
Institute for Architecture of Application Systems (IAAS)

University of Stuttgart
Universitätsstrasse 38

70569, Stuttgart

Master Thesis

Design of a Software
Architecture for Supervisor

System in a Satellite

Sarthak Kelapure

Course of Study: Information Technology (InfoTech)
Embedded Systems Engineering

Examiner: Prof. Dr. Marco Aiello

Supervisors: Dr.-Ing. Felix Böhringer,
Dr.-Ing. Fabian Steinmetz,
Ing. Gustavo Ambrosio,
Thales Alenia Space, Germany.

Matriculation Number: 3375004

Commenced: 02.06.2020

Completed: 10.11.2020

Acknowledgement

I would like to thank SDR Team at Thales Alenia Space, Germany for giving me
this opportunity to pursue my Master Thesis with them. A big thanks to Gus-
tavo Ambrosio, Dr. Fabian Steinmetz, Jens Wieczorek, Michele Belloti, Alexander
Pawlitzki, Dr. Felix Boehringer, and the entire SDR team for their constant sup-
port and guidance. I would also thank my colleagues Satheesh Konduru and
Siddarth Vasudevan for their motivation and support during the thesis.

Thank Prof. Dr. Marco Aiello for examining my thesis work and reviewing my
steps during this process.

In the end, I would like to thank my family and my friends for believing in me
and helping me through this Master’s degree course.

Abstract

Internet of Things (IoT) is not just a word now. With an estimated 30 billion de-
vices in the world by 2020, IoT has already become what it was envisioned when
the trend began. But there is still a hustle from companies around the world for
better and better user experience because the technology keeps getting upgraded
and need for upgrade never stops for the user. Researchers and scientists are try-
ing everyday to improve the experience by improving the involved things and by
improving the communication means, ”the internet”. One such means of commu-
nication expected to grow in the future is satellite communication for IoT.

Satellite to be used for this purpose needs to be low-cost, robust, reliable, and
future ready. An improvement in satellite architecture is imminent. For making
satellite feature rich and robust but still low-cost means increase in mission-life
of a satellite. Like human life, this can be achieved by better medical system for
the satellites. With introduction of a doctor on board, the thesis aims to propose
solution for improved mission-life and features for the satellite.

The doctor on board in this case is called Supervisor system. This system will
need to have a robust and modular software on its designated hardware. Software
can be designed and developed to be robust using a standard software architecture
that is promising while complementing the requirements. The thesis focuses on
designing software architecture for this ”Supervisor system”.

By the end of this thesis, the author designs a software architecture for the said
system after study of similar architectures. The software architecture is used to
develop important features of the mission and is tested for its portability and
modularity. Future needs and changes to the existing system are also foreseen
and discussed in the end.

Institute for Architecture of Application Systems (IAAS)

Sarthak Kelapure

Contents

1 Introduction 1
1.1 Problem statement . 2
1.2 Methodology . 2

1.2.1 Tools used . 3
1.3 Contribution . 4
1.4 Organization of the Thesis Report 5

2 Background 7
2.1 Introduction to the Internet of Things 7
2.2 Applications of IoT . 8
2.3 IoT Architecture . 11
2.4 Direct to Satellite Technology . 13
2.5 Space IoT . 14

3 State of the art 17
3.1 Satellite Architecture . 18
3.2 Satellite Software . 19

3.2.1 Study of Software Architecture in MTG Satellite 20
3.3 Introduction to SAVOIR . 22
3.4 Shortcomings in the available solution 22
3.5 Novel Supervisor system . 23

4 Requirements 27
4.1 Hardware requirements . 27

4.1.1 Requirements for a microcontroller as a Supervisor 27
4.2 Requirements of the Software Architecture 28
4.3 Requirement for the detailed design 28

Institute for Architecture of Application Systems (IAAS)

4.3.1 Requirements for TM/TC communication 29
4.3.2 Requirements of SoC software update function 30

5 High Level Design 31
5.1 Microcontroller for the Supervisor System 31

5.1.1 Microcontrollers comparison study 31
5.1.2 Vorago VA41630 . 32

5.2 Block design for processing board 34
5.3 RTOS vs baremetal . 35
5.4 Layered software architecture design 37
5.5 List of tasks . 43
5.6 Resource Utilization . 45
5.7 Interfaces . 46

6 Detailed Design 47
6.1 TM/TC Communication . 47

6.1.1 Introduction to SpacePacket Protocol 48
6.1.2 Design . 49

6.2 Software updates . 53
6.2.1 SoC software updates . 53

6.3 Results . 55
6.4 Architecture Porting . 57

7 Evaluation 59

8 Conclusion 63

Bibliography 65

Sarthak Kelapure

List of Acronyms

ADC Analog to Digital Converter.
API Application Programming Interface.
ARM Advanced RISC Machines.

BSP Board support package.

CAN Controller Area Network.
CCSDS Consultative Committee for Space Data Sys-

tems.
COTS Commercial off-the-shelf.
CPU Central Processing Unit.
CRC Cyclic Redundancy Check.

DAC Digital to Analog converter.
DMA Direct Memory Access.
DtS-IoT Direct to Satellite IoT.

EDAC Error Detection and Correction module.

FIFO First In First Out.
FPGA Field Programmable Gate Array.
FPU Floating Point Unit.

GEO Geostationary Earth orbit.
GPIO General Purpose Input Output.
GPS Global Positioning system.

I2C Inter-Integrated Circuit.
IIoT Industrial Internet of Things.
IoMT Internet of Medical Things.
IoT Internet of Things.
ISM Industrial, scientific and medical.

JTAG Joint Test Action Group.

Institute for Architecture of Application Systems (IAAS)

LDO Low Dropout Regulator.
LEO Low Earth orbit.
LPWA Low Power Wireless Area.

M2M Machine to Machine.
MEO Medium Earth orbit.
MPSoC Multiprocessor System on Chip.
MPU Memory Protection Unit.
MQTT Message Queue Telemetry Transport.
MRAM Magnetoresistive random-access memory.

NVM Non Volatile Memory.

OBC On-board Computer.
OSI Open systems interconnect.

PCB Printed Circuit board.
PWM Pulse Width Modulation.

RAM Random Access Memory.
RTOS Real time operating system.

SEB Single Event Burnout.
SEE Single Event Effect.
SEFI Single-event functional interrupts.
SEL Single Event Latch-up.
SET Single Event Transient.
SEU Single Event Upset.
SoC System on Chip.
SPI Serial Peripheral Interface.
SRAM Static Random Access memory.
SWD Serial Wire Debug.

TC Telecommands.
TM Telemetry.
TTC Telemetry, Tracking, and Commanding.

UART Universal Asynchronous Receiver Transmit-
ter.

UML Unified Modelling Language.

V2V Vehicle to Vehicle.
V2X Vehicle to Everything.

Sarthak Kelapure

List of Figures

1.1 PEB1-VA416x0 Vorago Eval board[5] 3
1.2 Trenz Zync Ultrascale+ Starter Kit[6] 4

2.1 An usual IoT device . 7
2.2 Generic IoT architecture . 12
2.3 Edge-fog-cloud IoT Architecture . 13
2.4 Generic vs Space IoT architecture 15

3.1 CubeSat Dimensions [16] . 17
3.2 System topology of a satellite . 18
3.3 Generic Software architecture for an on-board computer [3] 20
3.4 Static software architecture of OBC Software[19] 21
3.5 Payload structure with and without Supervisor system 24

5.1 Vorago VA41630 block diagram[4] 33
5.2 Cortex M4F architecture[24] . 34
5.3 Nested Vectored Interrupts in Cortex M4F[24] 34
5.4 Minimal hardware building blocks of the processing board 35
5.5 Overview of the designed software architecture 38
5.6 Detailed software architecture . 38
5.7 Interfaces between hardware and middleware 46

6.1 TTC Communication . 47
6.2 TM/TC Architecture . 48
6.3 Standard SpacePacket Protocol from CCSDS [34] 48
6.4 SpacePacket protocol with customized Application ID 49
6.5 UML Diagram for UART Driver . 50
6.6 State Machine for parsing bytes to SpacePacket 51

Institute for Architecture of Application Systems (IAAS)

6.7 TC Handler running activity diagram 51
6.8 TM Handler running activity diagram 52
6.9 TC Manager Task . 52
6.10 TM Manager task . 52
6.11 SoC Update available on TC Manager task 54
6.12 SoC Update data bytes on TC Manager and update task 54
6.13 SoC Update verify on TC Manager task 55
6.14 Test setup for TM/TC and SoC Software Updates 56
6.15 A TC from OBC for Supervisor; consumed and acknowledged . . . 56
6.16 A TC from OBC for the SoC; routed and acknowledged 56
6.17 SoC Update debug prints for all states 57
6.18 Porting of software architecture to STM32 58
6.19 TM/TC debug prints on Vorago-M4 58
6.20 TM/TC debug prints on STM32F4 58

Sarthak Kelapure

List of Tables

3.1 Solution trade-off for Supervisor system 25

5.1 Comparison study for few microcontrollers 32
5.2 Comparison between baremetal and FreeRTOS implementation . . . 37
5.3 Description of BSP Components . 39
5.4 Components of HAL Utility Layer 42
5.5 Components of the Middleware Layer 43
5.6 List of Application tasks . 44
5.7 Estimated RAM utilization . 45

7.1 Summary of the evaluation . 60

Institute for Architecture of Application Systems (IAAS)

Sarthak Kelapure

Chapter 1

Introduction

Internet of Things (IoT) is nowadays a buzzword and will pertain for the com-
ing time also. Everyday scientist, researchers, and engineers are developing, and
testing new ways to make the IoT experience richer, smoother and better for the
users. IoT devices demands low power, highly modular, and highly independent
functioning.
There is an everyday problem for developers, to make IoT devices capable of reach-
ing millions of users around the world with low latency. Connectivity for these
IoT devices can be a bottleneck.
Currently, the world is flooded with IoT devices flourishing the market with vari-
ous applications. Since communication is one of the most important aspect of any
IoT device, lot of research is being put in this field. In the future, it is predicted
[1] that satellite communication for IoT device will be heavily in use. IoT device
can leverage on the fact that such a satellite communication will be available ev-
erywhere in the world with just one installation stage. But are satellites ready for
the the IoT world?
As the use of satellite increases the need for a robust and long lasting satellite
increases too. Software for the satellite remains an important part of the develop-
ment and continuous research is being done to improve the software and overall
robustness of a satellite while keeping the costs of development and deployment
low. To achieve low costs, Commercial off-the-shelf (COTS) products are being
used as components in space-missions are big driver in cost of a mission. Such
products can be visualised as module with hardware and integrated software which
have some specific functions with little or no reconfigurations.
For classical satellites, the system is built for maximum availability without any
reboot or reset. Hence, hardware used is already latch-up free and radiation hard-
ened. But for the IoT world, data losses are always considered in the system
hence here latch-up mitigation techniques are considered. The primary goal shifts
from availability to surviving in the space allowing use of cheaper hardware and
software. The factor of availability is compensated by increasing the number of
satellites.

1

Institute for Architecture of Application Systems (IAAS)

1.1 Problem statement

Satellite relies on robust hardware and reliable software. For a safe and long lasting
space missions, companies spend a lot of money on their hardware and software.
The most important software in a satellite is on-board software running on a On-
board Computer (OBC) which is characterised by a very secure and well struc-
tured software architecture. The software runs on a costly COTS module that is
designed with high standards, deep research, and structured development. The
software architecture is designed to be comparable to other large scale software
architectures, such as air traffic controller. [2]
The software in these COTS modules can be generic as a Linux computer which
does not allow on the fly configurations and has less focus on health monitoring
of the processing board [3]. These COTS modules still costing heavily in devel-
opment and maintenance. Such problems come with a heavy cost of space debris
which is a major problem in space industry. A solution to this does not exactly
fit in cost curve for the constrained IoT world.
The hardware known as ”Heritage” needs improvement and ”New Space Missions”
aim at creating advanced space grade hardware and software, as discussed in this
thesis.
A need for change and upgrade persists in this field.

1.2 Methodology

To evaluate and provide solutions to the above said problems, the thesis work will
be done at Thales Alenia Space, Ditzingen, Germany under expert super-
vision. Various current architectures and middleware structures for Satellites will
be studied and compared to the proposed solution. As per requirements for the
satellite, a software architecture for the solution will be designed. Few software
functions will be assessed, designed, and developed as a scope of this thesis.
This design of the software architecture will employ a ”Waterfall model” as soft-
ware process. The model is a sequential model with each fundamental activity
planned and arranged one after other. The work involved in this thesis will be done
with ”Software Engineering” team following agile methodology. Overall, around
15 people will be working on this product in different teams such as ”Hardware
Engineering”, ”Software Engineering”, and ”Integration, Verification, Validation,
and Qualification (IVVQ)”.
At the start, requirements were gathered from research study by the team. This
will be followed by design and development process, based on the requirements.
During the timeline of thesis, the product will be in this stage. After the design
and development, the software will be tested and verified followed by maintenance.
During the thesis, similar software architectures will be studied to find the best
possible architecture. In the end, the designed software architecture and software
modules will be evaluated against the baseline requirements from standard soft-
ware references.

Sarthak Kelapure 2

Institute for Architecture of Application Systems (IAAS)

For all proposed solutions, Unified Modelling Language (UML) diagrams have
been used.

1.2.1 Tools used

During this thesis, various tools will be used to complete the defined tasks. These
tools will be procured and used during the scope of this thesis.

Hardware tools

1. Vorago M4 Eval Board: Vorago[4] provides an eval board for testing
their radiation hardened microcontroller. This Eval board is supported with
its Board support package (BSP) and Technical Reference Manuals. The
hardware package contains a single board computer and two daughter cards,
viz. GPIO board and EBI/Ethernet board. The setup can be accessed and
programmed using a USB cable via JTAG.

Figure 1.1: PEB1-VA416x0 Vorago Eval board[5]

2. Zynq UltraScale+ Starter Kit: As an SoC, starter kit[6] with Zync
Ultrascale+ provides by Trenz Electronic was used. This kit has access via
PMOD connectors and can be used with Windows/Linux PC using advanced
software from Xilinx Inc.[7]

3. Others: For simulating the OBC, a standard Linux PC was used. This
allowed simulating real time On-board Computer (OBC) experience. Apart
from this, USB cables, jumper cables, Logic Analyzer, etc were used to
support the planned tasks.

Software tools

1. Keil IDE: For using the Vorago-M4 EVAL board, licensed Keil IDE[8] was
used. Keil IDE is a standard software development tool for using ARM-based

Sarthak Kelapure 3

Institute for Architecture of Application Systems (IAAS)

Figure 1.2: Trenz Zync Ultrascale+ Starter Kit[6]

microcontrollers. MDK version 5 was used during the period of this thesis.
The IDE provides in-built compiler, debugger, and some already available
software packs.

2. Xilinx Design Suite: Xilinx[7] not only provides high computing hard-
ware but also a very comprehensive software suite for using the hardware
for its highest computing. The design suite allows user to write low level
firmware as well as build applications using a SDK, also provided with the
suite.

3. MODELIO: As stated above, Unified Modelling Language (UML) dia-
grams will be used for modeling the software. This was done using Modelio[9],
an open source modeling environment. The software allows using UML Mod-
eler, BPMN integration, and export to various other platforms. It supports
UML2 standards along others.

4. Eclipse IDE: Eclipse IDE[10] on Linux was used to develop the OBC
emulator for testing the software on Supervisor system.

1.3 Contribution

This thesis introduces a radiation hardened module named Supervisor system
which can monitor the health of the payload electronics and also share some tasks
with the very important On-board Computer (OBC).The goal of this thesis is to
design and present a solution for robust, reliable, and modular software archi-
tecture for the Supervisor system in satellites for IoT. This results in high level
design and detailed design for the software requirements of the satellite payload
electronics.
This software architecture is used to build two important features,

• TM/TC Communication, and

• SoC Software Updates.

Sarthak Kelapure 4

Institute for Architecture of Application Systems (IAAS)

The details are discussed in the Chapter 6. This architecture is then proven for
it’s reliability, robustness, modularity, and portability using a Software Porting
test, refer Figure 6.18. The software designed upon this architecture will be used
in upcoming satellite missions from Thales Alenia Space.

1.4 Organization of the Thesis Report

This thesis report is organised in several chapters viz.

• Background, where introduction about IoT architectures and direct to satel-
lite IoT architecture is discussed.

• State of the art, where study of various currently available solutions and
related problems in satellite software/hardware architecture is done as com-
parison to other similar systems.

• Requirements, where requirements of various involved hardware/software
modules is discussed. These requirements will be compared in the Evaluation
chapter.

• High Level software architecture, where high-level-design of said Supervisor
system is discussed and designed. Various possible solutions are discussed.

• Detailed design of software functions with UML diagrams and output statis-
tics of the software function.

• Evaluation, where the discussed solution is evaluated as comparison to the
baseline Requirements chapter.

Sarthak Kelapure 5

Institute for Architecture of Application Systems (IAAS)

Sarthak Kelapure 6

Chapter 2

Background

2.1 Introduction to the Internet of Things

Internet of Things (IoT), simply put, is any device connected to the Internet. IoT
is visioned to be a giant network of connected people and things that collect and
share data about physical entities. Such devices are as tiny as a shirt button to
larger devices like industrial machines, e.g self-driving cars. There are topics like
Machine to Machine communication which are being developed for better data
sharing while communication medium is being improved to integrate IoT devices
in the world. IoT devices are built for home, industries, transportation and also
to support other similar smart devices.
A usual IoT device consists of a few sensors and mainly a communication system.
An IoT device may or may not have actuators directly linked to it. Communica-
tion systems have evolved along with the ever-changing IoT network. Depending
on the application, an RF system can be deployed and communication between
a user and devices can be established. Inter device communication is also a very
important aspect of the IoT world.

Figure 2.1: An usual IoT device

7

Institute for Architecture of Application Systems (IAAS)

For an IoT device,

• BRAIN = micro-controller

• Senses = sensors

• Voice/Ears = Internet

Since there is internet involvement, there are also additional components in an
IoT infrastructure like servers, databases, user interface, and many others. The
overall architecture and infrastructure are heavy and complex. Every day, a new
architecture is being tested and checked for a better, efficient and latency-free IoT
experience.
The eventual goal of establishing IoT infrastructure is to reduce human interven-
tion, where the devices make their own decisions. This is possible due to informa-
tion sharing between devices. This involves higher-level learning algorithms built
on data generated by the devices.
IoT has largely helped industries optimize cost, waste, and human resources. In
day to day life, we are also highly integrated into this process by being a user
of smart appliances like watches, cars, refrigerators, television, etc. This has im-
proved user experience and helped companies know the customer better.

2.2 Applications of IoT

Internet of Things has been highly integrated into various domains. While it helps
in day to day activities, that is not the limit. There has been a steep increase in
IoT devices over the years, this indicates how important it is in today’s life and is
an indication of its numerous applications.

Smart Cities

Smart city projects are aimed at the development of optimization techniques in a
city to have a better infrastructure. The aim should not be mistaken for improve-
ment or optimization of society in any way. In the entire process, every individual
is kept involved by the generation of incentives or business opportunities for every-
one involved. IoT has become an enabler for all the smart city projects around the
world. The efficiency of water supply, waste management, electric supply, traffic
management, street lighting, and other necessities can be improved using IoT’s
data gathering capabilities. From the perspective of a user, the improvement of
security and living conditions is a major takeaway.

Medical Systems

The medical field was late to introduce IoT but has seen huge growth since. A
new term Internet of Medical Things (IoMT) has been introduced in the recent

Sarthak Kelapure 8

Institute for Architecture of Application Systems (IAAS)

past. The use of user-generated data is very important since it helps not only
the caregivers but supply healthcare providers with actual data to identify issues
before they become critical or to allow for earlier invention. Investments in these
fields are not only made by techno enthusiasts but also by insurance companies as
they are indirectly linked to healthcare systems.
Another segment in medical systems is wearable tech. Such wearables can sense
heart rate, number of steps, oxygen levels, body temperature, etc. The majority
of medical professionals do not trust the data collected by such devices since they
are not certified for medical use.

Connected cars

In the last few years, the segment of the connected car has exploded all because
of IoT. But there is no stop to this since companies are constantly pouring in
money to have fully automated cars that have high-security component attached.
Internet connectivity to components in a car not only improve the user experience
but also help the company improve its future builds. Companies can learn from
the data and analyze the performance; this can provide major help in predictive
maintenance. Vehicle to Vehicle (V2V) technologies are being developed as a push
to swarm management while Vehicle to Everything (V2X) technologies will be a
major catalyst for self-driving cars in the future. For all of them near field or
far-field IoT is a necessity.

Smart Grid

Consumers and service providers face a problem of managing power quality, safety,
carbon emission, high outages, and reliability of energy supply. Technological
advancements in the IoT era provide a way to manage these problems. IoT devices
in electrical supply systems can monitor power consumption at various junctions in
a city enabling improvement of supply on future days, hence improvement in power
quality and reliability. Advanced Metering infrastructure and smart grids are
the catalysts for introducing a two-way communication between the conventional
power grid and consumers.

Industry 4.0

Industry 4.0 aims to revolutionize business and manufacturing processes to im-
prove efficiency, productivity, and cost. IoT has been inducted in industries in the
past decade to help Industry 4.0 become a reality; hence name Industrial Inter-
net of Things (IIoT). IIoT is being used to improve the efficiency of a machine
by knowing it’s downtime, state of machine parts, and operating environment.
Various use-cases in handling and managing the machines remotely have been
identified and are being implemented every day[11]. This has been a boost for the
economy in various industries. This new concept of Industry 4.0 is considered to

Sarthak Kelapure 9

Institute for Architecture of Application Systems (IAAS)

be the fourth industrial revolution, which promotes a more modular and efficient
system; hence has an important place in a company’s budget .
The linking element between process and implementation is supply chain manage-
ment and Industry 4.0 focusses highly on this aspect. Automation of supply chain
and logistic management is a major concern but is solved by many budding names
in the industry like NAiSE GmbH or Bosch Nexeed. Such solutions involve indoor
localization collaborating with machines and robots on the shop floor. For exam-
ple, NAiSE GmbH has solutions that facilitate indoor localization with process
automation and digitalization. This all is enabled by IoT and digital networking.
Smart retail stores or outlets have also used the services of IoT to know customer
needs and make shopping a better experience.

Agriculture

Agriculture is an industry in a way and there is an equal need for process automa-
tion and digitalization. IoT facilitates this just like in any industry. Farming is
usually remote and a smart farm can be a big help to the farmer especially to
monitor cattle, plantations, irrigation, heavy machinery, etc. IoT is the perfect
way of helping the above-said cause. Heavy investments in this domain are being
made in countries where agriculture products are exported.

Smart homes

Smart home and smart appliances were one of the first-ever tried use-cases of IoT.
With the love of wireless technologies, everything is being made wireless; from a
switch to security systems. While some researchers find this as under-utilization
of what IoT can offer, smart home appliances keep surfacing the marketing now
and then. The extent of smart appliances can be realized when “Smart Fridges”
can now order groceries when inadequate. IoT is not just the enabler in this case
but the entire system is an IoT device.

Future applications?

All of the above applications are not perfect yet and there is a lot that can be
improved here, e.g. connected cars are perfect in a simulated environment but not
present-day road ready while fleet management is only virtual. A lot has been
done in the smart appliances section but energy efficiency and security remain
doubtful. While these all are improvements to be done, there are a lot of things
expected shortly. A fully automated industry with a swarm of robots working
in harmony is still a dream for the industrial automation sector. The medical
field should see a lot of new devices with wireless sensors and predictive diagnosis
coming soon. IoT has the power to have devices that can act by learning from
human intuition.

Sarthak Kelapure 10

https://naise.xyz/
https://www.bosch-connected-industry.com/en/
https://naise.xyz/

Institute for Architecture of Application Systems (IAAS)

2.3 IoT Architecture

An architecture in IoT reference is a framework where physical entities, their con-
nections, functional organization, operational principle, data format, and network
configuration are specified[12]. As seen above, IoT is a large field so, one architec-
ture cannot suffice all possible implementations and applications but a reference
model can be a good starting point. This means that several architectures can
coexist. Though an architecture to incubate all the above needs must be general
enough to adapt ever-changing network infrastructure and should be independent
of physical sensors or actuators [13].
General components of such architecture are as below,

1. IoT Device: An IoT device comprises a sensor that can read a physical
entity like temperature, humidity, presence, light, sound, etc. The sensor has
no processing capability and may generate an analog electrical signal. Any
configuration or data collection needs a software component which cannot
run on a sensor, so an IoT device is bound to have a signal processing
component, generally a microcontroller. This processing unit does not need
to have complex software running on it. It can just be a synchronous program
with two tasks, read sensor and send data. This brings us to the device’s
capability of sending data via a wired or wireless method, hence the internet.
Additionally, the device may also have the task to perform operations like
controlling switches or relays to enable controls, this may be visualized by
an actuator, also managed by the same processing unit.
To sum up, an IoT device will have three to four components, a sensor, a
processing unit, an actuator, and an internet component.

2. Network facilitator: As we have seen above, every IoT device has a net-
work component to help connect to the internet. This is made physically
possible by using a network facilitator. For example, when a device uses
WiFi there is a need for a WiFi router to fulfill this need. A WiFi router,
in this case, will typically connect up to 200+ devices and will have auto-
management of device requests using WiFi protocols. But in some cases,
there might not be any typical queue handling or protocol management.
This might need a synchronization algorithm that can not only manage the
network but also provide latency-free and error-free message delivery both
ways.

3. Data exchange and storage: All the information collected by all the in-
volved devices needs a platform to processed and acted upon. This exchange
platform will receive, process and pass-on all the data from IoT devices. A
usual platform can be visualized as a server running information exchange
protocol and database software. For example, the Message Queue Teleme-
try Transport (MQTT) broker will receive data from publishers and push
data to the subscribers. Subscribers here can be applications running on
smartphones, other independent servers or IoT devices themselves.

Sarthak Kelapure 11

Institute for Architecture of Application Systems (IAAS)

4. End-application: All the data generated needs to be visualized or made
sense of, an application software receiving processed data from the data
exchange service can perform logical and business operations to manipulate
data and gain insights. This can be a user interface or just an algorithm to
process data on a higher level for business transactions.

Figure 2.2: Generic IoT architecture

The edge, fog and cloud analogy

To simplify and standardize the architecture, many researchers have brought down
IoT architecture to three components with individual functions and complexity.
Compared to the Open systems interconnect (OSI) model with five layers, this
architecture of edge, fog and cloud computing makes more sense in the IoT world.
This makes the architecture more modular and adds up to the reliability of the
entire system. Failure of one node does not lead to failure of the system[14].

1. Edge layer: Edge layer of devices are the closest devices to the sensors and
have direct access to the physical environment. They have the least compu-
tation power, complexity, power consumption, and network capacity. They
can have a peer to peer connection (edge to edge, E2E) while a connection
to the fog layer is a must. This layer may not be directly connected to the
internet.

Sarthak Kelapure 12

Institute for Architecture of Application Systems (IAAS)

2. Fog layer: Devices in this layer are of high importance and should be de-
signed for high reliability. They act as a gateway with computations between
edge devices and the cloud. We can visualize these devices as translators
between edge and cloud where network connection to edge and cloud may
not be the same. A fog device may or may not have decision making proper-
ties or data storage properties. A single fog device should be able to handle
more than one edge device at a time, this can be facilitated by already avail-
able network protocols. To add up to the reliability, multiple clones can
be deployed for redundancy. Summary for the tasks of these fog devices is
to aggregate all the incoming data with low-latency and forward it to the
central cloud for heavy processing.

3. Cloud layer: The cloud layer is a data server with the capability to store
data and share information. This layer will also host applications for the
defined business case. Cloud will have the highest processing power and will
run heavy computationally intensive tasks. This is also the hub of data stor-
age, which means this should be designed with the possibility of expansion.
By applying this edge, fog, and cloud computing architecture, we can dis-
tribute the load, reduce network latency at the device level, reduce the prob-
ability of system failure, introduce modularity and improve mobility.

Figure 2.3: Edge-fog-cloud IoT Architecture

2.4 Direct to Satellite Technology

Internet connectivity is possible via direct and indirect ways. In the indirect
way, we have a lot of other infrastructures involved but it seemingly fits into

Sarthak Kelapure 13

Institute for Architecture of Application Systems (IAAS)

the curve for usage against the power consumption. With the changing times,
this architecture will change into direct ways like satellite connections for IoT.
This trend has been seen around the world where companies are trying to have
satellites launched for internet connection. This method serves for direct internet
connection.
The terrestrial networks can cover the streaming requirements of audio and video
transfer, but not in remote areas without any terrestrial communication coverage
which is the main field of industrial operation of IoT. The global use through
the natural borders of every country collides also against the different laws of
every involved part. There is no other technical way to overcome this problem
besides the use of satellites. LEO satellites suffer from low availability and never
had been proposed until now as a possible solution. Implementations for satellite
communications to multiple ground users had been done only with expensive MEO
or GEO satellites resp. relevant constellations.
Medium Earth orbit or Geostationary Earth orbit constellation requires from the
ground transmitter enough energy for successful transmission. The ISM free band
restrictions do not permit the usage of these methods, as the received signal is
too weak for successful communication. In this case, the business targeting the
MEO/GEO satellites has to use private frequency on a global scale. If someone
can overcome the legality problems (as it is almost impossible to be the holder
of a specific bandwidth in a specific frequency, approved from all over the earth
authorities) the energy consumption of transmitting signals, will be insufficient
for the building of many years’ autonomous devices.
Direct to the satellite[1] is an up and coming field for IoT networks and will
change the architecture for IoT devices. Many companies are trying to make such
networks available, viz. SAT4M2M, Kineis, DLR, and others.

2.5 Space IoT

One of the biggest challenges in the IoT world is to deploy low power devices over
wide geographical areas. In such use-cases, satellites can bridge the gap towards
a pervasive IoT network that can handle disaster-hit scenarios like earthquakes,
tsunamis, and flash floods, etc. In such scenarios, the presence of a resilient back-
hauling communications infrastructure is very important. Here, Direct to Satellite
IoT (DtS-IoT) connectivity is desired. The space IoT architecture needs no in-
termediate ground gateway, making IoT networks available easily and reducing
infrastructure problems.[15]
Direct access from the sensor and actuator terminals to the satellite is a more
appealing solution in challenging scenarios, for example:

• In disaster-prone areas, where infrastructure-less deployments are preferred.

• Areas with a smaller number of devices where the placement of a gateway
will not be profitable.

Sarthak Kelapure 14

https://sat4m2m.com/wordpress/
https://www.kineis.com/en/
https://www.dlr.de/DE/Home/home_node.html

Institute for Architecture of Application Systems (IAAS)

Figure 2.4: Generic vs Space IoT architecture

• In use-cases where the devices have high global mobility covering places with
low network connectivity.

However, existing Low Power Wireless Area (LPWA) protocols must be revised
as they weren’t designed to control over several kilometers in a very ground-to-
space link. Similarly, existing satellite protocols were thought to work on highly
directional point-to-point topologies and won’t be fitted for LPWA applications.
Many of existent satellite protocols for scientific and Earth Observation mis-
sions are standardized by the Consultative Committee for Space Data Systems
(CCSDS). However, these protocol sets aren’t thought for networking many devices
on sight. Commercial applications on this domain typically depend on proprietary
protocols, while only some support Internet protocols. the foremost representative
protocols are discussed hereafter, and their applicability challenges are highlight-
ing about the DtS-IoT domain.
CubeSat deployments often employ frequencies within the range of the amateur
band, with very low data rates (i.e., within the order of 9.6 kbps to 100 kbps).
Although other higher bands are explored in recent developments, the CubeSat
deployments are characterized by low data rates and restricted contact times.
Traditional satellite protocols tend to behave poorly or just don’t work on such
constrained devices. As a result, specific CubeSat protocols to serve the particular
characteristics of the IoT traffic have been studied within the literature. it’s been
identified that advanced techniques such as dynamic channelling or precise channel
estimation (employed for interference cancellation), require costly resources often
not available in low-cost CubeSat deployments. Among the random-access MAC
protocols evaluated, only some become near the region where DtS-IoT supported
by CubeSats provides a scalable, energy-efficient, and non-complex channel access
mechanism to the bottom sensor nodes.
A typical LEO satellite has 4 passes per day at an average though this also depends

Sarthak Kelapure 15

Institute for Architecture of Application Systems (IAAS)

on the satellite orbit and device latitude. This allows data transfer opportunities
of 7 to 10 minutes when the satellite is just above the spot on the ground. Nearer
to the horizon, contact duration is lessened and the channel conditions are wors-
ened. This can happen for around 20 minutes a day at a particular location when
the channel resource is likely to be shared among hundreds of devices. Due to this
limitation coupled with a limited data link, a single satellite is insufficient for a
typical IoT application.
Satellite constellations are a fleet of satellites properly distributed in the orbit
to provide continuous coverage around the globe. As a result, data transfers are
enhanced, and the waiting time is drastically reduced. For an effective direct
to satellite IoT network, a fully connected satellite constellation will be the best
fit. However, this adds up to the cost of hundreds of LEO satellites which goes
against the need for low-cost IoT architecture. A middle-ground solution of hav-
ing less number of satellites to provide partial and opportunistic connectivity. In
this case, a device will have to wait until a satellite is accessible, this adds to the
data latency but such an approach can still satisfy a lot of IoT applications. In
such a constellation, precise timing constraints will have to be kept in mind while
designing the IoT system.
Kineis a French company with the motto of providing “IoT everywhere” is devel-
oping a constellation of satellites along with their self-designed chipset to provide
network connectivity in use cases like logistics, marine, agriculture, outdoor sports,
and many others. This constellation not only provides data relaying but also has
an inbuilt Global Positioning system (GPS) like positioning system from their con-
stellation of nanosatellites. A similar approach has been taken by other projects
like SAT4M2M, ORBCOMM, and others.

Sarthak Kelapure 16

https://www.kineis.com/en/
https://sat4m2m.com/wordpress/
https://www.orbcomm.com/

Chapter 3

State of the art

CubeSats come in various sizes and weights, but they are all designed on the
standard CubeSat unit, a cube-shaped structure measuring 10x10x10 cms with a
weight between 1 and 1.33 kg. This unit is known as 1U. Nanosatellite developed
on CubeSat standards promises a relatively inexpensive access to space. It also
guarantees a wide range of available launch vehicles and space rocket options.

Figure 3.1: CubeSat Dimensions [16]

Advancement in technology has made miniaturization of these CubeSats possible
for the space industry. The possible solution now defined is low power, low space,
and low cost which boosts the business while doing considerable advancements
in science[17]. Such projects have been running since 1957 but now have been
boosted due to availability of Commercial off-the-shelf products in the market

17

Institute for Architecture of Application Systems (IAAS)

which allow faster launch times. An improvement to these COTS components is
discussed in this thesis (Section 3.5).

3.1 Satellite Architecture

There is an increasing need of many organizations, like ESA, NASA, ISRO, etc
to use fleets of autonomous spacecraft working together to accomplish complex
mission objectives. These satellites use distributed architectures because of many
advantages that it brings, greater performance, lower cost, and improved fault
tolerance, re-configurations and upgradability [16]. Usually satellites, including
CubeSats are custom built according to the requirements and application but
these three components remain constant:

• A radio communication system with antenna to send and receive data from
the earth.

• A computer to receive commands and execute them. This ensures proper
functioning of the satellite.

• A power source which can be a solar panel or battery or both.

The cubic structure is made of aluminium and it encompasses the above compo-
nents along with additional sensors, cameras, etc. The solar panels and antenna
can be installed on the exterior structure.

Figure 3.2: System topology of a satellite

Figure 3.2 defines a generic model of a satellite with OBC and Radio module
having radio transreceivers for telemetry communication and data communication
respectively. The included components can be explained as below,

1. Radio: The communication system or radio system is used to receive and
send data to the ground station. In standard platform, two separate radio
bands are used for the functionality.

Sarthak Kelapure 18

Institute for Architecture of Application Systems (IAAS)

2. OBC: It is capable of receiving and processing data from the payload. This
processed data is then stored as system information which can be later sent
to the ground station on request.

3. Power: The power section provides regulated power to the satellite for a
successful operation. Conventional CubeSats are powered by rechargeable
battery supported by solar panels. Additionally, a control unit may be added
for battery management and power regulations.

4. Payload: The payload is the part of the satellite that allows it to fulfil
the mission for which it was designed. It’s the reason for the CubeSat’s
existence. CubeSat payloads are the heart of missions in space. Without
payloads, there would be no point in launching a small satellite, since from
a practical point of view it would become an object orbiting the Earth with
no function to perform [18].

3.2 Satellite Software

Satellite software remains in the background, the design this software architectures
needs,

• Resource allocation, management, and exchange.

• Autonomous task creation and allocation.

• Handle and mitigate technical constraints.

• Modular and ready for new mission concepts.

• Mission ready, secure and robust.

The most important software component of a satellite will be the software running
on the On-board Computer [3]. This software is designed to be capable of,

• processing the payload data, e.g. images, sensors, star tracker, etc.

• process and execute commands from the ground station.

• manage actuators like reaction wheels.

• manage position, velocity, altitude and rotational rates.

• system status monitoring, failure detection, isolation and recovery.

All of the above has to be designed and developed on the on-board software hier-
archy levels. The dynamic software architecture runs by scheduling RTOS threads
to encapsulate the above functions. Most of the blocks from application layer will
be run as a separate thread in the RTOS. Even though the current CPUs provide

Sarthak Kelapure 19

Institute for Architecture of Application Systems (IAAS)

Figure 3.3: Generic Software architecture for an on-board computer [3]

high throughput, the software should perform efficient tuning of the RTOS tasks
to use RTOS as baseline in the software architecture. This can facilitate in parallel
payload and instrument operations along with parallel ground contact and data
handling.

3.2.1 Study of Software Architecture in MTG Satellite

A study was done for On-board Software (OBSW) running on the Meteosat Third
Generation (MTG) platform satellite On-board Computer. MTG is a cooperative
undertaking between the European Space Agency (ESA) and the European Orga-
nization for the Exploitation of Meteorological Satellites (EUMETSAT) and aims
at providing Europe with an operational satellite constellation able to support
accurate prediction of meteorological phenomena and the monitoring of climate
and air composition [19].
As the satellite systems moves towards a distributed architecture, use of COTS
components, and reduction in cost the need for distributed software architecture
increases. Devoted components perform their devoted functions (power handling,
data processing, ground link, etc.). Data and resources are shared between the
components who share interfaces for exchange.
MTG platform defines a static software architecture providing all the necessary
functions for the satellite along with functions that enable ground station to moni-
tor and supervise the spacecraft during the entire mission. The static architecture
is composed of layers as in Figure 3.4.
A study of MTG software architecture is of prime importance to this thesis due to
its similarity to the discussed solution. An improvement upon it is intended with
a separate module to handle some functions in parallel to the OBC.
The architecture defines three types of components,

• Managers to handle whole spacecraft subsystem and host controllers for

Sarthak Kelapure 20

Institute for Architecture of Application Systems (IAAS)

Figure 3.4: Static software architecture of OBC Software[19]

making use of the services.

• Services to provide common data handling functions.

• Controllers to provide hardware access.

The layers separate software functions and tasks to be done by the software in
order to have a robust, reusable, and modular software.

Overview of the layers

• Application layer: This layer performs system level, spacecraft mode and
mission management functions. This includes Failure detection, identifica-
tion and rectification tasks also.

• Service layer: This layer contains data handling functions including Packet
Utilization Standard (PUS) service. The layer also encapsulates Hardware
abstraction layer (HAL) for the hardware access.

• Low level software layer: The layer provides access to the hardware interfaces
and drivers for redundant CPUs. RTOS is also a part of this layer.

• On-board software framework layer: This layer provides an essential function
of software bus to give access to the central repository for which it provides
a messaging protocol. RTOS in also included in this layer to monitor task
execution time and find out missed deadlines or over-runs.

Sarthak Kelapure 21

Institute for Architecture of Application Systems (IAAS)

• Basic services layer: These functions are generic mission independent to
facilitate queue management, data manipulation, mathematical functions,
etc.

The software architecture is also studied in Section 6.1.

3.3 Introduction to SAVOIR

SAVOIR[20] means Space Avionics Open Interface aRchitecture. It is an initiative
to unite the European Space Avionics Community for improvement in the way
Spacecraft avionics are developed. Brains behind this initiative include European
Space Agency(ESA), Thales Alenia Space, Airbus, DLR, OHB etc. The aim to
have such a reference is improve product orientation, enhance delivery of space
systems, and supporting industrial competition. SAVOIR has taken inspiration
from AUTOSAR, although the underlying industrial business model is different
SAVOIR provides:

• Reference architecture for space grade hardware and software.

• Building blocks for the architecture.

• Specification for internal and external interfaces.

• Specifications of functions involved in the architecture.

• Verification architecture for the functions and interfaces.

• Implementation for selected portions of the architecture.

SAVOIR defines a software architecture for components like OBC and connected
Remote Terminal Unit (RTU) along with its interface units. While Supervisor
system is seen as a mix of OBC and RTU, some parts of the software architecture
can be derived from this reference. For instance, the software architecture defines
OBC software reference architecture (OSRA) to be flexible with hardware changes
keeping in mind future needs, the software architecture defined below also aims
that(More about it discussed in Section 5.4).
Considerations from this reference software architecture are used as baseline when
designing software architecture for a satellite system. The reference defines classi-
cal software engineering approach but with utmost care for robustness in design.

3.4 Shortcomings in the available solution

The following shortcomings have been studied in the current available and dis-
cussed solution,

Sarthak Kelapure 22

Institute for Architecture of Application Systems (IAAS)

• Very less amount of re-configurations possible.

• Power and health monitoring is not the top priority amongst many functions
of OBC.

• Radiation hardened COTS parts are very costly.

• Heritage COTS are old technology and need upgrade.

Satellites in IoT will need lightweight solution which is cost effective, yet advanced
for future technologies. The available solution does not fit in this curve perfectly.
Other available solutions can not provide a robust functioning.
This can lead to reduced life of the satellite and sometimes complete failure leading
to added space debris. As a solution to this, a novel Supervisor system has been
introduced in this thesis (Section 3.5). The solution leads to task distribution
reducing the load on the OBC software and hence adding on to the reliability of
the satellite system. Additionally, having one central radiation hardened module
to manage other modules will reduce the cost, more about it discussed below.

3.5 Novel Supervisor system

The payload processing board is a crucial part for the working of a nanosatellite.
The involved electronics can be the bottleneck for a communication system, its
design is an important task for an engineer.
A general satellite payload system consists of a Payload processing node (an FPGA
or SoC), an on-board computer, and other optional sensors like camera, etc. This
thesis introduces an additional component named “Supervisor system” which is a
radiation hardened component that monitors all the other components in the pay-
load system. The system also applies updates to the SoC with robust logic[refer
Section 6.2.1] to not allow any failures. This distributed architecture of the pro-
cessing board will decrease the number of faults and provide a seem-less internet
experience.
Benefits of using an Additional Supervisor system:

• Robust latch-up free health monitoring for the COTS components on board.

• Interrupt free TM/TC communication on board.

• Software and firmware updates for the MPSoC.

• Avoiding redundant design.

• Detection and Mitigation of all on-board power errors.

• Reduction of overall costs for a satellite.

Sarthak Kelapure 23

Institute for Architecture of Application Systems (IAAS)

Figure 3.5: Payload structure with and without Supervisor system

Such a design will mitigate on-board errors which can harm the MPSoC seriously
and hamper the functioning. When performing these functions, the supervisor sys-
tem will communicate important system reports in the form of Telemetry (TM) to
the on-board computer which in turn sends it to the ground station. At the same
time, the system will process and forward Telecommands (TC) from the on-board
computer to the MPSoC. This reduces the processing load on the OBC since it
does not have to monitor TM/TC communication continuously.
The rad-hard Supervisor system will act as a watchdog for the MPSoC. The watch-
dog will command a reset (potentially only partial) in case parts of the MPSoC are
not reacting, potentially due to a Single-event functional interrupts (SEFI). Since
crucial TM/TC communication with the satellite platform ends on the Supervisor
system, this service will not be interrupted.
Software architecture of such a system should be comparable to the software archi-
tecture of an On-board Computer because of its similarity in functions. Though,
it must be compact, decoupled, and modular to ensure flexibility and portability.
This changes the usual components on a payload board and hence can have options
for selection. A solution trade-off was found out as below,
The vulnerability of COTS parts to radiation is clearly identified as the major
design concern. The mitigation of destructive Single Event Effect (SEE) will
be achieved by a supervising circuitry that monitors current and voltage supply
to the COTS parts. For this circuitry it is mandatory not to be susceptible to
destructive radiation effects. The rad-hard island on the PCB will be extended
by the supervisor system, a rad-hard microcontroller that is commanding and
processing the power supply as well as acting as a watchdog for the MPSoC.

Sarthak Kelapure 24

Institute for Architecture of Application Systems (IAAS)

Solution Pros Cons
1x rad-hard microcontroller Proven space heritage No access to FPGA

performance.

1x rad-hard MPSoC Rad-hard and space

heritage

• Highest price

• Less performance

than COTS MPSoC

1x COTS MPSoC Lowest cost • Reboots more often

• High chances of

memory corruption

• Additional testing

time for reliability

2x COTS MPSoC Low cost • Voter is also radiation

vulnerable

• 2x overhead

• No COTS SW like

Linux, possible

common source

failure can lead to a

total system failure

1x COTS MPSoC and 1x rad-

hard microcontroller

• Added robustness

• Rad-hard by design

• Microcontroller

(Supervisor) can also

handle essential

functions

Two different systems need

to be designed.

Table 3.1: Solution trade-off for Supervisor system

Sarthak Kelapure 25

Institute for Architecture of Application Systems (IAAS)

Sarthak Kelapure 26

Chapter 4

Requirements

In the design process of a product, before design comes requirement capture and
analysis. This process can be followed independently for hardware or software.
While requirement engineering is a big field in itself, this chapter will try to sum
up hardware and software requirements for the discussed solution before design of
software architecture.

4.1 Hardware requirements

As discussed above, a microcontroller should be a better option for the Supervisor
system (see Figure 3.1). A microcontroller should satisfy the cost to functionality
factor for the requirements.

4.1.1 Requirements for a microcontroller as a Supervisor

From the above discussion, we understand that as a supervisor, a microcontroller
must fulfill the following requirements:

1. Radiation hardened by design,
2. Memory scrubbing,
3. Availability of Error Detection and Correction module (EDAC),
4. Adequate processing power,
5. More than 50kB of RAM (For running RTOS and BSP),
6. Availability of Serial Peripheral Interface (SPI), at least 3,
7. Availability of Universal Asynchronous Receiver Transmitter, at least 2,
8. Availability of Analog to Digital Converter, at least 6 channels,
9. Availability of Controller Area Network (CAN) with hardware pre-processing,

10. Availability of Ethernet,
11. Internal oscillator, and
12. Floating Point Unit is a nice to have feature.

27

Institute for Architecture of Application Systems (IAAS)

These are minimum requirements that will allow the hardware to function as a
Supervisor module.

4.2 Requirements of the Software Architecture

The Supervisor system is radiation hardened by design but the software running
on this module must adhere to standards as in SAVOIR and ECSS. As per soft-
ware quality metrics derived from ECSS requirements, ECSS-Q-ST-80C [21] the
following requirements were finalized:

• The software architecture must account for a real-time behaviour of the
software. Definition taken from, ECSS Q80-04 [21] and ISO 9126 [22].

• The architecture must provide a stable functionality for all the mission
goals.Definition taken from, ECSS Q80-04 [21] and ISO 9126 [22].

• The architecture must be modular with standard interfaces and independent
functionality. Definition taken from, ECSS Q80-04 [21].

• The architecture must allow the modules to be resued for future missions.
Definition taken from, ECSS Q80-04 [21] and ISO 9126 [22].

• The architecture must be scalable for future expansion in functionality. Def-
inition taken from, ECSS Q80-04 [21].

• The software architecture should allow change in hardware by simple porting
procedure. Definition taken from, ECSS Q80-04 [21] and ISO 9126 [22].

These requirements set a baseline for the Supervisor software and make the pro-
cessing board future ready. Since, these requirements are built from defined stan-
dard, it also allows a track of the quality.

4.3 Requirement for the detailed design

For the functionalities in the scope of this thesis, a baseline has been set so that
it fits in the general software architecture. These software functionalities are
responsible for stable functioning of the satellite. General requirements for the
software design are as below:

• The software must be modelled using UML diagrams.

• The software must be designed in C programming language using a licensed
IDE.

• The software design must follow similar structure as the software architec-
ture.

Sarthak Kelapure 28

Institute for Architecture of Application Systems (IAAS)

• Documentation of the design must be generated as a Technical Reference
Manual (TRM).

4.3.1 Requirements for TM/TC communication

As Supervisor has to handle the TM/TC communication across the mission board,
it is necessary to have some standard requirements as below,

1. The Supervisor Software shall handle a communication interface to the OBC
via UART, for exchange of Telecommands and Telemetry.

2. The Supervisor Software shall handle a communication interface to the SoC
via UART, for exchange of Telecommands and Telemetry.

3. The communication protocol for the Telemetry and Telecommands shall be
based on the CCSDS Space Packet standard.

4. The Supervisor Software shall implement a task to handle continuously the
Telecommands coming from the OBC.

5. The Supervisor Software shall implement a task to handle continuously the
routing of the Telemetry data flow comming from the SoC.

6. The Supervisor Software shall implement a task to generate periodically a
TM packet that will be delivered to the OBC via UART0.

7. The Supervisor Software shall implement a task to generate a TM packet on
detection of certain events. The TM Packet will be delivered to the OBC
via UART0.

8. The Supervisor shall provide a status report of the SoC Boot Process, by
means of the generation of the proper TM packets via UART0

9. The Supervisor shall provide a status report of the Software/Firmware Up-
dates Function, by means of the generation of the proper TM packets via
UART0

10. The Watchdog status shall be reported to the OBC via a proper TM packet.

These requirements makes the TM/TC communication a complex function of the
Supervisor. This function is one of the most important task to be done by the
Supervisor. All other tasks must have a link to the communication architecture
so that they can share their status telemtry.

Sarthak Kelapure 29

Institute for Architecture of Application Systems (IAAS)

4.3.2 Requirements of SoC software update function

The Supervisor system will be responsible for firmware update for the MPSoC.
MPSoC can run application from an external connected memory, this concept will
be used to perform software update.

1. The Supervisor software shall handle TCs regarding Software update from
OBC.

2. The update procedure should be defined in stages with appropriate handling.

3. The Supervisor software should handle a common memory SPI NOR Flash
for reading and writing.

4. The Supervisor software should implement an independent task for software
updates on receiving an ”Update available” TC.

5. The ”Update available” TC shall specify update parameters, supervisor soft-
ware should read those parameters and apply them in action.

6. The Supervisor software should write the memory on reception of ”Data
bytes” TC(s).

7. The Supervisor software shall verify the update image using CRC on recep-
tion of ”Update verify” TC.

8. The Supervisor software shall execute the update using a Boot process on
reception of ”Update execute” TC.

9. The Supervisor software shall send a detailed report about the update to
OBC using the UART link.

These are the minimal requirements that the SoC Software update function. They
set a baseline for the software design as built upon software architecture.

Sarthak Kelapure 30

Chapter 5

High Level Design

5.1 Microcontroller for the Supervisor System

Rad-hard microcontrollers

Radiation hardening is the process of making electronic components or circuits
susceptible from any errors on the exposure of ionizing radiation possible in space
or high-altitude flights or also in environments nearby nuclear reactors.
Microcontrollers made and tested with such a process is known as Rad-hard mi-
crocontroller. These microcontrollers are safe from Single event effects like Single
Event Latch-up (SEL), Single Event Transient (SET), Single Event Upset (SEU),
or Single Event Burnout (SEB).
All such controllers have the least or zero effect from electronic noise or signal
spikes. In related digital signals, the controllers will not be generating inaccurate
signals.
Radiation tolerant controllers are also available but they still show some signs of
failure especially in space.

5.1.1 Microcontrollers comparison study

To choose the best option for a microcontroller as a Supervisor system, a study
was done amongst few competitive microcontrollers. The findings are as below,
From the Figure 5.1 we can see that there are two viable options, Vorago VA41630
and Microchip SAMRH71 due to their process power and availability of interfaces.
Microchip SAMRH71[23] does not have Analog to Digital Converters which can
be managed using an SPI to ADC bridge which is an extra component on board.
Instead, a compromise can be made on the processing power between the two con-
trollers for choosing Vorago VA41630 as the controller for the Supervisor system.
The company VORAGO Technologies also provides support for the software and
hardware development in the future.
Hence, Vorago VA41630 will be used as a supervisor in this context.

31

Institute for Architecture of Application Systems (IAAS)

Table 5.1: Comparison study for few microcontrollers

5.1.2 Vorago VA41630

Radiation Hardened VA416x0[4] 32-Bit ARM R© Cortex-M4 (with FPU) microcon-
troller manufactured with HARDSIL technology offering radiation performance
and latch-up immunity.

Key Features

• Manufactured with HARDSIL R© technology
• 32-bit ARM R© Cortex-M4 processor

– Single Precision FPU
– SWD based debug interface

• Operating Voltages
– GPIO 3.3 ± 0.33 V
– Optional 1.5 V core supply voltage
– Includes on-chip LDO regulator

• Clock rate upto 100 Mhz
• Memory

– 64 Kbyte on-chip data and 256 Kbyte on-chip program memory SRAM
– 256 KByte SPI NVM

• Peripherals
– 104 Configurable GPIO pins
– 3 UART interfaces
– 3 I2C interfaces
– 3 SPI interfaces
– 2 CAN 2.0B
– Ethernet 10/100 MAC
– Full-duplex SpaceWire interface
– DMA controller
– 8 Channel ADC (12-bit, 600 ksps)
– 2 Channel DAC (12-bit)

Sarthak Kelapure 32

Institute for Architecture of Application Systems (IAAS)

– Temperature sensor
• External Asynchronous Parallel Bus Interface

– 8-bit or 16-bit memory support
– Up to four memories of up to 16 Mbytes each

• Timer System
– 24 configurable 32-bit counters / timers
– Input capture, Output compares
– PWMs, Pulse Counters, Watchdog timer

• 176 QFP (20 mm x 20 mm) Package
• Total Ionizing Dose (TID) > 300 kRad (Si)
• Soft Error Rate (SER) < 1e–15 errors / bit-day
• Latchup immunity

Figure 5.1: Vorago VA41630 block diagram[4]

ARM Cortex M4F

ARM Cortex[24] M family of processors are cost and energy-optimized 32-bit mi-
crocontrollers. ARM licenses this architecture to CPU and SoC Manufacturers for
license fees and certification.
The core defines various silicon options as Intellectual property, such as SysTick,
Memory Protection Unit, Watchdogs, Wakeup interrupt controllers, interrupts,
halting debug support, Data cache, etc.
The series contains ARM Cortex M0, Cortex M0+, Cortex M1, Cortex M3, Cor-
tex M4, Cortex M7, Cortex M23, Cortex 33, Cortex 35, Cortex 55.
Cortex M4F core is based on ARM7E-M architecture with 3 stage pipleline and
an optional Floating Point Unit. The core has entire Thumb 1 and Thumb 2

Sarthak Kelapure 33

Institute for Architecture of Application Systems (IAAS)

instruction sets with 32-bit integer multiply and 32-bit hardware divide.

Figure 5.2: Cortex M4F
architecture[24]

Figure 5.3: Nested Vectored Interrupts
in Cortex M4F[24]

The core has DSP instructions with saturation arithmetic support. ARM offers
FPU and Memory Protection Unit (MPU) as optional IP along with the core. It
can have 1 to 240 Interrupts along with non-maskable interrupts.
The core also provides various sleep modes for improving energy efficiency. This
includes Wait for Interrupt (WFI) and Wait for Event (WFE) modes.
The core makes debug available through JTAG or Serial Wire Debug (SWD).

5.2 Block design for processing board

The processing board is the core of a satellite. All functionality relating to RF sig-
nals, communication to ground station and control is managed by this processing
board. The processing board being developed has three main components,

• FPGA/Processor system

• Supervisor system

• Interface to On-board computer

Additionally various components added for functionality, viz. Non Volatile Mem-
ory (NVM), camera interface, clock reference, power electronics and interfacing
connectors.
Block diagram in Figure 5.4 is very important for the software to function as
knowledge of all the components on board will make the software more precise,
robust and reliable.

Sarthak Kelapure 34

Institute for Architecture of Application Systems (IAAS)

Figure 5.4: Minimal hardware building blocks of the processing board

5.3 RTOS vs baremetal

Bare metal programming means simple loop based programming where the con-
trol of connected peripherals is via polling or interrupts. This means following
a random schedule based on the use case and implementation structure. This is
efficient for simpler problem statements with less number of tasks.
But one major drawback is that code is not scalable. There are two directions of
scalability:

• vertical (a.k.a. scaling up): faster CPU, more RAM, more disk space;

• horizontal (a.k.a. scaling out): more cores in CPU, more CPUs, more
servers;

On the other hand, RTOS brings the concept of scheduler and tasks. Numerous
tasks can be scheduled and run based on algorithms to reach optimum CPU and
memory usage.

Why to consider RTOS?

• Guarantee of having real-time performance.

• Multi-threading and Concurrency (Concurrency is achieved by using task
scheduler).

• Management of inter task communication.

• Resource management (semaphores/mutex).

The choice of running the implementation on baremetal or a RTOS depends on
several factors that are to be considered. Same goal can be achieved with either

Sarthak Kelapure 35

Institute for Architecture of Application Systems (IAAS)

of them. But, RTOS has lot of advantages to offer for example, it has a scheduler
to run tasks concurrently by switching between them using priorities assigned to
them, pre-emption of tasks, sharing of resources with ease using mutexes, synchro-
nizing the tasks using semaphores and lot of APIs come with RTOS as a package
to be used with the application.
As for our project, since the Vorago MCU as a supervisor is going to handle many
tasks requiring specific scheduling, using RTOS would be a better option, since it
can schedule tasks with priorities assigned and we can still use the interrupts to
pre-empt tasks.
According to preliminary analysis,the following operating systems have support
for the ARM Cortex M4 processor and would be possible candidates:

• RTX (Keil Implementation)[25]
• FreeRTOS[26]
• µC/OS [27]
• RT-Thread [28]

Why to choose FreeRTOS?

• Provides a single and independent solution for many different architectures
and development tools.

• Contains a pre-configured example for each port. No need to figure out how
to setup a project – just download and compile!

• Is known to be reliable. Confidence is assured by the activities undertaken
by the SafeRTOS sister project.

• Provides features like memory protection, stack overflow detection, etc.

• Is still undergoing continuous active development.

• Has a minimal ROM, RAM and processing overhead. Typically an RTOS
kernel binary image will be in the region of 6K to 12K bytes.

• Provides ample documentation.

• Is very scalable, simple and easy to use.

• FreeRTOS offers a smaller and easier real time processing alternative for
applications where eCOS, embedded Linux (or Real Time Linux) and even
uCLinux won’t fit, are not appropriate, or are not available.

Sarthak Kelapure 36

Institute for Architecture of Application Systems (IAAS)

Features Baremetal FreeRTOS
Multithreading Not available Available

Pre-emptive, round-robin, or cooperative

scheduling.

Memory Management

Self-made algorithms for stack

and heap management.

Static and Dynamic Memory Allocation available.

Five options available from FreeRTOS.

Interrupt Management Handled by Interrupt

Controller.

Semaphores available for synchronization

between tasks and interrupts.

Hardware abstraction layer BSP from Vorago Self created HAL-utility layer

Resource Management

(hardware arbitration)

None FreeRTOS has additional layer for resource

management to allocate

locks/mutex/semaphores for hardware

Provision of Software Timers

No functionality provided Provided Software Timers to schedule periodic

tasks or one-shot tasks at a specific time.

Hierarchy separation and

protection

HAL is the only layer. Tasks and HAL drivers are on separate layers and

are well separated.

Exception Management and

Recovery

Watchdog with a handler to

switch back to the known

state

Same as baremetal. Additionally, for a task-based

failure, the handler can have restarting for the task.

Managing of failures / defects /

un-availabilities in a way not

harming other processes and

tasks

Self-made functions to handle

errors, defects and infinite

loops.

FreeRTOS has hooks for few possible errors.

Failure / Error confinement

Error in one functionality can

lead to failure of the entire

system.

Since tasks are separated from hardware, failure of

one task will have less effect on the failure of the

system.

Stackoverflow detection Not available, has to be

developed

Has two methods for checking stack overflow. This

is done using Stack-Overflow hooks.

Table 5.2: Comparison between baremetal and FreeRTOS implementation

5.4 Layered software architecture design

Satellite development and its architecture is always application driven. This allows
the payload to function aptly and according to the requirements and specifications.
Spacecraft operations will succeed only when the Space and Ground Segment are
interlinked optimally through appropriate data handling and management con-
cepts. Communication satellites are successful only with proven reliability and
flexibility of the on-board systems. The need for a robust and reliable satellites
increases with the rules concerning space debris and deorbiting satellites.
The software architecture in figure 5.5 attempts to provide a robust and reliable
software which can also perform re-configurations during operations. The architec-
ture designed for this use-case is a layered architecture with hardware dependent
and hardware independent layers as in Figure 5.6.

1. Components in the hardware dependent layer are dependent on the micro-
controller i.e. Vorago VA41630. The software makes interfaces available for
the higher level to latch on and add functionality.

2. The hardware independent software components are modular functions that
can be reused in future. They can call functions from the hardware depen-
dent layer to develop application. The middleware layer is a very important
layer since it allows smooth interaction between application and hardware.

Sarthak Kelapure 37

Institute for Architecture of Application Systems (IAAS)

Figure 5.5: Overview of the designed software architecture

This architecture aims to shorten the development time and to have flexible ap-
plication during operations. Since many tasks are linked to associated commands,
an architecture to fulfil requirements in this direction makes sense.

Figure 5.6: Detailed software architecture

This software architecture is an extension and improvement on OBC software
architecture in Figure 3.3. Our designed software architecture is a tailor-made
architecture for the generic OBC software architecture.

Sarthak Kelapure 38

Institute for Architecture of Application Systems (IAAS)

Board Support Package

Board support package from Vorago gives access to the hardware for all the avail-
able interfaces– I2C, SPI, UART, ADC, Timer, SpaceWire, Ethernet, etc. This
serves as a baseline for the FreeRTOS kernel. The FreeRTOS project needs im-
porting of the BSP to build over it.

BSP Component Description

UART Driver Speed: Maximum up to 2,000,000 bps, 2000 Kbps

Transfer Size: FIFO size: 16 bytes each instance

Number of Instances: three(0,1,2)

SPI Driver Speed: (SystemCoreClock/2), 50Mhz

Transfer Size: 16 words, each instance

Number of Instances: four(0,1,2,3).

I2C Driver Speed: Upto 400Khz

Transfer Size: 16 word FIFO, each instance.

Number of Instances: three(0,1,2).

ADC Driver Speed : 600k samples/second

Transfer Size: 16 word FIFO

Number of instances: 8 external channels

Spacewire Speed: max 100 Mbits/second

Transfer Size: 1Kbyte receive FIFO, 1Kbyte

transmit FIFO, transfer packet upto 256

characters

Number of instances: 1

Ethernet Speed: 10/100 Mbps

Transfer Size: 16 Kbytes of data

Number of instances: 1

Table 5.3: Description of BSP Components

FreeRTOS Kernel

FreeRTOS kernel provides various ways to manage applications and handle them
with time deterministic nature. FreeRTOS allows a software application to be
written as a set of independent tasks. Each task is assigned a priority and it is
the responsibility of the Real Time Operating System to ensure that the task with
the highest priority that is able to run is the task that is running.

1. Scheduling:[29] FreeRTOS schedules task according to the priority of the
task but for tasks with same priority, user can set round robin like time
slicing using the FreeRTOSConfig.h file. The scheduling method chosen is
pre-emptive with time slicing (round robin).

2. Synchronization: FreeRTOS allows task synchronization using Mutex,
couting/binary semaphores and most importantly task notification. Each
RTOS task has a 32-bit notification value. An RTOS task notification is
an event sent directly to a task that can unblock the receiving task, and
optionally update the receiving task’s notification value.
That flexibility allows task notifications to be used where previously it would
have been necessary to create a separate queue, binary semaphore, counting

Sarthak Kelapure 39

Institute for Architecture of Application Systems (IAAS)

semaphore or event group. Unblocking an RTOS task with a direct notifi-
cation is 45 percent faster and uses less RAM than unblocking a task with
a binary semaphore.

3. Heap management:[30] The RTOS kernel needs RAM each time a task,
queue, mutex, software timer, semaphore or event group is created. The
RAM can be automatically dynamically allocated from the RTOS heap
within the RTOS API object creation functions, or it can be provided by
the application writer.
The FreeRTOS download includes five sample memory allocation imple-
mentations, each of which are described in the following subsections. The
subsections also include information on when each of the provided imple-
mentations might be the most appropriate to select. Each provided imple-
mentation is contained in a separate source file which are located in the
Source/Portable/MemMang directory of the main RTOS source code down-
load. Other implementations can be added as needed. Exactly one of these
source files should be included in a project at a time [the heap defined by
these portable layer functions will be used by the RTOS kernel even if the
application that is using the RTOS opts to use its own heap implementa-
tion].
Following below:

• heap 1 – the very simplest, does not permit memory to be freed.
• heap 2 – permits memory to be freed, but does not coalescence adjacent

free blocks.
• heap 3 – simply wraps the standard malloc() and free() for thread

safety.
• heap 4 – coalescences adjacent free blocks to avoid fragmentation. In-

cludes absolute address placement option.
• heap 5 – as per heap 4, with the ability to span the heap across multiple

non-adjacent memory areas.

heap 4.c is particularly useful for applications that want to use the portable
layer memory allocation schemes directly in the application code rather than
just indirectly by calling API functions that themselves call pvPortMalloc()
and vPortFree(). The xPortGetFreeHeapSize() API function returns the to-
tal amount of heap space that remains unallocated when the function is
called, and the xPortGetMinimumEverFreeHeapSize() API function returns
lowest amount of free heap space that has existed system the FreeRTOS
application booted. Neither function provides information on how the unal-
located memory is fragmented into smaller blocks.

4. Intertask communication: FreeRTOS Queues[31] are the primary form
of intertask communications. They can be used to send messages between
tasks, and between interrupts and tasks. In most cases they are used as
thread safe FIFO buffers with new data being sent to the back of the queue,

Sarthak Kelapure 40

Institute for Architecture of Application Systems (IAAS)

although data can also be sent to the front.
FreeRTOS allows task notifications which are fast and efficient ways of com-
municating between tasks. In this case, each task is given a 32-bit task no-
tification value. The flexibility of task notifications allows them to be used
where otherwise it would have been necessary to create a separate queue, bi-
nary semaphore, counting semaphore or event group. Unblocking an RTOS
task with a direct notification is 45% faster and uses less RAM than un-
blocking a task using an intermediary object such as a binary semaphore
[32].
Stream buffers[33] is a task to task, interrupt to task, and interrupt to in-
terrupt communication option. They are optimised for single reader single
writer scenarios, such as passing data from an interrupt service routine to a
task, or from one microcontroller core to another on dual core CPUs. Data
is passed by copy – the data is copied into the buffer by the sender and out
of the buffer by the read.
Stream buffers pass a continuous stream of bytes. Message buffers pass vari-
able sized but discrete messages. Message buffers use stream buffers for data
transfer.

Higher Abstraction Utility Drivers

There are various components and protocols that are not a part of BSP and need
special driver development which is built on the hardware drivers given by Vorago,
e.g. MRAM driver can be made using SPI driver from BSP layer. Similarly, for
current monitoring ADC Driver is needed. These are the essential utility drivers
for a thread-safe environment. They are built on lower level “BSP drivers”.
These drivers must make interfaces available for the higher levels to access the
hardware. They should have getter and setter functions.
In future, for porting the application to another hardware, manipulation in this
layer is necessary.

Sarthak Kelapure 41

Institute for Architecture of Application Systems (IAAS)

Component Description

MRAM Driver Magnetoresistive Random Access Memory is used here by

the Supervisor system to store configuration related data. In

the future, the same memory can be used for software

updates for the Supervisor system.

As seen in the block diagram, one MRAM is connected to

Vorago, NVM3.

This driver is developed for thread safe operation using SPI

library from Vorago’s BSP.

SPI-NOR Flash SPI NOR flash is one of the most important and most used

components on the board. Three of them are on-board

and one of them connected to Vorago, sharing SPI lines

with MPSoC.

This driver is developed for thread safe operation using SPI

library from Vorago’s BSP.

UART Driver Vorago provides a BSP UART library though it is necessary to

make it thread safe and available with interface to the

application.

GPIO Driver Vorago provides a BSP GPIO library though it is necessary to

make it thread safe and available with interface to the

application.

ADC Driver Various power rails on board are being monitored by the

Supervisor system, reading a setting threshold is made

possible using the ADC peripheral driver.

Debug Debug is made available using UART2 interface, this

interface allows debug prints and generation of .log files

using Segger tools.

Table 5.4: Components of HAL Utility Layer

Middleware

The middleware layer has the property to provide services to the application. It
provides the running applications access to the hardware through the HAL layer.
The middleware provides system abstraction to application software to increase
application portability. It is important to note that the components in middleware
should be free of any hardware-realted APIs.
Here, number of ”Handlers” are involved. The term handlers refers to their func-
tion to handle hardware access requests from application. These handlers interface
the hardware with the application, they need to be designed according to inter-
faces made available by the hardware-dependent layer.
These components need to be vary of available interfaces and available hardware
resources, hence fixed interfaces from lower levels must be present.

Sarthak Kelapure 42

Institute for Architecture of Application Systems (IAAS)

Component Description

TC Handler TC Handler collects data from the UART driver and uses a

state machine to generate spacepackets for consumption

by the application

TM Handler Every TC will be acknowledged by a TM. This TM from

Supervisor has to be relayed to the OBC on thread-safe

UART.

SpacePacket driver SpacePacket protocol from ECSS Standards is being used.

This protocol ensures hardware independent

implementation for parsing and generating spacepackets.

Boot Manager During SoC boot, a very careful execution is expected from

Supervisor. The boot manager component ensures that the

best-known previous state of the SoC is restored on boot-

up.

Latch-up monitor Current spikes or latches can cause a major damage to

connected electronics. Since Supervisor system is designed

to protect the payload computer from such latches, a spike

must be detected by the Supervisor and an action must be

taken to ensure all components on board are kept safe.

SoC Watchdog

Handler

Watchdog feature for SoC regularly keeps checking

heartbeat signals from the MPSoC and reports/corrects

abnormalities.

PPS Generator To have a time sync between all connected components,

a pulse per second signal is generated from Supervisor.

Error handling All errors on hardware must be checked and reported to

the OBC/Ground station.

Table 5.5: Components of the Middleware Layer

Application layer

Application layer has user-defined tasks to build upon the middleware and fulfil
the mission criteria. These are all runnable tasks calling run functions from the
handlers. The tasks are created and started by using xCreateTask() function in
the main function.

5.5 List of tasks

Table below summarizes the different FreeRTOS tasks in Application Layer, with
a brief description and its priorities. The priorities are assigned from a software
criticality study (not in this scope). Higher the criticality factor, higher is the
priority. For an example, Latch-up monitoring will be highest priority as it is
linked to the on-board power and if there is an abnormality in that, the mission
fails hence it is a mission critical task.
The scheduler is able to select the next task to run in every time slice. The
length of the time slice is defined by the tick interrupt frequency parameter (con-

Sarthak Kelapure 43

Institute for Architecture of Application Systems (IAAS)

Task Description Priority

TC Manager TC Handling: receive from OBC, yield and route TC.

Waiting for TC from OBC. Gives back an

acknowledgment to the OBC.

1

TM Manager TM Handling: Receive from SoC, yield and route TM, also

TM Logging in NVM3.

Waiting for TM from SoC and generating TM(ack/reports)

for OBC.

1

Latch-up

manager

Monitoring current on the power rails and checking for

any abnormalities. Polling for current from 6 ADCs.

1

PS Heartbeat MPSoC-PS heartbeat as an input for the Watchdog

system

2

PL Heartbeat MPSoC-PL heartbeat as an input for the Watchdog

system

3

Timekeeping Generate time sync PPS to PS and PL 3

SoC Health

report

Timed reports about SoC health to OBC using TM, also TM

Logging in NVM3.

3

Debug Debug Interface (JTAG,SWD, UART2 serial interface) 4

SoC Updates Task created only when correct TC is received. Otherwise

idle task.

1

Table 5.6: List of Application tasks

figTICK RATE HZ) at compile time within FreeRTOSConfig.h.
Possible scheduling policies are: pre-emptive, round-robin and cooperative schedul-
ing.
In pre-emptive scheduling, FreeRTOS schedules tasks according to their priority.
The FreeRTOS scheduler ensures at every time slice, that tasks in the Ready or
Running state will always be given processor time in preference to tasks of a lower
priority that are also in the ready state. In other words, the task placed in the
Running state is always the highest priority task that can run.
The round robin (time slicing) applies when we have tasks which share the same
priority. If configUSE TIME SLICING is set to 1, then Ready state tasks of equal
priority will share the available processing time using a time-sliced round-robin
scheduling scheme.
The selected scheduling method is a combination of pre-emptive scheduling with
round robin (time slicing). This is to ensure that at any point of time higher
priority task is given the processor time, while if there are more than one task of
same priority, they share the time using time-slicing.
NOTE: Current FreeRTOS configuration Priority based scheduling with round
robin in FreeRTOS:

#define configUSE_PREEMPTION 1
#define configUSE_TIME_SLICING 1

Sarthak Kelapure 44

Institute for Architecture of Application Systems (IAAS)

#define configTICK_RATE_HZ ((TickType_t)1000)

5.6 Resource Utilization

The following study was done to determine preliminary RAM utilization by each
task.

Item Bytes Used

Scheduler Itself 236 bytes (can easily be

reduced by using smaller data

types).

For each queue you create, add 76 bytes + queue storage area

For each task you create, add 64 bytes (includes 4 characters

for the task name) + the task

stack size.

Task Stack

size

Queue

size

Task

Notification

RAM

TC Manager 1024 + 64 1096 + 76 8 2268

TM Manager 1024 + 64 1096 + 76 8 2268

Timekeeping 256 + 64 320

Read PS heartbeat 256 + 64 8 328

Read PL heartbeat 256 + 64 8 328

SoC Health report 256 + 64 8 328

Latch up monitoring 512 + 64 8 328

Debug 256 + 64 320

SoC Update Task 1024 + 64 1096 + 76 8 2268

FreeRTOS Scheduler ~236

BSP ~36000

Total ~44992

Table 5.7: Estimated RAM utilization

There are the following memories available in the Supervisor system:

• 64 Kbyte SRAM data memory: 32 Kbyte on the data bus and 32 Kbyte on
system bus

– SRAM1 is used as Static memory handling (.bss .data) and also to
allocate the heap for handling dynamic memory allocation, including
storage of the “stack” of the FreeRTOS tasks.

– SRAM2 is allocated currently for DMA.

Sarthak Kelapure 45

Institute for Architecture of Application Systems (IAAS)

• 256 Kbyte SRAM instruction memory, loaded from the SPI based memory
(256Kbyte serial NVM) or from external memory on the external bus inter-
face at startup. In ARM architecture, this memory can also be used as data
memory but it reduces the throughput.

• External memories:

– NVM1; shared between Supervisor and SoC, and
– NVM3; Supervisor’s configuration memory, can be also used for Super-

visor software updates in the future.

5.7 Interfaces

The middleware has to communicate with the lower layers, hence a generic in-
terface has to be set up. This interface will be useful to share data between the
hardware and the software.
To define these, an interface diagram is created using the layered architecture as
a reference from Figure 5.6.

Figure 5.7: Interfaces between hardware and middleware

Sarthak Kelapure 46

Chapter 6

Detailed Design

6.1 TM/TC Communication

The processing board receives Telecommands from the ground station using TTC
link on S-band. This is collected by the on-board computer using a S-band an-
tenna. This is relayed to Supervisor for further action or response. In this TTC

Figure 6.1: TTC Communication

communication, the ground station can send a service request while the satellite
can send a regular report and state of the payload electronics.
A ”telecommand packet” is a data packet carrying a service request from the
ground station to the satellite.
A ”telemetry packet” is a data packet carrying a service report from satellite
to the ground station. This can be a reply to a telecommand or just a standalone
packet.

47

Institute for Architecture of Application Systems (IAAS)

In this project, the on-board computer is responsible for the TTC communication.
For all requests for the Supervisor or SoC, the on-board computer forwards the
requests using a dedicated UART interface.

Figure 6.2: TM/TC Architecture

6.1.1 Introduction to SpacePacket Protocol

As seen in the requirements above, space packet protocol from CCSDS must be
used to perform communication between the on-board modules. This protocol
is defined in the document ECSS-E-ST-70-41C [34] specifying a lightweight
but descriptive packet structure. The packet based communication architecture
is designed for data transfer between nodes, space-to-space, space-to-ground, and
for on-board communication. Few saliant features of the SpacePacket protocol are
as below,

• 6-byte primary header,

• Optional secondary header,

• Variable length data field (upto 65536 bytes),

• Primary header can be customized for 11-bits of Application ID,

• Start and end of burst packet can be defined,

• Designed to be independent of higher and lower application interface.

Figure 6.3: Standard SpacePacket Protocol from CCSDS [34]

Sarthak Kelapure 48

Institute for Architecture of Application Systems (IAAS)

The Figure 6.3 shows the standard packet structure as given by CCSDS document.
While, Figure 6.4 represents customized yet standard packet structure to be used
in this project. The 11-bits of Application ID have been divided to specify the
source, destination, and purpose of the packet.

Figure 6.4: SpacePacket protocol with customized Application ID

The SpacePacket protocol restricts the overall packet length to 1024-bytes to save
RAM on all modules of the board. An additional 16-bit CRC is involved to keep
a check on packet integrity.
This packet definition is derived from a very similar approach being used in stan-
dard software of OBC [3].

6.1.2 Design

UART Driver

TM and TC communication on Supervisor is done via UART, viz. UART0 for
communication with OBC while TM communication to and from SoC. To facilitate
the UART Driver must be capable to read, store and process the data on UART(s).
The UART Driver can be made with the following three options,

1. Interrupt based: Vorago has RX and TX interrupt for UART which can
be configured to an registered event in half/full buffer conditions. This
condition is raised from STATUS register of the specific UART.

2. UART Polling: User can specifically poll the STATUS register for the
UART and read data from the DATA register. This eliminates the need of
an event of Interrupt Service routine. Vorago provides functions to get the
length of RX data and also grab that data.

Sarthak Kelapure 49

Institute for Architecture of Application Systems (IAAS)

3. UART with DMA: Currently not supported, future use case.

A polling version of the driver is used because interrupts can ruin the round robin
scheduling and can generate a non-deterministic nature for the system which must
be avoided.
At the fixed UART baud rate of 115200, we can get 14.4 bytes per millisecond.
Since Vorago has a 16 byte UART FIFO buffer, we can poll every 1ms to grab all
data and never miss any communication on any UART.

Figure 6.5: UML Diagram for UART Driver

The hardware FIFO for Voargo’s UART is 16-bytes and to make sure, we do
not miss any data, two tasks are run every 1 millisecond to grab data from the
FIFO and put on the respective Queue, as shown in Figure 6.5. NOTE: UART
capture is run as a task, defined in HAL of the software using private members of
the driver.

SpacePacket library

As discussed above, a rendition of SpacePacket protocol has been used in this
project. To accommodate this, a very generic spacepacket library was developed
in C-programming language. This library was designed and developed to be inde-
pendent of the higher and lower layers of the application. The library is developed
to be lightweight in terms of memory and computation time so that it can also be
used in microcontrollers such as Vorago, in this case.

TM/TC Handler

The UART receive task grabs data in bytes, this must be packatized to be utilized
by the application. As seen from the Figure 5.7, a Queue is made available as an
interface to be utilized by the TM/TC handlers. A state machine is run over the
Queue to receive and parse data in the queue. This state machine also finds and
reports rxError.
The state machine is designed as in Figure 6.6. This state machine is responsible
for parsing data collected by the UART driver from the HAL layer.

Sarthak Kelapure 50

Institute for Architecture of Application Systems (IAAS)

Figure 6.6: State Machine for parsing bytes to SpacePacket

The TM and TC handlers run this state machine as in Figure 6.7 and 6.8. These
functions allow the collected data on UART to be used in a SpacePacket and
further parsed to allow processing of the respective TC or TM. This process yields
in a SpacePacket which is verified and checked for its CRC before passing on to
the next layer.

Figure 6.7: TC Handler running activity diagram

Sarthak Kelapure 51

Institute for Architecture of Application Systems (IAAS)

Figure 6.8: TM Handler running activity diagram

TM/TC Manager

Application layer runs task to receive spacepackets as packets in a designated
queues.These queues are then checked for the source, destination, and purpose for
further execution. The execution is shown in Figures 6.9 and 6.10.

Figure 6.9: TC Manager Task

Figure 6.10: TM Manager task

Sarthak Kelapure 52

Institute for Architecture of Application Systems (IAAS)

6.2 Software updates

During the mission, the ground station can order a configuration change using a
telecommand through the OBC. This can mean change in operations and possibly
an update in few features/functions. But a change in algorithm or core function-
alities of the SoC is very difficult.
In this case, the processing board allows change in core functionalities of the SoC
using an external memory for boot. This will allow change in services and data
processing algorithm over fly making the satellite flexible and future ready.

6.2.1 SoC software updates

The OBC receives TTC from the ground station, as in Figure 6.1 allowing the
ground station to also send a firmware update over the air. This package includes
VHDL firmware and application software for the SoC. The Supervisor module can
parse the packets, understand it, and update the boot memory. As a signal, the
Supervisor module can generate a Force Golden signal to indicate use of updated
firmware. This signal is read by the First Stage Bootloader (FSBL) during the
boot leading to the correct boot partition. This boot process is not a part of this
thesis.
Extending the Figure 6.2 following block design can be made for explaining the
SoC software update function using the already existing TM/TC Architecture.
The software for this function is also built upon the already existing TM/TC
Software as discussed above. The TC reaches the TC Manager as discussed in
the Section 6.1.2. On parsing the SpacePacket, the software can go through four
stages for the update function.

Update Available Stage

A TC from OBC is sent with all the update parameters which includes,

• Update partition,
• Size of update,
• Type of update file,
• 32-bit image CRC.

This packet allows the Supervisor to create a new task and pass these parameters
for memory initialization. During this process, any errors lead to a negative ac-
knowledgement to the TC. The new task starts with memory initialization/clean-
up and goes on to wait on a queue for data bytes.

Sarthak Kelapure 53

Institute for Architecture of Application Systems (IAAS)

Figure 6.11: SoC Update available on TC Manager task

Update Data Bytes Stage

The update file is sent over packets of 1024-bytes from the OBC to the Supervisor
as burst TCs which come through to the TC Manager. Here, the packet data is
put on a shared queue for the SoC Update task to retrieve and use.
The task reads data from the queue and writes it to the memory with correct
address pointer. On the last packet, the SoC Update task kills itself, saving some
memory.

Figure 6.12: SoC Update data bytes on TC Manager and update task

Sarthak Kelapure 54

Institute for Architecture of Application Systems (IAAS)

Update Verify Stage

Verification of the update is done using a 32-bit CRC of the image using a TC
from OBC to Supervisor system. The Supervisor can then read the corresponding
memory and generate it’s own 32-bit CRC dynamically for comparison.
On success or failure, a TM is sent back to the OBC with negative/positive ac-
knowledgement.

Figure 6.13: SoC Update verify on TC Manager task

Update Execution Stage

The OBC has to order the Supervisor for running the updated firmware on the
SoC. This comes to Supervisor as a TC and Supervisor has to then take care of the
update procedure. Before passing the control to Boot Manager, the TC Manager
checks for the verification status. The Boot Manager handles safe closure of all
the interfaces/tasks, signalling the Force Golden, and rebooting the SoC.
After the boot-up, Boot Manager restarts the respective tasks, interfaces, and
sends a TM report back to the OBC.

6.3 Results

Software design and development was done for the the above functions using the
above designed software design and standard software development procedures.
The test was done by developing a OBC-Emulator on a Linux PC to create a lab
environment for the to be satellite software. This OBC emulator was tested for
quality check and passed assessment before using with the real hardware. Addi-
tionally, USB and jumper cables were used to go through the tests.

Sarthak Kelapure 55

Institute for Architecture of Application Systems (IAAS)

Test Setup

To test the software architecture and running software, a test software was devel-
oped on a Linux PC emulating an OBC namely ”OBC Emulator”. This allowed
testing the supervisor software with some standard TMs and TCs. Similarly, to
emulate an SoC, a test software was developed on a Linux PC namely SoC Emu-
lator. This test setup gives an ideal environment for tests since eventually OBC
and SoC will run a version of Linux on them. The test software uses same module
from Supervisor software i.e. SpacePacket library, proving a level of modularity
already.

Vorago-M4

Eval board

Linux PC

running
OBC-Emulator

software

Linux PC

running
SoC-Emulator

softwareUSB to

UART
USB to

UART

SPI NOR

Flash

SPI

Figure 6.14: Test setup for TM/TC and SoC Software Updates

This setup was made to test the functionality as well as quality of the software
architecture and developed software. It allowed for generating results at this stage.
In the future, similar will be done on real hardware. NOTE: OBC-Emulator and
SoC-Emulator software/architecture is not in scope of this thesis.

Outputs

The software package on Vorago-M4 allows debug prints and generation of log
files for these debug prints. Source of the below images are these log prints from
a standard text editor.

Figure 6.15: A TC from OBC for Super-
visor; consumed and acknowledged

Figure 6.16: A TC from OBC for the
SoC; routed and acknowledged

Sarthak Kelapure 56

Institute for Architecture of Application Systems (IAAS)

The above images, show starting of the FreeRTOS tasks and reception, handling
and consumption of a Telecommands from OBC. The Telecommands is replied
using acknowledgements, which are a Telemetry with status code, reference packet
number, and other details.
For the SoC Update task, the figure below shows all the states of the update.
During this test, a 1000 byte file was transferred from the OBC to the Flash
memory.

Figure 6.17: SoC Update debug prints for all states

6.4 Architecture Porting

The software architecture is designed and developed such that it can be reused
and ported for future space products, allowing software modularity. This means
adapting to foreseen hardware changes for the Supervisor system. This can be
done using porting of the HAL to accommodate the changes in respective BSP.
To prove this, a similar microcontroller was selected for a test. The chosen micro-
controller was STM32F407VG[35] with its development board DISC1 - STM32F407
[36] in a breadboard condition. This microcontroller was selected due to its simi-
larity with Vorago-M4. Few notable features of this microcontroller are,

• ARM Cortex-M4F architecture.
• Upto 168Mhz clock speed.
• SPI/I2C/UART/ADC/DAC/CAN Interfaces.
• 1Mb internal flash memory, 196kb SRAM.
• No radiation hardening.

Sarthak Kelapure 57

Institute for Architecture of Application Systems (IAAS)

During this test, the function of TM/TC was ported to STM32 architecture by
making changes to the UART Driver [refer Section 6.1.2]. The Middleware and
Application layer remains unchanged due to it’s Hardware-independent nature.
The Operating System layer remains the same due to similar hardware architecture.
While, the BSP will change to the one provided by STM32[36].
NOTE: Changing the Operating system will mean change in the interfaces also.

Figure 6.18: Porting of software architecture to STM32

As a result of such porting, the following were the findings. The image below,
shows results from Vorago-M4 and STM32 side-by-side for comparison.

Figure 6.19: TM/TC debug prints on
Vorago-M4

Figure 6.20: TM/TC debug prints on
STM32F4

NOTE: UART capture tasks are not seen in the STM32F4 version of debug
prints because, STM32 version of capture process is done using interrupts. This
change is only made in HAL layer and does not affect the other layers in anyway.

From the above test it can be concluded that designed software architecture is
modular and can be ported to different hardware in the future. This is an impor-
tant factor for this specific mission as the product is in its initial stages and future
hardware changes are foreseen. It can also be seen how such Supervisor system
(hardware and software) can be ported to similar products.

Sarthak Kelapure 58

Chapter 7

Evaluation

On studying the state of the art, reference architectures, and software architecture
standards for satellites a software architecture was designed for the Supervisor sys-
tem. As part of the thesis few software functions were also developed based on the
software architecture. These functions already prove stability of the architecture
but in this chapter, detailed evaluation of the software architecture is done.
The hardware requirements as discussed in Chapter 4 were met by using Vorago-
M4 microcontroller as Supervisor module. The comparison study can be seen
in Section 5.1. But since the thesis focuses on software architecture, we study
in detail about the designed architecture as compared to baseline discussed in
Section 4.2.

1. Real-time: The goal for this requirement is to have real time performance
for the system with near to instant reaction to an event. This can be achieved
by using schedulers in the software. Various schedulers are available in the
market, they were studied, compared, and FreeRTOS [26] was chosen. This
has been discussed in Section 5.2 at length. The software architecture is
designed with a dedicated layer for inclusion of an Operating system. The
scheduler in this RTOS is proven for its real time performance. The RTOS
allows definition of tasks that perform functions independently. During the
tests, all the tasks were seen to run independently.

2. Functional stability: The Supervisor system has some predefined min-
imal functionality, as discussed in Section 3.5. The software architecture
should allow development of these functionalities. The software architecture
is designed in layers to allow these functions to be built using the existing
hardware and hardware dependent layer. Hardware dependent BSP layer
allows optimal use of hardware and its functionalities. This has been seen
from the above developed functionalities and their results as in Section 6.3.

3. Modularity: The architecture needs to be designed such that it is broken
down in modules to allow independent and interchangeable functionality.
The product requirements can change rapidly and having such modules will
allow the software to be modified and reconfigured to allow the said change.

59

Institute for Architecture of Application Systems (IAAS)

In design, the software architecture is divided in layers and independent
modules in those layers to fulfil the requirement. The architecture is designed
keeping in mind standard interfaces as discussed in Section 5.7.

4. Reusability: The software architecture must be designed in a way that
it can also be used in other similar products when needed. The designed
software architecture has Middleware and Application layer which allows the
software to be reused in similar systems. This is supported by the designed
software interfaces as in Figure 5.7.

5. Scalability: The product in discussion is a new concept and future expan-
sion is foreseen. In this case, the software architecture has to be designed
such that addition of features in the future is possible. The designed ar-
chitecture allows build up of any additional functionality in the Application
layer is possible as long as hardware supports it. Currently, the software in
development is being expanded to include more features using the software
architecture as base.

6. Portability: The processing board is at its initial development phase
and in the future improvement or change in hardware is also foreseen. This
must be accounted in the software architecture allowing the architecture to
be reused when the hardware changes. In the design, architecture is such
that the application layer will have no effect of the change. The hardware
dependent layers may change with hardware but the hardware independent
layers should be unaffected. Porting of HAL layer is possible while keeping
the interfaces to Middleware constant. To try such a porting, an experiment
was carried on by changing the hardware and porting the HAL components
to find that the architecture can remain stable in this situation also. This
experiment is discussed in Section 6.4.

For all other functional evaluation, the respective sections explain more.

Requirement Goal Evaluation

Real-time Achieve real-time performance. By using RTOS as a dedicated layer, real-

time performance can be guaranteed.

Functional stability Achieve minimal functionality for

Supervisor system.

Functionalities separated as tasks,

independent layer for applications to be

built.

Modularity Generate modules and also apply them in

future

Architecture is made layered with each

layer having its independent components.

Reusability Software to be resued in similar product. Architecture has separate layers for

middleware and application with standard

interfaces.

Scalability Allow addition of additional features in the

future.

The application layer is a separate entity,

allowing expansion in the future.

Portability Software architecture remains same even

after a hardware revision.

Hardware dependent and independent

layers allow separation. Only change in

HAL layer for porting.

Table 7.1: Summary of the evaluation

Sarthak Kelapure 60

Institute for Architecture of Application Systems (IAAS)

To sum up the evaluation, the software architecture is built upon the requirements
from the reference software architecture. It satisfies all the requirements and
quality standards defined in Chapter 4.
Hence, the software architecture and software is characterised by quality standards
defined by ECSS-Q-ST-80C [21].

Sarthak Kelapure 61

Institute for Architecture of Application Systems (IAAS)

Sarthak Kelapure 62

Chapter 8

Conclusion

Satellite based communication for IoT when put in practice will need a fast, error-
free and lightweight solution. The discussed solution not only promises answers
to all of the above problems but provides a platform for future satellites to build
upon. Such a Supervisor system in satellites will help to have a robust solution
in space of unknowns. With inclusion of a Supervisor system will also help build
on services for the satellite functionality. In the future, it is foreseen that the
Supervisor system replaces the OBC as the controlling module, taking over the
satellite bus.
The software architecture for this Supervisor system is designed and developed
such that it can be reused and modelled for future satellites to be used in the IoT
world. To have such an architecture gives freedom to the user/buyer to utilise
the services and customize for given use-case. Modularity makes the architecture
portable and yet robust. The current state of the software architecture and soft-
ware is rigid and designed to be fail-safe.
Health reporting from Supervisor provides an important insight for the ground
station about the satellite. The TM/TC communication from/to On-board Com-
puter (OBC) helps to collaborate all the functions and setup a smooth commu-
nication amongst all the modules. Mission power monitoring will preserve the
payload electronics for longer duration, hence adding on to the robustness and
mission-life.
Functional re-configurations and software updates will make sure the satellite is
future-ready and can take on problems that arise during the mission. This leads
to continuous improvements in the functioning and steady maintenance of the
satellite.
As evaluated, the software architecture builds upon the requirements from stan-
dards and is designed such that it can be reused in future missions and payloads.
The architecture is also designed to be portable from one hardware to another,
this allows for the product to evolve and improve over time. The built software
will allow real-time performance and functional stability.
The development of this system is still in progress using above design and imple-
mentation. In the future, the Supervisor software will evolve and improve.

63

Institute for Architecture of Application Systems (IAAS)

Few future functions that can be foreseen are as below,

• Design and Development of Supervisor software updates to make the soft-
ware future ready. This will allow more flexibility and re-configurations.

• Development of Packet Utilization Standard (PUS) as a Middleware compo-
nent to comply with any future needs of ground station.

• Development of microlatch-up algorithm using the already built HAL com-
ponent, Current Monitoring. With such detection mechanism, slightest of
power anomaly can be detected and mitigated.

Sarthak Kelapure 64

Bibliography

[1] J. A. Fraire, S. Céspedes, and N. Accettura, “Direct-To-Satellite IoT - A Sur-
vey of the State of the Art and Future Research Perspectives,” in ADHOC-
NOW 2019: Ad-Hoc, Mobile, and Wireless Networks, (Luxembourg, Luxem-
bourg), pp. 241–258, Oct. 2019.

[2] J. Garland and R. Anthony, Large-Scale Software Architecture: A Practical
Guide Using UML. Wiley Publishing, 1st ed., 2002.

[3] J. Eickhoff, Onboard Computers, Onboard Software and Satellite Operations,
pp. 85–165. Springer, 2012.

[4] “Vorago VA41630.” https://www.voragotech.com/products/va41630. Ac-
cessed: 2020-06-21.

[5] “PEB1-VA416x0 Development Kit.” https://www.voragotech.com/
products/peb1va416x0-development-kit. Accessed: 2020-10-01.

[6] “TE0803-03-3BE11-AS Starter Kit with Zynq UltraScale+.” https:
//shop.trenz-electronic.de/en/TE0803-03-3BE11-AS-TE0803-03-
3BE11-AS-Starter-Kit-with-Zynq-UltraScale-ZU3-FPGA-Module. Ac-
cessed: 2020-10-04.

[7] “Xilinx Design Suite.” https://www.xilinx.com/products/design-tools/
vivado.html. Accessed: 2020-10-10.

[8] “Keil IDE with MDK5.” http://www2.keil.com/mdk5. Accessed: 2020-10-04.

[9] “MODELIO for UML.” https://www.modelio.org/. Accessed: 2020-10-04.

[10] “Eclipse IDE for C/C++ Developers.” https://www.eclipse.org/
downloads/packages/release/2019-09/r/eclipse-ide-cc-developers.
Accessed: 2020-10-04.

[11] L. Belli, L. Davoli, A. Medioli, P. L. Marchini, and G. Ferrari, “Toward indus-
try 4.0 with iot: Optimizing business processes in an evolving manufacturing
factory,” Frontiers in ICT, vol. 6, p. 17, 2019.

[12] M. A. Jabraeil Jamali, B. Bahrami, A. Heidari, P. Allahverdizadeh, and
F. Norouzi, IoT Architecture, pp. 9–31. Cham: Springer International Pub-
lishing, 2020.

65

https://www.voragotech.com/products/va41630
https://www.voragotech.com/products/peb1va416x0-development-kit
https://www.voragotech.com/products/peb1va416x0-development-kit
https://shop.trenz-electronic.de/en/TE0803-03-3BE11-AS-TE0803-03-3BE11-AS-Starter-Kit-with-Zynq-UltraScale-ZU3-FPGA-Module
https://shop.trenz-electronic.de/en/TE0803-03-3BE11-AS-TE0803-03-3BE11-AS-Starter-Kit-with-Zynq-UltraScale-ZU3-FPGA-Module
https://shop.trenz-electronic.de/en/TE0803-03-3BE11-AS-TE0803-03-3BE11-AS-Starter-Kit-with-Zynq-UltraScale-ZU3-FPGA-Module
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
http://www2.keil.com/mdk5
https://www.modelio.org/
https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-ide-cc-developers
https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-ide-cc-developers

Institute for Architecture of Application Systems (IAAS)

[13] J. Guth, U. Breitenbücher, M. Falkenthal, P. Fremantle, O. Kopp, F. Ley-
mann, and L. Reinfurt, A Detailed Analysis of IoT Platform Architectures:
Concepts, Similarities, and Differences, pp. 81–101. Springer, 2018.

[14] N. Mohan and J. Kangasharju, “Edge-fog cloud: A distributed cloud for
internet of things computations,” 02 2017.

[15] S. K. Routray, R. Tengshe, A. Javali, S. Sarkar, L. Sharma, and A. D. Ghosh,
“Satellite based iot for mission critical applications,” in 2019 International
Conference on Data Science and Communication (IconDSC), pp. 1–6, 2019.

[16] “What is a CubeSat?.” https://www.asc-csa.gc.ca/eng/satellites/
cubesat/what-is-a-cubesat.asp. Accessed: 2020-08-17.

[17] A. Poghosyan and A. Golkar, “Cubesat evolution: Analyzing cubesat ca-
pabilities for conducting science missions,” Progress in Aerospace Sciences,
vol. 88, pp. 59 – 83, 2017.

[18] “What is satellite payload?.” https://info.alen.space/cubesat-
payloads-what-can-you-put-in-a-small-satellite. Accessed: 2020-08-
13.

[19] R. Wenker, C. Legendre, M. Ferraguto, M. Tipaldi, A. Wortmann, C. Moell-
mann, and D. Rosskamp, “On-board software architecture in mtg satellite,”
pp. 318–323, 06 2017.

[20] “Introduction to SAVOIR.” https://savoir.estec.esa.int/. Accessed:
2020-10-06.

[21] “ECSS-Q-ST-80C Software Quality Standards.” https://ecss.nl/
standard/ecss-q-st-80c-rev-1-software-product-assurance-15-
february-2017/. Accessed: 2020-07-08.

[22] “ISO/IEC 9126-1:2001 – Software engineering, Product quality.” https://
www.iso.org/standard/22749.html. Accessed: 2020-07-08.

[23] “Microchip SAMRH71.” https://www.microchip.com/wwwproducts/en/
SAMRH71. Accessed: 2020-06-25.

[24] “Arm Cortex M4.” https://developer.arm.com/ip-products/processors/
cortex-m/cortex-m4. Accessed: 2020-06-21.

[25] “Keil’s RTX.” https://www2.keil.com/mdk5/cmsis/rtx. Accessed: 2020-07-
17.

[26] “FreeRTOS.” https://www.freertos.org/. Accessed: 2020-08-13.

[27] “µC-OS II RTOS.” https://www.micrium.com/rtos/. Accessed: 2020-07-17.

[28] “RT-Thread RTOS.” https://www.osrtos.com/rtos/rt-thread/. Accessed:
2020-07-17.

Sarthak Kelapure 66

https://www.asc-csa.gc.ca/eng/satellites/cubesat/what-is-a-cubesat.asp
https://www.asc-csa.gc.ca/eng/satellites/cubesat/what-is-a-cubesat.asp
https://info.alen.space/cubesat-payloads-what-can-you-put-in-a-small-satellite
https://info.alen.space/cubesat-payloads-what-can-you-put-in-a-small-satellite
https://savoir.estec.esa.int/
https://ecss.nl/standard/ecss-q-st-80c-rev-1-software-product-assurance-15-february-2017/
https://ecss.nl/standard/ecss-q-st-80c-rev-1-software-product-assurance-15-february-2017/
https://ecss.nl/standard/ecss-q-st-80c-rev-1-software-product-assurance-15-february-2017/
https://www.iso.org/standard/22749.html
https://www.iso.org/standard/22749.html
https://www.microchip.com/wwwproducts/en/SAMRH71
https://www.microchip.com/wwwproducts/en/SAMRH71
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4
https://www2.keil.com/mdk5/cmsis/rtx
https://www.freertos.org/
https://www.micrium.com/rtos/
https://www.osrtos.com/rtos/rt-thread/

Institute for Architecture of Application Systems (IAAS)

[29] “FreeRTOS Scheduling.” https://www.freertos.org/implementation/
a00005.html. Accessed: 2020-07-17.

[30] “FreeRTOS Memory Management.” https://www.freertos.org/
a00111.html. Accessed: 2020-09-17.

[31] “FreeRTOS Queues.” https://www.freertos.org/Embedded-RTOS-
Queues.html. Accessed: 2020-07-17.

[32] “FreeRTOS Task notification.” https://www.freertos.org/RTOS-task-
notifications.html. Accessed: 2020-10-08.

[33] “FreeRTOS Stream and Message Buffers.” https://www.freertos.org/
RTOS-stream-message-buffers.html. Accessed: 2020-07-17.

[34] ECSS Secretariat, ESA-ESTEC, Requirements and standard division,
“Telemetry and telecommand packet utilization,” Standard, vol. ECSS-E-ST-
70-41C, p. 656, April 2016.

[35] “STM32F407VG Specification.” https://www.st.com/en/
microcontrollers-microprocessors/stm32f407vg.html. Accessed:
2020-10-10.

[36] “STM32F407G-DISC1 Specification.” https://www.st.com/en/evaluation-
tools/stm32f4discovery.html. Accessed: 2020-10-04.

Sarthak Kelapure 67

https://www.freertos.org/implementation/a00005.html
https://www.freertos.org/implementation/a00005.html
https://www.freertos.org/a00111.html
https://www.freertos.org/a00111.html
https://www.freertos.org/Embedded-RTOS-Queues.html
https://www.freertos.org/Embedded-RTOS-Queues.html
https://www.freertos.org/RTOS-task-notifications.html
https://www.freertos.org/RTOS-task-notifications.html
https://www.freertos.org/RTOS-stream-message-buffers.html
https://www.freertos.org/RTOS-stream-message-buffers.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f407vg.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f407vg.html
https://www.st.com/en/evaluation-tools/stm32f4discovery.html
https://www.st.com/en/evaluation-tools/stm32f4discovery.html

Institute for Architecture of Application Systems (IAAS)

Sarthak Kelapure 68

Institute for Architecture of Application Systems (IAAS)

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all di-
rect or indirect statements from other sources contained
therein as quotations. Neither this work nor significant
parts of it were part of another examination procedure.
I have not published this work in whole or in part be-
fore. The electronic copy is consistent with all submitted
copies.

Stuttgart, 10.11.2020 Sarthak Kelapure

Sarthak Kelapure 69

	Introduction
	Problem statement
	Methodology
	Tools used

	Contribution
	Organization of the Thesis Report

	Background
	Introduction to the Internet of Things
	Applications of IoT
	IoT Architecture
	Direct to Satellite Technology
	Space IoT

	State of the art
	Satellite Architecture
	Satellite Software
	Study of Software Architecture in MTG Satellite

	Introduction to SAVOIR
	Shortcomings in the available solution
	Novel Supervisor system

	Requirements
	Hardware requirements
	Requirements for a microcontroller as a Supervisor

	Requirements of the Software Architecture
	Requirement for the detailed design
	Requirements for TM/TC communication
	Requirements of SoC software update function

	High Level Design
	Microcontroller for the Supervisor System
	Microcontrollers comparison study
	Vorago VA41630

	Block design for processing board
	RTOS vs baremetal
	Layered software architecture design
	List of tasks
	Resource Utilization
	Interfaces

	Detailed Design
	TM/TC Communication
	Introduction to SpacePacket Protocol
	Design

	Software updates
	SoC software updates

	Results
	Architecture Porting

	Evaluation
	Conclusion
	Bibliography

