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ABSTRACT 
The understanding of how today's energy supply systems work and getting 

ideas of how a secure, affordable and sustainable energy supply can be achieved 

with respect to changing framework conditions in the future is an important 

aspect in the research field of energy systems analysis. Energy scenarios are 

such ideas of possible future energy systems, which are often designed and 

analyzed with models. The aim is to set the course today for an energy supply 

that is in line with the efforts to mitigate global warming. Publication 1 of this 

dissertation is devoted to the question of how to deal with the challenges that 

arise concerning the frequently observed insufficient traceability of 

corresponding scenario studies. 

In such energy scenarios, electricity generation from renewable energy sources 

is crucial. However, it is not arbitrarily available and independent of location. 

Therefore, the transport of energy for spatially balancing of power demand and 

production is a key element for the transformation of today's energy system. 

However, optimization models that are frequently used in energy systems 

analysis are limited when trying to capture the implications of power 

transmission. Nevertheless, established methods of power-flow analysis could 

be used more for this purpose. 

Bringing these two modeling worlds together by using approaches, such as 

model coupling and model integration, is therefore a major contribution of the 

research and studies associated with this dissertation. For this purpose, new 

instances of the energy system optimization model REMix have been 

developed. By using linear power-flow constraints to model electricity transport 

and grid expansion, the system adequacy of future energy systems can be 

examined in detail. For example, this concerns questions on the extent to which 

electricity transport has a complementary or competitive effect on the 

interaction with energy storage technologies or the coupling of energy sectors 

in European energy scenarios. The corresponding results (Publication 3) show 

that an expansion of cross-border transmission capacities is a robust and cost-

efficient measure to ensure system adequacy across a broad spectrum of 

scenarios and parameter variations. However, this particularly holds true, if 

commonly used model resolutions on country level are applied. 

Spatially higher resolved models, however, are necessary to find out how far the 

striking benefits of grid expansion also apply when explicitly considering 

transmission grid infrastructures. A scenario analysis focusing the German 

power system and using an integrated energy system optimization model 

confirms this finding, but also reveals that the need for energy storage is 

underestimated in macroeconomic studies due to insufficient model 

resolutions (Publication 2). 



 

 

In order to be able to conduct further comprehensive investigations in the 

future, it is desirable to extend the geographical scope of approaches that 

integrate power flows, to also include sector coupling in the appropriate models 

and to carry out parameter variations for a large number of scenarios. In this 

context, computing times for solving the corresponding optimization problems 

represent a critical bottleneck to deal with. Therefore, with this dissertation, a 

systematic analysis of approaches for speeding-up of energy system 

optimization models is presented for the first time. The heuristics evaluated for 

this purpose show reductions of the total computing time up to a factor of ten 

while maintaining a sufficient degree of accuracy (Publication 4). 

  



 

 

KURZFASSUNG 
Ein wichtiger Forschungsschwerpunkt der Energiesystemanalyse ist es zu 

verstehen wie heutige Energieversorgungssysteme funktionieren und darauf 

aufbauend eine Vorstellung davon zu entwickeln, wie eine sichere, bezahlbare 

und nachhaltige Energieversorgung unter sich ändernden 

Rahmenbedingungen auch in der Zukunft bewerkstelligt werden kann. 

Energieszenarien sind solche Vorstellungen von möglichen zukünftigen 

Energieversorgungssystemen, welche oft mit Hilfe von Modellen entworfen 

und analysiert werden. Ziel ist es, damit bereits heute die Weichen für eine 

Energieversorgung zu stellen, welche im Einklang mit den Bestrebungen zur 

Begrenzung der Erderwärmung stehen. Der Frage, welche Herausforderungen 

sich hinsichtlich der oft schwierigen Nachvollziehbarkeit entsprechender 

Szenario-Studien ergeben, widmet sich Publikation 1 dieser 

Dissertationsschrift. 

Eine bedeutende Rolle in solchen Energieszenarien spielt die Stromerzeugung 

aus erneuerbaren Energiequellen, welche allerdings nicht beliebig und 

ortsunabhängig stattfinden kann. Der Transport von Energie zum räumlichen 

Ausgleich von Endenergienachfrage und Stromerzeugung ist daher ein 

Schlüsselelement für die Transformation des heutigen Energiesystems. 

Insbesondere die häufig in der Energiesystemanalyse genutzten 

Optimierungsmodelle sind allerdings selten in der Lage diesen 

Energietransport hinreichend genau zu erfassen. Auf der anderen Seite 

existieren im Bereich der Stromnetzausbau- und -Betriebsplanung bereits 

Modellierungsinstrumente, die ebendies bewerkstelligen.  

Ein wesentlicher Beitrag der mit dieser Dissertation verbundenen Arbeiten ist 

daher die Zusammenführung dieser beiden Modellierungswelten mittels 

Ansätzen zur Modellkopplung und Modellintegration. Die hierfür erstellten 

und weiterentwickelten Instanzen des Energiesystem-Optimierungsmodells 

REMix nutzen lineare Restriktionen zur Berücksichtigung von 

Leistungsflüssen, womit die Rolle des Stromtransports und Netzausbaus zur 

Sicherstellung der zukünftigen Energieversorgung detailliert untersucht 

werden kann. Dies betrifft beispielsweise Fragestellungen inwiefern der 

Stromtransport ergänzend oder konkurrierend auf Technologien zur 

Energiespeicherung oder bei verstärkter Kopplung von Energiesektoren in 

Szenarien der europäischen Energieversorgung wirkt. Die entsprechenden 

Ergebnisse (Publikation 3) zeigen, dass ein Ausbau von länderübergreifenden 

Grenzkuppelkapazitäten für eine Vielzahl von Szenarien und 

Parametervariationen als robuste und kosteneffiziente Maßnahme angesehen 

werden kann. Allerdings gilt dies vor allem unter Anwendung etablierter, 

länderscharfer Modellauflösungen. 

Inwiefern die Vorteilhaftigkeit von Netzausbau auch bei einer expliziten 

Modellierung von Übertragungsnetzinfrastrukturen gilt, kann beispielsweise 



 

 

mit Hilfe höherer räumlicher Auflösungen beantwortet werden. Eine erste auf 

das deutsche Stromversorgungssystem beschränkte Szenario-Analyse unter 

Anwendung eines integrierten Energiesystem-Optimierungsmodells bestätigt 

diese Aussage zwar, zeigt aber auch, dass der Bedarf an Energiespeichern in 

makroökonomischen Betrachtungen durch unzureichende Modellauflösungen 

unterschätzt wird (Publikation 2). 

Um zukünftig umfassende und weitergehende Untersuchungen mittels 

integrierter Modellierung von Leistungsflüssen durchführen zu können, ist 

allerdings eine Erweiterung des geographischen Untersuchungsgebiets unter 

Einbeziehung der Sektorenkopplung und die Durchführung von 

Parametervariationen für eine Vielzahl an Szenarien empfehlenswert. 

Begrenzend wirkt sich hierbei allerdings die benötigte Rechenzeit zur Lösung 

der Optimierungsmodelle aus. Im Rahmen dieser Dissertation wird daher 

erstmalig eine systematische Analyse von Ansätzen zur Beschleunigung von 

Energiesystem-Optimierungsmodellen vorgelegt. Mit den hierfür evaluierten 

Heuristiken können unter Beibehaltung einer hinreichenden 

Modellgenauigkeit Reduktionen der Gesamtrechenzeit um bis zu Faktor zehn 

erreicht werden (Publikation 4).  
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1 INTRODUCTION 

1.1 BACKGROUND AND MOTIVATION 

1.1.1 SCENARIOS OF LARGE-SCALE ENERGY SYSTEMS 

A scenario represents a possible and plausible future but does not claim to be a 

forecast. More precisely, a scenario provides a “[…] description of how the 

future may develop based on a coherent and internally consistent set of 

assumptions about key driving forces (e.g., rate of technological change, prices) 

and relationships” [1]. In this sense, scenarios are very useful to gain insights 

for the development of policies.  

Energy scenarios in particular aim at providing such insights with regard to the 

energy system. In this context, energy systems include all aspects of power 

generation, consumption, and the cross-coupling of electricity supply, 

transport, heating and cooling while considering technologically required 

options. Moreover, large-scale energy systems are characterized by taking a 

macroscopic system view and capturing effects on extensive geographical 

scales. Understanding large-scale energy systems and especially transforming 

them in a way that desired targets are met–such as formulated in the Paris 

Agreement [2]–is accordingly a challenging task. 

In order to tackle this challenge, the use of models is a very common approach 

to draft technologically feasible energy system designs when developing and 

analyzing appropriate energy scenarios [3]. As this often involves the 

application of multiple models, which demand for interdisciplinary expert 

knowledge, the derivation of policy recommendations from scenario studies 

thus proves to be an extensive and complex undertaking.1 

1.1.2 LOAD-BALANCING AND SYSTEM ADEQUACY 

Especially when the transformation of power systems towards decarbonized 

energy supply across all energy consuming sectors is to be investigated with 

scenarios, two important aspects are frequently to be considered. 

1. As low-emission energy supply strongly depends on power generation 

from renewable energy sources [4], dealing with accordingly fluctuating 

availabilities of power generation on temporal and spatial scale becomes 

essential. In particular, this concerns balancing the fluctuating power 

generation with also varying energy demand patterns. In order to ensure 

that power generation and consumption match, measures for adaption 

are required. This is what is often referred to as “load-balancing”.  

                                                             
1 The interdisciplinary authored Publication 1 of this thesis discusses the corresponding 
challenges especially related to comprehensibility and traceability of model-based scenario 
studies. 
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2. Existing power systems are by far the most complex technical systems. 

According to Schwab [5], this is due to the diversity of system 

components and the interactions between these elements, which take 

place at high energy levels. Ensuring a reliable power supply is thus a 

central issue. In this sense, system reliability is dividable into two 

aspects. On the one hand, “system security” (short-term reliability), 

which is related to the response on disturbances. This means that the 

system operation should be robust against unexpected outages of 

individual components. On the other hand, a presumption for ensuring 

this is “system adequacy” (long-term reliability), which, according to 

Billinton [6], “[…] relates to the existence of sufficient facilities within 

the system to satisfy consumer load demand or system operational 

constraints”. 

If energy scenarios are supposed to outline desired but feasible alternatives of 

the existing system in the long-term, especially aspects concerning “system 

adequacy” need to be considered. This applies even more to energy scenarios, 

where the power generation from fluctuating renewable resources is 

characterized by limited predictability. 

Addressing system adequacy with modeling tools requires that energy system 

models have specific characteristics. In order to model the availability patterns 

of renewable energy resources, both the spatial and the temporal scale need to 

be resolved up to a certain degree. The resolution of both is directly related to 

temporal and spatial gradients that occur during electricity generation and 

consumption (e.g., of a wind turbine and an industry facility, respectively). 

Additionally, since energy systems consist of a broad variety of technological 

elements, a discretization of this dimension must also be considered. Especially 

scenario analyses that address the structure of the energy systems require 

models, which allow for technological differentiation. The corresponding aim is 

to find implementations of conceivable technologies for the composition of a 

future system. For this, so-called bottom-up models [7] (see section 1.2) are 

particularly suited. 

1.1.3 ELECTRICITY TRANSMISSION 

The capability to interconnect locations with suitable potentials for electricity 

generation from renewable resources with regions characterized by high energy 

consumption is a key element for providing (spatial) flexibility in decarbonized 

energy systems. Although spatial load-balancing of energy supply and 

consumption can be realized in different ways (e.g., by transport of chemical 

energy carriers), electricity transmission is a very effective way to quickly 

compensate spatial imbalances over large distances at comparably low 

transmission losses. Furthermore, electricity grids are the infrastructure that 

interconnects at least all system components of a power system. The question 

of how a probably new or existing system component can contribute to (secure) 
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energy supply is therefore strongly related to the availability of an appropriate 

grid infrastructure. This makes modeling of both power flows and grid transfer 

capabilities essential for addressing system adequacy in energy scenarios.  

1.2 MODELING APPROACHES 

Approaches for modeling energy systems are often distinguished into two 

categories. On the one hand, top-down models have a clear macroeconomic 

focus (e.g., Computable General Equilibrium models) [8]. On the other hand, 

modeling approaches that allow for the consideration of a broad variety of 

energy conversion technologies are referred to as bottom-up models. As the 

capability for technological differentiation is a precondition for analyzing the 

role of technologies such as for electricity storage and transmission within the 

energy system, bottom-up models are widely used for this purpose. 

Within the group of bottom-up models, further distinctions are made between 

simulation (e.g., Agent-based Modeling) and optimization approaches. While 

simulation approaches are useful to virtually replicate the operation of real 

technical and social systems, the strength of optimization is rather the 

possibility to model decision-making processes model-endogenously with 

respect to an objective function. This makes optimization models particularly 

attractive for decision support. 

In the recent years, a number of scientific review articles were published that 

provide a more detailed view on aspects concerning modeling approaches in the 

context of energy systems analysis (e.g., by Zerrahn and Schill [9], Ringkjøb et 

al. [10] and Collins et al. [11]). 

1.2.1 ENERGY SYSTEM OPTIMIZATION MODELS 

Energy System Optimization Models (ESOMs) that are developed for systems 

analysis of energy scenarios often have a techno-economical focus. The reason 

for this is the initial motivation to investigate how (i.e., with which 

technologies) energy policy goals could be reached and at which costs (techno-

economic feasibility studies). 

In the context of developing transformation pathways for the decarbonization 

of the energy system, optimization models are commonly applied [12]. For 

example, to find system configurations that meet given targets, investments 

into available technologies are defined as variables of a mathematical 

optimization problem. By introducing variables for the activity of energy 

converters also the operation of such a system configuration can be optimized 

and thus tested for feasibility. Although there is a gradual trend towards multi-

objective optimization approaches in order to provide holistic scenario 

assessments [13], most ESOMs are still minimizing monetary costs. The 

following shows a typical objective function of a system cost optimizing ESOM. 
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Objective 

function: 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:  ∑ ∑ ∑ 𝑐(𝑡, 𝑛, 𝑢) ⋅ 𝑝(𝑡, 𝑛, 𝑢)

𝑢∈𝒰𝑛∈𝒩𝑡∈𝒯

 
EQUATION 1 

 

 p: 

c: 

𝒯: 

𝒩: 

𝒰: 

variable of total power supply 

specific costs 

set representing of time steps  

set of modeled regions 

set of technologies 

Typical constraints of such an ESOM ensure load-balancing or limit the usage 

of a certain technology up to its nominated installed capacity [14]. Notably, due 

to the typically used power-balance constraint, ESOMs ensure system adequacy 

of the modeled systems by default2. Especially for analyses that emphasize 

possibilities of load-balancing, additional constraints are used to model 

temporal or spatial shifting of either power provision or consumption. For 

example, with regard to temporal flexibility, energy storage facilities are 

characterized by an additional storage balance equation. 3 

1.2.2 CONVENTIONAL POWER-FLOW MODELING APPROACHES 

Power-flow analysis is an established instrument used in the context of 

operation and investment planning of electrical grids. Given that the nodal 

power balance (balanced power consumption and generation at each node) 

within an electrical network is known, an equation system needs to be solved to 

observe the resulting power flows (i.e., voltages) over transmission lines or 

cables. 

In the case of a High Voltage Alternating Current (HVAC) power system the 

fundamental relationship between nodal power and voltage 

 
𝑆𝑛

∗ = 𝑃𝑛 − 𝑗𝑄𝑛 =  𝑈𝑛
∗ ∑ 𝑌𝑛𝑛′

𝑁

𝑛′

𝑈𝑛′ 

∀𝑛 ∈ 𝒩 
EQUATION 2 

 𝑆𝑛
∗: Conjugate complex of apparent power at node n 

 𝑃𝑛: Active power at node n 
 𝑄𝑛: Reactive power at node n (j indicates imaginary part of 𝑆𝑛

∗) 

 𝑈𝑛
∗: Conjugate complex of nodal voltage at node n 

 𝑌𝑛𝑛′: Complex nodal admittance matrix 

 𝑈𝑛′: Complex nodal voltage at node n’ 

results in a set of non-linear equations (AC power-flow equations) to be solved 

in an iterative manner (i.e., with the Newton-Raphson-Method [5]). However, 

                                                             
2 However, this only applies for the assumptions used and for the chosen model abstraction, so 
that the system adequacy of a real-word system can be violated, even if this is not the case for 
the modelled system. 
3 Formulations of a typical objective function, associated constraints, and a discussion of the 
effects on the matrix structure of a linear program are provided in Publication 4. 
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besides AC power-flow, further approaches for modeling power flows (see also 

1.2.3) and methods required for solving the corresponding equation systems 

exist (e.g., fast decoupled power-flow or DC power-flow) [15]. 

Simply solving power-flow equations can be referred to as simulation approach. 

It is useable for the prediction of system states that result from events or 

measures during the operation of an electrical power grid (e.g., outage of a 

transmission line). By adding costs (e.g., for power production or transmission) 

the optimal exchange of power between the nodes can be determined in an 

optimization model that considers power-flow equations as constraints. The 

appropriate problem class is referred to as optimal power-flow (OPF) [16].  

Another problem class that is investigated for a long time in the context of 

power-flow analysis is transmission expansion planning [17]. It represents an 

extension of OPF problems that allows for the identification of grid expansion 

measures, such as the construction of new transmission lines. 

From an overall system’s perspective traditional power-flow modeling 

approaches are characterized by their comparably high spatial resolution as 

they are supposed to model existing or candidates of real infrastructures 

combined with a high accuracy in terms of electrical properties that imply a 

need for the corresponding availability of electrical grid parameters. Opposed 

to that, these approaches neither emphasize a broad technological 

differentiation nor on solutions for a large set of temporally consecutive grid 

usage situations. 

1.2.3 MODELING POWER FLOWS IN ENERGY SYSTEM OPTIMIZATION MODELS 

Incorporating approaches for power-flow modeling into ESOMs usually results 

in models that are similar to OPF problems. In the simplest case, modeling of 

technologies that allow for spatial energy shifting is realized with an economic 

transshipment model 4  first described by Hitchcock [18] 5 . Such models are 

originally applied to economic transport problems. They are characterized by 

flow variables that represent the exchange of a particular commodity between 

at least two discrete locations. 

Applying the transshipment approach for power-flow modeling is sufficient as 

long as the spatial resolution is low. With regard to the spatial dimension in 

ESOMs, these models are typically designed to represent electricity markets or 

national states (i.e., regions) rather than dedicated substations or nodes within 

a transmission grid. Modeling electricity transmission in ESOMs therefore 

means that power flows are mostly represented in a spatially aggregated 

manner and restricted by capacity constraints. For example, in the case of the 

                                                             
4 also referred to as “transport model” 
5 This means that for conventional ESOMs, traditional power flow modeling approaches as 
introduced in 1.2.2 are not applied (or even not required, if the spatial resolution is 
comparably low). 
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ESOMs Eltramod [19] or DIME [20] these capacities are derived from net 

transfer capacities (NTCs). NTCs represent non-physical values to approximate 

the possible trade between bidding zones considering power generation 

schedules. Opposed to that, grid transfer capabilities (GTCs) define the 

maximal allowed power transmission taking into account technical operation 

limits of transmission lines [21]. Since GTCs reflect the physical transmission 

capability, they represent the quantity to be used to conduct transmission 

expansion planning with ESOMs. 

However, modeling power flows in (roughly aggregated) electricity 

transmission lines with a transshipment approach is only sufficient if the 

magnitude and distribution of power flows can be fully controlled. Presuming 

the application of controllable power converters, this applies to High Voltage 

Direct Current (HVDC) transmission systems 6 . Nevertheless, today, the 

dominating electricity transmission technology is still HVAC transmission. 

For modeling power flows in HVAC grids, simple capacity-constrained 

transshipment models are also applied, which is permissible as long as the 

modeled infrastructure is not fully resolved. In other words, especially in 

ESOMs that represent electricity markets, real HVAC transmission lines are 

modeled in an aggregated manner. Nevertheless, modeling HVAC transmission 

normally implies that the distribution of power flows cannot be arbitrarily 

determined. Compared to transshipment models this makes the introduction 

of additional constraints necessary.  

The appropriate modeling approach that fully captures the physics of HVAC 

power flows (i.e., the consideration of active and reactive power flows) is the AC 

power-flow. However, accounting for AC power-flow constraints in ESOMs, 

results in non-linear optimization models and solving comparatively small 

instances of such ESOMs is already challenging. Therefore, often linear model 

formulations are sought. One way to achieve this is making permissible 

assumptions concerning voltage angle differences and the magnitude of nodal 

voltages and to neglect reactive power in HVAC grids. The non-linear AC 

power-flow constraints can be accordingly transformed into a linear equation 

system. The appropriate modeling techniques are referred to as DC power-flow 

[22] and summarize linear modeling approaches, where the distribution of 

active power flows is defined by distribution factors. These factors are 

determined exogenously of the ESOM either by a linearization of pre-executed 

AC power-flow simulations or based on electrical properties of the transmission 

lines7. 

                                                             
6 For this reason, in the studies that are summarized in this thesis, power flows in HVDC 
infrastructures are modeled with the transshipment approach. 
7 The first method mentioned, referred to as PTDF method, is applied in the work associated 
with Publication 3, where the Power Transfer Distribution Factors (PTDFs) are derived from 
the spatial aggregation of distribution factors observed in several AC power flow simulations. 
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1.2.4 CAPACITY EXPANSION MODELING 

When the composition of an energy system should be investigated with an 

ESOM, the corresponding model needs to support capacity expansion. In such 

cases, as mentioned in 1.2.1, investment decisions are part of the optimization. 

Such optimization problems are examined for several decades, initially in the 

context of generation expansion planning, where the optimal dimensioning and 

placement of power generation capacities is investigated [23]. 

With the increasing focus on energy scenarios that address high shares of 

renewable energy and the accompanied challenges regarding system adequacy, 

the technological focus of classical generation expansion planning problems is 

extended by technologies that provide both spatial and temporal flexibility for 

load-balancing. Hence, nowadays many ESOMs are combinations of models 

that allow generation, transmission, and storage expansion planning [24]. 

From an investor’s perspective, decisions for investments into new 

infrastructures usually need to be discrete. This means that, for example, power 

plants cannot be realized with any nominated block size. Optimization 

problems that are suited for this purpose are mixed-integer programs (MIPs). 

However, for modeling of spatially aggregated large-scale energy systems that 

consist of great numbers of decentralized units (e.g., photovoltaics) often linear 

programs (LPs) are applied, where investment decisions are represented by 

continuous variables. The rationale behind is the fact that new capacities 

calculated at an aggregated level are several orders of magnitude larger than a 

discrete unit for power generation, storage or transmission. According to the 

findings of Cebulla and Fichter [25], the same justification shall also apply to 

normally discrete operation decisions within large-scale energy systems. 

Concerning the treatment of planning horizons for expansion planning, 

different approaches are conceivable. In [24] the authors distinguish between 

static and dynamic methods where the first is commonly used for in-depth 

analysis of normative scenarios [26]. For explorative investigations of 

transformation pathways, however, the dynamic treatment of planning 

horizons is the more suitable approach.8 

1.2.5 THE ENERGY SYSTEM OPTIMIZATION MODELING FRAMEWORK REMIX 

In its initial implementation by Scholz [27] REMix (Renewable Energy Mix for 

a sustainable energy supply) focused on power system scenarios where power 

                                                             
The PTDFs used in Publication 3 are therefore dependent on the operational state of the 
model. The latter variant of the DC power flow approach is the dominating method for 
modeling electricity transmission in Publication 2 and 4. It uses lines lengths and 
assumptions about the specific reactance of transmission lines to derive distribution factors, 
which are therefore static across the operation horizon of the model. 
8  In the model-based analyses of Publications 2 to 4 of this thesis, ESOMs are applied that are 
implemented as LPs. Capacities accounted for expansion planning are therefore modeled as continuous 
variables. Furthermore, the associated investment decisions are made based on static assumptions 
concerning annual capital expenditures of considered technologies. 
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supply is based on high penetrations with renewable energies. In this context, 

REMix was supposed for proving the sub-annual operational feasibility of 

energy scenarios that were developed based on consistent annual energy 

balances. For this reason, analyses with REMix mostly emphasized the 

optimization of hourly power system operation taking into account all kinds of 

renewable electricity supply.  

Due to further model development in the last years, more recent instances of 

REMix are able to cover power supply for all energy consumption sectors and 

allow for capacity expansion of the associated technologies [28]. Applications 

range from long-term investigations of temporal flexibility requirements [29] 

over country specific decarbonization scenario studies [30,31] to mid-term 

analyses of system security [32]. 

Today, REMix allows the creation of ESOM instances that share similar source 

codes written in the algebraic modeling language GAMS but have different 

input parameters in terms of geographical scope, spatial resolution or analyzed 

time horizon. Hence, REMix is rather a model generator thanks to its modular 

structure combined with sub-version management. 

An overview of all REMix modules applied in the context of this thesis is shown 

in Table 1. Also, the author’s significant contributions to maintenance, 

development and data collection for the listed modules are indicated there. The 

latter is designated as “Input preparation” and includes the collection and 

documentation of raw data, and data processing for the creation of complete 

input data sets for a specific REMix application. Besides modules that provide 

basic functionalities for setting up an optimization model in GAMS and for 

input data treatment, these modules are mainly characterized by the 

representation of technology classes. Restrictions, which usually affect all 

technologies (e.g., politically motivated restrictions such as self-consumption 

quotas) are provided in a modular manner.  

Although some modules of REMix are implemented as MIPs, the majority of 

applied ESOM instances created with REMix are LPs, where always the hourly 

dispatch of power plants and technologies for load-balancing is optimized 

seeking for minimal system costs. A commonly used term for such optimization 

problems is Economic Dispatch [33]. However, typical REMix instances are 

spatially resolved, which justifies the designation of such ESOMs as Multi-

Regional Economic Dispatch models. In addition, capacity expansion is 

frequently applied to specific technologies (such as those for spatial and 

temporal load-balancing).  

One particular contribution related to this thesis is the compilation of data sets 

that allow for analyses with spatially highly resolved ESOMs. The term spatially 

highly resolved means that compared to typical REMix applications, which 

usually optimize on country level, a regionalization is conducted necessary for 
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modeling of power flows within the HVAC transmission grid. The 

corresponding model specifications allow for conducting OPF analysis with 

REMix [33]. 

In this regard, the dedicated specifications of the REMix models applied in this 

thesis are shown in Table 2.9 

TABLE 1: OVERVIEW OF TECHNOLOGY SPECIFIC REMIX MODULES USED IN THE 

CONTEXT OF THIS THESIS AND AUTHROR’S CONTRIBUTIONS. 

 

                                                             
9 A technology-oriented overview of the models applied in the context of this thesis is 
provided in the Appendix. 

P yes

O no

W irrelevant

Modelled technology 

(class) 
Internal name Characteristic restrictions/properties

Biomass-fired power 

plants re_biomass P O P Limited annual fuel resources P O O O

Variable renewable 

energies
re_fluctuatingNoStor P O P

Capacity expansion potentials and time series-

based power generation potentials P O O P

Conventional thermal 

power plants
convBase P O P Punishment costs for load cycling P O O P

Concentrated solar power 

plants
re_csp P O P

Time series-based heat generation potentials with 

heat storage O O O O

Conventional power 

consumers
demand_electrical O P O Time series-based power demand P O O P

Electric vehicles eCars_smpl O P O
Time series-based power demand with optional 

load shifting O O O P

Electrolysis hy_ElectrolyzerSimple O P P Power-to-hydrogen conversion P P O P

Hydrogen vehicles hy_FixedAnnualDemand O O O Time series-based hydrogren demand P P O O

Electric boilers heat_electricBoiler O P P Power-to-heat conversion P O O O

Gas boilers heat_boiler O O P O O O O

Combined heat and power 

plants
heat_chp_std P O P Co-generation of power and heat O O O O

Heat pumps heat_pump O P P Time series-based heat generation potentials P O O O

Heat consumers heat_demand O O O Time series-based heat demand O O O O

High voltage alternating 

current transmission

transport_ACExpansion / 

transport_ACAggregation P P P
Power transmission considering DC power-flow 

constraints, (spatial aggregation) P P P P

High voltage direct current 

transmission

transport_DCSimple / 

transport_DCAggregation P P P
Power transmission using transport model, (spatial 

aggregation) P P P P

Gas transmission hy_NaturalGasNet O O O
Unconstrained transmission, conversion losses for 

synthetic fuel production from hydrogen P P O O

Demand side 

management
demandresponse_smpl P P P

Time series-based, temporally restricted load 

shifting potentials O O O O

Hydro reservoir storage re_reservoirHydro P P P
Time series-based power generation potentials 

with storage O O O P

Energy storage storageStd P P P Capacity expansion potentials P O O P

Heat storage heat_stoarge_std O O P O O O O

Hydrogen storage hy_Storage O O P Capacity expansion potentials P P O P

Self-consumption quotas domesticGenShare W W W
Bounding of annual power generation per region 

with respect to annual power demand per region O O O W

Fuels fuelsAndACost W W W Fuel costs and/or limitation of annual availability P O O W

Emissions pollutionAndACost W W W
Emission costs and/or limitation of annual 

emissions P O O W

Firm capacity firmCapacity W W W
Bounding of total power generation capacity with 

respect to electrical peak load per region P P P W

Heuristc for temporal 

model decomposition
methods_rollingHorizon W W W

Decomposition of sub-annual time horizon into 

time intervals to be solved as partial models P P P W

Main minCost_standart
W W W Program control and objective function P P O W
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TABLE 2: MODEL SPECIFICATION OF THE REMIX MODELS APPLIED IN THE 

PUBLICATIONS SUMMARIZED IN THIS THESIS. 

 Publication 2 & Publication 4 Publication 3 

Model specification Linear programming 
Minimization of total costs for system operation and expansion 

“REMix Germany”: 
Linear optimal power-flow and 
capacity expansion of lithium-ion 
batteries and grid transfer 
capacity 

“REMix Europe” 
Multi-regional capacity 
expansion of power generators 
and technologies for temporal 
and spatial load-balancing 

Scope of model application Methodological development Analysis of normative energy 
scenarios 

Sectoral focus Electricity Electricity, heat, individual 
transport 

Geographical focus Germany Europe and Northwest Africa 

Spatial resolution (number 
of regions) 

High-voltage (220 and 380 kV) 
substations (488) 

European countries and 
Germany regionalized (58) 

Analyzed normative 
scenario 

2012, 2030 2030, 2050 

Temporal resolution 8760 consecutive, hourly time steps 

1.3 CHALLENGES AND RESEARCH QUESTIONS 

Pfenninger et al. [34] define four dedicated challenges related to energy system 

modeling: 

1) Resolving details in time and space 

2) Uncertainty and transparency 

3) Complexity and optimization across scales 

4) Capturing the human dimension 

ESOMs in particular, are addressed by the very first of these challenges. It is 

directly related to the aspect of combining the capabilities of conventional 

energy system optimization and power-flow analyses in order to enable in-

depth assessments regarding the contribution of power transmission to system 

adequacy in in low-carbon energy systems. However, this has several 

methodological and data-related challenges to harmonize the typical temporal, 

spatial and technological scales of the corresponding modeling approaches (see 

Table 3). 

For example, on the ESOM side, modeling of many different technologies for 

power supply and conversion is state-of-the-art. As mentioned in 1.2.1, this 

capability is required to find system configurations that meet given targets (e.g., 

greenhouse gas mitigation). However, concerning the spatial dimension, the 
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definition of more highly resolved regions10 is necessary to take into account 

anticipated grid congestion, which significantly affects the energy system’s 

ability to utilize renewable energy sources. On the other side, by considering all 

transmission lines of the transmission grid, the ability to discover grid 

congestion is already ensured in conventional power-flow analyses, but the 

technological origin of power feed-in at a dedicated substation is of little 

interest. 

TABLE 3: TYPICAL MODEL SCALES OF ENERGY SYSTEM OPTIMIZATION MODELS AND 

POWER-FLOW ANALYSES  

Modeling approach 
Energy System Optimization 

Modeling 
Power-Flow Analysis in HVAC grids 

Spatial scale  Aggregated regions (|n|<100) 
Buses within an electrical grid 

(|n|>>100) 

Temporal scale Time series (|t|=8760) Snapshots (|t|<<8760) 

Technological scale 
Bottom-up modeling of a broad 

spectrum of technologies 

Physical representation of network 

resources 

Besides the technological variety and typical spatial resolutions, the way of 

treating the temporal scale is another major difference between traditional 

power-flow modeling approaches and ESOMs. Power-flow analysis in general 

is mostly based on a small number of temporal snapshots that represent, for 

example, worst case situations in terms of the network’s utilization. Opposed to 

that, in order to prove operational feasibility, ESOMs are supposed to 

appropriately model the temporal dimension either by time series or by a 

reduced, but still large number of representative time slices. 

To conclude, only bringing together both modeling approaches enables the 

identification of decarbonized energy systems that, from an overall system’s 

perspective, provide the required spatial load-balancing capabilities to ensure 

system adequacy. Therefore, the particular challenges that arise from this claim 

are detailed in the following. In general, all of them can be traced back to the 

trade-off between two fundamental claims: (i) keeping an overall system's 

perspective and (ii) providing a sufficient level of detail for translating results 

into comprehensive recommendations for actions or applicable measures.  

1.3.1 INCREASING RESOLUTIONS 

First techno-economic feasibility studies were often conducted on an annual 

basis and on national or super-national level [35]. The underlying modeling 

approach can be denoted as the creation of consistent annual energy balances. 

As in the case of REMix, an extension of this approach obviously becomes 

necessary when the sub-annual fluctuating availability of renewable energy 

                                                             
10 Publication 2 of this thesis proposes a new method, which allows for automated determining of such 
region definitions. 
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sources cannot be neglected anymore. This applies to techno-economic 

feasibility studies with the objective of mitigating greenhouse gas emissions in 

the energy sector. As a consequence, today many ESOMs resolve the 

operational time horizon by hourly time series.  

The techno-economic feasibility of energy systems that mainly rely on 

renewable power generation can be seen as the driving research question 

addressed up to this decade, which is currently followed by the next crucial topic 

- the implementation of such systems. Therefore, the point of ever-increasing 

model resolutions results from the trend of seeking for more concrete measures 

directly derivable from model-based analyses. It is thus related to the claim of 

providing a sufficient level of detail and applies to all of the characteristic 

dimensions of ESOMs. Consequently, established modeling approaches that 

often simplify these dimensions by aggregating technologies, time steps or 

regions are no more sufficient for finding answers related to the realization of 

infrastructures, especially if the corresponding error is not fully understood. 

For example, insufficient temporal resolutions cause the same effect as energy 

storage– they smooth both power generation and demand profiles and 

accordingly lead to an underestimation of storage demand. In addition, for 

selecting an appropriate technology for the realization of a particular energy 

storage facility, the variety of technologies needs to be represented in a way that 

strengths and weaknesses can be modeled. In practical terms this means, that 

only temporal resolutions <1h are appropriate to capture the benefits from 

batteries that allow for rapid charging. But still, time horizons must be large 

enough (>3 months) to account for seasonal storage capabilities (e.g., of cavern 

storage).  

The similar applies for the spatial dimension, where the identification of sites 

for building up the energy storage facility and the conceivable need for 

expanding a particular transmission line requires resolutions that at least 

enable modeling of these individual system elements (as done in traditional 

power-flow analyses). Nevertheless, typical ESOMs that account for power 

transmission strive for the coverage of large areas. In a European context, this 

is mainly due to two reasons: 1) the wide area synchronous grid, which also 

covers countries in North Africa and 2) the objective of creating an internal 

energy market without transmission congestions within the European Union. 

However, efforts to maintain the perspective of the overall system typically 

result in spatial resolutions on country level. Therefore, model-based scenario 

studies that additionally provide high spatial resolutions are rare although 

former issues such as data availability improved over the last years (e.g., SciGrid 

[36] or Open power system data [37]). Increasing the spatial dimension is 

especially challenging since the structure of the resulting mathematical 

optimization problems becomes rather complicated and so solvability 

deteriorates. This is, on the one hand, due to the characteristic of linking 
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constraints11. On the other hand, also the translation into a continuous linear 

optimization problem (LP) must be critically questioned, whereas the more 

appropriate problem class –MIP - is even harder to be solved. 

Accordingly, a pressing challenge is increasing the spatial resolution within 

ESOMs in a way that the ability to solve the mathematical optimization 

problems within manageable time spans is maintained. This becomes even 

more obvious because, according to Pfenninger et al. [34], most simplifications 

applied to current ESOMs already stem from the need to reduce computing 

times. 

From this, the following research question to be addressed within this thesis is 

derived: 

What are the impacts of integrating power flows in energy system 

optimization models and what are appropriate solution approaches? 

1.3.2 EXTENSION OF SYSTEM BOUNDARIES 

The need for approaches that allow for solving very large optimization models 

is also driven by the extension of boundaries of the systems to be modeled. 

Opposed to model resolutions, which refer to the extent of discretization within 

given boundaries, this trend enlarges the definition of what the overall system 

is. It especially applies to the technological dimension. 

For example, while ESOMs such as REMix initially had a clear focus on the 

power sector, the extension of system boundaries is caused by taking into 

account the broad variety of technological solutions implied by coupling energy 

sectors and commodities. In addition, as scenario analyses are always 

associated with high uncertainties, proving of the robustness of the outcomes is 

more and more addressed by extensive parameter variations. This is also 

equivalent to an extension of system boundaries, namely those of the analyzed 

techno-economic scenario space. Finally, the basis of evaluation is broadened 

if energy systems are to be assessed based on sustainability criteria rather than 

on monetary costs. 

One illustrative example in the context of electricity infrastructure planning is 

the increasing extent of the Ten Year Network Development Plan (TYNDP), 

which is regularly issued by the association of European Transmission Grid 

Operators [38]. In order to identify infrastructure projects, which contribute to 

the achievement of the EU’s climate and energy objectives, extensive model-

based scenario analyses are part of the assessment framework. 

The first issue of the TYNDP contains two scenarios with a 10-year foresight 

(“conservative” and “best estimate”) and one 15-year trend, whereas from a 

technological point of view only power generators and demand forecasts are 

                                                             
11 The role of linking constraints is discussed in detail in Publication 4. 
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focused. In its version from 2018, three scenarios (considering electricity and 

gas transmission infrastructure) are conducted with foresight up to 2040 and 

accompanied by variations of input data such as weather years. Moreover, the 

role of additional technologies such as prosumers, including demand response 

measures, electric vehicles and heat pumps is considered. 

Particularly, these technologies are frequently discussed in the context of load-

balancing and thus will have also an impact on future system adequacy. 

Furthermore, they also represent the need for cross-coupling of the power 

sector with its counterparts in heat and transport, as the majority of low-carbon 

energy conversion paths rely on electricity generation from renewable energy 

sources. 

In this context, electricity transmission and thus the consideration of limited 

power flows in ESOMs play a crucial role in scenarios of future energy systems. 

This is due to fact that power transmission is the key technology for accessing 

remote power generation potentials from renewable sources at comparably low 

transmission losses. 

Therefore, the related research question is:  

What is the contribution of power transmission and grid expansion to ensure 

system adequacy in energy systems with low carbon emissions? 

1.3.3 TRACEABILITY 

Given that ESOMs tend to become larger and more complex due to both 

increasing resolutions and extending system boundaries, two derivative 

challenges arise. As mentioned above, the first concerns the computational 

effort that disproportionally increases with growing model sizes. The second 

challenge is related to the need for more data. This comes together with 

additional effort to be made with regard to processing and analyzing of large 

data sets and with stricter requirements concerning data quality.  

Already existing studies conducted with simple ESOMs suffer from a lack of 

traceability. Reasons for this are manifold. Some aspects are related to practical 

issues such as incomplete documentation for different purposes and target 

groups or an insufficient use of state-of-the-art software engineering 

approaches for the model development and application by teams. However, 

more importantly, the general nature of scenarios hampers typical confidence-

building towards modeling tools since traditional model validation techniques 

based on comparisons with reality are not applicable by ease. In other words, 

finding ways to measure states of large-scale energy systems by appropriate 

observables is already challenging but becomes even harder if the 

corresponding system states lie in the future. In addition, due to a lack of fully 

consistent and complete empirical input data, assumption making is always 
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related to modeling energy scenarios. In particular, this in turn complicates 

documentation as also implicit assumptions are made unconscious. 

However, for ensuring best scientific practice, experiments and thus model-

based analysis need to be reproducible and accordingly traceable in the first 

place. In the context of energy scenarios of large-scale energy systems, this 

leads to the following research question: 

How to make modeling of scenarios of large-scale energy systems traceable? 

1.4 OBJECTIVES AND SCOPE 

In order to address the three fundamental research questions of this thesis, the 

following overarching objectives are specified (Table 4): 

TABLE 4: RESEARCH QUESTIONS AND RELATED OBJECTIVES 

Research question Objective  C
o

n
te

n
t-

re
la

te
d

 

fo
cu

s 

M
e

th
o

d
o

lo
gi

ca
l 

fo
cu
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1) How to make modeling 
of scenarios of large-
scale energy systems 
traceable? 

a) Identification and discussion of reasons for 
lacking traceability of model-based energy 
scenario studies 

b) Development of criteria to better assess model-
based energy scenario studies 

☒ ☐ 

2) What are the impacts of 
integrating power flows 
in energy system 
optimization models and 
what are appropriate 
solution approaches? 

a) Implementation of methods for modeling power 
flows in large-scale energy systems 

b) Parameterization of a spatially highly resolved 
model 

c) Implementation of approaches to ensure 
solvability of the spatially highly resolved model 

d) Analysis of the impact of regionalization and 
model simplification by spatial aggregation 

e) Analysis of the impact on model results of 
different approaches for modeling power flows 
in ESOMs  

☐ ☒ 

3) What is the contribution 
of power transmission 
and grid expansion to 
ensure system adequacy 
in energy systems with 
low carbon emissions? 

a) Definition of scenarios and parameterization of 
an ESOM that allows for power transmission and 
grid expansion among alternative technological 
options for load-balancing 

b) Analysis of the role of power transmission as 
load-balancing measure in order to ensure 
system adequacy  

☒ ☐ 

These objectives are to be met within particular framework conditions. In this 

sense, energy scenario analyses conducted in the context of this thesis always 

rely on the application of modeling tools (i.e., ESOMs with the objective to find 

compositions of energy infrastructure based on existing technologies). 

Therefore, the term energy scenario is rather to be understood in a techno-

economic than in a socio-economic context. 
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As described in section 1.2.5, model development and application are 

conducted with REMix, which implies the creation of ESOMs formulated as LP. 

The content-related scope of this thesis concerns normative long-term 

scenarios for Germany and Europe for the years 2030 and 2050 taking into 

account CO2 mitigation targets of up to 85% reduction compared to the 

emissions in the year 1990 in power generation. 
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2 PUBLICATIONS  
In the following, the four publications summarized in this dissertation are 

enclosed. In order to provide a common characterization scheme and to show 

the relation to the central objectives of this thesis (section 1.4); each publication 

is introduced by a table where used methodologies, models and key outcomes 

are summarized. Furthermore, these tables provide general information such 

as access or the author’s contribution to the associated scientific process (e.g., 

conducting the study and a writing a corresponding paper). 

2.1 PUBLICATION 1 

Status Published in: Energy, Sustainability and Society 6 (1): Art.Nr.: 28 (2016) 

Title Raising awareness in model-based energy scenario studies - a transparency 
checklist 

Co-Authors Felix Cebulla, Jonathan J. Gómez. Vilchez, Babak Mousavi, Sigrid Prehofer 

Publication 
year 

2016 

Access https://doi.org/10.1186/s13705-016-0090-z 

☒ Gold Open Access ☐ Green Open Access ☐ Closed access 
 

  
Applied model - 

Specific 
objective 

Compilation of criteria for the assessment of transparency in energy scenario 
studies that largely rely on the application of complex models 

Thesis-
overarching 
objectives 

1.a) Identification and discussion of reasons for lacking traceability of model-
based energy scenario studies 
1.b) Development of criteria to better assess model-based energy scenario 
 studies 

Methodology Qualitative expert interviews and expert validations 

Key outcome Transparency checklist to be used by authors and users of energy scenario 
studies 
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ORIGINAL ARTICLE Open Access

Raising awareness in model-based energy
scenario studies—a transparency checklist
Karl-Kiên Cao1, Felix Cebulla1, Jonatan J. Gómez Vilchez2*, Babak Mousavi3 and Sigrid Prehofer4

Abstract

Background: The focus of the paper is on scenario studies that examine energy systems. This type of studies
is usually based on formal energy models, from which energy policy recommendations are derived. In order
to be valuable for strategic decision-making, the comprehensibility of these complex scenario studies is
necessary. We aim at highlighting and mitigating the problematic issue of lacking transparency in such
model-based scenario studies.

Methods: In the first part of the paper, the important concept of transparency in the context of energy
scenarios is introduced. In the second part, we develop transparency criteria based on expert judgement. The
set of selected criteria is structured into ‘General Information’, ‘Empirical Data’, ‘Assumptions’, ‘Modeling’,
‘Results’, and ‘Conclusions and Recommendations’. Based on these criteria, a transparency checklist is
generated.

Results: The proposed transparency checklist is not intended to measure the quality of energy scenario
studies, but to deliver a tool which enables authors of energy scenario studies to increase the level of
transparency of their work. The checklist thus serves as a standardized communication protocol and offers
guidance for interpreting these studies. A reduced and a full version of the checklist are provided. The
former simply lists the transparency criteria and can be adopted by authors with ease; the latter provides
details on each criterion. We also illustrate how the transparency checklist may be applied by means of
examples.

Conclusions: We argue that transparency is a necessary condition for a reproducible and credible scenario
study. Many energy scenario studies are at present characterized by an insufficient level of transparency. In
essence, the checklist represents a synthesizing tool for improving their transparency. The target group of this
work is experts, in their role of authors and/or readers of energy scenario studies. By applying the
transparency checklist, the authors of energy scenario studies signal their commitment to a high degree of
transparency, in consonance with scientific standards.

Keywords: Scenario analysis, Energy modeling, Transparency, Open access

Background
Model-based energy scenarios
Scenario analysis is becoming an increasingly recognized
area of research. As a result, the number of scenario stud-
ies published in recent years has risen tremendously. In
2011, for example, the European Environment Agency
(EEA) listed 263 scenario1 studies [1]. Despite its

limitations (e.g. availability bias2) [2], the scenario analysis
is regarded as an adequate method to deal with what
Lempert et al. [3] call ‘deep uncertainty’. Furthermore,
Wright and Goodwin [4] propose an approach on how to
overcome some of these limitations. In the context of en-
ergy research, energy scenarios are considered to be a suit-
able and helpful means of depicting possible future
pathways in an energy system. Basically, they have two
main purposes: First, to offer orientation and contribute
to discussions about energy futures [5]; second, to support
strategic decision-making on energy issues. In this case,
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they can be seen as ‘a useful tool to helping decision-
makers in government and industry to prepare for the
future and to develop long-term strategies in the energy
sector’ (p. 89) [6]. Attempts to classify scenarios have been
made by other authors (see e.g. [7, 8]).
Due to the complex nature of energy systems, mostly

energy scenario studies benefit from models3 which may
capture qualitative and quantitative aspects of the systems.
We call these ‘model-based energy scenario studies (ESS)’.

Challenges in dealing with model-based energy scenarios
The complexity of the present and future energy systems
and their highly uncertain and dynamic nature evoke chal-
lenges for energy scenario analysis. The related questions
most likely have to be tackled from an interdisciplinary
perspective which consequently leads to the application of
a broad diversity of methods and models, with their
underlying assumptions. Thus, this represents a challenge
for the readers4 of the ESS. In our view, comprehensibility
or intelligibility of a particular model-based ESS requires
two conditions to be met for a reader:
First, the reader needs to have the technical expertise

or skills to understand what has been done in the study.
Energy scenarios in model-based ESS vary depending on
their primary purpose (e.g. assessing mitigation possibil-
ities [9]). Even if a single method is used to construct a
model-based ESS, various modeling techniques may be
employed by the authors of the study [7]. For example, a
model resulting from applying a particular simulation
method may encapsulate a series of scientific techniques
such as Monte Carlo simulations and Kalman filtering.
Often, model-based ESS are the result of adopting sev-
eral methods. In addition, the results of model-based
ESS may be used as input data for further model-based
investigations regarding questions of future develop-
ments. Suffice to say here that the adaptation of different
models and the abundance of ad hoc techniques from
which results can be derived are a source of rich diver-
sity in energy scenarios [1, 10].
Due to the increasing importance of ESS and the expand-

ing computing possibilities, the total number of available
energy models has grown considerably. These models vary
significantly in terms of structure and application which
leads to greater complexity in understanding and interpret-
ing model-based ESS. Thus, navigating through this type of
study becomes a challenging task. The heterogeneity of
applied energy models and corresponding model-based
energy scenarios demands specific technical skills for the
adequate assessment of such (often complex) interdisciplin-
ary studies. This represents not only a key barrier to the
comprehensibility of a particular study but it also makes
the comparability of the study more difficult. Over time, a
number of studies (e.g. [11–16]) have presented numer-
ous classifications of energy models which provide insight

into the differences and similarities between the models
to facilitate the understanding of ESS.
The second requirement for the comprehensibility of

model-based energy scenario studies is transparency.
Arguably, transparency is even more important than
technical skills, for it is a basic requirement of any re-
search. Transparency is a key concept of scientific work
and is particularly relevant for studies looking to the fu-
ture [17]. Transparency is a necessary but insufficient
condition for a reproducible and valuable scenario study.
In ESS transparency means that the necessary informa-
tion to comprehend, and perhaps reproduce, the model
results is adequately communicated by the authors of
the study. Bossel [18] uses the concepts of ‘black box’,
‘glass box’ and ‘grey box’ to highlight ‘different possibil-
ities for simulating system behavior’ (p. 19). These ideas
can be related to different degrees of transparency, to be
chosen by the modeler to characterize a certain system
(e.g. energy) in a model-based study. In this manner, the
black box represents a low level of transparency, and the
glass box a high level of transparency. We argue that the
employment of the latter is desirable in scientific work
because it allows reproducibility. In addition, Weßner
and Schüll [19] consider the provision of background in-
formation about a study, for example, if it is financed by
a third party, to be important to ensure scientific
integrity.
Considering one important part of ESS, a concrete ex-

ample of the need for transparency is the communica-
tion of assumptions5 (for further explanations see
‘Methods’ and ‘Results and discussion’ section). Ideally,
the ESS author6 would fully articulate all the assump-
tions, thereby facilitating that the reader understands
how a particular model-based scenario study has been
constructed. In practice, when a large model or a set of
large models is used, there is a trade-off between com-
pleteness and succinctness and only the main assump-
tions can be communicated exhaustively in the model
documentation. In extreme cases, critical assumptions
are made implicitly, unnecessarily obscuring the model-
ing exercise. In the worst case, such an approach may be
a deliberate strategy to attach objectivity to ideology
[20]. It can be concluded that providing comprehensibil-
ity for ESS appears to be a challenging issue since the se-
lection of information to be communicated needs to
take into account various aspects.

Aim and outline
This paper addresses and attempts to mitigate opacity in
model-based ESS. In particular, we adopt the view that
comprehensibility is necessary, if ESS are intended to
successfully fulfil their purpose of adding value to stra-
tegic decision-making. To do this effectively, there is a
need to fully assess the essential content of an ESS. But
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many of the existing studies are not sufficiently compre-
hensible for a complete external evaluation of the quality
and usefulness of such studies. Since readers do have dif-
ferent questions and educational backgrounds, there is a
need for comprehensibility on several communication
levels (inter alia proposed in [21]). In the best case, a
wide spectrum of addressees such as experts, decision-
makers and the public is enabled to build their own
opinions based on the outcome of ESS.
However, even the minimum requirement, which is for

us full traceability of ESS for experts, often cannot be met
[5]. In general, two kinds of required comprehensibility
can be distinguished in this context: First, model compre-
hensibility, which aims at ensuring comparability and re-
producibility by experts. The second one is study-results
comprehensibility which enables the interpretation of ESS
outcomes also for non-experts. If results comprehensibil-
ity cannot be sufficiently provided, it is an obvious precon-
dition that at least experts who work in the field of energy
scenario construction and application need to be able to
fully retrace the work of other experts in order to explain
it to the remaining addressees.
We claim to tackle this issue by highlighting the import-

ant role of transparency. Therefore, we aim to provide an
additional approach for practical use cases where a glass
box model is difficult to be achieved. Its purpose is to en-
sure leastways the provision of necessary information for
expert judgement for both model comprehensibility and
also results comprehensibility. For this reason, the target
group of our work’s outcome is limited to experts, in their
role of authors and/or readers of ESS.
The next subsection provides a review of existing

scientific work that addresses quality criteria in model-
based studies with guidelines of good practice. Further-
more, the applied methodology for the determination of
the transparency criteria for model-based scenario stud-
ies is explained in the ‘Methods’ section. ‘Results and
discussion’ section introduces the ESS transparency
checklist where the identified criteria are collected and
discusses several of its key points. Finally, in the
‘Conclusions’ section, a further collection of transparency
criteria for addressees other than experts is suggested.

Literature review
The issue of insufficient comprehensibility in scenario
studies is not new and the contributions of previous
work to address it have been made. For example, a re-
cent study of the International Risk Governance Council
[22] provides a comprehensive methodological review on
energy scenario and modeling techniques. The work em-
phasizes a clear (i.e. transparent) communication of the
scenario and model outcome, especially in terms of pos-
sible uncertainties and biases. Although [22] delivers
novel insights with regard to shortcomings of energy

scenario methods, it provides little guidance on the pos-
sible ways of ensuring transparency in model-based ESS.
In this section, two main bodies of literature are exam-
ined; one dealing more generally with model compre-
hensibility; the other, with existing tools for model
documentation and transparency.
In general, there are several approaches to tackle the

need for comprehensibility in model-based ESS. One is
the use of standards which mainly refers to requirements
for documentation and data handling. Standards enable
the reader of ESS to find a common understanding of
the whole modeling process. Examples which strive for
the standardization of applied models, data sets or as-
sumptions are calls for research projects in the context
of the German Energiewende [23] as well as require-
ments of methodologies [24] and planning tools for
policy advice in the USA [25].
Open source and access approaches for both model

code and the related data are another way of dealing
with the previously described challenges. The concept
incorporates advantages such as improved reproducibil-
ity of results or distributed peer reviewing, which
partially eliminates shortcomings regarding the compre-
hensibility of energy scenarios. While the idea of open
source and access is claimed to be essential for transpar-
ent research and reproducibility [26, 27], the matter has
not been fully established in model-based energy sce-
nario analysis yet. Nevertheless, open access policy is a
requirement for funding grants in some research fields,
such as the Public Access Plan of the US Department of
Energy (DOE) [28]. The plan demands that all DOE-
granted publications have to be uploaded to a public re-
pository, while for the related data, a data management
plan has to be provided.
The issue of model documentation in scientific work is

notably addressed in the field of ecology. Benz et al. [29]
introduce ECOBAS, a standardized model documenta-
tion system that facilitates the model creation, documen-
tation and exchange in the field of ecology and
environmental sciences. ECOBAS is designed to over-
come the difficulties in writing model documentation
and applying the documentation to any model language.
Schmolke et al. [30] and Grimm et al. [31] propose
‘transparent and comprehensive ecological modeling
evaluation’ (TRACE), a tool for planning, performing
and documenting good modeling practice. The authors
aim to establish expectations of what modelers should
clearly communicate when presenting their model (e.g.
clear model description and sensitivity analysis of the
model output). The purpose of a TRACE-based docu-
ment is to provide convincing evidence that a model is
thoroughly designed, correctly implemented, well-tested,
understood and appropriately applied for its intended
purpose.
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In the context of model-based research in the social sci-
ences, Rahmandad and Sterman [32] provide reporting
guidelines to facilitate model reproducibility. They distin-
guish between a ‘minimum’ and a ‘preferred’ reporting re-
quirement. For computer-simulation models, they further
differentiate between a ‘model’ and a ‘simulation’ reporting
requirement. Two types of simulation methods are
commonly used: agent-based modeling (ABM) and system
dynamics (SD). For studies using ABM, Grimm et al. [33]
suggest a framework via the Overview, Design concepts,
and Details (ODD) protocol and provide examples of how
to apply it. The ODD can be understood as a communica-
tion tool to enable ABM replication. Later, the authors
assess the critical points raised against ODD and offer an
updated and improved version of the protocol [34]. Con-
cerning the SD approach, Rahmandad and Sterman [32]
illustrate how to implement their reporting guidelines using
an innovation diffusion model. In principle, the SD model-
ing approach is suitable for a high level of model transpar-
ency. However, although the qualitative visualization of an
SD model is common practice, this is not always the case
for the model code. Efforts to enhance the documentation
of such models are made by e.g. [35].
In the context of policy analysis, Gass et al. [36] propose

a hierarchical approach for producing and organizing
documentation of complex models. It recommends four
major documentation levels: (1) rote operation of the
model, (2) model use, (3) model maintenance and (4)
model assessment. Another documentation framework,
especially designed for energy system models, is published
by Dodds et al. [37]. The focus of the work lies on the
challenges due to the increasing complexity which is
affected by the ongoing development of often applied
optimization models. Although the proposed design met-
rics are influenced by the structure of optimization
models, the presented approach incorporates a way of
dealing with the evolution of different model types and
thus their input and output data as well.
In essence, the literature shows that standards enable

comprehensibility through the harmonization of regula-
tions, frameworks and documentations, whereas open
source approaches provide comprehensibility through
transparency. However, on the one hand, standards, such
as ECOBAS or ODD, are often specifically designed for a
certain field of research (ECOBAS: ecology and environ-
mental sciences) or model type (ODD: agent-based
models). In this sense, we think that they are an adequate
way to tackle what we call model comprehensibility, but
do not provide full result comprehensibility. On the other
hand, we consider open source approaches to be an
extreme case of transparency that does not automatically
facilitate the comprehensibility of studies for policy advice.
For instance, in order to benefit from full open source,
substantial investment in familiarization with the source is

required. Thus, depending on the background knowledge
of an ESS user, open source may also compromise the
comprehensibility of a study due to information overload.
The latter can be tackled through different levels of details
(for a broader discussion of this issue, see section ‘Results
and discussion’). Our contribution to the current state of
research therefore addresses a synthesis of standardization
and increasing, but balanced, transparency in energy
scenario studies (including result and model comprehensi-
bility), if these are to be seen as the result of reproducible,
scientific research.

Methods
Conceptual framework
In order to clarify the meaning of frequently used terms
within the following text sections, Fig. 1 shows the data
and information flow within a model-based ESS. Its pur-
pose is to consistently put the key terms ‘Empirical data’,
‘Assumptions’, ‘Model exercise’, ‘Results’ and ‘Conclusions
and recommendations’ into a context representing the
background for the construction and discussion of trans-
parency criteria. Thus, the conceptual framework follows
the typical steps of conducting a model-based ESS:
collection and preparation of empirical data for the
model-based data processing, assumption-making, model
application and preparation of model outputs as well as
deriving comprehensive conclusions and recommenda-
tions. As depicted in Fig. 1, empirical data can be divided
into primary input data which is imported to the model
directly and secondary input data which needs pre-
processing before being imported. The model exercise
contains at least one model (here called ‘model A’). How-
ever, in some cases, a combination of two models or more
is applied (for simplicity, we depicted a combination of
only two models via a linkage stream). Similar to input
data, outputs are divided into primary and secondary data.
Further, this figure illustrates that assumptions can be
made for the model as well as optionally for the pre-
processing, post-processing, additional applied model(s)
and linkage(s) between models. Results represent the last
step of the model exercise. They are given based on the
model output data. Finally, conclusions and recommenda-
tions are made based on the whole chain from the empir-
ical data to the results (indicated by the solid arrow in
Fig. 1).

Construction of transparency criteria
With the aim of increasing the transparency of ESS, we
collected criteria on information needed to understand
the fundamental contents of an ESS, initially adopting
the perspective of an ESS user. The applied methodology
can be seen as an alternating combination of two estab-
lished approaches: qualitative expert interviews [38] and
expert validations. Applying the conceptual framework
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above introduced, we set up a first collection of trans-
parency criteria. It is based on the results of an ESS
assessment workshop conducted by members of the
Helmholtz School on Energy Scenarios [39]. In individ-
ual preparation for this workshop, specific questions7 on
two explicit ESS [40, 41] had to be answered. As all of
the participants of this workshop are ESS authors as well
as users, the initial compilation of transparency criteria
represents the first round of the expert validations.
Meeting the identified transparency criteria means

creating a complete and comprehensible overview of
the underlying work and premises of an ESS. We found
that this information needs to be provided in a format
that can be easily used. Standard protocols or rather
strict guidelines can help to list and describe assump-
tions as well as to transparently communicate the
functional links between these and the model results.
However, formulating such an instrument in a way that
is too constricted bears the risk of high entry barriers
and prohibits transferability over a wide range of
model-based ESS. We therefore concluded that a simple
as well as flexible tool is essential and intentionally
propose the format of a checklist.
Thus, we subsequently rearranged the first collection

of transparency criteria for ESS and extended it by fre-
quently asked questions (FAQ). The first version of the
checklist represented the template for individual inter-
views and discussions with three German post-doc
researchers, one expert working with energy system
modeling and two experts in the field of energy scenario
assessment and scientific policy advice. Hence, the

listing was updated by the feedback of these selected
experts. For the second expert validation round espe-
cially, the perspective of ESS authors was emphasized.
The idea of a transparency checklist for ESS was pre-
sented during the second workshop of the openmod
initiative [26], attended by 35 researchers from Euro-
pean research institutions who are experienced in the
field of energy system modeling. The presented ver-
sion of the checklist was again evaluated and updated
with respect to the feedback of the openmod
workshop. Considering the outcome of our literature
research, we finally added study examples to each
transparency criterion and conducted final expert in-
terviews. This time, one post-doc social scientist and
one post-doc energy system modeler were asked to
suggest improvements to the checklist.
In the following sections, we call the final product of

this construction process the ‘ESS transparency checklist’.

Limitations of the construction approach
Individual expert interviews are a well-established
methodology in social science [42]. In addition, the
expert validation has similarities to DELPHI ap-
proaches [43]. Hence, it provides the evaluation of a
broad set of opinions on an interdisciplinary research
topic and subsequently complements the individual
expert interviews. It represents therefore an appropri-
ate way to avoid expert dilemma and to gain an inter-
subjective collection of transparency criteria as far as
possible [44]. However, only a limited number of ex-
perts were involved in the checklist compilation. Also,

Fig. 1 Information flow and data processing in model-based Energy Scenario Studies (ESS)
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it should be noted that the energy modelers obviously
dominated the selection of respondents. Thus, the
checklist cannot claim to reflect a representative
range of opinions in the scientific community dealing
with ESS.
Moreover, the provision of a checklist template al-

lows on the one hand a comfortable way to compare
the outcome of the interviews and to extend it with
additional viewpoints. But, on the other hand, as an
existing guideline, it also restricts the spectrum of
conceivable criteria to be discussed. Consequently,
possible improvements to the construction method-
ology could be achieved by extending it by both
further approaches such as constellation analysis [45]
as well as a broader and more balanced selection of
involved experts.

Results and discussion
The ESS transparency checklist can be seen as an over-
lay communication protocol between ESS authors and
users which is not intended to automatically assess the
quality of ESS and their content (data, model or assump-
tions), but at least to enable readers to assess these
points for other addressees or their own work.
From the point of view of an ESS author, the collec-

tion of transparency criteria results in a checklist
containing questions which are frequently asked by
modeling experts trying to understand an ESS done by
other experts. In this context, a checklist gives unexper-
ienced ESS authors a summary of important aspects that
need to be considered, especially for performing a
scenario-based analysis used for deriving recommenda-
tions for decision-makers.
From the user’s perspective, the ESS transparency

checklist is a catalogue of FAQ related to a section of
the appropriate ESS document or report. Consequently,
adding the proposed checklist to an energy scenario
study means in a broader sense providing effective ac-
cess to individually relevant and structured information
to the user by an additional table of contents. The expe-
rienced reader benefits from this representation format
of transparency criteria because time-consuming search-
ing through the document for specific information can
be avoided.

The ESS transparency checklist and its application
We distinguish between two versions of the transpar-
ency checklist (see section ‘Appendix’). The full version,
provided at the end of this manuscript, can be seen as
the checklist’s manual which clarifies in detail what is
meant by the various criteria. This is realized in three
ways: by asking relevant expert questions, by using sim-
ple made-up examples and by referencing an existing
study that meets the particular criteria. Although we

consider the ESS transparency checklist to be, in
principle, applicable to any model-based scenario study,
the examples provided are, given our focus, pertinent to
energy scenarios.
The second version of the transparency checklist is the

reduced version. This version is intended for application
to a particular ESS (cf. Table 1). As an additional table of
contents, this reduced version only consists of the trans-
parency criteria and a second table column. In the latter,
an ESS author only has to enter the specific page num-
bers of the study, on which a certain transparency criter-
ion is supposed to be fulfilled. However, the extent to
which any criterion is met depends on the ESS authors’
assessment. With the checklists’ primary purpose to
raise awareness for transparency, we intentionally chose
this open way of dealing with the transparency criteria
to keep the cost of its application low. Thus, ESS
authors can use the reduced version of the checklist at
ease and add it to any document without the need of

Table 1 The reduced version of the ESS transparency checklist
to be used as an additional table of contents

Criterion Page number

General information

1. Author, institution

2. Aim and funding

3. Key term definitions

Empirical data

4. Sources

5. Pre-processing

Assumptions

6. Identification of uncertain factors

7. Uncertainty consideration

8. Storyline construction

9. Assumptions for data modification

Model exercise

10. Model fact sheet

11. Model specific properties

12. Model interaction

13. Model documentation

14. Output data access

15. Model validation

Results

16. Post-processing

17. Sensitivity analyses

18. Robustness analyses

Conclusions and recommendations

19. Results-recommendation relationship

20. Uncertainty communication

Cao et al. Energy, Sustainability and Society  (2016) 6:28 Page 6 of 20

31



changing the structure or content of the ESS it should
be applied to.

Discussion of transparency criteria—the full version
In the following, we discuss the several categories of the
ESS transparency checklist in more detail. It is mainly
conceived for practitioners to facilitate full application of
the checklist (see section ‘Appendix’).
This should be enabled by additional columns for a

further description of the criteria. So, the column
‘transparency question’ contains one or more exem-
plary expert questions which can be assigned to a
transparency criterion. The column ‘examples and
further description’ shows simple examples for formu-
lations that would contribute to fulfilling the transpar-
ency criterion. Finally, the column ‘applied study’ gives
a concrete example of existing ESS where providing
transparency is done from our point of view.

General information
The first part of the ESS transparency checklist targets
basic background information required for the interpret-
ation and classification of a study. Apart from giving in-
formation about the ESS author(s) and the institution(s),
one key point is the communication of the objectives
(e.g. overarching research question) and the funding of
the study [46]. Another point that affects the interpret-
ation of a study is the use of key terms, which usually
depend on the professional background of the ESS
authors. Often, similar terms are used which have very
different meanings or definitions. Thus, we propose by
providing a glossary describing those terms to avoid
potential misunderstandings and misinterpretation of
the study’s outcomes (‘Key term definitions’).

Input data preparation
The main part of the ESS transparency checklist deals
with the model exercise which, in a more simplified way,
could be described as data processing with a model.
Thus, the checklist’s categories coming along with the
model exercise (‘Empirical data’, ‘Assumptions’, ‘Results
and conclusions’) include topics such as data sources,
data selection, data processing or the interpretation of
data.
As well as distinguishing several types of data like

inputs and outputs, the ESS transparency checklist also
stresses a distinction between data influenced by as-
sumptions and data that is gained from the past. The
category Empirical data therefore asks how the latter is
treated. This kind of data is also known as primary data
and includes data from statistical surveys (e.g. databases
of the International Energy Agency [47]) or measure-
ments of physical quantities (e.g. technical datasheets).
According to the three levels of transparency [18], listing

the sources of the empirical data and pointing out the
modifications that are applied corresponds to providing
the ‘opaque box’. Thus, full transparency goes a step fur-
ther and means also enabling access to the used primary
data as it is described by [48] for the treatment of funda-
mental electricity data.
‘Pre-processing’ of data is often done to unify the

given data from different sources or to adapt it to the
requirements of the modeling environment. Due to a
lack of appropriate empirical data, this also commonly
goes along with the formulation of assumptions
(‘Assumptions for data modification’). A typical ex-
ample is the spatial unification of technical character-
istics and costs, which means that known regional
differences of these parameters are ignored or consid-
ered to be negligible. Since such assumptions seem to
be quite irrelevant in regard to the overarching ob-
jective of the study, they are often rarely documented.
However, assumptions are an indispensable part of an
ESS and therefore play a crucial role for the input
and output data preparation as well as for the appli-
cation of different model types (cf. Fig. 1). The know-
ledge about these assumptions is thus a precondition
for ensuring complete reproducibility of the modeling
exercise.

Assumptions communication
Besides the assumptions for data modification, estimations
about the future developments also cannot be made with-
out assumptions. The ESS transparency checklist empha-
sizes this issue with the following criteria for assumptions
communication which are based on the three typical steps
of a scenario construction process:
First, the necessity of the model exercise to rely on

assumptions leads to intrinsic uncertainties within the
study’s conclusions and derived recommendations. In
principal, two fundamentally different types of uncer-
tainty exist. On the one hand, input data is associated
with possible ranges of values and therefore may affect
the outcome of ESS (data uncertainty). On the other
hand, the model approach itself might include undetect-
able inaccuracies intrinsically (model uncertainty). The
latter might also be interpreted as an error due to ab-
stractions of the real world in order to create a simpli-
fied model. In this sense, Brock and Durlauf [49] give
the example of economic actors which cannot fulfil the
assumptions regarding rational behavior in macroeco-
nomics (i.e. homo oeconomicus). A broader definition of
uncertainty is given by Walker et al. [50] who describe
uncertainty as ‘any departure from the unachievable
ideal of complete determinism’ (p. 8). Trutnevyte et al.
[51] point out that different dimensions of uncertainty
(e.g. input data uncertainty, unawareness or unpredict-
ability of events) lead to an infinite amount of robust
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scenarios. Therefore, the decisions about which uncer-
tain developments are included and excluded in an ESS
play a major role for the interpretation of its outcomes.
The transparency criterion ‘Identification of uncertain
developments’ addresses the associated requirement to
communicate those uncertainties which are explicitly
assessed in the study.
For the derivation of model inputs, usually, a range of

future developments can be identified which is addressed
by bandwidths of qualitative or quantitative values. In
terms of quantitative values, it is a good practice in
scenario studies to deal with them by performing param-
eter variations on input data. However, the number of
practicable model runs is limited, and the number of
assumptions can become quite large. Hence, parameter
variations cannot be done for all quantitative values, and
also qualitative assumptions are not covered by this
approach.
There are qualitative assumptions which are consid-

ered only indirectly in a study, e.g. if a very high share of
electric vehicles is assumed, this goes along with lifestyle
changes, although those are not stated explicitly in the
study. Still, qualitative assumptions like lifestyle changes
can also find direct access in ESS by translating them
into quantitative values for model input. But even in this
translation process, it goes along with assumptions
which do not necessarily have to be explicit. Therefore,
the meaning of specific assumptions on the study’s out-
come is only comprehensible if it is complemented by
the information in which way the corresponding uncer-
tainties are treated in the study. Thus, the second aspect
of assumption communication is about how the main
uncertainties are considered (‘uncertainty consider-
ation’). This includes statements whether the bandwidth
for certain numerical values which go into the model are
justified by applying approaches such as own estima-
tions, literature research or expert workshops. Even the
explicit information that instead of a bandwidth, only a
single, numerical value is chosen arbitrarily can contrib-
ute to an increase of transparency.
Third, to combine the involved assumptions to an

applicable model framework, a storyline is usually
constructed (‘storyline construction’). ‘Storyline-based
scenarios are expressed as qualitative narratives that in
length may range from brief titles to very long and de-
tailed descriptions’ (p. 26) [52]. For the users of model-
based ESS, it is of interest what the storylines are about,
how they were constructed and which normative as-
sumptions8 are included there as they are used to deter-
mine the relevant ranges for numerical assumptions.

Modeling
A critical aspect regarding transparency is the balance
between enabling access to all relevant information

and information overload. The easiest way of tackling
this issue is to provide information on different levels
of detail. In the case of listing all assumptions, this
can be realized by selecting the crucial or new ones
for the main document of the study while referring to
an extra document which contains the complete list
of assumptions.
Balanced information sharing is especially important

when it comes to the description of the modeling
itself. Thus, to be transparent and nevertheless avoid
overstraining the user, we suggest different levels of
detail for the model documentation beginning with a
factsheet. The model factsheet lists basic information
which is useful for comparing similar models. This in-
cludes the model category, its temporal resolution or
its geographical and sectoral focus. As an example for
model classification, we propose Fig. 2 given at the
end of the full version of the ESS transparency
checklist.
Another criterion on the ESS transparency checklist

targets ‘model-specific properties’ which aims at pro-
viding a critical assessment regarding explicitly what
the model can show and what it cannot show. Con-
cerning the aforementioned risk of information over-
load, we suggest listing here only key aspects such as
new equations or modules implemented. The ‘model
documentation’ further refers to a more detailed infor-
mation level of the process of modeling. This entails a
description of how the perception of a real world prob-
lem is translated into a quantitative abstract model
using mathematics (predominantly equations). It may
also touch upon issues such as the range of application
of the model and the feasibility of implementing the
policies examined in the model. A separate document
(following e.g. the TRACE guidelines [31]) may be used
in this case, thereby mitigating the impact of informa-
tion overload. Providing a structured and user-friendly
documentation can be a challenging task as its users
might have different expectations about the content.
These can range from tutorials for out-of-the-box
model application to concrete source code implemen-
tation details for further model development. In
addition, usually model source code evolves continu-
ously which demands maintaining also the documenta-
tion. In this regard, Dodds et al. [37] propose an
approach called model archaeology to especially in-
corporate the effect of different model versions on the
documentation in a structured way. While open source
represents the most detailed information level in this
context, it can be stressed that even limited access to
the models’ source codes contributes to an increase in
transparency of a certain ESS.
As mentioned above, the model itself represents a

source of uncertainty. It is state of the art to perform
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validation tests to tackle this issue. But as models ap-
plied for energy scenario studies cover whole systems
and usually assess possible future developments, classical
experimental validation techniques are rarely applicable
on these models. However, several approaches exist to
check the model’s outcome. They range from simple
structural validity tests (e.g. plausibility checks) to more
sophisticated methods like empirical validity tests (e.g.
back testing of the system’s historical behavior) [18]. For
a better external assessment of the model quality, the
ESS transparency checklist therefore also lists the criter-
ion ‘model validation’ where the applied methods can be
documented.
Moreover, typical experts’ questions aim at distin-

guishing inputs and outputs. Therefore, independent
of what happens within a specific model, a clear label-
ing of the inputs and outputs of the model is required.
This information becomes especially important if more
than one model is involved in an ESS. In order to be
able to assess whether a result is already predeter-
mined by assumptions going into the model exercise, it
is necessary to show by which input parameters an out-
put value could be affected. Consequently, the trans-
parency criterion ‘model interaction’ emphasizes the
data exchange of a model with its environment. This
environment can either be other applied models or in
the simplest case the inputs and outputs of the whole
model exercise.
To illustrate this model interaction in terms of trans-

parent information exchange, various approaches exist.
Standardized model documentation protocols, such as
ODD or TRACE (see section ‘Literature review’) propose
simple tables and class diagrams using Unified Modeling
Language (UML) [53] for the documentation of model
variables. However, we think that these methods are
also applicable to show model interaction. The ODD
protocol [33] suggests flow charts or pseudo-code for
the transparent process overview and interactions be-
tween models. In addition, also a kind of interaction
matrix could be provided. For instance, a listing of all
inputs and outputs involved in the model exercise
represents the matrix’s rows, whereas each individual
model of the model exercise is represented by a col-
umn. Finally, by checking the appropriate cells of the
‘interaction matrix’, the model interaction could be
indicated.

Model output and results
Besides the required knowledge about the origin of cer-
tain data, we take the view that on a more detailed infor-
mation level, also all numerical values generated within
the study need to be accessible. The associated criterion
‘output data access’ is strongly connected to the trans-
parency criteria regarding the results communicated in a

study. But, since the raw model outputs are usually
post-processed for the presentation of the study’s
outcome, we explicitly distinguish it from the ‘Results’
which represent information in a more condensed
way. Although the usual purpose of these data modi-
fications is the reduction in the complexity of the
results (e.g. for answering the overarching research
question), even assumptions can play a role at this
point of the model exercise. In the simplest case,
applying mathematical aggregation functions such as
summation does not affect the meaning of the results
(e.g. summing up the CO2 emissions of administrative
regions to obtain the number of total CO2 emissions of
a state). But, in contrast to this, data interpretation is
another source for output data modification. ESS
authors need to be aware that even if such data modifi-
cations are not intended, implicit assumptions such as
individual opinions can affect the data interpretation
and accordingly the results of the model exercise itself.
Consequently, stating adaptations applied to the output
data, the transparency criterion ‘post-processing’ aims
at raising awareness on the ESS authors’ side.
In order to assess the discussed types of uncertainty

(see section ‘Assumptions communication’), different
methods exist. The most prominent examples are
sensitivity and robustness analyses. While the former
investigates the effect of input parameter variations
on the results within the same model, the latter em-
ploys different models to validate the outcome of a
specific ESS.
In the case of sensitivity analyses, Hamby [54] reviews

alternative approaches. He shows that the use of sensi-
tivity analysis techniques provides valuable insights with
regard to the correlation of specific input parameters
with the model output and also enables the elimination
of certain input data due to its insignificance on the
results.
Weisberg [55] defines a robustness analysis as ‘an

indispensable procedure in the arsenal of theorists
studying complex phenomena’ (p. 742), which ex-
amines ‘a group of similar, but distinct, models
for a robust behaviour’ (p. 737), searching for ‘pre-
dictions common to several independent models’
(p. 730). Brock and Durlauf [49] further suggest
Bayesian analysis as a method to quantify model
uncertainty, but argue that a robustness analysis is
most appropriate for models which are characterized
by rather similar purposes. An example for an uncer-
tainty analysis in ESS using a Bayesian model is given
by Culka [56].
To attribute the effect of input parameter and the

model selection on the results, both sensitivity and ro-
bustness analyses are listed as criteria in the ESS trans-
parency checklist.
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Conclusions and recommendations of model-based ESS
Although the ESS transparency checklist aims at ensur-
ing model comprehensibility for experts in the first
place, making the model exercise transparent is not suf-
ficient to justify conclusions. As a fundamental part of a
scientific study, the conclusions represent, in contrast
to the model outputs, the outcome of the whole model-
ing framework. Especially, this part of the checklist as-
sists ESS users to fully grasp the studies’ outcomes. The
conclusions are supposed not to be drawn only from the
model results, but also to take into consideration the
underlying assumptions. Concerning communication of
the latter, the Progressive Disclosure of Information
(PDI) strategy offers a detailed guideline [21].
As in ESS, ‘Conclusions and recommendations’, in gen-

eral, are mostly intended to give some kind of advice to
decision-makers, and another level of information detail
is required to assess the study’s outcome in terms of an-
swering the overarching research question. This means
that even if the necessary information for an uncertainty
assessment by external experts is provided, we
recommend that ESS authors give a statement about the
effect of uncertainties, because they are the most
knowledgeable about the model exercise. For instance, it
can be explicitly stressed which alternative future devel-
opments are also possible even if they are not covered
by the studies’ results.
Information on how the uncertainties have been dealt

with is required not only for the formulation of the con-
clusions but also for the formulation of the recommen-
dations. Depending on the degree of uncertainty, three
types of statements are possible: probabilistic, possibilis-
tic or deterministic. This has an influence on how
recommendations are communicated. As an example for
improving current practice, ESS authors could learn
from climate research which delivers a prototype for giv-
ing policy advice taking into account uncertainty com-
munication [57]. Probabilistic statements for explorative
scenarios rarely can be made since the capability to pre-
dict future developments is limited [58]. A common
misinterpretation by ESS users is mistaking of business-
as-usual scenarios as predictions of what will happen
(instead of what can happen).
In addition, the missing transparency of how concrete

proposals for decision-making are derived from the the-
oretical model exercise was a major critique on existing
model-based ESS during the process of developing the
transparency criteria. The ESS authors face the risk
that their recommendations are perceived as untrace-
able or, in extreme cases, arbitrary if they fail to clar-
ify the relationship between their conclusions and
their recommendations. In order to mitigate this risk,
the ESS authors should provide a clear argument for
their recommendations. This would mean that the

description of the causal chain captured by their
model is complemented by argumentation analysis to
support their recommendations, thereby highlighting
the process by which the results-recommendation re-
lationship is created.

Limitations of the ESS transparency checklist
The ESS transparency checklist as a first step to improve
transparency in ESS is an expert-to-expert tool. This en-
tails a restricted perspective of the issue of lacking trans-
parency in ESS as well as a limited transferability to
non-experts. However, the difference in perspective be-
tween experts (here, modelers or ESS authors) and non-
experts is important. For example, Walker et al. [50]
explicitly distinguish, in the context of uncertainty,
between the modeler’s view and the decision-makers’ or
policymakers’ view. To some extent, the transparency
criteria in their current form are beneficial for non-
experts as they provide a first insight into the key as-
sumptions and methodologies of an ESS. Nevertheless,
although this may be of value to non-experts, addressing
their needs in a more comprehensive manner requires
an approach that differs from the ESS transparency
checklist. For instance, an adaptation or enlargement of
the transparency checklist might ensure applicability to
a broader audience.
Furthermore, asking ESS authors to fill out the check-

list by themselves may raise the question of quality as-
surance and as a qualitative empiric tool the checklist
includes potential conflicts of interest of energy mod-
elers. However, with regard to this, for quality assurance,
we rely on the practice of good scientific conduct in the
modeling community.
Finally, the ESS transparency checklist facilitates and

also requires a certain level of standardization, which is
a key element in order to provide comparability of
model-based ESS. Consequently, it determines to some
extent in which way ESS are presented (i.e. what infor-
mation is conveyed and at what level of transparency).
However, it is important to stress that standardization is
not a panacea, since ESS are very diverse and the
current version of the checklist naturally does not
exhaust all reporting possibilities. This is one reason
why ESS authors might find it challenging to apply the
checklist to their study.

Conclusions and outlook
If ESS are to meet their purpose, openness to public
scrutiny is needed. We argue that a high degree of
transparency in consonance with scientific standards is
still pending in model-based ESS. In this paper, an in-
strument to tackle this issue has been proposed in the
form of the ESS transparency checklist. This tool is
conceived as an addition to transparency approaches
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such as open source which represent so called glass box
(i.e. high level of transparency) models. It presents the key
information of model-based ESS in a compact and
standardized manner. In practical cases where, for various
reasons, ESS authors are unable to provide their glass box
model, the checklist may be used as a tool that meets a
minimum requirement for transparency.
The ESS checklist is the outcome of a process which

includes literature review, expert interviews and expert
validations. Its structure follows the method of data and
information processing within a model-based ESS.
Therewith, it distinguishes between input parameter
modification in advance of the modeling (pre-process-
ing) and post-processing which aims at condensing rare
model outputs (post-processing). Stressing, especially,
the importance of assumptions communication and
model documentation, the checklist considers different
levels of detail to provide information for study users
with different degrees of knowledge about a modeling
exercise. Although the ESS transparency checklist ap-
pears to be a useful tool for modeling experts in the first
place, it is the first step for a standardized communica-
tion protocol between performers and assessors of
complex studies in the field of energy scenarios.
We do not expect to leave this issue completely re-

solved. Instead, an attempt is made to highlight one
weakness in ESS, and we put forward our initial sugges-
tion for improvement. For instance, we suggest the
development of transparency criteria for a broader
spectrum of addressees, such as the public or policy-
makers. The reduced version of the ESS transparency
checklist (see Additional file 1) can be a valuable starting
point for this purpose, but further questions (e.g. ‘What
does a solver routine do?’) need to be considered as well.
In order to identify transparency criteria, e.g. for politi-
cians or public stakeholders, we suggest further surveys,
specially adapted to these addressees taking into account
customized communication strategies as proposed by
Kloprogge et al. [21]. A useful manner of addressing the
needs of non-experts may be by means of producing a
modeling guide for non-experts. Such a guide could con-
tain fundamental issues and answers to questions a non-
expert user should ask about the model exercise.
We think that the ESS transparency checklist is a simple

but very helpful tool for authors and readers of ESS and ex-
pect that its adoption will help improve the quality of such
studies in the future. We would like to invite potential users
to benefit by applying it to their studies and reports.
Comments and critiques from the research community
and experienced users of model-based ESS are welcomed.

Endnotes
1In this paper, we refer to the following definition of the

word ‘scenario’ given by the Intergovernmental Panel on

Climate Change (IPCC): ‘A plausible and often simplified
description of how the future may develop, based on a
coherent and internally consistent set of assumptions
about driving forces and key relationships’ (p. 86) [59].

2‘Availability bias’ describes the tendency of ESS
authors to include their knowledge of historic events
(e.g. the past development of electricity prices) and
own experience into the rationale behind their model
parametrization or model methodology. In conse-
quence, unexpected or disruptive elements might be
neglected in the modeling approach. For the availabil-
ity heuristic and availability biases in the context of
risk, see [61, 62].

3In this paper, a ‘model’ is defined as a mathematically
consistent framework including an inter-dependent set
of equations which aims to analyse how phenomena
occur in a complex system. It is usually in the form of a
computer algorithm.

4In general the terms ‘reader’ or ‘user’ are reserved to
designate those people who—expert or not—use the out-
come of ESS, e.g. for decision making or subsequent
modeling exercises. Note that this paper addresses ex-
pert users in particular.

5By assumptions, we mean reasonable, best guess defi-
nitions for unknown values or relationships between var-
iables which are supposed to be plausible but cannot be
directly validated by measured data. In ESS, this applies
either for future developments, generalization in order
to reduce complexity (of data or models) or incomplete
data sets for which measurements are not fully available.
Thus, assumptions may differ depending on the profes-
sional background, intention, or even ideology of per-
sons who make them.

6The term ‘ESS author’ refers to those people who develop
ESS. Thus, in this paper, ESS authors can be understood as
modeling experts having the intention to document an
ESS. Often ESS authors are also readers of ESS.

7A complete summary of the questions from the work-
shop is attached to the ‘Appendix’ section below.

8These normative assumptions are a part of the story-
line. For instance, they do influence the distinction of
what is (not) included in the data processing and there-
fore define the system boundaries of the model(s).

Appendix
Questionnaire for the initial collection of transparency
criteria
Assumptions
What assumptions about price paths and technology
costs in the future were made and how do they affect
the scenario results and derived recommendations? Is
there sufficient transparency to assess this? Are the as-
sumptions well-founded or could other developments be
assumed just as well?
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Scenario methods
How can the basic methodology of the scenario con-
struction be described and how can we distinguish it
from other approaches? In particular, which method-
ology has been used to develop future technology splits
for the electricity, heat and transport sectors and how
far have economic and infrastructural aspects been taken
into account (keyword: system costs)? Is the study suffi-
ciently transparent to assess this?

Consistency
Are assumptions and scenario results consistent (con-
sumption and demand drivers in the energy sectors, sup-
ply/generation, costs, and conclusions)? Is there sufficient
transparency to judge this? Are interactions between the
electricity, heat and transport sectors considered?

Uncertainty
How does the study communicate uncertainties of its main
findings? Are scenarios considered to be plausible worlds, or

possible future pathways, or likely evolutions of the energy
system? Do the main findings of the studies represent pos-
sibility statements? Are uncertainties expressed in a prob-
abilistic way, either qualitatively or quantitatively? Does
the study pretend to arrive at robust results? And is the
specific way the study presents uncertainties adequate?

Policy advice
Does the study derive policy recommendations from the
scenarios? If so, how? And is this reasoning valid?
Which additional normative assumptions enter the der-
ivation of policy recommendations and are they made
sufficiently transparent?

Reception
How has the study been received (in the public, by
stakeholders, in the media, etc.)? Has this reception been
politically biased? Were the findings over-simplified and
did this seriously distort the original content of the
study?

Fig. 2 Classification of energy system models based on [81]
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Abstract: Energy scenario analyses are able to provide insights into the future and possible strategies
for coping with challenges such as the integration of renewable energy sources. The models used
for analyzing and developing future energy systems must be simplified, e.g., due to computational
constraints. Therefore, grid-related effects and regional differences are often ignored. We tackle this
issue by presenting a new methodology for aggregating spatially highly resolved transmission grid
information for energy system models. In particular, such approaches are required in studies that
evaluate the demand for spatially balancing power generation and consumption in future energy
systems. Electricity transmission between regions is crucial, especially for scenarios that rely on
high shares of renewable energy sources. The presented methodology estimates transmission line
congestions by evaluating the nodal price differences and then applies a spectral clustering on
these particular link attributes. The objective of the proposed approach is to derive aggregated model
instances that preserve information regarding electricity transmission bottlenecks. The resulting models
are evaluated against observables such as the annual amount of redispatched power generation. For a
selection of defined performance indicators, we find a significantly higher accuracy compared to the
commonly used, spatially aggregated models applied in the field of energy scenario analysis.

Keywords: energy scenario; power system modeling; spectral clustering; spatial aggregation; grid
and storage expansion

1. Introduction

1.1. Motivation

Optimizing energy system models (ESMs) are frequently applied tools that are used for the
analysis and development of energy scenarios [1]. In the context of strategic and political decision
making, these scenarios are often used for gaining orientations concerning future developments
or to show pathways towards the achievement of targets, such as the reduction of greenhouse
gases [2]. One of the advantages of choosing optimization models for analyzing energy scenarios is
that these targets can be easily integrated into a mathematical description of a whole system while
examining a broad spectrum of technological solutions for meeting such constraints (Bottom-Up
modeling) [3]. Hereby, ESMs typically aim for a cost-optimal energy system configuration, where a mix
of electricity generators must cover the electrical load at any given time. System sizes range from local
to international scales [4]. However, driven by greenhouse gas reduction targets, long-term energy
scenarios also have to consider large shares of power generation from renewable energy resources [5,6].
Given the variability of electricity provision from wind turbines or photovoltaics, challenges arise for
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modeling energy scenarios. A broader set of technologies such as electricity grids, batteries or demand
response needs to be included as well as approaches towards cross-sectoral analyses [7].

Recent energy scenario studies address the need for both flexible power generation and
consumption by integrating technological flexibility measures into ESMs [8]. The complexity of the
underlying multi-area optimization problem is not only affected by the enlargement of considered
technologies but especially increases due to the stronger coupling of both time steps and modeled regions.
The examination of necessary investments into flexibility options thus becomes a co-optimization problem
for the extension of generation, transmission and energy storage capacities [9,10].

Recently, spatial resolutions in ESMs have been increased substantially with better data availability [7].
On the European level, most energy scenarios are characterized by ESMs where each country is
represented by either a single or only a few modeled regions [11,12]. Therefore, spatial data are aggregated,
or in other words, the total power generation and consumption of a defined region are concentrated at
one point while neglecting intra-regional power flows. Such ESMs consist of a network of aggregated
regions (often referred to as “copper plates”), observe only inter-regional power flows, and, hence,
necessary investments into transport capacities. For energy scenarios that rely on high shares of
variable renewable energy sources (vRESs) this translates into neglecting possible transmission grid
congestion, caused by the fact that electricity demand centers and resource hotspots are typically
remote from one another.

Besides the increasing renewables penetration, further challenges such as market integration or
deregulation [13] require appropriate methodologies that can account for limited power exchange
capabilities of transmission grids. To tackle these challenges (rather than simply increasing the spatial
resolution of an ESM), network clustering and reduction approaches appear to be a suitable way
of capturing effects on local levels without a significant increase in the typical computing times of
an ESM.

Such approaches, which spatially aggregate data of an ESM, are effective since they reduce the
number of linking constraints from the underlying optimization problem. By linking constraint we
mean a specific type of constraint that couples variables that belong to individual blocks and prevent a
faster solution of the mathematical optimization problem. In particular, spatial aggregation leads to a
reduction of power flow constraints which link regions with each other. If all power flow constraints
are removed from an ESM, it could be solved by solving smaller optimization problems for each region
(in parallel). Mathematical decomposition techniques, such as that applied in [14], make use of this
effect, however at the expense of an iterative solution process.

1.2. Objective

This paper aims to develop a methodology that derives spatially aggregated ESM instances from
a highly resolved model (referred to as the reference model). In this regard, such instances provide
similar results (e.g., power flows and power plant operation) when compared to the solution of the
reference model. Spatial details should be reduced to a level that is computationally manageable.

Therefore, two necessary methodological steps are distinguished. First, aggregated regions have
to be defined. This directly refers to the selection of transmission links that should be included in the
optimization. Second, the process of aggregating spatial data itself needs to be conducted. However,
the focus of this paper relies on the former for which the following requirements can be defined:

• The approach must enable the identification of transmission links that show frequent congestions
in operation.

• Real-world electricity transmission grids are networks that cover large geographical scales and
consist of several thousands of nodes. To manage the appropriate amount of data, an automatized
process is preferable.

• A reproducible method is required that is adjustable to changes in generation and consumption
patterns. This becomes important to identify intra-regional bottlenecks over a long-term time
horizon by myopically adjusting the spatial aggregation.

49



Sustainability 2018, 10, 1916 3 of 32

• It can be assumed that with an increasing number of modeled regions, the accuracy of an ESM
can be improved and that there is probably an optimal spatial resolution regarding the trade-off
between computing time and model accuracy. However, for our study, the spatial resolution
should remain on a level that is comparable to the state of the art [15–17], which allows the
comparison to typical ESM resolutions.

• To still be able to derive results for regions of interest, e.g., administrative regions, the definition of
static overlay-borders should be possible (even if the spatial aggregation is myopically adjusted).

• Aggregation methods that are able to simplify the whole network representation of the model
instead of focusing on specific areas are preferred.

1.3. Literature Review: Spatial Aggregation

For the creation of multi-area ESMs by the spatial aggregation of topological data of a power
transmission network (in the following, referred to as original network), the two necessary methodological
steps are often referred to as ‘network partitioning’ and ‘creation of network equivalents’.

1.3.1. Network Partitioning

With algorithms such as k-means and its variations or hierarchical clustering, methods for
automatically deriving clusters of spatially highly resolved data are already available in a broad
spectrum [18]. Moreover, attributes that define the desired outcome of such algorithms are necessary.
An obvious approach for such definitions is thus the assessment of the actual grid (e.g., through
analyzing its topology). Since energy scenarios are typically used for policy advice, model regions
in ESMs are required to refer to areas of interest. This leads to the investigation of administrative
regions [19] or markets [20].

Also, other criteria can play a role in the selection of aggregated regions. In particular, for studies
commissioned [21] or conducted [22] by transmission system operators, the distinction of geographical
hotspots of power demand and generation centers is also used. For instance, the clustering approach
proposed for the project e-Highway2050 [21] assesses several parameters, such as population, vRES
potentials, and already installed hydro and thermal capacities as well as the locations of agricultural
areas and natural grasslands. In this way, the need for a spatial power exchange is considered by
minimizing the self-consumption of a cluster. Nonetheless, frequently congested transmission lines
are not directly detected if no power flow study is conducted.

Therefore, information about the actual state of the grid is still necessary, especially topological
characteristics such as geographical or electrical distances [23]. However, when using these simple
attributes, relevant information about the placement of generation and demand or the usage of
transmission lines is ignored. For this reason, the process of network partitioning is often extended
with operational data, gathered from running an ESM. In [24], the use of both operational and
topological data is proposed to combine information about the distances and to incorporate critical
links in the reduced network. One further example for such partitioning approaches is presented by
Singh [25]. While the topological information is limited to the geographical proximity, the operational
attribute for building clusters is based on nodal prices which are calculated with an optimal power
flow model. In particular, the sensitivity of nodal prices to changes of system loading is evaluated to
identify classes of similar nodes in the network.

Operational data are also contained in so-called power transfer distribution factor matrices
(PTDFs) that can be created from modeling the power flows within a network. For instance, they
are used in [26] for network partitioning where, first, critical transmission lines are identified and
subsequently, based on the PTDF, regions are clustered by their influence on the power flow of all
links. Similar approaches that evaluate topological and operational data are suggested in the context
of network vulnerability analysis [27]. Here, an indicator called transmission betweenness is also
determined using regional power injections and the transfer capabilities of transmission lines.
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1.3.2. Network Equivalents

Once aggregated regions are defined, the creation of network equivalents can be conducted
in several ways. In the simplest case, each cluster is treated as a copper plate where no additional
measures are applied for adjusting the outputs of an aggregated ESM to their counterparts obtained
from a spatially highly resolved ESM. In other words, due to the aggregation, the resulting power
flows and dispatch of power plants may differ significantly.

In the context of power flow analysis, methods for deriving representative electrical distances
have been used for a long time [28,29]. A typical example for these methods is Kron’s reduction which
can be used to remove passive buses (buses without power injection) from the nodal admittance matrix
of a network. For instance, applying it to a star circuit results in the star-triangle transformation [30].
While a pure Kron’s reduction is already applicable when having the topological description of a
network by its admittance matrix, the creation of Ward- and Extended-Ward equivalents additionally
takes into account information from a solved power flow problem. This is also used for the
determination of the Radial Equivalent Independent (REI), which adds representative loads and
generators to the aggregated regions. Therefore a Gaussian elimination is applied to the external
buses. The power injections of these buses are preserved by aggregating them to artificial generators
which are connected to a representative, radial network which is referred to as REI [23]. Nevertheless,
the objective of these network representatives is to divide the original network into an internal and
external part, whereas the former remains in full resolution. This, however, is not the first priority if
energy scenarios are modeled through equivalent network representations. Therefore, PDTF-based
approaches, such as presented in [26,31], appear to be more suitable.

2. Materials and Methods

2.1. Overview

The methodology for creating an ESM that incorporates power transmission bottlenecks is
composed as follows.

1. Setup of a reference model: This ESM is parameterized and used for conducting an optimal
power flow. Its spatial resolution corresponds to the topology of the power transmission grid
and thus represents the original network used for the subsequent spatial aggregation.

2. Network partitioning: This step contains the analysis of the operational data, using the differences
in nodal marginal costs for the total power supply (in the following, referred to as nodal price
differences) as indicators for the connectivity of regions in the original network as proposed
in [24]. In other words, the weaker the connectivity of two regions (indicated by the magnitude
of nodal price differences) is, the more likely it is that these regions belong to different clusters.
The novelty of the presented approach is the application of this particular attribute to a spectral
clustering algorithm which can be executed automatically. In contrast to approaches that use
spectral clustering for ESMs [32], the topological information of the original network given by its
incidence matrix is extended by the operational data. Furthermore, compared to existing studies
that use this data in form of nodal prices [25], the purpose of evaluating their differences is rather
the determination of relevant congestions in the transmission network than the identification of
price zones.

3. Network equivalent: After getting the results from the clustering algorithm, the spatial data of the
reference model are aggregated. Therefore, we use the simple approach of creating aggregated
areas (in the following, referred to as clusters or zones), which means that power generation
capacities and power consumption profiles are summed over all regions within a cluster as
well as grid transfer capacities of links that connect regions belonging to different clusters. In a
further step, network equivalencing introduced by [26] is applied for assessing the accuracy of
the aggregated ESM instances.
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The spatial distribution of power generation and consumption could change significantly in the
future, for example as a result of an expansion planning approach for which the proposed methodology
is suited for. For this reason, the network reduction methodology described above should ideally be
applied in a repetitive manner to identify robust investment decisions over a certain time horizon by
expansion planning with an ESM (Figure 1).
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Figure 1. Possible applications of the presented method—examples of data processing using spatially
aggregated energy system models (ESMs) for capacity expansion studies, (left) stochastic expansion
planning, e.g., for a certain scenario year; (right) iterative expansion planning, e.g., over a period of
scenario years.

On the one hand (Figure 1 left), similar to stochastic optimization, assumptions for the spatial
distribution of power generators and consumers (see section Data Pre-Processing) could be changed in
the setup of the reference model to proof that the resulting system performs well over a spectrum of
different possible futures. On the other hand (Figure 1 right), also expansion planning over a period of
scenario years could be iteratively modelled by updating the scenario data. In this way, new capacities
required for a certain scenario year could be considered for deriving the aggregated ESM instance for
expansion planning of a subsequent year.

However, as this paper emphasizes a new methodology for spatial aggregation of ESMs, in the
following, the application of the full approach including the investment optimization is only conducted
once (Case study).

2.2. Model Setup

To identify critical transmission links, a spatially highly resolved model (the reference model) is
set up based on the grid topology of the German transmission grid. For its creation, a data scrape of the
ENTSO-E power map is used [33]. As a case study for developing the algorithm, we initially picked
Germany for two reasons: (i) data availability for renewable power generation at high spatial resolution;
and (ii) high wind and solar PV penetration, which represents one of the main drivers for transmission
grid congestions in the future. For the implementation, the ESM REMix [6] is parameterized using
the empirical data for the year 2012. Typical applications of REMix range from theoretical studies
concerning future energy supply with different shares of vRES [34] and country specific scenario
studies [35,36] to the assessment of system reliability [37] and flexibility requirements [38] of the
European energy system in the future. REMix can thus be configured for multiple study purposes.
Table 1 shows the model fact sheet of how it is set up for the creation of the reference model where the
input data are indicated by references.

To allow an extension of the geographical focus, mainly sources that provide data with a European
scope were selected. However, the final input parameters for REMix are partially modified as explained
in the subsequent chapter. For example, profiles for power feed-in from vRES are processed for NUTS3
level using potential analyses [39] on meteorological data for the year 2012. As these time series
represent potentials, one output of REMix is the amount of usable (or vice versa the amount of
curtailed) power generation from vRES.

Table 1 also provides information about the format of input and output data, indicating whether the
data differ on the temporal (TM), technological (TC) or spatial (SP) scale. In addition, two different datasets
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regarding the analyzed year are distinguished. On the one hand, the power plant and transmission grid
data reflect the German power system for the year 2012 (validation dataset). However, the objective of
the proposed methodology is its application to energy scenarios. Therefore, on the other hand, REMix
is parameterized for the year 2030 based on scenario C of the German grid development plan [40]
(scenario dataset) that provides technology specific installed power generation capacities as well as
a projection for the annual power demand in the year 2030. With regard to grid transfer capacities
(GTCs), no grid expansion that goes beyond the values derived from the ENTSO-E power map data
scrape is considered.

Despite the fact that REMix is actually used as a power system model, the term ‘energy system
model’ (ESM) is still used in the following since the subsequently presented methodology is also
applicable to cross-sectoral optimization models.

Table 1. Model fact sheet of the applied configuration of REMix.

Model Name REMix

Author (Institution) German Aerospace Center (DLR), Institute of Engineering Thermodynamics

Model type

Linear programing
Minimization of total costs for system operation
Economic dispatch
Optimal direct current (DC) power flow (Appendix A)

Sectoral focus Electricity
Geographical focus Germany
Spatial resolution >450 nodes (reference model)
Analyzed year (scenario) 2012 (2030)
Temporal resolution 8760 time steps (hourly)

Input-parameters:

TM TC SP
Conversion efficiencies [41]

√

Operational costs [41]
√

Fuel prices and emission allowances [42]
√

Electricity load profiles [43]
√ √

Capacities of power generation, storage and
grid transfer capacities and annual electricity
demand [33,40,44]

√ √

Renewable energy resources feed-in profiles
√ √ √

Import and export time series for
cross-border power flows [45]

√ √

Evaluated output
parameters for clustering

Marginal costs of total power supply
√

(Nodal balance of total power generation
and consumption)

√

2.3. Data Pre-Processing

The raw input data (e.g., from the literature) is often not provided in a format that is directly
applicable to the input requirements of a particular ESM (Table 1). Therefore, by data pre-processing
we mean the process of preparing empirical data for its use as input data in REMix. As mentioned
above, we distinguish two data sets—the validation data set which represents the German power
system of the year 2012 and the scenario data set that uses a power plant portfolio of a scenario of the
year 2030—for which this preparation process is described in the following.

2.3.1. Disaggregation of Cross-Border Flows

The time series for cross-border power flows (imports and exports to Germany) are given on
the country level, where countries are typically connected via several transmission systems. For the
reference model, instead of spatially distributing the imported and exported power to each link of
the original network, all cross-border links are connected to a single node for each neighbor country.
To ensure that the correct total power flows occur, each cross-border node consists of an artificial bus,
which generates and consumes power according to the given import and export time series. Data gaps
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in the accessed physical cross-border flows are filled, either by using the commercial power flows
instead or by linear interpolation.

2.3.2. Assignment of Power Generation and Consumption to Network Nodes

Another challenge for setting up an ESM that relies on the nodes and links of the high
voltage transmission grid is the assignment of data that are collected for areas (e.g., population
of administrative areas) to appropriate nodes. This applies, for example, to decentralized power
generators, such as photovoltaic and onshore wind farms, as well as to the annual power demand of a
region. For the current purpose, this translates into the mapping of data from areas on the NUTS3
level [46] to nodes indicated as substations in the ENTSO-E power map data scrape. As a previous
step, the downscaling of data from coarser resolutions than NUTS3 is also necessary. For the mapping,
a common approach is performing a nearest neighbor analysis from the centroid coordinates of the
areas to the coordinates of substations if no topological information about the underlying distribution
grid is available (see Appendix B for a more detailed description).

2.3.3. Disaggregation of National Scenario Data

Since scenario data are usually available in a spatially aggregated format, e.g., on the country
level, a distribution of installed power plant capacities is necessary. To do so, the following steps
are performed:

• Central power plants with less total installed capacity compared to the validation dataset: Based on
the commissioning year, the sites of the oldest power plants are decommissioned as long as the
total installed capacity reaches the same order of magnitude as in the given scenario data.

• Central and biomass power plants with more installed capacity compared to the validation
dataset: The installed capacity of existing power plants is equally scaled until the total installed
capacity of the scenario data is reached.

• Photovoltaic and onshore wind farms: One-half of the installed capacity of the scenario data
is distributed equally to the spatial distribution of the validation dataset. The other half is
distributed equally to a technologically specific distribution of capacity factors that are derived
from a potential analysis [39].

• Offshore wind farms and pumped storage: Sites of planned power plants [47] are added to the
validation dataset.

2.4. Clustering

The process of defining clusters of regions in the network of the reference model is depicted in
Figure 2. First, an annual run of the spatially highly resolved reference model is performed. To ensure
that the model can be solved, we use a temporally nested heuristic. This approach initially solves
the problem in a 6-hr temporal resolution. The obtained results, particularly the values for fuel
consumption, shares of allowed annual carbon dioxide emissions, and storage levels, are then used as
an input for the following hourly resolved model run.
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From the resulting time series of the nodal price differences of the reference model, certain points
in time are selected with the aim of identifying snapshots where a significant share of transmission
links within the network are under stress. For this purpose, we define three criteria that can give an
indication for such critical situations and apply them to the input or output data of the reference model:
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• tLoadWind: hour of the year for which the maximum of the sum of the generated power from wind
onshore and the load can be observed; this point in time can be identified by purely analyzing the
input time series of the reference model.

• tPrice: hour of the year for which the maximum of the nodal price differences can be observed.
• tGTC: hour of the year for which the maximum of the relative grid transfer capacity usage can

be observed.

Each of these selection criteria could result in an individual snapshot for each transmission
line or region. However, it is very likely that the appropriate hour of the year differs over the
several transmission lines and regions. Therefore, we first aggregate the time series of the reference
model in space by using a statistical measure and then apply a particular criterion from above.
For example, in the case of tGTC, this means that first the 0.95-quantile of the relative power flow over
all transmission lines is calculated. Afterwards the maximum value of this spatially aggregated time
series is determined to identify the hour of the year that represents the snapshot tGTC. For more details
concerning the determination of critical hours see Appendix D.

Although the selection of temporal snapshots is a common approach for analyzing huge electrical
networks, it is not ensured that all lines for which a critical state can be observed are captured in this
way. However, one major aim of the evaluation is to assess the impact of the proposed clustering
approach compared to state-of-the-art modeling, rather than the identification of all critical links.
While the latter would be similar to the definition of a worst-case network, we meet this challenge by
conducting a stability analysis for a number of different snapshots (see section Clustering of Regions).

The spectral clustering algorithm is set up according to [48]. A detailed description of the conducted
data processing is provided in [49]. Based on conducting a number of experiments with the clustering
parameters, we use the unnormalized variant by default and thus construct the Laplacian matrix:

Lunnormalized
(
n, n′

)
= ∑

l
KT(l, n′

)
·∑

l′
ρdiag

(
l′, l

)
· K( n, l)n, n′ ∈ N (1)

where N is the set of nodes, K is the incidence matrix of the original network, and ρdiag is a diagonal
matrix of affinity attribute. The latter can be derived from the vector of nodal price differences
(which represents a slice of the appropriate time series determined by applying one of the snapshot
selection criteria):

∆ρ(l) =
∣∣∣ 1

∑n
K( n, l) · ρ(n)

∣∣∣
such that

∑
n

K( n, l) · ρ(n) 6= 0, ∀l ∈ L
(2)

where L is the set of links in the original network and ρ is the vector of nodal prices. As high values in
ρdiag indicate a strong affinity or connectivity, the absolute reciprocal of the nodal price differences
is used as an indicator for the similarity of regions in the reference model. Applying a k-means
algorithm to a matrix, which consists of the eigenvectors that correspond to the k-smallest eigenvalues
of Lunormalized, a mapping matrix Πg can be derived. This matrix represents the final output of the
network partitioning process as each region or node of the original network is now assigned to a cluster.
These clusters define the regions in the partitioned network of a spatially aggregated ESM instance.
In the following, we therefore use the terms “cluster” and “aggregated region” synonymously.

2.5. Derivation of Spatially Aggregated Energy System Models

The process of aggregating the data of the reference model, also referred to as creation of network
equivalents, uses Πg for summing up nodal model parameters, such as installed generation capacities:

Pinst,agg
(
nagg, τ

)
= ∑n Πg

(
nagg, n

)
· Pinst(n, τ)

∀nagg ∈ Nagg, ∀τ ∈ T
(3)
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where Nagg is the set of nodes in the aggregated network and T stands for the set of power generation
and consumption technologies. Data that characterize the links of the original network, such as GTCs,
are aggregated in a similar way:

GTCinst,agg
(
lagg

)
= ∑l Π f

(
l, lagg

)
· GTCinst(l)

∀lagg ∈ Lagg
(4)

where Lagg stands for the set of links in the aggregated network, and the mapping matrix Π f can be
derived by evaluating the incidence matrix of the original network and Πg. Finally, instead of only
summing up, the inputs such as load profiles or vRES power generation time series are averaged by
the number of aggregated regions per cluster. As a result, the aggregated zones are created from the
reference model’s regions. These ‘copper plates’ are connected by inter-zonal links that are derived
from combining links of the original network that cross the borders of a zone, while all intra-zonal
links are neglected. Concerning the derivation of the nodal admittance matrix of the reduced network,
parallel links are aggregated by summing up the appropriate susceptances. In contrast, for the losses
estimation, the parallel links are aggregated by averaging to account for the intra-zonal losses.

As this paper emphasizes a new network partitioning approach rather than sophisticated methods
for creating network equivalents, further efforts to improve the aggregation procedure are not applied.
However, the used network data consist of both passive and active nodes. While the latter are
characterized by a certain power generation or consumption, passive nodes are only necessary to
branch the network. Since only active nodes contain the relevant information for further analyses, the
application of Kron’s reduction [30] represents a considerable step towards the simplification of the
original network.

3. Results and Discussion

This section is subdivided into several analyses, starting with the validation of the reference
model, followed by the comparison of different aggregated ESM instances and a case study where the
proposed clustering methodology is applied. For each of this analyses different quality measures or
indicators are evaluated. In the following, the results of these different analysis steps are presented in
a repetitive manner. Each section consists of the introduction of the evaluation indicator, followed by
the description of post-processed output data and a discussion of the appropriate implications.

3.1. Validation of the Reference Model

In the best case, the validation of the reference model provides a test against spatially resolved
times series of power flows or the nodal dispatch. Since, up to our knowledge, such a data set for
back-testing is not freely available, the validation of the reference model combines tests against different
types of historical data. In this context, the entirety of these tests should provide the information to
assess the validity of the reference model.

As a first step towards the validation of the model, a simple plausibility check is conducted:
To ensure the feasibility of the generated optimization model, slack variables are defined. These slack
variables can be interpreted as artificial power generators that generate electricity only if there are
no other remaining options to cover the electricity demand in a specific region. This means that the
activity of artificial power generators can be interpreted as loss-of-load situations. Since such an event
was never recorded in 2012 for Germany, the first plausibility check is conducted by ensuring that no
loss-of-load situations occur in the reference model. We therefore use the assumptions for the uniform
estimation of GTCs as calibration parameters (see Appendix C). The security margin and the conductor
type are iteratively adjusted to avoid the occurrence of the loss-of-load for the validation dataset.

In a second step, the reference model is validated by back-testing against a historic dataset of
2012 which is temporally resolved. To get an idea of the quality of generated temporally resolved
data, the observed spot market time series of electricity prices [43] are compared with the marginal
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costs of the total power supply of the reference model. This is due to the fact that, if a perfect market
is assumed, electricity prices should be equal to the marginal costs obtained from an optimization
model [50]. We are aware that the consideration of power flows in the spatially highly resolved model
implies the inclusion of redispatch measures. The corresponding costs are not contained in the time
series of historic electricity prices since the real power market acts like a copper plate model. However,
we are of the opinion that a validation against temporally resolved observables is valuable. In this
context, time series of market prices are almost the only data which is freely available for this purpose.

The validation is based on hourly data that is used to calculate the Pearson product-moment
coefficient (PCC). For a better overview of the analyzed time period of 8760 h, Figure 3 shows the daily
rolling average of both the recorded (black curve) and the modeled (red and green dotted curve) data.
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As the reference model actually produces nodal prices (and electricity prices of the spot market
are based on one single market zone for Germany), we apply two measures to test against the historical
data. First, we determine the median overall nodes of the original network. Second, we spatially
aggregate the reference model to a one-node (copper plate) model and use the appropriate marginal
costs for validation. Both of these measures have their advantages and disadvantages. The former
provides a comparison with the outcome of the spatially resolved reference model, but produces nodal
information instead of prices for a single market zone. Although this is not the case for the aggregated
copper plate model, this model is not able not provide the data required for spatially resolved analyses,
such as the intended identification of congestions in the transmission grid.

Figure 3 shows how the reference model is able to reproduce the times series of the electricity
prices of 2012, resulting in a PCC around 0.64. In this context, the almost uniform shape of the modeled
curves (red and green dotted) shows that both the median of the spatially resolved model as well
as its fully aggregated counterpart perform in a very similar manner. However, peaks and valleys
of the observed data are usually underestimated, which is a typical phenomenon of such modeling
exercises [51]. This leads to the conclusion that the distribution of modeled prices is flatter than in
reality. Possible reasons for this deviation are:

• The strategic behavior of market actors, which is not captured by modeling the fundamental
interdependencies of the electricity market.
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• Assuming static costs for fuels and emission allowances as well as the classification of power
plants by fuel type also results in equalizing specific production costs of large power generation
units and, thus, a smaller diversity of marginal costs.

• The chosen economic dispatch model overestimates the flexibility capabilities of certain power
plants, e.g., must-run capacities, such as combined heat and power plants.

The last validation step is conducted using observables that provide an insight into the operation
of the power system. The advantage of this test is that it is directly related to transmission bottlenecks.
However, it can be only evaluated on an annual and spatially aggregated basis.

The amount of redispatched power generation (in the following, referred to as redispatch) is used
as an indicator to check whether the reference model shows similar occurrences of congestion events in
the grid as reported by the German Federal Network Agency [52]. By performing a run of the reference
model with and without constraints introduced for transmission grid modeling (see Appendix A),
the redispatch can be derived. Ignoring these constraints is equivalent to a spatial aggregation of the
reference model to its single node (copper plate) representation. Hence, we determine the difference
of the spatially summed annual power generation of each technology of the reference model output
and its spatially fully aggregated counterparts. More details concerning the calculation of the annual
redispatch are provided in Appendix E.

According to the results of the comparison of the recorded and modeled redispatch in Table 2,
a similar order of magnitude can be reached. A cross-check with slightly different parameters during
the calibration of GTCs also showed that the reference model reacts quite sensitively to changes in the
security margin (see Appendix C); e.g., reducing it to 0.7 results in a redispatch of 12.62 TWh, while
for increasing it to 0.9, a redispatch of 0.11 TWh can be observed. Another trade-off must be made,
since an underestimation of GTCs can lead to gaps in the supply of certain nodes. As a consequence,
costs for the loss-of-load appear, which significantly affect the nodal prices of the appropriate region.
Since such prices are undesirable as input for the subsequent clustering, an exact calibration of the
security margin based on the redispatch is therefore not conducted. In this context, it must be noted
that the generally applied security margin represents only an approximation of the n-1 criterion which
is often considered in power flow models. A possible way to improve the observed behavior of
the actual model would therefore be the application of a security-constrained optimal power flow
approach [53].

The above-mentioned sensitivity also applies to other annual indicators, such as the total grid
losses and the shares of power generation from renewable sources vs. fossil and nuclear power plants.
With the exception of the latter, these indicators strongly rely on the assumptions concerning the input
parameters, such as the generally applied, specific grid losses factor. In addition, deviations can be
explained since the actually used installed generation capacities are derived from a data source that
offers large geographical coverage rather than the most accurate information available. Even more
insights are provided, when looking at specific transmission lines that are congested (fully utilized) in
the reference model. When comparing them to the reported line-specific congestion events, it can be
shown that only a part of these events is reproduced by the reference model, but congestions at other
sites only appear in the model.

Table 2. Results of reference model validation based on annual observables.

Observed Modeled

Grid Losses [TWh] [52] 6.2 5.1
Redispatched energy [TWh] [52] 2.6 6.65

Congestion events [52] 7160 17,662
Annual power generation share from vRES [54] 23% 29%
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A reason for this behavior is the already-mentioned estimation of grid transfer capacities.
The ignorance of the underlying distribution grid may also lead to a deviating assignment of generation
capacities to substations and thus to a different spatial pre-balancing of power generation and demand
compared to reality.

Furthermore, we observe both more redispatch and a higher share of power generation from
vRES in the model (Table 2). This behavior can be explained by the following model characteristics and
assumptions: As mentioned above, the applied economic dispatch model generally overestimates the
flexibility of large steam power plants. In addition, must-run capacities, such as Combined Heat and
Power plants, are not considered separately. This as well as the fact that pumped hydro storage units
can operate under perfect foresight conditions, fosters the integration of power feed-in from vRES.
Finally, for determining this power feed-in for wind turbines a performance curve of one particular
wind energy converter technology is applied to historical weather data. Since the standard use case of
the resulting time series is its application to scenario studies, the corresponding performance curve is
not representative for all wind turbines operated in Germany in the year 2012.

However, information such as the future distribution of installed capacities or the future
performance of certain technologies is not easily derivable for scenario studies. We therefore conclude
that the used modeling approach is still suitable for the purpose of the proposed clustering methodology.

3.2. Clustering of Regions

Although the presented clustering approach allows any integer value k for the number of clusters
or aggregated regions to be set, we chose a constant value of k = 20. This allows for comparison with
the commonly used regional model in [22] that consists of 20 regions (see also section Comparison of
Aggregated Models). However, since the number of clusters correlates with the trade-off between model
accuracy and performance, conducting further research on finding an optimal value for k becomes
relevant. Some work in the literature already emphasizes this topic on the algorithmic side [55] as well
as on the application side [44,56]; however, this goes beyond the focus of the current study.

To get a better idea of the distribution and size of clustered regions, maps of Germany that
correspond to the different clustered models are provided in Appendix F.

Another important remark regarding the following results concerns the evaluated dataset.
As already mentioned, the objective of the presented clustering methodology is the identification of
critical transmission links for energy scenarios. However, it is obvious that for the year 2012, critical
links within the German high voltage transmission grid are rare. In the following, we therefore use the
scenario dataset (scenario C of the German grid development plan [40]) that is intended to contain a
higher number of critical links. This is due to the assumption that the need for electricity transmission
and thus the magnitudes of power flows increase with the share of power generation from vRES.
As this share is higher for the scenario data set, it can be assumed that more transmission lines reach
their limits than in the case of the validation data set.

3.2.1. Preservation of Critical Transmission Links

Based on the three snapshots, three spatially aggregated ESM instances are derived from the
reference model. In the following, general characteristics of these clustered models are evaluated.

The preservation of critical transmission links is determined using the relative load (utilization)
of transmission lines as indicator from the results of the analyzed ESMs. The idea behind this analysis
is the following: The higher the utilization of the entirety of all transmission lines in a model is, the
higher is the share of critical links. This means, if we remove, from a given set of links, those ones
which show a low utilization (as intended with the proposed methodology), the average load of the
remaining transmission lines (the critical ones) should be higher than in the initial network.
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Figure 4 shows the appropriate duration curves of the relative utilization of transmission links
within the period of 8760 h. The presented curves are derived by dividing the total power flow
over each transmission line by its capacity and subsequently calculating the 0.95-quantile over all
transmission lines in the network. Compared to the reference model where full utilization does not
appear at all for the 0.95-quantile, the duration curves of all aggregated model instances remain for a
significantly larger amount of time steps at a level close to 100% GTC usage (Clustered tPrice: 1220 h,
Clustered tLoadWind: 446 h, Clustered tGTC: 687 h).

This means that the intended preservation of critical links is provided by the proposed network
partitioning. In other words, since the total number of links is reduced due to aggregation, but lines that
show frequently high utilization of GTC remain in the aggregated model instances, the determination
of the 0.95-quantile over all links results in a duration curve that is closer to the transversal at 1.0.
At first glance, this can be interpreted as an overestimation of critical links for the aggregated network;
however, it can be assumed that this effect is compensated to a certain degree as intra-zonal limits on
power transmission of the original network are neglected in the aggregated models.
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3.2.2. Stability of Aggregated Regions over Selected Critical States

The network partitioning strongly depends on the operational state, which is used as a snapshot
for the selection of nodal price differences. In the best case, a snapshot exists where the majority of
critical lines are under stress. However, this is not usually the case. Moreover, even if such a snapshot
is detected, due to the predefinition of the number of clusters, not necessarily all stressed links are
captured in a single snapshot.

To get an idea of the different clustering results for several critical states, Figure 5 depicts the
neighborhood of regions in the reference model. It should be understood as follows: Both the x-axes
and the y-axes represent the set of all regions or nodes in the reference model. When depicting the
results of the clustering approach, each dot in the plot indicates that the corresponding region on
the x-axes belongs to the same cluster as the region on the y-axes (in the following we call those
regions neighbors of the regions on the x-axes). For reasons of simplicity (otherwise the plots would
be fully inked) Figure 5 shows only all neighbors for 10 randomly selected regions on the x-axes
(in the following referred to as analyzed regions). To better distinguish the 10 analyzed regions, the
corresponding dots are filled in the same color. For this reason, each subplot in Figure 5 consists of
10 differently colored lines of dots.

Each of the three subplots in Figure 5 refers to the specified snapshot selection criteria introduced
above. However, rather than evaluating single snapshots, we order all hours of the year according to
the criteria and evaluate the first 20 operational states for each of them. For example, the right subplot
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is created from taking the 20 h with highest magnitude of the summation of wind power generation
and the load, whereas the selected operational states are those for which the highest price differences
occur in the output of the reference model. By varying the size of the colored dots in Figure 5 we
provide the information about the frequency of how often regions belong to the same cluster while
performing the clustering for the first 20 h that fulfill a particular snapshot selection criterion. In the
best case this means that, for each of the 20 h, a region on the x-axes has the same neighbors. Hence,
plotting the best case would result in lines of colored dots of equal size.
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Figure 5. Neighborhood of 10 randomly selected regions after application of clustering based on
different criteria: (left) tPrice; (middle) tGTC; (right) tLoadWind, evaluated for 20 snapshots per criterion.

In this sense, Figure 5 shows the robustness for running the clustering approach for 60 snapshots
where a robust clustering is indicated by the following characteristics: For each of the 10 evaluated
regions, a relatively small number of equally sized dots appear. In contrast to this, the more colored
dots of different sizes, the less robust is the outcome of the clustering. Therefore, it can be stated that
the subplot that belongs to tLoadWind shows a more robust clustering than in the case of tGTC and tPrice.

To quantify this finding with a more general analysis, Figure 6 depicts the data evaluated for
Figure 5 in the form of histograms. They show how often an analyzed region is grouped to a cluster
with the same neighbors when performing the clustering 20 times for each snapshot selection criterion.
In contrast to Figure 5, which is presented for illustrative purposes, Figure 6 is based on an evaluation
of neighborhood for of all regions of the reference model (instead of 10). The best case would therefore
result in a single bar at x = 20 and frequency of occurrence at y = 1 (we only need to analyze x = 20
since the other bars, e.g., for x = 19, show the probability of having exactly 19 times the same neighbors
when evaluating 20 snapshots).

According to Figure 6, it can be stated that for the criterion tLoadWind, the clustering is the most
stable. We derive this from the frequency of occurrence at x = 20 which corresponds to number of
evaluated snapshots per subplot in the histograms of Figure 6. In the case of tLoadWind, it is 63%
compared to 40% for tGTC and 14% for tPrice. In summary, this means that snapshots based on tLoadWind
lead to clusters that are more similar to each other than is the case for the network partitions derived
from tPrice and tGTC. In other words, using only a single snapshot based on tLoadWind leads to a more
reliable clustering of the reference model than in the case of tPrice and tGTC.
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Figure 6. Frequency of occurrence that shows how often two regions are part of the same cluster when
applying the clustering 20 times for different criteria, (left) tPrice; (middle) tGTC; (right) tLoadWind.

Although it can be concluded that for the subsequent steps of spatially aggregating the reference
model, ideally multiple snapshots should be considered, we use single snapshot data for our analyses
for reasons of simplicity. Thus, for the interpretation of the following findings it must be considered
that aggregated ESM instances, especially based on tPrice and tGTC, cannot claim to be representative
for all states of the ESM where the transmission network is under stress.

3.3. Comparison of Aggregated Models

We evaluated a number of indicators to assess the quality of the three spatially aggregated ESM
instances. This is conducted for the results of both the reference model and a set of aggregated
benchmark ESMs. It is done to compare the resulting indicators in the context of (i) the best possible
performance of the reference model, and (ii) the quality of the results of alternative ESMs (i.e., deviation
of the indicators from the reference model).

Concerning the aggregation methodology, the general difference in creating benchmark ESMs
lies in the network partitioning process. As already mentioned, the Copper plate ESM represents
a single-node model. Since this model shows the lowest spatial resolution, it can be expected that
the results of this model show the largest deviations compared to the reference model. The second
benchmark ESM “Classical” is the commonly used regional model, which was proposed by the
German transmission system operators [22]. As the electricity transmission infrastructure is evolving
over time, ESMs that rely on “Classical” need to be frequently updated. However, the network
partitioning of this model is based on expert judgment (considering centers of power consumption
and power generation form vRES). The applied methodology is therefore not easily reproducible
if only publicly available data is used. For this reason, one of the main objectives of the following
analyses is to show the implications of statically using this pre-defined spatial aggregation. Lastly,
“Simple aggregation” refers to a network partitioning based on the agglomerative clustering approach
contained in scikit-learn [18] that obtains topological information in the form of the original network’s
adjacency matrix as connectivity.

By extending the above-described aggregation process with the determination of PTDF matrices
of the aggregated network according to [26], the power flows of the original network can be emulated
by the aggregated model instances. However, the appropriate equivalencing process is based on
the nodal power injections (balance of nodal power consumption and generation) that occur in the
original network. To be consistent with the selection of nodal price differences, the same points in time
(tLoadWind, tPrice, tGTC) are used to select snapshots of nodal power injections. In the following, we refer
to these three model instances as extended clustered models.

3.3.1. Redispatch

As for the validation of the reference model, we use the annually redispatched power generation
to check whether transmission bottlenecks of the reference model are preserved. From Figure 7, we
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conclude that the findings from the comparison of capacity values also apply to the assessment of
redispatch. The ESM instances derived from clustering nodal price differences show small deviations
from the reference model’s results. By increasing the number of aggregated regions, it is also likely
that this performance can be further improved. More importantly, with values ranging from 0.7% to
4% for Clustered tLoadWind, Clustered tPrice and Clustered tGTC, the deviation of annually redispatched
power generation is closer to the reference than for any of the benchmark ESMs.

Sustainability 2018, 9, x FOR PEER REVIEW  16 of 32 

approach contained in scikit-learn [18] that obtains topological information in the form of the 
original network’s adjacency matrix as connectivity. 

By extending the above-described aggregation process with the determination of PTDF 
matrices of the aggregated network according to [26], the power flows of the original network can be 
emulated by the aggregated model instances. However, the appropriate equivalencing process is 
based on the nodal power injections (balance of nodal power consumption and generation) that 
occur in the original network. To be consistent with the selection of nodal price differences, the same 
points in time (𝑡𝑡𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, 𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑡𝑡𝐺𝐺𝐺𝐺𝐺𝐺) are used to select snapshots of nodal power injections. In the 
following, we refer to these three model instances as extended clustered models. 

3.3.1. Redispatch 

As for the validation of the reference model, we use the annually redispatched power 
generation to check whether transmission bottlenecks of the reference model are preserved. From 
Figure 7, we conclude that the findings from the comparison of capacity values also apply to the 
assessment of redispatch. The ESM instances derived from clustering nodal price differences show 
small deviations from the reference model’s results. By increasing the number of aggregated regions, 
it is also likely that this performance can be further improved. More importantly, with values 
ranging from 0.7% to 4% for Clustered 𝑡𝑡𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, Clustered 𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and Clustered 𝑡𝑡𝐺𝐺𝐺𝐺𝐺𝐺, the deviation 
of annually redispatched power generation is closer to the reference than for any of the benchmark 
ESMs. 

 
Figure 7. Redispatched power generation, relative deviation from the reference model for different 
aggregated ESM instances. 

Given that Clustered 𝑡𝑡𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 also shows a good performance, and referring to the results 
from the stability analysis, we deduce that for the application of the presented approach, a fully 
solved instance of the original problem is not necessarily needed. Since 𝑡𝑡𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 can be identified 
using only the input time series of the spatially highly resolved model, the reference model needs to 
be solved only for a pre-defined time slice. In contrast, in the case of 𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and 𝑡𝑡𝐺𝐺𝐺𝐺𝐺𝐺, each hour of the 
year must be evaluated with a high spatial resolution. 

For the extended clustered model instances, the same spatial aggregations are used, but the 
distribution of power flows is determined by a reduced PTDF matrix. Therefore, additional 
information in the form of the nodal power balance from the reference model is considered. With 
regard to Figure 7, the redispatch of the corresponding model instances deviates significantly (40–
88% compared to the reference model). This behavior can be explained by the static distribution of 
power flows based on power generation and consumption data from the snapshot that is supposed 
to represent an extreme situation for the grid. The derived PTDF matrices are therefore not 
representative enough to suitably determine the power flow distribution in the original network for 
the whole operation period. For more details regarding this redispatch analysis see Appendix G. 

Figure 7. Redispatched power generation, relative deviation from the reference model for different
aggregated ESM instances.

Given that Clustered tLoadWind also shows a good performance, and referring to the results from
the stability analysis, we deduce that for the application of the presented approach, a fully solved
instance of the original problem is not necessarily needed. Since tLoadWind can be identified using only
the input time series of the spatially highly resolved model, the reference model needs to be solved
only for a pre-defined time slice. In contrast, in the case of tPrice and tGTC, each hour of the year must
be evaluated with a high spatial resolution.

For the extended clustered model instances, the same spatial aggregations are used, but the
distribution of power flows is determined by a reduced PTDF matrix. Therefore, additional information
in the form of the nodal power balance from the reference model is considered. With regard to Figure 7,
the redispatch of the corresponding model instances deviates significantly (40–88% compared to the
reference model). This behavior can be explained by the static distribution of power flows based on
power generation and consumption data from the snapshot that is supposed to represent an extreme
situation for the grid. The derived PTDF matrices are therefore not representative enough to suitably
determine the power flow distribution in the original network for the whole operation period. For more
details regarding this redispatch analysis see Appendix G.

3.3.2. Capacity Factors

For a typically assessed indicator, we measure the similarity of power plant operation by
comparison of technology-specific capacity factors. Therefore, Figure 8 shows the deviation of capacity
factors compared to the reference model for different types of power plants. The compared model
instances are grouped by colors, where the benchmark ESMs are depicted in reds and the aggregated
models are shown in blues and greens.

In this context, a good performance of an aggregated ESM is indicated by a deviation of the
technology-specific capacity factor, which is close to 0%. Furthermore, for each technology, the dark
red bar (Copper Plate) gives an indication of the effect of neglecting the power exchange limitations.
As expected, wind offshore power plants benefit from neglecting transmission constraints in aggregated
ESMs as they are able to distribute generated electricity for nearly zero marginal costs over larger
areas. In contrast, coal-fired power plants, open cycle gas turbines and wind onshore turbines are
less operated in all of the aggregated model instances. In the case of run-of-river power plants
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and photovoltaics, almost all ESM instances show the same capacity factors as the reference model.
For the investigated case of Germany, this means that for an appropriate simulation of the operational
behavior of these power plant types, a high spatial resolution is not essential. This is due to the fact
that the corresponding capacity factors can be well approximated with spatially fully aggregated ESM
instances, such as the copper plate model.
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Figure 8. Capacity factors, relative deviations from the reference model for different aggregated
ESM instances.

With the exception of combined cycle gas turbines (CCGTs), the blue bars show almost the smallest
deviation or they range in a similar order of magnitude, as is the case for the red bars. From an overall
perspective, Clustered tPrice shows the best performance with a mean deviation of 13.8%, followed by
Cluster & PTDF tPrice (14.5%), while in the case of the copper plate model, this value is 17%.

Comparing the blue and the green bars confirms the conclusion that it is not advantageous to
use the extended clustered models based on power injections of critical situations. This becomes
particularly clear when comparing the resulting capacity factor deviations for wind offshore where the
extended clustered models show an error between 53% and 75%.

However, with up to 42% deviation, the operational behavior of the simply clustered models
(blue bars) is also remarkable. The underlying, significantly higher utilization of offshore wind in the
aggregated models stems from bottlenecks that occur in the reference model for links that connect
offshore wind farms with the mainland. These connections are not maintained in the clustered models
since the observed nodal prices at both ends of the links are usually nearly the same, resulting from
strong power generation surpluses at the appropriate substations. At the same time, a downstream
bottleneck prevents that this surplus power generation can be transmitted to nodes with higher
nodal prices.

As an example, this situation is depicted in Figure 9, which shows an extract of Northern Germany.
There are two congested links that connect wind offshore turbines to the mainland. They are vanished
when aggregating all nodes of the light blue cluster and thus contribute to the deviation of the capacity
factor for offshore wind turbines (Figure 8). However, the downstream bottleneck between the light
blue and marine blue cluster is considered in the clustered models. Since this particular bottleneck
prevents the efficient transmission of surplus generation from all of the light blue nodes, an increase
in its GTC is more pressing than the elimination of the offshore congestions. On the one hand, we
understand this effect as an advantage of the chosen clustering approach as it allows prioritizing of
critical, but equally utilized, links. On the other hand, although the presented approach generates
spatial aggregations where transmission bottlenecks are supposed to be maintained, it is possible that
intra-zonal bottlenecks do still appear.
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For the practical application of the presented approach, this means that ideally, an alternating
process of clustering the spatially highly resolved model (with eventually already increased GTCs)
and analysis with the aggregated model instances is conducted. For a better estimation of grid transfer
capacities, the approach presented in [57] also appears to be a suitable solution.

3.4. Case Study

To give an example for the application of the proposed ESM clustering and aggregation method,
a simplified grid and storage expansion study is conducted. By simplified we mean that we use linear
programming and determine investment costs using the equivalent annual costs and assuming an
interest rate of 6% (for more details see Appendix H). Accordingly, the presented case study does
not claim to provide a robust scenario analysis. Rather, it gives an indication what could happen to
the results of a typical ESM use-case if the standard clustering (Classical) is replaced by a spatially
aggregated model that relies on spectral clustering of nodal price differences.

While generation capacities are pre-defined by the scenario dataset, the expansion of lithium-ion
batteries as well as of GTCs for both alternate current (AC) and direct current (DC) overhead
transmission lines is enabled. In case of the latter, this means that the planned High-Voltage Direct
Current (HVDC)-connections from north to south Germany [40] are provided as candidates for new
links using a capacity-constrained transport model. They are characterized by techno-economic
parameters that differ from those of AC transmission lines. The AC grid is modeled by a DC-power
flow approximation, while capacity expansion is only possible if a link already exists. Consequently,
the available power provision from vRES needs to be balanced, either temporally by new storage
units or spatially by the expansion of grid transfer capacities that represent the indicators to assess the
performance of different spatially aggregated ESM instances.

In this context, Figure 10 shows the results of the case study by depicting the total sum of
model-endogenously added capacities for four different model instances. The results for lithium-ion
batteries range between 10.3 and 10.9 GW (110.9 and 113.3 GWh). Having in mind that short-term
storage facilities such as batteries are suited to balance variations from power generation by
photovoltaics, this similarity in storage expansion corresponds to the equality of capacity factors for
the different spatially aggregated ESMs found above (Figure 8). In addition, this result is comparable
to the total sum of installed short-term flexibility options (batteries and demand side management:
12 GW) for temporal power balancing in [40].

In contrast, the values for additional GTC in the AC grid differ more significantly among the
several aggregated ESMs. In particular, this applies to the Classical model instance that shows 14.7 GW
of GTC expansion, which is less than half compared to the aggregated ESMs derived by the presented
clustering approach.
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aggregated models.

When taking into account the lengths of expanded transmission lines, the observed difference for
AC grid expansion becomes even larger (Classical 96 GWkm, Clustered tGTC: 554 GWkm, Clustered
tPriceDelta: 447 GW and Clustered tLoadWind 364 GWkm). Although the amount of added capacity is
significantly greater for the clustered models, the resulting total system costs are 1.5–2% lower than in
the case of Classical. This is due to the fact that the additional power transmission capacities allow
a more intensive utilization of cost-efficient power plants. From this, we conclude that applying the
Classical spatial aggregation of Germany from [22] leads to an underestimation of grid expansion
needs if a system cost minimizing ESM is used.

Among the clustered instances, the highest value of GTC expansion can be observed for Clustered
tGTC. The corresponding snapshot for deriving this aggregated ESM is based on the utilization of
transmission lines in the reference model. As this represents a strong indicator for grid congestions,
this result is expected. The drawback of using such a clustered model instance is the necessity of
solving the reference model for the full time period to identify the required snapshot. However,
this is not the case for Clustered tLoadWind where the snapshot identification relies only on the input
data. From a practical point of view, a clustering based on tLoadWind is the most favorable since the
capacity expansion for the appropriate aggregated model lies in a similar order of magnitude, as for
the instances derived from the other snapshot selection criteria.

Remarkably, grid expansion for the HVDC transmission line candidates cannot be observed in any
of the evaluated models (indicated by the missing bar for GTCDC in Figure 10). A reason therefore is
that, in the chosen modeling setup, a GTC expansion is only partially necessary to achieve an increase
in power flows to be transmitted from the vRES surplus-dominated north to the south of Germany.
As this requires mainly investments into additional GTC on congested but short links (<100 km),
the enforcing of AC transmission lines is still the more cost-efficient option compared to building
new long-distance HVDC connections. However, the advantages of the HVDC technology, such as
the capability of having a controlling influence on power flows, are not considered in the applied
formulation of a spatially aggregated ESM. For example, the role of loop flows through Eastern Europe
cannot be assessed in this way. In addition, the main purpose of the spatially aggregated model
instances is to gain better insights into how the balancing of variable power feed-in and demand can
be sufficiently realized in future energy systems. They are thus rather less suited to identify the exact
need of expansion projects in the electricity transmission grid.

3.5. Comment on Computing Times

This information should be understood as an orientation for other modelers rather than a claim
to be a generally valid finding. All spatially highly resolved models were solved on an Intel(R)
Xeon(R) CPU E5-1620 v3 @ 1 × 3.50 GHz, 128 GB RAM computer (validation data set) and an Intel(R)
Xeon(R) CPU E5-2640 v3 @ 2 × 2.60 GHz, 192 GB RAM (scenario data set) using CPLEX’s interior
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point method with eight threads. Depending on the processor load and the used parameterization
(validation or scenario dataset), the total computing times, inclusive of the post-processing routines,
ranged between 8 and 34 h. These computing times could be decreased to values between 14 and
24 min for all runs executed on the spatially aggregated ESM instances using an Intel(R) Xeon(R)
CPU X5650 @ 2 × 2.67 GHz, 72 GB RAM machine and the same solver settings.

To get an idea of the trade-off of computing time and model accuracy, Table 3 shows the relative
values of the total system costs and total computing times for the aggregated model instances in
relation to the appropriate values of the reference model. While the deviation of the objective value
is not greater than 7.4% for all model instances that consist of 20 regions, the computing time can be
reduced to a few percent of the value of the reference model.

Table 3. Trade-off between model accuracy and performance: objective value and total computing time
for aggregated ESM instances relative to the appropriate values of the reference model (scenario data set).

Model Instance Objective Value (Total System Costs) Total Computing Time

Cluster & PTDF tPrice 100.0% 2.8%
Cluster & PTDF tGTC 99.3% 4.8%

Clustered tLoadWind 98.4% 3.9%
Clustered tGTC 98.0% 4.4%
Clustered tPrice 97.6% 3.2%

Simple Aggregation 94.8% 4.8%
Classical 93.2% 3.8%

Cluster & PTDF tLoadWind 92.6% 4.3%
Copper Plate 89.8% 0.7%

As with the reduction of other model scales, for example the reduction of the number of technologies
by defining technology classes, the model is downsized. This means, fewer constraints and fewer variables
occur in the coefficient matrix of the mathematical optimization problem. Reducing the temporal scale of
an ESM—that usually performs analyses over 8760 time steps—by defining representative time slices [58]
is therefore effective since reduction ratios >100 can be achieved. Previous analyses showed that the
corresponding downsizing factor more or less scales with the achievable speed-up [59].

However, in this paper, the reduction ratio applied to the spatial scale is <10. For example, for the
reference model we observe a number of 13,960,164 constraints compared to a number of 2,549,001
for the Classical ESM instance (both after the execution of CPLEX’s pre-solve). The main benefit
of solving spatially aggregated ESMs instead of their fully resolved versions is caused by another
effect—the removal of strongly linking constraints from the original problem. Due to the possibility to
transfer power, the power generation and consumption of each individual region could have an effect
on all the other analyzed regions of an ESM (the non-zero entries of an appropriate PTDF matrix can
give an impression of the interdependencies). In contrast, linking constraints that couple time steps
(e.g., applied for modeling storage facilities) usually link pairs of time steps.

Nevertheless, Table 3 cannot claim to provide an exact comparison or derive recommendations
regarding an optimal model setting that combines both low computing times and sufficiently accurate
model results. This is due to the fact that from a practical point of view the objective value does not
represent the best indicator to measure the model accuracy. Rather, specific investigations are needed
to identify optimal model settings for different research questions that require the evaluation of certain
combinations of model performance indicators. For example, if only the values in Table 3 would be
considered, the aggregated ESM Cluster & PTDF tPrice appears to be the best choice if the reference
model should be aggregated. However, this is not the case when taking into account the evaluation of
redispatch from Figure 7.

In summary, the following can be stated. The trade-off between the accuracy and the performance
(measured in computing time needed for solving the model) of a spatially aggregated model depends
on several aspects. On the one hand, a justifiable error for the indicators that should be analyzed
must be defined. On the other hand, there exists a broad spectrum of parameters that can be adjusted
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(e.g., the optimal number of clusters) to achieve both acceptable computing times and a manageable
memory demand with respect to the available computing infrastructure. In this paper, we proposed a
new approach that can be used for such model setup optimizations applicable to ESMs that need to
incorporate possible bottlenecks in the power transmission grid of the future.

4. Conclusions

With the presented methodology, the aggregated ESM instances could be derived from a spatially
highly resolved ESM of Germany that only needed to be solved for defined time-slices (snapshots).
We found that evaluating the input time series of potential wind power feed-in and load represents
a suitable approach to identify such snapshots. We further proposed a network partitioning based
on spectral clustering of nodal differences of the marginal total system costs and compared two
approaches for the creation network equivalents. In this way, we developed a methodology to
preserve transmission links that tend to represent bottlenecks in future power systems for spatially
aggregated ESMs.

With a correlation factor greater than 0.64, a created spatially highly resolved reference model was
able to produce times series for electricity prices similar to those recorded in 2012. The evaluation of
different performance indicators showed the strengths of aggregated ESM instances that were derived
by the presented methodology. Rather than the preservation of critical links, further advantages were
observed since annually redispatched energy (error: 0.7–4%) and capacity factors of power plants
(mean error: 13.9–15.4%) deviated less from the reference model’s outputs than from those of the
defined benchmark ESM.

The resulting spatially aggregated ESM instances are intended to be used for capacity expansion
studies. We therefore conducted a case study for grid and storage expansion for a scenario of the
German power system in the year 2030. Here, we observed a significant lower expansion of grid
transfer capacities for a commonly used, spatially aggregated model instance compared to ESM
instances derived by the proposed methodology. However, for decentralized technologies, such as
photovoltaics and lithium-ion batteries, no differences in the analyzed indicators were found among
the several aggregated ESM instances.

An obvious next step of the presented study is the extension of its geographical scope to a
European level as well as the claim to cover all energy sectors with the spatially aggregated ESM.
However, improvements regarding the availability of spatially highly resolved data are necessary. This
applies not only to a more sophisticated determination of the locations of large thermal power plants
to be commissioned in the future but also to potential hotspots of vRES power generation. While for an
ESM of Germany the used approach of spatially distributing national generation capacities is sufficient,
a dataset that consistently provides the locations of decentralized power generation is required for the
desired geographical scale. In this context, sophisticated methodologies that evaluate remote sensing
data may be applicable. Studies that build on the presented approach would also benefit from the
consideration of regionalized load profiles.

From a methodological point of view, the simple creation of copper plates to represent aggregated
regions ignores that geographical distances between zones become larger with the geographical
expansion of a zone. A correction of distances in the aggregated network thus provides the potential
for improving the accuracy of the network equivalent. This also applies to the identification of
snapshots used for gaining data from the initial spatially highly resolved ESM. Finally, in the actual
study, also short-length transmission lines are considered when running the clustering algorithm.
However, since expanding the GTC of such lines is relatively cheap, it seems to be beneficial to perform
first a spatial clustering of regions based on geographical distances to avoid that these less relevant
links are maintained in the aggregated models.

The spatial aggregation of optimizing energy system models (ESMs) becomes attractive if solving
such models reaches computational limits. Given the trend of the increasing complexity of energy
systems with high shares of variable renewable power generation, the presented approach can be
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used for energy scenario analyses that claim to capture both the temporal and spatial balancing
needs of electricity demand and generation. It extends the set of available modeling instruments for
generating new insights into future energy systems and their possible technological compositions and
thus helps to develop strategies to cope with the challenges related to a secure, economically feasible,
and sustainable energy supply.
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Abbreviations

CCGT Combined Cycle Gas Turbines
ENTSO-E European Network of Transmission System Operators for Electricity
ESMs Energy system models
HVDC High-Voltage Direct Current
NUTS Nomenclature des unités territoriales statistiques
PTDF Power Transfer Distribution Factors
REI Radial Equivalent Independent
SP Spatially differentiated
TC Technologically differentiated
TM Temporally differentiated
vRES variable renewable energy sources
Symbols
GTC Grid transfer capacity of a link in the original network
GTCagg Grid transfer capacity of a link in the aggregated network
K Incidence matrix
k Number of clusters
Lunnormalized Unnormalized Laplacian matrix of the original network
L Set of links in the original network (transmission lines in an ESM)
Lagg Set of links in the aggregated network
l Element of the links set in the original network
lagg Element of the links set in the aggregated network
N Set of nodes in the original network (modeled regions of an ESM)
Nsub Subset of N containing only active nodes (nodes with power generation or consumption)

Nsub,nearest
Subset of Nsub containing the three closest substations to the geographical center of a
NUTS3 region

Nagg Set of nodes in the aggregated network
NNUTS3 Set of NUTS3 regions considered in the reference model
n Element of the nodes set in the original network
nsub Element of the subset Nsub
nsub,nearest Element of the subset Nsub,nearest
nNUTS3 Element of the set of NUTS3 regions considered in the reference model
nagg Element of the nodes set in the aggregated network
Pinst Installed power generation capacity in the original network
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Pinst,agg Installed power generation capacity in the aggregated network
T Set of hourly time steps
t Element of the set of hourly time steps

tGTC
Selected time step within the set of time steps where a high utilization of transmission lines
can be detected in the reference model

tLoadWind
Selected time step within the set of time steps where a high magnitude of power demand and
power feed-in from wind turbines can be observed in the input data

tPrice
Selected time step within the set of time steps where high nodal price differences can be
observed in the solution of the reference model

∆ρ Nodal price difference
κ Number of nearest neighbors to be used
Π f Mapping matrix between links of the original and the aggregated network
Πg Mapping matrix between nodes of the original and the aggregated network
ρ Nodal marginal system costs for total power supply (nodal prices)
ρdiag Diagonal matrix of nodal price differences
T Set of technologies
Tdec Subset of T containing decentral power generation technologies
τ Element of the set of technologies
τdec Element of the subset Tdec

Appendix A. Essential Equations of REMix for Performing a DC Optimal Power Flow

For a more complete description of the applied ESM (REMix) the objective function and a selection
of essential constraints are listed in the following.

Appendix A.1. Objective Function

The objective function to be minimized is represented by the total annual system costs:

∑τ, y Csystem(τ, y)→ min
where : Csystem ≥ 0

(A1)

τ: Element of the set of all considered technologies.
y: Element of the set of years (either set to y = 2012 for the validation data set or y = 2030 for the
scenario data set).
The annual system costs Csystem contain costs for the system operation and optionally costs for

capacity expansion. One the one hand side, the annual operation costs are determined by summation
of the variable Cop for every time step. On the other hand side, the annual capital/investment costs
Cinvest are not time step dependent and thus are not considered in the summation over the time steps.
In addition, link related and node related costs are distinguished. Since it is possible to investigate just
a fraction of a year, the annual costs are scaled by the factor f .

Csystem(τ, y) = [∑l(Cinvest(τl , y, l) + ∑t Cop(τl , y, l, t)) + ∑n(Cinvest(τn, y, n)+
∑t Cop(τn, y, n, t))] · f

∀ τ, y
(A2)

τl : Element of the subset of link dependent technologies
τn: Element of the subset of node dependent technologies
l: Element of the set of links
f : Scaling factor for sub-annual analyses
For applications that only optimize the dispatch of a given energy system—in this study this

applies to all sub-sections of Results and Discussion except Case Study)—no investment costs are
considered (Cinvest = 0). The operational costs can be decomposed into a fixed (time independent) and
a variable fraction. Besides specific costs per electrical energy generated, the latter contains costs for
fuels, emission allowances and estimated costs in case of loss of load events.
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Appendix A.2. Essential Constraints

One typical constraint of the mathematical model behind REMix is the power balance constraint.
To ensure that the power availability (e.g., given by feed-in time series of power generation from
vRES) and the power demand are always balanced, slack variables (Pslack) are considered in the model.
The amount of the appropriate penalty costs is set to a very high level to ensure that this artificial
power generation is always the last option to satisfy the power demand:

∑τ Pgen
(
τgen, y, n, t

)
− Ploss(τ, y, n, t)− Pcharge(τstor, y, n, t) + Pdischarge(τ, y, n, t)−

Pexport(τtrans, y, n, t) + Pimport(τtrans, y, n, t) + Pslack(y, n, t) = Pdem(y, n, t)
where

Pgen ≥ 0, Ploss ≥ 0, Pcharge ≥ 0, Pdischarge ≥ 0, Pexport ≥ 0, Pimport ≥ 0
∀τ, y, n, t

(A3)

τgen: Element of the subset of power generation technologies
τstor: Element of the subset of storage technologies
τtrans: Element of the subset of power transmission technologies
For power generators, storage facilities and power transmission infrastructures capacity limits are

considered. In case of the latter the following constraint is applied:

Ptrans (τtrans, y, l, t) ≤ GTCinst (τtrans, y, l) + GTCadd (τtrans, y, l)
∀ τtrans, y, l, t

(A4)

Ptrans: Power flow in a certain time step t and year y over transmission line l of the transmission
technology τtrans.

The relation between the node specific power imports and exports and the link specific power
flows is defined by the DC power flow equations which are used to model flows in the AC
transmission grid:

Pimport (τAC, y, n, t) − Pexport(τAC, y, n, t) − Ploss (τAC, y, n, t) = ∑n′ B (n, n′) · θ (y, n, t)
∀ τAC, y, n 6= n′, t

(A5)

τAC: Element of the subset of transmission technologies realized as AC grids
B: Nodal susceptance matrix of the considered AC transmission network
θ: Voltage angle at node n in time step t and year y

where the power flows are determined by:

Ptrans (τAC, y, l, t) = ∑n,l′ Bdiag(l, l′) · KT(l′, n) · θ (y, n, t)
∀ τAC, y, n 6= n′, t

(A6)

KT : Transposed incidence matrix of the considered AC transmission network
Bdiag: Diagonal matrix of the link susceptances of the considered AC transmission network

and the losses are linearly approximated:

Ploss (τAC, y, n, t) = ∑l→n Ptrans(τAC, y, l, t) · floss · d(l)
∀ τAC, y, n 6= n′, t

(A7)

floss = 0.02 %
km : Losses factor

d: Length of the link l
The model also distinguishes between the AC transmission grid and point-to-point HVDC

transmission lines for which the power flows are modeled by a simple capacity constrained transport
(pipeline). For more details regarding further constraints considered in REMix please see [6].
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Appendix B. Assignment of Power Generation and Consumption

For performing the nearest neighbor analysis, the GIS software tool QGIS is applied. As the final
result of this pre-processing step, a matrix Π is set up that maps power generation or consumption
from areas (NUTS3) to point coordinates (substations):

P inst(τdec, nsub) = ∑nNUTS3
Π(nsub, nNUTS3) · Pinst(nNUTS3, τdec,)

∀τdec ∈ Tdec, ∀nsub ∈ Nsub
(A8)

where Nsub is a subset of the original network’s set of nodes. In Nsub, passive nodes are
removed accordingly. In Equation (A8), Tdec, a subset of T, only contains decentralized power
generation technologies.

We doubt that the assignment of decentralized power generation from a whole region to one single
substation meets reality. Therefore, for each NUTS3 region, we also performed a κ = 3 nearest neighbor
analysis to identify the three closest substations of a designated area. The appropriate generation
capacity or power demand is then distributed by the weighted share of the reciprocal distance between
the area’s centroid and the substations. The mapping matrix Π therefore consists of zero and non-zero
entries, where for the latter, the sum over all rows is equal to one:

Π(nsub, nNUTS3) =
d(nsub , nNUTS3)

−1

∑
j=3
j=1 d(nsub,j , nNUTS3)

−1

∀nsub ∈ Nsub,nearest, ∀nNUTS3 ∈ NNUTS3

(A9)

In Equation (A9), Nsub,nearest, a subset of Nsub, contains the three nearest substations for each
NUTS3 area. The required distances d are calculated by applying the cosine formula to the point
coordinates of the area centroids and substations:

d(nsub, nNUTS3) = acos[sin(latsub) · sin(latNUTS3) + cos(latsub) · cos(latNUTS3) ·
cos(lonNUTS3 − lonsub)]

∀nsub ∈ Nsub, ∀nNUTS3 ∈ NNUTS3

(A10)

where NNUTS3 is the set of NUTS3 regions and lat and lon either indicate the explicit coordinates of a
substation or of a geographical centroid of a NUTS3 region.

For the assignment of nodal demand profiles, the national load profile of Germany is normalized
and subsequently scaled by the annual demand. The latter, in turn, is scaled by population data from
the national to the NUTS3 level and assigned to substations using the approach mentioned above.
In contrast to decentralized electricity generation technologies, large central power plants are directly
mapped to their κ = 1 nearest neighbor substation.

Table A1 summarizes the applied assignment approach for each of the considered technologies in
the reference model configuration.

Table A1. Applied mapping approach for the assignment of power generation and consumption to
substations of the used transmission grid dataset.

Input Parameter Approach

Installed capacity of central power plants:

• Fossil fired power plants
• Nuclear power plants
• Offshore wind farms
• Pumped storage

Nearest neighbor
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Table A1. Cont.

Input Parameter Approach

Installed capacity of decentral power plants:

• Photovoltaics
• Onshore wind farms
• Hydro run-of-river
• Biomass fired power plants

3-nearest neighbor

Annual electricity demand 3-nearest neighbor

Appendix C. Estimation of the Transmission Capacities from Thermal Limits

The applied transmission grid dataset contains information about the voltage U level as well as
the number of circuits ncircuits. For an estimation of grid transfer capacities GTC, the thermal limits
Imax of overhead transmission lines need to be known. These limits can be derived from the type of
conductors installed per bundle [60]. In order to consider somehow the (n-1)-criterion as well as the
fact that the calculated transmission limit for complex power in Equation (A4) needs to be higher than
the required upper bound for active power flow in the model, a security margin µ is taken into account:

GTC =
√

3 ·U · Imax · nbundles · nsystems · ncircuits · µ (A11)

U = {220 kV, 380 kV}: nominated voltage of a transmission system
Imax = 645 A: thermal limit for 243-A1/39-St1A conductors
nbundles = 4: number of conductors per line
ncircuits = {1, 2}: number of circuits per trace
µ = 0.8: (n-1) security margin
For the selection of an appropriate conductor type applied to all HVAC transmission lines of the

grid dataset, a calibration is conducted in advance.

Appendix D. Determination of Snapshots

For spatially aggregating the results of the reference model to identify certain hours of the year
as snapshots, a statistical measure is applied over the set of links or the set of nodes in the original
network. For this purpose, quantiles are used instead of maximum or minimum values to avoid an
overestimation of regionally limited extreme situations. The following formulas show how the points
in time, that represent the snapshots which are used for executing the above presented clustering
approach, are determined.
tLoadWind:

tLoadWind = t, i f PLoadWind(t) = maxPLoadWind(t)
where

PLoadWind(t) = Q0.95
(

Pgen(t, n, τwind)
)
+ Q0.95(Pdem(t, n))

∀t

(A12)

Q0.95: 0.95-quantile
PLoadWind(t): Spatially aggregated time series of power generation by wind turbines and
power consumption
Pgen(t, n, τwind): Time series of power generation of wind turbines in each region n
Pdem(t, n): Time series of power consumption in each region n

tPrice:
tPrice = t, i f ρagg(t) = maxρagg(t)

where
ρagg(t) = Q0.95(ρ(t, n))−Q0.05(ρ(t, n))

∀t

(A13)
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∆ρ(t): Spatially aggregated time series of power generation by wind turbines and power consumption
tGTC:

tGTC = t, i f fagg(t) = max fagg(t)
where

fagg(t) = Q0.95( f (t, l))
∀t

(A14)

Q0.05: 0.05-quantile
fagg(t): Spatially aggregated time series of relative power flows
f (t, l): Time series of relative power flows over each transmission line l

Appendix E. Calculation of Annual Redispatch for the Reference Model

For calculating the amount of annually redispatched power generation in a nodal pricing model,
the following processing of the model results is conducted. We subtract the technology specific annual
power generation of the copper plate model from the spatially summed power generation for each
technology of the reference model. The result is a power balance that shows which technologies
generate more or less electricity due to the consideration of power flow constraints. The annual
redispatch is than observed by subtracting the power transmission losses (which do not occur in
the copper plate model) either from the sum of positive values or the sum of negative values in this
balance, e.g.,:

ERD = ∑τgen E′RD
(
τgen

)
−∑l,t Ploss(τtrans, l, t)

E′RD ∈ R+

where

E′RD
(
τgen

)
= ∑t

(
∑n Pgen(τgen, n, t)− Pgen,CP(τgen, t)

)
∀τgen

(A15)

ERD: Annually redispatched energy

Appendix F. Clustering Maps

Figure A1 shows maps of Germany where substations (regions of the reference model) are
same colored if they belong to the same cluster. The thick lines between the colored dots represent
transmission lines that are maintained after performing the network reduction.
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Figure A1. Maps of the German electricity transmission grid model after applying the presented
clustering approach based on the validation data set and different snapshot selection criteria (top) tPrice,
(middle) tLoadWind (bottom) tGTC.

Appendix G. Concurrency of Redispatch Measures

To give an example of when the redispatch for different aggregated model instances (Figure 7)
takes place, Figure A2 shows the curtailment of one specific technology for a selected period of
time. Given that the curtailment of wind offshore power generation is caused by transmission grid
congestions, it can be presumed that the points in time, when the curtailment takes place, correspond
to the hours of the year when redispatch measures would occur.
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Figure A2. Curtailed power generation of wind offshore turbines for different aggregated ESM instances.

From Figure A2 we deduce the following:

• As it could be expected, in case of the copper plate model no curtailment can be observed since
no power transmission limits are considered in this aggregated ESM instance.

• The reference model (black curve) shows the highest magnitudes while the aggregated ESM
instances (colored curves) underestimate these effects. However, the ESM instances determined
with the spectral clustering of nodal price differences (blue curves) are closer to the reference than
it is the case for the aggregated benchmark models (red curves). This corresponds to the findings
deduced from Figure 7.

• The frequency of the occurrence of non-zero values in Figure A2 gives an indication for the points
in time when redispatch takes place. If the colored curves show this behavior, the black curve
indicates non-zero values as well. On other words, the aggregated models are able to detect
curtailment or redispatch events like the reference model. This is more often the case for the blue
curves than for the red ones (e.g., in hour 8132). We therefore conclude once again, that Clustered
tLoadWind, Clustered tPrice, and Clustered tGTC perform better than the benchmark cases. However,
it must be noted that they are not able to capture all relevant curtailment events of the reference
model (e.g., between hours 8408 and 8456).

Appendix H. Expansion Planning in the Case Study

For performing the expansion planning study, additional constraints are taken into account which
determine the investment costs for a particular technology. For example, in the case of the expansion
of GTCs in the AC transmission grid, they are calculated as follows:

Cinvest
(
τAC, y, lagg

)
= c(τAC, y) · GTCadd

(
τAC, y, lagg

)
· d

(
lagg

)
· fA(τAC, y)

∀τAc, y, l
(A16)

c: Specific investment costs for AC grid expansion

fA = (i+1)al ·i
(i+1)al−1 : Annuity factor

In this context, Table A2 shows the used cost parameters for all technologies for which expansion
planning is enabled in the case study.
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Table A2. Cost parameters for expansion planning of lithium-ion storage and grid transfer capacities.

Technology Specific Investment Costs cAC Life Time al (Years)

Lithium-ion batteries 225 €/kWh 22
GTCAC 346 €/(km·MW) 40
GTCDC 544 €/(km·MW) 40

Converter station DC 102,000 €/MW 20
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Abstract 

Grid expansion measures, Power-To-Gas and imports from concentrating solar power plants are technological options 

for integrating renewable energies into the energy system, which pose enormous challenges for the development of en-

ergy supply infrastructures. Analyses of the potential benefits of these technologies must therefore show a broad spec-

trum of possible futures. This paper provides a comparative assessment of more than 50 European energy scenarios and 

sensitivity cases, which vary network expansion costs, weather years and load time series as well as the methodology 

for modelling interregional power flows.  

 

 

1 Introduction 

1.1 Motivation 

Ensuring system adequacy in future power systems with 

increasing sector coupling and high shares of renewable 

energies (RE) requires a sufficient amount of generation 

capacities. Moreover, far-reaching adjustments and exten-

sions of existing supply infrastructures are under discus-

sion. In addition to the expansion of electricity transmis-

sion grids already required today, these include the ex-

ploitation of large electricity storage potentials, i.e. with 

power-to-gas, or the import of solar power from remote 

power plants in areas with high levels of solar radiation.  

Temporally and spatially resolved simulations of future 

power supply scenarios have shown the importance of ex-

panding power grids and energy storage facilities within 

Europe in the long-term [1], [2]. Due to the high sensitivi-

ty model results to a large number of assumptions, how-

ever, comprehensive scenario analyses which 

1) model the overall energy system on a large scale in-

cluding the above mentioned infrastructure options as 

well as sector coupling and 

2) evaluate a broad spectrum of possible future devel-

opments by a consistent variation of input data and 

assumptions 

are still necessary. 

1.2 Objective 

The objective of this paper is the evaluation of the differ-

ent infrastructure options, i.e. grid expansion, power-to-

gas and solar power imports taking into account potentials 

for central and decentral energy storage as well as de-

mand side management and sector coupling in a European 

context with focus on Germany. For this investigation, 

energy scenarios are set up and analyzed on the basis of 

indicators which, go beyond a pure evaluation of cost-

efficiency and required backup generation capacities by 

assessing the importance of certain technologies for the 

operation and composition of the entire energy supply 

system. 

2 Methodology 

2.1 Scopes 

The desired indicators are derived by scenario analyses 

that rely on a macroeconomic cost minimization ap-

proach. Therefore a multi-regional modeling framework 

is set up using the optimizing energy system model RE-

Mix [4]. The regional scope covers all European and 

North African countries which are represented by their 

national transmission system operators as members of the 

ENTSO-E. Exceptions are Turkey, Island and Cyprus, 

which are not considered. With regard to the temporal 

horizon, scenarios of future power systems of the years 

2030 and 2050 are defined considering CO2 emission re-

ductions in the European power sector by approximately 

55% and 85% compared to 1990, respectively.  

2.2 General modeling approach 

The conducted general modeling approach is divided into 

two basic steps of applying REMix (see Figure 1). First, 

base scenarios are determined by generation expansion 

planning taking into account normative restrictions, such 

as emission limits or national self-sufficiency quotas. 

However, the availability of technological options for spa-

tially and temporally balancing of power demand and 

generation (in the following referred to as flexibility op-

tions) is simplified. In particular, expansion of only one 

representative of the respective flexibility option is al-

lowed. Besides the desired emission reduction, the result-

ing European power plant parks differ primarily in the 

consideration of the large-scale use of hydrogen for both 

synthetic fuel supply and energy storage and the possibil-

ity of direct solar power imports. 

For these basic power plant parks, scenario variants are 

derived which take into account different storylines with 

regard to the expansion of the transmission grid. In addi-
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tion, in this modeling step, the entire spectrum of flexibil-

ity options, such as demand side management, controlled 

charging of electric vehicles, heat storage or the expan-

sion planning of short, medium and long-term storage fa-

cilities, is considered. 

2.3 The optimizing energy system model 

REMix 

The model "Renewable Electricity Mix for a sustainable 

energy supply" (REMix) is a linear, bottom-up energy 

system model written in GAMS that is developed for 

temporally and spatially resolved analysis of long-term 

energy scenarios with high shares of variable renewable 

energies (VRES). The target function is a cost function 

which represents the system costs, i.e. operating costs and 

annuities of the technologies under consideration. These 

are minimized with respect to technical-physical re-

strictions. Similar models that use this modelling ap-

proach with a focus on the electricity system are often 

used as fundamental electricity market models. However, 

previous applications range from country specific cross-

sectoral energy system analyses [3] to multi-regional [4] 

and spatially highly resolved power system analyses [5]. 

In this paper, we use REMix for dispatch optimization on 

a sub-annual, hourly basis as well as for expansion plan-

ning.  

2.4 Scenario definition 

When defining scenarios and associated "narratives" it is 

important to address possible tipping points. These can be 

determined by political and social framework conditions, 

but also by technological leaps or other disruptive devel-

opments. For this study, we identified two major tipping 

points, i.e. the emergence of a hydrogen-based economy 

and the availability of large solar-fed power generation 

capacities in Northern Africa, respectively. But we as-

sume that these technologies will only become system-

relevant after 2030. 

In order to conduct a model-based scenario analysis, de-

fined development paths must be quantifiable. According-

ly, in the following, the further definition of energy sce-

narios consists of a projection of sector specific annual 

energy demands and the composition of the future power 

plant portfolio in Europe and Northern Africa. 

2.4.1 Energy demand 

One of the key drivers of the used modeling approach is 

the projection of the future energy demand which is high-

ly affected by demographic and economic developments. 

We use the basic assumptions made in [6] to derive the 

corresponding input data for REMix. Associated assump-

tions are, among others, that the German economy will 

grow by 1 % p.a. in the medium and long term. This 

growth will be slowed by the declining population (73 

million by 2050). Industry will retain its central im-

portance for the German economy. Accordingly, the gross 

value added rises continuously by an average of 1.2 % 

annually. 

On the European level a continuous population increase 

(560 million by 2050) and a moderate economic growth 

(1.8 % p.a.) are assumed. These values refer to the scenar-

ios defined in the e-Highway2050 study [7] and are con-

sidered to be in-line with the above assumed develop-

ments for Germany. Therefore, we also use the annual 

power demand values from the corresponding scenarios 

as a basis for the electricity consumption of “convention-

al” consumers. However, in addition to technologies that 

use electricity already today, the future power demand is 

composed of the demand from new electricity consumers. 

These consumers mainly appear in the heat and transport 

sector. Assumptions on the energy demand of transport 

can vary within a wide range. This is due to the fact that 

compared to assuming a full sector-penetration with elec-

tric vehicles, the greater the use of fuels from electricity, 

such as synthetic methane, the greater the demand for 

electricity generation. Accordingly, we distinguish two 

development paths regarding the effective electricity de-

mand in the transport sector based on scenarios defined in 

[8]. Concerning the electricity demand for heat generation 

with heat pumps or electric boilers for peak load coverage 

of other heat generators, we also built up on these scenar-

ios as well as on the analyses conducted in [9], [16]. 

2.4.2 Power plants 

A hydrogen economy enables both the use of long-term 

renewable energy storage facilities and the provision of 

synthetic fuels to be used in the transport sector. Never-

theless, downsides of this option are mainly worse power-

to-power conversion efficiencies as well as a limited 

availability of geologically suitable cavern sites which 

results in additional transport infrastructure requirements. 

The latter applies also to solar imports which are associat-

ed with high capital expenditures into power transmission 

infrastructure. However, they provide additional access to 

huge renewable resources that can be used for demand-

oriented power generation with thermal power plants. 

It can be thus assumed that the composition of the Euro-

pean and North African power plant parks varies signifi-

cantly if one or both of the above mentioned develop-

ments is considered. Taking this aspect into account, we 

define the following scenarios: 

• Base where neither hydrogen nor solar imports are 

considered, 

• a reference case (REF) that is equally parameterized 

to Base but with a strongly restricted access to flexi-

bility options (only expansion planning of gas tur-

bines) and  

• the already mentioned scenarios where solar imports 

(CSP) or hydrogen (H2) play an important role as 

well as a combination of these two development 

paths (CSP&H2). 

Furthermore, an additional scenario is derived from the 

"Small and Local" scenario presented in the project e-

Highway 2050 [10]. To harmonize this scenario according 

to our assumptions concerning the development of the 

cross-sectoral energy demand, the corresponding scenario 

eHighway is characterized by additional generation ca-

pacities. These stem from performing modeling step 1 us-
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ing the power plant park from "Small and Local" as a 

starting point for generation expansion planning.  

2.5 Model setup and input data 

2.5.1 Generation expansion planning 

In this modeling step mainly power generation capacities 

are optimized. It is performed seven times varying the his-

torical weather years from 2006 to 2012. As for the sce-

nario eHighway, also starting points for the installed ca-

pacities are applied for determining the power plant parks 

of the rest of scenarios. For thermal power plants such as 

coal and nuclear-fired units we use the installed capacities 

given in [11] and apply assumptions for technology spe-

cific life-times to receive decommissioning dates that al-

low us to define which capacities are still installed in the 

considered time horizons. In the case of renewable ener-

gies we define the installed power generation capacities 

provided in [12] as starting point. 

The results of the expansion planning are restricted by 

normative constraints that we apply to receive, from a to-

day’s point of view, more plausible power plant parks. In 

particular, we determine emission caps using energy bal-

ances of the year 2010 [13] and emission factors from 

[14] to receive specific CO2 emissions per kWh. Defining 

a reduction of 90 % of CO2 emissions compared to 1990 

for Germany in 2050 and assuming constant emissions 

per capita within Europe, the resulting annual CO2 budg-

ets per country lead to total mitigation quotas of more 

than 50% and 80% for 2030 and 2050, respectively. An-

other restriction for this modeling step is achieved by the 

application of a country specific self-sufficiency rate of 

80% of the annual power demand. Similarly, also firm 

capacities of 80% of the annual peak load of each country 

are enforced. Both quotas are deduced from preliminary 

conducted sensitivity analyses that varied both the share 

of self-sufficiency and firm capacity as well as the input 

time series for power generation of VRES based on his-

torical data of the years 2006 to 2012. 

Further assumptions for this modeling step are a phase-

out of coal use all over Europe and a the realization of all 

projects of the "Ten-Year Network Development Plan" 

(TYNDP) 2016 [15]. Consequently, all power generation 

technologies but coal-fired power plants are optimized by 

expansion planning. Finally, for reasons of simplicity, in-

vestments into flexibility options except of power genera-

tions are only possible for lithium-ion batteries and 

transmission capacities; sector-coupling is only consid-

ered by inflexible electricity demands time series of the 

transport and heat sector, while combined heat and power 

plants (CHP) are only considered by must-run factors that 

also stem from preliminary analyses. 

 

Figure 1: Schematic representation of the conducted data processing and modeling approach 

 

2.5.2 Deployment of flexibility options 

The second step of the application of REMix focuses on 

the deployment of a broad spectrum of flexibility options 

to balance the generation and demand of electricity. This 

means generation capacities are almost fixed based on the 

power plant parks of the five defined scenarios. To avoid 

presetting of over-dimensioned generation capacities, 

from the variation of weather years, we select the power 

plant parks with the smallest total generation capacity for 

Europe. Expansion planning is basically only applied for 

gas turbines (backup capacities) to be interpreted as an 

indicator of security of supply. 

With regard to energy storage we consider pumped hydro 

storage and adiabatic compressed air storage units as well 

as lithium-ion and vanadium-redox-flow batteries to be 
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optimized. Moreover, demand side management of indus-

trial consumers and controlled charging of electric vehi-

cles can be used to temporally balance load and genera-

tion in the short-term. 

Also sector-coupling is modeled in a much more detailed 

way than in modeling step 1. Using the modeling concept 

from [16], heat demand is fully considered and can be 

covered by conventional heating technologies such as gas 

burners or CHP-fed district heating networks. Additional-

ly, the capacity of electric heat generators, e.g. heat 

pumps is optimized. Capacities of this technology as well 

as of electric peak load boilers and heat storage units are 

determined model-endogenously. 

For scenarios where hydrogen is considered, expansion 

planning for hydrogen generation and storage facilities is 

enabled. The appropriate modeling concept and input data 

are adapted from [17]: Hydrogen produced by large elec-

trolyzers is stored in salt caverns and can either be used as 

fuel in the transport sector if fuel stations lie within a ra-

dius of 100 km around cavern sites. For gas stations fur-

ther away, we assume an on-site production with small 

electrolyzers and storage of hydrogen in pressure storage 

units. In addition, power reconversion is possible by co-

firing of renewable methane in all open and combined cy-

cle gas turbines that belong to the same “hydrogen pool” 

as a cavern. Therefore, we define 9 “hydrogen pools” 

which can be interpreted as equivalents to the so called 

“copper plates” on the electricity transmission side. 

2.5.3 Grid-related scenario variants 

The transmission grid infrastructure has a significant in-

fluence on the transformation of the energy system to-

wards high shares of power supply with VRES. With re-

gard to future network expansion, four different narratives 

are defined, which differ primarily in the implementation 

of different transmission technologies, the design of the 

infrastructure and the implementation speed of the 

TYNDP: 

Trend: The trend scenario represents the standard case. It 

is assumed that, despite some delays, all major TYNDP 

projects will be successfully implemented by 2030. The 

basic structure of the transmission and distribution grids 

will be retained. With regard to the model setup, trans-

mission capacities of existing transmission lines can be 

increased up to a limit of 20 GW. 

Super Grid: This scenario is characterized by remote 

power generation. Initially driven by the massive expan-

sion of offshore wind energy, there is the possibility to 

build up an overlay network based on multi-terminal 

HVDC transmission to supplement the existing AC high 

voltage grid. Accordingly, it is assumed that transmission 

expansion planning is considered for both new HVDC 

lines and the AC overhead lines. 

Smart Grid: Assuming an increasing coupling of the 

electricity, heat and transport sectors, decentral power 

generation in combination with extensive use of com-

bined heat and power contribute to the self-sufficiency of 

large areas. This makes power transmission over long in-

stances less important. The TYNDP is therefore only par-

tially implemented by assuming projects "Under Consid-

eration" to be not realized. Investments in the transmis-

sion network infrastructure are associated with higher 

costs. In addition, decentral generation capacities, i.e. 

wind turbines or photovoltaics can be further expanded to 

mainly cover demand on-site. 

Protest: Due to continuing resistance against large-scale 

infrastructure projects, these can only be realized to a lim-

ited extent and at considerable financial expense. Howev-

er, there is still a need to expand the transmission grid in-

frastructure, as large-scale alternatives, such as cavern 

storage facilities cannot be realized either. The implemen-

tation of the expansion measures in the TYNDP is there-

fore only partially successful in 2030, but accomplished 

by 2050. Additional transmission capacities are strictly 

limited to 2 GW and can only be realized by installing 

cable routes. 

Finally, with regard to the approach for modeling power 

flows with REMix, we distinguish three applied method-

ologies. These are 

• an implementation of a simple capacity constrained 

transport model,  

• the dc-power-flow approach that determines the 

power flow distribution according to distances be-

tween the considered regions and 

• the application of six temporally clustered PTDF ma-

trices that are deduced from AC power flow simula-

tions for the European high voltage transmission grid. 

For reasons of consistency with the AC power flow simu-

lation for the latter, the assumed starting point for trans-

mission capacities in these scenario variants is less con-

servative than in the rest of scenarios. 

3 Results 

3.1 System costs and backup demand 

Figure 2 shows the two major indicators for all defined 

scenarios and their variants. Those are represented by the 

colored markers and aim to achieve either a 55% or 85% 

reduction of CO2 emission on the European level com-

pared 1990. The indicator on the x-axis is the required 

backup generation capacity. On the other hand, the result-

ing overall system costs (operational and capital expendi-

tures) are plotted on the y-axis. Both indicators are pre-

sented as the difference to a one of the reference cases 

(85%-REF), where except of capacity expansion of gas 

turbines no additional balancing measures are available to 

the energy system. 

The markers of all scenarios are located left of the vertical 

blue line, which represents the backup capacity in the ref-

erence case 85%-REF. It can be thus concluded that in 

all scenarios a higher degree of system adequacy can pro-

vided. The availability of flexibility options can be as-

sessed by comparing the REF scenarios (red markers) 

with the Base scenarios (light blue markers). In all cases 

significant reductions in backup requirements can be ob-

served, e.g. 75 GW in the case of the 55%-scenarios up to 

165 GW in eHighway. The generally lower backup re-

quirement compared to the other scenarios are due to their 

greater installed capacities of thermal power plants. This 

also affects the level of the total system costs, which in 
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It is even more remarkable as lithium-ion batteries only 

play a role in scenarios where salt caverns are available 

for the long-term storage of and reconversion of hydro-

gen. For this reason, Figure 4 gives a more detailed view 

of the H2 scenario using the example of Germany. Since 

significant capacities of lithium-ion batteries can only be 

obtained in Smart it can be concluded that the observed 

expansion of 14 GW takes place apart from Germany. In 

fact, this expansion is limited to locations with signifi-

cantly high capacities of photovoltaics installed (e.g. 

Spain) where the deployment of lithium-ion batteries ob-

viously represents a more cost-sufficient option than bal-

ancing hydrogen demand and production from renewables 

with pressure storage tanks. Figure 4 also shows the shift 

from using power transmission (Trend/Super) to the uti-

lization of thermal power plants in Protest to the greater 

utilization energy of storage in Smart. 

4 Conclusions 

In this paper, we presented a multi-scenario analysis fo-

cusing the role of technological options to balance power 

generation and demand for decarbonizing the energy sys-

tem by high shares of renewable power generation. Rather 

than an exclusive examination of the requirements for 

flexibility options such as energy storage, we emphasized 

the impact of large infrastructure measures for providing 

an optimal system adequacy. We therefore investigated 

scenarios with varying power transmission needs by high 

voltage grids as well as a broad implementation of power-

to-gas or electricity imports from North Africa.  

As expected, the availability of flexibility options and 

sector-coupling generally reduced the need for backup 

power plants (gas turbines) and thus the system costs. In 

contrast, the consideration of power-to-gas particularly 

lead to significantly higher overall system costs. Positive 

effects, however, could be identified if imports of solar 

generated electricity were possible. They especially re-

duced the need for backup generation capacities. 

We found that strong CO2 mitigation targets cannot be 

achieved by exclusively implementing energy-storage 

based solution; even though local power transmission ca-

pabilities were already overestimated by the applied mod-

eling approach that mainly relies on a spatial resolution 

on country level. In the majority of the analyzed scenari-

os, we observed that grid expansion robustly appeared 

beyond the level of TYNDP measures rather than expan-

sion of all kinds of considered energy storage. More re-

stricted power transmission, however, required more gen-

eration capacities in combination with energy storage in-

clusively backup power plants. Nevertheless, those 

measures were not able to adequately replace power 

transmission by high voltage grids in terms of cost-

efficiency and CO2 mitigation. With regard to the investi-

gated variants of grid modeling, for a delayed or limited 

network expansion (Protest) the highest system costs and 

worst system adequacy was observed across all scenarios. 

The opposite was found for scenarios which are character-

ized by additional decentral generation capacities 

(Smart). In particular, despite more cost-intensive grid 

expansion, we observed a further reduction in backup re-

quirements and system costs. 
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Abstract: Energy system optimization models used for capacity expansion and dispatch planning
are established tools for decision-making support in both energy industry and energy politics.
The ever-increasing complexity of the systems under consideration leads to an increase in mathematical
problem size of the models. This implies limitations of today’s common solution approaches especially
with regard to required computing times. To tackle this challenge many model-based speed-up
approaches exist which, however, are typically only demonstrated on small generic test cases.
In addition, in applied energy systems analysis the effects of such approaches are often not well
understood. The novelty of this study is the systematic evaluation of several model reduction and
heuristic decomposition techniques for a large applied energy system model using real data and
particularly focusing on reachable speed-up. The applied model is typically used for examining
German energy scenarios and allows expansion of storage and electricity transmission capacities.
We find that initial computing times of more than two days can be reduced up to a factor of ten while
having acceptable loss of accuracy. Moreover, we explain what we mean by “effectiveness of model
reduction” which limits the possible speed-up with shared memory computers used in this study.

Keywords: energy systems analysis; energy system optimization models; linear programming;
mathematical decomposition; model reduction; REMix

1. Introduction

1.1. Motivation

Deregulation and growing decentralization have led to an increasing complexity of energy systems.
Given the envisaged creation of a common European energy market and the transformation of energy
supply towards sectoral coupling and electricity generation from variable renewable energy sources
(vRES), this trend can be expected to continue.

In this context, new energy policies are often investigated with the help of linear optimization
models [1]. However, the increasing complexity of the system to be modelled results in energy system
models that quickly reach their limits in terms of memory demand and reasonable computing time.
Existing and especially future research questions in the field of energy system analysis can thus only
be addressed to a limited extent. In applied studies, this challenge is tackled with different strategies.
Out-of-the-box solutions that enable the use of massively parallelized high performance computers are
not available, since therefore additional knowledge, e.g., about the matrix structure of the mathematical
optimization problem is necessary. Therefore, the majority of currently applied speed-up strategies still
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rely on the application of commercial optimization software executed on shared memory hardware.
However, the implementation costs and not the effectiveness often dominate the decision for an
appropriate performance enhancement approach. In addition, the heterogeneity of applied strategies
results in the fact that the comparability of model-based scenario studies is more difficult and the
trade-off between implementation costs and achievable performance is often unknown. Since the used
models show similarities in essential characteristics (e.g., with regard to fundamental equations or
applied solver software packages), it can be assumed that effective speed-up strategies for energy
system models are transferable.

Therefore, this article presents a systematic evaluation of such strategies. The characterization
of the discussed linear optimization models, which are referred to as "Energy System Optimization
Models” (ESOMs), is followed by a categorization and a qualitative description of known approaches
for shortening computing times. Subsequently, the implementation for a selection of performance
enhancement approaches is introduced and the framework for the conducted benchmark analysis is
presented. Finally, an outlook on further possibilities on the reduction of computing time in ESOMs
is given.

1.2. Energy System Optimization Models: Characteristics and Dimensions

In the context of energy systems analysis a broad spectrum of research questions is addressed
by ESOMs to support decision making in both energy politics and energy industry. In particular,
this concerns the development of future strategies such as energy scenarios for mitigation of climate
change [2] or fundamental analyses of electricity markets [3] and investment planning by system
operators [4,5]. Therefore, the objective of the associated optimization problems (OPs) is either the
optimal operation or the optimal configuration of the analyzed system which consist of a diverse set of
technologies. With regard to electricity generation, the former is originally known as Unit Commitment
(UC) or Economic Dispatch (ED) problem [6], while the latter is referred to as Generation Expansion
Planning (GEP) [7]. If these problems are resolved on the spatial scale, the consideration of transport
infrastructures, such as high voltage transmission grids, and thus modeling of multi-area OPs becomes
relevant. Typical examples are Optimal Power Flow (OPF) problems [8] on the operational side and
Transmission Expansion Planning (TEP) [9] on the configurational side.

Furthermore, due to the increasing relevance of renewable energy sources in todays and future
energy systems, also the evaluation of strategies which make use of electricity storage facilities to
integrate fluctuating power generation becomes more and more important [10].

The problems addressed by energy systems analysis are typically combinations of the above
mentioned aspects which result in integrated bottom-up models that differentiate three major scales:
technologies, time and space. Table 1 shows these scales together with their characteristics for exemplary
applications. Two kinds of characteristics are distinguished here. While the descriptive characteristic
is related to the description of the underlying real world problem, the model characteristic refers to the
way how this problem is translated into a mathematical model formulation.
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Table 1. Characteristics of Optimizing Energy System Models.

Dimension Model Characteristic Descriptive
Characteristic Example

Time Set of time steps

Short-term (sub-annual
operation)

Long-term
(configuration/

investment)

Temporal resolution hourly each 5 years
Planning horizon one year from 2020 until 2050

Space Set of regions Spatial resolution Administrative regions (e.g., NUTS3 [11])
Geographical scope European Union

Technology

Variables and constraints
per technology Technological detail Consideration of start-up behavior, minimum

downtimes

Set of technologies Technological diversity Power and heat generation, transmission grids
and storage facilities

Depending on the application, the three dimensions are differently pronounced or resolved in
energy system analysis. For example, on the one hand, ESOMs are strongly spatially resolved with
the aim of cost-optimized network expansion planning by TEP. On the other hand, also the temporal
resolution becomes important as soon as a study tries to capture the variability of power generation
from renewable energy sources. However, formulating a mathematical model with these characteristics
usually results in coupling of time, space and technology among each other. Even more importantly,
the need of addressing flexibility demands in future energy systems [12] also leads to couplings within
these dimensions. In particular, these couplings are caused by temporally shifting of generation and
consumption with storage facilities or demand side management measures which links discrete points
in time, by power exchange over transmission grids that results in an interdependency of regions as
well as by cross-sectoral technologies such as combined heat and power (CHP) plants.

1.3. Challenges: Linking Variables and Constraints

One substantial common characteristic of optimization models, we refer to as ESOMs, is the use of
a cost-based objective function conjunction with a power balance equation. For example, Equations (1)
and (2) are typical for ED problems (to better distinguish model parameters and variables, in the
following, variables are denoted in bold):

Objective function:
Minimize :

∑
t∈T

∑
n∈N

∑
u∈U

c(t, n, u) · p(t, n, u) (1)

Subject to: ∑
u∈U

p(t, n, u) = d(t, n)

∀t ∈ T, ∀n ∈ N, p(t, n, u) ≥ 0
(2)

where: p: (activity-) variable of total power supply, c: specific costs, d: power demand, T: set of time
steps, N: set of modeled regions and U: set of technologies.

Although different ESOMs consist of a large variety of further constraints, such as capacity-
activity, flow or security constraints, they share another similarity concerning the structure of the
coefficient matrix A of the appropriate linear program (Figure 1).

The abovementioned interdependencies of time, space and technologies translate either into
linking variables or linking constraints. Both are characterized by the fact that they prevent the OP
from being solved by solving independent sub-problems (indicated by the colored blocks in Figure 1).
In this context, we refer to the corresponding OPs to be monolithic.

From an applied point of view, linking means, for example, that for a selected time frame the
dispatch of reservoir power plants cannot be determined without the information about the storage
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level. However, the storage level of the actual time frame also relies on the dispatch of previous points
in time.
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Figure 1. Non-zero entries (black dots) in an exemplary coefficient matrix A of an integrated Energy
System Optimization Model (ESOM) with linking variables (grey area at the left), linking constraints
(grey area at the bottom) and independent blocks (colored blocks).

In this context, variables that occur simultaneously in several equations are generally referred to
as linking variables (or sometimes complicating variables). Provided that an appropriate permutation
is given, as shown in Figure 1, linking variables appear as vertical lines of non-zero entries in the
coefficient matrix. With regard to the temporal scale, representatives of linking variables in ESOMs
appear in expansion planning problems as the appropriate investment decision variables (e.g., opposed
to activity variables) are not defined for each time step of the operational time horizon. This is illustrated
by inequality (3) which is defined for each time step t, but the variable I stays the same for each t.

Capacity-activity constraint:

p(t, n, u) ≤ P(n, u) + I(n, u)

∀t ∈ T;∀n ∈ N;∀u ∈ U
(3)

where: I: variable of capacity expansion and P: existing capacity
In contrast to linking variables, horizontal lines of non-zero entries in the coefficient matrix

indicate linking constraints (Figure 1), sometime referred to as complicating constraints. For example,
fuel availability constraints, such as used for modeling biomass fired power plants, typically define a
temporally non-resolved value as an annual limit. To ensure that the total fuel consumption within the
operation period stays within this limit, a linking constraint couples the involved variables:

Fuel-availability constraint: ∑
t∈T

∑
u∈UBio

p(t, n, u) · 1
µ(u) ≤ F(u)

n∀N; UBio ⊂ U
(4)

where: F: available fuel, µ: conversion efficiency and UBio: set of biomass power plants.
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2. State of Research

2.1. Classification of Performance Enhancement Approaches

We distinguish two methodological layers for approaches to enhance the performance of an ESOM
(Figure 2). On the one hand, in the technical layer measures are emphasized that can be taken on
the solver side in order to generally solve an OP. Thus, it concerns all methods that are applied in a
solver package, such as CPLEX, Gurobi, Xpress or MOSEK, whether it is a specific implementation
of solution algorithms or the tuning of the same by an appropriate parameterization. On the other
hand, the conceptual layer refers to the translation of a real world problem into an OP. This means, for
example, that several possibilities exist on how to address a research question with different model
formulations. Model-based measures to improve the performance of an ESOM, thus rely on specific
domain knowledge provided by developers of ESOMs. This refers to both the treatment of data in
order to reduce the amount of data used in the model as well as the application of heuristics and
model-based decomposition methods. In the following, we discuss the state-of-research with regard to
model reduction, heuristics and mathematically exact decomposition methods applied to the time,
space and technology dimension in ESOMs. Although solution algorithms such as Interior point are
applied, we do not focus on improvements on the algorithm side (technical layer). This means that
also meta-heuristics like particle swarm optimization or genetic algorithms are not considered.
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2.2. Model Reduction

Model reduction approaches are very common since they are effective due to the reduction of the
total size of the OP (less variables and constraints). Furthermore, they are also implicitly applied to
ESOMs, for instance, due to limited input data access. Thus, these approaches usually manipulate
input data in a pre-processing step, instead of changing the way how an ESOM is solved. Based on the
treatment of available data we distinguish two forms of model reduction techniques: (i) slicing and
(ii) aggregation.

2.2.1. Slicing

Slicing approaches translate into focusing to a specific sub-problem by ignoring existing
interdependencies or considering only a part of the input data that could be used. This means,
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for example, excluding technologies such as CHP plants from a model [13] or ignoring power exchange
beyond neighboring regions on the spatial side [14]. Regarding the temporal dimension, analyses are
conducted only for a specific target year [15] or time-slices are selected [16]. These sub-sets represent
either critical situations, such as the peak load hour, or typical time periods which are supposed to
be characteristic for the entire set of operational time steps. By this means, slicing approaches can
lead to significant deviations of results compared to the global optimum of the full OP as they do not
ensure that all relevant information within the available data is captured. However, if for the selection
of specific slices a pre-analysis is conducted, we do not refer to this process as simple slicing since it
aims to take into account all input data. This is rather typical for aggregation approaches. Therefore,
they reduce the input data set in a way that relevant information is maintained as far as possible.
In the context of ESOMs, aggregation can also be described as coarsening of resolutions for each of the
characteristic model dimensions.

2.2.2. Spatial Aggregation

The treatment of large, spatially explicit data sets is a common challenge in the context of
power network analysis. However, corresponding to the area of responsibility of system operators,
methods for power networks were developed to study certain slices of the entire interconnected
network. The objective of these traditional network reduction techniques is therefore to simplify the
neighborhood of the area of interest by the derivation of network equivalents based on given power
flows. These equivalents, such as derived by Ward or Radial Equivalent Independent (REI) methods,
represent the external area which is required to show the same electrical behavior as the original
network [17]. In the case of Ward equivalents, the networks’ nodal admittance matrix is reduced
by Kron’s reduction [18]. In contrast, however, the REI procedure applies a Gaussian elimination to
external buses. Power injections are preserved by aggregating them to artificial generators which are
connected to a representative, radial network which is referred to as REI.

The principle of creating network equivalents is also applicable to ESOMs, although their scope is
rather the interaction of different technologies than the exclusive assessment of stability or reliability
of electrical networks. Recently, Shayesteh et al. [19] adapted the REI approach to use-cases with
high vRES penetration. However, this step of creating aggregated regions for a multi-area ESOM
needs to be preceded by a partitioning procedure which allows for defining of regional clusters.
In general, the clustering algorithms, such as k-means, group regions or buses with similar attributes
together. In [19] the admittance between two buses is used to account for strongly connected regions.
Opposed to this, Shi and Tylavsky [20] as well as Oh [21] derive network equivalents based on reduced
power transfer distribution factor (PTDF) matrices which rely on the linearization of certain system
operating points.

Despite the availability of a broad spectrum of sophisticated aggregation techniques, in the context
of energy system analysis, the applied literature is governed by simple spatial aggregation approaches.
In particular, they are usually characterized by a summation of demand and generation capacities,
whereas intra-regional flows are neglected and regions are grouped based on administrative areas,
such as market or country borders [15,22,23]. Reasons therefore are, on the one hand side, the availability
of required, large data sets of spatially explicit data for the broad diversity of technologies, such as
potentials and existing infrastructure. On the other hand, the majority of network equivalents are
based on pre-computed system states of the spatially highly resolved model, for example, a solved
power flow study. This in turn requires the application of nested approaches (Section 2.3), where first
simplifications to other scales of an ESOM are required in order to obtain the power flows of the entire
network. By this means, reasonable simplifications are the use of time-slices in form of operational
snapshots and the summation of power supply from all generation technologies.

Nevertheless, concerning scenarios of the European energy system Anderski et al. [24], as well
as Hörsch and Brown [25] take a step towards improved methodologies regarding aggregation of
spatially highly resolved data sets. Both use power demand as well as installed generation capacities
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as attributes for state-of-the art clustering algorithms. However, while in [24] PTDF-based equivalents
are built, the authors in [25] apply a more or less straight forward process for creating spatially
aggregated regions.

2.2.3. Temporal Aggregation

Temporal aggregation refers to representative time periods or the process of down-sampling
data derived from a highly resolved initial data set. Down-sampling is a method where time series
based input data is coarsen to a lower temporal resolution (e.g., by averaging from 1-hourly to
6-hourly). In ESOMs, down-sampling typically affects demand profiles (e.g., electric or heat load)
and the power feed-in from vRES. Although the approach is an effective way to reduce computing
times—Pfenninger [26], for example, shows a reduction of computing time by up to 80% (scenario
90% 2014)—the method is rarely applied. This is due to the claim to capture the dynamics of variable
power provision from renewable energy technologies. By this means, ESOMs typically rely on their
highest resolved data and often use hourly input [27]. Exceptions can be found in studies that analyze
the impact of different temporal resolutions in unit commitment approaches, e.g., in Deane et al. [28]
(5, 15, 30 and 60 min) or in O’Dwyer and Flynn [29] as well as in Pandzzic et al. [30] who both compare
a 15 min resolution with hourly modeling.

More common is the combination of down sampling and the selection of representative time
periods, such as applied in [31] or [32]. Representative time periods are intended to illustrate typical or
extreme periods of time. These time intervals are then weighted to derive the overall time horizon,
e.g., one year. Moreover, also challenges exist to account for the chronological relationship between
hours which in particular becomes important if time-linking constraints are incorporated in an
ESOM. One approach to tackle this issue is presented by Wogrin et al. [33] who define transitions
between system states derived by applying a k-means-like clustering algorithm to wind and demand
profiles. As stated in [26], the selection of time-slices is either based on a clustering algorithm, such as
k-means [34], hierarchical clustering [35], or simple heuristics [36].

While temporal aggregation is an effective method to reduce computing times, it is not always
clear which error is introduced by it. This issue has been tackled by a number of recent papers, such as
Pfenninger [26], Haydt et al. [37], Ludig et al. [31], and Kotzur et al [38]. The studies unanimously
highlight the rising importance of high temporal resolution with increasing vRES share. The authors
also state that there exists no best practice temporal aggregation and emphasize that it strongly depends
on the modeling setup. For instance, Merick [39] recommends ten representative hours for robust
scenarios when only variable demand is considered. This number, however, increases significantly
when vRES and especially several profiles per technology are taken into account. With regard to
representative days, he finds that the number of 300 is appropriate. This represents a clear difference
compared to the sufficient number of six representative days resulting in [35]. Nahmmacher et al. [35]
use the same clustering technique, but assess model outputs, such as total system costs, rather than the
variance of clustered hours of the input time series.

2.2.4. Technological Aggregation

We define technology resolution as the abstraction level in a modeling approach to characterize
the technologies relevant for the analysis. In this context, it can be stated that the higher the abstraction
level, the better the performance of an ESOM. This applies to both the aggregation of input data and the
mathematical model of a particular technology. The former, for example, refers to the representation
of generation units (electricity, heat, fuels) or flexibility options (e.g., grid, storage). More precisely,
classifications of power plant types can be based on several attributes such as rated power, conversion
efficiency, and fuel or resources type. Technological resolutions therefore range from very detailed
modeling of individual generation units [40] to general distinctions based on fuel consumption and
resource [41]. However, the methods for deriving appropriate classifications or aggregations are rather
based on simple grouping of attributes than on specific clustering algorithms.
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Moreover, the classification of technologies is strongly connected to the mathematical description
since physically more accurate models typically require more detailed data. In this regard, a broad body
of literature investigates the necessary technological detail for power plant modeling. Often, these
analyses compare simplified linear programming approaches (ED) with more detailed mixed integer
linear programming (UC) models for least cost power plant dispatch. As a result, such studies assess
differences in power plant dispatch (e.g., in [42–45]) and, additionally, highlight effects on resulting
metrics (e.g., storage requirements in [46] or marginal prices of electricity generation in [47,48]).

The same applies to transmission technologies where Munoz et al. [49], for instance, study
modeling approaches (discrete vs. continuous grid capacity expansion) and their effects on the total
system costs. Also technological classifications can be made for different voltage levels or objectives
of grid operation (e.g., transmission or distribution). Regarding mathematical models, resolutions
range from detailed, nonlinear AC-power flow over decoupled and linear DC-power flow to simple
transshipment or transport models [50].

2.3. Heuristic Decomposition and Nested Approaches

Although mathematical exact decomposition techniques (see Section 2.4) could be interpreted as
nested approaches, in this section, we explicitly refer to methods that usually find near-optimal solutions
rather than a theoretically guaranteed exact optimum. In this context, nested approaches are used as a
synonym for heuristics. In contrast to meta-heuristics, this concerns methods that imply modifications
of the ESOM regarding the conceptual layer and thus base on the same mathematical solver algorithm.
In general, nested approaches are built on model reduction techniques (see Section 2.2). Therefore,
combinations of several reduced instances of the same initial ESOM (original problem) are usually
solved sequentially. This means, that after the solution of the first reduced model is obtained, certain
outputs are used as boundary conditions (e.g., in the form of additional constraints) for the following
model(s) to be solved.

As mentioned above, ESOMs have linking constraints or variables that globally link points of one
dimension. These characteristics are crucial for the decomposition of an OP into smaller instances of the
same problem, regardless of whether it should be solved by an exact decomposition (see Section 2.4) or
heuristic approach. Often this is intuitively done by the application of nested performance enhancement
methods where linking variables, such as power flows or endogenously added capacities are used to
interface between the different reduced models.

In the literature, a wide range of examples for the applications of nested performance enhancement
approaches exists. For instance, Romero and Monticelli [51] propose an approach for TEP where they
gradually increase the technological detail starting with a simple transport model, and finally taking
into account Kirchhoff Voltage Law constraints as in a DC-power flow model.

With regard to the spatial scale, one methodology can be described as “spatial zooming”,
which is similar to the classical methodology applied for power network analysis (see Section 2.2.2).
Possible implementations can look like as follows: First a large geographical coverage is considered
in a coarse spatial resolution to study macroscopic interdependencies. In a second step, these
interdependencies, such as transnational power flows, can be fixed in order to conduct a detailed
analysis of the region of interest [52]. In [53] the spatial dimension is simplified by the derivation of
network clusters, while for the solution of the original problem a selection of binary variables related
to pipelines and suppliers is restricted.

Comparing the different reduced models used in a nested approach, typically, a decrease of
resolution on one scale is accompanied by an increase on another. In this regard, one common approach
is decoupling investment decisions by “temporal zooming”. First, a power plant portfolio is developed
over the analyzed planning horizon using a simplified dispatch model and pre-defined time-slices to
simulate the planned operation. In order to check whether the derived power plant portfolio performs
well for a selected target year, UC constraints are added and capacities are fixed in the subsequent
model run(s) [13,43,54]. Babrowski et al. call a similar method “myopic approach” [55]. In this case,

97



Energies 2019, 12, 4656 9 of 51

for each year of the planning horizon a model run is performed, whereas the resulting generation
expansion is taken as an offset of installed power generation for the subsequently analyzed target year.

In applied energy system analysis, ESOMs often need to consider large sets that represent the
temporal scale (i.e., time series of 8760 h) in order to capture the variability of vRES [26], rather than
high resolutions on the technological or spatial scale. In the following, we therefore introduce two
heuristic methods for this particular dimension in detail.

2.3.1. Rolling Horizon

Although the definition of nested approaches does not perfectly fit to rolling time horizon methods,
we introduce these heuristics as a preliminary stage to temporal zooming (see Section 2.3.2). The general
idea behind rolling horizon methods is to split up the temporal scale (temporal slicing) into smaller
intervals to obtain multiple reduced ESOMs to be solved sequentially. In particular, these methods are
used for two reasons. One is to account for uncertainties by frequently updating limited knowledge
concerning the future. This applies, for instance, to forecasts of load or electricity production from
renewable energy sources. Although the main principles of a rolling horizon approach apply to both
operational and investment planning, in the following we mainly refer to the former, the rolling
horizon dispatch. Therefore, a typical application is short-term scheduling of power systems with a
high penetration of renewables [56–58].

The other purpose of implementing a rolling horizon approach to an ESOM is the premise that
the total computing time for solving individual partial problems stays below the one for obtaining a
solution for the original problem. Marquant et.al [59] report of a wide variety of achieved speed up
factors ranging from 15 up to 100.

An optimal number of time windows usually exists depending on the model size, since
the computational overhead for creating reduced models increases with the number of intervals.
Furthermore, the planning horizon of an individual time window usually includes more time steps
than necessary for the partial solution. In the context of energy system analysis, this overlap is
important to emulate the continuing global planning horizon. Especially the dispatch of seasonal
storage units is strongly affected by this as, without any countermeasures, it is more cost-efficient to
fully discharge the storage until the end of an operational period. Also time-linking variables and
constraints, such as annual limits on emissions, can barely be considered in this way since global
information regarding the temporal scale can only be roughly estimated for each time window. For this
reason, inter alia indicated by a trend to overestimate the total system costs [59], the aggregation of
interval solutions does not necessarily end up at the global optimum of the original problem.

2.3.2. Temporal Zooming

Concerning their capability to improve the performance of an ESOM, rolling horizon approaches
have one particular disadvantage. Since each partial solution is updated by a subsequent one,
the reduced ESOM instances are sequentially coupled. This prevents parallel solving.

The heuristic, we refer to as temporal zooming, overcomes this issue and allows for solutions
closer to the exact optimum of the original problem. Therefore, the rolling horizon approach is adapted
in the following way. In a first step, time-linking information is gathered from the solution of an
additional ESOM instance which is reduced on the temporal scale. But, in contrast to the reduced
ESOMs which consider specific intervals within the full operational horizon, the temporal resolution
is down sampled. This in turn allows optimizing the dispatch of the original problem for the full
planning period. Values of variables from this first model run can subsequently be used to tune the
consideration of global time-linking variables and constraints within the intervals. Despite the need
for an additional model run, total computing times for obtaining a final solution can be expected to be
at least competitive compared to rolling horizon approaches. This is due to the fact that overlaps are
not required and the temporally sliced ESOMs can be solved in parallel.
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2.4. Mathematically Exact Decomposition Techniques

Decomposition approaches are a well-known instrument for reducing the computing time in OPs.
In this case, an OP is broken down into interlinked partial problems. With regard to the structure of the
OP’s coefficient matrix, the decomposition can be exploited for the creation of individual blocks. Ideally,
block structures with globally linking variables or constraints can be isolated from the sub-problems,
making them solvable independently of each other, for example in parallel.

Despite this similarity to nested approaches, such as temporal zooming, the crucial difference
concerning exact decomposition techniques is the theoretically proven guarantee to find the optimal
solution of the original problem [60]. However, this typically requires an iterative solution of partial
problems. Therefore, it can be stated, that compared to nested approaches, decomposition techniques
provide the best accuracy possible, but at the expense of additional computing time.

2.4.1. Dantzig-Wolfe Decomposition

In particular, approaches that can treat linking constraints are Dantzig-Wolfe decomposition
and Lagrangian relaxation. The general idea behind both is to remove the linking constraints from
the original problem to observe a relaxed problem that decomposes into sub-problems. In the
case of Dantzig-Wolfe decomposition the objective function of the appropriate master problem
consists of a linear combination of solutions of the relaxed problem. Starting from an initial feasible
solution, the subsequent iterations extend this function if the new solution of the relaxed problem
verifiably reduces the objective value (i.e., costs). Accordingly, this process is called column generation
since the iterations literally creates also new columns in the master problems’ coefficient matrix.
Flores-Quiroz et al. [61] use this approach in order to decouple discrete investment decisions from
dispatch optimization for a GEP with UC-constraints. Although performance enhancements are
examined for realistic applications of different sizes these improvements are only quantified for small
model instances due to memory issues of not-decomposed benchmark models (ca. 3 times faster, 95%
less memory usage).

2.4.2. Lagrangian Relaxation

The Lagrangian relaxation is derived from the common mathematical technique of using Lagrange
multipliers to solve constrained OPs where linking constraints are considered in the form of penalty
terms in the objective function of the master problem. In the applied literature, Lagrangian relaxation is
used by Virmani et al. [62] to treat the linking constraints, that couple individual generation units in the
UC problem. More recently, Wang et al. [63] applied Lagrangian relaxation on a security-constrained
OPF problem in order to decouple a security constraint that links variables of two scales, contingencies
and circuits. However, as the treated problem consists of both linking constraints and linking variables,
Benders decomposition is applied additionally.

2.4.3. Benders Decomposition

Opposed to the previously described decomposition approaches, Benders decomposition can be
applied to OPs with linking variables. The general concept of splitting an OP by this approach is based
on fixing the linking variables in the sub-problem(s) using their values from the master problem’s
solution. To improve the solution of the master, the sub-problems are approximated by additional
constraints. These so called Benders cuts in turn rely on the dual variables of the obtained solutions in
the sub-problems.

As ESOMs are often formulated as linear programs, due to duality of these problems, a translation
of linking constraints into linking variables is possible and thus Benders decomposition can be applied
to almost all kinds of ESOMs. Accordingly, it is a frequently exploited decomposition technique in
the applied literature. Table 2 lists a number of publications that apply decomposition techniques to
ESOMs that are at least partially formulated as linear programs (LPs) or mixed-integer linear programs

99



Energies 2019, 12, 4656 11 of 51

(MIP). However, due to the non-linearity of AC-power flow constraints, also non-linear programs
(NLPs) are a typical use case considered here.

Table 2. Overview decomposition techniques applied to ESOMs.

Authors Math.
Problem Type

Descriptive
Problem Type

Decomposed Model
Scale

Decomposition
Technique

Decomposition
Purpose

Alguacil and Conejo
[64] MIP/NLP Plant and grid

operation
Time, single
sub-problem

Benders
decomposition

Decoupling of UC and
multi-period DC-OPF *

Amjady and Ansari
[65] MIP/NLP Plant operation Benders

decomposition
Decoupling of UC and

AC-OPF **

Binato et al. [66] MIP/LP TEP Benders
decomposition

Decoupling of discrete
investment decisions

and DC-OPF

Esmaili et al. [67] NLP/LP Grid operation Benders
decomposition

Decoupling of AC-OPF
and congestion

constraints

Flores-Quiroz et al.
[61] MIP/LP GEP

Time, 1-31
sub-problems,

sequentially solved

Dantzig-Wolfe
decomposition

Decoupling of discrete
investment and UC

Habibollahzadeh et al.
[68] MIP/LP Plant operation Benders

decomposition
Decoupling of UC and

ED

Khodaei et al. [69] MIP/LP GEP-TEP
Time, two

sub-problem types,
sequentially solved

Benders
decomposition

Decoupling of discrete
investments into
generation and

transmission capacity,
security constraints

and DC-OPF

Martinez-Crespo et al.
[70] MIP/NLP Plant and grid

operation

Time, 24
sub-problems,

sequentially solved

Benders
decomposition

Decoupling of UC and
security constraint

AC-OPF

Roh and
Shahidehpour [71] MIP/LP GEP-TEP

Time, up to 10 × 4
sub-problems,

sequentially solved

Benders
decomposition
and Lagrangian

Relaxation

Decoupling of discrete
investments into
generation and

transmission capacity,
security constraints

and DC-OPF

Virmani et al. [62] LP/MIP Plant operation

Technology
(generation units), up
to 20 sub-problems,
sequentially solved

Lagrangian
Relaxation

Decoupling of unit
specific(UC) and
cross-park (ED)

constraints

Wang et al. [72] LP/MIP Plant and grid
operation

Space, 26
sub-problems,

sequentially solved

Lagrangian
Relaxation

Decoupling of DC-OPF
and UC

Wang et al. [73] MIP/NLP Plant and grid
operation

Scenarios and time,
10 × 4 sub-problems,
sequentially solved

Benders
decomposition

Decoupling of UC,
scenario specific
system adequacy
constraints and

network security
constraints

Wang et al. [63] LP Plant and grid
operation

Technology (circuits)
and time

(contingencies), two
sub-problem types,
sequentially solved

Lagrangian
Relaxation and

Benders
decomposition

Decoupling of DC-OPF,
system risk constraints
and network security

constraints

* Direct Current Optimal Power Flow, ** Alternating Current Optimal Power Flow

2.4.4. Further Aspects

Besides the already presented decomposition techniques, also further mathematically exact
approaches exist that are based on individual information exchange between partial problems.
Zhao et al. [74], for instance, use this marginal based approach for independent scheduling in a
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multi-area OPF problem. Compared to the heuristics presented above, this can be interpreted as the
spatially decomposed counterpart to the (temporally decomposed) rolling horizon approach.

Although decomposition approaches provide the capability to improve the performance of solving
independent sub-problems of an ESOM in parallel, these techniques are mostly applied for another
purpose which results in the iterative solution of a master and one sub-problem. A complicated
mathematical problem, such as a large NLP, is simplified by splitting it up into two problems, a smaller
NLP on the one hand and a less complicated problem, such as a MIP, on the other. This applies
especially to the examples in Table 2 for which nothing is listed in the column “Decomposed model
scale”. And even though the most frequently identified, decomposed model scale is found to be the
temporal dimension, this usually refers to the separation of sub-annual operation scheduling and
long-term investment planning in GEP or TEP. According to Table 2, the other typical application of
exact decomposition techniques is decoupling of power-flow or security constraints from an UC model
which generally refers to a spatial decomposition.

The computational benefits of parallel computing are especially exploited in the context of
stochastic OPs. Here the temporal scale is extended by almost independent branches which are
referred to as scenarios. These scenarios represent different possible futures which can be determined
in parallel (sub-problems) while the assessment of these several alternatives is done by the master
problem. Besides the classical decoupling of investment and operation decisions, this approach is also
suitable in the context of short-term scheduling. For example, Papavasiliou et al. [75] apply Lagrangian
relaxation to decompose by scenarios for a stochastic unit commitment model with DC power flow
constraints. Opposed to most ESOMs, they solve their model on a high performance computer with
distributed memory architecture. As is it can be expected, Papavasiliou et al. [75] find a significant
speed-up due to parallelization. This performance increase, however, poorly scales with the number of
cores (e.g., speed-up factor 7 for a hundred times the number of cores). Nevertheless, the main goal of
the presented approach is to stay below a threshold of computing time that is suitable for day-ahead
operation planning.

2.5. Aim and Scope

Despite the existence of a large number of speed-up approaches for ESOMs, it is not clear which
methods are the most promising ones to improve the performance of ESOMs that are used in the field
of applied energy system analysis. In addition to the arrow-head structure of the coefficient matrix
(presence of linking constraints and linking variables, see Section 1), a majority of these models share
three characteristics [27]:

(1) To be able to increase the descriptive complexity of the models, the mathematical complexity is
often simplified. This frequently means the formulation of large monolithic linear programs (LPs)
which are solved on shared memory machines.

(2) Due to the assessment of high shares of power generation from vRES the time set that represents
the sub-annual time horizon shows the largest size (typically 8760 time steps)

(3) A great number of applied ESOMs are based on mathematical programming languages such as
GAMS (General Algebraic Modeling System) or AMPL (A Mathematical Programming Language”)
rather than on classical programming languages. Those languages enable model formulations
which are close to the mathematical problem description and take the task of translation into a
format that is readable for solver software. For this reason, the execution time of the appropriate
ESOMs can by roughly divided into two parts, the compilation and generation of the model
structure requested by the solver and the solver time.

For the following analyses, we also use GAMS which is, according to a review conducted by
Zerrahn and Schill [27], a very popular modelling language in the field of energy systems analysis.
We focus on initially large GAMS models for which total computing time is mainly dominated by
solver time.
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The general aim of this paper is to systematically assess the effectiveness of different performance
enhancement approaches for ESOMs that share the above mentioned characteristics. Rather than
the comparison of models that deliver exact the same results, we explore possible improvements in
terms of required computing time that can be achieved by implementing different conceptual speed-up
techniques into an ESOM while staying within a sufficient accuracy range.

By this means, our aim is not to compare all above presented speed-up approaches, but those
which are able to achieve the comprehensibly best performance enhancement. In this context, our
hypothesis for the selection of model-based speed-up approaches to be systematically evaluated relies
on three basic premises:

(1) We focus on very large LPs that have a sufficiently large size for the computing time to be
dominated by the solver time and still maintaining the possibility to be solved on a single shared
memory computer. If we implement an approach that allows for reduction or parallelization of
the initial ESOM by treating a particular dimension, the highest potential therefore can explored
by applying such an approach to the largest dimension. Accordingly:

(2) We emphasize speed-up strategies that treat the temporal scale of an ESOM. A high potential for
performance enhancement still lies in parallelization, even though, for this study, it is limited
to parallel threads on shared memory architectures. Exact decomposition techniques have
the advantage to enable parallel solving of sub-problems. However, we claim that each exact
decomposition technique can be replaced by a heuristic where the iterative solution algorithm
is terminated early. In this way, the highest possible performance should be explored, because
further iterations only improve the model accuracy; however they require more resources in
terms of computing time. In addition, according to the literature in Table 2, it can be concluded,
that mathematically exact decomposition techniques are applied less often with the objective of
parallel model execution, but the separation of a more complicated optimization problem from
an easy-to-solve one. For very large LPs this is not necessary. For these reasons:

(3) We only analyze model reduction by aggregation and heuristic decomposition approaches.

3. Materials and Methods

3.1. Overview

Our evaluation approach should provide an assessment of model-based performance enhancement
approaches for a very large ESOM that is intended to produce results for real use-cases. However, this
implies a couple of challenges. A proper adaption of a large applied ESOM for the comparison of a
broad set of speed-up strategies is very time-consuming. Accordingly, we limit the evaluation to the
following performance enhancement approaches:

• model reduction by spatial and temporal aggregation
• rolling horizon
• temporal zooming

Moreover, to meet the requirement for an evaluation of very large ESOM instances, we want to
prevent the implementation of speed-up strategies into a model that is easily solvable by a commercial
solver. Nevertheless, for having references for benchmarking this must still be possible. Hence, we
select an existing ESOM for which we know from experience that obtaining a solution is hard but
not impossible.

Besides, for fair benchmarking, it must be ensured that the reference model already performs
well, e.g., with regard to solver parameterization. To meet this requirement our first methodological
step is to conduct a source code review for the applied ESOM and follow recommendations by GAMS
developers and McCarl [76]. Although most of the corresponding hints of the latter aim at the reduction
of the GAMS execution time, the main objective of this review step is the identification of source code
snippets that cause the creation of redundant constraints. In practical terms, this means an explicit
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exclusion of unnecessary cases by broadly applying conditional statements ($-conditions). Otherwise,
needlessly large models would be passed to the solver.

Finally, it is essential that all model instances that should be compared are executed on
identical hardware which should be exclusively available for the ESOM-related computing processes.
Ensuring this across the whole evaluation exercise would require a large number of computers with
comparatively large memory (>200 GB) to conduct the analysis within practical time spans. Due to a
limited access to such equally equipped computers, we guarantee this only for benchmarks across
each particular performance enhancement strategy.

The remainder of this section is structured as follows: The modeling setup consisting of a
description of the applied ESOM and its characteristics and data as well as the used solver and its
basic parameterization are described in Section 3.2. The implementations of speed-up approaches to be
evaluated are then presented in Section 3.3. Finally, we set up an evaluation framework that ensures
at least a fair comparison of model performance and accuracy across different parametrizations of a
particular speed-up approach.

3.2. Modeling Setup

REMix (Renewable Energy Mix for a sustainable energy supply) can also be regarded as a modeling
framework since several parameterizations of the REMix model exist which share the same source
code but focus on various research questions and thus have different scopes in terms of available
technologies, geographical study area and time horizon. The analyses for this study were conducted
with two model setups which were partially extended. Although most of our analyses are performed
for both of them, the results presented in Section 4 build on the REMix instance presented in [77].
The corresponding LP represents the German power system for an energy scenario of the year 2030.
In its basic configuration it is a CO2-emission-constrained DC-OPF problem that considers renewable
and fossil power generators, electricity transport within the high voltage transmission grid as well as
storage facilities such as pumped hydro power plants and lithium-ion batteries.

In addition, no generation capacities are optimized but capacities of both transmission lines and
energy storage are optionally considered for expansion planning. To be able to observe a significant
expansion of these technologies, their initial values for installed capacities represent the state of
2015. Hence, the installed capacity of lithium-ion batteries is zero. It needs to be noted that this
configuration can lead to loss of load situations if capacity expansion is omitted. This is due to the
fact that the power plant portfolio of the underlying scenario relies on the assumption that suitable
load balancing capability of the power system can be provided by lithium-ion batteries and additional
power transmission capacities.

A fact sheet of the appropriate REMix model setup is shown in Table 3 which also provides
information about the input and output data.

Table 3. Model fact sheet of the applied configuration of REMix based on [77].

Model Name REMix

Author (Institution) German Aerospace Center (DLR), Institute of Engineering Thermodynamics

Model type

Linear programing
Minimization of total costs for system operation and expansion

Economic dispatch/optimal dc power flow with expansion of storage and transmission
capacities

Sectoral focus Electricity
Geographical focus Germany
Spatial resolution 488 nodes

Analyzed year (scenario) 2030
Temporal resolution 8760 time steps (hourly)
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Table 3. Cont.

Model Name REMix

Input-parameters: Dependencies

Te
m

po
ra

l

Te
ch

ni
ca

l

Sp
at

ia
l

Conversion efficiencies [78] x
Operational costs [78] x

Fuel prices and emission allowances [79] x
Electricity load profiles [80] x x

Capacities of power generation, storage and grid transfer
capacities and annual electricity demand [81–83] x x

Renewable energy resources feed-in profiles x x x
Import and export time series for cross-border power flows [84] x x

Evaluated output
parameters

System costs (objective value)
Generated power x x

Added storage/transmission capacities x
Storage levels x x x

3.2.1. Characteristic Constraints

The majority of the mathematical formulations of REMix is presented in [85]. As discussed in
Sections 1.2 and 1.3, the coefficient matrix structure of the corresponding LPs contains linking variables
and constraints. Besides variables that are induced by enabling capacity expansion (Equation (3)), a great
number of linking elements results from modeling power transmission using the dc approximation
(spatially linking) or storage facilities (temporally linking). Furthermore, constraints reflecting
normative targets, such as necessary for modeling greenhouse gas mitigation scenarios, cause
interdependencies between large sets of variables (spatially and temporally linking). For a better
comprehensibility Equations (5) to (8) describe these constraints in a simplified manner, i.e., without
conditional statements, additional index sets or scaling factors (as implemented in REMix):

Storage energy balance:

ps+(t, n, us) − ps−(t, n, us) − pls(t, n, us) =
Es(t,n,us) − Es(t−1,n,us)

∆t

∀t ∈ T;∀n ∈ N; ∀u ∈ Us; Us ⊂ U
(5)

where Us: set of storage facilities.
DC power flow:

pim(t, n) − pex(t, n) − plt(t, n) =
∑
n′

B(n, n′) · θ(n′, t)

∀t ∈ T;∀n ∈ N
(6)

pf+(t, l) − pf−(t, l) =
∑
l

∑
n

Bdiag(l, l′) · KT(l, n) · θ(n, t)

∀t ∈ T;∀l ∈ L
(7)

where: pim/pex: power import/export, plt: transmission losses, pf+/pf−: active power flow
along/against line direction, θ: voltage angle, B: susceptance between regions, Bdiag: diagonal
matrix of branch susceptance, K: incidence matrix and L: set of links (e.g., transmission lines).
Emission cap: ∑

t

∑
n

∑
u

p(t, n, u) · ηe(u) ≤ m (8)

where: ηe: fuel specific emissions and m: maximal emissions.
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3.2.2. Solver Parametrization and Hardware Environment

In preliminary experiments resulting from a broad spectrum of REMix applications, ranging
from country specific cross-sectoral energy systems [86,87] to multi-regional [85,88–90] and spatially
highly resolved power systems [77], for monolithic LPs, we observed the best performance in terms of
computing time and RAM requirements with the following solver parameters when using CPLEX:

(1) LP-method: barrier
(2) Cross-Over: disabled
(3) Multi-threading: enabled (16 if not otherwise stated)
(4) Barrier tolerance (barepcomp)

• 1e−5 spatial aggregation with capacity expansion
• default (1e−8): rest

(5) Automatic passing of the presolved dual LP to the solver (predual): disabled
(6) Aggressive scaling (scaind): enabled

Especially in the case of the first three solver options, LPs that previously could not be solved
within time spans of multiple days, turned out to be solvable in less than 24 h. With regard to the
solver parameter 5, the amount of required RAM could be significantly decreased. For example, model
instances that showed a peak memory demand of 230 GBs when setting predual to −1, otherwise
exceeded the available RAM of 300 GBs. For these reasons, all of the following analyses are conducted
with GAMS release 25.1.3 using CPLEX 12.8.0 with the above listed solver parameters. In addition,
for all implementations of heuristic decomposition approaches either the GAMS option solvelink = 5
(rolling horizon, temporal zooming) or solvelink = 6 (temporal zooming with grid computing) are
used to avoid delay times due to frequent read and write operations on the hard disk.

With regard to available hardware, computers with the following (Table 4) specifications
are available:

Table 4. Specifications of available computers for solving model instances.

Processor Available Threads Available Memory

Dual Intel Xeon Platinum 8168 2x 24 @ 2.7 GHz 192 GB
Intel Xeon Gold 6148 2x 40 @ 2.4 GHz 368 GB

3.2.3. Original REMix Instances and Their Size

As indicated in Table 3 the applied REMix model performs a DC-OPF which is optionally
extendable by capacity expansion planning for storage and transmission infrastructures. Depending on
this optional setting, two original model instances can be distinguished referred to as “REMix Dispatch”
and “REMix Expansion”. Due to the different purposes of the decomposition heuristics to be evaluated,
the two original models are only investigated for a sub-set of speed-up approaches. The rolling horizon
approach is only sufficiently applicable to dispatch problems since investment decisions for especially
short time intervals lead to a significant overestimation of required capacity expansion. In contrast,
temporal zooming is explicitly suited for problems that account for capacity expansion.

To get an impression of model size, we measure the number of constraints, variables and non-zero
elements of the coefficient matrix reported by the solver after performing the pre-solve routines.
The appropriate values are indicated in Table 5. They show that enabling expansion planning is costly,
especially with regard to the number of constraints. Compared to the number of variables which is
increased by approximately 30%, the number of constraints is more than tripled. Nevertheless, this
results in a less dense coefficient matrix since the number of non-zeros is only doubled.
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Table 5. Characterization of original REMix model instances.

Original Model
Instance Name Applied Speed-Up Approaches Number of

Variables
Number of
Constraints

Number of
Non-Zeros

REMix Dispatch
• spatial aggregation
• temporal aggregation
• rolling horizon dispatch

30,579,396 9,214,488 69,752,951

REMix Expansion
• spatial aggregation
• temporal aggregation
• sub-annual temporal zooming

43,169,135 32,805,201 137,967,269

3.3. Implementations

3.3.1. Aggregation Approaches

The implemented aggregation approaches either treat the temporal or spatial scale. In case of the
first, simple down-sampling is applied to load and feed-in profiles from vRES. Those parameters are
available in form of hourly time series (temporally resolved). For down-sampling they are averaged to
achieve a data aggregation and accordingly a reduction of the model size by factor M. For instance, when
transforming a demand time series and, for reasons of simplicity, index sets of the other dimensions
are ignored, the appropriate calculation rule is:

dagg(tM) =
∑
t

Πt(tM, t) · d(t)

∀tM ∈ tM; M ∈ N
(9)

where: TM: set of merged (down-sampled) time steps, Πt: map that assigns time steps to merged time
steps and dagg: temporally aggregated power demand time-series.

Setting M = 4 thus results in input time series that have a 4-hourly resolution. In other words,
instead of t = 1, . . . , 8760 only tM = 1, . . . , 8760

4 consecutive data points need to be considered in a
REMix instance which we refer to be “temporally aggregated”.

With regard to the spatial aggregation methodology, we apply the following data processing: First
a network partitioning is performed to define which regions of the original model parameterization
are to be merged. Therefore, an agglomerative clustering is used by applying the implementation of
this algorithm from scikit learn [91] to the adjacency matrix of the original model’s network. We chose
this clustering methodology as it ensures that merged regions are only built from neighboring regions.
In addition, the clustering algorithm itself scales well with regard to various numbers of clusters.

Secondly, we create network equivalents. The applied data aggregation relies on the premise that
regions represent so called “copper plates” which means that transmission constraints are ignored
within these areas. As a consequence, most nodal properties, such as installed power generation capacity
or expansion potentials as well as power demand are spatially aggregated by simple summation.
A special case is the aggregation of feed-in time series. Here a case distinction is applied, where the
profiles of renewable power generation are aggregated by weighted averaging. The weights are taken
from the installed power generation capacities of the respective regions normalized by the sum over
the installed capacities within the aggregated region. If there are no capacities installed (e.g., in the
case of green-field expansion planning), the maximal capacities resulting from a renewable energy
potential analysis are used.

Data that is related to links, such as power transmission lines, is also specially treated: Transmission
lines that would lie within an aggregated region are ignored. The transmission capacities of parallel
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cross-border links are summed up, while link lengths that are used for loss approximation and
susceptance of parallel lines are combined as it is common for parallel circuits, for instance:

Bagg(lM) = 1∑
l Πl(lM,l) · 1/B(l)

∀lM ∈ LM
(10)

where: LM: set of merged links, Πl: map that assigns links to merged links and Bagg: susceptance of
merged links.

3.3.2. Rolling Horizon Dispatch

We implement a rolling horizon dispatch into REMix, a decomposition of the original model in
time, where the full time horizon of 8760 time steps is divided into a number of overlapping time
periods (intervals). For each of these time intervals only the hourly system operation is optimized.
Accordingly, capacity expansion is not considered in the appropriate model instances. This is due to
the fact that variables that are related to capacity expansion are not resolved on the temporal scale.
These temporally linking elements would prevent an easy decomposition in time and thus limit the
application of rolling horizon approaches to dispatch optimization problems.

The emission cap (Equation (8)) is also temporally linking and therefore requires changes compared
to the native implementation of REMix. A straightforward approach is the distribution of the annual
emission budget to the time intervals. In the simplest case the corresponding distribution factors are
constant and calculated from the reciprocal of the number of intervals. More sophisticated distributions
may take into account input data such as load and feed-in time series to define sub-annual emission
caps that correspond to the residual load. However, such a distribution still does not account for
regional differences. For reasons of simplicity we use the constant distribution for our implementation
of the rolling horizon dispatch.

Storage facilities are only weakly temporally linking as the appropriate energy balance constraint
(Equation (5)) only couples neighboring time steps. The error induced by decomposing in time is
small as long as the length of time intervals is much greater than the typical energy-to-power ratio
of a particular storage technology. Importantly, the overlap prevents that energy storage facilities
are always fully discharged at the end of the evaluated part of a time interval to save costs. In the
full time-horizon implementation of REMix this undesired effect is addressed by coupling the very
last time step to the initial time step. In other words, it is enforced that the storage levels of the first
and the last hour of the year are equal. However, this circular coupling is not suitable concerning the
boundaries of sub-annual time intervals.

For the rolling horizon approach this means that full discharging still appears by the end of a
computed time interval, but it is weakened the longer the overlap. However, there is a trade-off to
be made with regard to the length of overlaps since they imply dispatch optimization of redundant
model parts and therefore lead to greater total computing times. Another drawback of using overlaps
is also that only sequentially solving of multiple model instances is possible.

The discussed characteristics of the rolling horizon approach require a couple of modifications
and extensions of the REMix source code especially with regard to the execution phases. In Figure 3
necessary adaptions are visualized.

(1) A new set Ti that represents the time intervals is defined.
(2) The number of overlapping time steps between two intervals as well as a map that assigns the

time steps t to the corresponding intervals (with or without overlap) is defined. With a larger
overlap more subsequent time steps are redundantly assigned to both the end of the ith and the
beginning of the (i + 1)th interval.

(3) It must be ensured that all time dependent elements (variables and constraints) are declared over
the whole set of time steps, whereas their definitions are limited to a subset of time steps that
depends on the current time interval.
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(4) A surrounding loop is added that iterates over the time intervals.
(5) With each iteration a solve statement is executed.
(6) The values of all time dependent variables are fixed for all time steps of the current interval but

not for those that belong to the overlap.
(7) To easily obtain the objective value of the full-time horizon model, a final solve is executed that

considers only cost relevant equations. As all variable levels are already fixed at this stage, this
final solve is not costly in terms of performance.
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Figure 3. Flow chart of implementation of rolling horizon.

The chosen source code adjustments require a manageable amount of effort and can be seen as
a processing friendly implementation since all input data is read in the beginning, whereas data is
processed slice by slice. Also partial results are held in memory which facilitates an easy creation of
a single output file. Established post-processing routines do not have to be changed. Nevertheless,
for memory constrained ESOMs, memory friendly implementations are preferable. Data would
accordingly be loaded and written to disc slice by slice. The downside of this solution is the fact
that these processes must be executed multiple times which results in additional processing costs.
Furthermore, the composition of outputs requires a further post-processing that is characterized by
multiple read routines of the partial result files.

3.3.3. Sub-annual Temporal Zooming

Our implementation of the temporal zooming heuristic is an extension of the previously described
rolling horizon approach that enables capacity expansion planning. For this reason, also other
temporally linking elements can be treated differently. In particular, each time interval represents
a sub-problem where, from a global model perspective, missing information is gathered from a
temporally down-sampled full time-horizon model run.

In the case of the storage energy balance, at the boundaries of each time interval the storage level
variables are fixed to the levels of the corresponding variables of the down-sampled model’s result.
Furthermore, for each time interval, factors that define the share of annually allowed emissions are
determined with respect to the resulting emissions in the down-sampled model run. This allows a much
better distribution of these actually time independent parameter values than an equal distribution as
in the implementation of the rolling horizon dispatch.
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Even though solving a down-sampled model instance causes additional costs in terms of computing
time, the advantage of this approach is the independence of partial models where overlaps are no more
necessary. However, as the number of parallel threads is limited on shared memory architectures, this
parallelization on the conceptual layer is at the expense of less parallelization on the technical layer,
i.e., parallel threads when using the barrier algorithm. For this reason, we implement two versions of
the temporal zooming approach (where I corresponds to the variable of capacity expansion introduced
in Equation (3):

(1) A sequential version that is executed in the same chronological manner as the rolling horizon
approach where parallelization only takes place on the solve side (Figure 4).

(2) A parallel version that uses the grid computing facility of GAMS where a defined number of time
intervals is solved in parallel. Parallelization takes place on both the model side and the solver
side (Figure 5).

Besides the different ways of parallelization the two implementations also differ in the treatment
of capacity expansion variables. While in both cases an initial lower bound is defined with regard to
the outcome of the down-sampled model run, in the sequential implementation, this lower bound is
raised with respect to the results of a particular interval and then shifted to the next interval. On the
contrary, the parallel implementation determines the final values of expansion planning variables by
selecting the maximum across their interval dependent counterparts.
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3.4. Evaluation Framework

3.4.1. Parameterization of Speed-Up Approaches

Each of the implemented model-based speed-up approaches is characterized by parameters
that influence the model performance. We refer to these parameters as SAR-parameters (speed-up
approach related parameters). In this context, the challenge is to identify SAR-parameter settings that
provide both an effective performance enhancement and a sufficient accuracy. We tackle this issue by
performing parameter studies. The evaluated parameter value ranges are shown in Table 6.

Table 6. Overview of speed-up approach related parameters and value ranges to be evaluated.

Speed-Up Approach
Parameter

Name Evaluated Range

Spatial aggregation number of regions (clusters) {1, 5, 18, 50, 100, 150, 200,
250, 300, 350, 400, 450, 488}

Down-sampling temporal resolution {1, 2, 3, 4, 6, 8, 12, 24, 48,
168, 1095, 4380}

Rolling horizon dispatch number of intervals {4, 16, 52,365}
overlap size {1%, 2%, 4%, 10%}

Temporal zooming (sequential) number of intervals {4, 16, 52}
temporal resolution of down-sampled run {4, 8, 24}

Temporal zooming (grid
computing)

number of intervals {4, 16, 52}
number barrier threads {2, 4, 8, 16}
number of parallel runs {2, 4, 8, 16}

temporal resolution of down-sampled run {8, 24}
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In the case of aggregation the SAR-parameters are more or less equivalent to the degree of
aggregation. It can be expected that there is a continuous relation between these parameters and the
achievable performance and accuracy, where increasing the degree of aggregation will reduce the
required computing resources at the expense of less accuracy.

However, the implemented rolling horizon as well as the temporal zooming approaches can be
tuned by changing a set of SAR-parameters (Table 6). Thus, the relation between speed-up approach
parameterization and the evaluated indicators becomes more complex. For instance, one can expect
that there is always an optimal number of intervals with regard to total computing time due to the
trade of between faster solving of sub-models and the increasing computational burden from GAMS
code compilation.

3.4.2. Computational Indicators

When referring to performance we always mean the computing time composed of time spent for
model building and solving (solver time). The internal profiling options of GAMS is activated using
the command-line option stepsum = 1. All relevant information is then extracted from the logging and
listing files of GAMS. The elapsed seconds listed in the last step summary represent the total wall-clock
time needed for executing all processes. As in our analyses the CPLEX solver is used exclusively,
the solver time represents the time consumed by CPLEX. This quantity is usually listed above the
solver’s report summary which also provides the information whether an optimal solution was found.
As the CPLEX time reported in seconds can vary depending on the load of the computer system as
well as on the used combination of software and hardware, we primarily use the deterministic number
of ticks (a computer independent measure) as indicator for required computing time by the solver [92].
The quantity we refer to as GAMS time is accordingly calculated by subtracting solver time from total
wall-clock time.

An approximation for peak memory usage is also partially taken from the step summary denoted
as Max heap size which represents the memory used by GAMS. An indicator for the memory use on
the solver side—in the case of CPLEX’s barrier algorithm—is provided by the number of equations
and the logging information integer space required [93].

3.4.3. Accuracy Indicators

To measure the accuracy of an ESOM one could argue that all variable levels of a model instance
treated by a particular speed-up approach should be compared to their counterparts of the original
model. However, especially in the case of aggregation approaches the direct counterparts do not
always exist. Besides the fact that the computational effort for such a comparison would be great due to
the number of variables, an aggregation of the resulting differences would still be necessary to give an
indication of accuracy by only a hand-full of comprehensible values. We therefore use only a selection
of partially aggregated variable levels for comparison. Nevertheless, we emphasize indicators which
are of practical relevance. As indicated in Table 3 these indicators are:

(1) The “objective value” of the optimization problem.
(2) The technology specific, temporally and spatially summed, annual “power supply” of generators,

storage and electricity transmission.
(3) The spatially summed values of “added capacity” for storage and electricity transmission, and
(4) The temporally resolved, but spatially summed “storage levels” of certain technologies.

In the following, these indicators are presented relative to the corresponding result of “REMix
Dispatch” or “REMix Expansion” observed for conventional solving according to 0. Hence, for example,
the accuracy indicator “wind” is determined as follows:
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Accuracy indicator “wind”:

wind =

∑
t′∈T,n′∈N,u∈Uw p′(t′, n′, u)∑
t∈T,n∈N,u∈Uw pREF(t, n, u)

(11)

where: p′: variable levels of total power supply in a model instance treated by a speed-up approach,
pREF: variable levels of total power supply in original modeln instance (without speed-up approach),
T′: set of time steps in a model instance treated by a speed-up approach, N′: set of modeled regions in
a model instance treated by a speed-up approach and Uw: set of wind enrgy converter technologies.

4. Results

4.1. Pre-analyses and Qualitative Findings

4.1.1. Order of Sets

Concerning an efficient execution of GAMS, in addition to the suggestions mentioned in Section 3.1.,
we observed that it is always advisable to use a consistent order of sets. An illustrative example
considering this issue is provided by Ramos in [94]. We also investigated the hypothesis that ordering
the index sets from the largest cardinality to the smallest would reduce the time for the model
generation. In summary, reductions of up to 40% of the GAMS generation time are observed in
some cases. However, the results strongly vary between different model instances. Furthermore,
the time spent for model generation can also increase depending on the used version of GAMS.
From this experience we conclude that tuning the source code by using particular index orders cannot
be considered as a generally effective improvement of model performance.

4.1.2. Sparse vs. Dense

Especially with regard to the way of implementing the equations for storage energy balance and
DC power flow, constraint formulations are conceivable that differ from the ones implemented in
REMix (Equations (5) to (7)). These formulations make use of fewer variables and constraints and
therefore lead to a smaller but denser coefficient matrix. Equations (12) and (13) give an impression of
how such dense formulations can look like.

On the one hand, in the case of the storage energy balance equation, the alternative formulation
allows that the storage level variables are no more required. On the other hand, instead of an
interdependency of consecutive time steps, the power generation or consumption of each time step
is linked with all of its previous pendants. This leads to strong linkages across the temporal scale
especially for the balance equations that address the elements at the end of the time set. Concerning the
DC power flow, Equation (13) can be derived from substitution of the voltage angle and merging of
Equations (6) and (7). However, the resulting PTDF matrix requires a matrix inversion that leads to a
dense matrix structure:

Storage energy balance:

t′ = t∑
t′ = t0

ps+(t
′, n, us) − ps−(t

′, n, us) − pls(t
′, n, us) = ps+(t

′, n, us) − ps−(t
′, n, us)

∀t ∈ T; n ∈ N; ∀u ∈ Us; Us ⊂ U
(12)

DC power flow (dense):

pf+(t, l) − pf−(t, l) =
∑
n

PTDF(l, n) ·
(
pim(t, n) − pex(t, n) − plt(t, n)

)
∀t ∈ T; ∀l ∈ L

(13)

where: PTDF: power transfer distribution factors
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The results of our experiments with these alternative model formulations showed that, for REMix,
sparse implementations are usually better in terms of model performance. While already small model
instances with the dense storage balance equation are nearly unsolvable, the application of PTDF
matrices for the DC power flow turns out to be useable but still less performant compared to the
implementation that uses the voltage angle.

In this context, on its left y-axis, Figure 6 shows the computing times for two exemplary scenarios
(A and B), where, transmission capacity expansion is either enabled or disabled.
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Figure 6. Solver time (blue) and non-zero density of the coefficient matrix (orange) for different DC
power flow implementations, circles: sparse (with voltage angle), triangles: dense (with Power Transfer
Distribution Factors (PTDF)).

The size of underlying model instances ranges between 20 to 38 million variables and 9 to
24 million constraints. To give an indication of the population density of the corresponding coefficient
matrices, the number of non-zeros relative to the product of the number of constraints and the number
of variables is plotted on the right y-axis. Each of the resulting four model instances is solved using
either the dense (triangles) or sparse (circles) DC power flow formulation. As it can be deduced
from comparing the blue markers, the computing times for the PTDF-based instances are 15 to
60% greater than in the case of their sparse counterparts. Due to the results of these preliminary
experiments the following analyses are exclusively based on model implementations which aim for
sparse constraint formulations.

4.1.3. Slack Variables and Punishment Costs

A common approach to ensure the feasibility of REMix even for scenarios where the power balance
Equation (2) would be violated (e.g., by providing too small power generation potentials) is the use of
slack generators. These generators do not have a technological equivalent in the reality and represent
the last option to be used in the model for covering a given demand. The associated costs for power
supply can be seen as the value of loss of load and thus are high compared to costs caused by real
technologies. However, even if very high cost values could be particularly justified by macroeconomic
damage, from a model performance perspective it is advisable to set these costs in the same order of
magnitude as their real counterparts. Figure 7 shows exemplary computing times of identical model
instances of a relatively small size (3 Mio. variables, 2 Mio. constraints). We deliberately analyze small
models to prevent the model to run into numerical issues. The differences in the resulting solver time
are exclusively caused by changing the model parameter that concerns the costs associated with slack
power generation. The increasing computing time with increasing values of this parameter are due to
worse model scaling.
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Figure 7. Computing time for different values for power generation costs of slack generators.

Despite the fact that scaling is also automatically applied by the solver, it is advisable that in the
coefficient matrix of the resulting LP, coefficients stay within a certain range of order of magnitudes.
As described by McCarl [95] the factor between the smallest and largest values should ideally be
less than 1e5. Since ESOMs such as REMix consider both operational costs of almost zero (e.g., for
photovoltaics) and annuities for investments into new infrastructures of several millions (e.g., large
thermal units), the corresponding cost ratios are already out of the ideal range. For this reason, the cost
factors for slack power generation should not expand this range. Otherwise, especially for large
models, the bad scaling leads to numerical issues of the solver and at least extended computing times.

4.1.4. Coefficient Scaling and Variable Bounds

Also processing of input data during the generation of equations can pose problems concerning
the aforementioned maximum range of coefficients. For example, this is relevant when calculating
the fuel consumption based on the power generation divided by the fuel efficiency. Moreover, it is
advisable to bound variables to restrict the space of possible solutions which may also lead to a better
solver performance. However, finding appropriate bounds for future states of the energy system and
claiming to analyze a broad range of conceivable developments implies possible contradictions.

To get a more systematic picture, in Figure 8, we compare a selection of model instances in three
spatial resolutions with two different solver precisions. The solver precisions are labelled as “1e−5”
and “Default” (1e−8) while further measures such as explicit rounding of parameters and conscious
bounding of variables are varied. The idea behind rounding of input time series and efficiencies is to
avoid implicit coefficients with more than five decimals. As a further step in the instance denominated
as “bounded variables” we add upper bounds on most variables according to model heuristics.
For instance, the power production from slack generators is limited to 10% of the exogenously given
electricity demand profile. Additionally, we set upper bounds on decision variables for investments
into storage and transmission capacities based on the maximum peak load and annual energy demand
of the corresponding regions.

In Figure 8 the conducted comparison is shown for three differently sized instances of both the
“REMix Expansion” and the “REMix Dispatch” model. The solver time is depicted relative against
the number of ticks required to solve the appropriate model with default settings as presented in
3.2. In this context, the black circles represent the reference values at y = 1.0. While for the small
instances with 30 and 120 regions the gains from coefficient rounding (blue markers) seem to indicate
better performance, in large scale instances the effect is inverse. For the 488-region instance there is
an increase in ticks for the barrier algorithm with the presumably improved numerical properties.
In contrast, the additional bounds on variables (orange markers) have a rather little impact on the
small-sized instances with only a few regions, while the performance gains for the large scale instances
are significant by effectively bringing down the solver time to less than 50% compared to instances
with default settings.
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From the comparison of triangle and circle markers in Figure 8, it can be furthermore concluded,
that the observed effects are independent of the solver precision. However, the possible speed-up
highly depends on the general model formulation and may not apply for other solution algorithms
than interior point.
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4.2. Aggregation of Individual Dimensions

This section presents the behavior of performance and accuracy indicators for scaling experiments.
This means that the original REMix instances (“REMix Dispatch” and “REMix Expansion”) are either
reduced by spatial or temporal aggregation whereas the degree of aggregation is varied. The number
of aggregated regions or time steps of a respective model instance are depicted on the x-axes of the
following evaluation figures. In this context, the degree of aggregation is simply defined by:

Degree of aggregation:

a(x, v) =
(
1− x(v)

xREF(v)

)
· 100%

∀v ∈
{
spatial, temporal

} (14)

where: xREF: x-value (number of regions/time steps) of the original model instance.
In the following figures, the curves show computing and accuracy indicators relative to their

counterparts of the original model instances. For each indicator, the reference is indicated at the greatest
x-value (xREF(spatial) = 488 regions or xREF(temporal) = 8760 time steps). Accordingly, the figures
are usually read from right to left. The associated absolute y-values are provided in the caption of the
respective figure.

4.2.1. Spatial

The results for the spatial aggregation of the “REMix Dispatch“ model are shown in
Figures 9 and 10. In the former, the computational indicators are depicted by colored curves that
represent total wall-clock time, solver time, the number of constraints, the number of non-zeros,
and the memory consumed by GAMS as well as an approximation of the memory demand of the
solver. On the right hand side, Figure 10 shows the accuracy indicators. Besides the objective value,
the annual power generation of selected power generator groups, gas-fired and coal-fired power plants,
and wind turbines, is drawn. Even though the REMix model instances consider a broader spectrum
of technologies such as photovoltaics, biomass or run-of-river power plants, these technologies are
omitted for the sake of clarity.
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capacities represent the state of the year 2015 ignoring planned expansion of these technologies. In 
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With regard to accuracy indicators, up to a degree of aggregation of about 80% (100 regions) most
of the curves in Figure 10 show minor deviations within a range of ±5% compared to the reference at
y = 1.0. While the annual power generation from coal is slightly increasing with stronger aggregation,
the opposite can be observed in the case of the objective value and power generation from gas turbines.
Wind power and storage utilization are almost constant up to this point. However, for model instances
that spatially aggregate to a degree below 100 regions, the use of storage facilities strongly increases.
Compared to the reference model, deviations of more than 40% for storage are observable for highly
aggregated model instances.

Considering that the number of transmission lines taken into account becomes smaller for more
aggregated model instances, it can be expected that most of the effects that come with spatial aggregation
stem from unconstrained power transmission. Thus, the strongest influence of this model reduction
technique can be observed for the power transmission indicator where deviations greater than 25%
already occur for degrees of aggregation >40% (300 regions).

That said, the results can be interpreted as follows: The absence of power flow constraints affects
the model accuracy especially when the number of aggregated regions is low and their geographical
extent is comparatively large. This facilitates large central power generation units such as pumped
hydro storage and coal fired power plants to extensively distribute their electricity in wide areas to the
cost of less power generation from probably better sited but more expensive gas turbines.
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If the accuracy error for 100 regions is considered to be acceptable for answering a particular
research question, the reachable speed-up factor can be determined from Figure 9. For both the solver
time (CPLEX ticks) and the total wall-clock time relative to the maximal model time of about 0.2 is
observable which corresponds to a speed-up factor of nearly 5. A smaller reduction can be observed
for the model size which is characterized by the number of equations as well as the RAM required by
the solver (y ≈ 0.4) and the GAMS (y ≈ 0.3). In terms of reachable speed-up, a linear reduction of the
model size by spatial aggregation usually leads to a more than linear reduction of computing time
(e.g., solver time), particularly for weak aggregations. However, especially for these model instances a
superposed oscillation of the solver time can be observed which makes the estimation of reachable
speed-up more uncertain.

For understanding this oscillation better, we analyzed further indicators provided in the logging
and listing files as well as more content-related accuracy indicators such as the number of transmission
line congestion events or slack power generation. We found that the number of non-zeros appearing
within the Choleksy factorization of the barrier algorithm (reported as “total non-zeros in factor”)
shows a similar behavior. Nevertheless, no correlation between any of the content-related indicators
and the solver time was observed. In addition, we cross-checked our results shown in Figures 9 and 10
by performing the scaling experiment with different solver parameters (barrier tolerance 10−5) as well
as based on slightly different clustering algorithm parameters. Both led again to an oscillation of the
solver time curve. Thus, we conclude that even if the accuracy indicators scale in a stable manner,
especially the solver time depends on how specific nodes are assigned to clusters. Solving of the
DC-OPF problem can turn out to be harder for the solver even if the number of regions is smaller than
in a less spatially aggregated model instance.

As mentioned in Section 3.2., the initial power plant portfolio of the German power system
scenario for the year 2030 is slightly under-dimensioned since storage and power transmission capacities
represent the state of the year 2015 ignoring planned expansion of these technologies. In addition,
historical weather data of the year 2012 is used which is below the long-time average in terms of
renewable power generation. As a consequence the slack power generators are active especially in the
“REMix Dispatch” model instances (between 565 and 773 GWh). Total power supply derived from the
objective value can thus become more expensive than in the case of “REMix Expansion” depending on
the selected specific punishment costs. For this reason, we report two objective values in the caption of
the figures of accuracy indictors. Firstly, the objective value of the mathematical optimization problem
including costs of punishment terms. Secondly, the cleaned objective value represents costs for total
power supply derived from assuming the same costs for slack power generation as for operating
fictitious gas turbines.

Figures 11 and 12 show the performance and accuracy indicators for spatial scaling of the “REMix
Expansion” model instances. Here, storage (i.e., stationary lithium-ion batteries) and transmission
capacities (AC and DC lines) can be added to the system to balance power demand and generation
with the installed generation capacities. In accordance to this, the accuracy indicators are extended by
storage and transmission expansion. Exceptionally, only the results in this experiment are computed
with extensive logging in GAMS’s listing files is enabled which automatically leads to an increase of
GAMS time.

As reported in the captions of Figures 9 and 11, enabling capacity expansion leads to a significant
increase in total computing time from about 3 to almost 50 h. Nevertheless, compared to the “REMix
Dispatch” model instances, similarities concerning the over- or underestimation as well as the scaling
behavior of the technology specific errors can be observed. For instance, capacity factors of energy
storage are increasing for higher degrees of aggregation. This directly affects storage expansion which
decreases with the smaller spatial resolution.
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As reported in the captions of Figure 9 and Figure 11, enabling capacity expansion leads to a 
significant increase in total computing time from about 3 to almost 50 hours. Nevertheless, compared 
to the “REMix Dispatch” model instances, similarities concerning the over- or underestimation as well 
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One exception are power transmission-related indicators where more significant deviations
from the reference values occur, especially for degrees of aggregation >60% (<200 regions). On the
one hand, model instances with such an aggregation even reach reductions in computing time of
more than 80%. On the other hand, transmission capacity expansion already experiences significant
deviations (>10% compared to the values of the original model) for degrees of aggregation that go
below 400 regions. Remarkably, this has only a minor impact on both the objective value and the
generation-related accuracy indicators which is observable from the almost horizontal course of the
wind, gas, coal, and storage expansion indicators in Figure 12.

A further similarity to the “REMix Dispatch” model is the linear scaling behavior of computational
indicators corresponding to the model size as well as the super-linear scaling of the solver time.
However, in Figure 11, the solver ticks resemble a rather exponential curve and no superposed
oscillation occurs. This means that enabling the expansion of transmission (and storage) capacities
leads to a rather expectable scaling behavior of the computing time: The fewer regions in a spatially
aggregated model instance, the smaller the time required for solving the optimization problem. If the
slope of the solver time curve is regarded as a measure of effectiveness in terms of model acceleration,
it can be concluded that spatial aggregation is mainly effective for degrees up to 40%.
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4.2.2. Temporal

The results for temporal aggregation of the “REMix Dispatch“ model are shown in Figures 13 and 14.
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As in the case of spatial aggregation computational indicators are depicted in the figures on the left
while accuracy indicators are illustrated on the right. The reference model is the same as in the spatial
scenario. In contrast to spatial aggregation, in Figure 14, the slope of the cost curve (objective value)
appears much flatter. However, it should be noted that temporal aggregation representing two-hourly
time steps already results in an aggregation factor of 50%. For this reason, all of the observed data
points in Figures 13 and 14 are located in the half closer to the y-axis. Concerning the solver time
this already leads to speed-ups greater than factor 2. Nevertheless, it is not guaranteed that the total
computing time (GAMS time + solver time) can be reduced in the same manner. This is due to the
additional computing effort for aggregating hourly input data. Compared to such model instances,
the greater GAMS time, e.g., in the case of 4380-time steps, results from this additional input data
processing. This effect becomes significant for small model instances where the total computing time is
not necessarily dominated by solver time. However, for those model instances total computing time
is only a few minutes and thus represents no bottleneck. Opposed to this, for the non-aggregated
“REMix Dispatch” model the ratio between solver time and GAMS time is still about a factor of 10.

While the objective value as well as most of the technological specific power generation indicators
show an absolute error below 5% even for daily averaged time steps (365 time slices; corresponding
speed-up factor: 40), significant deviations can be observed for the storage use. For this technology
(i.e., pumped storage power plants) the underestimation of power generation compared to the original
model is already 5% in the case of diurnal time steps. Also open cycle gas turbines (OCGT) are affected
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at degrees of aggregation greater than 70% (e.g., three-hourly time steps). But due to their small
electricity production compared to combined cycle gas turbines (CCGT) they have only a minor impact
on the slope of the corresponding curve in Figure 14.

Remarkably, power generation from photovoltaics (PV) is almost independent from the degree of
temporal aggregation. Because its deviation is less than 0.1%� across all analyzed model instances,
the corresponding curve is not depicted in all figures concerning accuracy indicators. In other words,
ignoring day-night periods has no effect on the dispatch of photovoltaics but rather on the need
for storage. However, given that in the analyzed model parameterizations the amount of electricity
from photovoltaics is only 10% of the annual power generation it becomes clear that PV-integration
is possible at almost each point in time. Significant deviations due to temporal aggregation would
therefore rather be expected in scenarios with high shares of renewables.

The results for temporal scaling behavior if expansion of storage and transmission capacities is
possible can be seen in Figures 15 and 16. For both figures the reference values of the original instance
of “REMix Expansion” are denoted a second time. They stay the same for all following analysis with
this model.
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A difference compared to temporal aggregation of the “REMix Dispatch” model instances is the
lager area between the green curve that represents the solver time and the blue and violet curves
representing the size of a particular model instance. According to this, the reachable speed-up in terms
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of solver time is greater for instances with two-hourly (factor 3) or three-hourly (factor 7) time steps.
On the other hand, in Figure 15, the slope of the solver ticks is much flatter in its lower part. By this
means, going beyond degrees of aggregation of 90% (twelve-hourly time steps) appears to be less
effective regarding the reachable speed-up.

Concerning the scaling behavior of model accuracy, significant errors occur for storage-related
indicators. Similar to “REMix Dispatch” the annual power generation from storage facilities already
decreases by 10% for two-hourly time steps. However, the storage expansion indicator stays below
an error of 5% up to an aggregation factor of 75% (four-hourly time steps) while the transmission
expansion indicator falls below this value at 730 time slices (twelve-hourly time steps). Therefore, it can
be concluded that for observing widely accurate results for capacity expansion of transmission lines
and lithium-ion batteries, four-hourly time steps appear to be sufficient, especially assessed against the
background of an approximate reduction of computing time by a factor of 13.

4.3. Heuristic Decomposition

4.3.1. Rolling Horizon Dispatch?

This section presents the behavior of computational and accuracy indicators for model-based
speed-up approaches that make use of heuristic decomposition techniques applied to the temporal scale
of both the “REMix Dispatch” and the “REMix Expansion” model. Since the corresponding benchmark
experiments vary over different parameters the appropriate figures are built up on hierarchical indices
on the x-axes. However, the relative deviations are depicted for each of the analyzed indicators
compared to the monolithically solved instances of “REMix Dispatch” and “REMix Expansion”.
Rolling horizon dispatch

The “REMix Dispatch” model is executed with the rolling horizon approach presented in
Section 3.3.2 while the interval size and the number of intervals are varied. The resulting computational
and accuracy indicators are shown in Figures 17 and 18. Both the settings for the overlap size and the
number of intervals occur on the x-axis.
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With regard to the first, it is striking that the intended behavior of total computing time is
achieved—compared to the original model instance speed-up factors between two and three can be
observed especially for model instances that decompose the temporal scale into more than four intervals.

In particular, with increasing numbers of time intervals the total time consumed by the solver
decreases (down to less than 5% of the monolithic model) as well as the maximal memory required
by the solver. On the contrary, memory required and time elapsed for executing GAMS increase by
factors around 1.6 and 3.5, respectively.

This is due to the additional need for generating smaller but multiple sub-model instances to be
solved one after another. Even though the ratio between GAMS time and solver time is around factor
four in the original model instance, when the rolling horizon approach is used, the GAMS time already
dominates all model instances but those with four intervals. The total wall-clock time accordingly
barely scales with the number of intervals, especially for those with more than 16 intervals.

The overlap size is determined relative to the absolute length of a particular time interval.
Compared to the number of intervals, it has only a minor impact on the computational indicators: As it
can be expected, the greater the overlap, the more computing resources are required. This is due to
the fact that all model parts that lie within the overlap are redundantly considered and thus, the total
amount of equations to be solved as well as the number of non-zeros (and variables) increases for
greater overlap sizes. However, even if these model size measures increase by 10% (overlap size: 0.1),
the resulting total wall-clock time only experiences changes within a range of 2% (4 intervals) to 5%
(365 intervals).

Different observations can be made for the accuracy indicators where comparatively large overlaps
mostly improve the accuracy of the corresponding model instances. The objective values as well as the
indicators for power transport and electricity production by wind turbines have errors smaller than 3%
across all investigated model instances. In this context it needs to be considered that we do not observe
lower total costs than for the original model instance. Objective values smaller than 1.0 occur since
slack generator costs are not considered.
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The dispatch of fossil fired power plants and pumped hydro storage units shows stronger
deviations. Remarkably for the latter, first overestimations of around 10% are observable for intervals
numbers of four, 16 and 52. However, for intervals on a daily level, the storage accuracy indicator
shows an underestimation of more than 10%.

These deviations occur, on the one hand, due to the missing circular restriction for the storage
level balance that is omitted when the rolling horizon approach is applied. The appropriate constraint
enforces the equality of storage levels at the beginning and at the end of the analyzed time period and
thus prevents a total discharge for monolithic model instances with perfect foresight. Opposed to that,
without this constraint and due to the limited foresight, (even for large overlap sizes in model instances
with rolling time horizons) storage levels still tend to zero at the end of an interval (“discharge effect”)
and thus, average storage levels are smaller than when comparatively long time spans are considered.
For example, the mean storage level of 4.6 GWh in the model instance with 365 intervals and 10%
overlap is significantly smaller than in the case of four intervals with the same overlap size (20.7 GWh).

In particular, when time interval lengths are in the range of typical storage cycling periods (in the
presented case daily periods for pumped hydro storage), storage charging over several energy surplus
periods is not cost-efficient for an individual time interval and, in addition, the overlap size cannot be
large enough to compensate the “discharge effect”. Such a tipping point can be seen in Figure 18 for
the 16-interval model instances where storage utilization first increases but decreases as soon as the
overlap size changes from 4% overlap (21 h) to 10% (55 h).

On the other hand, the overutilization of energy storage in model instances with less than 365 time
intervals stems from another effect. As shown in the upper part of Figure 19, significant deviations
between the storage levels of the original (solid black line) and the model instance with seasonal rolling
horizon time intervals (solid green line) occur mainly in the middle of the observed scenario year.
Furthermore, in the case of weekly intervals (solid grey line), differences from the shape of the black
curve appear over the whole time period.
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emission (bottom) for two model instances with four and 52 time intervals, computed with the rolling
horizon approach, compared to the corresponding results of the original “REMix Dispatch” model
instance (reference).

The deviations in storage dispatch occur independently of the intersection areas of time intervals.
The reason for this is related to the treatment of the annual greenhouse gas emission budget. In the
current rolling horizon implementation the annual emission budget is simply equally distributed to
the individual time intervals:
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Proportional emission budgets:

mi(i) = m
|Ti | + |T0(i)|

∀i ∈ {Ti}
(15)

where: t0: set of time steps that belong to overlaps
According to Equation (15), the resulting cumulated proportional emission budget can be greater

than its annual counterpart. However, this especially applies when the absolute size of overlaps
becomes large. The reason therefore is the following: Although emission produced within the overlaps
are not considered for the final result, model setups exist where the proportional emission budget (that
considers also emissions for the time steps within the overlap) is almost fully utilized within the time
steps before the overlap begins and thus the total emission may be higher than intended. In Figure 18
this can be observed for the model instance with 4 intervals and 10% overlap. With regard to emissions
we call this “negative overlap effect” in the following.

Apart from that, the equal distribution of allowed greenhouse gas emissions rather leads to less
total emissions than in the original model instance as they are caused by fossil-fired power plants which
are usually in operation in time periods with less electricity feed-in from renewable energies. Such time
periods with high residual load are naturally not equally distributed. Consequently, according to the
blue lines in Figure 18 and the grey line in the lower part of Figure 19, the more time intervals are
considered the more restrictive the proportional emission budget. This also leads to the decrease in
dispatch of coal-fired power plants observable for an increasing number of intervals in Figure 18.

Moreover, also the over-utilization of energy storage can be traced back to this effect: In the case
of seasonal time intervals, in time spans with low residual load, the slightly higher emission potential
allows a technology shift from flexible gas-fired turbines to less cost-intensive coal-fired power plants
where the missing flexibility of that latter is provided by energy storage facilities (“negative interval
effect”). This finally results in the deviating storage levels and higher emissions for the seasonally sliced
model instance in Figure 19 observable in the middle of the analyzed scenario year. The opposite of
this technology shift takes place when the emission limit is binding for time periods with high residual
load (“positive interval effect”). In this case emission-intensive power generation of coal-fired power
plants needs to be replaced by electricity production based on gas. Energy storage then comes into
play to increase the capacity factor of CCGT and OCGT plants. However, as it can be seen especially
for weekly time intervals in Figure 18, this “positive interval effect” is compensated by the “negative
overlap effect”.

4.3.2. Temporal Zooming

This subsection presents the results for the sequential implementation of the temporal zooming
approach applied to “REMix Expansion” model. In this regard, sequential means that multi-threading
is only used on the solver level. For a better understanding, we refer to the execution of the temporally
down-sampled model instance as “first execution phase” while post-sequent solving of multiple
temporally decomposed models is denoted as “second execution phase”. In Figures 20 and 21 the
resulting performance and accuracy are shown where the parameterization of these two execution
phases (temporal resolution of the down-sampled model instance and the number of intervals) is varied.
As for the visualization of computational indicators in case of the rolling horizon approach, the x-axes
in Figure 20 are hierarchically labeled for the variation of two SAR-parameters (see Section 3.4.1).
In this figure, computing times represent cumulative quantities while for the GAMS memory the
maximum value is shown. Opposed to that, the indicators that concern the number of non-zeros,
the number of equations and the memory demand by the solver show average values reported when
solving each sub-model.
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Given that all computational indicators scale with temporal aggregation (see Section 4.2.2), it can
be expected that the stronger the temporal aggregation of the down-sampled model instance, the less
memory and computing time is required. This expectation matches the results shown in Figure 20.
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Furthermore, obvious similarities compared to the computational behavior of the rolling horizon
dispatch (see Section 4.3.1) can be observed for the GAMS related indicators. Both the GAMS time and
the required memory significantly increase compared to the monolithic reference model. Nevertheless,
opposed to the observations made for rolling horizon, GAMS execution times are slightly reduced for
an increasing number of time intervals. The total wall-clock time, however, is significantly dominated
by the solver performance as the ratio between solver time and GAMS time is greater than factor 100
for the original model and never below 1 for the model instances computed with temporal zooming.
Therefore, in Figure 20, the shape of the black curve mirrors the shape of the dark-blue curve that
depicts the solver time.

Concerning the solver time, it is striking that there is a significant minimum observable for
16 intervals. This means, even though the solver time can be reduced due to creation of smaller
partial models for shorter time intervals, a tipping point exists, when this reduction cannot anymore
compensate the additional computing effort for solving multiple sub-models. It becomes clearer when
the super-linear scaling behavior for model instances with different numbers of time steps is taken
into account. As discussed for Figure 15 in Section 4.2.2, the slope of the curve that represents the
scaling of solver time vs. model size, is much flatter for small models (between one and 168 aggregated
time steps) than for large models (between 1095 and 8760 time steps). In a temporally decomposed
model with four time intervals, the length of an individual interval lies at 2190 time steps and therefore,
a more than linear reduction of solver time can be expected. Opposed to that, for 52 time intervals,
the time span that is covered by a single sub-model is 168 time steps. In this area of the scaling curve in
Figure 15, a reduction of model size by factor two only causes a reduction of total computing time of
less than 0.1%.

This decreasing effectiveness of model reduction is also the reason for the less significant increase
of speed-up when comparing the total wall-clock time for different temporal resolutions in the “first
execution phase”. Although the model size between the instances with an eight-hourly and a 24-hourly
down-sampled basis is reduced by factor three, the reduction in total computing time is around
1–3%. In contrast, when the instances with 4-hourly and 8-hourly down-sampled bases are compared,
the model size is only halved, while the total wall-clock time shows a reduction of 2–6%.

In summary, it can be concluded that speed-ups around factor eight to nine can be achieved.
However it needs to be considered that, due to the super-linear scaling behavior, saturation takes place
in terms of further performance enhancements.

The error of accuracy indicators of the model instances that are treated by the temporal zooming
approach is especially small if a temporally down-sampled model instance with four-hourly resolution
is used. It stays below 3% for all accuracy indicators whereas, compared to the outcome of the
original model, the largest deviation is observable for transmission expansion when more than seasonal
time intervals are considered. For stronger temporal aggregations in the “first execution phase”,
significant underestimations of storage expansion as well as of storage utilization occur in Figure 21.
However, while in case of an eight-hourly resolution the impact of different interval sizes is rather
negligible, down-sampling on daily level results in large errors across interval sizes especially for
storage expansion.

Given that the storage capacity expansion concerns lithium-ion-batteries that are usually used
to smooth the daily feed-in pattern of PV plants, it becomes clear that those energy storage facilities
are no longer necessary in the 24-hourly down-sampled model instance. The sudden decrease of the
storage expansion for greater numbers of intervals can be accordingly explained as follows:

As for the “second execution phase” lower bounds for investments into new capacities are taken
from the results of the “first execution phase”, this lower bound is obviously binding for models
based on the eight-hourly down-sampled model instance, regardless of the number of intervals in
the “second execution phase”. For this reason, the storage expansion indicator is at approximately
y = 0.7 (light-green line). Opposed to that, in the 24-hourly case (right section of Figure 21), the lower
bound gathered from the “first execution phase” is considerably smaller as it is depicted in the case
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of weekly time intervals (y = 0.22). However, additional storage expansion appears particularly for
seasonal time intervals (y = 0.69). It can therefore be concluded that the shorter the observed time
periods of a sub-model, the less attractive are investments into storage capacities.

The objective value accordingly decreases the less storage capacities are built. In this context, it
is necessary to have in mind that the effective objective value still includes additional costs for slack
power generation and, opposed to the cleaned costs in Figure 21, total costs for power supply are not
automatically lower than in the original model.

4.3.3. Temporal Zooming with Grid Computing

When we apply the GAMS grid computing facility to the temporal zooming approach, an additional
SAR-parameter is to be considered. Although the total number of parallel threads is limited by the
available processors on a shared memory machine (in the current study we use 16 threads), their
utilization is variable in the grid computing case. While in the previous analyses all 16 threads are
used for parallelization of the barrier algorithm, in this section, also the capability to run several GAMS
models in parallel is examined. Therefore, the variation parameter "Threads", indicated on the x-axes
of Figures 22 and 23, distinguishes the number of runs times the number of parallel barrier threads
accessible for the solver.

Opposed to the sequential implementation of temporal zooming, we do not show results for a
variation of the temporal resolution used in the “first execution phase” but only for model runs based
on an eight-hourly down-sampled instance. This is due to the fact that for the relation between this
SAR-parameter and accuracy, it can be expected that the findings from Section 4.3.2 also hold true for
benchmark experiments with temporal zooming and grid computing. Using a down-sampled model
instance with eight-hourly resolution represents a compromise between desired high speed-up and
acceptable loss in accuracy.
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Furthermore, for efficient in-memory communication between GAMS and the solver the current
analysis is conducted with the GAMS option solvelink = 6. This implies that the sub-models that
represent the different time intervals are solved in parallel in an asynchronous manner while partial
results are hold in memory.

Depending on the combined settings of the number of intervals and the number of parallel threads,
the majority of model instances cannot completely be solved in parallel. For example, in the case of
16 intervals and eight threads (and presuming almost equal solver times) it is likely that two sets of
sub-models are treated after each other. First, time interval one to eight is solved within eight parallel
threads and afterwards time interval nine to 16. In the following we refer to this as “serial part”.
However, due to the asynchronous solution process and non-equal solver times, for the described
example, it is not guaranteed that each thread processes exactly two sub-models.

Given that the machine independent, total solver time (reported in ticks) is not provided by
the GAMS logging files, but for each time interval, we post-process the solver time indicator for the
performance evaluation. For this reason, solver time is depicted in two forms in Figure 22: The dark
blue line, denoted as "solver time single thread", represents the median calculated over the solver times
of all time interval-specific sub-models. To account for the “serial part” we multiply this indicator by a
factor α to determine an approximation for the effective “solver time” (light-blue line):

Serial solve factor:
α =

|Ti|

ng
(16)

where: ng: number of threads for parallel runs when using grid computing.
In this context, a clear distinction between solver time and GAMS time is also difficult since

generation (part of the GAMS time) and solving of particular sub-models are executed in parallel.
Deriving an approximation for the GAMS time and normalizing it with respect to its counterpart of the
original model appears accordingly less useful. The appropriate computational indicator is therefore
not depicted in Figure 22.
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Looking at the results for the total wall-clock time, a similar relation between computing time
and the number of intervals can be observed as for sequential temporal zooming. Independent of the
settings regarding the distribution of threads, the best performance occurs for 16 intervals. On the
one hand, this is due to the decreasing effectiveness of model reduction as explained in Section 4.3.2.
On the other hand, considering the number of parallel runs ng = {2, 4, 8}, it becomes clear, that
especially instances that are decomposed into a number of intervals that represents an integer multiple
of ng are candidates for high speed-ups. In these cases the available resources (threads) can be equally
utilized. This applies to all model instances with 16 time intervals but only occasionally for seasonally
and weekly decomposed model instances.

The most important outcome shown in Figure 22 is the achievable speed-up compared to the
sequential temporal-zooming approach. For 16 time intervals and 4 x 4 threads the resulting total
wall-clock times go down to values of 10% of computing time of the original model. This additional
speed-up appears due to the following effects: In contrast to a pure parallelization on the solver level,
grid computing also allows to execute the model generation at least partially in parallel. Furthermore,
it can be shown that computing times for implementations of the barrier algorithm in commercial
solvers often scale only up to 16 parallel threads [96]. A further reduction of computing time by
stronger parallelization (>16 threads) is accordingly only beneficial if it is applied elsewhere within
the computing process. Logically, the application of grid computing is especially useful, if more than
16 threads are available in total.

However, the current benchmark analysis shows that parallelization by grid computing is similarly
effective as solver parallelization for comparably small numbers of threads. As depicted in Figure 22,
different distributions of the number of parallel model runs and the number of barrier have a rather
small impact on resulting solver and total wall-clock times. Also for more than 16 threads the additional
value of grid competing can only poorly be demonstrated: Taking into account the results for the model
instance labelled with 2 × 16 threads, it can be stated that despite the total number of threads is doubled,
only slight improvements concerning the computing speed are achieved (speed-up factor <10.8).

Apart from that, Figure 23 shows the accuracy for temporal zooming with grid computing relative
to the original model instance but also against the outcome of the eight hourly down-sampled model
instance used computed in the “first execution phase”. For storage utilization significant improvements
are observable: While in the down-sampled model instance the accuracy is only 55%, it reaches
levels around 82%. This increase in accuracy, however, comes with the costs of less performance (for
pure down-sampling on an eight-hourly basis the speed-up is around factor 37). Nevertheless, as
discussed in Section 4.2.2, the strongest errors occur with regard to storage utilization and storage
capacity expansion. Other accuracy indicators (e.g., transmission expansion) deviate less than 6%
from the solution of the original model instance. If only dispatch-related indicators, such as capacity
factors of wind, gas-fired or coal-fired power plants are assessed, the appropriate error is smaller
than 1%. This outcome is only slightly affected when the number of intervals differs. As discussed in
Section 4.3.2 for Figure 21, this SAR-parameter only plays a role if the “second execution phase” is
based on down-sampled model instances that show stronger temporal aggregations than eight hourly
time steps.

4.4. Temporal Aggregation Using Feed-in Time Series Based on Multiple Weather Years

This section exemplary shows the response of accuracy indicators against a variation of model
input parameters. Rather than a systematic sensitivity analysis of a broad spectrum of parameters
and assumptions across all analyzed speed-up approaches, it emphasizes one particular quantity that
is associated to high uncertainties for energy scenarios—the availability of power generation from
vRES. The appropriate model parameters to be varied are the hourly feed-in time series for electricity
generation from wind and solar energy. While in the analyses above this parameter set is always based
on weather data of the year 2012, in the following results for additional weather data of the years 2006
to 2010 are shown.
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In Figure 24, the accuracy indicators for temporal aggregation (0) applied to “REMix Dispatch” are
depicted. Again, each point represents the relative deviation of an aggregated model’s result compared
to its counterpart of the non-aggregated model. Therefore, for each weather year an individual original
model instance is required and computed (and thus all curves in Figure 24 share the point at time
slices = 8760 and accuracy = 1.0).
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For the sake of clarity only the curves of the objective value and the annual power consumption
of energy storage are shown. Nevertheless, considering the findings from above it can be concluded
that also the remaining accuracy indicators would show curves that are very similar if weather years
are varied. This even applies to the computational indicators which are not significantly affected by
the variation of this parameter sets.

As the results in Figure 24 proof, our findings on the impact of the degree of aggregation on
accuracy are robust against a parameter variation of weather years. In the first place, this particularly
holds true for the case of temporal aggregation applied to “REMix Dispatch”. However, it can be
expected that even for spatial aggregation and also in the case of “REMix Expansion” deviations
of accuracy indicators across different feed-in time series are comparably small. For more general
statements concerning sensitivity of accuracy deviations, however, more extensive parameter variations
are required where also different assumptions on cost parameters are considered.

5. Discussion

5.1. Summary

With this paper, we provide systematic evaluations of different approaches to improve the
computing performance of applied ESOMs. Besides a number of preliminary measures such as
source code reviewing and solver parameterization based on experiences gathered from former model
applications, we implemented two kinds of commonly used speed-up approaches to the ESOM REMix.
These are, on the one hand, spatial and temporal aggregation methods that showed effective speed-ups
up to factor 10 if expansion of storage and transmission capacities is to be considered.

We showed that the majority of analyzed accuracy indicators stay within an error range of about
5% reaching computing time reductions of 60–90% for spatial and temporal aggregation, respectively.
Moreover, if particularly affected technologies such as either power transmission or storage are of
secondary interest, for dispatch models speed-up factors between 4 and 20 are possible. In this
context, it is important to select an appropriate aggregation approach based on the model outputs to be
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evaluated in particular. For example, if the competition between technologies that provide spatial or
temporal flexibility to the energy system is to be examined, the presented aggregation techniques are
not suited for this purpose. For model instances that consider capacity expansion, we also observed
that significant speed-ups are particularly reached for low to intermediate degrees of aggregation.
In contrast, strong aggregations (beyond 90%) showed only relatively small additional improvements
in computing performance.

Based on these findings, we conclude that model reduction by aggregation offers the possibility
to effectively speeding-up ESOMs by at least factor two without the implication of significant losses
in accuracy. In contrast, strong degrees of aggregation are less useful because speed-up gains are
comparatively small while accuracy errors reach inacceptable levels (“effectiveness of model reduction”).

On the other hand, we applied nested model heuristics that aim at the decomposition of the
temporal scale of an ESOM. As these speed-up concepts imply manipulations on the temporal scale of
an ESOM, they affect accuracy indicators that are related to modeling energy storage. The benchmark
analyses of the rolling horizon approach for pure dispatch-models revealed that large overlap sizes
and interval periods that cover full storage cycles are recommendable. Their additional costs with
regard to computing effort are low, but may increase accuracy significantly. For the computational
performance of the rolling horizon dispatch the ratio between GAMS time and solver time is crucial
since only for dominating solver times, significant speed-ups around a factor of 2.5 could be observed
for “REMix Dispatch”. In this regard, it needs to be considered that “REMix Dispatch” is still a quite
easy-to-solve model instance (total wall-clock time <4 h). Based on our knowledge about “effectiveness
of model reduction” we assume that this performance enhancement approach will be even faster for
larger dispatch models.

Considerably higher speed-ups were observed for the lager “REMix Expansion” model that
was treated by the temporal zooming approach. We showed that within the limited capabilities
for parallelization on shared memory hardware, speed-ups of more than factor 10 were possible,
especially if grid computing was used. However, besides the limitation imposed by hardware resources,
the reachable performance enhancement is also restricted due to scaling behavior of very small models.
This means, that additionally to the ratio between GAMS time and solver time, it needs to be considered
that as soon as sub-models are reduced to a certain size, further size reductions only slightly decrease
solver time (downside of “effectiveness of model reduction”). Hence, with regard to speed-up by
parallelization, it is remarkable that at first glance, many intervals appear to be more effective. However,
according to the results in 0 und 0, medium sized intervals performed best.

5.2. Into Context

Our findings, especially concerning temporal aggregation, are also in-line with those of
Pfenninger [26] who reports reductions of computing time of more than 80% at three-hourly time
resolution for scenarios of the ESOM Calliope applied to scenarios for the UK. With regard to accuracy,
Pfenninger reports the values for capacity expansion of wind energy converters. His results show
that the higher the wind penetration of a particular scenario is, the stronger the errors that occur due
to temporal aggregation. However, the availability of storage technologies puts the effect of strong
deviations compared to an hourly-resolved model instance into perspective.

This indicates that the scaling behavior of computing time rather depends on the model
characteristics than on the composition of input parameters. Opposed to this, the scaling behavior
of accuracy measures indicates a dependency on the parameter setup. However, our exemplary
parameter variation across different feed-in time series for one particular use case also indicated certain
robustness of the resulting accuracy errors for different degrees of aggregation.

In contrast to the here applied “REMix Expansion” model, Calliope also considers the expansion
of generation capacities. In [26], for a scenario with extensive capacity expansion of renewables,
the steep decrease of the curve of computing time for low degrees of aggregation is more pronounced
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than in our model instances which rather show a smooth transition to the area with a flatter slope
(“effectiveness of model reduction”).

For the examined heuristic decomposition techniques, our observations concerning accuracy are
in-line with expectations derivable from known strengths and weaknesses occurring when differently
treating the temporal scale: The down-sampled model instance allows a better approximation of
capacity expansion indicators due to the consideration of the full time-horizon to be analyzed.
In contrast, solving model instances with the best temporal discretization enables an accurate dispatch
of available power generators (and storage units). However, as results for accuracy gains by the latter
show, running a temporally decomposed model instance - when the solution for its down-sampled
counterpart is known – was only beneficial for observing a more accurate dispatch of storage units
or when the temporal resolution in the “first execution phase” was poor. In this case it needs to
be considered, that for sufficient accuracy enhancements the selection of an appropriate number of
intervals is crucial since errors of accuracy indicators only decrease for comparably large interval sizes.

Given that the “effectiveness of model reduction” becomes more significant when going from the
comparatively easy-to-solve “REMix Dispatch” to the more complicated “REMix Expansion” model
while it is also observable for different scenarios analyzed by Pfenninger, it can be generally concluded,
that already low degrees of aggregation with small accuracy errors become the more valuable the
harder it is to solve a particular monolithic ESOM. This makes model speed-up approaches that are
based on model reduction techniques even more attractive for application to ESOMs programed with
mixed-integer variables.

5.3. Limitations

The claim of conducting analyses for comparably large model instances implies several challenges
that only partially could be addressed. As mentioned in Section 3.1., the whole benchmarking should
ideally be carried out on the same computer hardware ensuring no influence on the solving process
by parallel processes of other applications. However, due to a limited access to equally equipped
computers, the instances of the „REMix Dispatch“ model with rolling horizon were solved on the
JUWELS cluster of the Juelich Supercomputing Center (first row in Table 4). For all of the other
benchmark experiments other hardware was used (second row in Table 4).

Also minor bug-fixes were applied to REMix between the different benchmark experiments.
One remarkable change is the indicated reduction of solver precision from 1e−8 to 1e−5 to reduce
total computing times for the experiments related to spatial aggregation with capacity expansion (see
Section 3.2.2) while extensive logging in GAMS’s listing files was enabled. This obviously changed the
ratio between GAMS time and solver time and probably led to smaller speed-ups observed for spatial
aggregation with instances of “REMix Expansion”.

For these reasons, speed-ups found for the individual performance enhancement approaches
are not fully comparable with each other. Despite this circumstance, it can be expected that ideal
conditions are also hardly achievable if speed-up approaches are used in applied studies. And still, for
large models, the relation between achievable speed-up by a particular performance enhancement
approach and impact on the computing time by parallel third-party processes should be negligible.

Moreover, the two selected REMix models that were used for this evaluation of speed-up
approaches share many similarities with other applied ESOMs, especially if these are formulated in
GAMS. However, we do not claim to provide general findings - such as the specific number of intervals
to use for a rolling horizon method - that are representative for all of these models. For instance,
because our results are only based on a single model parameterization, the impact of different data sets
especially on accuracy indicators could not be assessed which limits the general transferability of our
findings. Nevertheless, the outcome of this study provides a clear indication which speed-approaches
show the highest potential for significantly reducing computing times. Furthermore, we mainly used
straight-forward implementations that can still be tuned towards greater accuracy if required. This is
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particularly necessary if other indicators than the ones that were used in this study (mainly on an
annual basis) are of interest; e.g., shadow prices.

5.4. Methodological Improvements

In this paper, we mainly focused on reachable improvements concerning the computational
indicators, i.e., the required total wall-clock time. However, as all of the presented methodological
approaches do not provide exact solutions of the original model instances, improvements regarding the
accuracy can be considered if necessary. In the case of model reduction, a broad variety of conceivable
methods to increase the accuracy of particular model outputs exists (see Section 2.2). As methods
such as representative time slices or more sophisticated network equivalences are more or less related
to smart treatment or preprocessing of input data, the total time consumption for the overall modeling
exercise will not significantly increase.

With regard to the applied rolling horizon dispatch approach, similar improvements are
conceivable by using temporally aggregated data for the time steps within the overlap. The idea
behind is an extension of the foresight horizon while keeping the number of redundant time steps to
be considered low. For instance, for the operation of long-term storage, down-sampling of the residual
load for the next annual period would be valuable to avoid the undesired effect of full discharging
towards the end of an interval.

Moreover, improved estimations for emission budgets for each interval are conceivable. In the
actual implementation the annual emission budget is simply equally distributed which, on the one
hand, prevents the dispatch of thermal power plants particularly in points in time with high residual
load. On the other hand, time intervals where sufficient renewable energy resources are available may
require a smaller emission limit instead. To address this issue, it could be considered to shift unused
emissions from one time interval to the next and to select a summer date as starting point for an annual
model run and heuristic decomposition approaches such as the presented temporal zooming method
offer a starting point for improvements that could go into two directions:

(1) Improved performance can be gained by running the independent model parts (such as the
time intervals in case of grid computing presented in 0) on different computers. By this means,
the drawback of being limited to memory and CPU resources of shared memory machines could
be overcome. In this context, for a better coordination and utilization of available computing
resources the application of workload managers such as Slurm [97] would be beneficial.

(2) Improved accuracy can be reached by an extension to an exact decomposition approach that
decomposes the temporal scale. However, this requires additional source code adaptions.
For instance, in case of Benders decomposition, the distribution of emission budgets to the
respective intervals needs to be realized by interval specific variables necessary to create benders
cuts. Additionally, it can be expected that due to the need of an iterative execution of master and
sub-problems the total computing time would significantly increase. Taking into account the best
achievable speed-up of 10 of temporal zooming compared to simply solving the monolithic model,
there is only a little room for improvements which may be disproportionate to the implantation
effort required.

Finally, the combination of both improved performance and maintaining the accuracy
requires iterative methods as well as the utilization of distributed memory computing hardware.
However, effective implementations of such performance enhancement approaches require efficient
communication between the processes that are executed in different computing nodes. Parallelization
should therefore not only be thought at the conceptual level but also on the technical layer (see Figure 2).
This goes hand in hand with the parallelization of solvers which is realized with the PIPS-IPM++

solver [98]. This solver provides a HPC-compatible implementation of the interior point method for
LPs that are characterized by linking variables and linking constraints.
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5.5. Practical Implications

In this study, the presented use case of a German ESOM has a macroeconomic perspective. It is
thus suited for decision support in the field of energy policy of national economies. However, very
similarly shaped optimization problems are also to be solved in energy industry.

For example, an aggregator which bundles and markets the power generation of decentralized
power plants together with a storage facility across energy markets has to make operating decisions
while seeking for a margin maximization that also needs to consider a technological, spatial and
temporal component. Although time series in such use cases are not as extensive as in our study,
manageable computing times are much more crucial as deadlines for bidding define hard time slots
which are available for model-based analyses. In particular, rolling horizon approaches are suitable
for dealing with weather and electricity price prognoses errors which become smaller with a shorter
foresight horizon of a particular time interval. According to our findings both overlaps and interval
sizes need to be comparably large for high accuracy (the latter should be, at least, greater than the
typical cycling period of the storage facility). In this context, a high accuracy of the objective value
(compared to the global optimum under perfect foresight) is to be understood as the potential to reach
a higher margin. Our analysis in 0 shows that implications on total computing time by varying overlap
and interval sizes are negligible.

However, this still leaves spaces for further and more detailed case studies because
recommendations on the discussed SAR-parameters (0) are only valuable if the concrete framework
conditions of an applied use case are known. For example, in our study, nearly constant computing
times with rolling horizon dispatch were observed for time ratios (interval size divided by size of total
foresight horizon) ranging between factor 0.003 and 0.02. If a total foresight horizon of 48 h would be
considered in the example of the aggregator, the appropriate interval sizes would range within less
than one hour.

6. Conclusions

Energy systems analysis highly depends on modeling tools such as Energy System Optimization
models (ESOMs). To fulfill their purpose to provide insights into complex energy systems for decision
support they need to be solvable within acceptable time spans.

For the broad spectrum of existing measures to improve the performance of ESOMs, we provided
a detailed classification of conceivable approaches. Furthermore, we gave examples on easy-to-use
adaptions that already improve computing performance, especially for ESOMs formulated in GAMS.
These measures were accompanied by comprehensive benchmark analyses for a set of frequently
applied speed-up techniques. The conducted examination included model aggregation approaches
on different scales as well as strategies for heuristic decomposition. Both were applied to a spatially
(488 regions) and temporally (8760 time steps) highly resolved ESOM of Germany for an energy
scenario of the year 2030. While conventional computing with commercial solver software required
more than two days for optimal solutions of certain model instances, selected speed-up approaches
obtained sufficient solutions after less than six hours.

In particular, the novelty of this paper is the systematic evaluation of a broad set of approaches
assessed for an applied ESOM focusing on achievable performance improvements. This allowed
statements concerning possible speed-up factors and implied accuracy losses that went far beyond
existing, methodologically focused assessments of single approaches with generic model setups.

In this context, Table 7 shows the final overview of the deeply analyzed speed-up approaches of
the current study. Here, the “sufficient speed-up” indicates how many times faster a model instance
could be solved compared to the total time required to solve the same model in the conventional way.
As our analyses emphasized model reduction and heuristic decomposition, “accuracy” was quantified
by using a set of pre-defined accuracy indicators. These indicators were determined as the relative
deviations of:
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• the “objective value” of the optimization problem,
• “power supply” of different electricity generation and load balancing technologies as well as,

if appropriate,
• “added capacities” of storage and electricity transmission

against their counterparts calculated with an original, conventionally solved model instance (see also 0).
In Table 7, the deviation from 100% accuracy is listed for both, the average over all assessed accuracy
indicators and the accuracy indicator that showed the greatest error.

Table 7. Overview of analyzed performance enhancement approaches: observed speed-up and accuracy
evaluated across all considered accuracy indicators.

Speed-Up Approach Sufficient Speed-Up (Model
Instance)

Accuracy

Average Worst (Affected Indicator)

Spatial aggregation
“REMix Dispatch” >4 (100 regions) >95% >70% (power transmission)

“REMix Expansion” >8 (150 regions) >95% >70% (transmission expansion)
Down-sampling

“REMix Dispatch” >6 (2190 time steps) >97% >81% (storage utilization)
“REMix Expansion” >10 (2190 time steps) >97% >87% (storage utilization)

Rolling horizon dispatch ≈2.5 (16 intervals) >96% >87% (storage utilization)
Temporal zooming (sequential) >8 (1095 time steps/16 intervals) >93% >69% (storage expansion)

Temporal zooming (grid computing) >10 (1095 time steps/16 intervals) >92% >68% (storage expansion)

According to Table 7, within our evaluation framework, temporal down-sampling turned out to
be the most efficient speed-up approach. The usefulness of this approach is strongly related to the
“effectiveness of model reduction”. In other words, the larger and more difficult to solve a particular
ESOM becomes, the greater the achievable speed-up by already minor model reductions is. Taking into
account that solving of linear ESOMs with mixed-integer variables is more complicated than for the
model instances considered in this study, we suppose that the presented speed-up approaches are
especially effective for such use cases.

As far as only specific model outcomes such as additional transmission capacities are of interest
and extensive multi-threading is possible, the presented heuristic decomposition approaches with
grid computing (temporal zooming) are also promising as they allow additional speed-ups without
increasing loss of accuracy. Moreover, they offer the possibility for executing an ESOM on multiple
shared memory computers even though parallelization is only applied to the conceptual layer of the
optimization model (see Section 2.1).

Nevertheless, we showed that the appropriate gains in performance are limited depending on
the size of a certain model. In this case, the down-side of “effectiveness of model reduction” comes
into play: Since the idea behind decomposition is based on solving multiple reduced sub-models,
such approaches reach their speed-up limit when the decrease of computing time by model reduction
becomes negligible for very small sub-models.

Restrictively, the examined speed-up approaches were implemented and evaluated for a single
ESOM framework. In this regard, further systematic evaluations are conceivable where variations of
both input data and model specific source code need to be done systematically. This especially applies
to the latter because we suppose that differing input data affect the accuracy of an ESOM rather than
the computing performance.

In conclusion, the capability to solve very large ESOMs much faster is a pre-condition for
best-practice studies in the field of energy systems analysis. Rather than spending time on solving
models only for a hand full of scenarios and parameter sets, broad parameter scans become possible
for which plenty of model solutions are required. In this manner, the application of effective speed-up
approaches highly contributes to the generation of robust and well-founded model-based analyses for
the development of decarbonization strategies of the energy system.
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3 DISCUSSION 
In the following, an overview of the results related to the publications 

summarized in this thesis is provided. In order to discuss them in an 

overarching scientific context, the section on the “General context”, first, 

explains how the particular publications contribute to answering the research 

questions raised in section 1.3. The particular new scientific insights and further 

development potentials are then presented in sub-section 3.2 to 3.5, where the 

key outcome of each publication is discussed together with its limitations. 

3.1 GENERAL CONTEXT 

Figure 1 shows the central research questions of this thesis in tabular form. 

Each of the four publications from section 2 is assigned to one column to show 

whether the traceability of scenario studies (research question 1), impact of 

power-flow modeling in ESOMs (research question 2) or the contribution of 

grid expansion to system adequacy (research question 3) is mainly addressed 

by the publication. In addition, Figure 1 shows to what extent the associated 

studies build on each other. 

Publication 1 can be seen as starting point as it generally focuses on model-

based energy scenario studies, their purpose, state-of-the art methodologies, 

and challenges especially regarding a transparent execution and presentation 

of the whole modeling process. This also includes studies, where power flows in 

ESOMs are modeled. Hence, the findings from the associated broad literature 

review and the lessons learned concerning transparent documentation are 

applied to the subsequent Publications 2 - 4. Note that this does not mean that 

a full transparency can be claimed for these Publications but rather the 

awareness for providing essential information to modeling experts. 

With regard to research question 2, integrating power flows into ESOMs is 

related to several challenges, which can be distinguished into model 

construction, model operation and new model insights. In particular, model 

construction refers to the implementation of new functionalities (e.g., by 

writing source codes), and acquisition and preparation of useable data sets. The 

latter is strongly connected to model insights, if these should go beyond the 

analysis of generic use cases. For this reason, model construction is the focus of 

Publication 2 for which a new instance of REMix is set up (“REMix Germany”). 

It allows for conducting studies on transmission grid level for scenarios of the 

German power system. The strength of the associated case study is the high 

spatial resolution of the created reference model12, which enables modeling of 

real electricity transmission lines and the identification of new battery storage 

sites for more than 450 regions within Germany. 

                                                             
12 Reference model: Fully resolved instance of “REMix Germany” used for deriving and 
benchmarking of spatially aggregated model instances  
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FIGURE 1: INTERRELATIONSHIP OF RESEARCH QUESTIONS AND PUBLICATIONS 

SUMMARIZED IN THIS THESIS.13 

However, for Publication 2 simplifications are made with regard to spatial 

extensity. This limits analyses on one important effect of electricity 

transmission – spatial load-balancing across wide areas (i.e., country borders). 

Especially in the case of Germany this should not be ignored due to its central 

location within Europe, which implies significant cross-border power-flows. 

                                                             
13 INTEEVER: Research project (2015-2018) funded by the German Federal Ministry of 
Economic Affairs and Energy  
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This issue is addressed in Publication 3, where another new model instance of 

REMix is set up on European level and which also builds-up on a spatially 

aggregated representation of the German power system (recall, performing this 

in a way to maintain transmission bottlenecks is the focus of Publication 2). As 

this study is about the role of grid expansion for system adequacy as one option 

among several competing technological alternatives, it is assigned to research 

question 3. Compared to “REMix Germany”, the strength of “REMix Europe” is 

the consideration of a broad spectrum of technologies for load-balancing 

(including coupling of energy demand sectors). Since in Publication 3 a high 

number of scenarios is also analyzed, its content-related findings are more 

robust than in the case study conducted for Publication 2.  

Bringing the strengths of both “REMix Germany” and “REMix Europe” together 

is one possible way for future research. According to the lessons learned from 

the studies for Publication 1, a high number of model executions is required to 

conduct best-practice scenario studies. However, this is only realizable if one 

central bottleneck can be resolved - impracticably high computing times of 

large-scale ESOMs. 

For this reason, Publication 4 emphasizes the aspect of ensuring the solvability 

of large ESOMs when power-flow modeling is integrated (model operation). 

The underlying benchmark analysis studies and suggests approaches for 

reducing computing times in “REMix Germany” as one representative for such 

ESOMs. 

In summary, Publication 2 provides a technique for constructing spatially 

aggregated ESOMs (model construction). Such an aggregated model is used for 

the scenario analyses in Publication 3 (new model insights), where however, 

disproportionally high computing times are still a limitation for studying a 

broad spectrum of conceivable energy futures. The speed-up approaches 

evaluated in Publication 4 (model operation) allow overcoming this issue. 

How Publication 1 supports the effective utilization of such scenario studies14, 

is discussed in the following chapter. 

3.2 TRANSPARENCY CRITERIA FOR DOCUMENTING AND TRACING 

ENERGY SYSTEM MODELING PROCESSES 

When modeling energy scenarios, a proper documentation represents one 

essential medium to provide traceability. However, although documentation is 

always taken for granted to ensure best scientific practice [39], in the context of 

scientific modeling it goes far beyond simply writing down what was done and 

                                                             
14 Note that due to a strict page limitation, the Energy Scenario Study checklist is not part of the 
scenario study in Publication 3. Nevertheless, it is provided with the a more detailed journal 
article to be published under the title “Analyzing the future role of power transmission in the 
European energy system” [63]. 
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storing of results. Documentation and thus traceability are rather a multi-faced 

topic. 

Its first or bottom layer is related to model development. Practically, the 

development of scientific modeling tools is a software engineering process. 

Therefore, it also shares the challenges with regard to traceability: Like 

modeling tools in the field of energy systems analysis, modern software in 

general tends to become more and more complex. The fact that documentation 

is often less prioritized by developers also is a general issue in software 

engineering [40]. Accordingly, these challenges were already identified in this 

domain and concepts that strive on improvements in model development 

processes exist [41]. 

The application of a model and all processes and workflows related to using a 

model represent the top-layer of documentation required for traceability. To a 

certain extent concepts for best-practice software engineering are also 

transferable from the model development layer to this layer. For example, this 

concerns the distinction of target groups into writers, users, and the 

differentiation of documentation purposes ranging from documentations with 

introductory character (e.g., tutorials, reference works or narratives) to 

technical documentations (e.g., descriptions and specifications [42]). 

Nevertheless, compared to the layer of model development one major 

difference exists: If all facets of documentation are ignored, there is still the 

always existing but worst-quality documentation: the source code itself. This 

means, a minimum of continuous traceability on the model development layer 

is always achievable by inspecting source code. Due to this fact, open-source 

modeling is one key element for improving traceability in order to ensure access 

to this minimal documentation to potential shareholders [43]. However, on the 

application layer even the existence of this minimal documentation is not 

guaranteed. 

For this reason, Publication 1 directly addresses traceability on the layer of 

model application in the context of decision support for energy-policy making. 

Taking the view of both writers and users of energy scenario studies it proposes 

an easy-to-use documentation concept for increasing transparency – the “ESS 

transparency checklist”15. As scenario modeling represents an important tool 

for supporting policy making, especially a broad spectrum of potential users is 

conceivable, which have different levels of knowledge. This makes transparency 

even more important to get credibility for decisions made on the basis of 

scenario studies even though the expert knowledge is not given, which is 

required for fully tracing the model application (see Figure 2). 

                                                             
15 ESS: Energy Scenario Studies 
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FIGURE 2: RELATION BETWEEN TRANSPARENCY AND TRACEABILITY 

In the context of Figure 2, transparency and traceability are defined as follows: 

While traceability already implies that a process can be comprehensibly 

followed step by step, transparency represents a precondition for enabling this 

by providing the relevant information for this procedure.  

In the field of ecosystem modeling, documentation schemes such as ODD [44] 

are already in use. However, before publishing the “ESS transparency checklist” 

with Publication 1 this was not the case within the energy systems analysis 

community. Therefore, the added values of Publication 1 are i) discussing the 

lack of transparency in the field of energy system modeling the first time and 

ii) proposing a new approach for improvements on transparency in the future. 

Recently, the ESS transparency checklist was already applied by Hülk et al. [45]. 

The authors take an extract of the initial transparency criteria as a basis for a 

quantitative evaluation of transparency and reproducibility of an applied study 

conducted by the authors. They also introduce an additional classification of the 

transparency criteria into background-related general transparency, 

reproducibility-related and scientific quality-related criteria. In this sense, 

Hülk et al. extend the initial idea of Publication 1, where transparency is defined 

as a pre-condition to enable reproducibility and quality assessments. Junne et 

al. [46] go even further by using the “ESS transparency checklist” as basis to 

assess three different model-based energy scenario studies on quality and to 

derive general recommendation to authors of such studies. 

The publications by Hülk et al. and Junne et al. show that the purpose of the 

major outcome of Publication 1 could be met – the “ESS transparency checklist” 

is used by scientists with both perspectives – the author’s and the user’s 

perspective. However, it needs to be stressed that the applicability is still limited 

to experts. Therefore, the transparency criteria rather contribute to improving 

the traceability of the scientific workflows, whereas the capability to increase 

credibility across different user groups is limited. In addition, although 

traceability facilitates partially reproducibility, to ensure the goal of full 
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reproducibility, further measures are required (e.g., formal documentation 

processes such as in the case of ODD).  

3.3 FROM SPATIALLY AGGREGATED TO HIGHLY RESOLVED MODELS  

3.3.1 SPATIALLY AGGREGATED MODELING 

As discussed in section 1.3.1, in the past and still today, in applied studies on 

scenarios of the European energy system, spatial data is conventionally 

resolved on country level [47] (in the following referred to as “low resolution”). 

Therefore, accounting for power flows is only possible by means of strong 

abstraction as usually only cross-border transmission can be considered. 

Deriving recommendations on infrastructure development (i.e., investments 

into transmission grids) is possible, albeit in an accordingly abstract manner. 

Typically, such analyses show that additional cross-border transmission 

capacities are required to foster the integration of power generation by 

fluctuating renewable energy sources and thus have positive effects on 

electricity prices [48,49]. Even the studies conducted for Publication 3 use a 

similar modeling framework, which leads to the result that, from a pure 

macroeconomic perspective, grid expansion is the most cost-efficient 

instrument for ensuring system adequacy in the analyzed European scenarios. 

However, similar to previous European studies by Gils [50] or Cebulla [51], a 

special focus of Publication 3 is on Germany, which is modeled in the same way: 

It is divided into 20 regions in order to observe intra-national power flows on 

transmission lines that are candidates for transmission capacity expansion. The 

used regionalization was initially proposed by the German transmission system 

operators in a transmission network development study for Germany [52] and 

considers three main criteria: locations of power generation from renewable 

energies, locations of significant electricity consumption , and transmission 

bottlenecks. In the following, such spatial resolutions are referred to as 

“intermediate resolution”. 

From a methodological point of view, the 20 regions represent aggregations of 

spatially explicit data based on the three criteria. Using this established 

regionalization for modeling Germany also entails disadvantages as the initial 

process of creating 20 regional clusters is not traceable and thus not 

reproducible. Hence, if formerly identified transmission bottlenecks are 

resolved or new centers of power generation and consumption emerge, new 

regional models may be required.  

3.3.2 A TRACEABLE METHOD FOR SPATIAL AGGREGATION 

This issue is tackled by the studies conducted in Publication 2, where a traceable 

methodology for clustering of data from a spatially highly resolved ESOM of 

Germany is presented. The corresponding ESOM is “REMix Germany”, which 

allows for hourly optimization of the power system operation using an OPF 
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approach. As shown in Table A-1 (see Appendix), additional capacity expansion 

is possible but, in the case of Publication 2, limited to grid transmission 

capacities and lithium-ion battery storage.16 

By applying a state-of-the-art spectral clustering algorithm to the results from 

“REMix Germany”, spatially aggregated ESOM instances can be created with 

the capability to reproduce or modify the aggregation process. A similar 

approach of clustering data from the transmission grid level is applied by 

Hörsch and Brown [53] on a European scale. However, the novelty of the 

clustering approach proposed in Publication 2 is the application of operational 

data (nodal differences of marginal costs of total power supply) as clustering 

criteria, instead of purely relying on almost static topological information. 

Using these specific attributes has the advantage that relevant information such 

as locations of high electricity demand or the occurrence of transmission line 

congestions are already summarized in a single attribute. With this, ESOMs 

such as “REMix Europe”—with an intermediate spatial resolution striving for 

the identification of appropriate investments into transmission grid 

infrastructure—may use the proposed clustering approach to create a 

customized regionalization depending on the given scenario, especially with 

respect to different conceivable development stages of the energy system. 

3.3.3 INTEGRATED POWER-FLOW MODELING 

The philosophy of integrating power flows into ESOMs in “REMix Germany” 

differs from its counterpart partially used by “REMix Europe” for Publication 3. 

The underlying approaches are referred to as “Integrated modeling” of power 

flows in spatially highly resolved ESOMs for the former and “Coupling” of 

spatially aggregated ESOMs with AC power-flow simulations for the latter 

(which was partially done in a unidirectional manner for Publication 3). 

Despite the fact that, in general, the linear DC power-flow is applied across all 

REMix instances considered in this thesis, one major difference of “Integrated 

modeling” and “Coupling” is the calculation of parameters that determine the 

distribution of power flows. In the case of “Integrated modeling” these factors 

are calculated model endogenously based on simplified technical parameters of 

the transmission grid. Opposed to that, when coupled to AC power-flow 

simulations, these Power Transfer Distribution Factors (PTDF) are derived 

from spatially aggregating accurately modeled AC power-flows. However, both 

philosophies of integrating power flows into ESOMs have advantages and 

disadvantages. In this context, Table 5 provides a general overview.  

                                                             
16 Note, that the used techno-economic parameters of the conducted case-study have not been 
checked to be fully consistent with each other because the focus of Publication 3 is rather to 
demonstrate the implications of the developed clustering methodology than to perform a 
sophisticated scenario analysis. Therefore, the author admits that especially the purely 
literature-based assumption of battery life times being greater than power converts life times 
is contradicting. 
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Furthermore, Figure 3 shows how, according to Table 3, mentioned references 

and the REMix model instances of this thesis can be assigned either to 

conventional energy system optimization or to power-flow analysis. 

With regard to “Integrated modeling”, one opportunity for a specific 

improvement of “REMix Germany” (used for Publication 2) is related to the 

disaggregation of primary data of power consumption. This data is only publicly 

available on power market or control-zone level and therefore needs to be 

distributed in space. While for the annual energy demand statistical data on 

county-district level is applicable for this scaling procedure (e.g., number of 

inhabitants), for the temporally resolved profiles of electricity consumption 

more sophisticated pre-processing approaches for input data become 

necessary. In the master thesis by Wittekind [54] a tool has been developed to 

perform this distribution for “REMix Germany” based on additional inputs 

such as standard load profiles or the gross value added. However, the nodal data 

used for Publication 2 relies on the same publicly available load curve, which 

represents the course of hourly power consumption in Germany of the year 

2012.  

TABLE 5: ADVANTAGES AND DISADVANTAGES OF CONSIDERING POWER-FLOW 

MODELING IN ENERGY SYSTEM OPTIMIZATION MODELS WITH DIFFERENT 

CHARACTERISTICS 

 Integrated modeling 

of power flows in spatially highly 

resolved ESOMs 

Coupling 

of spatially aggregated ESOMs with AC 

power-flow simulations 

Advantages + Explicit modeling of all 

transmission capacities and 

bottlenecks with respect to a 

given development stage of the 

energy system 

+ Modeling of concrete measures 

(e.g., realization of specific 

infrastructure projects)  

+ More accurate distribution of 

power flows 

+ Opportunity of analyses related to 

conventional power-flow analysis 

(e.g., security of grid operation) 

Disadvantages - Neglect of changing technical 

parameters (i.e., susceptance) of 

transmission lines due to 

expansion of transmission 

capacities 

- Additional input data 

requirements and 

parameterization effort for cross-

sectoral modeling 

- Computational heavy, especially if 

modeled as MIP 

- Extensive input data requirements 

(i.e., detailed technical parameters) 

for the AC power-flow simulation 

- Costly model 
coupling/harmonization procedures 
(e.g., disaggregation of ESOM 
results)  

- Grid expansion planning provides 
rather abstract results  
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FIGURE 3: LOCATION OF VARIOUS APPLIED MODELS AND STUDIES IN THE CONTEXT 

OF ENERGY SYSTEM MODELING AND POWER-FLOW ANALYSES FOR EUROPE 

If aggregated ESOMs are defined as proposed in Publication 2, the need for 

operational data from a spatially highly resolved model instance implies the 

challenge of solving such a model (“REMix Germany”). This is realized by 

keeping the model size comparably constant by making the following trade-off: 

As the spatial dimension is increased by higher resolution, the temporal 

dimension is reduced, which is, according to Table 3, more characteristic for 

conventional power-flow modeling (e.g., conducted by Hutcheon and Bialek 

[55]).  

Reducing one model dimension in order to gain more detailed insights on 

another is a typical approach, which, however, requires additional 

methodologies to perform this reduction. In Babrowski et al. [56], a simple 

selection of typical time slices by weekday and season is used to keep computing 

times of a spatially highly resolved ESOM of Germany manageable. For the 

studies conducted for Publication 2, pre-analyses with different criteria are also 

made to identify probably critical points within the used time series inputs. In 

other words, the situations for which grid expansion would become necessary, 

need to be anticipated by approaches that filter or cluster the extensive input 

time series of power consumption or power generation from renewable energy 

sources. 

One of the criteria tested in Publication 2 is typical for conventional 

transmission expansion planning: points in time with high amplitudes of both 

feed-in from wind-energy converters and power consumption. According to the 

findings by Agapoff et al. [57] the nodal price differences themselves are also 

considered as an appropriate selection criterion. Nevertheless, applying a more 
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sophisticated methodology to identify critical time slices for grid expansion is 

recommendable for further improvements. For this purpose, new 

methodologies for temporal aggregation for energy system modeling published 

in recent studies (see section 2.2.3 in Publication 4) could be examined. For 

example, a more sophisticated approach particularly developed for 

transmission expansion planning is presented by Torbaghan et al. [58], where 

the authors apply a k-medoids algorithm to the results of a pre-performed 

principal component analysis in order to reduce the operational states to be 

considered for grid expansion.  

3.4 THE VALUE OF MODEL-BASED SPEED-UP APPROACHES FOR LINEAR 

ENERGY SYSTEM OPTIMIZATION MODELS 

Approaches for spatial aggregation and the determination of representative 

time slices are only a selection of heuristics for model reduction and thus 

concepts for enhancing the performance of ESOMs. However, most of the 

studies that are published on this topic focus on one specific approach and its 

individual benefits compared to similar methodologies. Opposed to that, 

Publication 4 takes a more general perspective with the objective to identify 

those methodologies that pose the largest potential for reducing computing 

times of ESOMs.  

In this regard, the added value of Publication 4 is two-fold as on the one hand, 

it provides the very first review of popular heuristics applied to linear ESOMs 

taking into account their cross-model characteristics. These heuristics are 

discussed in context with alternative approaches such as mathematically exact 

decomposition or opportunities offered by high performance computing (HPC). 

On the other hand, an extensive benchmark experiment is conducted, where 

different speed-up approaches are systematically assessed against the 

conventional way of solving an ESOM. 

Despite its broad focus, the results of Publication 4 are limited to model-based 

heuristics. This means that, on the one hand, these approaches are always 

accompanied by a certain loss of accuracy compared to exact approaches (e.g., 

benders decomposition). For applied ESOMs formulated as LPs and under 

cost-benefit aspects, however, the added value of exact and thus mostly iterative 

decomposition approaches is questionable. Regarding the impact on the 

computing performance, the additional iterations cause losses in speed-up, 

whereas the gains on the accuracy side are often negligible because the 

optimum observed for ESOMs is often rather flat [59]. Especially this 

circumstance implies additional model development effort for iterative 

approaches, which then have to be adapted case-specifically to achieve 

convergence in acceptable time spans. 

On the other hand, the observed performance enhancement of Publication 4 is 

still restricted to the changes that can be made by modifying the source code of 
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an ESOM or adjusting the parameters of the applied solver software. Speed-up 

approaches that allow for massive parallelization by High Performance 

Computing (HPC) are thus not sufficiently examined. In this regard, a 

promising approach is the application of the parallel implementation of an 

interior point solver developed in the research project BEAM-ME [60]. 

Nevertheless, the findings from Publication 4 are essential for cost-benefit 

estimations since the application of solvers suited for HPC demand costly 

model adaptions. Hence, potential users of speed-up approaches are able to 

decide which acceleration of computing time is available at which 

implementation effort. In contrast, the use of HPC should be dedicated to 

problems that otherwise cannot be solved in reasonable time. This applies, for 

example, to so-called maximum models, which represent the modeled 

phenomena in the best-possible way. Their solutions can serve as a substitute 

for the limited validation possibilities in the field of energy system analysis. In 

this sense, HPC enables the provision of models, which can be used to 

investigate and derive permissible model simplifications. 

The benchmark analyses conducted for Publication 4 use two very similar 

reference models based on “REMix Germany”, where, compared to the 

modeling setup presented in Table A-1, the module for heuristic temporal 

decomposition is applied. Other ESOMs share many of the characteristics of the 

corresponding reference models but specific implementations and parameters 

may differ. For this reason, a possible direction for future research are cross-

model benchmarks in order to validate the statements made in Publication 4. 

Another lesson learned from this publication is the basic knowledge about 

workflows for accessing and utilizing distributed memory architectures such as 

used for HPC. The application of job scheduling with professional job 

management tools (i.e., Slurm [61]) already improved conventional solving 

routines, which were used for solving the comparably large ESOM instances 

related to Publication 3 (see Figure 1).  

3.5 THE CONTRIBUTION OF GRID EXPANSION TO SYSTEM ADEQUACY 

As shown in Figure 1, Publication 3 represents an excerpt of more detailed 

studies conducted in the research project INTEEVER. Besides the comparison 

of scenarios that vary the consideration of solar power imports and a hydrogen 

economy, more detailed analyses concerning the role of grid expansion are 

conducted and presented in the corresponding technical report [62], and a 

further journal publication [63]. 

In this context, the basis of all model-based analyses is “REMix Europe”, which 

is used for both the determination of scenarios of European power plant 

portfolios (Table A-2) and for assessing different system configurations with 

regard to technologies for load-balancing (Table A-3). 
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One of the key findings from the studies related to Publication 3 is that, for a 

prescribed European power generation mix, grid expansion makes the most 

robust contribution to system adequacy (which is measured in the reduction of 

demand for back-up generation capacities). Without sufficient grid expansion, 

the integration of renewable power generation and thus the reduction of CO2 

emissions is not possible solely through the use of storage facilities. Otherwise 

the demand for more generation capacities increases, whereas additional 

curtailment occurs resulting in a significant higher demand for alternative load-

balancing technologies including gas-fired backup power plants. Although 

these technologies play a major role for the composition of adequate future 

energy supply systems, especially when grid expansion is low and from a 

macroeconomic perspective, they can replace grid expansion only at higher 

cost. However, if ideally sited, gas-fired backup generation capacities can foster 

a reduction of required grid expansion.  

Despite existing model limitations (e.g., neglection of further conceivable 

technologies, which are not listed in Table A-3, such as carbon capture and 

storage), the strength of the analyses summarized in Publication 3 is that they 

hold true for a broad variety of scenarios and parameter variations. Especially 

the role of grid expansion is evaluated for: i) two different starting points of 

prescribed grid expansion, ii) varying assumptions on investment costs, iii) the 

effect of bounding capacity expansion, and iv) considering the impact of 

topographic differences on expansion costs of individual interconnectors (for 

more details see [63]). Furthermore, the availability profiles of renewable 

power generation are varied by a parameter variation of weather data. An 

additional benchmark analysis also shows that, from a macroscopic 

perspective, the statements above are also robust against the different 

possibilities of modeling power flows in spatially aggregated ESOMs (i.e., 

transshipment model, DC power-flow based on simplified technical grid 

parameters, and DC power-flow based on PTDFs from AC power-flow 

simulations). The appropriate results indicate that the resulting composition of 

the energy system technology mix is almost independent of the used approach 

for modeling power flows in spatially aggregated ESOMs instances such as 

“REMix Europe”. 

A recent study by Brown et al. [64], that is conducted without coupling with AC 

power-flow simulations, emphasizes the role of grid expansion within a sector-

coupled European framework. The authors come to similar conclusions 

concerning electricity transmission being a robust measure for cost-efficient 

energy supply across a broad spectrum of considered scenarios. As the applied 

ESOM accounts for load-balancing by a power-balance constraint, system 

adequacy is also ensured for each of these scenarios. With regard to greenhouse 

gas mitigation targets, the scenarios go even further than the ones presented in 

Publication 3 as they aim at a reduction of 95% of CO2 emissions compared to 
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1990. Nevertheless, Brown et al. also find that especially in cases where a broad 

variety of technologies for load-balancing is available (i.e., due to cross-sector 

coupling), electricity transmission and grid expansion are much more 

prominent if unrestrictedly competing with storage technologies. This 

highlights their role for ensuring system adequacy in highly renewable energy 

supply systems. 

However, regardless of the additional determination of PTDFs by AC power-

flow simulations, the weakness of spatially aggregated ESOMs is their implicit 

assumption of unlimited power transmission within the modeled regions at no 

costs. In other words, by concentrating all power generators and consumers at 

country-representing nodes, a non-negligible share of required spatial load-

balancing is already done by the abstraction step of spatial aggregation. Hence, 

additional grid expansion needs are to be identified. This would require that 

grid expansion measures are also determined on the side of power-flow 

analyses for the transmission, and moreover, the distribution grid. Especially 

for the latter, the integration of new electricity producers and consumers, and 

even so-called prosumers can lead to significant investment needs for adapting 

the grid infrastructure. The corresponding installation of, for instance, 

controllable power converters and transformers, or battery storage is often 

referred to as transition to smart grids. For example, in the case of Germany, 

the corresponding investments are estimated to be greater than factor 10 

compared to the identified grid expansion needs for the transmission grid [65].  

Conducting such detailed grid expansion planning in an automated manner 

would require a power-flow simulation, which also considers investment 

decisions. With regard to Figure 3, this implies a shift towards optimization. An 

example for conducting such analyses based on model-coupling with an ESOM 

is proposed by ENTSO-E [66]. The involved modeling approaches are referred 

to as market simulation (ESOM) and network simulation (power-flow 

simulation), which have to be iteratively executed. The underlying idea is back-

feeding of costs for intra-regional electricity transmission to the ESOM, which 

then could consider these costs for a refined model re-execution. However, this 

is very similar to solving an integrated ESOM by a mathematical decomposition 

method (see Publication 4) and thus, involves similar challenges concerning 

computing time and convergence behavior of the coupled models. 

Therefore, integrated ESOMs are an equivalent or even more appropriate way 

for further research on system adequacy, although obstacles such as the costly 

parameterization and expectable increases in computing time need to be 

overcome. Nevertheless, expenditures for grid expansion are still hidden for an 

integrated ESOM as soon as the realization of decentral infrastructures on 

distribution grid level is to be investigated. At this point, specific but spatially 

limited power-flow simulations are required since many abstractions that are 

made on transmission grid level must be considered in higher detail. 
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4 CONCLUSIONS 
Modeling energy scenarios with power-flow constraints is essential for gaining 

insights on the technological interdependencies and cost-efficient deployment 

of decarbonized energy systems. In particular, the added value of taking into 

account power flows is the ability to understand the implications stemming 

from the fact that locations with suitable potentials for electricity generation 

from renewable energy resources are often remote from regions with high 

energy consumption. 

Energy System Optimization Models (ESOMs) are frequently applied for 

modeling energy scenarios. Addressing the complex task of scenario 

construction with re-executable computer tools offers the capability to ensure 

reproducibility of energy scenarios as long as the used ESOMs are sustainably 

accessible. However, sufficiently incorporating power-flow constraints into 

these equally complex models contributes to increases in model resolutions and 

extends system boundaries to be modeled and thus complicates the traceability 

of studies that strive for giving policy advice based on ESOMs. 

In order to provide traceability when modeling scenarios of large-scale energy 

systems, a first step is a sufficient degree of transparency, at least for experts. 

The studies carried out as part of this thesis contributed to this issue by 

compiling a comprehensive list of transparency criteria (ESS transparency 

checklist), which has been applied to both the conception of further studies by 

the author and by other researchers dealing with energy scenarios.  

By implementing and investigating two different approaches for modeling 

power flows in the transmission grid, this thesis contributed to improved 

analyses on spatial load-balancing with the ESOM REMix. Among these 

approaches, especially integrated modeling of power flows in spatially highly 

resolved ESOMs allows for the detailed investigation of future infrastructure 

needs. However, further methodological improvements such as the extension 

to mixed-integer modeling or the capability to conduct path optimizations 

(instead of the used annuity method) for investment planning are required if 

seeking for robust implementation measures in the real world. 

This also applies to the extent to which possible future developments are 

considered by energy scenarios. If they are supposed to provide robust decision 

support, implications of a broad variety of scenarios need to be assessed. By 

analyzing the macroeconomic usefulness of grid expansion on system adequacy 

for more than 50 energy scenarios and parameter variations, the studies 

conducted as part of this thesis have already taken a step forward. In this 

context, it was found that grid expansion still represents a very cost-efficient 

measure. However, robust decision making also requires the analysis of 

extreme or disruptive events and addressing all kinds of uncertainties involved 

with scenario development. Therefore, the construction of an even larger 
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number of energy scenarios with integrated ESOMs represents a suitable 

approach for future research on the contribution of grid expansion on system 

adequacy. 

In order to enable researchers to conduct the corresponding extensive model-

based scenario analyses, the computing times of ESOMs need to stay 

manageable. With the systematic evaluation of concepts for reducing 

computing times of ESOMs, Publication 4 of this thesis provided a 

comprehensive guideline for modelers who are dealing with this issue. 

However, the found speed-ups of up to factor 10 still need to be increased if 

large-scale parameter variations for scenario analyses are to be conducted in 

the future. In this regard, massive parallelization of ESOMs using High 

Performance Computing (HPC) represents one conceivable research direction 

for the future. Today, optimization modeling and in particular energy systems 

analysis are still at the beginning compared to established applications for HPC.  

In summary, the publications associated to this thesis provide the foundations 

for addressing new partially diverging trends in the application of ESOMs for 

the macroscopic analysis and construction of future energy systems. In 

particular, these are the capabilities for traceable documentation, development, 

and solving of spatially highly resolved ESOMs which are suited for modeling a 

broad spectrum of scenarios across energy sectors.   
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APPENDIX 
The following tables provide the project specific configuration of the models 

“REMix Germany” and “REMix Europe” used in the publications of this thesis. 

Their purpose is to provide rather technical information to experts in the field 

of energy system modeling. 

The table column denoted as “Technology (class)” corresponds to the general 

technology modules available from the REMix modeling framework (see 

subsection 1.2.5). Although a higher number of REMix modules exist, this 

overview is limited to the modules, which have been at least applied in the 

context of the publications summarized in this thesis. 

In “Used model features” it is indicated how general module settings are 

configured, which are optional. This column is only filled in if either default 

settings are changed or the indicated specification is expected to have a strong 

influence on the model behavior. This applies to the curtailment of renewable 

power generation, which also could be limited. However, to avoid artefacts by 

creating situations where surplus power is wasted by exploiting additional 

losses, it is set to be unlimited. With regard to conventional and combined heat 

and power plants, there exists the option to specify a substitution of the default 

fuel. This option is used in “REMix Europe” to model power-to-gas-to-power 

(indicated as “Synthetic fuel co-firing”). For electric vehicles load shifting can 

be enabled for different fixed time intervals, which distinguishes modeling of 

their temporal flexibility from the capabilities of stationary energy storage. 

Furthermore, there exist several options to restrict the emission of greenhouse 

gases either by making explicit assumptions on costs of emission allowances or 

by simply bounding the appropriate variables to a desired value. 

In “Specifications” the technologies or other model specific parameters, which 

are explicitly considered in the appropriate model instance are provided. They 

are supplemented by information about the consideration of particular 

technologies and how capacities are determined. As “REMix Germany” and 

“REMix Europe” are usually executed multiple times, these settings may vary 

within the analyses of Publication 2 – 4. In order to indicate this in the tick 

boxes, the check-symbol is occasionally shown in brackets. 
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TABLE A-1: OVERVIEW OF REMIX MODULES USED AND PARAMETERIZED FOR 

APPLYING “REMIX GERMANY” IN PUBLICATION 2. 

 

  

P yes

(P) case-dependent

O no

W irrelevant

Technology (class) Specification

Biomass power plants P O O

Geothermal power plants O O O

Wind energy converters (Onshore) P P O

Wind energy converters (Offshore) P P O

Photovoltaic P P O

Run-of-river  power plants P P O

Lignite-fired power plants P P O

Open cycle gas turbines P P O

Combined cycle gas turbines P P O

Nuclear power plants P P O

Hard coal-fired power plants P P O

Concentrated solar 

power plants
Concentrated solar power plants O O O

Conventional power 

consumers
Conventional power consumers P P W

Electric vehicles Electric vehicles O P W

Alkali-Elektrolyzers O O O

PEM-Elektrolyzers O O O

Hydrogen vehicles Hydrogen vehicles O O W

Electric boiler for buildings O O O

Electric boiler for industry O O O

Electric boiler for district heating O O O

Gas boiler for buildings O O O

Peak load boilers for biomass-fired cogeneration plants O O O

Peak load boilers for hard coal-fired cogeneration plants O O O

Gas boiler for industry O O O

Gas boiler for district heating O O O

Peak load boilers for lignite-fired cogeneration plants O O O

Hard coal-fired power plants for industry O O O

Combined cycle gas turbines for district heating O O O

Open cycle gas turbines for buildings O O O

Lignite-fired cogeneration plants for district heating O O O

Biomass-fired congeneration plants for buildings O O O

Geothermal heat pumps O O O

Air heat pumps O O O

Industrial heat consumers O O W

Heat consumers (buildings, services) O O W

HVAC electricity 

transmission Overhead lines / cables P P (P)

HVDC electricity 

transmission Overhead lines / cables / sea cables P O (P)

Synthetic gas 

transmission
O O O

Load shifting O O O

Load shedding O O O

Hydro reservoir power plants O O O

Pumped hydro storage P P O

Vanadium-Redox-Flow batteries O O O

Adiabatic compressed air storage O O O

Lithium-Ion batteries P O (P)

Warm water storage O O O

Pressure vessels for hydrogen O O O

Cavern storage for hydrogen O O O

Self-consumption quotas 0% / 50% / 80% / 100% O W W

Fuels Unlimited availability P W W

Emissions Emission cap P W W

Firm capacity 0% / 50% / 80% / 100% O W W

Heuristic temporal model 

decomposition
O W W

Global 

modeling 

constraints

Heat pumps

Heat consumers

Spatial load 

balancing

Temporal load 

balancing

Demand side 

management

Energy storage

Renewable 

Fuels

Electrolysis

Heat

Electric boilers

Gas boilers

Combined heat and 

power plants

Used model 

features

Electricity

Biomass-fired power 

plants

Power generation from 

fluctuating renewable 

energy resources
Unlimited 

curtailment

Conventional thermal 

power plants
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TABLE A-2: OVERVIEW OF REMIX MODULES USED AND PARAMETERIZED FOR 

APPLYING “REMIX EUROPE” FOR THE DEVELOPMENT OF SCENARIOS OF EUROPEAN 

POWER PLANT PORTFOLIOS IN PUBLICATION 3. 

 

P yes

(P) case-dependent

O no

W irrelevant

Technology (class)
Used model 

features
Specification

Biomass power plants P O P

Geothermal power plants P O P

Wind energy converters (Onshore) P P P

Wind energy converters (Offshore) P P P

Photovoltaic P P P

Run-of-river  power plants P P P

Lignite-fired power plants P P O

Open cycle gas turbines P P P

Combined cycle gas turbines P P P

Nuclear power plants P P (P)

Hard coal-fired power plants P P O

Concentrated solar 

power plants
Concentrated solar power plants P O (P)

Conventional power 

consumers
Conventional power consumers P P W

Electric vehicles Electric vehicles P P W

Alkali-Elektrolyzers (P) (P) O

PEM-Elektrolyzers (P) (P) O

Hydrogen vehicles Hydrogen vehicles (P) (P) W

Electric boiler for buildings P O P

Electric boiler for industry P O P

Electric boiler for district heating P O P

Gas boiler for buildings O O O

Peak load boilers for biomass-fired cogeneration plants O O O

Peak load boilers for hard coal-fired cogeneration plants O O O

Gas boiler for industry O O O

Gas boiler for district heating O O O

Peak load boilers for lignite-fired cogeneration plants O O O

Hard coal-fired power plants for industry O O O

Combined cycle gas turbines for district heating O O O

Open cycle gas turbines for buildings O O O

Lignite-fired cogeneration plants for district heating O O O

Biomass-fired congeneration plants for buildings O O O

Geothermal heat pumps P O P

Air heat pumps P O P

Industrial heat consumers P P W

Heat consumers (buildings, services) P P W

HVAC electricity 

transmission Overhead lines / cables O O O

HVDC electricity 

transmission Overhead lines / cables / sea cables P P P

Synthetic gas 

transmission
O W W

Load shifting O O O

Load shedding O O O

Hydro reservoir power plants P P O

Pumped hydro storage P P P

Vanadium-Redox-Flow batteries O O O

Adiabatic compressed air storage O O O

Lithium-Ion batteries P O P

Warm water storage O O O

Pressure vessels for hydrogen (P) (P) O

Cavern storage for hydrogen O O O

Self-consumption quotas 0% / 50% / 80% / 100% P W W

Fuels Unlimited availability P W W

Emissions Emission cap Global / national P W W

Firm capacity 0% / 50% / 80% / 100% P W W

Heuristic temporal model 

decomposition
O W W

Energy storage

Heat consumers

Unlimited 

curtailment

Global 

modeling 

constraints

Temporal load 

balancing

Spatial load 

balancing

Demand side 

management

Electricity

Renewable 

Fuels

Heat

Electrolysis

Biomass-fired power 

plants

Power generation from 

fluctuating renewable 

energy resources

Conventional thermal 

power plants

Electric boilers

Gas boilers

Combined heat and 

power plants

Heat pumps
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TABLE A-3: OVERVIEW OF REMIX MODULES USED AND PARAMETERIZED FOR 

APPLYING “REMIX EUROPE” FOR ASSESSING THE IMPACT OF DIFFERENT 

TECHNOLOGIES FOR LOAD-BALANCING ON SYSTEM ADEQUACY IN PUBLICATION 3. 

 

P yes

(P) case-dependent

O no

W irrelevant

Technology (class) Specification

Biomass power plants O O O

Geothermal power plants P O O

Wind energy converters (Onshore) P P (P)

Wind energy converters (Offshore) P P O

Photovoltaic P P (P)

Run-of-river  power plants P P O

Lignite-fired power plants P P O

Open cycle gas turbines P P P

Combined cycle gas turbines O P O

Nuclear power plants O P O

Hard coal-fired power plants O P O

Concentrated solar power 

plants
Concentrated solar power plants P P (P)

Conventional power 

consumers
Conventional power consumers P P W

Electric vehicles
Load shifting 

for 2h, 4h, 8h
Electric vehicles P P W

Alkali-Elektrolyzers (P) O (P)

PEM-Elektrolyzers (P) O (P)

Hydrogen vehicles Hydrogen vehicles (P) (P) W

Electric boiler for buildings P O P

Electric boiler for industry P O P

Electric boiler for district heating P O P

Gas boiler for buildings P O P

Peak load boilers for biomass-fired cogeneration plants P O P

Peak load boilers for hard coal-fired cogeneration plants P O P

Gas boiler for industry P O P

Gas boiler for district heating P O P

Peak load boilers for lignite-fired cogeneration plants P O P

Hard coal-fired power plants for industry P P O

Combined cycle gas turbines for district heating P P O

Open cycle gas turbines for buildings P P O

Lignite-fired cogeneration plants for district heating P P O

Biomass-fired congeneration plants for buildings P P O

Geothermal heat pumps P P P

Air heat pumps P P P

Industrial heat consumers P P W

Heat consumers (buildings, services) P P W

HVAC electricity 

transmission Overhead lines / cables P P P

HVDC electricity 

transmission Overhead lines / cables / sea cables
P P P

Synthetic gas 

transmission

Methanation of 

hydrogen
P W W

Load shifting P P O

Load shedding P P O

Hydro reservoir power plants P P O

Pumped hydro storage P P P

Vanadium-Redox-Flow batteries O O P

Adiabatic compressed air storage O O P

Lithium-Ion batteries P O P

Warm water storage O O P

Pressure vessels for hydrogen (P) O (P)

Cavern storage for hydrogen (P) O (P)

Self-consumption quotas 0% / 50% / 80% / 100% O W W

Fuels Unlimited availability O W W

Emissions
Emission 

costs
P W W

Firm capacity 0% / 50% / 80% / 100% O W W

Heuristic temporal model 

decomposition
O W W

Used model 

features

Combined heat and 

power plants

Electricity

Biomass-fired power 

plants

Power generation from 

fluctuating renewable 

energy resources
Unlimited 

curtailment

Conventional thermal 

power plants Synthetic fuel 

co-firing

Global 

modeling 

constraints

Synthetic fuel 

co-firing

Heat pumps

Heat consumers

Spatial load 

balancing

Temporal load 

balancing

Demand side 

management

Energy storage

Renewable 

Fuels

Electrolysis

Heat

Electric boilers

Gas boilers
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TABLE A-4: OVERVIEW OF REMIX MODULES USED AND PARAMETERIZED FOR 

APPLYING “REMIX GERMANY” IN PUBLICATION 4. 

 

P yes

(P) case-dependent

O no

W irrelevant

Technology (class) Specification

Biomass power plants P O O

Geothermal power plants O O O

Wind energy converters (Onshore) P P O

Wind energy converters (Offshore) P P O

Photovoltaic P P O

Run-of-river  power plants P P O

Lignite-fired power plants P P O

Open cycle gas turbines P P O

Combined cycle gas turbines P P O

Nuclear power plants P P O

Hard coal-fired power plants P P O

Concentrated solar 

power plants
Concentrated solar power plants O O O

Conventional power 

consumers
Conventional power consumers P P W

Electric vehicles Electric vehicles O P W

Alkali-Elektrolyzers O O O

PEM-Elektrolyzers O O O

Hydrogen vehicles Hydrogen vehicles O O W

Electric boiler for buildings O O O

Electric boiler for industry O O O

Electric boiler for district heating O O O

Gas boiler for buildings O O O

Peak load boilers for biomass-fired cogeneration plants O O O

Peak load boilers for hard coal-fired cogeneration plants O O O

Gas boiler for industry O O O

Gas boiler for district heating O O O

Peak load boilers for lignite-fired cogeneration plants O O O

Hard coal-fired power plants for industry O O O

Combined cycle gas turbines for district heating O O O

Open cycle gas turbines for buildings O O O

Lignite-fired cogeneration plants for district heating O O O

Biomass-fired congeneration plants for buildings O O O

Geothermal heat pumps O O O

Air heat pumps O O O

Industrial heat consumers O O W

Heat consumers (buildings, services) O O W

HVAC electricity 

transmission Overhead lines / cables P P (P)

HVDC electricity 

transmission Overhead lines / cables / sea cables P O (P)

Synthetic gas 

transmission
O O O

Load shifting O O O

Load shedding O O O

Hydro reservoir power plants P P O

Pumped hydro storage P P O

Vanadium-Redox-Flow batteries O O O

Adiabatic compressed air storage O O O

Lithium-Ion batteries P O (P)

Warm water storage O O O

Pressure vessels for hydrogen O O O

Cavern storage for hydrogen O O O

Self-consumption quotas 0% / 50% / 80% / 100% O W W

Fuels Unlimited availability P W W

Emissions Emission cap P W W

Firm capacity 0% / 50% / 80% / 100% O W W

Heuristic temporal model 

decomposition
P W W

Global 

modeling 

constraints

Heat pumps

Heat consumers

Spatial load 

balancing

Temporal load 

balancing

Demand side 

management

Energy storage

Renewable 

Fuels

Electrolysis

Heat

Electric boilers

Gas boilers

Combined heat and 

power plants

Used model 

features

Electricity

Biomass-fired power 

plants

Power generation from 

fluctuating renewable 

energy resources
Unlimited 

curtailment

Conventional thermal 

power plants
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