for Cloud Applications (TOSCA) [Org13b] is
a standard introduced by the Organization for the Advancement of Structured Informa-
tion Standards (OASIS) to describe Cloud applications in a portable and interoperable
manner [Org13b; Org20]. The goal of TOSCA is to represent Cloud applications in a
platform and vendor agnostic way. To achieve this, TOSCA describes applications based
on two main concepts: (i) The structure of an application by the means of a topology
that describes an application’s components and their interplay, and (ii) plans to define
its management behavior [Org13b]. The structure of an application is described by the
means of a topology template, which is, as illustrated in Figure 2.6, a graph that consists of
nodes representing application components and directed edges that define their interplay.
The nodes of a topology template are called node templates, while the directed edges are
called relationship templates. To define the semantics of node templates and relationship
templates respectively, TOSCA employs node types and relationship types. As visualized
in Figure 2.6, types are equipped with properties and interfaces [Org13b]. Properties define
the state or the characteristic of a node template or relationship template, for example,
the port where a database node template listens to requests. Interfaces contain operations
that offer management behavior for a node type or relation type, e. g., the interface of a
software component may contain an operation that defines its installation procedure as an
executable. For instance, Figure 2.7 shows a topology template of a simple application
where a software component running on a web server connects to a database while both

28

2.3 Technology and Orchestration Specification for Cloud Applications (TOSCA)

Service Template

Topology Template

type for

type
for

Relationship
Template

Node Template

Node Type

Pr
op

er
tie

s Interfaces

Relationship Type

Pr
op

er
tie

s Interfaces

Plans

Figure 2.6: Composition of a Service Template [Org13b].

application components are hosted on a VM which is provisioned in an OpenStack Cloud.
To represent this, the topology template contains a node template of type JavaApp that is
connected with a relationship template of type ConnectsTo to a node template of type
MySQL-5.5. Besides that, the software component has an outgoing HostedOn relationship
to a node template of type Tomcat8, since the software component is served on a Tomcat
web server. Further, the database node template has an outgoing HostedOn relationship
template to a MySQL server which is required to run the database. Both the Tomcat web
server, and the database server are hosted on a Ubuntu VM which is provisioned on an
OpenStack node template. In this topology template, various properties are defined, for
example, the port of the database node template, which indicates to which port the software
component node template connects to for the retrieval of data. Besides properties, node
templates may contain so-called deployment artifacts, which represent any artifact needed
to deploy a component, for example, a configuration file, executable, or a script [Org13b].
In the scenario of Figure 2.7, the software component node template has such a deployment
artifact; the executable Web Application Resource (WAR) file of the Java application.
Additionally, node types may contain implementation artifacts that describe operations to
make a component manageable [BBH+13]. For example, the Ubuntu 18.04 node type from
Figure 2.7 may be equipped with implementation artifacts that respectively implement
an executable management operation to (i) install, (ii) configure, (iii) start, and (iv) stop
the VM. To execute such operations and make applications described as service template
manageable, plans are used [Org13b]. Plans are defined as process models that describe

29

2 Foundations

- port: ...

WAR

HostedOn

- ...

ConnectsToSoftware Component
(JavaApp)

HostedOn

- ip: ...

Virtual Machine
(Ubuntu 18.04)

- credentials: ...
- region: ...

Public Cloud
(OpenStack)

HostedOn

Database
(MySQL-5.5)

- ...

Tomcat web server
(Tomcat8)

- ...

DatabaseServer
(MySQL_Server)

HostedOnHostedOn

Figure 2.7: Exemplary Topology Template.

a workflow of one or more steps to realize management of a service template [Org13b].
For instance, a plan may describe every step required to install and start an application
described as a service template in an automated manner. To ensure interoperability and
portability of plans, TOSCA makes use of existing standardized process models such as
BPEL [Org07] or BPMN [Obj11]. To bundle plans, files like deployment artifacts, and all
TOSCA definitions belonging to a Cloud application described in TOSCA, a Cloud Service
ARchive (CSAR) is used [Org13b]. TOSCA definitions refer to all elements needed to define
a TOSCA service template, e. g., the service template itself and its node templates and
relationship templates [Org13b]. To instantiate a CSAR, it is passed to a TOSCA runtime,
which can process TOSCA service templates in an imperative or declarative manner. When
using a runtime with imperative processing, the CSAR needs to contain the management
plans for an application, while a runtime that supports declarative processing interprets

30

2.3 Technology and Orchestration Specification for Cloud Applications (TOSCA)

- ip_address
- ...

(VM)

- ip_address
- ssh_key
- ...

(Ubuntu VM)

TestVM

BackupUbuntu - ip_address
- rdp_key
- ...

(Windows VM)

DerivedFrom

TestVM

BackupWindows

TestVM

Figure 2.8: Exemplary TOSCA type hierarchy with a Ubuntu VM node type and a
Windows VM node type deriving from a VM supertype.

the topology template to derive the necessary steps and their order to achieve the declared
state. For instance, a runtime that supports declarative processing may generate a plan to
install and start the described application in an automated manner. When executing such
a plan, a service template is instantiated, i. e., all modeled node templates and relationship
templates are installed, configured, and started as specified. To represent an instance of
a service template, TOSCA describes an instance model [Org13a]. To clearly distinguish
between models and instances of an application described in TOSCA, the suffix instance
is appended to all template elements, e. g., an instantiated node template is called node
template instance. When instantiated, property values of node and relationship templates
may change to represent the current value. For example, the property of a node template
of type VM specifying the IP address may update after instantiation to the real-world IP
address of the resource. Moreover, states are assigned to node templates and relationship
templates to describe the current step in the lifecycle of a resource [Org13a; Org20]. For a
example, while executing the build plan of a service template, a node template may traverse
several states, such as creating, configuring, or started. Once all node and relationship
templates of a topology template are instantiated, i. e., are in started state, the represented
Cloud application can be managed further by custom management plans, for example, with
a process model that scales an application up to match a specific workload.

Furthermore, TOSCA features inheritance which allows node and relationship types to
form type hierarchies. To enable this, each TOSCA type has a nested DerivedFrom element
that allows to specify supertypes. For instance, a database supertype may define properties
and operations applicable to different types of databases. Hence, a MySQL node type that
specifies the database supertype in its DerivedFrom element inherits all elements defined
by the supertype. This is especially useful to identify semantically similar types. Figure 2.8
illustrates an exemplary type hierarchy in TOSCA. As depicted, a VM super type defines
properties like its IP address, and management operations, e. g., to test the availability
of a VM. Both the Ubuntu VM node type, and the Windows VM node type are derived
from the VM supertype. This means, that they inherit the properties, and management

31

2 Foundations

TOSCA
modeling tool

CSAR
Winery

TOSCA
runtime

OpenTOSCA
Container CSAR TOSCA

self-service

Vinothek

...

...

...

CSAR

CSAR

CSAR

Figure 2.9: Overview of the architecture and workflow of the OpenTOSCA ecosystem.

operations of the VM node type. Further, a node type may extend its supertype with
additional properties and management operations. In the depicted example, both the
Ubuntu VM node type and the Windows VM node type extend the VM node type with a
management operation to backup a VM of it OS respectively.

2.3.1 OpenTOSCA

OpenTOSCA [Bre+16] is an ecosystem that allows the modeling and automated deployment
and management of Cloud applications according to the TOSCA specification described
in Section 2.3 [Org13b]. The architecture and workflow of OpenTOSCA is three-fold as
illustrated in Figure 2.9. (i) Winery [KBBL13], a web-based environment, is used to model
the structure of a Cloud application according to the TOSCA specification. Once modeled,
the user exports the application as a CSAR with all TOSCA definitions and artifacts
required to enable automated management. The TOSCA definitions and artifacts are
available via a repository within Winery. The repository contains, for example, TOSCA
node and relationship types and their offered management operations. Then, the CSAR is
imported into the (ii) OpenTOSCA Container [BBH+13], a TOSCA runtime to deploy
and manage TOSCA applications. The OpenTOSCA Container generates executable
management plans, for example, to instantiate or terminate an application. Management
plans are generated by coordinating all related management operations of node templates
to a holistic workflow, for example, by composing all operations of all node templates of
a service template that relate to the installation of an application. In this process, the
structure is interpreted to determine the execution order of the management operations.
For instance, consider the topology template of Figure 2.7: The VM must be provisioned
before installing the web server and database server, thus the OpenTOSCA Container
interprets the topology accordingly to derive the correct execution order to satisfy all
dependencies. The generated workflows can be executed via (iii) Vinothek [BBKL14d], a
web-based self-service portal for the interaction with the OpenTOSCA Container.

2.3.2 Management Feature Enrichment

Although the automated deployment of Cloud applications is enabled by a plethora of
different deployment technologies, the automated management of deployed applications
is only covered partially by such technologies. Typically, Cloud provider or deployment

32

2.3 Technology and Orchestration Specification for Cloud Applications (TOSCA)

Component Types Repository

Feature Component Types

Base
Component Types

Management
Feature Enrichment

MySQL

MySQL
Backup

MySQL
 Test

...

... Management
Workflow
Generator

...Test Backup

Java
App Test

Java App

JavaApp MySQL

Ubuntu

OpenStack

Tomcat DBMS

Deployment Model Feature-Enriched Deployment Model

Feature-Enriched
Deployment Model with
Executable Workflows

JavaApp MySQL

Ubuntu

OpenStack

Tomcat DBMS

...

JavaApp MySQL

Ubuntu

OpenStack

Tomcat DBMS

Figure 2.10: Overview of the Management Feature Enrichment approach of Harzenetter
et al. [HBL+19].

technologies may support provider-specific management functionalities like scaling a VM.
However, the support of holistic management functionalities affecting multiple components
possibly distributed across different environments is limited [HBL+19]. Especially the
holistic management of Cloud applications containing components that reside in different
environments, i. e., a Multi-Cloud scenario, is not supported since each Cloud provider
or provider-specific deployment technology only supports management within their own
environment. Using imperative workflows, it would be possible to define custom logic
that enables holistic management of such applications. However, such workflows may
become outdated quickly as they are tightly coupled to the deployment model, which may
change [HBL+19]. Besides that, defining imperative workflows is tedious, error-prone and
requires deep technical knowledge [BBK+13; BBKL13b; KNK16].

To tackle mentioned issues, Harzenetter et al. [HBL+19] propose an approach to auto-
matically generate executable workflows that enable holistic management functionalities
for applications. Figure 2.10 depicts a general overview of the approach of Harzenetter
et al. [HBL+19]. As illustrated, initially, a declarative deployment model is retrieved
that describes the structure of an application that needs to be enriched with management
functionalities. The components of the declarative model are based on component types
that only define basic lifecycle operations like creating or deleting an application component.
Such component types are called base component types [HBL+19]. The example scenario
shows a deployment model where a Java application is deployed to a Tomcat web server
running on a Ubuntu VM which is hosted on OpenStack. Moreover, the Java application
connects to a MySQL database which is running on a database server hosted on the
Ubuntu VM. The base component types of the application reside in a Component Types
Repository, for example as depicted in Figure 2.10 a MySQL node type. Additionally to
the base component types, the repository contains feature component types, that provide
type-specific management functionalities by the means of operations, e. g., to test or back
up a component. Feature component types extend base component types, and thus, form
a type hierarchy as described in Section 2.3. The Component Types Repository is then

33

2 Foundations

utilized by the Management Feature Enrichment component to find feature component
types that extend the base component types used in the original deployment model. If the
Management Feature Enrichment component finds a feature component type for a given
base type, a new component type is generated that unifies all management functionalities
of both node types, i. e., the basic lifecycle operations of the base component type, and
the additional management features of the feature component type. In the following, the
generated component type replaces the base component type in the declarative deploy-
ment model. This process emits a feature-enriched deployment model, which is passed to
the Management Workflow Generator that generates imperative workflows based on the
enriched management operations. The Management Workflow Generator is plugin-based,
where a plugin implements logic that decides in which order management operations are
executed. For example, a test plugin generates an imperative workflow that executes all
management functionalities related to testing, i. e., all white operations of the feature-
enriched deployment model in Figure 2.10 [HBL+19]. As a result, the deployment model
is packaged with the generated management workflows, e. g., with a test, and a backup
workflow. Once the deployment model is deployed, the resulting management workflows
can be executed using a workflow engine.

This approach eliminates the manual implementation of imperative workflows and enables
holistic management by orchestrating type-specific management operations to a fully-
executable workflow. By providing a prototypical implementation within the OpenTOSCA
ecosystem, Harzenetter et al. [HBL+19] proved the feasibility of the approach. To store
base component types and their extending feature component types, the OpenTOSCA
Container was extended with a Container Repository. Once a CSAR is uploaded to the
OpenTOSCA Container, this repository is used to identify suitable feature component types
based on its base types of the deployment model contained in the CSAR as described before.
The resulting feature-enriched deployment model is then equipped with executable BPEL
workflows that contain the enriched management operations. Afterwards, the generated
enriching workflows can be triggered using the Vinothek [HBL+19].

34

3 Related Work

This chapter presents work that is related to the approach proposed in this thesis and
discusses differences to our concept. In the first section, related concepts concerned with
the retrieval of instance information of running applications are described. In the following,
various work for the management of running applications are discussed.

3.1 Retrieval of Instance Information

A plethora of approaches investigated the retrieval of instance information of running
applications. For instance, Binz [Bin15] and Binz et al. [BBKL13a] presented a plugin-
based concept to identify components and configurations of a running application in an
iterative manner. The plugins are used to determine the type of components to define
their semantics. This is done via specific crawlers that identify components of a running
application, and use the gathered information iteratively to further identify components,
or refine already detected components based on the previous iteration.

Besides that, Holm et al. [HBLE14] showed a concept that uses network scanners to identify
components of a running application, such as infrastructure and software. Similar to
the concept of this work, Holm et al. [HBLE14] transform the retrieved information to a
standardized model, i. e., an ArchiMate1 model capturing an enterprise architecture.

Further, Farwick et al. [FAB+11] introduced a similar concept to automate the management
of running application by identifying its components. Motivated by the discrepancy between
enterprise architecture models and the actual real world representation, they aim to precisely
gather information about components of running applications. Similar to this work, Farwick
et al. [FAB+11] try to automate the maintenance of running applications especially as it is
time-consuming when performed manually.

Contrary to the concept presented in this work, the aforementioned approaches use custom
scanner and crawler software to identify components of a running application, while this
work leverages the API of the deployment technology an application was deployed with.
Besides following a more generic approach in retrieving instance information, the concept
of this work currently relies on the data of the used deployment technology and is therefore
not able to retrieve instance information of manually deployed applications. However,
the approach is easily extendable to also support the retrieval of instance information of
running applications that were manually deployed by combining it with the concepts of
the presented related work [BBKL13a; Bin15; FAB+11; HBLE14].

1https://pubs.opengroup.org/architecture/archimate3-doc/

35

https://pubs.opengroup.org/architecture/archimate3-doc/

3 Related Work

By introducing application auto-discovery, Machiraju et al. [MDW+00] introduced a more
generic approach to generate models of running applications. As input for the proposed
auto-discovery engine, models are used that specify what to discover, and how to discover
it. However, this limits the approach since Machirau et al. [MDW+00] must specify the
components to be discovered beforehand.

Brogi et al. [BCS17] proposed a concept to derive TOSCA node types from running Cloud
services similar to the mapping from technology-specific component types to standardized
component types presented in this work. However, they solely focus on the identification
of component types, instead of retrieving instance information of such components as
this work proposes. Similarly, Endres et al. [EBLW17] crawl repositories to transform
well-known artifacts of different Cloud deployment technologies into a technology-agnostic
model. Resulting from this, executable deployment models based on the TOSCA standard
are generated. Since both Brogi et al. [BCS17] and Endres et al. [EBLW17] utilize TOSCA
types to derive a standardized model, it is possible to combine the concepts with the
approach of this work which also leverages a TOSCA repository and its types.

3.2 Management of Cloud Applications

Numerous work was done in the field of automated management for Cloud applications
since it is an error-prone, complex, and time-consuming process when performed manu-
ally [BBK+13; BBKL13b; HBL+19; KNK16; Opp03]. For instance, EDMM is capable
of providing a deployment-technology-agnostic declarative deployment model as 13 of
the most relevant deployment technologies can be mapped to it [WBF+19]. With the
EDMM modeling and transformation framework, Wurster et. al [WBB+20] presented an
implementation to create EDMM models that can be transformed to a plethora of concrete
deployment technologies by the means of a plugin-based CLI. This eliminates the fear
of a possible deployment technology lock-in and enables the migration between deploy-
ment technologies [WBF+19]. However, this approach is only feasible if an application is
modeled with EDMM. Existing deployment models of a concrete deployment technology,
e. g., AWS CloudFormation, are currently not convertible to EDMM. Further, EDMM is
only able to describe the deployment model of an application, but does not provide any
mechanisms to manage an already deployed application. Especially Cloud applications that
are already deployed and running cannot be represented in EDMM. This is a problem since
the deployment of most enterprise applications is already automated with a declarative
deployment model of a concrete technology, and the manual transformation to EDMM
may be tedious and error-prone [WBB+20; WBF+19]. Moreover, EDMM is only able to
express a deployment model, but is missing a model for deployed applications to enable
the deployment technology independent management of running Cloud applications.

Further, Binz et al. [BBKL14b; BFL+12; Bin15] presented an approach to describe
enterprise applications to ease management of entire IT infrastructures and decrease
operational cost. By introducing Enterprise Topology Graph (ETG), Binz et al. proposed
a means to capture multi-environment IT landscapes based on a formal graph describing
components and their interplay [BFL+12]. The resulting ETG consolidates IT resources
from multiple environments, including Multi-Cloud or Hybrid-Cloud scenarios. However,

36

3.2 Management of Cloud Applications

ETG is meant to represent enterprise applications that are running whereas TOSCA
describes the deployment model of an application [BBKL14b; BFL+12]. Despite that,
the work proposed by Binz et al. [BBKL14b; BFL+12; Bin15] is focusing on migrating
existing applications between environments, while the approach of this thesis aims at
transforming the instance model without changing the actual environment of it. However,
the representation of an application instance by the means of a graph is similar to the
notation of the instance metamodel proposed in this work.

Breitenbücher et al. [BBK+14b; BBKL13b; BBKL14c; Bre16] introduced the generation of
executable workflows based on patterns and generic declarative models to enable automated
management of Cloud applications. Similar to the approach of this work, additional
management features are applied to running applications using its instance information.
While the concept of this work uses the types of application components to derive additional
management operations, Breitenbücher et al. [BBK+14b; BBKL13b; BBKL14c; Bre16]
explicitly define management patterns to be applied to an application. Based on such
patterns, a declarative model is generated that describes the new desired state, e. g., by
inserting additional components to scale out an application [BBKL13b]. In this new model,
each component that employs new management behavior needs to be annotated. Then,
a plan generator interprets the model and its annotations to generate fully-executable
management workflows by orchestrating so-called management planlets. Management
planlets are small reusable workflows comprising multiple management operations that
form a logical unit. The execution order of the planlets within the management workflow
is defined by the generated declarative model. This is similar to the approach of this work
where multiple management operations are orchestrated to a holistic workflow to enrich a
running application with additional management features.

37

4 Approach

This chapter constitutes the main part of this work by presenting the approach. At first, a
conceptual overview of the individual steps that make up the concept is given, which is
illustrated in Figure 4.1. As depicted, the concept consists of six steps.

...... Puppet

EDMM
Types

TOSCA
Types

Retrieval of
technology-specific
instance information

1
 Normalization as

EDMMi
model

2
 Standardization as

TOSCA instance
model

3

Management
Feature Enrichment 4

Management
Workflow Generation 5

Management
Workflow Execution 6

Figure 4.1: Overview of the approach.

In the first step, technology-specific instance data from a running application that was
deployed using a deployment technology is retrieved in an automated manner. This is
achieved by requesting data from the API of the respective deployment technology about a
running application, for example, about its components, their types, and instance data like
the current public IP address of a VM component. The retrieval process heavily differs

39

4 Approach

between deployment technologies and requires deep technical knowledge and understanding
of the respective technology. In the second step, the retrieved technology-specific instance
information is used to derive a normalized instance model, i. e., EDMMi. The normalized
model entails components instances, their properties and relations, as well as a global state
for the application and each component instance respectively. To obtain a normalized model,
deployment-technology-specific types are mapped to normative, reusable types provided by
the EDMM types repository. Such normative types are e. g., compute, software component,
or database. For instance, a MySQL database maps to the normative type database, while a
VM maps to the normative type compute. To further decouple the instance model from its
vendor-specific representation, and to make use of standardization, the normalized EDMMi
is transformed to a standardized TOSCA instance model in the third step. In this process,
the normative EDMM types are mapped to TOSCA types to retain their semantics. In the
fourth step, the TOSCA instance model is analyzed for its component types, and, based
on that, the instance model is enriched with management features using the Management
Feature Enrichment approach of Harzenetter et al. [HBL+19], cf. Section 2.3.2. Next, the
identified management features of each component instance are orchestrated to executable,
holistic management workflows. In the last step, a user can execute the generated workflows
to manage the running application, for example to test its availability.

The detailed description of the approach is structured as follows. Section 4.1 introduces
the Essential Deployment Metamodel instance (EDMMi) and its definitions to provide a
means to represent running applications in a normalized manner. In Section 4.2, a mapping
between selected popular deployment technologies and EDMMi is described to transform
deployment-technology-specific instance information to a normalized representation. In
the following, a mapping between EDMMi and the TOSCA standard instance model is
established [Org13a] in Section 4.3 to gain advantage from standardization. Section 4.4
describes how the Management Feature Enrichment approach is extended to enrich the
previously obtained TOSCA instance model with management workflows. Concludingly,
the concept enables the enrichment of running applications with additional management
functionalities, regardless of their managing deployment technologies.

4.1 Essential Deployment Metamodel instance (EDMMi)

This section introduces the Essential Deployment Metamodel instance (EDMMi), which
extends the EDMM by an instance model to represent running applications in a technology-
agnostic manner. EDMMwas used as a base since the deployment model of most deployment
technologies can be mapped to it [WBF+19]. By normalizing the instance information of a
running application, EDMMi provides a technology-independent, normalized representa-
tion of an application that is already deployed. Furthermore, EDMMi aims to ease the
transformation of running applications between deployment technologies.

Since EDMMi is an extension of EDMM, it was derived by an analysis of the same 13
deployment technologies that were used by Wurster et al. [WBF+19] to derive EDMM,
cf. Section 2.2. More precisely, EDMMi was derived mostly by investigating the official
documentation, the APIs, and the provided entities of the instance model of the selected
deployment technologies. Figure 4.2 depicts EDMMi which was obtained eventually. To

40

4.1 Essential Deployment Metamodel instance (EDMMi)

Deployment
Instance

Model EntityInstance
Property

Model Element
Instance

Component
Instance

Relation
Instance

Model Element
Type

Relation
Type

Component
Type

has

has

contains

is source of

is target of

is of type

is of type

State

has

has

Identifier

Figure 4.2: The Essential Deployment Metamodel instance (EDMMi).

visualize that EDMMi builds upon EDMM, new or changed entities compared to EDMM
are highlighted in dark gray, while the unchanged entities are light gray. The graph-based
nature, as well as the notation of the entities are inspired by the TOSCA standard [Org13b]
and the Declarative Application Management Modeling and Notation (DMMN) [Bre16],
analogous to EDMM [WBF+19]. To clearly distinguish from EDMM and to indicate that
EDMMi is concerned with running applications, several entities were renamed. However,
the following definitions are built upon the definition of EDMM [WBF+19].

The entities that form a running application are component instances, whose semantics are
defined by component types [WBF+19]:

Definition 1 “Component Instance”: A component instance is an instantiated, and running
physical, functional, or logical unit of an application instance.

Definition 2 “Component Type”: A component type is a reusable entity that specifies the
semantics of a component instance that has this type assigned [WBF+19].

Component instances often depend on each other, e. g., a Tomcat web server requires that
Java is running. To capture such interplay and dependencies between component instances,
relation instances are used. Analogous to component instances, the semantics of relation
instances are defined by relation types.

Definition 3 “Relation Instance”: A relation instance is an instantiated, and directed
physical, functional, or logical dependency between exactly two component instances.

41

4 Approach

Definition 4 “Relation Type”: A relation type is a reusable entity that specifies the
semantics of a relation instance that has this type assigned [WBF+19].

To make component and relation instances manageable, it is necessary to identify the
configuration of these entities, for example, to connect to the port where a database is
listening to requests. Such information is stored in instance properties.

Definition 5 “Instance Property”: An instance property describes the current state or
configuration of a component instance, relation instance or deployment instance.

To bundle all component instances and relation instances that logically form an application,
a deployment instance is used. A deployment instance describes an instance of a deployment
model that was successfully deployed, i. e., a running application that was derived by
executing its deployment model. It contains all model entities of a deployment model as
instantiated entities, i. e., component instances and relation instances, as well as their types.
Moreover, a deployment instance may have instance properties, e. g., to globally set the
Java version that is used by all component instances.

Definition 6 “Deployment Instance”: A deployment instance describes an application which
was successfully instantiated by executing its declarative deployment model.

Since components, relations, and deployment models can be instantiated arbitrary often,
component instances and relation instances need an identifier to make them addressable.

Definition 7 “Identifier”: An identifier uniquely identifies a component instance, relation
instance, or deployment instance within a deployment technology.

Besides that, to enable management of component instances, relation instances, and
deployment instances, a means to describe their state is required. For example, it is not
possible to successfully execute management workflows that replicate a component instance,
if the component instance is not yet created.

Definition 8 “State”: A state describes the current lifecycle phase of a component instance,
relation instance, or deployment instance.

The lifecycle phases are inspired by the lifecycle definition of the TOSCA standard [Org13b]
specified in the TOSCA Primer [Org13a]: (i) install, (ii) configure, (iii) start, (iv) stop,
and (v) uninstall. Hence, the values that describe the state model of a component
instance, relation instance, or deployment instance are as follows: (i) Creating, (ii) created,
(iii) starting, (iv) started, (v) stopping, (vi) stopped, (vii) deleting, and (viii) deleted. In
addition to that, the states updating and updated are added to describe a component
instance, relation instance, or deployment instance that was changed or is changing
currently. To describe failure, the error state is introduced. Typically a deployment
instance is considered to be successfully instantiated if none of its component instances
and relation instances is in an error state.

42

4.2 Mapping from Deployment Technologies to EDMMi

4.2 Mapping from Deployment Technologies to EDMMi

Section 2.1.1 described the core principles of deployment technologies, and presented
four deployment technologies in particular: (i) OpenStack Heat, (ii) Puppet, (iii) AWS
CloudFormation, and (iv) Kubernetes. These technologies were selected respectively as
representative for each category of deployment technologies as identified by Wurster et
al. [WBF+19], i. e., (i) general-purpose deployment technologies, (ii) provider-specific
deployment technologies, and (iii) platform-specific deployment technologies. Since the
selected deployment technologies are solely orchestration technologies, Puppet was included
additionally to cover configuration management tools. To prove the suitability of EDMMi,
this section explains how the instance models of the chosen deployment technologies
(i) OpenStack Heat, (ii) Puppet, (iii) AWS CloudFormation, and (iv) Kubernetes map to it.
The mapping is necessary for the approach of this work to transform running applications
and its technology-specific instance data to a normalized representation. For each of
the aforementioned deployment technologies, the following sections will describe how the
instance data of the respective deployment technology is retrieved, structured, and how
the instance data is mapped semantically to EDMMi.

4.2.1 OpenStack Heat

The instance information of running applications deployed with OpenStack Heat can be
retrieved using its built-in API. To retrieve the instance model of a particular application,
its identifier within OpenStack is required. By mapping the instance data to EDMMi as
visualized in Figure 4.3, a normalized EDMMi representation of a running application
deployed with OpenStack Heat is derived. The bold black text describes the entities of
OpenStack Heat, while the white text indicates to which entity the respective OpenStack
heat entity maps in EDMMi, cf. Section 4.1. The topmost entity in OpenStack Heat
is called a stack, which bundles all information of an application. Hence, a stack is
mapped to a deployment instance in EDMMi. Since a stack is formed by its resources, i. e.,
logical, physical, or functional units, stack resources map to EDMMi component instances.
The semantics of a stack resource is defined by a resource type. Since a stack resource
maps to a component instance, its resource type maps to a component type in EDMMi.
However, to derive a normalized EDMMi, deployment-technology-specific resource types,
such as Nova::Server, must be mapped to normative EDMM component types. To enable
this, it is necessary to carefully identify the semantics of each resource type available
for OpenStack Heat resources. An excerpt of the mapping between OpenStack Heat
resource types [Ope20d] and EDMM normative types is shown in Table 4.1. For instance,
a Nova::Server in OpenStack Heat is mapped to the normative type compute.

To express a dependency between two resources, OpenStack Heat provides a required
by attribute, which specifies that a resource is required by another resource. Hence, a
dependency maps to a relation instance in EDMMi, while the relation type is represented by
the required by type in OpenStack Heat. Besides specifying dependencies, the configuration
of resources and stacks is described with key-value pairs, e. g., to define the OS of a
Nova::Server instance. Therefore, such a key-value pair maps to an instance property in
EDMMi. The availability of key-value pairs is bound to resource types, i. e., the attributes

43

4 Approach

Stack
(Deployment

Instance)

Stack Resource
(Component

Instance)

Attributes
(Instance
Property)

Resource Type
(Component Type)

has

has

contains

Status
(State)

has
Id

(Identifier)

has

Dependency
(Relation
Instance)

is of typeis source of

Required By

is of type

is target of

Figure 4.3: Mapping of the OpenStack Heat instance metamodel to EDMMi.

OpenStack Heat resource type EDMM normative type

Heat::SoftwareComponent Software Component

Nova::Server Compute

Octavia::LoadBalancer Compute

Trove::Instance DBaaS

... ...

Table 4.1: Excerpt of the mapping of OpenStack Heat resource types to EDMM normative
types.

to be configured differs between, for example, a Nova::Server and a Trove::Instance. Thus,
it is also necessary to map the keys of the attribute to a respective EDMM property key
when mapping resource types to EDMM normative types. For instance, a resource of
type Nova::Server specifies its OS in an attribute with the key image. When the resource
type Nova Server is mapped to the EDMM normative type compute, the image attribute
must be semantically mapped to an instance property of the compute type to retain the
configuration of the resource. Since the compute type stores the information about its OS
in the os family property, the image key of an Nova::Server attribute is mapped to it.

Similar to deployment instances and component instances, stacks and its resources have a
unique identifier to properly identify a specific running deployment. Also, a stack and its
resources respectively feature a status attribute that describes their current state.

44

4.2 Mapping from Deployment Technologies to EDMMi

4.2.2 Puppet

Since Puppet follows a master-agent architecture, required instance information of an
application deployed and configured with Puppet must be requested from PuppetDB.
PuppetDB is a database running on a Puppet master that exposes an API to retrieve data
about all managed agents and their configuration. As Puppet does not employ a holistic
deployment model that explicitly specifies all of its components, it is assumed that all
agents managed by one Puppet master form an application. This also includes software
running on Puppet agents, e. g., a Tomcat web server or a MySQL database. Thus, to
map an application deployed and managed with Puppet, the PuppetDB of the managing
Puppet master is queried for its instance information, i. e., at least the IP address of the
Puppet master that manages the application that must be transformed is required. The
retrieved data is then mapped to EDMMi as depicted in Figure 4.4 to derive a normalized
representation of such an application. Analogous to the mapping of OpenStack Heat to
EDMMi, the bold black text describes the entities in Puppet, and the white text indicates
the EDMMi entity it maps to. Since it is assumed that all agents managed by the same
Puppet master form an application, the Puppet master maps to a deployment instance
because it bundles all information about an application, its components and configurations.
As an agent managed by a Puppet master is the basic building block of an application
deployed and managed with puppet, it maps to a component instance in EDMMi. System
variables of Puppet agents and their master are stored in so-called facts, for example the
public IP address of the VM a Puppet agent is running on, or the OS of the VM. Hence,
a fact in Puppet maps to an instance property in EDMMi. Further, to identify software
running on a Puppet agent, reports are analyzed. Reports are generated by an agent when
a software is installed or configured via its master, e. g., when Java is installed, or a MySQL
database is configured. For example, a configuration at a Puppet master may declare that
a Tomcat web server has to be installed on a certain Puppet agent. After the configuration
is applied, the Puppet agent generates a report that specifies whether the execution was
successfully, i. e., if the Tomcat web server was installed. Any resource identified as running
on a Puppet agent in this process also maps to a component instance in EDMMi as they
are software components. Furthermore, the aforementioned reports are used to identify the
type of the detected resources. For instance, a report may be generated after installing
a software, stating that the type of the configured resource is software package. Since a
resource type defines the semantics of a resource to be managed, it maps to a component
type in EDMMi. A Puppet agent itself does not explicitly specify a resource type in Puppet,
however, since an OS is required to run it, the resource type of a Puppet agent is mapped
to the EDMM normative type compute with a property indicating its OS family. Similar
to the property mapping described in Section 4.2.1, the technology-specific fact keys must
be mapped to the respective property keys when mapping Puppet agents to compute types.
For instance, the fact that stores the public IP address is called IPAddress in Puppet,
while the semantically equal instance property of the compute type is stored in the key
public address. Furthermore, a Puppet agent does not explicitly specify a global state, thus
it is assumed that a Puppet agent is not in an error state if it is accessible Moreover, the
deployment of a Puppet master does not define an identifier, but such identifier can be
easily generated when retrieving the instance information from Puppet, e. g., by hashing
the IP address of the managing Puppet master.

45

4 Approach

Master
(Deployment

Instance)

Agent
(Component

Instance)

Fact
(Instance
Property)

Resource Type
(Component Type)

has

has

manages

has

is of type

State
(State)Report

has

Resource
(Component

Instance)

hasis of type

Figure 4.4: Mapping of the Puppet instance metamodel to EDMMi.

4.2.3 Amazon Web Services (AWS) CloudFormation

AWS CloudFormation provides various ways to retrieve instance information of deployed
applications, e. g., its built-in API or the web console. To retrieve the instance information
of a specific application in an automated manner, it is required to provide the identifier
of the respective stack within AWS CloudFormation. By mapping the retrieved instance
data to EDMMi as depicted in Figure 4.5, a normalized representation of an application
deployed with AWS CloudFormation is derived. As before, the bold black text defines
the entities of AWS CloudFormation, while the white text indicates the mapping to an
EDMMi entity. A running application deployed with AWS CloudFormation is called stack.
A stack bundles all information about such an application, e. g., its components, properties,
and state. Hence, a stack maps to a deployment instance in EDMMi. As illustrated in
Figure 4.5, such a stack has parameters that specifies information about it and its resources.
Thus, a parameter maps to an instance property in EDMMi. The resources of a stack, e. g.,
a VM, or a database, are called stack resources. Since a stack resource is the main building
block of an application in AWS CloudFormation, it maps to a component instance. The
semantics of a stack resource is defined by its resource type, which maps to a component
type in EDMMi. To derive a normalized EDMMi, the specific AWS CloudFormation
resource types, such as DynamoDB, or EC2 instance must be mapped to normative EDMM
types. Due to the plethora of resource types in AWS CloudFormation, only an excerpt of
such a mapping is provided in Table 4.2. For instance, since an EC2 instance is a server, it
maps to the normative type compute, while the Database-as-a-Service (DBaaS) offering
RDS maps to the normative component type DBaaS. To describe dependencies between
such resources in AWS CloudFormation, the Depends On attribute is used. Hence, a
dependency maps to a relation instance in EDMMi, and its relation type is Depends On.

46

4.2 Mapping from Deployment Technologies to EDMMi

Stack
(Deployment

Instance)

Stack Resource
(Component

Instance)

Parameters
(Instance
Property)

Resource Type
(Component Type)

has

contains

Status
(State)

has
Id

(Identifier)

has

Dependency
(Relation
Instance)

is of typeis source of

Depends On

is of type

is target of

Figure 4.5: Mapping of the AWS CloudFormation instance metamodel to EDMMi.

AWS CloudFormation resource type EDMM normative type

EC2::Instance Compute

Lambda::Function PaaS

RDS::DBInstance DBaaS

Redshift::Cluster DBMS

... ...

Table 4.2: Excerpt of mapping of AWS CloudFormation resource types to EDMM norma-
tive types.

Moreover, AWS CloudFormation provides a unique identifier for both the stack and each
of its resources to make it addressable. Thus, this maps to an identifier in EDMMi.
Furthermore, a stack and each of its resources feature a status attribute to capture the
current lifecycle phase, e. g., to determine if a EC2 server is up and running. Such a status
attribute maps to the state attribute in EDMMi.

4.2.4 Kubernetes

Similar to Puppet, Kubernetes follows a master-agent architecture. Hence, to retrieve
instance information of an application deployed with Kubernetes, the respective data
must be requested from the HTTP API exposed by the Kubernetes master’s control
plane [Kub20b; Kub20d]. To retrieve the instance information of a specific application

47

4 Approach

deployed with Kubernetes, its unique identifier is required. Then, to derive a normalized
representation, the retrieved instance information is mapped to EDMMi as illustrated
in Figure 4.6. Again, the white text indicates to which EDMMi entity the Kubernetes
entity in the black text maps to. Similar to EDMMi, a running application is called a
deployment in Kubernetes, and hence, maps to a deployment instance. A deployment
contains one or more pods, which represent the smallest deployable unit of an application in
Kubernetes [Kub20e]. A pod itself contains one or more containers, which map semantically
to component instances in EDMMi. Since the semantics of a container is defined by its
image, an image maps to a component type. For instance, an image may be a MySQL
database, a Java installation, or a Tomcat web server. To derive a normalized EDMMi
representation of an application deployed with Kubernetes, it is required to map the images
to EDMM normative types. For example, the Tomcat web server image maps to the
normative type Web Server. To describe runtime information or the current configuration
of a container, pod, and deployment, Kubernetes employs properties, for example to
describe the IP address of a pod. Therefore, a property in Kubernetes maps to an instance
property in EDMMi. As described before, it is necessary to map the deployment-technology-
specific property keys when mapping properties from Kubernetes to EDMMi to retain
their values and semantics. For instance, a pod exposes a property podIP, which maps to
the public address key of the EDMM normative type compute. Despite properties that
describe the configuration of containers, pods and deployments, Kubernetes features a
status attribute that describe the current lifecycle phase, for example to determine if all
containers in a pod were started successfully. Since containers in a pod are tightly coupled,
Kubernetes only offers a status attribute for a pod, but not for each of its containers
individually [Kub20e]. Hence, the status attribute maps to the state entity in EDMMi.
Moreover, a deployment and a pod feature a unique identifier to make them addressable,
which maps to an identifier in EDMMi.

4.3 Mapping from EDMMi to TOSCA

In Section 4.2, mappings between the instance model of different deployment technologies
and EDMMi were provided to show how applications deployed with such technologies
can be represented in a technology-agnostic, normalized manner. To further decouple the
representation of such applications from vendors and deployment technologies, this section
presents a mapping from EDMMi to the standardized TOSCA instance model [Org13a;
Org20]. This entails the advantage of freedom of choice between providers conforming
with the TOSCA standard, e. g., OpenTOSCA [Bre+16], ALIEN 4 Cloud [Ali20], Cloud-
ify [Ltd20], and Tosker [BRS18] [FS85; WBF+19]. Moreover, the mapping to TOSCA
allows the utilization of the Management Feature Enrichment approach [HBL+19] which
was implemented prototypically in OpenTOSCA.

The mapping between EDMMi and the TOSCA instance model is depicted in Figure 4.7.
EDMMi entities are in bold black text, while the respective TOSCA entity is in white text.
The topmost entity in EDMMi is a deployment instance, which contains all entities that
define a running application. Analogous to this, a service template instance in TOSCA
is an instantiation of a service template which contains all TOSCA definitions, files, and
entities that make up an application. Hence, a deployment instance is mapped to a service

48

4.3 Mapping from EDMMi to TOSCA

Deployment
(Deployment

Instance)

Pod
Properties
(Instance
Property)

Type
(Component Type)

has

contains

Status
(State)

has

Uid
(Identifier)

has

is of type

has Container
(Component

Instance)

contains

has

Figure 4.6: Mapping of the Kubernetes instance metamodel to EDMMi.

template instance. The building blocks of a deployment instance are component instances,
which represent running application components, similar to node template instances in
TOSCA. The interplay between two component instances is specified by a relation instance,
which maps to a relationship template instance since it is semantically equivalent for
node template instances in TOSCA. Since component instances map to node template
instances, and relation instances to relationship template instances, the mapping of their
semantic-defining types is trivial, i. e., component types in EDMMi map to node types,
and relation types to relationship types. The configuration of a component instance,
relation instance, and deployment instance is specified via instance properties, which map
to instance properties in TOSCA. Besides its configuration, a component instance, relation
instance, and deployment instance respectively features a state attribute. This is equivalent
to the state attribute of a template instance in TOSCA which describes its current lifecycle
phase [Org13a]. Moreover, the identifier of a deployment instance, component instance,
and relation instance is provided by a TOSCA runtime instance id that uniquely identifies
a template instance within a TOSCA runtime.

Since EDMMi extends EDMM, which is inspired by the TOSCA standard, the mapping
between EDMMi and TOSCA is trivial. By utilizing this, it is possible to transform any
running application that can be represented in EDMMi to a TOSCA instance model.

49

4 Approach

Deployment
Instance

(Service Template
Instance)

Model EntityInstance Property
(InstanceProperty)

Model Element
Instance

(Template Instance)

Component
Instance

(Node Template
Instance)

Relation Instance
(Relationship

Template Instance)

Model Element
Type

Relation Type
(Relationship Type)

Component Type
(Node Type)

has

has

contains

is source of

is target of
is of type

is of type

State
(State)

has

has

Identifier
(TOSCA runtime

instance id)

Figure 4.7: Mapping of EDMMi to the TOSCA instance metamodel.

4.4 Applying Management Feature Enrichment

In the first step of the approach, i. e., Section 4.2, it was shown how the instance model of
different deployment technologies can be transformed to a normalized EDMMi representa-
tion. Subsequently, Section 4.3 provided a mapping between EDMMi and TOSCA to show
how applications represented in EDMMi can be transformed to the standardized TOSCA
instance model. Based on the derived TOSCA instance model, this section describes
how the existing Management Feature Enrichment approach [HBL+19] is extended to
enrich a running application with additional management functionalities, regardless of
its managing deployment technology. However, the Management Feature Enrichment
approach [HBL+19] currently only works on deployment models, i. e., applications which
have not been deployed yet. Therefore, it is not possible to apply the Management Feature
Enrichment approach [HBL+19] to our concept without further modification, since the
approach presented in this work retrieves instance information of an application, but not
its deployment model. Furthermore, a running application may differ from the model that
was used to deploy it. Thus, it is required to modify the Management Feature Enrich-
ment approach [HBL+19] to be able to enrich running applications with management
functionalities. To do so, the fact that a service template instance is a derivation of a
service template is leveraged [Org20]. More precisely, a service template instance extends a
service template with instance information like the current state, or the current values of
properties like the IP address of a VM. Thus, a service template instance also comprises
information about the node types of the contained node template instances [Org20]. These
node types of the node template instances are then used to identify possible management
features as described in Section 2.3.2. However, to be able to properly identify management
features based on node types, it is required to determine the node types as exact as possible
when transforming from (i) a deployment technology to EDMMi, and from (ii) EDMMi
to a TOSCA instance model. Section 4.2 already described how deployment-technology-
specific types map to normative EDMM component types. Now, it is required to map

50

4.4 Applying Management Feature Enrichment

EDMM normative type TOSCA normative type

Compute Compute

DBMS DBMS

DBaaS DBMS

Database Database

PaaS ContainerRuntime

Platform ContainerRuntime

SaaS SoftwareComponent

Software Component SoftwareComponent

Web Application WebApplication

Web Server WebServer

Table 4.3: Mapping between EDMM and TOSCA normative types [Org13a].

the normative EDMM component types to TOSCA node types. Similar to EDMMi and
EDMM, TOSCA defined a set of normative types in the TOSCA Primer [Org13a]. The
mapping between EDMM normative types and TOSCA normative types is depicted in
Table 4.3. Due to the similarity between EDMM and TOSCA, the mapping is trivial.
However, it is difficult to enable proper management based on normative node types since
the implementation of management operations heavily differs, even between semantically
similar components. For example, it is hardly possible to define a management operation
that performs a backup on all components of type compute, as the operation may depend
on the underlying OS. Hence, node types need to be determined as exact as possible
when transforming from EDMMi to TOSCA i. e., as close as achievable to the real-world
representation. For instance, consider the exemplary application shown in Figure 2.1:
When transforming this application to EDMMi, the Ubuntu VM is mapped to a component
instance of type compute for a normalized, technology-agnostic representation. To be able
to identify the type of a component as exact as possible when transforming from EDMMi
to TOSCA, an additional property that states the deployment-technology-specific type
is stored in the instance properties of a component instance in the transformation step
from a deployment technology to EDMMi. For instance, when transforming the Ubuntu
VM to an EDMMi component instance, its OSăis stored in the instance properties of the
transformed component instance. Now, when transforming from EDMMi to TOSCA, the
process to determine the node type of a node template instance is two-fold: (i) First, the
normative EDMM component type of the component instance to be transformed to a node
template instance is mapped to a TOSCA normative type as shown in Table 4.3. (ii) Next,
to properly determine applicable management operations based on the node type, the
normative TOSCA node type is refined using the property that records the original type
that was stored when transforming from a deployment technology to EDMMi. To refine a
node type, the TOSCA type hierarchy as shown in Figure 2.8 is leveraged. More precisely,
an existing repository that defines TOSCA types that derive from normative TOSCA types
is utilized. For instance, such a repository may contain a Ubuntu VM node type that
specifies the normative TOSCA type compute in its DerivedFrom element. Now, based on
the normative node type of a node template instance that was derived by transforming
from EDMMi to TOSCA, the repository is searched for a matching type that derives from

51

4 Approach

the normative type using the additional instance property that stores its original type. For
example, a Ubuntu VM deployed with OpenStack Heat is transformed to a component
instance of type compute with the key-value property original type: Ubuntu VM, which
is then used to search such a TOSCA type hierarchy for the proper node type of a node
template instance when transforming from EDMMi to TOSCA. If no matching type is
found in the refinement process, its normative node type is used in the following process.
Further, when mapping a type from EDMMi to TOSCA, it is also necessary to map its
property keys accordingly to retain its semantic.

Based on the identified TOSCA types when applying the refinement approach while
transforming from EDMMi to the TOSCA instance model, the Management Feature
Enrichment approach [HBL+19] is applied to generate executable management workflows,
cf. Section 2.3.2. In this process, the workflow generation distinguishes between (i) state-
preserving, and (ii) state-changing management operations. State-preserving operations
do not change the state of an application but only interact with it, e. g., by testing if
a component is up and running, or by backing up a database. On the contrary, state-
changing operations modify an application, for example, by replicating a component or
changing its configuration. While state-preserving management operations can be executed
straightforwardly, the execution of state-changing operations requires further processing.
This is required since deployment technologies may monitor if the application state diverges
from its deployment model, and thereupon perform steps to restore the application to
the state declared in the model. Thus, it is necessary to notify or update the managing
deployment technology when executing state-changing workflows to avoid interference. To
enable this, the normalized, and standardized instance model needs to be annotated with
the deployment technology that was used to deploy the transformed application. Further,
state-changing management operations are annotated with the deployment technologies
they support. A state-changing management operation supports a deployment technology
if it propagates the changed state to the technology via its API to avoid interference. Then,
when applying the Management Feature Enrichment, available state-changing management
operations are filtered to match the deployment technology that manages the application.

Concludingly, this concept enables the enrichment of a running application with additional
management features, regardless of the technology that was originally used to deploy it.
Since the generated workflows are standards-based, it is possible to execute them using
any engine that conforms with the respective standard, e. g., by using Apache ODE to
execute BPEL workflows. Further, the approach enables the management of multiple
running applications deployed with different deployment technologies in a single place,
since a unifying standardized representation is derived.

52

5 Implementation

To prove the feasibility of the presented approach, a prototypical implementation based
on the open-source OpenTOSCA ecosystem [Bre+16] and the EDMM transformation
framework [WBB+20] is provided. This chapter explains the implementation step by step
and provides insight on the integration into the existing workflows and ecosystems as
illustrated in Figure 5.1. New or adapted components are highlighted in dark gray, while
existing components are visualized in light gray. The EDMM Transformation Framework
was extended by plugins that implement logic to retrieve information about running
applications deployed with different deployment technologies. To prove the feasibility of
the concept, plugins for Puppet, Kubernetes, OpenStack Heat, and AWS CloudFormation
were implemented. As illustrated in Figure 5.1, each plugin implements methods to
(i) retrieve instance information of a running application, and (ii) transform this retrieved

 Kubernetes

Running
application

EDMM Transformation Framework

Plugin Registry

Instance
Retrieval

EDMMi
Transformer

Puppet Plugin
Kubernetes

Plugin
Heat Plugin

implements

TO
SC

A
Tr

an
sf

or
m

er

Normalized
Instance

model

EDMM Type Repository
TOSCA
Mapping

Standardized
Instance

model

OpenTOSCA Ecosystem

Winery

TOSCA
Importer

Management
Feature

Enrichment

TOSCA
Exporter

Standardized
Manageable

Instance model

OpenTOSCA
Container

Instance DB

Management
Workflow
Generator

Workflows DB

Vi
no

th
ek

 Heat

 Puppet A
PI

deployed

state-preserving
workflows

state-changing
workflows

A
PI

A
PI

TOSCA Types

Figure 5.1: Architecture of the extended EDMM transformation framework and the
OpenTOSCA ecosystem.

53

5 Implementation

information to a normalized EDMMi representation The retrieval of instance information
is performed via API request to the respective technology that was used to deploy the
application. Then, the deployment-technology-specific instance information is transformed
to an EDMMi representation in the EDMMi Transformer. The EDMM type repository
is used in this step to map technology-specific types to normalized EDMM types, cf.
Section 4.2. Therefore, this steps emits a normalized instance model according to the
EDMMi specification. Next, the TOSCA Transformer implements logic to transform
the derived EDMMi to a TOSCA instance model with support of the TOSCA Mapping
Database (DB), which contains the mapping between EDMM and TOSCA types and
property keys as described in Section 4.3. In this step, a standardized TOSCA instance
model is derived. Moreover, the TOSCA Transformer interacts with the Winery API of
the OpenTOSCA ecosystem to create a service template of the TOSCA instance model,
and triggers the Management Feature Enrichment which is implemented in Winery with
support of the TOSCA Type Repository. As a result, a standardized TOSCA instance
model with additional management functionality is obtained. Then, this TOSCA instance
model is imported into the OpenTOSCA Container, and registered as running application
with the respective instance information that was retrieved. While importing the TOSCA
instance model into the OpenTOSCA Container, the Management Workflow Generator
generates holistic management workflows from the enriched operations, which are stored in
the Workflows DB. Via Vinothek, the OpenTOSCA management User Interface (UI), a user
is then able to trigger the generated management workflows on the running application.

In the following, every step of the implementation will be explained in depth. To retrieve
the instance information of a running application deployed with a deployment technology,
instance information retrieval plugins were implemented within the EDMM transformation
framework. Such plugins traverse six phases in their execution lifecycle. To ease the
implementation and extension with further instance information plugins, an interface for
their implementation was specified as illustrated in Listing 5.1. The interface was created
based on the Template Method Pattern [GHJV93] that defines the skeleton of each lifecycle
phase. As illustrated, the six lifecycle phases are ordered as follows: (i) Preparation
Phase, (ii) Instance Information Retrieval Phase, (iii) EDMMi Transformation Phase,
(iv) TOSCA Transformation Phase, (v) YAML Creation Phase, and (vi) Cleanup Phase.
The (i) Preparation Phase contains any steps required to retrieve instance information of
an application deployed with a deployment technology, e. g., the authentication with the
respective API. Next, the instance information of a running application deployed with a
deployment technology is retrieved in the (ii) Instance Information Retrieval Phase via
API requests. In the (iii) EDMMi Transformation Phase, the retrieved application is
transformed to a normalized EDMMi representation, which is used in the (iv) TOSCA
Transformation Phase to derive a standardized TOSCA instance model thereof. Further,
the TOSCA Transformation Phase enriches the derived standardized TOSCA instance
model with executable management workflows using the Management Feature Enrichment
approach [HBL+19] which is implemented in the OpenTOSCA ecosystem. Subsequently, a
YAML file is created that captures the derived EDMMi model in the (v) YAML Creation
Phase. Eventually, the (vi) Cleanup Phase is concerned with measures to be executed
before the plugin terminates, e. g., the removal of temporary files, or the release of a Secure
Shell (SSH) connection. This phase is optional though, as it is not required by all plugins.
Subsequently, an explanation of each phase is following.

54

Listing 5.1 Interface for the implementation of instance information retrieval plugins.

package io.github.edmm.core.plugin;

import io.github.edmm.core.plugin.support.InstanceLifecyclePhaseAccess;

public interface InstancePluginLifecycle {

void prepare();

void retrieveInstanceInformation();

void transformToEDMMi();

void transformToTOSCA();

void createYAML();

void cleanup();

}

Preparation Phase

To retrieve instance information of a running application deployed with a deployment
technology, the required data must be requested from the respective deployment technology’s
API. To do this, an authentication with the API is typically necessary. Thus, the Preparation
Phase executes the prepare() method that implements logic related to anything required to
start the retrieval of instance information. For example, the AWS CloudFormation plugin’s
prepare() method comprises logic to retrieve credentials for the authentication with the
AWS API. Typically, an authentication with the API is required for all plugins, however
its implementation differs between deployment technologies.

Instance Information Retrieval Phase

Once the preparation phase is finished, everything is set to request data from the API of
a deployment technology to retrieve information about a running application. Thus, the
Instance Information Retrieval Phase follows, which contains any logic concerned with the
retrieval of instance data of a running application deployed with a deployment technology.
Such information may include, for example, data about the components of an application,
their state, and their properties. For instance, the Puppet plugin retrieves all agents that
are currently managed by a certain Puppet master, as well as their configuration, e. g.,
a public IP address, but also additional software running on an agent, e. g., an Apache
Tomcat web server as illustrated in Figure 5.1. The retrieval of such instance information
is performed using the API of a deployment technology. Hence, the implementation of
the retrieveInstanceInformation() method differs between plugins of different deployment
technologies. Generally, this phase retrieves all information required to transform a running
application to a normalized EDMMi representation.

55

5 Implementation

EDMMi Transformation Phase

Once all instance information required for further processing is retrieved, it is transformed
to a normalized EDMMi representation as defined in Section 4.1. The mapping pre-
sented in Section 4.2 between deployment-technology-specific data and EDMMi is utilized
to implement the transformation logic for each plugin. Further, the mapping between
deployment-technology-specific component types and normative EDMM component types
is used to derive a normalized representation of a running application. Since the map-
ping to EDMMi is specific for each deployment technology, the implementation of the
transformToEDMMi() method differs between deployment technologies.

TOSCA Transformation Phase

After the EDMMi Transformation Phase, a normalized EDMMi representation of a running
application is derived. Next, the TOSCA Transformation Phase transforms the derived
EDMMi to a standardized TOSCA instance model. The mapping between EDMMi and
TOSCA described in Section 4.3 is utilized in this step. Since the previous phase emitted a
normalized EDMMi representation of the application to be transformed, the transform-
ToTOSCA() method implements the same logic, regardless of the plugin. Further, the
TOSCA Transformation Phase comprises the steps to enrich the derived TOSCA instance
model with additional management functionalities using the OpenTOSCA ecosystem. To
enable this, the service template of the TOSCA instance model is imported into Winery
using its API to apply the Management Feature Enrichment approach [HBL+19], which was
implemented there prototypically. As described in Section 4.4, the Management Feature
Enrichment approach distinguishes between (i) state-preserving, and (ii) state-changing
management operations. While state-preserving operations can be executed straightfor-
wardly, state-changing operations alter the state of an application, and thus, need to
be handled differently. Since deployment technologies typically monitor the state of a
deployed application, and restore its state if it diverges from the used deployment model, it
is required to notify the deployment technology when performing state-changing operations.
To achieve this, the imported service template is annotated with the deployment technology
that was used to deploy the application. Further, the available state-changing management
operations stored in the OpenTOSCA repository are annotated with the deployment
technology they support. A state-changing operation supports a deployment technology if
it propagates the changed state to the respective deployment technology to avoid inter-
ference. Now, when applying the Management Feature Enrichment approach [HBL+19],
the OpenTOSCA repository is searched for possible enriching management operations
based on the node types of the node templates of the service template as described in
Section 2.3.2 and Section 4.4. To enrich a node template with state-changing management
operations, the repository is filtered for operations that support the deployment technology
the service template is annotated with. If an enriching management operation is identified,
it is appended to the respective node template of the service template. As a result, a
service template with enriched management operations is obtained. This service template
is then imported via an API request into the OpenTOSCA Container, i. e., the TOSCA
runtime of the OpenTOSCA ecosystem. During the import, the Management Workflow
Generator generates holistic workflows of the individual management operations of the

56

node templates, e. g., by concatenating all management operations of a service template
that are tagged as backup operation. The resulting management workflows are then stored
in the Workflows DB in the OpenTOSCA Container. Since the application to be enriched
is already running, the imported service template is registered as a running application,
i. e., as service template instance. This is achieved by performing a further API request
to the OpenTOSCA Container with the imported service template as target. In that
request, the body of the request contains the instance data, i. e., the state of the node
templates and service template, and their instance properties. At the end of this phase,
a standardized TOSCA instance model is derived, enriched with additional, executable
management workflows that can be triggered via the Vinothek [BBKL14d].

YAML Creation Phase

Subsequently, a YAML file is created that captures the EDMMi representation derived
in the EDMMi Transformation Phase. This file holds the current state of the running
application to be transformed and enriched in EDMMi and can be used, for example, for
later re-import into the EDMM Transformation Framework or to gain an insight on the
application. Listing 5.2 depicts an exemplary YAML file created in this phase that captures
the EDMMi representation of a simple application deployed with Puppet. As visualized,
the top level contains general information about the application, for example, the name,
id, and creation date, followed by the component instances of the EDMMi model. Since
the YAML file in Listing 5.2 is an excerpt, it only depicts two component instances, i. e.,
the VM the Puppet agent is running on, and a Tomcat hosted on the VM. As shown, a
component instance comprises information about its state, type, and instance properties,
like a SSH key pair for access, and the IP address of the VM. Also, the additional attribute
that states the technology-specific type is stored, which is used for the type refinement
when transforming from EDMMi to TOSCA.

Cleanup Phase

Concludingly, the last phase of a plugin’s execution removes any track of its execution, e. g.,
temporarily created files. Further, it releases any established connections, e. g., to an API
or a SSH connection to a VM. The cleanup() method is the last method executed before a
plugin terminates. Typically, most plugins do not require this phase since connections are
released automatically, hence its implementation is optional.

57

5 Implementation

Listing 5.2 Excerpt of an EDMMi YAML file as result of the YAML creation phase.

name: puppet.thesis.com

state: CREATED

id: '1321657185'

createdAt: '1590669238'

instanceProperties: null

componentInstances:

− id: '1000217263'

name: puppetagent

type: Compute

state: CREATED

instanceProperties:

− key: VMIP

type: String

instanceValue: ...

− key: VMPrivateKey

type: String

instanceValue:...

− key: VMPublicKey

type: String

instanceValue: ...

− key: original_type

type: String

instanceValue: Ubuntu18.04

− id: '1000483338'

name: tomcat

type: WebServer

state: CREATED

instanceProperties:

− ...

− id: ...

58

6 Validation

In this chapter, the feasibility of the presented approach and its prototypical implementation
is validated in a case study, cf. Chapter 4, and Chapter 5. Further, the proposed concept
is critically discussed, including its challenges and limitations.

 ...

 ...

endpoint: https://..

 port: 8080

OpenTOSCA
Ecosystem

Winery

 type: OpenStack
(Hypervisor)

os_family: Ubuntu
public_address: ..

(Compute)

 ...

(Web
Application)

 ...

(Database)

 ...
(DBMS)

 port: 8080
(Web Server)

EDMM
Transformation

Framework

Puppet Plugin

CSAR
OpenTOSCA
Ecosystem

Vinothek

EDMM
Transformation

Framework

TOSCA
Transformer

OpenTOSCA
Ecosystem

Container

CSAR Test

TOSCA
Mapping

Backup

Normalized instance
model (EDMMi)

Feauture-Enriched Standardized
instance model (TOSCA)

CSAR with
workflows

endpoint: https://..
(OpenStack)

vmip: 123.456.789
(UbuntuVM)

 ...

(Java Web
App) ...

(MySQL
Database)

 ...

(MySQL
DBMS)(Tomcat)

Standardized instance model
(TOSCA)

z(OpenStack)

vmip: 123.456.789
(UbuntuVMFE)

(Java Web
AppFE)CSAR

1 2

345

Running Application

 port: 8080
(TomcatFE)

(MySQL
DBMS)

 ...

(MySQL
DatabaseFE)

CSAR

Figure 6.1: Validation scenario: Enriching a running application deployed with Puppet
with management functionalities.

59

6 Validation

6.1 Case Study

Figure 6.1 depicts a validation scenario with a reference application that was deployed
and configured with Puppet as visualized on the top left side, i. e., the technology-specific
instance model. The application consists of a Java web application which is hosted on a
Tomcat web server. Further, the Java web application connects to a MySQL database to
store and retrieve data. Both the Tomcat web server and the database are running on a
Ubuntu VM hosted on OpenStack. To enable the management of the described application
in an automated manner, the prototypical implementation described in Chapter 5 was used
to transform the technology-specific instance model to a standardized, feature-enriched,
manageable instance model in TOSCA. Since Puppet follows a master-agent approach as
outlined in Section 2.1.1, it is assumed that all agents managed by one Puppet master form
one cohesive application. To start the transformation, the CLI of the extended EDMM
Transformation Framework is called with an argument that specifies the technology used
to deploy the application that must be transformed and enriched, i. e., in this case Puppet.
Depending on the deployment technology, the framework expects further input arguments
to specify the exact application to transform, e. g., the unique identifier of the application
within its deployment technology. Further, parameters for the authentication with the
API of the respective deployment technology must be provided typically. In the case of
Puppet, following information about the Puppet master that manages the application must
be provided: (i) Its public IP address, and (ii) a private SSH key of the master to access it.
When started, the framework executes the Puppet plugin as illustrated in Figure 6.1. First,
it retrieves all agents connected to the master, i. e., the compute nodes, and their properties
like the public IP address, and the underlying OS. Further, the Puppet plugin examines the
reports generated by the identified Puppet agents to determine if any additional software
is running on it. Once all building blocks of the application and their configuration are
identified, the plugin, which implements the mapping from Puppet to EDMMi as described
in Section 4.2.2, transforms the technology-specific instance information to a normalized
instance model, i. e., to EDMMi. To enable this, the concrete component types are mapped
to normative types as depicted in Figure 6.1 within the braces. For instance, the VM that
hosts the Tomcat web server and the database is mapped to the EDMM normative type
Compute, while the Tomcat web server maps to the normative type Web Server. With this,
a technology-agnostic normalized instance model is derived that represents the illustrated
application in EDMMi. As depicted in Figure 6.1, a close representation of the actual
running application is obtained. Yet, the connection between the Java web application and
the MySQL database is lost in this transformation step since Puppet does not hold such
information in its instance data. By extending the approach presented in this work with
the concepts discussed in Chapter 3, it would be possible to gather such information, e. g.,
by using network scanners [FAB+11].

In the second step, the framework transforms the derived EDMMi to a TOSCA instance
model by executing the TOSCA transformer, which implements the mapping between
EDMMi and TOSCA as specified in Section 4.3. First, the normative component types are
transformed to normative TOSCA types using the mapping depicted in Table 4.3. In the
following, the TOSCA transformer tries to refine the normative TOSCA types to concrete
types using the TOSCA type repository of Winery to allow fine-grained management
of these components in OpenTOSCA. In this process, the TOSCA transformer uses the

60

6.2 Discussion

properties of the EDMMi components. For example, the Compute component holds
information about its OS in the os family property. This information is used to search
the TOSCA repository for a matching subtype. In this case, the TOSCA transformer
finds the node type UbuntuVM in the TOSCA repository. In this step, the framework
also transforms the property keys respectively to retain their information and semantics.
For instance, the key public address of the Compute component is mapped to vmip when
transforming to TOSCA. As a result, a standardized TOSCA instance model of the running
application is derived as illustrated in Figure 6.1.

Using the standardized TOSCA instance model retrieved in the second step, the TOSCA
transformer uses the Winery API to exploit the Management Feature Enrichment [HBL+19]
implementation in Winery. In this process, the node types of the TOSCA instance model
are used to identify enriching management operations, e. g., operations to test or backup a
component. If a feature enrichment is found, the respective base node type is replaced by
a feature-enriched node type which comprises the additional management operations, as
well as the basic lifecycle operations of the original base node type. The resulting instance
model of this step is visualized in Figure 6.1. In this example, all enriched management
operations related to testing a component are highlighted in green, while backup related
operations are illustrated in blue. For example, the generated UbuntuFE node type offers
a management operation that tests if an Ubuntu VM is up and running [HBL+19]. By
importing this feature-enriched instance model in the OpenTOSCA Container, fully-
executable workflows are generated that orchestrate the individual management operations
based on annotations [HBL+19]. For instance, all test operations are orchestrated to one
holistic test workflow. Consequently, a feature-enriched manageable instance model in
OpenTOSCA is obtained. The enriched TOSCA model is then registered with its instance
data and workflows as running application in the OpenTOSCA Container by the EDMM
Transformation Framework. Using Vinothek, the management workflows can be invoked.
Hence, the enrichment of an already deployed, running application with fully-executable
management workflows in an automated manner is achieved.

6.2 Discussion

The described validation scenario showed how running applications deployed with tech-
nologies like Puppet can be enriched with management functionalities. Since the presented
approach relies on deployment-technology-specific instance information, this reveals various
challenges: (i) First, the presented approach depends on the instance information exposed
by deployment technologies. However, the available instance information differs between
deployment technologies. For example, connections and dependencies between application
components may not be retrievable with Puppet as seen in the validation scenario. Fur-
ther, some deployment technologies like AWS CloudFormation and OpenStack Heat only
provide information about infrastructure components, e. g., servers, but not about software
components. Therefore, the amount of retrievable instance information about applications
deployed with such technologies is limited, i. e., the actual application architecture may
deviate from the derived EDMMi representation. (ii) Furthermore, the mapping between
technology-specific instance information and EDMMi requires deep technical knowledge

61

6 Validation

and understanding of the respective deployment technology. Especially when mapping
properties and types from a deployment technology to normalized properties and types,
immense technical expertise is necessary. Also, component type must be determined as
exact as possible when transforming from the normalized EDMMi to TOSCA to enable
proper management. If no exact mapping is possible, generic normative types are used
which may impede management functionality.

(iii) Moreover, especially configuration management technologies may not explicitly express
which nodes logically belong to one application. Thus, it may be necessary to meet
assumptions about an application’s structure and its components, e. g., that all agents
managed by one Puppet master form one application.

(iv) As of now, the presented approach is limited to running applications deployed with
deployment technologies, i. e., it is currently not possible to enrich manually deployed
applications with management functionalities. However, it is possible to extend the
presented concept using existing work from Binz [Bin15], Binz et al. [BBKL13a], [FAB+11],
or [HBLE14] which use custom crawler, network scanner and service discovery to reliably
retrieve information about running applications regardless of their deployment strategy.

(v) Another challenge of the presented concept brings the execution of state-changing
management operations. Deployment technologies, especially configuration management
tools like Puppet, constantly monitor managed agents and their configuration to check
whether the state diverges from the declared model. If it differs, Puppet tries to restore
the desired state based on the current configuration declaration at the Puppet master.
Thus, if state-changing management workflows are invoked, it is required to ensure that the
deployment technology that manages the application is updated about the changed state,
such that it does not interfere with the executed workflow. More precisely, an interaction
with the API of the respective deployment technology is necessary to match the internally
stored state of the technology with the state obtained by executing a state-changing
workflow. However, state-preserving management workflows, e. g., to test an application,
can be executed straightforwardly since they do not alter the application and its state.

62

7 Conclusion and Future Work

This work presented a concept how running applications deployed with deployment tech-
nologies can be enriched with additional management functionality. To enable this, the
approach introduced a normalized representation for running applications, as well as a
transformation to a standardized representation using the instance model of the TOSCA
standard. Further, the approach enables the management of applications deployed with
different deployment technologies in a single place. Although the retrieval of instance
information, as well as the semantic mapping between deployment-technology-specific and
normative types and their properties revealed challenges, it was demonstrated that the
information exposed by deployment technologies is sufficient to enable the automated
management of such applications using the presented approach.

Future Work

Currently, the presented approach is limited to applications deployed with deployment
technologies, and further only to such technologies that provide access to instance informa-
tion. Therefore, it is planned to extend the approach with the concepts presented by Binz
et al. [BBKL13a; Bin15] to crawl instance information for applications that were either
(i) deployed manually, or (ii) deployed with a technology that does not allow the access
of instance information. Furthermore, improving the retrieval of instance information is
planned such that the derived EDMMi model is closer to the real-world architecture, e. g.,
by providing a means to detect connections and dependencies between components more
reliably. Since the presented approach enables the management of applications deployed
with different deployment technologies in a single place, it may also be possible to generate
high-level management workflows that coordinate the management of multiple applications,
e. g., to backup all applications of an enterprise in a single workflow. Additionally, in future
work the prototypical implementation may be extended to support popular deployment
technologies that were not covered in this work, such as Chef, or Ansible. To enable this,
it is also required to provide a conceptual mapping between the instance model of such
deployment technologies and EDMMi similar to Section 4.2 in future work.

63

Bibliography

[Ali20] Alien 4 Cloud. Official Website. 2020. url: http://alien4cloud.github.io/
(cit. on p. 48).

[Ama20a] Amazon Web Services. AWS CloudFormation. 2020. url: https://aws.amazon.
com/cloudformation/ (cit. on pp. 15, 26).

[Ama20b] Amazon Web Services. AWS CloudFormation Concepts. 2020. url: https:
//docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-whatis-

concepts.html (cit. on p. 25).

[Ama20c] Amazon Web Services. AWS resource and property types reference. 2020.
url: https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-
template-resource-type-ref.html (cit. on p. 25).

[Ama20d] Amazon Web Services. What is AWS CloudFormation? 2020. url: https:
//docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html

(cit. on p. 25).

[BBF+18] A. Bergmayr, U. Breitenbücher, N. Ferry, A. Rossini, A. Solberg, M. Wimmer,
G. Kappel, F. Leymann.“A Systematic Review of Cloud Modeling Languages”.
In: ACM Comput. Surv. 51.1 (Feb. 2018) (cit. on p. 15).

[BBH+13] T. Binz, U. Breitenbücher, F. Haupt, O. Kopp, F. Leymann, A. Nowak,
S. Wagner. “OpenTOSCA -- A Runtime for TOSCA-based Cloud Appli-
cations”. In: Proceedings of the 11th International Conference on Service-
Oriented Computing (ICSOC 2013). Springer, Dec. 2013, pp. 692–695 (cit. on
pp. 29, 32).

[BBK+13] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, J. Wettinger. “Integrated
cloud application provisioning: Interconnecting service-centric and script-
centric management technologies”. In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) 8185 LNCS (2013), pp. 130–148 (cit. on pp. 21, 33, 36).

[BBK+14a] U. Breitenbücher, T. Binz, K. Képes, O. Kopp, F. Leymann, J. Wettinger.
“Combining Declarative and Imperative Cloud Application Provisioning based
on TOSCA”. In: Proceedings of the IEEE International Conference on Cloud
Engineering (IEEE IC2E 2014). IEEE Computer Society, Mar. 2014, pp. 87–
96 (cit. on p. 20).

[BBK+14b] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, M. Wieland. “Context-
Aware Cloud Application Management”. In: Proceedings of the 4th Inter-
national Conference on Cloud Computing and Services Science (CLOSER
2014). SciTePress, Apr. 2014, pp. 499–509 (cit. on p. 37).

65

http://alien4cloud.github.io/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-whatis-concepts.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-whatis-concepts.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-whatis-concepts.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html

Bibliography

[BBKL13a] T. Binz, U. Breitenbücher, O. Kopp, F. Leymann. “Automated Discovery and
Maintenance of Enterprise Topology Graphs”. In: Proceedings of the 6th IEEE
International Conference on Service Oriented Computing and Applications
(SOCA 2013). IEEE, Dec. 2013, pp. 126–134 (cit. on pp. 35, 62, 63).

[BBKL13b] U. Breitenb, T. Binz, O. Kopp, F. Leymann. “Pattern-based Runtime Man-
agement of Composite Cloud Applications”. In: (2013), pp. 475–482 (cit. on
pp. 33, 36, 37).

[BBKL14a] T. Binz, U. Breitenbücher, O. Kopp, F. Leymann. “TOSCA: Portable au-
tomated deployment and management of cloud applications”. In: Advanced
Web Services 9781461475 (2014), pp. 527–549 (cit. on p. 19).

[BBKL14b] T. Binz, U. Breitenübcher, O. Kopp, F. Leymann. “Migration of enterprise
applications to the cloud”. In: it - Information Technology 56.3 (2014),
pp. 106–111 (cit. on pp. 36, 37).

[BBKL14c] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann. “Automating Cloud
Application Management Using Management Idioms”. In: Proceedings of
the Sixth International Conferences on Pervasive Patterns and Applications
(PATTERNS 2014). Xpert Publishing Services, May 2014, pp. 60–69 (cit. on
p. 37).

[BBKL14d] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann. “Vinothek - A Self-Service
Portal for TOSCA”. In: Proceedings of the 6th Central-European Workshop
on Services and their Composition (ZEUS 2014). CEUR-WS.org, Feb. 2014,
pp. 69–72 (cit. on pp. 32, 57).

[BCS17] A. Brogi, P. Cifariello, J. Soldani. “DrACO: Discovering available cloud
offerings”. In: Computer Science - Research and Development 32.3-4 (2017),
pp. 269–279 (cit. on p. 36).

[BFL+12] T. Binz, C. Fehling, F. Leymann, A. Nowak, D. Schumm. “Formalizing the
Cloud through Enterprise Topology Graphs”. In: 2012 IEEE Fifth Interna-
tional Conference on Cloud Computing. 2012, pp. 742–749 (cit. on pp. 36,
37).

[Bin15] T. Binz. “Crawling von Enterprise Topologien zur automatisierten Migra-
tion von Anwendungen: eine Cloud-Perspektive”. Dissertation. University of
Stuttgart, 2015 (cit. on pp. 35–37, 62, 63).

[Bre+16] U. Breitenbücher et al. “The OpenTOSCA Ecosystem - Concepts & Tools”.
In: European Space project on Smart Systems, Big Data, Future Internet -
Towards Serving the Grand Societal Challenges - Volume 1: EPS Rome 2016,
SciTePress, 2016, pp. 112–130 (cit. on pp. 17, 32, 48, 53).

[Bre16] U. Breitenbücher. “Eine musterbasierte Methode zur Automatisierung des
Anwendungsmanagements”. Dissertation. University of Stuttgart, 2016 (cit.
on pp. 37, 41).

[BRS18] A. Brogi, L. Rinaldi, J. Soldani. “TosKer: A synergy between TOSCA and
Docker for orchestrating multicomponent applications”. In: Software: Practice
and Experience 48.11 (2018), pp. 2061–2079 (cit. on p. 48).

[Can20] Canonical Ltd. Juju as a Service. 2020. url: https://jaas.ai/ (cit. on p. 26).

66

https://jaas.ai/

Bibliography

[Che20] Chef. Chef. 2020. url: https://www.chef.io/ (cit. on pp. 15, 26).

[Clo19] Cloud Native Computing Foundation. CNCF Survey 2019. 2019. url: https:
//www.cncf.io/wp-content/uploads/2020/03/CNCF_Survey_Report.pdf (cit. on
p. 22).

[Doc20a] Docker Inc. Docker. 2020. url: https://www.docker.com/ (cit. on pp. 15, 22).

[Doc20b] Docker Inc. Overview of Docker Compose. 2020. url: https://docs.docker.
com/compose/ (cit. on p. 26).

[EBF+17] C. Endres, U. Breitenbücher, M. Falkenthal, O. Kopp, F. Leymann, J. Wet-
tinger.“Declarative vs. Imperative: Two Modeling Patterns for the Automated
Deployment of Applications”. In: Proceedings of the 9th International Con-
ferences on Pervasive Patterns and Applications (2017), pp. 22–27 (cit. on
pp. 15, 20, 21).

[EBLW17] C. Endres, U. Breitenbücher, F. Leymann, J. Wettinger. “Anything to Topol-
ogy - A Method and System Architecture to Topologize Technology-Specific
Application Deployment Artifacts”. In: Proceedings of the 7th International
Conference on Cloud Computing and Services Science (CLOSER 2017),
Porto, Portugal. SCITEPRESS, Apr. 2017, pp. 180–190 (cit. on p. 36).

[FAB+11] M. Farwick, B. Agreiter, R. Breu, S. Ryll, K. Voges, I. Hanschke.“Automation
Processes for Enterprise Architecture Management”. In: 2011 IEEE 15th In-
ternational Enterprise Distributed Object Computing Conference Workshops.
2011, pp. 340–349 (cit. on pp. 35, 60, 62).

[FS85] J. Farrell, G. Saloner. “Standardization, Compatibility, and Innovation”. In:
The RAND Journal of Economics 16.1 (1985), pp. 70–83 (cit. on p. 48).

[Gar10] Gartner. Gartner Identifies the Top 10 Strategic Technologies for 2011. 2010.
url: https://www.businesswire.com/news/home/20101019007069/en/Gartner-
Identifies-Top-10-Strategic-Technologies-2011 (cit. on p. 19).

[GHJV93] E. Gamma, R. Helm, R. Johnson, J. Vlissides. “Design Patterns: Abstraction
and Reuse of Object-Oriented Design”. In: ECOOP’ 93 --- Object-Oriented
Programming. Ed. by O.M. Nierstrasz. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1993, pp. 406–431 (cit. on p. 54).

[Has20] HashiCorp. Terraform. 2020. url: https://www.terraform.io/ (cit. on pp. 15,
26).

[HAW11] H. Herry, P. Anderson, G. Wickler. “Automated Planning for Configuration
Changes”. In: Proceedings of the 25th International Conference on Large In-
stallation System Administration. LISA11. Boston, MA: USENIX Association,
2011, p. 5 (cit. on pp. 15, 21).

[HBL+19] L. Harzenetter, U. Breitenbücher, F. Leymann, K. Saatkamp, B. Weder,
M. Wurster. “Automated Generation of Management Workflows for Appli-
cations Based on Deployment Models”. In: 2019 IEEE 23rd International
Enterprise Distributed Object Computing Conference (EDOC). 2019, pp. 216–
225 (cit. on pp. 16, 17, 19, 33, 34, 36, 40, 48, 50, 52, 54, 56, 61).

67

https://www.chef.io/
https://www.cncf.io/wp-content/uploads/2020/03/CNCF_Survey_Report.pdf
https://www.cncf.io/wp-content/uploads/2020/03/CNCF_Survey_Report.pdf
https://www.docker.com/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://www.businesswire.com/news/home/20101019007069/en/Gartner-Identifies-Top-10-Strategic-Technologies-2011
https://www.businesswire.com/news/home/20101019007069/en/Gartner-Identifies-Top-10-Strategic-Technologies-2011
https://www.terraform.io/

Bibliography

[HBLE14] H. Holm, M. Buschle, R. Lagerström, M. Ekstedt. “Automatic data collection
for enterprise architecture models”. In: Software & Systems Modeling 13.2
(2014), pp. 825–841 (cit. on pp. 35, 62).

[KBBL13] O. Kopp, T. Binz, U. Breitenbücher, F. Leymann. “Winery -- A Modeling
Tool for TOSCA-based Cloud Applications”. In: Proceedings of the 11th

International Conference on Service-Oriented Computing (ICSOC 2013).
Springer, Dec. 2013, pp. 700–704 (cit. on p. 32).

[KNK16] T. Kuroda, M. Nakanoya, A. Kitano. “The Configuration-Oriented Planning
for Fully Declarative IT System Provisioning Automation”. In: Noms (2016),
pp. 808–811 (cit. on pp. 33, 36).

[Kub20a] Kubernetes. Pods Documentation. 2020. url: https://kubernetes.io/docs/
concepts/workloads/pods/pod/ (cit. on p. 26).

[Kub20b] Kubernetes). Kubernetes Components. 2020. url: https://kubernetes.io/
docs/concepts/overview/components/ (cit. on pp. 25, 47).

[Kub20c] Kubernetes). Nodes. 2020. url: https://kubernetes.io/docs/concepts/

architecture/nodes/ (cit. on pp. 25, 26).

[Kub20d] Kubernetes). Overview. 2020. url: https://kubernetes.io/docs/concepts/
overview/ (cit. on pp. 25, 47).

[Kub20e] Kubernetes). Pods. 2020. url: https://kubernetes.io/docs/concepts/workload
s/pods/ (cit. on pp. 26, 48).

[Kub20f] Kubernetes). What is Kubernetes? 2020. url: https://kubernetes.io/docs/
concepts/overview/what-is-kubernetes/ (cit. on p. 25).

[Ley09] F. Leymann. “Cloud Computing: The Next Revolution in IT”. In: Photogram-
metric Week ’09. Wichmann Verlag, 2009, pp. 3–12 (cit. on p. 19).

[Ltd20] C. P. Ltd. Cloudify. 2020. url: https://cloudify.co/ (cit. on pp. 26, 48).

[MDW+00] V. Machiraju, M. Dekhil, K. Wurster, P.K. Garg, M.L. Griss, J. Holland.
“Towards Generic Application Auto-Discovery”. In: Proceedings of the 7th

IEEE/IFIP Network Operations and Management Symposium (NOMS 2000).
IEEE, Apr. 2000, pp. 75–87 (cit. on p. 36).

[MG+11] P. Mell, T. Grance, et al. “The NIST definition of cloud computing”. In:
(2011) (cit. on p. 19).

[Mic20] Microsoft. Azure Resource Manager documentation. 2020. url: https://docs.
microsoft.com/en-us/azure/azure-resource-manager/ (cit. on p. 26).

[MSK+18] P. Masek, M. Stusek, J. Krejci, K. Zeman, J. Pokorny, M. Kudlacek. “Unleash-
ing Full Potential of Ansible Framework: University Labs Administration”. In:
Proceedings of the 22nd Conference of Open Innovations Association FRUCT.
FRUCT22. Jyvaskyla, Finland: FRUCT Oy, 2018 (cit. on p. 21).

[Nor20] Northern.tech, Inc. CFEngine. 2020. url: https://cfengine.com/ (cit. on
p. 26).

[Obj11] Object Management Group. Business Process Model and Notation (BPMN)
Version 2.0. 2011 (cit. on pp. 15, 30).

68

https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/concepts/overview/
https://kubernetes.io/docs/concepts/overview/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://cloudify.co/
https://docs.microsoft.com/en-us/azure/azure-resource-manager/
https://docs.microsoft.com/en-us/azure/azure-resource-manager/
https://cfengine.com/

Bibliography

[Ope20a] OpenStack. Heat. 2020. url: https://wiki.openstack.org/wiki/Heat (cit. on
pp. 15, 22, 23, 26).

[Ope20b] OpenStack. Heat Orchestration Template (HOT) specification. 2020. url:
https://docs.openstack.org/heat/latest/template_guide/hot_spec.html (cit. on
p. 23).

[Ope20c] OpenStack. Heat Template Guide. 2020. url: https://docs.openstack.org/
heat/rocky/template_guide/ (cit. on pp. 22, 23).

[Ope20d] OpenStack. OpenStack Resource Types. 2020. url: https://docs.openstack.
org/heat/latest/template_guide/openstack.html (cit. on pp. 23, 43).

[Ope20e] OpenStack. The OpenStack project. 2020. url: https://www.openstack.org
(cit. on p. 15).

[Opp03] D. Oppenheimer. “The importance of understanding distributed system
configuration”. In: Proceedings of the 2003 Conference on Human Factors in
Computer Systems Workshop. CHI 2003. Apr. 2003 (cit. on pp. 15, 19, 36).

[Org07] Organization for the Advancement of Structured Information Standards
(OASIS). Web Services Business Process Execution Language Version 2.0.
2007 (cit. on pp. 15, 30).

[Org13a] Organization for the Advancement of Structured Information Standards
(OASIS). Topology and Orchestration Specification for Cloud Applications
(TOSCA) Primer Version 1.0. 2013 (cit. on pp. 31, 40, 42, 48, 49, 51).

[Org13b] Organization for the Advancement of Structured Information Standards
(OASIS). Topology and Orchestration Specification for Cloud Applications
(TOSCA) Version 1.0. 2013 (cit. on pp. 17, 28–30, 32, 41, 42).

[Org20] Organization for the Advancement of Structured Information Standards
(OASIS). TOSCA Simple Profile in YAML Version 1.3. 2020 (cit. on pp. 17,
28, 31, 48, 50).

[Pup20a] Puppet. Introduction to Puppet. 2020. url: https://puppet.com/docs/puppet/
6.18/puppet_overview.html (cit. on pp. 23, 24).

[Pup20b] Puppet. Puppet. 2020. url: https://puppet.com/ (cit. on pp. 15, 26).

[Pup20c] Puppet. Resource Type Reference. 2020. url: https://puppet.com/docs/

puppet/5.5/type.html (cit. on p. 24).

[Red20] Red Hat. Ansible. 2020. url: https://www.ansible.com/ (cit. on p. 26).

[Sal20] SaltStack, Inc. SaltStack. 2020. url: https://www.saltstack.com/ (cit. on
p. 26).

[The20a] The Apache Software Foundation. Apache Tomcat. 2020. url: http://tomcat.
apache.org/ (cit. on p. 15).

[The20b] The Kubernetes Authors. Kubernetes. 2020. url: https://kubernetes.io/
(cit. on p. 15).

69

https://wiki.openstack.org/wiki/Heat
https://docs.openstack.org/heat/latest/template_guide/hot_spec.html
https://docs.openstack.org/heat/rocky/template_guide/
https://docs.openstack.org/heat/rocky/template_guide/
https://docs.openstack.org/heat/latest/template_guide/openstack.html
https://docs.openstack.org/heat/latest/template_guide/openstack.html
https://www.openstack.org
https://puppet.com/docs/puppet/6.18/puppet_overview.html
https://puppet.com/docs/puppet/6.18/puppet_overview.html
https://puppet.com/
https://puppet.com/docs/puppet/5.5/type.html
https://puppet.com/docs/puppet/5.5/type.html
https://www.ansible.com/
https://www.saltstack.com/
http://tomcat.apache.org/
http://tomcat.apache.org/
https://kubernetes.io/

[WBB+20] M. Wurster, U. Breitenbücher, A. Brogi, G. Falazi, L. Harzenetter, F. Ley-
mann, J. Soldani, V. Yussupov. “The EDMM Modeling and Transformation
System”. In: Service-Oriented Computing -- ICSOC 2019 Workshops. Ed. by
S. Yangui, A. Bouguettaya, X. Xue, N. Faci, W. Gaaloul, Q. Yu, Z. Zhou,
N. Hernandez, E.Y. Nakagawa. Cham: Springer International Publishing,
2020, pp. 294–298 (cit. on pp. 15–17, 27, 28, 36, 53).

[WBF+19] M. Wurster, U. Breitenbücher, M. Falkenthal, C. Krieger, F. Leymann,
K. Saatkamp, J. Soldani. “The essential deployment metamodel: a systematic
review of deployment automation technologies”. In: SICS Software-Intensive
Cyber-Physical Systems 35.1-2 (Aug. 2019), pp. 63–75 (cit. on pp. 15, 16,
20–22, 26, 27, 36, 40–43, 48).

All links were last followed on September 30, 2020.

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

	1 Introduction
	2 Foundations
	2.1 Cloud Application Deployment
	2.2 edmm
	2.3 tosca

	3 Related Work
	3.1 Retrieval of Instance Information
	3.2 Management of Cloud Applications

	4 Approach
	4.1 edmmi
	4.2 Mapping from Deployment Technologies to edmmi
	4.3 Mapping from edmmi to tosca
	4.4 Applying Management Feature Enrichment

	5 Implementation
	6 Validation
	6.1 Case Study
	6.2 Discussion

	7 Conclusion and Future Work
	Bibliography

