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Abbreviations

Technical abbreviations:

RSE Resonant state expansion
FT Fourier transform
PBG Photonic bandgap
PCF Photonic crystal fiber
DOS Density of states
ARROW Anti resonant reflecting optical waveguides
FMM Fourier modal method
PML Perfectly matched layers
a.u. Arbitrary units
NLSE Nonlinear Schrodinger equation
GVD Group velocity dispersion

Physical quantities:

c Speed of light in vacuum
ε, µ Permittivity and permeability
ω Angular frequency
k0 Vacuum wave number k0 = ω

c
β Propagation constant in the direction of invariance
χ Radial propagation constant
� Electric field
� Magnetic field
� Electric displacement
� Magnetic induction
� Current vector
� Poynting vector
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Abstract

Optical fibers guide light in a central core surrounded by a cladding. The most
common fibers are step-index fibers, which guide light using total internal re-
flection in the fiber core. Recently, a new class of fibers, with a microstruc-
tured cladding, which also include photonic crystal fibers have been devel-
oped. The photonic crystal fibers have a periodic refractive index profile in
the cladding and guide light using a bandgap effect or modified total internal
reflection. Photonic crystal fibers promise to surpass the guiding properties
of the traditional step-index fiber and are being studied extensively. However,
these new fibers support leaky modes in contrast to the perfectly guided or
bound modes of the conventional step-index fiber. Leaky modes are solutions
to Maxwell’s equations that radiate energy in the transverse direction of the
fiber. This energy leakage leads to growing fields in the homogeneous exte-
rior. Due to these growing fields in the exterior, the normalization of leaky
modes has been a long standing challenge.

The normalization for bound modes, which have exponentially decaying
fields as we move away from the fiber core, is achieved using an integral of
the time-averaged Poynting vector over the xy plane. However, this expres-
sion diverges for the case of leaky modes. In this thesis, we derive a general
analytical normalization for leaky and bound modes in fiber structures that
is independent of the region of integration as long as it encloses all spatial
inhomogeneities.

Using this analytical normalization, which is an essential factor in any per-
turbation theory, we develop perturbation theories for interior and exterior
perturbations in fiber geometries supporting leaky modes. The perturbations
are considered to be changes in the permittivity and permeability tensors of
the fiber, which also extend to the axial, i.e., the translationally invariant direc-
tion. We formulate the exterior perturbation theory to also treat wavelength
as a perturbation. This is highly useful to obtain important fiber quantites
such as group velocity as a simple post processing step instead of repeat-
edly solving Maxwell’s equations for different wavelengths. We demonstrate
the accuracy of both perturbation theories on analytically solvable capillary
fibers and the more complicated photonic crystal fibers. We also demonstrate
the usefulness of a perturbation theory in studying disorder, which involves
averaging over many realizations.

Furthermore, we present a theoretical study of a novel design to reduce the
confinement loss of the fundamental core mode in photonic bandgap fibers
with high index strands. This is done by modifying the radius of specific
strands, which we call “corner strands”, in the core surround. We demon-
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strate the usefulness of the analytical normalization in optimizing the fiber
design by providing a physically meaningful way of comparing field con-
finement for different fiber structures. As fundamental working principle, we
show that varying the radius of the corner strands leads to backscattering of
light back to the core. By using an optimal radius for these corner strands
in each transmission window, the losses are decreased by orders of magni-
tude in comparison to the unmodified cladding structure. We do a parametric
analysis of this phenomenon by varying different structural properties such as
radius, pitch and the radius-to-pitch ratios to find the optimal design. Thus,
we generalize the previously studied case of missing corner strands which
only works for certain radius-to-pitch ratios in the first bandgap. This design
can be adapted to any photonic bandgap fiber including hollow core photonic
crystal fibers and light cage structures.
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Zusammenfassung

Optische Fasern leiten Licht in einem von einem Mantel umgebenen zentra-
len Kern. Die am weitesten verbreiteten Fasern sind Stufenindexfasern, die
Licht durch Ausnutzung von interner Totalreflektion im Faserkern leiten. Vor
kurzem wurde eine neue Klasse von Fasern mit mikrostrukturiertem Man-
tel entwickelt, zu denen auch photonische Kristallfasern gehören. Diese Fa-
sern haben ein periodisches Brechungsindexprofil im Mantel und leiten Licht
durch Ausnutzung eines Bandlückeneffekts oder modifizierter interner To-
talreflektion. Photonische Kristallfasern versprechen die Leitfähigkeiten von
traditionellen Stufenindexfasern zu übersteigen und werden deshalb ausgiebig
erforscht. Jedoch unterstützen diese neuen Fasern Leckmoden, im Unter-
schied zu den perfekt geführten oder gebundenen Moden der konventionellen
Stufenindexfasern. Leckmoden sind Lösungen der Maxwell-Gleichungen,
die Energie in die transversale Richtung der Faser abstrahlen. Dieser En-
ergieverlust führt zu anwachsenden Feldern im homogenen Äußeren der Faser.
Durch diese anwachsenden Felder im Äußeren war die Normierung von Leck-
moden eine für lange Zeit bestehende Herausforderung.

Die Normierung von gebundenen Moden, die exponentiell abfallende Fel-
der aufweisen, wenn wir uns vom Faserkern wegbewegen, wird erreicht durch
Nutzung eines Integrals des zeitgemittelten Poynting-Vektors über die xy Ebe-
ne. Dieser Ausdruck divergiert jedoch für den Fall von Leckmoden. In die-
ser Arbeit leiten wir eine allgemeine analytische Normierung für Leckmoden
und für gebundene Moden in Faserstrukturen her, die unabhängig von dem
Integrationsvolumen ist, solange dieses alle räumlichen Inhomogenitäten um-
schließt.

Unter Verwendung dieser analytischen Normierung, die einen wesentli-
chen Faktor jeder Störungstheorie darstellt, entwickeln wir zwei Störungs-
theorien für innere und äußere Störungen in Fasergeometrien, die Leckmo-
den unterstützen. Die Störungen werden als Änderungen der Permittivitäts-
und Permeabilitätstensoren der Faser betrachtet, die sich auch über die axiale,
d.h. die translationsinvariante Richtung erstrecken. Wir erweitern die externe
Störungstheorie dazu, auch Wellenlänge als Störung zu behandeln. Dies ist
sehr nützlich um wichtige Faserkenngrößen wie Gruppengeschwindigkeit als
einfachen Nachbereitungsschritt zu erhalten, anstatt wiederholt die Maxwell-
Gleichungen für verschiedene Wellenlängen zu lösen. Wir demonstrieren
die Genauigkeit von beiden Störungstheorien an analytisch lösbaren Kapil-
larfasern und den komplizierteren photonischen Kristallfasern. Wir demon-
strieren auch die Nützlichkeit einer Störungstheorie bei der Untersuchung von
Unordnung, welche Mittelung über viele Realisierungen beinhaltet.
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Des Weiteren präsentieren wir eine theoretische Untersuchung eines neuar-
tigen und leicht herstellbaren Designs zur Reduzierung der Einschränkungs-
verluste der fundamentalen Kernmode in photonischen Bandlückenfasern mit
hochbrechenden Strängen. Dies wird durch Modifikation des Radius bes-
timmter Stränge in der Kernumfassung, die wir als “Eckstränge” bezeichnen,
erreicht. Wir demonstrieren die Nützlichkeit der analytischen Normierung
zur Optimierung von Faserdesigns, indem wir eine physikalisch sinnvolle Art
und Weise bereitstellen, die Feldbeschränkung zu vergleichen. Als funda-
mentales Funktionsprinzip zeigen wir, dass Variation des Radius der Eck-
stränge zur Rückstreuung von Licht zurück in den Kern führt. Durch Nutzen
eines optimalen Radius für die Eckstränge in jedem Transmissionsfenster
werden die Verluste, im Vergleich zu der unmodifizierten Mantelstruktur, um
Größenordnungen reduziert. Wir führen eine parametrische Analyse dieses
Phänomens durch, indem wir verschiedene strukturelle Eigenschaften wie
Radius, Abstand und Radius-zu-Abstand-Verhältnis variieren, um das opti-
male Design zu finden. Auf diese Weise verallgemeinern wir den bereits un-
tersuchten Fall von fehlenden Ecksträngen, der nur für bestimmte Radius-zu-
Abstand-Verhältnisse innerhalb der ersten Bandlücke funktioniert. Wir zei-
gen, dass unser Ansatz auf jegliche photonische Bandlückenfaser einschließ-
lich photonischer Hohlkernkristallfasern und Lichtkäfigstrukturen angepasst
werden kann.
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1 Introduction to fibers

There is a theory which states that if ever anyone discovers exactly
what the Universe is for and why it is here, it will instantly disappear
and be replaced by something even more bizarre and inexplicable.
There is another theory which states that this has already happened.

Hitchhiker’s guide to the Galaxy, Douglas Adams
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1 Introduction to fibers

Optical fibers guide light in a central core which is surrounded by a cladding.
Depending on the type of the fiber and its guiding mechanism, the cladding
can be microstructured or comprise of a homogeneous medium. The working
concept of an optical fiber was known from the 19th century or earlier, which
used total internal reflection as its guiding mechanism. The practical appli-
cations did not start till the 20th century, with the invention of the ruby-laser,
which could be used as a coherent light source. After the discovery of the
correct material for long distance communication systems, i.e., silica glass,
optical fibers started to have much lower losses than their metallic counter-
parts. They are also immune to interference from the surrounding and trans-
mit data with high bandwidths. Hence, they soon replaced metallic wires
in telecommunications [1]. However, now optical fibers are used in many
more applications like sensing [1–3], biochemistry [3], medicine [4, 5], im-
age processing [6], non-linear effects [7] such as second and third harmonic
generation [8], four wave mixing [9] and so on. Here, we briefly describe
different types of optical fibers along with their guiding mechanisms.

1.1 Types of optical fibers

Optical fibers with a homogeneous cladding can be broadly classified into
3 types depending on the core refractive index and how it compares to the
refractive index of the cladding. Note that in fabricated optical fibers the
cladding is split into inner and outer claddings, also called the jacket. How-
ever, the effect of the jacket is completely ignored in the following work and
only a homogeneous exterior background is considered.

• Step-index fibers: They usually comprise of a circular core of radius r
with the refractive index of the core greater than the cladding refrac-
tive index, i.e., ncore > nclad. The guiding mechanism is total internal
reflection, due to the higher core index.

• Graded index fibers: Graded index fibers have a core refractive index
that gradually decreases with increasing core radius r. This results in
continual refocusing of light into the core.

• Capillary fibers: Capillary fibers have a core index which is smaller
than the cladding refractive index, i.e., ncore < nclad. The main guiding
mechanism is reflection at the core-cladding interface.

The refractive index profiles of step (a), graded (b) and capillary (c) fibers are
plotted in Fig. 1.1.
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1.1 Types of optical fibers
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Figure 1.1: The refractive index profile as a function of radius for (a) step-index (b)
graded index and (c) capillary fibers.

We now move to fibers which have a microstructured cladding. When a
cladding has a periodic change in refractive index, in one or two dimen-
sions, they are called photonic crystal fibers [10]. The third dimension is
the direction in which light is guided along the fiber. Hence, it is transla-
tionally invariant and shall henceforth be referred to as the z direction. The
core of these fibers is formed by creating a defect in the periodic cladding
structure. Note that theoretically in every fiber there is a homogeneous ex-
terior, which for photonic crystal fibers is beyond the finite microstructured
cladding. Schematics of photonic crystal fibers of 1-D and 2-D periodicity
are shown in Fig. 1.2 (a) and (b-c), respectively. The schematic (b) denotes
high index rods in a low index background while (c) shows low index rods in
a high index background. The guidance mechanism of these fiber structures
varies depending on the fiber parameters. Photonic crystal and microstruc-
tured fibers guide light by using the following effects:

• Photonic bandgap (PBG) effect: Similar to solid state physics where
the periodicity in potential due to the lattice of solids creates a bandgap
where no electronic states exist [11], in photonics the periodic refrac-
tive index profile leads to a photonic bandgap. In the photonic bandgap
the density of photonic states is zero. Creating a defect, also called the
core, in this periodic lattice then traps light within the defect core, due
to the presence of the bandgap. The main advantage of the bandgap ef-
fect is that it can be used to trap light in air or a low refractive index me-
dia, which is not possible in conventional step-index fibers where guid-
ance can occur only in the high index medium. This can be highly use-
ful in removing losses due to material absorption which occurs when
guiding light in high index media.

The density of states (DOS) for a 2-D photonic crystal is shown in
Fig 1.2 (d) for a triangular lattice unit cell. The refractive index of the
strand (also called inclusion) in the unit cell is nstrand = 1.59 with a
background refractive index of n = 1.44. The ratio of radius-to-pitch

17



1 Introduction to fibers

r/Λ = 0.2, where the pitch Λ denotes the center to center interstrand
distance. Note that x and y axis of the density of states plot is unitless
with β denoting the propagation constant, k0 = 2π/λ is the wavenum-
ber and λ is the wavelength. The propagation constant describes how
the amplitude and phase of light guided in the fiber varies in the direc-
tion of translational invariance, which we consider as the z direction.
Guidance within the defect core occurs in regions where β < nk0. In
Fig. 1.2 (d), we see zero DOS that satisfies this condition. Hence, pho-
tonic bandgaps of first and higher orders are observed. The absolute
value of the z component of the Poynting vector of the fundamental
core mode of the fiber whose DOS is shown in panel (d) is plotted in
Fig. 1.2 (e) at a wavelength of 1.71 µm, which lies in the first bandgap
for a period Λ of 3.82 µm. The schematic of the fiber is as in panel (b).
Examples of fibers that use photonic bandgap effects are Bragg or om-
niguide photonic crystal fibers [12], high index photonic crystal fibers
[see Fig. 1.2 (a,b)] and hollow core photonic crystal fibers [10, 13, 14].

• Modified total internal reflection: Some photonic crystal fibers do not
create a photonic bandgap due to the choice of materials and fiber pa-
rameters even though they consist of a periodically varying refractive
index cladding. The first working photonic crystal fiber was a silica
fiber with periodic air inclusions similar to the schematic in Fig. 1.2
(c). Due to the presence of the low index air strands in the cladding,
the overall refractive index of the cladding is lower than the high in-
dex silica core. Hence, even though no PBG was created, the fiber
guided light by modified total internal reflection similar to a conven-
tional step-index fiber [10]. By manipulating the fiber parameters it
has been shown that such fibers can also be endlessly single mode [15].

• ARROW model: There is another class of fibers which do have a mi-
crostructured cladding but it is not periodic. The number of cladding
rings is very few, limited to one or two around a central core and hence
they do not create a bandgap effect. In such cases, light guidance can
occur because of an anti resonant reflection of light from the cladding
structure back to the core. Such fibers are called anti resonant reflecting
optical waveguides (ARROW) [16, 17].

As photonic crystal fibers possess multiple parameters which can be ma-
nipulated in the design of microstructured claddings, such as shape, distance,
materials and so on, the possibilities are endless and hence they can be tai-
lored to suit many applications.
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1.2 Bound and leaky modes
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Figure 1.2: Schematics of photonic crystal fibers with periodicity in 1-D (a) and 2-D
(b,c). Panel (b) represents high index strand fibers in a low index background while (c)
represents a low index strand inclusions in a high index background. Panel (d) shows
the density of states for a 2-D photonic crystal with a background index of n = 1.44
and strand index nstrand = 1.59 with pitch Λ = 3.82 µm and the radius-to-pitch radio
of 0.2. Here, β denotes the propagation constant. (e) The fundamental core mode of
the fiber with a defect core for the density of states plot in (d) in the first bandgap
(indicated by the yellow dot in (d)) at a wavelength of 1.71 µm. The schematic of the
fiber is shown in panel (b). The arrow in panel (e) indicates x polarized modes.

1.2 Bound and leaky modes

Maxwell’s equations govern how electromagnetic waves travel within an op-
tical fiber. By solving the Maxwell’s equations with appropriate boundary
conditions we get modes of the fiber that are described by the propagation
constant β. Modes are the allowed pathways for the electric and magnetic
fields within the fiber. For bound modes the value of β is real while for leaky
modes we get a complex β. The significance of the presence or absence of
the imaginary part of β is if the mode is lossy or not.

When a mode is bound then its energy lies completely within the core.
Outside the core region, the fields and hence energy in the fiber decays expo-
nentially. Bound modes are supported by step-index fibers above the cut off

frequency. The cross section over the x axis of the z component of the abso-
lute value of the Poynting vector S z for a bound mode is plotted in Fig. 1.3
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1 Introduction to fibers

(b) for a step-index fiber with radius r = 1 µm. The core index is 1.45 and the
cladding index is 1. Note that completely bound modes are only theoretically
possible. In fabricated fibers, due to fabricational errors, material impurities,
bending of the fiber and other scattering processes, losses are always induced
into the fiber and the mode is not perfectly confined.

In the case of leaky modes, which has a complex β, the mode is not per-
fectly guided within the core and leaks out to the exterior. Due to this leakage
of fields and thus energy to the exterior, the fields in the exterior grow in
space as we move away from the fiber core. However, these leaky modes sat-
isfy causality because the farther away from the fiber we move, more energy
that had escaped from the fiber at a previous point in the z direction accu-
mulates (see Fig. 1.4). Most fibers support leaky modes like capillary and
photonic crystal fibers. Even bound modes of step-index fibers become leaky
below the cutoff frequency. The cross section of S z over the x axis of the fun-
damental core mode of a capillary fiber with core index 1 and cladding index
1.45 is shown in Fig. 1.3 (a), where the growth of energy in the exterior is
evident.
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Figure 1.3: The absolute value of the z component of the time averaged Poynting
vector of the fundamental core mode as a function of the x axis for a capillary fiber
(a) and a step-index fiber (b). The radius of the fiber is 1 µm and the wavelength is 0.8
µm. As shown in the schematic in the insets of (a) and (b), the refractive indices of the
core and cladding have been inverted to form the step-index and capillary fibers. Here,
n1 = 1.45 and n2 = 1. We observe that the capillary fiber has fields that grow away
from the fiber core while the step-index fiber has fields that decay in the homogeneous
exterior.
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1.3 Perturbation theories

r

z

I(z)

Figure 1.4: Schematic of the decrease in intensity (blue dotted line) with respect to
the axial z direction. This decrease in intensity is then radiated to the xy plane (red
arrows).

1.3 Perturbation theories

Perturbation theory is an approximate method that provides the solutions of
a so-called complicated system by using the solutions of a simpler system.
Historically, perturbation theories were very essential as computational capa-
bilities were low and real world problems were not easily analytically solv-
able. However, even with the current computational cabilities perturbation
theories have proved to be useful in giving deeper physical insights into the
problems of interest. They are sometimes faster in giving results for com-
plicated problems than full numerical simulations [18–21], which is highly
useful in design optimization of structures.

Perturbation theories were most common in quantum mechanics [22], be-
cause the normalization of the wavefunction is very well defined and the op-
erators are Hermitian, which results in real eigenvalues. The normalization
is a key factor in any perturbation theory as differential equations (like the
Schroedinger equation) give solutions only upto an arbitrary constant factor.
Hence, to assign the correct weight to each solution they must be normalized
correctly. In quantum mechanics, the normalization of the wavefunction is
defined as ∫ ∞

−∞

|ψ(0)
n |

2d3r = 1 (1.1)

due to the probabilistic nature of the wavefunction ψ(0)
n . The most famous

perturbation theory, the Rayleigh-Schroedinger perturbation theory [23], uses
a power series expansion for the eigenenergy En and wavefunction ψn of the
perturbed system in terms of the unperturbed system as

En = E(0)
n + λE(1)

n + λ2E(2)
n + ... (1.2)
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1 Introduction to fibers

and
ψn = ψ(0)

n + λψ(1)
n + λ2ψ(2)

n + ... (1.3)

where E(0)
n and ψ(0)

n are, respectively, the eigenvalues and eigenvectors of the
unperturbed system and E(m)

n and ψ(m)
n are the correction terms to the mth or-

der. The perturbation is taken to be λV , to give the perturbed Schroedinger
equation as

Hψn = (H0 + λV)ψn = Enψn (1.4)

where H0 is the unperturbed Hamiltonian. By substituting the expansions
of Eqs. (1.2) and (1.3) in Eq. (1.4) and equating different orders of λ, we
obtain with some additional mathematics, the correction terms in Eqs. (1.2)
and (1.3). The artificial factor λ is introduced to switch the perturbation “on”
and “off”, as when λ→ 0, we go to the unperturbed system and its maximum
value of λ = 1 describes the full perturbation.

Another lesser known perturbation theory in quantum mechanics is the
Brillouin-Wigner perturbation theory [24], which expresses the wavefunc-
tions of the perturbed system as a linear superposition over the complete set
of wavefunctions of the unperturbed system, i.e.,

ψn′ =
∑

n

anψ
(0)
n . (1.5)

Substituting this expansion in Eq. (1.4), and taking λ→ 1, we have∑
n

an(En′ − E(0)
n )ψ(0)

n =
∑

n

anVψ(0)
n . (1.6)

Considering the perturbation till the mth order, we multipy the above equation
by ψ(0)∗

m and integrate over all space. This results in an iterative solution for
the energy of the perturbed system upto the mth order which can be easily
solved. Note that ∗ denotes complex conjugated quantities.

Perturbation theories in electromagnetism are much less common since the
solutions of open optical systems support leaky modes and the operators are in
general non-Hermitian. As with the case of leaky modes in fiber geometries,
these modes radiate energy to the far field and hence have growing fields
as we move away from the system. Normalizing the fields as an integral
over all space diverges [25]. Even in quantum mechanics, decaying states
with a complex eigenvalue grow exponentially in the exterior and cannot be
normalized [26].

Recently, the problem of normalizing leaky modes in many open optical
systems of 1-, 2- and 3-D has been solved by using an analytical normaliza-
tion formulated from the Mittag-Leffler expansion and the reciprocity the-
orem [25]. With this normalization, perturbation theories in open optical
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1.4 How the thesis is distributed

systems called resonant state expansion (RSE) have been developed, which
treat the resonant states of the perturbed system as a linear superposition of
the resonant states of the unperturbed system similar to the Brillouin-Wigner
perturbation theory in quantum mechanics. This results in a matrix eigen-
value problem, which can be very easily solved numerically. Note that in real
calculations a truncated basis is used to form the eigenvalue problem. Res-
onant states are the solutions of the Maxwell’s equations in the absence of
source terms satisfying outgoing boundary conditions and form a discrete set
of poles in the complex β plane.

The resonant state expansion has been applied to many optical systems [27,
28] such as 3-D spheres, planar waveguides [18], dispersive materials [21,
29] and has proven to be capable of predicting the solutions of the perturbed
system to a very high level of accuracy. It has also been extended to periodic
systems like arrays of nano-antennas [30, 31] and anisotropic, magnetic and
chiral systems [32]. In Fig. 1.5, we show the calculations done by T. Weiss
et al. in Ref. [31], for a periodic array of nano-antennas. They compare the
resonance energy and linewidth of a perturbed system, where the antennas
have been shifted over by s nm [see Fig. 1.5 (a) and (b)], to the full numerical
solutions using the Fourier modal method (FMM). We see from panels (b-e)
of Fig. 1.5, that there is a very good agreement between the exact numerical
solutions and the approximated perturbation theory.

1.4 How the thesis is distributed

In this thesis, we develop a perturbation theory for propagating modes in fiber
structures. For this we use the resonant state expansion formalism and adapt
it to fiber geometries.

In Chapter 2, we derive the analytical normalization for bound and leaky
modes in fibers. This normalization is then used to gauge the correct weight
of the modes in the expansion of the Green’s dyadic in terms of the resonant
states.

In Chapter 3, we derive the resonant state expansion for structural pertur-
bations in fiber structures. We illustrate the effectiveness of the resonant state
expansion by comparing the results with exact analytical and numerical so-
lutions. This is done for different fiber structures like capillary and photonic
crystal fibers that support leaky modes.

In Chapter 4, we show that the previously derived perturbation theory is
only applicable for perturbations in the interior. We derive a new first-order
perturbation theory, by using the resonant states of the system, for material
perturbations in the homogeneous exterior, like changes in permittivity and
permeability. We also develop the first-ever perturbation theory that treats
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1 Introduction to fibers

Figure 1.5: The schematic of a periodic array of nano-antennas with a shift of s nm
(a), which results in a perturbation of ∆ε as shown in (b). The comparison of the
resonance energy and linewidth as a function of shift s and kx is displayed in panels
(b-e). It is seen that the resonant state expansion provides a very good agreement
with the full numerical solutions. The following figure is taken from Ref. [31] with
permission from the publisher (American Physical Society).
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1.4 How the thesis is distributed

wavelength as a perturbation for leaky modes, which allows quick calcula-
tions of important fiber parameters. We apply this to different fiber systems
like capillary fibers, photonic crystal fibers and light cage structures.

In Chapter 5, we discuss losses in photonic bandgap fibers and how to
improve confinement loss in high-index photonic bandgap fibers in first and
higher order bandgaps. We provide design rules to reduce confinement loss
by orders of magnitude by modifying the core surround. We show that our
method can be applied to different fiber geometries by doing a parametric
analysis of structural changes such as strand radius and period.

In Chapter 6, we show additional applications of the normalization derived
in the previous chapters. We briefly discuss how it can be used to redefine the
Kerr non-linearity parameter. We also show that the normalization is useful
for theoretically calculating parameters, like fraction of fields in the strands
of a fiber, which are not experimentally available.

In Chapter 7, we conclude our work and provide a brief outlook for further
applications of the developed theories.
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2 Analytical normalization of
leaky modes in optical fibers

Most of the time I am sunk in thought, but at some point on each
walk there comes a moment when I look up and notice, with a kind
of first-time astonishment, the amazing complex delicacy of the
world, the casual ease with which elemental things come together to
form a composition that is-whatever the season, wherever I put my
besotted gaze-perfect.

Walk in the woods, Bill Bryson
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2 Analytical normalization of leaky modes in optical fibers

Parts of this work is already published in S. Upendar, I. Allayarov, M. A.
Schmidt, and T. Weiss, “Analytical mode normalization and resonant state
expansion for bound and leaky modes in optical fibers-an efficient tool to
model transverse disorder,” Opt. Express 26, 22536–22546 (2018).

2.1 Introduction

In order to develop a perturbation theory for propagating modes in fibers or
compare field distributions of different modes in fiber structures, the normal-
ization is a very important quantity. The normalization integral for bound
modes in fiber structures is [33]

Nn =
c

8π

∫
R

dA Re(EnρH∗nφ − EnφH∗nρ). (2.1)

The integral is taken over a circle of radius R outside the region of spatial in-
homogeneities. The integrand is the z component of the time averaged Poynt-
ing vector S z with the ∗ denoting complex conjugated quantities. Since the
fields of bound modes decay exponentially as we move away from the fiber
structure, taking the limit of R→ ∞ gives a constant value for Nn. Fiber struc-
tures such as photonic bandgap fibers, capillary fibers, hollow core photonic
crystal fibers and so on, support leaky modes. Leaky modes or quasinormal
modes radiate energy to the far field and hence have fields that grow as we
move away from the fiber. Examples of fibers with leaky modes are shown
in Fig. 2.1 (a) and (b), for a capillary fiber and a photonic crystal fiber, re-
spectively. The absolute value of the time-averaged S z is plotted in Fig. 2.1
(a) for a capillary fiber with ncore = 1 and nclad = 1.44 and r = 1 µm for
the fundamental core mode. The time averaged S z for a higher order mode
is plotted in Fig. 2.1 (b) with index of inclusions as 1 and the background
index as 1.44. The period is Λ = 2.3 µm with the radius of inclusions being
r = 0.25 µm. The wavelength used for both the structures is 1 µm. From
the figure, it is clear that the normalization of Eq. (2.1) will diverge when
R → ∞. Otherwise, we would have a normalization constant dependent on
the radius of integration.

This problem of normalization of leaky modes is not new. It is also not just
limited to fiber geometries. Hence, many work-arounds to this fundamen-
tal problem have been developed such as applying perfectly matched layers
(PMLs) or complex coordinate transformations in the exterior. In the paper by
C. Sauvan et al. in Ref. [34], the demonstration of perfectly matched layers
on quasinormal or leaky modes of an open cavity is shown. The exponen-
tial growth of the fields in the homogeneous exterior due to leaky modes is
completely suppressed by the addition of the perfectly matched layers and the
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Figure 2.1: (a) Axial component of the time-averaged Poynting vector of the funda-
mental core mode of a step-index fiber with refractive indices of 1 and 1.44 in the
core and cladding region, respectively, and a core radius of 1 µm (core region indi-
cated by the green solid line) at a wavelength of 1 µm. (b) Axial component of the
time-averaged Poynting vector for a higher-order core mode of a silica-air photonic
crystal fiber with four rings of air holes of radius 0.25 µm and pitch 2.3 µm around
a single-defect core. The refractive index of silica is taken as 1.44. The considered
wavelength is 1 µm. Both modes in (a) and (b) exhibit fields that grow in the exterior
with distance from the core.

integral for the normalization now includes this region of PMLs. Note that
the addition of the PMLs keeps the outgoing boundary condition of the leaky
modes intact. The key problem with this work around is that it may not be
easy to implement PMLs in all mode solvers. Also, the use of PMLs gives rise
to additional modes in the structure that may not be physical modes. Another
solution is the complex coordinate transformation proposed by R. Sammut
and A. W. Synder in Ref. [35], where the contour of integration is taken to the
complex plane such that the growth due to the imaginary propagation constant
is negated in the complex plane. Note that in Ref. [35], the real valued Poynt-
ing vector is used instead of the time averaged one of Eq. (2.1). However, it
is mathematically taxing to apply these complex coordinate transformations,
which are similar to PMLs, but from a different viewpoint.

Analytical normalizations have already been successfully derived for many
open optical systems supporting leaky modes [25, 27, 28]. Here, we apply a
similar approach for propagating modes in fiber geometries and obtain an
analytical expression for the normalization which can be applied to leaky as
well as bound solutions as a simple post processing step.
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2 Analytical normalization of leaky modes in optical fibers

2.2 Deriving the Green’s dyadic

In Gaussian units, the curl Maxwell’s equations can be summarized in real
space and frequency domain with time dependence exp(−iωt) by the compact
operator form (

k0ε −∇×

−∇× k0µ

)
︸           ︷︷           ︸

≡�0

(
E
iH

)
︸︷︷︸
≡�

=

(
JE

iJH

)
︸︷︷︸
≡�

, (2.2)

with electric and magnetic fields E and H, respectively, permittivity and per-
meability tensors ε and µ, respectively, and k0 = ω/c. The right-hand side
contains the electric source term JE = −4πij/c with current density j, and the
magnetic source term JH that has been introduced for the sake of symmetry.

For optical fibers, the permittivity and permeability tensors are translation-
ally symmetric along the direction of propagation, which we choose as the
z direction of our coordinate system. Defining the Fourier transform in this
direction as

f̂ (r‖; β) =
1

2π

∞∫
−∞

dz f (r‖; z)e−iβz, (2.3)

with r|| being the projection of r to the xy plane and the hat denoting Fourier
transformed quantities, the Fourier transform of Eq. (2.2) yields

(
k0ε −∇̂β×

−∇̂β× k0µ

) (
Ê
iĤ

)
=

(
ĴE

iĴH

)
, with ∇̂β ≡

∂x

∂y

iβ

 . (2.4)

The Green’s dyadic [36] of Eq. (2.4) satisfies the relation

�̂0(r‖; β)�̂(r‖, r′‖; β) = δ(r‖ − r′‖), (2.5)

and provides the solutions �̂ of Eq. (2.4) for a given source �̂ as

�̂(r‖) =

∫
dr′‖ �̂(r‖, r′‖; β)�̂(r′‖). (2.6)

Resonant states are solutions of Eq. (2.4) in the absence of sources for out-
going boundary conditions with eigenvectors �̂n and eigenvalues βn. This
gives

�̂0(r||; βn)�̂n = 0. (2.7)

Using the Mittag-Leffler theorem [37], we expand the Green’s dyadic of the
Maxwell’s equations in terms of the resonant states, which denote a countable
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2.2 Deriving the Green’s dyadic

number of poles in the complex β plane, as

�̂(r‖, r′‖; β) =
∑

n

�̂n(r||, r′||)
β − βn

+ ∆�̂cuts, (2.8)

Here, �̂n(r||, r′||) is the residue of the Green’s dyadic when β → βn. Addi-
tionally, ∆�̂cuts denotes cut contributions due to branch cuts in the involved
analytical functions, which here are Bessel and Hankel functions. In the fol-
lowing, we will focus on the contribution of the resonant states, keeping in
mind that the cut contributions can be treated in a similar manner in numerical
calculations [28, 30]. This assumption is valid as long as the solutions of the
Maxwell’s equations, i.e., the poles are far away from the cut. To derive the
exact form of this residue, we write the Maxwell’s equations with a source
term that vanishes at resonance, as

�̂0(r‖; β)�̂ = (β − βn)σn(r‖). (2.9)

The source term on the right hand side can have any arbitrary form such that
it goes to zero as β → βn, and σn(r‖) vanishes outside the region of spatial
inhomogeneities. Taking the source term and convoluting it with the Green’s
dyadic of Eq. (2.8) in the limit of β→ βn, we obtain

�̂n(r‖) = lim
β→βn
�̂(r‖; β) = lim

β→βn

∑
n′

β − βn

β − βn′

∫
dr′‖ �̂n′ (r‖, r′‖)σn(r′‖). (2.10)

We know that

lim
β→βn

β − βn

β − βn′
= δn,n′ , (2.11)

from which we deduce that the form of the residue is

�̂n(r‖, r′‖) =
−1
2Nn
�̂n(r‖) ⊗ �̂n(r′‖) (2.12)

with ∫
dr′‖ �̂n(r′‖)σn(r′‖) = −2Nn. (2.13)

Note that we have introduced an additional factor of -1/2 along with the nor-
malization constant Nn for later convenience. We can now deduce the exact
form of �̂n(r′

‖
) from the reciprocity principle, as shown below.

Let us consider two source currents �̂1(r||, β) and �̂2(r||,−β) for the fields
�̂1(r||, β) and �̂2(r||,−β), respectively. Taking the Maxwell’s equations for
source �̂1(r||, β) and multiplying it with �̂2(r||,−β) and taking the Maxwell’s
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2 Analytical normalization of leaky modes in optical fibers

equations for source �̂2(r||,−β) and multiplying it with �̂1(r||, β) and subtract-
ing the two equations, we get

�̂2(r||,−β) · �̂0(r||, β)�̂1(r||, β) − �̂1(r||, β) · �̂0(r||,−β)�̂2(r||,−β)

= �̂2(r||,−β) · �̂1(r||, β) − �̂1(r||, β) · �̂2(r||,−β).
(2.14)

Taking symmetric permittivity and permeability tensors, i.e., ε = εT and µ =

µT , where the superscript T denotes transpose and using the vector identity

B · ∇̂k × A − A · ∇̂−k′ × B = ∇|| · (A × B) + i(k − k′)(A × B)z (2.15)

where ∇|| is the in-plane gradient, in Eq. (2.14) we get

∇|| · (�̂2(r||,−β) × �̂1(r||, β) − �̂1(r||, β) × �̂2(r||,−β))

= �̂2(r||,−β) · �̂1(r||, β) − �̂1(r||, β) · �̂2(r||,−β).
(2.16)

Integrating the above equation outside the region of spatial inhomogeneities,
we see that the first line goes to zero as the fields must satisfy the same out-
going boundary conditions. This then results in∫

dr||(�̂2(r||,−β) · �̂1(r||, β) − �̂1(r||, β) · �̂2(r||,−β)) = 0. (2.17)

Writing �̂1(r||, β) and �̂2(r||,−β) in terms of the Green’s dyadic from Eq. (2.6),
we have∫

dr||�̂(r||, r′||;−β)�̂2(r||,−β) · �̂1(r||, β)− �̂(r||, r′||; β)�̂1(r||, β) · �̂2(r||,−β) = 0.

(2.18)
To satisfy the above equation for arbitrary sources, we must have

�̂(r||, r′||; β) = �̂T (r||, r′||;−β), (2.19)

which results in
�̂(r||) = �̂(r||,−β) ≡ �̂R(r||). (2.20)

Hence, the Green’s dyadic can be written as

�̂(r‖, r′‖; β) = −
∑

n

�̂n(r‖) ⊗ �̂R
n (r′
‖
)

2Nn(β − βn)
, (2.21)

with ⊗ denoting the outer vector product, and Nn being the normalization
constant in order to assign the appropriate weight to the resonant states, since
Eq. (2.7) provides the resonant field distributions only up to a constant factor.
The superscript R denotes the reciprocal conjugate resonant state, which is
a solution of Eq. (2.7) at −βn. Note that Eq. (2.21) is only valid within the
regions of spatial inhomogeneities of the fiber, where the leaky modes do not
exhibit any growth.
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2.3 Normalization

2.3 Normalization

We start similar to the Green’s dyadic derivation, with the Maxwell’s equa-
tion and a source term that vanishes at resonance as in Eq. (2.9). The source
term σn(r‖) is again chosen to vanish outside the region of spatial inhomo-
geneities. The source term is then convoluted with the Green’s dyadic re-
sulting in Eq. (2.10) at the limit β → βn with �̂n(r′

‖
) ≡ �̂R

n (r′
‖
) satisfying

Eq. (2.13).
To derive the normalization equation, we multiply Eq. (2.9) with �̂R

n (r‖)
and subtract a zero in the form of

0 = �̂(r‖; β) · �̂0(r‖;−βn)�̂R
n (r‖), (2.22)

to obtain,

�̂
R
n (r‖)·�̂0(r‖; β)�̂(r‖; β)−�̂(r‖; β)·�̂0(r‖;−βn)�̂R

n (r‖) = (β−βn)�̂R
n (r‖)·σn(r‖).

(2.23)
Dividing by β − βn, integrating over the spatial inhomogeneities in the limit
β → βn, and using that εT = ε as well as µT = µ for reciprocal systems, we
get

−2Nn = lim
β→βn

∫
dr‖

−i
β − βn

∇‖ · [Ê(r‖; β) × ĤR
n (r‖) − ÊR

n (r‖) × Ĥ(r‖; β)]

+

∫
dr‖ [Ên(r‖) × ĤR

n (r‖) − ÊR
n (r‖) × Ĥn(r‖)]z.

(2.24)

Here, we have used the vector identity of Eq. (2.15). The subscript z indicates
the integration of the z component in the second term. The first term can be
converted to a line integral by using the divergence theorem. The curve of
integration can be taken as a circle of radius R outside the region of inhomo-
geneities. This gives,

−2Nn = lim
β→βn

∫
ρ̂ · dφ

−iR
β − βn

[Ê(r‖; β) × ĤR
n (r‖) − ÊR

n (r‖) × Ĥ(r‖; β)]

+

∫
dr‖ [Ên(r‖) × ĤR

n (r‖) − ÊR
n (r‖) × Ĥn(r‖)]z.

(2.25)

For evaluating the limit β → βn, we carry out a Taylor expansion around βn

as

�̂(r‖; β) = �̂n(r‖)+(β−βn)
∂�̂(r‖; β)

∂β

∣∣∣∣∣
βn

+
(β − βn)2

2
∂2�̂(r‖; β)

∂β2

∣∣∣∣∣
βn

+ ... . (2.26)
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2 Analytical normalization of leaky modes in optical fibers

Substituting Eq. (2.26) in Eq. (2.25), we get two line integral, one which
contains terms of �̂n and �̂R

n and the other which has its first order derivative
with respect to β. The higher order terms go to zero. We write the first line
term as ∫

ρ̂ · dφ
−iR
β − βn

[Ên(r‖) × ĤR
n (r‖) − ÊR

n (r‖) × Ĥn]. (2.27)

When using that, due to symmetry, the in-plane components of the electric
field and the z component of the magnetic field of resonant states with eigen-
values βn and −βn are identical, while we have to multiply all other compo-
nents with −1 in order to convert �̂R

n into �̂n, the above equation goes to zero.
Therefore, only the line integral with the first-order derivatives with respect
to β remain. Hence, the normalization expression reduces to

Nn =
βnR
2iκn

2π∫
0

dφ
(∂Ên,φ

∂κ
Ĥn,z +

∂Ên,z

∂κ
Ĥn,φ −

∂Ĥn,φ

∂κ
Ên,z −

∂Ĥn,z

∂κ
Ên,φ

)
+

∫
dr‖ (Ên,ρĤn,φ − Ên,φĤn,ρ).

(2.28)

Here κn denotes the radial propagation constant. We have converted the
derivative with respect to β to a derivative with respect to κ by using the
relation

κ2
n = εµk2

0 − β
2
n. (2.29)

From solving the Maxwell’s equations in homogeneous and isotropic media,
we know that the z component of the outgoing electric and magnetic fields
have the form [33, 45]

Êz =
∑

n

Ê0nH(1)
n (κρ)einφ, (2.30)

Ĥz =
∑

n

Ĥ0nH(1)
n (κρ)einφ, (2.31)

where H(1)
n (x) denotes the Hankel functions of the first kind. The coefficients

Ê0n and Ĥ0n correspond to transverse magnetic and transverse electric fields
respectively, while the full fields are a superposition of the two contributions.
Due to the dependence of the z component of the fields solely on ρ and κ, the
derivative with respect to κ can be converted to spatial derivatives by using
the following relations:

∂Êz

∂κ
=
ρ

κ

∂Êz

∂ρ
,

∂Ĥz

∂κ
=
ρ

κ

∂Ĥz

∂ρ
. (2.32)
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The Êφ and Ĥφ field components can be derived from the Êz and Ĥz field
components as [47]

Êφ =
iβ
κ2ρ

∂Êz

∂φ
−

ik0µ

κ2

∂Ĥz

∂ρ
, Ĥφ =

iβ
κ2ρ

∂Ĥz

∂φ
+

ik0ε

κ2

∂Êz

∂ρ
, (2.33)

and they can be differentiated with respect to κ by using the relations for Êz

and Ĥz given in Eq. (2.32). Substituting in Eq. (2.28) Êφ and Ĥφ by Eq. (2.33)
and using that

2π∫
0

dφ
∂ f
∂φ

g = −

2π∫
0

dφ f
∂g
∂φ
, (2.34)

with f and g being components of Ên and Ĥn, respectively, we arrive at

Nn = S n + Ln, (2.35)

with the surface term

S n =

R∫
0

ρdρ

2π∫
0

dφ (Ên,ρĤn,φ − Ên,φĤn,ρ), (2.36)

which is proportional to the integral over the z component of the real-valued
Poynting vector, and the line term

Ln =
εµk2

0 + β2
n

2κ4
n

2π∫
0

dφ
(
Ên,z

∂Ĥn,z

∂φ
− Ĥn,z

∂Ên,z

∂φ

)
R

+
k0βnR2

2κ4
n

2π∫
0

dφ
{
µ
[(∂Ĥn,z

∂ρ

)2
− ρĤn,z

∂

∂ρ

(1
ρ

∂Ĥn,z

∂ρ

)]

+ ε
[(∂Ên,z

∂ρ

)2
− ρÊn,z

∂

∂ρ

(1
ρ

∂Ên,z

∂ρ

)] }
R
,

(2.37)

where the subscript R indicates that the integrand is evaluated at radius R.
Note that this normalization is applicable for both bound as well as leaky

modes. For bound modes, due to the exponential decay of the fields in the
exterior, the line term automatically goes to zero. This can be seen in Fig.
2.2 (b) for a step-index fiber with core index 1.20 and cladding index 1. The
radius of the core is 0.3 µm. The absolute value of S z for the fundamental
core mode is plotted in Fig. 2.2 (a) at a wavelength of 1 µm. We see in Fig.
2.2 (b), that the radius of normalization needs to span over nearly 6 times the
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Figure 2.2: (a) Axial component of the time-averaged Poynting vector of the fun-
damental core mode (in a.u.) for a single ring fiber with refractive indices of 1.20
(theoretical value) and 1.00 in the core and cladding region, respectively at a wave-
length of 1.00 µm. The effective index of the mode is neff = 1.0174. The radius of
the core is 0.3 µm denoted by the magenta line. (b) The normalization as a function
of the radius of normalization. The surface term (blue dashed line) and line term (red
dotted-dashed line) of the normalization Eq. (2.35) are also plotted in (b). We see
that the exponential decay of the surface and line terms occurs far away from the core
radius.

radius of the core for the surface term (blue dashed line) to converge to the
normalization (with an absolute error of 10−3) and the line term (red dashed
dotted line) to go to zero. However, the analytical normalization (black solid
line) is independent of the radius of integration, which drastically helps to
reduce the computational domain.

In Fig. 2.3 (a) we show the z component of the absolute value of the Poynt-
ing vector for a higher order mode of a capillary fiber with ncore = 1 and
nclad = 1.45. The radius of the fiber is r = 5 µm and the wavelength is 1 µm.
The effective index of the shown mode is 0.3861 + 0.0690i. Since, this mode
has a complex effective index neff that is related to the propagation constant as
β = k0neff where k0 denotes the wavenumber, the shown mode is leaky with
fields that grow in the exterior. In panels (c) and (d) the real and imaginary
parts of the line and surface integrals of the normalization are plotted as a
function of the radius of normalization for the considered leaky fiber mode
as shown in (a). We see that as we move away from the fiber core the sur-
face term diverges, but the divergence of the line term completely balances
out the divergence of the surface term so that their sum provides a constant
value, as seen in the black line for both the real and imaginary parts. Since the
normalization should be a constant value hence, we can say from Eq. (2.35),
that

∆S m + ∆Lm = 0, (2.38)
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Figure 2.3: (a) Axial component of the time-averaged Poynting vector of a higher
order mode of a capillary fiber (in a.u.) with refractive indices of 1 and 1.45 in the
core and cladding region, respectively, and a core radius of 5 µm (core region indicated
by the white solid line) at a wavelength of 1 µm. The effective index of the mode is
neff = 0.3861+0.0690i. (b) The sum of the change in the surface term and the line term,
which theoretically should be zero due to the constant normalization as a function of
radius of normalization. The bottom panels depict the real (c) and imaginary (d) parts
of the surface term (blue solid line) and line term (red solid line) and the normalization
Eq. (2.35) (black solid line) as a function of the radius of normalization. Evidently,
the divergence of the fields is manifested in the surface and line terms, while it is
countervailed in their sum as the normalization constant.
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2 Analytical normalization of leaky modes in optical fibers

where ∆S m and ∆Lm represent the change in the surface and line integral
terms as a function of the radius of normalization. This sum is plotted in
Fig. 2.3 (b). The expression of the surface and line terms are evaluated an-
alytically. Our calculation of Eq. (2.38) gives values to the order of 10−14,
which is the computational precision of our numerical method.

Normalization radius (µm)
10 15 20

R
e
a
l 
p
a
rt

104

-2

-1

0

1

2

10 15 20

Im
a
g
in

a
ry

 p
a
rt

-2

-1

0

1

2

3

4

Sm Lm Nm

x (µm)

-20 0 20

y
 (

µ
m

)

-20

-10

0

10

20

50

450
(a) (b) (c)

104

Normalization radius (µm)

Figure 2.4: (a) Axial component of the time-averaged Poynting vector of the funda-
mental core mode (in a.u.) of a single ring fiber with refractive indices of 1.62 and
1.44 in the inclusions and background region, respectively at a wavelength of 1.48 µm.
The effective index of the mode is neff = 1.436 + 1.138e − 03. The panels (b) and (c)
depict the real and imaginary parts, respectively of the surface term (blue dashed line)
and line term (red dotted-dashed line) of the normalization of Eq. (2.35) as a function
of the normalization radius. We see that even for a more complex structure taking the
surface and line integrals outside the region of spatial inhomogeneities gives a con-
stant normalization (black solid line).

We now move to a structure which cannot be solved analytically and it
doesn’t possess a clearly marked distinction between the core and the homo-
geneous cladding as in the case of the capillary fiber structure. We select a
single ring 12 strand fiber with index of inclusions as 1.62 placed in a back-
ground index of 1.44. The radius of the strands are 0.764 µm and the pitch is
3.82 µm. The fundamental core mode at a wavelength of 1.48 µm is plotted
in Fig. 2.4 (a), where the absolute value of S z is plotted in arbitrary units. The
plots of the real and imaginary parts of the surface and line integral and their
sum as a function of the normalization radius is plotted in Fig. 2.4 (b) and (c),
respectively. The radius of normalization in the x axis is chosen such that it
encloses all regions of spatial inhomogeneities from the lower limit. We see
that we get a constant normalization for increasing values of surface and line
integrals with increasing radius of integration.

In conclusion, in this chapter we have derived the Green’s dyadic for prop-
agating modes in fiber geometries from the Mittag-Lefler theorem. Using the
Green’s dyadic, we have arrived at the correct analytical mode normalization
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for bound and leaky modes in fibers. We have demonstrated that the ana-
lytical normalization is constant with respect to the radius of integration for
modes of different fiber structures.
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3 Resonant state expansion for
propagating modes

Even if there is only one possible unified theory, it is just a set of
rules and equations. What is it that breathes fire into the equations
and makes a universe for them to describe? The usual approach of
science, of constructing a mathematical model, cannot answer the
questions of why there should be a universe for the model to
describe. Why does the universe go to all the bother of existing?

A brief history of time, Stephen Hawking
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3 Resonant state expansion for propagating modes

Parts of this work is already published in S. Upendar, I. Allayarov, M. A.
Schmidt, and T. Weiss, “Analytical mode normalization and resonant state
expansion for bound and leaky modes in optical fibers-an efficient tool to
model transverse disorder,” Opt. Express 26, 22536–22546 (2018).

3.1 Introduction

After deriving the correct analytical normalization for bound and leaky modes
we now apply it to a perturbation theory where we treat perturbations in the
interior of the fiber structure. This perturbation theory is based on the previ-
ously described resonant state expansion where the resonant states of a per-
turbed system are considered as a linear superposition of the resonant states
of the unperturbed system [18, 27, 28, 38]. There are many advantages to
such a perturbation theory. First, it gives a deeper understanding of which
modes or resonant states interact with each other in the presence of a pertur-
bation. Hence, it gives a deeper physical insight on how to tailor perturbations
to the get desired properties from the fiber. Second, it allows to study mul-
tiple perturbations of the same underlying system. This is especially useful
for studying the influence of structural disorder in fiber structures, where a
statistical average over different realizations of disorder is required.

Numerical studies of fiber structures usually consider ideal fibers with per-
fect core and cladding designs. However, the fabrication process itself leads
to multiple deviations from this ideally simulated design, which is known to
affect the guiding properties of the fiber [39, 40]. This is especially prominant
while fabricating photonic crystal fibers due to the high number of inclusions
in their microstructured cladding. Diameter disorder is known to be the most
common disorder in the fabrication of photonic crystal fibers. Simulations
of these disordered fibers is computationally very taxing due to the lack of
symmetry in these systems. There have been many studies in the direction of
simulating actually fabricated fibers with the fabrication disorders taken into
account [41–44], which use fully vectorial finite element methods.

Here, we present a perturbational approach for solving disordered sys-
tems. We consider the ideal ordered structure as the unperturbed system and
the disorder is treated as the perturbation. Thereby, repeated solving of the
Maxwell’s equations for different realizations of disorder can be avoided, as
it is time consuming for any solver. In the following chapter, we derive the
perturbation theory for internal perturbations using the Green’s dyadic and
analytical mode normalization for propagating modes in a fiber. We then ap-
ply this perturbation theory to two test systems of a capillary fiber, which is
analytically solvable and a silica-air photonic crystal fiber where we study the
effects of diameter disorder on the fundamental core mode by averaging over

42



3.2 Theory

multiple realizations of disorder.

3.2 Theory

We start out with Maxwell’s equations [with an implicit time dependence of
e−iωt] for the resonant states of the unperturbed system denoted with subscript
n as in Eq. (2.7). We then determine the resonant states of a perturbed sys-
tem (denoted by subscript ν) with perturbation ∆ε and ∆µ that exhibits the
same translational symmetry as permittivity ε and permeability µ and vanish
outside the regions of spatial inhomogeneities. Hence, the perturbations are
strictly internal in nature and carry forward to the axial, i.e., the z direction.

The Maxwell operator �̂ of the perturbed system can be separated into
the operator �̂0 of the unperturbed system and the deviation ∆�̂ as �̂ =

�̂0 + ∆�̂, with

∆�̂(r‖) =

(
k0∆ε(r‖) 0

0 k0∆µ(r‖)

)
. (3.1)

Thus, we can recast Eq. (2.7) in the form

�̂0(r‖; βν)�̂ν(r‖) = −∆�̂(r‖)�̂ν(r‖), (3.2)

where �̂ν is the resonant field distribution of a resonant state in the perturbed
system with propagation constant βν. Since we know that the Green’s dyadic
of Eq. (2.7) satisfies the relation of Eq. (2.5) and provides the solutions �̂
satisfying the Maxwell’s equations for an arbitrary source �̂ as in Eq. (2.6),
we obtain

�̂ν(r‖) = −

∫
dr′‖ �̂(r‖, r′‖; βν)∆�̂(r′‖)�̂ν(r

′
‖). (3.3)

Using the form of the Green’s dyadic as derived in the previous chapter,
ignoring any contribution from branch cuts of the analytical functions and
substituting it in the above equation, we get

�̂ν(r‖) =
∑

n

1
2Nn(βν − βn)

�̂n(r‖)
∫

dr′‖ �̂
R
n (r′‖) · ∆�̂(r′‖)�̂ν(r

′
‖). (3.4)

Next, we construct the resonant states of the perturbed system as a linear
combination of the normalized resonant states of the unperturbed system:

�̂ν(r‖) =
∑

n

b(ν)
n �̂n(r‖). (3.5)
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Using this ansatz in Eq. (3.4), we get∑
n

b(ν)
n �̂n(r‖) =

∑
n

1
2Nn(βν − βn)

�̂n(r‖)
∫

dr′‖ �̂
R
n (r′‖)·∆�̂(r′‖)

∑
n′

b(ν)
n′ �̂n′ (r′‖).

(3.6)
Equating it for each n independently, we obtain

b(ν)
n �̂n(r‖) =

1
2Nn(βν − βn)

�̂n(r‖)
∫

dr′‖ �̂
R
n (r′‖) · ∆�̂(r′‖)

∑
n′

b(ν)
n′ �̂n′ (r′‖),

(3.7)
which can be rewritten as,

βνb(ν)
n = βnb(ν)

n +
1
2

∑
n′

Vnn′b
(ν)
n′ , (3.8)

where

Vnn′ =

∫
dr‖ �̂R

n (r‖) · ∆�(r‖)�̂n′ (r‖). (3.9)

The above equations describe a linear eigenvalue problem with βν as the
eigenvalue with b(ν)

n as the eigenvector. Note that the sum in Eq. (3.5) is
carried out over all resonant states of the unperturbed system, but in real cal-
culations, a truncated basis is used to expand �̂ν. The choice of the basis size
has to be taken large enough to accurately account for the perturbations in the
system. Note that the fields in Eq. (3.9) have been normalized according to
the analytical normalization derived in Chapter 2.

It should be noted that the above equations are given in Gaussian units.
However, their transformation to SI units is straight-forward: One simply
has to replace the permittivity and permeability by the relative permittivity
and permeability, and substitute H with Z0HSI as well as � with Z0�

SI, with
JSI

E = −ijSI and Z0 as the vacuum impedance, while E has to be replaced by
ESI.

3.3 Examples

We now apply this perturbation theory to two example structures of a capillary
fiber and a photonic crystal fiber.

3.3.1 Capillary fiber

We consider a capillary fiber with a core refractive index of 1 and a cladding
refractive index of 1.44 as our unperturbed system. The radius of the fiber is
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8 µm. The fundamental HE11 mode and higher order modes are calculated an-
alytically by solving the constitutive equations for a capillary fiber [33] with
the z and φ components of the electric and magnetic fields being continuous
over the interface.

We now introduce a perturbation into our system, which is a homogeneous
change in refractive index of the fiber in the core region. Hence, the index of
the core varies from nc to nc + ∆n. The schematic of the capillary fiber with
the perturbation is plotted in the inset of Fig. 3.1 (a). Since our perturbation is
azimuthally symmetric, the modes required to setup the eigenvalue problem
of Eq. (3.8) should have the same azimuthal order as that of the fundamental
core mode, which has an azimuthal order of m = 1. We setup our eigen-
value equation for 154 modes. This includes modes that propagate in both
the forward and backward directions, i.e., with β and −β.

The solutions of the unperturbed fiber are shown in Fig. 3.1 (a) and (c)
with black squares at a wavelength of 1 µm. This together comprises of all
the 77 modes that are propagating in the positive z direction used to form the
eigenvalue problem. Note that the Fig. 3.1 (c) is the enlarged representation
of the green box plotted in Fig. 3.1 (a), in order to differentiate closely spaced
modes. Similarly, Fig. 3.1 (d) is the enlarged representation of the orange box
plotted in Fig. 3.1 (b).

The comparison between the resonant state expansion and analytical solu-
tions is plotted in Fig. 3.1 for ∆n = 0.07 in panels (a,c) and for ∆n = 0.17
in panels (b,d) for fundamental and higher order modes. The fundamental
mode is indicated by the arrow for both perturbations. We see that, for the
fundamental core mode there is a very good agreement between the exact so-
lution and resonant state expansion for both magnitudes of perturbation. The
predictions from the resonant state expansion match very well with exact so-
lutions for the higher order modes as well. However, the agreement for higher
order modes reduces with increasing magnitude of perturbation which can be
clearly seen in the enhanced axes plot of Fig. 3.1 (d) when compared to Fig.
3.1 (c). Note that the deviation from the unperturbed system is also higher for
larger perturbations and hence a larger basis of modes may be needed to fully
describe the system.

The relative error defined by

Relative error =

∣∣∣∣∣1 − nRSE
eff

nexact
eff

∣∣∣∣∣ (3.10)

is plotted for a higher order mode with unperturbed effective index 0.03139
+ 1.0103i as a function of the number of modes used to form the eigenvalue
problem of Eq. (3.8) in Fig. 3.2 (b) till 20 basis states. The spatial distribution
of S z for the considered higher order core mode (in a.u.) at a wavelength of
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Figure 3.1: Effective refractive indices of modes in a capillary fiber with a homo-
geneous perturbation in the core region of (a,c) ∆n = 0.07 and (b,d) ∆n = 0.17. The
results from the resonant state expansion (RSE, red crosses) are compared with the ex-
act analytical solution (blue circles) for the perturbed system at a wavelength of 1 µm.
The unperturbed system has a core index of 1, cladding index of 1.44, and a radius of
8 µm, with its effective refractive indices denoted by black squares. The number of
modes used is 154. The black arrow indicates the fundamental core mode. The green
rectangle with a high density of modes in panel (a) is enlarged in panel (c), while the
orange rectangle of panel (b) is enlarged in panel (d).

1 µm is shown in Fig. 3.2 (a). We see that the error decreases monotonously
with increasing number of basis states and we reach a relative error on the
order of 10−4 and 10−3 for perturbations of ∆n = 0.07 and ∆n = 0.17, re-
spectively. It is also observed that the rate of decrease slows down with more
added modes, hence it is a slowly converging system.

Note that the order of the addition of new modes in Fig. 3.2 (b) is not by
decreasing value of the overlap integral. The modes that are closest in effec-
tive index to the unperturbed mode are added to the eigenvalue problem first.
Since we expect that finding modes closest to the unperturbed solution is the
simplest, we choose this form of convergence. However, it could be possible
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Figure 3.2: (a) Spatial distribution of the time-averaged Poynting vector (in a.u.) of
a higher-order core mode supported by a capillary fiber with parameters as used in
Fig. 3.1. The fiber core is indicated by the green solid line. The effective index of
the unperturbed mode is 0.03139 + 1.0103i. (b) Relative error of the effective index
of the higher-order mode with respect to the number of modes used in Eq. (3.8). Two
refractive index differences have been considered as perturbations (dashed blue line:
∆n = 0.07, solid red line: ∆n = 0.17).

that the effect of perturbation is such that the modes that are further away in
effective index from the considered unperturbed mode might couple better to
it in the presence of the perturbation. Hence, the number of basis states should
be so chosen that it can describe the perturbed system completely. The rela-
tive error for the fundamental core mode is 6.5681e−07 and 3.3902e−06 for
154 basis states for a perturbation of ∆n = 0.07 and ∆n = 0.17, respectively.

3.3.2 Silica-air photonic crystal fiber

We now proceed to study diameter disorder in a silica-air photonic crystal
fiber. We consider the unperturbed fiber to have four cladding rings of equal
radius with r0 = 0.25 µm. The inclusions in the cladding have a refractive
index of 1, which corresponds to air. The inclusions are placed in a back-
ground medium of index 1.44, corresponding to silica. The inclusions have a
triangular lattice [see Fig. 3.3(a)] around the defect core, which comprises of
one missing inclusion in the center. The pitch Λ is 2.3 µm, which defines the
center-to-center interstrand distance. The poles of the unperturbed system are
calculated using the multipole expansion method [45, 46].

We now introduce diameter disorder into the fiber. This is done using the
disorder parameter ∆. The radius of each and every inclusion of the fiber
is changed within the range of r0 − ∆ to r0 + ∆, where ∆ = 0.1 µm. The
distribution of disorder in the fiber is uniform, with a probability distribution
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Figure 3.3: Axial component of the time-averaged Poynting vector (in a.u.) of the
fundamental core mode of a silica-air photonic crystal fiber with diameter disorder
for disorder parameter (a) ∆ = 0 µm and (b) ∆ = 0.1 µm. The disorder parameter
provides the range of radii in the disordered fiber as r0 ± ∆, with r0 being the radius
of the air holes in the ordered fiber. The geometrical parameters of the fiber are the
same as in Fig. 1(b). Panels (c) and (d) show the comparison of the real and imaginary
parts of the effective indices from the resonant state expansion (red crosses) with the
exact numerical solution of the perturbed system (black circles) for 20 realizations of
disorder at a wavelength of 1.55 µm. The number of modes used for the resonant state
expansion is 190. The blue dotted line indicates the effective index for an unperturbed
cladding.
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of

f (r) =

 1
2∆

for r0 − ∆ ≤ r ≤ r0 + ∆

0 for r < r0 − ∆ or r > r0 + ∆
(3.11)

The eigenvalue equation for the perturbation is formed with 190 modes, which
includes both forward and backward propagating modes. The basis is formed
in descending order of the real part of the effective index with the first mode
being the fundamental core mode. Since the introduction of the perturbation
breaks the symmetry of the fiber, hence coupling of the fundamental mode
with modes of other symmetries is possible. Therefore, modes of all symme-
tries are included in the unperturbed basis [48, 49].

The absolute value of S z for the fundamental core mode with neff = 1.428+

9.41e − 05i is plotted (in a.u.) for the perfectly ordered fiber in Fig. 3.3 (a)
and one realization of diameter disorder with ∆ = 0.1 µm in Fig. 3.3 (b) at a
wavelength of 1.55 µm. We can see that there is some distortion in the fields
due to the disordered cladding. We compare the real and imaginary parts of
the effective index between the resonant state expansion and exact numerical
solution for different realizations of disorder, which is plotted in Fig. 3.3
(c) and (d), respectively. We see that there is a good agreement between the
two methods for the shown realizations. The blue dotted line in (c) and (d)
indicates the effective index of the unperturbed system.

Hence, we can now use the perturbation theory to average over many real-
izations of disorder and study its effects on the guiding properties of the fiber.
To do this we range over different values of the disorder parameter ∆ and av-
erage over 200 realizations of disorder for each ∆. Note that we generate 200
numbers in the range of 0 to 1 and multiply it with the corresponding ∆ to
create 200 realizations of disorder with disorder strength ∆.

Such a plot for the real and imaginary part of the effective index is shown
in Fig. 3.4 (a) and (b), respectively, for the fundamental core mode. The red
circles indicate the average perturbed value and the lines indicate the standard
deviation, which is calculated as

s =

√∑N
1 (xi − x̄)2

N − 1
(3.12)

where xi are the sampling items and x̄ is their average. N denotes the number
of sampling items. We can see that as we increase the disorder parameter ∆,
there is a higher deviation of the average effective index from the unperturbed
value (blue dotted line) and the standard deviation grows with increasing ∆.
Interestingly, we observe that the average of the real part of effective index
seems to show a very linear behavior while the imaginary part has a more
quadratic behavior with respect to the disorder parameter. Also note that the
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Figure 3.4: Real (a) and imaginary (b) part of the effective index of the fundamental
core mode as a function of the disorder parameter ∆ averaged over 200 realizations of
diameter disorder at a wavelength of 1.55 µm. The averaged real part grows almost
linearly with increasing ∆, while the imaginary part is growing quadratically. The
standard deviation is indicated by the errorbars. The blue dotted line indicates the
effective index of the unperturbed cladding.

number of fiber structures solved to obtain Fig. 3.4 is 2200, which is solved
in a matter of seconds using an eigenvalue problem computationally. The
relative change in the effective index is plotted as a second y axis in Fig. 3.4
(a) and (b) for the real and imaginary parts of the effective index, respectively.

In conclusion, we have derived a perturbation theory for propagating modes
of an optical fiber using the resonant state expansion formalism, which is
much faster in treating perturbations such as multiple realizations of disorder
than repeatedly solving Maxwell’s equations. However, one needs to make
sure that the truncated basis used to create the eigenvalue problem of the per-
turbation theory has enough basis states to fully describe the perturbation.
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4 First order perturbation
theory: internal and external
perturbations

Once upon a midnight dreary, while I pondered, weak and weary,
Over many a quaint and curious volume of forgotten lore, While I
nodded, nearly napping, suddenly there came a tapping, As of some
one gently rapping, rapping at my chamber door. “Tis some visitor,”
I muttered, “tapping at my chamber door? Only this, and nothing
more.”

The Raven, Edgar Allan Poe
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4 First order perturbation theory: internal and external perturbations

4.1 Introduction

In the previous chapter, we have dealt with structural and material pertur-
bations in the interior of the fiber. In this chapter, we treat perturbations
which occur exclusively in the exterior or throughout, i.e., exterior as well
as interior of the fiber, by developing a first order perturbation theory for
external perturbations. Perturbation theories that deal with changes in the ex-
terior, for instance, material changes in the homogeneous background, are ex-
tremely rare in optics especially for open optical systems. Most perturbation
theories as we saw in the previous chapter, deal with internal perturbations
[21, 27, 28, 32, 50]. This is because the pole expansion of the Green’s dyadic
is applicable only in the region of spatial inhomogeneities, as it must have
a finite value everywhere except for the poles. This does not hold true for
the homogeneous exterior in the case of leaky modes. The first theory for
external perturbations of leaky modes was described in Ref. [51] by S. Both
et al. In that paper, the resonance shift as a function of homogeneous and
isotropic change in refractive index of the background was predicted for two
structures: a metallic nanosphere and a periodic array of metal nanoslits. We
now adapt this perturbation theory for propagating modes in fiber geometries
and treat material changes in the homogeneous background as perturbations
of an unperturbed fiber. Additionally, since wavelength is an input parameter
in the Maxwell’s equations for fibers [see Eq. (2.7)] and not an eigenvalue,
we derive the first perturbation theory that treats wavelength as a perturbation
which includes bound as well as leaky modes.

Perturbation theories normally involve an integral of quantities such as
wavefunction or fields, over the region of perturbation. This so-called over-
lap integral, was derived for interior perturbations in fiber geometries [see
Eq. (3.9)]. When the perturbation lies in the exterior, then the area of inte-
gration should ideally be taken as all space, i.e., throughout the homogeneous
medium. As we know from different open optical systems, that calculating
such an integral does not pose a problem for bound modes which have fields
decaying as we move away from the system. However, for leaky modes that
have fields growing with distance from the system, such an integral will di-
verge. This fundamental problem of leaky modes was solved in Ref. [51]
by adding an additional surface integral term to the already existing volume
integral of previous perturbation theories.

In Fig. 4.1, the schematic of an unperturbed photonic crystal fiber having
permittivity ε, permeability µ, and wavenumber k0 is shown in the top right.
A perturbation is then introduced throughout the fiber such that the perturbed
system has permittivity ε′, permeability µ′, and wavenumber k′0, bottom right
panel. These perturbations can be introduced individually or simultaneously

52



4.1 Introduction

into the system. In the first order perturbation theory, these perturbations do
not have cross terms, which is not true for higher order perturbation theories
that do consist of cross terms. Here we only derive the first order perturbation
theory. The dispersion of the fundamental core mode is plotted in Fig. 4.1,
for a silica-air photonic crystal fiber. The radius of the fiber inclusions is 0.5
µm and the pitch is 2.3 µm. We see that as we move from ε and µ of the
unperturbed system to ε′ and µ′ of the perturbed system, there is a shift of the
dispersion plot with the change in propagation constant indicated by ∆β. The
change in wavenumber to k′0 from the unperturbed wavenumber of k0, is also
predicted by the perturbation theory as ∆βk0 .

Chemical, thermal and biological reactions often lead to a change in the
material properties of the medium. Fibers are sensitive to these small changes
in the environment and act as sensors for variations in the refractive index
[52]. To detect these changes the fields of the fiber need to interact with the
changing material. When the perturbation occurs purely in the background
of the fiber the sensing method used is called evanescent field sensing [53,
54]. In this method, the cladding modes of photonic crystal fibers that have
high field intensities in the exterior, interact with the perturbed background.
This effect may be plasmonically enhanced by applying a metal layer in the
exterior of the fiber [55]. Fiber optic sensors are also used for temperature and
pressure sensing, depending on how the refractive index varies with stress and
temperature [56].

Another way of sensing refractive index changes especially in liquids is by
placing a hollow core fiber in the liquid background material. This enables the
liquid to pass through the fiber core. Hence, the high intensity light trapped
within the core interacts with the perturbing background material, which re-
sults in increased path lengths and sensitivities [54]. Anti-resonant light cage
structures or capillary fibers can be used for such applications as they trap
light in a hollow air core [17].

Perturbation theories have proved to be a much faster way for optimizing
structures [30, 57–61] where small changes are involved. For the particular
case of fiber structures, in addition to adapting the external perturbation the-
ory for material changes, we arrive at a novel perturbation theory that leads
to exact values of group velocity by using wavelength (or wavenumber) as a
perturbation. Hence, the first order correction term directly gives the tangent
to the dispersion curve and we need not solve Maxwell’s equations repeatedly
for very close wavelengths to obtain a numerical derivative. This perturbation
theory is applicable to any fiber structure with bound or leaky modes. Hence,
this allows for very quick optimization of the fiber materials and structural
parameters to tailor the propagation constant and group velocity to desired
values for different applications. We now proceed to derive this first order
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Figure 4.1: The real part of the propagation constant as a function of wavenumber
for an unperturbed fiber ε, µ and for an exterior perturbation of ε′, µ′. Additionally,
the change in wavenumber k0 can also be treated as a perturbation, with the perturbed
wavenumber as k′0. These perturbations in the first order perturbation theory are treated
independent of each other and hence can be applied simultaneously.

perturbation theory for different exterior perturbations.

4.2 Theory

We start out with Fourier transformed Maxwell’s equations for the resonant
states as described in Eq. (2.7). We then introduce a perturbation in the ho-
mogeneous exterior of the fiber. This is defined as

�̂ = �̂0 + Λ · ∆�̂ = �̂0 + Λk0∆�̂k0 + Λε∆�̂ε + Λµ∆�̂µ, (4.1)

where

∆�̂k0 =

(
∆k0ε 0

0 ∆k0µ

)
, (4.2)

∆�̂ε =

(
k0∆ε 0

0 0

)
, (4.3)

and

∆�̂µ =

(
0 0
0 k0∆µ

)
. (4.4)
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4.2 Theory

We have introduced the vector Λ with components Λε, Λµ and Λk0 to keep
track of each perturbation. We consider the subscript ν for the resonant states
of the perturbed system, which also satisfies Eq. (2.7).

As described in the chapters of the normalization and internal perturbation
theories, we differentiate between the forward (+β) and the reciprocal con-
jugate, i.e., backward (−β) propagating modes [denoted by superscript R].
Multiplying the Max-well’s equation for the unperturbed system (denoted by
subscript m) with �̂ν and the Maxwell’s equation for the perturbed system
with �̂R

m, and subtracting the two equations, we have

�̂ν · �̂0�̂
R
m − �̂

R
m · (�̂0 + Λ · ∆�̂)�̂ν = 0. (4.5)

This is expanded as,

�̂ν · �̂0�̂
R
m − �̂

R
m · (�̂0 + Λk0∆�̂k0 + Λε∆�̂ε + Λµ∆�̂µ)�̂ν = 0. (4.6)

Substituting the matrix forms of �̂0 and �̂ along with the matrix form of
the other perturbation operators and using ε = εT and µ = µT , we get in
matrix-vector notation, �̂ν

i�̂ν

 ·  k0ε −∇̂−βm×

−∇̂−βm× k0µ

  �̂R
m

i�̂R
m


−

 �̂R
m

i�̂R
m

 · k0ε + Λk0∆k0ε + Λεk0∆ε −∇̂βν×

−∇̂βν× k0µ + Λk0∆k0µ + Λµk0∆µ

  �̂νi�̂ν

 = 0,

(4.7)

which results in

− i�̂ν · ∇ × �̂R
m − i�̂ν · ∇ × �̂

R
m − �̂

R
m · (Λk0∆k0ε + Λεk0∆ε)�̂ν

+ i�̂R
m · ∇ × �̂ν + i�̂R

m · ∇ × �̂ν + �̂R
m · (Λk0∆k0µ + Λµk0∆µ)�̂ν = 0.

(4.8)

By applying the vector identity of Eq. (2.15) to the Eq. (4.8), we get

∇|| · (�̂ν × �̂R
m − �̂

R
m × �̂ν) + i(βν − βm)(�̂ν × �̂R

m − �̂
R
m × �̂ν)z

+ i�̂R
m · (Λk0ε∆k0 + Λεk0∆ε)�̂ν − i�̂R

m · (Λk0µ∆k0 + Λµk0∆µ)�̂ν = 0.
(4.9)

Integrating the above equation over a circular surface of radius R outside
the region of spatial inhomogeneities, i.e., the circle encloses all regions of
spatial inhomogeneities and using the divergence theorem to convert the sur-
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face integral to a line integral, we obtain:

R
∫

dφ (ÊνφĤR
mz − ÊνzĤR

mφ − ÊR
mφĤνz + ÊR

mzĤνφ)

+ i(βν − βm)
∫

dA(ÊνρĤR
mφ − ÊνφĤR

mρ − ÊR
mρĤνφ + ÊR

mφĤνρ)

+ i
∫

dA �̂R
m · (Λk0ε∆k0 + Λεk0∆ε)�̂ν

− i
∫

dA �̂R
m · (Λk0µ∆k0 + Λµk0∆µ)�̂ν = 0.

(4.10)

Similar to the Rayleigh-Schroedinger perturbation theory in quantum me-
chanics [22] and the first order external perturbation theory by S. Both et al.
in Ref. [51], we write the propagation constant and fields of the perturbed
system as a Taylor series, i.e.,

βν = βm + Λ · β(1)
m + O(Λ2) + ...

= βm + Λk0β
(1)k0
m + Λεβ

(1)ε
m + Λµβ

(1)µ
m + ...

(4.11)

and

�̂ν = �̂m + Λ · �̂(1)
m + O(Λ2) + ...

= �̂m + Λk0 �̂
(1)k0
m + Λε�̂

(1)ε
m + Λµ�̂

(1)µ
m + ... ,

(4.12)

which gives

�̂ν = �̂m + Λ · �̂(1)
m + O(Λ2) + ...

= �̂m + Λk0�̂
(1)k0
m + Λε�̂

(1)ε
m + Λµ�̂

(1)µ
m + ... ,

(4.13)

and

�̂ν = �̂m + Λ · �̂(1)
m + O(Λ2) + ...

= �̂m + Λk0�̂
(1)k0
m + Λε�̂

(1)ε
m + Λµ�̂

(1)µ
m + ... .

(4.14)

Here, O(Λ2) represents higher orders ofΛ terms. β(n)
m and �̂(n)

m are the nth order
correction terms to the propagation constant and fields, respectively. Each of
the correction terms has a component for ε, µ and k0 perturbations. Hence,
we treat the perturbations independently. Substituting these expansions in Eq.
(4.10) and equating the zeroth order terms with respect to Λk0 , Λε and Λµ we
obtain,

R
∫

dφ(ÊmφĤR
mz − ÊmzĤR

mφ − ÊR
mφĤmz + ÊR

mzĤmφ) = 0. (4.15)
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4.2 Theory

By converting the reciprocal conjugate modes to forward propagating modes
by using the symmetries of the system, as described in Chapter 2, Eq. (4.15)
is trivially fulfilled. We now equate the first order terms for Λk0 , Λε and Λµ.

For Λk0 , we get

R
∫

dφ(Ê(1)k0
mφ ĤR

mz − Ê(1)k0
mz ĤR

mφ − ÊR
mφĤ(1)k0

mz + ÊR
mzĤ

(1)k0
mφ )

+ iβ(1)k0
m

∫
dA(ÊmρĤR

mφ − ÊmφĤR
mρ − ÊR

mρĤmφ + ÊR
mφĤmρ)

+ i
∫

dA �̂R
m · ε∆k0�̂m − i

∫
dA �̂R

m · µ∆k0�̂m = 0.

(4.16)

For Λε, it results in

R
∫

dφ(Ê(1)ε
mφ ĤR

mz − Ê(1)ε
mz ĤR

mφ − ÊR
mφĤ(1)ε

mz + ÊR
mzĤ

(1)ε
mφ )

+ iβ(1)ε
m

∫
dA(ÊmρĤR

mφ − ÊmφĤR
mρ − ÊR

mρĤmφ + ÊR
mφĤmρ)

+ i
∫

dA �̂R
m · k0∆ε�̂m = 0,

(4.17)

while for Λµ, we obtain:

R
∫

dφ(Ê(1)µ
mφ ĤR

mz − Ê(1)µ
mz ĤR

mφ − ÊR
mφĤ(1)µ

mz + ÊR
mzĤ

(1)µ
mφ )

+ iβ(1)µ
m

∫
dA(ÊmρĤR

mφ − ÊmφĤR
mρ − ÊR

mρĤmφ + ÊR
mφĤmρ)

− i
∫

dA �̂R
m · k0∆µ�̂m = 0.

(4.18)

The Eqs. (4.16 - 4.18) can be combinedly written as,

R
∫

dφ(Ê(1)
mφĤR

mz − Ê(1)
mz ĤR

mφ − ÊR
mφĤ(1)

mz + ÊR
mzĤ

(1)
mφ)

+ iβ(1)
m

∫
dA(ÊmρĤR

mφ − ÊmφĤR
mρ − ÊR

mρĤmφ + ÊR
mφĤmρ)

+ i
∫

dA �̂R
m · ∆�̂�̂m = 0.

(4.19)

We now convert the reciprocal conjugate fields to forward propagating
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4 First order perturbation theory: internal and external perturbations

fields, to get for Λk0

R
∫

dφ(ÊmφĤ(1)k0
mz + ÊmzĤ

(1)k0
mφ − Ê(1)k0

mφ Ĥmz − Ê(1)k0
mz Ĥmφ)

+ 2iβ(1)k0
m

∫
dA(ÊmρĤmφ − ÊmφĤmρ)

− i
∫

dA �̂R
m · ε∆k0�̂m + i

∫
dA �̂R

m · µ∆k0�̂m = 0.

(4.20)

For Λε, the first order equation yields

R
∫

dφ(ÊmφĤ(1)ε
mz + ÊmzĤ

(1)ε
mφ − Ê(1)ε

mφ Ĥmz − Ê(1)ε
mz Ĥmφ)

+ 2iβ(1)ε
m

∫
dA(ÊmρĤmφ − ÊmφĤmρ)

− i
∫

dA �̂R
m · k0∆ε�̂m = 0,

(4.21)

and for Λµ, we get

R
∫

dφ(ÊmφĤ(1)µ
mz + ÊmzĤ

(1)µ
mφ − Ê(1)µ

mφ Ĥmz − Ê(1)µ
mz Ĥmφ)

+ 2iβ(1)µ
m

∫
dA(ÊmρĤmφ − ÊmφĤmρ)

+ i
∫

dA �̂R
m · k0∆µ�̂m = 0,

(4.22)

which yields the combined equation as,

R
∫

dφ(ÊmφĤ(1)
mz + ÊmzĤ(1)

mφ − Ê(1)
mφĤmz − Ê(1)

mz Ĥmφ)

+ 2iβ(1)
m

∫
dA(ÊmρĤmφ − ÊmφĤmρ)

− i
∫

dA �̂R
m · ∆��̂m = 0.

(4.23)

We now have to derive each of the first order field correction terms to obtain
the first order correction term for the propagation constant.

4.2.1 ε field correction terms

Let us define �̃ = �̃(r||, β,Λ) with the tilde denoting the analytical continu-
ation of β in the exterior. The perturbed fields are written as a Taylor series
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expansion of the unperturbed fields along with first and higher order field
correction terms. From Eq. (4.12), we know that,

�̃ = �̂m + Λk0 �̂
(1)k0
m + Λε�̂

(1)ε
m + Λµ�̂

(1)µ
m + ... (4.24)

By using the above expansion, we get

�̂
(1)ε
mz =

d�̃z

dΛε

∣∣∣∣∣
Λ=0

. (4.25)

The derivative with respect to Λε is evaluated as,

d�̃z

dΛε

∣∣∣∣∣
Λ=0

=
∂�̃

∂Λε

∣∣∣∣∣
Λ=0

+
∂�̃

∂β

∂β

∂Λε

∣∣∣∣∣
Λ=0

(4.26)

This results in

Ê(1)ε
mz =

dẼz

dΛε

∣∣∣∣∣
Λ=0

. (4.27)

From the relations,

κ2 + β2 = (ε + Λε∆ε)(µ + Λµ∆µ)(k0 + Λk0∆k0)2 (4.28)

and the Taylor expansion of β in Eq. (4.11), we get

∂κ

∂Λε

∣∣∣∣∣
Λ=0

=
∆εµk2

0

2κm
, (4.29)

∂κ

∂β

∣∣∣∣∣
Λ=0

=
−βm

κm
. (4.30)

Using Eq. (4.26) along with the relations in Eqs. (2.30) and (2.31), we get the
first order field correction term for the z component of the electric field as,

E(1)ε
mz =

(
∂κ

∂Λε
+ β(1)ε

m
∂κ

∂β

)
∂Emz

∂κ

∣∣∣∣∣
κ=κm

=

(∆εµk2
0

2
− βmβ

(1)ε
m

) 1
κm

∂Emz

∂κ

∣∣∣∣∣
κ=κm

.

(4.31)

This can be written as,

E(1)ε
mz =

Γε

2κm

∂Emz

∂κ

∣∣∣∣∣
κ=κm

(4.32)

where we define
Γε = ∆εµk2

0 − 2βmβ
(1)ε
m (4.33)
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for the sake of brevity of notations.
Similarly, the correction term for the z component of the magnetic field is

given by

Ĥ(1)ε
mz =

dH̃z

dΛε

∣∣∣∣∣
Λ=0

, (4.34)

which results in

Ĥ(1)ε
mz =

Γε

2κm

∂Ĥmz

∂κ

∣∣∣∣∣
κ=κm

. (4.35)

For the φ components, we know that

Ê(1)ε
mφ =

dẼφ

dΛε

∣∣∣∣∣
Λ=0

. (4.36)

We describe the φ component of the electric field in terms of the z components
of the electric and magnetic fields as [47]

Êφ =
iβ
κ2ρ

∂Êz

∂φ
−

i(k0 + Λk0∆k0)(µ + Λµ∆µ)
κ2

∂Ĥz

∂ρ
, (4.37)

and use the dependence of β and κ on Λε and Eq. (4.26) to get,

Ê(1)ε
mφ =

( iβ(1)ε
m

κ2
mρ
−

iβmΓε

κ4
mρ

)
∂Êmz

∂φ
+

iβmΓε

2κ3
mρ

∂

∂φ

(
∂Êmz

∂κ

)∣∣∣∣∣
κ=κm

+

( ik0µΓε

κ4
m

)
∂Ĥmz

∂ρ
−

ik0µΓε

2κ3
m

∂

∂ρ

(
∂Ĥmz

∂κ

)∣∣∣∣∣
κ=κm

.

(4.38)

Similarly, we know that

Ĥ(1)ε
mφ =

dH̃φ

dΛε

∣∣∣∣∣
Λ=0

, (4.39)

where [47]

Ĥφ =
iβ
κ2ρ

∂Ĥz

∂φ
+

i(k0 + Λk0∆k0)(ε + Λε∆ε)
κ2

∂Êz

∂ρ
, (4.40)

we again use the dependence of β and κ on Λε along with Eq. (4.26) to get,

Ĥ(1)ε
mφ =

( iβ(1)ε
m

κ2
mρ
−

iβmΓε

κ4
mρ

)
∂Ĥmz

∂φ
+

iβmΓε

2κ3
mρ

∂

∂φ

(
∂Ĥmz

∂κ

)∣∣∣∣∣
κ=κm

+

( ik0∆ε

κ2
m
−

ik0εΓε

κ4
m

)
∂Êmz

∂ρ
+

ik0εΓε

2κ3
m

∂

∂ρ

(
∂Êmz

∂κ

)∣∣∣∣∣
κ=κm

.

(4.41)

Substituting the expressions for the correction terms in Eq. (4.21) and
collecting all the β(1)ε

m terms we get
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β(1)ε
m =

S ε
1 + Lε1

S 0 + L0
, (4.42)

where
S ε

1 = ik0

∫
dA �̂R

m · ∆ε�̂m, (4.43)

S 0 = 2i
∫

dA (ÊmρĤmφ − ÊmφĤmρ), (4.44)

L0 = 2i
(εµk2

0 + β2
m

2κ4
m

) ∫
dφ

(
Êmz

∂Ĥmz

∂φ
− Ĥmz

∂Êmz

∂φ

)
ρ=R

+ 2i
(k0βR2

2κ4
m

) ∫
dφ

{
ε
[(
∂Êmz

∂ρ

)2
− ρÊmz

∂

∂ρ

(1
ρ

∂Êmz

∂ρ

)]
+ µ

[(
∂Ĥmz

∂ρ

)2
− ρĤmz

∂

∂ρ

(1
ρ

∂Ĥmz

∂ρ

)]}
ρ=R

,

(4.45)

and
Lε1 =

∆ε

ε
L̃ε1, (4.46)

where

L̃ε1 =
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∂Êmz

∂ρ

)2
− ρÊmz
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∂Ĥmz

∂ρ

)2
− ρĤmz
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Êmz

∂Êmz

∂ρ

)
ρ=R

.

(4.47)

We have converted the κ derivatives to ρ derivatives by using the relations
described in Eqs. (2.32-2.33).

Note that similar to the derivation of correction terms for an ε perturbation,
in further derivations the surface integral is always denoted by S and taken
over a circle of radius R outside the region of spatial inhomogeneities. The
line integral denoted by L encloses the surface integral and is calculated for
the same radius R.

In Eq. (4.42), we have arrived at the expression for the first order correc-
tion term of the propagation constant for a purely ε perturbation. The fields
in this expression need not be normalized separately since the normalization
expression of S 0 +L0 is automatically derived as a by product of the first order
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Figure 4.2: Real (a) and imaginary (b) part of the surface and line integral for an
ε perturbation of unity, i.e., ∆ε = 1, as a function of the radius of integration for a
higher order mode for a silica-air photonic crystal fiber at a wavelength of 1 µm. The
air inclusions have a radius of 0.25 µm with a pitch of 2.3 µm. It is seen that, since
the modes supported by this fiber are leaky, the real and imaginary parts of the surface
and line integrals are growing as the radius of normalization is increased. The surface
integral is shown in the left y axis while the line integral is shown in the right y axis, as
indicated by the arrows in panel (a). The sum of the surface and line integrals (green
solid line) is constant independent of the radius of integration, despite the leaky nature
of the mode.

derivation with an additional factor of 2i as can be seen from the normaliza-
tion expression in Eq. (2.35).

Also note that the expression for the surface integral S ε
1 is the same as the

so-called overlap integral derived for ε perturbations in the interior, but to the
single mode approximation, where the perturbed field is taken equal to the
unperturbed field. The additional expression is the line integral term which is
specific to exterior perturbations. In Eq. (4.42), if the perturbation is purely
in the interior then the line term would go to zero. Hence, this perturbation
theory is also consistent with the interior perturbation theory to the single
mode approximation.

We plot in Fig. 4.2, the real (a) and imaginary (b) parts of the surface and
line integral of Eq. (4.42), denoted by the blue solid line and red dashed line
respectively, as a function of radius of integration outside the region of spatial
inhomogeneities for a higher order mode of a silica-air photonic crystal fiber
for a unity perturbation in ε. The photonic crystal fiber comprises of four
cladding rings with one missing inclusion as the defect core. The radius of
the inclusion is 0.25 µm and the pitch is 2.3 µm. The wavelength is 1 µm. The
green solid line denotes the sum of the surface and line integral terms. The
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left y axis corresponds to the solid lines while the right y axis corresponds
to the dashed line, as indicated by the arrow. We see that individually, both
the real and imaginary parts of the surface and line terms oscillate and grow
with respect to the radius of integration. This is due to the leaky nature of the
mode, which has fields growing in the exterior. From Fig. 4.2, we see that
the oscillations of the surface and line terms are perfectly out of phase with
each other and the growth of the line term perfectly counteracts the growth
of the surface term. This results in their sum giving a constant value irre-
spective of the radius of integration. Additionally, this helps in choosing a
minimum computational domain in the presence of the perturbation which is
very advantageous for fast calculations.

4.2.2 k0 field correction terms

We now derive the field correction terms for the k0 perturbation. We proceed
as in the previous derivation where we use Eq. (4.24) to write,

�̂
(1)k0
mz =

d�̃z

dΛk0

∣∣∣∣∣
Λ=0

. (4.48)

The derivative with respect to Λk0 is evaluated as,

d�̃z

dΛk0

∣∣∣∣∣
Λ=0

=
∂�̃

∂Λk0

∣∣∣∣∣
Λ=0

+
∂�̃

∂β

∂β

∂Λk0

∣∣∣∣∣
Λ=0

(4.49)

From the above equations, we get

Ê(1)k0
mz =

dẼz

dΛk0

∣∣∣∣∣
Λ=0

, (4.50)

Using the relations in Eqs. (4.28) and (4.11), we have

∂κ

∂Λk0

∣∣∣∣∣
Λ=0

=
εµk0∆k0

κm
, (4.51)

Using Eq. (4.49) and Eq. (4.30) along with Eqs. (2.30) and (2.31), we get the
first order field correction term for the z component of the electric field as,

E(1)k0
mz =

(
∂κ

∂Λk0

+ β(1)k0
m

∂κ

∂β

)
∂Emz

∂κ

∣∣∣∣∣
κ=κm

=

(
εµk0∆k0

κm
−
βmβ

(1)k0
m

κm

)
∂Emz

∂κ

∣∣∣∣∣
κ=κm

.

(4.52)

Defining
Γk0 = εµk0∆k0 − βmβ

(1)k0
m , (4.53)
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we can write the correction term for the z component of the electric field as,

Ê(1)k0
mz =

Γk0

κm

∂Êmz

∂κ

∣∣∣∣∣
κ=κm

. (4.54)

Similarly,

Ĥ(1)k0
mz =

dH̃z

dΛk0
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Λ=0

, (4.55)

which gives

Ĥ(1)k0
mz =

Γk0

κm

∂Ĥmz

∂κ
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κ=κm

. (4.56)

For

Ê(1)k0
mφ =

dẼφ

dΛk0
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Λ=0

, (4.57)

with Êφ as defined in Eq. (4.37), we use Eq. (4.49) along with the dependence
of β and κ on Λk0 to get,
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m
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(4.58)

For

Ĥ(1)k0
mφ =

dH̃φ

dΛk0

∣∣∣∣∣
Λ=0

, (4.59)

we use the expression of Ĥphi as defined in Eq. (4.40) along with Eq. (4.49)
to get the correction term as
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(4.60)

Substituting the correction terms in Eq. (4.20) and combining all the β(1)k0
m

terms we get

β(1)k0
m =

S k0
1 + Lk0

1

S 0 + L0
, (4.61)

where S 0 and L0 are the same as defined in Eq. (4.44) and Eq. (4.45) respec-
tively, and the expressions for S k0

1 and Lk0
1 are

S k0
1 = i∆k0

∫
dA �̂R

m · ε�̂m − �̂
R
m · µ�̂m, (4.62)

64



4.2 Theory

and
Lk0

1 =
∆k0
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1 (4.63)

where
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(4.64)

By applying the relations in Eqs. (2.32-2.33) we have converted the deriva-
tives with respect to κ to spatial derivatives.
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Figure 4.3: Real (a) and imaginary (b) part of the surface and line integral for a unity
k0 perturbation, i.e., ∆k0 = 1, as a function of the radius of integration for a higher
order mode of a silica-air photonic crystal fiber. The fiber parameters are the same as
in Fig. 4.2. We observe that due to the leaky nature of the mode we have growing
fields and hence a growing surface integral with respect to the radius of integration.
However, the line integral countervails this growth to give a constant value for the
perturbed propagation constant. Note that the scales on the right and left y axes, which
denote the line and surface integrals respectively, are different.

In Fig. 4.3, we plot the equivalent of Fig. 4.2 for a unity k0 perturbation.
The example structure of a silica-air photonic crystal fiber along with the fiber
parameters remains the same. We again note that the leaky nature of the mode
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4 First order perturbation theory: internal and external perturbations

results in growing surface and line integrals as a function of the radius of
normalization but the sum of the surface and line integrals, taken over a circle
enclosing all regions of spatial inhomogeneities results in a constant value
for the correction term. Hence, this results in the first perturbation theory for
wavelength.

Note that since a change in wavelength occurs over the entire structure,
i.e., in the interior as well as the exterior, the line integral is very critical in
the case of wavelength perturbation to get the first order correction term. This
perturbation theory is valid for both bound and leaky modes. For the case of
bound modes, the line integral may go to zero if the radius of integration
is taken large enough as bound modes have exponentially decaying fields.
However, calculating the line integral even for bound modes helps to reduce
the computational domain, which significantly reduces simulation time.

4.2.3 µ field correction terms

We now derive the field correction terms for the µ component of the pertur-
bation. From Eq. (4.24), we can write

�̂
(1)µ
mz =

d�̃z

dΛµ

∣∣∣∣∣
Λ=0

. (4.65)

The derivative with respect to Λµ is evaluated as,

d�̃z
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. (4.66)

Hence, we get

Ê(1)µ
mz =

dẼz

dΛµ

∣∣∣∣∣
Λ=0

, (4.67)

Using the relations in Eqs. (4.28) and (4.11), we have

∂κ

∂Λµ

∣∣∣∣∣
Λ=0

=
ε∆µk2

0

2κm
. (4.68)

Applying Eq. (4.66) and Eq. (4.30) along with Eqs. (2.30) and (2.31), we get
the first order field correction term for the z component of the electric field as,

E(1)µ
mz =

(
∂κ

∂Λk0

+ β
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m
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)
∂Emz
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.

(4.69)
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Defining
Γµ = ε∆µk2

0 − 2βmβ
(1)µ
m (4.70)

we can write the first order correction terms as

Ê(1)µ
mz =

Γµ

2κm

∂Êmz
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. (4.71)

Similarly,
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. (4.72)

Hence, we obtain
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. (4.73)

We know that
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dẼφ

dΛµ

∣∣∣∣∣
Λ=0

. (4.74)

Using the relations from Eqs. (4.37) and (4.66), we get
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(4.75)

Finally,

Ĥ(1)µ
mφ =

dH̃φ

dΛµ
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. (4.76)

Using the relations from Eqs. (4.40) and (4.66), we obtain
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∂Ĥmz

∂φ
+

iβmΓµ

2κ3
mρ

∂

∂φ

(
∂Ĥmz
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(4.77)

Substituting the correction terms in Eq. (4.23) and combining all the β(1)µ
m

terms we get

β
(1)µ
m =

S µ
1 + Lµ1

S 0 + L0
, (4.78)
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Figure 4.4: Real (a) and imaginary (b) part of the surface and line integral for a µ
perturbation of unity, i.e., ∆µ = 1, as a function of the radius of integration for a
higher order mode of a silica-air photonic crystal fiber. The fiber parameters are the
same as in Fig. 4.2. We see that similar to the ε and k0 perturbations, the sum of
the surface and line term is constant with respect to radius of normalization for the µ
perturbation as well. Note that the scales in the left and right y axis denoting surface
and line terms respectively, are different.

where S 0 and L0 are the same as defined in Eq. (4.44) and Eq. (4.45) respec-
tively, and the expressions for S µ

1 and Lµ1 are

S µ
1 = −ik0

∫
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m · ∆µ�̂m, (4.79)

Lµ1 =
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Êmz

∂Ĥmz
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(4.81)

after converting the κ derivatives to spatial ones using Eqs. (2.32-2.33).
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We can now write the combined equation for the first order correction term
of the propagtion constant by using the expressions of Eqs. (4.42), (4.61) and
(4.78), to get

β(1)
m =

∫
dA �̂R

m · ∆�̂�̂m + ∆ε
ε

L̃ε1 +
∆µ
µ

L̃µ1 +
∆k0
k0

L̃k0
1

S 0 + L0
(4.82)

Interestingly, the symmetry of the equations works out such that,

L̃k0
1 = L̃ε1 + L̃µ1 (4.83)

In Fig. 4.4, we plot the real and imaginary part of the surface and line
integrals of Eq. (4.78) as a function of the radius of integration for a unity µ
perturbation throughout the example structure. We show that the expression
for the propagation constant is independent of the radius of normalization for
the same higher order core mode of a silica-air photonic crystal fiber as in
Figs. 4.2 and 4.3. This relation for the correction term holds true for both
bound and leaky modes. Note that we have derived the expression of the
first order correction term of the propagation constant for the µ perturbation
purely for the sake of completeness. However, it is hard to find practical
examples where small changes in permeability occur in the external media
at optical frequencies. In the following section, we now apply our first order
perturbation theory to example fiber structures for ε and k0 perturbations in
the interior as well as exterior.

4.3 Examples

4.3.1 ε perturbation

We now show three different examples of fiber structures with ε perturbations
in the exterior as well as interior. We consider only a scalar, homogeneous
and isotropic perturbation of the permittivity.

Full perturbation in a step-index fiber

We first consider a simple theoretical example of a step-index fiber with a core
index of n = 1.10 (theoretical assumption) and a homogeneous background
index of nbg = 1.45. The radius of the fiber core is 5 µm. The schematic of the
unperturbed fiber is shown in Fig. 4.5 (a). We now introduce a perturbation
of ∆n both in the fiber core and exterior homogeneous background while
all other parameters remain the same. The schematic of this perturbed fiber
is shown in Fig. 4.5 (b). The panels (a) and (b) of the Fig. 4.5 compare
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4 First order perturbation theory: internal and external perturbations

the real and imaginary parts of the effective index calculated from the first
order perturbation theory with the exact analytical solutions, respectively, as
a function of change in refractive index ∆n. The wavelength is 1 µm.

We see that for the considered fundamental core mode, there is a very good
agreement between the first order perturbation theory and exact analytical
solution for both the real and imaginary parts for a range of positive as well as
negative changes in the refractive index. However, for large changes the first
order theory deviates from the exact solutions as the behavior of the effective
index becomes more and more non linear.

This example perturbation can be used to treat materials that change their
refractive index with temperature resulting in an overall change of index [62].
It should be noted however that the core and cladding will not have the same
∆n as they are made up of different materials. Nonetheless, we consider a
constant change keeping in mind that the theory can easily be extended to
materials that have different temperature coefficients for refractive index in
the core and cladding.
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Figure 4.5: Comparison of the real (a) and imaginary (b) part of the effective index
as a function of change in refractive index in the interior as well as exterior, between
exact solution and first order perturbation theory for the fundamental core mode of
a step-index fiber. The schematic of the unperturbed fiber, shown in the inset of (a)
where n = 1.10 and nbg = 1.45 while the perturbed fiber is shown in the inset of (b).
The radius is 5 µm and the wavelength is 1 µm. We see that there is a good agreement
between the exact solution and first order perturbation theory for small changes in ∆n,
which may be positive or negative.
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Background perturbation in a teflon AF fiber

As a second example, we have a step-index fiber with core n = 1.29 which
corresponds to the refractive index of Teflon AF [63]. The unperturbed back-
ground index is nbg = 1.60 of high index liquids [64]. We introduce a pertur-
bation into the system by only changing the background refractive index. The
schematic for the unperturbed and perturbed fiber are shown in Fig. 4.6 (a).
The radius of the fiber is 5 µm. These fibers with solid cores placed in liquids
are used in evanescent field sensing, where the cladding modes interact with
the exterior background [65].
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Figure 4.6: Comparison of the real (a) and imaginary (b) part of the effective index
between exact solution and first order perturbation as a function of the background
refractive index of the fundamental core mode for a step-index fiber. The radius of the
fiber is 5 µm and the wavelength is 1 µm. The unperturbed values of refractive index
are n = 1.29 (teflon AF) and nbg = 1.60, indicated by the arrow. Note that the y axis in
panel (a) shows the difference of the effective index and the core index to make visible
the changes in effective index.

We now plot the comparison of the real and imaginary parts of the effec-
tive index between the exact solution and first order perturbation theory as a
function of the background index. We see that the perturbation theory nicely
agrees with the exact solutions for small changes in the background index but
deviates for larger changes. The unperturbed background index is indicated
by the arrow in Fig. 4.6 (a) and (b). The effective index is plotted for the
fundamental core mode. Note that the y axis in Fig. 4.6 (a) is the difference
between the effective index and the core index. It appears that the change
in effective index is of the order of 10−3 for the real part while changing the
background index. The wavelength is 1 µm.

We also plot the prediction of the effective index as a function of the chang-
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Figure 4.7: (a) The absolute value of S z (in a.u.) at a wavelength of 1 µm for a higher
order core mode of a teflon fiber with core index 1.29 and unperturbed background
index 1.59. The radius of the fiber is 5 µm. The comparison of the real (b) and
imaginary (c) parts of the effective index as a function of changing background index.
The unperturbed background index is indicated by the arrow in (b) and (c).

ing background index for a higher order core mode in Fig. 4.7. The absolute
value of S z for the higher order mode is plotted in Fig. 4.7 (a). The unper-
turbed background index is 1.59. All other parameters remain the same as in
the previous example. It is seen in Fig. 4.7 (b) and (c) that there is a good
agreement between the first order theory and exact solution for the higher
order mode for both the real and imaginary parts of the effective index.

Background perturbation in a light cage structure

To increase the interaction of the background perturbation with the funda-
mental core mode, we now introduce a third example of a light cage [17, 66]
structure to demonstrate the change in the propagation constant with chang-
ing background index. The schematic of this fiber structure is shown in Fig.
4.8 (b). We see that the light cage structure comprises of a single 12 strand
ring of a dispersive polymer whose refractive index is given by [66]

npolymer =

√
1 +

1.3424689λ2

λ2 − 0.1284362 (4.84)

where λ is taken in µm. The unperturbed background index is taken as
nbg = 1.32, which is the index of water [67]. The guiding mechanism of this
light cage structure is an anti-resonant back reflection to the core. Such light
cage structures have been experimentally fabricated [17, 66] and recently it
has been shown that propagation of light also occurs in optofluidic mediums.
As the hollow core itself is placed in liquid, the change in refractive index
occurs in the core as well as the background as shown in the schematic in
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Fig. 4.8 (b). Hence, the majority of the guided light interacts with the change
in the environment, which can be very advantageous to monitor chemical and
biological reactions. The strand radius of the light cage structure is taken as
1 µm and the pitch is 7 µm.
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Figure 4.8: Comparison of the real (a) and imaginary (b) part of the effective index
between exact numerical solution and first order perturbation as a function of back-
ground refractive index, of the fundamental core mode for a light cage structure sur-
rounded by a liquid medium. The strand radius is 1 µm. The unperturbed background
index is nbg = 1.32, indicated by the arrow in the plots. The wavelength is 1.5 µm.

From Fig. 4.8 (a) and (b), we see that there is a good agreement between the
first order perturbation theory and the exact numerical solutions, which have
been obtained using the multipole expansion method [46] for the fundamental
core mode. We also note from panel (a) that the agreement of the real part
of the effective index and hence propagation constant is extremely good even
for large changes in the background index. However, we see from panel (b)
that the imaginary part deviates quickly due to its highly nonlinear behavior.

Hence, the first order perturbation theory has proved to be a very useful
tool in predicting the perturbed propagation constant of structures with small
perturbations in the exterior as well as interior of the structures, which is
highly useful for defining the sensitivities and design rules for fiber sensing
in a quick and efficient manner [30, 51].

4.3.2 k0 perturbation

We now consider examples of k0 perturbation, which we convert to λ, i.e.,
wavelength perturbation. Note that this is the only perturbation in the system
and ∆ε and ∆µ are considered to be zero. We also show that the perturbation
theory is able to give exact values of group velocity in fiber structures.
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4 First order perturbation theory: internal and external perturbations

Wavelength perturbation in a step-index fiber

We now discuss our first example, which is a capillary fiber with core refrac-
tive index n = 1 (air) and background refractive index nbg = 1.45. The radius
of the fiber is 5 µm. The schematic of the fiber structure is shown in Fig.
4.9 (a-b). The considered unperturbed wavelength is 1 µm, indicated by the
arrows in panels (a) and (b). Note that the only change between the perturbed
and unperturbed system is the wavelength, which is denoted by different color
schemes in the schematic.

The comparison of the real and imaginary parts as a function of wave-
length between the first order theory and exact solutions are shown in Fig.
4.9 (a) and (b), respectively, for the fundamental core mode. We see that
there is a very good agreement between the two theories for a large range
of wavelengths (0.8 µm - 1.2 µm) and for positive and negative changes in
wavelength. Hence, the perturbation theory is very suitable for predicting the
dispersion for small changes by solving the Maxwell’s equations for only the
unperturbed wavelength. The theory also gives an exact value of the slope of
the dispersion curve, which corresponds to the prediction of group velocity.
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Figure 4.9: Comparison of the real (a) and imaginary (b) parts of the effective index
between exact solution and first order perturbation as a function of wavelength for the
fundamental core mode of a capillary fiber. The radius is 5 µm and the unperturbed
wavelength is 1 µm (indicated by the arrow). The schematic of the fiber is shown in
the insets. The refractive indices are n = 1.00 and nbg = 1.45.

Wavelength perturbation in a silica air photonic crystal fiber

We now move on to a more complicated fiber structure of a silica air photonic
crystal fiber and try to predict the real and imaginary part of the effective

74



4.3 Examples

index for changes in wavelength from the unperturbed wavelength of 1 µm
for the fundamental core mode. The air inclusions have an index of 1, while
the background index is 1.44. The pitch Λ is 2.3 µm. We see from Fig. 4.10
(a) and (b) that there is an excellent agreement between the exact numerical
solution and first order perturbation theory for the real part for a range of
radius of the air inclusions. Note that the only perturbation in the system is
wavelength for each radius. Though there are deviations as we move to very
large shifts in wavelength. We can see in Fig. 4.10 (c) and (d) we have nice
agreement between the two theories even for the imaginary part but due to
the higher nonlinearity of the imaginary part the deviations between the exact
solution and first order perturbation theory arises much sooner.
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Figure 4.10: Comparison of the real (top row) and imaginary (bottom row) parts of
the effective index of the fundamental core mode for a silica air photonic crystal fiber
as a function of wavelength and strand radius, between exact numerical solution (left
column) and first order perturbation theory (right column). The unperturbed wave-
length is 1 µm. The background index is 1.44 with the index of air inclusions taken as
1 and the pitch is 2.3 µm.

We now compare the group velocities obtained from the first order theory
and by taking a numerical derivative of the dispersion curve by repeatedly
solving Maxwell’s equations for close wavelengths. The expression of the
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group velocity is given by [33]

Vg =
c

neff + ω
dneff

dω

(4.85)

where ω is the angular frequency given by ω = ck0. Such a figure is plotted
in Fig. 4.11 (a) and (b) for the fundamental core mode of a silica-air photonic
crystal fiber as a function of wavelength and strand radius. The structure
parameters are the same as in the previous example of Fig. 4.10. We see that
the perturbation theory is able to predict the group velocity with very high
accuracy and minimal computational effort. The relative error is of the order
of 10−3%.

R
a
d
iu

s
 (

µ
m

)

0.2

0.3

0.4

0.5

0.689

0.69

0.691

0.692

0.693

0.689

0.69

0.691

0.692

0.693

Wavelength (µm)

0.8 1 1.2

Wavelength (µm)

0.8 1 1.2

Exact Vg/c � perturbation Vg/c

(a) (b)

Figure 4.11: Comparison of the group velocity Vg/c between exact solution (a) and
first order perturbation (b) as a function of wavelength and strand radius for the fun-
damental core mode of a silica air photonic crystal fiber. The structural parameters of
the fiber are the same as in Fig. 4.10.

As a last example, we compare the effective index of a higher order cladding
mode for wavelength perturbation. For this we use a silica air photonic crys-
tal fiber with the refractive indices of the inclusions and background the same
as in the previous example. We use an inclusion radius of r = 0.5 µm for the
air inclusions with pitch 2.3 µm. The absolute value of S z for the considered
mode is plotted in Fig. 4.12 (a) at a wavelength of 1.19 µm, which is also the
unperturbed wavelength. The comparison of the real and imaginary parts is
plotted in Fig. 4.12 (b) and (c) for first order and exact numerical solutions,
which agrees extremely well for the considered range of wavelengths.

With the above examples, we show that the λ perturbation theory is a very
useful tool in predicting the dispersion of the propagation constant and the
group velocity of the structures as a simple post processing step. We have
shown its validity on fundamental and higher order modes of a silica air pho-
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Figure 4.12: (a) Absolute value of S z (in a.u.) at a wavelength of 1.19 µm for a higher
order core mode of a silica air photonic crystal fiber with air inclusions having index
1 and 1.44. The radius of the inclusions are 0.5 µm. Comparison of the real (b) and
imaginary (c) part of the effective index as a function of changing wavelength. The
unperturbed wavelength is indicated by the arrow in (b) and (c).

tonic crystal fiber. However, if the perturbation is too high or there are multi-
ple modes that are close to the considered unperturbed mode, then this leads
to a highly nonlinear behavior. Hence, the first order perturbation theory will
fail to accurately mimic the system and higher order perturbation theories or
full numerical solutions may be required. Even with its deficiencies, pertur-
bation theories have proved to be a useful tool for obtaining a fundamental
understanding of the structure and generate simple design rules for optimiza-
tion.
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5 Design rules for confinement
loss reduction

“They’re trying to kill me,” Yossarian told him calmly. “No one’s
trying to kill you,” Clevinger cried. “Then why are they shooting at
me?” Yossarian asked. “They’re shooting at everyone,” Clevinger
answered. “They’re trying to kill everyone.” “And what difference
does that make?”

Catch-22, Joseph Heller
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5 Design rules for confinement loss reduction

Conventional step-index fibers, crossed the loss limit of 20 dB/km in 1970,
taking their first step towards the utilization of optical fibers in communica-
tion systems [68, 69]. Further optimization of materials, design and wave-
length of operation, in the coming decades has resulted in the ultimate loss
limit of nearly 0.14 dB/km [70]. However, the fundamental limit in the per-
formance of conventional optical fibers is now reached not only in terms of
loss reduction but also in the optimization of other fiber properties such as
dispersion, high power transmission, reducing nonlinearity, increasing band-
width and so on [71].

Photonic crystal fibers provide a new way of improving the guiding prop-
erties of the conventional step-index fiber. They possess advantages like more
flexibility in the dispersion and guiding properties due to the higher number of
parameters, which can be manipulated [10] and most importantly the possibil-
ity of air guidance in the case of hollow-core photonic bandgap fibers. How-
ever, they have been unable to beat conventional step-index fibers in appli-
cations such as telecommunications. This is because the losses in fabricated
photonic bandgap fibers are much higher than conventional step-index fibers.
However, recent advances in loss reduction of both hollow-core [72, 73] and
all solid photonic bandgap [74] fibers have lead to the lowest loss in such
fibers to be around 1.7 dB/km [75].

To reduce the losses further we need to understand the loss mechanisms in
PBG fibers:

• Finite cladding: Photonic bandgap fibers guide light using a bandgap
effect [10], which arises due to the periodicity of the cladding. If the
cladding is infinite then light is completely trapped in the defect core.
Since fabricated photonic crystal fibers consist of only a few cladding
rings light can escape through the fiber. Adding additional cladding
rings helps reduce the losses of the fiber by almost one order of magni-
tude for each added cladding ring. The downside is that it also signifi-
cantly increases the fabrication complexity of the fiber.

• Structural distortions: PBG fibers are much more complicated in their
design when compared to their step-index counter parts. This in turn
leads to many structural deviations from the perfect cladding, which
affects their guiding properties and induce losses [41, 42]. This addi-
tionally can add surface modes and cladding supermodes which lowers
the bandwidth [76].

• Frozen capillary waves: The fabrication of the fiber itself results in sur-
face roughness because of the presence of frozen capillary waves [77].
These waves are thermodynamic in origin and hence, unavoidable in
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the fiber and thus result in scattering losses. They tend to fundamen-
tally limit the loss reduction of the fiber. However, optimizing the fiber
design further can help overcome this loss barrier.

In this chapter, we focus on reducing the confinement loss of the fiber by
optimizing the fiber design in high-index photonic bandgap fibers by making
structural changes in the core surround.

5.1 Previous works of loss reduction in
photonic bandgap fibers

There have been many attempts at loss reduction in photonic bandgap fibers
by making structural changes in the core surround, as changes near the core
cladding interface affect propagation of the fundamental core mode most sig-
nificantly [76]. Some examples in literature of tailoring the guiding properties
of fibers by structural design optimization are mentioned below:

• G. Ren et al., and W. Tong et al., in Ref. [78, 79] have introduced index
depressed layers in each unit cell surrounding the high index inclusion
of the all solid photonic bandgap fiber, which has shown to experimen-
tally reduce confimement loss to as low as 2 dB/km and hence reduce
transmission losses.

• J. H. Liu et al., in Ref. [80] show that by selectively filling the internal
holes of a fiber with liquids and leaving the external cladding rings as
air inclusions results in a slight reduce in the losses.

• Q. Fang et al., in Ref. [81] increase the diameter of two high index rods
in the depth of the cladding and also in the core-cladding interface to
show that this adds anticrossings and cladding supermodes. However,
it also results in large waveguide group velocity dispersion at the center
of the bandgap in the region of low loss.

• M. Pourmahayabadi et al., in Ref. [82] selectively modify the first ring
along with selected inclusions of the second ring to smaller radius and
higher index inclusions to form a snowflake like structure in the core
surround while the other inclusions remain as air. This results in a fiber
with a flattened dispersion and lower loss.

• P. Steinvurzel et al., in Ref. [83] reduces losses in photonic bandgap
fibers by excluding certain strand inclusions in the core surround. How-
ever, this only works for the first bandgap.
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• T. Yang et al., in Ref. [84] introduces a partially slotted core consisting
of air slots to achieve low loss and a flattened dispersion in the THz
regime.

There are of course many other works in the loss reduction of high-index
and hollow-core PBG fibers by optimizing the structural design. Note that
making changes to the core cladding interface is known to introduce ad-
ditional modes such as surface modes in hollow core PBG fibers [85, 86]
and cladding supermodes in high-index PBG fibers [81], which are generally
known to increase the losses of the fibers and reduce the bandgap.

5.2 Fiber design and discussion

Here, we present our novel method of reducing confinement loss in pho-
tonic bandgap fibers by modifying the radius of specific strands, which we
shall henceforth call “corner strands”, as they form the corner vertices of the
hexagon in the first cladding ring of the fiber. To demonstrate this mechanism
of lowering losses, we consider an example photonic bandgap fiber with high
index strands embedded in a low index background medium. The refractive
index of the strands are nhigh = 1.59, which correspond to CS2 [87] and a
background index of nlow = 1.44 corresponding to silica [88]. The strand
radius is r = 0.764 µm and the center-to-center interstrand distance defined
as pitch Λ is 3.82 µm, resulting in a radius-to-pitch ratio of r/Λ = 0.2. These
parameters are chosen to obtain a loss minimum at a wavelength of 1.55 µm
by enlarging the corner strands. The strands are placed in a triangular lattice
forming four cladding rings while the core is comprised of 7 missing inclu-
sions.

In Fig. 5.1, we observe two transitions of the unmodified fiber in the
schematics. The top schematic shows the transition where all the strands of
the unmodified fiber are increased upto R. In the bottom transition, only the
radius of the corner strands are modified from r → R while the other strands
remain unmodified. The bottom panel is our proposed structure of corner
strand modification in photonic bandgap fibers. We now compare the losses
of these transitions for different radii R.

For the structures with increasing strand radius [see Fig. 5.1 top schematic
transition], the losses are plotted for the first and second bandgap in Fig. 5.1
(a). It is observed that the losses increase with increasing strand radii in both
the first and second bandgaps. Note that the losses in panels (a) and (b) are
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plotted as a function of the V-parameter defined as [33]

V =

2πr
√

n2
high − n2

low

λ
. (5.1)

Due to the dependence of the V-parameter on strand radius r and wavelength
λ, we get a constant range of V values for changing strand radii in the first
and second bandgaps. Futhermore, it is observed that the losses in the second
bandgap are even lower than that of the first bandgap. This maybe due to the
low index contrast between the CS2 strands and the silica background of the
test fiber [89].

The losses for changing corner strand radii are plotted in Fig. 5.1 (b), for
the first and second bandgaps as a function of wavelength. The V-parameter
axis of panel (a) is also valid for panel (b), however the reverse is not true. We
see from panel (b) that selecting an optimal corner strand radius R, for each
bandgap, can lead to a lowering of loss by almost two orders of magnitude.
We further compare our results of modified corner strands to the structure of
missing corner strands proposed by Steinwurzel et. al. in Ref. [83]. The
loss of the missing corner strands structure is plotted as the blue dotted line
in Fig. 5.1 (b). We observe that this structure is very effective in reducing
losses in the first bandgap. However, it completely fails to do so in the second
and higher order bandgaps. The results of the higher order bandgaps are not
shown in the current work. Here, we only demonstrate the first and second
bandgaps. Modifying the corner strand radius seems to be a simple way of
reducing losses by orders of magnitude without highly changing the structure
or increasing fabrication complexity.

However, the modification of the corner strand radius to R fundamentally
changes the dispersion of the effective index by adding additional modes into
the bandgap region of the fiber that effectively reduces the bandwidth. This
can be seen as the highly lossy peaks in Fig. 5.1 (b). These modes which we
call here as “cladding supermodes” are hybrid modes between the core and
the first cladding ring of the fiber structure [81, 89].

To get an understanding of this low loss behavior, we now look into the
effective index of the lowest loss structures in the first and second bandgaps as
a function of wavelength. In Fig. 5.2, the dispersion of the real and imaginary
parts of the effective index are plotted in (a) and (b), respectively, for the three
structures of perfect, missing and enlarged (R = 1.16 µm) corner strands, in
the first bandgap. The radius for the enlarged corner strand structure has been
optimized to get the lowest loss by modifying the corner strands.

We can see that the unmodified and missing corner strand structures have
a smooth dispersion for both the real and imaginary parts with high losses
close to the band edges and a loss minimum at the center. Also note that
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Figure 5.1: (a) Loss as a function of V parameter for varying strand radius r for the
first (right) and second (left) bandgap. Schematics of the structures with increasing
strand radius are shown on the top right, for a constant pitch of Λ = 3.82 µm. Panel
(b) displays the loss for different corner strand radii R for the first and second bandgap.
The strand radius of the unmodified structure is r = 0.764 µm. A schematic along with
its modified version with enlarged corner strands (gray circles) in the core surround is
shown on the bottom right. Comparison of panels (a) and (b), with the scale of loss
being two orders of magnitude lower in (b), reveals that the optimal structure with the
lowest loss is obtained in the first and second bandgap for missing (blue dotted line)
and modified corner strands (blue solid lines), respectively. Note that the V parameter
axis holds for top and bottom panels, while the wavelength axis is only valid for the
bottom axis.

the dispersion of the real part [see Fig. 5.2 (a)] is very similar for the miss-
ing and unmodified structures. In the case of the modified (enlarged) corner
strand structure, we observe three distinct dispersion curves and their anti-
crossing with cladding supermodes. To get a further insight into the nature of
these dispersion curves we take a look at the Poynting vector plots at different
wavelengths in the dispersion curves.

We plot the absolute value of S z, i.e., the z component of the time averaged
Poynting vector, in Fig. 5.2 (c-k). This quantity can be physically interpreted
as the energy travelling in the z direction, which we have chosen as the trans-
lationally invariant direction [33]. The fields have been normalized using the
analytical normalization derived in Chapters 2 and 4, making a comparison of
the fields and energy distribution feasible for different fiber structures. Due
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Figure 5.2: Real (a) and imaginary (b) part of the effective index of the fundamental
core mode and its possible anticrossings with cladding supermodes with (blue dashed-
dotted lines) and without (black solid lines) and missing (red dashed lines) enlarged
corner strands in the core surround for the first bandgap. The corner radius is 1.16
µm, which corresponds to the lowest loss structure by modifying the corner strands.
The normalized absolute value of the z component of the time averaged Poynting
vector divided by c/8π for x-polarized modes is plotted at different wavelengths of
the dispersion curve in panels (c-k). The bottom row (i-k) is for the missing corner
strand structure while panels (c-h) correspond to enlarged corner strand structure. The
wavelengths in µm are indicated in the insets of the color plots.
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to this normalization the unit of the fields is 1/µm. The position of these
plots are marked in the dispersion curves of (a) and (b) and the wavelength
is written in the inset of each field plot in µm. Taking a look at (c), we see
that the mode is very fundamental like with most of its energy confined in
the core. It has orders of magnitude lower loss, which can be deduced from
the imaginary part of the effective index, when compared to the unmodified
cladding structure. As we move along the dispersion curve and get closer
to the anticrossing and hence the cladding supermode, we see that more and
more fields are leaking to the modified corner strands and very little energy
remains in the core [see Fig. 5.2 (d)]. We also see that the losses of the mode
have drastically increased within the bandgap region.

We now jump to the second dispersion curve moving through the anticross-
ing to (e) and (f), where most of the fields are still confined in the enlarged
corner strands but there is some energy remaining in the fiber core. It is inter-
esting to note that the nodes near the modified corner strands have a different
orientation as we move through the anticrossing to the cladding supermode.
The losses of the cladding supermode are quite high when compared to the
lowest loss of the unmodified and enlarged corner strands structures. We fi-
nally jump over the second anticrossing to the third dispersion curve with
the modes plotted in (g) and (h). We can again see that the mode has be-
come more fundamental like, and as we pass through the dispersion curve,
more and more energy returns back to the core of the fiber [see Fig. 5.2 (h)].
Interestingly, the node in the enlarged corner strands has reverted back to
its original orientation as we jumped the second anticrossing [see Fig. 5.2
(f) and (g)]. However, the losses in the third dispersion curve still remains
higher than even the unmodified cladding structure and the low loss regime
of the fiber does not reappear in the case of enlarged corner strands.

We also plot the absolute value of S z for the case of missing corner strands
at three different wavelengths in Fig. 5.2 (i-k). We can see that due to the
lack of any additional modes introduced by a change in radius, the dispersion
curve remains smooth and the energy is highly confined in the core for all the
three wavelengths. We also see that for the first bandgap, we have an almost
similar loss reduction by enlarging or removing the corner strands, with the
structure of missing corner strands being slightly better as can be seen in
Fig. 5.2 (b). The missing corner strand structure manages to reduces losses
without decreasing the bandwidth of the fiber.

We have so far looked at the energy that is confined in the core and near
the core surround. Now we take a closer look at how energy escapes the
fiber structure into the homogeneous exterior and compare this for different
fiber geometries in the first and second bandgaps. We start with the first
bandgap and plot the S z and S ρ components of the modes at the wavelength
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5.2 Fiber design and discussion

of lowest loss for their respective structures in Fig. 5.3 for the missing (a),
unmodified (b) and enlarged (c) corner strands (same as Fig. 5.2). The plots
marked (1), i.e., the top row corresponds to the S z component while the bot-
tom row marked (2) corresponds to the S ρ component for each structure. We
plot these components to physically analyze the flow of energy in the transla-
tionally invariant z direction and the leakage of energy in the ρ direction, as
we move away from the fiber. The fields have been normalized by using the
analytical normalization of Eq. (2.35), so that such a comparison becomes
physically meaningful. We can see that the leakage of energy is maximum
for the unmodified fiber structure (b) in both the z and ρ components, where
we see large amounts of fields escaping to the homogeneous exterior. In both
missing (a) and enlarged (c) corner strand structures, the leakage to the ho-
mogeneous exterior has drastically reduced, which is especially evident in the
radial component of the Poynting vector, see Fig 5.3 (a2) and (c2). The ar-
row in the top row indicates x polarized modes. Hence, we can conclude that
with the low loss structures the escape of energy to the exterior background
is drastically reduced.
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Figure 5.3: The normalized absolute value of the z and ρ components (marked as 1
and 2, respectively) of the time averaged Poynting vector divided by c/8π, in logarith-
mic scale, for x-polarized modes plotted at the wavelength of lowest loss for enlarged
(c), unmodified (b) and missing (a) corner strands, in the first bandgap. The field
distributions have been normalized analytically, so that the comparison of the mag-
nitudes becomes physically meaningful. The wavelength are written in the insets of
each panel in µm.

Now let us move to the second bandgap and study the fields and dispersion
for the lowest loss structures. In the second bandgap, we take a look at the

87



5 Design rules for confinement loss reduction

dispersion of four different structures having missing, reduced, unmodified
and enlarged corner strands as can be seen in Fig. 5.4 (a) and (b). We con-
sider two radii of the modified corner strands structures, i.e., reduced strands
of R = 0.27 µm and enlarged strands of R = 1.11 µm as the losses are around
the same order of magnitude for both these structures. These particular radii
are the optimized lowest loss corner strand radii in the regime of reducing
and enlarging corner strands compared to the unmodified radius. It is evi-
dent from Fig. 5.4 (a) and (b) that in the region of the bandgap, the missing
and unmodified corner strands have a smooth dispersion for both the real and
imaginary parts. The glaring difference between the first and second bandgap
is that in the case of the second bandgap, the missing corner strands structure
fails to reduce the losses in comparison to the unmodified structure, while the
structures with modified corner strands, both reduced and enlarged, succeed
in reducing losses by orders of magnitude. However, the dispersion behav-
ior of the enlarged and reduced corner strands appears to be quite different
from each other. We see that the enlarged corner strands introduce additional
cladding supermodes and anticrossings in the bandgap region. This is miss-
ing in the case of the reduced corner strands structure, where the dispersion
appears to be quite smooth throughout the bandgap [see Fig. 5.4 (a) and (b)].
Also, the loss with the reduced corner strands is slightly lower when com-
pared to the enlarged corner strands structure.

We now take a look at the leakage of energy to the exterior background
in the second bandgap. This is done for the four structures mentioned above
at the wavelength of lowest loss for their respective structures. Such a plot
comprising the normalized S z and S ρ components can be found in Fig. 5.4
(c-f). Similar to Fig. 5.3 the top row marked 1 is the S z component while the
bottom row marked 2 is the S ρ component of the x polarized fundamental core
modes. We see that for the structures with missing and unmodified corner
strands [see (c) and (d)], in which no reduction of loss is observed, there is a
high leakage of energy to the homogeneous exterior with the missing corner
strands having the highest leakage. We also observe a drastic reduce in this
energy leakage for both the modified corner strands structures [enlarged (e)
and reduced (f)].

This shows that the presence of the modified corner strands redistributes
the energy in the fiber leading to much lower losses and much less energy
leakage. To get an insight on how this redistribution occurs, we plot the real
part of the ρ component of the Poynting vector in four directions i.e. from the
center to each unique inclusion of the fiber in the first cladding ring.

Such a plot for the first bandgap is shown in Fig. 5.5. The panels (a) to
(c), show the real part of S ρ as a function of distance from the center in four
different transverse directions indicated in the left hand side of each plot for
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Figure 5.4: Real (a) and imaginary (b) part of the effective index of the fundamen-
tal core mode and its possible anticrossings with cladding supermodes for enlarged
(blue dashed-dotted lines), unmodified (black solid lines), missing (red dashed lines)
and reduced (magenta dotted lines) corner strands in the core surround for the second
bandgap. The corner radius for enlarged strands is 1.11 µm, which corresponds to the
lowest loss structure by enlarging the corner strands. The corner radius for reduced
strands is 0.27 µm, which corresponds to the lowest loss structure by reducing the cor-
ner strands. The normalized absolute value of the z and ρ components in logarithmic
scale (marked as 1 and 2, respectively) of the time averaged Poynting vector divided
by c/8π for x-polarized modes plotted at the wavelength of lowest loss for missing
(c), unmodified (d), enlarged (e), and reduced (f) corner strands (in descending order
of loss) in the second bandgap. The field distributions have been normalized analyti-
cally, so that the comparison of the magnitudes becomes physically meaningful. The
wavelengths of lowest loss for each structure are indicated in the insets of the color
plots in µm.
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5 Design rules for confinement loss reduction

the cases of missing (a), unmodified (b) and enlarged (c) corner strands. We
can see that in (a) and (c), the real part of S ρ has large negative peaks at the
wavelength of lowest loss. These negative peaks can be interpreted as energy
flowing back into the core due to the presence of these modified and missing
strands, instead of just moving away from the fiber core. The position of
the first strands in each direction is indicated by the green vertical lines. It
can also be seen in panel (b) that for the unmodified structure, these negative
peaks are missing, hence there is no energy flow or backscattering of light
back into the core giving rise to a lower loss.

In panels (d) to (f) of Fig. 5.5, we plot the real part of S ρ as a function of
wavelength at the particular positions of the center rods in the first cladding
ring in the four unique directions of the fiber. Note that for the case of missing
corner strands, there are no rods in the corner directions. The imaginary parts
of the effective index is also plotted on the second y axis and the wavelength
of lowest loss is indicated by the purple vertical line for each case. The inter-
esting thing we observe in Fig. 5.5 (d) and (f) is that there is an exchange of
the rods that backscatter light close to the wavelength of lowest loss, which
is not observed in the unmodified structure (e), where no backscattering oc-
curs. We can also see that around the wavelength of lowest loss the values
of S ρ are very small, leading to the conclusion that very little energy escapes
in the transverse direction. This shows that for the case of the modified cor-
ner strands, an optimal point of the backscattering of rods is reached, which
reduces the leakage to the exterior homogeneous medium drastically and is
responsible for the added lowering of loss.

Let us see if a similar behavior is observed also in the second bandgap.
For the second bandgap, we plot the same figures as in Fig. 5.5 but for four
different structures as described in Fig. 5.4, which are missing (a,e), reduced
(b,f), unmodified (c,g) and enlarged (d,h) corner strands. From the observa-
tions made in the first bandgap, we would expect to see no backscattering of
light into the core for the unmodified structure and also the missing corner
strands structures since the case of missing corner strands failed to reduce the
losses in the higher order bandgaps. We can see that that is in fact true in pan-
els (a) and (c). But for the case of the modified corner strands with reduced
and enlarged strands, we observe strong backscattering of light back into the
core. Interestingly, the backscattering of light to the core seems to occur pre-
dominantly in only one direction for the reduced corner strand structure at the
wavelength of lowest loss. We also note that the y scale is almost two orders
of magnitude lower for the modified corner strand structures than the missing
and unmodified cases, which shows that there is a lot less energy escaping in
the radial direction at the wavelength of lowest loss.

We can also see in panels (f) and (h) of Fig. 5.6, that again an interchange
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Figure 5.5: Real value of the time-averaged Poynting vector divided by c/8π, in
the radial direction for the x-polarized fundamental mode in the first bandgap, with
missing corner strands at λ = 1.89 µm (a), unmodified cladding at λ = 1.71 µm (b) and
with enlarged corner strands (R = 1.16 µm) at λ = 1.55 µm (c). All other parameters
are the same as in Fig. 5.2. The selected wavelengths correspond to the minimum loss
of the respective structures. The fields are plotted in four different transverse directions
from the center as shown in the insets. The vertical lines in (a-c) mark the position of
the center of the first inclusion in each direction. The right panels display the spectral
distribution of the real part of the radial Poynting vector component divided by c/8π,
at the center of the rods along these directions for missing (d) without (e) and with (f)
enlarged corner strands. The gray curve indicates Im(neff) of the respective structures
(right axis). For the sake of comparability, the field distributions have been normalized
analytically. The vertical lines in (d-f) mark the wavelength of lowest loss. It can be
seen in (a) and (c), that backscattering of light to the core occurs in the presence of the
enlarged and missing-corner-strand structures, resulting in a decrease of the fiber loss.
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Figure 5.6: Results equivalent to Fig. 5.5, but for the second bandgap, with missing
corner strands (a,e), reduced corner strands (R = 0.27 µm) (b,f), unmodified cladding
(c,g), and enlarged corner strands (R = 1.11 µm) (d,h). It can be seen that backscat-
tering of light to the core occurs for the second bandgap only in the presence of the
modified corner strands. The vertical lines in (e-h) mark the wavelengths of lowest
loss.
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of the rods that backscatter light back to the core takes place close to the
wavelength of lowest loss, which is especially prominent in (f). Hence, the
low loss of the fibers with modified corner strands can be interpreted as the
redistribution of energy in the fiber core due to the backscattering of light in
the presence of the modified corner strands. When an optimum value of the
backscattering is reached we get the lowest loss of the structure.

5.3 Design optimization: a parametric study

In the previous section, we have gained a basic understanding on the reason
for this low loss behavior. Now, we do a parametric analysis by changing
values like R, r/Λ and Λ to obtain the optimal structure from the fabrica-
tion standpoint. The only parameters that are kept constant are the material
refractive indices.

We first start out with plotting the loss of the structures (in logarithmic
scale) as a function of wavelength and corner strand radii. In Fig. 5.7, we have
plotted this for two different ratios of r/Λ over the first and second bandgap.
Note that the x axis is the V parameter with only the wavelength modified,
while the y axis is the ratio of the corner strand radius to the strand radius. The
white line marks the unmodified structure. Taking a first glance at Fig. 5.7
(a-d), we see that for each ratio of r/Λ and in each bandgap, there is a region
of lower loss above and below the unmodified structure, which corresponds
to structures with modified corner strands. We also deduce from panels (a)
and (c), that the ideal choice of the corner strand radius for the first bandgap
depends on the ratio of r/Λ since, for the case of r/Λ = 0.3 the missing corner
strands do not provide the lowest loss. It appears that a reduced corner strand
structure would be the better choice.

In the second bandgap, we observe that even though the reduced corner
strand structures provide the lowest loss values in either r/Λ ratio, it com-
prises of a very narrow low loss region. This means that the fabricated fiber,
which may be prone to structural distortions may miss this region completely.
However, we see that enlarging the corner strands, always provides a broad
region of lowered loss, irrespective of bandgap and the r/Λ ratio. We also
notice lines of high losses which correspond to the cladding supermodes and
it’s anticrossing with the fundamental core mode.

Hence, we see that the modification of the corner strands is a more univer-
sal way of lowering loss in photonic bandgap fibers and the interplay of the
large and small corner strands plays a significant role in lowering the losses
by backscattering light to the core.

We now study the minimum loss as a function of strand radius and corner
strand radius keeping the pitch Λ constant at 3.82 µm. Hence, this leads to
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a parametric study of the minimum loss over R and r/Λ. The minimum loss
in logarithmic scale is plotted in Fig. 5.8 (a) and the wavelength of its occur-
rence in (b) for the first bandgap. We first observe in panel (a), that lowering
the strand radius reduces the losses monotonously like in the case of Fig.
5.1. However, lowering the strand radius also means reduced guidance of the
mode, as the limiting case of r → 0 gives a loss less mode of homogeneous
space that is not guided.

To quantify the amount of guidance in a physically meaningful manner, we
use the absolute value of the normalized electric field at the center of the fiber
core. A greater value of the fields at the origin (0,0) of the fiber would mean
higher intensity of light trapped at the center and hence a higher degree of
guidance. This is plotted in Fig. 5.9 as a function of strand radius and corner
strand radius at the wavelength of the lowest loss, for each fiber structure.
The white line in the figure indicates the structures that have the same strand
and corner strand radius. Following the white line in Fig. 5.9, we see that as
the strand radius r is increased we get higher and higher values of fields in
the core. This means that the modes are more guided in a fiber with larger
strands even though they have higher losses. However, we see that enlarging
the corner strands gives higher values of the fields in the core, even for fibers
with small strand radius, while also achieving a much lower loss as can be
seen in Fig. 5.8 (a).
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Figure 5.9: Absolute value of the normalized electric field in 1/µm, at the center of
the fiber core as a function of strand radius r and corner strand radius R. The white
line indicates the structures with r = R. We see that the electric field at the center
increases with larger strand radii.
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kept constant at r/Λ = 0.2. The arrow on the x axis indicates the pitch used in all
previous plots.

We can also see in Fig. 5.8 (a), that different regions provide the lowest
loss for different ratios of r/Λ (top axis). For smaller r/Λ ratios, we see that
enlarging the corner strands gives the lowest loss, while for higher r/Λ ratios,
reduced corner strands results in the best fiber. We also notice that in Fig.
5.8 (b), the wavelength plot has huge discontinuities. This is because the
region of lowest loss has shifted from wavelengths above the anticrossing to
wavelengths below the anticrossing with the cladding supermodes.

We also plot in Fig. 5.10 the wavelength of minimum loss and the cor-
ner strand radius for minimum loss, only for the case of enlarging the corner
strands, as a function of period, by keeping a constant r/Λ ratio of 0.2. Note
that irrespective of the strand radius the minimum loss remains constant for
a particular r/Λ value as the V parameter remains constant. For the case of
r/Λ = 0.2, the imaginary part of the effective index is nearly 2.89 × 10−9.
From the figure we see that the behavior of wavelength and radius for mini-
mum loss is linear with respect to period. This shows that the design is essen-
tially very scalable and can be used to get a loss minimum at the wavelength
of choice by modifying the period and the r/Λ ratios for the fundamental core
mode.

Hence, we have shown a new way of decreasing losses by modifying the
corner strands, which is fabricationally easy to achieve without adding addi-
tional complexity to the structure like adding more cladding rings.
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5.4 Single ring structures

5.4 Single ring structures

Here, we would like to show two additional examples to prove the true flex-
ibility of the corner strand modification design. We first apply the corner
strand modification to light cage structures. For a second example, we con-
sider changing the index of the corner strands instead of the radius since
the V parameter also depends on strand index. We do this for the same test
fiber as before but consider only the first cladding ring. This is because the
core cladding interface seems to be the most significant for this effect as the
backscattering occurs from the modified corner strands and the additional
cladding rings provide a further bandgap effect to lower losses.

5.4.1 Implementing corner strand modification for a light
cage structure

We show that the approach of corner strand modification for achieving low
loss structures is not only applicable for photonic bandgap fibers but also
single ring 12 strand light cage structures [17]. We have plotted in Fig. 5.11,
the imaginary part of effective index as a function of wavelength for two
different types of structures similar to Fig. 5.1. In Fig. 5.11 (a) the radius
of all the strands in the light cage structure is increased. The unmodified
structure has a strand radius r = 1.55 µm and a period of Λ = 6 µm. We
see that the losses do not reduce for the case of increasing strand radii. We
now apply our corner strand modification design and plot the imaginary part
of the effective index for different corner strand radii. We see that the losses
decrease by orders of magnitude compared to the unmodified structure. The
schematics of the two fiber structures are shown in Fig. 5.11 on the right.
Note that the rods colored purple are the rods whose radii are changed in the
figure. The background index is air with n = 1 and the strands are made of a
dispersive polymer with refractive index as given in Ref. [66] and described
in Eq. (4.84).

5.4.2 Change of refractive index in the core surround

We now try to see if the change in refractive index in the core surround can
mimic the same effect of lowering the imaginary part of effective index and
hence losses. We use the same test fiber with CS2 high index strands and silica
background. However, we only use a single ring structure. The schematic of
this fiber is shown in Fig. 5.12, where the index of only the corner strands are
varied. We now plot the imaginary part of effective index for different corner
strand index and compare its losses with the case of the unmodified corner

97



5 Design rules for confinement loss reduction

Wavelength (µm)

0.7 0.75 0.8 0.85 0.9

Im
 (

n
e
ff
)

Im
(n

e
ff
)

10-8

10-7

10-6

10-5

10-4

10-3

10-7

10-6

10-5

10-4

10-3

1.55 µm 1.60 µm 1.65 µm

1.70 µm 1.75 µm

(b)

(a)

0.75 0.8 0.85 0.9

Wavelength (µm)

Figure 5.11: Imaginary part of the effective index for light cage structures without (a)
and with (b) corner strand modification. The radius of all the strands in panel (a) are
varied while only the corner strand radii of panel (b) are changed. The strands with
changing radius are indicated in purple in the schematics. The unmodified structure
has a radius of 1.55 µm (black curve) and pitch Λ = 6 µm. The background index
of the light cage structure is air (nbg = 1), while the strands are made of a dispersive
polymer with refractive index as described in Ref. [66]. We see that even for the
single ring light cage structure we observe a loss reduction of orders of magnitude
with corner strand modification than the unmodified structure.

strand index in Fig. 5.12.
We see, at a first glance, that changing the refractive index does reduce the

losses by orders of magnitude. However, taking a closer look we realize that
the dependence of the lowering of loss with changing refractive index is quite
low. The noticeable change that occurs, after a certain degree of lowering
of loss, is the shift in wavelength of minimum loss with changing refractive
index in the corner strands.

In conclusion, we have introduced a novel way to reduce losses of the fun-
damental core mode in fiber structures with high index strands by introduc-
ing corner strand modification in the core surround. We have shown that we
can reduce the losses by orders of magnitude when compared to the unmodi-

98



5.4 Single ring structures

Wavelength (µm)

Im
 (

n
e
ff
)

1.4 1.5 1.6 1.7 1.8 1.9 2
10-7

10-6

10-5

10-4

10-3

n = 1.59 n = 1.65 n = 1.68

n = 1.71 n = 1.74
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as nlow = 1.44. It is seen that the losses decrease by orders of magnitude even while
changing the index of corner strands.

fied cladding structure without increasing the fabricational complexity of the
cladding. The optimized radius of corner strands for the lowest loss could be
missing, reduced or enlarged corner strands depending on the bandgap and
r/Λ ratios. We have shown that the case of missing corner strands suggested
by Steinwurzel et al. in Ref. [83] does not apply to higher order bandgaps and
works only for certain ratios of r/Λ in the first bandgap. Also note that since
the reduction in losses highly depends on the V-parameter the effect caused
by enlarging the strand radius can be mimicked by increasing the index of the
corner strands to get similar results.
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6 Additional applications of the
normalization

This is all very confusing, especially when we consider that even
though we may consistently consider ourselves to be the outside
observer when we look at the rest of the world, the rest of the world
is at the same time observing us, and that often we agree on what
we see in each other. Does this then mean that my observations
become real only when I observe an observer observing something
as it happens? This is a horrible viewpoint.

Richard Feynman
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Parts of this work is already published in I. Allayarov, S. Upendar, M. A.
Schmidt, and T. Weiss,“Analytic mode normalization for the Kerr nonlinearity
parameter: Prediction of nonlinear gain for leaky modes,” Physical Review
Letters 121, 213905 (2018).

6.1 Introduction

Since the derivation of the analytical form of the normalization we have seen
that it can be used in many applications. In this thesis, we have shown im-
portant applications of this normalization in the form of developing internal
and external perturbation theories. We have shown that this normalization
gives the correct weight for the pole expansion of the Green’s dyadic using
the Mittag-Lefler theorem and hence can be used to predict the resonant states
of a perturbed system in terms of the resonant states of the unperturbed sys-
tem. We have also shown how this normalization can be used to compare the
fields of different fiber structures and hence give us a physically meaningful
comparison of the flow of energy. This has been extremely useful in analyz-
ing the effect of low loss fiber structures by varying the radius of the corner
strands in the core surround.

The use of the normalization is however not limited to these applications.
The problem of the normalization of leaky modes has existed in the fiber
community for a very long time and hence analyzing and comparing leaky
modes has always posed a difficulty for many field comparisons, calculations
of nonlinear effects including the Kerr nonlinearity parameter, Purcell effect,
four wave mixing and so on. The derivation of the correct normalization has
now enabled us to tackle these problems with a new and better outlook.

Here, we show two additional instances in which this normalization has
been applied to solve fundamental theoretical and experimental problems.
The first is the redefining of the Kerr nonlinearity parameter for leaky modes.
The second is providing the fraction of fields in the rods of an optofluidic
light cage structure.

6.2 Analytical normalization for the Kerr
nonlinearity parameter

The response of any medium towards high intensity light gives rise to non-
linearities. This nonlinearity is described by the induced polarization, where
its dependence on the electric field is not linear. The polarization equation is
given by [91],

102



6.2 Analytical normalization for the Kerr nonlinearity parameter

P = χ(1) · � + χ(2) : �� + χ(3)...��� + ... (6.1)

Here, χ(n) is the nth order susceptibility tensor which depends on the di-
electric medium. The linear response of the system is defined by first order of
susceptibility i.e. the χ(1) tensor. Often because of the molecular symmetry of
the medium the second order susceptibility is zero. Hence, in practical optical
fibers showing nonlinear effects the third order susceptibility plays a crucial
role.

Calculation of nonlinear effects in fibers are chiefly done using two com-
mon methods. These are the iterative and perturbative approaches. While
the iterative approaches rely on full numerical calculations of the system, the
perturbative approaches treat the nonlinearity as a perturbation of the linear
system since the polarization expression can be split as

P = PL(r, t) + PNL(r, t). (6.2)

Following the derivation of the nonlinear pulse propagation in fibers as in
Ref. [91], we arrive at the so-called nonlinear Schroedinger equation, given
as

∂A
∂z

+ β1
∂A
∂t

+
iβ2

2
∂2A
∂t2 +

α

2
A = iγ|A|2A (6.3)

Here, A is the amplitude of the envelope pulse which travels at a frequency
of ω0. The normalization is taken such that |A|2 represents the optical power.
The quantities β1 and β2 represent the inverse of the group velocity and the
group velocity dispersion, respectively. The group velocity (vg) is defined
as the velocity with which the pulse envelope travels in the fiber. α is the
complex part of the propagation constant β which denotes losses in the fiber.
The nonlinearity parameter γ is defined as

γ =
n2ω0

cAeff

(6.4)

where n2 is the cladding refractive index and c is the speed of light. The
effective core area, Aeff is proportional to the integral of fields over all space.
For bound modes, γ as defined in Eq. (6.4), gives a physically meaningful
value due to the exponentially decaying fields. However, for leaky modes,
which has fields that grow in the transverse direction, away from the fiber
core, this parameter diverges and hence γ → 0, which is nonphysical.

In order to correctly treat the problem of leaky modes, we require the cor-
rect normalization, which has been derived in the previous chapters. Us-
ing this analytical normalization and the resonant state expansion formalism,
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6 Additional applications of the normalization

we now derive the master equation for nonlinear pulse propagation, i.e., the
nonlinear Schroedinger equation (NLSE) in a more general approach than in
Ref. [91] in order to cover leaky mode propagation as well. This also leads
to a redefined Kerr nonlinearity parameter, which due to the complex values
of the fields and normalization constant, is also complex. This is consistent
with results for leaky modes using purely iterative solvers where they show
that the complex nonlinearity parameter γ results in additional nonlinear loss
(corresponding to positive values of the imaginary part of γ). In Ref. [90], we
show for the first time that the imaginary part of γ can also be negative, corre-
sponding to nonlinear gain, depending on the material and fiber parameters.
We briefly describe the derivation of the NLSE and γ using the resonant state
expansion formalism.

6.2.1 Derivation of NLSE

We start with Maxwell’s equations that are Fourier transformed in the direc-
tion of translational invariance, i.e., the z direction as defined in Eq. (2.4).
The current vector is defined as

�̂(r||) =

(
J
0

)
=

(
−

4πiĵ
c − 4πk0P̂NL

0

)
, (6.5)

which is the source of the fields. The Green’s dyadic can be used to obtain
the solutions of Eq. (2.4) for arbitrary sources and satisfies Eq. (2.5). The
Green’s dyadic of Eq. (2.4), in terms of the resonant states �̂m of the system,
by using the Mittag-Leffler expansion and the reciprocity principle is given
by Eq. (2.21), where we have neglected the contribution of the cut terms
which arise from the analytical continuation to the complex β plane. Nm is the
analytic mode normalization as derived in Chapter 2 and given by Eq. (2.35).
The Green’s dyadic is now used to describe the field vectors as

�̂(r||, β;ω) =

∫
�̂β(r||, r′||;ω)�̂(r′||, β;ω)dr′|| =

−
∑

m

�̂m(r||;ω)
2Nm(β − βm)

∫
�̂

R
m(r′||;ω) · �̂(r′||, β;ω)dr′||.

(6.6)

The field expressions are then decomposed as

�̂(r||, β;ω) =
∑

m

am(β, ω)
1
√

Nm
�̂m(r||;ω), (6.7)
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6.2 Analytical normalization for the Kerr nonlinearity parameter

where am is the modal amplitude. Substituting this expression in the above
equation and equating for each m we have(

∂

∂z
− iβm

)
am(z;ω)=

1
2i
√

Nm

∫
�

R
m(r||;ω) · �(r||, z;ω)dr||. (6.8)

Note that the we have taken an inverse Fourier transform and hence the hats
have been removed. The nonlinearity can now be substituted as the source
term as in Eq. (6.5) to get

∂am(z; t)
∂z

= iβm(t) ∗ am(z; t) −
2π
c
∂

∂t

∫ ER
m(r||; t)
√

Nm
∗ PNL(r; t)dr||. (6.9)

Here, ∗ is a convolution in the time domain. Since it is not straight forward
to define the Green’s dyadic outside of the region of spatial inhomogeneities,
hence the above master equation is only valid for nonlinearities within the
fiber. However, no other approximations have been made to derive this equa-
tion. The most dominant contribution of the nonlinearity comes from the χ(3)

tensor in most fiber examples. By Fourier transforming Eq. (6.7) from the
frequency to the time domain and writing the nonlinear polarization as

PNL ≈
χ(3)

i

4

[
2(E · E∗)E + (E · E)E∗

]
e−iω0t, (6.10)

where E is the envelope field with a frequency around ω0 we get the propa-
gation equation as,

∂am

∂z
≈ iβm ∗ am +

∑
n,p,q

i
2π
c
∂

∂t
(αm,n,p,qana∗paq), (6.11)

with

αm,n,p,q =

∫
χ(3)

i

4

[
2(ER

m · Eq)(En · E
∗
p) + (ER

m · E
∗
p)(En · Eq)

]
dr||. (6.12)

The Eq. (6.11) results in the nonlinear Schroedinger equation in the single
mode approximation, by separating the propagation constant to real and imag-
inary parts as in Ref. [90, 91] and expanding the real part in a Taylor series
around ω0. This results in a redefined Kerr nonlinearity parameter as

γ=2πk0αm,m,m,m. (6.13)

For bound modes, the above approach using resonant state expansion is equiv-
alent to the vectorial approach [93], where the reciprocal conjugate is equiv-
alent to the complex conjugation in that approach.
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Figure 6.1: Comparison of different approaches [scalar approaches-Agarwal [91]
and Foster [92] and the fully vectorial approach by Afshar [93] and the resonant state
expansion [90]] for calculating the Kerr nonlinearity parameter γ of the fundamental
bound mode of a Bi2O3 fiber located in air (λ0 = 800 nm): (a) γ as a function of core
radius for a radius of normalization rn = 5rc; (b) dependence of γ on rn for rc = 0.15
µm, indicated by the arrow in (a) [90].

6.2.2 γ for bound and leaky modes

We can now compare the results for the nonlinearity parameter using our
method of the resonant state expansion with other perturbative approaches for
bound modes. We select two scalar approaches described by Agarwal in Ref.
[91] and Foster in Ref. [92] and the fully vectorial approach by Afshar as in
Ref. [93]. We use a test fiber of Bi2O3 with χ(3)

Bi2O3
= 3.4 × 10−13cm2statV−2

surrounded by air as in Ref. [93]. This is plotted in Fig. 6.1, where we
can see in panel (a) that the γ from the resonant state expansion matches
perfectly with the fully vectorial approach. The scalar approaches deviate
largely for the smaller core radii but seem to converge for the larger cores. In
Fig. 6.1 (b), we plot γ as a function of the normalization radius. We can see
that for the case of resonant state expansion, due to the normalization being
independent of the radius of integration, we immediately achieve the correct
value for γ using the smallest computational domain. However, the other
methods require a large radius of normalization to converge to the correct
value.

We now plot the γ for a fiber supporting leaky modes. We choose as a
test fiber a Bi2O3 capillary fiber as in Ref. [94, 95] filled with CS2 [96],
which we assume is the only nonlinear material in the fiber with χ(3)

CS2
=

1.8 × 10−12cm2statV−2. Since the modes are leaky we get a complex value
for γ using the resonant state expansion as can be seen in panels (a) and (c)
as a function of the core radius. We also see in (b) and (d) that γ remains
constant with respect to the radius of normalization for the case of resonant
state expansion but tends to zero for other methods. Surprisingly, we notice
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Figure 6.2: Comparison of different approaches (same as in Fig. 6.1) for calculating
γ of the fundamental leaky mode of a Bi2O3 capillary filled with CS2 (λ0 = 800 nm).
Top and bottom panels depict the dependence of the real and imaginary parts of γ as
a function of core radius rc [panels (a) and (c)] with radius of normalization rn = rc,
and radius of normalization [panels (b) and (d)] at a fixed core radius of rc = 1.5µm
[arrow in (c)], respectively [90].

that the imaginary part of γ is negative for our test fiber which corresponds to
additional nonlinear gain [90].

6.3 Energy in the strands of a light cage
structure

Light cage structures are principally a single or double ring of strands placed
in a medium [66]. This medium could be air or low index liquids such as wa-
ter which has important applications in biofluidics. The main guiding princi-
ple of the light cage structure in the hollow core is an anti resonant reflecting
optical waveguide (ARROW) technique. The dispersion of the real and imag-
inary parts of the effective index for a optofluidic light cage structure is shown
in Fig. 6.3 (a) and (b), respectively, for the fundamental core mode. It is seen
in panels (a) and (b) that the core mode has many anticrossings, which arise at
the position of resonances of the individual rods that constitute the fiber [17].
The advantage of these light cage structures is that they provide high field
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6 Additional applications of the normalization

values in regions where high light matter interaction is advantageous [17].
As discussed in Chapter 4, for sensing changes that occur in the homoge-

neous exterior medium itself like gas sensing, or chemical reaction sensing,
mainly two techniques were historically used. The first is the evanescent field
sensing [65] which uses the evanescent fields of a bound cladding mode to
interact with the exterior. However, since the fields are evanescent the light
matter interaction is very low and this results in using very large fiber lengths.
Another more efficient method would be to use hollow core fibers, where the
medium (gas or liquid) could be filled into the fiber core where there is the
possibility of high light matter interaction. However, the accessibility to the
fiber core is only from the fiber edges. Hence, reaching an equilibrium of
concentration in the exterior medium and the core may take a very long time
due to the slow rate of diffusion. In contrast to these fiber structures, the light
cage structure provides access to the core transversally and traps light in the
core region, solving both problems simultaneously.

The absorbance (A) of a considered optofluidic light cage structure is de-
fined by the modified Beer-Lambert’s law [97] as

A = −log10
P
P0

= −log10η + ε(1 − f )cL + αL. (6.14)

where P is the output power, P0 is the input power, η is the in-coupling effi-
ciency, ε is molar attenuation coefficient, while c is the molar concentration
of the analyte. f is the fraction of fields within the strands, L denotes the fiber
length and α is the modal attenuation.

All quantities of Eq. (6.14) are accessible experimentally through spectro-
scopic measurements except the fraction of the mode fields within the strands
f . This can be theoretically calculated quite easily for bound modes by taking
the ratio of integral of S z within the strands to the integral of S z over all space.
Since the modes are bound with decaying fields as we move away from the
fiber core, f has a constant non-zero value. However for leaky modes the
integral over all space explodes due to the exponentially growing fields in the
transverse direction. Hence, to calculate f the correct analytical normaliza-
tion is required which has been derived in Chapters 2 and 4. By using this
analytically normalized fields the fraction of fields in the strands can be de-
termined by simply integrating over the area of the strands. Such a figure for
a test optofluidic light cage structure is plotted in Fig. 6.3 (c). The chosen
optofluidic light cage has a background of water with the refractive index of
water nwater defined as [98]

nwater = 1.3199 +
6878
λ2 −

1.132 × 109

λ4 +
1.11 × 1014

λ6 . (6.15)
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6.3 Energy in the strands of a light cage structure

The refractive index of the strands of the polymer are taken as in Ref. [66].
We can see from Fig. 6.3 (b) and (c) that the fraction of the fields inside the
strands nicely follows the trend of losses in the fundamental core mode of the
fiber. This is quite easily interpreted by considering that a lower loss would
mean more fields in the fiber core due to higher confinement and higher loss
means that more energy is away from the core giving rise to higher f values.
We also notice sudden peaks at certain wavelengths in f , which arise from
the presence of cladding supermodes, which are hybrid modes between the
core and the cladding ring.

Wavelength (µm)

0.5 0.6 0.7 0.8 0.9
10-4

10-3

10-2

10-1

f

10-8

10-7

10-6

10-5

10-4

Im
 (

n
e

ff
)

-4

-3

-2

-1

x 10-4

(a)

(b)

(c)

∆
�

Figure 6.3: The dispersion of the real (a) and imaginary (b) part the effective index
for a 12 strand optofluidic light cage structure with background index of nwater and
polymer strands. Note that the y axis on panel (a) is ∆n = Re(neff − nwater). The energy
in the strands f as a function of wavelength is plotted in (c). The diameter of the
strands is 3.67 µm and the pitch Λ = 7 µm.

In conclusion, we have shown two additional applications of the analytical
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normalization of bound and leaky modes in fiber structures. There of course
can be many more applications, which are beyond the scope of this thesis.

110



7 Conclusion and outlook

“You know,” said Arthur, “it’s at times like this, when I’m trapped in
a Vogon airlock with a man from Betelgeuse, and about to die of
asphyxiation in deep space that I really wish I’d listened to what my
mother told me when I was young.” “Why, what did she tell you?”
“I don’t know, I didn’t listen.”

Hitchhiker’s guide to the galaxy, Douglas Adams
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In this thesis, we have derived the correct analytical mode normalization
for bound and leaky propagating modes in fiber structures. We have applied
this normalization to simple step and capillary fibers whose solutions can be
obtained analytically and also to complex fiber structures such as light cage
and photonic crystal fibers. We have shown that the analytical normalization
remains independent of the radius of normalization for both bound and leaky
modes even though leaky modes have fields that grow as we move away from
the fiber core. We have also shown that the computational domain for evalu-
ating the normalization for bound modes is drastically reduced by using this
new normalization. Hence, we have solved a long standing problem of the
normalization of leaky modes in the fiber community as a correct normaliza-
tion is essential for many applications.

We have developed a perturbation theory, i.e., the resonant state expan-
sion by deriving the Green’s dyadic using the Mittag-Leffler theorem. The
resonant state expansion is limited to interior perturbations as the Green’s
dyadic must have a finite value everywhere apart from the position of the
poles. This does not hold true for leaky modes, which have growing fields
in the exterior. This perturbation theory leads to an eigen equation with the
eigenvalue as the perturbed propagation constant, which is computationally
very easy to solve. We have applied this perturbation theory on two test sys-
tems. First, a homogeneous change in the core refractive index of a capillary
fiber. We have demonstrated the accurate prediction of the fundamental and
higher order modes through this perturbation theory. Second, we have treated
diameter disorder for multiple realizations of disorder and various disorder
strengths for the fundamental core mode of a silica-air photonic crystal fiber.
We have shown that the perturbation theory is an extremely useful tool while
studying disorder as a true study of disorder requires averaging over multiple
realizations, which the perturbation theory is well equipped to do instead of
repeatedly solving Maxwell’s equations for disordered systems.

The internal perturbation theory could further be used to study other types
of disorder such as material disorder to find the most optimal fiber design.
It also gives a direct physical insight into the modes that couple best in the
presence of a perturbation in the form of the overlap integral. Furthermore,
the current perturbation theory assumes that the perturbation extends to the
axial or z direction which is not the case in many fabricated disordered sys-
tems. Frozen capillary waves, which are surface waves formed during the
fabrication process due to thermodynamic effects may occur as perturbations
in the z direction [77]. Perturbation theories can be used to study such pro-
cesses. It can also be developed to study twist as a perturbation [99], which
also occurs in the axial z direction. However, using the appropriate coordi-
nate transformations the twist can be converted as a two dimensional change
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in the permittivity and permeability tensors. Also, the effect of the cut contri-
butions in the Green’s dyadic have been ignored. This could be included into
the theory for increasing the accuracy of the perturbation theory.

We have also extended the perturbation theory to exterior perturbations in
fibers. The exterior perturbations can be changes in the permittivity or per-
meability tensors in the interior along with the exterior and also changes of
wavelength, which occurs throughout the fiber. We have shown that even
though the perturbation theory deals with exterior changes where fields of
leaky modes grow as we move away from the fiber, the perturbation theory
is independent of the radius of integration as along as the area of integration
encloses all regions of spatial inhomogeneities. We have shown the validity
of the first order external perturbation theory on many test systems like step
index, capillary, light cage and photonic crystal fiber structures for the funda-
mental and higher order modes, which has predicted the propagation constant
for small perturbations to a high accuracy. Computationally this is very ad-
vantageous as dealing with small changes numerically requires high compu-
tational abilities. We have also accurately predicted quantities like the group
velocity using the external wavelength perturbation theory, as a simple post
processing step, while calculating it usually requires solving Maxwell’s equa-
tions repeatedly for different wavelengths and taking a numerical derivative.
Additionally, we have seen that the exact form of the analytical normalization
automatically comes out of the external perturbation theory.

This perturbation theory can be extended to higher orders by equating
higher orders of the perturbation factor Λ. Similar to the Rayleigh-Schrodinger
perturbation theory of quantum mechanics, the complexity of these higher
order terms increases. However, it is advantageous to extend the perturba-
tion theory to the second order in order to predict the group velocity disper-
sion [33], which is another key parameter in fiber design and applications. It
might also be interesting to see a full blown resonant state expansion [100]
for exterior perturbations, which can capably predict the dispersion of the
propagation constant by solving the Maxwell’s equations only once.

In this thesis, we have developed a new design rule that lowers the losses of
fundamental core modes in high index photonic bandgap fibers by orders of
magnitude. This is done by modifying the corner stands in the core surround
of the fiber. We have shown, using a test CS2-silica fiber, that this modi-
fication could be an increase or decrease in the corner strand radii and for
some particular ratios of radius-to-pitch even completely removing the cor-
ner strands. It is seen that this method of loss reduction can also be extended
to different materials of the corner strands and to structures such as single
ring light cages. The lowering of loss has been analyzed using the fields and
Poynting vectors in the transverse directions. Such a field comparison for
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different structures of leaky modes is possible because of the normalization.
Hence, we have achieved a robust way of reducing losses which applies to
all high index photonic bandgap structures irrespective of the radius-to-pitch
ratio or the bandgap in use.

Even though a first study of the material change of corner strands has been
done, further parametric analysis is needed to completely understand the ef-
fect. The losses of the fundamental core mode does decrease by orders of
magnitude with changing the corner strand material. However the lowering
of loss appears to be independent of corner strand index. Also, more the-
oretical analysis on the nature of this backscattering is required to further
understand the fundamental cause of the lowering of loss to obtain the opti-
mal fiber design. This anti-resonant technique can also be extended to non-
bandgap guiding fibers like microstructured silica-air fibers to see the effect
of modified corner strands.

We have also demonstrated the use of the analytical normalization in re-
defining the Kerr nonlinearity parameter for leaky modes by using the reso-
nant state expansion formalism. We have shown that this leads to a complex
nonlinearity parameter which may have a positive or negative imaginary part
corresponding to nonlinear loss or gain, respectively. It has been shown that
it can be further applied to various other nonlinear applications like four wave
mixing [101] and so on. We have also used the analytical normalization for
calculating the absorbance of a fiber, which requires experimentally inacces-
sible quantities like the energy in the strands of a light cage.

Hence, we have successfully applied the analytical normalization to study
leaky modes in different fiber optic systems for various applications.
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[85] R. Amezcua-Correa, F. Gérôme, S. G. Leon-Saval, N. Broderick, T. A.
Birks, and J. C. Knight, “Control of surface modes in low loss
hollow-core photonic bandgap fibers,” Optics Express 16, 1142–
1149 (2008).

[86] H. K. Kim, J. Shin, S. Fan, M. J. Digonnet, and G. S. Kino, “Design-
ing air-core photonic-bandgap fibers free of surface modes,” IEEE
Journal of Quantum Electronics 40, 551–556 (2004).

[87] M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke,
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when I troubled them over random problems be it physics or German related.

I would like to thank the entirety of the lunch group for a fun time during
lunch and coffee breaks. I would like to thank Florian Sterl for the candle-
sticks and a story to always be proud of.

I would like to thank my husband Siddarth Rajkumar for doing all the
cooking and lastly my mom Rama Upendar, dad H. L. Upendar and brother
Anirudh Upendar for all their support and love throughout the journey.

129



130



Cover artist - Josselin Defrance

131




	Abbreviations
	Abstract
	Publications
	Introduction to fibers
	Types of optical fibers
	Bound and leaky modes
	Perturbation theories
	How the thesis is distributed

	Analytical normalization of leaky modes in optical fibers
	Introduction
	Deriving the Green's dyadic
	Normalization

	Resonant state expansion for propagating modes
	Introduction
	Theory
	Examples
	Capillary fiber
	Silica-air photonic crystal fiber


	First order perturbation theory: internal and external perturbations
	Introduction
	Theory
	 field correction terms
	k0 field correction terms
	 field correction terms

	Examples
	 perturbation
	k0 perturbation


	Design rules for confinement loss reduction
	Previous works of loss reduction in photonic bandgap fibers
	Fiber design and discussion
	Design optimization: a parametric study
	Single ring structures
	Implementing corner strand modification for a light cage structure
	Change of refractive index in the core surround


	Additional applications of the normalization
	Introduction
	Analytical normalization for the Kerr nonlinearity parameter
	Derivation of NLSE
	 for bound and leaky modes

	Energy in the strands of a light cage structure

	Conclusion and outlook
	Bibliography
	Curriculum vitae
	Acknowledgment

