
Institute for Natural Language Processing

University Stuttgart

Pfaffenwaldring 5B

D-70569 Stuttgart

Multitask Classification across
Psychological Models of Emotion and

Affect

Hai Dang Nguyen

Bachelor Thesis

Examiner: Prof. Dr. Sebastian Padó
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Abstract

The classification of emotions from text is usually done on basis of

a single psychological model of emotion and affect with a singletask

classifier. The goal of this bachelor thesis is to evaluate the merit of

multitask learning across emotion models. Here, a multitask approach

is taken, where multiple data sets, each annotated on basis of a differ-

ent psychological model, are trained in a multiheaded neural network.

Comparing the F1-score / mean-squared-error of the multitask classi-

fiers to the singletask classifiers show no improvement.

Abstract

Die Klassifizierung von Emotionen aus Text wird normalerweise

auf Basis eines einzelnen psychologischen Modells von Emotion und

Affekt mit einem singletask Klassifizierer erwirkt. Das Ziel dieser Bach-

elorarbeit ist es, den Vorzug vom multitask Lernen von Emotionsmod-

ellen zu evaluieren. Hierbei wird ein multitask Ansatz genommen, bei

dem mehrere Datensätze, die jeweils auf Basis unterschiedlicher psy-

chologischer Modelle annotiert wurden, in einem mehrköpfigen neu-

ronalem Netzwerk trainiert werden. Der Vergleich des F-Maß / mit-

tleren quadratischen Fehlers der multitask Klassifizierer und der sin-

gletask Klassifizierer zeigt keine Verbesserung.
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1 Introduction

Emotion analysis is the identification of emotions, it answers the question of

what feelings lie behind a certain action, picture or other media. Research

on emotions is being done in multiple fields including computer science. One

research topic is the extraction of emotion from text. Here, scientists build

and train a classifier to match an emotion to a text input. That way, they

try to answer various research questions, like how well specific learning ap-

proaches perform or how different emotions are expressed on different corpora

(Roberts et al. (2012)).

Compared to sentiment analysis, the results of emotion analysis is more nu-

anced. While sentiment analysis can find out what opinion or sentiment is

stated (either positive or negative), emotion analyses the underlying emo-

tions. As an example, sentiment analysis on user reviews can detect that

users are reporting negative reviews, while emotion analysis can determine

whether the users are frustrated, disappointed or angry, which makes it a

useful tool for companies to understand the costumer, according to Yam

(2015). Another use case is the analysis of open-ended survey responses, as

described in Mossholder et al. (1995), to measure the happiness of our so-

ciety and Desmet and Hoste (2013) propose that it can be used for suicide

prevention.

Since emotion is a rather abstract concept, psychologists have developed emo-

tion models which can have varying degrees of complexity and depth. Those

models are used to obtain classes of emotions for the machine to match. One

model is the basic emotion model described in Ekman and Friesen (1971) and

is often used in emotion analysis. A more complex model is the circumplex

model proposed by Russell (1980) and improved by Mehrabian (1980) and

was used in Zhang et al. (2015) on psychobiological data, like breathing rate.

There is by no means a consensus on a “best” emotion model and different

models have been criticized for different reasons. For example, Ortony and

Turner (1990) question the existence of basic emotions and Mesquita and
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Frijda (1992) found out that emotions differ from culture to culture. That

means that the emotion model used can vary from research to research and

as such many emotion classifiers exist that are based on different models.

In other words, the corpora that a classifier is trained on is annotated on basis

of a specific model which means that the classifier can only match emotions

to the emotion classes of that model. Also, it is not possible for that classifier

to train on different corpora of another model. Although some models have

many similarities, other models are fundamentally different which makes a

mapping between models not trivial. As an example, a classifier based on Ek-

man’s model does not analyse the intensity of a emotion, whereas a classifier

based on a model which also takes account of the intensity of an emotion,

like Plutchik’s model, will analyse it.

By using a multitask learning method across different emotion models one

can circumvent this problem. Multitask learning (MTL) is a method, where

the learner tries to optimize multiple similar tasks instead of a single one.

MTL is described in detail in Caruana (1997). With MTL one classifier that

trains on different emotion models is built. This classifier consists of emo-

tion model specific layers and shared layers. When training on a corpora of

a specific model the training feedback not only improves the model specific

layer but also the shared layers, which means that classification for the dif-

ferent emotion models is improved as well. Not only can all kinds of different

corpora be used now, similarities between the models can be exploited to im-

prove the learning effect by sharing information and feedback. Furthermore,

once the classifier is sufficiently trained, a corpora that is annotated on basis

of one specific emotion model can be used as input to determine annotations

for all other emotion models and expand that corpora such that it covers all

learned emotion models.

The multitask learning method may prove useful to create an annotator,

which can create annotations for every emotion model given a text input

and eventually be able to annotate whole corporas automatically. But it is to

be seen, if the multitask learning approach introduces to much noise to the
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annotations, or if the multitask classifier can exploit the similarities shared

by the tasks and improve the performance in terms of precision and recall.

Concretely, the research question is: Are annotations by a multitask learning

classifier too noisy or good enough to observe interactions between the mod-

els?

Our hypothesis is, that the latter is true and thus the goal of this bachelor

thesis is to evaluate the merit of multitask learning across emotion models.

Specifically, the F1-score / mean-squared-error of a multitask classifier is to

be compared to the singletask classifier.

This thesis is structered as follows: After this introduction, there will be an

overview over the related work. There, brief summaries of the psychological

emotion models that are used are given. Further, the basics of text classi-

fication and its evaluation are formalized. Afterwards, influencial papers on

emotion analysis from text are listed and finally relevant papers on MTL are

shown. In the next section, our methods are explained, i.e., how our models

were build and what parameters were tuned. In section 4, the experiment is

presented. This contains what data sets were used in which setting and what

result came out. Then the discussion will take place, where the effects of

MTL is evaluated and where it is decided to accept or reject our hypothesis.

The final section concludes this thesis and there will be an outlook on future

works.

2 Related Work

2.1 Emotion models in psychology

As mentioned there are several emotion models that resulted from work of

different scientists. The emotion models that will be used for our classifier

are as follows:
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Six basic Ekman emotions

Ekman and Friesen (1971) researched, if emotion and facial expressions were

consistent across cultures. In their study and similar studies of other scien-

tists, they found evidence to support their hypothesis, that there are some

discrete emotions that are universal. They postulate that humans have six

basic emotions that are consistent across cultures. These emotions are hap-

piness, anger, surprise, fear, sadness and disgust.

Plutchik’s wheel of emotions

In Plutchik (1980), he describes a model with eight basic emotions; to the six

basic Ekman emotions trust and anticipation are added. The eight emotions

are placed on a wheel, where similar emotions are next to each other and

opposite emotions like joy and sadness are opposite to each other. Further

each emotion has an intensity, with the more intense emotion in the inner

part while the less intense emotions are on the outer part of the wheel,

e.g., annoyance to anger to rage. Also, there are emotions in between two

neighbouring basic emotion which indicates a mixture of these emotion, for

example love is a mixture of joy and trust.

Circumplex model by Russell (1980)

This model maps emotions on a two-dimensional plane, with valence and

arousal as dimensions. Russel postulates that emotion can be represented by

these two quantities. For example, sleepiness has a very negativ arousal value

and a near neutral valence value while excitement has a high arousal value

and a positiv valence value. Later, in Mehrabian (1980), a third dimension

dominance was added which represented how much the emotion is controlling

the feeler.

Patterns of cognitive appraisal by Smith and Ellsworth (1985)

Smith and Ellsworth use different dimensions of cognitive appraisal to pa-

rameterise emotions. Cognitive appraisal refers to Scherer (1982), specifically
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his Component Process Model. The dimensions are: pleasentness, responsi-

bility/control, certainty, attention, effort and situational control.

2.2 Text classification

Classification is a method that assigns labels or classes to object representa-

tions. In text classification these object representations can be phrases, titles

or other bodies of text. As a general term, they are called documents.

We define these documents as xi ∈ X (X is the document space), which are

to be mapped to labels Y = {y1, ..., yk}. In supervised learning, a data set

with correctly annotated instances is given, with the goal to train a clas-

sifier that can then classify unseen data correctly. A classifier is a function

f : X → Y and the objective of machine learning methods is to learn a

function f such that the error is minimized.

While this thesis addresses different emotions as labels, they can be many

different things, like language identification (Lui and Baldwin (2012)), topic

labeling (Sriram et al. (2010)), spam filtering (Cohen et al. (1996)) and oth-

ers.

Theoretically, all classification algorithms for classification can be used in

text classification, but due to certain characteristics that text classification

has, e.g., high dimensional and sparse feature spaces, some algorithms are to

be preferred. A survey on text classification algortihms by Aggarwal and Zhai

(2012) found out that most algortihms for classification like decision trees,

rules, Bayes methods, nearest neighbor classifiers, SVM classifiers, and neural

networks were adapted and used for text classification. In particular neural

networks and SVM classifiers, which seem to work well with the aforemen-

tioned charecteristics, were researched. SVMs or Support-Vector-Machines

were first proposed in Cortes and Vapnik (1995) and one of the first im-

plementations for text classification was in Joachims (1998). More recently,

neural networks based on long short-term memory (LSTM) or recurrent con-

volutional neural networks (R-CNN) have shown great performance, like in
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Lai et al. (2015).

2.3 Emotion analysis from text

Now, we try to give a comprehensive, albeit not complete, overview over the

various works in this field. For more details we refer to the several surveys

on Emotion Analysis like Hakak et al. (2017) or Kim and Klinger (2019).

As mentioned in the introduction, many emotion classifiers exist that are

based on different models. Early works on emotion analysis from text like

Alm et al. (2005) or Strapparava and Mihalcea (2008) used a text-based

emotion classifier to match text to the basic emotions in Ekman’s model,

but that does not mean that more recent work do not use his model, as Li

et al. (2017) shows, where a emotion labelled dialog dataset was created.

Mohammad and Kiritchenko (2015), Suttles and Ide (2013) and Meo and

Sulis (2017) are examples were Plutchik’s model is used to analyse tweets.

It seems that these discrete emotion models are more frequently used than

the other two models, perhaps due to their simpler structure. Still, the cir-

cumplex model is used in Hasan et al. (2014), Buechel and Hahn (2017) and

several other works. The model of Smith and Ellsworth however did not find

any application in emotion analysis from text so far and is currently worked

with in an unpublished paper in our work group.

As for the classifier, there are many possible approaches. The Support-Vector-

Machine (SVM) is one popular approach that is used in Roberts et al. (2012)

or Zehe et al. (2016). Yu (2008) compared SVM to a Naive Bayes approach.

Maximum Entropy classifier are used in Rao et al. (2016) and Wicentowski

and Sydes (2012), while using decision trees is also a possibility, as Samoth-

rakis and Fasli (2015) did. There are many more approaches like unsupervised

learning or lexicon based approaches that have been trialed before and it is

also possible to build multiple classifiers and determine the best perform-

ing one, as in Perikos and Hatzilygeroudis (2016), Suttles and Ide (2013) or

Hasan et al. (2014).
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For neural networks, Kim (2014) employed a convolutional neural network

(CNN) with pre-trained word vectors to classify sentiment on sentence level.

Su et al. (2018) proposes that using a long-short term memory (LSTM)-based

approach yields is an improvement over a CNN-based approach.

For the examined text corpora, there are a variety of possibilities: tweets

(Roberts et al. (2012), Suttles and Ide (2013)), novels (Mohammad (2013)),

news headlines (Strapparava and Mihalcea (2008)) and even suicide notes

(Wicentowski and Sydes (2012)) were analysed.

A problem however is that different annotated corpora not only differ in the

underlying emotion model but also in their structure. Work to unify a collec-

tion of corpora to a common file format with a common annotation schema

has already been done in Bostan and Klinger (2018) which is essential to this

research since we will use the unified corpora in our research.

2.4 Multitask learning

We speak of Multi Task Learning, when a machine learning model is trained

on more than one task. MTL is described in Caruana (1997). There, not only

a motivation and possible applications are given, but also the core mecha-

nisms of MTL that explain why it works. These are:

• Statistical Data Amplification: Because of the increase in sample size

due the multiple tasks and added individual noises of other tasks, each

tasks can perform better

• Attribute Selection: Directly as a consequence of statistical data ampli-

fication, the MTL model can now better distinguish between relevant

and irrelevant features

• Eavesdropping: Tasks that have difficulty learning a certain feature can

eavesdrop on task, for which that feature is easy to learn, which helps

the learning of that feature
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• Representation Bias: MTL biases the model to prefer representations

that other tasks also prefer and avoid representations that other tasks

also avoid

According to Ruder (2017) MTL has been used successfully in many do-

mains already, like natural language processing, speech recognition (Deng

et al. (2013)), computer vision (Girshick (2015)) and drug discovery (Ram-

sundar et al. (2015)). Further, they state that there are two main methods for

MTL in context of deep learning: hard and soft parameter tuning. For hard

parameter tuning, there are shared hidden layers between all taks with sev-

eral indivdual singletask layers on top. With soft parameter tuning, instead

of shared parameters, there are task specific parameters that are constrained

in such a way, so that they still are similar. Hard parameter sharing is ad-

vantageous if the tasks are closely related, if not, then soft parameter tuning

is more beneficial, where the model can also learn what to share.

MTL can also be applied in non-neural models like linear models, kernel

methods, and Bayesian algorithms but most commonly Deep Learning is

used as a model.

Collobert and Weston (2008) and Liu et al. (2016) used MTL for text clas-

sification. They proposed different MTL-architectures for natural language

processing and showed the effectiveness of the MTL-classifier on several text-

classification tasks, compared to STL-classifier. However, the usage of MTL

across different emotion models has, as far as we know, not been done before.

3 Methods

In the following section an overview over the learning models that are used

and how they were build is given. In general, our models are fed with features

and are expected a prediction, which depending on the data set is a singular

emotion, a set of emotion or scalar values for different attribute dimensions.
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3.1 Data set splitting

To train and evaluate the classifiers, the data set is often split into a train-

ing set and a test set. In the learning process, the classifier receives input

instances from the training set and compares the prediction to the actual la-

bel. The training set is randomly split in two parts, where one part is trained

upon while the other part is a validation set, where the current performance

of the classifier can be meassured and if necessary parameters are tuned.

Once confident in the classifier, its performance is measured on the test set,

which contains never seen before instances.

3.2 Feature extraction

To make documents comprehensive for most algorithms, they need to be

represented by a feature vector, i.e., an n-dimensional vector which contains

numerical representations of an object. There are different methods to vec-

torize a document, one is to encode each occurence of a term in a binary

vector. In this case the dimension of the vector equals the size of the vocab-

ulary, i.e., the amount of unique words in the training set. Alternativly, one

can use term frequencies or something more sophisticated like tf-idf values,

which is one of the methods that were used in this work. Tf-idf weighting is a

weighting scheme that assigns higher weights to less common words and lower

weights to common words, that often have less importance for classification.

The formular for the tf-idf value for a term t in a document d is:

tf-idf(t, d) = tf(t, d) · idf(t)

with tf being the term frequency, i.e., the number of occurences of t in d and

idf being the inverse document frequency, which is calculated as:

idf(t) = log
N

ΣD:t∈D1
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N is the amount of documents in the set. In the scikit learn vectorizer that

is used here, the idf-value is also smoothed:

idf(t) = log
1 + N

1 + ΣD:t∈D1
+ 1

There are also several preprocessing methods like stemming, lemmatization

and stop words removal to reduce the amount of features and increase per-

formance.

3.3 Singletask neural networks

3.3.1 SVMs and other learning methods

To get an estimate on how regular, out of the box classifiers perform, we use

the scikit-learn library to build and train singletask classifier for each emo-

tion model. Commonly used learning methods were used, i.e., Naive Bayes,

Support Vector Machines, maximimum Entropy and Perceptron. As for the

features, the TfidfVectorizer class was used to extract the tf-idf values from

the documents. The classifiers were then fitted with the feature vectors and

the annotations. Once trained, those classifiers were able to predict the labels

given the feature vectors of the test set.

3.3.2 Neural networks

The idea was to build the multitask classifier out of the singletask classifier.

To do that, the singletask classifier had to have a compatible architecture

with the structure of the multitask classifier. It was decided that the multitask

classifier would be a multiheaded neural network, and so it made sense to

build singletask classifiers using neural networks. For that there are two main

libraries in python: keras and pytorch. The latter was used to build the

models, since it offered more flexibility.

For the uninitiated, a short description for neural networks is given. A neural

network typically consists of an input layer, one or more hidden layers and
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an output layer. Each layer consists of neurons, and each neuron receives a

set of input values xi. A neuron has certain weights wi, assigned to each of

its inputs and a bias value b. Normally, every neuron computes its output as:

f(x) = b + Σwi · xi

This output is then used as input for the neurons in the next layer, repeating

until the output layer. Figure 1 shows the architecture of a fully connected

neural network with one hidden layer. Another feature of neural networks are

Figure 1: Architecture of a fully connected neural network

their activation functions. These are non-linear functions that are applied on

each output, so that the neural network can learn non-linear correlations.

Commonly used activation functions are ReLu and sigmoid:

ReLu(x) = max(x, 0)

sigmoid(x) =
ex

ex + 1
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Supervised learning in neural networks works as follows: In classification, a

loss function is a way to measure the performance of a classifier. It compares

the predicted labels with the actual labels and tries to minimize its loss. In

neural networks, upon predicting a batch of labels, the loss is calculated and

the weight and biases are changed to reduce the loss. This is done by back-

propagation, where the gradient of the loss function is calculated to get the

direction of change for the parameters of the neural network. This optimiza-

tion step can be done via algortihms like stochastic gradient descent.

The pytorch library comes with many different loss functions and optimiz-

ers. For regression problems like VAD, MSELoss is used while for multiclass

problems like Ekman NLLLoss is used and for multilabel problem BCELoss

is used.

3.3.3 Embeddings and LSTMs

Another way to extract features in text classification is to use pre-trained

embeddings. Here, each word is represented by a vector of fixed size d, such

that semantically similar words are closer in the d-dimensional vector space.

To use embeddings, the documents is reduced to a bag-of-word representa-

tion, i.e., a set of token-ids and is given to a neural network, which has an

embedding layer. There, each token-id is turned into the corresponding word

vector, using the embedded weight matrix with which the embedding layer

was initialized. The advantage of embeddings is that, compared to the sparse

high dimensional feature space when using tf-idf values, its feature space is

denser and has lower dimensionality, which contributes to its performance.

The main motivator for using embeddings however, is that it works well with

a LSTM architecture. LSTM stands for Long Short-Term Memory and was

first proposed in Hochreiter and Schmidhuber (1997). In contrast to other

recurrent neural networks (RNNs), which neurons are connected along a tem-

poral sequence, enabling the propagation of historical information, LSTMs

can retain the information over a long period of time. As such, by using

embeddings, where each position of a value in a word vector is correlated
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with the same position of the next word vectors, the LSTM can learn that

correlation, resulting in better performance.

3.3.4 Overall structure

The overall structure of our neural networks were all similar with minor dif-

ferences due to the amount of emotions in the model and the amount of

emotions to predict. An exception is the model for VAD, which unlike the

other models is a linear regressor and not a classifier. It is assumed that every

model gets the features and annotations of the training and validation set as

input. Three different types of neural networks were implemented for each

emotion model: one with tf-idf values as features, one which used pre-trained

embedding and one which also used those embeddings but was a LSTM. The

ouput vector, contains a value for each possible emotion in the psycological

model.

For the first type, a simple neural network with one fully connected linear

layer was build. The input dimension was equal to the number of features

and the output dimension was the amount of classes of the underlying emo-

tion model. The weights of the layer are randomized on initialization. For

the Ekman classifiers, the output went through softmax function, so that

classifier can pick the emotion with the highest outgoing value as prediction.

For all other classifiers, barring the VAD one, a sigmoid function is used in-

stead. Using the sigmoid function, the outgoing values can be interpreted as

probabilities for certain emotions. Here, the classifier predicts all emotions

with probabilty greater than fifty percent.

For the second type, an embedding layer is simply added before the linear

layer. The weights of this embedding layer is initialized with the weights from

the GloVe vectors (Pennington et al. (2014)), that are used as pre-trained

embeddings. Those embeddings were trained on about two billion tweets and

the dimension size is 200. The features in this setting are token IDs. Each

token ID correponds to a row in the pre-trained weight table and after pass-

ing through the embedding layer, the one dimensional list of token IDs is
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Embedding layer

LSTM layer
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Figure 2: Architecture of the multitask neural network

now a two dimensional list of the corresponding GloVe vectors. This list is

then flattened, i.e., transformed to a one dimensional list by concatenating

the GloVe vectors and put into the linear layer, which once again outputs

the probabilities for the different classes.

The third type is similar to the previous type, but this time there is a LSTM

layer after the embedding layer and before the flattening.

3.4 Multitask neural network

The architecture of the multitask model is a multiheaded neural network.

It consists of shared layers, through which all inputs go and multiple heads,

i.e., multiple task specific layers, that each produce an output. The shared

layer is a linear layer, if embeddings are used, an embedding layer and an

LSTM layer preceeds it. Each head consists of a activation function and a

linear layer, with a fitting activation function for the output, i.e., softmax for
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multiclass problems, sigmoid for multilabel problems and none for regression

problems. In figure 2 the architecture of a 5-headed neural network is illus-

trated.

The general idea behind multiheaded neural networks is that the shared

layer is learning patterns that are relevant for every head, while each head is

learning their specific task only. As a result, for each input multiple outputs

are obtained, one for each head. Each head also has a specific loss function,

which yields one loss per head. Depending on the training instance, the re-

spective loss is used in backpropagation. When inputting first data set the

shared layer and the first head is trained. The next data sets now have the

advantage of already trained shared layers, which should increase their per-

formance. Training multiple data sets also makes sure, that the shared layers

are not overfitted and can generalize well, which should be beneficial for pre-

dicting the unseen test instances later in the testing phase.

For the training set / validation set split, a randomized 80-20 split was used,

since k-fold cross-validation would only extend the already long training pro-

cess.

3.5 Evaluation

One common evaluation metric for classification tasks is the f1-score. The

f1-score usually is the harmonic mean of the precision p and recall r:

F1 = 2 · p · r
p + r

Precision and recall are defined for each label l as:

pl =
tp

tp + fp
rl =

tp

tp + fn

tp is the amount of instances, where the label was true and predicted, fp is

the amount of instances, where the the label was predicted but not true and

fn is the amount of instances, where the label was true but not predicted.

Those label dependent precision and recall values can be macro-averaged by

18



computing the f1-score from their means or they can be micro-averaged by

computing label dependent f1-scores and then taking the mean score.

4 Experiment

4.1 Data sets

Annotated corpora for each emotion model will be taken from Bostan and

Klinger (2018). There, existing datasets of emotion-annotated texts were col-

lected and put in a unified format. The data sets range from different sources

and subjects and use different emotion models for the annotation. Concretly,

the data sets are: TEC (Twitter Emotion Corpus by Mohammad (2012))

which consists of over 20,000 tweets annotated corresponding to the six basic

Ekman emotion model, SSEC (Stance Sentiment Emotion Corpus by Schuff

et al. (2017)) which was also consists of almost 5,000 tweets but was an-

notated using Plutchik’s emotion model, EmoBank (by Buechel and Hahn

(2017)) which consists of over 10,000 sentences, annotated according to the

valence-arousal-dominance model and ISEAR (International Survey On Emo-

tion Antecedents And Reactions by Scherer and Wallbott (1994)), consisting

of 7,665 questionaire answers labelled with the six basic Ekman emotions

extended with the emotions shame and guilt. The corpora, annotated on the

emotion model by Smith and Ellsworth, containing about 1,000 sentences,

is provided from another work in our work group: Hofmann et al. (2020).

The data sets are to be divided into a training set and a test set. Data sets,

that were not already divided, were split randomly. The training set and the

test set are pairwise disjoint. During developement the training was further

divided into training and validation. Once the hyperparameters were opti-

mized, the results were measured on the test set. For the MTL classifier, the

union of all data sets was used.
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4.2 Experimental settings

There are different experimental settings that were used. The first setting

that could be set was the different mode of feature extraction. Some classi-

fiers used tf-idf values as features while the other possibility was the use of

pre-trained embeddings. As mentioned, the weights from the GloVe vectors

Pennington et al. (2014) were used. In particular, the GloVe vectors, which

were obtained from about 2 billion tweets, were used. The next experimental

setting was the model of the classifier. One possibility was the SVM from the

scikit-learn library, which only works with tf-idf values as features. Another

posssibility was the singletask neural network that was built specifically for

each data set and the last option was the multitask neural network with the

multihead architecture. If the latter case was chosen, one had to decide on a

third experimental setting, that is which data sets to train the multiheaded

neural network on. Training on a data set, would train the shared layer and

its respective head. Since there are five data sets, there are 32 possible com-

binations of chosen data sets to train from, including the case where none are

trained. For this experiment, the combinations were limited to training on

exactly one, two, or all five data sets. Training on only one data set, makes

that effectivly a singletask classifier. Also, to test the classifier on a certain

data set, it has to be trained on at least said data set. That means that the

multihead classifiers in the result table for the TEC data set were all trained

on at least the TEC data set. The same holds for all other data sets.

Knowing this, the resulting tables can be explained as follows: the tables

1 to 5 show the measured results of the respective data sets. In each table

the f1-score is shown, where each columns represents a label and the last

two columns show the micro and macro average. Each row represents a clas-

sifier with a specific experimental setting. The classifiers are split into two

sets, seperated by a horizontal line. The classifiers in the first set use the

tfidf-values, while the classifiers in the second set use embeddings. In both

sets the first rows are the singletask classifiers: the SVM (only in the first

set), the singletask neural network (singletask) and the multihead classifiers
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SVM 0.39 0.21 0.62 0.71 0.49 0.54 0.49 0.52

singletask 0.37 0.3 0.61 0.7 0.46 0.52 0.49 0.5

1-head 0.37 0.25 0.6 0.66 0.46 0.52 0.48 0.48

5-head 0.35 0.26 0.59 0.67 0.43 0.52 0.47 0.47

+SSEC 0.36 0.28 0.62 0.69 0.46 0.52 0.49 0.49

+ISEAR 0.39 0.28 0.62 0.69 0.43 0.52 0.49 0.49

+S&E 0.37 0.25 0.61 0.7 0.43 0.51 0.48 0.48

+Emobank 0.35 0.27 0.61 0.68 0.45 0.52 0.48 0.49

singletask 0.25 0.11 0.5 0.66 0.4 0.44 0.39 0.4

1-head 0.22 0.11 0.47 0.63 0.36 0.42 0.37 0.38

5-head 0.26 0.09 0.49 0.62 0.26 0.34 0.34 0.37

+SSEC 0.26 0.14 0.46 0.65 0.38 0.44 0.39 0.39

+ISEAR 0.26 0.17 0.51 0.59 0.41 0.41 0.39 0.4

+S&E 0.27 0.14 0.48 0.63 0.39 0.45 0.39 0.4

+Emobank 0.27 0.12 0.47 0.63 0.38 0.41 0.38 0.39

Table 1: f1-score for TEC data set, the first set of rows are classifiers using

tf-idf values as features, the second set of rows are LSTMs with embeddings

trained only on the tested data set (1-head). The next five rows represent the

multitask classifiers: one trained on all data sets (5-heads) and four trained

on two data sets: the tested data set and another secondary data set (+data

set).

4.3 Results

Looking at the table 1, the f1-scores for our singletask neural network, using

tf-idf values as features, performs best. It also compares relativly well to
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SVM 0.58 0.57 0.69 0.75 0.75 0.53 0.84 0.81 0.69 0.69

singletask 0.59 0.57 0.67 0.73 0.74 0.56 0.84 0.8 0.69 0.69

1-head 0.49 0.52 0.7 0.74 0.77 0.46 0.84 0.8 0.66 0.69

5-head 0.59 0.44 0.7 0.73 0.74 0.56 0.84 0.79 0.67 0.68

+TEC 0.57 0.47 0.69 0.74 0.74 0.53 0.84 0.78 0.67 0.68

+ISEAR 0.57 0.49 0.68 0.74 0.72 0.51 0.84 0.8 0.67 0.68

+S&E 0.46 0.32 0.7 0.74 0.76 0.35 0.84 0.8 0.62 0.67

+Emobank 0.29 0.25 0.71 0.74 0.78 0.29 0.84 0.79 0.59 0.67

singletask 0.56 0.36 0.69 0.7 0.68 0.53 0.84 0.74 0.64 0.64

1-head 0.61 0.56 0.68 0.69 0.72 0.56 0.83 0.76 0.68 0.68

5-head 0.58 0.46 0.67 0.72 0.68 0.56 0.84 0.74 0.65 0.66

+TEC 0.57 0.46 0.7 0.74 0.72 0.53 0.84 0.78 0.67 0.67

+ISEAR 0.56 0.36 0.69 0.7 0.68 0.53 0.84 0.74 0.64 0.64

+S&E 0.6 0.54 0.65 0.72 0.71 0.57 0.83 0.76 0.67 0.68

+Emobank 0 0 0.7 0.74 0.76 0 0.84 0.79 0.48 0.48

Table 2: f1-score for SSEC data set, the first set of rows are classifiers using

tf-idf values as features, the second set of rows are LSTMs with embeddings

other models, like the SVM classifier which had an f1-score of 0.49 (micro)

and 0.52 (macro) or the one in Bostan and Klinger (2018), which had a

micro averaged f1-score of 0.48 with the macro average being the same. For

the LSTMs, they are about 0.1 lower than their counterparts. In both cases

however, slight improvements can be noticed when training is done on two

data sets compared to training only on one data set in the multihead network.

Across the labels, no remarkable outliers can be seen.

In table 2 are the results for the SSEC data set, which was annotated using

Plutchik’s wheel of emotions. All of the singleask classifier including the SVM
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SVM 0.46 0.59 0.71 0.46 0.71 0.63 0.51 0 0.51 0.51

singletask 0.4 0.59 0.68 0.45 0.66 0.57 0.51 0 0.48 0.48

1-head 0.39 0.59 0.67 0.42 0.67 0.55 0.5 0 0.39 0.43

5-head 0.39 0.55 0.69 0.44 0.68 0.58 0.5 0 0.4 0.44

+TEC 0.36 0.61 0.67 0.45 0.66 0.55 0.51 0 0.39 0.43

+SSEC 0.35 0.57 0.67 0.43 0.68 0.57 0.5 0 0.39 0.43

+S&E 0.42 0.56 0.67 0.42 0.65 0.56 0.49 0 0.39 0.43

+Emobank 0.36 0.59 0.65 0.44 0.67 0.6 0.5 0 0.39 0.43

singletask 0.22 0.43 0.63 0.37 0.57 0.45 0.26 0 0.37 0.37

1-head 0.26 0.39 0.52 0.28 0.48 0.4 0.29 0 0.26 0.29

5-head 0.25 0.3 0.44 0.19 0.48 0.41 0.15 0 0.23 0.27

+TEC 0.29 0.32 0.6 0.25 0.59 0.44 0.31 0 0.28 0.31

+SSEC 0.34 0.34 0.53 0.32 0.56 0.42 0.32 0 0.29 0.33

+S&E 0.24 0.36 0.56 0.33 0.5 0.45 0.34 0 0.29 0.32

+Emobank 0.25 0.41 0.59 0.29 0.51 0.46 0.24 0 0.27 0.3

Table 3: f1-score for ISEAR data set, the first set of rows are classifiers using

tf-idf values as features, the second set of rows are LSTMs with embeddings

perform similar across the board. Compared to Schuff et al. (2017), one can

see that the results are an improvement. Here, the multitask classifiers do not

have an advantage over the singletask classifiers. Intersestingly, a drop in th

f1-score for the label anticipation can be seen in the multitask models. While

all other labels have comparable f1-scores, the 1-head score for anticipation

is usually higher than the other classifiers.

Another data set is the ISEAR data set, which expanded Ekman’s six

basic emotions by guilt and shame. Comparing the results of the SVM and

singletask neural networks with tf-idf values as features to the results in
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SVM 0.82 0.9 0.68 0.4 0.57 0.36 0.44 0.6 0.64

singletask 0.82 0.88 0.69 0.4 0.56 0.43 0.43 0.6 0.64

1-head 0.75 0.89 0 0 0 0 0 0.23 0.23

5-head 0.75 0.89 0.48 0.08 0.27 0 0.11 0.37 0.49

+TEC 0.75 0.89 0 0 0 0 0 0.23 0.23

+SSEC 0.75 0.89 0 0 0 0 0 0.23 0.23

+ISEAR 0.76 0.89 0.52 0.08 0.33 0 0.14 0.4 0.5

+Emobank 0.75 0.89 0 0 0 0 0 0.23 0.23

singletask 0.77 0.87 0.56 0.26 0.4 0.27 0.47 0.52 0.53

1-head 0.71 0.88 0.53 0.59 0.57 0.39 0.35 0.58 0.61

5-head 0.76 0.89 0.46 0.41 0.03 0 0.3 0.41 0.46

+TEC 0.75 0.89 0.3 0.08 0.16 0 0 0.31 0.36

+SSEC 0.8 0.85 0.5 0.44 0.52 0.25 0.47 0.55 0.56

+ISEAR 0.78 0.88 0.38 0.52 0.29 0.06 0.18 0.44 0.5

+Emobank 0.75 0.89 0 0 0 0 0 0.23 0.23

Table 4: f1-score for Smith & Ellsworth data set, the first set of rows are

classifiers using tf-idf values as features, the second set of rows are LSTMs

with embeddings

Bostan and Klinger (2018), they seem on the same level. The LSTMs with

embeddings are performing worse. Some improvements can be seen in a few

multitask classifiers compared to their 1-head counterpart. As for the labels,

no striking differences between the models can be seen.

For the Smith & Ellsworth data set, the only other results are in Hofmann

et al. (2020), which achieved a slightly better score than our top models and

our SVM, with a macro averaged f1-score of 70 and a micro averaged f1-

score of 75. Conspicuous are the bad results when using the tf-idf features
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SVM 0.08 0.06 0.04 0.06

singletask 0.11 0.06 0.05 0.07

1-head 0.09 0.07 0.05 0.07

5-head 0.1 0.08 0.05 0.08

+TEC 0.1 0.07 0.05 0.07

+SSEC 0.09 0.07 0.05 0.07

+ISEAR 0.1 0.07 0.05 0.07

+S&E 0.09 0.07 0.05 0.07

singletask 0.13 0.07 0.05 0.08

1-head 0.09 0.06 0.04 0.07

5-head 0.11 0.06 0.04 0.07

+TEC 0.11 0.06 0.04 0.07

+SSEC 0.12 0.06 0.04 0.08

+ISEAR 0.11 0.06 0.04 0.07

+S&E 0.12 0.06 0.04 0.07

Table 5: MSE for Smith & Ellsworth data set, the first set of rows are clas-

sifiers using tf-idf values as features, the second set of rows are LSTMs with

embeddings

in the multihead network, causing many zeros in the less frequent occuring

labels. While using all five heads improves the results, so does the addition

of ISEAR.

Lastly, the results for the EmoBank data set: table 5 shows the mean-

squared-error (MSE). The labels were in range of the intervall [1, 5]. No

noticeable differences can be seen across the table.
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5 Discussion

Overall, the performance of our singletask classifiers compare to other recent

classifiers and out of the box classifiers like the SVMs from scikit-learn. None

of our multitask classifiers however, could surpass the performance of those

models.

5.1 Effect of multitask classification

In most cases, training on all data sets leads to worse performance per data

set, than training only on that data set. The only two exception can be ob-

served in the classifiers using tf-idf features of the ISEAR and the Smith

& Ellsworth data set. In those cases, the 5-heads classifier outperforms the

1-head classifier. It has to be noted though, that the 1-head classifier of the

Smith & Ellsworth data set performs subpar and upon closer inspection never

predicted five out of the seven labels. On that note, one might conjecture that

the additional training of the 5-heads classifier boosted the learning effect in

this case. Yet in all other cases, the 5-heads classifier performed slightly worse

than its 1-head classifier counterpart. This suggests that training on to many

data sets is detrimental to the performance. The fact that most settings with

two trained heads outperform the setting with all heads trained further sup-

port the theory, that training on all five data sets introduces too much noise

for any improvements.

Looking at the 2-headed classifiers (represented in the rows with +data set),

the results vary very much. In the TEC data set slight improvements for

almost all 2-headed classifiers compared to the 1-head classifier can be seen.

The results are also very close to the performance of the singletask classifier,

albeit not better. The TEC data set is the biggest data set of all five data sets

though, and thus, it is possible that the effects of multitask learning is very

subdued. Looking at the SSEC data set, which is one of the smaller data set,

all 2-headed classifiers have worse results, especially the SSEC+Emobank
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combination, while the SSEC+TEC combination performs the best. In the

ISEAR data set, the 2-headed classifiers perform on par with the 1-head clas-

sifier. Surprisingly, all combinations perform very similary. For the Smith &

Ellsworth data set, there is an improvement in the ISEAR row, but again,

that is only because the 1-head classifier using tfi-idf features performs sub-

par. Noticeable, are the many zeroes, indicating that the classifiers do not

sufficiently learn, perhaps due to the small training set of less than 1,000 in-

stances. Regarding the regressor of the Emobank data set, the results of the

multitask classifiers do not improve the performance. Also, out of all 2-headed

classifiers, those with +Emobank perform among the worse. It seems that

the addition of the Emobank data set as a secondary training set is disad-

vantageous for the performance of the classifier. The reason for that is likely

because the tasks to be learned are to different, for any synergies to show

up. Unlike all other data set, which use classifiers to predict the right anno-

tation, Emobank is annotated using the valence-arousal-dominance model,

which requires regression.

Looking at the individual labels, each classifier performed almost always sim-

ilar well on a specific label compared to the other classifiers. There was a case

in the SSEC data set where the multitask classifiers performed worse on the

label anticipation, perhaps because that label is unique to the SSEC data

set. But since the performance on the label trust, which is also unique to

SSEC, and the same for the labels guilt and shame, which are also unique,

does not show that pattern, the reason might be something else.

Lastly, the effects of multitask classification manifest, disregarding the choice

of feature extraction. There was no case, where the multiheaded approach

had a different effect depending on the choice of tf-idf values or embeddings.

5.2 Hypothesis acceptance/rejection

Our hypothesis, that the annotations of a multitask learning classifier are

good enough to observe interactions between the models, has to be rejected.
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In most cases the annotations are to noisy, and a trained multiheaded neural

network performs worse than one with only one head is trained and compared

to a singletask neural network the performance is even worse. Still, since only

a rather simple architecture for multitask learning was used here, a more

sophisticated one might lead to better results.

6 Conclusion and Future Work

In summary, multitask classification across psychological models of emotion

and affect does not lead to better result, at least not with the multiheaded

architecture that was used here. However some improvements over 1-head

classifiers could be observered, suggesting that positive effects of multitask

classification do exists, but where perhaps held back due to the architecture

of the neural network. There might be other MTL methods that can be

explored in future works, like cascading features, where the results of one

task are the features of the next task.

Another finding is that while the choice of vectorization influenced the overall

performance, it did not have an influence on the effect of multitask learning.

For the future, different word representations can be used, that are context

sensitive, described in Peters et al. (2018). Perhaps those can have a positive

effect on multitask learning.

As mentioned in the discussion section, the different sizes of data sets could

have been problematic. For example, the TEC+S&E combination consists of

about 95% instances from TEC, which makes it too lopsided for any positive

multitask learning effects. Perhaps a 50-50 ratio would be ideal, or maybe

a main task with a higher ratio and a secondary task with a lower ratio

would be better. In a future work, one might try to improve the multiheaded

classifier by trying out different ratios and different numbers of heads / layers.
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Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig verfasst
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