Institute of Parallel and Distributed Systems

University of Stuttgart
UniversitatsstraBe 38
D-70569 Stuttgart

Bachelorarbeit

Design and Implementation of
Secure Smart Contracts for
Mobile Target Tracking
Applications

Ali Salaheddine

Course of Study: Informatik

Examiner: Prof. Dr. Kurt Rothermel
Supervisor: Dr. Frank Diirr
Commenced: 2019-12-17

Completed: 2020-08-12

Abstract

In recent years, cryptocurrencies implemented on top of Blockchains became very popular, with Bit-
coin as the most prominent example. However, novel Blockchain-based platforms such as Ethereum
also support distributed applications beyond cryptocurrencies through so-called smart contracts.
Technically, smart contracts are programs, whose code and execution state is stored in the Blockchain,
inherently featuring the ability to transfer (electronic) money during their execution.

In this Bachelor thesis, we investigate how smart contracts can be used to implement a distributed
crowdsensing application for tracking mobile objects by a crowd of privately owned mobile devices.
Such a system could be used, for instance, to find lost or stolen objects, such as keys, vehicles (cars,
bicycles, ...), or pets tagged with short-range radio transmitters implemented using readily available
Bluetooth or RFID technology. These objects can then be detected by smartphones of private users
in the vicinity of the object, effectively implementing a huge sensor network covering many parts of
the world without any upfront investments by a central entity.

Although highly attractive, implementing a crowdsensing application on top of a Blockchain
platform such as Ethereum comes with several challenges. First of all, users need incentives to par-
ticipate in searching for mobile objects. A natural incentive is a monetary reward that participants
automatically receive through the smart contract when reporting sightings (timestamped positions)
of wanted objects. However, this directly brings up the problem of malicious participants (attack-
ers) who try to get the reward without actually executing the work of searching for the object by
simply reporting fake positions. Therefore, one major goal of this Bachelor thesis is to counter
such attacks by proposing effective counter-measures, and implementing and evaluating them for
the Ethereum platform. In detail, we propose a basic reputation-based approach for detecting fake
positions which judges each sighting made by a mobile devices according to the reputation of that
device, implemented by a smart contract. Furthermore, advanced attacks are identified compromis-
ing the basic reputation-based approach and effective counter-measures to these advanced attacks
are proposed. Identified advanced attacks include reputation farming, where the attacker tries to
aggregate reputation first before launching the attack, and the so-called copy cat attack, where the
attacker simply copies already submitted valid sightings form honest participants, making his fake
positions indistinguishable from valid positions.

Our evaluations analyses the monetary cost of executing smart contracts with and without our
security mechanisms. The results show that the overhead included by our reputation-based approach
is at maximum 45% of the cost of a smart contract without implemented security mechanisms.

4

Kurzfassung

In den letzten Jahren wurden Kryptowédhrungen, die auf Blockchains basieren, sehr populér, mit
Bitcoin als prominentestem Beispiel. Neuartige Blockchain-basierte Plattformen, wie Ethereum,
unterstiitzen jedoch auch verteilte Anwendungen jenseits von Kryptowahrungen durch so genannte
Smart Contracts. Technisch gesehen handelt es sich bei Smart Contracts um Programme, deren
Code und Ausfiithrungszustand in der Blockchain gespeichert wird und die inhérent die Fahigkeit
besitzen, wihrend ihrer Ausfiihrung (elektronisches) Geld zu transferieren.

In dieser Bachelorarbeit wird untersucht, wie Smart Contracts dazu verwendet werden koénnen,
eine verteilte Crowdsensing-Anwendung zur Verfolgung mobiler Objekte durch eine Menge privater
mobiler Gerdte zu implementieren. Ein solches System koénnte z.B. dazu verwendet werden, ver-
lorene oder gestohlene Gegenstéande wie Schliissel, Fahrzeuge (Autos, Fahrrader, ...) oder Haustiere
zu finden, die mithilfe von leicht verfiighbaren Bluetooth- oder RFID-Technologie implementierten
Funksendern ausgestattet sind. Diese Gegenstinde konnen dann von Smartphones privater Nutzer
in der Nahe des Objekts erkannt werden, wodurch ein riesiges Sensornetzwerk entsteht, das viele
Teile der Welt abdeckt und ohne Vorabinvestitionen durch eine zentrale Entitdt aufgesetzt werden
kann.

Obwohl die Implementierung einer Crowdsensing-Anwendung auf einer Blockchain-Plattform wie
Ethereum attraktiv ist, bringt sie auch einige Herausforderungen mit sich. Zunéchst bendtigen die
Benutzer Anreize, sich an der Suche nach mobilen Objekten zu beteiligen. Ein natiirlicher Anreiz
ist eine monetire Belohnung, die die Teilnehmer durch den Smart Contract automatisch erhalten,
wenn sie Sichtungen (Positionen mit einem Zeitstempel) gesuchter Objekte melden. Dies wirft jedoch
direkt das Problem boswilliger Teilnehmer (Angreifer) auf, die versuchen, die Belohnung zu erhalten,
ohne den Aufwand der Suche nach dem Objekt tatséchlich nachzugehen, indem sie einfach falsche
Positionen melden. Ein Ziel dieser Bachelorarbeit ist es daher, solchen Angriffen durch den Entwurf
wirksamer Gegenmafinahmen zu begegnen und diese fiir die Ethereum-Plattform zu implementieren
und auszuwerten. Im Einzelnen schlagen wir einen grundlegenden, durch einen Smart Contract
implementierten reputationsbasierten Ansatz fiir die Erkennung von gefilschten Positionen vor, der
jede Sichtung durch ein mobiles Gerét nach der Reputation dieses Geréts beurteilt. Dariiber hinaus
werden fortgeschrittene Angriffe identifiziert, die den grundlegenden reputationsbasierten Ansatz
gefdhrden, sowie wirksame Gegenmafinahmen gegen diese fortgeschrittenen Angriffe vorgeschlagen.
Zu den identifizierten fortgeschrittenen Angriffen gehoren so genannte Reputation-Farming- Angriffe,
bei denen der Angreifer zuerst versucht, Reputation zu aggregieren, bevor er den Angriff startet. Des
weiteren wird der so genannte Copy-Cat-Angriff identifiziert und behandelt, bei dem der Angreifer
bereits eingereichte giiltige Sichtungen von ehrlichen Teilnehmern kopiert, so dass seine gefdlschten
Positionen nicht von giiltigen Positionen unterschieden werden konnen.

Unsere Bewertung analysiert die monetiren Kosten der Ausfiihrung von Smart Contracts mit
und ohne unsere Sicherheitsmechanismen. Die Ergebnisse zeigen, dass die von unserem reputations-
basierten Ansatz verursachten Mehrkosten maximal 45% betragen.

Contents

Introduction

Background and Related Work

2.1 Blockchain Fundamentals o
2.1.1 Currency Decentralization vs. Centralization
2.1.2 Blockchain Technology

2.2 Ethereum
2.2.1 Ether e e
2,22 State.
2.2.3 Transactions e e e e
224 GaS ...

2.3 Smart Contracts L

2.4 Related Work L
2.4.1 Mobile Crowdsensing L e
2.4.2 Challenges and Solutions in Mobile Crowdsensing

System Model and Problem Statement

3.1 System Model

3.2 Problem Statement

3.3 Attacker Model

Approach

4.1 Smart Contracts as Mobile Crowdsensing Platform

4.2 Tracking Mislayer Objects

4.3 Prevention Sybil Attacks

4.4 Reputation-Based Approach to Prevent Sybil Attacks

Design

5.1 Target Tracking without Reputation
5.1.1 Algorithm 1: Graph Preparation
5.1.2 Algorithm 2: Reward Distribution
5.1.3 Example L

5.2 Target Tracking with Reputation

5.3 Advanced Attacks and Approaches o
5.3.1 Reputation Farming Attack oL
53.2 Copy Cat Attack

11
11
11
13
14
15
15
16
17
18
20
20
21

23
23
25
26

27
27
29
30
32

6 Implementation

6.1 Integer Representation of Coordinates
6.2 Allowing Smart Contracts to receive Money
6.3 Sighting Submission Function
6.4 Submission Deadline Function
6.5 Onme-Dimensional Arrays for Storage of Edges
6.6 Deployment of the Implementation
7 Evaluation
7.1 Evaluation Setup L
7.2 Gas Consumption
7.3 Execution Cost
7.3.1 Performance Metric L.
7.3.2 Execution Cost of Deployment
7.3.3 Execution Cost of Single Longest Consistent Path Topology
7.3.4 Execution Cost of Full Consistency Topology
7.3.5 Execution Cost Tree Topology
T4 Summary e e e e

8 Summary and Future Work

8.1 Summary e
8.2 Future Work o

CONTENTS

Chapter 1

Introduction

In the last several years, cryptocurrencies have gained in popularity not only in the IT domain
but also all other parts of society: with market capitalization reaching hundreds of billions of dol-
lars [Marl19], big corporations starting to invest in their own cryptocurrencies [Scrl9], governments
starting to find regulations for these currencies [Stal8], and the debate whether cryptocurrencies will
replace traditional currencies in the future, cryptocurrencies have become a promising technology
[Kralg].

Over many years there have been many attempts in achieving a digital currency but many
of them had the problem of relying on a centralized intermediary or on trusted computing, and
if an approach overcame those boundaries, it had a lack of details on how to implement them
[But20]. These problems where solved in 2009, when the cryptocurrency Bitcoin was released,
utilizing cryptography principles and combining them with consensus algorithms. This made Bitcoin
the first successful cryptocurrency [But20]. It uses a novel concept called ”Blockchain” combined
with a ”Proof of Work” consensus algorithm.

What makes cryptocurrencies in the form we have them today so appealing? Cryptocurrencies
generally have the properties of being decentralized and self-governing while offering a high level of
security. They offer direct end-to-end transactions without any intermediary involved, resulting in an
anonymous transaction system, which in a time where privacy is becoming more and more important
is very appealing [But20]. Furthermore, the underlying technology of cryptocurrencies finds more
and more applications in fields that exceed financial use cases such as supply-chain management,
Internet of Things, and e-Voting [RH18].

Out of these promising advantages, the rise in popularity, and the innovative underlying concept,
many new cryptocurrencies evolved [But20], each trying to evolve further from Bitcoin in its unique
direction [YY18]. One of these directions is to enable the programmability inside a cryptocurrency.
This extended cryptocurrencies from just being currencies to platforms, for which code can be
written.

This allowed for the ability to create decentralized applications which run on top of a cryp-
tocurrency. This is achieved through a concept referred to as Smart Contracts, integrated into such
programmable cryptocurrencies. To this end, the code to run the application is stored in so-called
Smart Contracts, which then are used to implement the logic of the application through a contract
system. The advantage of such applications created through Smart Contracts is that they inherit
the properties and advantages of cryptocurrencies. This also includes the immutability of the code
written, transparency of the values calculated, and the decentralised nature of the application, which
is beneficial for applications were privacy is important. Furthermore, Smart Contracts have a very

7

8 CHAPTER 1. INTRODUCTION

simple and easy to implement specification allowing people with little experience in programming
to develop decentralized applications. This means that cryptocurrencies are no longer limited to
trading. Rather they can be used to create different types of decentralized applications, which can
range from managing financial derivatives to running games [Kral8], [Gha20].

With these promising properties, and the hype surrounding them, it is important to investigate
what applications are possible, what are considerations to make when creating such applications,
and which limitations exist. Therefore, in this work, we consider a specific application on top of a
smart contract system.

Each year the number of mobile devices and the number of sensors on each mobile devices is
increasing. By utilising the huge crowd of mobile devices one can setup a huge sensor network, where
normally setting up a dedicated sensor network would be much more expensive. With many people
walking around with a smartphone equipped with sensors, we aim for a system where the crowd
of smartphones can be used for mobile target tracking. This decentralized mobile target tracking
system, which utilises the huge number of available smartphones as a giant sensor network, can
be used to find lost or stolen objects, track pets wearing tags, or any other kind of mobile devices
that are tagged using, for instance, Bluetooth or RFID tags. The collected data is processed by a
Smart Contract which calculates a trace of the mobile device from the data collected. In return the
tracking mobile devices get rewards in term of a cryptocurrency as an incentive.

Combining mobile crowd sensing into a decentralized application creates different types of se-
curity challenges and risks. One of them being sybil attacks where the attacker creates multiple
malicious accounts in order to overrule or influence the contributions made by honest accounts.
One major focus of this theses is to tackle this problem. In our work, we will contribute possible
algorithms and methods to solve these. To this end, we propose an approach, where every account
has something at stake and therefore discourage malicious behaviour in a fear of loosing that stake.
This is achieved though a reputation-based system in which every account puts his reputation at
stake to penalise malicious behaviour in order to minimize the effects of malicious behaviour. We
will discuss possible exploitations of this approach and how to deal with them. Moreover, we will
evaluate the overhead included by our approach, ”the price of security”, which directly translates
into monetary cost for executing smart contracts.

As proof of concept, we implemented our concepts for the Ethereum Smart Contract system
for two main reasons. On the one hand, it is currently one of the largest and most commonly
known cryptocurrencies [Com19]. On the other hand it has one of the most active cryptocurrency
communities [Com19], which determines the long-term success of a platform.

This thesis is structured as follows:

e In Chapter 2, the important background information are explained in order to understand
the Ethereum blockchain and the Smart Contract concept. Furthermore, the chapter presents
state-of-the-art mobile crowdsensing architectures.

e In Chapter 3, the current state of our mobile target tracking application is covered. After
that, the goal of adding security for our application will be formalized.

e In Approach 4, the approach taken to realize the target tracking application and security
through a reputation-based approach is presented.

e In Chapter 5, the specification for the realization of the target tracking application with
and without security is presented. After that, advanced security threats to the presented
target tracking application with security are highlighted, followed by discussing possible count-
measures to the advanced threats.

e In Chapter 6, challenging parts of the implementation of the previously presented approaches
are highlighted.

e In Chapter 7, the results for measuring the monetary cost of the target tracking approach
with and without security are presented.

e In Chapter 8, the summary of the thesis in addition to its results and suggestions for future
directions are concluded.

10

CHAPTER 1.

INTRODUCTION

Chapter 2

Background and Related Work

In this chapter, we will explain the background information needed. To this end, we will first explain
the blockchain fundamentals followed by an explanation of Smart Contracts. Afterwards, we discuss
related work from the fields of mobile crowdsensing.

2.1 Blockchain Fundamentals

In the following section, we will introduce the general concept of the Blockchain used by cryptocur-
rencies, since it builds the foundation for the decentralized nature of the approach created in this
work.

2.1.1 Currency Decentralization vs. Centralization

In order to understand the basic design ideas for an independent digital currency, we need to under-
stand how traditional transactions work and what is necessary for a shift to a decentralized currency
approach.

In a traditional centralized banking system, in order to send money from one person to another, a
trusted institution is needed to maintain all the necessary information including a log of all accounts
with the corresponding owners and balances. If a specific owner wants to transfer money from its
account to another one, the bank needs to check the validity of the transaction. The bank maintains
the global state of all accounts, and through transactions it updates the balances, which leads to a
new state, as shown in Figure 2.1. This can be done by the bank since every owner of an account
trusts the bank to behave legitimately. Why do financial institutions track what the consistent states
at a given moment are? This needs to be done for several reasons. They need to know what money
an account has spent and what is still in his possession. This is important in order to prevent the
same money from being spent twice (”double spending”) or to check whether an account spends
money that it does not have. This is implemented in banking systems by the following concept. The
balances at one given moment and the ownership of these balances make up the current state. If
then a transaction takes place and money is being transferred from one account to another the state
changes. So financial institutions maintain state transition systems [But20, Kas17].

Now in order to decentralize a currency we do not have a financial institution in between, so we
need to use a direct transaction system. The system gets constituted of connected entities referred
to as nodes. Each node in the network has its own copy of the global state stored locally. If new

11

12 CHAPTER 2. BACKGROUND AND RELATED WORK

State A State B

Account1
Owner: Alice
Balance: 30%

Account1
Owner: Alice
Balance: 40%

Account2

Owner: Bob
Balance: 15%

Account2

Owner: Bob
Balance: 10$

Transaction

Sender: Account1 | Receiver: Account?2
Value: 10$

AccountN
Owner: Neptun
Balance: 11%

AccountN
Owner: Neptun
Balance: 11%

Figure 2.1: States and Transactions

b= b

transition transition

Figure 2.2: State Transition System
[Kasl7]

2.1. BLOCKCHAIN FUNDAMENTALS 13

transactions happen and the state changes, the changes get broadcasted to every node in the network
to update their local state after verifying it [Wo020], [But20].

2.1.2 Blockchain Technology

The decentralization concept is implemented in the Blockchain technology, which is used by cryp-
tocurrencies. So cryptocurrencies are basically state transition systems. Therefore, we need to
understand how this state transition system is implemented in the Blockchain concept.

We start by explaining how the Blockchain concept handles transactions since there is no central
intermediary doing this processing. After issuing a transaction it needs to be validated. This means
checking whether the sender really owns the money (in the Blockchain context often referred to as
coins) he tries to send. So after checking whether the money has not been spent yet, the other
nodes need to get notified that this transaction took place. This all is handled by so-called miners.
The miners are nodes in the network whose only task is to process transactions that took place. In
return they get rewarded for every transaction they successfully processed.

Therefore, let us have a look at how transactions get handled in the Blockchain technology. It
starts with one node deciding to make a transaction. A transaction can have different goals like a
transfer of money or an exchange of information. A node is defined by its unique address. If a node
wants to make a transaction to another node, it needs to address the other node. The network is built
as a network of peers where each node knows the path to its neighbours referred to as peers. This
means no single node knows the path to every node of the network. When sending a transaction,
it gets broadcasted to its peers, and the peers broadcast the transaction again to their respective
peers until everyone in the network received the transaction. Upon receiving, only special nodes in
the network, the miners, put the transaction into a local pool of unverified transactions. Then these
miners take several transactions from their mining pool and begin to verify these transactions. The
verification consists of verifying, that the party issuing the transaction is not trying to spend money
which has already been spent. After these transactions have been verified, they get compounded
into a block [But20, Kas17, RH18].

Since we have a distributed network, a miner has to share with the other nodes that this trans-
action has been verified. But the goal was to create a trustless distributed system. Therefore, a
consensus on who owns the money is necessary since someone could send the same money in different
transactions. So miners must come to an agreement which transactions are valid. Therefore, the
miners have to run a consensus algorithm, and the result of this consensus algorithm is a block.
Which consensus algorithm the miners run depends on the Blockchain implementation [Sail8a]. Ev-
ery node in the network can become a miner by running the consensus algorithm to create blocks.
The miner receives a reward for mining a block that got added to the Blockchain.

The most prominent Blockchains run a consensus algorithm called ” Proof of Work” where miners
try to solve hard mathematical puzzles in order to proof that the miner had to put effort in cre-
ating the block. But there are several other different consensus algorithms being used by different
currencies [RH18, Sail8a].

The block contains the transactions associated with it and depending on the implementation
of the Blockchain, it can contain additional information. So basically blocks can be thought of
as a record of verified transactions. In Blockchains, every new Block has to reference the block
that has been created before this block. By creating a chain of block references where each new
block references the previous block, nodes can reconstruct the momentary state, because this chain
of blocks gives the order in which all transactions have taken place from the beginning. This
reconstruction can be done implicitly or explicitly depending on the Blockchain implementation.
Due to this chaining of blocks this technology got named Blockchain [But20, Kas17].

14 CHAPTER 2. BACKGROUND AND RELATED WORK

Fork

\
\ Fork
Fork

Figure 2.3: Blockchain with Forks
[Kas17]

The block added to the chain including all verified transactions, gets broadcasted, and upon
receiving nodes run a simple verification process to check the legitimacy of this block. It checks
whether the reference was correct and if the reference is wrong the block is ignored. After a successful
verification, the block gets appended to the nodes local version of the Blockchain. So each node
can constantly update the current global state without needing a central intermediary. Only the
transactions that are part of blocks on the long chain count as verified [Kasl17, Woo20].

If several miners reference the same block, the Blockchain will get ”forked” as seen in Figure 2.3.
Many Blockchains follow the rule that new blocks get appended to the longest chain with the most
blocks. And transactions which are part of forked blocks that are not part of the main chain become
broadcasted again in order to become mined again. That is why a transaction has to be part of the
chain for several blocks before being sure that it will stay in the chain. Because the probability of
a block that has several blocks after it getting changed is relatively low [But20].

2.2 Ethereum

As we have seen, Blockchains are decentralized, distributed, and public digital records, which are
often used to build cryptocurrencies on top of them.

The first prominent cryptocurrency, Bitcoin, was mainly used to buy and sell items and services
where anonymity was very important. Just in recent years cryptocurrencies started to find their way
to different applications where privacy is not the primary focus. Furthermore, the key Blockchain
architecture starts to be used in different use cases. Nowadays there are thousands of cryptocur-
rencies based on different goals. Figure 2.4 divides the goals of cryptocurrencies in six dimensions.
Each currency can be used for a specific use case [YY18].

One dimension of cryptocurrencies, including Ethereum as the most popular example, offer a plat-
form to create decentralized applications (dApps) which can autonomously run on the Blockchain.

2.2. ETHEREUM 15

BCH, Zilliga,...

A
]
1
i
21 &
¥ 21 <,
& R 4
"‘\Y’ \. ”;(“ : \"{\\l‘ - %
. ﬂﬂj"(‘ 1 - ?2\
4
%

o
/ff{u g &CJ
7 5 <
< w >

(®) Z
® 5 ¢
g

USDT, TrueUSD, Dai,...

Figure 2.4: Six Dimensions of Cryptocurrencies
[YY18]

This means you can implement code, referred to as Smart Contract that gets stored in the Blockchain,
which then the dApp uses to connect to the Blockchain. A specific property of Ethereum is to offer
a platform to implement code, which then runs on top of the Ethereum Blockchain. Today it is one
of the most important cryptocurrencies and has found widespread use for implementing the code
which dApps use.

Ethereum was released in 2015 in a time where cryptocurrencies, especially Bitcoin, started to
gain popularity. The founders of Ethereum noticed that many implementations of Blockchains did
not support the implementation of applications on top of them [But20, Vit17]. In the following we
will analyse what makes Ethereum the most prominent programmable Blockchain.

2.2.1 Ether

In order to have an independent digital currency, these cryptocurrencies offer their own currency
often referred to as coins. Ether is the native currency offered by the Ethereum cryptocurrency. It
can be used just like other currencies to transfer money and has to be used to pay for transaction
fees.

2.2.2 State

As stated before, Blockchain-based cryptocurrencies need to maintain the global state (see Figure
2.1 & 2.2) in order to track who owns how much coins. In Ethereum the global state is made up
of many small objects named accounts, and values are stored by these accounts. Accounts can be
of two types: external accounts, which are controlled by human users through a private key, and

16 CHAPTER 2. BACKGROUND AND RELATED WORK

contract accounts. Contract accounts contain and are controlled through code. Accounts possess a
unique 20 bytes address to be globally identified and addressed. Each account contains four different
fields:

e nonce: a positive integer value which increases by one with every transaction being sent from
this account; it is needed to ensure that every transaction gets sent only once.

e balance: a positive integer value representing the Ether balance of the corresponding account
stored in Wei (10'® Wei = 1 Ether).

e codeHash: for contract accounts the code hash contains a hash of the contract code; for
external accounts it contains a hash of an empty string.

e storageRoot: the hash of the root node of the storage tree which includes the stored content
of the account; empty by default.

An external account can use the address of other accounts to make transactions with other
accounts. Possible transactions with external accounts are simple value transfers but transactions
with contract accounts trigger the contract code, which can lead to the contract executing special
operations like creating new contracts sending Ether to other accounts or store some Ether. It should
be noted that contract accounts cannot initiate transactions but can send transactions if they have
received one before. So basically a contract account is used to address the corresponding contract
[Wo0020, Kasl7].

2.2.3 Transactions

Transactions have a central role in every Blockchain based cryptocurrency. As seen earlier, Ethereum
is a transaction-based state-transition system. Like in other Cryptocurrencies, transactions cause
the global state to be changed from one state to a new one. Transactions in Ethereum are data
packages that contain information for the receiver, which gets deployed on the Blockchain by a
miner. Every transaction gets signed and serialized. As explained in [Wo020], there are two types
of transactions: ”Message calls” and ” Contract creations”. Both consist of the following fields that
need to be declared by the sender:

e to: the 20 byte address of the receiver of the transaction.

e value: if transaction is a message call, the value field defines the amount of Ether (in Wei) to
transfer to the receiver; if transaction is a contract creation, the value field defines the amount
of Ether (in Wei) the contract starts with.

e nonce: number of transactions the sender has sent; increases by one for every transaction
sent; in order to track, which transaction was sent last

e gasPrice: Ether (in Wei) to be paid for a unit of gas; gas is the unit for the cost per compu-
tation step in a smart contract

e gasLimit: maximum amount of gas to be used by the transaction and all sub-transaction
initiated by this transactions in order to limit the runtime of a smart contract.

e v, r, s: values Ethereum uses for determining who sent the transaction.

2.2. ETHEREUM 17

Ext"na':ly [raraaction | Contract | (contract code
anoount " "] account | gets executed)
Indernal
iransaction
External:ly | —— Contract [internal | Contract [internal | Contract
— account iransaction account transacticn account
{contract code (contract code (contract code
gets executed) gets executed) gets executed)

Figure 2.5: Ethereum Accounts
[Kas17]

Contract creation transactions need additionally an init field containing the code of the contract
that gets executed if the contract receives message calls. Message calls need additionally a data
field containing data which contracts can use to update their status (see Section 2.3).

As discussed earlier in the account section, transactions interact differently with external and con-
tract accounts. Therefore, let us have a look at which accounts can send which type of transactions.

As seen in Figure 2.5, external accounts can use their private key to send transactions
e either to other external accounts, which is basically just a transfer of Ether,

e or they can use message calls to send data or Ether to contract accounts, which triggers the
implemented logic.

Contract accounts can create and send contract creation transactions to other contracts but they
can do this only re-actively. This means they have to be created before by an external account.

Contracts can also send messages between each other. Messages are often referred to as internal
transactions since they happen only inside the Blockchain. But since messages only function between
contracts they do not have a gas limit. The gas limit is set by the transaction triggered by the external
account. The external account has to set the gas limit high enough so all messages have enough gas.

2.2.4 Gas

Another important concept used in Ethereum is the concept of fees. Every computation that takes
place in a transaction costs a certain fee. The unit of the fee is called gas. Every particular
computation costs a certain amount of gas. Additionally, if one transaction gets created the initiator
must set a specific gas price. The gas price is the amount of Ether he is willing to pay for every gas
used, measured in wei. For every transaction, a sender has to set a gas limit and a gas price. The gas
limit defines the maximum amount of gas the transaction is allowed to use. By multiplying gas price
with gas limit one can derive the maximum transaction fee. This can look like the following. The
sender sets the gas limit to 10000 gas and the gas price to 200 Gwei (10° Gwei = 1 Ether). Then
multiplying them the sender knows she has to pay 0.002 Ether for that transaction. The sender

18 CHAPTER 2. BACKGROUND AND RELATED WORK

must own this money when sending the transaction otherwise the transaction will not be executed.
Consequently all the gas that does not get used is refunded to the sender [Woo020, But20, Kas17].

The gas goes to the miner as a reward for mining the transaction. This is the only way for a
miner to earn Ether in Ethereum apart from receiving Ether through transactions. By setting the
gas price higher, the miners receive more Ether as a reward for mining this transaction, which leads
to the transaction getting verified faster. Otherwise, if the gas price is too low, transactions can
starve (never get mined) [Doel7]. Miners generally have a minimum gas price for a transaction
that can be looked up. But not just computation has to be paid, storage usage too. The fee is
proportional to to the smallest multiple of 32 bytes. This was introduced in order to keep the size of
the Ethereum Blockchain small [Kas17]. This concept of gas shows the necessity of writing time and
space efficient code since inefficiency leads to the price of running the dApp to increase drastically,
which then can lead to the failure of the application.

Ethereum uses this concept of fees, for two major reasons:

e There are nodes in the Ethereum network that have to process every transaction in the entire
Blockchain from the first to the newest block. These nodes are referred to as full nodes. Miners
for instance are these nodes. They have to do this because the mining process requires them
to do so. Since they have to put such a huge effort in running the mining procedure, Ethereum
discourages computation- and storage-heavy transactions by using the fee concept. This keeps
the Ethereum Blockchain smaller and makes mining faster and more efficient [But20, Kas17].

e The other important reason why fees are necessary is to handle Turing-complete programs that
run on the Blockchain. As said before, Ethereum offers the ability to implement programs.
To this end, Ethereum offers a Turing-complete programming language. Since it is Turing-
complete it supports infinite loops. When a program with an infinite loop is executed on the
Blockchain, it could disrupt the entire Network. But since every transaction has to set a gas
limit, it limits how long a program can run in the Blockchain. When it has used up all its gas,
the transaction gets reverted and the program stops running [Woo020, Kas17].

2.3 Smart Contracts

Ethereum was designed to be able to implement decentralized applications on top of Ethereums
Blockchain easily and this is implemented by the ”Smart Contract” concept. Decentralized applica-
tions can range from managing financial derivatives to running games [But20, Gha20].

In order to understand the Smart Contract concept, we will have a look at the following example
of a decentralized application based on Smart Contracts. In this example we want to implement a
decentralized crowdfunding application. To this end, the Smart Contract would need to be defined
as follows. The initiator of the crowdfunding would define the amount of money he would like to
receive and a time limit for the funding inside the contract. The contract could then be addressed
to receive money. It collects the money and if the contract received the aspired amount of money
defined by the crowdfunding initiator in the specified amount of time, the fundraiser receives the
money from the contract. Otherwise, the money is returned to the people who sent the money to
the contract. Since the contract runs on the decentralized Blockchain, we are able to implement
the application without needing a centralized intermediary managing the collection and distribution
tasks.

In the following, we will show how Smart Contracts function on the Blockchain. Smart contracts
are most commonly written in a higher level languages such as Solidity and Serpent [Mor20]. The
application in this thesis is written in Solidity. We will not go into further details for Solidity because

2.3. SMART CONTRACTS 19

it is not necessary for understanding this thesis. Ethereum has its own virtual machine called the
Ethereum Virtual Machine (EVM) using EVM bytecode. After the code is written, a contract
creation transaction is sent to a contract account. Now the transaction gets mined and inserted
into a block. This includes storing the contract in the storage of the associated contract account.
Afterwards, the block gets appended to the Blockchain. Then, every node which downloads and
validates the updated Blockchain containing the new blocks runs the contract on the local Blockchain,
because every node is required to do so by the block validation algorithm. So physically the code
runs on every node. Every node is also able to see the code written since it is now stored visibly
in bytecode inside the Blockchain on their machine. This is important to remember because it will
lead to problems in our approach with respect to security and privacy, see Section 7. Contracts
are deterministic: this means for everyone who executes the code, the resulting outcome will be the
same. Now the contract can be addressed to receive Ether or messages in order to fulfil their logic
[Mor20, Kas17].

20 CHAPTER 2. BACKGROUND AND RELATED WORK

2.4 Related Work

The designed application in this work is a mobile crowdsensing application, and therefore, in the
following we will show the spectrum of challenges and ideas, and additionally show the findings made
by related research handling these.

2.4.1 Mobile Crowdsensing

In order to build a common foundation on mobile crowdsensing we start off by an explanation of
why and how mobile crowdsensing concept is designed.

The number of actively used mobile devices is constantly increasing and additionally the number
of sensors on mobile devices are increasing and performing better [GYL11], [LSZ16]. Used for
improving user experience on mobile devices, the field of mobile crowdsensing emerged for researching
how this sensing power could be used as a collective for different types of applications [LYL"18]. In
[LSZ16], three different types of application for mobile crowdsensing are suggested: environmental,
infrastructural, and social applications. All these types generally attempt to improve the quality
of experience. In environmental applications the sensing mobile devices are used to track natural
phenomena like noise or air pollution in an area. Whereas infrastructure applications tend to be
looking for the proximity between mobile devices, which can be used for tracking of mobile devices
for lost and found scenarios or traffic control like rerouteing traffic and temporary speed limits.
Social applications of mobile crowdsensing could be catering recommendations or social networks
[XIXT18], [WWDRI11], [LSZ16].

With all these promising approaches and the approach presented in this work, it is important to
understand the concept of mobile crowdsensing.

Mobile crowdsensing includes four different general roles:

1. A typically cloud-based mobile crowdsensing platform implemented by servers

2. Access Points typically Wifi or Cellular Networks, to connect mobile devices to the Internet
and crowdsensing platform

3. Mobile device users the so-called participants
4. The creator of the mobile crowdsensing job, the so-called task initiator

[XIX*18], [LYL'18], [WYJ'19], [LSZ16] describe the process of mobile crowdsensing similarly.
The task initiator submits the sensing job to the mobile crowdsensing platform, and pays a certain
price for the completion of the job. Then, the platform recruits participants for the sensing job. The
platform manages the data exchange between the sensing devices. As participants in the sensing
job generally get paid too, the platform additionally makes sure all incentives for the participants
are distributed as defined by the task initiator. After the submission of the job to the platform, the
participating device receive the sensing job, which includes the information needed to be sensed for.
Then the participants can decide whether to participate in sensing. Upon acceptance the dedicated
sensor or sensors get enabled, and the participant begins the sensing. The sensed information gets
stored on the sensing device and afterwards uploaded to the platform through an access point.
The platform then extracts the information needed and removes redundant data. At the end, each
device which submitted meaningful data (see Section 2.4.2 for an explanation of meaningful data)
receives its reward from the platform for submitting the data, and the task initiator receives the
data collected by the participants from the platform.

For sensing the data in mobile crowdsensing there are generally two different approaches [GYL11]:

2.4. RELATED WORK 21

1. participatory sensing
2. opportunistic sensing

Participatory sensing is a rather manual sensing approach, where the participant needs to actively
participate in the sensing procedure by taking a picture or giving a feedback for a meal. In contrast
opportunistic sensing is a very autonomous form of sensing where only a little user involvement is
necessary like sending positional or temperature information.

2.4.2 Challenges and Solutions in Mobile Crowdsensing

When creating mobile crowdsensing applications, there are several design challenges, which have to
be taken into consideration. We will highlight a few in this section and show how they are dealt
with in the literature.

The first type of challenges in mobile crowdsensing is due to the fact that the participants
devices are controlled through private entities. Therefore, we have to assume selfish behaviour of
these devices. This means not all the data received by all sensing devices is legit. One typical
example threat in this are sybil attacks. In sybil attacks on mobile crowdsensing, multiple malicious
sensing devices report back fake sensing information in order to overrule the contributions made by
good sensing devices. This leads to malicious devices receiving the payment for the crowdsensing
job [XJX*18], [LYL*18].

[WCMA14] offers a solution to this problem by evaluating the reliability of the data send through
a trust-based system. In such systems the devices which send the sensing information have a rep-
utation value associated to them. This value increases by submitting real data and decreases by
sending falsified data. When evaluating the data received by a participant, the mobile crowdsensing
platform takes the reputation of this device into consideration and gives a higher importance to data
received by an account with a higher reputation value.

Another problem in crowdsensing is the trustworthiness of the mobile crowdsensing platform. Be-
cause it controls the data exchange and payment, one has to make sure that every participant receives
the money deserved and the task initiator receives the submitted data requested for [WYJT19].

The paper [WYJT19] highlights how using a blockchain based mobile crowdsensing platform
can deal with the problem of untrustworthy mobile crowdsensing platforms. They argue, since
blockchains have the properties of being fully transparent meaning that every decision made by the
blockchain is visible for everyone outside the blockchain, malicious behaviour implemented into the
platform would be visible.

The last challenge is the overall user acceptance or acceptability of such systems. On the one
hand, the process of sensing and transmitting the information can consume time and battery. On the
other hand, the information is connected to the specific location of the participant, and, therefore,
the privacy of the participant is threatened. Both of these problems could lead to users being
reluctant to participate in crowdsensing showing the importance of implementing privacy into a
mobile crowdsensing system and giving the user an incentive for participating [LYLT18], [XJXT18].

The general solution to this problem presented by most of the research regarding mobile crowd-
sensing for example by [LYL'18], [SLD15], [WYJ*19] is achieved through incentive mechanisms.
This means giving participants an incentive for legitimately participating in the sensing process
issued by the task initiator. There are different types of incentives like receiving a certain service in
return for participating, having a game-like experience while sensing, or plain monetary reward for
the participation. Most currently used incentive mechanisms are monetary rewards for participation
in the crowdsensing.

22 CHAPTER 2. BACKGROUND AND RELATED WORK

In the above presented approaches each concept gets analysed on its own not in combination.
Therefore, we have investigated how well the approaches of blockchain-based applications and mobile
crowdsensing can be combined. To this end, we designed and implemented a blockchain based
mobile target tracking application utilizing a reputation based trust system to handle fake data
contributions.

Chapter 3

System Model and Problem
Statement

In this chapter, we present the system model and problem to be solved by this work.

3.1

System Model

In the following, we introduce the system model in order to give the reader an understanding of the
main components of our system and the main assumptions.

The goal of this system is to design and implement a crowdsensing-based decentralized mobile
target tracking application for lost and found scenarios. This allows to find lost mobile objects
equipped with an unique tag using the help of other mobile devices.

Our mobile target tracking system consists of the following components:

Tagged mobile objects: These are the objects that shall be located and tracked by the
mobile target tracking system, such as lost or stolen objects, vehicles, pets, etc. We assume
that mobile objects are tagged, for instance, using Bluetooth beacons or active RFID tags.
Using these tags, the mobile objects can be sensed and identified by mobile sensors in their
vicinity (tens to maximal hundreds of meters distance).

Mobile sensor devices: These mobile devices search for mobile objects. To this end, they
are equipped with sensors that can sense the tags of mobile objects. These mobile devices
are equipped with a positioning system like GPS. Typical examples of mobile sensor mobile
devices are smartphones equipped with Bluetooth to sense Bluetooth beacons in their vicinity.
We assume that these mobile devices are owned and controlled by private users.

Smart contracts: They define search tasks (which objects shall be tracked), the reward for
the users to participate in sensing by providing their sensor mobile devices for the search task,
manage the reward distribution, manage sightings from the mobile sensor devices. We assume
that the Smart Contracts are immutable upon creation.

Ethereum blockchain: It is the platform on which the smart contracts get stored.

Mobile application: It distributes the search task to the mobile sensor devices. Then the
owner of the sensor mobile devices needs to accept the search request and the mobile device

23

24

CHAPTER 3. SYSTEM MODEL AND PROBLEM STATEMENT

starts to sense and detect the location of the requested mobile object. When the mobile
application detects the requested mobile object, it sends a sighting (location and timestamp)
to the smart contract, which is subsequently stored in the blockchain as part of its state.

With respect to the users involved in our system, we can distinguish the following roles:

e Mislayer: representing one person who wants to find a tagged mobile object. To this end,

the Mislayer sets up a smart contract.

e Searcher: the users searching for the Mislayer’s object using their mobile sensor devices.

The process of tracking the Mislayer’s mobile object is divided into five phases:

1.

Search request creation: Here, the Mislayer creates a search task where it defines all
necessary parameters for the Searchers to know. This includes how much the Mislayer is
willing to pay for the mobile object to be found, a deadline for the search task until which
sightings can be reported by Searchers, and the unique id of the tag of the lost mobile object.
The Mislayer then creates a Smart Contract from this information.

Request distribution: The mobile application notifies the set of all mobile sensor devices of
the search request. This includes the tag id of the Mislayer’s mobile object and the reward.
The owner of the sensor device needs to accept the search request. Then, the device starts
scanning for the Mislayer’s mobile object, turning the owner into a Searcher.

Search and data collection: Each Searcher device starts looking for the wanted mobile
object object. This means the Searcher Mislayer’s mobile objects start to look for the unique
tag id of the Mislayer’s mobile object by using a wireless short range radio technology like
Bluetooth. If the Mislayer’s mobile object is seen by a Searcher device, it sends a message to
the Smart Contract including the current location and time. This phase continues until the
deadline of the contract.

Data evaluation: If the deadline of the search task has been reached, the Smart Contract
automatically starts calculating the longest path on which the Mislayer’s mobile object could
have been moving according to the sightings reported to the contract and stored as part of
the contract’s state. The idea of calculating the longest path, as the valid path representing
the movement of the Mislayer’s mobile object accurately, borrows the idea of the blockchain
that if the majority (more than 50%) of Searchers are honest, then it is likely that they will
contribute the most sightings and the longest path. The Mislayer can then retrieve this path
from the state of the contract.

Reward distribution: Each Searcher who contributed a sighting to the longest path receives
a reward. A Searcher is paid by each sighting she contributes to the longest path. The reward
for each sighting contributed to the longest path is calculated according to:

Reward defined by Mislayer
#sightings on longest path

reward per sighting =

Let us summarise the key definitions from the above description used also below in the problem
statement:

Definition 3.1.1 Sighting A sighting includes the position (consisting of an x,y coordinate) and
timestamp of sensing the mobile object created by Searchers.

3.2. PROBLEM STATEMENT 25

Definition 3.1.2 Honest and Malicious Searchers A honest Searcher is a Searcher, who only
submits valid sightings to the longest path calculation. In contrast, a malicious Searcher is a Searcher,
who submits sightings which are not valid to the longest path calculation.

Definition 3.1.3 Valid and Fake Sightings A valid sighting represents the actual position of the
mobile object at a certain time and is reported by an honest Searcher. In contrast, a fake sighting
is reported by a malicious Searcher to get the reward, without actually sensing the mobile object at
this position.

Definition 3.1.4 Valid Longest Path A valid longest path only consists of valid sightings.

3.2 Problem Statement

In this section, we define the problem to be solved by our approach in detail.

As stated above, we assume that the longest path reported by Searchers is the valid path following
the intuitive idea: if a majority of Searchers are honest, then should contribute a majority of correct
sightings.

This first of all brings up the question, what is the longest path given a sequence of sightings
reported by Searchers? If we calculate a path from a sequence of sightings, this path must be
plausible, i.e., fulfilling some consistency criteria such that the path could actually exist in reality.
Obviously, if an object was reported to be in Stuttgart at 1:00 pm and then in New York at 1:05
pm, these two sightings do not form a plausible path assuming that mobile objects are restricted in
their speed of movement. So in order to define the longest consistent path, we assume a given
maximum speed v,q; constraint for mobile objects.

Definition 3.2.1 Maximum Speed Constraint The Mislayer’s mobile object can only travel with
the mazximum speed Vpaz-

Definition 3.2.2 Consistent Sightings Two sightings consisting of two positions p1 and ps at
times t1 and ta, respectively, with to > t1, are consistent if: Vpmas - (t2 — t1) > dist(pa, p1)-

With this definition of two consistent positions, we can now define the longest consistent path
as follows:

Definition 3.2.3 Longest Consistent Path

e Given: a sequence of sightings s = (p1,...,pn) ordered by the timestamps of the sightings such
that t(pl) S t(pQ) S S t(pn—l) S t(pn)

e Then the longest consistent path is the mazimum subset of sightings s <'s, such that for all
pairs of positions (p;,p;) from s x s, dist(pi,p;) < Umae - (t(p;) — t(p:)). That is all pairs
must be consistent with respect to the maximum speed constraint vVimaz

We assume that this consistency criteria is known to all Searchers, also malicious Searchers, called
attackers. This brings up the problem, that attackers will try to report fake sightings fulfilling the
consistency criteria in order to build the longest consistent path and get the reward of the search
request defined in the smart contract. Thus, the fundamental problem to be solved by this work is
to prevent such attacks.

26 CHAPTER 3. SYSTEM MODEL AND PROBLEM STATEMENT

3.3 Attacker Model

In the following, we will further evaluate an attacker model to get a better understanding about the
concrete attacks this work needs to consider to solve the problem.

As mentioned in the problem statement, we need to prevent attacks that threaten the security
of the system model where malicious Searchers report fake sightings to build the longest consistent
path to get the reward.

To this end, the attacker (malicious Searcher), sends a large amount of consistent sightings in
order to form the longest consistent path. By doing this the attacker receives the reward from
the Mislayer without contributing valid sightings. Honest Searchers would be discouraged from
participating in future search tasks since they did not receive the reward for participation, and the
Mislayer would be discouraged because he did not receive any helpful information about the tracked
mobile object.

A simple counter-measure could be to let each Searcher report a limited number of sightings.
Then, a single attacker could not define the longest consistent path himself, and also collusion
between attackers is more difficult since a critical mass of individual attackers would be required to
overrule honest Searchers. However, this counter measure is only effective if we can prevent so-called
sybil attacks.

In sybil attacks, an attacker creates and controls multiple identities in the system under attack
which is designed in a way that each individual should control one identity. After that he utilizes
his mass of identities to behave maliciously in order to gain a personal profit [JCK15].

For this attack on our system, the attacker creates multiple search accounts. Afterwards, if these
newly created accounts receive the search requests, all accounts start to consistent sightings. Then,
if the deadline of search task is reached and the longest consistent path is formed, the longest path
will contain or be solely a path of nodes from the attacker, even though these malicious Searcher
accounts have sent false information.

A sybil attack is possible because the presented system does not limit the number of Searcher
accounts created by one individual user. Additionally, the creation of Searcher accounts has little to
no cost associated with it. This allows anyone to create multiple accounts. Now the question arises
why this attack works. First the attacker can send sightings at no cost, meaning that if the attacker
sends invalid sightings there is no risk of losing something. This is referred to as the nothing-at-
stake-problem. Therefore, a solution to this attack needs to make the attacker put something at
stake which she looses when sending invalid sightings. Since the system cannot differentiate between
attackers and honest participants, all senders of data need to put something at stake. So, we need
to ensure that what a sender puts at stake is for a honest Searcher acceptable, while for an attacker,
who creates multiple accounts, is not feasible or at least very unattractive w.r.t. the reward gained
by a successful attack.

Chapter 4

Approach

In the previous chapter, we have presented the system model and problem to be solved. In this
chapter, we present the approach for preventing the attacks identified previously as follows:

e smart contracts as the mobile crowdsensing platform and the final system interaction.
e how the Searchers track the Mislayers Device.
e how sybil attacks are prevented in blockchains.

e how our application realizes the prevention of sybil attacks.

4.1 Smart Contracts as Mobile Crowdsensing Platform

As one of the goals of this work was to create a mobile crowdsensing application, we need to deploy
the previous discussed logic onto the mobile crowdsensing platform. As we wanted to create a
decentralized blockchain based mobile crowdsensing application, we used the (Ethereum) blockchain
as the mobile crowdsensing platform. This has two advantages:

e In the Section 2.4.2, we have seen that a crowdsensing platform has multiple risk factors
like holding back information or being able to not give the full incentives, due to a lack in
transparency in the reasoning made by the platform. This can be countered by utilizing a
blockchain as crowdsensing platform because if the logic gets encoded into a blockchain it is
fully disclosed. Therefore, every participant in the process can see the logic encoded into the
platform and detect malicious behaviour in it.

e The logic deployed onto the blockchain gets encoded through a smart contract. Once deployed
a smart contract is immutable, meaning that no party involved in the crowdsensing process
can tamper with the deployed contract.

The final general system design can be seen in Figure 4.1.
The following sections present the approaches taken and later implemented into a smart contract.

27

CHAPTER 4. APPROACH

graph mapping stored as internal state of smart contract

(X4,Y4.t1)

(x3.y3.t3)

(%1.y1.t1)

(x5.y5.t5)

(x2.¥2,t2) (%5.Y5.15)

(x1, Y1, t9)
i / Smart C(Jhtfa(lt\y ‘

Mobile Mobile
(X2, y2 ,t2)
(X5, V5, ts
(X3, ¥3, t3) (X4, Y4, t4) T

Mobile

Searcher

Mobile
Mobile Mobile

Figure 4.1: Reporting of Sightings and Graph Mapping

4.2. TRACKING MISLAYER OBJECTS 29

graph mapping

(Xa.¥4)
(x3.¥3)

(x1.¥1)

(x5.vg)
(x2.¥2) (Xs.Ys) o

Figure 4.2: Example Directed Graph without Consistency Criteria

4.2 Tracking Mislayer Objects

Before we present our counter-measures to prevent attacks, we first describe in more detail the
tracking process for finding the Mislayer’s mobile object by Searchers.

As described in the system model, each Searcher device transmits sightings about the Mislayer’s
mobile object. In this section we present the approach taken on how this information can be used
in order to construct the longest consistent path of the mobile object? .

The main goal of our application is to track the location of a Mislayer’s mobile object. Since
we assume in our application that the mobile object will be at different locations and constantly
moving, the mobile object will come across multiple other mobile objects owned by the Searchers. As
mentioned in the problem statement, our approach uses these sightings to form a longest consistent
path.

The next paragraph explains how to create the graph and which properties it has.

As seen in Figure 4.1, the Searchers sends a sighting consisting of an x, y coordinate and a
timestamp to the smart contract. This server then maps these into graph representation, where
each position transmitted represents one node. This raises the question how to create the edges in
this graph.

The simplest idea would be to connect each position to all other positions. This causes several
problems. The most striking is that a longest consistent path calculation does not deliver meaningful
results. The reason being, that if all nodes are connected, we would have cycles and therefore infinite
many paths. Additionally, we would not utilize the aspect in our data that the positions we receive
comes in a timely ordered manner. Since the Searcher devices transmit a location, when they come
across the Mislayer’s mobile object, the positions transmitted to the crowdsensing platform are
ordered by time. This means the edges in the graph can be unidirectional by letting only edges be
created from older positions to newer positions. The graph created from the positional information
is then a so-called directed acyclic graph, as shown in Figure 4.2. In Section 6, we will see how this
type of graph reduces the time and space complexity of our longest path algorithm.

30 CHAPTER 4. APPROACH

graph mapping

(X4,¥4.14)

(x3,y3.t3)

(x1.¥1.t1)

(x5,y5.15)

Xg5.Ve.t
(X2,¥2,t3) (Xg.Y5.15)

Figure 4.3: Example Directed Acyclic Graph using Consistency Criteria

The presented graph still has one problem. By only requiring that an edge has to point from
an old position to a newer position, we allow edges in the graph to be created, which violate the
maximum speed constraint introduced in Section 3.2. Depending on the use case this application
is used for, the maximum speed parameter needs to changed. For example, if the Mislayer’s mobile
object is a smartphone, which has been lost in a subway, it does not make sense to assume that the
smartphone can travel with a speed of 200 km/h rather it would make sense to take a speed of 60
km/h. In order to see the advantage, we illustrated an example graph utilizing the maximum speed
constraint in Figure 4.3, created from the graph shown in Figure 4.2. Compared to the graph seen
in Figure 4.2, this graph shows how this reasonable addition reduces the amount edges which would
need to be created. So, in order to create the longest consistent path utilizing the maximum speed
constraint not only the positions need to be transmitted by a Searcher but also the timestamp for
that position is required. This is the reason why we previously defined that our sightings consist of
both the position and a timestamp.

Definition 4.2.1 Weight of an Edge in Approach without Reputation An edge between two
sightings in the graph representation must satisfy the consistency criteria. The weight of that edge
is the Fuclidean distance between the two sightings.

4.3 Prevention Sybil Attacks

Previously we only discussed the logic for tracking the location of the Mislayer’s mobile object. Now
we show the approach taken to ensure that sybil attacks performed in a manner as presented in
Section 3.3 have a low effectiveness. We decided when investigating approaches for dealing with
sybil attacks, the approaches should come from concepts from the fields of blockchain technology,
since our application is a blockchain-based application and as blockchains need to deal with sybil
attacks too.

Blockchains prevent sybil attacks through the usage of consensus algorithms. These algorithms

4.3. PREVENTION SYBIL ATTACKS 31

rely on some resource like compute power which cannot easily be tackled. Our previously presented
system uses a voting based approach where the majority of consistent sightings form the longest
consistent path. The sybil attack abused the aspect that a single attacker could send multiple votes.

Therefore, we investigated several blockchain consensus protocols and tried to map them to our
system for prevention of sybil attacks.

1. Proof of Work: Proof of work achieves consensus on the data being transmitted to the
blockchain by making it computationally hard to submit information. Hereby, the transmission
of falsified information becomes more difficult and requires an upfront investment. It requires
from malicious miners in order successfully transmit falsified information to the blockchain to
own more than half of the resource power in the entire network, see Section 2.

Applying proof of work to the problem of invalid sightings transmitted by multiple Searchers
in a sybil attack manner seems promising. This approach could be implemented by letting
Searcher devices solve a computationally hard puzzle which consumes large amounts of the
mobile objects battery and time. This is effective to prevent sybil attacks by reducing the ease
of submitting a location to the mobile crowdsensing platform by adding a time and resource
barrier. Just like in proof of work for blockchains, the transmission process could be designed
in a way that a malicious Searcher would need more than half of the processing power of all the
Searchers processing power to successfully transmit sightings which would violate our security
of the system model definition.

The disadvantage with this approach is that, it discourages potential honest Searchers to par-
ticipate in the searching process because it would cost them a lot of energy to participate. This
could potentially lead to the application conflicting with the everyday usage of the Searchers
mobile object. If a transmission of sightings via a smartphone would use up more than half of
its battery life to transmit one sighting, honest Searchers would be reluctant to participate in
the searching procedure. As discussed in Section 2.4.2, for successful crowdsensing, it needs to
be integrated seamlessly into the normal usage of the mobile object. Due to these problems,
we decided in this thesis that we would not use a proof of work based approach to prevent
sybil attacks.

2. Proof of Elapsed Time: In proof of elapsed time, each miner needs to wait a random time
before being allowed to append a new block to the blockchain [Sail8b]. This approach prevents
sybil attacks by limiting the amount of contributions submitted to the blockchains. This could
be adapted to our problem with sybil attacks by letting each miner wait a random time before
being allowed to transmit a sighting. This could solve the problem of sybil attacks performed
by one attacker where one malicious Searcher accounts sends multiple invalid sightings in order
to create the longest consistent path and violate the security definition. This approach has the
following disadvantages, which were the reason we did not implement it into our application.

e We do not want to limit the amount of data sent by one Searcher. After all, if hon-
est Searchers frequently send information, the effectiveness of the application increases
because crowdsensing applications thrive from more honest data contributed.

e This approach alone does not prevent sybil attacks performed by attackers using multiple
malicious Searcher accounts. As sending data from multiple Searcher accounts comes
with little to no cost, the attacker could create a large number of accounts and still be
able to transmit as many data at any given time. So one malicious Searcher of the set of
all malicious Searchers can always send, if the attacker owns a large group of malicious
Searchers. If you used this approach together with some expensive resource, such as an

32 CHAPTER 4. APPROACH

Intel CPU with SGX extension for implementing waiting (without processing) [CV17],
using it as a trusted compute platform, might work. Since then (expensive) equipment
is identified by the manufacturer (such as Intel), you would need to buy many expensive
resources (Intel CPUs) to get more sightings submitted. But this requires all the honest
Searchers to also own such resources leading to less users participating.

3. Proof of Stake: In proof of stake each miner has the probability to append a block to the
blockchain proportional to the number of coins the miner owns from the total stake of coins
afloat. For example, if there are a total of 10 coins afloat and a miner owns two coins, the miner
has a 20% chance to successfully append the next block to the blockchain. The assumption
taken in this approach is: the higher the stake of one person in the cryptocurrency, the more
this person has to loose when it behaves maliciously, i.e., the higher stake miners are more
likely to behave honestly than the lower stake miners [Sail8b].

When adapting this approach to prevent sybil attacks for the application of this thesis one
problem occurs. Currently there is nothing at stake for the Searcher when behaving maliciously.
Omne would need to relate the ”"right” to report sightings to the amount of money (Ether) a
Searcher owns. This would discourage potential honest Searchers with only small amount to
participate in the system.

By the analysis of all consensus mechanisms presented, we decided that in our application we
needed to have Searchers put something at stake in order to discourage malicious behaviour. From
the analysis of proof of work, we additionally decided that we would not have the Searchers put
money or time at stake since we assumed this could lead to discouraging potential Searchers to
participate in the sensing process. Additionally, the investigation of proof of elapsed time showed us
that we do not want to limit the amount of sightings transmitted by one Searcher due to reduction in
effectiveness of the crowdsensing application. Therefore, we decided to use an alternative approach
based on reputation.

4.4 Reputation-Based Approach to Prevent Sybil Attacks

This section presents the reputation-based approach used in this work to prevent sybil attacks. We
present how the reputation is inserted into the application and how it fulfils the defined security
requirement in Section 3.2.

Before explaining the reputation-based approach we make clear:

e We do not define the concrete algorithm or formula to calculate reputation values.

e We assume that reputation value can be calculated based on the past contribution to the
longest consistent paths.

e The basic information to calculate reputation values is available through the Blockchain
through past search request jobs and results.

In our system, each Searcher gets a reputation value associated with it. When an Searcher
submits a sighting, a node gets added to the graph corresponding to the reported sighting. Now
when calculating the distance through a node, the distance gets weighted by the reputation value
of the Searcher adding the node. This creates a new graph, on which we calculate a weighted
longest consistent path. The reputation of an account increases by submitting a location, which
was in previous tracking jobs part of the weighted longest consistent path and decreases if not. The

4.4. REPUTATION-BASED APPROACH TO PREVENT SYBIL ATTACKS 33

10 10 10

51 52 53 Sy

200

Sg Sg

Figure 4.4: Scenario with two Unconnected Paths without RDP

reputation value of a user is implicitly stored in the blockchain by looking at all finished search
requests. This is possible because everything that happens on the blockchain is publicly visible, so
the blockchain offers full transparency.

In this reputation-based approach we calculate the weights of each edge as a Reputation-Distance-
Product.

Definition 4.4.1 Reputation-Distance-Product (RDP) An edge created between two sightings
s1 and so in the graph representation must satisfy the consistency criteria. The weight of that edge
18 then calculated by:

r(s1, $2) = dist(s1, s2) * reputation(sy) * reputation(ss)

This weight is referred to as Reputation-Distance-Product, short r

This definition does not change which edges would get created between sightings. It only affects
which path would be selected as the longest consistent path.

To better understand the reputation-based approach and see why it reduces the effectiveness of
sybil attacks, we will now demonstrate this through an example. Assume we have the scenario given
as seen in Figure 4.4.

In this scenario, an implementation of the approach without reputation would have created two
unconnected paths each one fulfilling the consistency criteria. According to the Definition 4.2.1,
each edge has a weight according to the distance between the sightings. The first path has a total
weight of 30 and the second path has a total weight of 200. Therefore, the Searcher s; and sg would
be rewarded for finding the longest path. That is, the path with the longest distance. That is, the
path with longest distance. Now we assume the sightings submitted by s; and sg are invalid sight-
ings, so the simple scenario shows how the malicious Searchers win without reputation-based system.

Next, we assume, each Searcher account has a reputation value associated with it. Given a reputation
distribution as follows: reputation(s;) = 10, reputation(ss) = 10,reputation(ss) = 10, reputation(sy)
= 10, reputation(ss) = 1, reputation(sg) = 1. After applying RDP to the edges seen Figure 4.4
Then the two paths would be, as shown in Figure 4.5.

34 CHAPTER 4. APPROACH
1000 1000 1000
» 8 » »
51 S2 S3 Sy
200
L >
S5 35

Figure 4.5: Scenario with two Unconnected Paths including RDP

As we can see the edges between the nodes are still the same only the weight changed. The
longest path is now the path with the highest total RDP weight. That is, reputation only affects the
selection of a longest consistent path, no the consistency criteria, which still needs to be fulfilled for a
plausible path. The first path now has a weight of 3000 while the other has a weight of 150. So, this
time, Searcher s1, s, s3, and s4 would be selected as winners, and path one would be the longest
path. Since si, s2, s3, and s4 submitted valid sightings, this approach ensures that as long as the
reputation values are calculated reasonably, the probability of a fake path selected gets minimized.

In this section, we have seen the approach taken to find the Mislayer’s mobile object, how to
prevent sybil attacks from being effective, and where these will be encoded. In the next Section, we
will present the implementation of these approaches.

Chapter 5
Design

We have designed the previously presented target tracking approaches with and without reputation.
1. Target Tracking without Reputation
2. Target Tracking with Reputation

In the following, we present them and explain their logic. For the target tracking with reputation
approach we designed two algorithms. Therefore, we start this chapter off by explaining how this
approach is realized using the two designed algorithms followed by an example showing the function-
ality of the target tracking without reputation algorithms. After that we explain the modifications
made to the two algorithms in order for them to be applicable for the target tracking with reputation
approach. In the end of this chapter we will explain advanced approaches contributions made by
this thesis.

5.1 Target Tracking without Reputation

Each algorithm is responsible for one part of the target tracking process:

e Algorithm 1 deals with the representation of the sightings as nodes in the graph, creates edges
between these nodes and determines the longest path on the graph created by Algorithm 1.

e Algorithm 2 stops the execution of Algorithm 1 and distributes the rewards to all Searchers.

5.1.1 Algorithm 1: Graph Preparation

Our implementation of these approaches finds the longest consistent path by finding the longest path
to every node. In order to minimize the time complexity of this solution we utilize the timely ordered
locations. We utilize the following aspect: the longest consistent path for the entire graph can be
calculated by calculating the longest consistent path to each node. By doing this, our algorithm
filters out edges, which will not contribute to any longest path. We have done this to improve the
overall performance by reducing the amount of edges the algorithm stores. This causes no problem,
since we want to find the longest path, this edge will never contribute to any longest path.

Every time a Searcher makes a sighting the Algorithm graph preparation is executed. So Al-
gorithm graph preparation takes the sightings consisting of an x,y coordinate and a timestamp
as input. As Algorithm graph preparation receives these sightings in a timely ordered manner, it

35

36 CHAPTER 5. DESIGN

processes these sightings in chronological order. It prepares the sightings for the longest path cal-
culation. It creates a graph from these sightings submitted by mapping sightings to nodes in the
graph data structure and creating edges between these nodes. Algorithm graph preparation does
this by chronologically filling two lists. The two lists represent the following:

1. predecessors: maps for each position of a sighting which predecessor position points via an
edge to this position.

2. distances: stores for each position the distance of the longest consistent path to reach this
location.

Each sighting represents one node in the graph. The lists distances and predecessors both have
an entry for each sighting to store the weight of the edge pointing to that node representing the
sighting and the associated predecessors node. For each location, the algorithm checks which of the
older sightings could have an edge pointing towards the new sighting. To this end, the algorithm
excludes all the old locations, which violate the maximum speed constraint. This is done in line 9 of
algorithm graph preparation by utilizing the equation presented in the definition for the maximum
speed constraint. Amongst all the old locations left, the algorithm now finds the old location, which
has the longest path associated with it, in order to reach the current location. This is achieved in
line 11 by taking the Euclidean distance between each old node and the new node and adding it
with the distance it takes to reach the old node. The corresponding old node selected then gets
stored as the predecessor of the current location in the predecessors list. This indicates that there
exists an edge in the graph pointing from the old location to the current. Additionally, the length
of that longest path to reach that current location gets stored in the distances list entry for the
current location. For example, if the selected edge points from node 7 to node j with distance d; ;,
the predecessor entry of node j would be i and the distances entry for j would be d; ; + distances][i].
By repeating this logic for each node, the distances field holds the maximum distance it takes to
reach each node, while the predecessors field stores for each location which edge should be used to
reach a location with the maximum distance.

5.1.2 Algorithm 2: Reward Distribution

Algorithm 2 allows the Mislayer to stop the searching phase and begin processing of the graph
created by Algorithm 1. All Searchers who contributed sightings get informed that their search is
over. The algorithm distributes the reward to all Searchers according to the two lists created. This
includes paying the incentive to each Searcher who submitted a location to the longest consistent
path. It does this by first checking which of the sightings in the distances list has the highest distance
value associated with it, followed by back-propagating through the predecessor starting with this
sightings until it reaches a location entry which has no predecessor. Afterwards, each sender gets
informed whether they receive an incentive or not.

5.1.3 Example

In order to illustrate the logic of the presented algorithms, we will go through an example scenario.

Assume we have the topology given in Figure 5.1 on which we would need to find the longest
path. [y to I4 represent the nodes for the sightings transmitted. First, Iy to 4 were submitted in
chronological order. The edges represent connections between the nodes with each number on the
edge representing the distance. The longest path in this scenario would be (Iy, I3, l4). Now we
present how the algorithms would find the longest path.

5.1. TARGET TRACKING WITHOUT REPUTATION 37

Algorithm 1 Graph Preparation: Creating Directed Acyclic Graph from Sightings
1: procedure CREATEGRAPH(locations) > The dag for all locations received
2 predecessors < {}
3 distances < {}
4 for all locations 7 received do
5: maxDistance < 0
6
7
8
9

currentDistance < 0
furthestPredecessor < —1
for all locations j received before i do
if euclideanDistance(i, j) < vjaqq*timeDifference(i, j) then

10: currentDistance < euclideanDistance(i, j) + distances|[j]
11: if maxDistance < currentDistance then

12: mazDistance < currentDistance

13: furthestPredecessor < j

14: end if

15: end if

16: end for

17: distancesli] + maxDistance

18: predecessorsli] <— furthest Predecessor

19: end for

20: return distances, predecessors > necessary for longest path calculation

21: end procedure

Algorithm 2 Reward Distribution

1: procedure CREATELONGESTPATH(distances, predecessors) > Reward Distribution
2 longestPathList + {}
3 lastInserted < maTiocation (distances)

4 while lastInserted # —1 do

5: longestPathlist.append(lastInserted)

6 lastInserted < predecessors|lastInserted]
7 end while
8 payout Per Location <
9

contract.Balance
length(longest PathList)

: for all locations ¢ in longestPathList do
10: transferMoney(to: sender(z), amount: payoutPerLocation)
11: end for
12: for all locations 7 not in longest PathList do
13: send notification: not part of the longest path no incentive received
14: end for
15: end procedure

38 CHAPTER 5. DESIGN

20
|1 |3
L »§
10 20
Y ‘_\f
20
|2 |4

Figure 5.1: Example Graph

In the beginning the scenario looks as seen in Figure 5.2.

Only the sightings have been submitted and the edges are still missing. Algorithm 1 starts by
creating the two empty fields distances and predecessors for the internal representation of the graph.
Each having one slot for each sighting transmitted. Now when trying to find the edges, in line 4 the
algorithm starts with node [;. It iterates over all the edges which were received before [;. Since [y
is the first node, there are no predecessors. Therefore, the distances and predecessor initialized with
0 and -1 (undefined). So the updated fields are as shown in Figure 5.3.

Now the algorithm finds the edges for node l5. This is done by checking all the previous nodes
of ls, here only /1. In line 9, the algorithm checks whether I; and ls violate the maximum speed
constraint. In line 10, it calculates the longest path for reaching lo by going through [/;, which in
this case would be a distance of 10. In line 11, it checks whether among all the possible predecessor
nodes for Iy, which one has the longest path for reaching l5. Here, since [is the only possible
predecessor, l; becomes the predecessor of l5, and the distances entry for ls is set 10, as seen in
Figure 5.4. When processing I3, the algorithm checks [; and [l as potential predecessor nodes. As
lo is out of reach for I3 and [is not, I; becomes the predecessor of node l3. The longest path over
[y to I3 has a distance of 20 and therefore distances for I3 gets set to 20, as seen in Figure 5.5.
The possible predecessor nodes for node Iy are [y, I3, and I3. When checking which of the nodes
violates the maximum speed constraint, the presented topology does not allow an edge between
node /; and 4. Therefore, only [and [3 remain as possible predecessors. Now Algorithm 1 checks
amongst all possible predecessors, here ls and I3, which one forms the longest path to node l4. This
means comparing distance(la, ly) + distances[lz] = 20 + 10 = 30 to distance(ls, l4) + distances[l3] =
20 + 20 = 40. Since 40 > 30, I3 become predecessor of I, and distances of l; set to 40. There
are no locations left, so Algorithm 1 would terminate here. The final graph would be as shown in
Figure 5.6. When comparing original topology as seen in Figure 5.1 and the graph that Algorithm
1 created, as shown in Figure 5.6, they do not look the same because the edge between [l and Iy is
missing, as Algorithm 1 filters out edges, which will not contribute to any longest path.

As the edges have been created and the longest path is stored in the lists by Algorithm 1,
Algorithm 2 deals with distributing the rewards by going through the lists created. First, it finds
the maximum entry in the distances field, as seen in Figure 5.7, this would be node I, with distance

5.1. TARGET TRACKING WITHOUT REPUTATION

|1 |3

) ()

] (]
|2 |:1

distances
1) I3 l4
predecessors

1) I3 l4

Figure 5.2: Example: Initial State of Algorithm 1

39

40 CHAPTER 5. DESIGN

distances 0
11) 13 14

predecessors -1
I) I3 14

Figure 5.3: Example: Predecessors and Distances Fields after Checking Node I3

40. This means that the longest path on the graph has to end with node l4. Secondly, the algorithm
back-propagates through the predecessors field until it reaches an entry with value —1. This would
mean it has reached the root of the longest consistent path. As seen in Figure 5.7, the longest path
found is l4, I3, l;. In the end, the algorithms pays the incentive to each of the senders of the nodes
on the longest and informs the rest of the Searchers that they receive no incentive.

5.2 Target Tracking with Reputation

We have seen how Algorithm 1 and 2 together find the longest consistent path upon receiving
sightings submitted by Searchers. As presented in the problem statement this approach does not
prevent sybil attacks which lead to the security of the system model definition being violated. In
this section, we present what modifications to the previous two algorithms need to be integrated in
order to prevent sybil attacks using the RDP presented in the previous chapter, while still allowing
for a successful longest consistent path calculation. Recall the basic idea of this is to weight the
distance between two nodes by the reputation of these two nodes.

To this end, now we assumed that submitting a sighting consists of: the sighting and a repu-

tation value of the sender of this sighting. Inserting the newly added reputation aspect into
the logic of Algorithms 1 and 2 required modifying Algorithm 1 graph preparation as the RDP only
changes the graphs weight. As a result, the RDP formula was integrated into Algorithm graph
preparation as follows:
We modified the calculation done when trying to find the predecessor node amongst all predecessor
nodes, which are within reach of the investigated node. Previously, for each node the Algorithm
would only consider the Euclidean distance it would take to reach said node, as a weight. For two
consistent sightings s; and s with timestamp t(s1) < #(s2), the RDP is integrated into Algorithm
graph preparation as follows:

dist(s1, s2) * reputation(sender(sy)) * reputation(sender(ss)) + distances|s:] (5.1)

The basic idea is, for a potential edge between s; and so, set the RDP as the weight of that edge
and add it to it total RDP weight of a path leading to s;. By doing this the edges created only the

5.2. TARGET TRACKING WITH REPUTATION

distances

predecessors

0 10
1 12 13 l4
-1 l4
I) I3 14

Figure 5.4: Example: After Processing Node Io

41

42 CHAPTER 5. DESIGN
I 20 I3
® »®
10
4 °
I lg
distances 0 10 20
1 12 I3 la
predecessors -1 |4 l4
14) 13 11

Figure 5.5: Example: After Precessing Node Iy

5.2. TARGET TRACKING WITH REPUTATION

43

20

20

distances 0 10 20 40
I) 13 11
predecessors -1 |4 l4 I3
I) 13 14

Figure 5.6: Final Representation after Checking all Nodes

44 CHAPTER 5. DESIGN

distances 0 10 20 40
I) 13 I4
predecessors -1 l4 l4 |5
11 l2 13 14

Figure 5.7: Example: Algorithm 2 Finding Longest Path

path selected as the longest consistent path gets changed while the edges created by the approach
with and without reputation stay the same.
We decided to multiply the reputation values in the RDP formula for several reasons:

1. We want the distance of an edge to be weighted by both nodes involved in an edge. This way
nodes with a low reputation value could not profit by being connected to nodes with a high
reputation value.

2. Doing something else rather than multiplying the reputation values before multiplying the
result with distance, like taking the average, minimum or maximum reputation of the nodes,
either helps nodes with low reputation connected to high reputation nodes or reduces the
impact which high reputation nodes have.

3. Nodes which have miserable reputation values like zero will drastically reduce the weight of an
edge and therefore are more likely not to be considered.

The modified version of Algorithm 1 graph preparation using the RDP is presented through
Algorithm 3 graph preparation using RDP.

5.3 Advanced Attacks and Approaches

In this section, we identify advanced security threats that are still possible even when using the
presented basic reputation-based approach and we will present counter-measures to these attacks.
In the implementation and evaluation, we only consider the previous approaches because of time
restrictions.

5.3. ADVANCED ATTACKS AND APPROACHES 45

Algorithm 3 Graph Preparation using RDP
1: procedure CREATEGRAPH(locations) > The dag for all locations received
2 predecessors < {}
3 distances < {}
4 for all locations 7 received do
5: maxDistance < 0
6
7
8
9

currentDistance < 0
furthestPredecessor < —1
for all locations j received before i do
if euclideanDistance(i,j) < Vmaq*timeDifference(i, j) then

10: currentDistance <+ euclideanDistance(i,j) * reputation(sender((i))) =
reputation(sender((5))) + distances[j]

11: if maxzDistance < currentDistance then

12: maxDistance < currentDistance

13: furthest Predecessor < j

14: end if

15: end if

16: end for

17: distancesli] <— maxDistance

18: predecessors[i| < furthestPredecessor

19: end for

20: return distances, predecessors > necessary for reward distribution

21: end procedure

5.3.1 Reputation Farming Attack

One advanced attack could be the so-called reputation farming attack.

As mentioned before, the reputation-based approach prevents sybil attacks by weighting each
sighting submitted by a Searcher according to the reputation value of that Searcher. Therefore,
sybil attacks do not benefit from multiple (fake) identities, as these identities could not outweigh
submissions made by honest Searchers.

However, the attacker could still try to aggregate reputation in order to later perform sybil
attacks. To this end, the attacker starts off by increasing his reputation through valid sightings
to a longest consistent path. This could be done in two ways: either the attacker performs search
requests correctly, and submits valid sightings, or the attacker creates search requests himself and
let his own Searcher device contribute to the longest path. The later is referred to as artificial
reputation increase:

Definition 5.3.1 Artificial Reputation Increase If a Searcher or a group of Searchers increase
their associated reputation value by acting as a Mislayer creating their own search requests multiple
times and create the longest consistent path themselves, this is referred to as artificial reputation
increase.

After the Searcher devices have built a solid reputation, they can start to perform sybil attacks on
real tracking jobs, which compromises the reputation-based security approach. Possible counter-
measures to this attack are:

e Utilizing the fact that sending sightings to the smart contract costs money. As we
will see in the evaluation chapter, submitting sightings to the smart contract using the RDP

46

CHAPTER 5. DESIGN

takes between 80 and 90% of the total cost for a single search request. This means for a single
search request, 80 to 90% of the cost that the Mislayer puts into the request does not get
distributed to any Searcher who contributed a sighting to the longest consistent path. So, if
an attacker tries to aggregate reputation through an artificial reputation increase, the attacker
loses a lot of money. Therefore, accumulating reputation requires a huge upfront investment
to perform reputation farming attacks. However, this still does not prevent previously honest
Searchers who have a large reputation to turn malicious and perform this attack.

Aging of reputation to decrease the effectiveness of aggregating reputation. Aging
means that the weight of reputation values gradually decreases over time. Possible aging
implementations could be:

— Use a time window in order to allow only reputation gained recently to be considered.

— Calculate the moving average. For instance, with an exponential moving average, the
weight of old reputation values would decrease exponentially. As all the reported sightings
are stored on the blockchain, the complete history of gaining reputation is recorded on
the blockchain. Therefore, aging can be implemented based on this historic information.

The idea is that Searchers who own a large amounts of reputation cannot rely on reputation
aggregated a long time ago. Thus, an attacker constantly needs to generate new reputation in
order to prove that he did not turn into a malicious Searcher. The problem with this approach
is how to implement and tune the function defining the aging of reputation.

Testing Searchers using the Ground Truth In the previous approaches, we have used
the maximum speed constraint as a consistency criterion for defining the longest consistent
path. However, although the maximum speed constraint ensures that paths are plausible, i.e.,
they could exist in reality, there is still no guarantee that the longest consistent path actually
only consists of valid sightings that really exist as reported in reality. In order to very that
Searchers actually only reported valid sightings, one needs to the ground truth, i.e., the actual
position of the mobile object in reality to compare this real position to the reported position.
This can be achieved by proposing test cases as search requests, where the Mislayer actually
knows the mobile object position a priori. For instance, the Mislayer could simply search for a
mobile object that does not exist. If a Searcher reports a sighting for this non-existing object,
it gets a reputation value of zero.

The drawback of this approach is that it relies now on the trustworthiness of the Mislayer
proposing the test cases and defining the ground truth, which contradicts the nature of the
blockchain approach with unknown individuals.

5.3.2 Copy Cat Attack

In this section, we show how the full disclosure of information stored in the blockchain can also lead
to an attack called copy cat attack.

As mentioned before one property of blockchains is that everything that is stored in the blockchain

is visible to everyone. This lack of information hiding leads to an attack, which we called the copy
cat attack.

The attacker does the following: the attacker spies on the blockchain looking at every sighting

reported to the smart contract representing the search request. So an attacker can see, which
sightings are submitted. The attacker contributes invalid sightings by copying or slightly adapting

5.3. ADVANCED ATTACKS AND APPROACHES 47

valid sightings sent by honest Searchers to become a contributor to the longest consistent path with
only limited effort. This is possible because every transaction is made public to everyone.
Two possible counter-measures to this attack are:

e Let Searchers submit sightings for a search request only in a short submission time window,
and not accepting sightings after that time window. By doing this, attackers could spy on the
blockchain only in a short time window. The submission time window needs to be set small
enough not allowing for a successful submission of copied sightings, not giving the Searchers
enough time to spy on the submitted sightings. The submission of copied sightings would then
occur after the time window is closed

For example, setting the submission time window could be as follows: the current average time
for a transaction to be verified on the Ethereum is six minutes (10.8.2020) [Eth20]. This would
mean the submission time window should be set to twelve minutes as spying could only happen
after the first six minutes of that window and the time until this transaction is six minutes
meaning they could not verify the spied sighting in time. This would mean if honest sightings
have to be submitted in the first six minutes or more after the submission time window is
closed the sighting would not be accepted.

The problem of this approach is that Searcher device could not have Internet access at the
submission time window preventing a successful transmission of a valid sighting. Another
problem, is that many transactions are issued during that time window on the Ethereum
blockchain, the submission of locations could be delayed due to Ethereum accepting requests
only slowly. This could lead to a transaction not getting verified during that time window,
leading to rejecting valid sightings. Furthermore a problem w.r.t the example presented before
would be that spied sightings after the six minutes still could be verified before the twelve
minutes are over, as they could pay more gas for faster verification of the sighting.

e Alternatively, Searchers could first transmit sightings in an encrypted form until a deadline,
including a secure hash-value of the (unencrypted) sighting. After the deadline is over, the
Searchers disclose how to decrypt encrypted sightings by publishing the encryption key. The
Mislayer can verify that the encrypted sightings are consistent with the decrypted sightings by
calculating the hash of the decrypted sightings and comparing it to the hash of the submission,.
A matching hash also proves that the Searcher actually knew the sightings already before the
deadline. So spied sightings could only occur after the deadline is closed.

48

CHAPTER 5. DESIGN

Chapter 6

Implementation

In this chapter, we have presented the challenging and ”interesting” parts of the implementation for
the approach presented in this work.

6.1 Integer Representation of Coordinates

In this section, we highlight a limitation which had to be made when implementing the smart
contract in the Solidity programming language.

In this work sightings consist of an x,y coordinate and a timestamp. As Solidity does not support
integer numbers, sightings send our contracts have to contain only integer values. Therefore, a real
world sensing mobile application of this system which senses the sightings should transform the
sightings into integers. For instance, the positions of sighting could be mapped to UTM coordinates
which maps locations to integer values.

6.2 Allowing Smart Contracts to receive Money

As defined in the system model the Mislayer must set the reward (in Ether) he is willing to pay for
the tracking of his mobile object. This is implemented into the smart contract by distributing for
each sighting on the longest consistent path: the reward divided by the number of sightings on the
longest consistent path. The Mislayer does this by sending a transaction containing the reward in
Ether to the contract. But in order for a contract to receive Ether the contract has to be allowed to
receive Ether. As a default a contract is not allowed to receive Ether. This has been done in order
to prevent unintentional Ether transfer to a contract. This reason being, if a contract receives Ether
and the contract has no function to distribute Ether, it would be impossible to retract that Ether.
A contract has to have at least one function containing the keyword payable to receive Ether. We
used the so-called fallback function as this is the function which is called if the contract receives a
transaction without triggering a function in the contract. As seen in the following:

//fallback function
function () external payable {}

the fallback function is always the function in the contract without a name.

49

50 CHAPTER 6. IMPLEMENTATION

6.3 Sighting Submission Function

In order for our smart contract to handle a sighting to be processed, we have implemented a contract
function (a potential mobile application on the Searcher’s device has to call). As seen below:

// processes a submitted sighting by a Searcher

function newLocation(int _x, int _y, int _time, int _reputation) public{
appendLocation(_x, _y, _-time, _reputation);
findLongestPathToNode (-x, _y, _time, _reputation);

}

this function takes as parameter the x,y coordinates and the timestamp of a sighting, and forwards
these values to the appendLocation and findLongestPathToNode function. The appendLocation stores
the sightings and the address of the Searcher in the associated data structures, and the findLongest-
PathToNode finds the predecessor sighting which has the longest consistent path to that sighting
according to the algorithms presented the previous chapter.

For the reputation-based approach using the RDP, our implementation required the Searchers
to include in the sighting the reputation as an additional parameter.

6.4 Submission Deadline Function

In order for a Mislayer to stop the submission of sightings and start the reward distribution the
createLongestPath function has to be called. This function can only be called by the creator of the
smart contract which is the Mislayer. As seen below:

// Mislayer stops submission of sightings and distributes reward
function createLongestPath () public{
uint maxElement ;
uint maxValue=0;
uint lastInserted;
for (uint i = 0; i < distances.length; i++4){
if (distances[i] > maxValue){
maxValue = distances[i];
maxElement = i
}
}
lastInserted= maxElement ;
while (true) {
if (lastInserted != 99999){
lastInserted = appendNodeNumberToLongestPathList(lastInserted);

}

else{
break;
}
}

payout () ;
selfdestruct (owner);

6.5. ONE-DIMENSIONAL ARRAYS FOR STORAGE OF EDGES 51

}

first this function find the sightings on the longest consistent path. Then, it calls the payout
function which takes care of the reward distribution for all the Searchers on the longest consistent
path. Finally, it calls the selfdestruct function leading. It stops transaction from being sent to the
contract forever.

Additionally this function makes sure only the Mislayer can call the createLongestPath function
as it requires to be called by the owner of the contract which is the Mislayer. If any one but
the Mislayer calls the createLongestPath function, it fails because the selfdestruct throws an error,
leading to the entire transaction being aborted.

Remark 1 In Ethereum, after a smart contract is deployed on the blockchain, every mode in the
Ethereum network can call every function of a smart contract, unless the contract has access restric-
tions for functions implemented into it.

This means for our implementation, that it needs to limit the access to functions which only the
Mislayer should have access to. In contrast, our implementation should not limit the access to the
submission of sightings, allowing any possible Searcher to submit sightings.

6.5 One-Dimensional Arrays for Storage of Edges

Traditional graph representations in algorithms often use adjacency arrays representing the outgoing
edges for each node represented through two-dimensional arrays. As the cost of the execution of
smart contracts is affected by the runtime and space complexity of that contract, we only used one-
dimensional arrays for the storage of the edges. Additionally, instead of creating objects or structures
representing each sighting, we again used one-dimensional arrays. As using two-dimensional arrays
or objects or structures has higher access times compared to one-dimensional arrays we decided to
use them to reduce the overall workload.

Remark 2 Storing all possible outgoing edges for a node in a graph removes all the benefits gained
by using an one-dimensional array. As the longest consistent path calculation does not require to
store all outgoing edges for each node at the same time, each node stores the predecessor node of the
edge on the longest path to that respective node.

In order to understand how the sightings are stored in a one-dimensional, we present how our
implementation iterates through the sightings having reputation values associated. If a sighting and
the reputation is submitted they all get appended to the locations array. First the x then the y
coordinate, followed by the timestamp, and in the end the reputation value. This means every four
elements in the array belong to one sighting. As seen below:

// iteration head for going over all the old sightings
for (uint i = 0; i < newLocationNumber; i++){

x0Old = locations[4x1];

yOld = locations [(4%1)+1];

timeOld = locations [(4x*1)+2];

reputationOld = locations [(4%1i)+3];

in order to access the i-th sighting, the locations array from index 4 ¢ to index 4 * ¢ + 3 have to be
used.

As a sighting in the approach without reputation consists only of 3 parameters (x,y-coordinate
and time), the one dimensional array stores the sightings in blocks of three. So in order to access
the i-th sighting there, index 3 * ¢ to index 3 *x ¢ + 2 have to be accessed.

52

6.6

CHAPTER 6. IMPLEMENTATION

Deployment of the Implementation

In this section we present, how to deploy Smart Contracts via the Truffle” framework onto the
associated ” Ganache” development blockchain.
Truffle and Ganache can be described them as follows:

Truffle is a development environment for the creation and deployment of smart contracts to
the Ethereum blockchain. It allows to simulate issuing transaction to a smart contract [Gro20].

Ganache is a local development blockchain, which is used to test the behaviour of smart
contracts on the Ethereum blockchain. It emulates the behaviour of the Ethereum blockchain,
meaning smart contracts get deployed on the Ganache Blockchain. Allowing to create Ethereum
like external accounts in order to interact with a smart contract [Gro20].

Together Truffle and Ganache can be used to test how a smart contract would perform on the
Ethereum blockchain.
To deploy a smart contract onto the Ganache test blockchain using Truffle, the prerequisites are:

Windows 10

Truffle version 5.1.12

Solidity version 0.5.16

Node Package Manager version 12.16.0

Web3 version 1.2.1

In order to create a project representing a smart contract on the Ganache blockchain with the
Truffle environment the following steps are necessary:

1.

2.

Create a folder for the project.
Open the command line terminal and direct it to the project folder.

In there execute the command ”truffle init”. This creates a bare bone Truffle project including
the required folders.

Write a smart contract and insert the smart contract into the ”contract” folder.

In the "migrations” folder create a JavaScript file with the name ”2_deploy_contracts”. This
file needs to include the code seen in Figure 6.1.This file is necessary for the deployment of the
created smart contract to the Ganache development blockchain.

Modify the truffle-config.js file: under development you need to set the network_id to 5777 and
the port to 7545. Additionally under compilers you need to change the compiler version to
0.5.14 and the EVM version to petersburg, as seen in Figure 6.2.

Open the Ganache application and create a new Workspace. This will prompt you to link it
to the truffle-config file created one step earlier.

Now execute ”truffle migrate” in the command line terminal in order to deploy the smart
contract on the Ganache blockchain workspace created.

6.6. DEPLOYMENT OF THE IMPLEMENTATION 53

Figure 6.1: Example Deployment Code for Smart Contracts

Figure 6.2: Example Modified Truffle Config File

54 CHAPTER 6. IMPLEMENTATION

9. Execute "truffle console” in the command line terminal in order to start interacting with the
smart contract.

This is how we deployed our smart contract implementation on the test environment for our
evaluation.

This chapter presented the implementation of our approaches and how to deploy the smart
contracts containing them to the blockchain with these approaches on the test environment. The
next chapter will evaluate the monetary cost of running it on a blockchain via the Ganache test
blockchain.

Chapter 7

Evaluation

The purpose of this chapter is to evaluate the previously presented contracts. In order for the
approach to be accepted by both, Searchers and the Mislayers, the monetary cost is crucial. Different
types of scenarios allow to evaluate the effects of additional costs caused. To this end, we created
different scenarios and monitored the monetary cost of running these contracts on them. We want
to evaluate the overhead with respect to the monetary cost of our proposed security concepts to
counter attacks (”price of security”).

7.1 Evaluation Setup

Before presenting the evaluation, we present our evaluation setup, including the test scenarios and
the performance metric to measure the cost.

The test environment has been setup as described in Section 6.6. Truffle allows for interaction
with smart contracts via JavaScript code. In order to interact with our smart contract and recreate
our evaluation scenarios the following commands have to be performed in the Windows Command
Prompt:

\\ evaluation in the Windows Command Prompt

truffle console

let instance = await contractName .new()

let accounts = await web3.eth.getAccounts()

await instance.sendTransaction ({from: accounts[0]}, value:
100000000000000000)

await instance.newLocation.sendTransaction(x_0,y_0,timestamp_0, {from:
accounts [1]})

await instance.newLocation.sendTransaction(x.n, y.n,timestamp.-n, {from:
accounts [n+1]})
await instance.createLongestPath.sendTransaction ({from: accounts[0]})

First the Truffle development environment has to be entered by using the command ”truffle
console”. After that a new instance of our smart contract is stored in the variable ”instance”.
Truffle allows for smart contracts to be interacted with just like using objects in object-oriented
languages. In order to issue a transaction from these accounts, the next step is to store an array
containing all the accounts that exist on the Ganache blockchain in the variable accounts. Among

55

56 CHAPTER 7. EVALUATION

8,8, {from:accounts[1]})

Jd

null,

rawLogs: []

Figure 7.1: Example Transaction Receipt for Evaluation

these accounts, the account which represents the Mislayer (accounts[0]) has to send a transaction
to the smart contract paying the reward to be distributed to all the Searchers who submitted
sightings to the longest consistent path. The amount of Ether has to be given in the unit wei. In
this example one Ether (10*® wei = 1000000000000000000 wei) is transferred. After that sightings
can be submitted to the smart contract. Therefore accounts call the "newLocation” function on
the contract instance and set the parameters according to their sightings. For each sighting one
transaction has to be issued. In the end, the Mislayer calls the ”createLongestPath” function on the
contract, which leads to every account who submitted a sighting successfully to the longest consistent
path receiving some Ether in return. For example, if ten sightings from ten different accounts are
on the longest consistent path each account would have received 0.1 Ether.

In order to measure the cost of processing sightings and distributing the rewards for our smart
contracts, Truffle offers to monitor the gas consumption a transaction had. As shown in Figure
7.1, each time a transaction is issued, Truffle outputs the so-called transaction receipt. The entry
gasUsed shows how much gas has been used to run that transaction with the associated contract
code.

Different sightings have been send to the contract in order to create certain scenarios. These
scenarios will be referred to as topologies from now on. Each topology is presented as a graph. The
size of the topology gets changed by the number of sightings it receives.

As presented in the previous chapter, we evaluate both approaches: tracking with and without
reputation. In the following, the smart contract representing the approach: tracking without the
reputation-based is referred to as contract without security and to the other one as contract with
security.

In order to evaluate the scalability of these contracts, each topology has been tested with three
sizes:

e small: a topology consisting of 10 sightings

7.2. GAS CONSUMPTION o7

e medium: a topology consisting of 25 sightings

e large: a topology consisting of 50 sightings

7.2 Gas Consumption

In this section, we want to briefly review what affects the gas consumption of a smart contract in
Ethereum to provide a common understanding to interpret the following results.

In Ethereum, if an address sends a transaction to a smart contract, it triggers the execution
of the associated code. An operation in a smart contract has different types of execution cost.
Generally, two factors impact the gas consumption: the amount of processing required and the
storage consumption of that code. Operations in Solidity, either are read-only operations or they
manipulate the storage of the smart contract. Read-only operations consume a smaller amount of
gas than operations which manipulate the storage. Therefore, modifying arrays consumes a large
amount of gas. This is important to know, since our graph is represented through arrays and the
biggest storage consumers are the arrays for storing the locations and edges of the corresponding
graph. Since Ethereum penalizes large memory and runtime usage, frequent manipulation of the
arrays can impact the gas consumption negatively. Therefore, when evaluating our algorithms we
need to create topologies, which require from our contracts to store varying numbers of sightings
leading to different costs.

7.3 Execution Cost

This section presents the main evaluation.

7.3.1 Performance Metric

Before explaining the results, we explain what we measured and the different topologies in more
detail.
For each topology we measure:

e The total gas cost of executing the contract with security and without security on the topology,
because this information provides knowledge about the entire cost of running the contract as
it is.

e The gas cost of sending sightings to the smart contract. This information indicates how much
each Searcher would need to pay when submitting a location to the tracking process.

e The gas cost of distributing rewards distribution for the sightings submitted. This shows how
much the Mislayer would need to pay.

We present our results by creating one plot for each topology according to one of the three listed
considerations above. Each plot contains the results for the contract using the reputation-based
approach and the approach without reputation in order to detect the price of security. For the cost
of distributing the rewards and the total cost, we created bar diagrams showing the different sizes
of topologies. For the cost of sending a sighting, we created a graph.

In the following sections, we present the topologies and the associated results.

58 CHAPTER 7. EVALUATION

O—0O—0—0

Figure 7.2: Example Topology: Single Longest Consistent Path

Remark 3 All the absolute costs were measured in gas, as gas consumption solely depends on the
EVM specification, enabling comparability of future research. Gas is paid in FEther. In order to
illustrate the effective real-world cost associated, in addition we present the absolute cost in Ether
and Furo. Due to the volatile exchange rate when converting gas into Ether, and Ether into Euro
we used the exchange rate as of 10.08.2020 [Eth20]:

e gas price: 20 Gwei
e Ether in Euro: 1 Eth = 337 Furo

7.3.2 Execution Cost of Deployment

The cost of deploying the smart contracts we evaluated is:
e contract without security: 0.0235 Eth (7,90 Euro)
e contract with security: 0.0241 Eth (8,10 Euro)

So when comparing the deployment cost, we see that only 2.5% more cost is required to deploy
a contract with security compared to a contract without security.

7.3.3 Execution Cost of Single Longest Consistent Path Topology

This topology acts as a best-case scenario of the sightings a contract can receive. The graph created
by the algorithms would contain only a single unambiguous path. This means, the algorithm needs
to create and store the fewest amount of possible edges, which minimizes the cost. This is achieved
by sending sightings in a manner that each node has at most a single incoming and outgoing edge,
as shown in Figure 7.2.

Results

By applying both smart contracts to the topology having a single longest consistent path, we get
the following results.

First, we present a comparison of the results for the total gas cost of the tracking procedure, as
shown in Figure 7.3. As we can see, both smart contracts consume more in total when the size of

7.3. EXECUTION COST 59

the topology increases. As expected, as the topologies get bigger, each contract needs to store more
information, which increases its cost. Comparing the cost performance of each size for each contract
showed the following;:

e smart contract without security: The total absolute cost for all topology sizes are: small
topology 1797893 gas (0.036 Eth, 12 Euro), medium topology 4783988 gas (0.097 Eth, 32
Euro), and large topology 11063317 gas (0.22 Eth, 74 Euro). The additional relative gas cost
from the small to the medium topology with 2.5 times more locations is 2.8 times as much.
When comparing the small topology to the large topology, the topology is 5 times bigger and
the cost increases 6.2 times.

e smart contract with security: The total absolute cost for all topology sizes are: small
topology 2520834 gas (0.05 Eth, 17 Euro), medium topology 7123194 gas (0.14 Eth, 48 Euro),
and large topology 16421464 gas (0.328 Eth, 111 Euro). The additional relative gas cost
from the small to the medium sized topology is also 2.8 times as much consumption. When
comparing the small topology to the large topology, here the cost increases 6.5 times.

So the relative cost increase of both contracts, which is occurring due to the topology getting bigger,
is almost similar. In regards to further results for the other topologies, the contracts cost always
scales a similar amount independent of the contract used.

When comparing the difference in cost between both contracts, we see that the contract with
security consumes 45% more gas than the other contract for all sizes of the single longest consistent
path topology. This is due to the fact that when the topology scales up, both contracts need to
process and store equally many more locations. The only difference is that the contract with repu-
tation needs to store the reputation, which leads to the array containing the reputation consuming
a constant factor more storage and increasing the number of operations performed. As our results
will show, 45% is the largest percentage increase for adding security to the contract across all the
topologies. This is due to the overall consumption for this topology being comparably low, because
there are not many edges, which can be created by the contract. As a result, the overhead created
by the insertion of security has a large relative impact on the gas consumption.

The total gas consumption is made up by the gas cost of submitting a sighting performed by the
Searchers, and the cost of distributing the rewards, paid by the Mislayer. By cumulating all the gas
cost of processing sightings and the cost for reward distribution, the distribution is.

e smart contract without security: for the small scenario, 92% of the total cost impact the
Searchers and 8% the Mislayer. For the large topology up to 97% of the cost are performed
by the Searcher.

e smart contract with security: for all sizes of the topology, 81% of the total cost impact
the Searchers and 19% the Mislayer.

Most of the computation necessary for tracking an object is performed by the Searchers since the
creation of the edges in the graph is performed immediately after a submission of a sighting. This
is an optimization step chosen in the implementation to reduce the overall storage consumption of
the contract in order to decrease the overall cost for tracking a mobile object. Additionally, in this
topology only a few edges need to be compared when creating the longest consistent path, which
leads to the Mislayer’s cost being relatively low.

60 CHAPTER 7. EVALUATION

1le7?

B single consistency no reputation
B single consistency with reputation

1.6

gas used

10 25 50
number of locations

Figure 7.3: Total Cost of Tracking: Single Consistent Path Topology

7.3. EXECUTION COST 61

350000 " : .
—— single consistency no reputation

single consistency with reputation
325000 ~

300000 ~

275000 A

250000 ~

gas used

225000 ~

200000 ~

175000 +

150000

T
0 10 20 30 40 50
number of locations

Figure 7.4: Cost of Inserting new Location into Graph: Single Consistent Path Topology

As seen in Figure 7.4, inserting a new location into graph costs a Searcher different amount of
gas depending on how many locations have been transmitted before already. This shows to be the
same for both contracts. Because as more locations get inserted into the graph, the corresponding
data structures get bigger in size. This leads to either accessing elements or storing new elements
consuming more gas. Therefore, the sender of the newest location needs to pay more than the
Searchers before. The cost of inserting is linearly growing as more locations get submitted. An
exception being the first location submitted which causes the dent in the graph, as seen in Figure
7.4. The reason being, the first location submitted to the contract initializes all the data structures
required for the graph representation. This means, as all the other Searchers, the first Searcher
needs to pay for the insertion of his sighting into the graph. Additionally, she needs to pay for the
initialization of all associated data structures of the contract.

As seen in Figure 7.5 the cost of calculating the longest path and distributing the rewards is
relatively low, when compared to the cost of submitting the sightings:

e smart contract without security: The longest path calculation and distribution costs for
all topology sizes are: small topology 134209 gas (0.003 Eth, 0.9 Euro), medium topology
204169 gas (0.004 Eth, 1.4 Euro), and large topology 320273 gas (0.006 Eth, 2.2 Euro). The
additional relative gas cost from the small to the medium sized topology is, with 2.5 times
more locations, 1.5 times as many gas. When comparing the small sized topology to the large

62 CHAPTER 7. EVALUATION

I single consistency no reputation
B single consistency with reputation

3000000 ~

2500000 ~

2000000 ~

1500000 ~

gas used

1000000 ~

500000 A

10 25 50
number of locations

Figure 7.5: Cost of Finding Longest Path and Reward Distribution: Single Consistent Path Topology

sized topology, the topology is 2 times bigger and the cost increases 2.4 times.

e smart contract with security: The absolute cost for all topology sizes are: small topology
456924 gas (0.009 Eth, 3 Euro), medium topology 1397709 gas (0.03 Eth, 9.4 Euro), and large
topology 2024234 gas (0.06 Eth, 20 Euro). The additional relative gas cost from the small to
the medium sized topology consumes also 3 times as many gas. When comparing the small
sized topology to the large sized topology, the cost increases 6.6 times.

Without reputation, the creation of the longest path requires a small amount gas. With reputation
it requires large amount and the factor of increase is equivalent to the factor with which the total
gas consumption increased.

7.3.4 Execution Cost of Full Consistency Topology

This topology acts as a worst-case scenario for the sightings a contract receives. The graph created
contains multiple possible paths. Therefore, the contracts need to store a lot of edges, which increases
the cost of storage. We achieved this by making each node having an edge pointing to its successor
nodes, as seen in Figure 7.6.

Results

Now we present the results of the topology with full consistency.
The distribution between cost of Searcher and cost of Mislayer is:

7.3. EXECUTION COST 63

Figure 7.6: Example Topology: Fully Connected Graph

e smart contract without security: for all the sizes of the topology, 77% of the cost affect
the Searchers and 23% the Mislayer.

e smart contract with security: for all sizes of the topology, 81% of the cost affect on the
Searchers and 19% the Mislayer.

As the contracts need to compare many more different paths when creating the longest path,
more cost is required to be performed by the Mislayer when calculating the longest path.

The cost of appending locations again is linearly increasing with the typical dent occurring after
the first location, as seen in Figure 7.8 due to initialization. This time the difference between
inserting locations to the graph is smaller, since appending locations requires a lot of comparison to
other locations and this topology has all locations in reach of each other. This causes the additional
computation for the security having a smaller impact compared to without security.

An interesting result is seen in Figure 7.9. The calculation of the longest consistent path even
cost less without the reputation than with reputation. This occurred with no other topology we
investigated. Our investigation of that phenomena found that applying the reputation-based contract
on this topology leads to fewer locations which would be part of the longest path. Therefore, the
calculation of the longest path consumed less gas.

When comparing the total gas consumption presented in Figure 7.7, the gas consumption is
increasing with the size of the topology, as in the previous topology. Here the difference is that the
contract with security costs only 10% more than without security compared to the 45% difference
in the topology with a single consistent longest path. This is due to the full consistency topology
having many edges which need to be created. This leads to storage and processing of the reputation
having a smaller overall impact on the total gas consumption of inserting the locations.

When comparing the cost increase between each size of this topology, the factor of increase is
almost similar to the other topologies:

e smart contract without security: The absolute cost for all topology sizes are: small
topology 2251739 gas (0.04 Eth, 15 Euro), medium topology 6328411 gas (0.127 Eth, 43
Euro), and large topology 15223073 gas (0.3 Eth, 101 Euro). The additional relative gas cost
from the small to the medium sized topology is with 2.5 times more locations it consumes 2.8
times as many gas. When comparing the small topology to the large topology, the topology is
5 times bigger and the cost increases 6.8 times.

64

gas used

CHAPTER 7. EVALUATION

1le7?

1.6 HEE full consistency no reputation
m full consistency with reputation

10 25 50
number of locations

Figure 7.7: Total Cost of Tracking: Full Consistency Topology

7.3. EXECUTION COST

350000 A . .
—— full consistency no reputation

full consistency with reputation
325000 ~

300000 -

275000

250000 ~

gas used

225000 ~

200000 ~

175000 +

150000 +

0 10 20 30 40 50
number of locations

Figure 7.8: Cost of Inserting new Location into Graph: Full Consistency Topology

66

gas used

CHAPTER 7. EVALUATION

Il full consistency no reputation
3500000 1 BEE full consistency with reputation

3000000 -

2500000 -

2000000 +

1500000 4

1000000 -

500000 ~

0_

10 25 50
number of locations

Figure 7.9: Cost of Reward Distribution: Full Consistency Topology

7.3. EXECUTION COST 67

% éé déééé

Figure 7.10: Example Tree Topology

e smart contract with security: The absolute cost for all topology sizes are: small topology
2521754 gas (0.05 Eth, 17 Euro), medium topology 7125404 gas (0.143 Eth, 48 Euro), and
large topology 324963020 gas (0.35 Eth, 116 Euro). The additional relative gas cost from the
small to the medium sized topology it consumes also 2.8 times as many gas. When comparing
the small topology to the large topology, here the cost increases 6.5 times.

This indicates that independent of the topology, the total gas cost of tracking a mobile object
scales with number of locations transmitted equally.

7.3.5 Execution Cost Tree Topology

This topology acts as a possible real world example, where the graph created would look like a
tree. We decided to create a topology, which is a balanced binary tree for this. Each node has two
similarly weighted successor nodes with an edge pointing towards them, as seen in Figure 7.10.

Results

When comparing the total cost, as shown in Figure 7.11, for the tree like topology we observe the
following:

e smart contract without security: The absolute cost for all topology sizes are: small
topology 1977961 gas (0.04 Eth, 13 Euro), medium topology 5358451 gas (0.12 Eth, 36 Euro),
and large topology 12115812 gas (0.24 Eth, 81 Euro).

e smart contract with security: The absolute cost for all topology sizes are: small topology
2452181 gas (0.05 Eth, 17 Euro), medium topology 6451364 gas (0.13 Eth, 43 Euro), and large
topology 1468341 gas (0.31 Eth, 103 Euro).

e The contract with security only consumed 20% more gas than the contract without security
across all sizes of the topology.

68 CHAPTER 7. EVALUATION

le?

B balanced tree no reputation

149 mmm balanced tree with reputation

gas used

10 25 50
number of locations

Figure 7.11: Total Cost of Tracking: Tree Topology

e The gas consumption increases by same factor for each size as with the previous topologies
independent of which version of the contract is used.

When taking a look at the distribution between inserting locations cost and creating longest
path cost, around 90% of the total gas consumption for this topology is on the Searchers accounts
for appending locations for both versions of the smart contract. To understand this, we have a
look at the cost, as depicted in Figure 7.12, showing the cost for inserting a location into the
graph representation. This graph has the typical dent after the first location but a very much
irregular linear growth with many multiple short drops. This happens due to the implementation of
the Euclidean distance function which calculates the distance between locations submitted. When
calculating the distance between two vectors, first the vectors get subtracted from another and from
that result the absolute value is taken. In our implementation of the Euclidean distance function,
if this subtraction leads to a negative result the calculation requires more computation. It flips
the subtraction around to receive positive values. This extra step requires the euclidean distance to
perform more computation thus, requiring more gas. Setting up this topology in our test environment
requires the Euclidean distance function implemented to perform this extra computation for most
sightings. Every time a drop occurred, this extra computation was not required, leading to the
irregular growth. Whereas the previous topology has a constant linear growth due sightings requiring
the same amount of computation when calculating the Euclidean distance. Thus having most of

7.3. EXECUTION COST

gas used

350000 ~

325000 ~

300000 ~

275000 A

250000 A

225000

200000 -

175000 +

—— balanced tree no reputation
—— balanced tree with reputation

T
0 10 20 30 40 50

number of locations

Figure 7.12: Cost of Inserting new Location into Graph: Tree Topology

69

70 CHAPTER 7. EVALUATION

B balanced tree no reputation
mm balanced tree with reputation
800000 +
600000 +
=
oL
wl
S
(]
m
&0 400000 -
200000
0 .

10 25 50
number of locations

Figure 7.13: Cost of Finding Longest Path and Reward Distribution: Tree Topology

the distances being of different sign leads to an extra cost of approximately 10% . The cost of
distributing the rewards behaved unsurprisingly, as shown in Figure 7.13. This is due to the cost of
distribution of rewards being unaffected by the phenomena during the submission of sightings.

Another interesting finding is that storing zeros requires less storage in Solidity. In order to
create the previous topologies only x-coordinates of a sighting needed to be changed. Therefore,
all the y-coordinates were set to zero. When creating the tree topology all the sighting’s x and
y-coordinates were non-zero. This leads to the overall cost of submitting sightings to the longest
path calculation path being higher, which in result leads to the overall distribution between the total
cost of submitting sightings being 90%.

7.4 Summary

We summarize our findings in the following.

e Adding security to the tracking of mobile objects with our reputation-based approach can
cost between 10% and 45% money for each tracking job depending on the sightings made. A
general assumption of a 20% more cost showed to be appropriate.

7.4. SUMMARY 71

e The Euclidean distance implemented depending on the sightings can increase the overall cost
up to 10% more.

e As more sightings get submitted the overall cost is increasing, but the factor by which it
increases is always the same independent of topology. Doubling the number of submitted
sightings approximately multiplies the overall cost 2.5 times.

e Most of the cost for tracking a mobile object (around 80-90%) are caused during the submission
of sightings, so they are paid by Searchers.

e Running the smart contract on the same topology but with different sightings delivers similar
cost results.

e Transmitting sightings increases in price as more sightings have been transmitted before. The
general cost increase is linear as more sightings get transmitted.

e The first sighting always costs more than the following few sightings because the first sighting
initializes the contracts data structures.

As we have seen in the evaluation, the cost of submitting a location as a Searcher increases
linearly. In our approach, each submission contributing to the longest consistent path the Searcher
receives the same amount of Ether as an incentive. The problem being that some Searchers receive
less than the fair share of the reward. Therefore, it is important to make sure that each Searcher,
who contributed a location to the longest path, receives a fair share of the reward.

The amount of Ether spent for the submission of a location by each Searcher is publicly visible.
An improved fair incentive mechanism could be implemented by looking up the gas expenses for
each Searcher who contributed to the longest path and calculating individually the overall gas
consumption for submitting locations. This requires the Mislayer to pay enough money upfront to
the contract so that each successful Searcher receives the same reward. This requires the Searchers
to trust the Mislayer that he acts honestly and estimated the cost correctly. If she does not want
to spent too much on finding the location, he could limit the number of locations to be submitted,
which however could decrease the effectiveness of tracking.

72

CHAPTER 7. EVALUATION

Chapter 8

Summary and Future Work

Finally, we summarize our findings and contributions in this chapter and give an outlook on future
work.

8.1 Summary

The goal of this thesis was to design and implement a secure smart contract for a decentralized
mobile target tracking application dealing with sybil attacks, and to evaluate the cost of executing
these contracts with and without security features. First, we motivated the use of smart contracts
for mobile crowdsensing. Especially the functionality of these concepts has been highlighted. Ad-
ditionally we described and discussed related work. After presenting the background information
necessary, in the main part of the work, we designed the target environment for our system and
defined the problem to be solved. In particular, we identified sybil attacks as a crucial threat.

A reputation-based approach was designed as counter-measure and integrated into the Ethereum
system. As an additional contribution of this work, we analysed and described specific attacks tar-
geting our specific approach. In our implementation, we presented the challenges of the implemen-
tation in Solidity of our approaches and highlight decisions in the implementation made to decrease
to overall cost of running both approaches.

We evaluated the different topologies we used to compare the cost of running the smart contracts
with and without the reputation based approach to prevent sybil attacks. This has shown us that
the overall cost of the proposed security mechanisms would cause between 10 and 45% more cost.

8.2 Future Work

The security of mobile target tracking smart contracts is a relevant topic for both, mobile crowdsens-
ing and blockchain-based smart contract applications. This thesis is a contribution to both research
fields, and it provides a conceptual basis, as well as algorithms as a starting point for future work.
The following extensions might be of particular interest in the future.

In order to improve the reputation-based approach, it is important to implement concrete al-
gorithms and formulas to calculate reputation as presented in this work. To this end, it would be
interesting to investigate how reputation could be automatically inferred from previous actions of
participants recorded in the blockchain history.

73

74 CHAPTER 8. SUMMARY AND FUTURE WORK

For the overall success of decentralized smart contracts, more efficient testing capabilities for
smart contracts need to be developed, as currently the evaluation is very cumbersome.

Moreover, to enforce security for smart contracts, concrete implementations and evaluation of
the advanced attacks presented is necessary.

Implementing a mobile application, which acts as an interface between the smart contract and
the mobile sensor objects, is an important extension for the implementation of the overall system.

The operation of blockchain-based applications is paid in the associated cryptocurrency. Cryp-
tocurrencies currently have a high fluctuation in value, which leads to make planning the monetary
operational cost of that application very hard, or even impossible. Without knowledge of how much
the operation of an application costs in the future, one interesting approach could be to define the
reward in terms of "hard” (stable) currencies, e.g., by automatically adding the current change
rate to the smart contract. We see this as one of the biggest challenges, which blockchain-based
applications need to overcome.

Finally, it is anticipated that due to its novel approach and early development, the field of
decentralized mobile crowdsensing applications will continue to offer challenging open problems for
a long time in the future.

Bibliography

[But20]

[Com19]
[CV1T]

[Doel7]

[Eth20]
[Gha20]
[Gro20]
[GYL11]

[JCK15]

[Kas17]

[Kral§]

[LSZ16]

[LYL*18]

[Mar19]

Vitalik Buterin. A next-generation smart contract and decentralized application plat-
form, 2020.

Christina Comben. Three huge names that are making Ethereum their own, May 2019.

Christian Cachin and Marko Vukolic. Blockchains consensus protocols in the wild. 07
2017.

Alex Doe. Transaction starvation in ethereum. https://ethereum.stackexchange.
com/questions/28590/transaction-starvation-in-ethereum, September 2017.

Etherscan. The Ethereum blockchain explorer, 2020.
Roham Gharegozlou. Cryptokitties. https://www.cryptokitties.co/, 2020.
Truffle Blockchain Group. Sweet tools for smart contracts, 2020.

R. K. Ganti, F. Ye, and H. Lei. Mobile crowdsensing: current state and future chal-
lenges. IEEE Communications Magazine, 49(11):32-39, 2011.

R. John, J. P. Cherian, and J. J. Kizhakkethottam. A survey of techniques to pre-
vent sybil attacks. In 2015 International Conference on Soft-Computing and Networks
Security (ICSNS), pages 1-6, 2015.

Preethi Kasireddy. How does ethereum work, anyway? https://medium.com/
@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369, September
2017.

Peter M. Krafft. Focus: An experimental study of cryptocurrency market dynamics.
In CHI ’18 Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems Paper No. 605. ACM Press, April 2018.

J. Liu, H. Shen, and X. Zhang. A survey of mobile crowdsensing techniques: A crit-
ical component for the internet of things. In 2016 25th International Conference on
Computer Communication and Networks (ICCCN), pages 1-6, 2016.

J. Lin, D. Yang, M. Li, J. Xu, and G. Xue. Frameworks for privacy-preserving mo-
bile crowdsensing incentive mechanisms. IEEFE Transactions on Mobile Computing,
17(8):1851-1864, 2018.

Coin MarketCap. Top 100 cryptocurrencies by market capitalization. https://
coinmarketcap.com, August 2019.

75

76

[Mor20]
[RHIS]

[Sail8a]

[Sail8b]

[Scr19]

[SLD15]

[Stal8]

[Vit17]

[WCMA14]

[Wo020]

[WWDR11]

[(WYJ*19]

[XJX*18]

[YY18]

BIBLIOGRAPHY

Henrique Moreira. Smart contracts and Solidity, 2020.

Aniket Kate Ryan Henry, Amir Herzberg. Blockchain access privacy: Challenges and
directions. https://ieeexplore.ieee.org/document/8425613, August 2018.

Vaibhav Saini. ConsensusPedia: An Encyclopedia of
30+ Consensus Algorithms. https://hackernoon.com/
consensuspedia-an-encyclopedia-of-29-consensus-algorithms-e9c4b4b7d08f,

June 2018.

Vaibhav Saini. Consensuspedia: An encyclopedia of
30+ consensus algorithms. https://hackernoon.com/
consensuspedia-an-encyclopedia-of-29-consensus-algorithms-e9c4b4b7d08£/,
June 2018.

First Scribe. Why are big corporations minting their
own cryptocurrencies? https://www.computenorth.com/
why-big-corporations-are-minting-their-own-cryptocurrencies/, June 2019.

C. Song, M. Liu, and X. Dai. Remote cloud or local crowd: Communicating and sharing
the crowdsensing data. In 2015 IEEE Fifth International Conference on Big Data and
Cloud Computing, pages 293-297, 2015.

Stefan Stankovic. Cryptocurrency regulation in the european union. https://unblock.
net/cryptocurrency-regulation-in-the-european-union/, July 2018.

Vitalik Buterin. A Prehistory of the Ethereum Protocol. https://vitalik.ca/
general/2017/09/14/prehistory.html, September 2017.

X. Wang, W. Cheng, P. Mohapatra, and T. Abdelzaher. Enabling reputation and
trust in privacy-preserving mobile sensing. IFEFE Transactions on Mobile Computing,
13(12):2777-2790, 2014.

DR. Gavin Wood. FEthereum: A secure decentralised generalised transaction ledger
eip-150 revision. http://gavwood.com/Paper.pdf, 2020.

H. Weinschrott, J. Weisser, F. Diirr, and K. Rothermel. Participatory sensing algo-
rithms for mobile object discovery in urban areas. In 2011 IEEFE International Confer-
ence on Pervasive Computing and Communications (PerCom), pages 128-135, 2011.

X. Wei, Y. Yan, W. Jiang, J. Shen, and X. Qiu. A blockchain based mobile crowdsensing
market. China Communications, 16(6):31-41, 2019.

L. Xiao, D. Jiang, D. Xu, W. Su, N. An, and D. Wang. Secure mobile crowdsensing
based on deep learning. China Communications, 15(10):1-11, 2018.

Fei-Yue Wang Yong Yuan. Blockchain and cryptocurrencies: Model, techniques, and
application. https://ieeexplore.ieee.org/document/8425613, July 2018.

BIBLIOGRAPHY

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect state-
ments from other sources contained therein as quotations. Neither
this work nor significant parts of it were part of another exami-
nation procedure. I have not published this work in whole or in
part before. The electronic copy is consistent with all submitted
copies.

place, date, signature

7

